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Preface
Learning Robotics using Python contains nine chapters that explain how to build an
autonomous mobile robot from scratch and program it using Python. The robot mentioning
in this book is a service robot that can be used to serve food in home, hotels, and restaurant.
From the beginning to end, the book discusses step-by-step procedures of building of this
robot. The book starts with the basics concepts of robotics and then moves to the 3D
modeling and simulation of the robot. After successful simulation of the robot, it discusses
the hardware components required to build the robot prototype.

The software part of this robot is mainly implemented using Python programming
language and software frameworks, such as Robot Operating System (ROS) and OpenCV.
You can see the application of python from the designing of a robot to creating robot user
interface. The Gazebo simulator is used to simulate the robot and machine vision libraries,
such as OpenCV, OpenNI, and PCL, is for processing the 2D and 3D image data. Each
chapter is presented with adequate theory for understanding the application part. The book
is reviewed by the experts in this field and it is the result of their handwork and passion in
robotics.

Who this book is for
Learning Robotics using Python is a good companion for entrepreneurs who want to explore
service robotics domain, professionals who want to implement more features on their
robots, researchers who want to explore more on robotics, and hobbyist or students who
want to learn robotics. The book follows a step-by-step guide, which can easily be captured
by anyone.

What this book covers
Chapter 1, Getting Started with Robot Operating System, explains the fundamental concepts
of ROS, which are the main platform for programming robot.

Chapter 2, Understanding the Basics of Differential Robots, discusses the fundamental
concepts of a differential mobile robot. The concepts are Kinematics and Inverse kinematics
of differential drive. This will help you implement the differential drive controller in the
software.
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Chapter 3, Modeling the Differential Drive Robot, discusses the calculation of the robot design
constraints and 2D/3D modeling of this mobile robot. The 2D/3D modeling is based on a set
of robot requirements. After completing the design and robot modeling, the reader will get
the designed parameters that can be used for creating a robot simulation.

Chapter 4, Simulating a Differential Drive Robot Using ROS, introduces a robot simulator
named Gazebo and helps readers to simulate their own robot using it.

Chapter 5, Designing ChefBot Hardware and Circuits, discusses the selection of different
hardware components required to build Chefbot. 

Chapter 6, Interfacing Actuators and Sensors to the Robot Controller, discusses the interfacing
of different actuators and sensors used in this robot with Tiva C Launchpad controller.

Chapter 7, Interfacing Vision Sensors with ROS, discusses interfacing of different vision
sensors such as Kinect and Orbecc Astra that can be used in Chefbot for autonomous
navigation. 

Chapter 8, Building ChefBot Hardware and Integration of Software, discusses the complete
construction of robot hardware and software in ROS in order to implement autonomous
navigation. 

Chapter 9, Designing a GUI for a Robot Using Qt and Python, discusses the development of a
GUI to command the robot to move to a table in a hotel-like environment. 

To get the most out of this book
The book is all about building a robot; to start with this book, you should have some
hardware. The robot can be built from scratch or you can buy a differential drive
configuration robot with encoder feedback. You should buy a controller board such as
Texas instruments LaunchPad for embedded processing and should have at least a
laptop/netbook for entire robot processing. In this book, we are using Intel NUC for robot
processing, it is very compact in size and delivering high performance. For 3D vision, you
should have a 3D sensor such as laser scanner, Kinect, or Orbecc Astra.

In the software section, you should have a good understanding in working with
GNU/Linux commands and have good knowledge in Python too. You should install
Ubuntu 16.04 LTS to work with the examples. If you have knowledge in ROS, OpenCV,
OpenNI, and PCL, this will help. You have to install ROS Kinect/Melodic for these
examples.
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Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learning- ​Robotics- ​using- ​Python- ​Second- ​Edition. We also have other
code bundles from our rich catalog of books and videos available at https:/ ​/​github. ​com/
PacktPublishing/​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it from https:/ ​/​www.​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​LearningRoboticsusingPythonSecondEdition_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example:  " The first procedure is to create a world file and save it with the .world file
extension."

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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A block of code is set as follows:

<xacro:include filename=”$(find
 chefbot_description)/urdf/chefbot_gazebo.urdf.xacro”/>
 <xacro:include filename=”$(find
 chefbot_description)/urdf/chefbot_properties.urdf.xacro”/>

Any command-line input or output is written as follows:

$ roslaunch chefbot_gazebo chefbot_empty_world.launch

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
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Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/


1
Getting Started with Robot

Operating System
The main aim of this book is to teach you how to build an autonomous mobile robot from
scratch. The robot will be programmed using ROS and its operations will be simulated
using a simulator called Gazebo. You will also see the robot's mechanical design, circuit
design, embedded programming, and high-level software programming using ROS in the
upcoming chapters.

In this chapter, we will start with the basics of ROS, how to install it, how to write a basic
application using ROS and Python, and the basics of Gazebo. This chapter will be the
foundation of your autonomous robotics project. If you are already aware of the basics of
ROS, and already have it installed on your system, you may skip this chapter. However,
you can still go through this chapter later to refresh your memory as to the basics of ROS.

This chapter will cover the following topics:

Introduction to ROS
Installing ROS Kinetic on Ubuntu 16.04.3
Introducing, installing, and testing Gazebo

Let's start programming robots using Python and Robot Operating System (ROS).

Technical requirements
To get the complete code that is mentioned in this chapter, you can clone the following link:

https:/​/​github.​com/ ​qboticslabs/ ​learning_ ​robotics_ ​2nd_ ​ed

https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
https://github.com/qboticslabs/learning_robotics_2nd_ed
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Introduction to ROS
ROS is a software framework used for creating robotic applications. The main aim of the
ROS framework is to provide the capabilities that you can use to create powerful robotics
applications that can be reused for other robots. ROS has a collection of software tools,
libraries, and collection of packages that makes robot software development easy.

ROS is a complete open source project licensed under the BSD (https:/ ​/​opensource. ​org/
licenses/​BSD-​3-​Clause) license. We can use it for research and commercial applications.
Even though ROS stands for Robot Operating System, it is not a real operating system.
Rather, it is a meta-operating system, which provides the features of a real operating
system. Here are the major features that ROS provides:

Message passing interface: This is the core feature of ROS, and it enables
interprocess communication. Using this message-passing capability, the ROS
program can communicate with its linked systems and exchange data. We will
learn more technical terms concerning the exchange of data between ROS
programs/nodes in the coming sections and chapters.
Hardware abstraction: ROS has a degree of abstraction that enables developers
to create robot-agnostic applications. These kinds of application can be used with
any robot; the developers need only worry about the underlying robot hardware.
Package management: The ROS nodes are organized in packages called ROS
packages. ROS packages consist of source codes, configuration files, build files,
and so on. We create the package, build the package, and install the package.
There is a build system in ROS that helps to build these packages. The package
management in ROS makes ROS development more systematic and organized.
Third-party library integration: The ROS framework is integrated with many
third-party libraries, such as Open-CV, PCL, OpenNI, and so on. This helps
developers to create all kinds of application in ROS.
Low-level device control: When we work with robots, we may need to work
with low-level devices, such as those that control I/O pins, sending data through
serial ports, and so on. This can also be done using ROS.
Distributed computing: The amount of computation required to process the data
from robot sensors is very high. Using ROS, we can easily distribute the
computation to a cluster of computing nodes. This distributes the computing
power and allows you to process the data faster than you could using a single
computer.

https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
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Code reuse: The main goal of ROS is code reuse. Code reuse enables the growth
of a good research and development community around the world. ROS
executables are called nodes. These executables can be grouped into a single
entity called a ROS package. A group of packages is called a meta package, and
both packages and meta packages can be shared and distributed.
Language independence: The ROS framework can be programmed using
popular languages (such as Python, C++, and Lisp). The nodes can be written in
any language and can communicate through ROS without any issues.
Easy testing: ROS has a built-in unit/integration test framework called rostest to
test ROS packages.
Scaling: ROS can be scaled to perform complex computation in robots.
Free and open source: The source code of ROS is open and it's absolutely free to
use. The core part of ROS is licensed under a BSD license, and it can be reused in
commercial and closed source products.

ROS is a combination of plumbing (message passing), tools, capabilities, and ecosystem.
There are powerful tools in ROS to debug and visualize the robot data. There are inbuilt
robot capabilities in ROS, such as robot navigation, localization, mapping, manipulation,
and so on. They help to create powerful robotics applications.

The following image shows the ROS equation:

The ROS equation

Refer to http://wiki.ros.org/ROS/Introduction for more information
on ROS.

http://wiki.ros.org/ROS/Introduction
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ROS concepts
There are three main organizational levels in ROS:

The ROS filesystem
The ROS computation graph
The ROS community

The ROS filesystem
The ROS filesystem mainly covers how ROS files are organized on the disk. The following
are the main terms that we have to understand when working with the ROS filesystem:

Packages: ROS packages are the individual unit of the ROS software framework.
A ROS package may contain source code, third-party libraries, configuration
files, and so on. ROS packages can be reused and shared.
Package manifests: The manifests (package.xml) file will have all the details of
the packages, including the name, description, license, and, more importantly,
the dependencies of the package.
Message (msg) types: Message descriptions are stored in the msg folder in a
package. ROS messages are data structures for sending data through ROS's
message-passing system. Message definitions are stored in a file with the .msg
extension.
Service (srv) types: Service descriptions are stored in the srv folder with the
.srv extension. The srv file defines the request and response data structure for
the service in ROS.

The ROS Computation Graph
The ROS Computation Graph is the peer-to-peer network of ROS systems that processes
data. The basic features of ROS Computation Graph are nodes, ROS Master, the parameter
server, messages, and services:

Nodes: The ROS node is a process that uses ROS functionalities to process the
data. A node basically computes. For example, a node can process the laser
scanner data to check whether there is any collision. A ROS node is written with
the help of an ROS client library (such as roscpp and rospy), which will be
discussed in the upcoming section.
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ROS Master: The ROS nodes can connect to each other using a program called
ROS Master. This provides the name, registration, and lookup to the rest of the
computation graph. Without starting the master, the nodes will not find each
other and send messages.
Parameter server: The ROS parameters are static values that are stored in a
global location called the parameter server. From the parameter server, all the
nodes can access these values. We can even set the scope of the parameter server
as private or public so that it can access one node or access all nodes.
ROS topics: The ROS nodes communicate with each other using a named bus
called ROS topic. The data flows through the topic in the form of messages. The
sending of messages over a topic is called publishing, and receiving the data
through a topic is called subscribing.
Messages: A ROS message is a data type that can consist of primitive data types,
such as integers, floating points, and Booleans. The ROS messages flow through
the ROS topic. A topic can only send/receive one type of message at a time. We
can create our own message definition and send it through the topics.
Services: We have seen that the publish/subscribe model using ROS topics is a
very easy way of communicating. This communication method is a one-to-many
mode of communication, meaning that a topic can be subscribed to by any
number of nodes. In some cases, we may also require a request/reply kind of
interaction, which is usually used in distributed systems. This kind of interaction
can be done using ROS services. The ROS services work in a similar way to ROS
topics in that they have a message type definition. Using that message definition,
we can send the service request to another node that provides the service. The
result of the service will be sent as a reply. The node has to wait until the result is
received from the other node.
Bags: These are formats in which to save and play back the ROS topics. ROS bags
are an important tool to log the sensor data and the processed data. These bags
can be used later for testing our algorithm offline.



Getting Started with Robot Operating System Chapter 1

[ 11 ]

The following diagram shows how topics and services work between the nodes and the
Master:

Communication between the ROS nodes and the ROS Master

In the preceding diagram, you can see two ROS nodes with the ROS Master in between
them. One thing we have to remember is, before starting any nodes in ROS, you should
start the ROS Master. The ROS Master acts like a mediator between nodes for exchanging
information about other ROS nodes in order to establish communication. Say that Node 1
wants to publish a topic called /xyz with message type abc. It will first approach the ROS
Master, and says I am going to publish a topic called /xyz with message
type abc and share its details. When another node, say Node 2, wants to subscribe
to the same topic of /xyz with the message type of abc, the Master will share the
information about Node 1 and allocate a port to start communication between these two
nodes directly without communicating with the ROS Master.

The ROS services works in the same way. The ROS Master is a kind of DNS server, which
can share the node details when the second node requests a topic or service from the first
node. The communication protocol ROS uses is TCPROS (http:/ ​/​wiki. ​ros. ​org/ ​ROS/
TCPROS), which basically uses TCP/IP sockets for the communication.

http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
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The ROS community level
The ROS community consists of ROS developers and researchers who can create and
maintain packages and exchange new information related to existing packages, newly
released packages, and other news related to the ROS framework. The ROS community
provides the following services:

Distributions: A ROS distribution has a set of packages that come with a specific
version. The distribution that we are using in this book is ROS Kinetic. There are
other versions available, such as ROS Lunar and Indigo, which has a specific
version that we can install. It is easier to maintain the packages in each
distribution. In most cases, the packages inside a distribution will be relatively
stable.
Repositories: The online repositories are the locations where we keep our
packages. Normally, developers keep a set of similar packages called meta
packages in a repository. We can also keep an individual package in a single
repository. We can simply clone these repositories and build or reuse the
packages.
The ROS wiki: The ROS wiki is the place where almost all the documentation of
ROS is available. You can learn about ROS, from its most basic concepts to the
most advanced programming, using the ROS wiki (http:/ ​/​wiki. ​ros. ​org).
Mailing lists: If you want to get updates regarding ROS, you can subscribe to the
ROS mailing list (http://lists.ros.org/mailman/listinfo/ros-users). You
can also get the latest ROS news from ROS Discourse
(https://discourse.ros.org).
ROS answers: This is very similar to the Stack Overflow website. You can ask
questions related to ROS in this portal, and you might get support from
developers across the world (https://answers.ros.org/questions/).

There are many other features available in ROS; you can refer to the ROS official website at
www.ros.org for more information. For now, we will move on to the installation procedure
of ROS.

http://wiki.ros.org
http://wiki.ros.org
http://wiki.ros.org
http://wiki.ros.org
http://wiki.ros.org
http://wiki.ros.org
http://wiki.ros.org
http://wiki.ros.org
http://wiki.ros.org
http://lists.ros.org/mailman/listinfo/ros-users
https://discourse.ros.org
https://answers.ros.org/questions/
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Installing ROS on Ubuntu
As per our previous discussion, we know that ROS is a metaoperating system that is
installed on a host system. ROS is completely supported on Ubuntu /Linux and in the
experimental stages on Windows and OS X. Some of the latest ROS distributions are as
follows:

Distribution Release date
ROS Melodic Morenia May 23 2018
ROS Lunar Loggerhead May 23 2017
ROS Kinetic Kame May 23 2016
ROS Indigo Igloo July 22 2014

We will now look at the installation procedure of the stable, long-term support (LTS)
distribution of ROS called Kinetic on Ubuntu 16.04.3 LTS. ROS Kinetic Kame will be
primarily targeted at Ubuntu 16.04 LTS. You can also find instructions to set up ROS in the
latest LTS Melodic Morenia on Ubuntu 18.04 LTS after looking at the following
instructions. If you are a Windows or OS X user, you can install Ubuntu in a VirtualBox
application before installing ROS on it. The link to download VirtualBox is
https://www.virtualbox.org/wiki/Downloads.

You can find the complete instructions for doing this at http:/ ​/​wiki. ​ros. ​org/ ​kinetic/
Installation/​Ubuntu.

The steps are as follows:

Configure your Ubuntu repositories to allow restricted, universe, and1.
multiverse downloadable files. We can configure it using Ubuntu's Software &
Update tool. We can get this tool by simply searching on the Ubuntu Unity
search menu and ticking the shown in the following screenshot:

https://www.virtualbox.org/wiki/Downloads
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
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Ubuntu's Software & Update tool

Set up your system to accept ROS packages from packages.ros.org. ROS2.
Kinetic is supported only on Ubuntu 15.10 and 16.04. The following command
will store packages.ros.org in Ubuntu's apt repository list:

    $ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu
$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'

Next, we have to add apt-keys. An apt-key is used to manage the list of keys3.
used by apt to authenticate the packages. Packages that have been authenticated
using these keys will be considered trusted. The following command will add
apt-keys for the ROS packages:

    sudo apt-key adv --keyserver hkp://ha.pool.sks-
keyservers.net:80 --recv-key
421C365BD9FF1F717815A3895523BAEEB01FA116

After adding the apt-keys, we have to update the Ubuntu package list. The4.
following command will add and update the ROS packages, along with the
Ubuntu packages:

    $ sudo apt-get update
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After updating the ROS packages, we can install the packages. The following5.
command will install all the necessary packages, tools, and libraries of ROS:

      $ sudo apt-get install ros-kinetic-desktop-full

We may need to install additional packages even after the desktop full6.
installation. Each additional installation will be mentioned in the appropriate
section. The desktop full install will take some time. After the installation of ROS,
you will almost be done. The next step is to initialize rosdep, which enables you
to easily install the system dependencies for ROS source packages:

$ sudo rosdep init
$ rosdep update

To access ROS's tools and commands on the current bash shell, we can add ROS7.
environmental variables to the .bashrc file. This will execute at the beginning of
each bash session. The following is a command to add the ROS variable to
.bashrc:

    echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

The following command will execute the .bashrc script on the current shell
to generate the change in the current shell:

    source ~/.bashrc

A useful tool to install the dependency of a package is rosinstall. This tool has8.
to be installed separately. It enables you to easily download many source trees
for the ROS package with one command:

    $ sudo apt-get install python-rosinstall python-rosinstall-
generator python-wstool build-essential

The installation of the latest LTS Melodic is similar to the preceding
instructions. You can install Melodic along with Ubuntu 18.04 LTS. You
can find the complete instructions at http:/ ​/​wiki. ​ros. ​org/ ​melodic/
Installation/ ​Ubuntu.

After the installation of ROS, we will discuss how to create a sample package in ROS.
Before creating the package, we have to create a ROS workspace. The packages are created
in the ROS workspace. We will use the catkin build system, which is a set of tools that is
used to build packages in ROS. The catkin build system generates an executable or shared
library from the source code. ROS Kinetic uses the catkin build system to build packages.
Let's look at what catkin is.

http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
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Introducing catkin
Catkin is the official build system of ROS. Before catkin, ROS used the rosbuild system to
build packages. Its replacement is catkin on the latest ROS version. Catkin combines CMake
macros and Python scripts to provide the same normal workflow that CMake produces.
Catkin provides better distribution of packages, better cross-compilation, and better
portability than the rosbuild system. For more information, refer to wiki.ros.org/catkin.

Catkin workspace is a folder where you can modify, build, and install catkin packages.

Let's check how to create an ROS catkin workspace.

The following command will create a parent directory called catkin_ws and a subfolder
called src:

    $ mkdir -p ~/catkin_ws/src

Switch directory to the src folder using the following command. We will create our
packages in the src folder:

    $ cd ~/catkin_ws/src

Initialize the catkin workspace using the following command:

    $ catkin_init_workspace

After you initialize the catkin workspace, you can simply build the package (even if there is
no source file) using the following command:

    $ cd ~/catkin_ws/
    $ catkin_make

The catkin_make command is used to build packages inside the src directory. After
building the packages, we will see a build and devel folder in catkin_ws The
executables are stored in the build folder. In the devel folder, there are shell script files to
add the workspace on the ROS environment.

Creating a ROS package
In this section, we will look at how to create a sample package that contains two Python
nodes. One of the nodes is used to publish a Hello World string message on a topic called
/hello_pub and the other node will subscribe to this topic.
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A catkin ROS package can be created using the catkin_create_pkg command in ROS.

The package is created inside the src folder that we created during the creation of the
workspace. Before creating the packages, switch to the src folder using the following
command:

    $ cd ~/catkin_ws/src

The following command will create a hello_world package with std_msgs dependencies,
which contain standard message definitions. The rospy is the Python client library for
ROS:

    $ catkin_create_pkg hello_world std_msgs rospy

This is the message we get upon a successful creation:

    Created file hello_world/package.xml
    Created file hello_world/CMakeLists.txt
    Created folder hello_world/src
    Successfully created files in /home/lentin/catkin_ws/src/hello_world.
 Please adjust the values in package.xml.

After the successful creation of the hello_world package, we need to add two Python
nodes or scripts to demonstrate the subscribing and publishing of topics.

First, create a folder named scripts in the hello_world package using the following
command:

    $ mkdir scripts

Switch to the scripts folder and create a script named hello_world_publisher.py and
another script called hello_world_subscriber.py to publish and subscribe to the hello
world message. The following section covers the code and function of these scripts or
nodes:

Hello_world_publisher.py
The hello_world_publisher.py node basically publishes a greeting message called
hello world to a topic called /hello_pub. The greeting message is published to the topic at
a rate of 10 Hz.
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Here is a diagram that shows how the interaction between the two ROS nodes works:

Communication between the publisher and subscriber node

The full code of this book is available at
https://github.com/qboticslabs/learning_robotics_2nd_ed.

The step-by-step explanation of how this code works is as follows:

We need to import rospy if we are writing a ROS Python node. It contains1.
Python APIs to interact with ROS topics, services, and so on.
To send the hello world message, we have to import a String message data2.
type from the std_msgs package. The std_msgs package has the message
definition for standard data types. We can import using the following lines of
code:

    #!/usr/bin/env python
    import rospy
    from std_msgs.msg import String

https://github.com/qboticslabs/learning_robotics_2nd_ed
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The following line of code creates a publisher object to a topic called hello_pub.3.
The message type is String and the queue_size value is 10. If the subscriber is
not fast enough to receive the data, we can use the queue_size option to buffer
it:

    def talker():
        pub = rospy.Publisher('hello_pub', String, queue_size=10)

The following line of code initializes a ROS node. It will also assign a name to the4.
node. If two nodes are running with the same node name, one will shut down. If
we want to run both, use anonymous=True flag as shown in the following code:

    rospy.init_node('hello_world_publisher', anonymous=True)

The following line creates a rate object called r. Using a sleep() method in the5.
Rate object, we can update the loop at the desired rate. Here, we are giving the
rate the value of 10:

    r = rospy.Rate(10) # 10hz

The following loop will check whether rospy constructs the6.
rospy.is_shutdown() flag. Then, it executes the loop. If we click on Ctrl + C,
this loop will exit.

Inside the loop, a hello world message is printed on the Terminal and
published on the hello_pub topic with a rate of 10 Hz:

    while not rospy.is_shutdown():
        str = "hello world %s"%rospy.get_time()
        rospy.loginfo(str)
        pub.publish(str)
        r.sleep()

The following code has Python __main__ check and calls the talker() function.7.
The code will keep on executing the talker(), and when Ctrl + C is pressed the
node will get shut down:

if __name__ == '__main__':
    try:
        talker()
    except rospy.ROSInterruptException: pass

After publishing the topic, we will see how to subscribe to it. The following section covers
the code needed to subscribe to the hello_pub topic.
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Hello_world_subscriber.py
The subscriber code is as follows:

#!/usr/bin/env python
import rospy
from std_msgs.msg import String

The following code is a callback function that is executed when a message reaches the
hello_pub topic. The data variable contains the message from the topic, and it will print
using rospy.loginfo():

def callback(data):
    rospy.loginfo(rospy.get_caller_id()+"I heard %s",data.data)

The following steps will start the node with a hello_world_subscriber name and start
subscribing to the /hello_pub topic:

The data type of the message is String, and when a message arrives on this1.
topic, a method called callback will be called:

    def listener():
       rospy.init_node('hello_world_subscriber',
          anonymous=True)
       rospy.Subscriber("hello_pub", String, callback)

The following code will keep your node from exiting until the node is shut down:2.

       rospy.spin()

The following is the main section of the Python code. The main section will call3.
the listener() method, which will subscribe to the /hello_pub topic:

if __name__ == '__main__':
    listener()

After saving two Python nodes, you need to change the permission to executable4.
using the chmod commands:

    chmod +x hello_world_publisher.py
    chmod +x hello_world_subscriber.py
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After changing the file permission, build the package using the catkin_make5.
command:

    cd ~/catkin_ws
    catkin_make

The following command adds the current ROS workspace path in all terminals so6.
that we can access the ROS packages inside this workspace:

    echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
    source ~/.bashrc

The following is the output of the subscriber and publisher nodes:

Output of the hello world node

First, we need to run roscore before starting the nodes. The roscore command1.
or ROS master is needed to communicate between nodes. So, the first command
is as follows:

    $ roscore
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After executing roscore, run each node using the following commands:2.

The following command will run the publisher:

    $ rosrun hello_world hello_world_publisher.py

The following command will run the subscriber node. This node
subscribes to the hello_pub topic, as shown in the following code:

    $ rosrun hello_world hello_world_subscriber.py

We have covered some of the basics of ROS. Now, we will see what Gazebo is and how we
can work with Gazebo using ROS.

Introducing Gazebo
Gazebo is a free and open source robot simulator in which we can test our own algorithms,
design robots, and test robots in different simulated environments. Gazebo can accurately
and efficiently simulate complex robots in indoor and outdoor environments. Gazebo is
built with a physics engine with which we can create high-quality graphics and rendering.

The features of Gazebo are as follows:

Dynamic simulation: Gazebo can simulate the dynamics of a robot using physics
engines such as Open Dynamics Engine (ODE).
(http://opende.sourceforge.net/), Bullet
(http://bulletphysics.org/wordpress/), Simbody
(https://simtk.org/home/simbody/), and DART (http://dartsim.github.io/).
Advanced 3D graphics: Gazebo provides high-quality rendering, lighting,
shadows, and texturing using the OGRE framework (http://www.ogre3d.org/).
Sensor support: Gazebo supports a wide range of sensors, including laser range
finders, Kinect-style sensors, 2D/3D cameras, and so on. We can also use it to
simulate noise to test audio sensors.
Plugins: We can develop custom plugins for the robot, sensors, and
environmental controls. Plugins can access Gazebo's API.
Robot models: Gazebo provides models for popular robots, such as PR2, Pioneer
2 DX, iRobot Create, and TurtleBot. We can also build custom models of robots.

http://opende.sourceforge.net/
http://bulletphysics.org/wordpress/
https://simtk.org/home/simbody/
http://dartsim.github.io/
http://www.ogre3d.org/
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TCP/IP transport: We can run simulations on a remote machine and a Gazebo
interface through a socket-based message-passing service.
Cloud simulation: We can run simulations on the cloud server using the
CloudSim framework (http://cloudsim.io/).
Command-line tools: Extensive command-line tools are used to check and log
simulations.

Installing Gazebo
Gazebo can be installed as a standalone application or an integrated application along with
ROS. In this chapter, we will use Gazebo along with ROS to simulation a robot's behavior
and to test our written code using the ROS framework.

If you want to try the latest Gazebo simulator yourself, you can follow the steps given at
http://gazebosim.org/download.

To work with Gazebo and ROS, we don't need to install them separately because Gazebo
comes with the ROS desktop full installation.

The ROS package that integrates Gazebo with ROS is called gazebo_ros_pkgs. There are
wrappers around the standalone Gazebo. This package provides the necessary interface to
simulate a robot in Gazebo using ROS message services.

The complete gazebo_ros_pkgs can be installed in ROS Indigo using the following
command:

    $ sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-
   ros-control

Testing Gazebo with the ROS interface
Assuming that the ROS environment is properly set up, we can start roscore before
starting Gazebo using the following command:

    $ roscore

The following command will run Gazebo using ROS:

    $ rosrun gazebo_ros gazebo

http://cloudsim.io/
http://gazebosim.org/download.
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Gazebo runs two executables-the Gazebo server and the Gazebo client. The Gazebo server
will execute the simulation process and the Gazebo client can be the Gazebo GUI. Using the
previous command, the Gazebo client and server will run in parallel.

The Gazebo GUI is shown in the following screenshot:

The Gazebo simulator

After starting Gazebo, the following topics will be generated:

$ rostopic list
/gazebo/link_states
/gazebo/model_states
/gazebo/parameter_descriptions
/gazebo/parameter_updates
/gazebo/set_link_state
/gazebo/set_model_state
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We can run the server and client separately using the following commands:

Run the Gazebo server using the following command:

    $ rosrun gazebo_ros gzserver

Run the Gazebo client using the following command:

    $ rosrun gazebo_ros gzclient

Summary
This chapter was an introduction to Robot Operating System. The main goal of this chapter
was to give you an overview of ROS, its features, how to install it, the basic concepts of
ROS, and how to program it using Python. Along with this, we have looked at a robotics
simulator called Gazebo, which can work with ROS. We have seen how to install and run
Gazebo. In the next chapter, we will look at the basic concepts of differential drive robots.

Questions
What are the important features of ROS?1.
What are the different levels of concepts in ROS?2.
What is ROS catkin build system?3.
What are ROS topics and messages?4.
What are the different concepts of the ROS Computation Graph?5.
What is the main function of the ROS Master?6.
What are the important features of Gazebo?7.



2
Understanding the Basics of

Differential Robots
In the previous chapter, we discussed the basics of ROS, how to install it, and the basics of
the Gazebo robot simulator. As we have already mentioned, we are going to create an
autonomous wheeled robot from scratch. The robot that we are going to design is a
differential drive robot, which involves having two wheels on opposite sides of the robot
chassis, enabling the robot's direction to be adjusted by changing the speed of each of the
two wheels.

It will be good to understand the basic ideas and terminology behind differential wheel
robots before programming the robot. This chapter will give you an idea of how to analyze
the robot mathematically and how to solve the robot's kinematics equation. The kinematics
equation helps you to predict the robot's position from its sensor data.

In this chapter, we will cover the following topics:

Mathematical modeling of differential drive robots
Forward kinematics of differential drive robots
Inverse kinematics of differential drive robots

Mathematical modeling of the robot
An important part of a mobile robot is its steering system. This will help the robot to
navigate its environment. One of the simplest and most cost-effective steering systems is
the differential drive system. A differential drive robot consists of two main wheels
mounted on a common axis that are controlled by separate motors. A differential drive
system/steering system is a nonholonomic system, which means that it has constraints for
the changing the robot's pose.
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A car is an example of a nonholonomic system, as it cannot change its position without
changing its pose. Let's look at how this type of robot works and how we can model the
robot in terms of its mathematics.

Introduction to the differential drive system and
robot kinematics
Robot kinematics is the study of the mathematics of motion without considering the forces
that affect the motion. It mainly deals with the geometric relationships that govern the
system. Robot dynamics is the study of motion in robots in which all the forces involved in
the robots' movement are modeled.

A mobile robot or vehicle has six degrees of freedom (DOFs) expressed by the pose (x, y, z,
roll, pitch, and yaw). These DOFs consist of the position (x, y, z) and attitude (roll, pitch,
and yaw). Roll refers to sidewise rotation, pitch refers to forward and backward rotation,
and yaw (called the heading or orientation) refers to the direction in which the robot moves
in the x-y plane. The differential drive robot moves from x to y in the horizontal plane, so
the 2D pose contains mainly x, y, and θ, where θ is the heading of the robot that points in
the robot's forward direction. This information is sufficient to describe a differential robot
pose:

The pose of the robot in x, y, and θ in the global coordinate system
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In a differential drive robot, the motion can be controlled by adjusting the velocity of two
independently controlled motors on the left-hand and right-hand side, named V-left and V-
right, respectively. The following image shows a couple of popular differential drive robots
available on the market:

Robot Roomba (https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​IRobot)

The Roomba series of autonomous vacuum cleaners is a popular differential robot from
iRobot.

Pioneer 3-DX (http:/ ​/​robots. ​ros. ​org/ ​pioneer- ​3- ​dx/​)

https://en.wikipedia.org/wiki/IRobot
https://en.wikipedia.org/wiki/IRobot
https://en.wikipedia.org/wiki/IRobot
https://en.wikipedia.org/wiki/IRobot
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https://en.wikipedia.org/wiki/IRobot
https://en.wikipedia.org/wiki/IRobot
https://en.wikipedia.org/wiki/IRobot
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http://robots.ros.org/pioneer-3-dx/
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http://robots.ros.org/pioneer-3-dx/
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The Pioneer 3-DX is a popular differential drive research platform from Omron Adept
Mobile Robots.

Forward kinematics of a differential robot
The forward kinematics equations for a robot with a differential drive system are used to
solve the following problem:

If a robot is standing in a position (x, y, θ) at time t, determine the pose (x', y', θ') at t + δt
given the control parameters V-left and V-right.

This technique can be calculated by the robot to follow a particular trajectory.

Explanations of the forward kinematics equation
We can start by formulating a solution for forward kinematics. The following figure is an
illustration of one of the wheels of the robot:

A single wheel of the robot rotating along the local y-axis

The motion around the y-axis is known as the roll; everything else is called the slip. Let's
assume that no slip occurs in this case. When the wheel completes one full rotation, it
covers a distance of 2π r, where r is the radius of the wheel. We will assume that the
movement is two-dimensional. This means that the surface is flat and even.
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When the robot is about to perform a turning motion, the robot must rotate around a point
that lies along its common left and right wheel axis. The point that the robot rotates around
is known as the ICC-the instantaneous center of curvature. The ICC is located outside the
robot. The following diagram shows the wheel configuration of the differential drive robot
in relation to its ICC:

Wheel configuration for a robot with a differential drive

The central concept for the derivation of the kinematic equation is the ω angular velocity of
the robot. Each wheel on the robot rotates around the ICC along the circumference of a
circle with a wheel radius of r.

The speed of the wheel is v = 2 π r / T, where T is the time taken to complete one full turn
around the ICC. The ω angular velocity is defined as 2 π / T, and typically has the unit of
radians (or degrees) per second. Combining the equations for v and w yields ω= 2 π / T, and
we can conclude the following:

Equation of linear velocity
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A detailed model of the differential drive system is shown in the following diagram:

Detailed diagram of the differential drive system

If we apply the previous equation to both wheels, the result will be the same-that is, ω:

Differential drive wheel equation

Here, R is the distance between the ICC and the midpoint of the wheel axis and l is the
length of the wheel axis. After solving ω and R, we get the following result:

Equation to find the distance from the ICC to the center of the robot and the angular velocity of the robot
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The previous equation is useful for solving the forward kinematics problem. Suppose the
robot moves with an angular velocity of ω for δt seconds. This will result in the robot's
orientation or heading changed to the following:

Equation to find the change in heading

Here, the center of the ICC rotation is given by basic trigonometry as the following:

Equation to find the ICC

Rotating the robot ωδt degrees around the ICC
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Given a starting position (x, y), the new position (x', y') can be computed using the 2D
rotation matrix. The rotation around the ICC with the angular velocity ω for δt seconds
yields the following position at the time t + δt:

Equation to calculate the new position of the robot

The new pose (x', y', and θ') can be computed from equation (6) and (8), given ω, δt, and R.

