

BUKU AJAR

Buku Ajar

BASIS DATA
Edisi Kedua

UU No 28 tahun 2014 tentang Hak Cipta

Fungsi dan sifat hak cipta Pasal 4

Hak Cipta sebagaimana dimaksud dalam Pasal 3 huruf a merupakan

hak eksklusif yang terdiri atas hak moral dan hak ekonomi.

Pembatasan Pelindungan Pasal 26

Ketentuan sebagaimana dimaksud dalam Pasal 23, Pasal 24, dan

Pasal 25 tidak berlaku terhadap:

i Penggunaan kutipan singkat Ciptaan dan/atau produk Hak

Terkait untuk pelaporan peristiwa aktual yang ditujukan hanya

untuk keperluan penyediaan informasi aktual;

ii Penggandaan Ciptaan dan/atau produk Hak Terkait hanya untuk

kepentingan penelitian ilmu pengetahuan;

iii Penggandaan Ciptaan dan/atau produk Hak Terkait hanya untuk

keperluan pengajaran, kecuali pertunjukan dan Fonogram yang

telah dilakukan Pengumuman sebagai bahan ajar; dan

iv Penggunaan untuk kepentingan pendidikan dan pengembangan

ilmu pengetahuan yang memungkinkan suatu Ciptaan dan/atau

produk Hak Terkait dapat digunakan tanpa izin Pelaku

Pertunjukan, Produser Fonogram, atau Lembaga Penyiaran.

Sanksi Pelanggaran Pasal 113

1. Setiap Orang yang dengan tanpa hak melakukan pelanggaran hak

ekonomi sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf i

untuk Penggunaan Secara Komersial dipidana dengan pidana

penjara paling lama 1 (satu) tahun dan/atau pidana denda paling

banyak Rp100.000.000 (seratus juta rupiah).

2. Setiap Orang yang dengan tanpa hak dan/atau tanpa izin Pencipta

atau pemegang Hak Cipta melakukan pelanggaran hak ekonomi

Pencipta sebagaimana dimaksud dalam Pasal 9 ayat (1) huruf c,

huruf d, huruf f, dan/atau huruf h untuk Penggunaan Secara

Komersial dipidana dengan pidana penjara paling lama 3 (tiga)

tahun dan/atau pidana denda paling banyak Rp500.000.000,00

(lima ratus juta rupiah).

BUKU AJAR

BASIS DATA
EDISI KEDUA

Raissa Amanda Putri, S.Kom., M.TI.

Penerbit

CV. MEDIA SAINS INDONESIA

Melong Asih Regency B40 - Cijerah

Kota Bandung - Jawa Barat

www.medsan.co.id

Anggota IKAPI

No. 370/JBA/2020

BUKU AJAR

BASIS DATA
EDISI KEDUA

Raissa Amanda Putri, S.Kom., M.TI.

Editor:

Rintho R. Rerung

Tata Letak:

Raissa Amanda Putri, S.Kom., M.TI.

Desain Cover:

Syahrul Nugraha

Ukuran:

A5 Unesco: 15,5 x 23 cm

Halaman:

viii, 128

ISBN:

978-623-362-547-0

Terbit Pada:

Juni 2022

Hak Cipta 2022 @ Media Sains Indonesia dan Penulis

Hak cipta dilindungi undang-undang. Dilarang keras

menerjemahkan, memfotokopi, atau memperbanyak sebagian

atau seluruh isi buku ini tanpa izin tertulis dari Penerbit atau

Penulis.

PENERBIT MEDIA SAINS INDONESIA

(CV. MEDIA SAINS INDONESIA)

Melong Asih Regency B40 - Cijerah

Kota Bandung - Jawa Barat

www.medsan.co.id

i

KATA PENGANTAR

Bismillahirrahmanirrahim…

Alhamdulillah, puji dan syukur kepada Allah

SWT karena atas rahmat dan karuniaNya maka

penulis dapat menyelesaikan Buku Ajar Mata

Kuliah Basis Data edisi kedua ini.

Penulis mengucapkan terima kasih atas dukungan

dan bantuan dari orang tua, suami, anak-anak,

para pimpinan, rekan – rekan dosen, dan teman

sejawat atas terselesaikannya buku ini. Semoga

Buku Ajar Mata Kuliah Basis Data ini dapat

bermanfaat serta membantu dan mendukung

tercapainya tujuan dari proses belajar mengajar.

Penulis menyadari bahwa masih banyak

kekurangan dan keterbatasan pada buku ini.

Penulis mengharapkan kritik dan saran dari

berbagai pihak agar buku ini dapat diperbaiki

pada revisi berikutnya. Semoga Buku Ajar Mata

Kuliah Basis Data ini dapat bermanfaat bagi kita

semua dan mendapat berkah dari Allah SWT.

Aamiin.

Medan, Maret 2022

 Raissa Amanda Putri, S.Kom.,M.T.I.

ii

SILABUS

DESKRIPSI MATA KULIAH

Mata kuliah Basis Data merupakan mata kuliah

yang memberikan konsep dasar basis data kepada

mahasiswa, bagaimana membuat model data,

merancang basis data dengan baik, normalisasi

basis data serta menjelaskan sistem informasi

dimana basis data dapat diterapkan.

TUJUAN MATA KULIAH

Setelah mengikuti mata kuliah ini diharapkan

mahasiswa dapat merancang, membuat, dan

mengelola basis data, baik yang berbasis

komputer tunggal atau basis data berbasis web,

serta mampu mengaplikasikannya dalam dunia

kerja.

CAPAIAN PEMBELAJARAN

1. Mahasiswa mampu menjelaskan konsep

dasar basis data.

2. Mahasiswa mampu merancang, membuat

dan mengelola basis data.

3. Mahasiswa mampu mengaplikasikan basis

data ke dalam sistem.

MATERI PEMBELAJARAN

1. Pengantar Basis Data

2. Basis Data Relasional

3. Structured Query Language (SQL)

4. Entity Relationship (ER)

5. Perancangan Basis Data

6. Normalisasi

7. Query

8. MySQL

iii

DAFTAR ISI

KATA PENGANTAR .. i

SILABUS ... ii

DAFTAR ISI .. iii

DAFTAR GAMBAR .. vi

DAFTAR TABEL ... vii

BAB I ... 1

Pengantar Basis Data ... 1

1.1. Basic File System 1

1.2. Basis Data .. 3

1.3. Database Management System

(DBMS) ... 4

1.4. Aplikasi Sistem Basis Data 7

1.5. Tujuan Sistem Basis Data 9

1.6. Bahasa Basis Data 16

1.7. Latihan ... 19

BAB II ... 20

Basis Data Relasional 20

2.1. Model Data .. 20

2.2. Struktur Basis Data Relasional 21

2.3. Skema Basis Data 23

2.4. Kunci ... 25

2.5. Skema Diagram 27

2.6. Latihan ... 28

iv

BAB III .. 29

Structured Query Language (SQL) 29

3.1. SQL Data Definition Language (DDL)

 29

3.1.1. Tipe Dasar Variabel SQL 29

3.1.2. Definisi Skema Dasar 31

3.2. Kueri pada Satu Tabel 36

3.3. Kueri pada Multi Tabel 40

3.4. Natural Join .. 43

3.5. Operasi Dasar Tambahan 46

3.5.1. Operasi Rename 46

3.5.2. Operasi String 48

3.5.3. Spesifikasi Atribut pada Klausa

Select 50

3.5.4. Menyusun Tampilan Record 51

3.5.5. Predikan Klausa Where 52

3.6. Operasi Set ... 52

3.6.1. Union .. 54

3.6.2. Intersect 56

3.6.3. Except ... 57

3.7. Null .. 58

3.8. Modifikasi Basis Data 61

3.8.1. Delete ... 61

3.8.2. Insert ... 63

3.8.3. Update .. 65

3.9. Latihan ... 66

v

BAB IV .. 67

Entity Relationship (ER).................................. 67

4.1. Entity Relationship Model 67

4.2. Entitas .. 67

4.2.1. Entitas Kuat dan Entitas Lemah 71

4.2.2. Entitas Asosiatif 71

4.3. Atribut.. 72

4.3.1. Atribut Sederhana dan Komposit

 73

4.3.2. Atribut Bernilai Tunggal dan

Multinilai ... 73

4.3.3. Atribut yang diturunkan 74

4.4. Relasi ... 75

4.5. Kardinalitas.. 79

4.6. Entity Relationship Diagram (ERD) . 81

4.6.1. Struktur Dasar ERD 82

4.6.2. Derajat Relasi............................. 83

4.6.3. Batasan Kardinalitas 86

4.7. Latihan ... 88

BAB V ... 89

Perancangan Basis Data 89

5.1. Masalah Penyimpanan Data 89

5.2. Proses Perancangan Basis Data 91

5.3. Latihan ... 93

BAB VI .. 94

Normalisasi .. 94

vi

6.1. Manfaat Normalisasi 95

6.2. Ketergantungan dalam Normalisasi ... 95

6.3. Tahapan Normalisasi 98

6.4. Latihan ... 105

BAB VII ... 106

Query .. 106

7.1. Membuat Basis Data 106

7.2. Membuat Tabel 106

7.3. Menambah Data 107

7.4. Mengubah Data 108

7.5. Menghapus Data 108

7.6. Latihan ... 108

BAB VIII .. 109

MySQL ... 109

8.1. Pengantar MySQL 109

8.2. XAMPP .. 112

8.3. PHPMyAdmin.................................. 113

8.4. Tipe Data dan Operator 114

8.4.1. Tipe Data 115

8.4.2. Operator.................................... 117

8.5. Aturan Pemberian Nama 118

8.6. Perintah Dasar 119

8.6.1. Membuat Database 119

8.6.2. Memilih Database yang Digunakan

 120

8.6.3. Membuat Tabel 121

vii

8.6.4. Mengisi Data 122

8.6.5. Menambahkan Field 123

8.6.6. Menghapus Field 123

8.6.7. Menghapus Database 124

8.6.8. Menghapus Tabel..................... 125

8.6.9. Mengganti Nama Tabel 125

8.7. Latihan ... 126

DAFTAR PUSTAKA 127

vi

DAFTAR GAMBAR

Gambar 2.1. Skema Diagram untuk Basis Data

Universitas ... 28

Gambar 4.1. Set Relasi Penasehat 76

Gambar 4.2. Pemetaan Kardinalitas (a)satu-ke-

satu (b)satu-ke-banyak 81

Gambar 4.3. Pemetaan Kardinalitas (a)banyak-

ke-satu (b)banyak-ke-banyak 81

Gambar 4.4. ERD Dosen dan Mahasiswa 82

Gambar 4.5. Derajat Relasi (a)Unary (b)Binary

(c)Ternary ... 83

Gambar 4.6. Unary (a)satu-ke-satu (b)satu-ke-

banyak (c)banyak-ke-banyak 84

Gambar 4.7. Binary (a)satu-ke-satu (b)satu-ke-

banyak (c)banyak-ke-banyak 85

Gambar 4.8. Ternary .. 86

Gambar 4.9. Relasi dengan batasan kardinalitas

 .. 87

Gambar 4.10. Kardinalitas Relasi (a)Mandatory

One (b)Mandatory Many (c)Optional One

(d)Optional Many ... 88

Gambar 6.1. Tahapan Normalisasi 98

Gambar 8.1. XAMPP Control Panel 113

Gambar 8.2. PHPMyAdmin 113

Gambar 8.3. Membuat Database 119

Gambar 8.4. Memilih Database 120

Gambar 8.5. Membuat Tabel 121

vii

Gambar 8.6. Menambahkan Field 121

Gambar 8.7. Mengisi Data 122

Gambar 8.8. Menambahkan Field 123

Gambar 8.9. Menghapus Field 124

Gambar 8.10. Menghapus database 124

Gambar 8.11. Menghapus Tabel 125

Gambar 8.12. Mengganti Nama Tabel 126

vii

DAFTAR TABEL

Tabel 2.1. Tabel Dosen 22

Tabel 2.2. Tabel Mata Kuliah 22

Tabel 2.3. Tabel Prasyarat 23

Tabel 2.4. Tabel Jurusan 24

Tabel 3.1. Hasil Pencarian Nama Dosen 37

Tabel 3.2. Hasil Pencarian Jurusan Dosen....... 37

Tabel 3.3. Hasil Pencarian Jurusan Dosen dengan

distinct.. 38

Tabel 3.4. Hasil Kueri Multi Tabel 41

Tabel 3.5. Mata Kuliah Semester 1 tahun 2017

 ... 53

Tabel 3.6. Mata Kuliah Semester 2 tahun 2018

 ... 53

Tabel 3.7. Tabel Hasil union............................ 54

Tabel 3.8. Tabel Hasil union all 55

Tabel 3.9. Tabel Hasil intersect 56

Tabel 3.10. Tabel Hasil intersect all 57

Tabel 3.11. Tabel Hasil except 58

Tabel 3.12. Perbandingan Nilai Unknown 59

Tabel 4.1. Set Entitas Dosen 70

Tabel 4.2. Set Entitas Mahasiswa 70

Tabel 4.3. Simbol Dasar ERD 82

Tabel 5.1. Contoh Tabel Redundansi 90

Tabel 6.1. Contoh Full Dependency 96

Tabel 6.2. Contoh Partial Dependency 97

viii

Tabel 6.3. Contoh Transitive Dependency 98

Tabel 6.4. Tabel Mentah 99

Tabel 6.5. Tabel Unnormalized 100

Tabel 6.6. Tabel Normal 1 (1NF)................... 100

Tabel 6.7. Functional Dependency................. 101

Tabel 6.8. Tabel Mahasiswa 2NF 102

Tabel 6.9. Tabel Mata Kuliah 2NF 102

Tabel 6.10. Tabel Nilai 2NF 103

Tabel 6.11. Tabel Mahasiswa 3NF 104

Tabel 6.12. Tabel Dosen 3NF 104

Tabel 6.13. Tabel Mata Kuliah 3NF 105

Tabel 6.14. Tabel Nilai 3NF 105

 Tabel 8.1. Tipe Data Numerik....................... 115

Tabel 8.2. Tipe Data String 115

Tabel 8.3. Tipe Data Date 116

Tabel 8.4. Operator Aritmatika 117

Tabel 8.5. Operator Relasional....................... 118

Tabel 8.6. Operator Logika 118

BAB I

Pengantar Basis Data

1.1. Basic File System

Sistem basis data merupakan hasil evolusi

dari sistem file. Sistem file menyimpan data

selama periode waktu yang lama, dan

memungkinkan penyimpanan sejumlah besar

data. Namun, sistem file umumnya tidak

menjamin bahwa data tidak dapat hilang jika

tidak didukung, dan tidak mendukung akses

efisien ke item data yang lokasinya di file tertentu

yang tidak diketahui.

Selanjutnya, sistem file tidak secara

langsung mendukung bahasa permintaan untuk

data dalam file. Dukungan untuk skema terbatas

pada pembuatan struktur direktori untuk file.

Kemungkinan pengguna dapat kehilangan data

yang belum dicadangkan. Akhirnya, sistem file

tidak memuaskan. Selain itu, sistem file

memungkinkan akses bersamaan ke file oleh

beberapa pengguna atau proses, tetapi sistem file

umumnya tidak akan mencegah situasi seperti

dua pengguna memodifikasi file yang sama pada

waktu yang hampir bersamaan, sehingga

perubahan yang dilakukan oleh satu pengguna

gagal muncul di file.

Perusahaan memiliki banyak koleksi data

tentang karyawan, departemen, produk,

penjualan, dan sebagainya. Data ini diakses

secara bersamaan oleh beberapa karyawan.

Permintaan data harus dijawab dengan cepat,

2

perubahan yang dilakukan pada data oleh

pengguna yang berbeda harus diterapkan secara

konsisten, dan akses ke bagian data tertentu

seperti data gaji dan data privasi lainnya harus

dibatasi.

Mengelola data dengan menyimpannya

dalam file sistem operasi memiliki banyak

kelemahan, antara lain:

1. Perusahaan mungkin tidak memiliki memori

utama yang cukup besar untuk menampung

semua data. Karena itu data harus disimpan

ke dalam perangkat penyimpanan seperti

disk dan membawa bagian-bagian yang

relevan ke dalam memori utama untuk

diproses sesuai kebutuhan.

2. Bahkan jika memiliki memori utama yang

besar, pada sistem komputer dengan

pengalamatan 32-bit, tidak dapat merujuk

secara langsung ke lebih dari sekitar 4 GB

data. Harus ada program khusus yang terdiri

dari beberapa metode untuk

mengidentifikasi semua item data.

3. Harus ada program khusus untuk menjawab

setiap permintaan yang mungkin ingin

ditanyakan pengguna tentang data tersebut.

Program-program ini cenderung rumit

karena volume besar data yang akan dicari.

4. Data harus dilindungi dari perubahan yang

tidak konsisten yang dilakukan oleh

pengguna yang berbeda yang mengakses

data secara bersamaan. Jika aplikasi harus

membahas perincian akses bersamaan

tersebut, ini menambah kerumitannya.

3

5. Harus dipastikan bahwa data dikembalikan

ke keadaan konsisten jika sistem macet saat

perubahan sedang dilakukan.

6. Sistem operasi hanya menyediakan

mekanisme kata sandi untuk keamanan. Ini

tidak cukup fleksibel untuk menegakkan

kebijakan keamanan di mana pengguna yang

berbeda memiliki izin untuk mengakses

bagian data yang berbeda.

Database Management System (DBMS)

adalah perangkat lunak yang dirancang untuk

membuat tugas-tugas sebelumnya lebih mudah.

Dengan menyimpan data dalam DBMS alih-alih

sebagai kumpulan file sistem operasi, fitur-fitur

DBMS dapat digunakan untuk mengelola data

dengan cara yang kuat dan efisien. Ketika volume

data dan jumlah pengguna menumbuhkan ratusan

gigabyte data dan ribuan pengguna adalah hal

yang biasa dalam database perusahaan, saat ini,

dukungan DBMS menjadi sangat diperlukan.1

1.2. Basis Data

Data adalah fakta – fakta yang

menggambarkan suatu kejadian yang sebenarnya

pada waktu tertentu. Data didapatkan dari suatu

kejadian yang benar – benar terjadi, misalnya dari

transaksi penjualan, pembelian, dan sebagainya.

Data identik dengan bukti transaksi yang terjadi

di suatu perusahaan seperti kwitansi, faktur,

formulir dan lain – lain. Data yang telah diproses

kemudian dapat menghasilkan informasi berupa

1 Christopher J Date, “An Introduction to Database Systems

8th Edition,” 2004.

4

laporan, seperti laporan keuangan, laporan

penjualan, dan sebagainya.

Basis data merupakan kumpulan informasi

yang ada selama periode waktu yang lama,

seringkali bertahun-tahun. Basis data merupakan

hal yang sangat penting untuk semua bisnis.

Basis data berada di belakang layar perusahaan

besar maupun perusahaan kecil. Perusahaan

menyimpan setiap data – data penting mereka ke

dalam basis data. Kekuatan basis data berasal dari

pengetahuan dan teknologi yang telah

berkembang dan diwujudkan dalam perangkat

lunak khusus yang disebut sistem manajemen

basis data, atau Database Management System

(DBMS), atau disebut juga Sistem Basis Data.

1.3. Database Management System

(DBMS)

DBMS adalah alat yang ampuh untuk

membuat dan mengelola jumlah data yang besar

secara efisien dan memungkinkannya bertahan

dalam jangka waktu yang lama dengan aman.

DBMS adalah kumpulan data yang saling

terkait dan seperangkat program untuk

mengakses data tersebut. Pengumpulan data,

biasanya disebut sebagai basis data, berisi

informasi yang relevan dengan suatu perusahaan.

Tujuan utama DBMS adalah menyediakan cara

untuk menyimpan dan mengambil informasi

basis data yang nyaman dan efisien.

Sistem basis data dirancang untuk

mengelola banyak informasi. Manajemen data

5

melibatkan struktur pendefinisian untuk

penyimpanan informasi dan menyediakan

mekanisme untuk manipulasi informasi. Selain

itu, sistem basis data harus memastikan

keamanan informasi yang disimpan, meskipun

sistem macet atau upaya akses yang tidak sah.

