
Analysis and Design of
Authentication and Encryption

Algorithms for Secure Cloud Systems

by

Bo Zhu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Bo Zhu 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Along with the fast growth of networks and mobile devices, cloud computing has be-
come one of the most attractive and effective technologies and business solutions nowadays.
Increasing numbers of organizations and customers are migrating their businesses and data
to the cloud due to the flexibility and cost-efficiency of cloud systems. Preventing unau-
thorized access of sensitive data in the cloud has been one of the biggest challenges when
designing a secure cloud system, and it strongly relies on the chosen authentication and en-
cryption algorithms for providing authenticity and confidentiality, respectively. This thesis
investigates various aspects of authentication and encryption algorithms for securing cloud
systems, including authenticated encryption modes of operation, block ciphers, password
hashing algorithms, and password-less/two-factor authentication mechanisms.

Improving Authenticated Encryption Modes. The Galois/Counter Mode (GCM) is an
authenticated encryption mode of operation for block ciphers. It has been widely adopted
by many network standards and protocols that protect the security of cloud communica-
tions, such as TLS v1.2, IEEE 802.1AE and IPsec. Iwata et al. recently found a flaw in
GCM’s original proofs for non-96-bit nonce cases, and then presented new security bounds
for GCM. The new bounds imply that the success probabilities of adversaries for attacking
GCM are much larger than the originally expected ones. We propose a simple change to
repair GCM. When applied, it will improve the security bounds by a factor of about 220

while maintaining most of the original proofs.

Analyzing Polynomial-Based Message Authentication Codes. We investigate attacks on
polynomial-based message authentication code (MAC) schemes including the one adopted
in GCM. We demonstrate that constructing successful forgeries of these MAC schemes
does not necessarily require hash collisions. This discovery removes certain restrictions in
the attacks previously proposed by Procter and Cid. Moreover, utilizing a special design of
GCM for processing non-96-bit nonces, we turn these forgery attacks into birthday attacks,
which will significantly increase their success probabilities. Therefore, by considering the
birthday attacks and the security proof flaw found by Iwata et al., cloud system designers
should avoid using GCM with non-96-bit nonces if they do not revise the design of GCM.

Analyzing Block Ciphers. We propose a new framework for analyzing symmetric-key
ciphers by guessing intermediate states to divide ciphers into small components. This
framework is suitable for lightweight ciphers with simple key schedules and block sizes
smaller than key lengths. Using this framework, we design new attacks on the block cipher
family KATAN. These attacks can recover the master keys of 175-round KATAN32, 130-
round KATAN48 and 112-round KATAN64 faster than exhaustive search, and thus reach

v

many more rounds than the existing attacks. We also provide new attacks on 115-round
KATAN32 and 100-round KATAN48 in order to demonstrate that this new kind of attack
can be more time-efficient and memory-efficient than the existing ones.

Designing Password Hashing Algorithms. Securely storing passwords and deriving cryp-
tographic keys from passwords are also crucial for most secure cloud system designs. How-
ever, choices of well-studied password hashing algorithms are extremely limited, as their
security requirements and design principles are different from common cryptographic prim-
itives. We propose two practical password hashing algorithms, Pleco and Plectron.
They are built upon well-understood cryptographic algorithms, and combine the advan-
tages of symmetric-key and asymmetric-key primitives. By employing the Rabin cryptosys-
tem, we prove that the one-wayness of Pleco is at least as strong as the hard problem
of integer factorization. In addition, both password hashing algorithms are designed to be
sequential memory-hard, in order to thwart large-scale password searching using parallel
hardware, such as GPUs, FPGAs, and ASICs.

Designing Password-less/Two-Factor Authentication Mechanisms. Motivated by a num-
ber of recent industry initiatives, we propose Loxin, an innovative solution for password-
less authentication for cloud systems and web applications. Loxin aims to improve on
passwords with respect to both usability and security. It utilizes push message services
for mobile devices to initiate authentication transactions based on asymmetric-key cryp-
tography, and enables users to access multiple services by using pre-owned identities, such
as email addresses. In particular, the Loxin server cannot generate users’ authentication
credentials, thereby eliminating the potential risk of credential leakage if the Loxin server
gets compromised. Furthermore, Loxin is fully compatible with existing password-based
authentication systems, and thus can serve as a two-factor authentication mechanism.

vi

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude towards my advisor
Professor Guang Gong for her excellent guidance and tremendous support during the past
four years. Her enthusiasm for research and optimistic attitude have always inspired and
motivated me, and her extensive knowledge and experience have been the biggest help and
resource for my studies. The last four years have been an enjoyable and unforgettable time
that has given me great academic and personal development, thanks to the role model that
Professor Gong has provided as a successful person, researcher, and professor.

I would also like to express my sincerest appreciation to Professor Kui Ren from the
University at Buffalo, The State University of New York for serving as my external examiner
and providing many valuable suggestions. My deepest gratitude also goes to my thesis
examining committee members, Professor Catherine Gebotys, Professor Kshirasagar Naik,
Professor Edlyn Teske-Wilson, and Professor Mahesh Tripunitara, for their instrumental
comments and their time on this thesis. I am deeply honored and blessed to have been
guided by them. The thesis would not have been possible without their assistance.

I am particularly grateful for the knowledge, inspiration, and encouragement that I
received from Professor Kefei Chen and Professor Xuejia Lai at Shanghai Jiao Tong Uni-
versity during my Master’s study. It was they who motivated me and led me to pursue my
interests in cryptography and security.

I am also indebted to my friends and colleagues at the University of Waterloo for their
enormous support and inspiring suggestions: Professor Mark Aagaard, Professor Honggang
Hu, Dr. Xinxin Fan, Dr. Fei Huo, Dr. Zhijun Li, Dr. Yiyuan Luo, Dr. Kalikinkar Mandal,
Dr. Yin Tan, Dr. Yang Yang, Yao Chen, Teng Wu, Gangqiang Yang, and Shasha Zhu.
I am so lucky to be one of the members of the Communication Security (ComSec) Lab,
which has always been a pleasant and stimulating research atmosphere.

Last but not least, I want to thank my parents for their unconditional and endless
love, trust, support and understanding. Thanks go to my father for guiding me into the
fascinating world of mathematics and physics when I was young. Thanks are due to my
mother for her care that has always kept me full of courage. None of my work would have
been possible without them.

vii

To my parents
To my family

ix

Table of Contents

List of Tables xvii

List of Figures xix

List of Abbreviations xxi

List of Notations xxiii

1 Introduction 1

1.1 A Brief Introduction to Cloud Systems . 1

1.2 Authentication and Encryption for Cloud Systems 5

1.2.1 Fundamental Security Definitions 5

1.2.2 Authentication and Encryption for Cloud Communications and Storage 5

1.2.3 Entity Authentication for Cloud Systems 11

1.2.4 Relationships among Authentication and Encryption Algorithms . . 13

1.3 Related Work and Our Motivations . 14

1.3.1 Attacks on Authenticated Encryption Modes 15

1.3.2 Meet-in-the-Middle Attacks on Block Ciphers 15

1.3.3 Constrained Choices of Password Hashing Designs 16

1.3.4 Quest to Enhance or Replace Passwords 17

1.4 Outline and Main Contributions . 18

xi

2 Repairing the Galois/Counter Mode of Operation 21

2.1 Preliminaries . 21

2.1.1 Introduction to the Galois/Counter Mode 22

2.1.2 Attack Models and Security Definitions 24

2.1.3 A Flaw in the Security Proofs of the Galois/Counter Mode 26

2.2 A Simple Operation over the Finite Field 28

2.3 Repairing the Galois/Counter Mode and Its Security Bounds 30

2.4 Implementations against Timing-Based Side-Channel Attacks 33

2.5 Summary . 33

3 Forgery Attacks and Weak Keys of Polynomial-Based MAC Algorithms 35

3.1 Preliminaries . 35

3.1.1 Polynomial-Based MAC Algorithms 36

3.1.2 Existing Attacks on Polynomial-Based MAC Algorithms 36

3.2 New Forgery Attacks on Polynomial-Based MAC Algorithms 38

3.3 All Non-singleton Subsets of Keys are Weak 40

3.4 New Birthday-Bound-Based MAC Forgery Attacks on GCM 41

3.5 Attacking GCM in the MAC-then-Enc Paradigm 43

3.6 Summary . 45

4 Multidimensional Meet-in-the-Middle Attacks on Block Ciphers 47

4.1 Preliminaries . 47

4.1.1 The KATAN Family of Block Ciphers 47

4.1.2 A Theoretical Description of Meet-in-the-Middle Attacks 49

4.2 A Framework for Multidimensional MITM Attacks 52

4.3 MD-MITM Attacks on KATAN32 . 55

4.3.1 2D-MITM Attacks on KATAN32 . 55

4.3.2 3D-MITM Attacks on KATAN32 . 61

xii

4.4 MD-MITM Attacks on KATAN48 and KATAN64 63

4.4.1 A 2D-MITM Attack on KATAN48 64

4.4.2 A 2D-MITM Attack on KATAN64 64

4.5 Further Optimization Methods . 65

4.6 MD-MITM Attacks on KATAN with Less Rounds 66

4.6.1 A More Efficient Attack on 115-Round KATAN32 67

4.6.2 A More Efficient Attack on 100-Round KATAN48 67

4.6.3 Discussions . 68

4.7 Summary . 68

5 Designing Password Hashing and Key Derivation Algorithms 71

5.1 Preliminaries . 71

5.1.1 Desired Features of Password Hashing Algorithms 71

5.1.2 Components of Pleco and Plectron 72

5.2 Designs of Pleco and Plectron . 74

5.3 Security Analysis . 77

5.3.1 One-Wayness . 77

5.3.2 Collision Resistance . 80

5.3.3 Thwarting Parallel Brute-Force Attacks 83

5.3.4 Preventing Self-Similarity Attacks 83

5.4 Other Extensions . 83

5.4.1 Discrete-Logarithm-Based Hash Function 84

5.4.2 Using Publicly Auditable Modulus 85

5.4.3 Transforming Existing Hash Tags to Larger Cost Settings 86

5.4.4 Variants with More Efficient Software Implementations 86

5.5 Performance Analysis . 87

5.5.1 Tunable Time and Memory Costs 87

5.5.2 Efficiency of Software Implementations 88

xiii

5.5.3 Shortcut with Private Information 90

5.6 Comparisons with Other Password Hashing Algorithms 90

5.6.1 scrypt . 90

5.6.2 Makwa . 91

5.6.3 Catena . 91

5.6.4 SQUASH . 92

5.7 Summary . 92

6 Designing Password-less or Two-Factor Authentication Mechanisms 93

6.1 Design of Loxin . 93

6.1.1 Architecture . 93

6.1.2 Registration Process . 94

6.1.3 Authentication Process . 96

6.1.4 Revocation Mechanisms . 98

6.2 Security Analysis . 99

6.2.1 Defeating Man-in-the-Middle Attacks 99

6.2.2 Defeating Replay Attacks . 100

6.2.3 Defeating Server Compromises . 100

6.2.4 Further Security Enhancements . 100

6.2.5 Security Limitation . 101

6.3 Application Extensions . 101

6.3.1 Two-Factor Authenticator . 101

6.3.2 Local Authentication . 101

6.3.3 Authentication via Barcode . 102

6.3.4 Pairing without ID . 102

6.4 Loxin in Practice – Tackling the MintChip Challenge 102

6.4.1 The MintChip Challenge . 103

6.4.2 The EasyChip Solution . 103

xiv

6.5 Comparisons with Other Authentication Mechanisms 105

6.5.1 RSA SecurID . 106

6.5.2 Google Authenticator . 106

6.5.3 Kerberos . 107

6.5.4 Pico . 107

6.5.5 Twitter’s Two-Factor Authentication 107

6.5.6 Mozilla Persona . 108

6.5.7 PhoneAuth . 108

6.5.8 Duo Push . 108

6.6 Summary . 109

7 Concluding Remarks and Future Work 111

7.1 Conclusions and Our Contributions . 111

7.2 Future Research . 114

7.2.1 Authenticated Encryption Modes of Operation 114

7.2.2 Block Ciphers . 115

7.2.3 Password Hashing Algorithms . 115

7.2.4 Password-less Entity Authentication 116

APPENDICES 117

A Partial-Matching Details for the Attacks on KATAN48 and KATAN64 119

B Test Vectors for Pleco and Plectron 121

C Names of the Proposed Password Hashing Algorithms 123

References 125

xv

List of Tables

3.1 Success probabilities of the MAC forgery attacks on GCM. 46

4.1 Parameters for KATAN. 48

4.2 The irregular update sequence IR for KATAN. 49

4.3 Comparisons of cryptanalysis results on reduced-round KATAN ciphers. . . 69

5.1 Modulus choices for different security strengths. 89

5.2 Software performance of Pleco/Plectron with tcost = 1 and mcost = 216. 89

7.1 Main functionalities of the studied algorithms. 112

7.2 Positions of our work in the thesis. 112

xvii

List of Figures

1.1 Architectures of different models of cloud systems [82]. 4

1.2 Encryption process of stream ciphers. 6

1.3 Encryption process of block ciphers. 7

1.4 Encryption process of block ciphers with the CTR mode. 8

1.5 Relationships among authentication and encryption algorithms. 14

2.1 An illustration of the authenticated encryption process of GCM [85]. 25

4.1 Structure of KATAN [33]. 48

4.2 An illustration of meet-in-the-middle attacks. 50

4.3 Meet-in-the-middle attacks with one guess. 52

4.4 General process of meet-in-the-middle attacks with multiple guesses. 54

6.1 Registration process of Loxin. 95

6.2 Authentication process of Loxin. 96

6.3 An example confirmation dialog of the Loxin App. 97

6.4 A pair of MintChip’s (centre) and accessories from the Royal Canadian Mint. 103

6.5 A customer has submitted his/her email address. 104

6.6 The payment requires the approval by the user. 105

6.7 The online transaction has completed. 106

7.1 Multidimensional MITM attacks with look-up tables. 115

xix

List of Abbreviations

AEAD Authenticated encryption with associated data

ASIC Application-specific integrated circuit

CA Certificate authority

FPGA Field-programmable gate array

FSR Feedback shift register

GPU Graphics processing unit

IDP Identity provider

IV Initial vector

KDF Key derivation function

LFSR Linear feedback shift register

LSB Least significant bit

MAC Message authentication code

MITM Meet-in-the-middle

MSB Most significant bit

PMS Push message service

XOR Exclusive-or

xxi

List of Notations

0n An n-bit all-zero binary string, where n ≥ 0 (0n denotes an empty string if n = 0)

s1||s2 Concatenating two binary strings s1 and s2

|S| The cardinality of a set S

int(s) Converting a binary string s to a non-negative integer, where the endianness
depends on the context

len(s) The bit-length of the binary string s

lsbn(s) The rightmost n bits of s

msbn(s) The leftmost n bits of s

size(x) The number of bits in the shortest binary representation of the given positive
integer x, e.g., size(256) = 9 and size(255) = 8

strn(x) Converting a non-negative integer x to a binary string, and prepending/appending
zero bits to the string in order to achieve a total length of n bits, where the
endianness depends on the context

xxiii

Chapter 1

Introduction

Cloud computing has quickly gained its popularity over traditional software and hardware
models over the last decade. While companies and customers are moving their data and
businesses to the cloud, people raise more and more concerns about the security and privacy
of cloud systems. Protecting customers’ data and businesses in the cloud is vital to all cloud
system designers and service providers. Our work in this thesis aims to provide insights
into authentication and encryption algorithms used in cloud systems.

In this chapter, Section 1.1 briefly introduces cloud systems. Section 1.2 gives the
background knowledge about various kinds of authentication and encryption algorithms
for securing cloud systems. Subsequently, our motivations and related work are discussed
in Section 1.3. Finally, our contributions are summarized in Section 1.4.

1.1 A Brief Introduction to Cloud Systems

Along with the advances of network technologies and mobile devices, nowadays organiza-
tions and users tend to outsource their computation and storage needs to various cloud
services. The vendors of cloud services or cloud systems can provide more cost-efficient
and scalable resources than traditional systems due to resource pooling and economies of
scale.

The major resources that cloud systems may provide include:

Computation. Customers may outsource their computation-intensive tasks to vendors.
For example, by a similar cost one may choose to rent one hundred cloud servers to

1

finish a task in one hour, rather than use a single server that continuously runs the
same task for one hundred hours.

Storage. Vendors provide on-demand capacities for file storage and databases that can
be accessed by customers from anywhere.

Network. Customers need to deliver contents to end users reliably and quickly. Such
services include content delivery networks (CDNs) that cache data on hundreds of
global servers and deliver the data to users from the nearest location, and push
message services that provide channels for sending messages to mobile device users.

The term cloud computing has been defined by the National Institute of Standards and
Technology (NIST) as “a model for enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction” [87]. As in the description given by NIST, cloud sys-
tems provide many benefits compared with traditional on-premise systems, such as:

Scalability. Computation, storage and network capacities can be provisioned in real time
as requested, and they can easily scale up or scale down when requirements change.
Consequently, customers can avoid guessing capacities and purchasing physical ma-
chines beforehand that usually end up with limited capacities or idle resources.

Low-cost. The customers of cloud systems can benefit from lower cost per unit for re-
sources compared with traditional systems, because the usage from thousands of cus-
tomers may be aggregated to achieve economies of scale. Furthermore, on-demand
cloud systems usually run in a pay-as-you-go model, and thus customers only need
to pay for the resources they have used.

Reliability. Computational tasks and data storage can be allocated across different re-
gions or even different vendors in order to provide high availabilities, since customers’
overall businesses will not be affected if an unforeseen incident like power outage hap-
pens in one location.

Accessibility. The resources in cloud systems are commonly accessible from anywhere as
long as the Internet is available. Customers usually connect to cloud systems through
thin-client software like web browsers or via web-based application programming
interfaces (APIs).

2

Although cloud computing is a promising technical and business solution, it did not
originate from the emergence of a specific new technology. Cloud systems are powered by
the combination of advances of pre-existing technologies, such as high-capacity disk stor-
age, high-speed networks, powerful processors, and especially virtualization technologies.
Resources are pooled together and virtualized in order to improve utilization and provide
a unified interface to customers. A single machine may serve its resources to multiple
customers, while customers’ resources may also spread over different servers. However,
different customers should be isolated from each other, and every customer sees requested
resources as a whole and does not need to care about the underlying implementations,
due to the advanced virtualization technologies. By different levels of virtualization, cloud
systems are mainly delivered in the following three models.

Infrastructure-as-a-Service (IaaS) allows customers to request and assemble the ba-
sic units of virtualized computation, storage, and network capacities, and then run
arbitrary operating systems and software on them. Customers have flexible control
over operating systems, software, and allocated resources, but they may need more
human-power to customize and manage their services. Amazon Elastic Compute Cloud
(EC2) [6] and Google Compute Engine (GCE) [56] are two examples of IaaS.

Platform-as-a-Service (PaaS) provides pre-configured environments that customers can
deploy their applications to. The environments are designed for specific programming
languages and databases, and customers use tools provided by vendors to deploy ap-
plications and adjust environment settings. Although customers have limited control
over underlying resources and environments, they release the heavy burden of main-
taining operating systems and infrastructures to vendors, and can focus on their core
businesses. The examples of PaaS include Google App Engine (GAE) [55] and AWS
Elastic Beanstalk [7].

Software-as-a-Service (SaaS) directly presents the software of a specific use case, such
as accounting, collaboration, management, and analysis to end users. In this case,
vendors control all the underlying software and hardware, and customers access the
provided software via web-based interfaces or certain thin clients. Two examples of
SaaS are Google Apps for Work [57] and Salesforce Customer Relationship Management
(CRM) solutions [108].

Figure 1.1 gives an illustration of the different architectures of IaaS, PaaS and SaaS, where
PaaS might be built upon IaaS, and SaaS may be based on PaaS.

3

Figure 2-4 illustrates the relevant technologies.

FIGURE 2-4. Architecture for relevant technologies

Cloud access devices

The range of access devices for the cloud has expanded in recent years. Home PCs, enterprise

PCs, network computers, mobile phone devices, custom handheld devices, and custom static

devices (including refrigerators) are all online. Interestingly, the growth of the iPhone and the

proliferation of applications available from its App Store illustrate an improvement in terms of

access to the cloud. This greater access is resulting in greater use and growth of services within

the cloud. For example, you can now use Skype through the iPhone, thus bringing this

12 C H A P T E R T W O

Figure 1.1: Architectures of different models of cloud systems [82].

4

1.2 Authentication and Encryption for Cloud Systems

Despite the attractive features provided by cloud systems, 74% of IT executives do not
intend to migrate their infrastructures or services to cloud systems due to security concerns,
according to the surveys [73, 118]. Customers will certainly raise concerns about the privacy
and data security of cloud systems, because their data and computation results are stored
on shared cloud servers, and may be transmitted through open network connections [103].
In this section, we describe certain critical components in secure cloud systems, such as
storage/communication encryption and authentication as well as entity authentication.

1.2.1 Fundamental Security Definitions

In order to build a secure cloud system, similar as other information systems, it requires
many important security properties including but not limited to:

Confidentiality implies that only intended parties can read the protected information.
Information leakage is an example of violating confidentiality. Data stored in and
transmitted to cloud systems may be encrypted to protect confidentiality.

Authenticity refers to that messages, transactions, and documents are assured to be
genuine, i.e., created by claimed parties and unaltered by someone else. Please note
that authenticity automatically implies integrity, where integrity means that data
has not been modified in an unauthorized manner.

Availability means that data should be available when it is needed. Availability is vital
in cloud systems since customers’ businesses may depend on data stored on external
cloud servers. For example, Denial-of-service (DoS) attacks specifically attempt to
affect availability.

This thesis focuses on the confidentiality and authenticity of cloud systems, which are
commonly protected by encryption and authentication algorithms, respectively.

1.2.2 Authentication and Encryption for Cloud Communications
and Storage

In cloud systems, a large portion of customers’ data may be stored and kept by cloud
system providers. Customers also need to transfer data back and forth with cloud systems

5

stream
cipher

key

IV

plaintext
ciphertext+

Figure 1.2: Encryption process of stream ciphers.

through the Internet. Therefore, protecting the authenticity and confidentiality of the data
in cloud storage and communications is extremely important.

Before sent to the cloud, data can be obscured (i.e., encrypted) by various encryption
algorithms (also known as ciphers), e.g., the Advanced Encryption Standard (AES) [39] or
Triple-DES [112], such that only the parities sharing the secret decryption keys can recover
the original data. AES and Tripple-DES are both symmetric-key ciphers, i.e., encryption
keys are the same as decryption keys, and message senders and receivers have to share
the same keys in order to perform decryption. For asymmetric-key ciphers, encryption
and decryptions keys are different. Asymmetric-key algorithms are also called public-key
algorithms, since one of the two keys is usually public.

The encrypted data can also be transmitted or saved along with a message authenti-
cation code (MAC) tag that is computed based on the data and a secret authentication
key. Consequently, adversaries, without knowing the authentication key, cannot easily
create a valid MAC tag mapping to altered data. Legitimate customers can later recom-
pute the MAC tag to verify the integrity and authenticity of the received/retrieved data.
CBC-MAC [17] and HMAC [77] are both algorithms for computing MAC tags.

As an example, the popular protocol Transport Layer Security (TLS) [40], commonly
used for protecting communications for cloud services, employs various ciphers and MAC
algorithms to encrypt and authenticate data.

Stream Ciphers and Block Ciphers

There are two major types of symmetric-key cipher designs: stream ciphers that produce
(binary) pseudorandom streams (or sequences) to mask plaintexts, and block ciphers that
take fixed-length blocks of plaintexts as input and output ciphertext blocks with the same
length.

6

block
cipher

key

plaintext ciphertext

Figure 1.3: Encryption process of block ciphers.

Stream ciphers are usually built on feedback shift registers (FSRs). Stream ciphers first
initialize by mixing a master key and an initial vector (IV), then output a pseudorandom
sequence, and finally XOR (exclusive-or) the sequence with the plaintext to perform en-
cryption. The master keys are the credentials that should be kept securely, and IVs are
(public) random numbers that make the output sequences unique. The encryption process
of stream ciphers is illustrated in Figure 1.2. For a fixed secret key, the IV should be
changed if the stream cipher algorithm is used to generate a new sequence for encryption.
If the IV is repeated, the output stream will be the same as before, and thus may leak in-
formation about plaintexts by XORing two streams of ciphertexts together. Two examples
of stream ciphers are RC4 [76] and Salsa20 [22].

Block ciphers are designed from another point of view. They only take plaintext blocks
with fixed lengths, and output ciphertexts with the same lengths as plaintexts. Block
ciphers should be designed to be invertible, i.e., permutations, such that a ciphertext can
be unambiguously converted back to its corresponding plaintext. For a plaintext longer
than the input size of a block cipher (i.e., block size), the plaintext has to be segmented
into blocks in order to be encrypted. The model of block ciphers is given in Figure 1.3.
AES and Triple-DES are both block ciphers.

Block ciphers alone cannot be used to perfectly protect confidentiality, because plaintext
blocks with the same content will produce an identical encrypted block. Consequently, a
long ciphertext will reveal certain patterns/distributions of the plaintext. Therefore, block
ciphers are usually required to be used with modes of operation, such as the CTR [80] and
CBC [16] modes, in order to secure long messages. Especially, block ciphers used with some
authenticated encryption modes of operation, e.g., the CCM [49] and GCM [85] modes, can
produce MAC tags along with ciphertexts. This is convenient and efficient for practical
applications.

7

block
cipher

block
cipher

block
cipher

block
cipherkey key key key

ctr0 ctr1 ctr2 ctrn−1

+ + + +p0 p1 p2
pn−1

c0 c1 c2 cn−1

. . .

. . .

. . .

Figure 1.4: Encryption process of block ciphers with the CTR mode.

Modes of Operation for Block Ciphers

There are many popular choices for modes of operation, such as the CTR, CBC, CFB and
OFB modes [91]. Here we explain only the CTR (counter) mode as a simple example. The
operation of the CTR mode is similar to stream ciphers, i.e., generating a pseudorandom
stream and XORing the stream with plaintexts for encryption. The encryption process
of block ciphers with the CTR mode is illustrated in Figure 1.4, where pi and ci denote
plaintexts and ciphertexts, respectively. The counters ctri are generated from a given initial
counter ctr0 by using an incrementing function. The incrementing function can be applied
to either a whole block or a portion of the counter, and the standard incrementing function
is simply a modular increment-by-one operation, i.e., x+ 1 mod 2m, where m denotes the
number of bits (i.e., bit-length) of the counter portion [48].

The CTR mode can be combined with other MAC algorithms to compute MAC tags
when performing encryption. For example, the authenticated encryption mode CCM is
a combination of the CTR mode and the CBC-MAC algorithm that provide encryption
and authentication, respectively. The Galois/Counter Mode (GCM) is another mode of
operation designed based on the CTR mode [104], which possesses many excellent features.
GCM is an authenticated encryption with associated data (AEAD) mode for block ciphers,
which means it will produce a MAC tag simultaneously with the encryption result, and
especially the MAC tag can also protect the authenticity of a piece of public information
associated with the plaintext (i.e., associated data), e.g., the headers of TCP or IP packets.
The computations of GCM can be done in parallel (unlike CCM), and only small portions
need to be recomputed if one block of input is changed. GCM is included in NSA Suite B
Cryptography [92], and has been widely adopted by many standards and protocols, such
as TLS v1.2 [40], IEEE 802.1AE [63] and IPsec [119]. A detailed description of GCM is

8

given in Section 2.1.1.

Attack Goals and Models for Ciphers and Modes of Operation

The attack goals and models that we discuss here are based on Kerckhoffs’ principle: The
detailed specifications of authentication and encryption algorithms are open to public, and
systems’ confidentiality and authenticity depend only on the used secret keys that should
be randomly chosen. We believe such open designs are more secure and reliable than
private ones, because potential weaknesses would be quickly discovered and fixed by the
public audience once the algorithm is open to the public in its initial design phase. For a
private security algorithm, it would be painful to recover losses if the algorithm is found
flawed in production environments. There are various private encryption algorithms that
got quickly broken after their detailed designs were leaked, such as A5/1 used in the GSM
networks [26], and GMR-1/GMR-2 used for satellite phones’ encryption [45].

To attack an encryption algorithm, adversaries’ goals may include one of the following:

Plaintext recovery. A (part of) plaintext is recovered from a specific ciphertext.

Key recovery. If adversaries obtain the used secret key, they can easily decrypt cipher-
texts to get plaintexts.

To attack an authentication algorithm, except recovering secret keys, adversaries may
attempt to achieve:

MAC forgery. Adversaries construct at least one valid message-tag pair that are not pro-
duced by legitimate users, where the message is the input (except the authentication
key) to the authentication algorithm, e.g., associated data and/or ciphertexts for
GCM. This is also called existential forgery.

Adversaries can obviously search through the whole space of potential secret keys, plain-
texts, or MAC tags, and perform certain simple verification, in order to identify the cor-
rect/valid one. This is called brute-force search or exhaustive search. Therefore, for any
encryption or authentication algorithm, its key space must be large enough such that ex-
haustive search of secret keys is computationally infeasible, e.g., 2128 possible choices. The
space of plaintexts or MAC tags should also be large enough, depending on different ap-
plication scenarios. In addition, encryption and authentication algorithms should not have

9

any serious weaknesses that allow adversaries to recover plaintexts/keys or forge MAC tags
faster than exhaustive search.

For analyzing authentication and encryption algorithms, researchers usually use the
following well-defined attack models. Each of them stands for a specific level of the capa-
bilities of attackers.

Known-ciphertext attacks. Adversaries only have certain knowledge of existing cipher-
texts. For example, encrypted messages are wiretapped by adversaries, but adver-
saries do not know their corresponding plaintexts. From the known ciphertexts,
adversaries may try to recover secret keys or plaintexts.

Known-plaintext or known-message attacks. Adversaries have obtained certain ex-
isting plaintext-ciphertext or message-tag pairs, and use such information to compute
the secret keys, recover plaintexts from new ciphertexts, or forge MAC tags.

Chosen-plaintext or chosen-message attacks. Adversaries can choose or manipulate
the input to the encryption or authentication algorithm. For example, attackers are
able to instruct legitimate users to transmit specific messages and then eavesdrop
the encrypted messages, which is considered to be a common attack scenario. The
differential attacks on the Data Encryption Standard (DES) [25] are chosen-plaintext
attacks.

Chosen-ciphertext attacks. Adversaries instruct legitimate users to faithfully decrypt
any ciphertexts queried by adversaries. In this case, the attack goal is to decrypt
other ciphertexts that have not been directly queried.

The above four attack models are listed in the order from the weakest to the strongest.
Therefore, for an encryption algorithm, resisting known-ciphertext attacks is the basic
requirement, while resisting chosen-ciphertext attacks is the strongest criterion.

There are many other attack models such as distinguishing attacks, related-key attacks
and side-channel attacks. Distinguishing attacks aim to find certain non-random behaviors
of the algorithms. Related-key attacks target the situations that several master keys used
in encryption or authentication algorithms are related, e.g., having a linear relationship.
Side-channel attacks are more practical and assume attackers can get physical information
such as power consumption, timing, or electrical leakage from circuits. Adversaries could
certainly utilize such information for practical attacks. Several other attack models and
methods have been discussed in [121, 127].

