A

Embedded Linux system
development

Savoir-faire Linux

O Savoir-faire

© Copyri gm 2017, Sawe

r-Faire Linux.

Creative Commons BY-SA 3.0 lics ®
Latest update: July 31, 2017.

Corrections, i ibutions and fons are welcome!

© Copyright 2004-2017, Free Electrons

© Copyright 2017, Savoir-faire Linux

License: Creative Commons Attribution - Share Alike 3.0
http://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

» to copy, distribute, display, and perform the work
> to make derivative works
» to make commercial use of the work
Under the following conditions:
» Attribution. You must give the original author credit.

» Share Alike. If you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one.

» For any reuse or distribution, you must make clear to others the license terms of
this work.

» Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

There are many hyperlinks in the document

> Regular hyperlinks:
http://kernel.org/

» Kernel documentation links:
Documentation/kmemcheck. txt

» Links to kernel source files and directories:
drivers/input
include/linux/fb.h

» Links to the declarations, definitions and instances of kernel
symbols (functions, types, data, structures):
platform_get_irq()
GFP_KERNEL
struct file_operations

http://kernel.org/
https://kernel.org/doc/Documentation/kmemcheck.txt
http://lxr.free-electrons.com/source/drivers/input
http://lxr.free-electrons.com/source/include/linux/fb.h
http://lxr.free-electrons.com/ident?i=platform_get_irq
http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=file_operations

» Engineering company created in 1999
(not a training company!)

» Locations: Montreal, Québec city and Toronto in Canada.
Paris in France.

» Serving customers all around the world

» Workforce: 140

» Wide range of intervention domains: Web, ERP, Mobile,
infrastructure, embedded-systems.

> 15 people specialized in embedded-systems and product
engineering.

» Activities: development, training, consulting, technical
support.

» Added value: get the best of the user and development
community and the resources it offers.

> blog:
https://blog.savoirfairelinux.com/en-ca/
» News and discussions (Youtube):
https://www.youtube.com/user/savoirfairelinux
» News and discussions (Google +):
https://plus.google.com/u/@/+Savoirfairelinuxandmore
» News and discussions (LinkedIn):
https://www.linkedin.com/company/savoir-faire-1linux
» Quick news (Twitter):
https://twitter.com/sflinux

https://blog.savoirfairelinux.com/en-ca/
https://www.youtube.com/user/savoirfairelinux
https://plus.google.com/u/0/+Savoirfairelinuxandmore
https://www.linkedin.com/company/savoir-faire-linux
https://twitter.com/sflinux

Generic course
information

Embedded Linux
Experts

Savoir-faire Linux

© Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and ions are welcome!

Using Beaglebone Black in all practical labs

>
>
>
>
>
>
>
>
>

AM335X 1GHz ARM Cortex-A8
4GB eMMC storage

512 MB DDR

WiFi 802.11BGN and Bluetooth 4.0
2x 46 pin headers

USB Host and Client

RS-232 ports

Ethernet

2 PINs hearders

Board and CPU documentation, design files, software:
https://beagleboard.org/black

https://beagleboard.org/black

vV Vv v Y

Beaglebone Black

A TTL to USB RS232 adapter

A microSD card with at least 2 GB of capacity
A microSD card reader for your PC

An Ethernet cable

During the lectures...

>

Don't hesitate to ask questions. Other people in the audience
may have similar questions too.

This helps the trainer to detect any explanation that wasn't
clear or detailed enough.

Don't hesitate to share your experience, for example to
compare Linux / Android with other operating systems used
in your company.

Your point of view is most valuable, because it can be similar
to your colleagues’ and different from the trainer’s.

Your participation can make our session more interactive and
make the topics easier to learn.

During practical labs...

» We cannot support more than 8 workstations at once (each
with its board and equipment). Having more would make the
whole class progress slower, compromising the coverage of the
whole training agenda (exception for public sessions: up to 10
people).

» So, if you are more than 8 participants, please form up to 8
working groups.

» Open the electronic copy of your lecture materials, and use it
throughout the practical labs to find the slides you need again.

» Don't hesitate to copy and paste commands from the PDF
slides and labs.

During practical labs, write down all your commands in a text file.

» You can save a lot of time re-using
commands in later labs.

» This helps to replay your work if Leb compeis
you make significant mistakes. Crosscompiin keme:
. export CROSS_COMPI].E:arm-Iinux-
» You build a reference to remember make samas_defconfig
commands in the long run. Seveny bootargs ConcolsmiyS0 root=/devinfs
setenv bootcmd tftp 0x21000000 zimage; tftp
> Thatls partlcu|ar useful tO keep 0x22000000 dtb; bootz 0x21000000 - 0x2200...
kernel command line settings that kT uoifs - rootf o root ubfs & 124KiE
. -m 2048 -c 1024
you Used earller' Encountered issues:
Restart NFS server after editing /etc/exports!
> Also useful to get help from the
instructor, showing the commands

that you run.
gedit ~/lab-history.txt

As in the Free Software and Open Source community, cooperation
during practical labs is valuable in this training session:
> |If you complete your labs before other people, don't hesitate
to help other people and investigate the issues they face. The

faster we progress as a group, the more time we have to
explore extra topics.

» Explain what you understood to other participants when
needed. It also helps to consolidate your knowledge.

» Don't hesitate to report potential bugs to your instructor.
> Don't hesitate to look for solutions on the Internet as well.

» This memento sheet gives
command examples for the most
typical needs (looking for files,
extracting a tar archive...)

» It saves us 1 day of UNIX / Linux
command line training.

» Our best tip: in the command line
shell, always hit the Tab key to
complete command names and file
paths. This avoids 95% of typing
mistakes.

» Get an electronic copy on
http://free-electrons.com/
doc/legacy/command-
line/command_memento. pdf

http://free-electrons.com/doc/legacy/command-line/command_memento.pdf
http://free-electrons.com/doc/legacy/command-line/command_memento.pdf
http://free-electrons.com/doc/legacy/command-line/command_memento.pdf

» The vi editor is very useful to
make quick changes to files in an
embedded target.

» Though not very user friendly at
first, vi is very powerful and its
main 15 commands are easy to
learn and are sufficient for 99% of
everyone's needs!

> Get an electronic copy on
http://free-electrons.com/
doc/legacy/command-
line/vi_memento.pdf

» You can also take the quick tutorial
by running vimtutor. This is a
worthy investment!

http://free-electrons.com/doc/legacy/command-line/vi_memento.pdf
http://free-electrons.com/doc/legacy/command-line/vi_memento.pdf
http://free-electrons.com/doc/legacy/command-line/vi_memento.pdf

Introduction to
Embedded Linux

Savoir-faire Linux

Embedded Linux
Experts

Corrections,

» 1983, Richard Stallman, GNU project and the free software
concept. Beginning of the development of gcc, gdb, glibc and
other important tools

» 1991, Linus Torvalds, Linux kernel project, a Unix-like
operating system kernel. Together with GNU software and
many other open-source components: a completely free
operating system, GNU /Linux

> 1995, Linux is more and more popular on server systems

» 2000, Linux is more and more popular on embedded
systems

v

2008, Linux is more and more popular on mobile devices

v

2010, Linux is more and more popular on phones

v

A program is considered free when its license offers to all its
users the following four freedoms

» Freedom to run the software for any purpose
Freedom to study the software and to change it
Freedom to redistribute copies

Freedom to distribute copies of modified versions

v vy

These freedoms are granted for both commercial and
non-commercial use

They imply the availability of source code, software can be
modified and distributed to customers

Good match for embedded systems!

Embedded Linux is the usage of the
Linux kernel and various
open-source components in
embedded systems

Advantages of Linux and open-source
for embedded systems

» The key advantage of Linux and open-source in embedded
systems is the ability to re-use components

» The open-source ecosystem already provides many
components for standard features, from hardware support to
network protocols, going through multimedia, graphic,
cryptographic libraries, etc.

» As soon as a hardware device, or a protocol, or a feature is
wide-spread enough, high chance of having open-source
components that support it.

» Allows to quickly design and develop complicated products,
based on existing components.

» No-one should re-develop yet another operating system kernel,
TCP/IP stack, USB stack or another graphical toolkit library.

» Allows to focus on the added value of your product.

> Free software can be duplicated on as many devices as you
want, free of charge.

> If your embedded system uses only free software, you can
reduce the cost of software licenses to zero. Even the
development tools are free, unless you choose a commercial
embedded Linux edition.

> Allows to have a higher budget for the hardware or to
increase the company’s skills and knowledge

» With open-source, you have the source code for all
components in your system
» Allows unlimited modifications, changes, tuning, debugging,
optimization, for an unlimited period of time
» Without lock-in or dependency from a third-party vendor
» To be true, non open-source components must be avoided
when the system is designed and developed

» Allows to have full control over the software part of your
system

» Many open-source components are widely used, on millions of
systems

» Usually higher quality than what an in-house development can
produce, or even proprietary vendors

» Of course, not all open-source components are of good
quality, but most of the widely-used ones are.

» Allows to design your system with high-quality
components at the foundations

» Open-source being freely available, it is easy to get a piece of
software and evaluate it

> Allows to easily study several options while making a choice

» Much easier than purchasing and demonstration procedures
needed with most proprietary products

> Allows to easily explore new possibilities and solutions

» Open-source software components are developed by
communities of developers and users

» This community can provide a high-quality support: you can
directly contact the main developers of the component you
are using. The likelyhood of getting an answer doesn't depend
what company you work for.

» Often better than traditional support, but one needs to
understand how the community works to properly use the
community support possibilities

» Allows to speed up the resolution of problems when
developing your system

> Possibility of taking part into the development community of
some of the components used in the embedded systems: bug
reporting, test of new versions or features, patches that fix
bugs or add new features, etc.

» Most of the time the open-source components are not the
core value of the product: it's the interest of everybody to
contribute back.

» For the engineers: a very motivating way of being recognized
outside the company, communication with others in the same
field, opening of new possibilities, etc.

» For the managers: motivation factor for engineers, allows
the company to be recognized in the open-source community
and therefore get support more easily and be more attractive
to open-source developers

A few examples of embedded systems
running Linux

Embedded hardware for Linux

systems

The Linux kernel and most other architecture-dependent
components support a wide range of 32 and 64 bits architectures

>

x86 and x86-64, as found on PC platforms, but also
embedded systems (multimedia, industrial)

ARM, with hundreds of different SoC (multimedia, industrial)
PowerPC (mainly real-time, industrial applications)

MIPS (mainly networking applications)

SuperH (mainly set top box and multimedia applications)
Blackfin (DSP architecture)

Microblaze (soft-core for Xilinx FPGA)

Coldfire, SCore, Tile, Xtensa, Cris, FRV, AVR32, M32R

» Both MMU and no-MMU architectures are supported, even
though no-MMU architectures have a few limitations.

» Linux is not designed for small microcontrollers.

» Besides the toolchain, the bootloader and the kernel, all other
components are generally architecture-independent

» RAM: a very basic Linux system can work within 8 MB of
RAM, but a more realistic system will usually require at least
32 MB of RAM. Depends on the type and size of applications.

» Storage: a very basic Linux system can work within 4 MB of
storage, but usually more is needed.

» Flash storage is supported, both NAND and NOR flash, with

specific filesystems
» Block storage including SD/MMC cards and eMMC is

supported
> Not necessarily interesting to be too restrictive on the amount
of RAM /storage: having flexibility at this level allows to
re-use as many existing components as possible.

» The Linux kernel has support for many common
communication buses
> [2C
SPI
CAN
1-wire
SDIO
UsB

> And also extensive networking support

» Ethernet, Wifi, Bluetooth, CAN, etc.
» |Pv4, IPv6, TCP, UDP, SCTP, DCCP, etc.
» Firewalling, advanced routing, multicast

Yy VvV vy VvYYy

» Evaluation platforms from the SoC vendor. Usually
expensive, but many peripherals are built-in. Generally
unsuitable for real products.

» Component on Module, a small board with only
CPU/RAM /flash and a few other core components, with
connectors to access all other peripherals. Can be used to
build end products for small to medium quantities.

» Community development platforms, to make a particular
SoC popular and easily available. These are ready-to-use and
low cost, but usually have less peripherals than evaluation
platforms. To some extent, can also be used for real products.

» Custom platform. Schematics for evaluation boards or
development platforms are more and more commonly freely
available, making it easier to develop custom platforms.

» Make sure the hardware you plan to use is already supported
by the Linux kernel, and has an open-source bootloader,
especially the SoC you're targeting.

» Having support in the official versions of the projects (kernel,
bootloader) is a lot better: quality is better, and new versions
are available.

» Some SoC vendors and/or board vendors do not contribute
their changes back to the mainline Linux kernel. Ask them to
do so, or use another product if you can. A good measurement
is to see the delta between their kernel and the official one.

» Between properly supported hardware in the official
Linux kernel and poorly-supported hardware, there will
be huge differences in development time and cost.

Embedded Linux system architecture

Development PC

Tools
compiler
debugger

Embedded system

Application Application

| Library || Library || Library |

| C library
| Linux kernel
| Bootloader

» Cross-compilation toolchain

» Compiler that runs on the development machine, but generates
code for the target

» Bootloader
» Started by the hardware, responsible for basic initialization,
loading and executing the kernel
» Linux Kernel

» Contains the process and memory management, network stack,
device drivers and provides services to user space applications

C library

» The interface between the kernel and the user space
applications

v

v

Libraries and applications
» Third-party or in-house

Several distinct tasks are needed when deploying embedded Linux
in a product:
» Board Support Package development
» A BSP contains a bootloader and kernel with the suitable

device drivers for the targeted hardware
» Purpose of our Kernel Development training

» System integration
> Integrate all the components, bootloader, kernel, third-party
libraries and applications and in-house applications into a
working system
» Purpose of this training
» Development of applications
» Normal Linux applications, but using specifically chosen
libraries

Embedded Linux
development
environment

Embedded Linux
Experts

Savoir-faire Linux

» Two ways to switch to embedded Linux
» Use solutions provided and supported by vendors like
MontaVista, Wind River or TimeSys. These solutions come
with their own development tools and environment. They use
a mix of open-source components and proprietary tools.
» Use community solutions. They are completely open,
supported by the community.

» In Savoir-faire Linux training sessions, we do not promote a
particular vendor, and therefore use community solutions
» However, knowing the concepts, switching to vendor solutions
will be easy

> We strongly recommend to use Linux as the desktop operating
system to embedded Linux developers, for multiple reasons.

» All community tools are developed and designed to run on
Linux. Trying to use them on other operating systems
(Windows, Mac OS X) will lead to trouble, and their usage on
these systems is generally not supported by community
developers.

> As Linux also runs on the embedded device, all the knowledge
gained from using Linux on the desktop will apply similarly to
the embedded device.

B

A

» Any good and sufficiently recent Linux
desktop distribution can be used for the
development workstation

» Ubuntu, Debian, Fedora, openSUSE,
Red Hat, etc.

> We have chosen Ubuntu, as it is a widely
used and easy to use desktop Linux
distribution

» Learning embedded Linux is also about
learning the tools needed on the
development workstation!

» Linux is a multi-user operating system

» The root user is the administrator, and it can do privileged
operations such as: mounting filesystems, configuring the
network, creating device files, changing the system
configuration, installing or removing software

» All other users are unprivileged, and cannot perform these
administrator-level operations

» On an Ubuntu system, it is not possible to log in as root,
only as a normal user.

» The system has been configured so that the user account
created first is allowed to run privileged operations through a
program called sudo.

» Example: sudo mount /dev/sda2 /mnt/disk

» The distribution mechanism for software in GNU/Linux is
different from the one in Windows

> Linux distributions provides a central and coherent way of
installing, updating and removing applications and libraries:
packages

» Packages contains the application or library files, and
associated meta-information, such as the version and the
dependencies

» .deb on Debian and Ubuntu, .rpm on Red Hat, Fedora,
openSUSE

» Packages are stored in repositories, usually on HTTP or FTP
servers

» You should only use packages from official repositories for
your distribution, unless strictly required.

Instructions for Debian based GNU/Linux systems
(Debian, Ubuntu...)

» Package repositories are specified in /etc/apt/sources.list

» To update package repository lists:
sudo apt-get update

» To find the name of a package to install, the best is to use
the search engine on http://packages.debian.org or on
http://packages.ubuntu.com. You may also use:
apt-cache search <keyword>

http://packages.debian.org
http://packages.ubuntu.com

» To install a given package:
sudo apt-get install <package>

> To remove a given package:
sudo apt-get remove <package>

» To install all available package updates:
sudo apt-get dist-upgrade

» Get information about a package:
apt-cache show <package>

» Graphical interfaces

» Synaptic for GNOME
» KPackageKit for KDE

Further details on package management:
http://www.debian.org/doc/manuals/apt-howto/

http://www.debian.org/doc/manuals/apt-howto/

» When doing embedded development, there is always a split

between

» The host, the development workstation, which is typically a

powerful PC

> The target, which is the embedded system under development

» They are connected by various means: almost always a serial
line for debugging purposes, frequently an Ethernet
connection, sometimes a JTAG interface for low-level

debugging

Host

x86 or x86_64 PC
Full-featured Linux
desktop system

Serial Target

ARM, PowerPC, MIPS,
x86.. platform
Ethernet More minimalistic

Linux system

» An essential tool for embedded development is a serial line
communication program, like HyperTerminal in Windows.

> There are multiple options available in Linux: Minicom,
Picocom, Gtkterm, Putty, etc.

> In this training session, we recommend using the simplest of
them: picocom
» [nstallation with sudo apt-get install picocom
» Run with picocom -b BAUD_RATE /dev/SERIAL_DEVICE
» Exit with Control-A Control-X

» SERIAL_DEVICE is typically

» ttyUSBx for USB to serial converters
» ttySx for real serial ports

» Using the command line is mandatory for many operations
needed for embedded Linux development

» It is a very powerful way of interacting with the system, with
which you can save a lot of time.

» Some useful tips

» You can use several tabs in the Gnome Terminal

» Remember that you can use relative paths (for example:
../../1linux) in addition to absolute paths (for example:
/home/user)

> In a shell, hit [Control] [r1, then a keyword, will search
through the command history. Hit [Control]l [r] again to
search backwards in the history

» You can copy/paste paths directly from the file manager to the
terminal by drag-and-drop.

Prepare your lab environment

» Download and extract the lab
archive

» Set-up the Beaglebone Black

Cross-compiling
toolchains

Embedded Linux
Experts

Savoir-faire Linux

© Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and ions are welcome!

Definition and Components

» The usual development tools available on a GNU/Linux
workstation is a native toolchain

> This toolchain runs on your workstation and generates code
for your workstation, usually x86

> For embedded system development, it is usually impossible or
not interesting to use a native toolchain

» The target is too restricted in terms of storage and/or memory

» The target is very slow compared to your workstation

» You may not want to install all development tools on your
target.

» Therefore, cross-compiling toolchains are generally used.
They run on your workstation but generate code for your
target.

Source code

\Z L 4
Cross-compilin
Native toolchain p E
toolchain

x86

A

x86

ARM binary

ARM

Compilation
machine

Execution
machine

» Three machines must be distinguished when discussing
toolchain creation
» The build machine, where the toolchain is built.
» The host machine, where the toolchain will be executed.
» The target machine, where the binaries created by the
toolchain are executed.

» Four common build types are possible for toolchains

Build Host Target

Native build

used to build the normal gcc
of a workstation

Build Host Target

Cross build

used to build a toolchain that runs
on your workstation but generates
binaries for the target

The most common case in embedded development

Build Host Target

Build Host Target

Cross-native build

used to build a toolchain that runs on your
target and generates binaries for the target

Canadian build

used to build on architecture A a
toolchain that runs on architecture B
and generates binaries for architecture C

Binutils Kernel headers

C/C++ libraries GCC compiler

GDB debugger
(optional)

Cross-compilation toolchain

» Binutils is a set of tools to generate and manipulate binaries
for a given CPU architecture
» as, the assembler, that generates binary code from assembler
source code
» 1d, the linker
» ar, ranlib, to generate .a archives, used for libraries
> objdump, readelf, size, nm, strings, to inspect binaries.
Very useful analysis tools!
» strip, to strip parts of binaries that are just needed for
debugging (reducing their size).

> http://www.gnu.org/software/binutils/

» GPL license

http://www.gnu.org/software/binutils/

» The C library and compiled
programs needs to interact with
the kernel

> Available system calls and their
numbers

» Constant definitions L Kernel J
» Data structures, etc.

Kernel headers

» Therefore, compiling the C library
requires kernel headers, and many *
applications also require them. | " Application

» Available in <linux/...> and
<asm/...> and a few other
directories corresponding to the
ones visible in include/ in the
kernel sources

» System call numbers, in <asm/unistd.h>

#tdefine __NR_exit 1
#tdefine __NR_fork 2
#tdefine __NR_read 3

» Constant definitions, here in <asm-generic/fcntl.h>,
included from <asm/fcntl.h>, included from
<linux/fcntl.h>

#define O_RDWR 00000002
» Data structures, here in <asm/stat.h>

struct stat {
unsigned long st_dev;
unsigned long st_ino;
[...]

b

> The kernel to user space ABI is backward compatible

» Binaries generated with a toolchain using kernel headers older
than the running kernel will work without problem, but won't
be able to use the new system calls, data structures, etc.

» Binaries generated with a toolchain using kernel headers newer
than the running kernel might work on if they don't use the
recent features, otherwise they will break

» Using the latest kernel headers is not necessary, unless access
to the new kernel features is needed

» The kernel headers are extracted from the kernel sources using
the headers_install kernel Makefile target.

» GNU Compiler Collection, the famous free
software compiler

» Can compile C, C++, Ada, Fortran, Java,
Objective-C, Objective-C++, and generate code
for a large number of CPU architectures,
including ARM, AVR, Blackfin, CRIS, FRV,
M32, MIPS, MN10300, PowerPC, SH, v850,
i386, x86_64, IA64, Xtensa, etc.

> http://gcc.gnu.org/

» Available under the GPL license, libraries under
the LGPL.

http://gcc.gnu.org/

> The C library is an essential component of
a Linux system
» Interface between the applications and
the kernel

» Provides the well-known standard C API
|

to ease application development

» Several C libraries are available:
glibc, uClibc, musl, dietlibc, newlib, etc.

» The choice of the C library must be made
at the time of the cross-compiling
toolchain generation, as the GCC compiler
is compiled against a specific C library.

C Libraries

> License: LGPL
» C library from the GNU project

» Designed for performance, standards
compliance and portability

» Found on all GNU / Linux host systems
» Of course, actively maintained

» By default, quite big for small embedded
systems: approx 2.5 MB on ARM (version
2.9 - libc: 1.5 MB, 1ibm: 750 KB)

» But some features not needed in
embedded systems can be configured out
(merged from the old eglibc project).