Jika data akan dibagikan di antara beberapa

pengguna, sistem harus menghindari

kemungkinan hasil yang tidak normal.

DBMS diharapkan untuk:

1. Memungkinkan pengguna untuk membuat

basis data baru dan menentukan skema basis

data.

2. Memberi pengguna kemampuan untuk

meminta data dan memodifikasi data,

menggunakan bahasa query.

3. Mendukung penyimpanan data dalam

jumlah yang sangat besar dan banyak dalam

jangka waktu yang lama.

4. Memungkinkan akses yang efisien ke data

untuk permintaan dan modifikasi basis data.

5. Mendukung pemulihan basis data dalam

menghadapi kegagalan, banyak kesalahan,

atau penyalahgunaan yang disengaja.

6. Kontrol akses ke data dari banyak pengguna

sekaligus.

Dalam penerapannya, terdapat beberapa

jenis software DBMS yang sering diaplikasikan

untuk mengelola database perusahaan yaitu

diantaranya:

6

1. MySQL

MySQL banyak digunakan di perusahaan

karena memang tersedia secara gratis.

Sehingga aplikasi ini cocok digunakan untuk

bisnis-bisnis yang sedang berkembang.

Meskipun tidak berbayar, namun tingkat

keamanannya cukup baik dengan kecepatan

akses data yang selalu stabil. Akan tetapi

MySQL kurang kompatibel dengan bahasa

pemograman Foxpro, Visual Basic (VB) dan

Delphi serta kurang mampu menangani data

yang jumlahnya terlalu besar.

2. Oracle

Oracle merupakan perangkat lunak DBMS

yang bagus dan berbayar. Oracle memiliki

beragam fitur yang dapat memenuhi tuntutan

fleksibilitas perusahaan besar. Bahkan oracle

juga memiliki pemrosesan transaksi dengan

performa yang sangat tinggi. Untuk

memenuhi kriteria seperti pada pengertian

DBMS, oracle tidak perlu diragukan lagi

dalam hal keamanan.

3. Microsoft SQL Server

Selain Oracle, Microsoft SQL Server juga

cocok diaplikasikan pada sistem jaringan

komputer perusahaan-perusahaan besar

karena memiliki kemampuan mengelola data

yang besar. Microsoft SQL Server memiliki

sistem pengamanan data yang baik dan

memiliki fitur back up, recovery dan rollback

data. Namun, perangkat ini hanya bisa

berjalan pada sistem operasi Windows saja.

7

4. Firebird

Perangkat lunak DBMS lainnya adalah

Firebird sebagai sistem manajemen basis

data yang relasional. Firebird menawarkan

fitur yang sesuai dengan standar SQl-2003

dan ANSI SQL-99 serta dapat bekerja pada

sistem operasi Windows dan Linux.

1.4. Aplikasi Sistem Basis Data

Telah banyak aplikasi yang menggunakan

sistem basis data, terutama untuk sistem dengan

banyak pertanyaan atau modifikasi yang dibuat.

Berikut ini contoh beberapa aplikasi sistem basis

data:

1. Informasi Perusahaan

a. Penjualan: Untuk informasi pelanggan,

produk, dan transaksi penjualan.

b. Pembelian: Untuk informasi pemasok,

dan transaksi pembelian

c. Persediaan: Untuk informasi sisa stok,

dan mutasi barang.

d. Akuntansi: Untuk pembayaran,

penerimaan, saldo akun, aset, dan

informasi akuntansi lainnya.

e. Sumber daya manusia: Untuk informasi

tentang karyawan, gaji, pajak, dan

tunjangan, dan untuk pembuatan gaji.

f. Pabrikasi: Untuk manajemen rantai

pasokan dan untuk melacak produksi

barang di pabrik, inventaris barang di

gudang dan toko, serta pesanan barang.

g. Pengecer online: Untuk data penjualan

ditambah pelacakan pesanan online,

8

pembuatan daftar rekomendasi, dan

pemeliharaan evaluasi produk online.

2. Perbankan dan Keuangan

a. Perbankan: Untuk informasi nasabah,

rekening, pinjaman, dan transaksi

perbankan.

b. Transaksi kartu kredit: Untuk pembelian

kartu kredit dan pembuatan laporan

bulanan.

c. Keuangan: Untuk menyimpan informasi

tentang kepemilikan, penjualan, dan

pembelian instrumen keuangan seperti

saham dan obligasi; juga untuk

menyimpan data pasar real-time untuk

memungkinkan perdagangan online

oleh pelanggan dan perdagangan

otomatis oleh perusahaan.

3. Universitas: Untuk informasi mahasiswa,

dosen, pendaftaran, mata kuliah, kelas,

pengajaran dan nilai.

4. Maskapai Penerbangan: Untuk informasi

pemesanan dan jadwal.

5. Telekomunikasi: Untuk menyimpan catatan

panggilan yang dilakukan, menghasilkan

tagihan bulanan, menjaga saldo pada kartu

panggil prabayar, dan menyimpan informasi

tentang jaringan komunikasi.

Dari daftar di atas dapat disimpulkan

bahwa basis data merupakan bagian penting dari

setiap perusahaan saat ini, tidak hanya

menyimpan jenis informasi yang umum bagi

9

sebagian besar perusahaan, tetapi juga informasi

yang spesifik untuk kategori perusahaan2.

1.5. Tujuan Sistem Basis Data

Sistem basis data muncul sebagai

tanggapan terhadap metode awal pengelolaan

data komersial terkomputerisasi. Sebagai contoh

sebuah universitas menyimpan informasi tentang

semua dosen, mahasiswa, jurusan, dan mata

kuliah. Salah satu cara untuk menyimpan

informasi di komputer adalah menyimpannya

dalam file sistem operasi. Untuk memungkinkan

pengguna memanipulasi informasi, sistem

memiliki sejumlah program aplikasi yang

memanipulasi file, termasuk program untuk

menambahkan mahasiswa baru, dosen, dan mata

kuliah, menetapkan nilai, menghitung rata-rata

IPK, dan menghasilkan transkrip nilai.

Pemrogram sistem menulis program

aplikasi ini untuk memenuhi kebutuhan

universitas. Program aplikasi baru ditambahkan

ke sistem ketika diperlukan. Misalnya, sebuah

universitas memutuskan untuk membuat jurusan

baru (katakanlah, ilmu komputer). Akibatnya,

universitas membuat jurusan baru dan membuat

file permanen baru (atau menambahkan informasi

ke file yang ada) untuk merekam informasi

tentang semua dosen, mahasiswa, dan mata

kuliah pada jurusan tersebut. Universitas harus

2 Henry F Korth and Abraham Silberschatz, Database

System Concepts, Communications of the ACM, vol. 40,

1997,

http://portal.acm.org/citation.cfm?doid=253671.253760.

10

menulis program aplikasi baru untuk berurusan

dengan aturan khusus untuk jurusan baru.

Program aplikasi baru mungkin juga harus ditulis

untuk menangani aturan baru di universitas.

Dengan demikian, seiring berjalannya waktu,

sistem memperoleh lebih banyak file dan lebih

banyak program aplikasi.

Sistem pemrosesan file yang khas ini

didukung oleh sistem operasi konvensional.

Sistem menyimpan catatan permanen dalam

berbagai file, dan membutuhkan program aplikasi

yang berbeda untuk mengekstrak catatan dari,

dan menambahkan catatan ke, file yang sesuai.

Sebelum sistem manajemen basis data (DBMS)

diperkenalkan, organisasi biasanya menyimpan

informasi dalam sistem tersebut.

Menyimpan informasi organisasi dalam

sistem pemrosesan file memiliki sejumlah

kelemahan utama:

1. Redundansi dan inkonsistensi data.

Karena programmer yang berbeda membuat

file dan program aplikasi dalam jangka

waktu yang lama, berbagai file cenderung

memiliki struktur yang berbeda dan program

dapat ditulis dalam beberapa bahasa

pemrograman. Selain itu, informasi yang

sama dapat digandakan di beberapa tempat

(file). Misalnya, jika seorang mahasiswa

mengambil jurusan lebih dari satu (misalnya

ilmu komputer dan akuntansi) alamat dan

nomor telepon mahasiswa tersebut dapat

muncul dalam file yang terdiri dari catatan

mahasiswa di jurusan ilmu komputer dan

11

dalam file yang terdiri dari catatan

mahasiswa di jurusan akuntansi. Redundansi

ini menyebabkan penyimpanan lebih tinggi

dan biaya akses. Selain itu, ini dapat

menyebabkan inkonsistensi data, misalnya,

alamat mahasiswa yang diubah dalam

catatan jurusan ilmu komputer tetapi tidak

berubah di tempat lain dalam sistem.

2. Kesulitan dalam mengakses data.

Misalkan salah satu ketua jurusan di

universitas perlu mencari tahu nama-nama

semua mahasiswa yang tinggal dalam area

kode pos tertentu. Karena para perancang

sistem asli tidak mengantisipasi permintaan

ini, tidak ada program aplikasi yang dapat

memenuhi permintaan tersebut. Namun, ada

program aplikasi untuk menghasilkan daftar

semua mahasiswa. Petugas universitas

sekarang memiliki dua pilihan: mendapatkan

daftar semua mahasiswa dan mengekstrak

informasi yang diperlukan secara manual

atau meminta programmer untuk menulis

program aplikasi yang diperlukan. Kedua

alternatif itu jelas tidak memuaskan.

Misalkan program semacam itu ditulis, dan

bahwa, beberapa hari kemudian, pegawai

yang sama memerlukan daftar untuk

mahasiswa yang telah mengambil minimal

60 sks, maka sekali lagi, petugas memiliki

dua opsi sebelumnya, yang keduanya tidak

memuaskan.

Intinya di sini adalah bahwa lingkungan

pemrosesan file konvensional tidak

memungkinkan data yang diperlukan untuk

12

diambil dengan cara yang nyaman dan

efisien. Diperlukan sistem pengambilan data

yang lebih responsif untuk penggunaan

umum.

3. Isolasi data

Karena data tersebar di berbagai file, dan file

mungkin dalam format yang berbeda, sulit

untuk menulis program aplikasi baru untuk

mengambil data yang sesuai.

4. Masalah integritas

Nilai data yang disimpan dalam database

harus memenuhi beberapa jenis batasan

konsistensi. Misalkan universitas memiliki

akun untuk setiap jurusan, dan mencatat

jumlah saldo di setiap akun. Misalkan juga

bahwa universitas mensyaratkan bahwa

saldo akun suatu jurusan tidak boleh di

bawah nol. Pengembang menetapkan

kendala ini dalam sistem dengan

menambahkan kode yang sesuai di berbagai

program aplikasi. Namun, ketika kendala

baru ditambahkan, sulit untuk mengubah

programnya lagi. Masalahnya diperparah

ketika kendala melibatkan beberapa item

data dari file yang berbeda.

5. Masalah atomisitas

Sistem komputer, seperti perangkat lainnya,

dapat mengalami kegagalan. Dalam banyak

aplikasi, sangat penting bahwa, jika terjadi

kegagalan, data disimpan kembali ke

keadaan konsisten yang ada sebelum

kegagalan. Pertimbangkan program untuk

mentransfer 50 juta dari saldo akun

departemen A ke saldo akun departemen B.

13

Jika terjadi kegagalan sistem selama

pelaksanaan program, ada kemungkinan 50

juta dihapus dari saldo departemen A tetapi

tidak ditambahkan ke saldo departemen B,

menghasilkan kondisi basis data yang tidak

konsisten. Jelas, sangat penting untuk

konsistensi basis data bahwa kredit dan debit

terjadi, atau tidak terjadi.

Artinya, transfer dana harus bersifat atomik

yaitu harus terjadi secara keseluruhan atau

tidak sama sekali. Sulit untuk memastikan

atomisitas dalam sistem pemrosesan file

konvensional.

6. Anomali akses bersamaan

Demi keseluruhan kinerja sistem dan respons

yang lebih cepat, banyak sistem

memungkinkan banyak pengguna untuk

memperbarui data secara bersamaan. Saat

ini, pengecer internet terbesar mungkin

memiliki jutaan akses per hari ke data

mereka oleh pembeli. Dalam lingkungan

seperti itu, interaksi pembaruan bersamaan

dimungkinkan dan dapat menghasilkan data

yang tidak konsisten.

Sebagai contoh, anggaplah sebuah program

pendaftaran memelihara jumlah mahasiswa

yang terdaftar untuk suatu mata kuliah.

Ketika seorang siswa mendaftar, program

membaca hitungan saat ini untuk kelas,

memverifikasi bahwa jumlah belum

mencapai batas, menambahkan satu ke

daftar, dan menyimpan hitungan kembali

dalam basis data. Misalkan dua siswa

mendaftar secara bersamaan, dengan

14

hitungan di 39. Kedua eksekusi program

dapat membaca nilai 39, dan keduanya

kemudian akan menulis kembali 40, yang

mengarah ke peningkatan yang salah hanya

1, meskipun dua siswa berhasil mendaftar

untuk kursus dan hitungannya harus 41.

Selanjutnya, anggaplah batas registrasi

kursus adalah 40, dalam kasus di atas kedua

siswa akan dapat mendaftar, yang mengarah

pada pelanggaran batas 40 siswa.

7. Masalah keamanan.

Tidak semua pengguna sistem basis data

harus dapat mengakses semua data.

Misalnya, di universitas, personel

penggajian hanya perlu melihat bagian

database yang memiliki informasi keuangan.

Mereka tidak memerlukan akses ke

informasi tentang catatan akademik. Tetapi,

karena program aplikasi ditambahkan ke

sistem pemrosesan file, menegakkan batasan

keamanan semacam itu sangatlah sulit.

Adapun kelebihan dari menggunakan basis data

adalah:

1. Data dapat dibagikan

Membagikan data berarti tidak hanya

aplikasi dapat digunakan bersama, tetapi

juga aplikasi yang baru dapat dibangun

dengan menggunakan data yang sama.

Artinya, programmer dapat membuat

aplikasi baru tanpa harus membuat basis data

yang baru lagi.

15

2. Redundansi dapat dikurangi

Dengan adanya batasan kunci yang diatur

dalam basis data, memungkinkan data untuk

mengecek yang sudah tersimpan dan tidak

menyimpan data yang sama.

3. Ketidak konsistenan dapat dihindari

Karena data disimpan hanya satu kali dalam

basis data, sehingga perubahan pada data

tidak perlu di beberapa tempat.

4. Dukungan transaksi dapat diberikan

Basis data dengan relasi antar tabel akan

secara otomatis mengubah data pada tabel

yang berhubungan, sehingga transaksi yang

terjadi tidak terputus.

5. Integritas bisa dijaga

Masalah integritas adalah memastikan data

yang disimpan di dalam basis data adalah

data yang benar. Dengan adanya penanganan

terhadap redundansi, maka integritas data di

dalam basis data dapat terjaga.

6. Keamanan dapat ditegakkan

Dalam sistem basis data dapat dibatasi hak

akses pengguna, sehingga pengguna hanya

dapat mengakses data yang bersangkutan

dengan pekerjaannya dan tidak bisa

mengakses data lain yang dibatasi.

7. Persyaratan yang saling bertentangan dapat

seimbang

Dalam organisasi, akan muncul persyaratan-

persyaratan penggunaan data yang saling

bertentangan, untuk itu sistem basis data

dapat menetapkan akses cepat untuk sistem

yang penting atau yang diutamakan.

16

8. Standar dapat ditegakkan

Dengan kontrol terpusat, administrator basis

data dapat menetapkan standar terhadap data

yang direpresentasikan dari basis data,

misalnya untuk nama tabel dan header3.

1.6. Bahasa Basis Data

Basis data menyediakan Data-Definition

Language (DDL) untuk menentukan skema basis

data dan Data-Manipulation Language (DML)

untuk mengekspresikan permintaan dan

pembaruan basis data.

1. Data-Definition Language (DDL)

DDL digunakan untuk menentukan properti

tambahan dari data. DDL disebut

penyimpanan data dan bahasa definisi. DDL

adalah perintah-perintah yang biasa

digunakan oleh Database Administrator

(DBA). Pernyataan-pernyataan ini

menentukan detail implementasi dari skema

basis data, yang biasanya disembunyikan

dari pengguna. Nilai data yang disimpan

dalam basis data harus memenuhi batasan

konsistensi tertentu. Misalnya, misalkan

universitas mengharuskan saldo akun suatu

departemen tidak boleh negatif. DDL

menyediakan fasilitas untuk menentukan

batasan seperti itu. Sistem basis data

3 Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer

Widom, DATABASE SYSTEMS The Complete Book,

Pearson Prentice Hall, vol. 26 (New Jersey: PEARSON,

2009), http://www.worldcat.org/isbn/813170842X.

17

memeriksa kendala ini setiap kali basis data

diperbarui.

Dengan bahasa ini dapat dibuat tabel baru,

membuat indeks, mengubah tabel,

menentukan struktur tabel, dll. Hasil dari

kompilasi perintah DDL menjadi Kamus

Data, yaitu data yang menjelaskan data

sesungguhnya. Perintah dasar yang termasuk

ke dalam DDL yaitu :

➢ Create, digunakan untuk membuat

database, tabel, view dan kolom.

➢ Alter, digunakan untuk mengubah

struktur tabel yang telah dibuat seperti

mengganti nama tabel, menambah,

mengubah dan menghapus kolom pada

tabel.

➢ Rename, digunakan untuk mengubah

nama objek.

➢ Drop, digunakan untuk menghapus

database dan menghapus tabel.

Contoh:
create table jurusan

(nama_jurusan char (20),

lokasi char (15),

anggaran numeric (12,2));

2. Data-Manipulation Language (DML)

DML adalah bahasa yang memungkinkan

pengguna untuk mengakses atau

memanipulasi data sebagaimana diatur oleh

model data yang sesuai. DML juga

digunakan untuk memasukkan, merubah,

18

dan menghapus data-data di dalam sebbuah

tabel. Perintah yang termasuk ke dalam

DML yaitu:

➢ Insert, digunakan untuk menyisipkan

atau memasukkan data baru ke dalam

tabel.

➢ Update, digunakan untuk

memperbaharui data lama menjadi data

baru.

➢ Delete, digunakan untuk menghapus data

dari tabel.

➢ Select, digunakan untuk menampilkan

data dari satu tabel atau beberapa tabel

dalam relasi.

Contoh:

select dosen,nama

from dosen

where dosen.jurusan =

’Fisika’;

3. Data Control Language (DCL)

DCL adalah bahasa SQL yang berkaitan

dengan manipulasi dan hak akses pengguna.

Perintah yang termasuk ke dalam DCL yaitu:

➢ Grant, digunakan untuk memberikan hak

akses oleh administrator kepada pengguna

biasa.

➢ Revoke, digunakan untuk menghilangkan

atau mencabut hak akses yang telah

diberikan oleh administrator kepada

pengguna biasa.

19

1.7. Latihan

1. Apa yang dimaksud dengan Sistem

Manajemen Basis Data?

2. Software apa saja yang termasuk Sistem

Manajemen Basis Data? Jelaskan!

3. Apa saja kelemahan dari penyimpanan file

pada sistem operasi?

4. Apa keuntungan yang bisa didapatkan dari

menggunakan Sistem Manajemen Basis

Data?

5. Apa saja jenis bahasa yang digunakan dalam

Basis Data?

20

BAB II

Basis Data Relasional

2.1. Model Data

Model data adalah notasi untuk

menggambarkan data atau informasi. Model data

umumnya terdiri dari tiga bagian:

1. Struktur data.

Alat-alat dalam bahasa pemrograman seperti

C atau Java biasa digunakan untuk

menggambarkan struktur data yang

digunakan oleh suatu program: array dan

struktur ("struct") atau objek, misalnya.

Struktur data yang digunakan untuk

mengimplementasikan data di komputer,

dalam diskusi sistem basis data disebut

sebagai model data fisik, meskipun

sebenarnya jauh dari benar-benar berfungsi

sebagai implementasi fisik data. Dalam

dunia basis data, model data berada pada

tingkat yang agak lebih tinggi dari struktur

data, dan kadang-kadang disebut sebagai

model konseptual untuk menekankan

perbedaan tingkat.