10

1.2.3 Entity Authentication for Cloud Systems

As described by Bellare and Rogaway in [18], entity authentication is the procedure em-
ployed in a distributed system by a communication party to confirm the claimed identity
of (i.e., authenticate) another party. Entity authentication is extremely important in cloud
systems, because in the communications of distributed cloud systems, service providers
need to ensure that their customers must not be impersonated by any attackers on the
Internet, in order to guarantee the security of customers’ data and resources.

One of the most common methods for performing entity authentication is to ask cus-
tomers to provide a credential, e.g., a password, and then service providers can compare
the credential with the one stored in their databases. During the entity authentication
process, e.g., logging in to a web-based cloud service, service providers may require a sec-
ond piece of information customers possess, such as a passcode dynamically generated by
an RSA SecurID [106] token, which is called two-factor authentication.

Password-Based Authentication

Password-based authentication has been widely deployed in practice due to its simplicity
and efficiency. Typically, a user pre-shares a password with a cloud service provider. When
the user wants to authenticate himself/herself to the cloud service provider, he/she sends
the shared password to the service provider for verification, and the service provider simply
compares the received password with the one stored in the database for confirmation. There
are two fundamental concerns with this simple password-based authentication mechanism:
1) Users routinely pick low-entropy passwords which are particularly subject to dictionary
attacks or brute-force search [35]; 2) A device or server storing a large number of passwords
is constantly a target for attackers, and how to store passwords securely and minimize
damages if the device or server has been breached is non-trivial.

As an effective countermeasure, all passwords should be obscured together with user-
specific high-entropy data (i.e., salts) by applying a computation/memory-heavy one-way
function, namely password hashing, before storing them in the device or server. During
the process of entity authentication, the password submitted by the user is processed by
the same password hashing algorithm again and then the hashing result (i.e., hash tag)
is compared with the one stored in the database. In this way, even if hash tags and
salts are leaked to attackers, they cannot simply recover users’ password by exhaustive
search or checking pre-computed look-up tables. In addition, the computation/memory-
heavy property would make it more economically difficult for attackers to build efficient

11

hardware for searching passwords, and thus thwart brute-force attacks to a certain degree.
Examples of password hashing algorithms include PBKDF2 [70] and bcrypt [101].

Another important use case of password hashing algorithms is serving as key derivation
functions (KDFs). KDFs are pseudorandom functions that are used to derive cryptographic
keys from certain master or long-term credentials such as passwords. One of the reasons
why we need KDFs is that the master credentials like passwords are usually alphanumeric
combinations, but cryptographic keys require random, fix-length binary strings. The other
reason is that passwords may have low entropies and are vulnerable to brute-force search,
so they need to be processed by KDFs for security enhancement [72]. In the setting of
cloud systems, customers may first generate a secret key by applying a password hashing
algorithm to their passwords, and then use the secret key to encrypt and authenticate their
data before sending it to cloud service providers.

Two-Factor Authentication

To further enhance the security of password-based authentication, a promising solution is
to deploy a technology called two-factor, second-factor or multi-factor authentication, in
which a user is required to provide additional authentication information besides passwords.
The second piece of information may be what customers possess such as magnetic banking
cards or USB tokens with built-in credentials, or certain biological information such as
fingerprints or iris scans. The adoption of two-factor mechanisms makes it more difficult
for attackers to bypass the entity authentication of cloud systems, because even if attackers
could guess a customer’s password correctly, they still need to acquire the specific second
piece of information for authentication.

One of the popular two-factor solutions in cloud systems is to require a short passcode
generated by a physical token such as RSA SecurID or a software application as Google
Authenticator [64]. The technical background of RSA SecurID and Google Authenticator
is that the hardware token or software application shares a high-entropy credential with
its corresponding authentication server, and a passcode is dynamically generated by ap-
plying a pseudorandom sequence generator to the credential together with certain timing
information, e.g., the passcode is regenerated every minute.

Attack Goals and Models for Entity Authentication

The goals of adversaries to attack entity authentication mechanisms include:

12

Impersonation. An adversary convinces a communication partner of a fake identity
claimed by the adversary. For example, a malicious user Mallory tries to convince
Bob that she is Alice and wants to access Alice’s files.

Key (password or credential) recovery is also a goal for adversaries, because if adver-
saries obtain any passwords or master credentials used for entity authentication, they may
be able to impersonate the customers relying on the specific passwords or credentials, by
executing the entity authentication protocols or mechanisms as the customers.

There are many attack models relevant to entity authentication mechanisms, including:

Replay attacks. An adversary, say Mallory, first eavesdrops and records communications
between two parties, Alice and Bob, in a distributed system. When Mallory performs
entity authentication with Bob, Mallory resends Alice’s old messages to Bob, and lets
Bob think that he is actually communicating with Alice.

Man-in-the-middle attacks. A node in the middle of a communication channel between
Alice and Bob, e.g., a router or an Internet service provider (ISP), does not behave
as a trusted message forwarder, and fakes/alters messages sent between Alice and
Bob, but still lets Alice and Bob think they are communicating to each other.

Generally speaking, communication messages in entity authentication mechanisms should
be protected by certain encryption and authentication algorithms or protocols, e.g., TLS,
in order to avoid leaking sensitive information to attackers for performing replay attacks
and man-in-the-middle attacks.

Another method to help us defeat replay attacks is that messages communicated in an
entity authentication mechanism or protocol should contain some freshness, e.g., a unique
sequence number or an accurate time stamp. In this way, it will be detected if adversaries
simply retransmit existing messages.

1.2.4 Relationships among Authentication and Encryption Algo-
rithms

Although the authentication and encryption algorithms we have discussed in previous sec-
tions serve for their own design purposes, their applications in cloud systems may be closely
related. Here we summarize the relationships among block ciphers, modes of operation,
password hashing algorithms, and two-factor authentication mechanisms.

13

block
ciphers

modes of
operation

password
hashing

two-factor

1
2

2

3

4

4

4

4

Figure 1.5: Relationships among authentication and encryption algorithms.

1. Block ciphers need to be used with modes of operation, e.g., CTR and CBC, to
encrypt long messages, or with authenticated encryption modes of operation, e.g.,
CCM and GCM, to perform encryption and authentication simultaneously.

2. Cryptographic keys for block ciphers and modes of operation may need to be com-
puted by using password hashing algorithms, e.g., PBKDF2 and bcrypt.

3. Two-factor authentication methods can be used to enhance the security of password-
based entity authentication that relies on password hashing algorithms.

4. Block ciphers and modes of operation may be needed in entity authentication proto-
cols in order to encrypt and authenticate passwords or two-factor information trans-
mitted via the Internet.

Figure 1.5 illustrates the relationships described above, where arrows are numbered ac-
cordingly and each arrow denotes a “being needed by” relationship, e.g., the arrow between
“block ciphers” and “modes of operation” means that modes of operation are needed when
we use block ciphers.

1.3 Related Work and Our Motivations

How to protect the security of cloud systems, e.g., preventing customers’ data from unau-
thorized access by adversaries, is one of the fundamental and important problems of cloud
system designs, and it highly depends on the security levels of underlying algorithms

14

protecting confidentiality and authenticity. However, in practice, system designers and
software developers may have restrained time and resources to learn and understand the
detailed designs and principles of sophisticated cryptographic algorithms or protocols, and
may make poor decisions in their system developments and put customers’ data in dan-
ger. Therefore, bridging the gap between academic research and practical applications is
a very important task for researchers. In this thesis, we attempt to analyze and design
authentication and encryption algorithms for communication/data security and entity au-
thentication, in order to present simple and secure choices to cloud system designers and
developers.

1.3.1 Attacks on Authenticated Encryption Modes

The design of GCM is based on the CTR mode for encryption and a polynomial-based
MAC scheme for authentication. Due to the important role of GCM in TLS v1.2, IEEE
802.1AE and IPsec, the security of GCM has been assessed by many researchers [51, 60, 69].

Particularly, Iwata et al. found a flaw in GCM’s original security proofs [68], which
implies the actual security bounds of GCM about authenticity and confidentiality should
be much larger than the desired ones if non-96-bit nonces (IVs) are used. This drastically
limits the potential application scenarios of GCM.

Moreover, the algebraic structure of GCM’s underlying polynomial-based MAC scheme
has been analyzed by Saarinen [107], Procter and Cid [100] recently. The polynomial-based
design is also the basis for several other authentication algorithms, such as Poly1305 [20]
and SGCM [107]. Procter and Cid have investigated MAC forgery attacks on these MAC
schemes and revealed that almost all subsets of authentication keys for these polynomial-
based MAC schemes are weak key classes.

Under such circumstances, further investigation on the security bounds of GCM and
MAC forgeries of these polynomial-based MAC schemes would be very important for ap-
plications of GCM and future designs of authenticated encryption algorithms.

1.3.2 Meet-in-the-Middle Attacks on Block Ciphers

Meet-in-the-middle (MITM) attacks were first introduced by Diffie and Hellman for the
cryptanalysis of the Data Encryption Standard (DES) [41]. The MITM technique is a
generic method to analyze the high-level structures of cryptographic algorithms. The main
idea of MITM attacks is that if the target algorithm can be decomposed into two small

15

parts and the computation of each part only involves a portion of the master key, then we
can investigate the security level of each part separately and finally combine the results
from both sides. Since evaluating two smaller segments usually requires much less work, the
overall time complexity to analyze the complete algorithm could be decreased dramatically.

Several successful variants of MITM attacks have been developed recently, including
biclique attacks [27, 74] that form the first single-key attacks on the full-round block ciphers
AES and IDEA [78], and splice-and-cut attacks that construct the pre-images of MD5 [110],
SHA-0 and SHA-1 [8]. In addition, the papers [36, 43] present a new idea of guessing one
internal state of block ciphers and applying MITM attacks to the portions of the ciphers,
although their attacks only succeed in improving the memory and data complexities, but
not the time complexity, of the previous work in [65].

On the other hand, many new block cipher designs have been proposed recently, in
order to provide more efficient solutions than the widely used AES without compro-
mising overall security levels. For example, the KATAN/KTANTAN families of block ci-
phers [33], a lightweight stream cipher WG-7 [81], and the authenticated encryption algo-
rithm Hummingbird-2 [50] are devised specifically for constrained environments. The block
cipher PRINTcipher [75] is designed to be compact enough for integrated circuit printing.
A 64-bit version block cipher, LED [59], is proposed based on the structure of AES, which
has similar security evaluation but smaller implementation footprints.

Security evaluation of these new lightweight encryption algorithms, potentially by using
the MITM-based approaches, is a very important task for researchers.

1.3.3 Constrained Choices of Password Hashing Designs

Although password hashing is the foundation of many real-world security systems and
services, there are only limited proposals of password hashing algorithms that are well
studied and widely adopted. This is due to the uncommon and demanding requirements of
password hashing designs, e.g., they should be heavyweight in computation and/or memory
usage [72, 98], which is an opposite goal for most cryptographic designs.

PBKDF2, a key derivation function designed and standardized by RSA Laboratories,
has been the subject of extensive research and still remains the best conservative choice.
PBKDF2 is a conventional design that mainly relies on iterating a pseudorandom function
(usually HMAC-SHA1) a certain number of times. However, the iterative design leads
to quite unaggressive usage of memory, which makes large-scale and parallel searching
possible [47].

16

bcrypt is designed by Provos and Mazières [101], based on the block cipher Blowfish [111]
with a purposefully expensive key schedule. Due to the adaptive iteration count that can
be increased to make it slower, bcrypt could remain resistant to brute-force search attacks
even with vast increases in computing power. Like PBKDF2, bcrypt works in-place in
memory and performs poorly towards thwarting attacks using dedicated hardware.

scrypt, designed by Percival [98], is a proposal which not only offers stronger security
from a theoretical point of view than the other two but also allows users to configure
the amount of space in memory required to efficiently complete the algorithm. The cus-
tomizable memory requirement makes it difficult for attackers to build large-scale searching
circuits for scrypt, e.g., using graphics processing units (GPUs), field-programmable gate
arrays (FPGAs), and application-specific integrated circuits (ASICs). scrypt has been se-
lected as the underlying proof-of-work function for many cryptocurrencies, e.g., Litecoin [3]
and Dogecoin [2]. However, the design of scrypt is complicated and might be error-prone
to be implemented by software developers, since it involves many cryptographic primitives
such as HMAC, SHA256, PBKDF2 and Salsa20/8 [22], and certain internal structures like
ROMix and BlockMix.

If we could design a password hashing algorithm that is provably secure against common
attacks, and also requires certain (adjustable) amount of memory for efficient computations,
but is simpler to be implemented than the design of scrypt, it would be an attractive and
useful option to be adopted by practical password-based authentication systems.

1.3.4 Quest to Enhance or Replace Passwords

With the advances of cloud services and web applications, people are likely to have more
than ten accounts for social networks, email accounts, shopping websites, and various other
cloud services, all with different passwords and security policies. Memorizing all passwords
is both difficult and inconvenient, so people often end up with using simple passwords, or
constantly forgetting the least frequently used ones.

One approach to reduce users’ burden for holding multiple passwords for different cloud
services is to employ an Internet-scale identity system that defines standardized mecha-
nisms enabling the identity attributes of users to be shared among web applications and
cloud services. A number of technologies and standards such as OpenID [96] and OAuth [61]
have emerged to deliver an Internet-scale identity system during the past few years. But
such methods like OpenID and OAuth require users to enter password and log in to a cen-
tral account even if users are using a public or untrusted device, which may leak users’
passwords to keyloggers or malware.

17

It would be very useful if we could find an innovative way of accessing cloud services,
which neither involves memorizing passwords, nor adds layers of complexity for users. Bon-
neau et al. recently presented a comprehensive evaluation [30] for two decades of proposals
to replace text passwords for general-purpose user authentication on the Internet. Their
evaluation results have demonstrated the difficulty of replacing passwords and highlighted
the research challenges towards designing a password-less authentication scheme.

1.4 Outline and Main Contributions

Chapter 2 provides a practical method, i.e., changing the counter incrementing function
of the CTR mode from the modular addition to a simple operation in the finite
field, in order to avoid the security proof flaw discovered by Iwata et al. and repair
GCM. By applying this method, the security bounds of GCM can be improved by a
factor of about 220. We also give security proofs for the revised mode of operation,
named LGCM. Two implementation alternatives of LGCM are discussed for thwart-
ing timing-based side-channel attacks. Preliminary results of this chapter have been
published in our paper [128].

Chapter 3 analyzes MAC forgery attacks and weak key classes of polynomial-based MAC
algorithms including the one used in GCM, based on the recent work of Saarinen,
Procter and Cid. We reveal (and demonstrate by practical examples) that hash col-
lisions are not necessarily required for forgeries of GCM-like polynomial-based MAC
schemes, and polynomials with non-zero constant terms can be used for the attacks.
These remove certain restrictions of MAC forgery attacks proposed by Procter and
Cid. Based on the discoveries on MAC forgeries, we show that all non-singleton sub-
sets (i.e., with more than one element) of authentication keys are weak key classes, if
the final masking by block ciphers is computed additively. This is an extension to the
previous analysis result of Procter and Cid. Furthermore, based on a special struc-
ture of GCM, we show how to turn these forgery attacks into birthday-bound-based
attacks by querying the encryption oracle instead of the verification or decryption
oracle. This can significantly increase success probabilities and avoid certain coun-
termeasures. At last, we indicate that even if GCM is changed to the MAC-then-Enc
paradigm to make it more difficult for adversaries to attack MAC schemes, which is
one of the options mentioned in [100], our MAC forgery attacks can still work. The
content of this chapter has also appeared in our paper [128].

Chapter 4 investigates a new cryptanalysis method in depth: Firstly ciphers are divided

18

into consecutive sub-ciphers by guessing certain intermediate states, then MITM
attacks are applied to these sub-ciphers separately, and finally results are brought
together to eliminate wrong secret keys. We apply this multidimensional approach
to the KATAN block cipher family, and obtain the best cryptanalysis results so far.
Our new attacks can recover the master keys of 175-round KATAN32, 130-round
KATAN48, and 112-round KATAN64 faster than exhaustive search, and thus have
reached many more rounds than the existing attacks. New attacks on 115-round
KATAN32 and 100-round KATAN48 are also proposed in order to show that this new
kind of attacks can be more efficient than the existing ones. This work has been
published in our paper [126].

Chapter 5 proposes two novel password hashing algorithms, Pleco and Plectron,
based upon several well-studied cryptographic structures and primitives. The nov-
elty in the designs of Pleco and Plectron is the combination of symmetric-key and
asymmetric-key algorithms that offers a twofold benefit: 1) Since the tools to crypt-
analyzing asymmetric-key algorithms are quite different from those for symmetric-key
ones, the composition of symmetric-key and asymmetric-key components will make
cryptanalysis much harder. The basic idea is analogous to the designs of ARX (ad-
ditions, rotations and XORs) based cryptographic primitives [13, 22, 93] and the
block cipher IDEA [78], in which different operations are alternatively applied; 2)
The asymmetric-key components not only make our scheme provably secure (the
one-wayness of Pleco is as strong as the hard problem of integer factorization),
but also enable server-specific computational shortcuts as a result of faster expo-
nentiation via the Chinese Remainder Theorem when factors of moduli are known
by legitimate users. In addition to describing the Pleco and Plectron designs
in great detail, we theoretically prove their security with respect to one-wayness
and collision resistance. Pleco and Plectron are also designed to be sequential
memory-hard to thwart brute-force attacks using dedicated hardware. Our work on
these two password hashing designs has been published in [123]. Interested readers
may refer to [125] for our latest progress.

Chapter 6 presents the design of Loxin, an innovative framework for password-less cloud
authentication systems. After an initial registration process, Loxin enables a user
to access multiple cloud services or web applications with only a few taps on his/her
mobile devices. This salient feature comes from the adoption of asymmetric-key, i.e.,
public-key, cryptosystems and cloud-based push message services. Different from
most existing cloud login/authentication solutions, the servers of Loxin are not able
to generate users’ credentials. Therefore, even if a Loxin server is compromised, the

19

attacker cannot impersonate a user in order to access cloud services. As a potential
application, we have followed the Loxin security framework to build a password-less
mobile payment solution for tackling the MintChip Challenge [89]. The main content
of this chapter has published in our paper [124].

Chapter 7 summarizes the thesis and suggests potential topics for future research.

20

Chapter 2

Repairing the Galois/Counter Mode of
Operation

This chapter investigates the provable security of the Galois/Counter Mode (GCM). As we
have mentioned in Section 1.2.2, GCM has been adopted by many security standards and
protocols for protecting cloud communications and storage. First, Section 2.1 describes
the detailed design of GCM along with the security proof flaw discovered by Iwata et al.
Next, a simple operation over the finite field is introduced in Section 2.2, followed by our
method for repairing GCM described in Section 2.3. After that, Section 2.4 presents the
methods of implementing the revised GCM for preventing side-channel attacks based on
timing information. The last section summarizes the chapter.

2.1 Preliminaries

Following the paper [68], we use the following notations throughout this chapter.

• || concatenates two bit-strings, e.g., s1||s2.

• strn(x) denotes the n-bit binary representation of the integer x, where the leftmost
bits are interpreted as the most significant bits (MSB).

• int(s) returns the integer converted from the bit-string s.

• 0l denotes a bit-string consisting of l-bit 0’s, where t ≥ 0. 00 means an empty string.
Particularly, 0311 denotes the concatenation of 031 with one 1.

21

• len(s) returns the bit-length of s.

• msbn(s) represents the leftmost n bits of s.

• lsbn(s) is the rightmost n bits of s.

• |S| denotes the cardinality of a set S.

The function inc(s), where len(s) = 128, is defined as

inc(s) = msb96(s)||str32(int(lsb32(s)) + 1 mod 232),

and incn denotes applying inc for n times.

2.1.1 Introduction to the Galois/Counter Mode

As we have mentioned in Section 1.2.2, GCM is an authenticated encryption with associated
data (AEAD) scheme. GCM adopts the CTR mode for encryption, and a polynomial-based
algorithm for message authentication. For simplicity, we concentrate on the version of GCM
using 128-bit block ciphers, which is the major use case proposed in its specification [85].
For ciphers with other block sizes, our calculations can be easily adjusted. The finite field
F2128 adopted in GCM uses the generating polynomial 1 + x+ x2 + x7 + x128.

Before describing GCM in detail, we first introduce a polynomial-based hash function
GHASHH(·, ·), where H is a secret authentication key. Assume w and v are two bit-strings,
where len(w) = 128(n1 − 1) + m1 and len(v) = 128(n2 − 1) + m2, 1 ≤ m1,m2 ≤ 128, and
n1, n2 ≥ 0. If w is a non-empty bit-string, we segment w into w = w1||w2|| · · · ||wn1 , where
len(wi) = 128 for 1 ≤ i ≤ n1 − 1, and len(wn1) = m1. If w is an empty bit-string, we
define w = w0 = 00. Similarly, if v is not 00, v is segmented into v = v1||v2|| · · · ||vn2 , where
len(vi) = 128 for 1 ≤ i ≤ n2 − 1, and len(vn2) = m2; if v is an empty string, v is defined to
be v = v0 = 00. We also give the following notation,

Bi =



wi for 1 ≤ i ≤ n1 − 1,

wi||0128−m1 for i = n1,

vi−n1 for n1 + 1 ≤ i ≤ n1 + n2 − 1,

vi−n1||0128−m2 for i = n1 + n2,

str64(len(w))||str64(len(v)) for i = n1 + n2 + 1.

22

The computation of GHASHH(·, ·) is defined as

GHASHH(w, v) =

n1+n2+1∑
i=1

BiH
n1+n2+2−i, (2.1)

where the operations in the equation (2.1) are defined over the finite field F2128 . Particularly,
we define

GHASHH(s) = GHASHH(00, s),

i.e., the first parameter is an empty bit-string.

The authenticated encryption of GCM requires four bit-string inputs,

• a nonce N ,

• a master key K,

• a plaintext P , and

• an associated data A,

and then produces a pair (C, T), where

• C is the ciphertext with the same length as P , and

• T is a t-bit authentication tag, where 0 < t ≤ 128.

The authenticated decryption algorithm takes N , K, A, C and T as input, and returns P
if T is a valid MAC tag according to N , K, A and C, or FAIL if T is invalid.

The lengths of these variables should meet the following requirements [86]:

0 ≤ len(N) ≤ 264,
0 ≤ len(A) ≤ 264, and
0 ≤ len(P) ≤ 128(232 − 2).

We use EK(x) to denote the block cipher encryption with the master key K. Suppose
len(P) = 128(n − 1) + m, where n ≥ 0 and 1 ≤ m ≤ 128. If P is a non-empty string,
we segment P into a sequence of message blocks P1||P2|| · · · ||Pn, where len(Pi) = 128 for
1 ≤ i ≤ n− 1 and len(Pn) = m. If P is an empty string, we define P = P0 = 00.

23

Algorithm 2.1 ([86]). The steps of the authenticated encryption process of GCM are
described as follows,

H = EK(0128),

N0 =

{
N ||0311 if len(N) = 96,

GHASHH(N) if len(N) 6= 96,

Ni = inc(Ni−1) for 1 ≤ i ≤ n,
Ci = Pi ⊕ EK(Ni) for 1 ≤ i ≤ n− 1,
Cn = Pn ⊕msbm(EK(Nn))
C = C1||C2|| · · · ||Cn,

and the authentication tag T is computed by GMAC defined as

T = GMACH,t(A,C) = msbt(GHASHH(A,C)⊕ EK(N0)). (2.2)

GCM follows the Enc-then-MAC (EtM) paradigm, i.e., computing authentication tags
from ciphertexts. The whole authenticated encryption process of GCM is illustrated in
Figure 2.1, where the plaintext consists of two blocks, the associated data has only one
block, incr is the counter incrementing function, and multH denotes multiplying by H in
the finite field.

One important requirement when using GCM is that nonces must be distinct. Once a
nonce is reused, the counter numbers Ni used in the CTR mode of encryption will be the
same, and thus XORing two ciphertexts will eliminate the key stream and get information
about plaintexts. Another reason of forbidding nonce reuse is explained in Joux’s forbidden
attack [69], i.e., the same nonces will result in an identical EK(N0) used in the equation (2.2)
and we can construct an equation in terms of H over the finite field, which may be easily
solved, by XORing two authentication tags. However, nonces do not have to be chosen
randomly. In practice, nonces can be implemented by certain simple methods, such as
using incrementing counters or timestamps.

2.1.2 Attack Models and Security Definitions

For GCM with a fixed (but unknown) master key K, adversaries are given two oracles,
encryption oracle and decryption oracle. Adversaries can feed (N,A, P) to the encryption
oracle to get (C, T). If adversaries query the decryption oracle with (N,A,C, T), the
decryption oracle will return P if T passes verification, or FAIL otherwise. Adversaries

24

GCM 2.3 Encryption

E

Counter 1

Plaintext 1

Ciphertext 1

E

Counter 2

Plaintext 2

Ciphertext 2

incr

K K

mult H mult H

Auth Data 1

mult H

len(A) || len(C)

Auth Tag

mult H

E

Counter 0 incr

K

Figure 1: The authenticated encryption operation. For simplicity, a case with only a single block of
additional authenticated data (labeled Auth Data 1) and two blocks of plaintext is shown. Here EK

denotes the block cipher encryption using the key K, multH denotes multiplication in GF (2128)
by the hash key H , and incr denotes the counter increment function.

5

Figure 2.1: An illustration of the authenticated encryption process of GCM [85].

25

are assumed to be nonce-respecting, i.e., no repeating nonces are queried to the encryption
oracle, which is not allowed in the GCM or CTR mode.

If adversaries target only MAC schemes, they can be given two oracles, authentication
oracle and verification oracle. The authentication oracle produces T for queried (N,A,C);
while the verification oracle returns FAIL if T is not valid for (N,A,C), or returns PASS
otherwise.

In the setting of GCM or GMAC, if the goal of adversaries is to constructMAC forgeries,
adversaries attempt to create a valid authentication tag T for (N,A,C), which has not been
queried directly to the encryption oracle or the authentication oracle.

The security of GCM is characterized by privacy advantage and authenticity advantage
of adversaries [68, 86]. Here we present the definitions of privacy and authenticity advan-
tages given in [68]. Let K be the key space for a block cipher E, and GCM be written as
GCM[E, t] that takes E and a tag length t as parameters. For a given block cipher E, we
define a GCM encryption oracle GCM-EK that takes (N,A, P) and returns (C, T), and a
GCM decryption oracle GCM-DK that takes (N,A,C) and returns P or FAIL, where K
is the secret key in use. We also define a random-bit oracle $ that takes (N,A, P) and
returns random bits (C, T)

$← {0, 1}len(P)+t, where t is the tag length.

Definition 2.1 (Privacy Advantage [68]). Assuming an adversary A is nonce-respecting,
we define the privacy advantage of A attacking GCM as

Advpriv
GCM[E,t](A)

def
= Pr[K

$← K : AGCM-EK ⇒ 1]− Pr[A$ ⇒ 1].

Definition 2.2 (Authenticity Advantage [68]). Assuming an adversary A is nonce-respecting
when querying the encryption oracle GCM-EK, we define the authenticity advantage of A
attacking GCM as

Advauth
GCM[E,t](A)

def
= Pr[K

$← K : AGCM-EK ,GCM-DK forges].

2.1.3 A Flaw in the Security Proofs of the Galois/Counter Mode

Iwata et al. have discovered a flaw [68] in the security proofs of GCM given by McGrew
and Viega in [86], where the core issue originates from the assumption that the following
equation

incr1(GHASHH(N (a))) = incr2(GHASHH(N (b))) (2.3)

26

has at most lN + 1 solutions for any given r1, r2, and two nonces N (a) and N (b), where
0 ≤ r1, r2 ≤ 232− 2, N (a) 6= N (b), and lN is the maximum number of blocks for nonces, i.e.,
lN + 1 is the maximum degree of GHASHH(N (a)) and GHASHH(N (b)) in terms of H.

However, Iwata et al. discovered that inc may be translated to multiple distinct forms
in the finite field, such that the equation (2.3) may have many more solutions than the
desired lN + 1, as described in the following result.

Result 2.1 ([68]). For a randomly chosen H, the probability for the equation (2.3) to hold
is at most

222(lN + 1)

2128
.

Furthermore, for n queries to the encryption oracle with the nonces N (i)’s, where 1 ≤
i ≤ n, the probability of having a collision on counter numbers, i.e., N (a)

r1 = N
(b)
r2 for certain

r1, r2, a and b, is at most
222(n− 1)(σ + n)(lN + 1)

2128
, (2.4)

where 0 ≤ r1, r2 ≤ 232 − 2, 1 ≤ a, b ≤ n, the total length of plaintexts is at most σ blocks,
lN is the maximum number of blocks for nonces, and N (a) and N (b) are the corresponding
nonces for the counter numbers N (a)

r1 and N (b)
r2 respectively.

Iwata et al. have also given new security bounds for privacy and authenticity advantages
of GCM as follows, where the block cipher E is treated as a pseudorandom permutation
PRP that takes 128-bit blocks as input and also generates 128 bits as output.

Result 2.2 ([68]). For any adversary A that makes at most q encryption queries and q′
decryption queries, where the total length of plaintexts is at most σ blocks, and lN , lA are
the maximum numbers of blocks for nonces and inputs, respectively, we have

Advpriv
GCM[PRP,t](A) ≤ 0.5(σ + q + 1)2

2128
+

222q(σ + q)(lN + 1)

2128
, (2.5)

and

Advauth
GCM[PRP,t](A) ≤ 0.5(σ + q + q′ + 1)2

2128
+

222(q + q′ + 1)(σ + q)(lN + 1)

2128
+
q′(lA + 1)

2t
.

(2.6)

The values of the equations (2.5) and (2.6) are generally dominated by their second
terms, since they have a large constant 222 that does not exist in GCM’s original (flawed)
security proofs.

27

2.2 A Simple Operation over the Finite Field

Since the flaw of GCM’s security proofs originates from the operation inc as explained in
the previous section, we aim to replace the functionality of inc in the GCM mode with
another operation in the finite field.

Consider w · x, where w is a primitive element of F2n . It is clear that the outputs of
w · x consist of two cycles, namely (0) and (1, w, . . . , w2n−2). To combine these two cycles
into one, we define a new function Lw as

Lw(x) =


w · x if x = wi, 0 ≤ i ≤ 2n − 3,

0 if x = w2n−2,

1 if x = 0.

(2.7)

The following theorem is important for our discussions in this chapter.

Theorem 2.1. Let F2n be a finite field, w be a primitive element of F2n, rmax be an integer,
where 0 ≤ rmax ≤ 2n − 1, and Lw(x) be a mapping over F2n defined as the function (2.7).
Given any two mappings f(x), g(x) over F2n that satisfy

• f(0) = 0 and g(0) = 0, and

• wsf(x) + g(x) is not the zero polynomial for any s, where 0 ≤ s ≤ rmax,

then we have
max

0≤r≤rmax
|{x ∈ F2n | Lr

w(f(x)) + g(x) = 0}| ≤ 4d,

where d = max{deg(f), deg(g)}.