> http://www.gnu.org/software/libc/

http://www.gnu.org/software/libc/

http://uclibc-ng.org/

v

v

v

A continuation of the old uClibc project
License: LGPL
Lightweight C library for small embedded systems

>

High configurability: many features can be enabled or disabled
through a menuconfig interface

» Supports most embedded architectures
» Supports no-MMU architectures (ARM Cortex-M, Blackfin,

etc.)
No guaranteed binary compatibility. May need to recompile
applications when the library configuration changes.

» Focus on size rather than performance
» Small compile time

http://uclibc-ng.org/

» Most of the applications compile with uClibc-ng. This applies
to all applications used in embedded systems.
» Size (arm): 3.5 times smaller than glibc!

» uClibc-ng 1.0.14: approx. 716kB (libuClibc: 282kB, libm:
73kB)
» glibc 2.22: approx 2.5 MB

» Some features not available or limited: priority-inheritance
mutexes, fixed Name Service Switch functionality, etc.

» Used on a large number of production embedded products,
including consumer electronic devices

» Executable size comparison on ARM, tested with glibc 2.22

and uClibc-ng 1.0.14
» Plain “hello world" program (stripped):
helloworld static | dynamic
uClibc 33.4kB | 2.5kB
uClibc with Thumb-2 || 25.4kB | 2.5kB
eglibc with Thumb-2 || 479kB 2.7kB
» Busybox (stripped):
busybox static | dynamic
uClibc 818kB | 664kB
uClibc with Thumb-2 || 602kB | 504kB
eglibc with Thumb-2 || 1206kB | 503kB

http://www.musl-libc.org/
> A lightweight, fast and simple library for embedded systems
» Created while uClibc's development was stalled

v

In particular, great at making small static executables

v

Permissive license (MIT)

v

Compare features with other C libraries:
http://www.etalabs.net/compare_libcs.html

v

Supported by build systems such as Buildroot

http://www.musl-libc.org/
http://www.etalabs.net/compare_libcs.html

» Several other smaller C libraries have been developed, but
none of them have the goal of allowing the compilation of
large existing applications

» They can run only relatively simple programs, typically to
make very small static executables and run in very small root
filesystems.

» Choices:

» Dietlibc, http://fefe.de/dietlibc/. Approximately 70 KB.
» Newlib, http://sourceware.org/newlib/

» Klibc, http://www.kernel.org/pub/linux/libs/klibc/,
designed for use in an initramfs or initrd at boot time.

http://fefe.de/dietlibc/
http://sourceware.org/newlib/
http://www.kernel.org/pub/linux/libs/klibc/

Toolchain Options

» When building a toolchain, the ABI used to generate binaries
needs to be defined

» ABI, for Application Binary Interface, defines the calling
conventions (how function arguments are passed, how the
return value is passed, how system calls are made) and the
organization of structures (alignment, etc.)

» All binaries in a system must be compiled with the same ABI,
and the kernel must understand this ABI.
» On ARM, two main ABIls: OABI and EABI
» Nowadays everybody uses EABI
» On MIPS, several ABIls: 032, 064, n32, n64

> http://en.wikipedia.org/wiki/Application_Binary_Interface

http://en.wikipedia.org/wiki/Application_Binary_Interface

» Some processors have a floating point unit, some others do
not.

» For example, many ARMv4 and ARMv5 CPUs do not have a
floating point unit. Since ARMv7, a VFP unit is mandatory.

» For processors having a floating point unit, the toolchain
should generate hard float code, in order to use the floating
point instructions directly

» For processors without a floating point unit, two solutions

» Generate hard float code and rely on the kernel to emulate the
floating point instructions. This is very slow.

» Generate soft float code, so that instead of generating floating
point instructions, calls to a user space library are generated

> Decision taken at toolchain configuration time

» Also possible to configure which floating point unit should be
used

> A set of cross-compiling tools is specific to a CPU architecture
(ARM, x86, MIPS, PowerPC)
» However, with the -march=, -mcpu=, -mtune= options, one
can select more precisely the target CPU type
» For example, -march=armv7 -mcpu=cortex-a8
» At the toolchain compilation time, values can be chosen.
They are used:
> As the default values for the cross-compiling tools, when no
other -march, -mcpu, -mtune options are passed
» To compile the C library
» Even if the C library has been compiled for armvbt, it doesn't

prevent from compiling other programs for armv7

Obtaining a Toolchain

Building a cross-compiling toolchain by yourself is a difficult and
painful task! Can take days or weeks!

>

Lots of details to learn: many components to build,
complicated configuration

Lots of decisions to make (such as C library version, ABI,
floating point mechanisms, component versions)

Need kernel headers and C library sources

Need to be familiar with current gcc issues and patches on
your platform

Useful to be familiar with building and configuring tools

See the Crosstool-NG docs/ directory for details on how
toolchains are built.

» Solution that many people choose
» Advantage: it is the simplest and most convenient solution
» Drawback: you can't fine tune the toolchain to your needs

> Make sure the toolchain you find meets your requirements:
CPU, endianness, C library, component versions, ABI, soft
float or hard float, etc.

> Possible choices

» Toolchains packaged by your distribution
Ubuntu examples:
sudo apt-get install gcc-arm-linux-gnueabi
sudo apt-get install gcc-arm-linux-gnueabihf

» Sourcery CodeBench toolchains, now only supporting MIPS,
NIOS-II, AMDG64, Hexagon. Old versions with ARM support
still available through build systems (Buildroot...)

» Toolchain provided by your hardware vendor.

Another solution is to use utilities that automate the process of
building the toolchain
» Same advantage as the pre-compiled toolchains: you don't
need to mess up with all the details of the build process
» But also offers more flexibility in terms of toolchain
configuration, component version selection, etc.
» They also usually contain several patches that fix known
issues with the different components on some architectures
» Multiple tools with identical principle: shell scripts or Makefile
that automatically fetch, extract, configure, compile and
install the different components

» Crosstool-ng
» Rewrite of the older Crosstool, with a menuconfig-like
configuration system
» Feature-full: supports uClibc, glibc, musl, hard and soft float,
many architectures
» Actively maintained
> http://crosstool-ng.org/

http://crosstool-ng.org/

Many root filesystem build systems also allow the construction of a
cross-compiling toolchain
> Buildroot
» Makefile-based. Can build (e)glibc, uClibc and musl based
toolchains, for a wide range of architectures.
> http://www.buildroot.net
» PTXdist

» Makefile-based, uClibc or glibc, maintained mainly by
Pengutronix
» http://pengutronix.de/software/ptxdist/

» OpenEmbedded / Yocto

» A featureful, but more complicated build system
» http://www.openembedded.org/
» https://www.yoctoproject.org/

http://www.buildroot.net
http://pengutronix.de/software/ptxdist/
http://www.openembedded.org/
https://www.yoctoproject.org/

> Installation of Crosstool-NG can be done system-wide, or just
locally in the source directory. For local installation:

./configure --enable-local
make
make install

» Some sample configurations for various architectures are
available in samples, they can be listed using

./ct-ng list-samples

» To load a sample configuration
./ct-ng <sample-name>

» To adjust the configuration
./ct-ng menuconfig

» To build the toolchain
./ct-ng build

> The cross compilation tool binaries, in bin/

» This directory should be added to your PATH to ease usage of
the toolchain

» One or several sysroot, each containing

» The C library and related libraries, compiled for the target
» The C library headers and kernel headers

» There is one sysroot for each variant: toolchains can be
multilib if they have several copies of the C library for different
configurations (for example: ARMv4T, ARMVST, etc.)

» Old CodeSourcery ARM toolchains were multilib, the sysroots
in: arm-none-linux-gnueabi/libc/,
arm-none-linux-gnueabi/libc/armv4t/,
arm-none-linux-gnueabi/libc/thumb2

» Crosstool-NG toolchains can be multilib too (still
experimental), otherwise the sysroot is in
arm-unknown-1linux-uclibcgnueabi/sysroot

Time to cross-compile your first
program

» Obtain a compatible toolchain for
the Boneblack

» Use it to compile a simple program

Hardware
Interactions

Embedded Linux
Experts

Savoir-faire Linux

© Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and fons are welcome!

v

Understanding a new board
GPIOs

Understand some common buses

v

v

v

Interactions between user space and hardware

Understanding your board

v

There are multiple components on boards
The most obvious are: CPU, RAM, Flash memory...

Some other are here to manage time, adapt tensions...

v

v

» Some are connectors (Ethernet, pin headers, mmc reader...)

Look at your Boneblack and try to identify the main components
and connectors.

Electronical components need to speak with each other, often they
exchange data with the CPU.

» Components are linked together with lines that ensure
electrical link

» Most of the time components are linked to the
CPU (SoC - System on Ship) or a microcontroller

» Many Components use buses to speak with each other or
GPIOs

» Soc usually implements many buses controllers

» Components on the same board are working at different
voltages

» CPU is usually at 3.3V
» Other components may use 5V or even 12V

v

Buses also works on various voltages

v

There is only one power supply

This is why it is common to see voltage adapters components.
When manipulating a board, ones must always check voltage.

A Board always comes with its schematics. It allows you to
understand how it is designed:

» See what are the components in use
» Understand electrical connections between components

> Understand what voltage a component uses

GPIOs

A GPIO is a General Purpose Input/Output.
It can be configured as an Input to read a signal on a line, or as an
output to control this signal. It can be used to:

» Control a line (to turn ON/OFF an LED or any other
component)

v

Read a logical state: 0 or 1
» Turn a component ON (sometimes they need this)

v

Trigger interrupts

v

A GPIO controller manages several pins

v

One must write into a register to configure GPIO as an
input or an output

> If used as an input the line status is readable from a register
> If used as an output the line status is configurable in a register

Linux needs a driver to manage a GPIO controller, if so, he
exposes a GPIO control interface in /sys/class/gpio.

» Export a GPIO
» Configure it
» Read and write its status

Understand the main buses

> Buses are communication systems that
transfer data

» Between the components of a computer

» Between computers

» USB

» Serial (RS-232, RS-485)
» SPI

» 12C

» CAN

» PCI/PCI Express

» many others...

Parallel: one word at a time
Serial: one bit at a time

With many lines in parallel,
it his hard to keep them
synchronized

Serial bus are more common
nowadays

Recewing side

Serial interface example (MSB first)

Recewing
side

DI

Parallel interface example
Transmitting side

o7
Dé
D5
D4
D3
D2
D1
o]

{M3B)

/

o7
a0

1]

—

D5
1

04 D3

i

1

D2
0

~——————— D7
"7:: Da
-~ [f
-~ [4
-~—— [3
-~—— 2

D1
uli]

{LSE}

\

01 Do
11

Transmittin
side

Do

o

» The most widely used bus !

» Many form factors, USB A,B,C,
mini, macro...

» Allows hotplug

» From 1,5 Mbyte/s for USB 1.0 to
10,000 Mbit/s in USB 3.1 !

» Power supply feature

» Common for consumer devices

» The host decides who can speak on
the bus, he emits a token

» Each device has an unique 7 bit ID ’ , ,
» When they receive a token, devices
check if it is for them ‘ ‘ ‘

> If so, they emit data on the bus

» Otherwise, they pass the token to
the next device

v

The host detects new devices with voltage
variation on the bus

Host provides power supply
the devices take the default ID: 0

Host looks for a free ID on the bus

vV vV v Vv

Host attributes an ID to the new device

The USB bus is composed of 4 wires:

» The ground (GND) that is the voltage
reference

» VBUS: the power supply (5V, 500mA
Max)

» D+ and D- Data lines (NRZI code)

Linux implements support for USB:
» It needs a driver to use the USB
controller and act as a host
> It needs a driver to use the devices on the
bus

» It is not always easy to know if a devices
will have a Linux driver

USB - Linux tools

Linux has usefull tools to inspect USB:

> Isusb/usb-devices: list all devices on all buses (debian package
usbutils)

» dmesg: General purpose tool to list kernel events

> udev: Daemon that catch system events to run actions on
user space side. You can use udevadm monitor to see if udev
reacts to an USB event.

[julien@jgrossholtz install dir]$ lsusb -t
S rt 1: Dev 1, L
rt 1: Dev 1,
rt 1: Dev 1,
| Port 1: Dev 2, If
| __ Port 6: Dev 3
Bus 01.Port 1: Dev 1,
ort 1: Dev 2, 5 U C
Port 3: Dev 3, Clas or S c C , Driver=, 12M
Port 4: Dev 4, If 1, C el t , 12M
Port 4: Dev 4, If c 1 ic , Driver=, 12M
Port 4 ey 4, f ¢
Port 4: 4, If 8 on ific In ce, Driver=, 12M
Port 6: i
Port 6:

Savoir-Faire Linux savoirfairelinux.com 109/460

A

[2C: Inter Integrated Circuit, also called
Two Wire Interface (

» Common in embedded devices @

» Quite slow (up to 3.4Mbps)
» Synchronous

> Very low cost

» Easy to use
» Used for devices such as B U S
accelerometer, RTC, temperature %)

SEeNsors...

» Each device has its own hardcoded address
» One master, one or many slaves

» Request/response protocol

The 12C bus is composed of 2 wires:
» The clock (SCL)
» Data (SDA)

The level on SDA must be maintained while SCL level is HIGH.

Linux has usefull tools to use the 12C bus:

>

>

>

>

i2cdetect: Scan possible addresses
i2cget: Read a register from a device
i2cset: Write a value to a register on a device

i2cdump: dump all registers from a device

Remark: Registers are 8-bit cells that stores info about the device
(status, control, sensor value...)

» Scan an 12C bus

» Understand how to access an 12C
device

» Read data from an RTC

RS-232: also called serial port or COM port
> Not exactly a bus !
» Asynchronous (no clock)
» Serial communication F
» Standardized in 1962

> Industries are still using it

» Commonly used for debug consoles on
embedded devices (sometimes with TTL i
voltage)

» commonly used on MODEMs (3G etc...)
» full duplex

There are 9 wires on a RS232 cable.

O

_ .
G-GND o

=DIR o o

~CTS —————— o
5 o

“pco \d 01

The communication must be configured on both sides of the cable:

> Speed in Bauds

v

Parity: odd or even (used to check a word)

v

Stop bits: Number of stop bits at the end of a word
» The number of data bits

The speed in bit/s is inferior to the speed in Bauds because of
start and stop bits.

The most common configuration is 115200 bauds. 8N1: 8 data
bits, No parity bit and 1 stop bit.

Linux provides a set of tools to configure and manipulate RS-232
> All serial consoles are represented in the system as pseudo
files: /dev/tty...
> To use a serial port as a console you can use minicom,
microcom or Putty on windows
» To manipulate RS-485 or RS-422 devices is similar

Exemple: Configure a tty for 15200 8N1 on /dev/serial:
stty -F /dev/serial cs8 -parenb -cstopb -
clocal raw speed 115200

» You can use stty to configure any serial port
» And then use any read/write tools, such as echo or cat
Exemple: Configure a tty for 15200 8N1 on /dev/serial:

stty -F /dev/serial cs8 -parenb -cstopb -
clocal raw speed 115200

» Local network bus

» Very common in automotive industry

There are 3 wires in use for the CAN bus.

>

>

Frames are exchanged on the network:

Ground, CANH and CANL (NRZ encoding)

Data is transmitted over a differential signal for noise
immunity, i.e CANL is the negative version of CANH.
Voltage difference between lines give logical state: Higher
voltage on CANH mean 0, on CANL means 1.

Devices have their own unique address on the network
Access to the medium CSMA/CR (listen to the medium
before emitting, collisions solved with priorities)

omplete CAM Frame
|<7Arb'rtratinn Field Control —=+——Data CRC Field
11 4

End of Frame:

mmmmmmmmmm

= [crc peime

i
afalf

Embedded Linux
Experts

Bootloaders

Savoir-faire Linux

© Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and ions are welcome!

Boot Sequence

» The bootloader is a piece of code responsible for
» Basic hardware initialization
» Loading of an application binary, usually an operating system
kernel, from flash storage, from the network, or from another
type of non-volatile storage.
» Possibly decompression of the application binary
» Execution of the application

> Besides these basic functions, most bootloaders provide a shell
with various commands implementing different operations.
» Loading of data from storage or network, memory inspection,
hardware diagnostics and testing, etc.

> The x86 processors are typically bundled on a

board with a non-volatile memory containing a BIOS
program, the BIOS. from ROM
» On old BIOS-based x86 platforms: the BIOS is
responsible for basic hardware initialization and rT" 1
. . age
loading of a very small piece of code from mfytes
non-volatile storage. T 0 SRS
» This piece of code is typically a 1st stage v
bootloader, which will load the full bootloader Stage 2
itself- from raw storage
. . ~———
> It typically understands filesystem formats so
that the kernel file can be loaded directly from a v

normal filesystem. Kernel
. . . fi fil
» This sequence is different for modern EFI-based rom Hiesystem

systems.

» GRUB, Grand Unified Bootloader, the most powerful one.
http://www.gnu.org/software/grub/

» Can read many filesystem formats to load the kernel image and
the configuration, provides a powerful shell with various
commands, can load kernel images over the network, etc.

» Syslinux, for network and removable media booting (USB key,
CD-ROM)
http://www.kernel.org/pub/linux/utils/boot/syslinux/

http://www.gnu.org/software/grub/
http://www.kernel.org/pub/linux/utils/boot/syslinux/

» When powered, the CPU starts executing code

at a fixed address
Physical

» There is no other booting mechanism provided memory
by the CPU
Execution
» The hardware design must ensure that a NOR starts = NOR

here

flash chip is wired so that it is accessible at the
address at which the CPU starts executing
instructions

» The first stage bootloader must be programmed
at this address in the NOR

» NOR is mandatory, because it allows random
access, which NAND doesn't allow

RAM

» Not very common anymore (unpractical, and
requires NOR flash)

» The CPU has an integrated boot code in ROM
» BootROM on AT91 CPUs, “ROM code” on OMAP, etc.
» Exact details are CPU-dependent
» This boot code is able to load a first stage bootloader from a
storage device into an internal SRAM (DRAM not initialized
yet)
» Storage device can typically be: MMC, NAND, SPI flash,
UART (transmitting data over the serial line), etc.
> The first stage bootloader is

» Limited in size due to hardware constraints (SRAM size)
» Provided either by the CPU vendor or through community
projects

» This first stage bootloader must initialize DRAM and other
hardware devices and load a second stage bootloader into
RAM

RomBoot

stored in ROM
in the CPU

\

AT91Bootstrap

stored in NAND or SPI flash
runs from SRAM

J

\ 4

U-Boot

stored in NAND or SPI flash
runs from DRAM

J

Y

Linux Kernel

stored in NAND, SD, network
runs from SDRAM

RomBoot: tries to find a valid bootstrap image
from various storage sources, and load it into
SRAM (DRAM not initialized yet). Size limited
to 4 KB. No user interaction possible in standard
boot mode.

AT91Bootstrap: runs from SRAM. Initializes the
DRAM, the NAND or SPI controller, and loads
the secondary bootloader into RAM and starts it.
No user interaction possible.

U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided.

Linux Kernel: runs from RAM. Takes over the
system completely (bootloaders no longer exists).

ROM Code

stored in ROM
in the CPU

N
X-Loader / U-Boot 1st

stored in NAND or SD
runs from SRAM

\ 4

U-Boot 2nd

stored in NAND or SD
runs from SDRAM

Y

Linux Kernel

stored in NAND, SD, network
runs from SDRAM

» ROM Code: tries to find a valid bootstrap image

from various storage sources, and load it into
SRAM or RAM (RAM can be initialized by ROM
code through a configuration header). Size
limited to <64 KB. No user interaction possible.

X-Loader or U-Boot: runs from SRAM.
Initializes the DRAM, the NAND or MMC
controller, and loads the secondary bootloader
into RAM and starts it. No user interaction
possible. File called MLO.

U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided. File
called u-boot.bin or u-boot.img.

Linux Kernel: runs from RAM. Takes over the
system completely (bootloaders no longer exists).

ROM Code
Sti(:iiei"c':%M » ROM Code: tries to find a valid bootstrap image
from various storage sources, and load it into
RAM. The RAM configuration is described in a
CPU-specific header, prepended to the bootloader
Y image.
Header
S » U-Boot: runs from RAM. Initializes some other
stored in NAND or SD hardware devices (network, USB, etc.). Loads the
runs from SDRAM kernel image from storage or network to RAM
and starts it. Shell with commands provided. File
called u-boot. kwb.
Linux Kernel » Linux Kernel: runs from RAM. Takes over the

stored in NAND, SD, network system completely (bootloaders no longer exists).
runs from SDRAM

RomBoot

stored in ROM
in the CPU

» ROM Code: Tries to find a valid bootstrap
image from various storage sources, and load it
) .
irst stage bootloader into SRAM

stored in NAND or SPI flash > bootstrap: Initializes more components (RAM,

[runs from SRAM o eMMC, flash) then loads U-Boot

> U-Boot: runs from RAM. Initializes some other
N hardware devices (network, USB, etc.). Loads the
U-Boot . .
kernel image from storage to RAM and starts it.
stored in NAND or SPI flash

runs from DRAM) Shell with commands provided.

Y

> Linux Kernel: runs from RAM. Takes over the
v system completely (bootloaders no longer exists).

Linux Kernel

stored in NAND, SD, network
runs from SDRAM

> We will focus on the generic part, the main bootloader,
offering the most important features.

» There are several open-source generic bootloaders.
Here are the most popular ones:

» U-Boot, the universal bootloader by Denx
The most used on ARM, also used on PPC, MIPS, x86, m68k,
NIOS, etc. The de-facto standard nowadays. We will study it
in detail.
http://www.denx.de/wiki/U-Boot

» Barebox, a new architecture-neutral bootloader, written as a
successor of U-Boot. Better design, better code, active
development, but doesn't yet have as much hardware support
as U-Boot.
http://www.barebox.org

» There are also a lot of other open-source or proprietary
bootloaders, often architecture-specific

» RedBoot, Yaboot, PMON, etc.
sawoir-Faire Linux swoirfairelinx.con o gy

http://www.denx.de/wiki/U-Boot
http://www.barebox.org

The U-boot bootloader

U-Boot is a typical free software project
» License: GPLv2 (same as Linux)
> Freely available at http://www.denx.de/wiki/U-Boot

» Documentation available at
http://www.denx.de/wiki/U-Boot/Documentation

» The latest development source code is available in a Git
repository: http://git.denx.de/?p=u-boot.git;a=summary

» Development and discussions happen around an open
mailing-list http://lists.denx.de/pipermail/u-boot/

» Since the end of 2008, it follows a fixed-interval release

schedule. Every two months, a new version is released.
Versions are named YYYY.MM.

http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot/Documentation
http://git.denx.de/?p=u-boot.git;a=summary
http://lists.denx.de/pipermail/u-boot/

» Get the source code from the website, and uncompress it

» The configs/ directory contains one configuration file for
each supported board
> |t defines the CPU type, the peripherals and their
configuration, the memory mapping, the U-Boot features that
should be compiled in, etc.