2. Operasi pada data.

Dalam bahasa pemrograman, operasi pada

data umumnya adalah segala sesuatu yang

dapat diprogram. Dalam model data basis

data, biasanya ada serangkaian operasi

terbatas yang dapat dilakukan. Pengguna

umumnya diizinkan untuk melakukan

serangkaian pertanyaan terbatas (operasi

21

yang mengambil informasi) dan modifikasi

(operasi yang mengubah database).

Keterbatasan ini bukan kelemahan, tetapi

kekuatan. Dengan membatasi operasi,

dimungkinkan bagi programmer untuk

menggambarkan operasi basis data pada

tingkat yang sangat tinggi, namun memiliki

sistem manajemen basis data yang

melaksanakan operasi secara efisien.

Sebagai perbandingan, umumnya tidak

mungkin untuk mengoptimalkan program

dalam bahasa konvensional seperti C,

sepanjang algoritma yang tidak efisien

(misalnya, bubblesort) diganti dengan yang

lebih efisien. (mis., quicksort).

3. Kendala pada data.

Model data basis data biasanya memiliki

cara untuk menggambarkan batasan pada

data. Batasan ini dapat berkisar dari yang

sederhana (mis., "Satu hari dalam seminggu

adalah bilangan bulat antara 1 dan 7" atau

"sebuah film memiliki paling banyak satu

judul") hingga beberapa batasan yang sangat

kompleks4.

2.2. Struktur Basis Data Relasional

Basis data relasional terdiri dari kumpulan

tabel, yang masing-masing diberi nama unik.

Sebagai contoh, perhatikan tabel dosen pada tabel

2.1, yang menyimpan informasi tentang dosen.

Tabel ini memiliki empat kolom: ID, nama,

4 Satinder Bal Gupta and Aditya Mittal, Database

Management System (UNIVERSITY SCIENCE PRESS,

2017).

22

jurusan, dan gaji. Setiap baris tabel ini mencatat

informasi tentang dosen, yang terdiri dari ID

dosen, nama, jurusan, dan gaji. Begitu pula

dengan mata kuliah, tabel 2.2 menyimpan

informasi tentang mata kuliah, yang terdiri dari

kode mata kuliah, judul mata kuliah, jurusan, dan

sks, untuk setiap mata kuliah. Perhatikan bahwa

setiap dosen diidentifikasi oleh nilai ID,

sedangkan setiap mata kuliah diidentifikasi oleh

nilai kode.

Tabel 2.1. Tabel Dosen

ID Nama Jurusan Gaji

342355 Suparni Ilmu

Komputer

5.500.000

213233 Andri Sistem

Informasi

3.500.000

535353 Reza Biologi 4.800.000

212124 Bobby Sistem

Informasi

5.500.000

321233 Sulastri Matematika 4.500.000

Tabel 2.2. Tabel Mata Kuliah

Kode_M

K

Judul Nama_Jurus

an

SK

S

IK-101 Basis Data Ilmu

Komputer

2

IK-115 Penambang

an Data

Ilmu

Komputer

2

IK-173 Pemrogram

an Visual

Ilmu

Komputer

3

SI-101 Tata Kelola

TI

Sistem

Informasi

3

23

SI-202 Audit TI Sistem

Informasi

2

Tabel 2.3. Tabel Prasyarat

Kode_MK Kode_Prasyarat

IK-115 IK-101

IK-173 IK-101

SI-202 SI-101

Tabel 2.3 menunjukkan tabel prasyarat,

yang menyimpan mata kuliah prasyarat untuk

setiap mata kuliah. Tabel ini memiliki dua kolom,

kode mata kuliah dan kode prasyarat. Setiap baris

terdiri dari sepasang pengidentifikasi saja

sehingga mata kuliah kedua merupakan prasyarat

untuk mata kuliah pertama.

Dengan demikian, satu baris dalam tabel

prasyarat menunjukkan bahwa dua mata kuliah

terkait dalam arti bahwa satu mata kuliah

merupakan prasyarat bagi mata kuliah lainnya.

2.3. Skema Basis Data

Ketika berbicara tentang suatu basis data,

harus dibedakan antara skema basis data, yang

merupakan desain logis dari basis data, dan

contoh basis data, yang merupakan snapshot dari

data dalam basis data pada waktu tertentu.

Konsep relasi atau tabel sesuai dengan

gagasan bahasa pemrograman suatu variabel,

sedangkan konsep skema tabel sesuai dengan

gagasan definisi tipe bahasa pemrograman. Nilai

24

variabel yang diberikan dapat berubah seiring

waktu, demikian pula isi dari tabel dapat berubah

seiring waktu ketika tabel diperbarui. Sebaliknya,

skema hubungan umumnya tidak berubah.

Tabel 2.4. Tabel Jurusan

Nama_Jurusan Lokasi Anggaran

Sistem Informasi Kampus I 200.000.000

Ilmu Komputer Kampus I 250.000.000

Biologi Kampus I 150.000.000

Pendidikan

Biologi

Kampus II 200.000.000

Matematika Kampus I 175.000.000

Pendidikan

Matematika

Kampus II 125.000.000

Pertimbangkan hubungan jurusan pada

Tabel 2.4. Skema untuk tabel itu adalah jurusan

(jurusan, lokasi, anggaran). Perhatikan bahwa

atribut nama jurusan muncul di skema dosen dan

skema jurusan. Duplikasi ini bukan kebetulan.

Sebaliknya, menggunakan atribut umum dalam

skema hubungan adalah salah satu cara untuk

menghubungkan hubungan yang berbeda.

Sebagai contoh, misalkan pengguna ingin

mencari informasi tentang semua dosen yang

bekerja di kampus I. Pengguna melihat pertama

pada tabel jurusan untuk menemukan semua

jurusan yang bertempat di Kampus I. Kemudian,

untuk setiap jurusan seperti itu, pengguna

mencari di dalam tabel dosen untuk menemukan

informasi tentang dosen yang terkait dengan

jurusan yang sesuai.

25

2.4. Kunci

Harus ada cara untuk menentukan

bagaimana data dalam tabel tertentu dibedakan.

Ini dinyatakan dalam atribut mereka. Artinya,

nilai-nilai atribut nilai data harus sedemikian rupa

sehingga mereka dapat mengidentifikasi baris

data secara unik. Dengan kata lain, tidak ada dua

record data dalam suatu tabel yang diizinkan

memiliki nilai yang persis sama untuk semua

atribut.

1. Superkey

adalah sekumpulan satu atau lebih atribut

yang diambil secara kolektif, memungkinkan

untuk mengidentifikasi record data unik

dalam tabel. Sebagai contoh, atribut ID dari

tabel dosen cukup untuk membedakan satu

dosen dari yang lain. Jadi, ID adalah

superkey. Atribut nama dosen, di sisi lain,

bukan superkey, karena beberapa dosen

mungkin memiliki nama yang sama.

Superkey mungkin berisi atribut yang tidak

berhubungan. Misalnya, kombinasi ID dan

nama adalah superkey untuk tabel dosen.

Jika ID adalah superkey, maka superkeys

semacam itu disebut kunci kandidat

(candidate key).

2. Kunci kandidat (Candidate Key)

Ada kemungkinan bahwa beberapa set

atribut yang berbeda dapat berfungsi sebagai

kunci kandidat. Misalkan kombinasi nama

dan jurusan cukup untuk membedakan antara

anggota tabel dosen. Kemudian, ID dan

jurusan adalah kunci kandidat. Meskipun

26

atribut ID dan nama bersama-sama dapat

membedakan record dosen, kombinasinya,

{ID, Nama}, tidak membentuk kunci

kandidat, karena atribut ID sendiri adalah

kunci kandidat.

3. Kunci Utama (Primary Key)

Istilah kunci utama (primary key) digunakan

untuk menunjukkan kunci kandidat yang

dipilih oleh perancang basis data sebagai

sarana utama untuk mengidentifikasi data

dalam suatu tabel. Kunci (baik utama,

kandidat, atau super) adalah properti dari

seluruh tabel, dan bukan data individual.

Setiap dua data individu dalam tabel dilarang

memiliki nilai yang sama pada atribut kunci

pada saat yang sama. Penunjukan kunci

mewakili kendala dalam perusahaan dunia

nyata yang dimodelkan. Kunci primer harus

dipilih dengan hati-hati. Seperti yang

tercatat, nama seseorang jelas tidak cukup,

karena mungkin ada banyak orang dengan

nama yang sama. Kunci utama harus dipilih

sedemikian rupa sehingga nilai atributnya

tidak pernah, atau sangat jarang, berubah.

Misalnya, bidang alamat seseorang tidak

boleh menjadi bagian dari kunci utama,

karena kemungkinan akan berubah. Nomor

KTP, misalnya, dijamin tidak akan pernah

berubah. Pengidentifikasi unik yang

dihasilkan oleh perusahaan umumnya tidak

berubah, kecuali jika dua perusahaan

bergabung, dalam kasus seperti itu

pengidentifikasi yang sama mungkin telah

dikeluarkan oleh kedua perusahaan, dan

27

realokasi pengidentifikasi mungkin

diperlukan untuk memastikan mereka unik.

Merupakan kebiasaan untuk membuat daftar

atribut kunci utama dari skema tabel sebelum

atribut lainnya; misalnya, atribut jurusan

terdaftar terlebih dahulu, karena itu adalah

kunci utama. Atribut kunci primer juga

digarisbawahi.

4. Kunci asing (foreign key)

Suatu tabel, katakanlah pada tabel kelas,

dapat memasukkan di antara atribut-

atributnya kunci utama dari tabel lain,

misalnya, atribut jurusan dalam dosen adalah

kunci asing (foreign key) dari dosen,

referensi jurusan, karena nama jurusan

adalah kunci utama dari tabel jurusan.

2.5. Skema Diagram

Skema basis data, bersama dengan

dependensi primary key dan foreign key, dapat

digambarkan oleh diagram skema. Gambar 2.1

menunjukkan diagram skema untuk organisasi

universitas. Setiap tabel muncul sebagai kotak,

dengan nama tabel di bagian atas, dan atribut

yang tercantum di dalam kotak. Atribut kunci

primer adalah yang bergaris bawah.

Ketergantungan kunci asing muncul sebagai

28

panah dari atribut kunci asing dari tabel referensi

ke kunci utama dari tabel yang direferensikan.

Gambar 2.1. Skema Diagram untuk Basis

Data Universitas

2.6. Latihan

1. Jelaskan bagian-bagian dari model data.

2. Jelaskan perbedaan antara skema basis data

dan contoh basis data.

3. Jelaskan perbedaan antara superkey,

candidate key, primary key dan foreign key.

29

BAB III

Structured Query Language (SQL)

3.1. SQL Data Definition Language (DDL)

Himpunan tabel dalam basis data harus

ditentukan ke sistem dengan menggunakan Data

Definition Language (DDL). SQL DDL

memungkinkan spesifikasi tidak hanya

seperangkat hubungan, tetapi juga informasi

tentang masing-masing hubungan, termasuk:

➢ Skema untuk setiap hubungan.

➢ Jenis nilai yang terkait dengan setiap atribut.

➢ Kendala integritas.

➢ Kumpulan indeks yang harus dipertahankan

untuk setiap tabel.

➢ Informasi keamanan dan otorisasi untuk

setiap tabel.

➢ Struktur penyimpanan fisik dari setiap tabel

pada disk.

3.1.1. Tipe Dasar Variabel SQL

Standar SQL mendukung berbagai tipe

bawaan, termasuk:

➢ char (n): String karakter dengan panjang

tetap dengan panjang yang ditentukan

pengguna (n). Misalnya Nomor KTP, karena

jumlah karakternya pasti sama sesuai

menggunakan char.

➢ varchar (n): String karakter panjang variabel

dengan panjang maksimum yang ditentukan

pengguna (n). Misalnya nama, jumlah

30

karakter bisa saja berbeda sehingga cukup

menentukan jumlah maksimal Panjang

karakter.

➢ int: Integer atau bilangan bulat.

➢ smallint: Integer kecil (subset yang

bergantung pada mesin dari tipe integer)

➢ numerik (p, d): Nomor titik tetap dengan

presisi yang ditentukan pengguna. Angka

terdiri dari p digit (ditambah tanda), dan d

digit p berada di kanan titik desimal. Dengan

demikian, numerik (3,1) memungkinkan

44,5 disimpan dengan tepat, tetapi 444,5 atau

0,32 tidak dapat disimpan dengan tepat di

bidang jenis ini.

➢ real, double: angka floating-point dan

presisi ganda, bisa menampung hingga 15

digit pecahan.

➢ float (n): Angka titik-mengambang, dengan

ketepatan setidaknya n digit.

Setiap jenis dapat menyertakan nilai khusus

yang disebut nilai null. Nilai null menunjukkan

nilai kosong yang mungkin ada tetapi tidak

diketahui, atau yang mungkin tidak ada sama

sekali. Dalam kasus tertentu, mungkin saja nilai

null dilarang untuk dimasukkan, maka dapat

dibuat variabel yang not null.

Tipe data char menyimpan string panjang

tetap. Pertimbangkan, misalnya, atribut A dari

tipe char (10). Jika string "Ada" disimpan dalam

atribut ini, 7 spasi ditambahkan ke string untuk

membuatnya menjadi 10 karakter. Sebaliknya,

jika atribut B bertipe varchar (10), dan "Ada"

disimpan di atribut B, tidak ada spasi yang akan

ditambahkan. Ketika membandingkan dua nilai

31

tipe char, jika mereka memiliki panjang yang

berbeda, ruang tambahan secara otomatis

ditambahkan ke yang lebih pendek untuk

membuat ukuran yang sama.

3.1.2. Definisi Skema Dasar

Hubungan SQL didefenisikan dengan

menggunakan perintah create table. Perintah

berikut ini membuat tabel jurusan dalam basis

data.

create table jurusan

(nama_jurusan varchar (20),

lokasi varchar (15),

anggaran numeric (12,2),

primary key (nama_jurusan));

Tabel yang dibuat di atas memiliki tiga

atribut, nama jurusan, yang merupakan karakter

string dengan panjang maksimum 20, lokasi,

yang merupakan karakter string dengan panjang

maksimum 15, dan anggaran, yang merupakan

angka dengan total 12 digit, 2 di antaranya adalah

setelah titik desimal. Perintah create table juga

menentukan bahwa atribut nama jurusan adalah

kunci utama tabel jurusan. Tanda titik koma yang

ditunjukkan pada akhir membuat pernyataan

tabel, serta akhir pernyataan SQL.

create table jurusan

(nama_jurusan varchar (20),

lokasi varchar (15),

anggaran numeric (12,2),

32

primary key (nama_jurusan));

create table mata_kuliah

(kode_MK varchar (7),

judul varchar (50),

nama_jurusan varchar (20),

sks numeric (2,0),

primary key (kode_MK),

foreign key (nama_jurusan)

references jurusan);

create table dosen

(ID varchar (5),

nama varchar (20) not null,

nama_jurusan varchar (20),

gaji numeric (8,2),

primary key (ID),

foreign key (nama_jurusan)

references jurusan);

create table kelas

(kode_MK varchar (8),

kode_kelas varchar (8),

semester varchar (6),

tahun numeric (4,0),

lokasi varchar (15),

ruangan varchar (7),

waktu varchar (4),

primary key (kode_MK,

kode_kelas, semester, tahun),

foreign key (kode_MK)

references mata_kuliah);

33

create table pengajaran

(ID varchar (5),

kode_MK varchar (8),

kode_kelas varchar (8),

semester varchar (6),

tahun numeric (4,0),

primary key (ID, kode_MK,

kode_kelas, semester, tahun),

foreign key (kode_MK,

kode_kelas, semester, tahun)

references kelas,

foreign key (ID) references

dosen);

SQL mendukung sejumlah kendala

integritas yang berbeda, di antaranya:

1. Primary key (Aj1, Aj2,.,, Ajm): Spesifikasi

primary-key mengatakan bahwa atribut Aj1,

Aj2,. . ., Ajm membentuk kunci utama untuk

tabel. Atribut primary key harus not null dan

unik; yaitu, tidak ada record yang dapat

memiliki nilai nol untuk atribut primary key,

dan tidak ada dua record dalam tabel yang

dapat sama pada semua atribut primary key.

Meskipun spesifikasi kunci primer bersifat

opsional, merupakan ide bagus untuk

menentukan kunci primer untuk setiap tabel.

2. Foreign key (Ak1, Ak2, ..., Akn) references

s: Spesifikasi kunci asing mengatakan bahwa

nilai atribut (Ak1, Ak2, ..., Akn) untuk setiap

record dalam tabel harus sesuai dengan nilai-

nilai dari atribut kunci utama dari beberapa

record dalam hubungan.

34

3. Not null: Batasan not null pada atribut

menetapkan bahwa nilai nol tidak diizinkan

untuk atribut itu; dengan kata lain, batasan

mengecualikan nilai nol dari domain atribut

itu. Sebagai contoh, batasan not null pada

atribut nama dari tabel dosen, ini

memastikan bahwa nama dosen tidak boleh

kosong.

SQL mencegah pembaruan apa pun ke

basis data yang melanggar batasan integritas.

Sebagai contoh, jika record yang baru saja

dimasukkan atau dimodifikasi dalam suatu tabel

memiliki nilai nol untuk atribut primary key, atau

jika record memiliki nilai yang sama pada atribut

primary key seperti halnya record lain dalam

tabel, SQL menandai kesalahan dan mencegah

pembaruan. Demikian pula, penyisipan data mata

kuliah dengan nilai nama jurusan yang tidak

muncul dalam tabel jurusan akan melanggar

batasan pada kunci asing, dan SQL akan

mencegah penyisipan tersebut terjadi.

Tabel yang baru dibuat awalnya kosong.

Perintah insert bisa digunakan untuk

menambahkan data ke dalam tabel. Misalnya,

jika ingin memasukkan fakta bahwa ada seorang

dosen bernama Ulfayani di jurusan Biologi

dengan ID Dosen 10211 dan gaji 3.000.000,

maka perintah yang dibuat:

insert into dosen

values (10211, ’Ulfayani’,

’Biologi’, 3000000);

35

Nilai ditentukan dalam urutan di mana

atribut yang sesuai tercantum dalam skema tabel.

Perintah delete dapat digunakan untuk

menghapus data dari suatu tabel, dengan perintah

sebagai berikut:

delete from mahasiswa;

Perintah di atas akan menghapus semua

record dari tabel mahasiswa. Bentuk lain dari

perintah delete memungkinkan record tertentu

untuk dihapus yang akan dibahas pada bab

berikutnya. Untuk menghapus tabel dari

database SQL, perintah drop table dapat

digunakan.

drop table mahasiswa;

Perintah drop table menghapus semua

informasi tentang tabel yang dihapus dari

database. Perintah itu adalah tindakan yang lebih

drastis daripada

delete from mahasiswa;

Perintah di atas mempertahankan tabel

mahasiswa, tetapi menghapus semua record di

dalam tabel mahasiswa. Perintah drop

menghapus tidak hanya semua record, tetapi juga

skema untuk tabel mahasiswa. Setelah tabel

mahasiswa dihapus, tidak ada record data yang

dapat dimasukkan ke dalam tabel mahasiswa

kecuali dibuat kembali dengan perintah create

table.

36

Perintah alter table dapat digunakan untuk

menambahkan atribut ke tabel yang ada. Semua

record dalam tabel tersebut ditetapkan null

sebagai nilai untuk atribut baru. Bentuk perintah

alter table adalah:

alter table dosen add alamat

varchar(50);

dimana dosen adalah nama dari tabel yang ada,

alamat adalah nama atribut yang akan

ditambahkan, dan varchar(50) adalah tipe atribut

yang ditambahkan. Atribut dari suatu tabel dapat

dihilangkan dengan perintah:

alter table dosen drop

alamat;

dimana dosen adalah nama tabel yang ada, dan

alamat adalah nama atribut tabel yang akan

dihapus.