ω can be computed from equation (5); Vr and Vl are often more difficult to measure
accurately. Instead of measuring the velocity, the rotation of each wheel can be measured
using sensors called wheel encoders. The data from the wheel encoders is the robot's
odometry values. These sensors are mounted on the wheel axes and deliver binary signals
for each degree that the wheel rotates (each degree may be in the order of 0.1 mm). We will
look at the detailed workings of the wheel encoders in Chapter 6, Interfacing Actuators and
Sensors to the Robot Controller. These signals are fed to a counter so that vδt is the distance
traveled from the time t to t + δt. We can write the following:

n * step = vδt

From this, we can calculate v:

Equation calculating the linear velocity from the encoder data

If we insert equation (9) in equations (3) and (4), we get the following result:

Equation to calculate R from the encoder values
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Here, nl and nr are the encoder counts of the left and right wheels. Vl and Vr are the speeds
of the left and right wheels respectively. Thus, the robot stands in pose (x, y, θ) and moves
nl and nr counts during a time frame of δt; the new pose (x', y', θ') is given by calculating
the following:

Equation to calculate the robot's position from the encoder values

where,

Equation to calculate the ICC and other parameters from the encoder values

The derived kinematic equation depends mainly on the design and geometry of the robot.
Different designs can lead to different equations.

Inverse kinematics
The forward kinematics equation provides an updated pose at a given wheel speed. We can
now think about the inverse problem.

Stand in pose (x, y, θ) at time t and determine the V-left and V-right control parameters so
that the pose at time t + δt is (x', y', θ').
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In differential drive systems, this problem may not always have a solution because this
kind of robot can't be moved to any pose by simply setting the wheel velocity. It's because
of the nonholonomic robots' constraints.

In nonholonomic robots, there are some ways to increase the constrained mobility if we
allow a sequence of different (V-left, V-right) movements. If we insert the values from
equations (12) and (15), we can identify some special movements that we can program:

If V-right = V-left => nr = nl => R = ∞, ωδT = 0 =>, this means that the robot moves
in a straight line and θ remains the same

If V-right = -V-left => nr = -nl => R=0, ωδt = 2nl * step / l and => x'
= x, y' = y, θ' = θ + ωδt =>, this means the robot rotates in position around ICC-that
is, any θ is reachable, while (x, y) remains unchanged

Combining these operations, the following steps can be used to reach any target pose from
the starting pose:

Rotate until the robot's orientation coincides with the line leading from the1.
starting position to the target position, V-right = -V-left = V-rot.
Drive straight until the robot's position coincides with the target position, V-right2.
= V-left = V-ahead.
Rotate until the robot's orientation coincides with the target orientation, V-right =3.
-V-left = V-rot. Here, V-rot and V-ahead can be chosen arbitrarily.

We will see how we can implement the kinematics equation of the robot using ROS in the
upcoming chapters.

Summary
This chapter was about the fundamental concepts of differential drive robots, and looked at
how you can derive the kinematics equations of such robots. At the start of the chapter, we
saw the basics of differential drive robots, and then we discussed the forward kinematics
equations that are used in these robots. These equations were explained using diagrams.
After looking at forward kinematics equations, we looked at the inverse kinematics
equations for differential drive robots. We also looked at the basics of inverse kinematics
equations.

In the next chapter, we will see how we can create a simulation of the autonomous mobile
robot using ROS and Gazebo.
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Questions
What are holonomic and nonholonomic configurations?1.
What are robot kinematics and dynamics?2.
What is the ICC of a differential drive robot?3.
What is the forward kinematic equation in a differential robot?4.
What is the inverse kinematic equation in a differential robot?5.

Further information
Refer to
http://www8.cs.umu.se/~thomash/reports/KinematicsEquationsForDifferentialDriveA

ndArticulatedSteeringUMINF-11.19.pdf for more information on kinematic equations.

http://www8.cs.umu.se/~thomash/reports/KinematicsEquationsForDifferentialDriveAndArticulatedSteeringUMINF-11.19.pdf
http://www8.cs.umu.se/~thomash/reports/KinematicsEquationsForDifferentialDriveAndArticulatedSteeringUMINF-11.19.pdf


3
Modeling the Differential Drive

Robot
In this chapter, we will look at how to model the differential drive robot and create the
URDF model of this robot in ROS. The main use case of the robot that we are going to
design in this chapter is to serve food and drinks in hotels and restaurants. The robot is
named Chefbot. We will cover the complete modeling of this robot in this chapter.

We will look at the CAD design of various mechanical components used in this robot and
how to assemble them. We will look at the 2D and 3D CAD design of this robot and will
discuss how to create the URDF model of the robot.

The actual robot model deployed in hotels may be big in size, but here we intend to build a
miniature version for testing our software. If you are interested in building a robot from
scratch, this chapter is for you. If you are not interested in building the robot, you can
choose some robotic platforms, such as Turtlebot, which are already available on the
market, to work with this book.

To build the robot hardware, first we need to get the requirements of the robot. After
getting the requirements, we can design it and draw the model in 2D CAD tools to
manufacture the robot parts. The 3D modeling of the robot will give us more idea about the
looks of the robot. After the 3D modeling, we can convert the design into a URDF model
that can be used along with ROS.

The following topics will be covered in the chapter:

Designing robot parameters from the given specification
Designing robot body parts in 2D using LibreCAD
Designing a 3D robot model using Blender and Python
Creating a URDF model for Chefbot
Visualizing the Chefbot model in Rviz
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Technical requirements
To test the application and code in this chapter, you need an Ubuntu 16.04 LTS PC/laptop
with ROS Kinetic installed

Requirements of a service robot
Before designing any robotic system, the first procedure is to identify the requirements of
the system. The following are the set of robot design requirements to be met by this robot.
This includes hardware and software requirements:

The robot should have a provision to carry food
The robot should carry a maximum payload of 2 kg
The robot should move at a speed between 0.25 m/s and 0.35 m/s
The ground clearance of the robot should be greater than 3 cm
The robot has to work for 2 hours continuously
The robot should be able to move and supply food to any table, avoiding
obstacles
The robot height can be between 80 cm and 100 cm.
The robot should be of low cost (less than 500 USD)

Now we have the design requirements, such as payload, speed, ground clearance, robot
height, cost of the robot, and the capabilities to be implemented in the robot, we can design
a robot body and select components that are matching the aforementioned requirements.
Let's discuss the robot mechanism we can use to match these requirements.

Robot drive mechanism
One of the cost-effective solutions for mobile robot navigation is the differential drive
system. It's one of the simplest drive mechanisms for a mobile robot and is mainly indented
for indoor navigation. The differential drive robot consists of two wheels mounted on a
common axis controlled by two separate motors. There are two supporting wheels called
caster wheels. This ensures stability and weight distribution of the robot. The following
diagram shows a typical differential drive system:
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Differential drive system

The next step is to select the mechanical components of this robot drive system, that is,
mainly motors, wheels, and robot chassis. Based on the requirements, we will first discuss
how to select the motor.

Selection of motors and wheels
Motors are selected after a look at the specifications. Some of the important parameters for
motor selection are torque and RPM. We can compute these values from the given
requirements.

Calculation of RPM of motors
The range of speed required for this robot is from 0.25 to 0.35m/s. We can take the
maximum speed of this robot as 0.35 m/s for the design. Take the diameter of the wheel as 9
cm, because according to the requirement, the ground clearance should be greater than 3
cm and we will fix the robot body in same level as the motor shaft. In that case, we will get
more ground clearance.
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Using the following equation, we can calculate the RPM of the motors:

RPM = ((60 * Speed /(3.14 * Diameter of Wheel)

RPM = (60 * 0.35)/(3.14 * 0.09) = 21 / 0.2826 = 74 RPM

You can also take a look at
http://www.robotshop.com/blog/en/vehicle-speed-rpm-and-wheel-dia

meter-finder-9786 for the computation.

The calculated RPM with a 9 cm diameter wheel and 0.35 m/s speed is 74 RPM. We can
consider 80 RPM as the standard value.

Calculation of motor torque
Let's calculate the torque required to move the robot:

Number of wheels = Four wheels including two caster wheels.1.
Number of motors = Two.2.
Let's assume the coefficient of friction is 0.6 and radius of the wheel is 4.5 cm.3.
Take the total weight of robot = weight of robot + payload = (W = mg) = (~100 N +4.
~20 N) W= ~ 150 N, whereas total mass = 12 Kg.
The weight acting on the four wheels can be written as 2 * N1 + 2 * N2 = W; that5.
is, N1 is the weight acting on each caster wheel and N2 on motor wheels.
Assume that the robot is stationary. The maximum torque is required when the6.
robot starts moving. It should also overcome friction.
We can write the frictional force as robot torque = 0 until the robot moves. If we7.
get the robot torque in this condition, we get the maximum torque as follows:

µ * N * r - T = 0, where µ is the coefficient of friction, N is the
average weight acting on each wheel, r is the radius of wheels, and
T is the torque.
N = W/2 (in the robot, actuation is only for two wheels, so we are
taking W/2 for computing the maximum torque).
Therefore, we get: 0.6 * (120/2) * 0.045 - T = 0
Hence, T = 1.62 N-m or 16.51 Kg-cm

http://www.robotshop.com/blog/en/vehicle-speed-rpm-and-wheel-diameter-finder-9786
http://www.robotshop.com/blog/en/vehicle-speed-rpm-and-wheel-diameter-finder-9786
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The design summary
After the design, we calculate the following values and rounding to standard motor
specifications that are available in the market:

Motor RPM = 80 (rounding to standard value)
Motor torque = 18 kg-cm
Wheel diameter = 9 cm

The robot chassis design
After computing the robot's motors and wheels parameters, we can design the robot chassis
or robot body. As required, the robot chassis should have a provision to hold food, it
should be able to withstand up to 5 kg payload, the ground clearance of the robot should be
greater than 3 cm, and it should be low in cost. Apart from this, the robot should have a
provision to place electronics components, such as a personal computer (PC), sensors, and
a battery.

One of the easiest designs to satisfy these requirements is a multi-layered architecture such
as Turtlebot 2 (http://www.turtlebot.com/). It has three layers in the chassis. The robot
platform called Kobuki (http://kobuki.yujinrobot.com/about2/) is the primary drive
mechanism of this platform. The Roomba platform has motors and sensors inbuilt, so there
is no need to worry about designing the robot drive system. The following image shows the
TurtleBot 2 robot chassis design:

TurtleBot 2 robot (http://robots.ros.org/turtlebot/)
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We will design a robot similar to TurtleBot 2 with our own moving platform and
components. Our design also has a three-layer architecture. Let's identify all the tools that
we need before we start designing.

Before we start designing the robot chassis, we need computer-aided design (CAD) tools.
The popular tools available for CAD are:

SolidWorks (http://www.solidworks.com/default.html)
AutoCAD (http://www.autodesk.com/products/autocad/overview)
Maya (http://www.autodesk.com/products/maya/overview)
Inventor (http://www.autodesk.com/products/inventor/overview)
SketchUp (http://www.sketchup.com/)
Blender (http://www.blender.org/download/)
LibreCAD (http://librecad.org/cms/home.html)

The chassis design can be designed in any software you are comfortable with. Here, we will
demonstrate the 2D model in LibreCAD and 3D model in Blender. One of the highlights of
these applications is that they are free and available for all OS platforms. We will use a 3D
mesh viewing tool called MeshLab to view and check the 3D model design and use Ubuntu
as the main operating system. Also, we can see the installation procedures of these
applications in Ubuntu 16.04 to start the designing process. We will provide tutorial links to
install applications in other platforms too.

Installing LibreCAD, Blender, and MeshLab
LibreCAD is a free, open source 2D CAD application for Windows, OS X, and Linux.
Blender is a free, open source 3D computer graphics software used to create 3D models,
animation, and video games. It comes with a GPL license, allowing users to share, modify,
and distribute the application. MeshLab is an open source, portable, and extensible system
to process and edit unstructured 3D triangular meshes.

The following are the links to install LibreCAD in Windows, Linux, and OS X:

Visit http://librecad.org/cms/home.html to download LibreCAD
Visit http://librecad.org/cms/home/from-source/linux.html to build
LibreCAD from source

http://www.solidworks.com/default.html
http://www.autodesk.com/products/autocad/overview
http://www.autodesk.com/products/maya/overview
http://www.autodesk.com/products/inventor/overview
http://www.sketchup.com/
http://www.blender.org/download/
http://librecad.org/cms/home.html
http://librecad.org/cms/home.htmlhttp:/librecad.org/cms/home.html
http://librecad.org/cms/home/from-source/linux.html
http://librecad.org/cms/home/from-source/linux.html
http://librecad.org/cms/home/from-source/linux.html
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Visit http:/ ​/​librecad. ​org/ ​cms/​home/ ​installation/ ​linux. ​html to install
LibreCAD in Debian/Ubuntu
Visit http://librecad.org/cms/home/installation/rpm-packages.html to
install LibreCAD in Fedora
Visit http://librecad.org/cms/home/installation/osx.html to install
LibreCAD in OS X
Visit http://librecad.org/cms/home/installation/windows.html to install
LibreCAD in Windows

You can find the documentation on LibreCAD at the following link:
http://wiki.librecad.org/index.php/Main_Page.

Installing LibreCAD
The installation procedure for all operating systems is provided. If you are an Ubuntu user,
you can simply install it from the Ubuntu Software Center as well.

Here are the commands to install LibreCAD if you are using Ubuntu:

    $ sudo add-apt-repository ppa:librecad-dev/librecad-stable
    $ sudo apt-get update
    $ sudo apt-get install librecad

Installing Blender
Visit the following download page to install Blender for your OS platform:
http://www.blender.org/download/.You can find the latest version of Blender here. Also,
you can find the latest documentation on Blender at http://wiki.blender.org/.

If you are using Ubuntu/Linux, you can simply install Blender via the Ubuntu Software
Center or use following command:

    $ sudo apt-get install blender

http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/linux.html
http://librecad.org/cms/home/installation/rpm-packages.html
http://librecad.org/cms/home/installation/osx.html
http://librecad.org/cms/home/installation/windows.html
http://wiki.librecad.org/index.php/Main_Page
http://www.blender.org/download/
http://wiki.blender.org/
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Installing MeshLab
MeshLab is available for all OS platforms. The following link will provide you with the
download links of prebuilt binaries and the source code of
MeshLab: http://meshlab.sourceforge.net/

If you are an Ubuntu user, you can install MeshLab from an apt package manager using
the following command:

    $sudo apt-get install meshlab

Creating 2D CAD drawing of a robot using
LibreCAD
We will take a look at the basic interface of LibreCAD. The following screenshot shows the
interface of LibreCAD:

LibreCAD tool

http://meshlab.sourceforge.net/
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A CAD toolbar has the necessary components to draw a model. The following diagram
shows the detailed overview of the CAD toolbar:

http://wiki.librecad.org/

A detailed description of LibreCAD tools is available at the following link:
http://wiki.librecad.org/index.php/LibreCAD_users_Manual

Here is a short explanation of each tool:

Command Box: This is used to draw figures by only using commands. We can
draw diagrams without touching any toolbar. A detail explanation about the
usage of the Command Box can be found at:
Layer List: This will have layers used in the current drawing. A basic concept in
computer-aided drafting is the use of layers to organize a drawing. A detailed
explanation of layers can be found at:
http://wiki.librecad.org/index.php/Layers.
Blocks: This is a group of entities and can be inserted in the same drawing more
than once with different attributes at different locations, different scales, and
rotation angles. A detailed explanation of Blocks can be found at the following
link: http:/ ​/​wiki. ​librecad. ​org/​index. ​php/​Blocks.
Absolute Zero: This is the origin of the drawing (0,0).

http://wiki.librecad.org/
http://wiki.librecad.org/index.php/LibreCAD_users_Manual
http://wiki.librecad.org/index.php/Layers
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
http://wiki.librecad.org/index.php/Blocks
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Now, start sketching by setting the unit of drawing. Set the drawing unit to centimeters.
Open LibreCAD, and navigate to Edit | Application Preference. Set Unit as Centimeter, as
shown in the following screenshot:

Let's start with the base plate design of the robot. The base plate has provisions to connect
motors, place a battery, and a control board.
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The base plate designs
The following diagram shows the robot's base plate. This plate provides provisions for two
motors for the differential drive and each caster wheel on the front and back of the base
plate. Motors are mentioned as M1 and M2 in the diagram and caster wheels are
represented as C1 and C2. It also holds four poles to connect to the next plates. Poles are
represented as P1-1, P1-2, P1-3, and P1-4. The screws are indicated as S and we will use the
same screws here. There is a hole at the center to bring the wires from the motor to the top
of the plate. The plate is cut on the left-hand side and the right-hand side so that the wheels
can be attached to the motor. The distance from the center to the caster wheels is mentioned
as 12.5 cm and the distance from the center to motors is mentioned as 5.5 cm. The center of
poles is at 9 cm in length and 9 cm in height from the center. The holes of all the plates
follow the same dimensions:

Design of base plate
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The dimensions are not marked in the diagram; instead, they are listed in the following
table:

Parts Dimension(cm) (Length x Height) ( radius)
M1 and M2 5 x 4
C1 and C2 Radius = 1.5
S (Screw) (not shown in diagram) 0.15
P1-1,P1-2,P1-3,P1-4 Outer radius 0.7, Height 3.5cm
Left and right wheel sections 2.5 x 10
Base plate Radius = 15

We will discuss the motor dimensions and clamp dimensions in more detail later.

Base plate pole design
The base plate has four poles to extend to the next layer. The poles are 3.5 cm in length with
a radius of 0.7 cm. We can extend to the next plate by attaching hollow tubes to the poles.
At the top of the hollow tube, we will insert a hard plastic to make a screw hole. This hole
will be useful for extending to the top layer. The base plate pole and hollow tubes on each
pole are shown in the following diagram. The hollow tube has a radius of 0.75 cm and
length of 15 cm:

Design of hollow tube 15 cm
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Wheel, motor, and motor clamp design
We have to decide the diameter of the wheel and compute motor requirements. Here, we 
are giving a typical motor and wheel that we can use if the design is successful:

Motor design of robot

The motor design can vary according to the motor selection; if necessary, this motor can be
taken as the design and can change after simulation. The L value in the motor diagram can
vary according to the speed and torque of the motors. This is the gear assembly of the
motor.
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The following diagram shows a typical wheel that we can use with a diameter of 90 cm. The
wheel with a diameter of 86.5 mm will become 90 mm after placing the grip:

Wheel design of robot

The motors need to be mounted on the base plate. To mount, we need a clamp that can be
screwed onto the plate and also connect the motor to the clamp. The following diagram
shows a typical clamp that we can use for this purpose. It's an L-shaped clamp with which
we can mount the motor on one side and fit another side to the plate:
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Typical clamp design of robot

Caster wheel design
Caster wheels need not have a special design; we can use any caster wheel that can touch
the ground similar to the wheels. The following link has a collection of caster wheels that
we can use for this design: http://www.pololu.com/category/45/pololu-ball-casters.

http://www.pololu.com/category/45/pololu-ball-casters
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Middle plate design
The dimension of this plate is same as the base plate and the screw size is also similar:

Design of middle plate of robot

The middle plate can be held above the hollow tubes from the base plate. This arrangement
is connected using another hollow tube that extends from the middle plate. The tube from
the middle plate will have a screw at the bottom to fix the tube from the base plate and the
middle plate and a hollow end to connect the top plate. The top and side view of the tube
extending from the middle plate is shown in the following diagram:

Design of hollow tube 20 cm
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This tube will connect the middle plate to the base plate and at the same time provide a
connect the top plate.

Top plate design
The top plate is similar to the other plates; it has four small poles of 3 cm, similar to the base
plate. The poles can be placed on the hollow tubes from the middle plate. The four poles are
connected to the plate itself:

Design of top plate

After the top plate design, the robot chassis design is almost finished. Let's look at the 3D
model building of this robot using Blender. The 3D model is built for simulation purposes
and the 2D design we build is mainly for manufacturing purposes.
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Working with a 3D model of the robot using
Blender
In this section, we will design the 3D model of the robot. The 3D model is mainly used for
simulation purposes. The modeling will be done using Blender. The version must be
greater than 2.6 because we only tested the tutorials on these versions.

The following screenshot shows the Blender workspace and tools that can be used to work
with 3D models:

Blender 3D CAD tools

The main reason why we are using Blender here is that we can model the robot using
Python scripts. Blender has an inbuilt Python interpreter and a Python script editor for
coding purposes. We will not discuss the user interface of Blender here. You can find a
good tutorial of Blender on its website. Refer to the following link to learn about Blender's
user interface:
http://www.blender.org/support/tutorials/.

Let's start coding in Blender using Python.

http://www.blender.org/support/tutorials/
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Python scripting in Blender
Blender is mainly written in C, C++, and Python. Users can write their own Python script
and access all the functionalities of Blender. If you are an expert in Blender Python APIs,
you can model the entire robot using a Python script instead of manual modeling.

Blender uses Python 3.x. Blender. The Python APIs are generally stable, but some areas are
still added and improved. Refer to
http://www.blender.org/documentation/blender_python_api_2_69_7/ for the
documentation on the Blender Python APIs.

Let's give a quick overview of the Blender Python APIs that we will use in our robot model
script.

Introduction to Blender Python APIs
Python APIs in Blender can do most of the functionalities of Blender. The main jobs that can
be done by the APIs are as follows:

Edit any data inside Blender, such as scenes, meshes, particles, and so on
Modify user preferences, key maps, and themes
Create new Blender tools
Draw the 3D view using OpenGL commands from Python

Blender provides the bpy module to the Python interpreter. This module can be imported
in a script and gives access to Blender data, classes, and functions; scripts that deal with
Blender data will need to import this module. The main Python modules we will use in bpy
are:

Context access: This provides access to Blender user interface functions from the
(bpy.context) script
Data access: This provides access to the Blender internal data (bpy.data)
Operators: This provides Python access to calling operators, which includes
operators written in C, Python, or Macros (bpy.ops)

http://www.blender.org/documentation/blender_python_api_2_69_7/
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For switching to scripting in Blender, we need to change the screen layout of Blender. The
following screenshot shows the option that helps you to switch to the Scripting layout:

Blender Scripting option

After selecting the Scripting tab, we can see a text editor and Python console window in
Blender. In the text editor, we can code using Blender APIs and also try Python commands
via the Python console. Click on the New button to create a new Python script and name it
robot.py. Now, we can design the 3D model of the robot using only Python scripts. The
upcoming section has the complete script to design our robot model. We can discuss the
code before running it. Hopefully, you have read the Python APIs of Blender from their
site. The code in the upcoming section is split into six Python functions to draw three robot
plates, draw motors and wheels, draw four support tubes, and export into the
STereoLithography (STL) 3D file format for simulation.
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Python script of the robot model
The following is the Python script of the robot model that we will design:

Before starting the Python script in Blender, we must import the bpy module.1.
The bpy module contains all the functionalities of Blender and it can only be
accessed from inside the Blender application:

import bpy

The following function will draw the base plate of the robot. This function will2.
draw a cylinder with a radius of 5 cm and cut a portion from the opposite sides
so that motors can be connected using the Boolean modifier inside Blender:

#This function will draw base plate
def Draw_Base_Plate():

The following two commands will create two cubes with a radius of 0.05 meters3.
on either side of the base plate. The purpose of these cubes is to create a modifier
that subtracts the cubes from the base plate. So in effect, we will get a base plate
with two cuts. After cutting the two sides, we will delete the cubes:

bpy.ops.mesh.primitive_cube_add(radius=0.05,
location=(0.175,0,0.09))bpy.ops.mesh.primitive_cube_add(radius=0.05
,
       location=(-0.175,0,0.09))

    ####################################################
    ####################################################

    #Adding base plate
bpy.ops.mesh.primitive_cylinder_add(radius=0.15,
       depth=0.005, location=(0,0,0.09))

    #Adding boolean difference modifier from first cube

bpy.ops.object.modifier_add(type='BOOLEAN')
bpy.context.object.modifiers["Boolean"].operation =
       'DIFFERENCE'bpy.context.object.modifiers["Boolean"].object =
 bpy.data.objects["Cube"]
bpy.ops.object.modifier_apply(modifier="Boolean")

    ######################################################
    ######################################################

    #Adding boolean difference modifier from second cube
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bpy.ops.object.modifier_add(type='BOOLEAN')
bpy.context.object.modifiers["Boolean"].operation =
       'DIFFERENCE'bpy.context.object.modifiers["Boolean"].object =
 bpy.data.objects["Cube.001"]
bpy.ops.object.modifier_apply(modifier="Boolean")

    #######################################################
     #######################################################

    #Deselect cylinder and delete cubes
bpy.ops.object.select_pattern(pattern="Cube")
bpy.ops.object.select_pattern(pattern="Cube.001")
bpy.data.objects['Cylinder'].select = False
bpy.ops.object.delete(use_global=False)

The following function will draw motors and wheels attached to the base plate:4.

#This function will draw motors and wheels
def Draw_Motors_Wheels():

The following commands will draw a cylinder with a radius of 0.045 and 0.015.
meters in depth for the wheels. After creating the wheels, it will be rotated and
translated into the cut portion of the base plate:

    #Create first Wheel

bpy.ops.mesh.primitive_cylinder_add(radius=0.045,
       depth=0.01, location=(0,0,0.07))
    #Rotate
bpy.context.object.rotation_euler[1] = 1.5708
    #Transalation
bpy.context.object.location[0] = 0.135

    #Create second wheel
bpy.ops.mesh.primitive_cylinder_add(radius=0.045,
       depth=0.01, location=(0,0,0.07))
    #Rotate
bpy.context.object.rotation_euler[1] = 1.5708
    #Transalation
bpy.context.object.location[0] = -0.135
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The following code will add two dummy motors to the base plate. The6.
dimensions of the motors are mentioned in the 2D design. The motor is basically
a cylinder and it will be rotated and placed in the base plate:

    #Adding motors

bpy.ops.mesh.primitive_cylinder_add(radius=0.018,
 depth=0.06, location=(0.075,0,0.075))
bpy.context.object.rotation_euler[1] = 1.5708

bpy.ops.mesh.primitive_cylinder_add(radius=0.018,
 depth=0.06, location=(-0.075,0,0.075))
bpy.context.object.rotation_euler[1] = 1.5708

The following code will add a shaft to the motors, similar to the motor model.7.
The shaft is also a cylinder and it will be rotated and inserted into the motor
model:

    #Adding motor shaft
bpy.ops.mesh.primitive_cylinder_add(radius=0.006,
 depth=0.04, location=(0.12,0,0.075))
bpy.context.object.rotation_euler[1] = 1.5708

bpy.ops.mesh.primitive_cylinder_add(radius=0.006,
 depth=0.04, location=(-0.12,0,0.075))
bpy.context.object.rotation_euler[1] = 1.5708

    #######################################################
 #######################################################

The following code will add two caster wheels on the base plate. Currently, we8.
are adding a cylinder as a wheel. In the simulation, we can assign it as a wheel:

    #Adding Caster Wheel

bpy.ops.mesh.primitive_cylinder_add(radius=0.015,
       depth=0.05,
location=(0,0.125,0.065))bpy.ops.mesh.primitive_cylinder_add(radius
=0.015,
       depth=0.05, location=(0,-0.125,0.065))
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The following code will add a dummy Kinect sensor:9.

    #Adding Kinect

bpy.ops.mesh.primitive_cube_add(radius=0.04,
       location=(0,0,0.26))

This function will draw the middle plate of the robot:10.

#Draw middle plate
def Draw_Middle_Plate():
bpy.ops.mesh.primitive_cylinder_add(radius=0.15,
       depth=0.005, location=(0,0,0.22))

#Adding top plate
def Draw_Top_Plate():
bpy.ops.mesh.primitive_cylinder_add(radius=0.15,
       depth=0.005, location=(0,0,0.37))

This function will draw all the four supporting hollow tubes for all the three11.
plates:

#Adding support tubes
def Draw_Support_Tubes():
###################################################################
##########################

    #Cylinders
bpy.ops.mesh.primitive_cylinder_add(radius=0.007,
       depth=0.30,
location=(0.09,0.09,0.23))bpy.ops.mesh.primitive_cylinder_add(radiu
s=0.007,
       depth=0.30,
location=(-0.09,0.09,0.23))bpy.ops.mesh.primitive_cylinder_add(radi
us=0.007,
       depth=0.30,
location=(-0.09,-0.09,0.23))bpy.ops.mesh.primitive_cylinder_add(rad
ius=0.007,
       depth=0.30, location=(0.09,-0.09,0.23))

This function will export the designed robot to STL. We have to change the STL12.
filepath before executing the script:

#Exporting into STL
def Save_to_STL():
bpy.ops.object.select_all(action='SELECT')
#    bpy.ops.mesh.select_all(action='TOGGLE')
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bpy.ops.export_mesh.stl(check_existing=True,
 filepath="/home/lentin/Desktop/exported.stl",
 filter_glob="*.stl", ascii=False,
 use_mesh_modifiers=True, axis_forward='Y',
 axis_up='Z', global_scale=1.0)

#Main code

if __name__ == "__main__":
Draw_Base_Plate()
Draw_Motors_Wheels()
Draw_Middle_Plate()
Draw_Top_Plate()
Draw_Support_Tubes()
Save_to_STL()

After entering the code in the text editor, execute the script by pressing the Run13.
Script button, as shown in the following screenshot. The output 3D model will be
shown on the 3D view of Blender. Also, if we check the desktop, we can see the
exported.stl file for the simulation purpose:

Running Python script in Blender
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The exported.stl file can be opened with MeshLab and the following is a14.
screenshot of MeshLab:

3D model of Chefbot in MeshLab

Creating a URDF model of the robot
The robot model in ROS contains packages to model the various aspects of the robot, which
is specified in the XML Robot Description Format. The core package of this stack is URDF,
which parses URDF files and constructs an object model of the robot.

Unified Robot Description Format (URDF) is an XML specification to describe the model
of a robot. We can represent the following features of the robot using URDF:

The kinematic and dynamic description of the robot
The visual representation of the robot
The collision model of the robot
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The description of the robot consists of a set of links (parts), elements, and a set of joint
elements, which connect these links together. A typical robot description is shown in the
following code:

<robot name="chefbot">
<link> ... </link>
<link> ... </link>
<link> ... </link>

<joint>  ....  </joint>
<joint>  ....  </joint>
<joint>  ....  </joint>
</robot>

It would be good if you refer to the following links for more information
on URDF:
http://wiki.ros.org/urdf
http://wiki.ros.org/urdf/Tutorials

Xacro (XML Macros) is an XML macro language. With xacro, we can create shorter and
more readable XML files. We can use xacro along with URDF to simplify the URDF file. If
we add xacro to URDF, we have to call the additional parser program to convert xacro to
URDF.

The following link will give you further details about xacro:
http://wiki.ros.org/xacro

robot_state_publisher allows you to publish the state of the robot to tf
(http://wiki.ros.org/tf). This node read the URDF parameter called robot_description
and reads the joint angles of the robot from a topic called joint_states as input and
publishes the 3D poses of the robot links using the kinematic tree model of the robot. The
package can be used as a library and as an ROS node. This package has been well tested
and the code is stable.

World files: These represent the environment of Gazebo, which has to be loaded
along with the robot model. empty.world and playground.world are some examples
of Gazebo world files. empty.world contains just an empty space. In
playground.world, there will be some static objects in the environment. We can
create our own *.world file using Gazebo. We will cover Gazebo world files
further in the next chapter.

http://wiki.ros.org/urdf
http://wiki.ros.org/urdf/Tutorials
http://wiki.ros.org/xacro
http://wiki.ros.org/tf
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CMakeList.txt and package.xml: These files are created during the creation of
the package. The CmakeList.txt file helps to build the ROS C++ nodes or
libraries within a package and the package.xml file holds the list of all the
dependencies of this package.

Creating a Chefbot description ROS package
The chefbot_description package contains the URDF model of our robot. Before
creating this package by yourself, you can go through the downloaded packages of Chefbot
from chapter3_codes. It will help you to speed up the process.

Let's check how to create the chefbot_description package. The following procedure
will guide you in creating this package:

First, we need to switch to the chefbot folder in the src folder:1.

    $ cd ~/catkin_ws/src/

The following command will create the robot description package along with2.
dependencies, such as urdf and xacro. This will create the
chefbot_description package in the catkin_ws/src folder:

    $ catkin_create_pkgchefbot_descriptioncatkinxacro

Copy all the folders from the downloaded chefbot_description package to3.
the new package folder. The meshes folder holds the 3D parts of the robot and
the urdf folder contains the URDF files that have the kinematics and dynamics
model of the robot. The robot model is split into several xacro files, which
enables easier debugging and better readability.

Let's look at the functionality of each file inside this package. You can check each of the files
inside chefbot_description. The following diagram shows the files inside this package:
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Chefbot description package

The functionalities of each file in the package are as follows:

urdf/chefbot.xacro: This is the main xacro file that has kinematic and
dynamic parameters of the robot.
urdf/common_properties.xacro: This xacro file consists of some properties
and its values used inside the robot model. For example, different color
definitions of robot links and some constants.
gazebo/chefbot.gazebo.xacro: This file consists of simulation parameters of
the robot. It mainly has Gazebo parameters and plugins for performing
simulations. These parameters will only be active when we start the simulation
using this model.
launch/upload_model.launch: This launch file has a node that basically
parses the robot xacro file and uploads the parsed data to a ROS parameter called
robot_description. The robot_description parameter is then used in Rviz
for visualization and used in Gazebo for simulation. If our xacro model is wrong,
then this launch file will throw an error.
launch/view_model.launch: This launch file will upload the robot URDF
model and view the model in Rviz.
launch/view_navigation.launch: The will show the URDF model and
navigation-related display types in Rviz.
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launch/view_robot_gazebo.launch: This will launch the URDF model in
Gazebo and start all Gazebo plugins.
meshes/: This folder contains the necessary meshes for the robot model.
You can build the workspace using the catkin_make command.