» Note: U-Boot is migrating from board configuration defined
in header files (include/configs/) to defconfig like in the
Linux kernel (configs/)

» Not all boards have been converted to the new configuration
system.

» Older U-Boot releases provided by hardware vendors may not
yet use this new configuration system.

CHIP_defconfig

CONFIG_ARM=y

CONFIG_ARCH_SUNXI=y

CONFIG_MACH_SUNSI=y
CONFIG_DRAM_TIMINGS_DDR3_80QE_1066G_1333J=y
CONFIG_MMC is not set
CONFIG_USB@_VBUS_PIN="PB10"
CONFIG_VIDEO_COMPOSITE=y
CONFIG_DEFAULT_DEVICE_TREE="sun5i-r8-chip”
CONFIG_SPL=y
CONFIG_SYS_EXTRA_OPTIONS="CONS_INDEX=2"

CONFIG_CMD_IMLS is not set
CONFIG_CMD_DFU=y
CONFIG_CMD_USB_MASS_STORAGE=y
CONFIG_AXP_ALDO3_VOLT=3300
CONFIG_AXP_ALDO4_VOLT=3300
CONFIG_USB_MUSB_GADGET=y
CONFIG_USB_GADGET=y
CONFIG_USB_GADGET_DOWNLOAD=y
CONFIG_G_DNL_MANUFACTURER="Allwinner Technology”
CONFIG_G_DNL_VENDOR_NUM=0x1f3a
CONFIG_G_DNL_PRODUCT_NUM=0x1010
CONFIG_USB_EHCI_HCD=y

» U-Boot must be configured before being compiled

» make BOARDNAME_defconfig

» Where BOARDNAME is the name of a configuration, as visible in
the configs/ directory.

» You can then run make menuconfig to further customize
U-Boot's configuration!

> Make sure that the cross-compiler is available in PATH

» Compile U-Boot, by specifying the cross-compiler prefix.
Example, if your cross-compiler executable is arm-1linux-gcc:
make CROSS_COMPILE=arm-linux-

» The main result is a u-boot.bin file, which is the U-Boot
image. Depending on your specific platform, there may be
other specialized images: u-boot.img, u-boot.kwb, MLO, etc.

U-Boot must usually be installed in flash memory to be executed
by the hardware. Depending on the hardware, the installation of
U-Boot is done in a different way:

» The CPU provides some kind of specific boot monitor with
which you can communicate through serial port or USB using
a specific protocol

» The CPU boots first on removable media (MMC) before
booting from fixed media (NAND). In this case, boot from
MMC to reflash a new version

» U-Boot is already installed, and can be used to flash a new
version of U-Boot. However, be careful: if the new version of
U-Boot doesn’t work, the board is unusable

» The board provides a JTAG interface, which allows to write to
the flash memory remotely, without any system running on
the board. It also allows to rescue a board if the bootloader
doesn’t work.

» Connect the target to the host through a serial console.
» Power-up the board. On the serial console, you will see
something like:

U-Boot 2016.05 (May 17 2016 - 12:41:15 -0400)

CPU: SAMA5D36

Crystal frequency: 12 MHz
CPU clock : 528 MHz
Master clock : 132 MHz

DRAM: 256 MiB
NAND: 256 MiB
MMC: mci: @

In: serial
Out: serial
Err: serial
Net: gmaco

Hit any key to stop autoboot: @
» The U-Boot shell offers a set of commands. We will study the
most important ones, see the documentation for a complete
reference or the help command.

A

Flash information (NOR and SPI flash)

U-Boot> flinfo

DataFlash:AT45DB021

Nb pages: 1024

Page Size: 264

Size= 270336 bytes

Logical address: 0xC0000000

Area 0: CQ000000 to COQO1FFF (RO) Bootstrap
Area 1: C0002000 to COQ@3FFF Environment
Area 2: C0004000 to CQ@41FFF (RO) U-Boot

NAND flash information

U-Boot> nand info

Device @: nand@, sector size 128 KiB
Page size 2048 b
00B size 64 b
Erase size 131072 b

Version details

U-Boot> version
U-Boot 2016.05 (May 17 2016 - 12:41:15 -0400)

» The exact set of commands depends on the U-Boot
configuration

» help and help command

» ext2load, loads a file from an ext2 filesystem to RAM
» And also ext21s to list files, ext2info for information

» fatload, loads a file from a FAT filesystem to RAM
» And also fatls and fatinfo
» tftp, loads a file from the network to RAM
» ping, to test the network
» boot, runs the default boot command, stored in bootcmd

» bootz <address>, starts a kernel image loaded at the given
address in RAM

» loadb, loads, loady, load a file from the serial line to RAM

» usb, to initialize and control the USB subsystem, mainly used
for USB storage devices such as USB keys

» mmc, to initialize and control the MMC subsystem, used for
SD and microSD cards

» nand, to erase, read and write contents to NAND flash

» erase, protect, cp, to erase, modify protection and write to
NOR flash

» md, displays memory contents. Can be useful to check the
contents loaded in memory, or to look at hardware registers.

» mm, modifies memory contents. Can be useful to modify
directly hardware registers, for testing purposes.

» U-Boot can be configured through environment variables
» Some specific environment variables affect the behavior of the
different commands
» Custom environment variables can be added, and used in
scripts
» Environment variables are loaded from flash to RAM at
U-Boot startup, can be modified and saved back to flash for
persistence
» There is a dedicated location in flash (or in MMC storage) to
store the U-Boot environment, defined in the board
configuration file

Commands to manipulate environment variables:

>

printenv

Shows all variables

printenv <variable-name>

Shows the value of a variable

setenv <variable-name> <variable-value>
Changes the value of a variable, only in RAM

editenv <variable-name>
Edits the value of a variable, only in RAM

saveenv
Saves the current state of the environment to flash

u-boot # printenv
baudrate=19200
ethaddr=00:40:95:36:35:33
netmask=255.255.255.0
ipaddr=10.0.0.11
serverip=10.0.0.1
stdin=serial

stdout=serial
stderr=serial

u-boot # printenv serverip
serverip=10.0.0.1

u-boot # setenv serverip 10.0.0.100
u-boot # saveenv

» bootcmd, contains the command that U-Boot will
automatically execute at boot time after a configurable delay
(bootdelay), if the process is not interrupted

» bootargs, contains the arguments passed to the Linux kernel,
covered later

» serverip, the IP address of the server that U-Boot will
contact for network related commands

» ipaddr, the IP address that U-Boot will use
» netmask, the network mask to contact the server
» ethaddr, the MAC address, can only be set once

» autostart, if yes, U-Boot starts automatically an image that
has been loaded into memory

» filesize, the size of the latest copy to memory (from tftp,
fatload, nand read...)

» Environment variables can contain small scripts, to execute
several commands and test the results of commands.
» Useful to automate booting or upgrade processes
» Several commands can be chained using the ; operator
» Tests can be done using
if command ; then ... ; else ... ; fi
» Scripts are executed using run <variable-name>
> You can reference other variables using ${variable-name}

» Example
» setenv mmc-boot 'if fatload mmc @ 80000000 boot.ini;
then source; else if fatload mmc @ 80000000 zImage;
then run mmc-do-boot; fi; fi’

> U-Boot is mostly used to load and boot a kernel image, but it
also allows to change the kernel image and the root filesystem
stored in flash.

> Files must be exchanged between the target and the
development workstation. This is possible:

» Through the network if the target has an Ethernet connection,
and U-Boot contains a driver for the Ethernet chip. This is the
fastest and most efficient solution.

» Through a USB key, if U-Boot supports the USB controller of
your platform

» Through a SD or microSD card, if U-Boot supports the MMC
controller of your platform

» Through the serial port

» Network transfer from the development workstation to U-Boot
on the target takes place through TFTP
» Trivial File Transfer Protocol
» Somewhat similar to FTP, but without authentication and over
UDP

» A TFTP server is needed on the development workstation

» sudo apt-get install tftpd-hpa
> All files in /var/lib/tftpboot are then visible through TFTP
» A TFTP client is available in the tftp-hpa package, for testing

» A TFTP client is integrated into U-Boot
» Configure the ipaddr and serverip environment variables
» Use tftp <address> <filename> to load a file

Linux kernel
introduction

Embedded Linux
Experts

Savoir-faire Linux

© Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and fons are welcome!

Linux features

» The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

» The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

» Linux quickly started to be used as the kernel for free software
operating systems

» Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

» Nowadays, more than one thousand people contribute to each
kernel release, individuals or companies big and small.

Portability and hardware
support. Runs on most
architectures.

Scalability. Can run on
super computers as well as
on tiny devices (4 MB of
RAM is enough).

Compliance to standards
and interoperability.

Exhaustive networking
support.

Security. It can’t hide its
flaws. Its code is reviewed
by many experts.

Stability and reliability.

Modularity. Can include
only what a system needs
even at run time.

Easy to program. You can
learn from existing code.
Many useful resources on
the net.

User app B
Library A User app A
C library
Call to services Event notification,
v information exposition
Linux kernel

Manage hardware

Event notification

| Hardware |

» Manage all the hardware resources: CPU, memory, |/0.

» Provide a set of portable, architecture and hardware
independent APIs to allow user space applications and
libraries to use the hardware resources.

» Handle concurrent accesses and usage of hardware
resources from different applications.

» Example: a single network interface is used by multiple user
space applications through various network connections. The
kernel is responsible to “multiplex” the hardware resource.

» The main interface between the kernel and user space is the
set of system calls
> About 300 system calls that provide the main kernel services

» File and device operations, networking operations,
inter-process communication, process management, memory
mapping, timers, threads, synchronization primitives, etc.

» This interface is stable over time: only new system calls can
be added by the kernel developers

» This system call interface is wrapped by the C library, and
user space applications usually never make a system call
directly but rather use the corresponding C library function

> Linux makes system and kernel information available in user
space through pseudo filesystems, sometimes also called
virtual filesystems

» Pseudo filesystems allow applications to see directories and
files that do not exist on any real storage: they are created
and updated on the fly by the kernel

» The two most important pseudo filesystems are

» proc, usually mounted on /proc:
Operating system related information (processes, memory
management parameters...)

» sysfs, usually mounted on /sys:
Representation of the system as a set of devices and buses.
Information about these devices.

Linux Kernel

Device drivers

Memory N
management .
& driver frameworks
Low level Device Trees
Scheduler . o .
architecture specific (HW description),
Task management _
code on some architectures

Filesystem layer
and drivers

Network stack

: Implemented mainly in C, : Written in a Device Tree
a little bit of assembly.

specific language.

» The whole Linux sources are Free Software released under the
GNU General Public License version 2 (GPL v2).
» For the Linux kernel, this basically implies that:

» When you receive or buy a device with Linux on it, you should
receive the Linux sources, with the right to study, modify and
redistribute them.

» When you produce Linux based devices, you must release the
sources to the recipient, with the same rights, with no
restriction.

» See the arch/ directory in the kernel sources
» Minimum: 32 bit processors, with or without MMU, and gcc
support

» 32 bit architectures (arch/ subdirectories)
Examples: arm, avr32, blackfin, c6x, m68k, microblaze,
score, um

» 64 bit architectures:
Examples: alpha, arm64, ia64, tile
» 32/64 bit architectures
Examples: mips, powerpc, sh, sparc, x86

» Find details in kernel sources: arch/<arch>/Kconfig,
arch/<arch>/README, or Documentation/<arch>/

http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/arm
http://lxr.free-electrons.com/source/arch/avr32
http://lxr.free-electrons.com/source/arch/blackfin
http://lxr.free-electrons.com/source/arch/c6x
http://lxr.free-electrons.com/source/arch/m68k
http://lxr.free-electrons.com/source/arch/microblaze
http://lxr.free-electrons.com/source/arch/score
http://lxr.free-electrons.com/source/arch/um
http://lxr.free-electrons.com/source/arch/alpha
http://lxr.free-electrons.com/source/arch/arm64
http://lxr.free-electrons.com/source/arch/ia64
http://lxr.free-electrons.com/source/arch/tile
http://lxr.free-electrons.com/source/arch/mips
http://lxr.free-electrons.com/source/arch/powerpc
http://lxr.free-electrons.com/source/arch/sh
http://lxr.free-electrons.com/source/arch/sparc
http://lxr.free-electrons.com/source/arch/x86

Linux versioning scheme and
development process

» One stable major branch every 2 or 3 years

» |dentified by an even middle number
» Examples: 1.0.x, 2.0.x, 2.2.x, 2.4.x

» One development branch to integrate new functionalities and
major changes
» Identified by an odd middle number
» Examples: 2.1.x, 2.3.x, 2.5.x
» After some time, a development version becomes the new base
version for the stable branch

» Minor releases once in while: 2.2.23, 2.5.12, etc.

Stable
2.4.0 241 242 243 244 245 2.4.6 247 248
| | | | | | | | | >
2.5.0 25.1 252 253 2.6.0 26.1
I I T B L5
Development Stable

> Since 2.6.0, kernel developers have been able to introduce
lots of new features one by one on a steady pace, without
having to make disruptive changes to existing subsystems.

» Since then, there has been no need to create a new
development branch massively breaking compatibility with the
stable branch.

» Thanks to this, more features are released to users at a
faster pace.

v

From 2003 to 2011, the official kernel versions were named
2.6.x.

Linux 3.0 was released in July 2011

v

v

Linux 4.0 was released in April 2015
This is only a change to the numbering scheme
» Official kernel versions are now named x.y
(3.9, 3.1, 3.2, ..., 3.19, 4.0, 4.1, etc.)
> Stabilized versions are named x.y.z (3.0.2, 4.2.7, etc.)
> |t effectively only removes a digit compared to the previous
numbering scheme

v

A

Using merge and bug fixing windows

2 weeks 6-10 weeks
X g
Y L)

\ 4

Linus
Merge window development
process

4.1 4.2-rcl 4.2-rc2 4.2-rc3 4.2-rc4 4.2-rc5 4.2

Bug-fix
versions

Y.

> Issue: bug and security fixes only released for
most recent stable kernel versions.

» Some people need to have a recent kernel,
but with long term support for security

updates.
mainline: 4.4-rc4 201512-06
» You could get long term support from a s 432 om0
commercial embedded Linux provider. e e
longterm: 3.14.58 201512-09

1 ngterm: 3.12.51 -11-

> You could reuse sources for the kernel used in e
Ubuntu Long Term Support releases (5 years i P et
. longterm: 2.6.32.69 2015-12-05
of free secu rity updates)_ linuxenext: next-20151211 2015-12-1

> The http://kernel.org front page shows
which versions will be supported for some
time (up to 2 or 3 years), and which ones
won't be supported any more ("EOL: End Of
Life")

http://kernel.org

The official list of changes for each Linux release is just a huge list
of individual patches!

commit 30f4df
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Jul 13 11:29:17 2011 +0200

at91: atgl-ohci: support overcurrent notification

Several USB power switches (AIC1526 or MIC2026) have a digital output
that is used to notify that an overcurrent situation is taking

place. This digital outputs are typically connected to GPIO inputs of
the processor and can be used to be notified of these overcurrent
situations.

Therefore, we add a new overcurrent_pin[] array in the at91_usbh_data
structure so that boards can tell the AT91 OHCI driver which pins are
used for the overcurrent notification, and an overcurrent_supported
boolean to tell the driver whether overcurrent is supported or not.

The code has been largely borrowed from ohci-dadxx.c and
ohci-s3c2410.c.

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>

Very difficult to find out the key changes and to get the global
picture out of individual changes.

Fortunately, there are some useful resources available

» http://wiki.kernelnewbies.org/LinuxChanges
(some versions are missing)

» http://lwn.net

> http://www.linux-arm.info
News about Linux on ARM, including kernel changes.

» http://1linuxfr.org, for French readers

http://wiki.kernelnewbies.org/LinuxChanges
http://lwn.net
http://www.linux-arm.info
http://linuxfr.org

> Full tarballs
» Contain the complete kernel sources: long to download and
uncompress, but must be done at least once
» Example:
http://www.kernel.org/pub/linux/kernel/v3.x/1linux-
3.10.9.tar.xz
» Extract command:
tar xf linux-3.10.9.tar.xz
» Incremental patches between versions
» It assumes you already have a base version and you apply the
correct patches in the right order. Quick to download and
apply
» Examples:
http://www.kernel.org/pub/linux/kernel/v3.x/patch-3.10.xz
(3.9 to 3.10)

http://www.kernel.org/pub/linux/kernel/v3.x/patch-3.10.9.xz
(3.10 to 3.10.9)

> All previous kernel versions are available in
http://kernel.org/pub/linux/kernel/
saoir-Faire Linux swoirfairelinx.con o g

http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.10.9.tar.xz
http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.10.9.tar.xz
http://www.kernel.org/pub/linux/kernel/v3.x/patch-3.10.xz
http://www.kernel.org/pub/linux/kernel/v3.x/patch-3.10.9.xz
http://kernel.org/pub/linux/kernel/

» A patch is the difference between two source trees
» Computed with the diff tool, or with more elaborate version
control systems

» They are very common in the open-source community
» Excerpt from a patch:

diff -Nru a/Makefile b/Makefile

--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00
@@ -1,7 +1,7 @@

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 11

-EXTRAVERSION =

+EXTRAVERSION = .1

NAME=Woozy Numbat

*DOCUMENTATION=

» One section per modified file, starting with a header

diff -Nru a/Makefile b/Makefile
--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00

» One sub-section per modified part of the file, starting with
header with the affected line numbers
ee -1,7 +1,7 ee

» Three lines of context before the change

VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 11

» The change itself

-EXTRAVERSION
+EXTRAVERSION 1

» Three lines of context after the change
NAME=Woozy Numbat

DOCUMENTATION

The patch command:
» Takes the patch contents on its standard input

» Applies the modifications described by the patch into the
current directory

patch usage examples:
» patch -p<n> < diff_file
» cat diff_file | patch -p<n>
» xzcat diff_file.xz | patch -p<n>
» bzcat diff_file.bz2 | patch -p<n>

» zcat diff_file.gz | patch -p<n>
» Notes:

» n: number of directory levels to skip in the file paths
» You can reverse apply a patch with the -R option
» You can test a patch with --dry-run option

» Two types of Linux patches:
» Either to be applied to the previous stable version
(from 3.<x-1> to 3.x)
» Or implementing fixes to the current stable version
(from 3.x to 3.x.y)
» Can be downloaded in gzip, bzip2 or xz (much smaller)
compressed files.
» Always produced for n=1
(that’s what everybody does... do it too!)
» Need to run the patch command inside the kernel source
directory
» Linux patch command line example:
cd linux-3.9
xzcat ../patch-3.10.xz | patch -p1
xzcat ../patch-3.10.9.xz | patch -p1
cd ..; mv 1linux-3.9 1linux-3.10.9

Kernel configuration

The kernel configuration and build system is based on
multiple Makefiles

v

v

One only interacts with the main Makefile, present at the
top directory of the kernel source tree
Interaction takes place

» using the make tool, which parses the Makefile

» through various targets, defining which action should be done

(configuration, compilation, installation, etc.). Run make help
to see all available targets.

v

v

Example

» cd linux-3.6.x/
» make <target>

http://lxr.free-electrons.com/source/Makefile

» The kernel contains thousands of device drivers, filesystem
drivers, network protocols and other configurable items

» Thousands of options are available, that are used to
selectively compile parts of the kernel source code

» The kernel configuration is the process of defining the set of
options with which you want your kernel to be compiled
» The set of options depends

» On your hardware (for device drivers, etc.)
» On the capabilities you would like to give to your kernel
(network capabilities, filesystems, real-time, etc.)

» The configuration is stored in the .config file at the root of
kernel sources

» Simple text file, key=value style
» As options have dependencies, typically never edited by hand,
but through graphical or text interfaces:

» make xconfig, make gconfig (graphical)

» make menuconfig, make nconfig (text)

> You can switch from one to another, they all load/save the
same .config file, and show the same set of options

» To modify a kernel in a GNU/Linux distribution: the
configuration files are usually released in /boot/, together
with kernel images: /boot/config-3.2.0-31-generic

» The kernel image is a single file, resulting from the linking
of all object files that correspond to features enabled in the
configuration

» This is the file that gets loaded in memory by the bootloader
» All included features are therefore available as soon as the
kernel starts, at a time where no filesystem exists

» Some features (device drivers, filesystems, etc.) can however
be compiled as modules

» These are plugins that can be loaded/unloaded dynamically to
add/remove features to the kernel

» Each module is stored as a separate file in the filesystem,
and therefore access to a filesystem is mandatory to use
modules

» This is not possible in the early boot procedure of the kernel,
because no filesystem is available

There are different types of options
» bool options, they are either

» true (to include the feature in the kernel) or
> false (to exclude the feature from the kernel)

v

tristate options, they are either
> true (to include the feature in the kernel image) or
» module (to include the feature as a kernel module) or
> false (to exclude the feature)

v

int options, to specify integer values

v

hex options, to specify hexadecimal values

» string options, to specify string values

» There are dependencies between kernel options

» For example, enabling a network driver requires the network
stack to be enabled
» Two types of dependencies
» depends on dependencies. In this case, option A that depends
on option B is not visible until option B is enabled
» select dependencies. In this case, with option A depending
on option B, when option A is enabled, option B is
automatically enabled

» make xconfig allows to see all options, even the ones that
cannot be selected because of missing dependencies. In this
case, they are displayed in gray.

make xconfig

>

>

The most common graphical interface to configure the kernel.

Make sure you read
help -> introduction: useful options!

File browser: easier to load configuration files
Search interface to look for parameters

Required Debian / Ubuntu packages: qt5-default g++
pkg-config

Option

Option

General setup
IRQ subsystem
RCU Subsystem
OControl Group support
ONamespaces support
®Configure standard kernel features (expert users)
Kernel Performance Events And Counters
GCOV-based kernel profiling
Enable loadable module support
Enable the block layer
Partition Types
10 Schedulers
System Type

TI OMAP2/3/4 Specific Features
Bus support
OPCCard (PCMCIA/CardBus) support
Kernel Features
Boot options
CPU Power Management
CPU Frequency scaling
Floating point emulation
Userspace binary formats
Power management opkions

Networking support
e

Ankanc

=
OMAP System Type
OTI OMAP1

OMAP Feature Selections

OSmartReflex support

Reset unused clocks during boot

BOMAP multiplexing support

Multiplexing debug output

\Warn about pins the bootloader didn't set up
OMailbox framework support

Use 32KHz timer

TI OMAP2/3/4 (sRCH_OMAPZPLUS)

CONFIG_ARCH_OMAPZPLUS:
""Systems based on OMAP2, OMAP3 or OMAP4"

Symbol: ARCH_OMAPZPLUS [=y]
Type : boolean

Prompt: TIOMAP2/3/4

Defined at arch/arm/plat-omap/Kconfig.24
Depends on: <choice>

Location:

-» System Type

-> TIOMAP Common Features

-> OMAP System Type (<choice> [=y])

Looks for a keyword in the parameter name. Allows to select or
unselect found parameters.

