Securty
Framework
Database

Command
Parser

User Interface

———— e m = —]

Data Warehouse
Securty
Interface

Ricardo Jorge Ribeiro dos Santos

¥
______________ Iiesapj:annse Data Warehouse
I ol _____ TEEE Database(s)

| —

Ricardo Jorge Ribeiro dos Santos

ENHANCING DATA SECURITY IN
DATA WAREHOUSING

O
<
%]
2
@)
I
[,
o
<
S
<
—
<
@)
<
>
E
o
-]
O
L
7]
<
—
<
(@)
O
<
O
Z
<
I
Z
i

PhD Thesis in Information Sciences and Technology supervised by
Professor Jorge Bernardino and Professor Marco Vieira and presented to
the Faculty of Sciences and Technology of The University of Coimbra

February 2014

UNIVERSIDADE DE COIMBRA

UNIVERSIDADE DE COIMBRA

Enhancing Data Security in
Data Warehousing

Ricardo Jorge Ribeiro dos Santos

Thesis submitted to the University of Coimbra in partial fulfillment
of the requirements for the degree of Doctor of Philosophy

February 2014

Department of Informatics Engineering
Faculty of Sciences and Technology
University of Coimbra

The work presented in this thesis has been developed within the Software
and Systems Research Group of the Center for Informatics and Systems of
the University of Coimbra (CISUC) as part of the requirements of the
Doctoral Program in Information Science and Technology of the University
of Coimbra.

This work has been supervised by Dr. Jorge Fernandes Rodrigues
Bernardino, Professor at the Department of Informatics and Systems
Engineering of the Superior Institute of Engineering of Coimbra (ISEC) of
the Polytechnic Institute of Coimbra (IPC), and Dr. Marco Paulo Amorim
Vieira, Professor at the Department of Informatics Engineering of the
Faculty of Sciences and Technology (FCTUC) of the University of Coimbra
(UQ).

Abstract

Data Warehouses (DWs) store sensitive data that encloses many business
secrets. They have become the most common data source used by
analytical tools for producing business intelligence and supporting
decision making in most enterprises. This makes them an extremely
appealing target for both inside and outside attackers. Given these facts,
securing them against data damage and information leakage is critical.

This thesis proposes a security framework for integrating data
confidentiality solutions and intrusion detection in DWs. Deployed as a
middle tier between end user interfaces and the database server, the
framework describes how the different solutions should interact with the
remaining tiers. To the best of our knowledge, this framework is the first
to integrate confidentiality solutions such as data masking and encryption
together with intrusion detection in a unique blueprint, providing a broad
scope data security architecture.

Packaged database encryption solutions are been well-accepted as the best
form for protecting data confidentiality while keeping high database
performance. However, this thesis demonstrates that they heavily increase
storage space and introduce extremely large response time overhead,
among other drawbacks. Although their usefulness in their security
purpose itself is indisputable, the thesis discusses the issues concerning
their feasibility and efficiency in data warehousing environments. This
way, solutions specifically tailored for DWs (i.e.,, that account for the
particular characteristics of the data and workloads are capable of
delivering better tradeoffs between security and performance than those
proposed by standard algorithms and previous research.

This thesis proposes a reversible data masking function and a novel
encryption algorithm that provide diverse levels of significant security
strength while adding small response time and storage space overhead.
Both techniques take numerical input and produce numerical output,
using data type preservation to minimize storage space overhead, and
simply use arithmetical operators mixed with eXclusive OR and modulus

vii

Abstract

operators in their data transformations. The operations used in these data
transformations are native to standard SQL, which enables both solutions
to use transparent SQL rewriting to mask or encrypt data. Transparently
rewriting SQL allows discarding data roundtrips between the database
and the encryption/decryption mechanisms, thus avoiding I/O and
network bandwidth bottlenecks. Using operations and operators native to
standard SQL also enables their full portability to any type of DataBase
Management System (DBMS) and/or DW. Experimental evaluation
demonstrates the proposed techniques outperform standard and state-of-
the-art research algorithms while providing substantial security strength.

From an intrusion detection view, most Database Intrusion Detection
Systems (DIDS) rely on command-syntax analysis to compute data access
patterns and dependencies for building user profiles that represent what
they consider as typical user activity. However, the considerable ad hoc
nature of DW user workloads makes it extremely difficult to distinguish
between normal and abnormal user behavior, generating huge amounts of
alerts that mostly turn out to be false alarms. Most DIDS also lack assessing
the damage intrusions might cause, while many allow various intrusions
to pass undetected or only inspect user actions a posteriori to their
execution, which jeopardizes intrusion damage containment.

This thesis proposes a DIDS specifically tailored for DWs, integrating a
real-time intrusion detector and response manager at the SQL command
level that acts transparently as an extension of the database server. User
profiles and intrusion detection processes rely on analyzing several distinct
aspects of typical DW workloads: the user command, processed data and
results from processing the command. An SQL-like rule set extends data
access control and statistical models are built for each feature to obtain
individual user profiles, using statistical tests for intrusion detection. A
self-calibration formula computes the contribution of each feature in the
overall intrusion detection process. A risk exposure method is used for
alert management, which is proven more efficient in damage containment
than using alert correlation techniques to deal with the generation of high
amounts of alerts. Experiments demonstrate the overall efficiency of the
proposed DIDS.

Keywords: Data Security, Data Warehousing, Data Masking, Encryption,
Database Intrusion Detection, Database Security Frameworks.

viii

Resumo

As Data Warehouses (DWs) armazenam dados sensiveis que muitas vezes
encerram os segredos do negocio. Sao actualmente a forma mais utilizada
por parte de ferramentas analiticas para produzir inteligéncia de negdcio e
proporcionar apoio a tomada de decisao em muitas empresas. Isto torna as
DWs um alvo extremamente apetecivel por parte de atacantes internos e
externos a propria empresa. Devido a estes factos, assegurar que o seu
conteudo é devidamente protegido contra danos que possam ser causados
nos dados, ou o roubo e utilizagdo ou divulgac¢ao desses dados, é de uma
importancia critica.

Nesta tese, é apresentada uma framework de seguranga que possibilita a
integracao conjunta das solug¢des de confidencialidade de dados e deteccao
de intrusdes em DWs. Esta integracdo conjunta de solugdes é definida na
framework como uma camada intermédia entre os interfaces dos
utilizadores e o servidor de base de dados, descrevendo como as diferentes
solugdes interagem com os restantes pares. Consideramos esta framework
como a primeira do género que combina tipos distintos de solugdes de
confidencialidade, como mascaragem e encripta¢ao de dados com detecgao
de intrusdes, numa Unica arquitectura integrada, promovendo uma
solucdo de seguranga de dados transversal e de grande abrangéncia.

A utiliza¢do de pacotes de solugdes de encriptacao incluidos em servidores
de bases de dados tem sido considerada como a melhor forma de proteger
a confidencialidade de dados sensiveis e conseguir ao mesmo tempo
manter um nivel elevado de desempenho nas bases de dados. Contudo,
esta tese demonstra que a utilizagdo de encriptagao resulta tipicamente
num aumento extremamente consideravel do espaco de armazenamento
de dados e no tempo de processamento e resposta dos comandos SQL,
entre outras desvantagens ou aspectos negativos relativos ao seu
desempenho. Apesar da sua utilidade indiscutivel no cumprimento dos
pressupostos em termos de segurancga propriamente ditos, nesta tese
discutimos os problemas inerentes que dizem respeito a sua aplicabilidade,
eficiéncia e viabilidlade em ambientes de data warehousing.

X

Resumo

Argumentamos que solugdes especificamente concebidas para DWs, que
tenham em conta as caracteristicas particulares dos seus dados e as
actividades tipicas dos seus utilizadores, sao capazes de produzir um
melhor equilibrio entre seguranca e desempenho do que as solugdes
previamente disponibilizadas por algoritmos standard e outros trabalhos
de investigacao para bases de dados na sua generalidade.

Nesta tese, propomos uma fungao reversivel de mascaragem de dados e
um novo algoritmo de encriptacdo, que providenciam diversos niveis de
seguranca considerdveis, ao mesmo tempo que adicionam pequenos
aumentos de espaco de armazenamento e tempo de processamento.
Ambas as técnicas recebem dados numéricos de entrada e produzem
dados numéricos de saida, usam preservacdao do tipo de dados para
minimizar o aumento do espaco de armazenamento, e simplesmente
utilizam combinagOes de operadores aritméticos conjuntamente com OU
exclusivos (XOR) e restos de divisao (MOD) nas operagoes de
transformagao de dados. Como este tipo de operagdes se conseguem
realizar recorrendo a comandos nativos de SQL, isto permite a ambas as
solugdes utilizar de forma transparente a reescrita de comandos SQL para
mascarar e encriptar dados.