After building the packages, we can launch the Chefbot model in Rviz using the following
command:

    $ roslaunch chefbot_descriptionview_robot.launch

The robot model in Rviz is shown in the following screenshot:

Chefbot URDF model in Rviz
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Here is the view_robot.launch file that visualizes the robot in Rviz:

<launch>

<!-- This launch file will parse the URDF model and create
robot_description parameter  - ->

<include file="$(find chefbot_description)/launch/upload_model.launch" />

<!-Publish TF from joint states -- >

<node name="robot_state_publisher" pkg="robot_state_publisher"
type="robot_state_publisher" />

<!-Start slider GUI for controlling the robot joints -- >
<node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" args="_use_gui:=True" />

<!-Start Rviz with a specific configuration -- >

<node name="rviz" pkg="rviz" type="rviz" args="-d $(find
chefbot_description)/rviz/robot.rviz" />

</launch>

Here is the definition of upload_model. launch. The xacro command is to parse the
chefbot.xacro file and store to robot_description:

<launch>

<!-- Robot description -->
<param name="robot_description" command="$(find xacro)/xacro --inorder
'$(find chefbot_description)/urdf/chefbot.xacro'" />

</launch>

We can have a look at the udf/chefbot.xacro, which is the main URDF model file. We
can see how the links and joints are defined inside the xacro file.
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The following code snippet shows the header of the robot xacro model. It has an XML
version, robot name, and it includes some other xacro files, such as
common_properties.xacro and chefbot.gazebo.xacro. After that, we can see some 
camera properties that are defined in the header:

<?xml version="1.0"?>

<robot name="chefbot" xmlns:xacro="http://ros.org/wiki/xacro">

<xacro:include filename="$(find
chefbot_description)/urdf/common_properties.xacro" />

<xacro:include filename="$(find
chefbot_description)/gazebo/chefbot.gazebo.xacro" />

<xacro:property name="astra_cam_py" value="-0.0125"/>
<xacro:property name="astra_depth_rel_rgb_py" value="0.0250" />
<xacro:property name="astra_cam_rel_rgb_py"   value="-0.0125" />
<xacro:property name="astra_dae_display_scale"   value="0.8" />

The following code snippet shows the definition of links and joints in the model:

<link name="base_footprint"/>

<joint name="base_joint" type="fixed">
<origin xyz="0 0 0.0102" rpy="0 0 0" />
<parent link="base_footprint"/>
<child link="base_link" />
</joint>
<link name="base_link">
<visual>
<geometry>
<!-- new mesh -->
<mesh filename="package://chefbot_description/meshes/base_plate.dae" />
<material name="white"/>
</geometry>

   <origin xyz="0.001 0 -0.034" rpy="0 0 ${M_PI/2}"/>
</visual>
<collision>
<geometry>
<cylinder length="0.10938" radius="0.178"/>
</geometry>
<origin xyz="0.0 0 0.05949" rpy="0 0 0"/>
</collision>
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<inertial>
<!-- COM experimentally determined -->
<origin xyz="0.01 0 0"/>
<mass value="2.4"/><!-- 2.4/2.6 kg for small/big battery pack -->

<inertia ixx="0.019995" ixy="0.0" ixz="0.0"
iyy="0.019995" iyz="0.0"
izz="0.03675" />
</inertial>
</link>

In this code, we can see the definition of two links called base_footprint and
base_link. The base_footprint link is a dummy link, meaning it has any properties; it
is just for showing the origin of the robot. The base_link is the origin of the robot and it
has visual and collision properties. We can also see that the link is visualized as a mesh file.
We can also see the inertial parameters of the link in the definition. The joint is the
combination of two link. We can define a joint in URDF by mentioning two links and the
type of the joint. There are different types of joints available in URDF, such as fixed,
revolute, continuous, and prismatic. In this snippet, we are creating a fixed joint because
there is no movement between these frames.

This chapter has been all about the basics of the Chefbot URDF. We will learn more about
Chefbot simulation and give an explanation of the parameters in the next chapter.

Summary
In this chapter, we discussed the modeling of the Chefbot robot. The modeling involves 2D
and 3D designing of the robot hardware and ends up in as URDF model, which can be used
in ROS. The chapter started with the various requirements to be satisfied by the robot and
we have seen how to calculate various design parameters. After calculating the design
parameters, we started to design the 2D sketches of the robot hardware. The designing was
done using LibreCAD, a free CAD tool. After that, we worked on the 3D model in Blender
using Python scripting. We have created the mesh model from Blender and created the
URDF model of the robot. After the creation of the URDF model, we looked at how to
visualize the robot in Rviz.

In the next chapter, we will discuss how to simulate this robot and perform mapping and
localization.
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Questions
What is robot modeling and what are its uses?1.
What is the aim of a 2D robot model?2.
What is the aim of a 3D robot model?3.
What is the advantage of Python scripting over manual modeling?4.
What is a URDF file and what are its uses?5.

Further reading
To learn more about URDF and Xacro and Gazebo you can refer book: Mastering ROS for
Robotics Programming - Second Edition (https:/ ​/​www. ​packtpub. ​com/ ​hardware- ​and-
creative/​mastering- ​ros- ​robotics- ​programming- ​second- ​edition)

https://www.packtpub.com/hardware-and-creative/mastering-ros-robotics-programming-second-edition
https://www.packtpub.com/hardware-and-creative/mastering-ros-robotics-programming-second-edition
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https://www.packtpub.com/hardware-and-creative/mastering-ros-robotics-programming-second-edition
https://www.packtpub.com/hardware-and-creative/mastering-ros-robotics-programming-second-edition
https://www.packtpub.com/hardware-and-creative/mastering-ros-robotics-programming-second-edition
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4
Simulating a Differential Drive

Robot Using ROS
In the previous chapter, we looked at how to model Chefbot. In this chapter, we are going
to learn how to simulate the robot using the Gazebo simulator in ROS. We will learn how to
create a simulation model of Chefbot, and we will create a hotel-like environment in
Gazebo to test our application, which is programmed to automatically deliver food to
customers. We will look at a detailed explanation of each of the steps to test out our
application. The following are the important topics that we are going to cover in this
chapter:

Getting started with the Gazebo simulator
Working with the TurtleBot 2 simulation
Creating a simulation of Chefbot
URDF tags and plugins for simulations
Getting started with simultaneous localization and mapping
Implementing SLAM in a Gazebo environment
Creating a map using SLAM
Getting started with adaptive Monte Carlo localization
Implementing AMCL in a Gazebo environment
Autonomous navigation of Chefbot in a hotel using Gazebo

Technical requirements
To test the application and codes in this chapter, you need an Ubuntu 16.04 LTS PC/laptop
with ROS Kinetic installed.
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Getting started with the Gazebo simulator
In the first chapter, we looked at the basic concepts of the Gazebo simulator and its
installation procedures. In this chapter, we will learn more about the usage of Gazebo and
how to simulate a differential drive robot in the Gazebo simulator. The first step is to
understand the GUI interfaces and its various controls. As we have discussed in the first
chapter, Gazebo has two main sections. The first is the Gazebo server and the second is the
Gazebo client. The simulation is done on the Gazebo server, which acts as a backend. The
GUI is the frontend, which acts as the Gazebo client. We will also look at Rviz (ROS
Visualizer), which is a GUI tool in ROS that is used to visualize different kinds of robot
sensor data from robot hardware or a simulator, such as Gazebo.

We can use Gazebo as an independent simulator to simulate the robot, or we can use
interfaces with ROS and Python that can be used to program robots in the Gazebo
simulator. If we are using Gazebo as an independent simulator, the default option to
simulate the robot is by writing C++-based plugins
(http://gazebosim.org/tutorials/?tut=plugins_hello_world). We can write C++
plugins for simulating a robot's behavior, creating new sensors, creating a new world, and
so on. By default, the modeling of robots and environments in Gazebo is done using the
SDF (http:/​/​sdformat. ​org/ ​) file. If we are using an ROS interface for Gazebo, we have to
create a URDF file that contains all the parameters of the robot and has Gazebo-specific tags
to mention the simulation properties of the robot. When we start the simulation using
URDF, it will convert to an SDF file using some tools and display the robot in Gazebo. The
ROS interface of Gazebo is called gazebo-ros-pkgs. It is a set of wrappers and plugins that
have the ability to model a sensor, robot controller, and other simulations in Gazebo and
communicate over ROS topics. In this chapter, we will be mainly focusing on the ROS-
Gazebo interface for simulating Chefbot. The advantage of the ROS-Gazebo interface is that
we can program the robot by making use of the ROS framework. We can program the robot
using popular programming languages such as C++ and Python using ROS.

If you are not interested in using ROS and want to program the robot using Python, you
should check out an interface called pygazebo (https://github.com/jpieper/pygazebo). It
is a Python binding of Gazebo. In the next section, we will see the GUI of Gazebo, along
with some of its important controls.

http://gazebosim.org/tutorials/?tut=plugins_hello_world
http://sdformat.org/
http://sdformat.org/
http://sdformat.org/
http://sdformat.org/
http://sdformat.org/
http://sdformat.org/
http://sdformat.org/
http://sdformat.org/
https://github.com/jpieper/pygazebo
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The Gazebo's graphical user interface
We can start Gazebo in several ways. You have already seen this in Chapter 1, Getting
Started with Robot Operating System. In this chapter, we are using the following command to
start an empty world, meaning that there is no robot and no environment:

$ roslaunch gazebo_ros empty_world.launch

The preceding command will start the Gazebo server and client and load an empty world
into Gazebo. Here is the view of the empty world in Gazebo:

Gazebo user interface

The Gazebo user interface can be divided into three sections: Scene, Left Panel, and the
Right Panel.
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The Scene
The Scene is the place where the simulation of the robot takes place. We can add various
objects to the scene, and we can interact with the robot in the scene using the mouse and
keyboard.

The Left Panel
You can see the left Panel when we launch Gazebo. There are three main tabs in the Left
Panel:

World: The World tab contains a list of models in the current Gazebo Scene.
Here, we can modify model parameters, such as the pose, and can also change
the camera's pose.
Insert: The Insert tab allows you to add a new simulation model to the Scene.
The models are available in the local system, as well as the remote server. The
/home/<user_name>/.gazebo/model folder will keep the local model files and
models in the remote server in http:/ ​/​gazebosim. ​org/ ​models, as shown in the
following screenshot:

The Insert tab in the left panel of Gazebo

http://gazebosim.org/models
http://gazebosim.org/models
http://gazebosim.org/models
http://gazebosim.org/models
http://gazebosim.org/models
http://gazebosim.org/models
http://gazebosim.org/models
http://gazebosim.org/models
http://gazebosim.org/models
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You can see both the local files and remote files in the Insert tab that is shown in the
preceding screenshot.

When you start Gazebo for the first time, or when you start a world that
has models from the remote server, you may see a black screen on Gazebo
or a warning on the terminal. This is because the model in the remote
server is being downloaded and Gazebo has to wait a while. The waiting
time can vary according to the speed of your internet connection. Once the
model is downloaded, it will be kept in the local model folder, so there
will not be any delay the next time.

Layers: Most of the time, we will not use this tab. This tab is for organizing the
different visualizations available in the simulation. We can hide/unhide the
models in the simulation by toggling each layer. Most of the time in the
simulation, this tab will be empty.

Right Panel
The Right panel is hidden by default. We have to drag it in order to view it. This panel
enables us to interact with the mobile parts of the model. We can see the joints of the model
if we select the model in the scene.

Gazebo toolbars
The Gazebo has two toolbars. One is above the Scene and one is below it.

Upper toolbar
he upper toolbar is very useful for interacting with the Gazebo Scene. This toolbar is mainly
for manipulating the Gazebo Scene. It has functions to select the model, scale it, translate
and rotate it, and add new shapes to the scene:

Upper toolbar of Gazebo
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The following list shows you detailed descriptions of each option:

Select Mode: If we are in Select Mode, we can select the models in the Scene and
set their properties, as well as navigate inside the Scene.
Translate Mode: In Translate Mode, we can select a model and translate it model
by clicking the Left button.
Rotate Mode: In Rotate Mode, we can select the model and change its
orientation.
Scale Mode: In Scale Mode, we can select the model and scale it.
Undo/Redo: This enables us to undo or redo actions in the Scene.
Simple Shapes: With this option, we can insert primitive shapes into the scene,
such as a cylinder, cube, or sphere.
Lights: The Lights option enables us to add different kinds of light sources into
the Scene.
Copy/Paste: The Copy and Paste options enable us to copy and paste different
models and parts of the Scene.
Align: This enables us to align models to one another.
Snap: This snaps one model and moves it inside the Scene.
Change view: This changes the view of the Scene. It mainly uses the perspective
view and orthogonal view.
Screenshot: This takes a screenshot of the current Scene.
Record Log: This saves Gazebo's logs.

Bottom toolbar
The bottom toolbar mainly gives us an idea about the simulation. It displays the Simulation
Time, which refers to the time that is passing within the simulator. The simulation can sped
up or slowed down. This depends on the computation required for the current simulation.

The Real Time display refers to the actual time passing in real life when the simulator is
running. The real time factor (RTF) is the ratio between simulation time and the speed of
real time. If the RTF is one, it means that the simulation is happening at a rate identical to
the speed of time in reality.

The state of the world in Gazebo can change with each iteration. Each iteration can make
changes in Gazebo for a fixed amount of time. That fixed time is called the step size. By
default, the step size is 1 millisecond. The step size and iteration are shown in the tool bar,
as shown in the following screenshot:
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Lower toolbar of Gazebo

We can pause the simulation and see each step using the Step button.

You can get more information about the Gazebo GUI from
http://gazebosim.org/tutorials?cat=guided_b&amp;tut=guided_b2.

Before going to the next section, you can play with Gazebo and learn more about how it
works.

Working with a TurtleBot 2 simulation
After working with Gazebo, now it's time to run a simulation on it and work with some
robots. One of the popular robots available for education and research is TurtleBot. The
TurtleBot software was developed within the ROS framework, and there is a good
simulation of its operations available in Gazebo. The popular versions of TurtleBot are
TurtleBot 2 and 3. We will learn about TurtleBot 2 in this section because our development
of Chefbot was inspired by its design.

Installing TurtleBot 2 simulation packages in Ubuntu 16.04 is straightforward. You can use
the following command to install TurtleBot 2 simulation packages for Gazebo:

    $ sudo apt-get install ros-kinetic-turtlebot-gazebo

After installing the packages, we can start running the simulation. There are several launch
files inside the turtlebot-gazebo packages that have different world files. A Gazebo world
file (*.world) is an SDF file consisting of the properties of the models in the environment.
When the world file changes, Gazebo will load with a different environment.

http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b2
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The following command will start a world that has a certain set of components:

    $ roslaunch turtlebot_gazebo turtlebot_world.launch

The simulation will take some time to load, and when it loads, you will see the following
models in the Gazebo Scene:

TurtleBot 2 simulation in Gazebo

When we load the simulation in Gazebo, it will also load the necessary plugins to interact
with ROS. TurtleBot 2 has the following important components:

A mobile base with a differential drive
A depth sensor for creating a map
A bumper switch to detect collision

When the simulation loads, it will load the ROS-Gazebo plugins to simulate a differential
drive mobile base, depth sensor (Kinect or Astra), and plugins for bumper switches. So,
after loading the simulation, if we enter a $ rostopic list command in the terminal, a
selection of topics will appear as shown in the following screenshot.

As we saw earlier, we can see the topics from the differential drive plugin, depth sensor,
and bumper switches. In addition to these, we can see the topics from the ROS-Gazebo
plugins that mainly contain the current state of the robot and other models in the
simulation.
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The Kinect/Astra sensors can give an RGB image and depth image. The differential drive
plugin can send the odometry data of the robot in the /odom (nav_msgs/Odometry) topic
and can publish the robot's transformation in the /tf (tf2_msgs/TFMessage) topics, as
shown in the following screenshot:

ROS topics from the TurtleBot 2 simulation
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We can visualize the robot model and sensor data in Rviz. There is a TurtleBot package
dedicated for visualization. You can install the following package to visualize the robot
data:

    $ sudo apt-get install ros-kinetic-turtlebot-rviz-launchers

After installing this package, we can use the following launch file to visualize the robot and
its sensor data:

    $ roslaunch turtlebot-rviz-launchers view_robot.launch

We will get the following Rviz window with the robot model displayed in it. We can then
enable the sensor displays to visualize this particular data, as shown in the following
screenshot:

TurtleBot 2 visualization in Rviz

In the next section, we will learn how to move this robot.
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Moving the robot
The differential drive plugin of the robot is capable of receiving ROS Twist messages
(geometry_msgs/Twist), which consist of the current linear and angular velocities of the
robot. The teleoperation of the robot means moving the robot manually using a joy stick or
keyboard by using ROS Twist messages. We will now look at how to move the Turtlebot 2
robot using keyboard teleoperation.

We have to install a package to teleoperate the TurtleBot 2 robot. The following command
will install the TurtleBot teleoperation package:

    $ sudo apt-get install ros-kinetic-turtlebot-teleop

To start teleoperation, we have to start the Gazebo simulator first, and then start the
teleoperation node using the following command:

    $ roslaunch turtlebot_teleop keyboard_teleop.launch

In the terminal, we can see the key combination for moving the robot. You can move it
using those keys, and you will see the robot moving in Gazebo and Rviz, as shown in the
following screenshot:

TurtleBot 2 keyboard teleoperation
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When we press the buttons on the keyboard, it will send a Twist message to the differential
drive controller, and the controller will move the robot in the simulation. The teleop node
sends a topic called /cmd_vel_mux/input/teleop (geometry_msgs/Twist), which is
shown in the following diagram:

The TurtleBot keyboard teleoperation node

Creating a simulation of Chefbot
We have seen how the turtlebot simulation works. In this section, we will be looking at how
to create our own robot simulation using Gazebo.

Before we start discussing this subject, you should copy the chefbot_gazebo package to
your catkin workspace and enter catkin_make to build the package. Make sure you have
two packages in your workspace, one called chefbot_description and the other called
chefbot_gazebo. The chefbot_gazebo package contains a simulation-related launch file
and parameters, and chefbot_description has the robot's URDF model, along with its
simulation parameters, and the launch file that is used to view the robot in Rviz and
Gazebo.

Let's begin creating our Chefbot model in Gazebo so that you can familiarize yourself with
the procedure. After that, we will dig deep into the xacro file and can look at the simulation
parameters.

The following launch file will show the robot model in Gazebo with an empty world and
start all the Gazebo plugins for the robot:

    $ roslaunch chefbot_description view_robot_gazebo.launch
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The following figure shows a screenshot of the Chefbot in Gazebo:

The Chefbot in Gazebo

Let's see how we can add a URDF robot model in Gazebo. You can find the definition of the
URDF robot model at chefbot_description/launch/view_robot_gazebo.launch.

The first section of the code calls the upload_model.launch file for creating the
robot_description parameter. If it is successful, then it will start an empty world in
Gazebo:

<launch>
  <include file="$(find chefbot_description)/launch/upload_model.launch" />

  <include file="$(find gazebo_ros)/launch/empty_world.launch">
    <arg name="paused" value="false"/>
    <arg name="use_sim_time" value="true"/>
    <arg name="gui" value="true"/>
    <arg name="recording" value="false"/>
    <arg name="debug" value="false"/>
  </include>
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So how does the robot model in the robot_description parameter show in Gazebo? The
following code snippet in the launch file does that job:

  <node name="spawn_urdf" pkg="gazebo_ros" type="spawn_model" args="-param
robot_description -urdf -z 0.1 -model chefbot" />

The node called spawn_model inside the gazebo_ros package will read the
robot_description and spawn the model in Gazebo. The -z 0.1 argument indicates the
height of the model to be placed in Gazebo. If the height is 0.1, the model will be spawned
at a height of 0.1. If gravity is enabled, then the model will fall to the ground. We can
change this parameter according to our requirement. The -model argument is the name of
the robot model in Gazebo. This node will parse all the Gazebo parameters from the
robot_description and start the simulation in Gazebo.

After spawning the model, we can publish the robot transformation (tf) using the following
lines of code:

  <node pkg="robot_state_publisher" type="robot_state_publisher"
name="robot_state_publisher">
    <param name="publish_frequency" type="double" value="30.0" />
  </node>

We are publishing the ROS tf at 30 Hz.

Depth image to laser scan conversion
The depth sensor on the robot provides the 3D coordinates of the environment. To achieve
autonomous navigation, we can use this data to create a 3D map. There are different
techniques for creating a map of the environment. One of the algorithms that we are using
for this robot is called gmapping (http:/ ​/​wiki. ​ros. ​org/ ​gmapping). The gmapping
algorithm mainly use a laser scan for creating the map, but in our case, we get an entire 3D
point cloud from the sensor. We can convert the 3D depth data from a laser scan by taking
a slice of the depth data. The following nodelet (http://wiki.ros.org/nodelet) in this
launch file is able to receive the depth data and convert it to laser scan data:

  <node pkg="nodelet" type="nodelet" name="laserscan_nodelet_manager"
args="manager"/>
  <node pkg="nodelet" type="nodelet" name="depthimage_to_laserscan"
        args="load depthimage_to_laserscan/DepthImageToLaserScanNodelet
laserscan_nodelet_manager">
    <param name="scan_height" value="10"/>
    <param name="output_frame_id" value="/camera_depth_frame"/>
    <param name="range_min" value="0.45"/>

http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/nodelet
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    <remap from="image" to="/camera/depth/image_raw"/>
    <remap from="scan" to="/scan"/>
  </node>
</launch>

The nodelet is a special kind of ROS node that has a property called zero copy transport,
meaning that it doesn't take network bandwidth to subscribe to a topic. This will make the
conversion from the depth image (sensor_msgs/Image) to the laser scan
(sensor_msgs/LaserScan) faster and more efficient. One of the other properties of the
nodelet is that it can be dynamically loaded as plugins. We can set various properties of this
nodelet, such as the range_min, name of the image topic, and the output laser topic.

URDF tags and plugins for Gazebo simulation
We have seen the simulated robot in Gazebo. Now, we will look in more detail at the
simulation-related tags in URDF and the various plugins we have included in the URDF
model.

Most of the Gazebo-specific tags are in the
chefbot_description/gazebo/chefbot.gazebo.xacro file. Also, some of the tags in
chefbot_description/urdf/chefbot.xacro are used in the simulation. Defining the
<collision> and <inertial> tags in chefbot.xacro is very important for our simulation.
The <collision> tag in URDF defines a boundary around the robot link, which is mainly
used to detect the collision of that particular link, whereas the <inertial> tag
encompasses the mass of the link and the moment of inertia. Here is an example of the
<inertial> tag definition:

      <inertial>
        <mass value="0.564" />
        <origin xyz="0 0 0" />
        <inertia ixx="0.003881243" ixy="0.0" ixz="0.0"
                 iyy="0.000498940" iyz="0.0"
                 izz="0.003879257" />
      </inertial>

These parameters are part of the robot's dynamics, so in the simulation these values will
have an effect on the robot model. Also, in the simulation, it will process all the links and
joints, as well as its properties.
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Next, we will look at the tags inside the gazebo/chefbot.gazebo.xacro file. The
important Gazebo-specific tag we are using is <gazebo>, which is used to define the
simulation properties of an element in the robot. We can either define a property that is
applicable to all the links or one that is specific to a link. Here is a code snippet inside the
xacro file that defines the coefficient of the friction of a link:

     <gazebo reference="chefbot_wheel_left_link">
       <mu1>1.0</mu1>
       <mu2>1.0</mu2>
       <kp>1000000.0</kp>
       <kd>100.0</kd>
       <minDepth>0.001</minDepth>
       <maxVel>1.0</maxVel>

     </gazebo>

The reference property is used to specify a link in the robot. So, the preceding properties
will only be applicable to the chefbot_wheel_left_link.

The following code snippet shows you how to set the color of a robot link. We can create
custom colors, define the custom colors, or use the default colors in Gazebo. You can see
that for the base_link, we are using the Gazebo/White color from Gazebo's default
property:

   <material name="blue">
       <color rgba="0 0 0.8 1"/>
   </material>

   <gazebo reference="base_link">
     <material>Gazebo/White</material>
   </gazebo>

Refer to http:/ ​/ ​gazebosim. ​org/​tutorials/ ​?​tut= ​ros_ ​urdf to see all the
tags that are used in the simulation.

That covers the main tags of the simulation. Now we will look at the Gazebo-ROS plugins
that we have used in this simulation.

http://gazebosim.org/tutorials/?tut=ros_urdf
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Cliff sensor plugin
The cliff sensor is a set of IR sensors that detect cliffs, which helps to avoid steps and
prevents the robot from falling. This is one of the sensors in the mobile base of Turtlebot 2,
called Kobuki (http:/ ​/​kobuki. ​yujinrobot. ​com/​). We're using this plugin in the Turtlebot
2 simulation.

We can set the parameters of the sensors, such as the minimum and maximum angle of the
IR beams, the resolution, and the number of samples per second. We can also limit the
detection range of the sensor. There are three cliff sensors in our simulation model, as
shown in the following code:

     <gazebo reference="cliff_sensor_front_link">
       <sensor type="ray" name="cliff_sensor_front">
         <always_on>true</always_on>
         <update_rate>50</update_rate>
         <visualize>true</visualize>
         <ray>
           <scan>
             <horizontal>
               <samples>50</samples>
               <resolution>1.0</resolution>
               <min_angle>-0.0436</min_angle>  <!-- -2.5 degree -->
               <max_angle>0.0436</max_angle> <!-- 2.5 degree -->
             </horizontal>

           </scan>
           <range>
             <min>0.01</min>
             <max>0.15</max>
             <resolution>1.0</resolution>
           </range>
         </ray>
       </sensor>
     </gazebo>

http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/
http://kobuki.yujinrobot.com/


Simulating a Differential Drive Robot Using ROS Chapter 4

[ 88 ]

Contact sensor plugin
Here is the code snippet for the contact sensor on our robot. If the base of the robot collides
with any objects, this plugin will trigger. It is commonly attached to the base_link of the
robot, so whenever the bumper hits any object, this sensor will be triggered:

     <gazebo reference="base_link">
       <mu1>0.3</mu1>
       <mu2>0.3</mu2>
       <sensor type="contact" name="bumpers">
         <always_on>1</always_on>
         <update_rate>50.0</update_rate>
         <visualize>true</visualize>
         <contact>
           <collision>base_footprint_collision_base_link</collision>
         </contact>
       </sensor>
     </gazebo>

Gyroscope plugin
The gyroscope plugin is used to measure the angular velocity of the robot. Using the
angular velocity, we can compute the orientation of the robot. The orientation of the robot
is used in the robot drive controller for computing the robot's pose, as shown in the
following code:

     <gazebo reference="gyro_link">
      <sensor type="imu" name="imu">
        <always_on>true</always_on>
        <update_rate>50</update_rate>
        <visualize>false</visualize>
        <imu>
          <noise>
            <type>gaussian</type>
             <rate>
               <mean>0.0</mean>
               <stddev>${0.0014*0.0014}</stddev> <!-- 0.25 x 0.25 (deg/s) -
->
               <bias_mean>0.0</bias_mean>
               <bias_stddev>0.0</bias_stddev>
             </rate>
                  <accel> <!-- not used in the plugin and real robot, hence
using tutorial values -->
                         <mean>0.0</mean>
                         <stddev>1.7e-2</stddev>
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                         <bias_mean>0.1</bias_mean>
                         <bias_stddev>0.001</bias_stddev>
                  </accel>
          </noise>
         </imu>
                 </sensor>
     </gazebo>

Differential drive plugin
The differential drive plugin is the most important plugin of the simulation. This plugin
simulates the differential drive behavior in the robot. It will move the robot model when it
receives the command velocity (the linear and angular velocity) in the form of ROS Twist
messages (geometry_msgs/Twist). This plugin also computes the odometry of the robot,
which gives the local position of the robot, as shown in the following code:

  <gazebo>
       <plugin name="kobuki_controller" filename="libgazebo_ros_kobuki.so">
         <publish_tf>1</publish_tf>

         <left_wheel_joint_name>wheel_left_joint</left_wheel_joint_name>
         <right_wheel_joint_name>wheel_right_joint</right_wheel_joint_name>
         <wheel_separation>.30</wheel_separation>
         <wheel_diameter>0.09</wheel_diameter>
         <torque>18.0</torque>
         <velocity_command_timeout>0.6</velocity_command_timeout>
         <cliff_detection_threshold>0.04</cliff_detection_threshold>
         <cliff_sensor_left_name>cliff_sensor_left</cliff_sensor_left_name>
<cliff_sensor_center_name>cliff_sensor_front</cliff_sensor_center_name>
<cliff_sensor_right_name>cliff_sensor_right</cliff_sensor_right_name>
         <cliff_detection_threshold>0.04</cliff_detection_threshold>
         <bumper_name>bumpers</bumper_name>

          <imu_name>imu</imu_name>
       </plugin>
     </gazebo>

To compute the robot's odometry, we have to provide the robot's parameters, such as the
distance between the wheels, wheel diameter, and the torque of the motors. According to
our design, the wheel separation is 30 cm, the wheel diameter is 9 cm, and the torque is 18
N. If we want to publish the transformation of the robot, we can set the publish_tf as 1.
Each tag inside the plugin is the parameter of the corresponding plugin. As you can see, it
takes all the inputs from the contact sensor, imu, and cliff sensor.
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The libgazebo_ros_kobuki.so plugin is installed along with Turtlebot 2 simulation
packages. We are using the same plugin in our robot. We have to make sure that, the
Turtlebot 2 simulation is installed on your system, prior to running this simulation.

Depth camera plugin
The depth camera plugin simulates the characteristics of a depth camera, such as Kinect or
Astra. The plugin name is libgazebo_ros_openni_kinect.so, and it helps us to
simulate different kinds of depth sensors that have different characteristics. The plugin is
shown in the following code:

     <plugin name="kinect_camera_controller"
filename="libgazebo_ros_openni_kinect.so">
          <cameraName>camera</cameraName>
          <alwaysOn>true</alwaysOn>
          <updateRate>10</updateRate>
          <imageTopicName>rgb/image_raw</imageTopicName>
          <depthImageTopicName>depth/image_raw</depthImageTopicName>
          <pointCloudTopicName>depth/points</pointCloudTopicName>
          <cameraInfoTopicName>rgb/camera_info</cameraInfoTopicName>
<depthImageCameraInfoTopicName>depth/camera_info</depthImageCameraInfoTopic
Name>
          <frameName>camera_depth_optical_frame</frameName>
          <baseline>0.1</baseline>
          <distortion_k1>0.0</distortion_k1>
          <distortion_k2>0.0</distortion_k2>
          <distortion_k3>0.0</distortion_k3>
          <distortion_t1>0.0</distortion_t1>
          <distortion_t2>0.0</distortion_t2>
          <pointCloudCutoff>0.4</pointCloudCutoff>
        </plugin>

The plugin's publishers, the RGB image, depth image, and the point cloud data. We can set
the camera matrix in the plugin, as well as customize other parameters.

You can refer to http:/ ​/ ​gazebosim. ​org/ ​tutorials? ​tut= ​ros_ ​depth_
camera ​amp;cat= ​connect_ ​ros to learn more about the depth camera plugin
in Gazebo.
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Visualizing the robot sensor data
In this section, we learn how to visualize the sensor data from the simulated robot. In the
chefbot_gazebo package, there are launch files to start the robot in an empty world or in
a hotel-like environment. The custom environment can be built using Gazebo itself. Just
create the environment using primitive meshes and save as a *. world file, which can be
the input of the gazebo_ros node in the launch file. For starting the hotel environment in
Gazebo, you can use the following command:

    $ roslaunch chefbot_gazebo chefbot_hotel_world.launch

The Chefbot in Gazebo in the hotel environment
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The nine cubes inside the space represent nine tables. The robot can navigate to any of the
tables to deliver food. We will learn how to do this, but before that, we will learn how to
visualize the different kinds of sensor data from the robot model.

The Chefbot in Gazebo in the hotel environment

The following command will launch the Rviz, which displays the sensor data from the
robot:

    $ roslaunch chefbot_description view_robot.launch
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This generates a visualization of the sensor data, as shown in the following screenshot:

The sensor visualization of Chefbot in Rviz

We can enable the Rviz display types to view different kinds of sensor data. In the
preceding figure, you can see the depth cloud, laser scan, TF, robot model, and RGB camera
images.
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Getting started with Simultaneous Localization
and Mapping
One of the requirements of the Chefbot was that it should be able to navigate the
environment autonomously and deliver food. To achieve this requirement, we have to use
several algorithms, such as SLAM (Simultaneous Localization and Mapping) and AMCL
(Adaptive Monte Carlo Localization). There are different approaches to solving the
autonomous navigation problem. In this book, we are mainly sticking with these
algorithms. The SLAM algorithms are used for mapping an environment at the same time
as localizing the robot on the same map. It's seems like a chicken-and-egg problem, but now
there are different algorithms to solve it. The AMCL algorithm is used to localize the robot
in an existing map. The algorithm that we use in this book is called Gmapping (http:/ ​/
www.​openslam.​org/ ​gmapping. ​html), which implements Fast SLAM 2.0 (http:/ ​/​robots.
stanford.​edu/​papers/ ​Montemerlo03a. ​html). The standard gmapping library is wrapped
in an ROS package called ROS Gmapping (http:/ ​/​wiki. ​ros. ​org/​gmapping), which can be
used in our application.

The idea of the SLAM node is that as we move the robot around the environment, it will
create a map of the environment using the laser scan data and the odometry data.

Refer to the ROS Gmapping wiki page at http:/ ​/​wiki. ​ros. ​org/
gmapping for more details. 

Implementing SLAM in the Gazebo environment
In this section, we will learn how to implement SLAM and apply it to the simulation that
we built. You can check the code at chefbot_gazebo/launch/gmapping_demo.launch
and launch/includes/ gmapping.launch.xml. Basically, we are using a node from the
gmapping package and configuring it with the proper parameters. The
gmapping.launch.xml code fragment has the complete definition of this node. The
following is the code snippet of this node:

<launch>
 <arg name="scan_topic" default="scan" />

  <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping"
output="screen">
    <param name="base_frame" value="base_footprint"/>
    <param name="odom_frame" value="odom"/>
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    <param name="map_update_interval" value="5.0"/>
    <param name="maxUrange" value="6.0"/>
    <param name="maxRange" value="8.0"/>

The name of the node that we are using is slam_gmapping and the package is gmapping.
We have to provide a few parameters to this node, which can be found in the Gmapping
wiki page.

Creating a map using SLAM
In this section, we will learn how to create a map of our environment using SLAM. First,
however, there are several commands that we have to use to start mapping. You should
execute each command in each Linux terminal.

First, we have to start our simulation using the following command:

    $ roslaunch chefbot_gazebo chefbot_hotel_world.launch

Next, we have to start the keyboard teleoperation node in a new terminal. This will help us
move the robot manually using the keyboard:

    $ roslaunch chefbot_gazebo keyboard_teleop.launch

The next command starts the SLAM in a new terminal:

    $ roslaunch chefbot_gazebo gmapping_demo.launch

Now the mapping will begin. To visualize the mapping process, we can start Rviz with the
help of Navigation settings:

    $ roslaunch chefbot_description view_navigation.launch
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Now we can see the map created in Rviz, as shown in the following screenshot:

Creating a map in Rviz using Gmapping.

Now we can use the teleop node to move the robot, and you can see that a map is being
created in Rviz. To create a good map of the environment, you have to move the robot
slowly, and often you have to rotate the robot. When we move the robot in the environment
and build the map, you can save the current map using the following command:

    $ rosrun map_server map_saver -f ~/Desktop/hotel

The map will be saved as *.pgm and *.yaml, where the pgm file is the map and the yaml
file is the configuration of the map. You can see the saved map in your desktop.
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After moving the robot around the environment, you may get a complete map, such as the
one shown in the following screenshot:

Final map using Gmapping.

The map can be saved at any time, but make sure that the robot covers the entire area of the
environment and has mapped all of its space, as shown in the preceding screenshot. Once
we are sure that the map is completely built, enter the map_saver command again and
close the terminals. If you aren't able to map the environment, you can check the existing
map from chefbot_gazebo/maps/hotel.
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Getting started with Adaptive Monte Carlo
Localization
We have successfully built the map of the environment. Now we have to navigate
autonomously from the current robot position to target position. The first step before
starting autonomous navigation is localizing the robot in the current map. The algorithm
we are using to localize on the map is called AMCL. The AMCL uses a particle filter to
track the robot's position with respect to the map. We are using an ROS package to
implement AMCL in our robot (http:/ ​/​wiki. ​ros.​org/ ​amcl). Similar to Gmapping, there
are a lot of parameters to configure for the amcl node, which is inside the amcl package.
You can find all the parameters of amcl on the ROS wiki page itself.