3.2. Kueri pada Satu Tabel

Struktur dasar kueri SQL terdiri dari tiga

klausa: select, from, and where. Permintaan

mengambil sebagai input tabel yang tercantum

dalam klausa from, mengoperasikannya seperti

yang ditentukan pada klausa select dan where,

dan kemudian menghasilkan tabel sebagai

hasilnya.

Perhatikan pertanyaan sederhana

menggunakan contoh basis data universitas,

"Temukan nama semua dosen". Nama dosen

muncul di atribut nama, jadi dimasukkan ke

dalam klausa select.

37

select nama from dosen;

Tabel 3.1. Hasil Pencarian Nama Dosen

Nama

Suparni

Andri

Reza

Bobby

Sulastri

Sekarang pertimbangkan permintaan lain,

"Temukan nama jurusan semua dosen," yang

dapat ditulis sebagai:

select nama_jurusan from

dosen;

Tabel 3.2. Hasil Pencarian Jurusan Dosen

Nama_jurusan

Ilmu Komputer

Sistem Informasi

Biologi

Sistem Informasi

Matematika

Karena lebih dari satu dosen dapat

menjadi bagian dari sebuah jurusan, nama

jurusan dapat muncul lebih dari satu kali dalam

tabel dosen. Hasil kueri di atas adalah tabel yang

berisi nama-nama jurusan.

Dalam definisi matematika formal dari

model relasional, suatu tabel adalah himpunan.

Dengan demikian, duplikat record tidak akan

38

pernah muncul dalam tabel. Dalam praktiknya,

penghapusan duplikat memakan waktu. Oleh

karena itu, SQL memungkinkan duplikat dalam

tabel maupun dalam hasil ekspresi SQL. Dengan

demikian, kueri SQL sebelumnya mencantumkan

setiap nama jurusan satu kali untuk setiap record

yang muncul dalam tabel dosen.

Dalam kasus di mana pengguna ingin

memaksakan penghapusan duplikat, kata kunci

berbeda setelah select dapat disisipkan. Kueri

dapat ditulis sebagai berikut:

select distinct nama_jurusan

from dosen;

Tabel 3.3. Hasil Pencarian Jurusan Dosen

dengan distinct

Nama_Jurusan

Ilmu Komputer

Sistem Informasi

Biologi

Matematika

Jika duplikat ingin dihapus. Hasil kueri di

atas akan berisi setiap nama jurusan paling

banyak satu kali. SQL menggunakan kata kunci

all digunakan untuk menentukan secara eksplisit

bahwa duplikat tidak dihapus:

select all nama_jurusan from

dosen;

39

Klausa select juga dapat berisi ekspresi

aritmatika yang melibatkan operator +, -, ∗, dan /

yang beroperasi pada konstanta atau atribut

record. Misalnya:

select ID, nama,

nama_jurusan, gaji * 1.1

from dosen;

Ini menunjukkan apa yang akan terjadi jika

memberikan kenaikan 10% untuk setiap dosen,

bagaimanapun, kueri ini tidak menghasilkan

perubahan apa pun pada tabel dosen.

SQL juga menyediakan tipe data khusus,

seperti berbagai bentuk tipe tanggal, dan

memungkinkan beberapa fungsi aritmatika

beroperasi pada tipe ini. Klausa where

memungkinkan untuk hanya memilih baris-baris

dalam tabel hasil dari klausa from yang

memenuhi predikat tertentu. Pertimbangkan

kueri "Temukan nama semua dosen di jurusan

Sistem Informasi yang memiliki gaji lebih dari

4.000.000" Kueri ini dapat ditulis dalam SQL

sebagai:

select nama from dosen

where nama_jurusan = ’Sistem

Informasi’ and gaji >

4000000;

SQL memungkinkan penggunaan

penghubung logis and, or, dan not pada klausa

where. Operan dari penghubung logis dapat

berupa ekspresi yang melibatkan operator

40

pembanding <, <=, >, > =, =, dan <>. SQL

memungkinkan menggunakan operator

pembanding untuk membandingkan string dan

ekspresi aritmatika, serta tipe khusus, seperti tipe

tanggal.

3.3. Kueri pada Multi Tabel

Sejauh ini contoh kueri yang sudah

dipelajari berada pada satu tabel. Permintaan

sering kali perlu mengakses informasi dari

berbagai hubungan. Sebagai contoh, misalkan

pengguna ingin menjawab permintaan "Ambil

nama semua dosen, bersama dengan nama

jurusan dan lokasi jurusannya."

Melihat skema tabel dosen, pengguna

menyadari bahwa bisa saja mendapatkan nama

jurusan dari atribut jurusan, tetapi lokasi jurusan

ada di atribut lokasi dari tabel jurusan. Untuk

menjawab pertanyaan, setiap record dalam tabel

dosen harus dicocokkan dengan record dalam

tabel jurusan yang nilai nama jurusannya cocok

dengan nilai nama jurusan dari record dosen.

Dalam SQL, untuk menjawab kueri di atas,

tabel yang perlu diakses dapat dicantumkan

dengan from, dan menentukan kondisi yang

cocok denngan where. Permintaan di atas dapat

ditulis dalam SQL sebagai berikut:

select nama,

dosen.nama_jurusan, lokasi

from dosen, jurusan

where

dosen.nama_jurusan =

jurusan.nama_jurusan;

41

Tabel 3.4. Hasil Kueri Multi Tabel

Nama Nama_Jurusan Lokasi

Suparni Ilmu Komputer Kampus I

Andri Sistem Informasi Kampus I

Reza Biologi Kampus I

Bobby Sistem Informasi Kampus I

Sulastri Matematika Kampus I

Perhatikan bahwa atribut jurusan terdapat

di tabel dosen dan jurusan, dan nama tabel

digunakan sebagai awalan (dalam

dosen.nama_jurusan, dan jurusan.nama_jurusan)

untuk memperjelas atribut mana yang dimaksud.

Sebaliknya, atribut nama dan lokasi hanya

muncul di salah satu tabel, dan karenanya tidak

perlu diawali dengan nama tabel.

Penamaan ini mensyaratkan bahwa tabel

yang ada di dalam from memiliki nama yang

berbeda. Persyaratan ini menyebabkan masalah

dalam beberapa kasus, seperti ketika informasi

dari dua record berbeda dalam tabel yang sama

perlu digabungkan.

Seperti yang telah dipelajari sebelumnya,

kueri SQL dapat berisi tiga jenis klausa, klausa

select, from dan where. Peran setiap klausa

adalah sebagai berikut:

• Select digunakan untuk mendaftar atribut

yang diinginkan dalam hasil permintaan.

• From adalah daftar tabel yang akan diakses

dalam evaluasi kueri.

42

• Where adalah predikat yang melibatkan

atribut tabel dalam dari klausa from.

Meskipun klausa harus ditulis dalam urutan

select, from, where, cara termudah untuk

memahami operasi yang ditentukan oleh

permintaan adalah dengan mempertimbangkan

klausa dalam urutan operasional: pertama from,

lalu where, dan kemudian select.

Tabel hasil memiliki semua atribut dari

semua tabel dalam klausa from. Karena nama

atribut yang sama dapat muncul pada lebih dari

satu tabel, seperti yang dilihat sebelumnya, awali

nama relasi dari mana atribut itu berasal, sebelum

nama atribut.

Sebagai contoh, skema hubungan untuk

tabel dosen dan kelas adalah:

(dosen.ID, dosen.name,

dosen.nama_jurusan,

dosen.gaji, pengajaran.ID,

pengajaran.kode_MK,

pengajaran.kode_kelas,

pengajaran.semester,

pengajaran.tahun)

Dengan skema ini, dosen.ID dapat

dibedakan dari pengajaran.ID. Untuk atribut yang

hanya muncul di salah satu dari dua tabel,

biasanya akan dibuang awalan nama-tabel.

Penyederhanaan ini tidak mengarah pada

ambiguitas apa pun. Skema hubungan dapat

ditulis sebagai berikut:

43

(dosen. ID, nama,

nama_jurusan, gaji

pengajaran.ID, kode_MK,

kode_kelas, semester, tahun)

select nama, kode_MK from

dosen, pengajaran

where dosen.ID=

pengajaran.ID;

Kueri di atas hanya menghasilkan dosen

yang telah mengajar beberapa mata kuliah. Dosen

yang belum mengajar mata kuliah apa pun

bukanlah output, jika ingin menghasilkan record

seperti itu, bisa digunakan operasi yang disebut

outer join, yang akan dijelaskan berikutnya.

Jika hanya ingin menemukan nama dosen

dan pengidentifikasi mata kuliah untuk dosen di

jurusan Ilmu Komputer, dapat ditambahkan

predikat tambahan untuk klausa where, seperti

yang ditunjukkan di bawah ini.

select nama, kode_MK from

dosen, pengajaran

where dosen.ID =

pengajaran.ID and

dosen.nama_jurusan = ’Ilmu

Komputer’;

3.4. Natural Join

Sebelumnya dalam kueri contoh yang

menggabungkan informasi dari tabel dosen dan

44

tabel pengajaran, kondisi yang cocok

mengharuskan dosen.ID sama dengan

pengajaran.ID. Ini adalah satu-satunya atribut

dalam dua tabel yang memiliki nama yang sama.

Sebenarnya ini adalah kasus umum; yaitu,

kondisi pencocokan dalam klausa from paling

sering mengharuskan semua atribut dengan nama

yang cocok untuk disamakan.

Untuk membuat kehidupan seorang

programmer SQL lebih mudah untuk kasus

umum ini, SQL mendukung operasi yang disebut

natural join. Bahkan SQL mendukung beberapa

cara lain di mana informasi dari dua atau lebih

tabel dapat digabungkan bersama. Telah terlihat

bagaimana predikat klausa dapat digunakan

untuk menggabungkan informasi dari banyak

tabel.

Operasi gabungan alami beroperasi pada

dua tabel dan menghasilkan tabel lain sebagai

hasilnya. Natural join menganggap hanya

pasangan record dengan nilai yang sama pada

atribut yang muncul dalam skema kedua tabel.

Jadi, kembali ke contoh hubungan dosen dan

pengajaran, dosen bergabung dengan pengajaran

di mana record dari dosen dan pengajaran

memiliki nilai yang sama pada atribut umum,

yaitu ID.

Pertimbangkan pertanyaan “Untuk semua

dosen di universitas yang telah mengajar

beberapa mata kuliah, temukan nama mereka dan

kode mata kuliah dari semua program yang

mereka ajarkan”, yang ditulis sebelumnya

sebagai:

45

select nama, kode_MK

from dosen, pengajaran

where dosen.ID =

pengajaran.ID;

Query ini dapat ditulis lebih ringkas

menggunakan operasi natural-join di SQL

sebagai:

select nama, kode_MK

from dosen natural join

pengajaran;

Kedua kueri di atas menghasilkan hasil

yang sama. Seperti yang dilihat sebelumnya,

hasil dari operasi natural join adalah tabel. Secara

konseptual, ungkapan "dosen natural join

pengajaran" pada klausa digantikan oleh

hubungan yang diperoleh dengan menilai natural

join. Klausa where dan select kemudian

dievaluasi pada relasi ini.

Sebagai contoh, misalkan ingin menjawab

pertanyaan "Daftar nama dosen bersama dengan

judul mata kuliah yang mereka ajarkan."

Permintaan dapat ditulis dalam SQL sebagai

berikut:

select nama, judul

from dosen natural join

pengajaran, mata_kuliah

where

pengajaran.kode_MK =

mata_kuliah.kode_MK;

46

3.5. Operasi Dasar Tambahan

3.5.1. Operasi Rename

Perhatikan kembali kueri yang telah digunakan

sebelumnya:

select nama, kode_MK

from dosen, pengajaran

where dosen.ID =

pengajaran.ID;

Hasil kueri ini adalah tabel dengan atribut

nama dan kode mata kuliah saja. Nama-nama

atribut dalam hasil berasal dari nama-nama

atribut dalam tabel dari klausa from.

Namun, pengguna tidak dapat selalu

mendapatkan nama dengan cara ini, karena

beberapa alasan:

• Dua relasi dalam klausa from dapat memiliki

atribut dengan nama yang sama, dalam hal

ini nama atribut diduplikasi dalam hasilnya.

• Jika pengguna menggunakan ekspresi

aritmatika dalam klausa select, atribut yang

dihasilkan tidak memiliki nama.

• Jika nama atribut dapat diturunkan dari tabel

dasar seperti pada contoh sebelumnya,

penguuna mungkin ingin mengubah nama

atribut dalam hasilnya.

Oleh karena itu, SQL menyediakan cara

mengubah nama atribut dari tabel hasil, yakni

dengan menggunakan klausa as, yang dapat

dituliskan sebagai berikut:

47

select nama as nama dosen,

kode_MK

from dosen, pengajaran

where dosen.ID=

pengajaran.ID;

Klausa as sangat berguna dalam mengubah

nama tabel. Salah satu alasan untuk mengganti

nama tabel adalah mengganti nama tabel yang

panjang dengan versi singkat yang lebih nyaman

digunakan di tempat lain dalam kueri. Sebagai

ilustrasi, ditulis ulang kueri "Untuk semua dosen

di universitas yang telah mengajar beberapa mata

kuliah, temukan nama mereka dan kode mata

kuliah dari semua program yang mereka ajarkan."

select T.nama, S.kode_MK

from dosen as T, pengajaran

as S

where T.ID= S.ID;

Alasan lain untuk mengganti nama tabel

adalah kasus di mana ingin membandingkan

record dalam tabel yang sama. Misalkan ingin

menulis kueri "Temukan nama semua dosen yang

gajinya lebih besar dari setidaknya satu dosen di

jurusan Sistem Informasi." Dapat ditulis ekspresi

SQL:

select distinct T.nama

from dosen as T, dosen as S

where T.gaji > S.gaji and

S.nama_jurusan = ’Sistem

Informasi’;

48

Dalam kueri di atas, T dan S dapat dianggap

sebagai salinan tabel dosen, tetapi lebih tepatnya,

mereka dinyatakan sebagai alias, yaitu sebagai

nama alternatif, untuk tabel dosen. Identifier,

seperti T dan S, yang digunakan untuk mengubah

nama tabel disebut sebagai nama korelasi dalam

standar SQL, tetapi juga biasa disebut sebagai

tabel alias, atau variabel korelasi, atau variabel

tuple/record.

3.5.2. Operasi String

SQL menentukan string dengan

melampirkannya dalam tanda kutip tunggal,

misalnya, 'Komputer'. Karakter kutipan tunggal

yang merupakan bagian dari string dapat

ditentukan dengan menggunakan dua karakter

kutipan tunggal; misalnya, string "it’s me" dapat

diganti dengan "It’’s me". Standar SQL

menetapkan bahwa operasi kesetaraan pada

string adalah case-sensitive, akibatnya ungkapan

“’ comp. sci. ’= 'Comp. Sci. '” akan bernilai false.

Namun, beberapa sistem basis data, seperti

MySQL dan SQL Server, tidak membedakan

huruf besar dari huruf kecil saat mencocokkan

string; sebagai hasilnya “’ comp. sci. ’= 'Comp.

Sci. '”akan bernilai true pada database ini.

Namun perilaku default ini dapat diubah, baik di

tingkat basis data atau di tingkat atribut tertentu.

SQL juga memungkinkan berbagai fungsi

pada karakter string, seperti menggabungkan

(menggunakan "||"), Mengekstraksi substring,

menemukan panjang string, mengubah string

menjadi huruf besar (menggunakan fungsi

49

upper(s) di mana s adalah string) dan huruf kecil

(menggunakan fungsi lower(s)), menghilangkan

spasi di akhir string (menggunakan trim(s)) dan

sebagainya. Ada variasi pada rangkaian fungsi

string yang didukung oleh sistem basis data yang

berbeda.

Pencocokan pola dapat dilakukan pada

string, menggunakan operator like. Digambarkan

pola dengan menggunakan dua karakter khusus:

• Persen (%): karakter % cocok dengan semua

substring.

• Garis Bawah (_): Karakter tersebut cocok

dengan karakter apa pun.

Pola sensitif terhadap huruf besar-kecil;

artinya, huruf besar tidak cocok dengan huruf

kecil, atau sebaliknya. Untuk menggambarkan

pencocokan pola, pertimbangkan contoh berikut:

• ’Intro%’ cocok dengan sembarang string

yang dimulai dengan “Intro”

• ’%Komp%’ cocok dengan string apa pun

yang mengandung "Komp" sebagai

substring, misalnya, 'Ilmu Komputer', dan

'Biologi Komputasi'

• ’_ _ _’ cocok dengan string apa pun yang

persis tiga karakter.

• ’_ _ _%’ cocok dengan string apa pun yang

setidaknya tiga karakter.

SQL mengekspresikan pola dengan

menggunakan operator perbandingan sejenis.

Pertimbangkan kueri “Temukan nama semua

jurusan yang lokasinya mencakup substring ‘

Kampus ’.” Kueri ini dapat ditulis sebagai:

50

select nama_jurusan

from jurusan

where lokasi like ’%Kampus%’;

Agar pola menyertakan karakter pola

khusus (yaitu,% dan _), SQL memungkinkan

spesifikasi karakter escape. Karakter escape

digunakan segera sebelum karakter pola khusus

untuk menunjukkan bahwa karakter pola khusus

harus diperlakukan seperti karakter normal.

Didefinisikan karakter escape untuk

perbandingan serupa menggunakan garis miring

terbalik (\).

• like ’ab\%cd%’ escape ’\’ cocok dengan

semua string yang dimulai dengan “ab%cd”.

• like ’ab\\cd%’ escape ’\’ cocok dengan semua

string yang dimulai dengan “ab\cd”.

3.5.3. Spesifikasi Atribut pada Klausa Select

select dosen.*

from dosen, pengajaran

where dosen.ID =

pengajaran.ID;

Simbol tanda bintang "*" dapat

digunakan dalam klausa select untuk

menunjukkan "semua atribut". Dengan demikian,

penggunaan dosen.* dalam klausa select

menunjukkan bahwa semua atribut dosen harus

dipilih. Klausa select * menunjukkan bahwa

semua atribut dari tabel hasil dari klausa from

dipilih.

51

3.5.4. Menyusun Tampilan Record

SQL menawarkan kepada pengguna

kontrol atas urutan record dalam suatu tabel yang

ditampilkan. Klausa order by menyebabkan

record dalam hasil kueri muncul dalam urutan

yang diurutkan. Untuk mendaftar dalam urutan

abjad semua dosen di jurusan sistem informasi,

kuerinya adalah:

select nama

from dosen

where jurusan= ’Sistem

Informasi’

order by nama;

Secara default, klausa order by mencantumkan

item dalam urutan menaik. Untuk menentukan

urutan pengurutan, dapat ditentukan desc untuk

urutan menurun atau asc untuk urutan naik.

Selanjutnya, penyusunan dapat dilakukan pada

beberapa atribut. Misalkan pengguna ingin

membuat daftar seluruh tabel dosen dalam urutan

gaji yang menurun. Jika beberapa dosen memiliki

gaji yang sama, pengguna menyusunnya dalam

urutan berdasarkan nama. Dinyatakan kueri ini

dalam SQL sebagai berikut:

select *

from dosen

order by gaji desc, nama asc;

52

3.5.5. Predikan Klausa Where

SQL mencakup operator perbandingan

between untuk menyederhanakan klausa where

yang menentukan bahwa nilai lebih kecil atau

sama dengan beberapa nilai dan lebih besar dari

atau sama dengan beberapa nilai lainnya. Jika

pengguna ingin menemukan nama dosen dengan

jumlah gaji antara 4.500.000 dan 5.500.000,

pengguna dapat menggunakan perbandingan

between dengan kueri sebagai berikut:

select nama

from dosen

where gaji between 3500000

and 4500000;

dari pada:

select nama

from dosen

where gaji<= 4500000 and gaji

>= 3500000;

Selain operator perbandingan between,

pengguna juga dapat menggunakan operator

perbandingan not between.