Este manuseamento transparente de comandos SQL permite requerer a
execucao desses mesmos comandos ao Sistema de Gestao de Base de
Dados (SGBD) sem que os dados tenham de ser transportados entre a base
de dados e 0os mecanismos de mascaragem/desmascaragem e encriptagao/
decriptagao, evitando assim o congestionamento em termos de I/O e rede.
A utilizagao de operagdes e operadores nativos ao SQL também permite a
sua portabilidade para qualquer tipo de SGBD e/ou DW. As avalia¢oes
experimentais demonstram que as técnicas propostas obtém um
desempenho significativamente superior ao obtido por algoritmos
standard e outros propostos pelo estado da arte da investigagdo nestes
dominios, enquanto providenciam um nivel de seguranca consideravel.

Numa perspectiva de detecgao de intrusoes, a maioria dos Sistemas de
Deteccao de Intrusdes em Bases de Dados (SDIBD) utilizam formas de
analise de sintaxe de comandos para determinar padrdes de acesso e
dependéncias que determinam os perfis que consideram representativos
da actividade tipica dos utilizadores. Contudo, a carga consideravel de
natureza ad hoc existente em muitas ac¢des por parte dos utilizadores de

Resumo

DWs gera frequentemente um nimero avassalador de alertas que, na sua
maioria, se revelam falsos alarmes. Muitos SDIBD também ndo fazem
qualquer tipo de avaliagao aos potenciais danos que as intrusdes podem
causar, enquanto muitos outros permitem que varias intrusdes passem
indetectadas ou apenas inspeccionam as ac¢des dos utilizadores apds essas
acgoes terem completado a sua execugao, o que coloca em causa a possivel
contencgao e/ou reparacao de danos causados.

Nesta tese, propomos um SDIBD especificamente concebido para DWs,
integrando um detector de intrusdes em tempo real, com capacidade de
parar ou impedir a execu¢ao da accao do utilizador, e que funciona de
forma transparente como uma extensio do SGBD. Os perfis dos
utilizadores e os processos de detecgao de intrusdes recorrem a analise de
diversos aspectos distintos caracteristicos da actividade tipica de
utilizadores de DWs: o comando SQL emitido, os dados processados, e os
dados resultantes desse processamento. Um conjunto de regras tipo SQL
estende o alcance das politicas de controlo de acesso a dados, e modelos
estatisticos sdao construidos baseados em cada varidvel relevante a
determinagdo dos perfis dos utilizadores, sendo utilizados testes
estatisticos para analisar as ac¢des dos utilizadores e detectar possiveis
intrusdes. Também ¢é descrito um método de calibragem automatizado da
contribuigao de cada uma dessas varidveis no processo global de deteccao
de intrusdes, com base na eficiéncia que vao apresentando ao longo do
tempo nesse mesmo processo. Um método de exposicao de risco é definido
para fazer a gestao de alertas, que € mais eficiente do que as técnicas de
correlacao habitualmente utilizadas para este fim, de modo a lidar com a
geracao de quantidades elevadas de alertas. As avaliagOes experimentais
incluidas nesta tese demonstram a eficiéncia do SDIBD proposto.

Palavras-chave: Seguranca de Dados, Data Warehousing, Mascaragem de
Dados, Encriptacdo, Deteccao de Intrusdes em Bases de Dados,
Frameworks de Seguranca em Bases de Dados.

xi

Resumo

Xii

Acknowledgements

Firstly, I would like to leave a warm thank you to my advisors. To Professor
Marco Vieira by opening new paths and perspectives along the way, and
especially to Professor Jorge Bernardino, whose support was and goes far
beyond scientific and technical advice. The friendship and respect that I
have for both is invaluable and will endure throughout our lives. I would
also like to give a warm word of gratitude to Professor Deolinda Rasteiro
her amiability and availability whenever I required her assistance.

To my parents and grandparents, who always encouraged and supported
me unconditionally in the early stages of my life and provided a safe haven
so that I could grow healthy and complete as a person. I would not be here
today if it was not for them.

I'would also like to thank my family and closer friends that encouraged me
in one way or another along these past years to pursue my dreams and
which helped me to become a better person, especially my brother, Jorge
Santos, and my great friends Adelino Ferreira, Alfredo Cabral, Antonio
Ramos, Carlos Ribeiro, Fernando Pais, Julio Valente and Manuel Vaz,
among many others.

To my remaining friends, family and all those who in one way or another
contributed to my aggrandizement throughout my life and made me a
better person, thank you.

Finally, I would like to thank the most important people in my life. I want
to thank my wife for the strength and encouragement passed onto me,
always cemented in her patience and persistency, and to apologize for the
time spent in which I was not available to her. To my sons, my greatest
treasures, I thank them for their support and the meaning their existence
gives my life, wishing that I can serve as an example of strength and
courage to overcome the obstacles of life.

xiii

Acknowledgements

Xiv

Agradecimentos

Em primeiro lugar, gostaria de deixar um caloroso agradecimento aos
meus orientadores. Ao professor Marco Vieira, pelo abrir de novos
caminhos e perspectivas ao longo desta caminhada, e especialmente ao
professor Jorge Bernardino, cujo apoio foi e vai muito para além do
aconselhamento e esclarecimentos técnicos e cientificos. A amizade e
respeito que nutro pelos dois é inestimavel e perdurara pela vida fora.
Queria também deixar um agradecimento especial a professora Deolinda
Rasteiro, pela amabilidade e disponibilidade demonstradas sempre que
necessitei da sua ajuda.

Aos meus pais e avos, que sempre me incentivaram e apoiaram de forma
incondicional nas etapas iniciais da minha vida e proporcionaram um
porto de abrigo para que pudesse crescer de forma saudavel e completa
como pessoa. Nao estaria aqui hoje se nao fosse por eles.

Queria também agradecer a alguns dos meus familiares e amigos mais
proximos que me foram encorajando de uma maneira ou de outra ao longo
destes tultimos anos a perseguir os meus sonhos, e que me ajudaram a ser
uma pessoa melhor, nomeadamente o meu irmao, Jorge Santos, e 0s meus
grandes amigos Adelino Ferreira, Alfredo Cabral, Anténio Ramos, Carlos
Ribeiro, Fernando Pais, Julio Valente e Manuel Vaz, entre tantos outros.

Aos meus restantes amigos, familia e todos aqueles que, de uma forma ou
de outra, contribuiram para o meu engrandecimento ao longo da vida e me
tornaram uma pessoa melhor, muito obrigado.

Por ultimo, deixo os agradecimentos as pessoas mais importantes da
minha vida. Quero agradecer a minha esposa pela forca e encorajamento
transmitidos, sempre cimentadas na sua paciéncia e persisténcia, e pedir-
lhe desculpa pelo tempo que nao pude estar disponivel para ela. Aos meus
tilhos, os meus maiores tesouros, agradego o seu apoio e o significado que
a sua existéncia confere a minha vida, desejando que eu possa servir de
exemplo de forca e coragem para vencerem os obstaculos da vida.

XV

Agradecimentos

XVi

List of Publications

This thesis relies on the scientific research presented in the following peer
reviewed papers.