So how we can start AMCL for our robot? There is a launch file for doing that, which is
placed in chefbot_gazebo/amcl_demo.launch and
chefbot_gazebo/includes/amcl.launch.xml.

We can see the definition of amcl_demo.launch. The following code shows the definition
of this launch file:

<launch>
  <!-- Map server -->
  <arg name="map_file" default="$(find chefbot_gazebo)/maps/hotel.yaml"/>

  <node name="map_server" pkg="map_server" type="map_server" args="$(arg
map_file)" />

The first node in this launch file starts map_server from the map_server package. The
map_server node loads a static map that we have already saved and publishes it into a
topic called map (nav_msgs/OccupancyGrid). We can mention the map file as an
argument of the amcl_demo.launch file, and if there is a map file, the map_server node
will load that; otherwise it will load the default map, which is located in the
chefbot_gazeob/maps/hotel.yaml file.

After loading the map, we start the amcl node and move the base node. The AMCL node
helps to localize the robot on the current map and the move_base node inside the ROS
navigation stack, which helps in navigating the robot from the start to the target position.
We will learn more about the move_base node in the upcoming chapters. The move_base
node also needs to be configured with parameters. The parameter files are kept inside the
chefbot_gazebo/param folder, as shown in the following code:

  <!-- Localization -->
  <arg name="initial_pose_x" default="0.0"/>
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  <arg name="initial_pose_y" default="0.0"/>
  <arg name="initial_pose_a" default="0.0"/>
  <include file="$(find chefbot_gazebo)/launch/includes/amcl.launch.xml">
    <arg name="initial_pose_x" value="$(arg initial_pose_x)"/>
    <arg name="initial_pose_y" value="$(arg initial_pose_y)"/>
    <arg name="initial_pose_a" value="$(arg initial_pose_a)"/>
  </include>

  <!-- Move base -->
  <include file="$(find
chefbot_gazebo)/launch/includes/move_base.launch.xml"/>
</launch>

You can refer more about ROS navigation stack from following link
http:/ ​/ ​wiki. ​ros. ​org/ ​navigation/ ​Tutorials/ ​RobotSetup

Implementing AMCL in the Gazebo environment
In this section, we will learn how to implement AMCL in our Chefbot. We will use the
following procedures to incorporate AMCL within the simulation. Each command should
be executed in each terminal.

The first command starts the Gazebo simulator:

    $ roslaunch chefbot_gazebo chefbot_hotel_world.launch

Now we can start the AMCL launch file, with or without the map file as an argument. If
you want to use a custom map that you have built, then use the following command:

    $ roslaunch chefbot_gazebo amcl_demo.launch
map_file:=/home/<your_user_name>/Desktop/hotel

If you want to use the default map, you can use the following command:

    $ roslaunch chefbot_gazebo amcl_demo.launch
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After starting AMCL, we can start Rviz to visualize the map and robot. We will see a view
in Rviz as shown in the following screenshot. You can see a map and a robot surrounded by
green particles. The green particles are called amcl particles. They indicate the uncertainty
of the robot's position. If there are more particles around the robot, then this means that the
uncertainty of the robot's position is higher. When it starts moving, the particle count will
reduce and its position will be more certain. If the robot isn't able to localize the position of
the map, we can use the 2D Pose Estimate button in Rviz (on the toolbar) to manually set the
initial position of the robot on the map. You can see the button in the following screenshot:

Starting AMCL on the hotel map.
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If you zoom into the robot's position in Rviz, you can see the particles, as shown in the
preceding screenshot. We can also see the obstacles around the robot in different colors:

AMCL cloud around the robot.

In the next section, we will learn how to program the Chefbot to autonomously navigate
this map. You don't need to close the current terminals; we can navigate the robot
autonomously in the Rviz itself.
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Autonomous navigation of Chefbot in the hotel
using Gazebo
To start the robot's autonomous navigation, we just need to command the target robot
position on the map. There is a button in Rviz called 2D Nav Goal. We can click that button
and click on a point on the map. You can now see an arrow indicating the position of the
robot. When you give the target position in the map, you can see that the robot is planning
a path from its current position to the target position. It will slowly move from its current
position to the target position, avoiding all obstacles. The following screenshot shows the
path planning and navigation of the robot to the target position. The color grid around the
robot shows the local cost map of the robot, as well as the local planner path and the
obstacles around the robot:

Autonomous navigation of the robot.

In this way, if we command a position inside the map that is nearer to a table, the robot can
go to that table and serve the food and then return back to its home position. Instead of
commanding it from Rviz, we can write an ROS node to do the same. This will be explained
in the last few chapters of this book.
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Summary
In this chapter, we learned how to simulate our own robot, called Chefbot. We looked at
the design of the Chefbot in the previous chapter. We started the chapter by learning about
the Gazebo simulator and its different features and capabilities. After that, we looked at
how the ROS framework and Gazebo simulator are used to perform a robot simulation. We
installed the TurtleBot 2 package and tested the Turtlebot 2 simulation in Gazebo. After
that, we created the Chefbot simulation and used Gmapping, AMCL, and autonomous
navigation in a hotel environment. We learned that the accuracy of the simulation depends
on the map, and that the robot will work better in a simulation if the generated map is
perfect.

In the next chapter, we will learn how to design the robot's hardware and electronic circuit.

Questions
How we can model a sensor in Gazebo?1.
How is ROS interfaced with Gazebo?2.
What are the important URDF tags for simulation?3.
What is Gmapping, and how we can implement it in ROS?4.
What is the function of the move_base node in ROS?5.
What is AMCL, and how we can implement it in ROS?6.

Further reading
To learn more about URDF, Xacro, and Gazebo, you can refer to the book Mastering ROS for
Robotics Programming - Second Edition (https:/ ​/​www. ​packtpub. ​com/ ​hardware- ​and-
creative/​mastering- ​ros- ​robotics- ​programming- ​second- ​edition).
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5
Designing ChefBot Hardware

and Circuits
In this chapter, we will discuss the design and workings of ChefBot hardware and look at a
selection of its hardware components. In the previous chapter, we designed and simulated
the basic robot framework in a hotel environment using Gazebo and ROS, and tested a few
variables, such as the robot body mass, motor torque, wheel diameter, and more. We also
tested the autonomous navigation capability of ChefBot in a hotel environment.

To achieve this using hardware, we need to select all the hardware components and figure
out how to connect all these components. We know that the main functionality of this robot
is navigation: this robot will have the ability to navigate from a start position to an end
position without any collision with its surroundings. We will discuss the different sensors
and hardware components required to achieve this goal. We will look at a block diagram
representation of these components and its explanation, and also discuss the main
functions and physical operations of the robot. Finally, we need to select the components
required to build the robot. We will also familiarize ourselves with the online stores where
we can purchase these components.

If you have a TurtleBot, you may skip this chapter because this chapter is only for those
who need to create their robot's hardware. Let's look at the specifications that we have to
meet in the design of the hardware. The robot hardware mainly includes the robot chassis,
sensors, actuators, controller boards, and PC.

The following topics will be covered in this chapter:

Block diagram and description of the Chefbot robot
Robot component selection and description
The workings of Chefbot's hardware
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Technical requirements
The components required to build the robot are described in this chapter. You have to
purchase these components or similar components in order to build the ChefBot.

Specifications of the ChefBot's hardware
In this section, we will be discussing some of the important specifications that we
mentioned in Chapter 3, Modeling the Differential-Drive Robot. The final robot prototype will
meet the following specifications:

Simple and cost-effective robot chassis design: The robot chassis design should
be simple and cost effective compared to existing robots.
Autonomous navigation functionality: The robot should autonomously
navigate and it should contain the necessary sensors for doing this.
Long battery life: The robot should have a long battery life in order to work
continuously. The length of time that it can work should be greater than one
hour.
Obstacle avoidance: The robot should be able to avoid static and dynamic
objects in its surroundings.

The robot hardware design should meet these specifications. Let's look at one of the
possible ways of interconnecting the components in this robot. In the next section, we will
look at a block diagram of the robot and use it to examine its workings.

Block diagram of the robot
The robot's movement is controlled by two direct current (DC) gear motors using an
encoder. The two motors are driven using a motor driver. The motor driver is interfaced
with an embedded controller board, which will send commands to the motor driver to
control the motor's movements. The encoder of the motor is interfaced with the controller
board in order to count the number of rotations of the motor shaft. This data is used to
compute the odometry data of the robot. There are ultrasonic sensors that are interfaced
with the controller board in order to sense the obstacles and measure the distance from the
obstacles. There is an IMU sensor to improve odometry calculation. The embedded
controller board is interfaced with a PC, which does all the high-end processing in the
robot. Vision and sound sensors are interfaced with the PC and Wi-Fi is attached for remote
operations. Each component of the robot is explained in the following diagram:
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Robot hardware block diagram

Motor and encoder
The robot that we are going to design is a differential-drive robot with two wheels, so we
will require two motors for its locomotion. Each motor consists of quadrature encoders
(http://www.creative-robotics.com/quadrature-intro) so that we can get motor
rotation feedback data.

The quadrature encoder will send data regarding of the rotation of the motor as square
pulses; we can decode the pulses to get the number of the encoder's ticks, which can be
used for feedback. If we know the wheel's diameter and the number of ticks of the motor,
we can compute the displacement and the angle of the robot that moved. This computation
is very useful for us in our attempts to navigate the robot.

Selecting motors, encoders, and wheels for the robot
From the simulation, we got an idea of the robot's parameters. While experimenting with
the simulation's parameters, we mentioned that the motor torque needed to drive the robot
is 18 N, but the calculated torque is slightly more than this; we are selecting a standard
torque motor that is very close to the actual torque in order to make the motor selection
easier. One of the standard motors that we might consider is from Pololu. According to our
design specifications, we could select a high-torque DC gear motor with an encoder
working at 12 V DC and with a speed of 80 RPM.

http://www.creative-robotics.com/quadrature-intro
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The following image shows the selected motor for this robot. The motor comes with an
integrated quadrature encoder with a resolution of 64 counts per revolution of the motor
shaft, which corresponds to 8,400 counts per revolution of the gearbox's output shaft:

DC gear motor with encoder and wheel (see https://www.pololu.com/product/2827)

This motor has six differently colored pins . The descriptions of this motor's pins are given
in the following table:

Color Function
Red Motor power (connects to one motor terminal)
Black Motor power (connects to the other motor terminal)
Green Encoder GND
Blue Encoder Vcc (3.5 V-20 V)
Yellow Encoder A output
White Encoder B output

In accordance with our design specifications, we will choose a wheel diameter of 90 mm.
Pololu provides a 90-mm wheel, which is available at
http://www.pololu.com/product/1439. The preceding image showed the motor assembled
with this wheel.

The other connectors needed to connect the motors and wheels together are available as
follows:

The mounting hub required to mount the wheel to the motor shaft is available at
http://www.pololu.com/product/1083.
The L-bracket for the motor to mount onto the robot chassis is available at
http://www.pololu.com/product/1084.

http://www.pololu.com/product/1439
http://www.pololu.com/product/1083
http://www.pololu.com/product/1084
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Motor driver
A motor driver, or motor controller, is a circuit that can control the speed of the motor. By
controlling the motors, we mean that we can control the voltage across the motors and can
also control the direction and speed of the motors. Motors can rotate clockwise or counter
clockwise if we change the polarity of the motor terminal.

H-bridge circuits are commonly used in motor controllers. An H-bridge is an electronic
circuit that can apply voltage in either direction of the load. It has high current-handling
properties and can change the direction of the current flow.

The following diagram shows a basic H-bridge circuit using switches:

H -bridge circuit

The direction of the motor according to the state of the four switches is given as follows:

S1 S2 S3 S4 Result
1 0 0 1 Motor moves right
0 1 1 0 Motor moves left
0 0 0 0 Motor free runs
0 1 0 1 Motor brakes
1 0 1 0 Motor brakes
1 1 0 0 Motor shoots through
0 0 1 1 Motor shoots through
1 1 1 1 Motor shoots through
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We have seen the basics of an H-bridge circuit in the preceding motor driver circuit
diagram. Now, we will select one of the motor drivers for our application and discuss how
it works.

Selecting a motor driver/controller
There are some motor drivers available in Pololu that are compatible with the selected
motor. The following image shows one of the motor drivers that we will use in our robot:

Dual VNH2SP30 motor driver carrier MD03A

This motor driver is available at http://www.pololu.com/product/708.

This driver can drive two motors with a maximum current rating of 30 A, and contains two
integrated ICs for driving each of the motors. The pin description of this driver is given in
the upcoming sections.

http://www.pololu.com/product/708
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Input pins
The following pins are the input pins of the motor driver, through which we can control
mainly the motor speed and direction:

Pin name Function

1DIAG/EN, 2DIAG/EN These monitor the fault conditions of motor drivers 1 and 2. In a
normal operation, they will remain disconnected.

1INa, 1INb, 2INa, 2INb

These pins will control the direction of motors 1 and 2 in the
following manner:
• If INA = INB = 0, the motor will break
• If INA = 1, INB = 0, the motor will rotate clockwise
• If INA = 0, INB = 1, the motor will rotate counter clockwise
• * If INA = INB = 1, the motor will break

1PWM, 2PWM This will control the speed of motors 1 and 2 by turning them on
and off at very high speed.

1CS, 2CS This is the current sensing pin for each motor.

Output pins
The output pins of the motor driver will drive the two motors. The following are the output
pins:

Pin name Function
OUT 1A, OUT 1B These pins can connect to motor 1's power terminals.
OUT 2A, OUT 2B These pins can connect to motor 2's power terminals.

Power supply pins
The following are the power supply pins:

Pin name Function

VIN (+), GND (-) These are the supply pins of the two motors. The voltage ranges from 5.5
V to 16 V.

+5 VIN, GND (-) This is the power supply of the motor driver. The voltage should be 5 V.



Designing ChefBot Hardware and Circuits Chapter 5

[ 111 ]

Embedded controller board
Controller boards are typically I/O boards that can send control signals in the form of
digital pulses to the H-bridge/motor-driver board and can receive inputs from sensors, such
as ultrasonic and IR sensors. We can also interface motor encoders with the control board in
order to send data from the motor.

The main uses of the controller board in this robot are as follows:

Interfacing the motor driver and encoder
Interfacing the ultrasonic sound sensor
Sending and receiving sensor values to and from the PC

We will deal with I/O boards and interfacing with different components in the upcoming
chapters. Some of the more popular I/O boards are Arduino (arduino.cc) and Tiva-C
LaunchPad (http://www.ti.com/tool/EK-TM4C123GXL) by Texas Instruments. We are
selecting Tiva-C LaunchPad over Arduino because of the following factors:

Tiva-C LaunchPad has a microcontroller based on a 32-bit ARM Cortex-M4 with
256 KB flash memory, 32 KB SRAM, and 80 MHz data transmission frequency;
most Arduino boards run below these specifications.
Outstanding processing performance combined with fast interrupt handling.
12 timers.
16 PWM outputs.
2 quadrature encoder inputs.
8 universal asynchronous receiver/transmitters (UART).
5 V-tolerant general-purpose input/output (GPIO).
Low cost and size compared to Arduino boards.
Easily programmable interface IDE called Energia (http://energia.nu/). The code
written in Energia is Arduino-board compatible.

http://www.ti.com/tool/EK-TM4C123GXL
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The following image shows Texas Instrument's Tiva-C LaunchPad:

Tiva-C LaunchPad 123 (http://www.ti.com/tool/EK-TM4C123GXL)

The pinout of Texas Instrument's LaunchPad series is given at
http://energia.nu/pin-maps/guide_stellarislaunchpad/. This pinout map is
compatible with all LaunchPad series releases. This can also be used while programming in
the Energia IDE.

http://energia.nu/pin-maps/guide_stellarislaunchpad/
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Ultrasonic sensors
Ultrasonic sensors, also called ping sensors and are mainly used to measure the distance
from an object. The main application of ping sensors is to avoid obstacles. The ultrasonic
sensor emits high-frequency sound waves and evaluates the echoes that it receives from the
object. The sensor will calculate the delay between the sending and receiving of the echo
and determine its distance to the object.

In our robot, collision-free navigation is an important part of the design specifications,
otherwise there will be damage to the robot. You will see an image showing an ultrasonic
sensor in the next section. This sensor can be installed on the sides of a robot to detect
collisions at the sides and back of the robot. Kinect is also mainly used for obstacle
detection and collision avoidance when used in robotics. Kinect can only be expected to be
accurate at a range of 0.8 m, so the remaining distance from the 0.8 m-range limit can be
detected using an ultrasonic sensor. In this case, the ultrasonic sensor is actually an add-on
to our robot in order to increase its collision avoidance and detection abilities.

Selecting an ultrasonic sensor
One of the more popular and cheap ultrasonic sensors available is HC-SR04. We are
selecting this sensor for our robot because of the following factors:

Range of detection is from 2 cm to 4 m
Working voltage is 5 V
Working current is very low, typically 15 mA

We can use this sensor to accurately detect obstacles. It also works at 5 V. Here is an image
of HC-SR04 and its pinout:

Ultrasonic sound sensor (https://www.makerfabs.com/index.php?route=product/product&product_id=72)
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The pins and their functions are given as follows:

Pins Function
Vcc,
GND

These are the supply pins of the ultrasonic sensor. Usually, we need to apply 5 V
for it to operate normally.

Trig This is the input pin of the sensor. We need to apply a pulse with a particular
duration to this pin to send the ultrasonic sound waves.

Echo This is the output pin of the sensor. It will generate a pulse on this pin with a
time duration according to the delay in receiving the triggered pulse.

Inertial measurement unit
We will use the inertial measurement unit (IMU) in this robot to get a good estimate of the
odometry value and the robot's pose. The odometry values computed from the encoder
alone may not be sufficient for efficient navigation, as they can contain errors. To
compensate for the error during the robot's movement, especially rotation, we will use the
IMU in this robot. We are selecting MPU 6050 for the IMU because of the following reasons:

In MPU 6050, the accelerometer and gyroscope are integrated on a single chip
It provides high accuracy and sensitivity
We are able to interface with a magnetometer for better IMU performance
The breakout board of MPU 6050 is very cheap
MPU 6050 can directly interface with LaunchPad
Both MPU 6050 and LaunchPad are 3.3 V-compatible
Software libraries are also available for easier interfacing between MPU 6050 and
LaunchPad

The following image shows the breakout board of MPU 6050:

The MPU 6050 device
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The pins and their functions are given as follows:

Pins Functions
VDD, GND Supply voltage 2.3 V-3.4 V
INT This pin will generate an interrupt when data comes to the device buffer

SCL, SDA Serial data line (SDA) and serial clock line (SCL) are used for I2C
communication

ASCL, ASDA Auxiliary I2C for communication with the magnetometer

We can purchase the breakout board from Amazon at http://a.co/9EBIquO.

Kinect/Orbbec Astra
Kinect is a 3D-vision sensor, mainly used in 3D-vision applications and motion-based
gaming. We are using Kinect for 3D vision. Using Kinect, the robot will get a 3D image of
the surrounding. The 3D images are converted to finer points that are gathered to form a
point cloud. The point cloud data will have all the 3D parameters that constitute the
surrounding environment.

The main use of Kinect on the robot is to mock the functionality of a laser scanner. The laser
scanner data is essential for the SLAM algorithm to build a map of the environment. The
laser scanner is a very costly device, so instead of buying an expensive laser scanner, we
can convert a Kinect into a virtual laser scanner. Kinect has officially stopped production,
but it's still available from some vendors. One of the alternatives to Kinect is Orbbec Astra
(https://orbbec3d.com/product-astra/). It will support the same software that is written
for Kinect. The point-cloud-to-laser-data conversion is done with this software, so we only
need to change the device driver if you are using Astra; the resetting of the software is the
same. After generating the map of the environment, the robot can navigate the
surroundings. The following image shows the Kinect sensor (A) and Orbbec Astra (B):

Kinect and Orbbec Astra

http://a.co/9EBIquO
https://orbbec3d.com/product-astra/
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Kinect mainly has an IR camera and projector, as well as an RGB camera. The IR camera
and projector generates the 3D point cloud of the surrounding area. It also has a mic array
and motorized tilt for moving the Kinect up and down. The Astra is very similar to Kinect.

We can purchase Kinect from
http://www.amazon.co.uk/Xbox-360-Kinect-Sensor-Adventures/dp/B0036DDW2G.

We can purchase Astra from https:/ ​/​orbbec3d. ​com/ ​product- ​astra/ ​.

Central processing unit
The robot is mainly controlled by the navigational algorithm that is running on its PC. We
can choose a laptop, mini PC, or net book to use for the robot's processing functionalities.
Recently, Intel launched a mini PC called Intel Next Unit of Computing (NUC). It has an
ultra-small form factor (size), is lightweight, and has a good computing processor with
either Intel Celeron, Core i3, or Core i5. It can support up to 16 GB of RAM and has
integrated Wi-Fi/Bluetooth. We are choosing Intel NUC because of its performance, ultra-
small form factor, and its light weight. We are not going for a popular board, such as 
Raspberry Pi (http://www.raspberrypi.org/) or Beagle Bone (http://beagleboard.org/),
because we require high-computing power, and this cannot be provided by these boards.

The NUC we are using is Intel DN2820FYKH. Here is the specification of this computer:

Intel Celeron dual core processor with 2.39 GHz
4 GB RAM
500 GB hard disk
Intel-integrated graphics
Headphone/microphone jack
12 V supply

The following image shows the Intel NUC minicomputer:

Intel NUC DN2820FYKH

http://www.amazon.co.uk/Xbox-360-Kinect-Sensor-Adventures/dp/B0036DDW2G
http://www.amazon.co.uk/Xbox-360-Kinect-Sensor-Adventures/dp/B0036DDW2G
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
https://orbbec3d.com/product-astra/
http://www.raspberrypi.org/
http://beagleboard.org/


Designing ChefBot Hardware and Circuits Chapter 5

[ 117 ]

We can purchase NUC from Amazon at http:/ ​/​a. ​co/​2F2flYl.

This model of NUC is an old model; if it is not available, you can check for a low-cost NUC
using the following links shown:

Intel NUC BOXNUC6CAYH (https:/ ​/​www. ​intel. ​com/ ​content/ ​www/ ​us/ ​en/
products/ ​boards- ​kits/ ​nuc/ ​kits/ ​nuc6cayh. ​html)
Intel NUC KIT NUC7CJYH
(https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits
/nuc7cjyh.html)
Intel NUC KIT NUC5CPYH
(https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits
/nuc5cpyh.html)

Intel NUC KIT NUC7PJYH (https:/ ​/​www. ​intel. ​com/ ​content/ ​www/​us/ ​en/
products/ ​boards- ​kits/ ​nuc/ ​kits/ ​nuc7pjyh. ​html)

Speakers/mic
The main function of the robot is autonomous navigation. We will add an additional
feature with which the robot can interact with users through speech. The robot can be given
commands using voice input and can speak to the user using a text-to-speech (TTS) engine,
which can convert text to speech format. A microphone and speakers are essential for this
application. There is no particular selection that we will recommend for this hardware. If
the speaker and mic are USB compatible, then that will be great. One of the other
alternatives is a Bluetooth headset.

Power supply/battery
One of the most important hardware components is the power supply. We saw in the
specification that the robot has to work for more than one hour. It will be good if the supply
voltage of the battery is compatible with that required by the components. Also, if the size
and weight of the battery is less than what we had in mind, it will not affect the robot's
payload.

http://a.co/2F2flYl
http://a.co/2F2flYl
http://a.co/2F2flYl
http://a.co/2F2flYl
http://a.co/2F2flYl
http://a.co/2F2flYl
http://a.co/2F2flYl
http://a.co/2F2flYl
http://a.co/2F2flYl
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Another concern is that the maximum current needed for the entire circuit will not exceed
the battery's maximum current, that it can source. The maximum voltage and current
distribution of each part of the circuit is as follows:

Component Maximum current (in amperes)
Intel NUC PC 12 V, 5 A
Kinect 12 V, 1 A
Motors 12 V, 0.7 A
Motor driver, ultrasonic sensors, IMU, speakers 5 V, < 0.5 A

To meet these specifications, we are selecting a 12 V, 10 AH li-polymer or sealed lead acid
(SLA) battery for our robot. Here is a typical low-cost SLA battery that we can use for this
purpose:

Sealed lead acid battery

We can buy this battery from http:/ ​/​a. ​co/​iOaMuZe. You can choose a battery based on
how convenience it is for you, but it should satisfy the robot's power requirements.

http://a.co/iOaMuZe
http://a.co/iOaMuZe
http://a.co/iOaMuZe
http://a.co/iOaMuZe
http://a.co/iOaMuZe
http://a.co/iOaMuZe
http://a.co/iOaMuZe
http://a.co/iOaMuZe
http://a.co/iOaMuZe
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How ChefBot’s hardware works’?
We can explain how ChefBot's hardware works using the following block diagram. This is
an improved version of our first block diagram, as it mentions the voltage of each
component and its interconnection:

Detailed block diagram of Chefbot's hardware

The main aim of this chapter was to design the hardware for ChefBot, which included
finding the appropriate hardware components and learning about the interconnection
between each part. The main functionality of this robot is to perform autonomous
navigation. The hardware design of the robot is optimized for autonomous navigation.

The robot drive is based on the differential-drive system, which consists of two motors and
two wheels. There are caster wheels for supporting the main wheels. These two motors can
move the robot to face in any direction on a 2D plane by adjusting their direction and speed
of rotation.



Designing ChefBot Hardware and Circuits Chapter 5

[ 120 ]

For controlling the velocity and direction of the wheels, we have to interface a motor
controller, which can perform these functions. The motor driver we choose should able to
control two motors at the same time, and it should also be able to change their direction
and speed.

The motor driver pins are interfaced with a microcontroller board called Tiva-C
LaunchPad, which can send the commands to change the direction and speed of the motor.
The motor driver is interfaced with LaunchPad with the help of a level shifter. The level
shifter is a circuit that can shift voltage levels from 3.3 V to 5 V and vice versa. We are
using a level shifter because the motor driver is operating at a level of 5 V, but the
LaunchPad board is operating at 3.3 V.

Each motor has a rotation feedback sensor called an encoder, which can be used to estimate
the robot's position. The encoders are interfaced with LaunchPad with the level shifter.

Other sensors that are interfaced with LaunchPad include an ultrasonic sound sensor and
IMU. The ultrasonic sound sensor can detect objects that are close by, but that cannot be
detected by the Kinect sensor. IMU is used along with encoders to get a good estimation of
the robot's pose.

All sensor values are received on the LaunchPad and sent to the PC via USB. The
LaunchPad board runs a firmware code that can receive all sensor values and send them to
the PC.

The PC is interfaced with Kinect, the LaunchPad board, the speaker, and the mic. The PC
has ROS running on it, and it will receive Kinect data and convert it to its equivalent laser
scanner data. This data can be used to build a map of the environment using SLAM. The
speaker and mic are used for communication between the user and robot. The speed
commands generated in ROS nodes are sent to LaunchPad. LaunchPad will process the
speed commands and send the appropriate PWM values to the motor driver circuit.

After designing and discussing the workings of the robot's hardware, we can discuss the
detailed interfacing of each component and the firmware coding necessary for this
interfacing in the next chapter.
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Summary
In this chapter, we have looked at the features of the robot that we are going to design. The
main feature of this robot is its autonomous navigation. The robot can navigate its
surroundings by analyzing sensor readings. We looked at the robot's block diagram and
discussed the role of each block, selecting the appropriate components that satisfy our
requirements. We also suggested some economical components with which to build this
robot. In the next chapter, we will take a closer look at actuators and the interfacing that we
will use for them in this robot.

Questions
What is robot hardware design all about?1.
What is an H-bridge circuit and what are its functions?2.
What are the essential components for a robot's navigation algorithm?3.
What are the criteria that have to be kept in mind while selecting robotic4.
components?
What are the main applications of Kinect as regards this robot?5.

Further reading
You can learn more about the Tiva-C LaunchPad board from the following link:

http:/​/​processors. ​wiki. ​ti. ​com/ ​index. ​php/​Getting_ ​Started_ ​with_ ​the_ ​TIVA%E2%84%A2_
C_​Series_​TM4C123G_ ​LaunchPad
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6
Interfacing Actuators and

Sensors to the Robot Controller
In the previous chapter, we discussed the selection of the hardware components needed to
build our robot. The important components in a robot are actuators and sensors. Actuators
provide mobility to the robot and sensors provide information about the robot
environment. In this chapter, we will concentrate on the different types of actuators and
sensors that we are going to use in this robot and how they can be interfaced with Tiva C
LaunchPad, which is a 32 bit ARM micro controller board from Texas Instruments, working
at 80 MHz. We will start by discussing actuators. The actuator that we are going to discuss
first is a DC-geared motor with an encoder. A DC-geared motor works using direct current
and has gear reduction to reduce the shaft speed and increase the torque of the final shaft.
These kinds of motors are very economical and satisfy our robot design requirement. We
will use this motor in our robot prototype.

In the first section of this chapter, we will deal with the design of our robot drive system.
The drive system of our robot is a differential drive and consists of two DC-geared motors
with encoders and a motor driver. The motor driver is controlled by Tiva C LaunchPad. We
will look at the interfacing of the motor driver and quadrature encoder with Tiva C
Launchpad. After that, we will look at some of the latest actuators that can replace the
existing DC-geared motor with an encoder. If the desired robot needs more payload and
accuracy, we have to switch to these kinds of actuators. Finally, we will look at some
different sensors that are commonly used for robots.
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In this chapter, we will cover:

Interfacing a DC-geared motor with Tiva C LaunchPad
Interfacing a quadrature encoder with Tiva C LaunchPad
An explanation of interfacing code
Interfacing Dynamixel actuators
Interfacing ultrasonic sensors and IR proximity sensors
Interfacing inertial measurement units (IMUs)

Technical requirements
You will need the necessary robot hardware component and Energia IDE set up in Ubuntu
16.04 LTS.

Interfacing DC geared motor to Tiva C
LaunchPad
In the previous chapter, we selected a DC-geared motor with an encoder from Pololu and
an embedded board from Texas Instruments, called Tiva C LaunchPad. We need the
following components to interface the motor with LaunchPad:

Two Pololu metal gear motors, 37Dx73L mm with 64 counts per revolution
encoder
Pololu wheel, 90x10 mm and a matching hub
Pololu dual VNH2SP30 motor driver carrier, MD03A
A sealed lead acid/lithium ion battery of 12V
A logic level convertor of 3.3V to 5V; visit
https://www.sparkfun.com/products/11978.
A Tiva C LaunchPad and its compatible interfacing wires

https://www.sparkfun.com/products/11978
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The following diagram shows the interfacing circuit of two motors using Pololu H-Bridge:

Motor interfacing circuit

To interface with Launchpad, we have to connect a level shifter board in between these two
motors. The motor driver works in 5V but the Launchpad works in 3.3V, so we have to
connect a level shifter, as shown in the following diagram:

Level shifter circuit
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The two geared DC motors are connected to OUT1A, OUT1B, and OUT2A, OUT2B of the
motor driver. VIN (+) and GND (-) are the supply voltage of the motor. These DC motors
can work with a 12V supply, so we give 12V as the input voltage. The motor driver will
support an input voltage ranging from 5.5V to 16V.

The control signals/input pins of the motor drivers are on the left side of the driver. The
first pin is 1DIAG/EN; in most cases, we leave this pin disconnected. These pins are
externally pulled high in the driver board itself. The main use of this pin is to enable or
disable the H-bridge chip. It is also used to monitor the faulty condition of the H-Bridge IC.
Pins 1INA and 1INB control the direction of the rotation of the motor. The 1PWM pin will
switch the motor to the ON and OFF state. We achieve speed control using PWM pins. The
CS pin will sense the output current. It will output 0.13V per Ampere of the output current.
The VIN and GND pins give the same input voltage that we supplied for the motor. We
are not using these pins here. The +5V(IN) and GND pins are the supply for the motor
driver IC. The supply to the motor driver and motors are different.

The following table shows the truth table of the input and output combinations:

INA INB DIAGA/ENA DIAGB/ENB OUTA OUTB CS Operating mode
1 1 1 1 H H High Imp Brake to Vcc

1 0 1 1 H L Isense =
Iout / K Clockwise (CW)

0 1 1 1 L H Isense =
Iout / K Counterclockwise (CCW)

0 0 1 1 L L High Imp Breaker to GND

The value DIAG/EN pins are always high because these pins are externally pulled high in
the driver board itself. Using the aforementioned signal combinations, we can move the
robot in any direction and by adjusting the PWM signal, we can adjust the speed of the
motor too. This is the basic logic behind controlling a DC motor using an H-Bridge circuit.

While interfacing motors to Launchpad, we may require a level shifter. This is because the
output pins of Launchpad can only supply 3.3V but the motor driver needs 5V to trigger;
so, we have to connect 3.3V to the 5V logic level convertor to start working.

The two motors work in a differential drive mechanism. The following section discusses the
differential drive and its operation.
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Differential wheeled robot
The robot we have designed is a differential wheeled/drive robot. In a differential wheeled
robot, the movement is based on two separately driven wheels placed on either side of the
robot's body. It can change its direction by changing the relative rate of rotation of its
wheels, and hence, doesn't require additional steering motion. To balance the robot, a free
turning wheel or caster wheels may be added. The following diagram shows a typical
representation of a differential drive:

Differential wheeled robot

If the two motors are in the same direction, the robot will move forward or backward. If
one motor has more speed than the other, then the robot turns to the slower motor side; so,
to turn left, stop the left motor and move the right motor. The following diagram shows
how we connect the two motors in our robot. The two motors are mounted on the opposite
sides of the base plate and we put two casters in the front and back of the robot for
balancing:

Top view of robot base
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Next, we can program the motor controller using Launchpad according to the truth table
data. Programming is done using an IDE called Energia (http:/ ​/​energia. ​nu/​). We are
programming Launchpad using the C++ language, very similar to Arduino boards
(http://energia.nu/Reference_Index.html).

Installing Energia IDE
We can download the latest version of Energia from the following link:

http://energia.nu/download/

We will discuss the installation procedure mainly on Ubuntu 16.04 LTS, 64-bit. The Energia
version that we will use is 0101E0018:

Download Energia for Linux 64-bit from the preceding link.1.
Extract the Energia compressed file into the Home folder of the user.2.
The instructions for setting the Tiva C Launchpad boards are given in the3.
following link: http:/ ​/​energia. ​nu/​guide/ ​guide_ ​linux/ ​

You have to download the 71-ti-permissions.rules file from the following4.
link: http:/ ​/​energia. ​nu/ ​files/ ​71- ​ti-​permissions. ​rules

The rules file will give permission to the user for reading and writing to the5.
Launchpad board. You have to save the file as 71-ti-permissions.rules and
execute the following command from the current path to copy the rules files into
a system folder to get the permission:

$ sudo mv 71-ti-permissions.rules /etc/udev/rules.d/

After copying the file, execute the following command to activate the rules:6.