3.6. Operasi Set

Operasi SQL, union, intersect, dan except

beroperasi pada tabel dan sesuai dengan operasi

teori himpunan matematika ∪, ∩, dan -.

select kode_MK

from kelas

53

where semester = 1 and tahun

= 2017;

Kueri di atas akan menghasilkan tabel yang

berisi semua kode mata kuliah untuk kelas

semester 1 tahun 2017.

Tabel 3.5. Mata Kuliah Semester 1 tahun

2017

select kode_MK

from kelas

where semester = 2 and tahun

= 2018;

Kueri di atas akan menghasilkan tabel yang

berisi semua kode mata kuliah untuk kelas

semester 2 tahun 2018.

Tabel 3.6. Mata Kuliah Semester 2 tahun

2018

Kode_MK

AB-101

AB-287

CH-156

Kode_MK

AB-101

DN-206

MI-213

MI-213

KS-119

54

3.6.1. Union

Untuk menemukan rangkaian semua mata

kuliah yang diajarkan pada semester 1 atau

semester 2, atau keduanya, kuerinya:

(select kode_MK

from kelas

where semester = 1 and tahun=

2017)

union

(select kode_MK

from kelas

where semester = 2 and tahun=

2018);

Operasi union secara otomatis

menghilangkan duplikat, tidak seperti klausa

select. Dengan demikian, tabel dua bagian mata

kuliah yang ditawarkan pada semester 1 dan

semester 2 akan muncul pada tabel hasil, dan

record yang sama hanya muncul sekali dalam

hasil.

Tabel 3.7. Tabel Hasil union

TS-287

SA-212

Kode_MK

AB-101

AB-287

CH-156

DN-206

MI-213

55

Jika ingin mempertahankan semua

duplikat, harus ditulis union all sebagai ganti

union:

(select kode_MK

from kelas

where semester = 1 and tahun=

2017)

union all

(select kode_MK

from kelas

where semester = 2 and tahun=

2018);

Tabel 3.8. Tabel Hasil union all

KS-119

TS-287

SA-212

Kode_MK

AB-101

AB-287

CH-156

AB-101

DN-206

MI-213

MI-213

KS-119

TS-287

SA-212

56

3.6.2. Intersect

Untuk menemukan rangkaian semua mata

kuliah yang diajarkan pada semester 1 2017 dan

juga pada semester 2 tahun 2018, kuerinya:

(select kode_MK

from kelas

where semester = 1 and tahun=

2017)

intersect

(select kode_MK

from kelas

where semester = 2 and tahun=

2018);

Tabel 3.9. Tabel Hasil intersect

Tabel hasil, hanya berisi record yang yang

terdapat pada klausa select pertama dan juga

terdapat pada klusa select yang kedua. Operasi

intersect secara otomatis menghilangkan

duplikat. Sebagai contoh, jika EC-101 diajarkan

2 kali pada semester 1 tahun 2017 dan 2 kali pada

semester 2 tahun 2018, maka hanya akan ada 1

record dengan EC-101 di tabel hasil. Jika ingin

mempertahankan semua duplikat, harus ditulis

intersect all sebagai ganti intersect:

(select kode_MK

from kelas

Kode_MK

AB-101

57

where semester = 1 and tahun=

2017)

intersect all

(select kode_MK

from kelas

where semester = 2 and tahun=

2018);

Tabel 3.10. Tabel Hasil intersect all

Jumlah duplikat record yang muncul dalam

hasilnya sama dengan jumlah minimum duplikat

di tabel hasil intersect. Namun, jika EC-101

diajarkan 2 kali pada semester 1 tahun 2017 dan

2 kali pada semester 2 tahun 2018, maka akan ada

2 record dengan EC-101 di tabel hasil.

3.6.3. Except

Untuk menemukan semua mata kuliah

yang diajarkan pada semester 1 tahun 2017 tetapi

tidak pada semester 2 tahun 2018, kuerinya:

(select kode_MK

from kelas

where semester = 1 and tahun=

2017)

except

(select kode_MK

from kelas

where semester = 2 and tahun=

2018);

Kode_MK

AB-101

58

Tabel 3.11. Tabel Hasil except

Tabel hasil menunjukkan isi dari tabel

mata kuliah semseter 1 tahun 2017 kecuali untuk

AB-101 tidak muncul. Operasi except,

mengeluarkan semua record dari input pertama

yang tidak terdapat pada input kedua. Operasi

except secara otomatis menghilangkan duplikat

dalam input sebelum melakukan perbandingan.

Misalnya, jika EC-101 diajarkan 2 kali pada

semester 1 tahun 2017 dan 2 kali pada semester 2

tahun 2018, hasil operasi except tidak akan

memiliki salinan EC-101. Jika ingin menyimpan

duplikat, harus ditulis except all sebagai

pengganti except:

(select kode_MK

from kelas

where semester = 1 and tahun=

2017)

except all

(select kode_MK

from kelas

where semester = 2 and tahun=

2018);

3.7. Null

Nilai null memberikan masalah khusus

dalam operasi relasional, termasuk operasi

aritmatika, operasi perbandingan, dan operasi

Kode_MK

AB-287

CH-156

59

yang ditetapkan. Hasil dari ekspresi aritmatika

(yang melibatkan, misalnya +, -, ∗, atau /) adalah

null jika ada nilai input yang null. Misalnya, jika

kueri memiliki ekspresi r + 5, dan r adalah null

untuk record tertentu, maka hasil ekspresi juga

harus null untuk record itu.

Perbandingan yang melibatkan null lebih

merupakan masalah. Sebagai contoh,

pertimbangkan perbandingan “1 < null”. Akan

salah untuk mengatakan ini benar karena tidak

tahu apa yang diwakili nilai null. Tetapi juga akan

salah untuk mengklaim ungkapan ini salah; jika

dilakukan, "not (1 < null)" akan mengevaluasi ke

true, yang tidak masuk akal. Oleh karena itu SQL

memperlakukan sebagai tidak diketahui

(unknown) hasil perbandingan yang melibatkan

nilai null (selain predikat is null dan is not null,

yang akan dijelaskan berikutnya). Ini

menciptakan nilai logis ketiga selain benar dan

salah. Karena predikat klausa where dapat

melibatkan operasi Boolean seperti and, or, dan

not pada hasil perbandingan, definisi operasi

Boolean diperluas untuk menangani nilai yang

unknown.

Tabel 3.12. Perbandingan Nilai Unknown

Kondisi 1 Operator Kondisi 2 Hasil

true

and

unknown unknown

false unknown false

unknown unknown unknown

true

or

unknown true

false unknown unknown

unknown unknown unknown

60

 not unknown unknown

Jika predikat klausa where mengevaluasi

salah atau tidak dikenal untuk record, record itu

tidak ditambahkan ke hasilnya. SQL

menggunakan kata kunci khusus null dalam

predikat untuk menguji nilai null. Dengan

demikian, untuk menemukan semua dosen yang

muncul dalam tabel dosen dengan nilai null untuk

gaji, kuerinya:

select nama

from dosen

where gaji is null;

Predikatnya is not null berhasil jika nilai

yang diterapkannya bukan null. Beberapa

implementasi SQL juga memungkinkan untuk

menguji apakah hasil perbandingan tidak

diketahui (unknown), bukan benar (true) atau

salah (false), dengan menggunakan klausa is

unknown dan is not unknown. Ketika kueri

menggunakan klausa select distinct, duplikat

record harus dihilangkan. Untuk tujuan ini,

ketika membandingkan nilai atribut yang sesuai

dari dua record, nilai tersebut diperlakukan sama

jika keduanya non-null dan nilainya sama, atau

keduanya null. Dengan demikian dua salinan

record, seperti {(’A’, null), (’A’, null)},

diperlakukan sebagai identik, walaupun beberapa

atribut memiliki nilai null. Dengan menggunakan

klausa distinct maka hanya menyimpan satu

salinan record identik tersebut. Perhatikan bahwa

perlakuan null di atas berbeda dari cara null

61

diperlakukan dalam predikat, di mana

perbandingan "null = null" akan mengembalikan

nilai yang tidak diketahui, daripada benar.

Pendekatan di atas memperlakukan record

sebagai identik jika mereka memiliki nilai yang

sama untuk semua atribut, bahkan jika beberapa

nilai adalah null, juga digunakan untuk kesatuan

operasi union, intersection dan except5.

3.8. Modifikasi Basis Data

Berikut akan dijelaskan cara menambah,

menghapus, atau mengubah informasi dengan

SQL.

3.8.1. Delete

Permintaan penghapusan diungkapkan

dengan cara yang hampir sama dengan kueri.

Pengguna hanya dapat menghapus seluruh baris

data, dan tidak dapat menghapus nilai hanya pada

atribut tertentu. SQL menyatakan penghapusan

dengan kueri:

delete from r

where P;

Dimana P mewakili predikat dan r

mewakili suatu tabel. Pernyataan hapus pertama-

tama menemukan semua record t dalam r yang P

(t) benar, lalu menghapusnya dari r. Klausa where

dapat dihilangkan, dalam hal ini semua record

dalam r akan dihapus.

5 Raghu Ramakrishnan and Johannes Gehkre, Database

Management Systems Third Edition (Mc Graw Hill, 2003).

62

Perhatikan bahwa perintah hapus hanya

beroperasi pada satu tabel. Jika ingin menghapus

record dari beberapa tabel, harus menggunakan

satu perintah delete untuk setiap tabel. Perintah

ini menghapus semua record dari tabel dosen,

tabel dosen itu sendiri masih ada, tetapi kosong.

Berikut adalah contoh permintaan

penghapusan SQL

• Hapus semua record dalam tabel dosen yang

berkaitan dengan dosen di jurusan biologi.
delete from dosen

where nama_jurusan=

’biologi’;

• Hapus semua dosen dengan gaji antara

1.000.000 dan 2.000.000.
delete from dosen

where gaji between 1000000

and 2000000;

• Hapus semua record dalam tabel dosen untuk

dosen yang terkait dengannya sebuah jurusan

yang terletak di Kampus I.
delete from dosen

where nama_jurusan in (select

nama_jurusan

from jurusan

where lokasi= ’Kampus I’);

Permintaan penghapusan ini pertama-tama

menemukan semua nama jurusan yang berlokasi

di Kampus I, dan kemudian menghapus semua

record dosen yang berkaitan dengan jurusan

tersebut.

63

Perhatikan bahwa, meskipun pengguna

dapat menghapus record dari hanya satu tabel

pada satu waktu, pengguna dapat mereferensikan

sejumlah relasi mana pun di dalam select-from-

where di tempat penghapusan. Permintaan

penghapusan dapat berisi seleksi bersarang yang

mereferensikan tabel dari mana record akan

dihapus. Misalnya, jika ingin menghapus catatan

semua dosen dengan gaji di bawah rata-rata di

universitas. Kuerinya dapat ditulis sebagai

berikut:

delete from dosen

where gaji< (select avg

(gaji)

from dosen);

3.8.2. Insert

Untuk memasukkan data ke dalam tabel,

ditentukan record yang akan disisipkan atau

menulis kueri yang hasilnya adalah serangkaian

record yang akan disisipkan. Jelas, nilai atribut

untuk record yang dimasukkan harus anggota

dari domain atribut yang sesuai. Demikian pula,

record yang dimasukkan harus memiliki jumlah

atribut yang benar.

Pernyataan insert paling sederhana adalah

permintaan untuk memasukkan satu record.

Misalkan ingin memasukkan fakta bahwa ada

mata kuliah BD-123 di jurusan Sistem Informasi

dengan judul "Sistem Basis Data", dengan jumlah

4 sks. Kuerinya adalah:

insert into mata_kuliah

64

values (’BD-123’, ’Sistem

Basis Data’, ’Sistem Informasi’,

4);

Dalam contoh ini, nilai ditentukan dalam

urutan di mana atribut yang sesuai tercantum

dalam skema tabel. Untuk kepentingan pengguna

yang mungkin tidak ingat urutan atribut, SQL

memungkinkan atribut ditentukan sebagai bagian

dari pernyataan insert. Misalnya, pernyataan

insert SQL berikut ini fungsinya identik dengan

yang sebelumnya:

insert into mata_kuliah

(kode_MK, judul, nama_jurusan,

sks)

values (’BD-123’, ’Sistem

Basis Data’, ’Sistem Informasi’,

4);

atau

insert into mata_kuliah

(judul, kode_MK, sks,

nama_jurusan)

values (’Sistem Basis Data’,

’BD-123’, 4, ’Sistem Informasi’);

Secara umum, pengguna mungkin ingin

menyisipkan record berdasarkan hasil dari kueri.

Misalkan ingin membuat setiap mahasiswa di

jurusan biologi yang telah memperoleh lebih dari

144 sks, menjadi seorang dosen di jurusan

biologi, dengan gaji 2.000.000. Kuerinya:

65

insert into dosen

select ID, nama,

nama_jurusan, 2000000

from mahasiswa

where nama_jurusan= ’Biologi’

and total_sks> 144;

SQL mengevaluasi pernyataan select

terlebih dahulu, memberikan satu set record yang

kemudian dimasukkan ke dalam tabel dosen.

Setiap record memiliki ID, nama, nama_jurusan,

dan gaji.

3.8.3. Update

Dalam situasi tertentu, pengguna

mungkin ingin mengubah nilai dalam sebuah

record tanpa mengubah semua nilai dalam

record. Untuk tujuan ini, pernyataan update

dapat digunakan. Seperti memasukkan dan

menghapus, pengguna juga dapat memilih record

untuk diubah dengan menggunakan kueri.

Misalkan kenaikan gaji tahunan sedang

dilakukan, dan gaji semua dosen akan dinaikkan

sebesar 5 persen. Kuerinya:

update dosen

set gaji= gaji* 1.05;

Pernyataan update sebelumnya diterapkan

sekali untuk masing-masing record dalam tabel

dosen.

66

Jika kenaikan gaji hanya dibayarkan kepada

dosen dengan gaji kurang dari 2.000.000,

kuerinya:

update dosen

set gaji= gaji* 1.05

where gaji< 2000000;

Seperti sebelumnya, SQL terlebih dahulu

menguji semua record dalam tabel untuk melihat

apakah mereka harus diperbarui, dan melakukan

pembaruan sesudahnya.

Contoh lain, pengguna dapat menulis

permintaan "Berikan kenaikan gaji 5 persen

kepada dosen yang gajinya kurang dari rata-rata"

sebagai berikut:

update dosen

set gaji= gaji* 1.05

where gaji < (select avg

(gaji)

from dosen);

3.9. Latihan

1. Jelaskan tipe-tipe dasar variabel SQL.

2. Tuliskan kueri SQL untuk menampilkan

nama dosen yang hanya pada jurusan sistem

informasi saja.

3. Tuliskan kueri SQL untuk menemukan

rangkaian semua mata kuliah yang diajarkan

pada semester 1 2017 dan juga pada semester

2 tahun 2018.

67

BAB IV

Entity Relationship (ER)

4.1. Entity Relationship Model

Model data entity relationship (ER)

memungkinkan untuk menggambarkan data yang

terlibat dalam perusahaan dunia nyata dalam hal

objek dan hubungannya dan secara luas

digunakan untuk mengembangkan desain basis

data awal. Ini memberikan konsep-konsep

berguna yang memungkinkan untuk beralih dari

deskripsi informal tentang apa yang diinginkan

pengguna dari database mereka ke deskripsi yang

lebih rinci dan tepat yang dapat

diimplementasikan dalam DBMS.

Dalam entity relationship model (atau

model E / R), struktur data direpresentasikan

secara grafis, sebagai "Entity Relationship

Diagram (ERD)" menggunakan tiga prinsip jenis

elemen yaitu set entitas, atribut, dan

relasi(hubungan).

Model ER sangat berguna dalam

memetakan makna dan interaksi perusahaan

dunia nyata ke dalam skema konseptual. Karena

khasiatnya ini, banyak alat desain database

menggunakan konsep dari model ER . Model

data ER menggunakan tiga konsep dasar: set

entitas, set relasi, dan atribut.

4.2. Entitas

Entitas adalah "benda" atau "objek" di

dunia nyata yang dapat dibedakan dari semua

68

objek lainnya. Misalnya, setiap orang di

universitas adalah entitas. Entitas memiliki

seperangkat properti, dan nilai untuk beberapa set

properti mungkin secara unik mengidentifikasi

entitas. Misalnya, seseorang mungkin memiliki

properti id yang nilainya unik yang saya

mengidentifikasikan orang tersebut. Dengan

demikian, nilai 192110761 untuk id orang akan

secara unik mengidentifikasi satu orang tertentu

di universitas. Demikian pula, mata kuliah dapat

dianggap sebagai entitas, dan kode mata kuliah

secara unik mengidentifikasi entitas mata kuliah

di universitas. Suatu entitas mungkin konkret,

seperti orang atau buku, atau mungkin abstrak,

seperti mata kuliah, perkuliahan, atau penjualan.

Entity set (set entitas) adalah himpunan

entitas dengan tipe yang sama yang berbagi

properti atau atribut yang sama. Himpunan semua

orang yang menjadi dosen di universitas tertentu,

misalnya, dapat didefinisikan sebagai set entitas

dosen. Demikian pula, himpunan entitas

mahasiswa dapat mewakili himpunan semua

mahasiswa di universitas.

Dalam proses pemodelan, sering

digunakan istilah entitas yang ditetapkan dalam

abstrak, tanpa merujuk ke set entitas individu

tertentu. Digunkan perpanjangan istilah entitas

yang ditetapkan untuk merujuk pada koleksi

entitas yang sebenarnya milik entitas yang

ditetapkan. Dengan demikian, himpunan dosen di

universitas membentuk perpanjangan dari set

entitas dosen.

69

Set entitas tidak perlu dipisahkan.

Sebagai contoh, adalah mungkin untuk

mendefinisikan set entitas dari semua orang di

universitas. Entitas seseorang dapat berupa

entitas dosen, entitas mahasiswa, keduanya, atau

tidak sama sekali.

Entitas diwakili oleh seperangkat atribut.

Atribut adalah sifat deskriptif yang dimiliki oleh

setiap anggota entitas yang ditetapkan.

Penunjukan atribut untuk set entitas menyatakan

bahwa database menyimpan informasi yang sama

mengenai setiap entitas dalam set entitas. Namun,

setiap entitas dapat memiliki nilai sendiri untuk

setiap atribut. Atribut yang mungkin dari

kumpulan entitas dosen adalah ID, nama, nama

jurusan, dan gaji. Atribut yang mungkin dari set

entitas mata kuliah adalah kode_MK, judul, nama

jurusan, dan sks.

Setiap entitas memiliki nilai untuk setiap

atributnya. Misalnya, entitas dosen tertentu dapat

memiliki nilai 10021 untuk ID, nilai Raissa untuk

nama, nilai Sistem Informasi untuk nama jurusan,

dan nilai 3000000 untuk gaji.

Atribut ID digunakan untuk

mengidentifikasi dosen secara unik, karena

mungkin ada lebih dari satu dosen dengan nama

yang sama. Di Indonesia, NIK(Nomor Induk

Kependudukan) digunakan sebagai atribut yang

nilainya mengidentifikasi orang tersebut secara

unik. Secara umum perusahaan harus membuat

dan menetapkan pengidentifikasi unik untuk

setiap karyawannya.

70

Basis data mencakup kumpulan set

entitas, yang masing-masing berisi sejumlah

entitas dari jenis yang sama. Tabel 4.1 dan 4.2

menunjukkan bagian dari basis data universitas

yang terdiri dari dua set entitas: dosen dan

mahasiswa. Agar gambarnya sederhana, hanya

beberapa atribut dari dua set entitas yang

ditampilkan.

Tabel 4.1. Set Entitas Dosen

10021 Raissa

10024 Laylan

10031 Franindya

10049 Sriani

Tabel 4.2. Set Entitas Mahasiswa

192110761 Sri Wahyuni

192122434 Indah Lestari

193213423 Tommy

180898392 Antonio

182379002 Yuli Astari

Basis data untuk universitas dapat

mencakup sejumlah set entitas lainnya. Sebagai

contoh, selain melacak dosen dan mahasiswa,

universitas juga memiliki informasi tentang mata

kuliah, yang diwakili oleh entitas yang mengatur

mata kuliah dengan atribut kode_MK, judul,

nama jurusan dan sks. Dalam lingkungan nyata,

basis data universitas dapat menyimpan puluhan

set entitas.