Proof. Now we consider the number of solutions of the equation

Lr
w(f(x)) + g(x) = 0 (2.8)

for a given r, where 0 ≤ r ≤ rmax ≤ 2n − 1 and f(x), g(x) satisfy the properties given in
the theorem. We divide the solutions into several cases below. For an element y ∈ F2n :

(i) If f(y) = 0 and Lr
w(f(y)) = 0, we must have that g(y) = 0 such that (2.8) holds. We

denote the set of such y by Ψ1;

28

(ii) If f(y) = 0 and Lr
w(f(y)) 6= 0, then it is not difficult to check that Lr

w(f(y)) = wr−1,
and thus g(y) = wr−1 such that (2.8) holds. Let us denote the set of such y by Ψ2;

(iii) If f(y) 6= 0 and Lr
w(f(y)) = 0, then from (2.8) we must have g(y) = 0. These

elements y are denoted by Ψ3;

(iv) If f(y) 6= 0 and Lr
w(f(y)) 6= 0, assume f(y) = wr1 and Lr

w(f(y)) = wr2 , where
0 ≤ r1, r2 ≤ 2n − 2, and then:

(iv.a) If r1 ≤ r2, then (2.8) leads to g(y) = Lr
w(f(y)) = wrf(y). Denote such elements

by a subset Ψ4;

(iv.b) If r1 > r2, similarly we have g(y) = wr−1f(y) and denote such elements by Ψ5.

There is no difficulty to see that the solution set Ψ of (2.8) is the union of Ψi for 1 ≤ i ≤ 5;
and Ψi’s are pairwise disjoint. Therefore, we have that

|Ψ| = |Ψ1|+ |Ψ2|+ · · ·+ |Ψ5|.

Firstly, assume g(x) is not the zero polynomial. It is easy to see that both Ψ1 and Ψ3

are disjoint subsets of G = {x ∈ F2n | g(x) = 0}, so we have

|Ψ| ≤ |Ψ2|+ |Ψ4|+ |Ψ5|+ |G|.

Let us consider the size of each set individually. Here we utilize the simple fact that the size
of a solution set is at most the degree of one of its defining polynomials, if the polynomial
is not the zero polynomial.

• g(x)+wr−1 is not the zero polynomial since the constant term of g(x) is zero. There-
fore, |Ψ2| is safely less than or equal to the degree of the equation g(x) = wr−1.

• |Ψ4| is less than or equal to the degree of g(x) = wrf(x), since g(x) + wrf(x) is
apparently not the zero polynomial due to the properties defined in the theorem.

• |Ψ5| is less than or equal to the degree of g(x) = wr−1f(x). Similar as wrf(x) + g(x),
wr−1f(x) + g(x) is not the zero polynomial.

• |G| is less than or equal to the degree of g(x) = 0.

29

Therefore, |Ψ| = |Ψ2|+ |Ψ4|+ |Ψ5|+ |G| ≤ 4d.

Secondly, if g(x) is the zero polynomial, then f(x) will not also be the zero polynomial
since under such circumstance wsf(x) + g(x) would always be zero for any s. It is clear
that Φi = ∅ for i = 2, 4, 5 if g(x) = 0, and then in this case

|Ψ| = |Ψ1|+ |Ψ3|.

Similarly as above, we consider each individual set.

• |Ψ1| is less than or equal to the degree of f(x) = 0.

• If f(y) 6= 0 and Lr
w(f(y)) = 0, then f(y) = w2n−2 due to the definition of Lw(x).

Because f(x)’s constant term is zero, f(x) +w2n−2 must not be the zero polynomial,
and then |Ψ3| is less than or equal to the degree of f(x) = w2n−2.

In sum, in this case, |Ψ| = |Ψ1|+ |Ψ3| ≤ 2d.

We complete the proof.

2.3 Repairing the Galois/Counter Mode and Its Secu-
rity Bounds

Larger security bounds for the advantages of adversaries than the original ones imply that
adversaries will have higher bounds on probabilities of recovering plaintexts or constructing
MAC forgeries. Therefore, it will be useful if we can repair the design of GCM and tighten
its security bounds. Here we propose a revision of GCM such that the large constant 222

in the equations (2.5) and (2.6) can be reduced to 22.

It is known that the detailed design of the counter incrementing function of the CTR
mode is not important as long as counter numbers are produced uniquely [84]. If the under-
lying block cipher is ideal, i.e., treated as a pseudorandom permutation PRP, PRP(Lr

w(s))
is indistinguishable from PRP(incr(s)). Therefore, the CTR mode encryption in GCM,
without considering the initial counter generation methods, will have the same security
properties as GCM’s original design if inc is replaced by Lw.

We propose the following revised design of GCM.

30

Algorithm 2.2. The steps of the authenticated encryption process of the revised GCM,
denoted by LGCM, are as follows,

H = EK(0128),
N0 = GHASHH(N),
Ni = Li

w(N0) for 1 ≤ i ≤ n,
Ci = Pi ⊕ EK(Ni) for 1 ≤ i ≤ n− 1,
Cn = Pn ⊕msbm(EK(Nn)),
C = C1||C2|| · · · ||Cn,
T = GMACH,t(A,C),

where the notations are the same as the ones used in Algorithm 2.1, and

len(N) = const (2.9)

for a predefined non-negative integer, const.

Please note that nonces are always processed by GHASH regardless of nonces’ lengths,
for simplicity of security proofs.

Based on Theorem 2.1, we can have the following lemma.

Lemma 2.1. Randomly choosing an authentication key H, the probability of having

Lr1
w (GHASHH(N1)) = Lr2

w (GHASHH(N2)) (2.10)

is no more than 4(lN + 1)/2128 for any given r1, r2, N1 and N2, where 0 ≤ r1, r2 ≤ 232− 2,
lN is the maximum number of blocks for nonces, N1 6= N2, and len(N1) = len(N2).

Proof. Since N1 6= N2 and len(N1) = len(N2), the nonces N1 and N2 cannot both be the
empty string, which implies len(N1) = len(N2) > 0.

Without loss of generality, we assume r2 ≤ r1. The equation (2.10) is equivalent to

Lr1−r2
w (GHASHH(N1)) = GHASHH(N2). (2.11)

The maximum degree of the polynomials GHASHH(N1) and GHASHH(N2) in terms of H
is lN + 1.

Recall that GHASHH(N) is a polynomial of H with zero constant term. We denote such
a polynomial as GN(x) = GHASHx(N) for a given N , and thus GN(0) = GHASH0(N) = 0
for any N . Therefore, GN1(0) = 0 and GN2(0) = 0.

Let w be a primitive element in the finite field. wsGN1(x)+GN2(x) = wsGHASHx(N1)+
GHASHx(N2) is not the zero polynomial, for any given s where 0 ≤ s ≤ 232 − 2, because:

31

(i) If s = 0, GN1(x) +GN2(x) is apparently not the zero polynomial, since N1 6= N2.

(ii) Recall that the coefficient of the term x in the polynomial GN(x) = GHASHx(N)
is int(064||str64(len(N))) = len(N). If 1 ≤ s ≤ 232 − 2, wsGN1(x) + GN2(x) will not
become the zero polynomial, since wslen(N1) 6= len(N1) = len(N2), and XORing
wslen(N1) and len(N2) forms the coefficient of the term x in wsGN1(x) +GN2(x).

By applying Theorem 2.1, we know the probability for the equation (2.11) to hold is at
most 4(lN + 1)/2128 for a randomly chosen H.

We define LGCM[E, t] similarly as GCM[E, t] in Section 2.1.2. LGCM[E, t] takes E
and a tag length t as parameters. Now we can give the security bounds of LGCM as
follows.

Theorem 2.2. For any adversary A that makes at most q encryption queries and q′

decryption queries, where the total length of plaintexts is at most σ blocks, and lN , lA are
the maximum numbers of blocks for nonces and inputs, respectively, we have

Advpriv
LGCM[PRP,t](A) ≤ 0.5(σ + q + 1)2

2128
+

4q(σ + q)(lN + 1)

2128
, (2.12)

and

Advauth
LGCM[PRP,t](A) ≤ 0.5(σ + q + q′ + 1)2

2128
+

4(q + q′ + 1)(σ + q)(lN + 1)

2128
+
q′(lA + 1)

2t
.

(2.13)

Proof. The proofs of Theorems 1 and 2 in [68] can be carried over, if we use Lemma 2.1 in
this chapter to replace the original probability statement of counter number collisions.

Some remarks on the equation (2.9) in Algorithm 2.2 are given as follows. In order to
obtain the above results of Lemma 2.1 and Theorem 2.2, the equation (2.9) is actually not a
necessary condition. We only need to restrict the choices of nonces such that wsf(x)+g(x)
does not become a zero polynomial. For example, a practical application may require the
value of a nonce block, e.g., the rightmost or last block, to be a fixed non-zero value, so
wsf(x) will not match other valid nonces. The other, slightly flexible, method is that
the choices of nonces must satisfy both: 1) By writing len(N) = 128i + j, where i, j are
non-negative integers and j < 128, j is unique for every possible i; 2) The left most block
of each nonce is non-zero. There might be many other less restricted conditions than the
equation (2.9), but (2.9) should be one of the simplest to be implemented in practice.

32

We also want to make a note here that it might be possible to directly adopt w · x
instead of Lw(x) to generate counter numbers since the probability for GHASH to output
zero is low, but the security proofs for GCM may require to be largely rewritten and new
bounds might have different formats as the existing ones.

2.4 Implementations against Timing-Based Side-Channel
Attacks

The function (2.7) has vulnerabilities for timing-based side-channel attacks since its com-
putations will have inconsistent times for different inputs. To minimize such effects, we
may use the following equations to replace (2.7) in practical implementations.

y = w · x,

Lw(x) =


1 if y = 0,
0 if y = 1,
y otherwise.

(2.14)

Alternatively, Lw(x) can be written as

Lw(x) = w · x+ y(x), where

y(x) =

{
1 if x = 0 or x = w2n−2,
0 otherwise.

(2.15)

The equations (2.14) and (2.15) would have closer computational time costs for different
branches than the equation (2.7).

2.5 Summary

In this chapter, we have revisited the provable security of GCM, and provided a practical
method to fix GCM with non-96-bit nonces, in order to avoid the flaw of security proofs
discovered by Iwata et al. This method can improve the overall security bounds of GCM
by a factor of about 220. We have also presented security proofs for the revised mode of
operation, namely LGCM, and alternative implementations of LGCM that are useful for
thwarting timing-based side-channel attacks.

33

Due to the important role of GCM in various encryption and authentication protocols,
such as TLS v1.2, IEEE 802.1AE and IPsec, we recommend that GCM is only used with
96-bit nonces. For instance, a variant of GCM has been introduced by Aoki and Yasuda
in [9], which only accepts a fixed-length nonce. Our revised design LGCM is recommended
if certain application scenarios prefer using non-96-bit nonces. In the current standard
about GCM used in TLS [34], a portion of the nonce is generated by applying HMAC to
certain handshake information. It is applicable to choose session-specific non-repeating
data in TLS, including the handshake information, as the nonce used for LGCM.

34

Chapter 3

Forgery Attacks and Weak Keys of
Polynomial-Based MAC Algorithms

This chapter analyzes polynomial-based MAC algorithms. As we have described in Sec-
tion 2.1.1, the MAC algorithm used in GCM is a polynomial-based design. Firstly, Sec-
tion 3.1 gives the background knowledge about several existing attacks on polynomial-
based MAC algorithms. Secondly, Section 3.2 presents our improved forgery attacks on
polynomial-based MAC schemes, and Section 3.3 studies the weak key classes of GCM-
like MAC schemes. Section 3.4 shows how to turn these forgery attacks on GCM into
birthday attacks to improve their success probabilities. The attacks on a revised version
of GCM in the MAC-then-Enc paradigm are discussed in Section 3.5. Finally, the last
section summarizes this chapter.

3.1 Preliminaries

This section gives the background knowledge about polynomial-based MAC algorithms
and describes several existing attacks on them. Notations in this chapter follow the ones
defined in Section 2.1.

For simplicity, in the context of GCM, the associated data A, the plaintext P and the
ciphertext C are considered to be multiples of 128 bits, and the nonce N to be a multiple
of 128 bits if N is not 96-bit, such that all inputs do not need to be padded. If not stated
explicitly, A is regarded as an empty bit-string.

35

Furthermore, following the notation in [100], the indices of input blocks are reversed,
e.g., P = Pn||Pn−1|| · · · ||P1 instead of P = P1||P2|| · · · ||Pn, for convenience of polynomial
representations.

3.1.1 Polynomial-Based MAC Algorithms

As mentioned in the previous chapter, the Galois/Counter Mode (GCM) is an authenti-
cated encryption with associated data (AEAD) mode, which is adopted in many important
cryptographic schemes and protocols. The designs of GMAC and GHASH in GCM are based
on the evaluation hash [115].

Let F be a finite field of characteristic 2, H ∈ F be the authentication key, and M =
Mm||Mm−1|| · · · ||M1 be a message to be authenticated, whereMi ∈ F. Define a polynomial
gM(x) ∈ F[x] as

gM(x) =
m∑
i=1

Mix
i.

Then the function hH(M) = gM(H) is called the evaluation hash. The hash function
outputs are masked by block cipher encryptions to produce the authentication tags, in the
ways such as EK(N)⊕ hH(M) and EK(hH(M)). Poly1305 [20], and the MAC schemes in
GCM and SGCM [107] are all within this framework.

3.1.2 Existing Attacks on Polynomial-Based MAC Algorithms

Procter and Cid have studied the weak key classes and forgery attacks of polynomial-
based MAC schemes, including the one used in GCM [100]. They have provided a more
general model upon Saarinen’s cycling attack [107]. We summarize the main observation
by Procter and Cid in [100] as follows. We include a short proof of their result, as it is the
fundamental for our discussions in the subsequent sections.

Result 3.1 ([100]). With the same notations as the ones in Section 3.1.1, if there exists
a polynomial f(x) ∈ F[x] without a constant term, such that f(H) = 0, then forgeries of
MAC schemes based on the evaluation hash hH(x) can be made by using f(x).

Proof. Assume

f(x) =
n∑

i=1

Fix
i,

36

and F = Fn||Fn−1|| · · · ||F1. Given a message M , we have

hH(M ⊕ F) = gM⊕F (H) = gM(H)⊕ f(H) = gM(H) = hH(M),

where the shorter one ofM and F inM⊕F is left-padded with zeros. We obtain a collision
on the evaluation hash, and thus a forgery of the MAC scheme.

If GCM is the attack target, after obtaining a valid tuple (N,C, T) by eavesdropping or
active querying, adversaries query the verification oracle about (N,C⊕F, T). If the result
is not FAIL, then a valid MAC is forged. Please note that the polynomial f(x) always has
x as its factor, and is in the ideal 〈x2 ⊕Hx〉 of the polynomial ring F[x].

For an unknown H, the success probability of MAC forgeries is directly related to the
choice of f(x). Procter and Cid have proposed three ways to select f(x): (1) The first
way is to use f(x) = x

∏
i(x ⊕Hi) to involve as many Hi as desired; (2) The second way

is based on irreducible factors of x2128 ⊕ x, which includes Saarinen’s cycling attack as a
special case; (3) The third is just using random polynomials.

Moreover, based on these analyses, Procter and Cid point out that almost any subset of
the authentication key space of these polynomial-based MAC schemes is a weak key class.

Analysis of a cryptographic algorithm’s weak keys is a very important assessment.
Handschuh and Preneel have given a theoretical definition of weak keys for symmetric-
key cryptosystems in [60]: “A class of keys is called weak if for members of the class the
algorithm behaves in an unexpected way and if it is easy to detect whether a particular key
belongs to this class.” For example, for a MAC algorithm, the unexpected behavior may
be that MAC forgeries can be made in a very high probability. Moreover, to determine
whether a key is in the class K, the number of queries has to be fewer than the exhaustive
search’s, i.e., |K|.

Result 3.2 ([100]). Let H be a subset of the authentication key space of the MAC scheme
based on the evaluation hash. If |H| ≥ 2 and 0 ∈ H, or |H| ≥ 3, then H is weak.

Proof. If |H| ≥ 2 and 0 ∈ H, one query forged by f(x) = x
∏

i(x ⊕ Hi) can be fed into
the verification oracle, where Hi ∈ H. To further determine whether 0 is in the set H, two
queries by distinct f(x) ∈ 〈x2 ⊕Hx〉 have to be made, so all elements in a subset |H| ≥ 3
can be detected by using two queries.

37

3.2 New Forgery Attacks on Polynomial-Based MAC
Algorithms

The MAC forgery attacks proposed by Procter and Cid are constructed upon hash colli-
sions, and one of the attacks’ restrictions is that the chosen polynomial f(x) should always
have x as a factor, or equivalently do not have a constant term. We demonstrate below
how to create MAC forgeries not based on hash collisions, and without the zero constant
term restriction.

For the MAC schemes as in GCM and SGCM, whose final masking by block ciphers is
computed additively, we give the following theorem, where the notations are the same as
above.

Theorem 3.1. Given any polynomial q(x) ∈ F[x] such that q(H) = 0, for the evaluation
hash based MAC scheme T = hH(M)⊕EK(N), a MAC forgery can be constructed by using
q(x).

Proof. Let q(x) = q∗(x)⊕Q0, where the Q0 is the constant term, and Q∗ be the concate-
nation of other coefficients as Qn||Qn−1|| · · · ||Q1. Since q(H) = 0, we have

T = hH(M)⊕ Ek(N) = hH(M)⊕ Ek(N)⊕ q(H),

which implies
T ⊕Q0 = hH(M)⊕ q∗(H)⊕ Ek(N)

= gM(H)⊕ q∗(H)⊕ Ek(N)
= gM⊕Q∗(H)⊕ Ek(N).

This means if we know a polynomial q(x) such that q(H) = 0, we can XOR coefficients of
q(x)’s non-constant terms with the captured message, to obtain a valid tuple as (N,M ⊕
Q∗, T ⊕Q0), if the authentication tag T is computed as hH(M)⊕ Ek(N).

Please note that the method in the above proof does not rely on a hash collision, and
the constant term Q0 is not required to be zero. We also want to mention that Theorem 3.1
leads us to an extension to the original analysis of Procter and Cid on weak key classes,
which is discussed in the next section.

A practical attack example on GCM with AES-128 and 128-bit authentication tags,
by using the method in Theorem 3.1 (along with a length extension technique), is given
as follows. The associated data A is always considered as empty. We use the same rep-
resentations as the test vectors in GCM’s specification [85], e.g., 1 in F2128 is represented
as

38

80000000000000000000000000000000,

and longer strings will written in multiple lines.

We take the following values for the authenticated encryption of GCM. The lengths of
P and C are 128 bits, i.e., one block.

K 71eebc49c8fb773b2224eaff3ad68714
N 07e961e67784011f72faafd95b0eb640

89c8de15ad685ec57e63d56e679d3e20
2b18b75fcbbec3185ffc41653bc2ac4a
e6ae8be8c85636f353a9d19a86100d0b

P 705da82292143d2c949dc4ba014f6396
H d27430c121f14d4ddfecb38acaffec53
C 251ccc6d2c45540cac4fde8b1e36802d
T be2da05993fbde00421c1d8eaaaea373

Suppose we have a subset of authentication keys H = {H1, H2, H3}, whose values are as
follows.

H1 d27430c121f14d4ddfecb38acaffec53
H2 00000000000000000000000000000001
H3 00000000000000000000000000000002

By constructing the polynomial

q(x) =
3∑

i=0

Qix
i =

3∏
i=1

(x⊕Hi),

we can get the values for Qi’s.

Q3 80000000000000000000000000000000
Q2 d27430c121f14d4ddfecb38acaffec50
Q1 c488aa211ab5dccec9c440bc33fc47b3
Q0 5bb5716dc4b4687a06f15f10d62613ee

Please note q(x) is a polynomial with a non-zero constant term, i.e., Q0 6= 0.

Then compute α = (1 ⊕ 2)/Q0 = 7ef05dd871ead7e7f8e79d7d9343a170, such that
α · Q1 ⊕ 1 will match the length of new message, i.e., 2. Construct the new ciphertext
C ′ = (α ·Q3)||(C ⊕ α ·Q2), and the authentication tag T ′ = T ⊕ α ·Q0.

39

C ′ 7ef05dd871ead7e7f8e79d7d9343a170
7ccbd8dbfca54d785f5662d48c7eef81

T ′ 8b53b318750a2e948459b204e47629b4

(N,C ′, T ′) passes the verification, and thus we complete a MAC forgery with length
extension by using a polynomial with a non-zero constant term.

For the sake of completeness, we also give the following theorem, which works for both
EK(N)⊕ hH(M) and EK(hH(M)).

Theorem 3.2. Given any polynomial q(x) ∈ F[x] such that q(H) = 0, a forgery can be
made on the MAC schemes based on the evaluation hash, by using α(x)q(x), where α(x)
is a polynomial without a constant term.

Proof. Since q(H) = 0, we have α(H)q(H) = 0. Because α(0) = 0, α(0)q(0) = 0. There-
fore, we can apply the same method in Result 3.1 to construct hash collisions and thus
MAC forgeries.

Theorem 3.2 can be seen as covered by the analysis of Procter and Cid, since α(x)q(x)
is still in the ideal 〈x2⊕Hx〉. However, Theorem 3.2 is insufficient to deduce Theorem 3.3,
which is supported by Theorem 3.1, in the next section about weak key classes.

3.3 All Non-singleton Subsets of Keys are Weak

To detect whether an authentication key H is in a subset H of the key space, the number
of queries should be less than |H|. If |H| = 2, only one query can be made, and thus
whether the key in use is zero cannot be determined by using polynomials in 〈x2 ⊕Hx〉,
since it will need at least two queries. However, based on the analysis of Theorem 3.1, we
may use polynomials in 〈x ⊕ H〉 instead of 〈x2 ⊕ Hx〉 to make one query and determine
whether the authentication key is in H.

Theorem 3.3. For an evaluation hash based MAC scheme, T = EK(N) ⊕ hH(M), if
given a valid tuple (N,M, T), then making one query to the verification oracle is enough
to determine whether the authentication key H ∈ F in use is in a subset of keys H =
{H1, H2, · · · , Hn} ⊆ F.

40

Proof. First define a polynomial

q(x) =
n∑

i=0

Qix
i =

n∏
i=1

(x⊕Hi),

where Qi ∈ F for 0 ≤ i ≤ n. Let M ′ = M ⊕ Q∗ and T ′ = T ⊕ Q0 with zero left-padding
for shorter strings, where Q∗ = Qn||Qn−1|| · · · ||Q1. Query the verification oracle with the
tuple (N,M ′, T ′). If the verification oracle does not return FAIL, the authentication key
H in use is known to be in H. H is not in H if FAIL is returned.

It is easy to see H is in H if and only if (N,M ′, T ′) passes. If H is in H, then
q(H) = 0, and thus (N,M ′, T ′) is valid. On the other hand, the validity of (N,M ′, T ′)
implies q(H) = 0, so H must be a root of q(x) = 0, which is among all the elements of
H.

The steps in Theorem 3.3 are similar to those in [100], except the absence of the steps
to determine whether 0 is in H.

Based on Theorem 3.3, we have the following corollary about weak key classes.

Corollary 3.1. For an evaluation hash based MAC scheme as T = EK(N)⊕ hH(M), any
subset, H, of its authentication key space is weak if |H| ≥ 2.

Proof. Due to Theorem 3.3, after obtaining a valid tuple (N,M, T) by passive eavesdrop-
ping, whether the authentication key H in use is in the subset H can be determined by
only one query, which is efficient compared with the size of the subset, i.e., 1 < |H|.

Moreover, once H is known to be in the subset H, H is a solution for q(x) =
∏n

i=1(x⊕
Hi) = 0, where Hi’s are all elements of H. Then the polynomial α(x)q(x) with an arbitrary
non-zero α(x) can be used to construct more MAC forgeries.

3.4 New Birthday-Bound-Based MAC Forgery Attacks
on GCM

The original forgery attacks on polynomial-based MAC schemes, including our attacks
described in Section 3.2, target algebraic properties of underlying evaluation hash functions,
e.g., GHASH in the case of GCM. The forged queries cannot be fed to the encryption oracle
directly because two queries with identical nonces are forbidden.

41

The work by Iwata et al. (as mentioned in Section 2.1.3) reminds us that GCM has
a very special design, in which GHASH is reused for generating initial counter numbers if
len(N) 6= 96. This makes GHASH attackable in the encryption oracle. Precisely, assuming
H 6= 0, the attack consists of the following three steps:

1. Either passively or actively obtain a valid tuple (N,P,C), where len(N) 6= 96. Please
note that we do not need the authentication tag T here.

2. Construct a polynomial q(x), and properly apply xdq(x) to N to derive N ′, where
d ≥ 1. Feed the pair (N ′, P) to the encryption oracle, and get the corresponding
ciphertext C ′. If C ′ = C, we know that q(H) = 0.

3. Apply q(x) to other captured messages and tags to construct more forgeries, or
recover the authentication key by binary search or solving q(x) = 0.

If H = 0, the outputs of GHASH will always be zero, and thus it can be easily detected.

One advantage of targeting the encryption oracle is that we can collect all query results
into a set to perform birthday attacks. For any query to the encryption oracle, we can
always get its corresponding ciphertext and tag as long as the nonce is not previously
queried.

Following the notations in Algorithm 2.1, we collect EK(N1)’s, which are derived by
XORing P1’s with C1’s, into a set S. If a collision occurs in S, e.g., EK(N

(a)
1) = EK(N

(b)
1),

where N (a)
1 and N (b)

1 are the corresponding first counter numbers for the nonces N (a) and
N (b), then we know N

(a)
1 = N

(b)
1 as well. Hence a collision GHASHH(N (a)) = GHASHH(N (b))

is found. This birthday collision attack can have a significantly higher success probability
than the original attacks on the verification or decryption oracle.

Assume the polynomial q(x) is chosen randomly and independently, and H 6= 0. The
success probability for the original trial-and-error method querying the verification or de-
cryption oracle is

n(lN + 1)/2128, (3.1)

where n is the number of queries that have been made and lN is the maximum number of
blocks for nonces; while the lower bound for the success probability of the birthday attack
is (see Lemma A.10 in Section A.4 of [71])

0.25n(n− 1)(lN + 1)/2128. (3.2)

In addition to the first encrypted counter blocks, we can also collect the following
blocks into S, in which way we may achieve even larger success probabilities. For example,

42

EK(N
(a)
i) may be equal to EK(N

(b)
j) for certain i and j. The upper bound of the collision

probability for this case can be obtained from the polynomial (2.4) in Result 2.1, and the
lower bound is the same as the polynomial (3.2). Although the success probability of this
case is higher than the previous methods based on trial-and-error and birthday attacks,
the collision N (a)

i = N
(b)
j may need more time complexity to be utilized for MAC forgery

attacks. One naive way is to try every polynomial over the finite field that can be converted
from incr with the specific r, and this will cost 222 time at most.

Another benefit of attacking the encryption oracle is that, if certain countermeasures
on the decryption or verification oracle are carried out, such as forbidding nonce reuse, the
original attacks would fail or be detected, but the attacks on the encryption oracle will be
unaffected.

A practical attack example on non-96-bit nonces is given as follows. We only give a
basic example for this case, where the values and the polynomial q(x) computed in the
previous example are reused here.

Construct the polynomial q′(x) = x2q(x), and apply q′(x) to N to get a new 512-bit
nonce N ′, i.e., N ′ = (N4 ⊕Q3)||(N3 ⊕Q2)||(N2 ⊕Q1)||(N1 ⊕Q0).

N ′ 87e961e67784011f72faafd95b0eb640
5bbceed48c991388a18f66e4ad62d270
ef901d7ed10b1fd6963801d9083eebf9
bd1bfa850ce25e8955588e8a50361ee5

Feeding (N ′, P) to the encryption oracle will result in the same ciphertext as C, so
we are sure that the authentication H is in the set H, and further MAC forgeries can be
carried out by using q(x).

3.5 Attacking GCM in the MAC-then-Enc Paradigm

GCM follows the Enc-then-MAC paradigm, i.e., authentication tags are computed based
on ciphertexts. It is known that once the integrity of the system is compromised, the whole
system including encrypted data will not be trustworthy. For GCM, if we successfully per-
form a MAC forgery attack described in previous sections, e.g., a forged tuple (N,C ′, T ′),
based on a valid (N,C, T), is fed to the decryption oracle and passes verification, the or-
acle will return P ′ that may have a simple linear difference with P . In this way, P can
be obtained even without any knowledge of the encryption key. Therefore, the message
authentication algorithm must be well protected.

43

One potential and straightforward option, which is indicated in [100], is to change
GCM to a MAC-then-Enc scheme (MtE GCM, thereafter). More precisely, in MtE GCM,
GMAC is computed based on plaintexts instead of ciphertexts, and the authentication tag
is encrypted by block ciphers in the CTR mode.

However, we can show that the MAC forgery attacks described in the previous sections
may still work on MtE GCM as these attacks are based on the linear properties of the
polynomial-based MAC schemes. If no length extension is needed, applying q(x) directly
to ciphertexts and encrypted tags may successfully result in MAC forgeries. Consider the
simplified case with

ET = hH(P)⊕ EK(N)⊕ EK(Nt)
= hH(P)⊕Mask
= hH(C ⊕ S)⊕Mask,

where ET is the encrypted authentication tag, EK(Nt) is to encrypt the authentication
tag, Mask = EK(N)⊕ EK(Nt), S is the key stream produced by the CTR mode, and the
other variables are the same as the ones in the previous sections. If we know a function
q(x) such that q(H) = 0, then

ET ′ = ET ⊕Q0 = hH(C ⊕ S)⊕ q∗(H)⊕Mask
= gC⊕S(H)⊕ gQ∗(H)⊕Mask
= gC⊕Q∗⊕S(H)⊕Mask
= hH(C ⊕Q∗ ⊕ S)⊕Mask
= hH(C ′ ⊕ S)⊕Mask.

This implies the tuple (N,C ′, ET ′), where C ′ = C⊕Q∗ and ET ′ = ET ⊕Q0, will pass the
verification oracle of MtE GCM.

A computation example is given as follows. The same K, N , H1, and H2 as in the
previous examples are used. In order to avoid length extension, P is chosen to be longer,
and H3 is explicitly chosen to be H1 ·H2/(H1 ⊕H2).

P 705da82292143d2c949dc4ba014f6396
705da82292143d2c949dc4ba014f6396

C a51ccc6d2c45540cac4fde8b1e36802d
a4bd55da5dcde1d763021d44f5fb3ab8

ET 5aba7c39516a4a90f738eaf61b02514a
H3 6e0b0d1eaf109b0f26926be82780085c

Constructing the polynomial q(x), we can have its coefficients as follows.

44

Q3 80000000000000000000000000000000
Q2 bc7f3ddf8ee1d642f97ed862ed7fe40e
Q1 00000000000000000000000000000000
Q0 c52222258b2614c4c6f5981c65f15acd

Please note Q1 = 0, so the length padding block in GHASH can stay unchanged.

The new ciphertext and encrypted authentication tag are C ′ = (C2 ⊕ Q3)||(C1 ⊕ Q2)
and ET ′ = ET ⊕Q0.