Peer reviewed papers published in conference proceedings, focusing on
surveying data security issues in data warehousing;:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “A Survey on Data
Security in Data Warehousing”, in EUROCON 2011 - International Conference
on Computer as a Tool, Lisbon, Portugal, 2011

Peer reviewed papers published in conference proceedings, focusing on
data masking and encryption:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “A Data Masking
Technique for Data Warehouses”, in IDEAS 2011 — International Database
Engineering & Applications Symposium, Lisbon, Portugal, 2011

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Balancing
Security and Performance for Enhancing Data Privacy in Data Warehouses”,
in TRUSTCOM 2011 - IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, Changsha, China, 2011

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Evaluating the
Feasibility Issues of Data Confidentiality Solutions from a Data Warehousing
Perspective”, DaWaK 2012 — International Conference on Data Warehousing and
Knowledge Discovery, Vienna, Austria, 2-5 September 2012

Ricardo Jorge Santos, Deolinda M. L. Rasteiro, Jorge Bernardino and Marco
Vieira, “A Specific Encryption Solution for Data Warehouses”, in DASFAA
2013 - International Conference on Databases Systems for Advanced Applications,
Wuhan, China, 22-25 April 2013

Xvii

https://www.cisuc.uc.pt/publication/show/2849
https://www.cisuc.uc.pt/publication/show/2849
https://www.cisuc.uc.pt/publication/show/2849
https://www.cisuc.uc.pt/publication/show/2852
https://www.cisuc.uc.pt/publication/show/2852
https://www.cisuc.uc.pt/publication/show/2852
https://www.cisuc.uc.pt/publication/show/2852
https://www.cisuc.uc.pt/publication/show/3070
https://www.cisuc.uc.pt/publication/show/3070
https://www.cisuc.uc.pt/publication/show/3070

List of Publications

Peer reviewed book chapters, focusing on data masking and encryption:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Using Data
Masking for Balancing Security and Performance in Data Warehousing”,
Handbook of Research on Computational Intelligence for Engineering, Science, and
Business, Chapter 15, IGI Global, ISBN 978-1-4666-2518-1 (hardcover) -- ISBN
978-1-4666-2519-8 (eBook), DOI: 10.4018/978-1-4666-2518-1.ch015, 2013

Peer reviewed papers published in conference proceedings, focusing on
database intrusion detection:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “DBMS
Application Layer Intrusion Detection for Data Warehouses”, ISD 2012 —
International Conference on Information Systems Development, Prato, Firenze,
Italy, 28-29 August 2012

Ricardo Jorge Santos, Jorge Bernardino, Marco Vieira and Deolinda Rasteiro,
“Securing Data Warehouses from Web-based Intrusions”, WISE 2012 —
International Conference on Web Information Systems Engineering, Paphos,
Cyprus, 2012

Currently submitted journal papers for peer reviewing, focusing on
database intrusion detection:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Research
Challenges in Data Warehouse Intrusion Detection”, ACM SIGMOD Record,
submitted 30 September 2013 (accepted for publication with changes on 21
January 2014)

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “DIDS-DW: A
Database Intrusion Detection System for Data Warehouses”, IEEE
Transactions on Dependable and Secure Computing (TDSC), submitted 26
October 2013

xviii

List of Publications

The following peer reviewed papers refer parallel research work that was
also published during the development of this thesis, although they are not
in the core of the work presented:

Peer reviewed papers published in conference proceedings, focusing on
real-time data warehousing;:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “24/7 Real-Time
Data Warehousing: A Tool for Continuous Actionable Knowledge”, in
COMPSAC 2011 - IEEE Signature Conference on Computer Software &
Applications, Munich, Germany, 2011

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Leveraging 24/7
Availability and Performance for Distributed Real-Time Data Warehouses”,
in COMPSAC 2012 - IEEE Signature Conference on Computer Software &
Applications, Izmir, Turkey, 2012

Peer reviewed papers published in conference proceedings, focusing on
health care systems:

Ricardo Jorge Santos, Jorge Bernardino and Jorge Henriques, “A 24/7
Monitorization Tool for Avoiding Hypotensive Episodes in Critical Care”, in
IDEAS 2010 - International Database Engineering & Applications Symposium,
Montreal, Canada, 2010

Ricardo Jorge Santos, Jorge Bernardino and Jorge Henriques, “The HTP Tool:
Monitoring, Detecting and Predicting Hypotensive Episodes in Critical
Care”, in EUROCON 2011 - International Conference on Computer as a Tool,
Lisbon, Portugal, 2011

Xix

https://www.cisuc.uc.pt/publication/show/2489
https://www.cisuc.uc.pt/publication/show/2489
https://www.cisuc.uc.pt/publication/show/2489
https://www.cisuc.uc.pt/publication/show/2489
https://www.cisuc.uc.pt/publication/show/2849
https://www.cisuc.uc.pt/publication/show/2849
https://www.cisuc.uc.pt/publication/show/2849
https://www.cisuc.uc.pt/publication/show/2849

List of Publications

XX

Table of Contents

Chapter 1. Introduction 1
1.1 Data Security in Databases.........c.cccccoeuiuiiiiinnnnininiiiicicene, 2
1.1.1.Preventive Data Security Techniques............cccccecvuvuiiiiinnininns 3
1.1.2.Reactive Data Security Techniques..........ccccccevvvviniiiinnins 4
1.2 Issues concerning Data Security in Data Warehouses 6
1.2.1.Data Masking.........cccccociiiinirirniiiciciiiinnccccccccceeennes 6
1.2.2.Data ENCryption ..o, 7
1.2.3.Database Intrusion Detection Systems..........c.cccccevuiiiiiiininns 8
1.2.4.Data Security Research Challenges in Data Warehousing..... 11
1.3 Thesis Statement and Main Contributionsccccevuvrurunennes 11
1.4 Thesis StIUCLUTEcociviiriririicicicc e 14
Chapter 2. Background and Related Work 17
2.1. Data Warehousing ... 17
2.1.1.The Data Warehouse: Concepts and Definitions..................... 19
2.1.2.Data Warehousing Environmentsccccccceeueiiinnnnnnnne. 20
2.1.3.Data Warehousing Environments vs Operational Systems ... 23
2.2, Data Masking.......cccocovviiiiiiiiiiiiiiiniiiiicccc s 26
2.2.1.Forms of Data Masking...........ccceceviiivininnnininiiicne, 26
2.2.2.Commercial Data Masking Solutions............cccccccoevininnnunnnee. 29
2.2.3.Using Data Masking in Data Warehouses..........c.c.ccccccceveuenee. 29
2.3. Data EnCryption.....cccceiviviiiniiieiciiieicceeeeen e 32
2.3.1.Standard Encryption Techniques and Algorithms.................. 35
2.3.2.0ther Encryption Techniques and Algorithms........................ 40
2.3.3.DBMS Data Encryption Packages..........cccocovurviuiicicincnncnnne. 49
2.3.4.Using Data Encryption in Data Warehousesccc...... 50
2.4. Database Intrusion Detection Systems..........c.cccoovevriiiiiinnne. 55
2.4.1.How Intrusion Detection Systems Operate...........cccccovennnnnne. 55
2.4.2.Intrusion Detection Techniquesccocoerreiiiniiiiccicnnnn, 59
2.4.3.Using Database Intrusion Detection Systems in Data
Warehousing Environments............ccccccceeioinnnnneccecccencene 68
2.5, SUMIMATY .ottt 70
Chapter 3. Data Warehouse Security Framework 71
3.1. Overview of the Data Warehouse Security Middle Tier.............. 72
3.1.1.The Security Framework Database...........cccccocovvviiinniinnnnnes 74
3.1.2.The Data Warehouse Security Interface..........cc.cccceuvvriinnnnnne. 75

xxi

Table of Contents

3.1.3.Analyzing the User Statement a Priori........ccccocoeviniiiiniiinns 76
3.1.4.Executing the User Statement............cccccccoevivvnniniiiiiinnenene. 77
3.1.5 Analyzing the Processed Data and Dataset Result a
POSETIONT c.vviiietiictcet 78
3.2. Guidelines for Enhancing Data Masking and Encryption
Performance in Data Warehousingcccccccviiiniiniiiniiniiee, 80
3.2.1.Numerical vs Textual Masked or Ciphered Input and
OULPUL ... 80
3.2.2.Preserving Column Datatypes........cccoovivivininviniiiinnninnnnn, 80
3.2.3.Using Only Native SQL Operations to Mask/Encrypt Data...81
3.2.4.Masking and Encryption Algorithm Designcccccoeunenn. 82
3.3. Guidelines for Enhancing Intrusion Detection in Data
Ware€hOUSINGcovovviiiiiiiiicc e 84
3.3.1.Using Individual User Profiles............cccccovvvinnininiinnnnnnn 84
3.3.2.Analyzing the Targeted Tables and Columns, Processed
Data and Resulting Datasets..........c.ccccccoeiiiiininnnnnicciiine 85
3.3.3.Intrusion Detection and Prevention a Priori and a
POSETIONT c.vviiieticictcet e 85
3.3.4.Using Risk Exposure for Alert Management.............cccoeveuene. 86
3.3.5.Fine-Tuning Intrusion Detection Features.............cccccccevvveninnn. 87
34, SUIMIMATY ..o 88
Chapter 4. MOBAT: A Data Masking Solution for Data Warehouses89
41 MOBAT Masking EXpressionccccevveeiiininnininnnincncincne, 90
4.2 Functional Architecturecccoovviiniiniiie, 93
4.3 Security ISSUES.......ccoeveiiiiiiitccc e 96
4.3.1Threat Modelccccoviiiiiiiiiiiiicc e, 96
4.3.2Using Column Datatype Key Lengths and Consecutive
MOD Operationsc.ceeeeeieuiieieiininieiieeresee e 97
4.3.3Data-at-rest is Always Maskedccccovvnvnniiinnnnnnnn, 98
4.3.4 Attack Costs on MOBAT ..o, 98
44 Experimental Evaluation ..., 100
4.4.1 Analyzing Storage SPaceccccceeeenrirerereeeeneeeeeeeeeeeeeeees 102
4.4.2. Analyzing Loading Time.........c.cccocooviimiiiiiiiniice 108
4.4.3.Analyzing Query Performance...........ccccoooveeiiiiiincinieennes 114
45 Discussion on MOBATcccocooiiiiiiiiiic e, 122
4.6 SUMMATY ... 125
Chapter 5. SES-DW: A Specific Encryption Solution for Data W. 127
51 SES-DW Encryption Cipherccooviiiiiiiininiiiccce, 128
52 Functional Architectureccccccovvinniiiiiiniicce, 131
53 5ecurity ISSUES......ccooiviiiiiiiiiiticc 134