- Search Config x

Find: [mtd H Search l

Option |
Physical address of Di
MNAND Flash support for Samsung 53C SoCs

Support software BCH ECC

ST Nomadik 8815 NAND support

CFI Flash device mapped on AMD Net5c520

[EIM-Systems Disk-On-Chip Millennium-only alternative driver (DEPRECATED)
CJARM Firmware Suite partition parsing (NEW)

CJPMC551 Debugging

Command line partition table parsing

<]

Physical address of DiskOnChip (MTD_DOCPROBE_ADDRESS)
CONFIG_MTD_DOCPROBE_ADDRESS:

By default, the probe for DiskOnChip devices will look for a

DiskonChip at every multiple of 0x2000 between 0xC8000 and 0xEE00D.
This option allows you to specify a single address at which to probe
for the device, which is useful if you have other devices in that

range which get upset when they are probed.

<]

Compiled as a module (separate file)
CONFIG_IS09660_FS=m

Driver options +=|SO 9660 CDROM file system support

CONFIG_JOLIET=y = | LuMicrosoft Joliet CDROM extensions

CONFIG_ZISOFS=y —) | “2Transparent decompression extension
-2UDF file system support

Compiled statically into the kernel
CONFIG_UDF_FS=y

Options are grouped by sections and are prefixed with CONFIG_.

#

CD-ROM/DVD Filesystems
#

CONFIG_IS09660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y
CONFIG_UDF_NLS=y

#

DOS/FAT/NT Filesystems

#

CONFIG_MSDOS_FS is not set
CONFIG_VFAT_FS is not set
CONFIG_NTFS_FS=m

CONFIG_NTFS_DEBUG is not set
CONFIG_NTFS_RW=y

make gconfig

» GTK based graphical
configuration interface
Functionality similar to that
of make xconfig.

> Just lacking a search
functionality.

> Required Debian packages:
libglade2-dev

make menuconfig

» Useful when no graphics are
available. Pretty convenient
too!

» Same interface found in
other tools: BusyBox,
Buildroot...

» Required Debian packages:
libncurses-dev

A

make nconfig

» A newer, similar text
interface

» More user friendly (for
example, easier to access
help information).

» Required Debian packages:

libncurses-dev

Power management and
Bus options (PCI etc.)

Fi
File systems
Kernel hackin

Security opti.
[1 cryptographic
[Virtualization -

Library routines ---»

Executable file formats / Emulations ---
et >

make oldconfig

|

>

>

Needed very often!
Useful to upgrade a .config file from an earlier kernel release

Issues warnings for configuration parameters that no longer
exist in the new kernel.

Asks for values for new parameters (while xconfig and
menuconfig silently set default values for new parameters).

If you edit a .config file by hand, it's strongly recommended to
run make oldconfig afterwards!

A frequent problem:
» After changing several kernel configuration settings, your
kernel no longer works.
> If you don't remember all the changes you made, you can get
back to your previous configuration:
$ cp .config.old .config

> All the configuration interfaces of the kernel (xconfig,
menuconfig, oldconfig...) keep this .config.old backup

copy.

The set of configuration options is architecture dependent

v

» Some configuration options are very architecture-specific

» Most of the configuration options (global kernel options,
network subsystem, filesystems, most of the device drivers) are
visible in all architectures.

v

By default, the kernel build system assumes that the kernel is
being built for the host architecture, i.e. native compilation

v

The architecture is not defined inside the configuration, but at
a higher level

v

We will see later how to override this behaviour, to allow the
configuration of kernels for a different architecture

Compiling and installing the kernel
for the host system

» make

> in the main kernel source directory

» Remember to run multiple jobs in parallel if you have multiple
CPU cores. Example: make -j 4

> No need to run as root!

» Generates

» vmlinux, the raw uncompressed kernel image, in the ELF
format, useful for debugging purposes, but cannot be booted

» arch/<arch>/boot/*Image, the final, usually compressed,
kernel image that can be booted

> bzImage for x86, zImage for ARM, vmImage.gz for Blackfin,
etc.

» arch/<arch>/boot/dts/*.dtb, compiled Device Tree files (on
some architectures)

> All kernel modules, spread over the kernel source tree, as .ko
(Kernel Object) files.

» make install
» Does the installation for the host system by default, so needs
to be run as root. Generally not used when compiling for an
embedded system, as it installs files on the development
workstation.

> Installs

» /boot/vmlinuz-<version>
Compressed kernel image. Same as the one in
arch/<arch>/boot

» /boot/System.map-<version>
Stores kernel symbol addresses

» /boot/config-<version>
Kernel configuration for this version

» Typically re-runs the bootloader configuration utility to take
the new kernel into account.

» make modules_install
» Does the installation for the host system by default, so needs
to be run as root

> Installs all modules in /1ib/modules/<version>/

» kernel/
Module .ko (Kernel Object) files, in the same directory
structure as in the sources.

» modules.alias
Module aliases for module loading utilities. Example line:
alias sound-service-?7-0 snd_mixer_oss

» modules.dep, modules.dep.bin (binary hashed)
Module dependencies

» modules.symbols, modules.symbols.bin (binary hashed)
Tells which module a given symbol belongs to.

» Clean-up generated files (to force
re-compilation):
make clean

> Remove all generated files. Needed when
switching from one architecture to another.
Caution: it also removes your .config filel
make mrproper

» Also remove editor backup and patch reject files
(mainly to generate patches):
make distclean

> If you are in a git tree, remove all files not
tracked (and ignored) by git:
git clean -fdx

Cross-compiling the kernel

When you compile a Linux kernel for another CPU architecture

» Much faster than compiling natively, when the target system
is much slower than your GNU/Linux workstation.

» Much easier as development tools for your GNU/Linux
workstation are much easier to find.

> To make the difference with a native compiler, cross-compiler
executables are prefixed by the name of the target system,

architecture and sometimes library. Examples:
mips-linux-gcc, the prefix is mips-linux-
arm-linux-gnueabi-gcc, the prefix is arm-1linux-gnueabi-

The CPU architecture and cross-compiler prefix are defined through
the ARCH and CROSS_COMPILE variables in the toplevel Makefile.
» ARCH is the name of the architecture. It is defined by the
name of the subdirectory in arch/ in the kernel sources
» Example: arm if you want to compile a kernel for the arm
architecture.
> CROSS_COMPILE is the prefix of the cross compilation tools
» Example: arm-1inux- if your compiler is arm-linux-gcc

Two solutions to define ARCH and CROSS_COMPILE:

> Pass ARCH and CROSS_COMPILE on the make command line:
make ARCH=arm CROSS_COMPILE=arm-linux- ...
Drawback: it is easy to forget to pass these variables when
you run any make command, causing your build and
configuration to be screwed up.

» Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm
export CROSS_COMPILE=arm-1linux-
Drawback: it only works inside the current shell or terminal.
You could put these settings in a file that you source every
time you start working on the project. If you only work on a
single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them
permanent and visible from any terminal.

Default configuration files available, per board or per-CPU
family
» They are stored in arch/<arch>/configs/, and are just
minimal .config files
» This is the most common way of configuring a kernel for
embedded platforms

v

» Run make help to find if one is available for your platform

v

To load a default configuration file, just run
make acme_defconfig

» This will overwrite your existing .config file!

v

To create your own default configuration file

» make savedefconfig, to create a minimal configuration file
» mv defconfig arch/<arch>/configs/myown_defconfig

» After loading a default configuration file, you can adjust the
configuration to your needs with the normal xconfig,
gconfig or menuconfig interfaces

» As the architecture is different from your host architecture

> Some options will be different from the native configuration
(processor and architecture specific options, specific drivers,
etc.)

» Many options will be identical (filesystems, network protocols,
architecture-independent drivers, etc.)

» Many embedded architectures have a lot of non-discoverable
hardware.

» Depending on the architecture, such hardware is either
described using C code directly within the kernel, or using a
special hardware description language in a Device Tree.

» ARM, PowerPC, OpenRISC, ARC, Microblaze are examples of
architectures using the Device Tree.

» A Device Tree Source, written by kernel developers, is
compiled into a binary Device Tree Blob, passed at boot time
to the kernel.

» There is one different Device Tree for each board/platform
supported by the kernel, available in
arch/arm/boot/dts/<board>.dtb.

> The bootloader must load both the kernel image and the
Device Tree Blob in memory before starting the kernel.

Often needed for embedded board users:

» To describe external devices attached
to non-discoverable busses (such as
12C) and configure them.

» To configure pin muxing: choosing

what SoC signals are made available
on the board external connectors.

» To configure some system parameters:

flash partitions, kernel command line
(other ways exist)

» Useful reference: Device Tree for
Dummies, Thomas Petazzoni (Apr.
2014): http://j.mp/13QUENR

Making Everything Easier!™

Device Tree

*Lean al o Tree
bindings and their rules

Thomas Petazzoni

http://j.mp/1jQU6NR

Run make
Copy the final kernel image to the target storage

» can be zImage, vmlinux, bzImage in arch/<arch>/boot
» copying the Device Tree Blob might be necessary as well, they
are available in arch/<arch>/boot/dts

v

v

v

make install is rarely used in embedded development, as the
kernel image is a single file, easy to handle
> It is however possible to customize the make install
behaviour in arch/<arch>/boot/install.sh

» make modules_install is used even in embedded
development, as it installs many modules and description files
» make INSTALL_MOD_PATH=<dir>/ modules_install
» The INSTALL_MOD_PATH variable is needed to install the
modules in the target root filesystem instead of your host root
filesystem.

Recent versions of U-Boot can boot the zImage binary.
Older versions require a special kernel image format: uImage
» ulmage is generated from zImage using the mkimage tool. It is
done automatically by the kernel make uImage target.
» On some ARM platforms, make ulmage requires passing a
LOADADDR environment variable, which indicates at which
physical memory address the kernel will be executed.

v

v

v

In addition to the kernel image, U-Boot can also pass a
Device Tree Blob to the kernel.
The typical boot process is therefore:
1. Load zImage or ulmage at address X in memory
2. Load <board>.dtb at address Y in memory
3. Start the kernel with bootz X - Y (zImage case), or
bootm X - Y (uImage case)
The - in the middle indicates no initramfs

v

» In addition to the compile time configuration, the kernel
behaviour can be adjusted with no recompilation using the
kernel command line

» The kernel command line is a string that defines various
arguments to the kernel

» It is very important for system configuration

» root= for the root filesystem (covered later)

» console= for the destination of kernel messages

» Many more exist. The most important ones are documented in
Documentation/kernel-parameters.txt in kernel sources.

» This kernel command line is either
» Passed by the bootloader. In U-Boot, the contents of the
bootargs environment variable is automatically passed to the

kernel
» Built into the kernel, using the CONFIG_CMDLINE option.

https://kernel.org/doc/Documentation/kernel-parameters.txt

» Set up the cross-compiling
environment

» Configure and cross-compile the
kernel for an arm platform

» On this platform, interact with the
bootloader and boot your kernel

Using kernel modules

» Modules make it easy to develop drivers without rebooting:
load, test, unload, rebuild, load...

> Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

> Also useful to reduce boot time: you don't spend time
initializing devices and kernel features that you only need later.

» Caution: once loaded, have full control and privileges in the
system. No particular protection. That's why only the root
user can load and unload modules.

» Some kernel modules can depend on other modules, which
need to be loaded first.

» Example: the usb-storage module depends on the scsi_mod,
libusual and usbcore modules.

» Dependencies are described both in
/1lib/modules/<kernel-version>/modules.dep and in
/lib/modules/<kernel-version>/modules.dep.bin
These files are generated when you run
make modules_install.

When a new module is loaded, related information is available in
the kernel log.

» The kernel keeps its messages in a circular buffer (so that it
doesn’'t consume more memory with many messages)

» Kernel log messages are available through the dmesg
command (diagnostic message)

» Kernel log messages are also displayed in the system console
(console messages can be filtered by level using the loglevel
kernel parameter, or completely disabled with the quiet
parameter).

» Note that you can write to the kernel log from user space too:
echo "<n>Debug info" > /dev/kmsg

<module_name>: name of the module file without the trailing . ko

» modinfo <module_name> (for modules in /1ib/modules)
modinfo <module_path>.ko
Gets information about a module without loading it:
parameters, license, description and dependencies.

» sudo insmod <module_path>.ko
Tries to load the given module. The full path to the module
object file must be given.

» When loading a module fails, insmod often doesn't give you
enough details!

» Details are often available in the kernel log.

» Example:
$ sudo insmod ./intr_monitor.ko
insmod: error inserting './intr_monitor.ko': -1 Device or resource busy
$ dmesg

[17549774.552000] Failed to register handler for irq channel 2

» sudo modprobe <module_name>
Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this module.
Lots of other options are available. modprobe automatically
looks in /1ib/modules/<version>/ for the object file
corresponding to the given module name.

» lsmod

Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

» sudo rmmod <module_name>
Tries to remove the given module.
Will only be allowed if the module is no longer in use (for
example, no more processes opening a device file)

» sudo modprobe -r <module_name>
Tries to remove the given module and all dependent modules
(which are no longer needed after removing the module)

» Find available parameters:
modinfo usb-storage

» Through insmod:
sudo insmod ./usb-storage.ko delay_use=0

» Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in
/etc/modprobe.d/:
options usb-storage delay_use=0
» Through the kernel command line, when the driver is built
statically into the kernel:
usb-storage.delay_use=0
» ush-storage is the driver name
» delay_use is the driver parameter name. It specifies a delay
before accessing a USB storage device (useful for rotating
devices).
> 0 is the driver parameter value

How to find the current values for the parameters of a loaded
module?

» Check /sys/module/<name>/parameters.

» There is one file per parameter, containing the parameter
value.

Linux Kernel in a Nutshell, Dec 2006
» By Greg Kroah-Hartman, O'Reilly
http://www.kroah.com/1lkn/
» A good reference book and guide on
configuring, compiling and managing the
Linux kernel sources.

» Freely available on-line! LIN
Great companion to the printed book for KERNEL
easy electronic searches! IN A NUTSHELL
Available as single PDF file on A Dby Quick Refervice
http://free- po—

electrons.com/community/kernel/lkn/

» Our rating: 2 stars

http://www.kroah.com/lkn/
http://free-electrons.com/community/kernel/lkn/
http://free-electrons.com/community/kernel/lkn/

Linux Root
Filesystem

Embedded Linux
Experts

Savoir-faire Linux

© Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and fons are welcome!

Principle and solutions

> Filesystems are used to organize data in directories and files
on storage devices or on the network. The directories and files
are organized as a hierarchy

> In Unix systems, applications and users see a single global
hierarchy of files and directories, which can be composed of
several filesystems.

> Filesystems are mounted in a specific location in this
hierarchy of directories

» When a filesystem is mounted in a directory (called mount
point), the contents of this directory reflects the contents of
the storage device

» When the filesystem is unmounted, the mount point is empty
again.

» This allows applications to access files and directories easily,
regardless of their exact storage location

» Create a mount point, which is just a directory
$ mkdir /mnt/usbkey

It is empty

$ 1s /mnt/usbkey

$

» Mount a storage device in this mount point
$ mount -t vfat /dev/sdal /mnt/usbkey
$

» You can access the contents of the USB key
$ 1s /mnt/usbkey

docs prog.c picture.png movie.avi
$

v

» mount allows to mount filesystems

» mount -t type device mountpoint

» type is the type of filesystem

» device is the storage device, or network location to mount

» mountpoint is the directory where files of the storage device or
network location will be accessible

» mount with no arguments shows the currently mounted
filesystems

» umount allows to unmount filesystems

» This is needed before rebooting, or before unplugging a USB
key, because the Linux kernel caches writes in memory to
increase performance. umount makes sure that these writes are
committed to the storage.

> A particular filesystem is mounted at the root of the hierarchy,
identified by /
» This filesystem is called the root filesystem

» As mount and umount are programs, they are files inside a
filesystem.

» They are not accessible before mounting at least one
filesystem.
» As the root filesystem is the first mounted filesystem, it
cannot be mounted with the normal mount command
> It is mounted directly by the kernel, according to the root=
kernel option
» When no root filesystem is available, the kernel panics

Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(@,0)

> |t can be mounted from different locations

» From the partition of a hard disk

» From the partition of a USB key

» From the partition of an SD card

> From the partition of a NAND flash chip or similar type of
storage device

» From the network, using the NFS protocol

» From memory, using a pre-loaded filesystem (by the
bootloader)

> etc.

> It is up to the system designer to choose the configuration for
the system, and configure the kernel behaviour with root=

» Partitions of a hard disk or USB key
» root=/dev/sdXY, where X is a letter indicating the device, and
Y a number indicating the partition

» /dev/sdb2 is the second partition of the second disk drive
(either USB key or ATA hard drive)

» Partitions of an SD card

» root=/dev/mmcblkXpY, where X is a number indicating the
device and Y a number indicating the partition
» /dev/mmchlk@p2 is the second partition of the first device

» Partitions of flash storage

» root=/dev/mtdblockX, where X is the partition number
» /dev/mtdblock3 is the fourth partition of a NAND flash chip
(if only one NAND flash chip is present)

Once networking works, your root filesystem could be a directory
on your GNU/Linux development host, exported by NFS (Network
File System). This is very convenient for system development:

» Makes it very easy to update files on the root filesystem,
without rebooting. Much faster than through the serial port.

» Can have a big root filesystem even if you don't have support
for internal or external storage yet.

» The root filesystem can be huge. You can even build native
compiler tools and build all the tools you need on the target
itself (better to cross-compile though).

Host Target

Ethernet
NFS client

NFS server built into the kernel

On the development workstation side, a NFS server is needed

> Install an NFS server (example: Debian, Ubuntu)
sudo apt-get install nfs-kernel-server

> Add the exported directory to your /etc/exports file:
/home/tux/rootfs 192.168.1.111(rw, no_root_squash,
no_subtree_check)
> 192.168.1.111 is the client IP address
» rw,no_root_squash, no_subtree_check are the NFS server
options for this directory export.

» Start or restart your NFS server (example: Debian, Ubuntu)
sudo /etc/init.d/nfs-kernel-server restart

» On the target system
» The kernel must be compiled with

» CONFIG_NFS_FS=y (NFS support)
» CONFIG_IP_PNP=y (configure IP at boot time)
> CONFIG_ROOT_NFS=y (support for NFS as rootfs)

> The kernel must be booted with the following parameters:

» root=/dev/nfs (we want rootfs over NFS)
> ip=192.168.1.111 (target IP address)
» nfsroot=192.168.1.110:/home/tux/rootfs/ (NFS server

details)

Host

NFS server

/home/tux/rootfs/
/home/tux/rootfs/root/
/home/tux/rootfs/root/README
/home/tux/rootfs/usr/
/home/tux/rootfs/usr/bin/
/home/tux/rootfs/bin/
/home/tux/rootfs/bin/1s

Ethernet

> It is also possible to have the root filesystem integrated into
the kernel image
> It is therefore loaded into memory together with the kernel
» This mechanism is called initramfs
> |t integrates a compressed archive of the filesystem into the
kernel image
» Variant: the compressed archive can also be loaded separately
by the bootloader.

> It is useful for two cases

» Fast booting of very small root filesystems. As the filesystem is
completely loaded at boot time, application startup is very fast.

» As an intermediate step before switching to a real root
filesystem, located on devices for which drivers not part of the
kernel image are needed (storage drivers, filesystem drivers,
network drivers). This is always used on the kernel of
desktop/server distributions to keep the kernel image size
reasonable.

Kernel code and data

Kernel image (zlmage, bzlmage, etc.)

» The contents of an initramfs are defined at the kernel
configuration level, with the CONFIG_INITRAMFS_SOURCE
option

» Can be the path to a directory containing the root filesystem
contents

» Can be the path to a cpio archive

» Can be a text file describing the contents of the initramfs
(see documentation for details)

» The kernel build process will automatically take the contents
of the CONFIG_INITRAMFS_SOURCE option and integrate the
root filesystem into the kernel image

» Details (in kernel sources):
Documentation/filesystems/ramfs-rootfs-initramfs. txt
Documentation/early-userspace/README

https://kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://kernel.org/doc/Documentation/early-userspace/README

Contents

» The organization of a Linux root filesystem in terms of
directories is well-defined by the Filesystem Hierarchy
Standard

> http://www.linuxfoundation.org/collaborate/
workgroups/1lsb/fhs
» Most Linux systems conform to this specification

> Applications expect this organization
» It makes it easier for developers and users as the filesystem
organization is similar in all systems

http://www.linuxfoundation.org/collaborate/workgroups/lsb/fhs
http://www.linuxfoundation.org/collaborate/workgroups/lsb/fhs

/bin
/boot

/dev
/etc
/home
/lib
/media
/mnt
/proc

Basic programs

Kernel image (only when the kernel is loaded from a
filesystem, not common on non-x86 architectures)

Device files (covered later)
System-wide configuration

Directory for the users home directories
Basic libraries

Mount points for removable media
Mount points for static media

Mount point for the proc virtual filesystem

/root Home directory of the root user

/sbin Basic system programs

/sys Mount point of the sysfs virtual filesystem
/tmp Temporary files

/Jusr /usr/bin Non-basic programs
Jusr/lib Non-basic libraries
/usr/sbin Non-basic system programs

/var Variable data files. This includes spool directories
and files, administrative and logging data, and
transient and temporary files

» Basic programs are installed in /bin and /sbhin and basic
libraries in /1ib

> All other programs are installed in /usr/bin and /usr/sbin
and all other libraries in /usr/1lib

> In the past, on Unix systems, /usr was very often mounted
over the network, through NFS

> In order to allow the system to boot when the network was
down, some binaries and libraries are stored in /bin, /sbin
and /1lib

» /bin and /sbin contain programs like 1s, ifconfig, cp,
bash, etc.

» /1ib contains the C library and sometimes a few other basic
libraries

> All other programs and libraries are in /usr

Device Files

» One of the kernel important role is to allow applications to
access hardware devices

> In the Linux kernel, most devices are presented to user space
applications through two different abstractions

» Character device
» Block device

> Internally, the kernel identifies each device by a triplet of
information
» Type (character or block)
» Major (typically the category of device)
» Minor (typically the identifier of the device)

» Block devices

» A device composed of fixed-sized blocks, that can be read and
written to store data

» Used for hard disks, USB keys, SD cards, etc.
» Character devices

» Originally, an infinite stream of bytes, with no beginning, no
end, no size. The pure example: a serial port.

» Used for serial ports, terminals, but also sound cards, video
acquisition devices, frame buffers

» Most of the devices that are not block devices are represented
as character devices by the Linux kernel

v

A very important Unix design decision was to represent most
system objects as files

It allows applications to manipulate all system objects with
the normal file API (open, read, write, close, etc.)