C ′ a51ccc6d2c45540cac4fde8b1e36802d
a4bd55da5dcde1d763021d44f5fb3ab8

ET ′ 5aba7c39516a4a90f738eaf61b02514a

(N,C ′, ET ′) passes the verification oracle of MtE GCM.

If len(Q∗) > len(C), i.e., the length extension is needed, the above attack on MtE GCM
may not work. To decrypt C⊕Q∗, where len(C⊕Q∗) > len(C), the verification oracle will
produce longer key stream S ′ = S||Su with an unknown portion, Su, so the output of the
oracle will become unpredictable. However, adversaries may avoid this situation by trying
to attack GHASH in the encryption oracle as discussed in Section 3.4, or simply waiting
for longer ciphertexts.

Therefore, we can see that changing GCM into the MAC-then-Enc paradigm would
add little strength against these MAC forgery attacks.

3.6 Summary

In this chapter, we have demonstrated that hash collisions are not necessarily required
to construct successful MAC forgeries, and any polynomials can be used in these attacks.
These new discoveries remove the restrictions in Procter and Cid’s attacks. We have proven
that all subsets of keys with no less than two elements are weak key classes for GCM-like
polynomial-based MAC schemes, which is an extension to Procter and Cid’s analysis.
Moreover, we have presented a novel approach to transform these MAC forgery attacks
into birthday attacks to increase their success probabilities in the case of GCM. The success
probabilities of these attacks are summarized in Table 3.1. In addition, we have shown
that these MAC forgeries attacks will still succeed if GCM is modified to the MAC-then-
Enc paradigm, as one of the options mentioned in [100], such that authentication tags are
protected by block cipher encryptions with the CTR mode.

45

Table 3.1: Success probabilities of the MAC forgery attacks on GCM.
Method Success Probability Reference

Trial-and-error n(lN + 1)/2128 [100]
Birthday attacks 0.25n(n− 1)(lN + 1)/2128 Section 3.4

Birthday attacks with inc ≤ 222(n− 1)(n+ σ)(lN + 1)/2128 Section 3.4

As the discussion in Section 2.5, we further suggest that GCM may preferably be
used with 96-bit nonces. Reusing GHASH in both generating initial counter numbers and
computing authentication tags will help attackers to amplify their success probabilities
for MAC forgeries as we have discussed in Section 3.4. For applications that prefer using
non-96-bit nonces, e.g., negotiated data in a security protocol, we suggest applying the fix
to GCM proposed in Section 2.3, i.e., using LGCM defined in Algorithm 2.2.

46

Chapter 4

Multidimensional Meet-in-the-Middle
Attacks on Block Ciphers

Our work on meet-in-the-middle attacks on lightweight block ciphers is introduced in this
chapter. We first describe the KATAN block cipher family and the original meet-in-the-
middle attacks in Section 4.1. The general idea and framework of our multidimensional
attacks are given in Section 4.2. Section 4.3 and Section 4.4 present new attacks on
KATAN32/48/64 for real attack examples, and Section 4.5 discusses several potential opti-
mization methods for improvements. In addition, we propose new attacks on KATAN with
less numbers of rounds in Section 4.6, in order to demonstrate this new kind of attacks can
be more time-efficient and memory-efficient than existing attacks. Finally, the last section
summarizes the chapter.

4.1 Preliminaries

This section first briefly introduces the block cipher family, KATAN, and then presents a
theoretical description for meet-in-the-middle (MITM, hereafter) attacks as the fundamen-
tial for subsequent sections.

4.1.1 The KATAN Family of Block Ciphers

KATAN is a lightweight block cipher family with efficient hardware performance and small
software footprints [33]. It consists of three versions with different block sizes, 32, 48 and

47

Cipher |L1| |L2| x1 x2 x3 x4 x5

KATAN32/KTANTAN32 13 19 12 7 8 5 3
KATAN48/KTANTAN48 19 29 18 12 15 7 6
KATAN64/KTANTAN64 25 39 24 15 20 11 9

Cipher y1 y2 y3 y4 y5 y6
KATAN32/KTANTAN32 18 7 12 10 8 3
KATAN48/KTANTAN48 28 19 21 13 15 6
KATAN64/KTANTAN64 38 25 33 21 14 9

Table 2. Parameters defined for the KATAN family of ciphers

L2

←−−−

L1

−−−→

?
L

?L? -∧-
?-IR ∧ - ?

L - � ka

?

6

L

6

L

6

� ∧� 6

�∧�
6

L�-kb

6

Fig. 1. The Outline of a round of the KATAN/KTANTAN ciphers

feedback polynomial x8+x7+x5+x3+1. Then, the encryption process starts, and ends
after 254 additional clocks when the LFSR returns to the all 1’s state. As mentioned
earlier, we use the most significant bit of the LFSR to control the irregular update (i.e.,
as the IR signal). For sake of completeness, in Table 3 in the Appendix we give the
sequence of irregular rounds.

We note that due to the way the irregular update rule is chosen, there are no sequences
of more than 7 rounds that share the pattern of the regular/irregular updates, this ensures
that any self-similarity attack cannot utilize more than 7 rounds of the same function
(even if the attacker chooses keys that suggest the same subkeys). Thus, it is easy to see
that such attacks are expected to fail when applied to the KATAN family.

We implemented KATAN32 using Synopsys Design Compiler version Y-2006.06 and
the fsc0l d sc tc 0.13µm CMOS library. Our implementation requires 802 GE, of which
742 are used for the sequential logic, and 60 GE are used for the combinational logic.
The power consumption at 100 KHz, and throughput of 12.5 Kbps is only 381 nW. This
is a gate level power estimation obtained using Synopsys Design Compiler3.

For KATAN48 the implementation size is 927 GE (of which 842 are for the sequential
logic) and the total power consumption is estimated to 439 nW. For the 64-bit variant,
KATAN64, the total area is 1054 GE (of which 935 are for the sequential logic) and the
power consumption 555 nW.

Here we would like to note that the further area reduction for KATAN48 and KATAN64
is possible by utilizing a clock gating technique. As explained above, the only difference

3 Although the gate level power estimation gives a rough estimate, it is useful for comparison
with related work reported in the literature.

7

Figure 4.1: Structure of KATAN [33].

64 bits, which are named KATAN32, KATAN48 and KATAN64, respectively. Despite of the
different block sizes, they all use 80-bit master keys. The structure of KATAN is shown in
Figure 4.1, where ∧ implies the bitwise AND.

In the encryption process of KATAN, the plaintext p is first divided to two pieces
and loaded into the registers L1 and L2. Next, two nonlinear functions defined by the
equations (4.1) are operated on L1 and L2 respectively.

fa[L1] = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka
fb[L2] = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb

(4.1)

In the above equations, xi and yj are predefined indices for different versions of KATAN,
and IR is an irregular update sequence for preventing self-similarity attacks. The values
of xi, yj and IR are given in Table 4.1 and Table 4.2, respectively.

Table 4.1: Parameters for KATAN.
Algorithms |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

ka and kb are two sub-key bits produced from a 80-bit master keyK by a linear feedback
shift register (LFSR). The master key K is loaded as the initial state of the LFSR, and

48

Table 4.2: The irregular update sequence IR for KATAN.
Round Index IR

1 - 20 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1
21 - 40 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0
41 - 60 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0
61 - 80 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1
81 - 100 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1
101 - 120 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1
121 - 140 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0
141 - 160 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1
161 - 180 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0
181 - 200 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0
201 - 220 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0
221 - 240 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1
241 - 254 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0

each output bit of the LFSR is used as a sub-key bit sequentially. Assume {ki} is the
output sequence of the LFSR. For 0 ≤ i ≤ 79, ki is equal to the i-th bit of the master key;
for i ≥ 80, the sub-key bits can be computed by

ki = ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13. (4.2)

For the r-th round of KATAN, ka = k2r−2 and kb = k2r−1, where 1 ≤ r ≤ 254.

For KATAN32, after computing fa[L1] and fb[L2], the registers L1 and L2 are shifted to
left by one bit, and the most significant bits of L1 and L2 are discarded. Next, fa[L1] is
fed into the least significant bit of L2, and fb[L2] is put into L1. After 254 rounds of such
operations, the states of L1 and L2 are concatenated and output as the ciphertext c.

KATAN48 and KATAN64 have the same structure and number of rounds as KATAN32,
but L1 and L2 of KATAN48 and KATAN64 are updated two and three times in every round,
respectively, by using the same ka and kb.

4.1.2 A Theoretical Description of Meet-in-the-Middle Attacks

We first take Double-DES (2DES) to explain the idea of MITM attacks. Let c = DESk(p)
denote one DES encryption, where k is the 56-bit master key, and p and c are the plaintext

49

Ef (kf , p) E−1
b (kb, c)

p v v′ c

Figure 4.2: An illustration of meet-in-the-middle attacks.

and ciphertext, respectively. 2DES uses two different keys k1 and k2, and its encryption is
computed as

c = 2DES(k1,k2)(p) = DESk2(DESk1(p)) .

The total number of key bits is 2 · 56 = 112, so the time complexity of the exhaustive key
search for 2DES is 2112.

To launch a MITM attack, firstly, we compute v = DESk1(p) for all possible k1’s, and
store all v’s into a set S with corresponding k1’s. The time complexity of this step is
256. Secondly, from the ciphertext side, we compute the decryption v′ = DES−1

k2
(c) for

each possible k2, and then check whether v′ is in the set S. If we find a match, then the
corresponding key pair (k1, k2) is possibly the correct one. This step needs to evaluate DES
for 2 · 256 = 257 times, which is much less than 2112. This is the reason why we should use
Triple-DES, rather than Double-DES, to obtain a reasonably larger security margin than
DES.

More formally, assume that a cipher c = E(k, p) can be decomposed into two consecutive
sub-ciphers Ef (kf , ·) and Eb(kb, ·), i.e., c = Eb(kb, Ef (kf , p)), where kf and kb are the sub-
keys used in Ef and Eb. Here f and b are the abbreviations for forward and backward.
The steps of MITM attacks can be written as follows.

1. MITM phase, as shown in Figure 4.2:

1.1 By iterating each possible kf , compute the encryption v = Ef (kf , p), and collect
v’s into a set S.

1.2 For every possible kb, compute the decryption v′ = E−1
b (kb, c). Check whether

v′ ∈ S. If so, output the corresponding key pair (kf , kb) as a possibly correct
key.

2. Brute-force testing phase:

• If the MITM phase generates more than one pair of (kf , kb), then we need to use
additional plaintext-ciphertext pairs to perform complete encryptions/decryptions
to test them and find the correct one.

50

Abusing the notation, here we use | · | rather than len(·) to represent the bit-length of
a variable in order to simplify mathematical expressions and save space. n denotes the
block size of a cipher, e.g., n = |p| = |c|. For simplicity, we assume bit-lengths of ciphers’
intermediate states are smaller than block sizes, e.g., |v| ≤ n, in the following content.

The time complexity for Step 1.1 is 2|kf |, and for Step 1.2 it is 2|kb|. During the MITM
phase, wrong keys have the probability of 1/2|v| to obtain a false positive. Thus if kf and kb
do not have common key bits, the number of wrong keys passing the MITM phase will be
2|kf |+|kb|/2|v| = 2|kf |+|kb|−|v|. If kf and kb have common key bits, we let kc denote all the key
bits contained in both kf and kb, so the number of remaining keys will be 2|kf |+|kb|−|kc|−|v|.
We further assume k is the master key that consists of all the key bits of kf and kb, and
|v| is equal to the block size n. Then we have

2|kf |+|kb|−|kc|−|v| = 2|k|−|v| = 2|k|−n.

This can be easily understood from the information theory’s point of view: Since we have
the information of an n-bit plaintext-ciphertext pair (p, c), we can only reduce the key
space to 1/2n of the original. After this MITM phase, we can simply employ brute-force
testing to remove wrong keys.

The time complexity of the first attempt of brute-force testing will be equal to 2|k|−n.
The probability of wrong keys passing the testing is 1/2n on average, so 2|k|−2n keys will pass
the first testing. If 2|k|−2n is still larger than 1, we can use another plaintext-ciphertext pair
to perform additional testing to further reduce the key space. The overall time complexity
of the brute-force testing phase will be 2|k|−n + 2|k|−2n + 2|k|−3n + · · · , and this phase needs
d(|k| − n)/ne pairs of plaintexts and ciphertexts.

To sum up, the total time complexity of the MITM attack is

2|kf | + 2|kb| + 2|k|−n + 2|k|−2n + 2|k|−3n + · · · ≈ 2|kf | + 2|kb| + 2|k|−n ,

and the total data complexity is d(|k|−n)/ne+ 1 = d|k|/ne. Similar analysis can be found
in [29].

When a matching key pair (kf , kb) is found, it can be tested instantly, so we do not
need to save it in memory and wait for other candidate keys. Therefore, the major memory
consumption of this attack comes from maintaining the set S. There are many kinds of
data structures to construct S, such as hash tables. Actually, the construction and look-up
algorithms of S also have influence on the overall attack time. The look-up time is generally
omitted since it is usually much less than a complete cipher encryption. We suggest using
tables whose indices are (parts of) matching values, e.g., v in the above example, and

51

Ef1(kf1 , p) E
−1
b1

(kb1 , g)

p v1 v′1 g

Ef2(kf2 , g) E
−1
b2

(kb2 , c)

v2 v′2 c

Figure 4.3: Meet-in-the-middle attacks with one guess.

letting each entry in the tables point to a (linked) list of corresponding sub-keys. Despite
of different constructions of S, the memory complexity of the MITM attack should be at
least 2|kf | or 2|kb|.

4.2 A Framework for Multidimensional MITM Attacks

When designing lightweight block ciphers, e.g., for environment-constrained devices, we
usually prefer to adopt small block sizes for efficient performance. However, due to security
requirements, master keys cannot be too short. This usually leads us to cipher designs with
key sizes larger than block sizes. Although this kind of designs is perfectly valid, it gives us
the possibility to guess certain short intermediate states and divide the ciphers into small
sub-ciphers for easier analysis.

Let us first give a simple and inefficient attack framework for ease of understanding.
In the subsequent sections, refined methods are given in the attacks on the KATAN block
cipher family.

Suppose we first guess an intermediate state g, as shown in Figure 4.3, and perform
two MITM attacks on the sub-ciphers divided by g. By assuming a simplest case that
the sub-keys kf1 , kb1 , kf2 and kb2 do not have common key bits, the attack steps can be
described as follows.

1. Compute v1 = Ef1(kf1 , p) for each possible kf1 , and put all kf1 ’s into a table T1

indexed by v1, each entry of which is a set of certain kf1 ’s.

2. Compute v′2 = E−1
b2

(kb2 , c) for each possible kb2 , and put all kb2 ’s into a table T ′2
(similar as T1) indexed by v′2.

3. For each possible guess of g:

(a) Compute v′1 = E−1
b1

(kb1 , g) for each possible kb1 , and maintain a table T ′1 of kb1
indexed by v′1.

52

(b) Compute v2 = Ef2(kf2 , g) for each possible kf2 , and maintain a table T2 of kf2
indexed by v2.

(c) Every matching pair (kf1 , kb1) for v1 = v′1, together with each matching pair
(kf2 , kb2) for v2 = v′2, forms a candidate key for the whole encryption. We
use additional plaintext-ciphertext pairs to perform brute-force testing on these
candidate keys. If one key passes all tests, then output it as the correct key.

Since we do not need to recompute Ef1 and E−1
b2

for different g’s, the time complexity
of this attack without the brute-force testing phase is

2|kf1 | + 2|kb2 | + 2|g| · (2|kb1 | + 2|kf2 |).

For each guessed value of g, the MITM step from p to g will reduce the size of the key
space to 2|k|−|v1| and the second MITM step for the interval between g and c will further
reduce it to 2|k|−|v1|−|v2|, so after the two MITM attacks the total number of remaining
keys is 2|g| · (2|k|−|v1|−|v2|) = 2|k|+|g|−|v1|−|v2|. Assuming |g| = |v1| = |v2| = n, we have
2|k|+|g|−|v1|−|v2| = 2|k|−n, which is consistent with the analysis for original MITM attacks in
the last section. The total time complexity of the brute-force step is still about 2|k|−n.

Please note a subtle part in the above analysis: Although the size of the master key
space is reduced to 2|k|−|v1| after the MITM attack step from p to g, the number of sub-
keys to be matched with the results from the other MITM step between g and c is only
2|kf1 |+|kb1 |−|v1|, which may be much less than 2|k|−|v1|.

The memory complexity of the attack is 2|kf1 |+ 2|kb1 |+ 2|kf2 |+ 2|kb2 |, since we may need
to store T1, T ′1, T2 and T ′2 in memory. The data complexity of the attack is d|k|/ne.

In general cases, the sub-keys, kf1 , kb1 , kf2 and kb2 , would involve many common key
bits, so the above attack cannot be applied directly. A straightforward way to solve this
is treating each sub-key bit as an independent new variable. This technique has been used
in other cryptanalysis methods, such as [67]. But we may get more efficient results or
attack more rounds by carefully investigating ciphers’ detailed designs. For example, we
may perform linear transformations before matching sub-keys, or study round functions
to perform partial encryptions/decryptions. We show real attack examples using these
techniques in following sections.

Certainly, we can guess more intermediate states and then segment ciphers into smaller
pieces. MITM attacks with multiple guesses are illustrated in Figure 4.4. For simplicity of
description, hereafter we denote the MITM attacks with multiple guesses as multidimen-
sional MITM (MD-MITM) attacks, and especially the attacks with n sub-ciphers will be

53

p

Ef1

v1 v′1

E−1
b1

g1

Ef2

v2 v′2

E−1
b2

g2

Ef3

v3 v′i

E−1
bi

gi

Efi+1

vi+1 v′i+1

E−1
bi+1

c

Figure 4.4: General process of meet-in-the-middle attacks with multiple guesses.

nD-MITM. For example, the above attack with one guess is a 2D-MITM attack, and the
traditional MITM attacks can be viewed as 1D-MITM attacks.

The steps of an (i+ 1)D-MITM attack can be briefly stated as follows.

1. Construct a table T1 of kf1 by computing v1 = Ef1(kf1 , p).

2. Construct a table T ′i+1 of kbi+1
by computing v′i+1 = E−1

bi+1
(kbi+1

, c).

3. For each guess of g1:

(a) Construct a table T ′1 by computing v′1 = E−1
b1

(kb1 , g1), which is to match with
T1.

(b) Construct a table T2 by computing v2 = Ef2(kf2 , g1).

(c) For each guess of g2:

i. Construct a table T ′2 by computing v′2 = E−1
b2

(kb2 , g2), to match with T2.
ii. · · · (Perform recursive operations till gi.)
iii. For each guess of gi:

A. Construct a table T ′i by computing v′i = E−1
bi

(kbi , gi), to match with Ti.
B. Compute vi+1 = Efi+1

(kfi+1
, gi), which can form a table Ti+1 in order to

match with T ′i+1.
C. Perform brute-force testing on each combination of matching sub-key

pairs from (T1, T
′
1), (T2, T

′
2), · · · , (Ti+1, T

′
i+1), and output the passing

combination as the correct key.

If we assume |g1| = |g2| = · · · = n, the time complexity of the MITM phase with
multiple guesses is

2|kf1 | + 2|kbi+1
| + 2|g1| · (2|kb1 | + 2|kf2 | + 2|g2| · (2|kb2 | + 2|kf3 | + · · ·+ 2|gi| · (2|kbi | + 2|kfi+1

|)))

= 2|kf1 | + 2|kbi+1
| + 2n · (2|kb1 | + 2|kf2 |) + 22n · (2|kb2 | + 2|kf3 |) + · · ·+ 2i·n · (2|kbi | + 2|kfi+1

|).
(4.3)

54

Please note that the order of g1, g2, · · · , gi does not matter, and we can first guess any ones
of them in order to obtain more desirable results.

The memory complexities of MD-MITM attacks are upper-bounded by the total mem-
ory consumption of T1, T

′
1, T2, · · · , T ′i+1. In order to obtain the minimum value for the time

complexity equation (4.3), the sizes of T ′1, T2, · · · , Ti+1, i.e., 2|kb1 |, 2|kf2 |, · · · , 2|kfn+1
|, should

be much smaller than the sizes of T1 and T ′i+1, i.e., 2|kf1 | and 2|kbi+1
|. So it is safe to ignore

T ′1, T2, · · · , Ti+1 here and give a simple upper bound for the memory complexities of these
MD-MITM attacks as 2|kf1 | + 2|kbi+1

|.

We only use one known plaintext-ciphertext pair before the brute-force testing phase,
so it is easy to see that MD-MITM attacks have the same data complexities as 1D-MITM
attacks, i.e., d|k|/ne known plaintext-ciphertext pairs.

What we want to emphasize here is that the theoretical analysis in this section only presents
a general framework to perform the divide-and-conquer method on ciphers. Whether it can
really work and improve attacks’ efficiencies on a specific cipher depends on the detailed
design of the cipher. In subsequent sections, we present several MD-MITM attacks on
the KATAN block cipher family, which can attack more rounds and reduce complexities of
previous attacks. These new attacks highly rely on certain design details of KATAN.

We also want to note that there is an independent work [42] with similar ideas, but
the authors focus on optimizing time-memory trade-offs for composite problems, and their
analysis is only applied to the cases where all sub-ciphers have independent keys.

4.3 MD-MITM Attacks on KATAN32

The section applies the multidimensional framework to reduced-round KATAN32, and pro-
poses new attacks that can break more numbers of rounds than the existing attacks. For
ease of understanding, we first describe a simple attack procedure and then improve upon
it.

4.3.1 2D-MITM Attacks on KATAN32

Use si to denote the intermediate state right after the i-th round encryption of KATAN32/48/64,
which implies s0 = p and s254 = c. We first show a simplest case of 2D-MITM on KATAN32,
and improve it in subsequent discussions. For simplicity, we use Ei(s) to denote Efi(kfi , s),

55

and Dj(s) to denote E−1
bj

(kbj , s). ki...j is the sub-key containing all the sub-key bits whose
indices are from i to j. The attack procedure, which is a standard 2D-MITM attack, is as
follows.

1. Compute s40 = E1(s0) by using every possible kf1 = k0...79, and compute k80...127 from
kf1 by using linear functions derived from the LFSR (see the equation (4.2)). Put
each kf1 in a table T1 indexed by s40 and k80...127. Each entry of the table should have
one element on average.

2. Compute s′88 = D2(s128) by using every possible kb2 = k176...255, and compute k128...175

from kb2 by using linear functions derived from the LFSR. Store each kb2 in a table
T ′2 indexed by s′88 and k128...175. Similarly, each entry of the table has one element on
average.

3. For each guess of g = s64:

(a) Compute s′40 = D1(g) for each kb1 = k80...127, and then find the matching key
kf1 in T1. On average there is only one matching key, and we put it in a set S.

(b) Compute s88 = E2(g) for each kf2 = k128...175, and find the matching key kb2 in
T ′2. Then compute k0...79 from kb2 = k176...255 by using linear equations derived
from the LFSR, and check whether it is in the set S. If so, perform brute-force
testing on this candidate key. If it passes all tests, output it as the correct
master key.

To fairly compare with the time complexities of existing attacks, we adopt the formula
proposed in [120] to estimate the time complexity of the above attack on KATAN32. Use
Rf1 , Rb1 , Rf2 and Rb2 to denote the numbers of rounds involved in the different phases of
the 2D-MITM attack, and R to denote the total number of the attacked rounds. The time
complexity without the brute-force testing phase is computed as follows.

2|kf1 | · Rf1

R
+ 2|kb2 | · Rb2

R
+ 2n ·

(
2|kb1 | · Rb1

R
+ 2|kf2 | · Rf2

R

)
The above equation can be seen as estimating the equivalent number of full R-round cipher
evaluations, as the time to complete the 2D-MITM attack.

Here we simply ignore the time complexities of linear transformations when matching
sub-keys, because these LFSR computations only involve several linear operations, which
are more cost-efficient compared with iterations of nonlinear round functions, and exhaus-
tive key search also needs to compute the sub-keys and will consume the equivalent time.

56

In the above 2D-MITM attack on KATAN32, since |kf1| = |kb2| = 80 and |kb1| = |kf2 | =
48, its total time complexity is

280 · 40

128
+ 280 · 40

128
+ 232 ·

(
248 · 24

128
+ 248 · 24

128

)
+ 280−32 ≈ 280,

where 280−32 is the time complexity of the brute-force testing phase. Please note that
280 is exactly the time complexity of the exhaustive key search on KATAN. The memory
complexity of the attack is 280 + 280 + 280−32 ≈ 281, since we need to store T1, T2 and S
in memory. The data complexity is still the same as 1D-MITM attacks, i.e., d80/32e = 3
plaintext-ciphertext pairs.

Reducing Time Complexities

In order to make the time complexity of the above attack better than exhaustive search,
i.e., 280, we can reduce the numbers of attacked rounds in the first forward and second
backward phases by one. But in this case, when constructing T1 (or similarly T ′2), we
cannot simply use the intermediate state g = s38 and kb1 = k78...125 as indices like in the
previous 2D-MITM attack, because the new kf1 = k0...77 does not have the full 80-bit
information of the master key K = k0...79, and certain bits of kb1 still depend on the values
of k78 and k79.

However, by assuming k78 and k79 are zero, we can compute a temporal key κ80...125 for
the purpose of matching, which is equivalent to removing these two bits from the linear
equations of key scheduling. Under such circumstance, the first MITM phase between p
and g can be performed without knowing k78 and k79, and later extra information of k78

and k79 can be appended to form the 80-bit master key. The detailed attack procedure is
described as follows.

1. Compute s39 = E1(s0) by iterating every possible kf1 = k0...77, and compute κ80...125

from k0...77 by assuming k78 = k79 = 0. Put each kf1 in a table T1 indexed by s39 and
κ80...125. Each entry of the table should have one element on average.

2. Compute s′87 = D2(s126) by using every possible kb2 = k174...251, and compute κ126...171

from k174...251 by treating k172 = k173 = 0. Store each kb2 in a table T ′2 indexed by s′87

and κ126...171. Similarly, each entry of the table has one element on average.

3. For each guess of g = s63:

57

(a) Compute s′39 = D1(g) for each kb1 = k78...125, and compute κ80...125 by subtracting
k78 and k79 from the bits of k80...125. Then use s′39 and κ80...125 to find the
matching kf1 in T1. On average there is only one matching kf1 = k0...77, so
we combine it with the k78 and k79 to form a candidate master key. Put the
candidate master key in a set S.

(b) Compute s87 = E2(g) for each kf2 = k126...173, and compute κ126...171 by subtract-
ing k172 and k173 from k126...171. Then use s87 and κ126...171 to find the matching
kb2 = k174...251 in T ′2. Compute k0...79 from k172...251 by using linear functions
derived from the LFSR, and check whether it is in the set S. If so, perform
brute-force testing on it.

The overall time complexity of this attack, on 126-round KATAN32, is

278 · 39

126
+ 278 · 39

126
+ 232 ·

(
248 · 24

126
+ 248 · 24

126

)
+ 280−32 ≈ 279.10,

and its memory complexity is 278 + 278 + 248 ≈ 279. This attack has already reached more
rounds than any existing attack on KATAN32, but we still have room for improvements.

Increasing the Number of Attacked Rounds

We can see there is a large time complexity gap between the MD-MITM and brute-force
testing phases in the above 2D-MITM attacks on KATAN32. The time complexities of
brute-force testing are always 280−32 = 248, and the complexities of MITM phases are close
to 280. If we can balance complexities of the two phases, the overall time complexities
may drop. One way to achieve this is reducing bit-lengths of the intermediate states
for matching, i.e., v1, v2, · · · , vi+1. As a result, computing incomplete parts of original
v1, v2, · · · , vi+1 may not need to use up all of the sub-key bits, and we can extend the
attack to more rounds. In return, more candidate keys are left to be tested in brute-force
phases. This technique is called partial matching, and has been used in various papers,
such as [29, 120].

By adopting the partial matching technique, we can extend our attack on 126 rounds
of KATAN32 to 152 rounds. For simplicity, we only use the partial matching technique in
the second MITM part. After searching all possible combinations of intermediate states
by programs, we find the best position for the second backward phase is from s152 to s87.
Based on the 78-bit information of kb2 = k226...303, we can still compute 2 bits of s87. By

58

using these 2 bits for matching, there will be 278 candidate keys left for brute-force testing,
and thus the total time complexity of the attack should be still less than 280.

The partial-matching details are shown as follows. The column a is for ka, and b is for
kb. Here we use the same notations as [29] and [120]: 0 implies this bit is fully computable
based on information we know from one side of a MITM attack, and thus considered as
known; 1 means computing this bit needs extra key information from the opposite side of
the MITM attack, and is considered as unknown. To form a matching, the two resultant
bits from both sides should be known.

Rd. a b L1 L2
second backward phase
114 0
113 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
112 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
111 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
109 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
108 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
107 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
106 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
105 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1
104 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
103 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1
102 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1
101 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1
100 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1
99 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1
98 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1
97 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1
96 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1
95 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1
94 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
93 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
92 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
91 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
90 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
89 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
88 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
second forward phase
87 0
matching
2 bits 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For the second MITM attack with partial matching, we cannot simply construct T ′2 by
using the 2 matching bits, along with a 46-bit temporal key computed from kb2 , as indices.

59

Therefore, we propose using a product set that is constructed by two related tables: First
find an index value from the first table, and then locate the target value from the second
table by using the index value. The attack procedure is described as follows.

1. For every possible kf1 = k0...77, compute s39 = E1(s0), and calculate κ80...125 by
treating k78 = k79 = 0. Save kf1 in a table indexed by s39 and κ80...125. This step is
similar to the previous attacks. Every entry of the table will have one element on
average.

2. Compute the 2 bits of s′87 = D2(s152) by using every possible kb2 = k226...303, and save
all computation results in a table T ′2, whose index is kb2 .

3. For each guess of g = s63:

(a) Compute the 2 bits of s87 = E2(g) for every possible kf2 = k126...173, and store
all kf2 ’s in a table T2 indexed by different values of the 2 bits. Each entry of T2

is a sub-set of kf2 ’s. After this step, T2 and T ′2 together form a product set, and
we show how to look up its elements in the next step.

(b) For each kb1 = k78...125:

i. Compute s′39 = D1(g). Calculate κ80...125 from k80...125 by subtracting k78

and k79. Use s′39 and κ80...125 to find the matching kf1 in T1. Now we have
the (guessed) full 80-bit information of k0...79.

ii. Based on the knowledge of k0...79, compute the sub-key pair kf2 and kb2 ,
and check whether the pair is also in the product set of T2 and T ′2: First
look up kb2 in T ′2 to find the corresponding values of the two bits, and then
check whether kf2 is in the entry (set) of T2 indexed by the two bits. If so,
perform further brute-force testing on the candidate key.

To further explain the computation of the temporal sub-keys, we take κ80...125 in Step 3(b)(i)
for example: Since each bit of k80...125 can be expressed by a linear expression in terms of
the bits of k0...79, we can subtract the values of k78 and k79 from these linear expressions
to get a temporal value, i.e., κ80...125, only for the purpose of matching. Consequently, we
can remove wrong candidate key pairs by using the knowledge of the key bits except k78

and k79.