xxii

Table of Contents

5.3.1Using Variable Key Lengths and MOD-XOR Mixes 135
5.3.2 Attack Costs on SES-DWccccviiviniicniiniecinieccneeenes 136
5.3.35ES-DW ENtropy ..ccoeveerieiiiiiiciiicicciciccevceccevcnencenes 139
54 Experimental Evaluation..........ccccooniiniiniiniinice, 140
5.4.1.Analyzing Storage Space ..o 141
5.4.2.Analyzing Loading Timecccccviiiiniiiniinniiiniicens 142
5.4.3.Analyzing Query Performancecccccocevvriiiiiiinnnnnne. 149
5.5 Discussion on SES-DW ..., 157
5.6 SUMMAIY ..oooviviviiiiiiiiiiicccc s 160
Chapter 6. DW-DIDS: An Intrusion Detection Mechanism for Data
Warehouses 161
6.1. Selecting Intrusion Detection Features in Data Warehouses 162
6.2. DW-DIDS Architecture.........cccovuvuruiuimiiiiininininiicicccccccceeenes 169
6.3. Learning Phase: Building User Behavior Profiles....................... 172
6.4. Detection Phase: Intrusion Detection against User Commands173
6.5. Alert and Response Management............cccccoeuvururueucuciinncncnennnes 175
6.5.1.Defining the Risk EXposure..........cccccovuviiiiiiinininnniniicennes 176
6.5.2.Defining the Probability..........cccccocoviiiiiiiiiiiiiiins 179
6.5.3.Defining the Impact.........ccccccevviviiiiiiiiiiic 181
6.5.4.Calibrating Feature Weightcccccoooniiiiinns 183
6.6. Experimental Evaluation............ccccccoeoeiiinnnnnncccccicceeene 184
6.6.1.Building User Profiles ... 187
6.6.2.Intrusion Detection Efficiencyccccovviiiinnninnninnns 189
6.6.3.Analyzing the Generated Alerts per Risk Exposure
MEASUTE ...t 192
6.6.4.Database Response Time Overhead due to Intrusion
DeteCtioncvevieiiiiiicicc 195
6.7. Discussion on DW-DIDS...........cccooiiiiniiniiiicccece, 195
6.8, SUMIMATIY ..oovoiiririiieiiieietcece et 199
Chapter 7. Conclusions and Future Work 201
References 211
Appendix A. Sales Data Warehouse 221
AL PUIPOSE ...ttt 221
A.2.Data SChema.......ccccvuiiiiiiiiiiiice e 221
A.3. Table Scale SiZe........occovevuvemimemiiiiirreee e 221
A.4. Query Workloads ..o 222
Appendix B. Data Masking and Encryption Experimental Results......... 237
B.1. Data Masking Chapter Loading Time Results...........ccccccceviiiinn. 238
B.2. Data Masking Chapter Query Workloads Exec. Time Results...... 239

xxiii

Table of Contents

B.3. Encryption Chapter Loading Time Resultsc.ccccceviiniiiinnnne. 240
B.4. Encryption Query Workloads Execution Time Results 241
Appendix C. Intrusion Detection Experimental Results..........ccceceuruunueee. 243
Appendix D. Intrusion Detection Benchmark 245
D.1. DWID-Bench: Data Warehouse Intrusion Detection Benchmark .246
D.2. DWID-Bench Database Schema.........c.ccceeeveeiereeneeneeieeeeeeeeeeieens 246
D.3. DWID-Bench “Non-intrusion” Workload...........cccceecevvrciecveveniennns 248
D.4. DWID-Bench “Intrusion” Workload..........ccecevvevierienenenciereienienns 251
D.5. DWID-Bench Rules and Execution Procedurecccoecvveuveereennens 265
D.6. DWID-Bench MEtTiCScccveeeveeereeiieieeieeieeieeeesie e eteereseeeeesreeaeens 268
D.7. DiSCUSSIONceeuieiietieiteie ettt et et e e e teste e esse e sesteetesaeesseeseens 270
D.8. Summary and Future Workccooniiiiiiiinicccce, 271

XXiv

List of Figures

Figure 2-1. Generic Data Warehouse Functional Architecturecccccccoevevenennnns 21
Figure 2-2. Data masking using a reference table.............ccccoeiiiiinnnnniinnnns 26
Figure 2-3. Data masking using a masking function..........c.ccccccceeieicinnnnnnenenes 27

Figure 2-4. The Shannon Encryption Model (adapted from [Vaudenay, 2006]) .. 33

Figure 2-5. DES Round Function [Vaudenay, 2006]...........cccccovuiiiiinininnnniininnnns 36
Figure 2-6. AES Step-by-Step Algorithm [Vaudenay, 2000]...........cccccovvvvvvivnnnnnnne 38
Figure 2-7. Transparent Encryption Setting for OPES [Agrawal et al., 2004]........ 41
Figure 2-8. Encryption-as-a-Service Service-Provider Model [Hacigumus et al.,
2002] oot 42
Figure 2-9. TEA Schemaccccoviiiiiiiiiiiii e 44
Figure 2-10. The Blowfish Algorithmccccceceiiiiiniiii 46
Figure 2-11. The Blowfish Transformation Function (F)......c.ccccccvvecneccnnencnnenee 47
Figure 2-12. Typical ID System Architecture (adapted from [Scarfone and Mell,
2007]) et bbbt 56
Figure 2-13. The quiplet construction process [Kamra et al., 2008])cccceuueee. 61
Figure 3-1. Typical DW user action information flowcccccecevinnniiinnnn 72
Figure 3-2. Step sequence of the submittance of a SQL user statement................. 72
Figure 3-3. Integrated Data Warehouse Security Framework............c.cccccccccceeeie. 74

Figure 3-4. Inform. flow concerning the a priori analysis of the user statement... 76
Figure 3-5. Information flow concerning the execution of the user statement..... 78

Figure 3-6. Information flow concerning the a posteriori analysis of the user
StAtEMENT ...ocvii 79

Figure 4-1. The MOBAT Data Security Architecture...........ccccoviviviiiiniinninnnnns 93
Figure 4-2a. Storage Size in Oracle for the TPC-H 1GB Fact Table p/ Solution.. 103

Figure 4-2b. Storage Overhead (%) in Oracle for the TPC-H 1GB Fact Table per
SOIULION ..ot 103

XXV

List of Figures

Figure 4-3a. Storage Size in SQL Server for the TPC-H 1GB Fact Table per Solution

Figure 4-3b. Storage Overhead (%) in SQL Server for the TPC-H 1GB Fact Table
PET SOIULION ..o 103

Figure 4-4a. Storage Size in Oracle for the TPC-H 10GB Fact Table p/ Solution 105

Figure 4-4b. Storage Overhead (%) in Oracle for the TPC-H 10GB Fact Table per
SOIUHON ottt 105

Figure 4-5a. Storage Size in SQL Server for the TPC-H 10GB Fact Table per Solution

Figure 4-5b. Storage Overhead (%) in SQL Server for the TPC-H 10GB Fact Table
PET SOLULION ..ot 105

Figure 4-6a. Storage Size in Oracle for the Sales DW Fact Table per Solution....106

Figure 4-6b. Storage Overhead (%) in Oracle for the Sales DW Fact Table per
SOIULION .. 106

Figure 4-7a. Storage Size in SQL Server for Sales DW Fact Table p/ Solution106

Figure 4-7b. Storage Overhead (%) in SQL Server for the Sales DW Fact Table per
SOIUHON ottt 106