$ sudo service udev restart

You can plug the Tiva C Launchpad to your PC now and execute the dmesg7.
command in the Linux Terminal to see the Linux kernel log. If it is created, a
serial port device will show at the end of the messages, as shown in the following
screenshot:
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Top view of robot base

If you can see the serial port device, then start Energia using the following8.
command inside the folder:

    $./energia

The following screenshot shows the Energia IDE:

Energia IDE
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Now, we have to select the board tm4c123 in the IDE for compiling the code
specific for this board. To do so, we have to install the packages of this board.
You can select the option Tools | Boards | Boards Manager to install the
packages.

Board Manager of Energia



Interfacing Actuators and Sensors to the Robot Controller Chapter 6

[ 130 ]

After installing the packages, you can select the board by navigating to Tools |9.
Boards | Launchpad (Tiva C) w/tm4c123 (80MHz), as shown in the following
screenshot:

Energia board selection
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Then, select the serial port by navigating to Tools | Serial Port | /dev/ttyACM0,10.
as shown in the following screenshot:

Energia serial port selection
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Compile and upload the code by using the Upload button. The Upload button11.
will do both the processes. The following screenshot illustrates a successful
upload:

Energia serial port selection
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Visit the following links to install Energia on Linux, macOS X, and Windows:

Refer to http://energia.nu/guide/guide_linux/ for Linux
Refer to http://energia.nu/Guide_MacOSX.html for macOS X
Refer to http://energia.nu/Guide_Windows.html for Windows

Motor interfacing code
The following code in Energia can be used to test the two motors in the differential drive
configuration. This code can move the robot forward for 5 seconds and backward for 5
seconds. Then, it moves the robot to the left for 5 seconds and right for 5 seconds. After
each movement, the robot will stop for 1 second.

At the start of the code, we define pins for INA, INB, and PWM of the two motors, as
follows:

///Left Motor  Pins
#define INA_1 12
#define INB_1 13
#define PWM_1 PC_6

///Right Motor Pins
#define INA_2 5
#define INB_2 6
#define PWM_2 PC_5

The pinout for Launchpad is given
at: http://energia.nu/pin-maps/guide_tm4c123launchpad/

The following code shows the five functions to move the robot forward, backward, left, and
right. The fifth function is to stop the robot. We will use the digitalWrite() function to
write a digital value to a pin. The first argument of digitalWrite() is the pin number
and the second argument is the value to be written to the pin. The value can be HIGH or
LOW. We will use the analogWrite() function to write a PWM value to a pin. The first
argument of this function is the pin number and the second is the PWM value. The range of
this value is from 0-255. At high PWM, the motor driver will switch fast and have more
speed. At low PWM, switching inside the motor driver will be slow, so the motor will also
be slow. Currently, we are running at full speed:

void move_forward()
{
    //Setting CW rotation to and Left Motor  and CCW to Right Motor
    //Left Motor

http://energia.nu/guide/guide_linux/
http://energia.nu/Guide_MacOSX.html
http://energia.nu/Guide_Windows.html
http://energia.nu/pin-maps/guide_tm4c123launchpad/


Interfacing Actuators and Sensors to the Robot Controller Chapter 6

[ 134 ]

    digitalWrite(INA_1,HIGH);
    digitalWrite(INB_1,LOW);
    analogWrite(PWM_1,255);
    //Right Motor
    digitalWrite(INA_2,LOW);
    digitalWrite(INB_2,HIGH);
    analogWrite(PWM_2,255);
}

///////////////////////////////////////////////////////

void move_left()
{
    //Left Motor
    digitalWrite(INA_1,HIGH);
    digitalWrite(INB_1,HIGH);
    analogWrite(PWM_1,0);
    //Right Motor
    digitalWrite(INA_2,LOW);
    digitalWrite(INB_2,HIGH);
    analogWrite(PWM_2,255);
}

//////////////////////////////////////////////////////

void move_right()
{
      //Left Motor
      digitalWrite(INA_1,HIGH);
      digitalWrite(INB_1,LOW);
      analogWrite(PWM_1,255);
      //Right Motor
      digitalWrite(INA_2,HIGH);
      digitalWrite(INB_2,HIGH);
      analogWrite(PWM_2,0);
}

////////////////////////////////////////////////////////

void stop()
{
    //Left Motor
    digitalWrite(INA_1,HIGH);
    digitalWrite(INB_1,HIGH);
    analogWrite(PWM_1,0);
    //Right Motor
    digitalWrite(INA_2,HIGH);
    digitalWrite(INB_2,HIGH);
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    analogWrite(PWM_2,0);
}

/////////////////////////////////////////////////

void move_backward()

{
    //Left Motor
    digitalWrite(INA_1,LOW);
    digitalWrite(INB_1,HIGH);
    analogWrite(PWM_1,255);
    //Right Motor
    digitalWrite(INA_2,HIGH);
    digitalWrite(INB_2,LOW);
    analogWrite(PWM_2,255);
}

We first set the INA and INB pins of the two motors to the OUTPUT mode, so that we can
write HIGH or LOW values to these pins. The pinMode() function is used to set the mode of
the I/O pin. The first argument of pinMode() is the pin number and the second argument is
the mode. We can set a pin as input or output. To set a pin as output, give the OUTPUT
argument as the second argument; to set it as input, give INPUT as the second argument, as
shown in following code. There is no need to set the PWM pin as the output because
analogWrite() writes the PWM signal without setting pinMode():

void setup()
{
   //Setting Left Motor pin as OUTPUT
    pinMode(INA_1,OUTPUT);
    pinMode(INB_1,OUTPUT);
    pinMode(PWM_1,OUTPUT);

   //Setting Right Motor pin as OUTPUT
    pinMode(INA_2,OUTPUT);
    pinMode(INB_2,OUTPUT);
    pinMode(PWM_2,OUTPUT);
}
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The following snippet is the main loop of the code. It will call each function, such as move
forward(), move_backward(), move_left(), and move_right(),for 5 seconds. After
calling each function, the robot stops for 1 second:

void loop()
{
  //Move forward for 5 sec
move_forward();
delay(5000);
  //Stop for 1 sec
stop();
delay(1000);

  //Move backward for 5 sec
move_backward();
delay(5000);
  //Stop for 1 sec
stop();
delay(1000);

  //Move left for 5 sec
move_left();
delay(5000);
  //Stop for 1 sec
stop();
delay(1000);

  //Move right for 5 sec
move_right();
delay(5000);
  //Stop for 1 sec
stop();
delay(1000);
}

Interfacing quadrature encoder with Tiva C
Launchpad
The wheel encoder is a sensor attached to the motor to sense the number of rotations of the
wheel. If we know the number of rotations, we can compute the velocity and displacement
of the wheel.
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For this robot, we have chosen a motor with an in-built encoder. This encoder is a
quadrature type, which can sense both the direction and speed of the motor. Encoders use
different types of sensors, such as optical and hall sensors, to detect these parameters. This
encoder uses the hall effect to sense the rotation. The quadrature encoder has two channels,
namely Channel A and Channel B. Each channel will generate digital signals with a 90-
degree phase shift. The following diagram shows the wave form of a typical quadrature
encoder:

Quadrature encoder waveforms

If the motor rotates in a clockwise direction, Channel A will lead Channel B, and if the
motor rotates counterclockwise, Channel B will lead Channel A. This reading will be
useful to sense the direction of rotation of the motor. The following section discusses how
we can translate the encoder output to useful measurements, such as displacement and
velocity.

Processing encoder data
Encoder data is a two-channel pulse out with 90 degrees out of phase. Using this data, we
can find the direction of rotation and how many times the motor has rotated, and thereby
find the displacement and velocity.
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Some of the terms that specify encoder resolution are pulses per revolution (PPR) or lines
per revolution (LPR) and counts per revolution (CPR). PPR specifies how many electrical
pulses (0 to 1 transitions) there will be during one revolution of the motor final shaft. Some
manufactures use the name CPR instead of PPR, because each pulse will contain two edges
(rising and falling) and there are two pulse channels (A and B) with 90-degree phase shift;
the total number of edges will be four times the number of PPR. Most quadrature receivers
use the so-called 4X decoding to count all the edges from encoder A and B channels
yielding 4X resolution compared to the raw PPR value.

In our motor, Pololu specifies that the CPR is 64 for the motor shaft, which corresponds to
8,400 CPR of the gearbox's output shaft. In effect, we get 8,400 counts from the gearbox
output shaft when the motor's final shaft completes one revolution. The following diagram
shows how we can compute the count from the encoder pulses:

Encoder pulses with count value

In this encoder specification, the count per revolution is given; it is calculated by the
encoder channel edge transitions. One pulse of an encoder channel corresponds to four
counts. So, to get 8,400 counts in our motor, the PPR will be 8,400 / 4 = 2,100. From the
preceding diagram, we will be able to calculate the number of counts in one revolution, but
we also need to sense the direction of movement. This is because irrespective of whether
the robot moves forward or backward, the counts that we get will be same; so, sensing the
direction is important in order to decode the signal. The following diagram shows how we
can decode the encoder pulses:

Detecting motor direction from encoder pulses
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If we observe the code pattern, we can understand that it follows the 2-bit Gray code. A
Gray code is the encoding of numbers, so that adjacent numbers have a single digit
differing by 1. Gray code (http://en.wikipedia.org/wiki/Gray_code) is commonly used
in rotary encoders for efficient coding.

We can predict the direction of rotation of a motor by state transitions. The state transition
table is as follows:

State Clockwise transition Counterclockwise transition
0,0 0,1 to 0,0 1,0 to 0,0
1,0 0,0 to 1,0 1,1 to 1,0
1,1 1,0 to 1,1 0,1 to 1,1
0,1 1,1 to 0,1 0,0 to 0,1

It will be more convenient if we represent it in a state transition diagram:

State transition diagram of encoders

After getting this Gray code, we can process the pulses using a microcontroller. The
channel pins of the motor have to be connected to the interrupt pins of the microcontroller.
So, when the channel has edge transitions, it will generate an interrupt or trigger in the
pins, and if any interrupts arrives in that pin, an interrupt service routine, or simply a
function, will be executed inside the microcontroller program. It can read the current state
of the two pins. According to the current state of the pins and previous values, we can
determine the direction of rotation and can decide whether we have to increment or
decrement the count. This is the basic logic for encoder handling.

http://en.wikipedia.org/wiki/Gray_code
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After getting the count, we can calculate the angle of rotation (in degrees) using Angle =
(Count Value / CPR) * 360. Here, if we substitute CPR with 8,400, the equation becomes
Angle = 0.04285 * Count Value; that is, for turning one degree, 24 counts have to be received
or six encoded channel pulses have to come.

The following diagram shows the interfacing circuit of one motor encoder with Tiva C
LaunchPad:

Interfacing encoder to Launchpad

From the above diagram, you can find motor pins CH A and CH B which are the output
from the motor encoders. These pins are interfaced to PB2 and PB7 pins of the Tiva C
Launchpad. The pins ENC VCC and ENC GND are the power pins of the encoder,  so we
have to provide +5V and GND to these pins.  The next set of pins are for powering the
motors. The MOTOR VCC  and MOTOR GND are marked as OUTA and OUTB which is
directly going to Motor driver in order to control the motor speed.

The maximum voltage level of output pulse is in between 0V to 5V from the encoder. In
this case, we can directly interface the encoder with Launchpad because it can receive input
up to 5V, or we can use a 3.3V to 5V level shifter like we used for motor driver interfacing
earlier.

In the next section, we will upload code in Energia to test the quadrature encoder signal.
We need to check whether we get a proper count from the encoder.
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Quadrature encoder interfacing code
This code will print the count of the left and right motor encoder via a serial port. The two
encoders are in a 2X decoding scheme, so we will get 4,200 CPR. In the first section of the
code, we are defining pins for two channel outputs of two encoders and we are declaring
the count variable for two encoders. The encoder variable uses a volatile keyword before
the variable data type. The main use of volatile is that the variable with the volatile
keyword will store in RAM memory, whereas normal variables are in CPU registers.
Encoder values will change very quickly, so using an ordinary variable will not be accurate.
In order to get accuracy, we will use volatile for encoder variables, as follows:

//Encoder pins definition

// Left encoder

#define Left_Encoder_PinA 31
#define Left_Encoder_PinB 32

volatile long Left_Encoder_Ticks = 0;

//Variable to read current state of left encoder pin
volatile bool LeftEncoderBSet;

//Right Encoder

#define Right_Encoder_PinA 33
#define Right_Encoder_PinB 34
volatile long Right_Encoder_Ticks = 0;
//Variable to read current state of right encoder pin
volatile bool RightEncoderBSet;

The following code snippet is the definition of the setup() function. In Energia, setup()
is a built-in function used for initialization and for one-time execution of variables and
functions. Inside setup(), we initialize the serial data communication with a baud rate of
115200 and call a user-defined SetupEncoders() function to initialize pins of the
encoders. The serial data communication is mainly done to check the encoder count via the
serial terminal:

void setup()
{
    //Init Serial port with 115200 buad rate
  Serial.begin(115200);
  SetupEncoders();
}
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The definition of SetupEncoders() is given in the code that follows. To receive the
encoder pulse, we need two pins in Launchpad as the input. Configure the encoder pins to
Launchpad as the input and activate its pull-up resistor. The attachInterrupt ()
function will configure one of the encoder pins as an interrupt. The attachInterrupt ()
function has three arguments. The first argument is the pin number, the second argument is
the interrupt service routine (ISR), and the third argument is the interrupt condition, that
is, the condition in which the interrupt has to fire ISR. In this code, we are configuring PinA
of the left and right encoder pins as the interrupt; it calls the ISR when there is a rise in the
pulse:

void SetupEncoders()
{
  // Quadrature encoders
  // Left encoder
  pinMode(Left_Encoder_PinA, INPUT_PULLUP);
  // sets pin A as input
  pinMode(Left_Encoder_PinB, INPUT_PULLUP);
  // sets pin B as input
  attachInterrupt(Left_Encoder_PinA, do_Left_Encoder, RISING);

  // Right encoder
  pinMode(Right_Encoder_PinA, INPUT_PULLUP);
  // sets pin A as input
  pinMode(Right_Encoder_PinB, INPUT_PULLUP);
  // sets pin B as input

  attachInterrupt(Right_Encoder_PinA, do_Right_Encoder, RISING);
}

The following code is the built-in loop() function in Energia. The loop() function is an
infinite loop where we put our main code. In this code, we call the Update_Encoders()
function to print the encoder value continuously through the serial Terminal:

void loop()
{
  Update_Encoders();
}
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The following code is the function definition of the Update_Encoders() function. It prints
two encoder values in a line with a starting character e and the values are separated by tab
spaces. The Serial.print() function is a built-in function that will print the
character/string given as the argument:

void Update_Encoders()
{
  Serial.print("e");
  Serial.print("t");
  Serial.print(Left_Encoder_Ticks);
  Serial.print("t");
  Serial.print(Right_Encoder_Ticks);
  Serial.print("n");
 }

The following code is the ISR definition of the left and right encoders. When a rising edge is
detected on each of the pins, one of the ISRs will be called. The current interrupt pins are
PinA of each of the encoders. After getting the interrupt, we can assume that the rising
PinA has a higher value state, so there is no need to read that pin. Read PinB of both the
encoders and store the pin state to LeftEncoderBSet or RightEncoderBSet. The current
state is compared to the previous state of PinB and can detect the direction and decide
whether the count has to be incremented or decremented according to the state transition
table:

void do_Left_Encoder()
{
  LeftEncoderBSet = digitalRead(Left_Encoder_PinB);
  // read the input pin
  Left_Encoder_Ticks -= LeftEncoderBSet ? -1 : +1;
}

void do_Right_Encoder()
{
  RightEncoderBSet = digitalRead(Right_Encoder_PinB);
  // read the input pin
  Right_Encoder_Ticks += RightEncoderBSet ? -1 : +1;
}
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Upload the sketch and view the output using the serial monitor in Energia. Navigate to
Tools | Serial monitor. Move the two motors manually and you will see the count
changing. Set the baud rate in the serial monitor, which is the same as that initialized in the
code; in this case, it is 115200. The output will look like this:

Interfacing encoder to Launchpad

If we want to upgrade the robot to high accuracy and payload, we have to consider high
quality actuators, such as Dynamixel. Dynamixel servos are intelligent actuators, which
have in-built PID control and monitoring of the servo and encoder parameters, such as
torque, position, and so on. In this robot, we are not using Dynamixel.

Working with Dynamixel actuators
Dynamixel is a kind of networked actuator for robots developed by the Korean
manufacture, ROBOTIS. It is widely used by companies, universities, and hobbyists due to
its versatile expansion capability, power feedback function, position, speed, internal
temperature, input voltage, and so on.

The Dynamixel servos can be connected in a daisy chain; it is a method of connecting
devices in a serial fashion, connecting one device to another through the connected devices,
and can control all the connected servos from one controller. Dynamixel servos
communicate via RS485 or TTL. The list of available Dynamixel servos is given at
http://www.robotis.com/xe/dynamixel_en.

http://www.robotis.com/xe/dynamixel_en
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The interfacing of Dynamixel is very easy. Dynamixel comes with a controller called
USB2Dyanmixel, which will convert a USB to Dynamixel compatible TTL/RS485 levels. The
following diagram shows the interfacing diagram of Dynamixel:

Interfacing Dynamixel actuators to a PC

ROBOTIS provides Dynamixel SDK for accessing motor registers; we can read and write
values to Dynamixel registers and retrieve data, such as position, temperature, voltage, and
so on.

The instructions to set USB2Dynamixel and Dynamixel SDK are given at
support.robotis.com/en/.

Dynamixel can be programed using Python libraries. One of the Python libraries for
handling Dynamixel servos is pydynamixel. This package is available for Windows and
Linux. Pydynamixel will support RX, MX, and EX series servos.

We can download the the pydynamixel Python package from
https://pypi.python.org/pypi/dynamixel/.

Download the package and extract it to the home folder. Open a terminal/DOS prompt and
execute the following command:

    sudo python setup.py install

After installing the package, we can try the following Python example, which will detect
the servo attached to the USB2Dynamixel and write some random position to the servo.
This example will work with RX and MX servos:

#!/usr/bin/env python

The following code will import the necessary Python modules required for this example.
This includes Dynamixel Python modules too:

http://support.robotis.com/en/
https://pypi.python.org/pypi/dynamixel/
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import os
import dynamixel
import time
import random

The following code defines the main parameters needed for Dynamixel communication
parameters. The nServos variable denotes the number of Dynamixel servos connected to
the bus. The portName variable indicates the serial port of USB2Dynamixel to which
Dynamixel servos are connected. The baudRate variable is the communication speed of
USB2Dynamixel and Dynamixel:

# The number of Dynamixels on our bus.
nServos = 1

# Set your serial port accordingly.
if os.name == "posix":
    portName = "/dev/ttyUSB0"
else:
    portName = "COM6"
# Default baud rate of the USB2Dynamixel device.
baudRate = 1000000

The following code is the Dynamixel Python function to connect to Dynamixel servos. If it
is connected, the program will print it and scan the communication bus to find the number
of servos starting from ID 1 to 255. The servo ID is the identification of each servo. We are
given nServos as 1, so it will stop scanning after getting one servo on the bus:

# Connect to the serial port
print "Connecting to serial port", portName, '...',
serial = dynamixel.serial_stream.SerialStream( port=portName,
baudrate=baudRate, timeout=1)
print "Connected!"
net = dynamixel.dynamixel_network.DynamixelNetwork( serial )
net.scan( 1, nServos )

The following code will append the Dynamixel ID and the servo object to the myActutors
list. We can write servo values to each servo using the servo ID and servo object. We can
use the myActutors list for further processing:

# A list to hold the dynamixels
myActuators = list()
print myActuators

This will create a list for storing  dynamixel actuators details.

print "Scanning for Dynamixels...",
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for dyn in net.get_dynamixels():
    print dyn.id,
    myActuators.append(net[dyn.id])
print "...Done"

The following code will write random positions from 450 to 600 to each Dynamixel actuator
that is available on the bus. The range of positions in Dynamixel is 0 to 1,023. This will set
the servo parameters, such as speed, torque,torque_limt, max_torque, and so on:

# Set the default speed and torque
for actuator in myActuators:
    actuator.moving_speed = 50
    actuator.synchronized = True
    actuator.torque_enable = True
    actuator.torque_limit = 800
    actuator.max_torque = 800

The following code will print the current position of the current actuator:

# Move the servos randomly and print out their current positions
while True:
    for actuator in myActuators:
        actuator.goal_position = random.randrange(450, 600)
    net.synchronize()

The following code will read all data from the actuators:

    for actuator in myActuators:
        actuator.read_all()
        time.sleep(0.01)

    for actuator in myActuators:
        print actuator.cache[dynamixel.defs.REGISTER['Id']],
actuator.cache[dynamixel.defs.REGISTER['CurrentPosition']]

    time.sleep(2)

Working with ultrasonic distance sensors
One of the important capabilities of a mobile robot is navigation. An ideal navigation
means a robot can plan its path from its current position to the destination and can move
without any obstacles. We use ultrasonic distance sensors in this robot for detecting near
objects that can't be detected using the Kinect sensor. A combination of Kinect and
ultrasonic sound sensors provides ideal collision avoidance on this robot.
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Ultrasonic distance sensors work in the following manner. The transmitter will send an
ultrasonic sound that is not audible to human ears. After sending an ultrasonic wave, it will
wait for an echo of the transmitted wave. If there is no echo, it means there are no obstacles
in front of the robot. If the receiving sensor receives any echo, a pulse will be generated on
the receiver, and it can calculate the total time the wave will take to travel to the object and
return to the receiver sensors. If we get this time, we can compute the distance to the
obstacle using the following formula:

Speed of Sound * Time Passed /2 = Distance from Object.

Here, the speed of sound can be taken as 340 m/s.

Most of the ultrasonic range sensors have a distance range from 2 cm to 400 cm. In this
robot, we use a sensor module called HC-SR04. We look at how to interface HC-SR04 with
Tiva C LaunchPad to get the distance from the obstacles.

Interfacing HC-SR04 to Tiva C LaunchPad
The following diagram illustrates the interfacing circuit of the HC-SR04 ultrasonic sound
sensor with Tiva C LaunchPad:

Interfacing ultrasonic sound sensors to Launchpad
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The working voltage of the ultrasonic sensor is 5V and the input/output of this sensor is
also 5V, so we need a level shifter on the Trig and Echo pins for interfacing into the 3.3V
level Launchpad. In the level shifter, we need to apply high voltage, that is, 5V, and low
voltage, that is, 3.3V, as shown in the preceding diagram, to switch from one level to
another level. Trig and Echo pins are connected on the high voltage side of the level shifter
and the low voltage side pins are connected to Launchpad. The Trig pin and Echo are
connected to the 10th and 9th pins of Launchpad. After interfacing the sensor, we can see
how to program the two I/O pins.

Working of HC-SR04
The timing of the waveform on each pin is shown in the following diagram. We need to
apply a short 10 µs pulse to the trigger input to start the ranging and then the module will
send out an eight-cycle burst of ultrasound at 40 KHz and raise its echo. The echo is a
distance object that is the pulse width and the range in proportion. You can calculate the
range through the time interval between sending trigger signals and receiving echo signals
using the following formula:

Range = high level time of echo pin output * velocity (340 M/S) / 2.

It will be better to use a delay of 60 ms before each trigger to avoid overlapping between
trigger and echo:

Input and output waveform of ultrasound sensor
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Interfacing Code of Tiva C Launchpad
The following Energia code for Launchpad reads values from the ultrasound sensor and
monitors the values through a serial port.

The following code defines the pins in Launchpad to handle ultrasonic echo and trigger
pins and also defines variables for the duration of the pulse and the distance in centimeters:

const int echo = 9, Trig = 10;
long duration, cm;

The following code snippet is the setup() function. The setup() function is called when
the program starts. Use this to initialize variables, pin modes, to start using libraries, and so
on. The setup function will only run once, after each power up or reset of the Launchpad
board. Inside setup(), we initialize serial communication with a baud rate of 115200 and
set up the mode of ultrasonic handling pins by calling a SetupUltrasonic();function:

void setup()
{
  //Init Serial port with 115200 baud rate
  Serial.begin(115200);
  SetupUltrasonic();
}

The following is the setup function for the ultrasonic sensor; it will configure the Trigger
pin as OUTPUT and the Echo pin as INPUT. The pinMode() function is used to set the pin as
INPUT or OUTPUT:

void SetupUltrasonic()
{
 pinMode(Trig, OUTPUT);
 pinMode(echo, INPUT);
}

After creating a setup() function, which initializes and sets the initial values, the loop()
function does precisely what its name suggests, and loops consecutively, allowing your
program to change and respond. Use it to actively control the Launchpad board.
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The main loop of this is in the following code. This function is an infinite loop and calls the
Update_Ultra_Sonic() function to update and print the ultrasonic readings through a
serial port:

void loop()
{
    Update_Ultra_Sonic();
    delay(200);
}

The following code is the definition of the Update_Ultra_Sonic() function. This function
will do the following operations. First it will take the trigger pin to the LOW state for 2
microseconds and HIGH for 10 microseconds. After 10 microseconds, it will again return
the pin to the LOW state. This is according to the timing diagram. We already saw that 10 µs
is the trigger pulse width.

After triggering with 10 µs, we have to read the time duration from the Echo pin. The time
duration is the time taken for the sound to travel from the sensor to the object and from the
object to the sensor receiver. We can read the pulse duration by using the pulseIn()
function. After getting the time duration, we can convert the time into centimeters by using
the microsecondsToCentimeters() function, as shown in the following code:

void Update_Ultra_Sonic()
{
  digitalWrite(Trig, LOW);
  delayMicroseconds(2);
  digitalWrite(Trig, HIGH);
  delayMicroseconds(10);
  digitalWrite(Trig, LOW);

  duration = pulseIn(echo, HIGH);
  // convert the time into a distance
  cm = microsecondsToCentimeters(duration);
  //Sending through serial port
  Serial.print("distance=");
  Serial.print("t");
  Serial.print(cm);
  Serial.print("n");
}

The following code is the conversion function from microseconds to distance in
centimeters. The speed of sound is 340 m/s, that is, 29 microseconds per centimeter. So, we
get the total distance by diving the total microseconds by 29/2:
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long microsecondsToCentimeters(long microseconds)
{
return microseconds / 29 / 2;
}

After uploading the code, open the serial monitor from the Energia menu under Tools |
Serial Monitor and change the baud rate to 115200. The values from the ultrasonic sensor
are shown in the following screenshot:

Output of the ultrasonic distance sensor in Energia serial monitor

Interfacing Tiva C LaunchPad with Python
In this section, we will look at how to connect Tiva C LaunchPad with Python to receive
data from Launchpad in a PC.

The PySerial module can be used for interfacing Launchpad to Python. The detailed
documentation of PySerial and its installation procedure for Windows, Linux, and OS X can
be found here : http://pyserial.sourceforge.net/pyserial.html

http://pyserial.sourceforge.net/pyserial.html
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PySerial is available in the Ubuntu package manager and it can be easily installed in
Ubuntu using the following command in the Terminal:

    $ sudo apt-get install python-serial

After installing the python-serial package, we can write Python code to interface
Launchpad. The interfacing code is given in the following section.

The following code imports the Python serial module and the sys module. The serial
module handles the serial ports of Launchpad and performs operations such as reading,
writing, and so on. The sys module provides access to some variables used or maintained
by the interpreter and to functions that interact strongly with the interpreter. It is always
available:

#!/usr/bin/env python
import serial
import sys

When we plug Launchpad to the computer, the device registers on the OS as a virtual serial
port. In Ubuntu, the device name looks like /dev/ttyACMx. Here, x can be a number; if
there is only one device, it will probably be 0. To interact with Launchpad, we need to
handle this device file only.

The following code will try to open the serial port /dev/ttyACM0 of Launchpad with a
baud rate of 115200. If it fails, it will print Unable to open serial port:

try:
    ser = serial.Serial('/dev/ttyACM0',115200)
except:
    print "Unable to open serial port"

The following code will read the serial data until the serial character becomes a new line
('n') and prints it on the Terminal. If we press Ctrl + C on the keyboard, to quit the
program, it will exit by calling sys.exit(0):

while True:
    try:
        line = ser.readline()
        print line
    except:
        print "Unable to read from device"
        sys.exit(0)
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After saving the file, change the permission of the file to executable using the following
command:

    $ sudo chmod +X script_name
    $ ./ script_name

The output of the script will look like this:

Output of the ultrasonic distance sensor in Energia serial monitor

Working with the IR proximity sensor
Infrared sensors are another method to find obstacles and the distance from the robot. The
principle of infrared distance sensors is based on the infrared light that is reflected from a
surface when hitting an obstacle. An IR receiver will capture the reflected light and the
voltage is measured based on the amount of light received.

One of the popular IR range sensors is Sharp GP2D12. The product link can be found
here: http://www.robotshop.com/en/sharp-gp2y0a21yk0f-ir-range-sensor.html

The following image shows the Sharp GP2D12 sensor:

http://www.robotshop.com/en/sharp-gp2y0a21yk0f-ir-range-sensor.html
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The sensor sends out a beam of IR light and uses triangulation to measure the distance. The
detection range of the GP2D12 is between 10 cm and 80 cm. The beam is 6 cm wide at a
distance of 80 cm. The transmission and reflection of the IR light sensor is illustrated in the
following diagram:

Obstacle sensing using IR light sensor

On the left of the sensor is an IR transmitter, which continuously sends IR radiation. After
hitting into some objects, the IR light will reflect and it will be received by the IR receiver.
The interfacing circuit of the IR sensor is shown here:

Pinout of Sharp IR sensor

The analog out pin Vo can be connected to the ADC pin of Launchpad. The interfacing
code of the Sharp distance sensor with the Tiva C Launchpad is discussed further in this
section. In this code, we select the 18th pin of Launchpad and set it to the ADC mode and
read the voltage levels from the Sharp distance sensor. The range equation of the GP2D12
IR sensor is given as follows:

Range = (6,787 / (Volt - 3)) - 4
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Here, Volt is the analog voltage value from the ADC of the Volt pin.

In this first section of the code, we set the 18th pin of Tiva C LaunchPad as the input pin
and start a serial communication at a baud rate of 115200:

int IR_SENSOR = 18; // Sensor is connected to the analog A3
int intSensorResult = 0; //Sensor result
float fltSensorCalc = 0; //Calculated value

void setup()
{
Serial.begin(115200); // Setup communication with computer
   to present results serial monitor
}

In the following section of code, the controller continuously reads the analog pin and
converts it to the distance value in centimeters:

void loop()
{

// read the value from the ir sensor
intSensorResult = analogRead(IR_SENSOR); //Get sensor value

//Calculate distance in cm according to the range equation
fltSensorCalc = (6787.0 / (intSensorResult - 3.0)) - 4.0;

Serial.print(fltSensorCalc); //Send distance to computer
Serial.println(" cm"); //Add cm to result
delay(200); //Wait
}

This is the basic code to interface a sharp distance sensor. There are some drawbacks with
IR sensors. Some of them are as follows:

We can't use them in direct or indirect sunlight, so it's difficult to use them in an
outdoor robot
They may not work if the object is not reflective
The range equation only works within the range

In the next section, we will discuss the IMU and its interfacing with Tiva C LaunchPad. An
IMU can give the odometry data and it can be used as the input to navigation algorithms.
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Working with Inertial Measurement Units
An inertial measurement unit (IMU) is an electronic device that measures velocity,
orientation, and gravitational forces using a combination of accelerometers, gyroscopes,
and magnetometers. IMUs have a lot of applications in robotics; some of the applications
are applied in balancing of unmanned aerial vehicles (UAVs) and robot navigation.

In this section, we will discuss the role of IMUs in mobile robot navigation and some of the
latest IMUs on the market and their interfacing with Launchpad.

Inertial navigation
An IMU provides acceleration and orientation relative to inertial space. If you know the
initial position, velocity, and orientation, you can calculate the velocity by integrating the
sensed acceleration and the second integration gives the position. To get the correct
direction of the robot, the orientation of the robot is required; this can be obtained by
integrating sensed angular velocity from a gyroscope.

The following diagram illustrates an inertial navigation system, which will convert IMU
values to odometry data:

Block diagram of IMU
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The values we get from the IMU are converted into navigational information using
navigation equations and feeding them into estimation filters, such as the Kalman filter.
The Kalman filter is an algorithm that estimates the state of a system from the measured
data (http://en.wikipedia.org/wiki/Kalman_filter). The data from an inertial
navigation system (INS) will have some drift because of the error from the accelerometer 
and gyroscope. To limit the drift, an INS is usually aided by other sensors that provide
direct measurements of the integrated quantities. Based on the measurements and sensor
error models, the Kalman filter estimates errors in the navigation equations and all the
colored sensors' errors. The following diagram illustrates an aided inertial navigation
system using the Kalman filter:

IMU with inertial navigation system

Along with the motor encoders, the value from the IMU can be taken as the odometer value
and it can be used for dead reckoning, the process of finding the current position of a
moving object by using a previously determined position.

In the next section, we are going to look at one of the most popular IMUs from InvenSense,
called MPU 6050.

http://en.wikipedia.org/wiki/Kalman_filter
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Interfacing MPU 6050 with Tiva C LaunchPad
The MPU-6000/MPU-6050 family of parts is the world's first and only six-axis motion
tracking devices designed for the low power, low cost, and high-performance requirements
of smartphones, tablets, wearable sensors, and robotics.

The MPU-6000/6050 devices combine a three-axis gyroscope and three-axis accelerometer
on the silicon die together with an onboard digital motion processor capable of processing
complex nine-axis motion fusion algorithms. The following diagram shows the system
diagram of MPU 6050 and break out of MPU 6050:

Block diagram of MPU 6050

The breakout board of MPU 6050 is shown in the following diagram and it can be
purchased from here http:/ ​/​a. ​co/ ​7C3yL96:

MPU 6050 breakout board

http://a.co/7C3yL96
http://a.co/7C3yL96
http://a.co/7C3yL96
http://a.co/7C3yL96
http://a.co/7C3yL96
http://a.co/7C3yL96
http://a.co/7C3yL96
http://a.co/7C3yL96
http://a.co/7C3yL96
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The connection from Launchpad to MPU 6050 is given in the following table. The
remaining pins can be left disconnected:

Launchpad pins MPU6050 pins
+3.3V VCC/VDD
GND GND
PD0 SCL
PD1 SDA

The following diagram shows the interfacing of MPU 6050 and Tiva C Launchpad:

Interfacing MPU 6050 breakout board to Launchpad

MPU 6050 and Launchpad communicate using the I2C protocol. The supply voltage is 3.3V
and it is taken from Launchpad.
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Setting the MPU 6050 library in Energia
The interfacing code of Energia is discussed in this section. The interfacing code uses the
https://github.com/jrowberg/i2cdevlib/zipball/master library for interfacing MPU
6050.