The total time complexity of this 2D-MITM attack is

278 · 39

152
+ 278 · 65

152
+ 232 ·

(
248 · 24

152
+ 248 · 24

152

)
+ 280−2 ≈ 279.56.

60

The memory consumption includes the storage for T1, T2 and T ′2, and the total is the same
as the previous attack, i.e., 279. Please note that the data complexity of this attack is also
the same as before, i.e., 3 known plaintext-ciphertext pairs, because even if the first pair
used in the MITM phase is only consumed by 2-bit information, we can reuse it in the
brute-force testing phase to filter out more wrong keys.

4.3.2 3D-MITM Attacks on KATAN32

For MD-MITM attacks, the computations of certain steps may have been repeated. For
example, as in Figure 4.4, Ef3 is computed for 22n times, so we may cache the computation
results of first 2n times and reuse them later.

As the previous subsection, we first start from a simple attack. The two guessed states
are g1 = s64 and g2 = s88. The first MITM part starts from s0, ends at g1, and meets
at s40. The second MITM part starts from g1, ends at g2, and meets at s80. The third
one is from g2 to s152, and meets at s112. A subtle part of this attack is keeping the
numbers of the key bits of kf2 and kb2 small enough, such that we expect only one sub-key
in each intermediate matching step, in order to keep the attack simple. The detailed attack
procedure is described as follows.

1. Compute s40 = E1(s0) and kb1 = k80...127 for each possible kf1 = k0...79, and store kf1
in a table T1 indexed by s40 and kb1 . Every entry of T1 will have one element on
average.

2. Compute s′112 = D3(s152) for each kb3 = k224...303, and store kb3 in a table T ′3 indexed
s′112. Each entry of T ′3 is a set containing certain kb3 ’s.

3. For each guessed pair of g2 = s88 and kf3 = k176...223, compute s112 = E3(g2) and store
the computation results in a table T3 indexed by g2 and kf3 . After this step, T3 and
T ′3 form a product set.

4. For each guess of g1 = s64:

(a) Compute s′40 = D1(g1) for each kb1 = k80...127, and find the matching kf1 = k0...79

in T1 by using the indices kb1 and s′40. Next, based on the 80-bit master key
k0...79, we compute k128...175, and then store k0...79 in a table S indexed by k128...175.
Each entry of S will have one element on average.

(b) Compute s80 = E2(g1) for each 32-bit kf2 = k128...159, and store kf2 in a table T2

indexed by s80, where each entry has one element on average.

61

(c) For each guess of g2 = s88:
• For each 16-bit kb2 = k160...175:

i. Compute s′80 = D2(s88), and look up the table T2 by s′80 to find the
matching kf2 = k128...159. Thus we get a consecutive 48-bit sub-key
k128...175.

ii. Look up the table S by k128...175 to find the matching k0...79.
iii. Finally use k0...79 to compute the corresponding pair of kf3 and kb3 , and

check whether the pair is also in the product set of T3 and T ′3. If so, do
further brute-force testing on k0...79.

The total number of attacked rounds is 152. The time complexity of this 3D-MITM
attack is

280 · 40
152

+ 280 · 40
152

+ 232+48 · 24
152

+ 232 ·
(
248 · 24

152
+ 232 · 16

152
+ 232+16 · 8

152

)
+ 280−32 ≈ 279.84.

Since we need to store T1, T3, T ′3, S and T2 in memory, the memory complexity is 280 +
280 + 232+48 + 248 + 232 ≈ 281.58. We use only one known plaintext-ciphertext pair in the
MITM attack phase, so the total data complexity of the 3D-MITM attack is 3 known
plaintext-ciphertext pairs as before.

Further Improvements

To make the memory complexity become under 280, we can lower the numbers of the
attacked rounds in the phases f1, f3 and b3 by one. In this case, its memory complexity
will decrease to about 281.58−2 = 279.58, and the time complexity will decrease as well.

The partial matching technique can also be used in 3D-MITM attacks to increase the
number of attacked rounds. Adopting partial matching in the phases f3 and b3, we can still
use the similar positions for the two matching bits as the 2D-MITM attack in Section 4.3.1.

Our final 3D-MITM attack on KATAN32 can reach 175 rounds at most. The first
MITM part starts from s0, meets at s39, and ends at g1 = s63. The second one is from g1

to g2 = s87, and meets at s79. The third one meets at s110 and ends at s175. The overall
attack is similar to the previous 3M-MITM one, except partial matching is employed in
the third MITM part. The detailed attack procedure is described as follows.

1. For each possible kf1 = k0...77, calculate s39 = E1(s0), and compute κ80...125 by treating
k78 = k79 = 0. Store kf1 in a table T1 indexed by s39 and κ80...125. Every entry of T1

will have one element on average.

62

2. For each kb3 = k272...349, compute the 2 bits of s′110 = D3(s175), and store kb3 in a table
T ′3 indexed by values of the two bits. Each entry of T ′3 is a set containing certain
kb3 ’s.

3. For each guessed pair of g2 = s87 and kf3 = k174...219, compute the two bits of
s110 = E3(s87) and store the computation results in a table T3 indexed by g2 and kf3 .
After this step, T3 and T ′3 form a product set.

4. For each guess of g1 = s63:

(a) Compute s′39 = D1(g1) for each kb1 = k78...125. Compute κ80...125 from k80...125

by subtracting k78 and k79. Find the matching kf1 in T1 by using the indices
κ80...125 and s′39. Next, compute k126...173 based on k0...79, and then store k0...79 in
a table S indexed by k126...173. Each entry of S will have one element on average.

(b) Compute s79 = E2(g1) for each kf2 = k126...157, and store kf2 in a table T2 indexed
by s79, each entry of which has one element on average.

(c) For each guess of g2 = s87:
• For each 16-bit kb2 = k158...173:

i. Compute s′79 = D2(g2), and look up the table T2 by s′79 to find the
matching kf2 = k126...157. Now we have the complete 48-bit information
about k126...173.

ii. Look up the table S by k126...173 to find the matching k0...79.
iii. Finally use k0...79 to compute the sub-key pair of kf3 and kb3 , and check

whether the pair is also in the product set of T3 and T ′3. If so, do further
brute-force testing on k0...79.

The total time complexity of this attack is

278 · 39
175

+ 278 · 65
175

+ 232+46 · 23
175

+ 232 ·
(
248 · 24

175
+ 232 · 16

175
+ 232+16 · 8

175

)
+ 280−2 ≈ 279.30.

The memory complexity is 278 + 278 + 232+46 + 248 + 232 ≈ 279.58. The data complexity
stays as the same, i.e., 3 known plaintext-ciphertext pairs.

4.4 MD-MITM Attacks on KATAN48 and KATAN64

We can apply similar MD-MITM attacks to other versions of KATAN, i.e., KATAN48 and
KATAN64, but we can guess only one intermediate state g, because the block sizes of
KATAN48 and KATAN64 are larger than halves of their key lengths. We can also use the
partial matching technique here in order to increase the numbers of attacked rounds.

63

4.4.1 A 2D-MITM Attack on KATAN48

Our 2D-MITM attack on KATAN48 can reach 130 rounds at most. The guessed state is
g = s55. The first MITM part meets at s39, and the second meets at s71. The partial
matching technique is used in the second MITM part. The attack steps are described as
follows.

1. Compute s39 = E1(s0) by using every possible kf1 = k0...77, and compute κ80...109 by
treating k78 = k79 = 0. Save k0...77 in a table indexed by s39 and κ80...125.

2. Compute the 2 bits of s′71 = D2(s130) by using every possible kb2 = k182...259, and save
all computation results in a table T ′2, whose index is kb2 .

3. For each guess of g = s55:

(a) Compute the 2 bits of s71 = E2(g) by using every possible kf2 = k110...141. Store
all kf2 ’s in a table T2 indexed by values of the 2 bits, and each entry is a sub-set
containing certain kf2 ’s. After this step, T2 and T ′2 together form a product set.

(b) Compute s′39 = D1(g) for each kb1 = k78...109, calculate κ80...109 by subtracting
k78 and k79 from k80...109, and find the matching k0...77 in T1. Next, based on the
knowledge of k0...79, compute the sub-key pair of kf2 and kb2 , and check whether
the pair is in the product set of T2 and T ′2. If so, do further brute-force testing
on the candidate key.

The time complexity is

278 · 39

130
+ 278 · 59

130
+ 248 ·

(
232 · 16

130
+ 232 · 16

130

)
+ 280−2 ≈ 279.45.

The memory complexity is 278 + 278 + 232 ≈ 279. The data complexity is d80/48e = 2
known plaintext-ciphertext pairs.

The detailed computation steps of the partial matching used in the second MITM part
of the attack on KATAN48 are listed in Appendix A.

4.4.2 A 2D-MITM Attack on KATAN64

Our new attack on KATAN64 is similar as above. After searching all possible combinations
of intermediate positions by programs, we find that it will allow us to attack more rounds

64

if the partial matching technique is performed in the first MITM part. The final number
of the attacked rounds on KATAN64 is 112. The guessed state is g = s65, the first MITM
attack meets at s46, and the second one meets at s73. The attack steps are as follows.

1. Compute the 2 bits of s46 = E1(s0) by using every possible kf1 = k0...77, and save all
computation results in a table T1 indexed by kf1 .

2. Compute s′73 = D2(s112) by using every possible kb2 = k146...222, and compute κ130...143

by treating k144 = k145 = 0. Save k146...222’s into a table T ′2 indexed by s′72 and
κ130...143.

3. For each guess of g = s65:

(a) Compute the 2 bits of s′46 = D1(g) by using every possible kb1 = k114...129. Store
all kb1 ’s in a table T ′1 indexed by the values of the 2 bits, and each entry is
a sub-set containing certain kb1 ’s. After this step, T1 and T ′1 together form a
product set.

(b) Compute s73 = E2(g) for each kf2 = k130...145, calculate κ130...143 by subtracting
k144 and k145 from k130...143, and find the matching k146...222 in T ′2. Next, based
on the knowledge of k144...223, compute the sub-key pair of kf1 and kb1 , and check
whether the pair is in the product set of T1 and T ′1. If so, do further brute-force
testing on the candidate key.

The time complexity is

278 · 46

112
+ 278 · 39

112
+ 248 ·

(
232 · 19

112
+ 232 · 8

112

)
+ 280−2 ≈ 279.45.

The memory complexity is 278 + 278 + 216 ≈ 279. The data complexity is d80/64e = 2
known plaintext-ciphertext pairs.

The steps of the partial matching for the first MITM part of the attack on KATAN64
are given in Appendix A.

4.5 Further Optimization Methods

There are still many techniques that may help us reduce the attacks’ complexities and
reach more rounds.

65

One way to reduce the time complexities is that when computing intermediate states
for partial matching, we do not actually need to complete the calculations of partial en-
cryptions/decryptions. Consider the detailed steps of the partial matching used in the
2D-MITM attack on KATAN32 (see Section 4.3.1). One of the two bits used for matching
in s′87 has already been obtained after the decryption of the 106th round, and the other
bit is computed in the 104th round. So we do not need to continue the partial decryptions
after that. Moreover, the computations of these two bits depend on only parts of previous
states, and thus we may also be able to save some time on the computations before the
104th round. But this technique will not push our attacks to more rounds, and might
make the attack procedures very complicated to explain. In addition, in order to make our
complexity estimations generous, this optimization method is not used in our attacks.

Another way to improve the attacks is to segment the ciphers’ round functions into
smaller steps. For example, the round functions of KATAN48 and KATAN64 update the
internal states by two and three times, respectively, so we may divide them to two or
three sub-functions. In addition, we can even separate operations of updating L1 and L2

to different sub-steps, which is applicable to any KATAN variant. By analyzing iterations
of smaller steps or functions, we may further reduce time and memory complexities, or
extend attacks to more rounds.

The paper [120] proposes an improved partial matching technique called indirect par-
tial matching, in order to obtain more numbers of usable intermediate bits for matching.
Originally, when computing a partial matching state, if the value of one bit si depends on
the key bit kj only known to its opposite phase, then si will be considered as unknown.
Nonetheless, after adding this key bit kj into computations, kj may still remain as a linear
variable in intermediate states after a few rounds. Thus, if we look for possible matches
of si ⊕ kj instead of si, this bit information can still be used for matching. This technique
may help us extend our attacks to more rounds.

4.6 MD-MITM Attacks on KATAN with Less Rounds

Since the MD-MITM attacks in Sections 4.3 and 4.4 focus on increasing the maximum
numbers of attacked rounds, their time complexities are close to exhaustive search’s. It is
still questionable that whether this new multidimensional approach can be practical enough
to improve existing attacks on ciphers with less rounds. In this section, we demonstrate
that how to apply MD-MITM attacks to reduced-round KATAN, and obtain less time
complexities than the existing attacks in [5, 67].

66

4.6.1 A More Efficient Attack on 115-Round KATAN32

We show that how to attack KATAN32 with the exactly same number of rounds as in
the paper [5], i.e., 115 rounds. For simplicity of description, we do not use any advanced
optimization methods, such as partial matching.

This reduced-round attack is based on the one mentioned in Section 4.3.1, and our idea
is to further reduce the time complexities by iterating less sub-key bits. The 115-round
KATAN32 is segmented by s55. The MITM part for the first sub-cipher meets at s35, and
the second MITM part meets at s79. The attack procedure is similar to previous attacks,
and can be generally described as follows.

1. The sub-key pairs, k0...69 and k70...109, in the first MITM phase form a product set.

2. The second MITM phase with k110...157 and k158...229 yields a consecutive 80-bit sub-
key k150...229. Then we recheck k150...229 in the product set constructed in the first
MITM phase.

3. Candidate keys are further examined by using additional pairs of plaintexts and
ciphertexts.

The total time complexity of this new attack is

270 · 35

115
+ 272 · 36

115
+ 232 ·

(
240 · 20

115
+ 248 · 24

115

)
+ 280−32 ≈ 277.75,

which is less than the time complexity of the attack in [5], i.e., 279. The memory complexity
for this attack is 270 + 272 + 240 ≈ 272.32.

4.6.2 A More Efficient Attack on 100-Round KATAN48

Similar to the attack on 115-round KATAN32, we can construct a simple 2D-MITM attack
on 100-round KATAN48. The guessed state is s48. The first MITM part meets at s35

and the second one meets at s64. k0...69 and k70...95 in the first MITM phase can form a
product set, and k120...199 derived from the second MITM phase is checked again by using
the product set.

The overall time complexity is

270 · 35

100
+ 272 · 36

100
+ 248 ·

(
226 · 13

100
+ 232 · 16

100

)
+ 280−48 ≈ 277.37.

67

Although this simple attack may be further optimized, it already has less time complexity
than the attack on KATAN48 in [67]. The memory complexity of this new attack is 270 +
272 + 226 ≈ 272.32, which is also less than the one in [67].

4.6.3 Discussions

A simple MD-MITM attack without any optimization will not get much advantage over the
traditional MITM attacks on KATAN64 with 94 rounds (the maximum number of rounds
attacked in [67]), since its block size, i.e., 64 bits, is close to the key size, 80 bits. It is
feasible to get lower time complexity by adopting the partial matching as used on KATAN64
in Section 4.3.1. But as we already demonstrate the power of MD-MITM attacks on 115-
round KATAN32 and 100-round KATAN48, and our primary goal is to extend attacks on
KATAN to as many rounds as possible, we leave the potential work on 94-round KATAN64
to interested readers.

One subtle part in our attacks on KATAN, including the ones in Sections 4.3 and
4.4, is first deriving a consecutive sub-key for later use, such as k151...230 used in the new
attack on 115-round KATAN32. This is the most time-consuming step during the whole
attack, and limits the lower bounds of time complexities for possible attacks. But since the
computational cost of this step is low compared with a complete encryption/decryption of
the cipher, the overall complexities of our attacks could be better than exhaustive search.
However, we do not rule out the possibility of other ways to carry out MD-MITM attacks
that may improve upon our methods.

The attacks on 115-round KATAN32 and 110-round KATAN48 proposed in this section
demonstrate that this MD-MITM method not only can increase the numbers of possibly
attacked rounds, but also could be used to improve the time and memory efficiencies of
attacks on reduced-round ciphers. Compared with traditional MITM attacks that may
need to iterate most of their attacking steps, MD-MITM approach can save computation
consumption in certain phases, such as the first forward and last backward phases. This
might also be one of the reasons why traditional MITM attacks cannot reach the same
numbers of the attacked rounds of KATAN as MD-MITM attacks.

4.7 Summary

In this chapter, we have investigated a cryptanalysis framework called multidimensional
meet-in-the-middle attack. This framework is applicable to lightweight ciphers with simple

68

key scheduling algorithms and block sizes smaller than master key sizes. Refined analysis
and attacks have been presented on the block cipher family KATAN32/48/64 for demon-
stration. Our new attacks have reached more rounds than the existing attacks, and can
also be more efficient than the existing ones when applied to KATAN with smaller numbers
of rounds. Our new cryptanalysis results on KATAN are summarized in Table 4.3, where
the notation KPs stands for known plaintext-ciphertext pairs.

Table 4.3: Comparisons of cryptanalysis results on reduced-round KATAN ciphers.
Algorithms Rounds Time Compl. Memory Compl. Data Compl. Reference

115 279 Not Given 232 KPs [5]
115 277.75 272.32 3 KPs Section 4.6.1

KATAN32 119 279.10 279.10 144 KPs [66]
175 279.30 279.58 3 KPs Section 4.3.2
100 278 278 128 KPs [67]
100 277.37 273.32 2 KPs Section 4.6.2

KATAN48 105 279.10 279.10 144 KPs [66]
130 279.45 279.00 2 KPs Section 4.4.1
94 277.68 277.68 116 KPs [67]

KATAN64 99 279.10 279.10 142 KPs [66]
112 279.45 279.00 2 KPs Section 4.4.2

69

Chapter 5

Designing Password Hashing and Key
Derivation Algorithms

Password-based authentication has been widely used in cloud services due to its simplicity
and efficiency, as we have mentioned in Section 1.2.3. Our password hashing algorithms
designs, Pleco and Plectron, are introduced in this chapter. Section 5.1 first gives
certain background knowledge, before the designs of Pleco and Plectron are specified
in Section 5.2. We discuss our design rationale and provide the security analysis of Pleco
and Plectron in Section 5.3. Several extensions of the new hashing algorithms are
proposed in Section 5.4, followed by the efficiency analysis in Section 5.5. We give a brief
analysis of other password hashing designs in Section 5.6 and finally summarize this chapter
in Section 5.7.

5.1 Preliminaries

This section first discusses some desired properties of a good password hashing algorithm,
and then introduces the cryptographic primitives that Pleco and Plectron employ.

5.1.1 Desired Features of Password Hashing Algorithms

Password hashing is one of the most basic security considerations for setting up a password-
based authentication system or deriving cryptographic keys from passwords, and there are
several requirements that a good password hashing algorithm should fulfill:

71

• Similar as most cryptographic primitives, the password hashing algorithm should
behave as a random function that ensures one-wayness and collision resistance, and
is resistant to side-channel attacks as well as known cryptanalytic technologies such
as time-memory tradeoff [41, 62], and differential/linear cryptanalysis [25, 83];

• Different from most cryptographic primitives, the password hashing algorithm should
be heavyweight in computation and memory usage to slow down brute-force attacks
to a certain degree and make large-scale attacks economically difficult. Note that
the desired heavyweightness is expected to be roughly consistent for all platforms,
no matter software or hardware;

• Server-specific shortcut is an optional but very attractive feature for a password
hashing scheme. Once this feature is enabled and certain private information is
known, legitimate servers or devices can obscure passwords by using less computation
(server-specific computational shortcut) and/or less memory (server-specific memory
shortcut).

Due to the uncommon and demanding features that are different from common crypto-
graphic designs, the choices of well-studied password hashing algorithms are very limited.

5.1.2 Components of Pleco and Plectron

This section briefly describes several cryptographic primitives, which are the core compo-
nents in the designs of Pleco and Plectron.

Provably One-Way Function Rabinn

It is proven that the one-wayness of the Rabin public-key encryption scheme is as strong
as the hard problem of integer factorization [102]. More theoretically, let us define

Rabinn(x) = x2 mod n,

where x is a positive integer in the multiplicative group of integers modulo n. Then comput-
ing the square roots, i.e., inverting the function Rabinn(x), is proven to be computationally
equivalent to factorizing the integer n.

To obtain a hard-to-factor modulus n, one can utilize the same approach as generating
moduli for the RSA algorithm, i.e., randomly generating two large prime numbers p and q,

72

and using their product n = p·q as a modulus. The other approach is to choose certain large
composite numbers with unknown factorization, e.g., the Mersenne composite number used
in Shamir’s SQUASH construction [114]. More about publicly auditable moduli is discussed
in Section 5.4.2.

Sponge-Based Hash Function Keccak

Keccak, which is designed by Bertoni et al. [23], is the winner of the SHA-3 cryptographic
hash function competition held by NIST [44]. Keccak is based on a unique construction,
namely sponge construction, which can absorb an arbitrary-length binary string as input,
and then squeeze out a binary string of any required length as output.

In our password hashing designs, Keccak is adopted to:

• Fully mix password and salt strings;

• Expand short input strings to the large space of the Rabin encryption scheme;

• Alternately apply to intermediate states with the Rabin encryption scheme (or other
public-key schemes) to gain more cryptanalytic strength;

• Process the final state to produce hash tags of required lengths.

If not specified, the default parameters of Keccak are used, i.e., r = 1024 and c = 576.

Sequential Memory-Hard Construction ROMix

The password-based key derivation function scrypt was proposed by Percival in order to
thwart parallel brute-force attacks using GPUs, FPGAs or ASICs on passwords, and has
been widely used by cryptocurrencies. One of core components of scrypt, namely ROMix,
is proven to be sequential memory-hard, which implies [98]:

1. The construction ROMix asymptotically uses almost as many operations as memory
locations; and

2. Parallel algorithms to compute ROMix cannot asymptotically achieve efficiency ad-
vantages than non-parallel ones.

73

Thus, for the brute-force password search using dedicated hardware with constrained mem-
ory, such as GPUs, FPGAs, and ASICs: 1) It would not be significantly faster than a
single-core computer, as these dedicated hardwares usually have limited memory capaci-
ties; 2) Their strong power in parallel computations could not help in reducing the overall
running time significantly.

We list ROMix in Algorithm 5.1 since it is highly relevant to our designs of Pleco and
Plectron. In Algorithm 5.1, H is a cryptographic hash function, bstr is a binary string,
cost is called the time or space cost parameter that must be larger than one, and Integerify
is a bijective function that maps binary strings to integers.

Algorithm 5.1: ROMix(bstr, cost)
1: x← bstr
2: for i← 0 to cost− 1 do
3: vi ← x
4: x← H(x)
5: end for
6: for i← 0 to cost− 1 do
7: j ← Integerify(x) mod cost
8: x← H(x⊕ vj)
9: end for
10: return x

5.2 Designs of Pleco and Plectron

The design rationale of Pleco and Plectron is to inherit the existing structure of
scrypt that is proved to be sequential memory-hard, and to improve its inner components
for providing better security and asymmetry in computation as desired.

The following notations are used in this section, where the notations ||, 0t and len(·)
have been introduced in Section 2.1, but for ease of reference we describe them again here.
Please also note that int(·) and strb(·) are different from the ones in Section 2.1 regarding
endianness, i.e., the positions for least/most significant bit.

• || concatenates two binary strings;

74

• int(s) converts a binary string s into a non-negative integer, where the little-endian
convention is used, i.e., the left-most (lowest address) bit is the least significant bit
of the integer1;

• strb(x) converts a non-negative integer x back to a binary string by using the same bit
ordering convention as int(·), and may append zeros to the string in order to achieve
a total length of b bits;

• 0t denotes a t-bit all-zero binary string, i.e., 0t = strt(0) for t > 0, and 00 means an
empty string;

• len(s) denotes the bit-length of the binary string s;

• size(x) denotes the number of bits in the shortest binary representation of the given
positive integer x, e.g., size(256) = 9 and size(255) = 8;

• Keccakb denotes a Keccak instance that produces exactly b bits as output.

Given a positive integer n, we define a new hash function

Hn(x) = strN(Rabinn(1 + int(KeccakN−1(x)))),

where N = size(n).

To be secure, N should be at least 1024, or preferably larger than 3072. According
to [15], a 1024-bit modulus would aim at a security level of about 80 bits, which means
that on average it takes 280−1 = 279 time units for attacks.

As we have mentioned in Section 5.1.2, the modulus n can be obtained using the same
approach for generating the RSA modulus n = p · q, or chosen from a public composite
number with unknown factorization as proposed in the design of SQUASH [114].

Our new password hashing algorithm Pleco is defined by Algorithm 5.2, which takes
as input

• a positive integer n as the modulus,

• a 128-bit binary string salt as a unique or randomly generated salt,
1For software implementations, we recommend using the following convention: The 8 least significant

bits are stored in the byte with the lowest address, and within a byte the least significant bit is the
coefficient of 20. This follows the internal implementation convention of Keccak [24].

75

Algorithm 5.2: Pleco(n, salt, pass, tcost,mcost)
1: L← 8 · dsize(n)/8e − size(n)
2: x← salt||str16(len(pass))||pass||01024−len(pass)

3: ctr← 0
4: x← Hn(str128(ctr)||x)
5: for i← 0 to tcost− 1 do
6: for j ← 0 to mcost− 1 do
7: vj ← x
8: ctr← ctr + 1
9: x← Hn(str128(ctr)||x)
10: end for
11: for j ← 0 to mcost− 1 do
12: k ← int(x) mod mcost
13: ctr← ctr + 1
14: x← Hn(str128(ctr)||x||0L||vk)
15: end for
16: ctr← ctr + 1
17: x← Hn(str128(ctr)||x)
18: end for
19: return x

• a variable-length (≤ 128 bytes) binary string pass as a user password,

• a positive integer tcost as the time cost parameter, and

• a positive integer mcost as the memory cost parameter.

Lines 6-15 of Algorithm 5.2 are essentially the same as ROMix, except that:

• Instead of XORing vk with x as the design of ROMix, we concatenate them and input
into Hn;

• An incremental counter ctr is always prepended to the intermediate variable x in
each step.

Sections 5.3.2 and 5.3.4 will give the detailed reasons why we introduce these changes.

Pleco will produce a size(n)-bit hash tag, but sometimes applications need to flexibly
choose tag sizes, e.g., generating cryptographic keys from passphrases entered by users.

76

We recommend applying Keccak to the output of Pleco again to produce tags of re-
quired lengths. We name this modified algorithm as Plectron and specifies its design in
Algorithm 5.3, where

• hsize denotes the desired bit-length of the hash tag.

Algorithm 5.3: Plectron(n, salt, pass, tcost,mcost, hsize)
1: t← Pleco(n, salt, pass, tcost,mcost)
2: return Keccakhsize(t)

5.3 Security Analysis

The designs of Pleco and Plectron combine public-key and symmetric-key algorithms
and alter the operation sequence to make cryptanalysis harder. This is analogous to the
designs of ARX ciphers and the block cipher IDEA, where mixed operations are used. In
what follows, we discuss the security properties of Pleco and Plectron in detail.

5.3.1 One-Wayness

One of the most important security goals of designing a password hashing scheme is one-
wayness, i.e., attackers should not be able to devise any methods faster than the exhaustive
search for inverting the hashing algorithm in order to obtain the original passwords.

In our designs, the cryptographic hash function Keccak and the provably one-way func-
tion Rabinn are applied to the intermediate state x alternatively. To the best of our
knowledge, no weaknesses have been reported when combining these two algorithms. In
order to invert Hn, the attackers may have to analyze Keccak and Rabinn separately. On
one hand, even if the one-wayness of Keccak is completely broken, say replacing Keccak by
an identity function, the one-wayness of H is still guaranteed by Rabinn, i.e., the hardness
of integer factorization. On the other hand, if any weakness of iterating Keccak is found,
the weakness is highly likely to be covered up by the computations of Rabinn.

More formally, we give the following definition.

77

Definition 5.1. For a given function f and a pre-specified set Y containing certain outputs
of f , we define the advantage of an adversary A obtaining preimages of the elements in Y
(i.e., inverting f) as

Adv
Pre(Y)
f (A)

def
= Pr[y

$← Y, x← Af,y : f(x) = y],

where y $← Y means randomly assigning one element of Y to y.

Then we can show the preimage security of Hn is guaranteed by Rabinn, as described
in the following lemma.

Lemma 5.1 (One-Wayness of Hn). For any adversary A, we have

Adv
Pre(S)
Hn

(A) ≤ Adv
Pre(S)
Rabinn(A),

where S is a set consisting of certain outputs of Hn.

Proof. Assume that n is an N -bit modulus. Once a preimage of Hn is found, e.g., y =
Hn(x), we let x′ = 1 + int(KeccakN−1(x)) and y′ = int(y), and then x′ is a preimage of y′
of Rabinn.

For a reasonably large set S, computing preimages of Rabinn regarding S is still as hard
as factoring the integer n, since the factorization will be known after obtaining a constant
number of preimages on average. For example, for RSA-like moduli, the expected number
of preimages required is 2 [88].

Please note that Lemma 5.1 presents a simplified bound only for the case that n is not
factored by adversaries. If the factorization of n is known to adversaries, the one-wayness
of H is still guaranteed by Keccak.

Based on Lemma 5.1, we can investigate the one-wayness of the whole design of Pleco.

Theorem 5.1 (One-Wayness of Pleco). If Pleco and Hn use a same modulus n, then
we have

Adv
Pre(S)
Pleco(A) ≤ Adv

Pre(S)
Rabinn(A),

where S is a set containing all possible outputs of Pleco.

78

Proof. Assume that a preimage of Pleco is found, then the preimage of the last Hh can
be obtained if we recompute the steps of Pleco before the last Hn. Thus, we have

Adv
Pre(S)
Pleco(A) ≤ Adv

Pre(S)
Hn

(A),

which implies
Adv

Pre(S)
Pleco(A) ≤ Adv

Pre(S)
Rabinn(A),

due to Lemma 5.1.

For the preimage in the above theorem, we do not differentiate the two cases: 1)
a preimage containing both salt and pass, or 2) a preimage including only pass for a
pre-specified salt. For the second case, the first KeccakN−1 in Pleco can be seen as a
specialized Keccak instance, as the design of Keccak supports simply prepending a message
with a key to construct a message authentication code (MAC) algorithm [23]. Therefore,
an adversary’s advantage of recovering pass still satisfies the bound in Theorem 5.1, even
if salt is public or known to adversaries.

Next, let us consider the one-wayness of Plectron. If we assume that, in order to
invert Plectron, any adversary has to first invert Keccakhsize and then invert Pleco, we
can simply get a bound like

Adv
Pre(S)
Plectron(A) ≤ Adv

Pre(S)
Keccakhsize(A) ·Adv

Pre(S)
Pleco(A)

≤ Adv
Pre(S)
Keccakhsize(A) ·Adv

Pre(S)
Rabinn(A).

However, it cannot be guaranteed that adversaries will always try to obtain the intermediate
value between Pleco and Keccakhszie. Consider the case where hsize is very small, say two
bits. After trying random passwords for four times, on average there will be one password
producing the 2-bit pre-specified hash tag. Therefore, in theory, we can only give the
following theorem on the one-wayness of Plectron.