So, devices had to be represented as files to the applications
This is done through a special artifact called a device file

It is a special type of file, that associates a file name visible to
user space applications to the triplet (type, major, minor) that
the kernel understands

All device files are by convention stored in the /dev directory

Example of device files in a Linux system

$ 1s -1 /dev/ttyS@ /dev/ttyl /dev/sdal /dev/sda2 /dev/zero
brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sdal
brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2
Crw------- 1 root root 4, 1 2011-05-27 08:57 /dev/tty1l
crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttySe@
crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file APl to write data to a
serial port

int fd;

fd = open("/dev/ttySe”, O_RDWR);
write(fd, "Hello"”, 5);
close(fd);

» Before Linux 2.6.32, on basic Linux systems, the device files
had to be created manually using the mknod command

» mknod /dev/<device> [c|b] major minor

» Needed root privileges

» Coherency between device files and devices handled by the
kernel was left to the system developer

> The devtmpfs virtual filesystem can be mounted on /dev and
contains all the devices known to the kernel. The
CONFIG_DEVTMPFS_MOUNT kernel configuration option makes
the kernel mount it automatically at boot time, except when
booting on an initramfs.

Pseudo Filesystems

» The proc virtual filesystem exists since the beginning of Linux
> It allows

» The kernel to expose statistics about running processes in the
system

» The user to adjust at runtime various system parameters about
process management, memory management, etc.

» The proc filesystem is used by many standard user space
applications, and they expect it to be mounted in /proc

> Applications such as ps or top would not work without the
proc filesystem

» Command to mount /proc:
mount -t proc nodev /proc

» Documentation/filesystems/proc.txt in the kernel sources

» man proc

https://kernel.org/doc/Documentation/filesystems/proc.txt

One directory for each running process in the system
» /proc/<pid>
» cat /proc/3840/cmdline
» It contains details about the files opened by the process, the
CPU and memory usage, etc.

v

» /proc/interrupts, /proc/devices, /proc/iomem,
/proc/ioports contain general device-related information

v

/proc/cmdline contains the kernel command line

v

/proc/sys contains many files that can be written to to
adjust kernel parameters
> They are called sysctl. See Documentation/sysctl/ in kernel
sources.
» Example
echo 3 > /proc/sys/vm/drop_caches

https://kernel.org/doc/Documentation/sysctl/

> The sysfs filesystem is a feature integrated in the 2.6 Linux
kernel

> It allows to represent in user space the vision that the kernel
has of the buses, devices and drivers in the system

» It is useful for various user space applications that need to list
and query the available hardware, for example udev or mdev.

» All applications using sysfs expect it to be mounted in the
/sys directory

» Command to mount /sys:
mount -t sysfs nodev /sys

> $ 1s /sys/
block bus class dev devices firmware
fs kernel module power

Minimal filesystem

> In order to work, a Linux system needs at least a few applications

» An init application, which is the first user space application started
by the kernel after mounting the root filesystem
» The kernel tries to run /shin/init, /bin/init, /etc/init
and /bin/sh.
> In the case of an initramfs, it will only look for /init. Another
path can be supplied by the rdinit kernel argument.
» If none of them are found, the kernel panics and the boot
process is stopped.
» The init application is responsible for starting all other user
space applications and services
> A shell, to implement scripts, automate tasks, and allow a user to
interact with the system

» Basic Unix applications, to copy files, move files, list files
(commands like mv, cp, mkdir, cat, etc.)

» These basic components have to be integrated into the root
filesystem to make it usable

()
Bootloader
L Loads the kernel to RAM and starts it)
()
Kernel
Initializes hardware devices and kernel subsystems
Mounts the root filesystem indicated by root=
Starts the init application, /sbin/init by default
(N J/
(- N N
/sbin/init
L Starts other user space services and applications)
|
v v
(A (
Shell Other applications
A\ J A\
Root filesystem

Time to start the practical lab!
» Know how to start-stop daemons
> Modify shell scripts

» Add a program to the initialization
system

Bootloader

Loads the initramfs archive to RAM (if separate)
Loads the kernel to RAM and starts it

v

Kernel

Initializes hardware devices and kernel subsystems
Extracts the initramfs archive to the file cache
Starts the /init executable if found
(Y)
/init

Starts early user space commands
(show splashscreen, start time critical application...)
Loads drivers needed to access the final root filesystem
Mounts the root filesystem and switches to it

\ J

L initra|mfs)
- \ 4 N)
| /sbin/init |
L Regular system startup)

L Root filesystem)

Embedded Linux

system
development

Embedded Linux
Experts

Savoir-faire Linux

» Using open-source components
» Tools for the target device

» Networking
System utilities
Language interpreters
Audio, video and multimedia
Graphical toolkits
Databases
Web browsers

vV VY VY VY VvYY

» System building

Leveraging open-source components
in an Embedded Linux system

» One of the advantages of embedded Linux is the wide range
of third-party libraries and applications that one can leverage
in its product

» They are freely available, freely distributable, and thanks to
their open-source nature, they can be analyzed and modified
according to the needs of the project

» However, efficiently re-using these components is not always
easy. One must:
» Find these components
Choose the most appropriate ones
Cross-compile them
Integrate them in the embedded system and with the other
applications

v vy

> Free Software Directory
http://directory.fsf.org

» Look at other embedded Linux products, and see what their
components are

» Look at the list of software packaged by embedded Linux
build systems

» These are typically chosen for their suitability to embedded
systems

» Ask the community or Google

» This presentation will also feature a list of components for
common needs

http://directory.fsf.org

Not all free software components are necessarily good to re-use.
One must pay attention to:

» Vitality of the developer and user communities. This vitality
ensures long-term maintenance of the component, and
relatively good support. It can be measured by looking at the
mailing-list traffic and the version control system activity.

» Quality of the component. Typically, if a component is
already available through embedded build systems, and has a
dynamic user community, it probably means that the quality is
relatively good.

» License. The license of the component must match your
licensing constraints. For example, GPL libraries cannot be
used in proprietary applications.

» Technical requirements. Of course, the component must
match your technical requirements. But don't forget that you
can improve the existing components if a feature is missing!

» All software that are under a free software license give four
freedoms to all users

» Freedom to use

Freedom to study

Freedom to copy

Freedom to modify and distribute modified copies

v vYyy

» See http://www.gnu.org/philosophy/free-sw.html for a
definition of Free Software

» Open Source software, as per the definition of the Open
Source Initiative, are technically similar to Free Software in
terms of freedoms

» See http://www.opensource.org/docs/osd for the definition
of Open Source Software

http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org/docs/osd

> Free Software licenses fall in two main categories

» The copyleft licenses
» The non-copyleft licenses

» The concept of copyleft is to ask for reciprocity in the
freedoms given to a user.
» The result is that when you receive a software under a

copyleft free software license and distribute modified versions
of it, you must do so under the same license

» Same freedoms to the new users
» It's an incentive to contribute back your changes instead of
keeping them secret

> Non-copyleft licenses have no such requirements, and
modified versions can be kept proprietary, but they still require
attribution

» GNU General Public License
» Covers around 55% of the free software projects
» Including the Linux kernel, Busybox and many applications

> Is a copyleft license

» Requires derivative works to be released under the same license
» Programs linked with a library released under the GPL must
also be released under the GPL

» Some programs covered by version 2 (Linux kernel, Busybox
and others)

> More and more programs covered by version 3, released in
2007

» Major change for the embedded market: the requirement that
the user must be able to run the modified versions on the
device, if the device is a consumer device

» No obligation when the software is not distributed

> You can keep your modifications secret until the product
delivery

» It is then authorized to distribute binary versions, if one of the
following conditions is met:

» Convey the binary with a copy of the source on a physical
medium

» Convey the binary with a written offer valid for 3 years that
indicates how to fetch the source code

» Convey the binary with the network address of a location
where the source code can be found

» See section 6. of the GPL license

> In all cases, the attribution and the license must be preserved
» See section 4. and 5.

» GNU Lesser General Public License

» Covers around 10% of the free software projects

> A copyleft license

» Modified versions must be released under the same license

» But, programs linked against a library under the LGPL do not
need to be released under the LGPL and can be kept
proprietary.

» However, the user must keep the ability to update the library
independently from the program. Dynamic linking is the
easiest solution. Statically linked executables are only possible
if the developer provides a way to relink with an update (with
source code or linkable object files).

> Used instead of the GPL for most of the libraries, including
the C libraries

» Some exceptions: MySQL, or Qt <= 4.4
» Also available in two versions, v2 and v3

» You make modifications to the Linux kernel (to add drivers or
adapt to your board), to Busybox, U-Boot or other GPL
software

» You must release the modified versions under the same license,
and be ready to distribute the source code to your customers
» You make modifications to the C library or any other LGPL
library
» You must release the modified versions under the same license

> You create an application that relies on LGPL libraries
» You can keep your application proprietary, but you must link
dynamically with the LGPL libraries
» You make modifications to a non-copyleft licensed software

» You can keep your modifications proprietary, but you must still
credit the authors

> A large family of non-copyleft licenses that are relatively
similar in their requirements

» A few examples

Apache license (around 4%)

» BSD license (around 6%)

> MIT license (around 4%)

X11 license

Artistic license (around 9 %)

v

v

\4

Copyright (c) <year>, <copyright holder>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Neither the name of the <organization> nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

*

*

*

[...]

» Most of the free software projects are covered by 10
well-known licenses, so it is fairly easy for the majority of
project to get a good understanding of the license

» Otherwise, read the license text

» Check Free Software Foundation's opinion
http://www.fsf.org/licensing/licenses/

» Check Open Source Initiative's opinion
http://www.opensource.org/licenses

http://www.fsf.org/licensing/licenses/
http://www.opensource.org/licenses

> Free Software is not public domain software, the distributors
have obligations due to the licenses

» Before using a free software component, make sure the license
matches your project constraints

» Make sure to keep a complete list of the free software
packages you use, the original version numbers you used, and
to keep your modifications and adaptations well-separated
from the original version.

» Buildroot and Yocto Project can generate this list for you!

» Conform to the license requirements before shipping the
product to the customers.

> Free Software licenses have been enforced successfully in
courts. Organizations which can help:

» Software Freedom Law Center,
http://www.softwarefreedom.org/
» Software Freedom Conservancy, http://sfconservancy.org/

> Ask your legal department!
saoir-Faire Linux swoirfairelinx.con o gy

http://www.softwarefreedom.org/
http://sfconservancy.org/

» When integrating existing open-source components in your
project, it is sometimes needed to make modifications to them

» Better integration, reduced footprint, bug fixes, new features,
etc.

> Instead of mixing these changes, it is much better to keep
them separate from the original component version

» If the component needs to be upgraded, easier to know what
modifications were made to the component

» If support from the community is requested, important to
know how different the component we're using is from the
upstream version

» Makes contributing the changes back to the community
possible

> It is even better to keep the various changes made on a given
component separate
» Easier to review and to update to newer versions

» The simplest solution is to use Quilt

» Quilt is a tool that allows to maintain a stack of patches over
source code

» Makes it easy to add, remove modifications from a patch, to
add and remove patches from stack and to update them

» The stack of patches can be integrated into your version
control system

» https://savannah.nongnu.org/projects/quilt/

> Another solution is to use a version control system

» Import the original component version into your version
control system
» Maintain your changes in a separate branch

https://savannah.nongnu.org/projects/quilt/

Tools for the target device:
Networking

http://matt.ucc.asn.au/dropbear/dropbear.html

» Very small memory footprint ssh server for embedded systems

» Satisfies most needs. Both client and server!

» Size: 110 KB, statically compiled with uClibc on i386.
(OpenSSH client and server: approx 1200 KB, dynamically
compiled with glibc on i386)

> Useful to:

» Get a remote console on the target device
» Copy files to and from the target device (scp or
rsync -e ssh).

» An alternative to OpenSSH, used on desktop and server
systems.

http://matt.ucc.asn.au/dropbear/dropbear.html

Many network enabled devices can just have a network interface

» Examples: modems / routers, IP cameras, printers...

» No need to develop drivers and applications for computers
connected to the device. No need to support multiple
operating systems!

» Just need to develop static or dynamic HTML pages (possibly
with powerful client-side JavaScript).

Easy way of providing access to device information and
parameters.

» Reduced hardware costs (no LCD, very little storage space
needed)

» BusyBox http server. http://busybox.net
» Tiny: only adds 9 K to BusyBox (dynamically
linked with glibc on i386, with all features
enabled.)
» Sufficient features for many devices with a web
interface, including CGlI, http authentication

and script support (like PHP, with a separate /

interpreter).
LIGHTTPD

> License: GPL
» Other possibilities: lightweight servers like Boa, fy ight
thttpd, lighttpd, nginx, etc

» Some products are using Node.js, which is
lightweight enough to be used.

http://busybox.net

» avahi is an implementation of Multicast DNS Service
Discovery, that allows programs to publish and discover
services on a local network

» bind, a DNS server

> iptables, the user space tools associated to the Linux firewall,
Netfilter

» iw and wireless tools, the user space tools associated to
Wireless devices

» netsnmp, implementation of the SNMP protocol

» openntpd, implementation of the Network Time Protocol, for
clock synchronization

» openssl, a toolkit for SSL and TLS connections

> pppd, implementation of the Point to Point Protocol, used
for dial-up connections

» samba, implements the SMB and CIFS protocols, used by
Windows to share files and printers

» coherence, a UPnP/DLNA implementation

» vsftpd, proftpd, FTP servers

Tools for the target device: System
utilities

» dbus, an inter-application object-oriented communication bus
» gpsd, a daemon to interpret and share GPS data
» libraw1394, raw access to Firewire devices

> libusb, a user space library for accessing USB devices without
writing an in-kernel driver

» Utilities for kernel subsystems: i2c-tools for 12C, input-tools
for input, mtd-utils for MTD devices, usbutils for USB
devices

Tools for the target device: Language
Interpreters

> Interpreters for the most common scripting languages are
available. Useful for

» Application development

» Web services development

» Scripting
» Languages supported

> Lua
> Python
> Perl
> Ruby
» TCL
» PHP

Tools for the target device: Audio,
video and multimedia

» GStreamer, a multimedia framework

» Allows to decode/encode a wide variety of codecs.
» Supports hardware encoders and decoders through plugins,
proprietary/specific plugins are often provided by SoC vendors.

» alsa-lib, the user space tools associated to the ALSA sound
kernel subsystem

» Directly using encoding and decoding libraries, if you decide
not to use GStreamer:
libavcodec, libogg, libtheora, libvpx, flac, libvorbis, libmad,
libsndfile, speex, etc.

Tools for the target device: Graphical
toolkits

Graphical toolkits: “Low-level”
solutions and layers

» Stand-alone simplified version of the X server,
for embedded systems
» Formerly know as Tiny-X
» Kdrive is integrated in the official X.org server

» Works on top of the Linux frame buffer, thanks
to the Xfbdev variant of the server
» Real X server

» Fully supports the X11 protocol: drawing, input
event handling, etc.

> Allows to use any existing X11 application or
library

> Actively developed and maintained.
> X11 license

> http://www.x.org

http://www.x.org

Application

Application

Toolkit

X.org KDrive server <—>» Compositor

fbdev

fb driver

Kernel

Hardware

» Can be directly programmed using Xlib / XCB
» Low-level graphic library, rarely used

> Or, usually used with a toolkit on top of it
Gtk

Qt

Enlightment Foundation Libraries
Others: Fltk, WxEmbedded, etc

v

v vy

> Intended to be a simpler replacement for X

» Wayland is a protocol for a compositor to talk to
its clients as well as a C library implementation

of that protocol.

> Weston: a minimal and fast reference
implementation of a Wayland compositor, and is
suitable for many embedded and mobile use
cases.

» Not fully deployed yet. However, the ports of
Gtk and Qt to Wayland are complete.

> http://wayland.freedesktop.org/

http://wayland.freedesktop.org/

Application

Application

Toolkit

Wayland compositor

/\

KMS evdev |

Kernel

Hardware

Graphical toolkits: “High-level”
solutions

» The famous toolkit, providing
widget-based high-level APIs to develop

graphical applications Gtk

» Standard APl in C, but bindings exist for \ 4
various languages: C++, Python, etc. X.org KDrive

» Works on top of X.org. \ 4

» No windowing system, a lightweight Kernel
window manager needed to run several \ Z
applications. Possible solution: Matchbox. Hardware

» License: LGPL
> http://www.gtk.org

http://www.gtk.org

Glib, core infrastructure

v

» Object-oriented infrastructure GObject
» Event loop, threads, asynchronous queues, plug-ins, memory
allocation, 1/0 channels, string utilities, timers, date and time,
internationalization, simple XML parser, regular expressions
» Data types: memory slices and chunks, linked lists, arrays,
trees, hash tables, etc.
» Pango, internationalization of text handling
» ATK, accessibility toolkit
» Cairo, vector graphics library
> Gtk+, the widget library itself

The Gtk stack is a complete framework to develop applications

v

Contacts

!

n | Andreas Nilsson
| GNOME

Home = 187643379865

W Work E +11234567890

Add Phone Number

i Work -7 andreas@home.net
i Work =7 andreas@work.com

Add E-Mail Address

10 GNOME Street

~Tv

Openmoko phone interface

Gtk examples (2)

o = Home PR)TN

Google « > [l ©BBCWorld Busine..

Maemo tablet / phone interface
GTK is losing traction, however: Mer, the descendent of Maemo,
is now implemented in EFL (see next slides).

Savoir-Faire Linux savoirfairelinux.com 298/460

» The other famous toolkit, providing widget-based high-level
APIs to develop graphical applications
» Implemented in C++
» the C++ library is required on the target system
» standard APl in C++, but with bindings for other languages
» Works either on top of

» Framebuffer
» X11
» Wayland

» Qt is more than just a graphical toolkit, it also offers a
complete development framework: data structures, threads,
network, databases, XML, etc.

» See a presentation Qt for non graphical applications
presentation: http://j.mp/W4PK85

» Qt Embedded has an integrated windowing system, allowing
several applications to share the same screen

» Very well documented

» Since version 4.5, available under the LGPL, allowing
proprietary applications

http://j.mp/W4PK85

NETFLIX

Qt on the Netflix player by Roku

Qt on the Dash Express
navigation system

» Enlightenment Foundation Libraries (EFL)
» Very powerful. Supported by Samsung, Intel and Free.fr.
» Work on top of X or Wayland.
> http://www.enlightenment.org/p.php?p=about/efl

http://www.enlightenment.org/p.php?p=about/efl

Tools for the target device:
Databases

http://www.sqlite.org

» SQLite is a small C library that implements a self-contained,
embeddable, lightweight, zero-configuration SQL database
engine

» The database engine of choice for embedded Linux systems

» Can be used as a normal library
» Can be directly embedded into a application, even a
proprietary one since SQLite is released in the public domain

http://www.sqlite.org

Tools for the target device: Web
browsers

http://webkit.org/ =
» Web browser engine. Application framework that @

can be used to develop web browsers.

> License: portions in LGPL and others in BSD.
Proprietary applications allowed.

» Used by many web browsers: Safari, iPhone and
Android default browsers ... Google Chrome now
uses a fork of its WebCore component). Used by
e-mail clients too to render HTML:
http://trac.webkit.org/wiki/
Applications%20using%20WebKit

» Multiple graphical back-ends: Qt4, GTK, EFL...

» You could use it to create your custom browser.

http://webkit.org/
http://trac.webkit.org/wiki/Applications%20using%20WebKit
http://trac.webkit.org/wiki/Applications%20using%20WebKit

System building

» Goal

> Integrate all the software
components, both third-party
and in-house, into a working root
filesystem

> It involves the download,
extraction, configuration,
compilation and installation of all
components, and possibly fixing
issues and adapting configuration
files

» Several solutions
» Manually
» System building tools Penguin picture: http://bit.1ly/1Pwbklz
» Distributions or ready-made
filesystems

http://bit.ly/1PwDklz

» Manually building a target system involves downloading,
configuring, compiling and installing all the components of the
system.

> All the libraries and dependencies must be configured,
compiled and installed in the right order.

» Sometimes, the build system used by libraries or applications
is not very cross-compile friendly, so some adaptations are
necessary.

» There is no infrastructure to reproduce the build from scratch,
which might cause problems if one component needs to be
changed, if somebody else takes over the project, etc.

» Manual system building is not recommended for production
projects

> However, using automated tools often requires the developer
to dig into specific issues

» Having a basic understanding of how a system can be built
manually is therefore very useful to fix issues encountered with
automated tools

> A basic root file system needs at least

» A traditional directory hierarchy, with /bin, /etc, /1ib, /root,
/usr/bin, /usr/lib, /usr/share, /usr/sbin, /var, /sbin

> A set of basic utilities, providing at least the init program, a
shell and other traditional Unix command line tools. This is
usually provided by Busybox

» The C library and the related libraries (thread, math, etc.)
installed in /1ib

» A few configuration files, such as /etc/inittab, and
initialization scripts in /etc/init.d

» On top of this foundation common to most embedded Linux
system, we can add third-party or in-house components

» The system foundation, Busybox and C library, are the core of
the target root filesystem

» However, when building other components, one must
distinguish two directories

» The target space, which contains the target root filesystem,
everything that is needed for execution of the application

» The build space, which will contain a lot more files than the
target space, since it is used to keep everything needed to
compile libraries and applications. So we must keep the
headers, documentation, and other configuration files

Each open-source component comes with a mechanism to
configure, compile and install it
> A basic Makefile

» Need to read the Makefile to understand how it works and
how to tweak it for cross-compilation

v

A build system based on the Autotools
» As this is the most common build system, we will study it in
details
CMake, http://www.cmake.org/

» Newer and simpler than the autotools. Used by large projects
such as KDE or Second Life

v

v

Scons, http://www.scons.org/

v

Waf, http://code.google.com/p/waf/

v

Other manual build systems

http://www.cmake.org/
http://www.scons.org/
http://code.google.com/p/waf/

» A family of tools, which associated together form a complete
and extensible build system
» autoconf is used to handle the configuration of the software
package
» automake is used to generate the Makefiles needed to build
the software package
» pkgconfig is used to ease compilation against already installed
shared libraries
» libtool is used to handle the generation of shared libraries in a
system-independent way

> Most of these tools are old and relatively complicated to use,
but they are used by a majority of free software packages
today. One must have a basic understanding of what they do
and how they work.

I autoconf I
> configure

configure.in

I ; config.h.in I ; config.h
autoheader
./configure
I automake I -~
Makefile.am P Makefile.in > Makefile
Written by the Generated by the developer Generated by the user

developer I using the autotools by running the ./configure script

> Files written by the developer
» configure.in describes the configuration options and the
checks done at configure time
» Makefile.am describes how the software should be built

» The configure script and the Makefile.in files are
generated by autoconf and automake respectively.
» They should never be modified directly
» They are usually shipped pre-generated in the software
package, because there are several versions of autoconf and
automake, and they are not completely compatible

» The Makefile files are generated at configure time, before
compiling
» They are never shipped in the software package.

» The traditional steps to configure and compile an autotools
based package are

» Configuration of the package
./configure

» Compilation of the package
make

> Installation of the package
make install

» Additional arguments can be passed to the ./configure
script to adjust the component configuration.