Download the ZIP file from the preceding link and navigate to Preference from File |
Preference in Energia, as shown in the following screenshot:

Interfacing MPU 6050 breakout board to Launchpad

Go to Sketchbook location under Preferences, as seen in the preceding screenshot, and
create a folder called libraries. Extract the files inside the Arduino folder inside the ZIP
file to the sketchbook/libraries location. The Arduino packages in this repository are
also compatible with Launchpad. The extracted files contain the I2Cdev, Wire, and
MPU6050 packages that are required for the interfacing of the MPU 6050 sensor. There are
other sensor packages that are present in the libraries folder but we are not using them
now.

The preceding procedure is done in Ubuntu, but it is the same for Windows and macOS X.

https://github.com/jrowberg/i2cdevlib/zipball/master
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Interfacing code of Energia
This code is used to read the raw value from MPU 6050 to Launchpad. It uses an MPU 6050
third-party library compatible with Energia IDE. The following are the explanations of each
block of the code.

In this first section of code, we include the necessary headers for interfacing MPU 6050 to
Launchpad, such as 12C, Wire and the MPU6050 library, and create an object of MPU6050
with the name accelgyro. The MPU6050.h library contains a class named MPU6050 to send
and receive data to and from the sensor:

#include "Wire.h"

#include "I2Cdev.h"
#include "MPU6050.h"

MPU6050 accelgyro;

In the following section, we start the I2C and serial communication to communicate with
MPU 6050 and print sensor values through the serial port. The serial communication baud
rate is 115200 and Setup_MPU6050() is the custom function to initialize the MPU 6050
communication:

void setup()
{
  //Init Serial port with 115200 buad rate
  Serial.begin(115200);
  Setup_MPU6050();
}

The following section is the definition of the Setup_MPU6050() function. The Wire library
allows you to communicate with the I2C devices. MPU 6050 can communicate using I2C.
The Wire.begin() function will start the I2C communication between MPU 6050 and
Launchpad; also, it will initialize the MPU 6050 device using the initialize() method
defined in the MPU6050 class. If everything is successful, it will print connection successful;
otherwise, it will print connection failed:

void Setup_MPU6050()
{
   Wire.begin();
      // initialize device
    Serial.println("Initializing I2C devices...");
    accelgyro.initialize();

    // verify connection
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    Serial.println("Testing device connections...");
    Serial.println(accelgyro.testConnection() ? "MPU6050 connection
successful" : "MPU6050 connection failed");
}

The following code is the loop() function, which continuously reads the sensor value and
prints its values through the serial port: The Update_MPU6050() custom function is
responsible for printing the updated value from MPU 6050:

void loop()
{

   //Update MPU 6050
    Update_MPU6050();
}

The definition of Update_MPU6050() is given as follows. It declares six variables to handle
the accelerometer and gyroscope value in three-axis. The getMotion6() function in the
MPU 6050 class is responsible for reading the new values from the sensor. After reading
them, it will print via the serial port:

void Update_MPU6050()
{
   int16_t ax, ay, az;
  int16_t gx, gy, gz;

      // read raw accel/gyro measurements from device
    accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

    // display tab-separated accel/gyro x/y/z values
    Serial.print("i");Serial.print("t");
    Serial.print(ax); Serial.print("t");
    Serial.print(ay); Serial.print("t");
    Serial.print(az); Serial.print("t");
    Serial.print(gx); Serial.print("t");
    Serial.print(gy); Serial.print("t");
    Serial.println(gz);
    Serial.print("n");
}
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The output from the serial monitor is shown here:

Output from MPU 6050 in the serial monitor

We can read these values using the Python code that we used for ultrasonic. The following
is the screenshot of the Terminal when we run the Python script:

Output from MPU 6050 in the Linux Terminal
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Summary
In this chapter, we have discussed the interfacing of the motors that we are using in our
robot. We have looked at motor and encoder interfacing with a controller board called Tiva
C Launchpad. We have discussed the controller code for interfacing motors and encoders.
In the future, if the robot requires high accuracy and torque, we have looked at Dynamixel
servos that can substitute current DC motors. We have also looked at the robotic sensors
that can be used in our robot. The sensors we discussed are ultrasonic distance sensors, IR
proximity sensors, and IMUs. These three sensors help in the navigation of the robot. We
also discussed the basic code to interface these sensors to Tiva C LaunchPad. We will
discuss the vision sensors used in this robot further in the next chapter.

Questions
What is the H-Bridge circuit?1.
What is a quadrature encoder?2.
What is the 4X encoding scheme?3.
How do we calculate displacement from encoder data?4.
What are the features of the Dynamixel actuator?5.
What are ultrasonic sensors and how do they work?6.
How do you calculate distance from the ultrasonic sensor?7.
What is the IR proximity sensor and how does it work?8.

Further reading
Read more about Energia programming at the following link:

http:/​/​energia.​nu/ ​guide/ ​

http://energia.nu/guide/
http://energia.nu/guide/
http://energia.nu/guide/
http://energia.nu/guide/
http://energia.nu/guide/
http://energia.nu/guide/
http://energia.nu/guide/
http://energia.nu/guide/
http://energia.nu/guide/
http://energia.nu/guide/


7
Interfacing Vision Sensors with

ROS
In the previous chapter, we looked at actuators and how to interface the robot's sensors
using the Tiva-C LaunchPad board. In this chapter, we will mainly look at vision sensors
and the interface that they use with our robot.

The robot we are designing will have a 3D vision sensor, and we will be able to interface it
with vision libraries such as Open Source Computer Vision (OpenCV), Open Natural
Interaction (OpenNI), and Point Cloud Library (PCL). The main application of the 3D
vision sensor in our robot is autonomous navigation.

We will also look at how to interface the vision sensors with ROS and process the images
that it senses using vision libraries such as OpenCV. In the last section of this chapter, we
will look at the mapping and localization algorithm that we will use in our robot, called
SLAM (simultaneous localization and mapping), and its implementation using a 3D
vision sensor, ROS, and image-processing libraries.

In this chapter, we will cover the following topics:

List of robotic vision sensors and image libraries
Introduction to OpenCV, OpenNI, and PCL
The ROS-OpenCV interface
Point cloud processing using the PCL-ROS interface
Conversion of point cloud data to laser scan data
Introduction to SLAM
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Technical requirements
You will need an Ubuntu 16.04 system with ROS Kinetic installed, as well as a web camera
and a depth camera in order to try out the example in this chapter.

In the first section, we will look at the 2D and 3D vision sensors that are available in the
market that can be used in different robots.

List of robotic vision sensors and image
libraries
A 2D vision sensor or an ordinary camera delivers 2D image frames of the surroundings,
whereas a 3D vision sensor delivers 2D image frames and an additional parameter called
the depth of each image point. We can find the x, y, and z distance of each point from the
3D sensor with respect to the sensor's axis.

There are quite a few vision sensors available on the market. Some of the 2D and 3D vision
sensors that can be used in our robot are mentioned in this chapter.

Pixy2/CMUcam5
The following picture shows the latest 2D vision sensor, called Pixy2/CMUcam5 (https:/ ​/
pixycam.​com/​pixy- ​cmucam5/ ​), which is able to detect color objects with high speed and
accuracy, and can be interfaced with an Arduino board. Pixy can be used for fast object
detection, and the user can teach it which object it needs to track. The Pixy module has a
CMOS sensor and NXP LPC4330 (http://www.nxp.com/) based on Arm Cortex M4/M0
cores for picture processing. The following image shows the Pixy/CMUcam5:

https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
https://pixycam.com/pixy-cmucam5/
http://www.nxp.com/
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Pixy/CMUcam5 (http:/ ​/​a.​co/ ​fZtPqck)

The most commonly available 2D vision sensors are webcams. They contain a CMOS sensor
and USB interface, but they do not have any inbuilt vision-processing capabilities like Pixy
has.

Logitech C920 webcam
The following picture shows a popular webcam from Logitech that can capture pictures of
up to 5-megapixel resolution and HD videos:

Logitech HD C920 webcam (http://a.co/02DUUYd)

http://a.co/1t91hn6
http://a.co/1t91hn6
http://a.co/1t91hn6
http://a.co/1t91hn6
http://a.co/1t91hn6
http://a.co/1t91hn6
http://a.co/1t91hn6
http://a.co/1t91hn6
http://a.co/1t91hn6
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Kinect 360
We will now take a look at some of the 3D vision sensors available on the market. Some of
the more popular sensors are Kinect, the Intel RealSense D400 series, and Orbbec Astra.

Kinect sensor

Kinect is a 3D vision sensor originally developed for the Microsoft Xbox 360 game console.
It mainly contains an RGB camera, an infrared projector, an IR depth camera, a microphone
array, and a motor to alter its tilt. The RGB camera and depth camera capture images at a
resolution of 640 x 480 at 30 Hz. The RGB camera captures 2D color images, whereas the
depth camera captures monochrome depth images. Kinect has a depth-sensing range of
between 0.8 m and 4 m.

Some of the applications of Kinect are 3D motion capture, skeleton tracking, face
recognition, and voice recognition.

Kinect can be interfaced with a PC using the USB 2.0 interface and programmed using
Kinect SDK, OpenNI, and OpenCV. Kinect SDK is only available for Windows platforms,
and SDK is developed and supplied by Microsoft. The other two libraries are open source
and available for all platforms. The Kinect we are using here is the first version of Kinect;
the latest versions of Kinect only support Kinect SDK when it is running on Windows (see
https:/​/​www.​microsoft. ​com/ ​en- ​us/ ​download/ ​details. ​aspx? ​id= ​40278 for more details).

https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
https://www.microsoft.com/en-us/download/details.aspx?id=40278
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The production of Kinect series sensors is discontinued, but you can still
find the sensor on Amazon and eBay.

Intel RealSense D400 series

Intel RealSense D400 series (https://realsense.intel.com/)

The Intel RealSense D400 depth sensors are stereo cameras that come with an IR projector
to enhance the depth data (see https:/ ​/ ​software. ​intel. ​com/ ​en-​us/ ​realsense/ ​d400 for
more details), as shown in Figure 4. The more popular sensor models in the D400 series are
D415 and D435. In Figure 4, the sensor on the left is D415 and the sensor on the right is
D435. Each consists of a stereo camera pair, an RGB camera, and an IR projector. The stereo
camera pair computes the depth of the environment with the help of the IR projector.

The major features of this depth camera are that it can work in an indoor and outdoor
environment. It can deliver the depth image stream with 1280 x 720 resolution at 90 fps, and
the RGB camera can deliver a resolution of up to 1920 x 1080. It has a USB-C interface,
which enables fast data transfer between the sensor and the computer. It has a small form
factor and is lightweight, which is ideal for a robotics vision application.

https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
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The applications of Kinect and Intel RealSense are the same, except for speech recognition.
They will work in Windows, Linux, and Mac. We can develop applications by using ROS,
OpenNI, and OpenCV. The following diagram shows the block diagram of the D400 series
camera:

Block diagram of the Intel RealSense D400 series

You can find the datasheet of the Intel RealSense series at the following
link:
https://software.intel.com/sites/default/files/Intel_RealSense_D
epth_Cam_D400_Series_Datasheet.pdf

A research paper about Intel RealSense's depth sensor can be found at the
following link:
https://arxiv.org/abs/1705.05548

You can find the Intel RealSense SDK at the following link:
https:/ ​/​github. ​com/ ​IntelRealSense/ ​librealsense

Orbbec Astra depth sensor
The new Orbbec Astra sensor is one of the alternatives to Kinect available on the market. It
has similar specs compared to Kinect and uses similar technology to obtain depth
information. Similar to Kinect, it has an IR projector, RGB camera, and IR sensor. It also
comes with a microphone, which helps for voice recognition applications. The following
image shows all parts of the Orbbec Astra depth sensor:

https://software.intel.com/sites/default/files/Intel_RealSense_Depth_Cam_D400_Series_Datasheet.pdf
https://software.intel.com/sites/default/files/Intel_RealSense_Depth_Cam_D400_Series_Datasheet.pdf
https://arxiv.org/abs/1705.05548
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
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Orbbec Astra depth sensor (https://orbbec3d.com/product-astra/)

The Astra sensor comes in two models: Astra and Astra S. The main difference between
these two models is the depth range. The Astra has a depth range of 0.6-8 m, whereas the
Astra S has a range of 0.4-2 m. The Astra S is best suited for 3D scanning, whereas the Astra
can be used in robotics applications. The size and weight of Astra is much lower than that
of Kinect. These two models can both deliver depth data and an RGB image of 640 x 480
resolution at 30 fps. You can use a higher resolution, such as 1280 x 960, but it may reduce
the frame rate. They also have the ability to track skeletons, like Kinect.

The sensor is compliant with the OpenNI framework, so an application built using OpenNI
can also work using this sensor. We are going to use this sensor in our robot.

The SDK is compatible with Windows, Linux, and Mac OS X. For more information, you
can go to the sensor's development website at https:/ ​/ ​orbbec3d. ​com/ ​develop/ ​.

One of the sensors you can also refer to is the ZED Camera
(https://www.stereolabs.com/zed/). It is a stereo vision camera system which can able to
deliver high resolution with good frame rate.  The price is around 450 USD which is higher
than above sensors. This can be used for high-end robotics applications required good
accuracy from sensors.

We can see the ROS interfacing for this sensor in the upcoming section.

https://orbbec3d.com/develop/
https://orbbec3d.com/develop/
https://orbbec3d.com/develop/
https://orbbec3d.com/develop/
https://orbbec3d.com/develop/
https://orbbec3d.com/develop/
https://orbbec3d.com/develop/
https://orbbec3d.com/develop/
https://orbbec3d.com/develop/
https://orbbec3d.com/develop/
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Introduction to OpenCV, OpenNI, and PCL
Let's look at the software frameworks and libraries that we will be using in our robots.
First, let's look at OpenCV. This is one of the libraries that we are going to use in this robot
for object detection and other image-processing capabilities.

What is OpenCV?
OpenCV is an open source, BSD-licensed computer vision library that includes the
implementations of hundreds of computer-vision algorithms. The library, mainly intended
for real-time computer vision, was developed by Intel Russia's research, and is now actively
supported by Itseez (https:/ ​/​github. ​com/​Itseez). In 2016, Intel acquired Itseez.

OpenCV is written mainly in C and C++, and its primary interface is in C++. It also has good
interfaces in Python, Java, and MATLAB/Octave, and also has wrappers in other languages
(such as C# and Ruby).

In the latest version of OpenCV, there is support for CUDA and OpenCL to enable GPU
acceleration (http://www.nvidia.com/object/cuda_home_new.html).

OpenCV will run on most OS platforms (such as Windows, Linux, Mac OS X, Android,
FreeBSD, OpenBSD, iOS, and BlackBerry).

In Ubuntu, OpenCV, the Python wrapper, and the ROS wrapper are already installed when
we install the ros-kinetic-desktop-full or ros-melodic-desktop-full package.
The following commands install the OpenCV-ROS package individually.

In Kinetic:

    $ sudo apt-get install ros-kinetic-vision-opencv

In Melodic:

    $ sudo apt-get install ros-melodic-vision-opencv

https://github.com/Itseez
https://github.com/Itseez
https://github.com/Itseez
https://github.com/Itseez
https://github.com/Itseez
https://github.com/Itseez
https://github.com/Itseez
https://github.com/Itseez
https://github.com/Itseez
http://www.nvidia.com/object/cuda_home_new.html
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If you want to verify that the OpenCV-Python module is installed on your system, take a
Linux Terminal, and enter the python command. You should then see the Python
interpreter. Try to execute the following commands in the Python terminal to verify the
OpenCV installation:

    >>> import cv2
    >>> cv2.__version__

If this command is successful, this version of OpenCV will be installed on your system. The
version might be either 3.3.x or 3.2.x.

If you want to try OpenCV in Windows, you can try the following link:
https://docs.opencv.org/3.3.1/d5/de5/tutorial_py_setup_in_window
s.html

The following link will guide you through the installation process of
OpenCV on Mac OS X:
https:/ ​/​www. ​learnopencv. ​com/ ​install- ​opencv3- ​on- ​macos/ ​

The main applications of OpenCV are in the following fields:

Object detection
Gesture recognition
Human-computer interaction
Mobile robotics
Motion tracking
Facial-recognition systems

Installation of OpenCV from the source code in Ubuntu
The OpenCV installation can be customized. If you want to customize your OpenCV
installation, you can try to install it from the source code. You can find out how to do this
installation at https://docs.opencv.org/trunk/d7/d9f/tutorial_linux_install.html.

To work with the examples in this chapter, it's best that you work with OpenCV installed,
along with ROS.

https://docs.opencv.org/3.3.1/d5/de5/tutorial_py_setup_in_windows.html
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Reading and displaying an image using the Python-
OpenCV interface
The first example will load an image in grayscale and display it on the screen.

In the following section of code, we will import the numpy module for handling the image
array. The cv2 module is the OpenCV wrapper for Python, which we can use to access
OpenCV Python APIs. NumPy is an extension to the Python programming language,
adding support for large multidimensional arrays and matrices, along with a large library
of high-level mathematical functions to operate on these arrays (see
https://pypi.python.org/pypi/numpy for more information):

#!/usr/bin/env python
import numpy as np
import cv2

The following function will read the robot.jpg image and load this image in grayscale.
The first argument of the cv2.imread() function is the name of the image and the next
argument is a flag that specifies the color type of the loaded image. If the flag is greater than
0, the image returns a three-channel RGB color image; if the flag is 0, the loaded image will
be a grayscale image; and if the flag is less than 0, it will return the same image as was
loaded:

img = cv2.imread('robot.jpg',0)

The following section of code will show the read image using the imshow() function. The
cv2.waitKey(0) function is a keyboard-binding function. Its argument is time in
milliseconds. If it's 0, it will wait indefinitely for a key stroke:

cv2.imshow('image', img)
cv2.waitKey(0)

The cv2.destroyAllWindows() function simply destroys all the windows we created:

cv2.destroyAllWindows()

Save the preceding code as image_read.py and copy a JPG file and name it robot.jpg.
Execute the code using the following command:

    $python image_read.py

https://pypi.python.org/pypi/numpy
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The output will load an image in grayscale because we used 0 as the value in the imread()
function:

Output of read image code

The following example will try to use an open webcam. The program will quit when the
user presses any button.

Capturing from the web camera
The following code will capture an image using the webcam with the device name
/dev/video0 or /dev/video1.

We need to import the numpy and cv2 modules for capturing an image from a camera:

#!/usr/bin/env python
import numpy as np
import cv2
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The following function will create a VideoCapture object. The VideoCapture class is used
to capture videos from video files or cameras. The initialization argument of the
VideoCapture class is the index of a camera or the name of a video file. The device index is
just a number that is used to specify the camera. The first camera index is 0, and has the
device name /dev/video0-that's why we will put 0 in the following code:

cap = cv2.VideoCapture(0)

The following section of code is looped to read image frames from the VideoCapture
object, and shows each frame. It will quit when any key is pressed:

while(True):
    # Capture frame-by-frame
    ret, frame = cap.read()
    # Display the resulting frame
    cv2.imshow('frame', frame)
    k = cv2.waitKey(30)
    if k > 0:
        break

The following is a screenshot of the program output:

Output of the video capture
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You can explore more OpenCV-Python tutorials at

http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_tutoria

ls.html.

In the next section, we will look at the OpenNI library and its application.

What is OpenNI?
OpenNI is a multilanguage, cross-platform framework that defines APIs in order to write
applications using natural interaction (NI) (see https:/ ​/​structure. ​io/ ​openni for more
information). Natural interaction refers to the way in which people naturally communicate
through gestures, expressions, and movements, and discover the world by looking around
and manipulating physical objects and materials.

OpenNI APIs are composed of a set of interfaces that are used to write NI applications. The
following figure shows a three-layered view of the OpenNI library:

OpenNI framework software architecture

http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_tutorials.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_tutorials.html
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
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The top layer represents the application layer that implements the natural interaction-based
application. The middle layer is the OpenNI layer, and it will provide communication
interfaces that interact with sensors and middleware components that analyze the data
from the sensor. Middleware can be used for full-body analysis, hand-point analysis,
gesture detection, and so on. One example of a middle layer component is NITE (http:/ ​/
www.​openni.​ru/​files/ ​nite/ ​index. ​html), which can detect gestures and skeletons.

The bottom layer contains the hardware devices that capture the visual and audio elements
of the scene. It can include 3D sensors, RGB cameras, IR cameras, and microphones.

The latest version of OpenNI is OpenNI 2, which support sensors such as Asus Xtion Pro,
and Primesense Carmine. The first version of OpenNI mainly supports the Kinect 360
sensor.

OpenNI is cross platform, and has been successfully compiled and deployed on Linux, Mac
OS X, and Windows.

In the next section, we will see how we to install OpenNI in Ubuntu.

Installing OpenNI in Ubuntu
We can install the OpenNI library along with ROS packages. ROS is already interfaced with
OpenNI, but the ROS desktop full installation may not install OpenNI packages; if so, we
need to install it from the package manager.

The following command will install the ROS-OpenNI library (which is mainly supported
by the Kinect Xbox 360 sensor) in Kinetic and Melodic:

$ sudo apt-get install ros-<version>-openni-launch

The following command will install the ROS-OpenNI 2 library (which is mainly supported
by Asus Xtion Pro and Primesense Carmine):

    $ sudo apt-get install ros-<version>-openni2-launch

The source code and latest build of OpenNI for Windows, Linux, and MacOS X is available
at http://structure.io/openni.

In the next section, we will look at how to install PCL.

http://www.openni.ru/files/nite/index.html
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What is PCL?
A point cloud is a set of data points in space that represent a 3D object or an environment.
Generally, a point cloud is generated from depth sensors, such as Kinect and LIDAR. PCL
(Point Cloud Library) is a large scale, open project for 2D/3D images and point-cloud
processing. The PCL framework contains numerous algorithms that perform filtering,
feature estimation, surface reconstruction, registration, model fitting, and segmentation.
Using these methods, we can process the point cloud, extract key descriptors to recognize
objects in the world based on their geometric appearance, create surfaces from the point
clouds, and visualize them.

PCL is released under the BSD license. It's open source, free for commercial use, and free
for research use. PCL is cross platform and has been successfully compiled and deployed
on Linux, macOS X, Windows, and Android/iOS.

You can download PCL at http://pointclouds.org/downloads/.

PCL is already integrated into ROS. The PCL library and its ROS interface are included in a
ROS full desktop installation. PCL is the 3D-processing backbone of ROS. Refer to
http://wiki.ros.org/pcl for details on the ROS-PCL package.

Programming Kinect with Python using
ROS, OpenCV, and OpenNI
Let's look at how we can interface and work with the Kinect sensor in ROS. ROS is bundled
with the OpenNI driver, which can fetch the RGB and depth image of Kinect. The OpenNI
and OpenNI 2 package in ROS can be used for interfacing with Microsoft Kinect,
Primesense Carmine, Asus Xtion Pro, and Pro Live.

When we install ROS's openni_launch package, it will also install its dependent packages,
such as openni_camera. The openni_camera package is the Kinect driver that publishes
raw data and sensor information, whereas the openni_launch package contains ROS
launch files. These launch files launch multiple nodes at a time and publish data such as the
raw depth, RGB, and IR images, and the point cloud.

http://pointclouds.org/downloads/
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How to launch the OpenNI driver
You can connect the Kinect sensor to your computer using a USB interface and make sure it
is detected on your PC using the dmesg command in the terminal. After setting up Kinect,
we can start ROS's OpenNI driver to get data from the device.

The following command will open the OpenNI device and load all nodelets (see http:/ ​/
wiki.​ros.​org/​nodelet for more information) to convert raw depth/RGB/IR streams to
depth images, disparity images, and point clouds. The ROS nodelet package is designed
to provide a way to run multiple algorithms in the same process with zero copy transport
between algorithms:

    $ roslaunch openni_launch openni.launch

After starting the driver, you can list out the various topics published by the driver using
the following command:

    $ rostopic list

You can view the RGB image using a ROS tool called image_view:

    $ rosrun image_view image_view image:=/camera/rgb/image_color

In the next section, we will learn how to interface these images with OpenCV for image
processing.

The ROS interface with OpenCV
OpenCV is also integrated into ROS, mainly for image processing. The vision_opencv
ROS stack includes the complete OpenCV library and the interface with ROS.

The vision_opencv meta package consists of individual packages:

cv_bridge: This contains the CvBridge class. This class converts ROS image
messages to the OpenCV image data type and vice versa.
image_geometry: This contains a collection of methods to handle image and
pixel geometry.

http://wiki.ros.org/nodelet
http://wiki.ros.org/nodelet
http://wiki.ros.org/nodelet
http://wiki.ros.org/nodelet
http://wiki.ros.org/nodelet
http://wiki.ros.org/nodelet
http://wiki.ros.org/nodelet
http://wiki.ros.org/nodelet
http://wiki.ros.org/nodelet
http://wiki.ros.org/nodelet
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The following diagram shows how OpenCV is interfaced with ROS:

OpenCV-ROS interfacing

The image data types of OpenCV are IplImage and Mat. If we want to work with OpenCV
in ROS, we have to convert IplImage or Mat to ROS image messages. The ROS package
vision_opencv has the CvBridge class; this class can convert IplImage to a ROS image
and vice versa. Once we get the ROS image topics from any kind of vision sensor, we can
use ROS CvBridge in order to convert it from ROS topic to Mat or IplImage format.

The following section shows you how to create a ROS package; this package contains a
node to subscribe to RGB and depth images, process RGB images to detect edges and
display all images after converting them to an image type equivalent to OpenCV.

Creating a ROS package with OpenCV support
We can create a package called sample_opencv_pkg with the following dependencies:
sensor_msgs, cv_bridge, rospy, and std_msgs. The sensor_msgs dependency defines
ROS messages for commonly used sensors, including cameras and scanning-laser
rangefinders. The cv_bridge dependency is the OpenCV interface of ROS.

The following command will create the ROS package with the aforementioned
dependencies:

    $ catkin-create-pkg sample_opencv_pkg sensor_msgs cv_bridge
 rospy std_msgs

After creating the package, create a scripts folder inside the package; we will use it as a
location in which to save the code that will be mentioned in the next section.
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Displaying Kinect images using Python, ROS, and
cv_bridge
The first section of the Python code is given in the following code fragment. It mainly
involves importing rospy, sys, cv2, sensor_msgs, cv_bridge, and the numpy module.
The sensor_msgs dependency imports the ROS data type of both image and camera
information type. The cv_bridge module imports the CvBridge class for converting the
ROS image data type to the OpenCV data type and vice versa:

import rospy
import sys
import cv2
from sensor_msgs.msg import Image, CameraInfo
from cv_bridge import CvBridge, CvBridgeError
from std_msgs.msg import String
import numpy as np

The following section of code is a class definition in Python that we will use to demonstrate
CvBridge functions. The class is called cvBridgeDemo:

class cvBridgeDemo():
    def __init__(self):
        self.node_name = "cv_bridge_demo"
        #Initialize the ros node
        rospy.init_node(self.node_name)

        # What we do during shutdown
        rospy.on_shutdown(self.cleanup)

        # Create the cv_bridge object
        self.bridge = CvBridge()

        # Subscribe to the camera image and depth topics and set
        # the appropriate callbacks
        self.image_sub =
 rospy.Subscriber("/camera/rgb/image_raw", Image,
 self.image_callback)        self.depth_sub =
 rospy.Subscriber("/camera/depth/image_raw", Image,
 self.depth_callback)

 #Callback executed when the timer timeout
      rospy.Timer(rospy.Duration(0.03), self.show_img_cb)

      rospy.loginfo("Waiting for image topics...")
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Here is the callback to visualize the actual RGB image, processed RGB image, and depth
image:

    def show_img_cb(self,event):
         try:

             cv2.namedWindow("RGB_Image", cv2.WINDOW_NORMAL)
             cv2.moveWindow("RGB_Image", 25, 75)
             cv2.namedWindow("Processed_Image", cv2.WINDOW_NORMAL)
             cv2.moveWindow("Processed_Image", 500, 75)

             # And one for the depth image
             cv2.moveWindow("Depth_Image", 950, 75)
             cv2.namedWindow("Depth_Image", cv2.WINDOW_NORMAL)

             cv2.imshow("RGB_Image",self.frame)
             cv2.imshow("Processed_Image",self.display_image)
             cv2.imshow("Depth_Image",self.depth_display_image)
             cv2.waitKey(3)
         except:
             pass

The following code gives a callback function of the color image from Kinect. When a color
image is received on the /camera/rgb/image_raw topic, it will call this function. This
function will process the color frame for edge detection and show the edge detected and the
raw color image:

    def image_callback(self, ros_image):
        # Use cv_bridge() to convert the ROS image to OpenCV format
        try:
            self.frame = self.bridge.imgmsg_to_cv2(ros_image, "bgr8")
        except CvBridgeError, e:
            print e
       pass

        # Convert the image to a Numpy array since most cv2 functions
        # require Numpy arrays.
        frame = np.array(self.frame, dtype=np.uint8)
        # Process the frame using the process_image() function
        self.display_image = self.process_image(frame)
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The following code gives a callback function of the depth image from Kinect. When a depth
image is received on the /camera/depth/raw_image topic, it will call this function. This 
function will show the raw depth image:

       def depth_callback(self, ros_image):
        # Use cv_bridge() to convert the ROS image to OpenCV format
        try:
            # The depth image is a single-channel float32 image
            depth_image = self.bridge.imgmsg_to_cv2(ros_image, "32FC1")
        except CvBridgeError, e:
            print e
       pass
        # Convert the depth image to a Numpy array since most cv2 functions
        # require Numpy arrays.
        depth_array = np.array(depth_image, dtype=np.float32)
        # Normalize the depth image to fall between 0 (black) and 1 (white)
        cv2.normalize(depth_array, depth_array, 0, 1, cv2.NORM_MINMAX)
        # Process the depth image
        self.depth_display_image = self.process_depth_image(depth_array)

The following function is called process_image(), and will convert the color image to
grayscale, then blur the image, and find the edges using the canny edge filter:

    def process_image(self, frame):
        # Convert to grayscale
        grey = cv2.cvtColor(frame, cv.CV_BGR2GRAY)

        # Blur the image
        grey = cv2.blur(grey, (7, 7))

        # Compute edges using the Canny edge filter
        edges = cv2.Canny(grey, 15.0, 30.0)

        return edges

The following function is called process_depth_image(). It simply returns the depth
frame:

    def process_depth_image(self, frame):
        # Just return the raw image for this demo
        return frame

The following function will close the image window when the node shuts down:

    def cleanup(self):
        print "Shutting down vision node."
        cv2.destroyAllWindows()
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The following code is the main() function. It will initialize the cvBridgeDemo() class and
call the rospy.spin() function:

def main(args):
    try:
        cvBridgeDemo()
        rospy.spin()
    except KeyboardInterrupt:
        print "Shutting down vision node."
        cv.DestroyAllWindows()

if __name__ == '__main__':
    main(sys.argv)

Save the preceding code as cv_bridge_demo.py and change the permission of the node
using the following command. The nodes are only visible to the rosrun command if we
give it executable permission:

    $ chmod +X cv_bridge_demo.py

The following are the commands to start the driver and node. Start the Kinect driver using
the following command:

    $ roslaunch openni_launch openni.launch

Run the node using the following command:

    $ rosrun sample_opencv_pkg cv_bridge_demo.py

The following is a screenshot of the output:

RGB, depth, and edge images
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Interfacing Orbbec Astra with ROS
One of the alternatives to Kinect is Orbbec Astra. There are ROS drivers available for Astra,
and we can see how to set up that driver and get the image, depth, and point cloud from
this sensor.

Installing the Astra–ROS driver
The complete instructions to set up the Astra-ROS driver in Ubuntu are mentioned at
https:/​/​github.​com/ ​orbbec/ ​ros_ ​astra_ ​camera and http:/ ​/​wiki. ​ros. ​org/ ​Sensors/
OrbbecAstra. After installing the driver, you can launch it using the following command:

    $ roslaunch astra_launch astra.launch

You can also install the Astra driver from the ROS package repository. Here is the
command to install those packages:

    $ sudo apt-get install ros-kinetic-astra-camera
    $ sudo apt-get install ros-kinetic-astra-launch

After installing these packages, you have to set the permission of the device in order to
work with the device, as described at http:/ ​/​wiki. ​ros. ​org/ ​astra_ ​camera. You can check
the ROS topics that are generated from this driver using the rostopic list command in the
terminal. In addition, we can use the same Python code for image processing that we
mentioned in the previous section.

Working with point clouds using Kinect,
ROS, OpenNI, and PCL
A 3D point cloud is a way of representing a 3D environment and 3D objects as collection
points along the x, y, and z axes. We can get a point cloud from various sources: Either we
can create our point cloud by writing a program or we can generate it from depth sensors
or laser scanners.

https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
https://github.com/orbbec/ros_astra_camera
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/Sensors/OrbbecAstra
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera
http://wiki.ros.org/astra_camera


Interfacing Vision Sensors with ROS Chapter 7

[ 188 ]

PCL supports the OpenNI 3D interfaces natively; thus, it can acquire and process data from
devices (such as Prime Sensor's 3D cameras, Microsoft Kinect, or Asus Xtion Pro).

PCL will be included in the ROS full desktop installation. Let's see how we can generate
and visualize a point cloud in RViz, a data visualization tool in ROS.

Opening the device and generating a point cloud
Open a new terminal and launch the ROS-OpenNI driver, along with the point cloud
generator nodes, using the following command:

    $ roslaunch openni_launch openni.launch

This command will activate the Kinect driver and process the raw data into convenient
outputs, such as a point cloud.

If you are using Orbbec Astra, you can use the following command:

    $ roslaunch astra_launch astra.launch

We will use the RViz 3D visualization tool to view our point clouds.

The following command will start the RViz tool:

    $ rosrun rviz rviz

Set the RViz options for Fixed Frame (at the top of the Displays panel under Global
Options) to camera_link.

From the left-hand side panel of the RViz panel, click on the Add button and choose the
PointCloud2 display option. Set its topic to /camera/depth/points (this is the topic for
Kinect; it will be different for other sensors)

Change the Color Transformer of PointCloud2 to AxisColor.
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The following screenshot shows a screenshot of the RViz point cloud data. You can see the
nearest objects are marked in red and the farthest objects are marked in violet and blue. The
objects in front of the Kinect are represented as a cylinder and cube:

Visualizing point cloud data in Rviz

Conversion of point cloud data to laser scan
data
We are using Astra in this robot to replicate the function of an expensive laser range
scanner. The depth image is processed and converted to the data equivalent of a laser
scanner using ROS's depthimage_to_laserscan package (see http:/ ​/​wiki. ​ros. ​org/
depthimage_​to_​laserscan for more information).
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You can either install this package from the source code or use the Ubuntu package
manager. Here is the command to install this package from the Ubuntu package manager

    $ sudo apt-get install ros-<version>-depthimage-to-laserscan

The main function of this package is to slice a section of the depth image and convert it to
an equivalent laser scan data type. The ROS sensor_msgs/LaserScan message type is
used for publishing the laser scan data. This depthimage_to_laserscan package will
perform this conversion and fake the laser scanner data. The laser scanner output can be
viewed using RViz. In order to run the conversion, we have to start the convertor nodelets
that will perform this operation. We have to specify this in our launch file in order to start
the conversion. The following is the required code in the launch file to start the
depthimage_to_laserscan conversion:

  <!-- Fake laser -->
  <node pkg="nodelet" type="nodelet"
 name="laserscan_nodelet_manager" args="manager"/>  <node pkg="nodelet"
type="nodelet"
 name="depthimage_to_laserscan"        args="load
depthimage_to_laserscan/DepthImageToLaserScanNodelet
 laserscan_nodelet_manager">
    <param name="scan_height" value="10"/>
    <param name="output_frame_id" value="/camera_depth_frame"/>
    <param name="range_min" value="0.45"/>
    <remap from="image" to="/camera/depth/image_raw"/>
    <remap from="scan" to="/scan"/>
  </node>

The topic of the depth image can be changed in each sensor; you have to change the topic
name according to your depth image topic.