Theorem 5.2 (One-Wayness of Plectron). If Hn and Plectron use a same modulus
n, then we have

Adv
Pre(S)
Plectron(A) ≤ Adv

Pre(S)
Keccakhsize(A),

where S is a set containing all possible outputs of Plectron.

Proof. Once a primage of Plectron is found, e.g.,

y = Plectron(n, s, p, tc,mc, hsize),

we compute
x = Pleco(n, s, p, tc,mc).

Then x is a preimage of y of Keccakhsize.

79

As a cryptographic hash function, Keccak is designed to be preimage-resistant, which
means that for essentially all outputs, finding any input hashing to a pre-specified output
should be computationally infeasible [88, 105].

5.3.2 Collision Resistance

Collision and second-preimage resistances are also desirable when designing a password
hashing scheme. In this context, an occurrence of collision may result in two passwords
being hashed to the same tag, whereas a second-preimage implies that given a password
pass1, one may find the second one pass2 producing the same tag. It is easy to see that
if there exists an algorithm for constructing second-preimages, then it can also be used to
generate collisions, so the collision resistance implies the second-preimage resistance.

It is easy to see that once a collision of KeccakN−1 is found, then it will result in a
collision of Hn. Furthermore, if the outputs of Keccak contain two roots of Rabinn, then it
will also produce a collision of Hn. Therefore, the collision resistance of Hn is bounded by
properties of Rabinn and Keccak together.

Formally, we give the following security definition.

Definition 5.2. For a given function f , we define the advantage of an adversary A to find
a collision of f as

AdvColl
f (A)

def
= Pr[x1, x2 ← Af : f(x1) = f(x2)].

To better analyze the collision resistance of Hn, we give the following the definitions.

Definition 5.3. For a given function f , we define the advantage of an adversary A to
obtain an output difference d as

Adv
Diff(d)
f (A)

def
= Pr[x1, x2 ← Af,d : f(x1) = d− f(x2)].

Definition 5.4. For a given positive composite integer m, we define the advantage of an
adversary A to obtain a non-trivial factor of m as

AdvFact
m (A)

def
= Pr[x← Am : x|m, 1 < x < m].

This advantage Adv
Diff(d)
f (A) should be negligible for any secure cryptographic hash

function f , since these hash functions are designed to be indistinguishable from pseudo-
random functions.

Then we have the following lemma about collisions of Hn.

80

Lemma 5.2 (Collision Resistance of Hn). For any adversary A, we have

AdvColl
Hn

(A) ≤ AdvColl
KeccakN−1

(A) + Adv
Diff(n)
KeccakN−1

(A) + AdvFact
n (A),

where N = size(n).

Proof. Suppose a colliding pair x1 and x2 of Hn are found, i.e., Hn(x1) = Hn(x2). Let
r1 = KeccakN−1(x1) and r2 = KeccakN−1(x2). Then we have three cases:

• If r1 = r2, then a collision of KeccakN−1 is found;

• If r1 6= r2, let s1 = 1 + int(r1) and s2 = 1 + int(r2), and then:

– If s1 = n − s2, then a pair producing the output difference n of KeccakN−1 is
found;

– If s1 6= n− s2, then gcd(s1 − s2, n) is a non-trivial factor of n.

Therefore, the lemma holds.

As the previous discussion about Lemma 5.1, Lemma 5.2 also gives a simplified bound
on collisions that satisfies our purpose of showing Hn to be secure. Even if n is factored,
it should still be hard to construct collisions of the whole Hn, since adversaries need to
control outputs of KeccakN−1 to be among roots corresponding to a same squaring value.
For example, for RSA-like moduli, there are only four roots mapping to one output.

Based on Lemma 5.2, we give the following theorem to characterize adversaries’ collision
advantage on Pleco.

Theorem 5.3 (Collision Resistance of Pleco). If the cost parameters, mcost and tcost,
of Pleco keep unchanged, and Hn and Pleco use a same N-bit modulus n, then we have

AdvColl
Pleco(A) ≤ AdvColl

KeccakN−1
(A) + Adv

Diff(n)
KeccakN−1

(A) + AdvFact
n (A).

Proof. Once a collision of Pleco is found, then there must exist a collision of the internal
hash function Hn. Thus, we have

AdvColl
Pleco(A) ≤ AdvColl

Hn
(A).

Therefore, the theorem holds.

81

Please note that if we use the original design of ROMix, i.e., XORing x and vk instead of
concatenating them together as input, the bound for collisions will be much more difficult
to be discovered and proven, because different intermediate values x1 and x2 may still yield
an identical input to the internal hash function Hn, e.g., x1 ⊕ vk1 = x2 ⊕ vk2 . However,
in the current design of Pleco, different x1 and x2 will never generate identical inputs to
Hn.

For Plectron, we have the following theorem.

Theorem 5.4 (Collision Resistance of Plectron). If the cost parameters and output hash
length, mcost, tcost and hsize, of Plectron keep unchanged, and Hn and Plectron use
a same N-bit modulus n, then we have

AdvColl
Plectronn

(A) ≤ AdvColl
KeccakN−1

(A) + Adv
Diff(n)
KeccakN−1

(A) + AdvFact
n (A)

+ AdvColl
Keccakhsize(A).

Proof. If a collision of Plectron is found, e.g.,

Plectron(n, s1, p1, tc,mc, hsize)
= Plectron(n, s2, p2, tc,mc, hsize),

then we let {
t1 = Pleco(n, s1, p1, tc,mc)
t2 = Pleco(n, s2, p2, tc,mc)

.

We have the following two cases:

• If t1 = t2, then a collision of Pleco is found.

• If t1 6= t2, then a collision of Keccakhsize is found.

Therefore, we have

AdvColl
Plectron(A) ≤ AdvColl

Pleco(A) + AdvColl
Keccakhsize(A).

Thus, the theorem holds.

82

5.3.3 Thwarting Parallel Brute-Force Attacks

Although the designs of Pleco and Plectron may be secure for random inputs in
theory, users’ passwords are usually weak and easily crackable by using parallel search
based on dedicated or custom-designed hardware, such as GPUs, FPGAs, and ASICs.
Thus password hashing designs should thwart such attacks as much as possible.

The hardware such as GPUs, FPGAs, and ASICs can feature thousands of cores for
parallel computation, but in return each core possesses very restrained memory space.
By using the structure of ROMix, the internal construction of Pleco (Lines 6-15 in Algo-
rithm 5.2) inherits scrypt’s security property of being sequential memory-hard. Pleco and
Plectron also provide a tunable memory parameter mcost to increase their memory cost
as desired. Although the design of Pleco is slightly different from ROMix, the security
proofs of ROMix can be easily transferred to here, since in the original proofs the internal
hash function is treated as a Random Oracle.

Please note that in scrypt, a structure called BlockMix is used to build an internal
hash function with wide input/output from a small function Salsa20 core [22]. However,
BlockMix is not necessary for Pleco since the input/output lengths of Hn are relatively
large. As a side benefit of omitting BlockMix, our scheme is simpler and easier for analysis,
when compared with scrypt.

5.3.4 Preventing Self-Similarity Attacks

An incremental counter ctr is prepended to the intermediate state of Pleco before each
invocation of Hn, which enables us to protect Pleco and Plectron from certain poten-
tial self-similarity attacks, such as fixed points or iterative patterns of Hn. The similar
technique is used in many other cryptographic designs, such as Keccak, PRESENT [28] and
PRINCE [31].

5.4 Other Extensions

In this section, we propose a number of variants and potential use cases of Pleco and
Plectron.

83

5.4.1 Discrete-Logarithm-Based Hash Function

Gibson has proved that if factoring n is hard, the following discrete-logarithm-based hash
function

Gn(x) = gx mod n

is one-way and collision-free [53]2, where x is a positive integer and g is a generator of the
multiplicative group of integers modulo n. The security of this hash function is guaranteed
by the hardness of integer factorization, since a collision will lead to the factorization of n.

We define a new hash function

GHn(x) = strN(Gn(1 + int(KeccakN(x)))),

for a given positive integer n, where N = size(n). If Hn(x) in Pleco is replaced by
GHn(x), the security, especially the collision resistance, of Pleco and Plectron would
be further enhanced.

Lemma 5.3. For any adversary A, we have

Adv
Pre(S)
GHn

(A) ≤ AdvFact
n (A),

and
AdvColl

GHn
(A) ≤ AdvColl

KeccakN (A) + AdvColl
Gn (A),

where S is a set consisting of certain outputs of GHn.

Proof. The proofs are similar to the ones for Lemmas 5.1 and 5.2, so they are omitted
here.

It is easy to see that AdvColl
GHn

(A) is smaller than AdvColl
Hn

(A), because AdvColl
Gn (A) here

should be equivalent to the term Adv
Pre(S)
Rabinn(A) in Lemma 5.1, but AdvColl

Hn
(A) has an extra

Adv
Diff(n)
KeccakN−1

(A) (see Lemma 5.2).

We have the following theorem about using GHn in Pleco.
2It is claimed in [113] that this hash function was proposed by Shamir, and a simple proof was given

by Rivest.

84

Theorem 5.5. Suppose the cost parameters, mcost and tcost, of Pleco keep unchanged,
and GHn and Pleco use a same N-bit modulus n. If replacing Hn by GHn in Pleco,
namely Pleco′, we will have

Adv
Pre(S)

Pleco′(A) ≤ Adv
Pre(S)
Gn (A),

and
AdvColl

Pleco′(A) ≤ AdvColl
KeccakN (A) + AdvColl

Gn (A),

where S is a set containing all possible outputs of Pleco′.

Proof. As the proofs for Theorems 5.1 and 5.3, the one-wayness and collision resistance of
Pleco′ are guaranteed by the security properties of GHn. Thus, the theorem holds.

For Plectron, if Hn is replaced by GHn, its one-wayness (Theorem 5.2) does not
change, but the bound for its collisions will be improved as Pleco.

Another benefit of using GHn instead of Hn is that Gn is proven to be secure for any
positive integer as input. Compared with Rabinn, whose security properties only consider
the inputs within the multiplicative group of integers modulo n, Gn allows much more
flexibility when we adopt it to design security schemes. For example, in the design of GHn,
the output length of Keccak may be equal to or larger than size(n); while in Hn, Keccak is
set to generate less than size(n) bits.

Although the discrete-logarithm-based hash function Gn is more secure and flexible, it
is much less efficient than Rabinn due to the slow modular exponentiation computations.

5.4.2 Using Publicly Auditable Modulus

As observed by Shamir in [114], the Rabin scheme cannot be efficiently inverted for any
modulus n with unknown factorization. As a result, large composite Mersenne numbers
of the form n = 2k − 1 with unknown factorization can be used as the modulus, which
enables efficient software implementation of Pleco and Plectron (see Section 5.5.2 for
performance comparison). A table summarizing the factorization of Mersenne numbers of
the formMk = 2k−1 is maintained by Leyland [79]. Certain interesting Mersenne numbers
that might be used as the moduli in Pleco and Plectron for different security levels3
are 21277 − 1, 22137 − 1, and 23049 − 1.

3Shamir has chosen a slightly longer Mersenne number as the modulus for the implementation of
SQUASH, because he expects that Mersenne numbers are easier to factor than general numbers. For more
details, please refer to [114]. Here we simply choose 21277− 1 since it has been used in [114], and 22137− 1
and 23049 − 1 as their bit-lengths are close to 2048 and 3072, respectively.

85

Furthermore, RSA-like moduli might not be suitable if Pleco or Plectron are used
in cryptocurrencies for proofs of work, because RSA-like moduli must be generated by
someone. With the private knowledge of the factors of n, one may compute the hash
functions more efficiently than others (which is discussed in Section 5.5.3). By using
public composite numbers with unknown factors, we can eliminate potential trapdoors in
cryptocurrency systems.

One potential method to publicly generate moduli with unknown factorization is con-
structing the numbers called RSA-UFOs proposed by Sander in [109]. But RSA-UFOs may
be too large for practical applications, e.g., in order to be used as a 1024-bit modulus
it may require more than 40000 bits. Moreover, RSA-UFOs will inevitably contain many
known factors if they are generated by the method in [109]. Therefore, the performance
and security of RSA-UFOs still need more investigations.

5.4.3 Transforming Existing Hash Tags to Larger Cost Settings

For Pleco, its final output can re-enter the algorithm from Line 6 (Algorithm 5.2), which
is equivalent to increasing the time cost parameter tcost by one. During the additional
computations, we can also choose a larger memory parameter mcost. Under such circum-
stance, hash tags can be updated according to new cost settings without the knowledge of
original passwords.

5.4.4 Variants with More Efficient Software Implementations

In order to be easily and efficiently implemented in software, it is better for the modulus n
to have a size that is a multiple of computer word sizes. But under certain circumstances,
we cannot choose the size of n freely, e.g., using Mersenne composite numbers as moduli,
so we may need to make small changes to the original algorithms of Hn and Pleco to
achieve a better efficiency.

Let {
UB = w · dN/we
LB = w · (dN/we − 1)

,

where w is the desired word size and N is the size of the modulus n. Then we define the
following modified version of Hn.

RHn(x) = strUB(Rabinn(1 + int(KeccakLB(x))))

86

By replacing Hn by RHn, the software performance may be improved, because oper-
ations are applied to a multiple of words. But if the inputs into Rabinn are so small that
their squaring results do not need to be modulo n, then adversaries can easily compute
the original inputs. The smaller LB is, the higher the probability of Rabinn getting such
inputs will be. Therefore, LB should not be too small.

To unify lengths of internal variables, we may simply substitute LB with UB, and get
the following hash function.

RH′n(x) = strUB(Rabinn(1 + int(KeccakUB(x))))

The collision probability ofRH′n will be higher, as there are inputs larger than n that cause
collisions, e.g., Rabinn(x + n) = Rabinn(x). However, the overall security of the password
hashing scheme may still be acceptable, since it will be difficult to construct inputs with
such additional differences through Keccak.

It is also possible to remove the plus-one operation in Hn, i.e., defining the following
function to replace Hn.

SHn(x) = strN(Rabinn(int(KeccakN−1(x))))

There is a negligible chance that KeccakN−1(x) outputs zero, and the result of SHn will
be an all-zero string. If we treat Keccak as a pseudorandom function, this probability will
be 1/2N−1. Even if this incident happens, it will likely disappear when SHn is iterated
for multiple times with an incremental counter. Henceforth, the security level of the entire
design of Pleco should not be influenced.

5.5 Performance Analysis

In this section, we discuss the time and memory costs of Pleco and Plectron.

5.5.1 Tunable Time and Memory Costs

The designs of Pleco and Plectron provide two parameters, tcost and mcost, for ap-
plications to tune their time and memory consumptions.

The parameter mcost adjusts the amount of memory that needs to be present during
the computations of Pleco and Plectron. The memory usage is expected to be around

size(n) ·mcost

87

bits. Due to the sequential memory-hard property inherited from ROMix, without having
such amount of memory, the computation time of Pleco and Plectron will increase
significantly.

The parameter tcost has limited ability to adjust the time usage of Pleco and Plec-
tron, since the total time cost also relies on the memory usage. To complete a full
computation of Pleco, it requires

2 ·mcost · tcost + tcost + 1

invocations of Hn. Plectron needs one more invocation of Keccak than Pleco.

Although our work only aims to provide flexible solutions that can be tuned by users
or developers for different applications, we would like to discuss a little bit about how to
choose cost parameters properly in practice. At the time of writing, the graphic cards
(GPUs) on the market have up to thousands of cores and several gigabytes of memory, so
each core may have couples of megabytes of memory on average. FPGA or ASIC based
circuits usually have less memory per core than GPUs. Therefore, in order to effectively
thwart capital-rich attackers for building large-scale searching circuits, the memory usage of
password-hashing or proof-of-work algorithms should require tens of megabytes of memory
at minimum, e.g., tcost ≥ 216 for Pleco and Plectron. Consider the design of Litecoin,
in which scrypt is configured to consume only 128 kilobytes of memory. In our opinion, 128
kilobytes are too conservative, and thus cannot fully remove the advantages of attackers
equipped with dedicated hardware.

For the choices of the time cost parameter tcost, it should be fine to stay with the
minimum numbers, say 1 or 2, unless certain memory-constrained application scenarios
want more control on the computation time.

5.5.2 Efficiency of Software Implementations

Pleco and Plectron are built upon well-established cryptographic primitives, and their
implementations have been studied for years. The modular squaring operation is the basis
for efficient implementations of RSA encryption/signature widely used in TLS/SSL, and
Keccak is designed to be efficient in both software and hardware.

We have tested our initial implementations of Pleco and Plectron on a 2.6 GHz
Intel Core i7 processor for 80-, 112-, and 128-bit security levels. For each security level, an
RSA-like modulus n = p · q as well as a Mersenne number with a similar bit-length (see
Table 5.1) are chosen as the moduli in Pleco and Plectron, in order for performance

88

comparisons (see Table 5.2). We set mcost = 216 when profiling the software performance,
which means the programs will consume 216size(n)-bit memory, i.e., around 17 MB for
Pleco/Plectron using the modulus 22137 − 1. We have also tested scrypt on the same
machine, using the configuration (N = 214, r = 8, p = 1) that yields a similar memory
usage as Pleco/Plectron with 2048-bit moduli, and it takes 35 ms to compute scrypt.

Table 5.1: Modulus choices for different security strengths.
Security Size of RSA-Like Mersenne
Strength Modulus (in bits) Number

80-bit 1024 21277 − 1

112-bit 2048 22137 − 1

128-bit 3072 23049 − 1

Table 5.2: Software performance of Pleco/Plectron with tcost = 1 and mcost = 216.
Modulus Pleco Plectron

Size (in bits) RSA-like Mersenne RSA-like Mersenne

1024 / 1277 0.684 s 0.538 s 0.686 s 0.540 s
2048 / 2137 2.215 s 1.185 s 2.235 s 1.203 s
3072 / 3049 4.355 s 2.135 s 4.358 s 2.146 s

The performance data in Table 5.2 shows that as the modulus size grows, the running
time of the algorithms Pleco/Plectron will increase (along with the memory usage),
and computation of the Rabinn part will gradually dominate the running time. Moreover,
using Mersenne numbers as moduli will yield more efficient computations than choosing
RSA-like ones.

Although slowness is somehow desirable in password hashing designs for thwarting
large-scale password searching, we should consistently improve the time efficiency of the
implementations of Pleco and Plectron. For example, by reducing the computation
time of Hn, we will have more flexibility for the time parameter tcost. Moreover, attackers
are always trying to speed up their searching methods, so there is no reason why legitimate
users or servers should stick to under-optimized implementations.

89

5.5.3 Shortcut with Private Information

It would be very attractive if password hashing algorithms could support private parameters
or keys to speed up hashing computations. For example, legitimate servers with certain
private information may compute or verify hash tags faster than the attackers who have
obtained only salts and hash tags. In this way, the servers will save time and hardware
costs without risking too much about the overall security.

Due to the nature of the modular exponentiation operation, if we know the factorization
of the modulus n, e.g., knowing p and q for n = pq, the computation can be finished with
less time, by using the Chinese Remainder Theorem (CRT). Such performance gain might
not be obvious for Rabinn, as its operations are simple. But if the discrete-logarithm-
based hash function, Gn(x) = gx mod n, is used in Hn, the computation will be greatly
accelerated if the factors of n are known. But p and q should be kept securely as always,
e.g., being encrypted or stored in a hardware security module.

Note that even if p and q are leaked to attackers, the overall security of Pleco and
Plectron still has Keccak as a “fail-safe”. With the private information, attackers can
compute Pleco or Plectron as efficient as legitimate servers, but the brute-force search
for the original passwords may still be a must.

5.6 Comparisons with Other Password Hashing Algo-
rithms

In this section, we analyze several other hashing designs and compare them with Pleco
and Plectron. Especially, many new designs have been proposed recently, since an open
password hashing competition (PHC) is currently ongoing [4]. We only include couples of
designs from the competition submissions to be discussed here, which may be the most
typical ones or relevant to ours.

5.6.1 scrypt

As we have mentioned in Section 5.1.2, scrypt presents the idea along with the first concrete
design of sequential memory-hard algorithms. The internal structure of our designs Pleco
and Plectron are based on ROMix of scrypt.

However, the overall design of scrypt is complicated. It uses BlockMix and the Salsa20/8
core [22] to construct an internal hash function to be used in ROMix, and adopts PBKDF2

90

with HMAC and SHA256 to process the first and final messages. Therefore, it might be
error-prone for developers to implement scrypt due to the involvement of multiple crypto-
graphic primitives and complicated structures.

Moreover, although the internal structure ROMix is proven to be sequential memory-
hard, there are no security proofs for the overall design of scrypt. Especially, the Salsa20/8
core is not collision-resistant, so it appears that scrypt can hardly be proven to be collision-
resistant, which might leave scrypt certain weaknesses in some application scenarios.

5.6.2 Makwa

Makwa is a password hashing function designed by Pornin [99]. To the best of our knowl-
edge it is the only design proposed in the PHC that adopts asymmetric-key cryptographic
operations. Makwa uses an RSA/Rabin-like operation that the intermediate value x is
raised to the degree of 2w+ 1, i.e., y = x2w+1, where w is a time/work cost parameter and
n is a Blum integer serving as a modulus.

Makwa is not designed to be memory-hard, and thus has very limited ability to thwart
brute-force password searching based on special hardware.

5.6.3 Catena

Catena is designed by Forler et al., as a provably secure password scrambler that can be
used for key derivation or proof of work/space [52].

The one-wayness of Catena is guaranteed by its underlying hash function; while the
security of Pleco is assured by both Keccak and the hard problem of integer factorization.

In order to avoid the random memory access pattern that makes cache-timing attacks
possible [19], Catena does not employ sequential memory-hard structures like ROMix. In-
stead, Catena provides a new memory-hard property called λ-memory-hard, which focuses
more on single-core settings and does not provide much resistance to parallel attacks with
dedicated circuits. However, in cache-timing attacks, adversaries may need to fully or par-
tially control victims’ host machines in order to accurately measure timings, which is a
difficult requirement. Thus, in our view, being sequential memory-hard is more desirable
than avoiding cache-timing attacks, if these two goals are not achievable in one design of
password hashing.

91

5.6.4 SQUASH

SQUASH is a challenge-response protocol for RFIDs designed by Shamir [114], and aims
to provide provable security based on the Rabin cryptosystem. In SQUASH, a challenge
is first mixed with a secret, and then processed by an optimized implementation of Ra-
bin encryption scheme with a Mersenne number as its modulus. Our idea of combining
symmetric-key and asymmetric-key cryptographic algorithms originates from the design of
SQUASH.

Ouafi and Vaudenay has shown that SQUASH is insecure if the mixing function is
linear [97]. Pleco and Plectron should not suffer from the same weakness, because the
cryptographic hash function Keccak is employed as a mixing function.

5.7 Summary

In this chapter, we have proposed two provably secure password hashing algorithms, Pleco
and Plectron. They are built upon well-studied cryptographic primitives, such as 1) a
provably one-way function Rabinn based on the hard problem of integer factorization, 2) the
SHA-3 hash competition winner Keccak, and 3) the sequential memory-hard construction
ROMix. We have proved that Pleco and Plectron inherit the security properties of
Rabinn, Keccak and ROMix, i.e., one-wayness, collision resistance and sequential memory-
hardness. The designs of Pleco and Plectron provide two parameters tcost and mcost
that can be tuned for time and memory consumptions in different application scenarios.

92

Chapter 6

Designing Password-less or Two-Factor
Authentication Mechanisms

Two-factor authentication is an effective method for enhancing the security of entity au-
thentication mechanisms in cloud systems, as we have introduced in Section 1.2.3. This
chapter presents our security framework, Loxin, for password-less or two-factor authenti-
cation. Section 6.1 gives the detailed description of the Loxin framework, followed by the
security analysis of Loxin presented in Section 6.2. We discuss several potential extensions
of the Loxin framework for a wide range of applications in Section 6.3, and demonstrate
that how to implement Loxin in practice to tackle the MintChip Challenge in Section 6.4.
Section 6.5 gives a brief analysis of other two-factor or password-less authentication solu-
tions. Finally, Section 6.6 summarizes the chapter.

6.1 Design of Loxin

This section describes the detailed design of Loxin, including the mechanisms to perform
registration, authentication and revocation.

6.1.1 Architecture

The architecture of Loxin consists of the following components.

Loxin App
A software application installed on users’ mobile devices.

93

Loxin Server
A backend server for Loxin’s service, which stores the registration information about
the Loxin App.

Certificate Authority (CA)
A trusted public-key certificate authority.

Identity Provider (IDP)
A trusted identity provider, such as an email account provider.

Push Message Service (PMS)
A third-party service that can send notifications to users’ mobile devices. Such
services include Google Cloud Messaging for Android [58] and Apple Push Notification
Service [11].

The adoption of the PMS makes the whole authentication process more convenient and
user-friendly, but it is possible to complete the entire authentication process without the
PMS. Possible extensions to achieve this are discussed in Section 6.3.

6.1.2 Registration Process

Once the Loxin App is installed, it will perform a one-time registration process as illus-
trated in Figure 6.1. The detailed steps are described below.

Step 1. Obtain a public-key certificate from the CA.

Step 1.1 The Loxin App generates a public-private key pair, where PK is the public key
and SK is the private key. The Loxin App prompts the user to choose or enter
an ID (e.g., an email address) and then sends ID and PK to the CA.

Step 1.2 The CA first communicates with the IDP and verifies the user’s ID, such as
sending a verification email to the claimed address. This step is simplified in
Figure 6.1, since the details may vary for different providers.

Step 1.3 Once the user’s ID is verified, the CA sends its signed certificate Cert(ID,PK),
containing both ID and PK, back to the Loxin App.

94

Loxin App

Certificate
Authority (CA) Loxin Server

Push Message
Service (PMS)

Identity
Provider (IDP)

Step 1.2

Step 1.1

Step 1.3

Step 2.1

Step 2.2

Step 3.1

Step 3.2

Step 3.3

Figure 6.1: Registration process of Loxin.

Step 1 is only required to be completed once. After that, the user can authenticate him-
self/herself to other cloud services by using this ID. Please note that the private key SK
should be securely stored, and never be released outside the Loxin App.

Step 2. Register to the PMS.

Step 2.1 The Loxin App sends a registration request to the PMS.

Step 2.2 The PMS verifies the request and sends back certain credentials. These credentials
can be used by other software and services to send messages to the Loxin App via
the PMS. Here we simply use a token Tok to represent all the PMS credentials.

Step 3. Register to the Loxin Server securely.

Step 3.1 The Loxin App sends a registration request, which contains Cert(PK, ID) and
Tok, to the Loxin Server.

Step 3.2 The Loxin Server responses with a random number Rreg and an expiration time
Treg for this request.

Step 3.3 The Loxin App signs ID, Tok, Rreg and Treg with its private key SK. The
signature

Sigreg(ID,Tok, Rreg, Treg)

95

Loxin App

Loxin Server

Push Message
Service (PMS)

Computer

Web Service

Step 1
Step 2

Step 7

Step 4

Step 5

Step 6

Step 3

Figure 6.2: Authentication process of Loxin.

is sent to and verified by the Loxin Server. If the signature is valid, the Loxin
Server stores the pair (ID,Tok) into its database for later use.

Steps 2 and 3 may need to be executed multiple times for updating Tok when the
network environment changes. However, those steps can be performed in background
without users’ interactions.

6.1.3 Authentication Process

Using Loxin, users can authenticate their pre-owned identities to various cloud services
even without pairing with or registering to those services first. This feature is able to
shorten or remove registration processes and make cloud services more user-friendly.

When a user wants to access (e.g., log in to) a cloud service from his/her computer
by using Loxin (see Figure 6.2), a backend server of the cloud service will generate a
random challenge for the user, and the Loxin Server will forward the challenge to the
Loxin App via the PMS. Upon receiving the user’s manual permission, the Loxin App
will sign the challenge with the private key SK and send the signature to the cloud service
for verification. The authentication process is illustrated in Figure 6.2 and detailed below.

Step 1. The user enters and submits only ID to the cloud service.

96

Step 2. The cloud service generates a random number Rauth, an expiration time Tauth, and a
callback address URL for this authentication request. In addition, a cryptographic
hash value

tag = hash(ID, Rauth, Tauth,URL)

is computed and displayed on the user’s computer. The hash value may be rep-
resented by certain formats, such as figures or colorful barcodes, other than plain
strings, so it can easily be visually checked by the user.

Step 3. The cloud service sends ID, Rauth, Tauth, and URL to the Loxin Server.

Step 4. The Loxin Server searches ID in its database in order to retrieve the corresponding
Tok. Then the Loxin Server uses Tok to send Rauth, Tauth, and URL to the PMS.

Step 5. The PMS forwards Rauth, Tauth, and URL to the user’s Loxin App.

Step 6. The Loxin App recomputes the hash value tag based on the received ID, Rauth,
Tauth, and URL. The Loxin App prompts the user to verify the correctness of
basic authentication information, and compare the figures or barcodes shown on
the computer and the Loxin App (see Figure 6.3 for an example).

Figure 6.3: An example confirmation dialog of the Loxin App.

97

Once tag and other information are approved, the Loxin App computes the sig-
nature

Sigauth(ID, Rauth, Tauth,URL)

with the private key SK, and then sends Sigauth and Cert(ID,PK) to the cloud
service’s address URL.

Step 7. After verifying Cert(ID,PK) and Sigauth together with Rauth and Tauth, the cloud
service grants access to the user.

Requiring users to confirm the hash tags is to “bind” together different communication
channels, i.e., the web requests made from the computer and the push message received by
the Loxin App; otherwise the user may not have an easy way to differentiate legitimate
authentication requests and the requests made by adversaries. Section 6.5.5 discusses an
example that fails to bind different communication channels and makes attacks possible.

As the step to manually confirm the hash tags may not be very user-friendly, we can
choose certain alternative approaches to bind communication channels. One potential
solution is splitting Step 6 of the authentication process into two steps. Firstly, once an
authentication request is received by the Loxin App and approved by the user, the Loxin
App sends an initial message without the signature Sigauth to the address URL. When
the cloud service provider receives the initial message, the cloud service interface, e.g., a
web page, shown on the user’s computer should be updated in a specific way in order to
indicate that the cloud service has received the initial message. The second step is that
after confirming the cloud service interface update, the user instructs the Loxin App to
send the signature Sigauth with other related information to the cloud service provider.
If the user does not see the interface update on his/her computer, he/she should not
confirm the authentication request or continue to send the signature. In this way, different
communication channels are bound by the two steps, which may make the authentication
process more user-friendly. However, this splitting-step method might pose other security
concerns, e.g., URL must be unique and infeasible to be guessed, which requires more
considerations, so this chapter still focuses on the setting that users will always faithfully
compare the displayed hash tags and verify authentication requests.

6.1.4 Revocation Mechanisms

If a user’s phone is lost, the private key SK stored in the Loxin App might be compromised.
In this case, the user needs to contact the CA to revoke the certificate of the corresponding

98

public key PK. For example, if the CA allows only one certificate for each ID, the user may
go through the registration process (see Section 6.1.2) again to revoke the old certificate.