» Only the make install needs to be done as root if the
installation should take place system-wide

» For cross-compilation, things are a little bit more complicated.

> At least some of the environment variables AR, AS, LD, NM, CC,
GCC, CPP, CXX, STRIP, OBJCOPY must be defined to point to
the proper cross-compilation tools. The host tuple is also by
default used as prefix.

» configure script arguments:

» --host: mandatory but a bit confusing. Corresponds to the
target platform the code will run on. Example:
--host=arm-1linux

» --build: build system. Automatically detected.

» --target is only for tools generating code.

» It is recommended to pass the --prefix argument. It defines
from which location the software will run in the target
environment. Usually, /usr is fine.

> If one simply runs make install, the software will be
installed in the directory passed as --prefix. For
cross-compiling, one must pass the DESTDIR argument to
specify where the software must be installed.

» Making the distinction between the prefix (as passed with
--prefix at configure time) and the destination directory (as
passed with DESTDIR at installation time) is very important.

» Example:

export PATH=/usr/local/arm-linux/bin:$PATH
export CC=arm-linux-gcc

export STRIP=arm-linux-strip

./configure --host=arm-linux --prefix=/usr
make

make DESTDIR=$HOME/work/rootfs install

» The autotools based software packages provide both a
install and install-strip make targets, used to install the
software, either stripped or unstripped.

» For applications, the software is usually installed in
<prefix>/bin, with configuration files in <prefix>/etc and
data in <prefix>/share/<application>/

» The case of libraries is a little more complicated:

» In <prefix>/1ib, the library itself (a .so.<version>), a few
symbolic links, and the libtool description file (a .1a file)
The pkgconfig description file in <prefix>/lib/pkgconfig
Include files in <prefix>/include/

Sometimes a <libname>-config program in <prefix>/bin

Documentation in <prefix>/share/man or

<prefix>/share/doc/

vy vVVvYy

Contents of usr/1ib after installation of libpng and zlib

» libpng libtool description files
./1ib/1ibpng12.1a
./1ib/1libpng.la -> libpngl2.la
libpng static version
./1ib/1ibpngi2.a
./1lib/1libpng.a -> libpngl2.a

v

v

libpng dynamic version
./1ib/1libpng.s0.3.32.0
./1ib/1ibpngl12.s0.0.32.0
./1ib/1libpngl12.s0.0 -> libpngl2.s0.0.32.0
./1ib/1ibpngl2.so -> libpngl12.s0.0.32.0
./1ib/1libpng.so -> libpngl2.so
./1ib/1libpng.so0.3 -> libpng.so0.3.32.0
libpng pkg-config description files
./1lib/pkgconfig/libpng12.pc
./1lib/pkgconfig/libpng.pc -> libpngl2.pc

v

v

zlib dynamic version
./1ib/1ibz.s0.1.2.3
./1ib/1libz.so -> libz.s0.1.2.3
./1ib/1libz.so0.1 -> libz.s0.1.2.3

» From all these files, everything except documentation is
necessary to build an application that relies on libpng.

» These files will go into the build space
» However, only the library .so binaries in <prefix>/1ib and
some symbolic links are needed to execute the application on
the target.
» Only these files will go in the target space

» The build space must be kept in order to build other
applications or recompile existing applications.

» pkg-config is a tool that allows to query a small database to
get information on how to compile programs that depend on
libraries

» The database is made of .pc files, installed by default in
<prefix>/lib/pkgconfig/.

» pkg-config is used by the configure script to get the library
configurations

> It can also be used manually to compile an application:
arm-linux-gcc -o test test.c $(pkg-config --libs --
cflags thelib)

» By default, pkg-config looks in /usr/lib/pkgconfig for the
*.pc files, and assumes that the paths in these files are
correct.

» PKG_CONFIG_PATH allows to set another location for the *.pc
files and PKG_CONFIG_SYSROOT_DIR to prepend a prefix to the
paths mentioned in the .pc files.

» When compiling an application or a library that relies on other
libraries, the build process by default looks in /usr/1ib for
libraries and /usr/include for headers.

> The first thing to do is to set the CFLAGS and LDFLAGS
environment variables:
export CFLAGS=-I/my/build/space/usr/include/
export LDFLAGS=-L/my/build/space/usr/lib

» The libtool files (.1a files) must be modified because they
include the absolute paths of the libraries:
- libdir='/usr/lib’
+ libdir="'/my/build/space/usr/1ib’

» The PKG_CONFIG_PATH environment variable must be set to
the location of the .pc files and the PKG_CONFIG_SYSROOT_DIR
variable must be set to the build space directory.

» Different tools are available to automate the process of
building a target system, including the kernel, and sometimes
the toolchain.

» They automatically download, configure, compile and install
all the components in the right order, sometimes after
applying patches to fix cross-compiling issues.

» They already contain a large number of packages, that should
fit your main requirements, and are easily extensible.

» The build becomes reproducible, which allows to easily change
the configuration of some components, upgrade them, fix
bugs, etc.

Large choice of tools

>

Buildroot, developed by the community
http://www.buildroot.net See our dedicated course and training
materials: http://free-electrons.com/training/buildroot/

PTXdist, developed by Pengutronix
http://pengutronix.de/software/ptxdist/

OpenWRT, originally a fork of Buildroot for wireless routers, now a
more generic project
http://www.openwrt.org

LTIB. Good support for Freescale boards, but small community
http://1tib.org/

OpenEmbedded, more flexible but also far more complicated
http://www.openembedded.org, its industrialized version Yocto
Project and vendor-specific derivatives such as Arago.

See our dedicated course and training materials:
http://free-electrons.com/training/yocto/.

Vendor specific tools (silicon vendor or embedded Linux vendor)

http://www.buildroot.net
http://free-electrons.com/training/buildroot/
http://pengutronix.de/software/ptxdist/
http://www.openwrt.org
http://ltib.org/
http://www.openembedded.org
http://free-electrons.com/training/yocto/

> Allows to build a toolchain, a root filesystem image with many
applications and libraries, a bootloader and a kernel image

» Or any combination of the previous items

» Supports building uClibc, glibc and musl toolchains, either
built by Buildroot, or external

» Over 1200+ applications or libraries integrated, from basic
utilities to more elaborate software stacks: X.org, GStreamer,
Qt, Gtk, WebKit, Python, PHP, etc.

» Good for small to medium embedded systems, with a fixed set
of features

» No support for generating packages (.deb or .ipk)
» Needs complete rebuild for most configuration changes.

» Active community, releases published every 3 months.

» Configuration takes place through
a xconfig interface similar to the
kernel
make menuconfig

> Allows to define

» Architecture and specific CPU

» Toolchain configuration

» Set of applications and libraries
to integrate

> Filesystem images to generate

» Kernel and bootloader
configuration

» Build by just running
make

» A package allows to integrate a user application or library to
Buildroot

» Each package has its own directory (such as
package/gqview). This directory contains:

» A Config.in file (mandatory), describing the configuration
options for the package. At least one is needed to enable the
package. This file must be sourced from package/Config.in

» A gqview.mk file (mandatory), describing how the package is
built.

» Patches (optional). Each file of the form gqview-.patch will
be applied as a patch.

» For a simple package with a single configuration option to
enable/disable it, the Config.in file looks like:

config BR2_PACKAGE_GQVIEW
bool "gqgview”
depends on BR2_PACKAGE_LIBGTK2
help
GQview is an image viewer for Unix operating systems

http://prdownloads.sourceforge.net/gqview

» It must be sourced from package/Config.in:

source "package/ggview/Config.in"

» Create the gqview.mk file to describe the build steps

GQVIEW_VERSION = 2.1.5

GQVIEW_SOURCE = gqview-$(GQVIEW_VERSION).tar.gz
GQVIEW_SITE = http://prdownloads.sourceforge.net/gqview
GQVIEW_DEPENDENCIES = host-pkgconf libgtk2
GQVIEW_CONF_ENV = LIBS="-1m"

$(eval $(autotools-package))

» The package directory and the prefix of all variables must be
identical to the suffix of the main configuration option
BR2_PACKAGE_GQVIEW

» The autotools-package infrastructure knows how to build
autotools packages. A more generic generic-package
infrastructure is available for packages not using the autotools
as their build system.

» The most versatile and powerful embedded Linux build system

» A collection of recipes (.bb files)
> A tool that processes the recipes: bitbhake

> Integrates 2000+ application and libraries, is highly
configurable, can generate binary packages to make the
system customizable, supports multiple versions/variants of
the same package, no need for full rebuild when the
configuration is changed.

» Configuration takes place by editing various configuration files

» Good for larger embedded Linux systems, or people looking
for more configurability and extensibility

» Drawbacks: very steep learning curve, very long first build.

Debian GNU/Linux, http://www.debian.org @ deb.
: Ian

> Provides the easiest environment for quickly building
prototypes and developing applications. Countless
runtime and development packages available.

» But probably too costly to maintain and
unnecessarily big for production systems.

> Available on ARM (armel, armhf, arm64), MIPS and
PowerPC architectures

> Software is compiled natively by default.

http://www.debian.org

Fedora 6
» http://fedoraproject.org/wiki/ fedorom :
Architectures/ARM
» Supported on various recent ARM boards

>

>

(such as Beaglebone Black). Pidora
supports Raspberry Pi too.

Supports QEMU emulated ARM boards
too (Versatile Express board)

Shipping the same version as for desktops!

Ubuntu .t): Ubuntu

Had some releases for ARM mobile
multimedia devices, but stopped at
version 12.04. Now focusing on ARM
servers only.

http://fedoraproject.org/wiki/Architectures/ARM
http://fedoraproject.org/wiki/Architectures/ARM

Distributions designed for specific types of devices

» Android: http://www.android.com/
Google's distribution for phones and tablet PCs.
Except the Linux kernel, very different user space
than other Linux distributions. Very successful, lots '
of applications available (many proprietary).

-3
|

» Angstrom:
http://www.angstrom-distribution.org/ o -
Produces nightly built images for a nice list of ARM Angstrom
and x86 systems (see http:
//dominion.thruhere.net/angstrom/nightlies/

http://www.android.com/
http://www.angstrom-distribution.org/
http://dominion.thruhere.net/angstrom/nightlies/
http://dominion.thruhere.net/angstrom/nightlies/

Not real distributions you can download. Instead, they
implement middleware running on top of the Linux kernel
and allowing to develop applications.

> Mer: http://merproject.org/
Fork from the Meego project.
Targeting mobile devices.
Supports x86, ARM and MIPS.
See http://en.wikipedia.org/wiki/Mer_
(software_distribution)

> Tizen: https://www.tizen.org/
Targeting smartphones, tablets, netbooks, smart TVs
and In Vehicle Infotainment devices.
Supported by big phone manufacturers and operators
HTMLS5 base application framework.
See http://en.wikipedia.org/wiki/Tizen

http://merproject.org/
http://en.wikipedia.org/wiki/Mer_(software_distribution)
http://en.wikipedia.org/wiki/Mer_(software_distribution)
https://www.tizen.org/
http://en.wikipedia.org/wiki/Tizen

Time to start the practical lab!

» Configure Buildroot for a board

v

Install Buildroot package
» Generate a firmware
Run it on the Boneblack

v

Embedded Linux
application
development

Embedded Linux
Experts

Savoir-faire Linux

» Application development
» Developing applications on embedded Linux
» Building your applications

» Source management
> Integrated development environments (IDEs)
» Version control systems

» Debugging and analysis tools

> Debuggers
» Memory checkers
> System analysis

Developing applications on embedded
Linux

» An embedded Linux system is just a normal Linux system,
with usually a smaller selection of components

> In terms of application development, developing on embedded
Linux is exactly the same as developing on a desktop Linux
system

> All existing skills can be re-used, without any particular
adaptation

> All existing libraries, either third-party or in-house, can be
integrated into the embedded Linux system
» Taking into account, of course, the limitation of the embedded
systems in terms of performance, storage and memory

The default programming language for system-level
application in Linux is usually C

» The C library is already present on your system, nothing to add

v

v

C++ can be used for larger applications
» The C++ library must be added to the system
» Some libraries, including Qt, are developed in C++ so they
need the C+4+ library on the system anyway

v

Scripting languages can also be useful for quick application
development, web applications or scripts
» But they require an interpreter on the embedded system and
have usually higher memory consumption and slightly lower
performance

v

Languages: Python, Perl, Lua, Ada, Fortran, etc.

» For many applications, the C library already provides a
relatively large set of features

» file and device 1/0, networking, threads and synchronization,
inter-process communication

» Thoroughly described in the glibc manual, or in any Linux
system programming book

» However, the API carries a lot of history and is not necessarily
easy to grasp for new comers

» Therefore, using a higher level framework, such as Qt or the
Gtk stack, might be a good idea
» These frameworks are not only graphical libraries, their core is
separate from the graphical part
» But of course, these libraries have some memory and storage
footprint, in the order of a few megabytes

» For simple applications that do not need to be really portable
or provide compile-time configuration options, a simple
Makefile will be sufficient

» For more complicated applications, or if you want to be able
to run your application on a desktop Linux PC and on the
target device, using a build system is recommended

» autotools is ancient, complicated but very widely used.
» We recommend to invest in CMake instead: modern, simpler,
smaller but growing user base.

» The QT library is a special case, since it comes with its own
build system for applications, called gmake.

» Case of an application that only uses the C library, contains
two source files and generates a single binary

CROSS_COMPILE?=arm-1inux-
CC=$(CROSS_COMPILE)gcc
OBJS=foo0.0 bar.o

all: foobar

foobar: $(0BJS)
$(CC) -o $e@ s+

clean:
$(RM) -f foobar $(0BJS)

» Case of an application that uses the Glib and the GPS libraries

CROSS_COMPILE?=arm-1linux-
LIBS=1libgps glib-2.0
OBJS=foo0.0 bar.o

CC=$(CROSS_COMPILE)gcc

CFLAGS=$(shell pkg-config --cflags $(LIBS))
LDFLAGS=$(shell pkg-config --libs $(LIBS))
all: foobar

foobar: $(0BJS)
$(CC) -o $@ $" $(LDFLAGS)

clean:
$(RM) -f foobar $(0BJS)

Integrated Development
Environments (IDE)

http://kdevelop.org Jz;%melop

>

>

>

A full featured IDE!
License: GPL

Supports many languages: Ada, C, C++,
Database, Java, Perl, PHP, Python, Ruby, Shell

Supports many kinds of projects: KDE, but also
GTK, Gnome, kernel drivers, embedded (Opie)...

Many features: editor, syntax highlighting, code
completion, compiler interface, debugger
interface, file manager, class browser...

Nice overview:
http://en.wikipedia.org/wiki/Kdevelop

http://kdevelop.org
http://en.wikipedia.org/wiki/Kdevelop

Eile Edit View Project B Debug Bookmarks Window Tools

fhomeduke/playte s

Settings

BEOONEB S+~ NNREQ

Qe

|[(no function) -]+ @ SQ Wos s
X ymainb | tymainifacesb | prefb | maintb |
] vt warh i~ i
description = I18N_NOOP("A KDE Application") (]
version = "0.1"
riable |value 3 options = [["+[URL]", I18N_NOOP("Document to open”), "
& app #=<KDEz:Application: 5 e . o . .
S children ‘Artay (5 element(s) about = KDE: :AboutData.new('trynain’, 118N NOOP('Irykain'),
et o KDE: :AboutData.License_GPL, "(C) 2005
- § about.addAuthor("Richard Dale", nil, "Richard Dale@tipitin.
ndLineArgs.init(ARGV, about)
‘mdLineArgs.addCndLineOptions(options)
app = KDE::Application.new
metaobject # register ourselves as a deop client
name | app.deopClient().registeras(app.name, false)
EH Lo Hash (1 element(s) # see if we are starting with session management
£ ["aboutToQuit)"] Armay (1 element(s)) B if app.restored?
=10 #<Qr:Connection; 0x300..., RESTORE (TryMain)
memberName “shutDown()" LI |8 e1se
memberType SIGNAL # no session.. just start up normally
object #<KDE::Application:(args = KDE::CndLineArgs.parsedArgs
args nil o if args.count == 0
description “A KDE Application” widget = TryMain.new
I] widget. show
to watch: B else
= g £ for i in 0...args.count do @
[-] ad i
==|] | 0]
"%
| Application ‘ _\Diff ‘ £ Messages ‘ (Find in Files ‘ |4, Replace ‘ & Konsole ‘ 3 Breakpoints ‘ 2} CTAGS ‘DFrﬂmeSIack 4|
x
11 #<T run> h:22
th:22

Ruby debugger

http://www.eclipse.org/
> An extensible, plug-in based software
development kit, typically used for creating IDEs.

» Supported by the Eclipse foundation, a
non-profit consortium of major software industry
vendors (IBM, Intel, Borland, Nokia, Wind
River, Zend, Computer Associates...).

» Free Software license (Eclipse Public License).
Incompatible with the GPL.

» Supported platforms: GNU/Linux, Unix,
Windows

Extremely popular: created a lot of attraction.

http://www.eclipse.org/

» Eclipse is actually a platform composed of many projects:
http://www.eclipse.org/projects/

» Some projects are dedicated to integrating into Eclipse
features useful for embedded developers (cross-compilation,
remote development, remote debugging, etc.)

» The platform is used by major embedded Linux software
vendors for their (proprietary) system development kits:
MontaVista DevRocket, TimeSys TimeStorm, Wind River
Workbench, Sysgo ELinQOS.

> Used by free software build systems and development
environments too, such as Yocto and Buildroot.

Eclipse is a huge project. It would require an entire training session!

http://www.eclipse.org/projects/

» Many embedded Linux developers
simply use Vim or Emacs. They
can integrate with debuggers,
source code browsers such as
cscope, offer syntax highlighting
and more.

» Geany is an easy-to-use graphical
code editor.

» CodeBlocks is also quite popular,
since it's also available on the
Windows platform.

All these editors are available in most
Linux distributions, simply install them
and try them out!

Version control systems

Real projects can't do without them

> Allow multiple developers to contribute on the same project.
Each developer can see the latest changes from the others, or
choose to stick with older versions of some components.

> Allow to keep track of changes, and revert them if needed.

> Allow developers to have their own development branch
(branching)

» Supposed to help developers resolving conflicts with different
branches (merging)

Rely on a central repository. The most popular open-source ones:
» CVS - Concurrent Versions System
» Still quite popular in enterprise contexts. Almost no longer
exists in the open-source community.
» Should no longer be used for new projects
> http:
//en.wikipedia.org/wiki/Concurrent_Versions_System

» Subversion
» Created as a replacement of CVS, removing many of its
limitations.
» Commits on several files, proper renaming support, better
performance, etc.
» The user interface is very similar to CVS
» http://en.wikipedia.org/wiki/Subversion_(software)

http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Subversion_(software)

No longer have a central repository

» More adapted to the way the Free Software community
develops software and organizes

> Allows each developer to have a full local history of the
project, to create local branches. Makes each developer’'s work
easier.

» People get working copies from other people's working copies,
and exchange changes between themselves. Branching and
merging is made easier.

» Make it easier for new developers to join, making their own
experiments without having to apply for repository access.

» Initially designed and developed by Linus Torvalds for Linux
kernel development

» Extremely popular in the community, and used by more and
more projects (kernel, U-Boot, Barebox, uClibc, GNOME,
X.org, etc.)

» Outstanding performance, in particular in big projects

» http://en.wikipedia.org/wiki/Git_(software)

» Mercurial

» Another system, created with the same goals as Git.
» Used by some big projects too
» http://en.wikipedia.org/wiki/Mercurial

http://en.wikipedia.org/wiki/Version_control_systems#
Distributed_revision_control

http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/Mercurial
http://en.wikipedia.org/wiki/Version_control_systems#Distributed_revision_control
http://en.wikipedia.org/wiki/Version_control_systems#Distributed_revision_control

Debuggers

The GNU Project Debugger
http://www.gnu.org/software/gdb/

» The debugger on GNU/Linux, available for most
embedded architectures.

» Supported languages: C, C++, Pascal,
Objective-C, Fortran, Ada...

» Console interface (useful for remote debugging).
» Graphical front-ends available.

» Can be used to control the execution of a
program, set breakpoints or change internal
variables. You can also use it to see what a
program was doing when it crashed (by loading
its memory image, dumped into a core file).

See also http://en.wikipedia.org/wiki/Gdb

http://www.gnu.org/software/gdb/
http://en.wikipedia.org/wiki/Gdb

» A few useful GDB commands

» break foobar
puts a breakpoint at the entry of function foobar()
» break foobar.c:42
puts a breakpoint in foobar.c, line 42
» print var or print task->files[0].fd
prints the variable var, or a more complicated reference. GDB
can also nicely display structures with all their members
» continue
continue the execution
> next
continue to the next line, stepping over function calls
> step
continue to the next line, entering into subfunctions
» backtrace
display the program stack

» DDD - Data Display Debugger
http://www.gnu.org/software/ddd/
A popular graphical front-end, with advanced data plotting
capabilities.
» GDB/Insight
http://sourceware.org/insight/
From the GDB maintainers.
» KDbg
http://www.kdbg.org/
Another front-end, for the K Display Environment.

» Integration with other IDEs: Eclipse, Emacs, KDevelop, etc.

http://www.gnu.org/software/ddd/
http://sourceware.org/insight/
http://www.kdbg.org/

Remote debugging

» In a non-embedded environment, debugging takes place using
gdb or one of its front-ends.

» gdb has direct access to the binary and libraries compiled with
debugging symbols.

» However, in an embedded context, the target platform
environment is often too limited to allow direct debugging
with gdb (2.4 MB on x86).

» Remote debugging is preferred

» gdb is used on the development workstation, offering all its

features.
» gdbserver is used on the target system (only 100 KB on arm).

db

€ gdbserver
=]
B

Host

ARCH-1linux-gdb

Serial or Ethernet
connection

Target

¢

Binaries and libraries
with debugging
symbols not
stripped

gdbserver

¢

Running program
with binaries and
libraries that can be
stripped

» On the target, run a program through gdbserver.
Program execution will not start immediately.
gdbserver localhost:<port> <executable> <args>
gdbserver /dev/ttyS@Q <executable> <args>

» Otherwise, attach gdbserver to an already running program:
gdbserver --attach localhost:<port> <pid>

» Then, on the host, run the ARCH-1inux-gdb program,
and use the following gdb commands:
» To connect to the target:
gdb> target remote <ip-addr>:<port> (networking)
gdb> target remote /dev/ttySo (serial link)
» To tell gdb where shared libraries are:
gdb> set sysroot <library-path> (without 1ib/)

» When an application crashes due to a segmentation fault and
the application was not under control of a debugger, we get
no information about the crash

> Fortunately, Linux can generate a core file that contains the
image of the application memory at the moment of the crash,
and gdb can use this core file to let us analyze the state of the
crashed application

» On the target

» Use ulimit -c unlimited to enable the generation of a core
file when a crash occurs
» On the host

» After the crash, transfer the core file from the target to the
host, and run
ARCH-1linux-gdb -c core-file application-binary

Memory checkers

Detect Unintended Memory Access
http://duma.sourceforge.net/

>

>

Fork and replacement for Electric Fence

Stops your program on the exact instruction that overruns or
underruns a malloc() memory buffer.