As well as starting the nodelet, we need to set certain parameters of the nodelet for better
conversion. Refer to http://wiki.ros.org/depthimage_to_laserscan for a detailed
explanation of each parameter.

http://wiki.ros.org/depthimage_to_laserscan
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The laser scan of the preceding view is given in the following screenshot. To view the laser
scan, add the LaserScan option. This is similar to how we add the PointCloud2 option and
change the Topic value of LaserSan to /scan:

Visualizing laser scan data in Rviz

Working with SLAM using ROS and Kinect
The main aim of deploying vision sensors in our robot is to detect objects and navigate the
robot through an environment. SLAM is a algorithm that is used in mobile robots to build
up a map of an unknown environment or update a map within a known environment by
tracking the current location of the robot.

Maps are used to plan the robot's trajectory and to navigate through this path. Using maps,
the robot will get an idea about the environment. The two main challenges in mobile robot
navigation are mapping and localization.

Mapping involves generating a profile of obstacles around the robot. Through mapping,
the robot will understand what the world looks like. Localization is the process of
estimating the position of the robot relative to the map we build.
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SLAM fetches data from different sensors and uses it to build maps. The 2D/3D vision
sensor can be used to input data into SLAM. 2D vision sensors, such as web cameras, and
3D sensors, such as Kinect, are mainly used as inputs for the SLAM algorithm.

A SLAM library called OpenSlam (http://openslam.org/gmapping.html) is integrated
with ROS as a package called gmapping. The gmapping package provides a node to 
perform laser-based SLAM processing, called slam_gmapping. This can create a 2D map
from the laser and position data collected by the mobile robot.

The gmapping package is available at http://wiki.ros.org/gmapping.

To use the slam_gmapping node, we have to input the odometry data of the robot and the
laser scan output from the laser range finder, which is mounted horizontally on the robot.

The slam_gmapping node subscribes to the sensor_msgs/LaserScan messages and
nav_msgs/Odometry messages to build the map (nav_msgs/OccupancyGrid). The
generated map can be retrieved via a ROS topic or service.

We have used the following launch file to use SLAM in our Chefbot. This launch file
launches the slam_gmapping node and contains the necessary parameters to start mapping
the robot's environment:

    $ roslaunch chefbot_gazebo gmapping_demo.launch

Summary
In this chapter, we looked at the various vision sensors that can be used in Chefbot. We
used Kinect and Astra in our robot and learned about OpenCV, OpenNI, PCL, and their
application. We also discussed the role of vision sensors in robot navigation, the popular
SLAM technique, and its application using ROS. In the next chapter, we will see the
complete interfacing of the robot and learn how to perform autonomous navigation with
our Chefbot.

http://openslam.org/gmapping.html
http://wiki.ros.org/gmapping
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Questions
What are 3D sensors and how are they different from ordinary cameras?1.
What are the main features of ROS?2.
What are the applications of OpenCV, OpenNI, and PCL?3.
What is SLAM?4.
What is RGB-D SLAM and how does it work?5.

Further reading
You can read more about the robotic vision package in ROS at the following links:

http:/​/​wiki. ​ros. ​org/ ​vision_ ​opencv

http:/​/​wiki. ​ros. ​org/ ​pcl
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8
Building ChefBot Hardware and

the Integration of Software
In Chapter 3, Modeling a Differential Robot Using ROS and URDF, we looked at the ChefBot
chassis design. In this chapter, we will learn how to assemble this robot using those parts.
We will also look at the final interfacing of the sensors and other electronic components of
this robot with Tiva-C LaunchPad. After the interfacing, we will learn how to interface the
robot with the PC and implement autonomous navigation using SLAM and AMCL in the
real robot.

The following topics will be covered in this chapter:

Building ChefBot hardware
Configuring the ChefBot PC and packages
Interfacing the ChefBot sensors with Tiva-C Launchpad
Embedded code for ChefBot
Understanding ChefBot ROS packages
Implementing SLAM on ChefBot
Autonomous navigation in ChefBot
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Technical requirements
To test the application and codes in this chapter, you will need an Ubuntu 16.04 LTS
PC/laptop with ROS Kinetic installed.

You will also need fabricated robot chassis parts for assembling the robot.

You should have all the sensors and other hardware components that can be integrated in
the robot.

We have already discussed interfacing individual robot components and sensors with
Launchpad. In this chapter, we will try to interface the necessary robotic components and
sensors of ChefBot and program it in such a way that it will receive the values from all
sensors and control the information from the PC. Launchpad will send all sensor values to
the PC via a serial port and also receive control information (such as reset commands,
speed data, and so on) from the PC.

After receiving Serial port data from the Tiva C Launchpad, a ROS Python node will
receive the serial values and convert them to ROS topics. There are other ROS  nodes
present in the PC that subscribe to these sensor topics and compute robot odometry. The
data from the wheel encoders and IMU values combine to calculate the odometry of the
robot. The robot detects obstacles by subscribing to the ultrasonic sensor topic and laser
scan and controls the speed of the wheel motors using the PID node. This node converts the
linear velocity command to a differential wheel velocity command. After running these
nodes, we can run SLAM to map the area, and after running SLAM, we can run the AMCL
nodes for localization and autonomous navigation.

In the first section of this chapter, Building ChefBot hardware, we will learn how to assemble
the ChefBot hardware using the body parts and electronic components of the robot.

Building ChefBot hardware
The first section of the robot that needs to be configured is the base plate. The base plate
consists of two motors and their attached wheels, the caster wheels, and the base plate
supports. The following image shows the top and bottom view of the base plate:
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Base plate with motors, wheels, and caster wheels

The base plate has a radius of 15 cm, and the motors and their attached wheels are mounted
on the opposite sides of the plate by cutting two sections from the base plate. Two rubber
caster wheels are mounted on opposite sides of the base plate to achieve a good balance
and support for the robot. We can either choose ball caster wheels or rubber caster wheels
for this robot. The wires of the two motors are taken to the top of the base plate through a
hole in the center of the base plate. To extend the layers of the robot, we will put base plate
supports to connect the following layers. Now, let's look at the next layer with the middle
plate and connecting tubes. There are hollow tubes to connect the base plate and the middle
plate. The hollow tubes can be connected to the base plate support.
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The following image shows the middle plate and connecting tubes:

Middle plate with connecting tubes

The connecting tube will connect the base plate and the middle plate. There are four hollow
tubes to connect the base plate to the middle plate. One end of these tubes is hollow, which
can fit the base plate support, and the other end has a hard plastic fitting with a hole for a
screw. The middle plate has no support, except for four holes for the connecting tubes:

Fully assembled robot body
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The middle plate male connector helps to connect the middle plate and the top of the base
plate tubes. We can fit the top plate at the top of the middle plate tubes using the four
supports on the back of the top plate. We can insert the top plate's female connector into the
top plate support. Now we have the fully assembled body of the robot.

The bottom layer of the robot can be used to put the printed circuit board (PCB) and
battery. In the middle layer, we can put the Kinect/Orbecc and Intel NUC. We can put a
speaker and mic if needed. We can use the top plate to carry food. The following image
shows the PCB prototype of the robot; it consists of Tiva-C LaunchPad, a motor driver,
level shifters, and provisions to connect two motors, ultrasonic sensors, and IMU:

ChefBot PCB prototype
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The board is powered by a 12 V battery placed on the base plate. The two motors can be
directly connected to the M1 and M2 male connectors. The NUC PC and Kinect are placed
on the middle plate. The LaunchPad board and Kinect should be connected to the NUC PC
via USB. The PC and Kinect are powered using the same 12 V battery itself. We can use a
lead-acid or lithium-polymer battery. Here, we are using a lead-acid cell for testing
purposes. Later, we will migrate to a lithium-polymer battery for better performance and
better backup. The following image shows a diagram of the complete, assembled ChefBot:

Fully assembled robot body

After assembling all the parts of the robot, we will start working with the robot software.
ChefBot's embedded code and ROS packages are available in the codes under chapter_8.
Let's get that code and start working with the software.
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Configuring ChefBot PC and setting ChefBot
ROS packages
In ChefBot, we are using Intel's NUC PC to handle the robot sensor data and the processing
of the data. After procuring the NUC PC, we have to install Ubuntu 16.04 LTS. After the
installation of Ubuntu, install the complete ROS and its packages that we mentioned in the
previous chapters. We can configure this PC separately, and after the configuration of all
the settings, we can put this into the robot. The following are the procedures to install the
ChefBot packages on the NUC PC.

Clone ChefBot's software packages from GitHub using the following command:

    $ git clone https://github.com/qboticslabs/learning_robotics_2nd_ed

We can clone this code in our laptop and copy the ChefBot folder to Intel's NUC PC. The
ChefBot folder consists of the ROS packages of the ChefBot hardware. In the NUC PC,
create a ROS catkin workspace, copy the ChefBot folder, and move it inside the src
directory of the catkin workspace.

Build and install the source code of ChefBot by simply using the following command. This
should be executed inside the catkin workspace we created:

    $ catkin_make

If all dependencies are properly installed in the NUC, then the ChefBot packages will build
and install in this system. After setting the ChefBot packages on the NUC PC, we can
switch to the embedded code for ChefBot. Now, we can connect all the sensors in
LaunchPad. After uploading the code in LaunchPad, we can again look at the ROS
packages and how to run them. The cloned code from GitHub contains the Tiva-C
LaunchPad code, which is going to be explained in the next section.
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Interfacing ChefBot sensors to the Tiva-C
LaunchPad
We have looked at the interfacing of the individual sensors that we are going to use in
ChefBot. In this section, we will learn how to integrate sensors into the LaunchPad board.
The Energia code to program Tiva-C LaunchPad is available in the cloned files at GitHub.
The connection diagram showing the connection of the Tiva-C LaunchPad with the sensors
is as follows. From this diagram, we learn how the sensors are interconnected with
LaunchPad:

Sensor-interfacing diagram of ChefBot
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M1 and M2 are two differential-drive motors that we are using in this robot. The kind of
motor we are going to use here is a DC geared motor with an encoder from Pololu. The
motor terminals are connected to the dual VNH2SP30 motor driver from Pololu. One of the
motors is connected with reverse polarity because in differential steering, one motor rotates
in the opposite direction to the other. If we send the same control signal to both the motors,
each motor will rotate in the opposite direction. To avoid this condition, we will swap the
cables of one motor. The motor driver is connected to Tiva-C LaunchPad through a 3.3 V-5
V bidirectional level shifter. One of the level shifters we will use here is available at
https://www.sparkfun.com/products/12009.

The two channels of each encoder are connected to LaunchPad using a level shifter. At the
moment, we are using one ultrasonic distance sensor for obstacle detection. In future, we
could increase the number of sensors if required. To get a good odometry estimate, we will
put the IMU sensor MPU 6050 through an I2C interface. The pins are directly connected to
LaunchPad because MPU6050 is 3.3 V compatible. To reset LaunchPad from the ROS
nodes, we are allocating one pin as the output and connecting it to the reset pin of
LaunchPad. When a specific character is sent to LaunchPad, it will set the output pin to
high and reset the device. In some situations, the error from the calculation may accumulate
and affect the navigation of the robot. We are resetting LaunchPad to clear this error. To
monitor the battery level, we are allocating another pin to read the battery value. This
feature is not currently implemented in the Energia code.

The code you downloaded from GitHub consists of the embedded code and the dependent
libraries needed to compile this code. We can see the main section of the code here, and
there is no need to explain all of the sections because we have already looked at them.

Embedded code for ChefBot
The main sections of the LaunchPad code are discussed in this section. The following are
the header files used in the code:

//Library to communicate with I2C devices
#include "Wire.h"
//I2C communication library for MPU6050
#include "I2Cdev.h"
//MPU6050 interfacing library
#include "MPU6050_6Axis_MotionApps20.h"
//Processing incoming serial data
#include <Messenger.h>
//Contain definition of maximum limits of various data type
#include <limits.h>

https://www.sparkfun.com/products/12009
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The main libraries used in this code are for the purposes of communicating with MPU 6050
and processing the incoming serial data to LaunchPad. MPU 6050 can provide the
orientation in quaternion or Euler values using the inbuilt digital motion processor (DMP).
The functions to access DMP are written in MPU6050_6Axis_MotionApps20.h. This
library has dependencies such as I2Cdev.h and Wire.h; that's why we are including this
header as well. These two libraries are used for I2C communication. The Messenger.h
library allows you to handle a stream of text data from any source and will help you to
extract the data from it. The limits.h header contains the definitions of the maximum
limits of various data types.

After we include the header files, we need to create an object to handle MPU6050 and
process the incoming serial data using the Messenger class:

//Creating MPU6050 Object
MPU6050 accelgyro(0x68);
//Messenger object
Messenger Messenger_Handler = Messenger();

After declaring the messenger object, the main section deals with assigning pins for the
motor driver, encoder, ultrasonic sensor, MPU 6050, reset, and battery pins. Once we have
assigned the pins, we can look at the setup() function of the code. The definition of the
setup() function is given in the following code:

//Setup serial, encoders, ultrasonic, MPU6050 and Reset functions
void setup()
{
  //Init Serial port with 115200 baud rate
  Serial.begin(115200);
  //Setup Encoders
  SetupEncoders();
  //Setup Motors
  SetupMotors();
  //Setup Ultrasonic
  SetupUltrasonic();
  //Setup MPU 6050
  Setup_MPU6050();
  //Setup Reset pins
  SetupReset();
  //Set up Messenger object handler
  Messenger_Handler.attach(OnMssageCompleted);
}
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The preceding function contains a custom routine to configure and allocate pins for all of
the sensors. This function will initialize serial communication with a 115,200 baud rate and
set pins for the encoder, motor driver, ultrasonic sensors, and MPU6050. The
SetupReset() function will assign a pin to reset the device, as shown in the preceding
connection diagram. We have already seen the setup routines of each of the sensors in the
previous chapters, so there is no need to explain the definition of each of these functions.
The Messenger class handler is attached to a function called OnMssageCompleted(),
which will be called when data is input to the Messenger_Handler.

The following is the main loop() function of the code. The main purpose of this function is
to read and process serial data, as well as send available sensor values:

void loop()
{
    //Read from Serial port
    Read_From_Serial();
    //Send time information through serial port
    Update_Time();
    //Send encoders values through serial port
    Update_Encoders();
    //Send ultrasonic values through serial port
    Update_Ultra_Sonic();
    //Update motor speed values with corresponding speed received from PC
and send speed values through serial port
    Update_Motors();
    //Send MPU 6050 values through serial port
    Update_MPU6050();
    //Send battery values through serial port
    Update_Battery();
}

The Read_From_Serial() function will read serial data from the PC and feed data to the
Messenger_Handler handler for processing purposes. The Update_Time() function will
update the time after each operation in the embedded board. We can take this time value to
be processed in the PC or use the PC's time instead.

We can compile the code in Energia's IDE and burn the code in LaunchPad. After
uploading the code, we can look at the ROS nodes for handling the LaunchPad sensor
values.
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Writing a ROS Python driver for ChefBot
After uploading the embedded code to LaunchPad, the next step is to handle the serial data
from LaunchPad and convert it to ROS topics for further processing. The
launchpad_node.py ROS Python driver node interfaces Tiva-C LaunchPad with ROS. The
launchpad_node.py file is in the script folder, which is inside the ChefBot_bringup
package. The following is an explanation of the important code sections of
launchpad_node.py:

#ROS Python client
import rospy
import sys
import time
import math

#This python module helps to receive values from serial port which execute
in a thread
from SerialDataGateway import SerialDataGateway
#Importing required ROS data types for the code
from std_msgs.msg import Int16,Int32, Int64, Float32,
 String, Header, UInt64
#Importing ROS data type for IMU
from sensor_msgs.msg import Imu

The launchpad_node.py file imports the preceding modules. The main module we can
see is SerialDataGateway. This is a custom module written to receive serial data from the
LaunchPad board in a thread. We also need some data types of ROS to handle the sensor
data. The main function of the node is given in the following code snippet:

if __name__ =='__main__':
  rospy.init_node('launchpad_ros',anonymous=True)
  launchpad = Launchpad_Class()
  try:

    launchpad.Start()
    rospy.spin()
  except rospy.ROSInterruptException:
    rospy.logwarn("Error in main function")

  launchpad.Reset_Launchpad()
  launchpad.Stop()
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The main class of this node is called Launchpad_Class(). This class contains all the
methods to start, stop, and convert serial data to ROS topics. In the main function, we will
create an object of the Launchpad_Class(). After creating the object, we will call the
Start() method, which will start the serial communication between Tiva-C LaunchPad
and the PC. If we interrupt the driver node by typing Ctrl + C, it will reset LaunchPad and
stop the serial communication between the PC and LaunchPad.

The following code snippet is from the constructor function of Launchpad_Class(). In the
following snippet, we will retrieve the port and baud rate of the LaunchPad board from the
ROS parameters and initialize the SerialDateGateway object using these parameters. The
SerialDataGateway object calls the _HandleReceivedLine() function inside this class
when any incoming serial data arrives at the serial port. This function will process each line
of serial data and extract, convert, and insert it in the appropriate headers of each ROS topic
data type:

#Get serial port and baud rate of Tiva C Launchpad
port = rospy.get_param("~port", "/dev/ttyACM0")
baudRate = int(rospy.get_param("~baudRate", 115200))

#################################################################
rospy.loginfo("Starting with serial port:
 " + port + ", baud rate: " + str(baudRate))#Initializing SerialDataGateway
object with serial port, baud
  rate and callback function to handle incoming serial
dataself._SerialDataGateway = SerialDataGateway(port,
 baudRate, self._HandleReceivedLine)
rospy.loginfo("Started serial communication")

###################################################################Subscrib
ers and Publishers

#Publisher for left and right wheel encoder values
self._Left_Encoder = rospy.Publisher('lwheel',Int64,queue_size
 = 10)self._Right_Encoder = rospy.Publisher('rwheel',Int64,queue_size
 = 10)
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#Publisher for Battery level(for upgrade purpose)
self._Battery_Level =
 rospy.Publisher('battery_level',Float32,queue_size = 10)
#Publisher for Ultrasonic distance sensor
self._Ultrasonic_Value =
 rospy.Publisher('ultrasonic_distance',Float32,queue_size = 10)

#Publisher for IMU rotation quaternion values
self._qx_ = rospy.Publisher('qx',Float32,queue_size = 10)
self._qy_ = rospy.Publisher('qy',Float32,queue_size = 10)
self._qz_ = rospy.Publisher('qz',Float32,queue_size = 10)
self._qw_ = rospy.Publisher('qw',Float32,queue_size = 10)

#Publisher for entire serial data
self._SerialPublisher = rospy.Publisher('serial',
 String,queue_size=10)

We will create the ROS publisher object for sensors such as the encoder, IMU, and
ultrasonic sensor, as well as for the entirety of the serial data for debugging purposes. We
will also subscribe the speed commands to the left-hand side and right-hand side wheel of
the robot. When a speed command arrives on the topic, it calls the respective callbacks to
send speed commands to the robot's LaunchPad:

self._left_motor_speed =
rospy.Subscriber('left_wheel_speed',Float32,self._Update_Left_Speed)
self._right_motor_speed =
rospy.Subscriber('right_wheel_speed',Float32,self._Update_Right_Speed)

After setting the ChefBot driver node, we need to interface the robot with a ROS navigation
stack in order to perform autonomous navigation. The basic requirement for doing
autonomous navigation is that the robot driver nodes receive velocity commands from the
ROS navigational stack. The robot can be controlled using teleoperation. In addition to
these features, the robot must be able to compute its positional or odometry data and
generate the tf data to be sent into the navigational stack. There must be a PID controller to
control the robot's motor velocity. The following ROS package helps us to perform these
functions. The differential_drive package contains nodes to perform the preceding
operation. We are reusing these nodes in our package to implement these functionalities.
You can find the differential_drive package in ROS at
http://wiki.ros.org/differential_drive.

http://wiki.ros.org/differential_drive
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The following diagram shows how these nodes communicate with each other:

Block diagram of the robot showing the ROS nodes

The purpose of each node in the ChefBot_bringup package is as follows:

twist_to_motors.py: This node will convert a ROS Twist command or linear and
angular velocity to an individual motor velocity target. The target velocities are published
at a rate of the ~rate (measured in Hertz) and the publish timeout_ticks time's velocity
after the Twist message stops. The following are the topics and parameters that will be
published and subscribed to by this node:

Publishing topics:

lwheel_vtarget(std_msgs/Float32): This is the target velocity of the left wheel
(measured in m/s).

rwheel_vtarget (std_msgs/Float32): This is the target velocity of the right wheel
(measured in m/s).

Subscribing topics:

Twist (geometry_msgs/Twist): This is the target Twist command for the robot. The
linear velocity in the x-direction and the angular velocity theta of the Twist messages are
used in this robot.
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Important ROS parameters:

~base_width (float, default: 0.1): This is the distance between the robot's two
wheels in meters.

~rate (int, default: 50): This is the rate at which the velocity target is published
(Hertz).

~timeout_ticks (int, default:2): This is the number of the velocity target message
published after stopping the Twist messages.

pid_velocity.py: This is a simple PID controller to control the speed of each motor by
taking feedback from the wheel encoders. In a differential drive system, we need one PID
controller for each wheel. It will read the encoder data from each wheel and control the
speed of each wheel.

Publishing topics:

motor_cmd (Float32): This is the final output of the PID controller that goes to the motor.
We can change the range of the PID output using the out_min and out_max ROS
parameter.

wheel_vel (Float32): This is the current velocity of the robot wheel in m/s.

Subscribing topics:

wheel (Int16): This topic is the output of a rotary encoder. There are individual topics for
each encoder of the robot.

wheel_vtarget (Float32): This is the target velocity in m/s.

Important parameters:

~Kp (float,default: 10): This parameter is the proportional gain of the PID controller.

~Ki (float, default: 10): This parameter is the integral gain of the PID controller.

~Kd (float, default: 0.001): This parameter is the derivative gain of the PID
controller.

~out_min (float, default: 255): This is the minimum limit of the velocity value to the
motor. This parameter limits the velocity's value to the motor called the wheel_vel topic.
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~out_max (float, default: 255): This is the maximum limit of the wheel_vel topic
(measured in Hertz).

~rate (float, default: 20): This is the rate of publishing the wheel_vel topic.

ticks_meter (float, default: 20): This is the number of wheel encoder ticks per
meter. This is a global parameter because it's used in other nodes too.

vel_threshold (float, default: 0.001): If the robot velocity drops below this
parameter, we consider the wheel as stationary. If the velocity of the wheel is less than
vel_threshold, we consider it as zero.

encoder_min (int, default: 32768): This is the minimum value of encoder reading.

encoder_max (int, default: 32768): This is the maximum value of encoder reading.

wheel_low_wrap (int, default: 0.3 * (encoder_max - encoder_min) +
encoder_min): These values decide whether the odometry is in a negative or positive
direction.

wheel_high_wrap (int, default: 0.7 * (encoder_max - encoder_min) +
encoder_min): These values decide whether the odometry is in a negative or positive
direction.

diff_tf.py: This node computes the transformation of odometry and broadcasts between
the odometry frame and the robot's base frame.

Publishing topics:

odom (nav_msgs/odometry): This publishes the odometry (the current pose and twist of
the robot).

tf: This provides the transformation between the odometry frame and the robot base link.

Subscribing topics:

lwheel (std_msgs/Int16), rwheel (std_msgs/Int16): These are the output values from
the left and right encoders of the robot.

ChefBot_keyboard_teleop.py: This node sends the Twist command using
controls from the keyboard.
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Publishing topics:

cmd_vel_mux/input/teleop (geometry_msgs/Twist): This publishes the Twist messages
using keyboard commands.

Now that we have looked at the nodes in the ChefBot_bringup package, we will look at
the functions of the launch files.

Understanding ChefBot ROS launch files
We will now look at the functions of each of the launch files of the ChefBot_bringup
package:

robot_standalone.launch: The main function of this launch file is to start
nodes such as launchpad_node, pid_velocity, diff_tf, and
twist_to_motor to get sensor values from the robot and to send the command
velocity to the robot.
keyboard_teleop.launch: This launch file will start teleoperation using the
keyboard. It starts the ChefBot_keyboard_teleop.py node to perform the
keyboard teleoperation.
3dsensor.launch : This file will launch the Kinect OpenNI drivers and start
publishing the RGB and depth stream. It will also start the depth-to-laser scanner
node, which will convert point cloud data to laser scan data.
gmapping_demo.launch: This launch file will start the SLAM gmapping nodes
to map the area surrounding the robot.
amcl_demo.launch: Using AMCL, the robot can localize and predict where it
stands on the map. After localizing the robot on the map, we can command the
robot to move to a position on the map. Then the robot can move autonomously
from its current position to the goal position.
view_robot.launch: This launch file displays the robot URDF model in RViz.
view_navigation.launch: This launch file displays all the sensors necessary
for the navigation of the robot.
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Working with ChefBot Python nodes and
launch files
We have already set ChefBot ROS packages in Intel's NUC PC and uploaded the embedded
code to the LaunchPad board. The next step is to put the NUC PC on the robot, configure
the remote connection from the laptop to the robot, test each node, and work with
ChefBot's launch files to perform autonomous navigation.

The main device we should have before working with ChefBot is a good wireless router.
The robot and the remote laptop have to connect across the same network. If the robot PC
and remote laptop are on the same network, the user can connect from the remote laptop to
the robot PC through SSH using its IP. Before putting the robot PC in the robot, we should
connect the robot PC to the wireless network so that once it's connected to the wireless
network, it will remember the connection details. When the robot powers up, the PC should
automatically connect to the wireless network. Once the robot PC is connected to a wireless
network, we can put it in the actual robot. The following diagram shows the connection
diagram of the robot and remote PC:

Wireless connection diagram of the robot and remote PC

The preceding diagram assumes that the ChefBot's IP is 192.168.1.106 and the remote
PC's IP is 192.168.1.101.

We can remotely access the ChefBot terminal using SSH. We can use the following
command to log in to ChefBot, where robot is the username of the ChefBot PC:

    $ ssh robot@192.168.1.106

When you log in to the ChefBot PC, it will ask for the robot PC password. After entering
the password of the robot PC, we can access the robot PC terminal. After logging in to the
robot PC, we can start testing ChefBot's ROS nodes and test whether we receive the serial
values from the LaunchPad board inside ChefBot. Note that you should log in to the
ChefBot PC again through SSH if you are using a new terminal.
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If the ChefBot_bringup package is properly installed on the PC, and if the LaunchPad
board is connected, then before running the ROS driver node, we can run the miniterm.py
tool to check whether the serial values come to the PC properly via USB. We can find the
serial device name using the dmesg command. We can run miniterm.py using the
following command:

    $ miniterm.py /dev/ttyACM0 115200

If it shows the permission denied message, set the permission of the USB device by writing
rules on the udev folder, which we did in Chapter 6, Interfacing Actuators and Sensors to the
Robot Controller, or we can temporarily change the permission using the following
command. Here, we are assuming that ttyACM0 is the device name of LaunchPad. If the
device name is different in your PC, then you have to use that name instead of ttyACM0:

    $ sudo chmod 777 /dev/ttyACM0

If everything works fine, we will get values such as those shown in the following
screenshot:

Output of miniterm.py
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The letter b is used to indicate the battery reading of the robot; currently, it's not
implemented. The value is set to zero now. These values are coming from the Tiva C
Launchpad. There are different approaches to sense the voltage using a microcontroller
board. One of the approaches is given below (http:/ ​/ ​www.​instructables. ​com/ ​id/
Arduino-​Battery- ​Voltage- ​Indicator/ ​). The letter t indicates the total time elapsed (in
microseconds) after the robot starts running the embedded code. The second value is the
time taken to complete one entire operation in LaunchPad (measured in seconds). We can
use this value if we are performing real-time calculations of the parameters of the robot. At
the moment, we are not using this value, but we may use it in the future. The letter e
indicates the values of the left and right encoder respectively. Both the values are zero here
because the robot is not moving. The letter u indicates the values from the ultrasonic
distance sensor. The distance value we get is in centimeters. The letter s indicates the
current wheel speed of the robot. This value is used for inspection purposes. Actually,
speed is a control output from the PC itself.

To convert this serial data to ROS topics, we have to run the drive node called
launchpad_node.py. The following code shows how to execute this node.

First, we have to run roscore before starting any nodes:

    $ roscore

Run launchpad_node.py using the following command:

    $ rosrun ChefBot_bringup launchpad_node.py

If everything works fine, we will get the following output in node in the running terminal:

Output of launchpad_node.py

http://www.instructables.com/id/Arduino-Battery-Voltage-Indicator/
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After running launchpad_node.py, we will see the following topics generated, as shown
in the following screenshot:

Topics generated by launchpad_node.py

We can view the serial data received by the driver node by subscribing to the /serial
topic. We can use it for debugging purposes. If the serial topic shows the same data that we
saw in miniterm.py, then we can confirm that the nodes are working fine. The following
screenshot is the output of the /serial topic:

Output of the /serial topic published by the LaunchPad node

After setting the ChefBot_bringup package, we can start working with the autonomous
navigation of ChefBot. Currently, we are accessing only the ChefBot PC's terminal. To
visualize the robot's model, sensor data, maps, and so on, we have to use RViz in the user's
PC. We have to do some configuration in the robot and user PC to perform this operation. It
should be noted that the user's PC should have the same software setup as the ChefBot PC.
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The first thing we have to do is to set the ChefBot PC as a ROS master. We can set the
ChefBot PC as the ROS master by setting the ROS_MASTER_URI value. The
ROS_MASTER_URI setting is a required setting; it informs the nodes about the uniform
resource identifier (URI) of the ROS master. When you set the same ROS_MASTER_URI for
the ChefBot PC and the remote PC, we can access the topics of the ChefBot PC in the
remote PC. So, if we run RViz locally, then it will visualize the topics generated in the
ChefBot PC.

Assume that the ChefBot PC IP is 192.168.1.106 and the remote PC IP is 192.168.1.10.
You can set a static IP for Chefbot PC and remote PC so that the IP will always be the same
all test otherwise if it is automatic, you may get different IP in each test. To set
ROS_MASTER_URI in each system, the following command should be included in the
.bashrc file in the home folder. The following diagram shows the setup needed to include
the .bashrc file in each system:

Network configuration for ChefBot

Add these lines at the bottom of .bashrc on each PC and change the IP address according
to your network.
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After we establish these settings, we can just start roscore on the ChefBot PC terminal and
execute the rostopic list command on the remote PC.

If you see any topics, you are done with the settings. We can first run the robot using the
keyboard teleoperation to check the robot's functioning and confirm whether we get the
sensor values.

We can start the robot driver and other nodes using the following command. Note that this
should execute in the ChefBot terminal after logging in using SSH:

    $ roslaunch ChefBot_bringup robot_standalone.launch

After launching the robot driver and nodes, start the keyboard teleoperation using the
following command. This also has to be done on the new terminal of the ChefBot PC:

    $ roslaunch ChefBot_bringup keyboard_teleop.launch

To activate Kinect, execute the following command. This command is also executed on the
ChefBot terminal:

    $roslaunch ChefBot_bringup 3dsensor_kinect.launch

If you are using Orbecc Astra, use the following launch file to start the sensor:

    $ roslaunch ChefBot_bringup 3d_sensor_astra.launch

To view the sensor data, we can execute the following command. This will view the robot
model in RViz and should be executed in the remote PC. If we set up the
ChefBot_bringup package in the remote PC, we can access the following command and
visualize the robot model and sensor data from the ChefBot PC:

    $ roslaunch ChefBot_bringup view_robot.launch
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The following screenshot is the output of RViz. We can see the LaserScan and PointCloud
mapped data in the screenshots:

ChefBot LaserScan data in RViz
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The preceding screenshot shows LaserScan in RViz. We need to tick the LaserScan topic
from the left-hand side section of RViz to show the laser scan data. The laser scan data is
marked on the viewport. If you want to watch the point cloud data from Kinect/Astra, click
on the Add button on the left-hand side of RViz and select PointCloud2 from the pop-up
window. Select Topic |/camera/depth_registered from the list and you will see an
image similar to the one shown in the following screenshot:

ChefBot with PointCloud data

After working with sensors, we can perform SLAM to map the room. The following
procedure helps us to start SLAM on this robot.
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Working with SLAM on ROS to build a map of the
room
To perform gmapping, we have to execute the following commands.

The following command starts the robot driver in the ChefBot terminal:

    $ roslaunch ChefBot_bringup robot_standalone.launch

The following command starts the gmapping process. Note that it should be executed on
the ChefBot terminal:

    $ roslaunch ChefBot_bringup gmapping_demo.launch

Gmapping will only work if the odometry value that is received is proper. If the odometry
value is received from the robot, we will receive the following message for the preceding
command. If we get this message, we can confirm that gmapping will work fine:

ChefBot with PointCloud data

To start the keyboard teleoperation, use the following command:

    $ roslaunch ChefBot_bringup keyboard_teleop.launch

To view the map that is being created, we need to start RViz on the remote system using
the following command:

    $ roslaunch ChefBot_bringup view_navigation.launch

After viewing the robot in RViz, you can move the robot using the keyboard and see the
map being created. When it has mapped the entire area, we can save the map using the
following command on the ChefBot PC terminal:

    $rosrun map_server map_saver -f ~/test_map
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In the preceding code, test_map is the name of the map being stored in the home folder.
The following screenshot shows the map of a room created by the robot:

Mapping a room

After the map is stored, we can work with the localization and autonomous navigation
functionalities using ROS.

Working with ROS localization and navigation
After building the map, close all the applications and rerun the robot driver using the
following command:

    $ roslaunch ChefBot_bringup robot_standalone.launch
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Start the localization and navigation on the stored map using the following command:

    $ roslaunch ChefBot_bringup amcl_demo.launch map_file:=~/test_map.yaml

Start viewing the robot using the following command in the remote PC:

    $ roslaunch ChefBot_bringup view_navigation.launch

In RViz, we may need to specify the initial pose of the robot using the 2D Pose Estimate
button. We can change the robot pose on the map using this button. If the robot is able to
access the map, then we can use the 2D Nav Goal button to command the robot to move to
the desired position. When we start the localization, we can see the particle cloud around
the robot by using the AMCL algorithm:

Localizing the robot using AMCL
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The following is a screenshot of the robot as it navigates autonomously from its current
position to the goal position. The goal position is marked as a black dot:

Autonomous navigation using a map

The black line from the robot to the black dot is the robot's planned path to reach the goal
position. If the robot is not able to locate the map, we might need to fine-tune the parameter
files in the ChefBot_bringupparam folder. For more fine-tuning details, you can go
through the AMCL package on ROS at http://wiki.ros.org/amcl.