Figure 4-8a. Loading Time in Oracle for TPC-H 1GB Fact Table p/ Solution......109

Figure 4-8b. Loading Time Overhead (%) in Oracle for the TPC-H 1GB Fact Table
PET SOIULION ..ottt 109

Figure 4-9a. Loading Time in SQL Server for the TPC-H 1GB Fact Table per
SOIUHON ottt 109

Figure 4-9b. Loading Time Overhead (%) in SQL Server for the TPC-H 1GB Fact
Table per SOIUtION ..o 109

Figure 4-10a. Loading Time in Oracle for the TPC-H 10GB Fact Table per Solution

Figure 4-10b. Loading Time Overhead (%) in Oracle for the TPC-H 10GB Fact
Table per SOIUHON. ... 110

Figure 4-11a. Loading Time in SQL Server for the TPC-H 10GB Fact Table per
SOIULION oo 111

Figure 4-11b. Loading Time Overhead (%) in SQL Server for the TPC-H 10GB Fact
Table Per SOIULION......c.c.ciiieecccccc e 111

Figure 4-12a. Loading Time in Oracle for the Sales DW Fact Table p/ Solution.112

XXV1

List of Figures

Figure 4-12b. Loading Time Overhead (%) in Oracle for the Sales DW Fact Table

PET SOIULION ..o 112
Figure 4-13a. Loading Time in SQL Server for the Sales DW Fact Table per Solution
.. 112
Figure 4-13b. Loading Time Overhead (%) in SQL Server for the Sales DW Fact
Table per SOIULION ... 112
Figure 4-14a. Query Workload Execution Time per Solution in Oracle for TPC-H
LGB oo 116
Figure 4-14b. Query Workload Execution Time Overhead (%) per Solution in
Oracle for TPC-H 1GB ... 116
Figure 4-15a. Query Workload Execution Time per Solution in Oracle for TPC-H
LGB o 116
Figure 4-15b. Query Workload Execution Time Overhead (%) per Solution in
SQLServer for TPC-H TGB.....coooiiiieeeeeeeeeeeeeee ettt s 116
Figure 4-16a. Query Workload Execution Time per Solution in Oracle for TPC-H
TOGB oot 117
Figure 4-16b. Query Workload Execution Time Overhead (%) per Solution in
Oracle for TPC-H 10GBccoiiiiiiiiiiiciccie e 117
Figure 4-17a. Query Workload Execution Time per Solution in SQL Server for
TPC-H T0GB ..o 117
Figure 4-17b. Query Workload Exec. Time Overhead (%) per Solution in
SQLServer for TPC-H TOGBcc.oooiiiieieeieeeecteeetecte ettt e eae s 117
Figure 4-18a. Query Workload Execution Time per Solution in Oracle for the Sales
DIW s 119
Figure 4-18b. Query Workload Execution Time Overhead (%) per Solution in
Oracle for the Sales DWccooiiiiiiiiecccccce e 119
Figure 4-19a. Query Workload Execution Time per Solution in SQL Server for the
SALES DW ...t s 119
Figure 4-19b. Query Workload Exec. Time Overhead (%) per Solution in
SQLServer for the Sales DWooiiiieiieieceeeeeeteceee ettt eae s 119
Figure 4-20. TPC-H 10GB Individual Query Execution Time Overhead per Query
per Solution in Oracle 11g......ccoiiiiiiniiiiiiii e 122
Figure 5-1. The SES-DW Data cipher for encryption..........ccccccccccecccvnnnnncncnenas 129

XXVil

List of Figures

Figure 5-2. The SES-DW Data cipher for decryption..........ccccceeueuiiiiniininininiennns 131
Figure 5-3. The SES-DW Data Security Functional Architecture.............c............ 132

Figure 5-4a. Loading Time in Oracle for the TPC-H 1GB Fact Table per Encryption
SOIULION ..t 143

Figure 5-4b. Loading Time Overhead (%) in Oracle for the TPC-H 1GB Fact Table
per Encryption SOIUON ..o 143

Figure 5-5a. Loading Time in SQL Server for the TPC-H 1GB Fact Table per
ENcryption SOIULION.cccviiiiiiiiiiiiiiicccccc e 144

Figure 5-5b. Loading Time Overhead (%) in SQL Server for the TPC-H 1GB Fact
Table per Encryption SOIUtION ..o 144

Figure 5-6a. Loading Time in Oracle for the TPC-H 10GB Fact Table per Encryption
SOIUHION ottt s 145

Figure 5-6b. Loading Time Overhead (%) in Oracle for the TPC-H 10GB Fact Table
per Encryption SOIUtion ..o 145

Figure 5-7a. Loading Time in SQL Server for the TPC-H 10GB Fact Table per
Encryption SOIUtion..........ccceiviiiiiiiiiiiiii 145

Figure 5-7b. Loading Time Overhead (%) in SQL Server for the TPC-H 10GB Fact
Table per Encrypt. SOIUtION........ccouiviiiiiiiiiiiicciccce 145

Figure 5-8a. Loading Time in Oracle for the Sales DW Fact Table per Encryption
SOIULION .. 146

Figure 5-8b. Loading Time Overhead (%) in Oracle for the Sales DW Fact Table
per Encrypt. SOIULIONc.coviiiiiiiiiiiii e 146

Figure 5-9a. Loading Time in SQL Server for the Sales DW Fact Table per
Encryption SOIUHON........c.cvviiiiiiiiiicc 147

Figure 5-9b. Loading Time Overhead (%) in SQL Server for the Sales DW Fact
Table per ENcryption SOIULIONc.c.cociiiiriririiiciccccicc e 147

Figure 5-10a. Query Workload Execution Time in Oracle for the TPC-H 1GB per
ENcryption SOIUtION........coiiiieiicc s 150

Figure 5-10b. Query Workload Exec. Time Overhead (%) in Oracle for the TPC-H
1GB per Encryption SOIUtion ..o 150

Figure 5-11a. Query Workload Execution Time in SQL Server for the TPC-H 1GB
per ENncryption SOIULION ... 150

XXV1ii

List of Figures

Figure 5-11b. Query Workload Exec. Time Overhead (%) in SQL Server for the

TPC-H 1GB p/ Encryption SOIUtion ..o 150
Figure 5-12. Query Workload CPU Time Overhead (%) for the TPC-H 1GB per
Encryption Solution in each DBMS..........cccccooiniiiniiiiiiiiccccs 151
Figure 5-13a. Query Workload Execution Time in Oracle for the TPC-H 1GB per
ENncryption SOIUtIONccciiiiiiiiiiiiiiccc s 152
Figure 5-13b. Query Workload Exec. Time Overhead (%) in Oracle for the TPC-H
1GB per Encryption SOIULIONc.c.cucviiiiiiiiiiicicccccccc s 152
Figure 5-14a. Query Workload Execution Time in SQL Server for the TPC-H 10GB
per Encryption SOIUtIONcovviviiiiiiiiiic 152
Figure 5-14b. Query Workload Exec. Time Overhead (%) in SQL Server for the
TPC-H 10GB p/ Encryption SOIUtion..........ccoceueueueiiiiiiiininniniiccccccnnreceeennas 152
Figure 5-15. Query Workload CPU Time Overhead (%) for the TPC-H 10GB per
Encryption Solution in each DBMS..........cccoooiiinininininiiiiiiis 153
Figure 5-16a. Query Workload Execution Time in Oracle for the Sales DW per
Encryption SOIUHONccovviiiiiiiiccc e 154
Figure 5-16b. Query Workload Exec. Time Overhead (%) in Oracle for the Sales
DW per Encryption SOIUtion ... 154
Figure 5-17a. Query Workload Execution Time in SQL Server for the Sales DW per
Encryption SOIUHONc.cveviiiiiiiiiiiiiic 154
Figure 5-17b. Query Workload Exec. Time Overhead (%) in SQL Server for Sales
DW p/ Encryption SOIULION.c.ciuiiiiiiiiiciciccc e 154
Figure 5-18. Query Workload CPU Time Overhead (%) for the Sales DW 2GB per
Encryption Solution in each DBMS.........ccccoooiiiiininniiiicccccs 155
Figure 5-19. TPC-H 10GB Individual Query Execution Time Overhead per
Encryption Algorithm in Oracle 11g........cccccoiiirnnnrineceiiiereeeeeeeeeeeeeae 157
Figure 6-1. DW-DIDS Architecture.........cccoovinininiiiiiniiiiiiiiiccccccins 170
Figure 6-2. DW-DIDS Learning Stage Workflow per SQL User Command 173
Figure 6-3. DW-DIDS Intrusion Test/Detection Stage Workflow for each SQL User
COMMANG ...t 175
Figure 6-4. The risk exposure MatriX........ccoooeeieioiicceieieieiccccee e 177
Figure 6-5a. DW-DIDS TP and FP ratesccocovvviiiiiinnniiniiicccccccins 190
Figure 6-5b. RBAC-DIDS TP and FP rates........ccccccocoiinnrrrenieicrcccccernereeeenenenes 190