71

4.2.1. Entitas Kuat dan Entitas Lemah

Contoh sebelumnya menggambarkan

entitas kuat, yaitu entitas mandiri yang

keberadaannya tidak bergantung kepada

keberadaan entitas yang lainnya. Sebaliknya,

entitas lemah adalah entitas yang keberadaannya

bergantung kepada keberadaan entitas lainnya.

Entitas lemah tidak akan memiliki arti di dalam

ERD tanpa adanya entitas kuat lainnya tempat

entitas tersebut bergantung. Entitas lemah tidak

memiliki pengidentifikasinya sendiri dan

berperan sebagai pengidentifikasi sebagian.

Sebagai contoh, entitas pasangan dosen yang

merupakan entitas lemah yang bergantung pada

entitas dosen. Tanpa adanya entitas dosen, maka

entitas pasangan dosen tidak memiliki arti dan

tidak dibutuhkan.

4.2.2. Entitas Asosiatif

Entitas asosiatif adalah entitas yang

terbentuk dari suatu relasi dan tidak bisa berdiri

sendiri. Entitas Asosiatif digambarkan dengan

kotak persegi panjang dengan belah ketupat di

bagian dalamnya. Sebagai contoh entitas ijazah

yang terbentuk antara entitas mahasiswa dengan

entitas kuliah dengan relasi mengambil. Relasi

yang sebenarnya adalah mahasiswa mengambil

kuliah, kemudian pada akhir perkuliahan

mahasiswa akan mendapatkan ijazah. Oleh

karena itu terbentuk entitas asosiatif ijazah yang

mana hanya dapat muncul setelah mahasiswa

menyelesaikan kuliah, namun jika mahasiswa

tersebut tidak memenuhi persyaratan

72

menyelesaikan kuliah, maka mahasiswa tersebut

tidak mendapatkan ijazah6.

4.3. Atribut

Untuk setiap atribut, ada satu set nilai yang

diizinkan, yang disebut domain, atau set nilai,

dari atribut itu. Domain dari atribut kode mata

kuliah mungkin himpunan semua string teks

dengan panjang tertentu. Demikian pula, domain

atribut semester mungkin berupa string dari set

{genap, ganjil}.

Secara formal, atribut dari set entitas adalah

fungsi yang memetakan dari entitas yang

ditetapkan ke domain. Karena himpunan entitas

mungkin memiliki beberapa atribut, masing-

masing entitas dapat dijelaskan oleh satu set

pasangan (atribut, nilai data), satu pasang untuk

setiap atribut dari kumpulan entitas. Misalnya,

entitas dosen tertentu dapat dijelaskan oleh set

{(ID, 10021), (nama, Raissa), (nama jurusan,

Sistem Informasi), (gaji, 3000000)}, yang berarti

entitas menggambarkan seseorang bernama

Raissa yang ID dosennya adalah 10021, yang

merupakan anggota jurusan Sistem Informasi

dengan gaji Rp. 3.000.000. Nilai atribut yang

menggambarkan suatu entitas merupakan bagian

yang signifikan dari data yang disimpan dalam

database.

6 Adi Nugroho, Perancangan Dan Implementasi Sistem

Basis Data (Penerbit Andi, 2011).

73

Atribut, seperti yang digunakan dalam

model E-R, dapat dikarakterisasi dengan tipe

atribut berikut:

4.3.1. Atribut Sederhana dan Komposit

Contoh – contoh sebelumnya merupakan

atribut sederhana; yaitu, mereka belum dibagi

menjadi beberapa bagian. Gabungan atribut, di

sisi lain, dapat dibagi menjadi beberapa bagian.

Misalnya, nama atribut dapat disusun sebagai

atribut komposit yang terdiri dari nama depan,

nama tengah, dan nama belakang. Menggunakan

atribut komposit dalam skema desain adalah

pilihan yang baik jika pengguna ingin merujuk

keseluruh atribut pada beberapa kesempatan, dan

hanya komponen atribut pada kesempatan lain.

Misalkan harus menambahkan alamat ke entitas

mahasiswa. Alamat dapat didefinisikan sebagai

atribut alamat gabungan dengan atribut jalan,

kota, negara bagian, dan kode pos. 3 Atribut

komposit membantu mengelompokkan atribut

terkait, membuat pemodelan lebih jelas.

Perhatikan juga bahwa atribut gabungan dapat

muncul sebagai hirarki. Dalam atribut komposit

alamat, komponen jalan atributnya dapat dibagi

lebih lanjut menjadi nomor jalan, nama jalan, dan

nomor apartemen.

4.3.2. Atribut Bernilai Tunggal dan

Multinilai

Atribut dalam contoh sebelumnya memiliki

nilai tunggal untuk entitas tertentu. Misalnya,

atribut ID dosen untuk entitas dosen tertentu

74

merujuk hanya satu ID dosen. Atribut tersebut

dikatakan bernilai tunggal. Mungkin ada contoh

di mana atribut memiliki aset nilai untuk entitas

tertentu. Misalkan menambah set entitas dosen

sebuah nomor atribut telepon. Seorang dosen

mungkin memiliki nol, satu, atau beberapa nomor

telepon, dan dosen yang berbeda mungkin

memiliki nomor telepon yang berbeda. Atribut

jenis ini dikatakan multinilai. Bila perlu, batas

atas dan bawah dapat ditempatkan pada nomor

telepon dalam atribut multinilai. Misalnya,

universitas dapat membatasi jumlah nomor

telepon yang dicatat untuk satu dosen tunggal

menjadi dua. Penempatan batas dalam hal ini

menyatakan bahwa atribut nomor telepon

instruktur mungkin memiliki antara nol dan dua

nilai.

4.3.3. Atribut yang diturunkan

Nilai untuk tipe atribut dapat diturunkan

dari nilai atribut atau entitas terkait lainnya.

Sebagai contoh, katakan bahwa set entitas dosen

memiliki atribut yang membimbing mahasiswa,

yang mewakili banyaknya mahasiswa yang

dibimbing oleh dosen. Nilai untuk atribut ini

dapat diperoleh dengan menghitung jumlah

entitas mahasiswa yang terkait dengan dosen itu.

Sebagai contoh lain, anggap bahwa kumpulan

entitas dosen memiliki atribut usia yang

menunjukkan usia dosen. Jika set entitas dosen

juga memiliki atribut tanggal lahir, dapat dihitung

usia dari tanggal lahir dan tanggal saat ini.

Dengan demikian, usia adalah atribut turunan.

Dalam hal ini, tanggal lahir dapat dirujuk sebagai

75

atribut dasar, atau atribut yang disimpan. Nilai

atribut yang diturunkan tidak disimpan tetapi

dihitung saat diperlukan.

Atribut mengambil nilai null ketika entitas

tidak memiliki nilai. Nilai null juga dapat

menunjukkan "tidak berlaku", yaitu bahwa nilai

tersebut tidak ada untuk entitas. Misalnya,

seseorang mungkin tidak memiliki nama tengah.

Null juga bisa menetapkan bahwa nilai atribut

tidak diketahui. Nilai yang tidak diketahui bisa

karena hilang (nilainya ada, tetapi kami tidak

memiliki informasi itu) atau tidak diketahui

(tidak tahu apakah nilainya benar-benar ada).

Misalnya, jika nilai nama untuk dosen tertentu

adalah null, dianggap bahwa nilainya hilang,

karena setiap dosen harus memiliki nama. Nilai

null untuk atribut nomor rumah dapat berarti

bahwa alamat tidak termasuk nomor rumah (tidak

berlaku), bahwa nomor rumah ada tetapi tidak

diketahui (hilang), atau bahwa tidak tahu apakah

atau nomor rumah adalah bagian dari alamat

dosen atau tidak (tidak diketahui)7.

4.4. Relasi

Sebuah relasi adalah asosiasi antara

beberapa entitas. Sebagai contoh, bisa

didefinisikan relasi penasehat yang mengaitkan

Dosen Supriadi dengan mahasiswa Amelia.

Hubungan ini menentukan bahwa Supriadi

adalah penasehat bagi mahasiswa Amelia.

Sebuah set relasi adalah satu set hubungan dari

jenis yang sama. Secara formal, ini adalah

7 Adyanata Lubis, Basis Data Dasar (Deepublish, 2016).

76

ahubungan matematika pada set entitas n ≥ 2. Jika

E1, E2, ..., En adalah himpunan entitas, maka

himpunan relasi R adalah himpunan bagian dari

{(e1, e2, . . ., en) | e1 ∈ E1, e2 ∈ E2, . . . , en ∈

En }

di mana (e1, e2, ..., en) adalah suatu relasi.

Pertimbangkan dua set entitas dosen dan

mahasiswa pada gambar di bawah ini.

Didefinisikan set relasi penasehat untuk

menunjukkan hubungan antara dosen dan

mahasiswa. Gambar berikut menggambarkan

hubungan ini.

100021 Supriadi 072119262 Amelia

200312 Sriani 072219034 Putri

100107 Bambang 082119921 Kirana

310201 Fadli 082119729 Febriana

 072119031 Andre

Gambar 4.1. Set Relasi Penasehat

Sebagai contoh lain, pertimbangkan entitas

dua set mahasiswa dan kelas. Dapat didefinisikan

hubungan yang diperlukan untuk menunjukkan

hubungan antara seorang mahasiswa dan kelas di

mana siswa tersebut terdaftar. Asosiasi antara set

entitas disebut sebagai partisipasi, itu adalah

entitas menetapkan E1, E2, ..., En berpartisipasi

dalam relasi set R. Sebuah relasi dalam skema ER

mewakili hubungan antara entitas yang

disebutkan di perusahaan dunia nyata yang

dimodelkan. Sebagai contoh, individu entitas

77

dosen Supriadi, yang memiliki ID dosen 100021,

dan entitas mahasiswa Amelia, yang memiliki

NIM 072119262, berpartisipasi dalam contoh

relasi penasihat. Ini contoh relasi yang

menyatakan bahwa di universitas, dosen Supriadi

menasihati mahasiswa Amelia. Fungsi yang

dimainkan suatu entitas dalam suatu hubungan

disebut peran entitas.

Karena set entitas yang berpartisipasi

dalam set hubungan umumnya berbeda, peran

tersirat dan biasanya tidak ditentukan. Namun,

mereka berguna saat arti suatu hubungan perlu

klarifikasi. Seperti halnya ketika entitas

menetapkan hubungan tidak berbeda, yaitu set

entitas yang sama berpartisipasi dalam hubungan

yang ditetapkan lebih dari sekali, dalam peran

yang berbeda. Dalam jenis relasi ini, kadang-

kadang disebut set relasi rekursif, nama peran

eksplisit diperlukan untuk menentukan

bagaimana suatu entitas berpartisipasi dalam

relasi.

Sebagai contoh, pertimbangkan entitas

mata kuliah yang mencatat informasi tentang

semua mata kuliah yang ditawarkan di

Universitas. Untuk menggambarkan situasi di

mana satu mata kuliah (C2) merupakan prasyarat

untuk mata kuliah lain (C1) dimiliki set relasi

prasyarat yang dimodelkan dengan dipasangkan

pada entitas. Mata kuliah pertama dari pasangan

yang mengambil peran tentu saja C1, sedangkan

yang kedua mengambil peran prasyarat C2.

Dengan cara ini, semua relasi prasyarat ditandai

78

oleh pasangan (C1, C2), pasangan (C2, C1) tidak

termasuk.

Dimungkinkan untuk memiliki lebih dari

satu set relasi yang melibatkan set entitas yang

sama. Sebagai contoh, set entitas dosen dan

entitas mahasiswa berpartisipasi dalam set relasi

penasihat. Selain itu, anggaplah setiap mahasiswa

harus memiliki dosen yang lain yang melayani

sebagai penasihat jurusan. Kemudian yang

entitas dosen dan mahasiswa dapat berpartisipasi

dalam set relasi lain, yaitu penasihat jurusan. Set

relasi penasihat dan penasihat jurusan

memberikan contoh set relasi biner, yaitu yang

melibatkan dua set entitas. Sebagian besar set

relasi dalam sistem basis data adalah biner.

Namun, terkadang, set relasi melibatkan lebih

dari dua set entitas.

Sebagai contoh, misalkan dimiliki set

entitas proyek yang mewakili semua proyek

penelitian yang dilakukan di universitas.

Pertimbangkan set entitas dosen, mahasiswa dan

proyek. Setiap proyek dapat memiliki beberapa

mahasiswa dan beberapa dosen yang terkait.

Selanjutnya, setiap mahasiswa mengerjakan

proyek harus memiliki dosen terkait yang

memandu mahasiswa dalam proyek tersebut.

Untuk saat ini, diabaikan dua relasi pertama,

antara proyek dan dosen, dan antara proyek dan

mahasiswa. Sebaliknya, fokus pada informasi

tentang dosen sedang membimbing mahasiswa

yang mana pada proyek tertentu. Untuk mewakili

informasi ini, dihubungkan tiga set entitas

melalui set relasi pembimbing proyek, yang

79

menunjukkan bahwa mahasiswa tertentu

dibimbing oleh dosen tertentu pada proyek

tertentu.

Perhatikan bahwa seorang mahasiswa

dapat memiliki dosen berbeda sebagai

pembimbing untuk proyek yang berbeda, yang

tidak dapat ditangkap oleh relasi biner antara

mahasiswa dan dosen. Jumlah set entitas yang

berpartisipasi dalam satu set relasi adalah derajat

dari set relasi. Set relasi biner adalah derajat 2, set

relasi ternary adalah derajat 3.

4.5. Kardinalitas

Memetakan kardinalitas, atau rasio

kardinalitas, menyatakan jumlah entitas yang

dapat dikaitkan dengan entitas lain melalui set

relasi. Memetakan kardinalitas paling berguna

dalam menggambarkan set relasi biner, meskipun

mereka dapat berkontribusi pada deskripsi set

relasi yang melibatkan lebih dari dua set entitas.

Pada bagian ini, akan berkonsentrasi hanya pada

set relasi biner. Untuk relasi biner, set R antara

entitas set A dan B, pemetaan kardinalitas harus

salah satu dari yang berikut:

• Satu-ke-satu

Suatu entitas di A dikaitkan dengan paling

banyak satu entitas di B, dan sebuah entitas di

B berhubungan dengan paling banyak satu

entitas di A.

• Satu-ke-banyak

Entitas dalam A dikaitkan dengan beberapa

(nol atau lebih) entitas di B. Entitas dalam B,

80

hanya dapat dikaitkan dengan paling banyak

satu entitas di A.

• Banyak-ke-satu

Sebuah entitas di A berhubungan dengan

paling banyak satu entitas di B. Sebuah

entitas dalam B, dapat dikaitkan dengan

beberapa (nol atau lebih) dari entitas di A.

• Banyak-ke-banyak

Entitas dalam A dikaitkan dengan

beberapa(nol atau lebih)entitas dalam B, dan

entitas dalam B juga dapat dikaitkan dengan

beberapa (nol atau lebih) entitas di A.

Kardinalitas merupakan pemetaan yang

tepat untuk suatu relasi tertentu yang sangat jelas

tergantung pada situasi dunia nyata yang

ditetapkan oleh set relasi. Sebagai contoh,

rangkaian relasi penasihat. Jika secara khusus

pada universitas, seorang mahasiswa dapat

dinasihati oleh hanya satu dosen, dan seorang

dosen dapat membimbing beberapa mahasiswa,

maka hubungan yang ditetapkan dari dosen ke

mahasiswa adalah satu-ke-banyak. Jika seorang

siswa dapat dinasihati oleh beberapa dosen

(seperti dalam kasus mahasiswa dibimbing

81

bersama), maka set relasinya adalah banyak-ke-

banyak.

Gambar 4.2. Pemetaan Kardinalitas (a)satu-

ke-satu (b)satu-ke-banyak

Gambar 4.3. Pemetaan Kardinalitas

(a)banyak-ke-satu (b)banyak-ke-banyak

4.6. Entity Relationship Diagram (ERD)

ERD adalah kualitas yang sederhana dan

jelas yang mungkin menjelaskan sebagian besar

penggunaan model ER secara luas. ERD dapat

mengekspresikan keseluruhan logika struktur

database secara grafis.

82

4.6.1. Struktur Dasar ERD

Gambar 4.4. ERD Dosen dan Mahasiswa

 Pada gambar di atas dapat dilihat diagram

relasi antara entitas dosen dan mahasiswa yang

diberi nama relasi membimbing. Diagram ini

menjelaskan hubungan dosen membimbing

mahasiswa dan mahasiswa dibimbing oleh dosen.

Bentuk persegi menggambarkan entitas, belah

ketupat menggambarkan relasi, dan lingkaran

menggambarkan atribut dari entitas. Untuk

simbol ERD lebih lengkapnya dapat dilihat pada

tabel di bawah ini.

Tabel 4.3. Simbol Dasar ERD

Simbol Keterangan

 Entitas Kuat

 Entitas Lemah

 Entitas Asosiatif

 Relasi

83

 Relasi Pengidentifikasi

 Atribut

 Atribut Bernilai Banyak

 Atribut Turunan

4.6.2. Derajat Relasi

Derajat relasi adalah jumlah entitas yang

berpartisipasi dalam suatu relasi. Sebagai contoh,

dalam relasi mahasiswa mengambil mata kuliah,

derajat relasinya adalah dua, karena ada dua

entitas yang terlibat dalam relasi tersebut, yaitu

entitas mahasiswa dan mata kuliah. Derajat relasi

dalam ERD umumnya terbagi dalam tiga jenis

sebagai berikut:

Gambar 4.5. Derajat Relasi (a)Unary

(b)Binary (c)Ternary

84

a) Unary

Relasi berderajat satu (Unary

relationship) disebut juga relasi rekursif,

yaitu relasi dimana entitas yang terlibat

hanya satu. Sebagai contoh dosen

menikah dengan dosen lainnya (relasi

satu-ke-satu) yang berarti bahwa satu

dosen hanya bisa menikah dengan satu

dosen lainnya. Dosen memimpin dosen

lainnya (relasi satu-ke-banyak) yang

berarti bahwa satu dosen dapat memimpin

banyak dosen lain. Mahasiswa berteman

dengan mahasiswa lainnya (relasi

banyak-ke-banyak) yang berarti banyak

mahasiswa yang dapat berteman dengan

banyak mahasiswa lainnya.

Gambar 4.6. Unary (a)satu-ke-satu (b)satu-

ke-banyak (c)banyak-ke-banyak

85

b) Binary

Relasi berderajat dua (Binary

Relationship) yaitu relasi dimana entitas

yang terlibat ada dua. Sebagai contoh

relasi memiliki wali antara mahasiswa

dengan dosen (relasi satu-ke-satu) yang

berarti bahwa satu mahasiswa hanya bisa

memiliki satu dosen wali. Fakultas

mengatur jurusan (relasi satu-ke-banyak)

yang berarti satu fakultas dapat mengatur

banyak jurusan, namun satu jurusan

hanya dapat diatur oleh satu fakultas.

Mahasiswa menempati kelas (relasi

banyak-ke-banyak) yang berarti bahwa

satu mahasiswa dapat menempati banyak

kelas dan satu kelas dapat ditempati oleh

banyak mahasiswa.

Gambar 4.7. Binary (a)satu-ke-satu (b)satu-

ke-banyak (c)banyak-ke-banyak

86

c) Ternary

Relasi berderajat tiga (Ternany

Relationship) yaitu relasi dimana entitas

yang terlibat ada tiga.

Gambar 4.8. Ternary

Pada gambar di atas, terlihat relasi

berderajat tiga antara staf, jadwal kuliah

dan kelas yang dihubungkan dengan

relasi menyiapkan. Banyak staf dapat

menyiapkan banyak jadwal kuliah ke

banyak kelas.