GDB will then display the source-code line that causes the
bug.

Works by using the virtual-memory hardware to create a
red-zone at the border of each buffer - touch that, and your
program stops.

Works on any platform supported by Linux, whatever the CPU
(provided virtual memory support is available).

http://duma.sourceforge.net/

http://valgrind.org/

>

GNU GPL Software suite for debugging and
profiling programs.

Supported platforms: Linux on x86, x86_64,
ppc32, ppc64 and arm (armv7 only: Cortex A8,
A9 and A5)

Can detect many memory management and
threading bugs.

Profiler: provides information helpful to speed
up your program and reduce its memory usage.

The most popular tool for this usage. Even used
by projects with hundreds of programmers.

http://valgrind.org/

» Can be used to run any program, without the
need to recompile it.

» Example usage
valgrind --leak-check=yes 1ls -la

» Works by adding its own instrumentation to your
code and then running in on its own virtual cpu
core.

Significantly slows down execution, but still fine
for testing!

» More details on http://valgrind.org/info/

and http://valgrind.org/docs/manual/
coregrind_core.html#howworks

http://valgrind.org/info/
http://valgrind.org/docs/manual/coregrind_core.html#howworks
http://valgrind.org/docs/manual/coregrind_core.html#howworks

System analysis

System call tracer
http://sourceforge.net/projects/strace/

» Available on all GNU/Linux systems
Can be built by your cross-compiling toolchain generator.

» Even easier: drop a ready-made static binary for your
architecture, just when you need it. See
http://git.free-electrons.com/users/michael-
opdenacker/static-binaries/tree/strace

> Allows to see what any of your processes is doing:
accessing files, allocating memory...
Often sufficient to find simple bugs.

> Usage:
strace <command> (starting a new process)
strace -p <pid> (tracing an existing process)

See man strace for details.

http://sourceforge.net/projects/strace/
http://git.free-electrons.com/users/michael-opdenacker/static-binaries/tree/strace
http://git.free-electrons.com/users/michael-opdenacker/static-binaries/tree/strace

> strace cat Makefile

execve("/bin/cat", ["cat", "Makefile"], [/* 38 vars */]) = 0

brk(0) = 0x98b4000

access("/etc/Id.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f85000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=111585, ...}) = 0

mmap2(NULL, 111585, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7f69000

close(3) =0

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

open("/lib/tls/i686/cmov/libc.s0.6", O_RDONLY) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320h\1\0004\0\0\0\344"..., 512) = 512

fstat64(3, {st_mode=S_IFREG|0755, st_size=1442180, ...}) = 0

mmap2(NULL, 1451632, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7e06000

mprotect(0xb7f62000, 4096, PROT_NONE) = 0

mmap2(0xb7f63000, 12288, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x15c) = 0xb7f63000

mmap2(0xb7f66000, 9840, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb7f66000

close(3) = 0

Hint: follow the open file descriptors returned by open().
This tells you what files system calls are run on.

A tool to trace library calls used by a program and all the signals it
receives

> Very useful complement to strace, which shows only system
calls.

» Of course, works even if you don't have the sources

> Allows to filter library calls with regular expressions, or just by
a list of function names.

» Manual page: http://linux.die.net/man/1/1trace
See http://en.wikipedia.org/wiki/Ltrace for details

http://linux.die.net/man/1/ltrace
http://en.wikipedia.org/wiki/Ltrace

ltrace nedit index.html

sscanf(0x8274af1, 0x8132618, 0x8248640, Oxbfaadfe8, @) =
sprintf("const 0", "const %d", @) =
strcmp(”startScan”, "const ") = 1
strcmp(”ScanDistance”, "const ") = -1
strcmp(”const 200", "const ") =1
stremp("$list_dialog_button”, "const @'
strcmp(”$shell_cmd_status”, "const 0")
strcmp(”$read_status”, "const 0") = 1
strcmp("$search_end”, "const 0") = -
stremp(”$string_dialog_button”, "const 0") = -
strcmp(”$rangeset_list"”, "const 0") = -1
strcmp(”$calltip_ID", "const 0") = -

)

Example summary at the end of the Itrace output (-c option)

Process 17019 detached

% time seconds usecs/call calls errors syscall

100.00 0.000050 50 1 set_thread_area
0.00 0.000000 0 48 read
0.00 0.000000 Q 44 write
0.00 0.000000 [} 80 63 open
0.00 0.000000 0 19 close
0.00 0.000000 0 1 execve
0.00 0.000000 Q 2 2 access
0.00 0.000000 0 3 brk
0.00 0.000000 Q 1 munmap
0.00 0.000000 Q 1 uname
0.00 0.000000 Q 1 mprotect
0.00 0.000000 Q 19 mmap2
0.00 0.000000 [} 50 46 stat64
0.00 0.000000 0 18 fstat64

100.00 0.000050 288 111 total

http://oprofile.sourceforge.net
» A system-wide profiling tool

v

Can collect statistics like the top users of the CPU.

v

Works without having the sources.

v

Requires a kernel patch to access all features, but is already
available in a standard kernel.

v

Requires more investigation to see how it works.

v

Ubuntu/Debian packages: oprofile, oprofile-gui

http://oprofile.sourceforge.net

Application development
» Cross compile a simple Qt program
with Qt Creator

» Run and debug it on the target
with Qt Creator

A

Embedded Linux
Experts

Busybox

Savoir-faire Linux

© Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and ions are welcome!

> A Linux system needs a basic set of programs to work
> An init program
> A shell
» Various basic utilities for file manipulation and system
configuration

> In normal Linux systems, these programs are provided by
different projects

» coreutils, bash, grep, sed, tar, wget, modutils, etc. are all
different projects

» A lot of different components to integrate

» Components not designed with embedded systems constraints
in mind: they are not very configurable and have a wide range
of features

» Busybox is an alternative solution, extremely common on
embedded systems

» Rewrite of many useful Unix command line utilities
» Integrated into a single project, which makes it easy to work
with
» Designed with embedded systems in mind: highly configurable,
no unnecessary features
> All the utilities are compiled into a single executable,
/bin/busybox

» Symbolic links to /bin/busybox are created for each
application integrated into Busybox

» For a fairly featureful configuration, less than 500 KB
(statically compiled with uClibc) or less than 1 MB (statically
compiled with glibc).

» http://www.busybox.net/

http://www.busybox.net/

Commands available in BusyBox 1.13

[, [[, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk, basename, bbconfig, bbsh, brctl,
bunzip2, busybox, bzcat, bzip2, cal, cat, catv, chat, chattr, chcon, chgrp, chmod, chown, chpasswd,
chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab, cryptpw, cttyhack,
cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devfsd, df, dhcprelay, diff, dirname,
dmesg, dnsd, dos2unix, dpkg, dpkg_deb, du, dumpkmap, dumpleases, e2fsck, echo, ed, egrep, eject,
env, envdir, envuidgid, ether_wake, expand, expr, fakeidentd, false, fbset, fbsplash, fdflush,
fdformat, fdisk, fetchmail, fgrep, find, findfs, fold, free, freeramdisk, fsck, fsck_minix, ftpget,
ftpput, fuser, getenforce, getopt, getsebool, getty, grep, gunzip, gzip, halt, hd, hdparm, head,
hexdump, hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave, ifup, inetd, init,
inotifyd, insmod, install, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_
mode, kill, killall, killall5, klogd, lash, last, length, less, linux32, linux64, linuxrc, 1ln, load_
policy, loadfont, loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, 1ls, lsattr,
1smod, lzmacat, makedevs, man, matchpathcon, md5sum, mdev, mesg, microcom, mkdir, mke2fs, mkfifo,
mkfs_minix, mknod, mkswap, mktemp, modprobe, more, mount, mountpoint, msh, mt, mv, nameif, nc,
netstat, nice, nmeter, nohup, nslookup, od, openvt, parse, passwd, patch, pgrep, pidof, ping, ping6,
pipe_progress, pivot_root, pkill, poweroff, printenv, printf, ps, pscan, pwd, raidautorun, rdate,
rdev, readahead, readlink, readprofile, realpath, reboot, renice, reset, resize, restorecon, rm,
rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run_parts, runcon, runlevel, runsv, runsvdir, rx,
script, sed, selinuxenabled, sendmail, seq, sestatus, setarch, setconsole, setenforce, setfiles,
setfont, setkeycodes, setlogcons, setsebool, setsid, setuidgid, sh, shalsum, showkey, slattach,
sleep, softlimit, sort, split, start_stop_daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd,
swapoff, swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tcpsvd, tee, telnet,
telnetd, test, tftp, tftpd, time, top, touch, tr, traceroute, true, tty, ttysize, tune2fs, udhcpc,
udhcpd, udpsvd, umount, uname, uncompress, unexpand, uniq, unix2dos, unlzma, unzip, uptime, usleep,
uudecode, uuencode, vconfig, vi, vlock, watch, watchdog, wc, wget, which, who, whoami, xargs, yes,
zcat, zcip

» Busybox provides an implementation of an init program
» Simpler than the init implementation found on desktop/server
systems: no runlevels are implemented
» A single configuration file: /etc/inittab
» Each line has the form <id>::<action>:<process>

» Allows to run services at startup, and to make sure that
certain services are always running on the system

» See examples/inittab in Busybox for details on the
configuration

v

If you are using BusyBox, adding vi support only adds 20K.
(built with shared libraries, using uClibc).

> You can select which exact features to compile in.
» Users hardly realize that they are using a lightweight vi
version!

» Tip: you can learn vi on the desktop, by running the
vimtutor command.

» Get the latest stable sources from http://busybox.net
» Configure BusyBox (creates a .config file):

» make defconfig
Good to begin with BusyBox.
Configures BusyBox with all options for regular users.
» make allnoconfig
Unselects all options. Good to configure only what you need.

» make xconfig (graphical, needs the 1ibqt3-mt-dev package)
or make menuconfig (text)
Same configuration interfaces as the ones used by the Linux
kernel (though older versions are used).

http://busybox.net

You can choose:

» the commands
to compile,

» and even the
command
options and
features that
you need!

le Option Help

ol | IlE
option | [option Tname B
S Busybox Settings ain w
General Corfiguration Dllogname (NEW) LoonamE
Build Options e dls

Debugging Options
Installation Options
Busybox Library Tuning

Applets
Archival Utilities

Console Utilities
Debian Utilities

Editors Omdssum (NEW) MD5SUM

Finding Utilities ki (NEW) MKDIR =
Init Utilities

Logi utliti

Ls
FEATURE_LS_FILETYPES
FEATURE_LS_FOLLOWLINKS|

DEnable filetyping options (-p and -F)
@Enable symlinks dereferencing (-U) (NEW)

@Enable recursion (-R) (NEW)
@Sort the file names (NEW)
@ Show file timestamps (NEW)

FEATURE_LS_RECURSIVE
FEATURE_LS_SORTFILES
FEATURE LS TIMESTAMPS

@Show usemame/groupnames (NEW) FEATURE LS USERNAME
FEATURE LS COLOR

FEATURE_LS_COLOR_IS_DEf

DProduce colored Is output by default (NEW)

Linux Ext FS Progs
Linux Module Utilties
Linux System Utilities
Miscellaneous Util
Networking Utilties
Process Utilties

shells

System Logging Utilities
Runit tilities

Allow use of color to identify file types (FEATURE LS COLOR)

‘This enables the --color option to Is.

» Set the cross-compiler prefix in the configuration interface:
BusyBox Settings -> Build Options -
> Cross Compiler prefix
Example: arm-1inux-

> Set the installation directory in the configuration interface:
BusyBox Settings -> Installation Options -
> BusyBox installation prefix

» Add the cross-compiler path to the PATH environment
variable:
export PATH=/home/<user>/x-tools/arm-unknown-1linux-
uclibcgnueabi/bin: $PATH

» Compile BusyBox:
make

» Install it (this creates a Unix directory structure symbolic links
to the busybox executable):
make install

v

Install Node.js on the target with
Buildroot

v

Install npm packages

v

Set up an NFS mount point
Interact with hardware

v

Embedded Linux
Experts

Block filesystems

Savoir-faire Linux

Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and ions are welcome!

Block devices

» Storage devices are classified in two main types: block
devices and flash devices
» They are handled by different subsystems and different
filesystems

» Block devices can be read and written to on a per-block
basis, in random order, without erasing.
» Hard disks, floppy disks, RAM disks
» USB keys, SSD, Compact Flash, SD card, eMMC: these are
based on flash storage, but have an integrated controller that
emulates a block device, managing the flash in a transparent
way.

» Raw flash devices are driven by a controller on the SoC.
They can be read, but writing requires erasing, and often
occurs on a larger size than the “block” size.

» NOR flash, NAND flash

» The list of all block devices available in the system can be
found in /proc/partitions

$ cat /proc/partitions
major minor #blocks name

179
179
179
8
8
8

0
1
2
0
1
2

3866624
73712
3792896
976762584
1060258
975699742

» And also in /sys/block/

mmcb1ko
mmcb1lkop1
mmcb1lkop2
sda

sdal

sda2

» Block devices can be partitioned to store different parts of a
system
» The partition table is stored inside the device itself, and is

read and analyzed automatically by the Linux kernel
» mmch1k® is the entire device
» mmch1kop?2 is the second partition of mmcb1ko
» Two partition table formats:

» MBR, the legacy format
» GPT, the new format, not yet used everywhere, but becoming
more and more common

Numerous tools to create and modify the partitions on a block
device: fdisk, cfdisk, sfdisk, parted, etc.

v

It is often necessary to transfer data to or from a block device
in a raw way

» Especially to write a filesystem image to a block device

v

v

This directly writes to the block device itself, bypassing any
filesystem layer.

v

The block devices in /dev/ allow such raw access
dd is the tool of choice for such transfers:

» dd if=/dev/mmcblkopl of=testfile bs=1M count=16
Transfers 16 blocks of 1 MB from /dev/mmcb1kopT to
testfile

» dd if=testfile of=/dev/sda2 bs=1M seek=4
Transfers the complete contents of testfile to /dev/sda2, by
blocks of 1 MB, but starting at offset 4 MB in /dev/sda2

v

Available filesystems

» The standard filesystem used on Linux systems is the series of
ext{2, 3,4} filesystems
> ext2
» ext3, brought journaling compared to ext2
» ext4, mainly brought performance improvements and support
for even larger filesystems

» ext4 is now the default filesystem used on most Linux
distributions

> It supports all features Linux needs from a filesystem:
permissions, ownership, device files, symbolic links, etc.

> Designed to stay in a coherent
state even after system crashes or a Application
Sudden pOWerOﬂ: User space Write to file

Kernel-space v

> Writes are first described in the A ey
journal before being committed to N i
files (can be all writes, or only v
metadata writes depending on the
configuration)

AN

Write to file

)
AN

\4

> Allows to skip a full disk check at
boot time after an unclean
shutdown

[Clear journal entry

/

Reboot

)

» Thanks to the journal, the recovery
at boot time is quick, since the
operations in progress at the
moment of the unclean shutdown
are clearly identified

Journal
empty ?

» Does not mean that the latest
writes made it to the storage: this
depends on syncing the changes to
—— the filesystem.

|

Execute journal

» btrfs, intended to become the next standard filesystem for
Linux. Integrates numerous features: data checksuming,
integrated volume management, snapshots, etc.

> XFS, high-performance filesystem inherited from SGI IRIX, still
actively developed.

> JFS, inherited from IBM AlIX. No longer actively developed,
provided mainly for compatibility.

» reiserFS, used to be a popular filesystem, but its latest
version Reiser4 was never merged upstream.

All those filesystems provide the necessary functionalities for Linux
systems: symbolic links, permissions, ownership, device files, etc.

http://en.wikipedia.org/wiki/F2FS

>

Filesystem that takes into account the characteristics of
flash-based storage: eMMC, SD cards, SSD, etc.

Developed and contributed by Samsung
Available in the mainline Linux kernel

For optimal results, need a number of details about the
storage internal behavior which may not easy to get

Benchmarks: best performer on flash devices most of the time:
See http://1lwn.net/Articles/520003/

Technical details: http://lwn.net/Articles/518988/

Not as widely used as ext3, 4, even on flash-based storage.

http://en.wikipedia.org/wiki/F2FS
http://lwn.net/Articles/520003/
http://lwn.net/Articles/518988/

» Read-only, compressed filesystem for block devices. Fine for
parts of a filesystem which can be read-only (kernel,
binaries...)

» Great compression rate, which generally brings improved read
performance

» Used in most live CDs and live USB distributions
» Supports several compression algorithm (LZO, XZ, etc.)

» Benchmarks: roughly 3 times smaller than ext3, and 2-4 times
faster (http://elinux.org/Squash_Fs_Comparisons)

» Details: http://squashfs.sourceforge.net/

http://elinux.org/Squash_Fs_Comparisons
http://squashfs.sourceforge.net/

Linux also supports several other filesystem formats, mainly to be
interopable with other operating systems:
» vfat for compatibility with the FAT filesystem used in the
Windows world and on numerous removable devices

» This filesystem does not support features like permissions,
ownership, symbolic links, etc. Cannot be used for a Linux
root filesystem.

» ntfs for compatibility with the NTFS filesystem used on
Windows

» hfs for compatibility with the HFS filesystem used on Mac OS

> 1509660, the filesystem format used on CD-ROMs, obviously
a read-only filesystem

» Not a block filesystem of course!

> Perfect to store temporary data in RAM: system log files,
connection data, temporary files...

» More space-efficient than ramdisks: files are directly in the file
cache, grows and shrinks to accommodate stored files

» How to use: choose a name to distinguish the various tmpfs
instances you could have. Examples:
mount -t tmpfs varrun /var/run
mount -t tmpfs udev /dev

» See Documentation/filesystems/tmpfs.txt in kernel
sources.

https://kernel.org/doc/Documentation/filesystems/tmpfs.txt

Using block filesystems

» To create an empty ext2/ext3/ext4 filesystem on a block
device or inside an already-existing image file
» mkfs.ext2 /dev/hda3
» mkfs.ext3 /dev/sda2
» mkfs.ext4 /dev/sda3
» mkfs.ext2 disk.img

» To create a filesystem image from a directory containing all
your files and directories
> Use the genext2fs tool, from the package of the same name
» genext2fs -d rootfs/ rootfs.img
> Your image is then ready to be transferred to your block device

» Once a filesystem image has been created, one can access and
modifies its contents from the development workstation, using
the loop mechanism

> Example:
genext2fs -d rootfs/ rootfs.img
mkdir /tmp/tst
mount -t ext2 -o loop rootfs.img /tmp/tst

> In the /tmp/tst directory, one can access and modify the
contents of the rootfs.img file.

» This is possible thanks to loop, which is a kernel driver that
emulates a block device with the contents of a file.

» Do not forget to run umount before using the filesystem image!

Need to install the squashfs-tools package

v

v

Can only create an image: creating an empty squashfs
filesystem would be useless, since it's read-only.
To create a squashfs image:

» mksquashfs rootfs/ rootfs.sqfs -noappend
» -noappend: re-create the image from scratch rather than
appending to it

v

v

Mounting a squashfs filesystem:
» mount -t squashfs /dev/<device> /mnt

Good idea to split your block storage into:

» A compressed read-only partition

(Squashfs) squashfs |4
Typically used for the root filesystem read-only
(binaries, kernel...). oo femmem
Compression saves space. Read-only Block storage
access protects your system from mistakes ext3
and data corruption. readurie

> A read-write partition with a journaled configuration
filesystem (like ext3) M
Used to store user or configuration data. p—
Guarantees filesystem integrity after read wrte I RAM
power off or crashes. e

» Ram storage for temporary files (tmpfs)

> Flash storage made available only through a block interface.

» Hence, no way to access a low level flash interface and use the
Linux filesystems doing wear leveling.

» No details about the layer (Flash Translation Layer) they use.
Details are kept as trade secrets, and may hide poor
implementations.

» Not knowing about the wear leveling algorithm, it is highly
recommended to limit the number of writes to these devices.

Embedded Linux
Experts

Flash filesystems

Savoir-faire Linux

Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and ions are welcome!

» Block devices:

» Allow for random data access using fixed size blocks

» Do not require special care when writing on the media

» Block size is relatively small (minimum 512 bytes, can be
increased for performance reasons)

» Considered as reliable (if the storage media is not, some
hardware or software parts are supposed to make it reliable)

» Flash devices:

» Allow for random data access too

» Require special care before writing on the media (erasing the
region you are about to write on)

» Erase, write and read operation might not use the same block
size

» Reliability depends on the flash technology

v

Encode bits with voltage levels
Start with all bits set to 1

v

v

Programming implies changing some bits from 1 to 0

v

Restoring bits to 1 is done via the ERASE operation

v

Programming and erasing is not done on a per bit or per byte
basis

v

Organization

> Page: minimum unit for PROGRAM operation
» Block: minimum unit for ERASE operation

page

\ 4

A

block

chip

(> out-of-band data @in-band data

» Reliability
» Far less reliable than NOR flash
» Reliability depends on the NAND flash technology (SLC, MLC)
» Require additional mechanisms to recover from bit flips: ECC
(Error Correcting Code)
» ECC information stored in the OOB (Out-of-band area)
> Lifetime
» Short lifetime compared to other storage media
» Lifetime depends on the NAND flash technology (SLC, MLC):
between 1000000 and 1000 erase cycles per block
» Wear leveling mechanisms are required
» Bad block detection/handling required too

» Despite the number of constraints brought by NAND they are
widely used in embedded systems for several reasons:

» Cheaper than other flash technologies
» Provide high capacity storage
» Provide good performance (both in read and write access)

» ECC partly addresses the reliability problem on NAND flash
» Operates on blocks (usually 512 or 1024 bytes)

» ECC data are stored in the OOB area

» Three algorithms:

» Hamming: can fixup a single bit per block
» Reed-Solomon: can fixup several bits per block
» BCH: can fixup several bits per block

» BCH and Reed-Solomon strength depends on the size
allocated for ECC data, which in turn depends on the OOB
size

» NAND manufacturers specify the required ECC strength in
their datasheets: ignoring these requirements might
compromise data integrity

» MTD stands for Memory Technology Devices

» Generic subsystem dealing with all types of storage media that
are not fitting in the block subsystem

» Supported media types: RAM, ROM, NOR flash, NAND
flash, Dataflash

» Independent of the communication interface (drivers available
for parallel, SPI, direct memory mapping,)

» Abstract storage media characteristics and provide a simple

API to access MTD devices

» MTD device characteristics exposed to users:
> erasesize: minimum erase size unit

writesize: minimum write size unit
oobsize: extra size to store metadata or ECC data
size: device size
flags: information about device type and capabilities
» Various kind of MTD users: file-systems, block device

emulation layers, user space interfaces...

vV vy VvVYyy

A

Linux filesystem interface

. Flash Translation Layers
UBI JFFS2 Char device for block device emulation
MTD "User" Caution: patented
modules algorithms
- FTL | [e |
Block device YAFFS2 Read-only
block device
NOR flash RAM chips ROM chips
MTD Chip
drivers
DiskOnChip Virtual devices appearing
WAID (AEE: flash as MTD devices
Hardware m m
devices

» MTD devices are usually partitioned
» It allows to use different areas of the flash for different
purposes: read-only filesystem, read-write filesystem, backup
areas, bootloader area, kernel area, etc.