XXX

List of Figures

Figure 6-5c. DC-DIDS TP and FP rates........ccccocooeuiiiiinnniiiiiccccnines 190
Figure 6-6a. DW-DIDS Accuracy (ACC) and Precision (PREC)...........ccccceeueenes 190
Figure 6-6b. RBAC-DIDS Accuracy (ACC) and Precision (PREC)c.cceueueeeee 190
Figure 6-6¢c. DC-DIDS Accuracy (ACC) and Precision (PREC).........cccccovvunnnnes 190
Figure 6-7a. F-Score for the 9-1 Scenariocccccceiiiviininiiiiiciicciienes 191
Figure 6-7b. F-Score for the 8-2 SCenario..........cccoeeeeruereirieecnecrnecneeceeeenen 191
Figure 6-7c. F-Score for the 5-5 Scenario...........ccooeiiiinininiiiiiniiiins 191
Figure 6-8. Percentage of Alerts per Risk Exposure Method in each Setup 193
Figure 6-9. DW-DIDS TPR and FPR considering only High, Very High and Critical
Risk EXPOSUIe ALTtSccciiiiiiiiiiiiiiiiiiiiiii s 194
Figure 6-10. DW-DIDS Accuracy and Precision considering only High, Very High
and Critical Risk EXposure ALErtscccocciiiiinininininicieicccceeccccccnee 194
Figure 6-11. DW-DIDS F-Score considering only High, Very High and Critical Risk
EXPOSULE ALCTES.......oiiiiiiiiiiiciiii e 194
Figure 6-12. Database Response Time Overhead for each DIDS per Setup 195
Figure 6-13. Risk Exposure Approach versus Alert Correlation for Alert
ManagemeNt........c.ocviiiiieiiiec s 197
Figure D-1. DWID-Bench experimental Setup..........ccccccevvevviruricicccincninninineennes 246
Figure D-2. TPC-DS store sales E-R diagram [TPC-DS]........cccccccoeiivinnnnnnennes 248
Figure D-3. DWID-Bench benchmark methodologyccccccoeeuiiiinininninnnnns 267

Figure D-4. Benchmark Testing Phase execution flow for n “non-intrusion” DW
End Users and ni “intrusion” DW End Users...........cccocovviiiinnnniiiiicccne, 268

XXX

List of Tables

Table 2-1. Main Differences between Operational Systems and Data W.............. 25
Table 2-2. Database intrusion detection techniques and their coverage................ 67

Table 4-1. Example of original dataset and resulting MOBAT masked dataset .. 92

Table 4-2. Experimental Encryption/Masking Scenarios..........c.ccccceceveiviririrucncnnes 102
Table 4-3. TPC-H 1GB Lineitem Fact Table Storage Size Overhead.................... 107
Table 4-4. TPC-H 10GB Lineitem Fact Table Storage Size Overhead................... 107
Table 4-5. Sales DW 2GB Fact Table Storage Size Overhead............cccevvvennnnenns 108
Table 4-6. TPC-H 1GB Lineitem Fact Table Loading Time Overhead................. 113
Table 4-7. TPC-H 10GB Lineitem Fact Table Loading Time Overhead............... 114
Table 4-8. Sales DW 2GB Fact Table Loading Time Overhead...............cccccce.. 114
Table 4-9. TPC-H 1GB Query Workload Execution Time Overhead................... 120
Table 4-10. TPC-H 10GB Query Workload Execution Time Overhead............... 120
Table 4-11. Sales DW 2GB Query Workload Execution Time Overhead............. 121
Table 5-1. Estimated SES-DW entropy valuesccoevvuruemereccccinnnnnenenenes 140
Table 5-2. TPC-H 1GB Lineitem Fact Table Loading Time Overhead................. 148
Table 5-3. TPC-H 10GB Lineitem Fact Table Loading Time Overhead............... 148
Table 5-4. Sales DW 2GB Fact Table Loading Time Overhead............c.c.ccccccce..e. 149
Table 5-5. TPC-H 1GB Query Workload Execution Time Overhead................... 155
Table 5-6. TPC-H 10GB Query Workload Execution Time Overhead................. 156
Table 5-7. Sales DW 2GB Query Workload Execution Time Overhead 156
Table 6-1. SQL Intrusion Action Type Classification............ccccoeoeeieiiioiircennnnn 164
Table 6-2. SQL Intrusion Detection Featuresc..cocveveeeeereevieecreeceeceeeeeereenene, 167
Table 6-3. SQL Intrusion Detection Features Coverage per Intrusion Action Class
.. 169
Table 6-4. “Non-Intrusion” True User Workloads (TUW).....cccccceoevevnenennennne. 185

Xxx1

List of Tables

Table 6-5. Required Storage Space for building User Profilesc.cccceeueueees 188
Table 6-6. Workload Quantification for each User Scenarioc.cceeeveeverreennen. 189

Table 6-7a. Alerts per Risk Exposure Measure w/ Profiles built from 5 TUW
EXECULIONS ...ttt 192

Table 6-7b. Alerts per Risk Exposure Measure w/ Profiles built from 25 TUW
EXECULIONS ...ttt 192

Table 6-7c. Alerts per Risk Exposure Measure w/ Profiles built from 50 TUW
EXECULIONS ...ttt 192

Table 6-7d. Alerts per Risk Exposure Measure w/ Profiles built from 100 TUW

EXECULIONS ...ttt s 192
Table A-1. Scale-size features of the Sales Data Warehouseccccovvvvnnnnninns 221
Table B-1. Data Masking TPC-H 1GB Loading Time..........cccccoviiiiinniininnninnnes 238
Table B-2. Data Masking TPC-H 10 GB Loading Time........ccccocovivivrniriinnienes 238
Table B-3. Data Masking Sales DW Loading Time.........cccccocoeiiiiininnnnncennes 238
Table B-4. Data Masking TPC-H 1GB Query Workload Execution Time............ 239
Table B-5. Data Masking TPC-H 10GB Query Workload Execution Time.......... 239
Table B-6. Data Masking Sales DW Query Workload Execution Time............... 239
Table B-7. Encryption TPC-H 1GB Loading Time..........cccocoviiiiiinininnnnccnnes 240
Table B-8. Encryption TPC-H 10 GB Loading Time.......c.cccocoeiiiiinininnnncennes 240
Table B-9. Encryption Sales DW Loading Time..........cccccoovviiiiiiinniniiiinnes 240
Table B-10. Encryption TPC-H 1GB Query Workload Execution Time 241
Table B-11. Encryption TPC-H 10GB Query Workload Execution Time............. 241
Table B-12. Encryption Sales DW Query Workload Execution Time................... 241
Table C-1. DW-DIDS ID Results for Profiles built from 5 “True” User Workloads
.. 243
Table C-2. DW-DIDS ID Results for Profiles built from 25 “True” User Workloads
.. 243
Table C-3. DW-DIDS ID Results for Profiles built from 50 “True” User Workloads
.. 244

XXxii

List of Tables

Table C-4. DW-DIDS ID Results for Profiles built from 100 “True” User Workloads

.. 244
Table D-1. “Non-Intrusion” DW End-User Workload — Query Ordering.......... 250
Table D-2. “Intrusion” Workload............cccccviecniicciniiiniiineeneceseereeenes 263
Table D-3. “Intrusion” Workload — Query Orderingcccccoeoveverenriiecnccnnnen. 264
Table D-4. DWID-Bench DIDS benchmarking examples...........ccccccccecivnnneennes 269

XXxiii

List of Tables

XXX1V

Chapter 1

Introduction

Data is a major asset for any enterprise, not only for knowing the past, but
also to support today’s business and to predict future trends [Baer, 2004;
Kobielus, 2009]. Data Warehouses (DWs) gather all the relevant historical
and current business data, reflecting the business measures and its results,
as well as how and when it occurs. Given its nature, this data translates
into business knowledge, providing invaluable information to generate
added business value and support decisions.