4.6.3. Batasan Kardinalitas

Batasan kardinalitas adalah jumlah

instansiasi yang dapat atau harus dilakukan oleh

sebuah entitas terhadap entitas lainnya. Sebagai

contoh, entitas dosen dengan mahasiswa dengan

relasi menasehati. Syarat dosen menasehati

mahasiswa dapat dibatasi misalnya satu dosen

dapat menasehati banyak mahasiswa (relasi satu-

ke-banyak). Namun, seorang dosen bisa saja

tidak menasehati seorang mahasiswapun, karena

itu diperlukan notasi yang lebih tepat untuk

menggambarkan rentang kardinalitas untuk relasi

tersebut.

87

Gambar 4.9. Relasi dengan batasan

kardinalitas

a. Kardinalitas minimum

Kardinalitas minimum adalah jumlah

minimum sebuah entitas berasosiasi

dengan entias lain. Seperti contoh pada

gambar di atas, seorang dosen bisa saja

tidak menjadi dosen penasehat, sehingga

kardinalitas minimumnya dapat

digambarkan dalam bentuk lingkaran

kosong. Sementara itu, kardinalitas

minimum pada sisi mahasiswa adalah

satu, yang berarti bahwa satu mahasiswa

wajib dinasehati oleh setidaknya satu

orang dosen.

b. Kardinalitas maksimum

Kardinalitas maksimum adalah jumlah

maksimum sebuah entitas berasosiasi

dengan entias lain. Seperti contoh pada

gambar di atas, kardinalitas untuk entitas

mahasiswa adalah banyak (lebih dari

satu), yang menyatakan satu dosen

mungkin menasehati lebih dari satu

mahasiswa dan seorang mahasiswa hanya

bisa memiliki satu dosen penasehat.

88

Gambar 4.10. Kardinalitas Relasi

(a)Mandatory One (b)Mandatory Many

(c)Optional One (d)Optional Many

4.7. Latihan

1. Apa yang dimaksud dengan entitas? Dan apa

saja jenis-jenisnya?

2. Apa yang dimaksud dengan atribut? Dan apa

saja jenis-jenisnya?

3. Apa yang dimaksud dengan relasi?

4. Gambarkan sebuah ERD yang menujukkan

hubungan antara perusahaan dengan

pelanggan.

89

BAB V

Perancangan Basis Data

Desain basis data yang baik sangat penting

untuk memastikan bahwa data yang ingin

disimpan konsisten dan dapat diambil atau

diperbarui dengan cara yang paling efisien.

Masalah desain basis data berkaitan dengan

pemasangan sepotong data tertentu ke dalam

organisasi logis yang sesuai. Beberapa faktor

perlu dipertimbangkan selama proses, beberapa

di antaranya adalah sebagai berikut.

• Berapa banyak tabel yang harus dimiliki?

• Bagaimana mereka harus saling terkait?

• Berapa banyak kolom yang harus dimiliki

setiap tabel?

• Kolom mana yang harus menjadi kolom

kunci?

• Kendala apa yang harus dimiliki?

Seperti sebelumnya, akan dipusatkan

perhatian pada basis data relasional. Terlebih

lagi, ketika berbicara tentang desain basis data,

maka berbicara tentang aspek logis dari desain

dan bukan aspek fisiknya.

5.1. Masalah Penyimpanan Data

Skema relasional menghadapi beberapa

masalah yang tidak diinginkan.

1. Redundansi

Tujuan dari sistem basis data adalah untuk

mengurangi redundansi, yang berarti bahwa

data hanya disimpan satu kali. Menyimpan

90

data/informasi berkali-kali menyebabkan

pemborosan ruang penyimpanan dan

peningkatan ukuran total data yang

disimpan.

Tabel 5.1. Contoh Tabel Redundansi

Nama Jurusan Mata Kuliah Dosen Nilai

Ananda Ilkomp Sistem Basis

Data

Raissa A

Ananda Ilkomp Pemrograman Armansyah B

Ananda Ilkomp Pengolahan

Citra

Sriani A

Hendra SI Sistem Basis

Data

Raissa A

Hendra SI Pemrograman Triase B

Bambang SI Pemrograman Triase C

Pembaruan ke database dengan redundansi

yang demikian berpotensi menjadi tidak

konsisten. Pada tabel di atas nama dan

jurusan seorang mahasiswa disimpan

berkali-kali dalam basis data. Hal ini disebut

redundansi data dalam basis data.

2. Anomali Pembaruan

Beberapa salinan dari fakta yang sama dapat

menyebabkan anomali pembaruan atau

inkonsistensi. Saat pembaruan dilakukan dan

hanya beberapa salinan ganda yang

diperbarui. Jadi, perubahan pada Jurusan

“Ananda” harus dibuat konsisten, dalam

semua record yang berkaitan dengan

mahasiswa “Ananda”. Jika satu dari tiga

record tidak berubah, maka akan ada

ketidakkonsistenan dalam data.

91

3. Anomali Penyisipan

Jika tabel ini adalah satu-satunya relasi

dalam basis data yang menunjukkan

hubungan antara mahasiswa dan mata kuliah

yang dia ajarkan, fakta bahwa seorang dosen

yang diberikan mengajar dalam mata kuliah

yang diberikan tidak dapat dimasukkan

dalam basis data kecuali jika seorang

mahasiswa terdaftar dalam mata kuliah.

4. Anomali Penghapusan

Jika satu-satunya mahasiswa yang terdaftar

dalam kursus yang diberikan menghentikan

mata kuliah, informasi dosen akan hilang,

jika ini adalah satu-satunya relasi dalam

basis data yang menunjukkan hubungan

antara mahasiswa dengan dosen yang

mengajar.

5.2. Proses Perancangan Basis Data

Proses perancangan basis data dapat dibagi

ke dalam langkah berikut:

1. Analisis Kebutuhan

Langkah pertama dalam mendesain basis

data aplikasi adalah memahami data apa

yang akan disimpan dalam basis data,

aplikasi apa yang harus dibangun di atasnya,

dan operasi apa yang paling sering dan

tunduk pada persyaratan kinerja. Dengan

kata lain, harus dicari tahu apa yang

diinginkan pengguna dari basis data. Ini

biasanya merupakan proses informal yang

melibatkan diskusi dengan kelompok

pengguna, studi tentang lingkungan operasi

saat ini dan bagaimana perubahan yang

92

diharapkan, analisis dokumentasi yang

tersedia tentang aplikasi yang ada yang

diharapkan akan diganti atau dilengkapi

dengan basis data, dan sebagainya. Beberapa

metodologi telah diusulkan untuk mengatur

dan menyajikan informasi yang

dikumpulkan dalam langkah ini, dan

beberapa alat otomatis telah dikembangkan

untuk mendukung proses ini.

2. Perancangan Basis Data Konseptual

Informasi yang dikumpulkan dalam langkah

analisis persyaratan digunakan untuk

mengembangkan deskripsi tingkat tinggi

dari data yang akan disimpan dalam basis

data, bersama dengan kendala yang

diketahui menghambat data ini. Langkah ini

sering dilakukan dengan menggunakan

model ER. Model ER adalah salah satu dari

beberapa model data tingkat tinggi, atau

semantik, yang digunakan dalam desain

basis data. Tujuannya adalah untuk membuat

deskripsi sederhana dari data yang sangat

cocok dengan cara pengguna dan

pengembang memikirkan data (dan orang-

orang dan proses yang akan diwakili dalam

data). Ini memfasilitasi diskusi di antara

semua orang yang terlibat dalam proses

desain, bahkan mereka yang tidak memiliki

latar belakang teknis. Pada saat yang sama,

desain awal harus cukup tepat untuk

memungkinkan terjemahan langsung ke

dalam model data yang didukung oleh

database komersial sistem.

93

3. Desain Basis Data Logis

Harus dipilih DBMS untuk

mengimplementasikan desain basis data, dan

mengubah desain basis data konseptual

menjadi skema basis data dalam model data

DBMS yang dipilih. Hanya akan

dipertimbangkan DBMS relasional, dan oleh

karena itu, tugas dalam langkah desain logis

adalah untuk mengubah skema ER menjadi

skema database relasional8.

5.3. Latihan

1. Jelaskan langkah-langkah yang perlu

dilakukan dalam merancang sebuah basis

data.

2. Jelaskan bagaimana basis data dapat

mengurangi redudansi data.

3. Jelaskan bagaimana basis data dapat

mengatasi berbagai anomali dalam

penyimpanan data.

8 Vijay Krishna Pallaw, Database Management Systems

Second Edition (Asian Books Private Limited, 2010).

94

BAB VI

Normalisasi

Normalisasi adalah proses dimana dapat

mendekomposisi atau membagi relasi menjadi

lebih dari satu relasi untuk menghilangkan

anomali dalam database relasional. Ini adalah

proses langkah demi langkah dan setiap langkah

dikenal sebagai bentuk normal.

Istilah penting dalam teknik normalisasi:

• Field / atribut kunci

Setiap file selalu terdapat kunci dari file

berupa satu field atau satu field yang dapat

mewakili record

• Candidate key

Kumpulan atribut minimal yang secara unik

mengidentifikasi sebuah baris yang fungsinya

sebagai calon primary key.

• Composite key

Kunci kandidat yang berisi lebih dari satu

atribut

• Primary key

Candidate key yang dipilih untuk

mengidentifikasi baris secara unik

• Alternate key

Candidate key yang tidak dipilih sebagai

primary key

• Foreign key

Kunci di tabel lain yang terhubung dengan

primary key pada sebuah tabel

95

6.1. Manfaat Normalisasi

Manfaat normalisasi yaitu:

1. Menghasilkan tabel yang lebih kecil

dengan baris yang lebih kecil

2. Pencarian, pengurutan, dan membuat

indeks lebih cepat, karena tabel lebih

sempit, dan lebih banyak baris cocok pada

halaman data.

3. Menghasilkan lebih banyak tabel dengan

memecah tabel asli. Dengan demikian

bisa ada lebih banyak indeks berkerumun

dan karenanya ada lebih banyak

fleksibilitas dalam menyetel kueri.

4. Pencarian indeks umumnya lebih cepat

karena indeks cenderung lebih sempit dan

lebih pendek.

5. Semakin banyak tabel memungkinkan

penggunaan segmen yang lebih baik

untuk mengontrol penempatan fisik data.

6. Ada lebih sedikit indeks per tabel dan

karenanya perintah modifikasi data lebih

cepat.

7. Ada sejumlah kecil nilai nol dan

redundansi. Ini membuat basis data lebih

kompak.

8. Anomali modifikasi data berkurang.

9. Secara konseptual lebih bersih dan lebih

mudah untuk dipertahankan dan diubah

seiring perubahan kebutuhan.

6.2. Ketergantungan dalam Normalisasi

Ketergantungan (dependency) merupakan

konsep yang mendasari normalisasi. Dalam basis

96

data dependency lebih sering disebut Functional

Dependency atau Ketergantungan Fungsional

yang digunakan untuk menggambarkan

hubungan, batasan, keterkaitan antara atribut-

atribut dalam relasi. Atau lebih jelasnya nilai dari

suatu atribut dapat menentukan nilai dari atribut

yang lain. Dependency akan mencari acuan untuk

pendekomposisian data ke dalam bentuk yang

paling efisien. Sebagai contoh yaitu untuk NIM

dan Nama_Mhs. NIM secara fungsional

menentukan Nama_Mhs, karena untuk setiap

NIM yang sama maka nilai Nama_Mhs nya

sama. Dependency dapat dibagi ke dalam tiga

jenis, yaitu:

1. Full Dependency (Ketergantungan

Penuh)

Menunjukan jika terdapat atribut A dan B

dalam suatu relasi, dimana B memiliki

ketergantungan fungsional secara penuh

pada A, tapi B tidak memiliki

ketegantungan terhadap subset A9.

Contoh:

Tabel 6.1. Contoh Full Dependency

KodeBarang NamaBarang NoFaktur Kts

B001 Sabun F001 3

B002 Shampoo F002 5

B003 Pasta Gigi F003 16

KodeBarang → NamaBarang

KodeBarang, NoFaktur → Kts

9 Muhammad Fikry, Basis Data (Lhokseumawe: Unimal

Press, 2019).

97

Untuk setiap nilai KodeBarang yang

sama, maka nilai NamaBarang juga pasti

sama. Begitu juga untuk setiap nilai

KodeBarang yang terdapat pada

NoFaktur yang sama, maka nilai

Kuantitasnya juga sama.

2. Partial Dependency (Ketergantungan

Sebagian)

Ketergantungan parsial atau sebagian

memiliki 2 atribut dari A untuk

menentukan B, namun untuk menentukan

B tidak harus 2 atribut artinya jika salah

satu atribut A yang menentukan B dapat

dihilangkan namun tidak merubah arti

relasi dan masih tetap berelasi

ketergantungan.

Tabel 6.2. Contoh Partial Dependency

No

Faktur

Kode

Barang

Nama

Barang

Kode

Pelanggan

Nama

Pelanggan

Kts

F001 B001 Sabun P001 Selly 3

F002 B002 Shampoo P002 Andi 5

F003 B003 Pasta Gigi P003 Citra 16

NamaBarang, KodePelanggan dan

NamaPelanggan hanya bergantung pada field

KodeBarang, bukan pada NoFaktur.

3. Transitive Dependency (Ketergantungan

Transitif)

Transitive dependency biasanya terjadi

pada tabel hasil relasi, atau kondisi

dimana terdapat tiga atribut A,B,C.

Kondisinya adalah A tergantung terhadap

B dan B tergantung terhadap C. Maka C

98

dikatakan sebagai transitive dependency

terhadap A melalui B.

Contoh:

Tabel 6.3. Contoh Transitive

Dependency

KodeBarang NamaBarang KodeKategori Kategori

B001 Sabun K001 Kamar Mandi

B004 Panci K002 Alat Dapur

B005 Boneka K003 Mainan

KodeBarang → KodeKategori

KodeKategori → Kategori

Maka

KodeBarang → Kategori

6.3. Tahapan Normalisasi

Gambar 6.1. Tahapan Normalisasi

Normal Lima (5NF)

Normal Empat (4NF)

Menghilangkan sisa anomali

Normal Boyce-Codd (BCNF)

Menghilangkan ketergantungan multivalue

Normal Tiga (3NF)

Menghilangkan anomail dari ketergantungan fungsional

Normal Dua (2NF)

Menghilangkan ketergantungan transitif

Normal Satu (1NF)

Menghilangkan ketergantungan parsial

Tidak Normal(Unnormalized)

Menghilangkan kelompok data yang berulang

99

1. Tidak Normal(Unnormalized)

Pada tahap ini, diambil seluruh data yang

ada dan diperlukan dalam database itu

sendiri. Misalnya pada contoh tabel nilai

mahasiswa, datanya terdiri dari NIM,

nama mahasiswa, alamat mahasiswa, ID

Dosen, nama dosen, status dosen, nilai

basis data, nilai pemrograman, nilai

pengantar ilmu komputer, nilai interaksi

manusia dan komputer.

Tabel 6.4. Tabel Mentah

Tabel mentah di atas memerlukan suatu

analisa dikarenakan tabel yang ada di soal

mempunyai suatu keanehan. Perhatikan

pada kolom Basis Data, Pemrograman,

PIK, dan IMK. Setiap nama kolom yang

sudah disebutkan memiliki kode

tersendiri yang bisa merepresentasikan

nama dari mata kuliah. Dengan begitu

bisa dikumpulkan kode mata kuliah

menjadi satu kolom baru yang bisa diberi

nama Kode_Matkul. Kemudian nama dari

mata kuliah juga bisa dibuat menjadi satu

kolom baru yang diberi nama

Nama_Matkul sehingga bentuk tabel

seperti yang terlihat pada tabel di bawah

ini.

NIM Nama_Mhs Alamat_Mhs ID_Dosen Nama_Dosen Status_Dosen Basis Data Pemrograman PIK IMK

072134321 Andi Medan 10010 Raissa Tetap 78 92

072120089 Budi Medan 10087 Andini Honorer 85 66 78

072129262 Iwan Binjai 10091 Ulfayani Tetap 56 83

087201231 Sari Medan 10091 Ulfayani Tetap 96 83

082324321 Putri Medan 10003 Laylan Honorer 89 77

079909032 Melisa Tj.Morawa 10003 Laylan Honorer 50 41

100

Tabel 6.5. Tabel Unnormalized

2. Normal Satu (1NF)

Pada tahap ini, bagi seluruh data yang

diperlukan menjadi beberapa bagian

berdasarkan jenis data tersebut. Sebuah

tabel bisa dikategorikan sebagai tabel

1NF jika di setiap baris record hanya

memiliki 1 value. Hasil transformasi dari

Unnormalized Form ke 1NF bisa dilihat

pada tabel di bawah ini:

Tabel 6.6. Tabel Normal 1 (1NF)

NIM Nama_Mhs Alamat_Mhs ID_Dosen Nama_Dosen Status_Dosen Kode_Matkul Nama_Matkul Nilai

MK001 Basis Data 78

MK003 PIK 92

MK002 Pemrograman 85

MK003 PIK 66

MK004 IMK 78

MK001 Basis Data 56

MK002 Pemrograman 83

MK002 Pemrograman 96

MK004 IMK 83

MK001 Basis Data 89

MK004 IMK 77

MK001 Basis Data 50

MK003 PIK 41

Laylan

Laylan

Honorer

Honorer

Sari Ulfayani10091 Tetap

Putri

Melisa

Medan

Tj.Morawa

10003

10003

HonorerAndini10087

TetapUlfayani10091

072120089

072129262

087201231

082324321

079909032

MedanBudi

BinjaiIwan

Medan

072134321 Andi Medan 10010 Raissa Tetap

NIM Nama_Mhs Alamat_Mhs ID_Dosen Nama_Dosen Status_Dosen Kode_Matkul Nama_Matkul Nilai

072134321 Andi Medan 10010 Raissa Tetap MK001 Basis Data 78

072134321 Andi Medan 10010 Raissa Tetap MK003 PIK 92

072120089 Budi Medan 10087 Andini Honorer MK002 Pemrograman 85

072120089 Budi Medan 10087 Andini Honorer MK003 PIK 66

072120089 Budi Medan 10087 Andini Honorer MK004 IMK 78

072129262 Iwan Binjai 10091 Ulfayani Tetap MK001 Basis Data 56

072129262 Iwan Binjai 10091 Ulfayani Tetap MK002 Pemrograman 83

087201231 Sari Medan 10091 Ulfayani Tetap MK002 Pemrograman 96

087201231 Sari Medan 10091 Ulfayani Tetap MK004 IMK 83

082324321 Putri Medan 10003 Laylan Honorer MK001 Basis Data 89

082324321 Putri Medan 10003 Laylan Honorer MK004 IMK 77

079909032 Melisa Tj.Morawa 10003 Laylan Honorer MK001 Basis Data 50

079909032 Melisa Tj.Morawa 10003 Laylan Honorer MK003 PIK 41

101

3. Normal Dua (2NF)

Pada tahap ini, bagi berdasarkan jenis dan

memberikan primary key pada masing-

masing tabel. Sebuah tabel bisa

dikategorikan sebagai tabel 2NF jika tabel

sudah dalam keadaan 1NF dan setiap

kolom didalam tabel itu functional

dependency kepada semua key (Full

Dependency), bukan hanya kepada salah

satu key (Partial Dependency). Berarti

harus ditentukan terlebih dahulu key yang

ada di dalam tabel. Dari tabel di atas bisa

ditentukan bahwa ada dua candidate key

yang tersedia dalam tabel diatas, yaitu

NIM + Kode_Matkul, dan NIM +

Nama_Matkul. Setelah dipilih dari kedua

candidate key, maka yang paling efisien

untuk menjadi Primary Key adalah NIM

+ Kode_Matkul.