Contacting the CA to revoke the lost certificate may be time-consuming, and the user’s
email account may be compromised as well if the mobile device is lost. One potential
solution to expedite the revocation process is authenticating to the Loxin Server by using
certain biological information, such as the fingerprint authentication information provided
by iPhone’s Touch ID [12]. Once the Loxin Server receives the revocation request, it will
block further authentication requests associated with the PK. The biological information
may also be used by the CA to verify users in order to revoke certificates.

The other possible method is generating a second pair of public and private keys, PK’
and SK’, during the registration process. This second key pair should be stored out of the
mobile device, e.g., printing on a paper, for security considerations. If the user’s primary
secret key SK may be leaked, the user can authenticate his/her identity by using PK’ and
SK’ to the Loxin server or the CA.

In order to minimize the risk that the user’s private key is used by adversaries, certain
countermeasures should be deployed, e.g., requiring a fingerprint scan on iPhone’s Touch
ID sensor or a short PIN to access the Loxin App, and limiting the number of retrials.
Please note that adding a PIN will make the application less convenient, but it is still much
more user-friendly than remembering and entering long passwords.

6.2 Security Analysis

This section aims to analyze the security of Loxin. In addition, several methods are
provided to further enhance the security of Loxin.

6.2.1 Defeating Man-in-the-Middle Attacks

In order to guarantee that the tag displayed on the computer is really the one generated
by the cloud service provider, the Internet connection between the cloud service and the
user’s computer should be well protected by certain secure transport layer such as TLS.
Next, tag shown by the Loxin App will be compared by the user with the one shown on
the computer, and thus ensure both Rauth and Tauth are not replaced by any adversary
in the middle. As long as the tag shown on the web page is genuine and matches with
the one displayed on the Loxin App, disclosure of the request information transmitted in

99

the authentication process will not affect the authenticity of the authentication process.
Therefore, man-in-the-middle attacks cannot gain benefits for attackers.

6.2.2 Defeating Replay Attacks

Both registration and authentication processes involve a random number to prevent replay
attacks. The random numbers are recommended to be at least 128 bits, such that it is
infeasible for attackers to obtain two requests with a same random number in order to
re-send the eavesdropped public-key signatures to impersonate the user.

Besides the random number, an expiration time is also included in the registration and
authentication processes, which will keep the whole system safe even if a random number
collision occurs in the long term.

6.2.3 Defeating Server Compromises

Since the private key SK never leaves the Loxin App, any backend server or cloud service
does not have the knowledge of SK. Therefore, as long as the IDP and CA are secure, even
if Loxin’s backend servers are compromised, attackers will not be able to authenticate
themselves to other cloud services.

6.2.4 Further Security Enhancements

One method to enhancing the security of Loxin is to sign the user’s ID and public-key PK
by multiple CAs. In this case, adversaries have to compromise all these CAs to generate
a fake certificate. Additionally, if one CA does not update its revocation list promptly,
cloud service providers can still check with other CAs. The other benefit is that the entire
Loxin service will not be controlled by a single CA, also known as vendor lock-in, since
CAs work equivalently in the Loxin framework.

The other security enhancement is the public-key pinning, i.e., users’ certificates are
required to be signed by a small group of specific CAs. This will prevent dishonest CAs,
whose root certificates have already been embedded in various operating systems, from
creating fake certificates for Loxin.

If any users or organizations need a higher level of security, e.g., for protecting business
secrets, hardware security modules (HSMs) can be used with Loxin. A HSM exposes only

100

necessary interfaces, such as signature computation and verification, to operating systems
and applications, which will minimize the possibility of leaking the private key SK.

6.2.5 Security Limitation

As we mentioned before, the Loxin system gives the ability of using one user’s pre-owned
ID to access other cloud services, and the ID has to be authenticated by the IDP during
the registration process (see Figure 6.1). For example, if one uses an email address as ID,
the address may be authenticated via the email service provider to the CA. Therefore, the
security of the Loxin system still relies on the trustworthiness of the IDP. In this sense, the
security of Loxin is similar to that of OpenID. Nevertheless, Loxin allows cloud service
providers to directly verify the users’ signatures by public-key certificates without the help
from the IDP, which improves scalability and reduces network protocol latency. Moreover,
the protocols of Loxin enable a user to securely complete authentication from multiple
devices easily with one smart phone.

6.3 Application Extensions

This section presents several methods to extend the original design of Loxin for a wide
range of applications.

6.3.1 Two-Factor Authenticator

Loxin is fully compatible with traditional password-based authentication schemes, which
means that even if users initially do not trust the security of the Loxin system, they can
still use Loxin as a convenient security enhancement, i.e., a two-factor authenticator.

This may help smoothing the adoption process of Loxin in early stages. Service
providers can first add Loxin as a two-factor security enhancement, and then give users
the option to use Loxin as the sole authentication method.

6.3.2 Local Authentication

Typing passwords is particularly painful on the relatively small screen of a smart phone.
The Loxin App can also be used to authenticate other applications installed on the smart

101

phone. In this special case, the authentication process of Loxin can be executed locally
without involving the Loxin Server or PMS. An application can broadcast a local authen-
tication request within the phone, and once the Loxin App receives the request it can
reply a proper signature upon the user’s approval.

6.3.3 Authentication via Barcode

If the Loxin Server or PMS is offline, the authentication request from the cloud service will
not reach the user in time. In this case, the cloud service can display a barcode (e.g., a QR
code) to the user on the computer, which contains all the necessary information about the
request. After scanning the barcode, the Loxin App can send the authentication signature
to the cloud service directly. This method prevents the whole authentication process from
the potential single point of failure of the Loxin Server.

6.3.4 Pairing without ID

It is possible to use the Loxin service even without first telling the user’s ID to cloud service
providers. For example, after scanning the barcode as described in the previous subsection,
the Loxin App will send the user’s public-key certificate along with the signature, and
then the cloud service can retrieve ID from the certificate. Thus the user does not need to
manually enter ID during the entire authentication process. In the original design described
in Section 6.1.3, it is possible to utilize some other factors, such as geographic and network
information, to pair the Loxin App with the cloud service.

6.4 Loxin in Practice – Tackling the MintChip Chal-
lenge

In this section, we apply the Loxin security framework to build a password-less mobile
payment solution called EasyChip for tackling the real-world MintChip Challenge [89]
organized by the Royal Canadian Mint. With Loxin in place, a user can complete online
transactions without creating additional accounts with multiple merchants, thereby offering
an innovative password-less online payment service.

102

6.4.1 The MintChip Challenge

In 2012, the Canadian federal government announced in its budget that it would withdraw
the penny from circulation in the fall of 2012. As a quick response, the Royal Canadian
Mint unveiled its digital alternative called MintChip [89] to coinage and small bank denom-
inations, and simultaneously launched the MintChip Challenge contest to encourage the
development of novel applications based on MintChip.

A MintChip, as illustrated in Figure 6.4, is a secure smart card chip that can be encapsu-
lated into different form factors (e.g., a MicroSD card) for easier connections to computers
and mobile devices. The MintChip securely holds electronic money and enables a protocol
to transfer it from one chip to another. The main goal of the MintChip is to facilitate small-
value transactions, such as micro-transactions (under $10) and nano-transactions (under
$1). Unlike existing digital wallets, such as Google Wallet [54] and Apple Pay [10], where
customers’ financial information (e.g., credit/debit card) is stored into an embedded secure
element or in the cloud, MintChip does not have any link to your bank account or credit
card and no personal data is exchanged during a transaction.

Figure 6.4: A pair of MintChip’s (centre) and accessories from the Royal Canadian Mint.

6.4.2 The EasyChip Solution

To tackle the MintChip Challenge, we have developed EasyChip [122], an Android applica-
tion for password-less mobile payment based on the Loxin security framework presented in
Section 6.1. Using the EasyChip application on a smart phone, a password-less payment
process works as described below.

103

Registration

In the Loxin framework, the Loxin App needs to first obtain a public-key certificate
from the CA. However, the MintChip inside a smart phone has already contained a unique
64-bit MintChip ID, a preloaded private/public RSA key pair, and the associated X.509
public-key certificate issued by the MintChip CA. Therefore, Steps 1.1 – 1.3 in the Loxin
registration procedure can be omitted. Secondly, the EasyChip App selects/creates an
existing/new email account and registers it to Google Cloud Messaging for Android for the
push message service. Finally, the EasyChip App registers to the backend server with
the email account, the MintChip ID, the MintChip certificate, and the push message service
token as described in Steps 3.1 – 3.3 of the Loxin security framework.

Authentication and Payment

Figure 6.5: A customer has submitted his/her email address.

A complete MintChip payment always involves two MintChip devices, namely a sender
and a receiver. Moreover, the receiver’s MintChip ID must be known by the sender. When
a customer (i.e., a sender) wants to purchase a product from a merchant website (i.e., a
receiver), the customer first enters the email address associated with the EasyChip App,
as shown in Figure 6.5.

The merchant’s web server, which is equipped with another MintChip, generates a
MintChip Request message that contains the information such as the receiver’s MintChip
ID, the amount to pay, a URL specifying where the payment should be sent to, a random

104

challenge, etc. The MintChip Request message and the customer’s email address will be
sent to the Loxin Server. Upon receiving the message, the Loxin Server looks up its
database with the customer’s email address and retrieves the push message service token.
Then the Loxin Server pushes the MintChip Request message to the customer’s smart
phone through the PMS, as shown in Figure 6.6.

Figure 6.6: The payment requires the approval by the user.

When the customer confirms the payment request, the MintChip inside the customer’s
smart phone will immediately generate a signed MintChip Value message using the RSA
signature scheme and send it back to the merchant’s web server. After verifying the
received MintChip certificate and digital signature, the payment will be processed (see
Figure 6.7). Note that the entire authentication and payment processes follow the Loxin
security framework, and the customer does not need to enter any password.

6.5 Comparisons with Other Authentication Mechanisms

In this section, we analyze several other authentication mechanisms, and also provide their
comparisons with Loxin.

105

Figure 6.7: The online transaction has completed.

6.5.1 RSA SecurID

RSA SecurID is a well-established product in the two-factor authentication market, which
is a hardware token with a small screen showing a pseudorandom authentication code in
every minute [106]. Each RSA SecurID shares a secret seed with its backend server. When
a user submits the authentication code to a cloud service, the service provider will compute
the number based on their own knowledge of the secret seed and then compare it with the
one submitted by the user.

If the servers of RSA SecurID are compromised, attackers can compute any pseudoran-
dom authentication codes after obtaining their secret seeds. In fact, this kind of incidents
did happen in 2011 [37], which renders RSA SecurID less effective to serve as a secure two-
factor authentication mechanism. Moreover, RSA SecurID also has a usability issue and
users have to carry the extra hardware device. In addition, different cloud services usually
do not share an identical secret seed, so user may be required to have multiple devices
associated with various service providers.

6.5.2 Google Authenticator

Google Authenticator [64] is a software solution to the usability issue of RSA SecurID. It
replaces the hardware device of RSA SecurID by a software application on users’ mobile
devices, and can be paired with many service providers such that users do not need to
carry multiple devices.

106

However, Google Authenticator still shares seeds with its backend servers, and is required
to be manually paired with each service provider similarly as RSA SecurID, which is not
user-friendly when compared with Loxin.

6.5.3 Kerberos

Kerberos is a symmetric-key cryptography based protocol that allows users authenticate
their identities to services by the help of a central Kerberos server [95]. A ticket will be
issued by the central server for a specific service when the user wants to access the service.

Kerberos apparently suffers from single point of failure of the central Kerberos server.
In addition, although a public-key cryptography based initial authentication extension is
proposed in [129], the ticket issued in Kerberos system is still produced by symmetric-key
algorithms. Thus once the database of the Kerberos server is compromised, the credentials
of all users will be in danger.

6.5.4 Pico

Pico is a hardware solution proposed by Stajano in 2011 [117], which serves as a replacement
of password-based authentications. Pico is recommended to be a dedicated device with
capabilities such as a camera and a radio. It is hard to manufacture, and is required to be
carried by users all the time. Moreover, Pico has to be paired with each application in a
similar way as RSA SecurID and Google Authenticator.

6.5.5 Twitter’s Two-Factor Authentication

Recently, Twitter upgraded its mobile applications to support a public-key cryptography
based two-factor authentication solution [116], which has a similar idea as Loxin in the
sense that the web server sends a login challenge to the user and requires it to be signed
by the private key stored in the smart phone application.

As mentioned in [14], the design of Twitter’s two-factor authentication mechanism has
a security hazard that users cannot tell the differences between the fake login requests
initiated by adversaries and the real ones by the users themselves, since the smart phone
application does not provide the user with detailed information about login requests. The
hash value tag used in the Loxin system can be adopted to defeat this kind of attacks.
Moreover, the public key is only paired with Twitter, which is similar to the method of

107

Pico. To provide single-sign-on service to other service providers, the public key needs to
be properly signed by trusted third-party CAs.

6.5.6 Mozilla Persona

Persona (formerly BrowserID) is a decentralized single-sign-on system developed by Mozilla
for users and websites to release the burden of creating and managing passwords [94].
Persona adopts users’ email addresses as identities and issues public-key certificates for
these emails.

However, the design of Persona aims to provide in-browser solution and stores the
public-key certificate in the local space of a browser. Therefore, to use on multiple devices,
Persona may need to be set up many times, which is not as convenient as Loxin. With
the help of push message services, Loxin allows a user to store his/her private key in a
smart phone and access many services on multiple computers or devices.

6.5.7 PhoneAuth

PhoneAuth is a user-friendly two-factor authentication mechanism proposed in 2012 [38].
The authentication request is automatically signed by the smart phone application, if the
user’s smart phone is present and can be connected to the computer via Bluetooth. The
whole two-factor authentication process does not need the user’s interaction.

However, PhoneAuth requires the web browser to be capable of sending data to the
user’s smart phone via a Bluetooth connection. The authors of [38] managed to achieve
this function by developing an extension for the Chromium web browser. Regular web
browsers without any modifications do not have such abilities, and it would be dangerous
to open a web interface of physically accessing users’ smart phones.

6.5.8 Duo Push

Duo Push is a commercial software application developed by Duo Security [46], which aims
to provide a two-factor authentication with push message capabilities. However, the design
details of Duo Push are not disclosed. Moreover, the authentication status of a user in Duo
Push depends on the response from the verification servers of Duo Security, which makes
Duo Push unsuitable for replacing password-based authentication solutions used by other
companies and organizations. Furthermore, the systems integrated with Duo Push may

108

have the single point of failure, as users will not be able to access cloud services if the
verification servers of Duo Security are not working properly or being compromised.

6.6 Summary

In this chapter, we have proposed an authentication framework called Loxin. We have
demonstrated that Loxin is secure against man-in-the-middle attacks and replay attacks.
In particular, even if the servers of Loxin are compromised by attackers, the private keys
of users are still safe and thus attackers cannot impersonate the users. This special feature
makes Loxin an attractive security solution for password-less or two-factor authentication.
Several methods have also been proposed to extend Loxin for using in different application
scenarios, and for avoiding single point of failure as well as vendor lock-in. We have also
developed EasyChip, an Android application following the Loxin security framework, to
demonstrate the power of Loxin for building a real-world password-less mobile payment
solution.

109

Chapter 7

Concluding Remarks and Future Work

This chapter concludes the thesis and discusses several potential topics for future research.

7.1 Conclusions and Our Contributions

The salient features of cloud systems, such as scalability, flexibility, reliability, and low
costs, have attracted a huge number of customers. More and more organizations and
companies are outsourcing their computation, storage and network needs to cloud-based
solutions. Due to the nature of cloud computing, such as resource sharing/pooling and
web-based remote connections, security plays an important role in cloud system designs.
Cloud service providers need to protect authenticity and confidentiality of customers’ data
transmitted to and stored in the cloud, and prevent unauthorized access of customers’
resources. This thesis has investigated various authentication and encryption algorithms
that protect cloud systems, including

• modes of operation for data encryption and authentication,

• block ciphers for encryption,

• password hashing algorithms for password-based authentication and key derivation
functions, and

• password-less or two-factor authentication mechanisms.

111

Table 7.1: Main functionalities of the studied algorithms.
Algorithms Authentication Encryption

Modes of operation X X
Block ciphers X

Password hashing X
Password-less/two-factor X

Table 7.2: Positions of our work in the thesis.
Algorithms Analysis Design

Modes of operation Chapter 3 Section 2.3
Block ciphers Chapter 4

Password hashing Section 5.2
Password-less/two-factor Section 6.5 Section 6.1

The main functionalities of these algorithms are summarized in Table 7.1, and the positions
of our work on either analysis or design of these algorithms are listed in Table 7.2.

We list our contributions for each topic as follows.

• Authenticated encryption modes of operation:

– We have proposed a simple change to repair GCM in order to avoid the security
proof flaw discovered by Iwata et al. The security bounds of the revised algo-
rithm, called LGCM, are tighter than the original ones of GCM by a factor of
about 220 for non-96-bit nonces.

– We have presented two alternative methods for implementing LGCM such that
LGCM has better resistance against timing-based side-channel attacks.

– We have demonstrated that hash collisions are not necessary for constructing
forgeries of certain polynomial-based MAC schemes like the one adopted in
GCM. This discovery removes certain restrictions in the attacks proposed by
Procter and Cid.

– We have proven that all authentication key sets with no less than two elements
are weak key classes for GCM-like polynomial-based MAC schemes, which is an
extension to Procter and Cid’s analysis result.

– We have shown that due to a special structure of GCM, these forgery attacks can
be turned into birthday attacks, which will significantly increase their success
probabilities.

112

– We have indicated that these forgery attacks can still work even if GCM is
changed to the MAC-then-Enc paradigm, as one of the methods proposed by
the previous studies, for further securing GMAC.

Considering the birthday attacks together with the flaw found by Iwata et al., we
recommend that we should avoid using GCM with non-96-bit nonces. However, if
non-96-bit nonces are preferred in certain applications, our revised algorithm LGCM
is recommended.

• Block ciphers:

– We have proposed a new framework, namely multidimensional meet-in-the-
middle attack, to analyze symmetric-key ciphers by segmenting algorithms into
consecutive sub-ciphers. This framework is suitable for lightweight ciphers with
simple key schedules and block sizes smaller than key lengths.

– Following this framework, we have devised new attacks that can recover the mas-
ter keys of 175-round KATAN32, 130-round KATAN48, and 112-round KATAN64
faster than exhaustive search. These new attacks can reach more rounds than
the existing attacks.

– We have also provided new attacks on 115-round KATAN32 and 100-round
KATAN48 in order to demonstrate that this new kind of attacks can be more
time-efficient and memory-efficient than the existing ones.

• Password hashing algorithms:

– We have proposed two practical password hashing algorithms, Pleco and Plec-
tron. They are built upon well-studied cryptographic algorithms and combine
the advantages of symmetric-key and asymmetric-key primitives.

– We have given the security proofs for the one-wayness and collision resistance
of Pleco and Plectron.

– We have designed both password hashing algorithms to be sequential memory-
hard, in order to thwart large-scale parallel password searching using dedicated
hardware, such as GPUs, FPGAs, and ASICs.

– We have also proposed several variants of Pleco and Plectron with better
security bounds or more efficient software implementations.

• Password-less or two-factor authentication:

113

– We have proposed Loxin, a solution for the entity authentication of cloud sys-
tems and web applications, which enables users to access multiple services by
using pre-owned identities without creating or submitting any passwords.

– We have shown that Loxin is invulnerable to common attacks such as man-in-
the-middle and replay attacks. In particular, servers in the Loxin system do
not generate or possess the authentication credentials of users, so compromised
Loxin servers will not leak users’ credentials.

– Loxin is compatible with existing password-based authentication systems, and
thus it can serve as a two-factor authentication mechanism.

– We have given an analysis of other popular two-factor/password-less authen-
tication mechanisms used for cloud systems, as well as comparisons with our
design Loxin.

7.2 Future Research

This section discusses several ideas, which we have gotten during the process of finishing
the work in this thesis, for potential topics of our future research.

7.2.1 Authenticated Encryption Modes of Operation

Due to the adoption of GCM in a number of widely used protocols, e.g., TLS v1.2, IEEE
802.1AE and IPsec, it is important for researchers to find practical solutions to avoid the
issues of GCM in real-world applications. A competition is currently ongoing for collecting
the ideas and designs of new authenticated encryption algorithms [1], but it would still
take a long time before new designs are intensively analyzed and then ready for practical
applications. Therefore, repairing security issues of existing algorithms is still important
for the current cloud system designs and implementations that may stay for a long time.
We are curious and eager to discover simpler or more efficient methods than LGCM for
repairing GCM.

Besides block ciphers, stream ciphers are also important encryption algorithms widely
used in practical applications. Stream ciphers have been adopted in many real-time com-
munication systems, e.g., 4G LTE [90], due to the simple and efficient hardware imple-
mentations. The stream cipher ChaCha [21] has been implemented in the web servers and
software of Google as an efficient replacement for the block cipher AES [32]. However, to

114

p

Ef1

v1 v′1

E−1
b1

g1 g2

Ef3

v3 v′3

E−1
b3

c

look-up table

Figure 7.1: Multidimensional MITM attacks with look-up tables.

the best of our knowledge, there is not a widely-accepted authenticated encryption mode
of operation for stream ciphers. Stream ciphers are designed for protecting confidentiality
but not authenticity, so in practice stream ciphers are usually used with general-purpose
authentication algorithms such as HMAC, or block cipher modes of operation such as
Poly1305. An authenticated encryption mode specifically designed for stream ciphers may
have better efficiencies and security bounds.

7.2.2 Block Ciphers

For MD-MITM attacks with dimensions larger than two, there are portions of the attacks
that can be pre-computed. For example, the two ends of the middle portion for a 3D-MITM
attack are both guessed values. Thus we can build a look-up table for the intermediate
computations off-line without any knowledge about the plaintexts and ciphertexts, which
is illustrated in Figure 7.1. Especially, we can use any approach, not only limited to MITM
methods, to construct the look-up table in Figure 7.1.

We can also analyze other lightweight block ciphers as future work. We can consider
KATAN’s sibling block cipher family KTANTAN32/48/64 [33], which has the same round
functions as KATAN but a different key scheduling algorithm. KTANTAN has been analyzed
by many researchers [120, 29]. By refining our matching techniques, we may be able to
construct more efficient attacks on KTANTAN, similar as the ones on KATAN.

7.2.3 Password Hashing Algorithms

In order to fully utilize the memory-hardness property of ROMix, the internal hash function
Hn should be as fast as possible, since during a fixed time period the total amount of
memory that can be consumed is limited by the computational speed of Hn. The current
design of Hn is based on modular squaring of big integers, so it may not be fast enough for
certain devices with constrained CPU power. We have proposed several modified designs

115

of Hn that have better software efficiency in Section 5.4.4. However, the security of these
potential solutions needs further investigations.

Another potential method to improve the computational speed of our password hashing
designs is refining the steps of ROMix. The current design of ROMix can be viewed as a
combination of two phases. The first phase fills the memory with the hash function outputs,
and the second phase randomly accesses the values in the memory. It is possible to merge
these two phases, by randomly accessing the previous outputs when filling new memory
locations. This method may save almost half of the overall computation time, but it needs
careful investigations and proofs of its memory-hard property.

It is encouraging to design password hashing algorithms by combining asymmetric-key
and symmetric-key primitives, since the combined algorithms can offer provable security
and potential server-specific computational shortcuts. We expect more password hashing
designs consisting of both asymmetric-key and symmetric-key components to appear.

7.2.4 Password-less Entity Authentication

As we have discussed in Section 6.1.3, there are alternative methods, such as a splitting-
step method for request approval, that are more user-friendly than manually comparing
hash tags, in order to bind separated communication channels and avoid potential attacks.
We would like to carefully analyze these new methods and extend the framework of Loxin
to include them for improving Loxin’s overall usability without compromising security.

116

APPENDICES

117

Appendix A

Partial-Matching Details for the
Attacks on KATAN48 and KATAN64

The detailed steps of the partial matching in the 2D-MITM attack on KATAN48, described
in Section 4.4.1, are given as follows. The notations follow the ones used in Section 4.3.1.

Rd. a b L1 L2
second backward phase
92 0 0 0000000000000000000 00000000000000000000000000000
91 1 1 0000000000000000011 00000000000000000000000000011
90 0 0 0000000000000001101 00000000000000000000000001100
89 0 0 0000000000000110110 00000000000000000000000110000
88 0 0 0000000000011011011 00000000000000000000011000001
87 0 0 0000000001101101101 00000000000000000001100000111
86 0 0 0000000110110110111 00000000000000000110000011110
85 0 0 0000011011011011111 00000000000000011000001111001
84 0 0 0001101101101111111 00000000000001100000111100111
83 0 0 0110110110111111111 00000000000110000011110011111
82 1 0 1011011011111111111 00000000011000001111001111111
81 0 1 1101101111111111111 00000001100000111100111111111
80 0 0 0110111111111111111 00000110000011110011111111111
79 0 0 1011111111111111111 00011000001111001111111111111
78 0 0 1111111111111111111 01100000111100111111111111111
77 0 0 1111111111111111111 10000011110011111111111111111
76 1 1 1111111111111111111 00001111001111111111111111111

119

75 0 0 1111111111111111111 00111100111111111111111111111
74 0 0 1111111111111111111 11110011111111111111111111111
73 0 0 1111111111111111111 11001111111111111111111111111
72 1 1 1111111111111111111 00111111111111111111111111111
second forward phase
71 0 0 0000000000000000000 00000000000000000000000000000
matching
2 bits 1111111111111111111 00111111111111111111111111111

The partial-matching steps for the 2D-MITM attack on KATAN64 stated in Section 4.4.2
are as follows.

Rd. a b L1 L2
first forward phase
39 0 0 0000000000000000000000000 000000000000000000000000000000000000000
40 1 1 1110000000000000000000000 111000000000000000000000000000000000000
41 0 0 0001110000000000000000000 000111000000000000000000000000000000000
42 0 0 0000001110000000000000000 000000111000000000000000000000000000000
43 0 0 1100000001110000000000000 000000000111000000000000000000000000000
44 0 0 0011100000001110000000000 111000000000111000000000000000000000000
45 0 0 1110011100000001110000000 110111000000000111000000000000000000000
46 0 1 1111110011100000001110000 101110111000000000111000000000000000000
first backward phase
58 1 1 0000000000000000000000000 000000000000000000000000000000000000000
57 1 1 0000000000000000000000111 000000000000000000000000000000000000111
56 1 1 0000000000000000000111111 000000000000000000000000000000000111111
55 1 1 0000000000000000111111111 000000000000000000000000000000111111111
54 1 1 0000000000000111111111111 000000000000000000000000000111111111111
53 1 1 0000000000111111111111111 000000000000000000000000111111111111111
52 1 1 0000000111111111111111111 000000000000000000000111111111111111111
51 1 1 0000111111111111111111111 000000000000000000111111111111111111111
50 1 1 0111111111111111111111111 000000000000000111111111111111111111111
49 1 1 1111111111111111111111111 000000000000111111111111111111111111111
48 1 1 1111111111111111111111111 000000000111111111111111111111111111111
47 1 1 1111111111111111111111111 000000111111111111111111111111111111111
matching
2 bits 1111111111111111111111111 101110111111111111111111111111111111111

120

Appendix B

Test Vectors for Pleco and Plectron

For testing and reference, we give the following input parameters and their corresponding
hashing output of Plectron, using the Mersenne number 22137−1 as the modulus. Please
note that the hexadecimal numbers for the entries salt, pass and tag represent byte strings,
e.g., 546865 means an ASCII string The. Long strings are written in multiple lines.

salt 4c880aa553669c3869f62b389c2c3499
pass 54686520717569636b2062726f776e20

666f78206a756d7073206f7665722074
6865206c617a7920646f67

tcost 2
mcost 1024
hsize 256

tag 7969ad4aae09ba48e61cc5e348f1de39
c15475d69eee42cffe8770a88f2f3e93

121

Appendix C

Names of the Proposed Password
Hashing Algorithms

Pleco or Plecostomus is the name for a kind of catfish that is very popular among aquar-
ists, as Pleco fish help keeping water clean. The word Plecostomus means folded mouth.
Plectron refers to a small piece of metal or plastic that is used to plunk musical instruments.

123

References

[1] CAESAR – Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html. Accessed November
2014.

[2] Dogecoin. http://dogecoin.com/. Accessed November 2014.

[3] Litecoin – Open source P2P digital currency. https://litecoin.org/. Accessed
November 2014.

[4] Password Hashing Competition. https://password-hashing.net/index.html. Ac-
cessed November 2014.

[5] Martin R. Albrecht and Gregor Leander. An all-in-one approach to differential crypt-
analysis for small block ciphers. In Lars R. Knudsen and Huapeng Wu, editors, Se-
lected Areas in Cryptography, 19th International Conference, SAC 2012, Windsor,
ON, Canada, August 15-16, 2012, Revised Selected Papers, volume 7707 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2012.

[6] Amazon Web Services, Inc. Amazon Elastic Compute Cloud (EC2) - Scalable Cloud
Hosting. http://aws.amazon.com/ec2/. Accessed November 2014.

[7] Amazon Web Services, Inc. AWS Elastic Beanstalk – Amazon Web Services. http:
//aws.amazon.com/elasticbeanstalk/. Accessed November 2014.

[8] Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against reduced
SHA-0 and SHA-1. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science, pages
70–89. Springer, 2009.

125

http://competitions.cr.yp.to/caesar.html
http://dogecoin.com/
https://litecoin.org/
https://password-hashing.net/index.html
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticbeanstalk/
http://aws.amazon.com/elasticbeanstalk/

[9] Kazumaro Aoki and Kan Yasuda. The security and performance of “GCM” when
short multiplications are used instead. In Miroslaw Kutylowski and Moti Yung,
editors, Information Security and Cryptology - 8th International Conference, Inscrypt
2012, Beijing, China, November 28-30, 2012, Revised Selected Papers, volume 7763
of Lecture Notes in Computer Science, pages 225–245. Springer, 2012.

[10] Apple Inc. Apple Pay. https://www.apple.com/apple-pay/. Accessed November
2014.

[11] Apple Inc. Apple Push Notification Service. https://developer.
apple.com/library/ios/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/Chapters/ApplePushService.html. Accessed November
2014.

[12] Apple Inc. Use Touch ID on iPhone and iPad. http://support.apple.com/en-us/
HT5883. Accessed November 2014.

[13] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A fast short-input PRF.
In Steven D. Galbraith and Mridul Nandi, editors, Progress in Cryptology - IN-
DOCRYPT 2012, 13th International Conference on Cryptology in India, Kolkata,
India, December 9-12, 2012. Proceedings, volume 7668 of Lecture Notes in Computer
Science, pages 489–508. Springer, 2012.

[14] Authy, Inc. Thoughts on Twitter’s new two-factor authentication. http://blog.
authy.com/twitter, 2013. Accessed November 2014.

[15] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. Rec-
ommendation for key management, part 1: general (revision 3). NIST Special Pub-
lication 800-57, 2012.

[16] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chaining.
In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO ’94, 14th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 21-25,
1994, Proceedings, volume 839 of Lecture Notes in Computer Science, pages 341–358.
Springer, 1994.