In fact, DWs are today’s backbone for enterprise business intelligence,
playing a main role in the enterprise’s outcome [Kobielus, 2009]. Given
these facts, we may state that DWs are the core of sensitive business data
and store the secrets of the business itself. This makes them a major target
for both inside and outside attackers. Consequently, securing DWs against
data damage and information leakage is a critical goal.

The awareness of the importance of data security has been growing in the
recent years. In fact, a survey on enterprise data security conducted by the
Independent Oracle Users Group (IOUG) in 2012 [McKendrick, 2012],
shows that almost 50% of the inquired companies increased their
investment in IT security, while 9% of the inquired companies stated that
they had sustained security breaches in company data. The same report
also shows that almost 40% of the companies are expecting a security
breach in 2013.

Although several other studies have also demonstrated that efficiently
securing sensitive data has become an imperative concern in many
enterprises [McKendrick, 2012; Yuhanna, 2009], database attacks are
increasing every year in number and complexity, and the caused damage
is frequently only discovered after a significant loss of business or financial
value [Yuhanna, 2009]. As organizations scale up, the amount of data

Chapter 1

moving across their systems and business units, and the risk of data
breaches and abuse also grows [McKendrick, 2012]. This introduces the
need for integrating effective security measures into databases, given that
they are the central component of enterprise information systems.

Regardless of their security purpose, the techniques that are selected for
implementing data security in DWs need to consider that data
warehousing environments have unique types of user activities, as well as
database features' and performance requirements, which do not exist in
any other type of database system. Therefore, the implementation and
usage of the chosen techniques must not jeopardize the feasibility,
efficiency and effectiveness of those features and requirements.

In this thesis, we focus on enhancing data security in databases, specifically
in the context of data warehousing environments, namely in what concerns
data masking, encryption and intrusion detection. The following sections
characterize data security in databases, summarily describing the most
commonly used techniques, and point out the main issues presented by
these techniques from a data warehousing perspective. The chapter
continues by presenting the thesis statement, its main achievements and
contributions, as well as the structure of the document, which concludes
this chapter.

1.1 Data Security in Databases

In this thesis, we adopt the security concepts and definitions described in
[Avizienis et al., 2004]. Thus, when referring to data security in databases,
it is defined as the composite set of the following attributes:

e Integrity: absence of improper modification or deletion of data that
may compromise its correctness, completeness, consistency or
authenticity;

e Confidentiality: absence of improper disclosure of data, i.e., users do
not access data they are not supposed to access;

1 In this thesis, we consider a feature as a variable for assessing the characteristics
of a given subject. For example, a database feature can be the storage size of a
database or its throughput, among other variables.

Introduction

e Availability: readiness of service, i.e., the required database service
and data are always available whenever requested.

To comply with these attributes, many techniques have been proposed in
the past. These can be divided in two classes: preventive and reactive
techniques. Preventive data security techniques effectively protect data in
advance of security problems or attacks, and independently from the
occurrence of those problems or attacks (e.g. data masking, encryption, and
data access policies, among others), while reactive security techniques are
used to effectively respond to the occurrence of a security problem or
attack, either while it occurs or after it has taken place (e.g. intrusion
detection and prevention systems). The following subsections summarily
describe the most common types of techniques for each class.

1.1.1. Preventive Data Security Techniques

Besides basic data integrity rules such as the enforcement of referential
integrity and low-level hardware and/or software data storage integrity
checks against data corruption such as data block checksum functions and
error-correcting codes (e.g. CRC), used in all databases, the most commonly
used preventive data security techniques for protecting sensitive data are
probably those that include data masking, encryption and the
implementation of data access policies [Huey, 2008].

As one of the earliest methods for protecting data, DataBase Management
Systems (DBMS) traditionally use some form of access control to enforce
policies regarding the data they manage. Using data access policies allows
defining the data that each user is authorized to access and the actions that
s/he is authorized to execute. This is accomplished through user
authentication, which is the process of verifying the user’s identity in the
system and applying the set of policies defined for the user or the role to
which s/he belongs.

Data masking, as the term itself indicates, is the process of obscuring data,
either by replacing true values with false values or by hiding a part of its
values, in specific data elements. In databases, the main goal of data
masking is to replace stored true data with realistic but unreal data, so the
true data is unavailable to unauthorized users. An extensive survey on data
masking techniques is given in [Ravikumar et al., 2011]. To assure a
significant level of security, the false values should not allow attackers to

Chapter 1

easily discover ways of retrieving the true values, either by comparison or
inference techniques. Organizations have strived to solve privacy issues
with hand-crafted solutions or repurposed data manipulation tools within
the enterprise to solve the problem of sharing sensitive information. The
most common solutions are probably to use scripts with triggers in order
to mask and unmask each value, use built-in DBMS data masking packages
such as the Oracle Data Masking (ODM) pack [Natan, 2005; Oracle, 2010c],
or to embed the masking/unmasking logic within user applications
themselves.

Data encryption techniques are an evolutionary and more complex form of
data masking which intends to strengthen the security level, obeying to a
series of universal principles defined by the encryption research
community. It is defined that an encryption algorithm is a procedure or
function that handles a given input, performs a series of rounds composed
by mixing and transformation actions with that input or part(s) of it,
depending on a given encryption key or set of keys, and generates a given
output from those mixes and transformations [Vaudenay, 2006]. The
algorithms of these procedures or functions are either developed internally
within the enterprise to be used in a private manner, or publically disclosed
for discussing its merits and proving its secureness by the research
community and entities such as the National Institution of Standards and
Technology (NIST), so it can be accepted for usage. In the recent past,
encryption packages have been progressively implemented in many
commercial and open source DBMS such as Oracle, Microsoft SQL Server
and MySQL.

1.1.2. Reactive Data Security Techniques

Currently, all main DBMS have audit control, comply with ACID
(Atomicity, Consistency, Isolation, Durability) requirements, and supply
extensive authentication, authorization, and access control (AAA) features
for assuring that the right users access and/or modify only the data that
they are supposed to access and/or modify. All main DBMS also have
available data masking and encryption packages that can be used
transparently with databases and user applications in a straightforward
manner. These preventive techniques work effectively in guaranteeing that
only authorized users may access and manage the data that they are
supposed to access and manage. However, they are unable to distinguish

Introduction

if the user that has logged in is truly who s/he is supposed to be and/or if
that user has or not malicious intentions; if a masqueraded user or
malicious insider that has gained clearance by hacking or taking advantage
of valid login credentials, those preventive mechanisms are unable to
protect data.

Given the increase of sophisticated attacks (e.g. Distributed Denial of
Service attacks) and rising internal theft, traditional AAA features along
with data masking and/or encryption are no longer enough to protect data
[McKendrick, 2012; Yuhanna, 2009]. Additionally, attackers that gain
direct access to databases mostly represent authorized users logging with
permission to access data, meaning that they are able to bypass traditional
intrusion detection systems (IDS), which typically work at the network and
operating systems (OS) levels. This has lead to the development of reactive
data security techniques, which monitor and analyze user actions in the
database and try to determine if they are harmful or not in order to
adequately deal with them, protecting data from attackers that bypass
preventive security techniques.

Gartner Research has identified Database Activity Monitoring (DAM) as
one of the most important strategies for decreasing information leakage in
organizations [Mogull, 2006; Nicolett and Wheatman, 2007]. Considering
an intrusion as an unauthorized attempt to violate the integrity,
confidentiality or availability of a system, the detection of intrusion actions
against data and inherent database services is the main goal of Database
Intrusion Detection Systems (DIDS) [Lappas and Pelechrinis, 2007]. DIDS are
mainly host-based intrusion detection systems that operate at the database
level, i.e., they inspect user commands and/or data workloads just before,
during or after that data and/or workloads are processed by the database
server. In DIDS there is typically a learning phase (i.e., previous to intrusion
detection), in which database and/or user activity logs assumed as having
“normal” or intrusion-free activity are used in order to build the “non-
intrusive” normal user behavior profiles. To perform intrusion detection,
there are mainly two types of approaches: misuse detection, looking for
well-known predefined attack patterns; and anomaly detection, looking
for deviations from the typical user behavior [Newman, 2011].

Chapter 1

1.2 Issues concerning Data Security in Data Warehouses

In spite of the diversity of available data security techniques, their
feasibility, efficiency and effectiveness in data warehousing environments
has not been undoubtedly proven. On the contrary, in this thesis we
demonstrate that several of the currently available data security techniques
are in fact unfeasible or, at least, introduce lacks of efficiency and
effectiveness or performance overheads with orders of magnitude that
jeopardize their feasibility. In the next sections, we point out the issues
concerning the data security techniques focused in this thesis, from a data
warehousing perspective.