» Unlike block devices, which contains their own partition table,
the partitioning of MTD devices is described externally (don't
want to put it in a flash sector which could become bad)

» Specified in the board Device Tree
» Hard-coded into the kernel code (if no Device Tree)
» Specified through the kernel command line

» Each partition becomes a separate MTD device
» Different from block device labeling (hda3, sda?2)
» /dev/mtd1 is either the second partition of the first flash
device, or the first partition of the second flash device
» Note that the master MTD device (the device those partitions
belongs to) is not exposed in /dev

The Device Tree is the standard place to define MTD partitions for
platforms with Device Tree support.
Example from arch/arm/boot/dts/omap3-igep.dtsi:

nand@o,o {
linux,mtd-name= "micron,mt29c4g96maz";
[...]
partition@o {
label = "SPL";
reg = <0 0x100000>;
b

partition@ox80000 {

label = "U-Boot”;

reg = <0x100000 0x180000>;
b
[...]
partition@ox780000 {

label = "Filesystem”;

reg = <0x680000 0x1f980000>;
b

http://lxr.free-electrons.com/source/arch/arm/boot/dts/omap3-igep.dtsi

» U-Boot also provides a way to define MTD partitions on flash
devices

» Named partitions are easier to use, and much less error prone
than using offsets.

» U-Boot partition definitions can also be used by Linux too,
eliminating the risk of mismatches between Linux and U-Boot.

» Use flash specific commands (detailed soon), and pass
partition names instead of numerical offsets

» Example: nand erase.part <partname>

> Example:

setenv mtdids nand@=omap2-nand.@
setenv mtdparts mtdparts=omap2-nand.@:512k(X-Loader)ro, 1536k (U-Boot)ro,512k(Env),4m(Kernel),-(RootFS)

» This defines 5 partitions in the omap2-nand. @ device:
» 1st stage bootloader (512 KiB, read-only)

U-Boot (1536 KiB, read-only)

U-Boot environment (512 KiB)

Kernel (4 MiB)

Root filesystem (Remaining space)

A2 4

vV VY

» Partition sizes must be multiple of the erase block size. You
can use sizes in hexadecimal too. Remember the below sizes:
0x20000 = 128k, 0x100000 = 1m, 0x1000000 = 16m

> ro lists the partition as read only

> - is used to use all the remaining space.

Details about the two environment variables needed by U-Boot:

» mtdids attaches an mtdid to a flash device.
setenv mtdids <devid>=<mtdid>[, <devid>=<mtdid>]
» devid: U-Boot device identifier (from nand info or f1info)
» mtdid: Linux mtd identifier. Displayed when booting the
Linux kernel:

NAND device: Manufacturer ID: 0x2c, Chip ID: Oxbc (Micron NAND 512MiB 1,8V 16-bit)
Creating 5 MTD partitions on "omap2-nand.0":
0x000000000000-0x000000080000 : "X-Loader"
0x000000080000-0x000000200000 : "U-Boot"
0x000000200000-0x000000280000 : "Environment"

0x000000280000-0x000000580000 : "Kernel"
0x000000580000-0x000020000000 : "File System"

» mtdparts defines partitions for the different devices
setenv mtdparts mtdparts=<mtdid>:
<partition>[,partition]
partition format: <size>[@offset](<name>)[ro]

Use the mtdparts command to setup the configuration specified
by the mtdids and mtdparts variables

Linux understands U-Boot's mtdparts partition definitions.
Here is a recommended way to pass them from U-Boot to Linux:

» Define a bootargs_base environment variable:
setenv bootargs_base console=ttyS@ root=....

» Define the final kernel command line (bootargs) through the
bootcmd environment variable:
setenv bootcmd 'setenv bootargs ${bootargs_base}
${mtdparts}; <rest of bootcmd>'

U-Boot provides a set of commands to manipulate NAND devices,
grouped under the nand command

>

nand info

Show available NAND devices and characteristics

nand device [dev]

Select or display the active NAND device

nand read[.option] <addr> <offset|partname> <size>
Read data from NAND

nand write[.option] <addr> <offset|partname> <size>
Write data on NAND
» Use nand write.trimffs to avoid writing empty pages (those
filled with 0xff)

nand erase <offset> <size>

Erase a NAND region

nand erase.part <partname>

Erase a NAND partition

More commands for debugging purposes

» U-Boot provides a set of commands to manipulate NOR
devices

» Memory mapped NOR devices

>

flinfo [devid]

Display information of all NOR devices or a specific one if
devid is provided

cp.[bwl] <src> <target> <count>

Read/write data from/to the NOR device

erase <start> <end> or erase <start> +<len>
Erase a memory region

erase bank <bankid>

Erase a memory bank

erase all

Erase all banks

protect on|off <range-description>

Protect a memory range

» SPI NOR devices

» Grouped under the sf command

» sf probe [[bus:]cs] [hz] [mode]
Probe a NOR device on

» sf read|write <addr> <offset> <len>
Read/write data from/to a SPI NOR

» sf erase <offset> +<len>
Erase a memory region

» sf update <addr> <offset> <len>
Erase + write operation

» MTD devices are visible in /proc/mtd

» The user space only see MTD partitions, not the flash device
under those partitions
» The mtdchar driver creates a character device for each MTD
device/partition of the system
» Usually named /dev/mtdX or /dev/mtdXro
» Provide ioctl() to erase and manage the flash
» Used by the mtd-utils utilities

» mtd-utils is a set of utilities to manipulate MTD devices

» mtdinfo to get detailed information about an MTD device

» flash_erase to partially or completely erase a given MTD
device

» flashcp to write to NOR flash

» nandwrite to write to NAND flash

» Flash filesystem image creation tools: mkfs.jffs2,
mkfs.ubifs, ubinize, etc.

» On your workstation: usually available as the mtd-utils
package in your distribution.

» On your embedded target: most commands now also available
in BusyBox.

» See http://www.linux-mtd.infradead.org/.

http://www.linux-mtd.infradead.org/

> Wear leveling consists in distributing erases over the whole
flash device to avoid quickly reaching the maximum number
of erase cycles on blocks that are written really often

» Can be done in:

> the filesystem layer (JFFS2, YAFFS2, ...)
> an intermediate layer dedicated to wear leveling (UBI)

» The wear leveling implementation is what makes your flash
lifetime good or not

Flash users should also take the limited lifetime of flash devices

into

>

account by taking additional precautions

Do not use your flash storage as swap area (rare in embedded
systems anyway)

Mount your filesystems as read-only, or use read-only
filesystems (SquashFS), whenever possible.

Keep volatile files in RAM (tmpfs)

Don't use the sync mount option (commits writes
immediately). Use the fsync() system call for per-file
synchronization.

» 'Standard’ file systems are meant to work on block devices

» Specific file systems have been developed to deal flash
constraints

» These file systems are relying on the MTD layer to access
flash chips

» There are several legacy flash filesystems which might be
useful for specific usage: JFFS2, YAFFS2.

» Nowadays, UBI/UBIFS is the de facto standard for medium to
large capacity NANDs (above 128MB)

Standard file

API
» Supports on the fly compression -
» Wear leveling, power failure resistant _JFFS2
> Available in the official Linux kernel filesystem
» Boot time depends on the filesystem size: ~ ~ ~
doesn't scale well for large partitions. MTD
> http://www.linux- driver

mtd.infradead.org/doc/jffs2.html —_ = =

P

Flash chip

http://www.linux-mtd.infradead.org/doc/jffs2.html
http://www.linux-mtd.infradead.org/doc/jffs2.html

Standard file

API
» Mainly supports NAND flash
» No compression
> Wear leveling, power failure resistant _YAFF52
) filesystem
» Fast boot time
» Not part of the official Linux kernel: code -
only available separately MTD
(Dual GPL / Proprietary license for non driver
Linux operating systems) —_ — — —
> http://www.yaffs.net/ G
Flash chip

http://www.yaffs.net/

Standard file

API
» Aimed at replacing JFFS2 by addressing -
its limitations UBIFS
» Design choices: filesystem
» Split the wear leveling and filesystem .
layers
» Add some flexibility UBI
» Focus on scalability, performance and o
reliability
» Drawback: introduces noticeable space MTD
overhead, especially when used on small driver

devices or partitions. _ = = —

P

Flash chip
saoir-Faire Linux swoirfairelinx.con . g

Unsorted Block Images

>

>

http://www.linux-mtd.infradead.org/doc/ubi.html
Volume management system on top of MTD devices (similar
to what LVM provides for block devices)

Allows to create multiple logical volumes and spread writes
across all physical blocks

Takes care of managing the erase blocks and wear leveling.
Makes filesystems easier to implement

Wear leveling can operate on the whole storage, not only on
individual partitions (strong advantage)

Volumes can be dynamically resized or, on the opposite, can
be read-only (static)

http://www.linux-mtd.infradead.org/doc/ubi.html

Volume 1 Volume 2

UBl "ies |[ee |[es |[ee | [ies |[es || Les |

Logical
erase blocks

::Iyl:? | pes || PEB || PEB || PEB |
erase blocks Free block Free block

» UBI is storing its metadata
in-band
> In each MTD erase block
» One page is reserved to
count the number of erase
cycles
> Another page is reserved
to attach the erase block
to a UBI volume
» The remaining pages are
used to store payload data I EC (Erase Counter) header

» If the device supports [viD (volume ID) header
subpage write, the EC and [] Payload
VID headers can be stored
on the same page

PEB (Physical Erase Block) ~
L

A

< >
LEB (Logical Erase Block)

» UBI is responsible for distributing writes all over the flash
device: the more space you assign to a partition attached to
the UBI layer the more efficient the wear leveling will be

> |If you need partitioning, use UBI volumes not MTD partitions
» Some partitions will still have to be MTD partitions: e.g. the
bootloaders and bootloader environments

» If you need extra MTD partitions, try to group them at the
end or the beginning of the flash device

UBIFS.

UBIFS JFFS2 UBIFS
mounted mounted mounted mounted
on / on /myapp on /otherapp on /log
Bootloader (from (from (from (from
ubi0:rootfs) ubi0:data) /dev/mtdblockl) ubillog)
MTD UBI device ubi0 MTD UBI device ubil
partition 0 MTD partition 1 partition 2 MTD partition 3

Flash device

Bootloader

MTD partition 0

UBIFS
mounted
on /myapp

UBIFS

mounted

on /log
(from

ubi0:data)

UBIFS
mounted
on /otherapp

(from
ubililog)

(from
ubicotherdata)

UBI device ubi0
MTD partition 1

Flash device

Unsorted Block Images File System
> http://www.linux-mtd.infradead.org/doc/ubifs.html
» The filesystem part of the UBI/UBIFS couple
» Works on top of UBI volumes

» Journaling file system providing better performance than
JFFS2 and addressing its scalability issues

> See this paper for more technical details about UBIFS
internals http://www.linux-
mtd. infradead.org/doc/ubifs_whitepaper.pdf

http://www.linux-mtd.infradead.org/doc/ubifs.html
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

» ubinize is the only host tool for the UBI layer

» Creates a UBI image to be flashed on an MTD partition
> Takes the following arguments:
» -0 <output-file-path>
Path to the output image file
» -p <peb-size>
The PEB size (MTD erase block size)
» -m <min-io-size>
The minimum write unit size (e.g. MTD write size)
» -s <subpage-size>
Subpage size, only needed if both your flash and your flash
controller are supporting subpage writes
» The last argument is a path to a UBI image description file
(see next page for an example)

» Example:
ubinize -o ubi.img -p 16KiB -m 512 -s 256 cfg.ini

» Can contain several sections

» Each section is describing a UBI volume

» Example:

[kernel-volume]
mode=ubi
image=zImage
vol_id=1
vol_type=static
vol_name=kernel

[rootfs-volume]
mode=ubi
image=rootfs.squashfs
vol_id=2
vol_type=static
vol_name=rootfs

[data-volume]
mode=ubi
image=data.ubifs
vol_id=3
vol_size=30MiB
vol_type=dynamic
vol_name=data
vol_flags=autoresize

Grouped under the ubi command

>

ubi part <part-name>
Attach an MTD partition to the UBI layer
ubi info [layout]
Display UBI device information
(or volume information if the layout string is passed
ubi check <vol-name>
Check if a volume exists
ubi readvol <dest-addr> <vol-name> [<size>]
Read volume contents
U-Boot also provides tools to update the UBI device contents
Using them is highly discouraged (the U-Boot UBI
implementation is not entirely stable, and using commands
that do not touch the UBI metadata is safer)
» ubi createvol <vol-name> [<size>] [<type>]
» ubi removevol <vol-name>
» ubi writevol <src-addr> <vol-name> <size>

» Tools used on the target to dynamically create and modify
UBI elements
» UBI device management:
» ubiformat <MTD-device-id>
Format an MTD partition and preserve Erase Counter
information if any
» ubiattach -m <MTD-device-id> /dev/ubi_ctrl
Attach an MTD partition/device to the UBI layer, and create a
UBI device
» ubidetach -m <MTD-device-id> /dev/ubi_ctrl
Detach an MTD partition/device from the UBI layer, and
remove the associated UBI device

UBI volume management:

>

ubimkvol /dev/ubi<UBI-device-id> -N <name> -s <size>
Create a new volume. Use -m in place of -s <size> if you
want to assign all the remaining space to this volume.
ubirmvol /dev/ubi<UBI-device-id> -N <name>

Delete a UBI volume

ubiupdatevol /dev/ubi<UBI-device-id>_<UBI-vol-id> [-
s <size>] <vol-image-file>

Update volume contents

ubirsvol /dev/ubi<UBI-device-id> -N <name> -s <size>
Resize a UBI volume

ubirename /dev/ubi<UBI-device-id>_<UBI-vol-id> <old-
name> <new-size>

Rename a UBI volume

Beware that the implementation of UBI commands in BusyBox is
still incomplete. For example:

» ubirsvol doesn't support -N <name>. You have to use
specify the volume to resize by its id (-n num):
ubirsvol /dev/ubi® -n 4 -s 64 MiB

» Same constraint for ubirmvol:
ubirmvol /dev/ubi@ -n 4

UBIFS filesystems images can be created using mkfs.ubifs
» mkfs.ubifs -m 4096 -e 258048 -c 1000 -
r rootfs/ ubifs.img

» -m 4096, minimal /0O size
(see /sys/class/mtd/mtdx/writesize).

» —e 258048, logical erase block size (smaller than PEB size,
can be found in the kernel log after running ubiattach)

» -c 1000, maximum size of the UBI volume the image will be
flashed into, in number of logical erase blocks. Do not make
this number unnecessary big, otherwise the UBIFS data
structures will be bigger than needed and performance will be
degraded. Details:
http://linux-mtd. infradead.org/faq/ubifs.html#L_max_leb_cnt

» Once created
» Can be written to a UBI volume from the target using
ubiupdatevol
» Or, can be included in a UBI image (using ubinize on the
host)

http://linux-mtd.infradead.org/faq/ubifs.html#L_max_leb_cnt

» No specific tools are required to manipulate a UBIFS
filesystem

» Mounting a UBIFS filesystem is done with mount:
mount -t ubifs <ubi-device-id>:<volume-
name> <mount-point>

» Example:
mount -t ubifs ubi@:data /data

Create kernel image: Create_ UBIF§ rootfs Create qther ﬁlfesystem
make in linux directory image: images:
mkfs.ubifs mkfs.fstype
zImage + board.dtb rootfs.ubifs xxxfs.fstype

Create UBI image:
ubinize

Y

UBI image

Flash UBI image from U-boot or Linux:
nandwrite/flashcp (Linux)
or
nand write/cp/sf (U-boot)

> You just have to pass the following information on the kernel
command line:

> ubi.mtd=1
Attach /dev/mtd1 to the UBI layer and create ubi®
» rootfstype=ubifs root=ubi@:rootfs
Mount the rootfs volume on ubi0 as a UBIFS filesystem

» Example: rootfstype=ubifs ubi.mtd=1 root=ubi®:rootfs

In U-Boot:

> Define partitions:
setenv mtdids ...
setenv mtdparts ...

» Define the base Linux kernel bootargs, specifying booting on
UBIFS, the UBI volume used as root filesystem, and the MTD
partition attached to UBI. Example:
setenv bootargs_base console=ttyS@ rootfstype=ubifs
root=ubi@:rootfs ubi.mtd=2 ...

> Define the boot command sequence, loading the U-Boot
partition definitions, loading kernel and DTB images from UBI
partitions, and adding mtdparts to the kernel command line.
Example:
setenv bootcmd 'mtdparts; ubi part UBI; ubi readvol
0x81000000 kernel; ubi readvol 0x82000000 dtb;
setenv bootargs ${bootargs_base} ${mtdparts}; bootz

0x81000000 - 0x82000000'
sawoir-Faire Linux swoirfairelinx.con . gy

» Sometimes we need block devices to re-use existing block
filesystems, especially read-only ones like SquashFs
> Linux provides two block emulation layers:

» mtdblock: block devices emulated on top of MTD devices
» ubiblock: block devices emulated on top of UBI volumes

» The mtdblock layer creates a block device for each MTD
device of the system

» Usually named /dev/mtdblockX.

» Allows read/write block-level access. However bad blocks are
not handled, and no wear leveling is done for writes.

» For historical reasons, JFFS2 and YAFFS2 filesystems require
a block device for the mount command.

» Do not write on mtdblock devices

» Implemented by Ezequiel Garcia from Free Electrons.

> Preferred over mtdblock if UBI is available (UBI accounts for
data retention and wear leveling issues, while MTD does not)

» The ubiblock layer creates read-only block devices on
demand

» The user specifies which static volumes (s)he would like to
attach to ubiblock

» Through the kernel command line: by passing
ubi.block=<ubi-dev-id>, <volume-name>

» Using the ubiblock utility provided by mtd-utils:
ubiblock --create <ubi-volume-dev-file>

» Usually named /dev/ubiblockX_Y, where X is the UBI device
id and Y is the UBI volume id

» Managing flash storage with Linux:
http://free-electrons.com/blog/managing-flash-
storage-with-1linux/

» Documentation on the linux-mtd website:
http://www.linux-mtd.infradead.org/

» Details about creating UBI and UBIFS images:
http://free-electrons.com/blog/creating-flashing-
ubi-ubifs-images/

http://free-electrons.com/blog/managing-flash-storage-with-linux/
http://free-electrons.com/blog/managing-flash-storage-with-linux/
http://www.linux-mtd.infradead.org/
http://free-electrons.com/blog/creating-flashing-ubi-ubifs-images/
http://free-electrons.com/blog/creating-flashing-ubi-ubifs-images/

Embedded Linux
Experts

References

Savoir-faire Linux

© Copyright 2004-2017, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and ions are welcome!

» Embedded Linux Primer, Second Edition,
Prentice Hall
By Christopher Hallinan, October 2010
Covers a very wide range of interesting topics.
http://j.mp/17NYXBP

» Building Embedded Linux Systems, O’Reilly
By Karim Yaghmour, Jon Masters, Gilad Ben-Yossef,
Philippe Gerum and others (including Michael
Opdenacker), August 2008
http://oreilly.com/catalog/9780596529680/

» Embedded Linux System Design and
Development
P. Raghavan, A. Lad, S. Neelakandan, Auerbach,
Dec. 2005. Very good coverage of the POSIX
programming API (still up to date).
http://j.mp/19X8iu2

http://j.mp/17NYxBP
http://oreilly.com/catalog/9780596529680/
http://j.mp/19X8iu2

» ELinux.org, http://elinux.org, a Wiki entirely dedicated to
embedded Linux. Lots of topics covered: real-time, filesystem,
multimedia, tools, hardware platforms, etc. Interesting to
explore to discover new things.

> LWN, http://1lwn.net, very interesting news site about
Linux in general, and specifically about the kernel. Weekly
newsletter, available for free after one week for non-paying
visitors.

» Linux Gizmos, http://1linuxgizmos.com, a news site about
embedded Linux, mainly oriented on hardware platforms
related news.

http://elinux.org
http://lwn.net
http://linuxgizmos.com

Useful conferences featuring embedded Linux and kernel topics

g‘g Embedded Linux

» Embedded Linux Conference: Conterencs
http://embeddedlinuxconference.com/
Organized by the Linux Foundation: USA (February-April), in
Europe (October-November). Very interesting kernel and user
space topics for embedded systems developers. Presentation
slides and videos freely available

» Linux Plumbers, http://linuxplumbersconf.org
Conference on the low-level plumbing of Linux: kernel, audio,
power management, device management, multimedia, etc.

» FOSDEM: http://fosdem.org (Brussels, February)

For developers. Presentations about system development.

http://embeddedlinuxconference.com/
http://linuxplumbersconf.org
http://fosdem.org

	Generic course information
	Introduction to Embedded Linux
	Advantages of Linux and open-source for embedded systems
	A few examples of embedded systems running Linux
	Embedded hardware for Linux systems
	Embedded Linux system architecture

	Embedded Linux development environment
	Cross-compiling toolchains
	Definition and Components
	C Libraries
	Toolchain Options
	Obtaining a Toolchain

	Hardware interactions
	Understanding your board
	GPIOs
	Understand the main buses

	Bootloaders
	Boot Sequence
	The U-boot bootloader

	Linux kernel introduction
	Linux features
	Linux versioning scheme and development process
	Kernel configuration
	Compiling and installing the kernel for the host system
	Cross-compiling the kernel
	Using kernel modules

	Linux Root Filesystem
	Principle and solutions
	Contents
	Device Files
	Pseudo Filesystems
	Minimal filesystem

	Embedded Linux system development
	Leveraging open-source components in an Embedded Linux system
	Tools for the target device: Networking
	Tools for the target device: System utilities
	Tools for the target device: Language interpreters
	Tools for the target device: Audio, video and multimedia
	Tools for the target device: Graphical toolkits
	Graphical toolkits: ``Low-level'' solutions and layers
	Graphical toolkits: ``High-level'' solutions
	Tools for the target device: Databases
	Tools for the target device: Web browsers
	System building

	Embedded Linux application development
	Developing applications on embedded Linux
	Integrated Development Environments (IDE)
	Version control systems
	Debuggers
	Remote debugging
	Memory checkers
	System analysis

	Busybox
	Block filesystems
	Block devices
	Available filesystems
	Using block filesystems

	Flash filesystems
	References