[17] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

[18] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO ’93, 13th Annual

126

https://www.apple.com/apple-pay/
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
http://support.apple.com/en-us/HT5883
http://support.apple.com/en-us/HT5883
http://blog.authy.com/twitter
http://blog.authy.com/twitter

International Cryptology Conference, Santa Barbara, California, USA, August 22-
26, 1993, Proceedings, volume 773 of Lecture Notes in Computer Science, pages
232–249. Springer, 1993.

[19] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf, 2005. Accessed November 2014.

[20] Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri
Gilbert and Helena Handschuh, editors, Fast Software Encryption: 12th International
Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised Selected Papers,
volume 3557 of Lecture Notes in Computer Science, pages 32–49. Springer, 2005.

[21] Daniel J. Bernstein. ChaCha, a variant of Salsa20. In Workshop Record of SASC,
volume 8, 2008.

[22] Daniel J. Bernstein. The Salsa20 family of stream ciphers. In Matthew J. B. Robshaw
and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM Finalists,
pages 84–97. Springer, 2008.

[23] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak
SHA-3 submission. Submission to NIST (Round 3), 2011.

[24] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak implementation overview, version 3.2. http://keccak.noekeon.org/
Keccak-implementation-3.2.pdf, 2012. Accessed November 2014.

[25] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. In
Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology - CRYPTO
’90, 10th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1990, Proceedings, volume 537 of Lecture Notes in Computer
Science, pages 2–21. Springer, 1990.

[26] Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1
on a PC. In Bruce Schneier, editor, Fast Software Encryption, 7th International
Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume
1978 of Lecture Notes in Computer Science, pages 1–18. Springer, 2000.

[27] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique crypt-
analysis of the full AES. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December

127

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf

4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Computer Science, pages
344–371. Springer, 2011.

[28] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT:
an ultra-lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, edi-
tors, Cryptographic Hardware and Embedded Systems - CHES 2007, 9th Interna-
tional Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727
of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

[29] Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle attack:
Cryptanalysis of the lightweight block cipher KTANTAN. In Alex Biryukov, Guang
Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography - 17th In-
ternational Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010,
Revised Selected Papers, volume 6544 of Lecture Notes in Computer Science, pages
229–240. Springer, 2010.

[30] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The
quest to replace passwords: A framework for comparative evaluation of web authen-
tication schemes. In IEEE Symposium on Security and Privacy, SP 2012, 21-23
May 2012, San Francisco, California, USA, pages 553–567. IEEE Computer Society,
2012.

[31] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A
low-latency block cipher for pervasive computing applications - extended abstract.
In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of Cryptology
and Information Security, Beijing, China, December 2-6, 2012. Proceedings, volume
7658 of Lecture Notes in Computer Science, pages 208–225. Springer, 2012.

[32] Elie Bursztein. Speeding up and strengthening HTTPS connections for
Chrome on Android. http://googleonlinesecurity.blogspot.com/2014/04/
speeding-up-and-strengthening-https.html, 2014. Accessed November 2014.

[33] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded

128

http://googleonlinesecurity.blogspot.com/2014/04/speeding-up-and-strengthening-https.html
http://googleonlinesecurity.blogspot.com/2014/04/speeding-up-and-strengthening-https.html

Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland, Septem-
ber 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Science, pages
272–288. Springer, 2009.

[34] Abhijit Choudhury, David McGrew, and Joseph Salowey. AES Galois Counter Mode
(GCM) cipher suites for TLS. RFC 5288, available at https://tools.ietf.org/
html/rfc5288, 2008.

[35] Luke St. Clair, Lisa Johansen, William Enck, Matthew Pirretti, Patrick Traynor,
Patrick McDaniel, and Trent Jaeger. Password exhaustion: Predicting the end of
password usefulness. In Aditya Bagchi and Vijayalakshmi Atluri, editors, Informa-
tion Systems Security, Second International Conference, ICISS 2006, Kolkata, India,
December 19-21, 2006, Proceedings, volume 4332 of Lecture Notes in Computer Sci-
ence, pages 37–55. Springer, 2006.

[36] Nicolas T. Courtois. Algebraic complexity reduction and cryptanalysis of GOST.
Cryptology ePrint Archive, Report 2011/626, 2011. http://eprint.iacr.org/.

[37] Art Coviello. Open letter to RSA customers. https://www.sec.gov/Archives/
edgar/data/790070/000119312511070159/dex991.htm, 2011. Accessed November
2014.

[38] Alexei Czeskis, Michael Dietz, Tadayoshi Kohno, Dan S. Wallach, and Dirk Balfanz.
Strengthening user authentication through opportunistic cryptographic identity as-
sertions. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, the ACM Con-
ference on Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, pages 404–414. ACM, 2012.

[39] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

[40] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) protocol version
1.2. RFC 5246, available at https://tools.ietf.org/html/rfc5246, 2008.

[41] Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis of the NBS data
encryption standard. IEEE Computer, 10(6):74–84, 1977.

[42] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dissection of
composite problems, with applications to cryptanalysis, knapsacks, and combinato-
rial search problems. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances

129

https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc5288
http://eprint.iacr.org/
https://www.sec.gov/Archives/edgar/data/790070/000119312511070159/dex991.htm
https://www.sec.gov/Archives/edgar/data/790070/000119312511070159/dex991.htm
https://tools.ietf.org/html/rfc5246

in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in
Computer Science, pages 719–740. Springer, 2012.

[43] Itai Dinur, Orr Dunkelman, and Adi Shamir. Improved attacks on full GOST. In
Anne Canteaut, editor, Fast Software Encryption - 19th International Workshop,
FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, vol-
ume 7549 of Lecture Notes in Computer Science, pages 9–28. Springer, 2012.

[44] NIST Computer Security Division. The SHA-3 cryptographic hash algorithm compe-
tition. http://csrc.nist.gov/groups/ST/hash/sha-3/. Accessed November 2014.

[45] Benedikt Driessen. Eavesdropping on satellite telecommunication systems. Cryptol-
ogy ePrint Archive, Report 2012/051, 2012. http://eprint.iacr.org/.

[46] Duo Security, Inc. Duo Push: One-tap authentication. https://www.duosecurity.
com/duo-push. Accessed November 2014.

[47] Markus Dürmuth, Tim Güneysu, Markus Kasper, Christof Paar, Tolga Yalçin, and
Ralf Zimmermann. Evaluation of standardized password-based key derivation against
parallel processing platforms. In Sara Foresti, Moti Yung, and Fabio Martinelli, edi-
tors, Computer Security - ESORICS 2012 - 17th European Symposium on Research
in Computer Security, Pisa, Italy, September 10-12, 2012. Proceedings, volume 7459
of Lecture Notes in Computer Science, pages 716–733. Springer, 2012.

[48] Morris J. Dworkin. Recommendation for block cipher modes of operation: Methods
and techniques. NIST Special Publication 800-38A, 2001.

[49] Morris J. Dworkin. Recommendation for block cipher modes of operation: the CCM
mode for authentication and confidentiality. NIST Special Publication 800-38C, 2004.

[50] Daniel W. Engels, Markku-Juhani O. Saarinen, Peter Schweitzer, and Eric M. Smith.
The Hummingbird-2 lightweight authenticated encryption algorithm. In Ari Juels
and Christof Paar, editors, RFID. Security and Privacy - 7th International Workshop,
RFIDSec 2011, Amherst, USA, June 26-28, 2011, Revised Selected Papers, volume
7055 of Lecture Notes in Computer Science, pages 19–31. Springer, 2011.

[51] Niels Ferguson. Authentication weaknesses in GCM. Comments submitted to NIST
Modes of Operation Process, http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/comments/CWC-GCM/Ferguson2.pdf, 2005. Accessed November 2014.

130

http://csrc.nist.gov/groups/ST/hash/sha-3/
http://eprint.iacr.org/
https://www.duosecurity.com/duo-push
https://www.duosecurity.com/duo-push
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf

[52] Christian Forler, Stefan Lucks, and Jakob Wenzel. Catena: A memory-consuming
password-scrambling framework. Cryptology ePrint Archive, Report 2013/525, 2013.
http://eprint.iacr.org/.

[53] J. Keith Gibson. Discrete logarithm hash function that is collision free and one way.
IEE Proceedings E (Computers and Digital Techniques), 138(6):407–410, 1991.

[54] Google Inc. An easy way to pay, purchase, and save – Google Wallet. https:
//www.google.com/wallet/. Accessed November 2014.

[55] Google Inc. App Engine – Google Cloud Platform. https://cloud.google.com/
appengine/. Accessed November 2014.

[56] Google Inc. Compute Engine – Google Cloud Platform. https://cloud.google.
com/compute/. Accessed November 2014.

[57] Google Inc. Google Apps for Work – Email, collaboration tools and more. https:
//www.google.com/work/apps/business/. Accessed November 2014.

[58] Google Inc. Google Cloud Messaging for Android. https://developer.android.
com/google/gcm/index.html. Accessed November 2014.

[59] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2011 - 13th International Workshop, Nara,
Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes
in Computer Science, pages 326–341. Springer, 2011.

[60] Helena Handschuh and Bart Preneel. Key-recovery attacks on universal hash function
based MAC algorithms. In David Wagner, editor, Advances in Cryptology - CRYPTO
2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science,
pages 144–161. Springer, 2008.

[61] Dick Hardt. The OAuth 2.0 authorization framework. RFC 6749, available at https:
//tools.ietf.org/html/rfc6749, 2012.

[62] Martin E. Hellman. A cryptanalytic time-memory trade-off. Information Theory,
IEEE Transactions on, 26(4):401–406, 1980.

[63] IEEE 802.1AE. Media access control (MAC) security. http://www.ieee802.org/
1/pages/802.1ae.html, 2006. Accessed November 2014.

131

http://eprint.iacr.org/
https://www.google.com/wallet/
https://www.google.com/wallet/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://www.google.com/work/apps/business/
https://www.google.com/work/apps/business/
https://developer.android.com/google/gcm/index.html
https://developer.android.com/google/gcm/index.html
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
http://www.ieee802.org/1/pages/802.1ae.html
http://www.ieee802.org/1/pages/802.1ae.html

[64] Google Inc. Google Authenticator project – Two-step verification. http://code.
google.com/p/google-authenticator/. Accessed November 2014.

[65] Takanori Isobe. A single-key attack on the full GOST block cipher. In Antoine Joux,
editor, Fast Software Encryption - 18th International Workshop, FSE 2011, Lyngby,
Denmark, February 13-16, 2011, Revised Selected Papers, volume 6733 of Lecture
Notes in Computer Science, pages 290–305. Springer, 2011.

[66] Takanori Isobe and Kyoji Shibutani. Improved all-subkeys recovery attacks on FOX,
KATAN and SHACAL-2 block ciphers. To appear at the 21st International Workshop
on Fast Software Encryption (FSE 2014).

[67] Takanori Isobe and Kyoji Shibutani. All subkeys recovery attack on block ciphers:
Extending meet-in-the-middle approach. In Lars R. Knudsen and Huapeng Wu,
editors, Selected Areas in Cryptography, 19th International Conference, SAC 2012,
Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers, volume 7707
of Lecture Notes in Computer Science, pages 202–221. Springer, 2012.

[68] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and repairing
GCM security proofs. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in
Computer Science, pages 31–49. Springer, 2012.

[69] Antoine Joux. Authentication failures in NIST version of GCM. NIST Comment,
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_
Series-Drafts/GCM/Joux_comments.pdf, 2006. Accessed November 2014.

[70] Burt Kaliski. PKCS #5: Password-based cryptography specification version 2.0.
RFC 2898, available at http://www.ietf.org/rfc/rfc2898.txt, 2000.

[71] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. Chapman
& Hall, 2008.

[72] John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. Secure applications of
low-entropy keys. In Eiji Okamoto, George I. Davida, and Masahiro Mambo, editors,
Information Security, First International Workshop, ISW ’97, Tatsunokuchi, Japan,
September 17-19, 1997, Proceedings, volume 1396 of Lecture Notes in Computer Sci-
ence, pages 121–134. Springer, 1997.

132

http://code.google.com/p/google-authenticator/
http://code.google.com/p/google-authenticator/
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://www.ietf.org/rfc/rfc2898.txt

[73] Abdul Nasir Khan, M. L. Mat Kiah, Samee Ullah Khan, and Sajjad Ahmad Madani.
Towards secure mobile cloud computing: A survey. Future Generation Comp. Syst.,
29(5):1278–1299, 2013.

[74] Dmitry Khovratovich, Gaëtan Leurent, and Christian Rechberger. Narrow-bicliques:
Cryptanalysis of full IDEA. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Science, pages
392–410. Springer, 2012.

[75] Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Robshaw.
PRINTcipher: A block cipher for IC-printing. In Stefan Mangard and François-Xavier
Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Pro-
ceedings, volume 6225 of Lecture Notes in Computer Science, pages 16–32. Springer,
2010.

[76] Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, and Sven Verdoolaege.
Analysis methods for (alleged) RC4. In Kazuo Ohta and Dingyi Pei, editors, Ad-
vances in Cryptology - ASIACRYPT ’98, International Conference on the Theory
and Applications of Cryptology and Information Security, Beijing, China, October
18-22, 1998, Proceedings, volume 1514 of Lecture Notes in Computer Science, pages
327–341. Springer, 1998.

[77] Hugo Krawczyk, Ran Canetti, and Mihir Bellare. HMAC: Keyed-hashing for message
authentication. RFC 2104, available at https://tools.ietf.org/html/rfc2104,
1997.

[78] Xuejia Lai and James L. Massey. A proposal for a new block encryption standard.
In Ivan Damgård, editor, Advances in Cryptology - EUROCRYPT ’90, Workshop on
the Theory and Application of of Cryptographic Techniques, Aarhus, Denmark, May
21-24, 1990, Proceedings, volume 473 of Lecture Notes in Computer Science, pages
389–404. Springer, 1990.

[79] Paul Leyland. Factorization of Mersenne numbers, mn = 2n − 1. http:
//www.leyland.vispa.com/numth/factorization/factors/mersenne.txt, 2008.
Accessed November 2014.

133

https://tools.ietf.org/html/rfc2104
http://www.leyland.vispa.com/numth/factorization/factors/mersenne.txt
http://www.leyland.vispa.com/numth/factorization/factors/mersenne.txt

[80] Helger Lipmaa, David Wagner, and Phillip Rogaway. Comments to NIST concerning
AES modes of operation: CTR-mode encryption. http://csrc.nist.gov/groups/
ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf, 2000. Accessed
November 2014.

[81] Yiyuan Luo, Qi Chai, Guang Gong, and Xuejia Lai. A lightweight stream cipher
WG-7 for RFID encryption and authentication. In Proceedings of the Global Com-
munications Conference, 2010. GLOBECOM 2010, 6-10 December 2010, Miami,
Florida, USA, pages 1–6. IEEE, 2010.

[82] Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud security and privacy:
an enterprise perspective on risks and compliance. O’Reilly Media, Inc., 2009.

[83] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, Advances in Cryptology - EUROCRYPT ’93, volume 765 of Lecture Notes in
Computer Science, pages 386–397. Springer Berlin Heidelberg, 1994.

[84] David A. McGrew. Counter mode security: Analysis and recommendations. http:
//www.mindspring.com/~dmcgrew/ctr-security.pdf, 2002. Accessed November
2014.

[85] David A. McGrew and John Viega. The Galois/Counter Mode of opera-
tion (GCM). Submission to NIST Modes of Operation Process, available
at http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/
gcm/gcm-spec.pdf, 2004. Accessed November 2014.

[86] David A. McGrew and John Viega. The security and performance of the Ga-
lois/Counter Mode (GCM) of operation. In Anne Canteaut and Kapaleeswaran
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, volume 3348 of
Lecture Notes in Computer Science, pages 343–355. Springer Berlin Heidelberg, 2005.

[87] Peter Mell and Tim Grance. Special Publication 800-145: The NIST definition
of cloud computing. http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf, 2011. Accessed November 2014.

[88] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[89] The Royal Canadian Mint. The MintChip challenge. http://mintchipchallenge.
com/, 2012. Accessed November 2014.

134

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
http://www.mindspring.com/~dmcgrew/ctr-security.pdf
http://www.mindspring.com/~dmcgrew/ctr-security.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://mintchipchallenge.com/
http://mintchipchallenge.com/

[90] Jezabel Molina-Gil, Pino Caballero-Gil, Cándido Caballero-Gil, and Amparo Fúster-
Sabater. Analysis and implementation of the SNOW 3G generator used in 4G/LTE
systems. In Álvaro Herrero, Bruno Baruque, Fanny Klett, Ajith Abraham, Václav
Snásel, André Carlos Ponce Leon Ferreira de Carvalho, Pablo Garcia Bringas, Ivan
Zelinka, Héctor Quintián-Pardo, and Emilio Corchado, editors, International Joint
Conference SOCO’13-CISIS’13-ICEUTE’13 - Salamanca, Spain, September 11th-
13th, 2013 Proceedings, volume 239 of Advances in Intelligent Systems and Com-
puting, pages 499–508. Springer, 2013.

[91] National Institute of Standards and Technology. Federal Information Process-
ing Standards Publication (FIPS PUB) 81, DES modes of operation. http://
csrc.nist.gov/publications/fips/fips81/fips81.htm, 1980. Accessed Novem-
ber 2014.

[92] National Security Agency. Suite B Cryptography. http://www.nsa.gov/ia/
programs/suiteb_cryptography/, 2005. Accessed November 2014.

[93] Roger M. Needham and David J. Wheeler. TEA extensions. http://www.
movable-type.co.uk/scripts/xtea.pdf, 1996. Accessed November 2014.

[94] Mozilla Developer Network and individual contributors. Persona proto-
col overview. https://developer.mozilla.org/en-US/docs/Mozilla/Persona/
Protocol_Overview. Accessed November 2014.

[95] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentication service for
computer networks. Communications Magazine, IEEE, 32(9):33–38, 1994.

[96] OpenID Community. OpenID authentication 2.0 - final. http://openid.net/specs/
openid-authentication-2_0.html, 2007. Accessed November 2014.

[97] Khaled Ouafi and Serge Vaudenay. Smashing SQUASH-0. In Antoine Joux, editor,
Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cologne, Germany,
April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science,
pages 300–312. Springer, 2009.

[98] Colin Percival. Stronger key derivation via sequential memory-hard functions. BS-
DCan, 2009.

135

http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.movable-type.co.uk/scripts/xtea.pdf
http://www.movable-type.co.uk/scripts/xtea.pdf
https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview
https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html

[99] Thomas Pornin. The MAKWA password hashing function – specifications v1.0.
https://password-hashing.net/submissions/specs/Makwa-v0.pdf, 2014. Ac-
cessed November 2014.

[100] Gordon Procter and Carlos Cid. On weak keys and forgery attacks against
polynomial-based MAC schemes. In Shiho Moriai, editor, Fast Software Encryption
- 20th International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised
Selected Papers, volume 8424 of Lecture Notes in Computer Science, pages 287–304.
Springer, 2013.

[101] Niels Provos and David Mazières. A future-adaptable password scheme. In Pro-
ceedings of the FREENIX Track: 1999 USENIX Annual Technical Conference, June
6-11, 1999, Monterey, California, USA, pages 81–91. USENIX, 1999.

[102] Michael O. Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Technical Report, MIT, 1979.

[103] Kui Ren, Cong Wang, and Qian Wang. Security challenges for the public cloud.
IEEE Internet Computing, 16(1):69–73, 2012.

[104] Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of
the 9th ACM conference on Computer and communications security, CCS ’02, pages
98–107, New York, NY, USA, 2002. ACM.

[105] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Def-
initions, implications, and separations for preimage resistance, second-preimage re-
sistance, and collision resistance. In Bimal K. Roy and Willi Meier, editors, Fast
Software Encryption, 11th International Workshop, FSE 2004, Delhi, India, Febru-
ary 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes in Computer Science,
pages 371–388. Springer, 2004.

[106] RSA Inc. RSA SecurID hardware authenticators. http://www.emc.com/security/
rsa-securid/rsa-securid-hardware-authenticators.htm. Accessed November
2014.

[107] Markku-Juhani Olavi Saarinen. Cycling attacks on GCM, GHASH and other polyno-
mial MACs and hashes. In Anne Canteaut, editor, Fast Software Encryption - 19th
International Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Re-
vised Selected Papers, volume 7549 of Lecture Notes in Computer Science, pages
216–225. Springer, 2012.

136

https://password-hashing.net/submissions/specs/Makwa-v0.pdf
http://www.emc.com/security/rsa-securid/rsa-securid-hardware-authenticators.htm
http://www.emc.com/security/rsa-securid/rsa-securid-hardware-authenticators.htm

[108] Salesforce.com, inc. CRM from Salesforce.com – Customer Relationship Manage-
ment. https://www.salesforce.com/crm/. Accessed November 2014.

[109] Tomas Sander. Efficient accumulators without trapdoor extended abstracts. In Vijay
Varadharajan and Yi Mu, editors, Information and Communication Security, Sec-
ond International Conference, ICICS’99, Sydney, Australia, November 9-11, 1999,
Proceedings, volume 1726 of Lecture Notes in Computer Science, pages 252–262.
Springer, 1999.

[110] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than exhaus-
tive search. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479
of Lecture Notes in Computer Science, pages 134–152. Springer, 2009.

[111] Bruce Schneier. Description of a new variable-length key, 64-bit block cipher (Blow-
fish). In Ross J. Anderson, editor, Fast Software Encryption, Cambridge Security
Workshop, Cambridge, UK, December 9-11, 1993, Proceedings, volume 809 of Lec-
ture Notes in Computer Science, pages 191–204. Springer, 1993.

[112] Bruce Schneier. Applied cryptography - protocols, algorithms, and source code in C
(2. ed.). Wiley, 1996.

[113] Ralf Senderek. A discrete logarithm hash function for RSA signatures. http://
senderek.com/SDLH/discrete-logarithm-hash-for-RSA-signatures.ps, 2003.
Accessed November 2014.

[114] Adi Shamir. SQUASH - A new MAC with provable security properties for highly
constrained devices such as RFID tags. In Kaisa Nyberg, editor, Fast Software En-
cryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, February
10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes in Computer
Science, pages 144–157. Springer, 2008.

[115] Victor Shoup. On fast and provably secure message authentication based on universal
hashing. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 313–
328. Springer, 1996.

[116] Alex Smolen. Login verification on Twitter for
iPhone and Android. https://blog.twitter.com/2013/

137

https://www.salesforce.com/crm/
http://senderek.com/SDLH/discrete-logarithm-hash-for-RSA-signatures.ps
http://senderek.com/SDLH/discrete-logarithm-hash-for-RSA-signatures.ps
https://blog.twitter.com/2013/login-verification-on-twitter-for-iphone-and-android
https://blog.twitter.com/2013/login-verification-on-twitter-for-iphone-and-android

login-verification-on-twitter-for-iphone-and-android, 2013. Accessed
November 2014.

[117] Frank Stajano. Pico: No more passwords! In Bruce Christianson, Bruno Crispo,
James A. Malcolm, and Frank Stajano, editors, Security Protocols XIX - 19th In-
ternational Workshop, Cambridge, UK, March 28-30, 2011, Revised Selected Papers,
volume 7114 of Lecture Notes in Computer Science, pages 49–81. Springer, 2011.

[118] S. Subashini and V. Kavitha. A survey on security issues in service delivery models
of cloud computing. J. Network and Computer Applications, 34(1):1–11, 2011.

[119] John Viega and David A. McGrew. The use of Galois/Counter Mode (GCM) in
IPsec encapsulating security payload (ESP). RFC 4106, available at http://tools.
ietf.org/html/rfc4106.html, 2005.

[120] Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and San
Ling. Improved meet-in-the-middle cryptanalysis of KTANTAN (poster). In Udaya
Parampalli and Philip Hawkes, editors, Information Security and Privacy - 16th Aus-
tralasian Conference, ACISP 2011, Melbourne, Australia, July 11-13, 2011. Proceed-
ings, volume 6812 of Lecture Notes in Computer Science, pages 433–438. Springer,
2011.

[121] Bo Zhu, Kefei Chen, and Xuejia Lai. Bitwise higher order differential cryptanal-
ysis. In Liqun Chen and Moti Yung, editors, Trusted Systems, First International
Conference, INTRUST 2009, Beijing, China, December 17-19, 2009. Revised Selected
Papers, volume 6163 of Lecture Notes in Computer Science, pages 250–262. Springer,
2009.

[122] Bo Zhu and Xinxin Fan. EasyChip – Submission to the MintChip Challenge. http://
mintchipchallenge.com/submissions/9469-easychip, 2012. Accessed November
2014.

[123] Bo Zhu, Xinxin Fan, and Guang Gong. Pleco and Plectron – Two provably secure
password hashing algorithms (poster). To appear at the Fifth ACM Conference on
Data and Application Security and Privacy (ACM CODASPY 2015). The full version
has been submitted to the IEEE Transactions on Dependable and Secure Computing.

[124] Bo Zhu, Xinxin Fan, and Guang Gong. Loxin – A solution to password-less universal
login. In 2014 Proceedings IEEE INFOCOM Workshops, Toronto, ON, Canada,
April 27 - May 2, 2014, pages 488–493. IEEE, 2014.

138

https://blog.twitter.com/2013/login-verification-on-twitter-for-iphone-and-android
https://blog.twitter.com/2013/login-verification-on-twitter-for-iphone-and-android
http://tools.ietf.org/html/rfc4106.html
http://tools.ietf.org/html/rfc4106.html
http://mintchipchallenge.com/submissions/9469-easychip
http://mintchipchallenge.com/submissions/9469-easychip

[125] Bo Zhu, Xinxin Fan, and Guang Gong. Pleco and Plectron – Two provably secure
password hashing algorithms. Cryptology ePrint Archive, Report 2014/655, 2014.
http://eprint.iacr.org/.

[126] Bo Zhu and Guang Gong. Multidimensional meet-in-the-middle attack and its ap-
plications to KATAN32/48/64. Cryptography and Communications, 6(4):313–333,
2014.

[127] Bo Zhu, Guang Gong, Xuejia Lai, and Kefei Chen. Another view on cube at-
tack, cube tester, AIDA and higher order differential cryptanalysis. CACR Techni-
cal Report 2012-01, available at http://cacr.uwaterloo.ca/techreports/2012/
cacr2012-01.pdf, 2012.

[128] Bo Zhu, Yin Tan, and Guang Gong. Revisiting MAC forgeries, weak keys and prov-
able security of Galois/Counter Mode of operation. In Michel Abdalla, Cristina
Nita-Rotaru, and Ricardo Dahab, editors, Cryptology and Network Security - 12th
International Conference, CANS 2013, Paraty, Brazil, November 20-22. 2013. Pro-
ceedings, volume 8257 of Lecture Notes in Computer Science, pages 20–38. Springer,
2013.

[129] Larry Zhu and Brian Tung. Public key cryptography for initial authentication in
Kerberos (PKINIT). RFC 4556, available at http://www.ietf.org/rfc/rfc4556.
txt, 2006.

139

http://eprint.iacr.org/
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-01.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-01.pdf
http://www.ietf.org/rfc/rfc4556.txt
http://www.ietf.org/rfc/rfc4556.txt

	List of Tables
	List of Figures
	List of Abbreviations
	List of Notations
	Introduction
	A Brief Introduction to Cloud Systems
	Authentication and Encryption for Cloud Systems
	Fundamental Security Definitions
	Authentication and Encryption for Cloud Communications and Storage
	Entity Authentication for Cloud Systems
	Relationships among Authentication and Encryption Algorithms

	Related Work and Our Motivations
	Attacks on Authenticated Encryption Modes
	Meet-in-the-Middle Attacks on Block Ciphers
	Constrained Choices of Password Hashing Designs
	Quest to Enhance or Replace Passwords

	Outline and Main Contributions

	Repairing the Galois/Counter Mode of Operation
	Preliminaries
	Introduction to the Galois/Counter Mode
	Attack Models and Security Definitions
	A Flaw in the Security Proofs of the Galois/Counter Mode

	A Simple Operation over the Finite Field
	Repairing the Galois/Counter Mode and Its Security Bounds
	Implementations against Timing-Based Side-Channel Attacks
	Summary

	Forgery Attacks and Weak Keys of Polynomial-Based MAC Algorithms
	Preliminaries
	Polynomial-Based MAC Algorithms
	Existing Attacks on Polynomial-Based MAC Algorithms

	New Forgery Attacks on Polynomial-Based MAC Algorithms
	All Non-singleton Subsets of Keys are Weak
	New Birthday-Bound-Based MAC Forgery Attacks on GCM
	Attacking GCM in the MAC-then-Enc Paradigm
	Summary

	Multidimensional Meet-in-the-Middle Attacks on Block Ciphers
	Preliminaries
	The KATAN Family of Block Ciphers
	A Theoretical Description of Meet-in-the-Middle Attacks

	A Framework for Multidimensional MITM Attacks
	MD-MITM Attacks on KATAN32
	2D-MITM Attacks on KATAN32
	3D-MITM Attacks on KATAN32

	MD-MITM Attacks on KATAN48 and KATAN64
	A 2D-MITM Attack on KATAN48
	A 2D-MITM Attack on KATAN64

	Further Optimization Methods
	MD-MITM Attacks on KATAN with Less Rounds
	A More Efficient Attack on 115-Round KATAN32
	A More Efficient Attack on 100-Round KATAN48
	Discussions

	Summary

	Designing Password Hashing and Key Derivation Algorithms
	Preliminaries
	Desired Features of Password Hashing Algorithms
	Components of Pleco and Plectron

	Designs of Pleco and Plectron
	Security Analysis
	One-Wayness
	Collision Resistance
	Thwarting Parallel Brute-Force Attacks
	Preventing Self-Similarity Attacks

	Other Extensions
	Discrete-Logarithm-Based Hash Function
	Using Publicly Auditable Modulus
	Transforming Existing Hash Tags to Larger Cost Settings
	Variants with More Efficient Software Implementations

	Performance Analysis
	Tunable Time and Memory Costs
	Efficiency of Software Implementations
	Shortcut with Private Information

	Comparisons with Other Password Hashing Algorithms
	scrypt
	Makwa
	Catena
	SQUASH

	Summary

	Designing Password-less or Two-Factor Authentication Mechanisms
	Design of Loxin
	Architecture
	Registration Process
	Authentication Process
	Revocation Mechanisms

	Security Analysis
	Defeating Man-in-the-Middle Attacks
	Defeating Replay Attacks
	Defeating Server Compromises
	Further Security Enhancements
	Security Limitation

	Application Extensions
	Two-Factor Authenticator
	Local Authentication
	Authentication via Barcode
	Pairing without ID

	Loxin in Practice – Tackling the MintChip Challenge
	The MintChip Challenge
	The EasyChip Solution

	Comparisons with Other Authentication Mechanisms
	RSA SecurID
	Google Authenticator
	Kerberos
	Pico
	Twitter's Two-Factor Authentication
	Mozilla Persona
	PhoneAuth
	Duo Push

	Summary

	Concluding Remarks and Future Work
	Conclusions and Our Contributions
	Future Research
	Authenticated Encryption Modes of Operation
	Block Ciphers
	Password Hashing Algorithms
	Password-less Entity Authentication

	APPENDICES
	Partial-Matching Details for the Attacks on KATAN48 and KATAN64
	Test Vectors for Pleco and Plectron
	Names of the Proposed Password Hashing Algorithms
	References