Setelah itu, tentukan Functional

Dependency yang ada di dalam tabel yaitu

sebagai berikut:

Tabel 6.7. Functional Dependency

Full

Dependency

NIM +

Kode_Matkul

Nama_Matkul

Nilai_Matkul

Partial

Dependency

NIM Nama_Mhs

Alamat_Mhs

ID_Dosen

Nama_Dosen

Status_Dosen

Partial

Dependency

Kode_Matkul Nama_Matkul

102

Transitive

Dependency

ID_Dosen Nama_Dosen

Status_Dosen

Setelah mendapatkan semua Functional

Dependency di dalam tabel, maka untuk

mengubah tabel 1NF menjadi 2NF harus

dipindahkan kolom yang bergantung

hanya kepada salah satu dari key (Partial

Dependency) ke dalam tabel baru

sehingga saat ini tabel terpisah seperti

terlihat pada tabel di bawah ini.

Tabel 6.8. Tabel Mahasiswa 2NF

Tabel 6.9. Tabel Mata Kuliah 2NF

Kode_Matkul Nama_Matkul

MK001 Basis Data

MK002 Pemrograman

MK003 PIK

MK004 IMK

NIM Nama_Mhs Alamat_Mhs ID_Dosen Nama_Dosen Status_Dosen

072134321 Andi Medan 10010 Raissa Tetap

072120089 Budi Medan 10087 Andini Honorer

072129262 Iwan Binjai 10091 Ulfayani Tetap

087201231 Sari Medan 10091 Ulfayani Tetap

082324321 Putri Medan 10003 Laylan Honorer

079909032 Melisa Tj.Morawa 10003 Laylan Honorer

103

Tabel 6.10. Tabel Nilai 2NF

4. Normal Tiga (3NF)

Pada tahap ini, bagi menjadi lebih

terperinci untuk menghindari terjadinya

redundansi. Sebuah tabel bisa

dikategorikan sebagai tabel 3NF jika tabel

sudah dalam 2NF dan setiap kolom yang

bukan key harus functional dependency

dengan primary key nya. Bisa dilihat

didalam Tabel Nilai dan Tabel Mata

Kuliah sudah memenuhi persyaratan

3NF. Tetapi didalam Tabel Mahasiswa

terdapat kolom yang bergantung bukan

kepada key nya (Transitive Dependency)

yaitu Nama_Dosen dan Status_Dosen. Ini

menunjukan bahwa Tabel Mahasiswa

belum memenuhi persyaratan menjadi

NIM Kode_Matkul Nilai

072134321 MK001 78

072134321 MK003 92

072120089 MK002 85

072120089 MK003 66

072120089 MK004 78

072129262 MK001 56

072129262 MK002 83

087201231 MK002 96

087201231 MK004 83

082324321 MK001 89

082324321 MK004 77

079909032 MK001 50

079909032 MK003 41

104

3NF. Nama_Dosen dan Status_Dosen itu

functional dependency kepada ID_Dosen

yang diketahui bahwa ID_Dosen itu

bukanlah sebuah primary key. Maka

untuk membuat Tabel Nilai kedalam

bentuk 3NF, harus ditempatkan kolom

yang functional dependency bukan

kepada key nya (Transitive Dependency)

kedalam tabel yang baru sehingga bentuk

tabel menjadi seperti tabel di bawah ini:

Tabel 6.11. Tabel Mahasiswa 3NF

Tabel 6.12. Tabel Dosen 3NF

NIM Nama_Mhs Alamat_Mhs

072134321 Andi Medan

072120089 Budi Medan

072129262 Iwan Binjai

087201231 Sari Medan

082324321 Putri Medan

079909032 Melisa Tj.Morawa

ID_Dosen Nama_Dosen Status_Dosen

10010 Raissa Tetap

10087 Andini Honorer

10091 Ulfayani Tetap

10003 Laylan Honorer

105

Tabel 6.13. Tabel Mata Kuliah 3NF

Tabel 6.14. Tabel Nilai 3NF

6.4. Latihan

Carilah sebuah bon faktur manual, lakukan

normalisasi terhadap tabel pada bon faktur

tersebut.

Kode_Matkul Nama_Matkul

MK001 Basis Data

MK002 Pemrograman

MK003 PIK

MK004 IMK

NIM Kode_Matkul Nilai

072134321 MK001 78

072134321 MK003 92

072120089 MK002 85

072120089 MK003 66

072120089 MK004 78

072129262 MK001 56

072129262 MK002 83

087201231 MK002 96

087201231 MK004 83

082324321 MK001 89

082324321 MK004 77

079909032 MK001 50

079909032 MK003 41

106

BAB VII

Query

Pada bab sebelumnya telah dipelajari

bagaimana normalisasi akhirnya menghasilkan

tabel normal ketiga yang dapat

diimplementasikan pada basis data. Langkah

berikutnya ketikkan kueri pada basis data untuk

menambahkan tabel – tabel yang telah normal

tersebut. Pada contoh berikut ini digunakan

MySQL sebagai Database Management System

(DBMS).

7.1. Membuat Basis Data

create database universitas

7.2. Membuat Tabel

create table mahasiswa

(NIM varchar (10),

Nama_Mhs varchar (50) not

null,

Alamat_Mhs varchar (100),

primary key (NIM);

create table dosen

(ID_Dosen varchar (10),

Nama_Dosen varchar (50) not

null,

Status_Dosen varchar (10),

primary key (ID_Dosen);

107

create table mata_kuliah

(Kode_Matkul varchar (10),

Nama_Matkul varchar (50) not

null,

primary key (Kode_Matkul);

create table nilai

(NIM varchar (5),

Kode_Matkul varchar (20) not

null,

Nilai_akhir numeric (8,2),

primary key (NIM),

foreign key (Kode_Matkul)

references mata_kuliah);

7.3. Menambah Data

insert into mahasiswa (NIM,

Nama_Mhs, Alamat_Mhs)

values (’072134321’, ’Andi’,

’Medan’);

insert into mahasiswa (NIM,

Nama_Mhs, Alamat_Mhs)

values (’072120089’, ’Budi’,

’Medan’);

insert into nilai (NIM,

Kode_Matkul, Nilai_Akhir)

values (’ 072134321’,

’MK001’, 78);

insert into nilai (NIM,

Kode_Matkul, Nilai_Akhir)

108

values (’ 072134321’,

’MK003’, 92);

7.4. Mengubah Data

update nilai

set Nilai_Akhir = 83

where NIM = ’072120089’ and

Kode_Matkul = ’MK001’;

update dosen

set nama= ‘Laylan S’

where ID_Dosen= ‘10003’;

7.5. Menghapus Data

delete from dosen

where ID_Dosen= ’10010’;

7.6. Latihan

1. Tuliskan kueri SQL untuk membuat basis

data perpustakaan.

2. Tuliskan kueri SQL untuk menambahkan

tabel buku yang terdiri dari kode, judul,

pengarang, penerbit, isbn, dan kategori.

3. Tuliskan kueri untuk menambahkan daftar

buku baru ke dalam tabel buku.

109

BAB VIII

MySQL

8.1. Pengantar MySQL

MySQL adalah perangkat lunak bebas

dan sumber terbuka di bawah persyaratan Lisensi

Publik Umum GNU dan juga dapat diperoleh di

bawah berbagai lisensi kepemilikan. Saat ini,

penggunaan Sistem Manajemen Basis Data atau

Database Management System (DBMS)

merupakan hal yang umum. Relational Database

Management System (RDBMS) digunakan untuk

menyimpan dan mengelola sistem yang besar10.

Basis data adalah penemuan hebat yang

bertindak sebagai aplikasi terpisah untuk

menyimpan banyak koleksi data. Setiap basis

data memiliki satu atau lebih antarmuka

pemrograman aplikasi yang berbeda untuk

memproduksi, mengakses, mengoperasikan,

10 Sufyan bin Uzayr, Mastering MySQL for Web

(Abingdon: CRC Press, 2022).

110

mencari, dan menggandakan data yang

dimilikinya.

RDBMS adalah perangkat lunak yang

memungkinkan untuk mengimplementasikan

basis data dengan tabel, kolom, dan indeks.

MySQL adalah salah satu RDBMS open source

yang dibuat oleh perusahaan Swedia, MySQL

AB, yang didirikan oleh orang Swedia David

Axmark, Allan Larsson, dan orang Finlandia

Swedia Michael Widenius. Widenius dan

Axmark memulai pengembangan asli MySQL

pada tahun 1994. Versi pertama MySQL

diperkenalkan pada tanggal 23 Mei 1995.

Sebuah database relasional seperti

MySQL mengatur data ke dalam satu atau lebih

tabel data dimana tipe data berhubungan

langsung satu sama lain. Hubungan ini membantu

untuk menyusun data dengan benar. SQL adalah

bahasa program yang digunakan untuk membuat,

mengedit, dan mengekstrak data dari database

relasional serta mengelola akses pengguna ke

database. Selain database relasional dan SQL,

111

RDBMS seperti MySQL berkolaborasi dengan

sistem operasi untuk mengeksekusi database

relasional di komputer.

Selain itu, MySQL memiliki klien yang

berdiri sendiri yang memungkinkan pengguna

berinteraksi langsung dengan database MySQL

menggunakan SQL, namun seringnya MySQL

diaktifkan bekerja sama dengan program lain

untuk mengimplementasikan aplikasi yang

memerlukan bantuan database relasional.

Umumnya MySQL juga digunakan untuk

mendukung perangkat lunak aplikasi web

LAMP, yang merupakan akronim untuk Linux,

Apache, MySQL, Perl/PHP/Python. Demikian

pula, MySQL digunakan oleh banyak aplikasi

web berbasis database, termasuk Drupal, Joomla,

phpBB, dan WordPress. MySQL juga digunakan

oleh banyak situs web populer, termasuk

Facebook, Flickr, MediaWiki, Twitter, dan

YouTube.

Adapun kelebihan dari MySQL adalah

sebagai berikut:

112

➢ Kemudahan manajemen

➢ Dukungan transaksional yang kuat

➢ Pengembangan aplikasi komprehensif

➢ Kinerja tinggi

➢ Biaya total kepemilikan

➢ Sumber terbuka dan dukungan 24/7

➢ Proteksi data aman

➢ Ketersediaan tinggi

➢ Skalabilitas dan fleksibilitas

8.2. XAMPP

XAMPP merupakan sebuah aplikasi

server yang di dalamnya terdiri dari kumpulan

beberapa software seperti PHPMyAdmin,

Apache, MySQL, PHP, Perl, dan lainnya.

XAMPP memudahkan pengguna karena

pengguna tidak perlu menginstall software di atas

satu persatu.

Untuk menjalankan software yang ada di

dalam XAMPP, pengguna cukup mengklik

tombol start pada XAMPP Control Panel. Untuk

mengaktifkan MySQL, pengguna dapat mengklik

113

pada tombol Start di kolom Actions seperti

contoh pada gambar di bawah ini.

Gambar 8.1. XAMPP Control Panel

Selanjutnya, pada web browser ketikkan

http://localhost/phpmyadmin.

Gambar 8.2. PHPMyAdmin

8.3. PHPMyAdmin

PHPMyAdmin adalah sebuah aplikasi

yang dapat digunakan untuk mempermudah

http://localhost/phpmyadmin

114

pengguna dalam menjalankan MySQL. Dengan

PHPMyAdmin, pengguna dapat berinteraksi

dengan User Interface yang mudah digunakan

dan mudah dipahami sehingga pengguna tidak

perlu mengetikkan query SQL secara manual.

Melalui PHPMyAdmin yang dapat di

download di phpmyadmin.net, pengguna dapat

membuat, mengubah, dan menghapus tabel

dengan mudah. Selain itu, pengguna juga dapat

menambahkan isi tabel, mengubah dan mengapus

isi tabel melalui antarmuka pengguna.

8.4. Tipe Data dan Operator

Ada berbagai tipe data, operator logika,

operator relasi dan operator aritmatika yang

berlaku di MySQL.

115

8.4.1. Tipe Data

 Tabel 8.1. Tipe Data Numerik

Tipe data numerik mencakup bilangan

dengan berbagai ukuran dan nilai desimal dengan

berbagai presisi.

Tabel 8.2. Tipe Data String

Tipe data ini memiliki jumlah karakter

yang tetap atau bervariasi. Tipe data ini juga

memiliki string panjang variabel yang disebut

116

Character Large Object (CLOB) yang digunakan

untuk menentukan kolom yang memiliki nilai

teks besar. Ada juga tipe data string bit panjang

variabel yang disebut Binary Large Object

(BLOB), yang tersedia untuk menentukan kolom

yang memiliki nilai biner besar.

Tabel 8.3. Tipe Data Date

Tipe data date memiliki YEAR, MONTH,

dan DAY dalam bentuk YYYY-MM-DD.

Demikian pula, tipe data TIME memiliki

komponen HOUR, MINUTE, dan SECOND

dalam bentuk HH:MM:SS. Format ini dapat

berubah berdasarkan kebutuhan. Tipe data

timestamp mencakup minimal enam posisi, untuk

pecahan desimal detik dan qualifier WITH TIME

ZONE opsional selain bidang DATE dan TIME.

117

Tipe data INTERVAL menyebutkan nilai relatif

yang dapat digunakan untuk menambah atau

mengurangi nilai absolut dari date, time, atau

timestamp.

8.4.2. Operator

Operator dalam MySQL dapat dibagi

dalam operator aritmatika, operator relasional

(pembanding), dan operator logika yang dapat

dilihat dalam tabel – tabel berikut:

Tabel 8.4. Operator Aritmatika

118

Tabel 8.5. Operator Relasional

Tabel 8.6. Operator Logika

8.5. Aturan Pemberian Nama

Dalam pemberian nama tabel dan field

dalam MySQL terdapat beberapa aturan yang

harus diikuti yaitu:

➢ Terdiri dari karakter huruf dan angka

➢ Simbol yang dapat dipakai yaitu _ dan $

➢ Panjang karakter maksimal 64

➢ Tidak membedakan huruf besar dan huruf

kecil kecuali untuk alias.

119

8.6. Perintah Dasar

Pada subbab ini akan dipelajari

bagaimana menjalankan perintah dasar MySQL

melalui PHPMyAdmin dan query yang dapat

digunakan untuk menjalankan perintah tersebut.

8.6.1. Membuat Database

Untuk membuat database baru, klik pada

tombol new di sisi kiri atas, lalu ketikkan nama

database lalu tekan tombol Create.

Gambar 8.3. Membuat Database

Cara lain untuk membuat database baru

adalah dengan mengklik tab SQL di bagian atas

aplikasi lalu ketikkan query sebagai berikut:

Create database universitas;

Lalu klik tombol go di sisi kanan bawah

untuk menjalankan perintah.

120

8.6.2. Memilih Database yang Digunakan

Untuk memilih database yang akan digunakan,

klik pada nama database yang ada di sisi kiri

aplikasi.

Gambar 8.4. Memilih Database

 Atau pengguna dapat mengetikkan query

sebagai berikut:

use universitas;

121

8.6.3. Membuat Tabel

Sebelum membuat tabel, pengguna harus

memilih database yang akan digunakan terlebih

dahulu. Lalu pada tab structure, ketikkan nama

tabel yang akan dibuat beserta jumlah kolomnya,

lalu tekan tombol Go untuk melanjutkan.

Gambar 8.5. Membuat Tabel

Pada halaman berikutnya isi field tabel

beserta dengan atributnya. Untuk membuat

primary key, dapat dipilih pada kolom Index di

field yang akan dijadikan primary key.

Gambar 8.6. Menambahkan Field

122

Cara lain untuk menambahkan tabel yaitu

dengan mengetikkan query sebagai berikut:

create table mahasiswa

(NIM varchar (10),

Nama_Mhs varchar (50) not

null,

Alamat_Mhs varchar (100),

primary key (NIM);

8.6.4. Mengisi Data

Setelah tabel berhasil dibuat, data pada

tabel dapat diisi dengan cara mengklik pada tabel

yang akan diisi di sisi kiri, lalu klik pada tab

Insert. Ketikkan isian masing-masing field, lalu

tekan tombol Go untuk melanjutkan.

Gambar 8.7. Mengisi Data

Atau pengguna dapat mengetikkan query

pada tab SQL sebagai berikut:

insert into mahasiswa (NIM,

Nama_Mhs, Alamat_Mhs)

values (’072134321’, ’Andi’,

’Medan’);

123

8.6.5. Menambahkan Field

Untuk menambahkan field baru dalam

tabel, klik pada tabel yang akan ditambahkan

fieldnya, pada tab structure ketikkan jumlah field

yang akan ditambahkan pada kolom Add, pilih

posisi penambahan lalu klik tombol Go.

Tambahkan nama field dan ukurannya lalu tekan

tombol save.

Gambar 8.8. Menambahkan Field

Kuerinya:

Alter Table mahasiswa Add

NoTelp varchar (10);

8.6.6. Menghapus Field

Untuk menghapus field pada tabel,

pengguna cukup mengklik tombol drop yang

124

terdapat di samping kanan field pada tab

Structure.

Gambar 8.9. Menghapus Field

Atau pengguna dapat mengetikkan query

sebagai berikut:

Alter Table mahasiswa Drop

NoTelp;

8.6.7. Menghapus Database

Untuk menghapus database, klik pada

database yang akan dihapus, klik pada tab

Operations. Scroll ke bagian bawah, pada bagian

Remove Database, klik tombol Drop the

database (DROP) lalu klik OK.

Gambar 8.10. Menghapus database

125

Kuerinya:

Drop database universitas;

8.6.8. Menghapus Tabel

Klik tombol drop di samping kanan nama

tabel yang akan dihapus pada tab structure.

Gambar 8.11. Menghapus Tabel

 Atau dapat mengetikkan kueri sebagai

berikut:

Drop table mahasiswa;

8.6.9. Mengganti Nama Tabel

Pada tab Operations, modifikasi Table

Options untuk mengganti nama tabel.

126

Gambar 8.12. Mengganti Nama Tabel

Kuerinya:

RENAME TABLE

‘universitas’.’mahasiswa’ TO

‘universitas’.’mhs’;

8.7. Latihan

1. Tuliskan langkah untuk membuat basis data

perpustakaan di PHPMyAdmin.

2. Tuliskan langkah untuk menambahkan tabel

buku yang terdiri dari kode, judul, pengarang,

penerbit, isbn, dan kategori pada

PHPMyAdmin.

3. Tuliskan langkah untuk menambahkan daftar

buku baru ke dalam tabel buku menggunakan

PHPMyAdmin.

127

DAFTAR PUSTAKA

Date, Christopher J. “An Introduction to

Database Systems 8th Edition,” 2004.

Fikry, Muhammad. Basis Data. Lhokseumawe:

Unimal Press, 2019.

Garcia-Molina, Hector, Jeffrey D. Ullman, and

Jennifer Widom. DATABASE SYSTEMS The

Complete Book. Pearson Prentice Hall. Vol.

26. New Jersey: PEARSON, 2009.

http://www.worldcat.org/isbn/813170842X.

Gupta, Satinder Bal, and Aditya Mittal. Database

Management System. UNIVERSITY

SCIENCE PRESS, 2017.

Korth, Henry F, and Abraham Silberschatz.

Database System Concepts.

Communications of the ACM. Vol. 40, 1997.

http://portal.acm.org/citation.cfm?doid=253

671.253760.

Lubis, Adyanata. Basis Data Dasar. Deepublish,

2016.

128

Nugroho, Adi. Perancangan Dan Implementasi

Sistem Basis Data. Penerbit Andi, 2011.

Pallaw, Vijay Krishna. Database Management

Systems Second Edition. Asian Books

Private Limited, 2010.

Ramakrishnan, Raghu, and Johannes Gehkre.

Database Management Systems Third

Edition. Mc Graw Hill, 2003.

Uzayr, Sufyan bin. Mastering MySQL for Web.

Abingdon: CRC Press, 2022.

129

TENTANG PENULIS

Raissa Amanda Putri, S.Kom.,M.TI.

Lahir di Kota Binjai, tanggal 10 Juli 1989.

Telah menyelesaikan studi S1 jurusan

Sistem Informasi di STMIK Mikroskil

Medan pada tahun 2011 serta Magister

Teknik Informatika di Universitas Bina Nusantara Jakarta

pada tahun 2015. Mulai mengajar sejak tahun 2011 di

STMIK Mikroskil dan mulai tahun 2018 hingga saat ini

sebagai dosen tetap di Universitas Islam Negeri Sumatera

Utara Medan.