Summary
This chapter was about assembling the hardware of ChefBot and integrating the embedded
and ROS code into the robot to perform autonomous navigation. We saw the robot
hardware parts that were manufactured using the design from Chapter 6, Interfacing
Actuators and Sensors to the Robot Controller. We assembled the individual sections of the
robot and connected the prototype PCB we designed for the robot. This consisted of the
LaunchPad board, motor driver, left shifter, ultrasonic sensor, and IMU. The LaunchPad
board was flashed with the new embedded code, which can interface with all sensors in the
robot and can send or receive data from the PC.

http://wiki.ros.org/amcl
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After looking at the embedded code, we configured the ROS Python driver node to
interface with the serial data from the LaunchPad board. After interfacing with the
LaunchPad board, we computed the odometry data and differential drive control using
nodes from the differential_drive package that was in the ROS repository. We
interfaced the robot with the ROS navigation stack. This enabled us to use SLAM and
AMCL for autonomous navigation. We also looked at SLAM and AMCL, created a map,
and commanded the robot to navigate autonomously.

Questions
What is the use of the robot ROS driver node?1.
What is the role of the PID controller in navigation?2.
How do you convert encoder data to odometry data?3.
What is the role of SLAM in robot navigation?4.
What is the role of AMCL in robot navigation?5.

Further reading
You can read more about the robotic vision package in ROS from the following links:

http:/​/​wiki. ​ros. ​org/ ​gmapping

http:/​/​wiki. ​ros. ​org/ ​amcl

http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl


9
Designing a GUI for a Robot

Using Qt and Python
In the last chapter, we discussed the integration of robotic hardware components and
software packages for performing autonomous navigation. After the integration, the next
step is to build a GUI to control the robot. We are building a GUI that can act as a trigger
for the underlying ROS commands. Instead of running all the commands on the Terminal,
the user can work with the GUI buttons. The GUI we are going to design is for a typical
hotel room with nine tables. The user can set a table position in the map of the hotel room
and command the robot to go to a particular table to deliver food. After delivering the food,
the user can command the robot to go to its home position.

The following topics will be covered in the chapter:

Installing Qt on Ubuntu
Introduction to PyQt and PySide
Introduction to Qt Designer
Qt signals and slots
Converting a Qt UI file to a Python file
Working with the ChefBot GUI application
Introduction to rqt and its features

Technical requirements
To test the application and code in this chapter, you need an Ubuntu 16.04 LTS PC/laptop
with ROS Kinetic installed.

You need to know Qt, PyQt, and rqt installed.
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Two of the most popular GUI frameworks currently available are Qt
(http://qt.digia.com) and GTK+ (http://www.gtk.org/).Qt and GTK+ are open source,
cross-platform user interface toolkits and development platforms. These two software
frameworks are widely used in Linux desktop environments, such as GNOME and KDE.

In this chapter, we will be using Python binding of the Qt framework to implement the GUI
because Python binding of Qt is easier to develop compared to other methods. We will look
at how to develop a GUI from scratch and program it using Python. After discussing basic
Python and Qt programming, we will discuss ROS interfaces of Qt and Python, which are
already available in ROS. We will first look at what the Qt UI framework is and how to
install it on our PC.

Installing Qt on Ubuntu 16.04 LTS
Qt is a cross-platform application framework that is widely used to develop application
software with a GUI interface as well as command line tools. Qt is available in almost all
operating systems, such as Windows, macOS X, Android, and so on. The main
programming language used for developing Qt applications is C++ but there are bindings
available for languages such as Python, Ruby, Java, and so on. Let's take a look at how to
install Qt SDK on Ubuntu 16.04. We will install Qt from the Advance Packaging Tool
(APT) in Ubuntu. The APT already comes with Ubuntu installation. So, for installing Qt/Qt
SDK, we can simply use the following command, which will install Qt SDK and its required
dependencies from the Ubuntu package repository. We can install Qt version 4 using the
following command:

    $ sudo apt-get install qt-sdk

This command will install the entire Qt SDK and its libraries required for our project. The
packages available on Ubuntu repositories may not be the latest versions. To get the latest
version of Qt, we can download the online or offline installer of Qt for various OS platforms
from the following link:

http://qt-project.org/downloads

After installing Qt on our system, we will see how we can develop GUI using Qt and
interface with Python.

http://qt.digia.com
http://www.gtk.org/
http://qt-project.org/downloads
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Working with Python bindings of Qt
Let's see how we can interface Python and Qt. In general, there are two modules available
in Python for connecting to the Qt user interface. The two most popular frameworks are:

PyQt
PySide

PyQt
PyQt is one of the most popular Python bindings for Qt cross-platform. PyQt is developed
and maintained by Riverbank Computing Limited. It provides binding for Qt version 4 and
Qt version 5 and comes with GPL (version 2 or 3) along with a commercial license. PyQt is
available for Qt version 4 and 5, called PyQt4 and PyQt5, respectively. These two modules
are compatible with Python versions 2 and 3. PyQt contains more than 620 classes that
cover the user interface, XML, network communication, web, and so on.

PyQt is available in Windows, Linux, and macOS X. It is a prerequisite to install Qt SDK
and Python in order to install PyQt. The binaries for Windows and macOS X are available
at the following link:

http://www.riverbankcomputing.com/software/pyqt/download

We will see how to install PyQt4 on Ubuntu 16.04 using Python 2.7.

Installing PyQt in Ubuntu 16.04 LTS
If you want to install PyQt on Ubuntu/Linux, use the following command. This command
will install the PyQt library, its dependencies, and some Qt tools:

    $ sudo apt-get install python-qt4 pyqt4-dev-tools

http://www.riverbankcomputing.com/software/pyqt/download
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PySide
PySide is an open source software project that provides Python binding for the Qt
framework. The PySide project was initiated by Nokia and offers a full set of Qt binding for
multiple platforms. The technique used in PySide to wrap the Qt library is different from
PyQt, but the API of both is similar. PySide is currently not supported on Qt 5. PySide is
available for Windows, Linux, and macOS X. The following link will guide you to set up 
PySide on Windows and macOS X:

http://qt-project.org/wiki/Category:LanguageBindings::PySide::Downloads

The prerequisites of PySide are the same as PyQt. Let's see how we can install PySide on
Ubuntu 16.04 LTS.

Installing PySide on Ubuntu 16.04 LTS
The PySide package is available on the Ubuntu package repository. The following
command will install the PySide module and Qt tools on Ubuntu:

    $ sudo apt-get install python-pyside pyside-tools

Let's work with both modules and see the differences between both.

Working with PyQt and PySide
After installing the PyQt and PySide packages, we will look at how to write an Hello
World GUI using PyQt and PySide. The main difference between PyQt and PySide is only
in some commands; most of the steps are the same. Let's see how to make a Qt GUI and
convert it into Python code.

http://qt-project.org/wiki/Category:LanguageBindings::PySide::Downloads
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Introducing Qt Designer
Qt Designer is the tool for designing and inserting control into the Qt GUI. The Qt GUI is
basically an XML file that contains the information of its components and controls. The first
step to work with the GUI relates to its design. The Qt Designer tool provides various
options to make excellent GUIs.

Start Qt Designer by entering the designer-qt4 command on the Terminal. The following
screenshot shows what you will be able to see after running this command:

Qt 4 Designer
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The preceding screenshot shows the Qt Designer interface. Select the Widget option from
the New Form window and click on the Create button. This will create an empty widget;
we can drag various GUI controls from the left-hand side of Qt 4 Designer to the empty
widget. Qt widgets are the basic building blocks of the Qt GUI. The following screenshot
shows a form with a PushButton dragged from the left-hand side window of Qt Designer:

Qt Designer widget form

The Hello World application that we are going to build will have a PushButton. When we
click on the PushButton, an Hello World message will be printed on the Terminal. Before
building the Hello World application, we need to understand what Qt signals and slots are,
because we have to use these features for building the Hello World application.

Qt signals and slots
In Qt, GUI events are handled using the signals and slots features. A signal is emitted from
the GUI when an event occurs. Qt widgets have many predefined signals, and users can
add custom signals for GUI events. A slot is a function that is called in response to a
particular signal. In this example, we are using the clicked() signal of PushButton and
creating a custom slot for this signal.
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We can write our own code inside this custom function. Let's see how we can create a
button, connect a signal to a slot, and convert the entire GUI to Python. Here are the steps
involved in creating the Hello World GUI application:

Drag and create a PushButton from Qt Designer to the empty Form.1.
Assign a slot for the button clicked event, which emits a signal called2.
clicked().
Save the designed UI file in the .ui extension.3.
Convert UI files to Python.4.
Write the definition of the custom slot.5.
Print the Hello World message inside the defined slot/function.6.

We have already dragged a button from Qt Designer to an empty Form. Press the F4 key to
insert a slot on the button. When we press F4, the PushButton turns red, and we can drag a
line from the button and place the ground symbol in the main window. This is shown in
the following screenshot:

Assigning slots and signals in Qt 4 Designer



Designing a GUI for a Robot Using Qt and Python Chapter 9

[ 232 ]

Select the clicked() signal from the left-hand side and click on the Edit... button to create a
new custom slot. When we click on the Edit... button, another window will pop up to create
a custom function. You can create a custom function by clicking on the + symbol. We
created a custom slot called message(), as shown in the following screenshot:

Assigning slots and signals in Qt 4 Designer

Click on the OK button, save the UI file as hello_world.ui, and quit Qt Designer. After
saving the UI file, let's see how we can convert a Qt UI file into a Python file.

Read more about Qt Signals and slots from the following link

https://doc.qt.io/qt-5/signalsandslots.html

Converting a UI file into Python code
After designing the UI file, we can convert the UI file into its equivalent Python code. The
conversion is done using a pyuic compiler. We have already installed this tool while
installing PyQt/PySide. The following are the commands to convert a Qt UI file into a
Python file.
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We have to use different commands for PyQt and PySide. The following command is to
convert the UI into its PyQt equivalent file:

    $ pyuic4 -x hello_world.ui -o hello_world.py

The pyuic4 is a UI compiler to convert a UI file into its equivalent Python code. We need to
mention the UI filename after the -x argument and mention the output filename after the -
o argument.

There are not many changes to the PySide command. Instead of pyuic4, PySide uses
pyside-uic to convert UI files into Python files. The remaining arguments are the same:

    $ pyside-uic -x hello_world.ui -o hello_world.py

The preceding command will generate an equivalent Python code for the UI file. This will
create a Python class that has the GUI components. The generated script will not have the
definition of the custom function message(). We should add this custom function to
generate the code. The following procedure will guide you to add the custom function; so
when you click on the button, the custom function message() will be executed.

Adding a slot definition to PyQt code
The generated Python code from PyQt is given here. The code generated by pyuic4 and
pyside-uic are the same, except in importing module names. All other parts are the same.
The explanation of the code generated using PyQt is also applicable to PySide code. The
code generated from the preceding conversion is as follows. The code structure and
parameters can change according to the UI file that you have designed:

from PyQt4 import QtCore, QtGui

try:
    _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
    _fromUtf8 = lambda s: s

class Ui_Form(object):

    def setupUi(self, Form):
        Form.setObjectName(_fromUtf8("Form"))
        Form.resize(514, 355)

        self.pushButton = QtGui.QPushButton(Form)
        self.pushButton.setGeometry(QtCore.QRect(150, 80, 191, 61))
        self.pushButton.setObjectName(_fromUtf8("pushButton"))
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        self.retranslateUi(Form)
        QtCore.QObject.connect(self.pushButton,
QtCore.SIGNAL(_fromUtf8("clicked()")), Form.message)
        QtCore.QMetaObject.connectSlotsByName(Form)

    def retranslateUi(self, Form):
        Form.setWindowTitle(QtGui.QApplication.translate("Form", "Form",
None, QtGui.QApplication.UnicodeUTF8))
       self.pushButton.setText( QtGui.QApplication.translate("Form",
"Press", None, QtGui.QApplication.UnicodeUTF8))

#This following code should be added manually
if __name__ == "__main__":
   import sys
    app = QtGui.QApplication(sys.argv)
    Form = QtGui.QWidget()
    ui = Ui_Form()
    ui.setupUi(Form)
    Form.show()
    sys.exit(app.exec_())

The preceding code is the equivalent Python script of the Qt UI file that we designed in the
Qt Designer application. Here is the step-by-step procedure of the working of this code:

The code will start executing from if __name__ == "__main__":. The first1.
thing in the PyQt code is to create a QApplication object. A QApplication
class manages the GUI application's control flow and main settings. The
QApplication class contains the main event loop, where all events from the
Windows system and other sources are processed and dispatched. It also handles
initialization and finalization of an application. The QApplication class is inside
the QtGui module. This code creates an object of QApplication called app. We
have to add the main code manually.
The Form = QtGui.QWidget() line creates an object called Form of the2.
QWidget class that is present inside the QtGui module. The QWidget class is the
base class of all user interface objects of Qt. It can receive the mouse and
keyboard event from the main Windows system.
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The ui = Ui_Form() line creates an object called ui of the Ui_Form() class3.
defined in the code. The Ui_Form() object can accept the QWidget class that we
created in the previous line and it can add buttons, text, button control, and other
UI components into this QWidget object. The Ui_Form() class contains two
functions: setupUi() and retranslateUi(). We can pass the QWidget object
to the function called setupUi(). This function will add UI components on this
widget object, such as buttons, assigning slots for signals, and so on. The
retranslateUi() function will translate the language of the UI to other
languages if needed. For example, if we need translation from English to
Spanish, we can mention the corresponding Spanish word in this function.
The Form.show() line displays the final window with buttons and text.4.

The next thing is to create the slot function, which prints the Hello World message. The slot
definition is created inside the Ui_Form() class. The following steps insert the slot called
message() into the Ui_Form() class.

The message() function definition is as follows:

    def message(self):
    print "Hello World"

This should be inserted as a function inside the Ui_Form() class. Also, change the
following line in the setupUi() function inside the Ui_Form() class:

QtCore.QObject.connect(self.pushButton,
QtCore.SIGNAL(_fromUtf8("clicked()")), Form.message)

The Form.message parameter should be replaced with the self.message parameter. The
preceding line connects the PushBbutton signal, clicked(), to the self.message() slot
that we already inserted in the Ui_Form() class.
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Operation of the Hello World GUI application
After replacing the Form.message parameter with the self.message parameter, we can
execute the code and the output will look like this:

Running Pyqt4 application

When we click on the Press the button, it will print the Hello world message. This is all
about setting a custom GUI with Python and Qt.

In the next section, we will see the actual GUI that we are designing for the robot.

Working with ChefBot's control GUI
After completing the Hello World application in PyQt, we will now discuss a GUI for
controlling ChefBot. The main use of building a GUI is to create an easier way to control the
robot. For example, if the robot is deployed in a hotel to serve food, the person who
controls this robot need not have knowledge about the complex commands to start and
stop this robot; so, building a GUI for ChefBot can reduce the complexity and make it easier
for the user. We are planning to build a GUI using PyQt, ROS, and the Python interface.
The ChefBot ROS package is available on GitHub at the following link:
https://github.com/qboticslabs/learning_robotics_2nd_ed

https://github.com/qboticslabs/learning_robotics_2nd_ed
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If you haven't cloned the code yet, you can do so now using following command:

    $ git clone https://github.com/qboticslabs/learning_robotics_2nd_ed.git

The GUI code named robot_gui.py is placed in the scripts folder, which is inside the
chefbot_bringup package.

The following screenshot shows the GUI that we have designed for ChefBot:

Running Pyqt4 application

The GUI has the following features:

It can monitor the robot battery status and robot status. The robot status indicates
the working status of the robot. For example, if the robot encounters an error, it
will indicate the error on this GUI.
It can command the robot to move into a table position for delivering food. There
is a spin box widget on the GUI to input the table position. Currently, we are
planning this GUI for a room with nine tables, but we may expand it to any
number according to the requirement. After inputting the table number, we can
command the robot to go to that table by clicking on the Go button; the robot will
get into that position. If we want to return the robot to the initial position, we can
click on the Home button. If we want to cancel the current robot movement, click
on Cancel to stop the robot. The working of this GUI application is as follows:
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When we have to deploy ChefBot in a hotel, the first procedure that we have to do is to
create a map of the room. After mapping the entire room properly, we have to save the
map on the robot PC. The robot does the mapping only once. After mapping, we can run
the localization and navigation routines and command the robot to get into a position on
the map. The ChefBot ROS package comes with a map and simulation model of a hotel-like
environment. We can now run this simulation and localization for testing the GUI and in
the next chapter, we will discuss how to control the hardware using the GUI. If you install
the ChefBot ROS packages on your local system, we can simulate a hotel environment and
test the GUI.

Start the ChefBot simulation in a hotel-like arrangement using the following command:

    $roslaunch chefbot_gazebo chefbot_hotel_world.launch

After starting the ChefBot simulation, we can run the localization and navigation routines
using an already built map. The map is placed in the chefbot_bringup package. We can
see a map folder inside this package. Here, we will use this map for performing this test. We
can load the localization and navigation routine using the following command:

    $ roslaunch chefbot_gazebo amcl_demo.launch
map_file:=/home/<user_name>/catkin_ws/src/chefbot/chefbot_bringup/map/hotel
1.yaml

The path of the map file can change in different systems, so use the path in your system
instead of this path.

If the path mentioned is correct, it will start running the ROS navigation stack. If we want
to see the robot position on the map or manually set the initial position of the robot, we can
use RViz using the following command:

    $ roslaunch chefbot_bringup view_navigation.launch

In RViz, we can command the robot to go to any map coordinates using the 2D Nav Goal
button.

We can command the robot to go to any map coordinates using programming too. The ROS
navigation stack works using the ROS actionlib library. The ROS actionlib library is
for performing preemptable tasks; it is similar to ROS services. An advantage over ROS
services is that we can cancel the request if we don't want it at that time.
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In the GUI, we can command the robot to go to a map coordinate using the Python
actionlib library. We can get the table position on the map using the following technique.

After starting the simulator and AMCL nodes, launch the keyboard teleoperation and move
the robot near each table. Use the following command to get the translation and rotation of
the robot:

    $ rosrun tf tf_echo /map /base_link

When we click on the Go button, the position is fed to the navigation stack and the robot
plans its path and reaches its goal. We can even cancel the task at any time. So, the ChefBot
GUI acts as an actionlib client, which sends map coordinates to the actionlib server;
that is, the navigation stack.

We can now run the robot GUI to control the robot using the following command:

    $ rosrun chefbot_bringup robot_gui.py

We can select a table number and click on the Go button for moving the robot to each table.

Assuming that you cloned the files and got the robot_gui.py file, we will discuss the
main slots we added into the Ui_Form() class for the actionlib client and to get values
of the battery and robot status.

We need to import the following Python modules for this GUI application:

import rospy
import actionlib
from move_base_msgs.msg import *
import time
from PyQt4 import QtCore, QtGui

The additional modules we require are the ROS Python client rospy, and the actionlib
module to send values to the navigation stack. The move_base_msgs module contains the
message definition of the goal that needs to be sent to the navigation stack.

The robot position near each table is mentioned in a Python dictionary. The following code
shows hardcode values of the robot's position near each table:

table_position = dict()
table_position[0] = (-0.465, 0.37, 0.010, 0, 0, 0.998, 0.069)
table_position[1] = (0.599, 1.03, 0.010, 0, 0, 1.00, -0.020)
table_position[2] = (4.415, 0.645, 0.010, 0, 0, -0.034, 0.999)
table_position[3] = (7.409, 0.812, 0.010, 0, 0, -0.119, 0.993)
table_position[4] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
table_position[5] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
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table_position[6] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
table_position[7] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
table_position[8] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)
table_position[9] = (1.757, 4.377, 0.010, 0, 0, -0.040, 0.999)

We can access the position of the robot near each table by accessing this dictionary.

Currently, we have inserted only four values for the purpose of demonstration. You can
add more values by finding the position of other tables.

We are assigning some variables to handle the table number, position of the robot, and the
actionlib client inside the Ui_Form() class:

#Handle table number from spin box
self.table_no = 0
#Stores current table robot position
self.current_table_position = 0
#Creating Actionlib client
self.client = actionlib.SimpleActionClient('move_base',MoveBaseAction)
#Creating goal message definition
self.goal = MoveBaseGoal()
#Start this function for updating battery and robot status
self.update_values()

The following code shows the signals and slots assignment in this code for buttons and spin
box widgets:

#Handle spinbox signal and assign to slot set_table_number()
QtCore.QObject.connect(self.spinBox,
QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.set_table_number)

#Handle Home button signal and assign to slot Home()
QtCore.QObject.connect(self.pushButton_3,
QtCore.SIGNAL(_fromUtf8("clicked()")), self.Home)

#Handle Go button signal and assign to slot Go()
QtCore.QObject.connect(self.pushButton,
QtCore.SIGNAL(_fromUtf8("clicked()")), self.Go)

#Handle Cancel button signal and assign to slot Cancel()
QtCore.QObject.connect(self.pushButton_2,
QtCore.SIGNAL(_fromUtf8("clicked()")), self.Cancel)
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The following slot handles the spin box value from the UI and assigns a table number. Also,
it converts the table number to the corresponding robot position:

def set_table_number(self):
  self.table_no = self.spinBox.value()
  self.current_table_position = table_position[self.table_no]

Here is the definition of the Go slot for the Go button. This function will insert the robot
position of the selected table in a goal message header and send it into the navigation stack:

def Go(self):

  #Assigning x,y,z pose and orientation to target_pose message
  self.goal.target_pose.pose.position.x=float(self.current_table
_position[0])

  self.goal.target_pose.pose.position.y=float(self.current_table
_position[1])
  self.goal.target_pose.pose.position.z=float(self.current_table
_position[2])

  self.goal.target_pose.pose.orientation.x =
float(self.current_table_position[3])
  self.goal.target_pose.pose.orientation.y=
float(self.current_table_position[4])
  self.goal.target_pose.pose.orientation.z=
float(self.current_table_position[5])

  #Frame id
  self.goal.target_pose.header.frame_id= 'map'

  #Time stamp
  self.goal.target_pose.header.stamp = rospy.Time.now()

  #Sending goal to navigation stack
  self.client.send_goal(self.goal)

The following code is the Cancel() slot definition. This will cancel all the robot paths that
it was planning to perform at that time:

def Cancel(self):
  self.client.cancel_all_goals()
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The following code is the definition of Home(). This will set the table position to zero, and
call the Go() function. The table at position zero is the home position of the robot:

def Home(self):
  self.current_table_position = table_position[0]
  self.Go()

The following definitions are for the update_values() and add() functions. The
update_values() method will start updating the battery level and robot status in a
thread. The add() function will retrieve the ROS parameters of the battery status and robot
status, and set them to the progress bar and label, respectively:

def update_values(self):
    self.thread = WorkThread()
    QtCore.QObject.connect( self.thread,
QtCore.SIGNAL("update(QString)"), self.add )
    self.thread.start()
def add(self,text):
  battery_value = rospy.get_param("battery_value")
  robot_status = rospy.get_param("robot_status")
   self.progressBar.setProperty("value", battery_value)
     self.label_4.setText(_fromUtf8(robot_status))

The WorkThread() class used in the preceding function is given here. The WorkThread()
class is inherited from QThread provided by Qt for threading. The thread simply emits the
signal update(Qstring) with a particular delay. In the preceding function,
update_values(), the update(QString) signal is connected to the self.add() slot; so
when a signal update(QString) is emitted from the thread, it will call the add() slot and
update the battery and status value:

class WorkThread(QtCore.QThread):
  def __init__(self):
    QtCore.QThread.__init__(self)
   def __del__(self):
    self.wait()
   def run(self):
    while True:
      time.sleep(0.3) # artificial time delay
      self.emit( QtCore.SIGNAL('update(QString)'), " " )
      return
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We have discussed how to make a GUI for ChefBot, but this GUI is only for the user who
controls ChefBot. If someone wants to debug and inspect the robot data, we may have to go
for other tools. ROS provides an excellent debugging tool to visualize data from the robot.

The rqt tool is a popular ROS tool. It is based on a Qt-based framework for GUI
development for ROS. Let's discuss the rqt tool, installation procedure, and how we can
inspect the sensor data from the robot.

Installing and working with rqt in Ubuntu
16.04 LTS
rqt is a software framework in ROS, which implements various GUI tools in the form of
plugins. We can add plugins as dockable windows in rqt.

Installing rqt in Ubuntu 16.04 can be done using the following command. Before installing
rqt, ensure that you have the full installation of ROS Indigo.

    $ sudo apt-get install ros-<ros_version>-rqt

After installing the rqt packages, we can access the GUI implementation of rqt, called
rqt_gui, in which we can dock rqt plugins in a single window.

Let's start using rqt_gui.

Run the roscore command before running rqt_gui:

    $ roscore

Run the following command to start rqt_gui:

    $ rosrun rqt_gui rqt_gui
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We will get the following window if the commands work fine:

Running rqt

We can load and unload plugins at runtime. To analyze the ROS message log, we can load
the Console plugin from Plugins | Logging | Console. In the following example, we load
the Console plugin and run a talker node inside rospy_tutorials, which will send an
Hello World message to a topic called /chatter.

Run the following command to start the node talker.py:

    $rosrun rospy_tutorials talker.py

In the following screenshot, rqt_gui is loaded with two plugins named Console and
Topic Monitor. The Topic Monitor plugin can be loaded from Plugins | Topics | Topic
Monitor. The Console plugin monitors the messages printing on each node and their
severity. It is very useful for debugging purposes. In the following screenshot, the left
section of rqt_gui is loaded with the Console plugin and the right side is loaded with the
Topic Monitor. The Topic Monitor will list the topics available and will monitor its values.
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In the following screenshot, the Console plugin monitors the talker.py node's messages
and their severity level and the Topic Monitor monitors the value inside the /chatter
topic:

Running rqt with different plugins

We can also visualize data such as images and plot graphs on rqt_gui. For the robot's
navigation and its inspection, there are plugins for embedding RViz on rqt_gui. The
Navigation viewer plugin views from the /map topic. The visualization plugins are
available in Plugin | Visualization.

We can also create the GUI using rqt. The instructions to create rqt plugins that can load in
to rqt_gui can be found at:

http:/​/​wiki.​ros. ​org/ ​rqt/ ​Tutorials/ ​Create%20your%20new%20rqt%20plugin
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Summary
In this chapter, we discussed creating a GUI for ChefBot that can be used by an ordinary
user who doesn't have any idea about the internal workings of a robot. We used Python
binding of Qt called PyQt to create this GUI. Before we looked at the main GUI design, we
looked at an Hello World application to get an easier understanding of PyQt. The UI
design was done using the Qt Designer tool and the UI file was converted into its
equivalent Python script using the Python UI compiler. After designing the main GUI in Qt
Designer, we converted the UI file into Python script and inserted the necessary slots in the
generated script. The ChefBot GUI can start the robot, select a table number, and command
the robot to get into that position. The position of each table comes from the generated map
where we hardcoded the positions in this Python script for testing. When a table is selected,
we set a goal position on the map, and when we click on the Go button, the robot will move
into the intended position. The user can cancel the operation at any time and command the
robot to come to the home position. The GUI can also receive the real-time status of the
robot and its battery status. After discussing the robot GUI, we looked at the debugging
GUI tool in ROS, called rqt. We saw some plugins used for debugging the data from the
robot. In the next chapter, we will see the complete testing and calibration of the robot.

Questions
What are the popular UI toolkits available on the Linux platform?1.
What are the differences between PyQt and PySide Qt bindings?2.
How do you convert a Qt UI file into Python script?3.
What are Qt signals and slots?4.
What is rqt and what are its main applications?5.

Further reading
Read more about robotic vision packages in ROS at the following links:

http:/​/​wiki. ​ros. ​org/ ​rqt/ ​UserGuide

http:/​/​wiki. ​ros. ​org/ ​rqt/ ​Tutorials
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Assessments

Chapter 1, Getting Started with the Robot
Operating System

Here are the three main features of ROS:1.
Message passing interface to communicate with different programs
Off-the-shelf robotics algorithm to make the robot prototyping faster
Software tools to visualize robot data and debugging

The different levels of concepts in ROS are the ROS Filesystem level, ROS2.
Computation Graph Level, and ROS Community Level.
The Catkin build system is built using CMake and Python scripts. This tool helps3.
us build the ROS packages.
The ROS topic is a named bus in which one node can communicate to another4.
node. The kind of message type used in the topics are ROS messages.
The different concepts of the ROS computation graph are ROS Nodes, ROS5.
Topics, ROS Messages, ROS Master, ROS Services, and
ROS Bags.
The ROS Master act as a mediator program to connect two ROS nodes to start6.
communicating with each other.
The important features of Gazebo are:7.

Dynamic simulation: It includes physics engine like ODE, Bullet,
Simbody and Dart
Advanced 3D graphics: It uses OGRE framework to create high-quality
lighting, shadows, and textures
Plugin support: This will allow developers to add new robot, sensors,
and environmental control
TCP/IP Transport: Controlling Gazebo using socket-based message
passing interface
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Chapter 2, Understanding the Basics of
Differential Robots

Holonomic robots can freely move in any direction and the controllable degrees1.
of freedom is equal to the total degrees of freedom. Omni wheel-based robots are
an example of holonomic robots. Nonholonomic robots have constraints on its
motion, so controllable degrees of freedom will not be equal to the total degrees
of freedom. Differential driver configuration is an example of nonholonomic
configuration.
Robot kinematics deals with the motion of the robot without considering the2.
mass and inertia, whereas robot dynamics is the relationship between mass and
inertia properties, motion, and associated torques.
ICC stands for Instantaneous Center of Curvature, which is an imaginary point3.
on the robot wheel axis around which the robot is rotated.
It is the process of finding the robot's current position from the wheel velocity.4.
Finding the wheel velocity to reach a goal position.5.

Chapter 3, Modeling the Differential Drive
Robot

Robot modeling is the process of creating the 2D and 3D representation of robot1.
having all the parameters of the robot, which includes kinematic and dynamic
parameters of the robot.
The 2D model mainly includes the exact dimension of robot parts, which helps us2.
compute the kinematics of the robot as well as helps  manufacture robot parts.
The 3D model of the robot is an exact replica of robot hardware having all3.
parameters of the physical robot designed using a CAD software. This is used for
creating robot simulation and 3D printing parts of the robot.
Creating a 3D model using Python scripting is much easier and accurate than4.
manual modeling if you know the Blender scripting APIs.
URDF is the 3D robot model representation of robot in ROS. It is having5.
kinematic and dynamic parameters of the robot.
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Chapter 4, Simulating a Differential Drive
Robot Using ROS

Sensor modeling in Gazebo can be done using Gazebo plugins. The sensor model1.
can be written using C++, which can be plugged in to the Gazebo simulator.
ROS is interfaced to Gazebo using Gazebo ROS plugin. When we load this plugin2.
into Gazebo, we can able to control Gazebo through ROS interface.
The important tags are <inertia>, <collision>, and <gazebo>.3.
The Gmapping package in ROS is an implementation of Fast SLAM algorithm,4.
which can be used in robot to map the environment and localizing on it. Using
Gmapping in ROS is a straightforward process, including the gmapping node
with necessary parameters and topics such as odometry and laser scan.
The Move_base node has a provision to handle various navigation subsystem in5.
a robot. It is having a provision to handle global and local planner, also the map
of the robot. Once the node receives the goal position, which feed to the
navigation subsystem in order to reach to that goal position.
AMCL stands for Adaptive Monte Carlo Localization, which is an algorithm to6.
localize a robot on a given map. There is a ROS package in ROS for deploying
AMCL in our robot. We can launch the amcl node with proper input and
necessary parameters.

Chapter 5, Designing ChefBot Hardware and
Circuits

It is the process for finding proper robot hardware components for the robot that1.
is meeting the robot desired specification. It also involves circuit designing and
computing the current flow of each components in order to ensure the stability of
the robot components.
It’s a switching circuit to control the direction and speed of an electric motor.2.
The main components are wheel encoder to compute wheel velocity and laser3.
range finder or depth sensor to detect the obstacle around the robot.
We need to check whether it meets the specification of the robot.4.
Mapping, obstacle detection, object detection, and tracking.5.
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Chapter 6, Interfacing Actuators and
Sensors to the Robot Controller

Switching circuit in order to control the speed of motors in a robot.1.
A sensor that can detect the speed and direction of wheel rotation.2.
In the 4X encoding scheme, we are extracting the maximum transition between3.
the encoder pulses in order to get more counts from a single rotation.
Using encoder count and distance per count, we can easily compute the4.
displacement of the wheel.
It is a smart actuator having a motor and a microcontroller that can be directly5.
interfaced to a PC and used to customize different settings of the actuator. It can
be connected as daisy chain manner, which is appropriate for robotic arm.
It is the sensor for finding range and has one transmitter and one receiver. The6.
transmitter transmits ultrasonic sound, and the receiver receives it. The delay
between these process is used for distance measurement.
Range = high level time of echo pin output * velocity (340 M/S) / 2.7.
It is sending IR pulses and receive by an IR receiver. According to the distance,8.
the voltage in the IR receiver changes, and we can compute the distance using
the following equation:

Range = (6787 / (Volt - 3)) – 4

Chapter 7, Interfacing Vision Sensors with
ROS

Most of the 3D depth sensors have additional vision sensors to detect the depth.1.
It may be using IR projection method or using stereo vision.
The message passing interface, tools to visualize and debug robots, off-the-shelf2.
robot algorithms.
OpenCV is mainly having computer vision algorithm, OpenNI is having3.
algorithm implementation for implementing NI applications, and PCL is having
algorithm to process point cloud data.
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It stands for Simultaneous Localization and Mapping. It is an algorithm4.
commonly used to map the robot environment and localize on it at the same
time.
It is an algorithm to map the robot environment in 3D.5.

Chapter 8, Building ChefBot Hardware and
Integration of Software

It is a mediator program between robot low-level controller and high-level1.
controller such as PC. It converts the low-level data into ROS equivalent data.
PID is a control loop feedback mechanism to reach a robot goal position by2.
taking feedback of robot position.
Using encoder data, we can compute the distance traversed by the robot using3.
robot kinematic equations. Those values are odometry data.
It is mainly using for mapping the environment.4.
It is mainly using for localizing the robot in a static map.5.

Chapter 9, Designing a GUI for a Robot
Using Qt and Python

Qt and GTK.1.
Both bindings are almost the same, only difference is in the name. The PyQt2.
license is GPL and PySide comes with LGPL. Also, PySide is having much
documentation about its APIs.
We can use Py UI compiler named pyuic.3.
Qt slots are functions in a program that can be triggered by Qt signal. For4.
example, clicked is a signal that can invoke a function named hello().
Rqt is one of the useful GUI tool in ROS. We can create rqt plugins and can insert5.
in the rqt gui. There are existing plugins to do visualization, debugging, and so
on in rqt.
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