This thesis focuses on enhancing data masking, encryption and DIDS
specifically designed for usage in DWs. Therefore, in the following
subsections we point out the main issues of each of these techniques from
a data warehousing perspective, which make the ground for our work.

1.2.1. Data Masking

Data masking routines are generally simpler in complexity and faster than
encryption routines. However, they provide lower security strength
[Ravikumar et al., 2011]. As we previously mentioned, encryption
algorithms intended to be accepted and widely used by the database
community are typically published with open access in order to enable
discussing its merits and proving its secureness by both security and
database research communities and entities such as the National Institute
of Standards and Technology (NIST). This means that before they are put
to use, most encryption algorithms go through very thorough and
exhaustive analysis and testing processes. If they have been approved,
those processes confer a sense of secureness to whoever intends to use
them.

For example, the Advanced Encryption Standard (AES) [AES, 2001]
became an encryption standard only after a five year long standardization
process that included extensive benchmarking on a variety of platforms.
Since the appearance of the encryption field within data security, both
database developers and users feel much more confident and relaxed with
using encryption, rather than simple masking, to protect their sensitive
data. This has introduced a confidence issue concerning the use of data
masking in highly sensitive databases such as those in DWs.

Introduction

Data masking routines provided by most commercial tools such as Oracle
Data Masking (ODM) typically change data in an irreversible manner, i.e.,
after masking data it is not possible to subsequently retrieve the original
true values. Oracle states that the ODM should be used as a fast and easy
way to generate production databases for supporting outsourcing and
software development. The ODM can also be used to mask Microsoft SQL
Server and DB2 databases for the same purpose. ODM requires new data
to be loaded into the database first, and only applies the masking
procedures afterwards. It is not possible to load previously masked data;
masking in the ODM is an a posteriori process. Most commercial solutions
work in a similar fashion as the ODM [Gartner, 2009; Huey, 2008].

As not being able to retrieve the original values makes data masking
solutions useless in live end user databases [Bertino and Sandhu, 2005a;
Gartner, 2009; Huey, 2008; Nadeem and Javed, 2005; Natan, 2005;
Ravikumar et al., 2011; Yuhanna, 2009], the lack of confidence in their
security strength in some cases and their irreversibility in other cases has
made masking techniques the main choice for protecting published data or
production data, instead of protecting data in live sensitive end user
databases such as DWs.

1.2.2. Data Encryption

Published research and best practice guides state that encryption is the best
method to protect sensitive data at the database level while maintaining
high database performance [Agrawal et al., 2004; Ge and Zdonik, 2007;
Hacigumus et al., 2004, Huey, 2008; Natan, 2005; Oracle, 2005; Oracle,
2010a; Oracle, 2010c; Vimercati et al., 2007]. However, despite their security
strength, encryption techniques introduce performance key costs from a
data warehousing point of view:

e Large processing time/resources for encrypting sensitive data, since DWs
require accessing and processing huge amounts of data, this creates
a high demand on computational resources that significantly rises
processing time and the required storage space in their databases;

e Extra storage space of encrypted data, since DWs usually have many
millions or billions of rows, even a small modification of any
datatype size to hold encrypted output introduces large storage
space overhead;

Chapter 1

e Overhead of query response time and allocated resources for decrypting
data to process those queries. Given the huge amount of data typically
accessed in order to process DW queries, this is probably the most
significant drawback concerning the use of encryption in DWs
[Agrawal et al., 2004].

As the number and complexity of “data-mix” encryption rounds increase,
their security strength often improves while performance degrades, and
vice-versa. Balancing performance with security in DWsis a complex issue,
which depends on the requirements and context of each particular
environment. Most encryption algorithms are not suitable for DWs
because they have been designed as a “one fits all” security solution for
general-purpose data. Thus, they are designed for encrypting blocks of
text, i.e., sets of character-values by default. This has led DBMS to
implement encryption routines that just output textual or binary attributes.

Since in most enterprises the business facts are essentially numerical
values, it is fair to state that most DW columns store numerical values
[Kimball and Ross, 2013]. Thus, using encryption means that they need to
be converted to a textual or binary format. When those values are
decrypted for query processing, they need to be converted back into
numerical format in order to process sums, averages, etc. Since most
decision support queries process mathematical functions and calculus
against numerical attributes, conversion operations add computational
overheads with considerable performance impact and represent a
potentially critical drawback.

Although many encryption algorithms such as [Agrawal et al., 2004; Ge
and Zdonik, 2007; Hacigumus et al., 2004, Radha and Kumar, 2005;
Vimercati et al., 2007] and built-in DBMS packages such as [Oracle, 2010a]
for specific use within databases have been proposed in the past, the
introduced performance costs in DWs are very significant and may
jeopardize their feasibility or make them unacceptable to users, as we
demonstrate in this thesis.

1.2.3. Database Intrusion Detection Systems

Most Database Intrusion Detection Systems (DIDS) rely on command-
syntax analysis to compute data access patterns and dependencies for
building user profiles [Mathew et al., 2010]. However, as we have

Introduction

previously mentioned, the considerable ad hoc nature of Data Warehouse
(DW) decision support workloads makes it extremely difficult to
distinguish between normal and abnormal user behavior. Although
several DIDS proposed in the recent past are available to be used in DWs,
they suffer from a series of drawbacks in these environments:

Most are poor at detecting novel attacks in dealing with ad hoc
workloads such as those in DWs and typically spawn too low true
intrusion detection rates (allowing many intrusions to pass
undetected) or too high false alarm rates [Pietraszek, 2004;
Pietraszek and Tanner, 2005; Srivastava et al., 2006; Treinen and
Thurimella, 2006];

Thresholds? are typically used to assess the probability of a given
action being an intrusion. Given the sensitivity of DW data, using
low thresholds is preferable (which consequently generates more
alerts), because the potential cost of non-detection is often too high
or unacceptable. However, in this case the number of false alarms
is often so large that it frequently leads to wasting immense time
and resources, or they are simply just too much to be checked
[Pietraszek, 2004; Srivastava et al., 2006];

Although alert correlation techniques have been proposed to deal
with large amounts of generated alerts and decrease false positive
rates, they are not the best choice for alert management in DW
environments. In fact, as these techniques filter sets of alerts in
order to decide if each alert is relevant or not, they may allow true
intrusions that are capable of producing a great amount of damage
to pass undetected, even though they were initially alerted;

Most DIDS do not assess the damage that each potential intrusion
is capable of causing to the data and/or enterprise. Given the
business value of DWs, this is a critical issue because it would allow
to define which alerts should be checked first, since different data
also has different importance to the enterprise;

2 When mentioned in intrusion detection processes, the term threshold is typically
a value that sets the limit between normal and abnormal behaviour, given a range
domain of possible values that are outputted by those processes.

Chapter 1

e Many DIDS execute the intrusion detection (ID) process a posteriori,
i.e., after the intrusion action has finished its execution. This
disables intrusion response and prevention while the intrusion
occurs. Given their value, avoiding corruption or exposure of data
in DWs as early as possible is a critical issue, making real-time
intrusion detection and response capabilities is an essential
requirement.

The overstated number of alerts and false alarms, together with the
potentially low reliability on correlation techniques and the hypothesis
that many intrusions may only be detected and dealt with a posteriori
jeopardizes the credibility, efficiency and effectiveness of existing DIDS
[Bockermann et al., 2009; Lee, 2002; Pietraszek, 2004; Pietraszek and
Tanner, 2005; Treinen and Thurimella, 2006].

Another problem that makes it difficult to develop adequate DIDS is the
absence of intrusion detection benchmarks at the database level.
Benchmarks are an essential instrument used in the development and
implementation of many systems. They are widely used because they
provide a manner to test those systems and supply solution providers and
clients with measures that allow comparing between different solutions,
while providing feedback to developers that enables them to improve
those solutions. In the past, the KDD99 benchmark [DARPA] has been
widely used for testing intrusion detection solutions. However, this
benchmark focuses on intrusion actions at the network and operating
system (OS) level. In what concerns databases, a need arises for dealing
with intruders that are able to bypass intrusion detection mechanisms
working at the network and OS level. In spite of the criticality of protecting
DW data against intrusions and the importance of having available
benchmarks for testing and improving DIDS, to the best of our knowledge
there is no benchmark focusing on the specific features® of intrusion
detection in DW environments at the data level.

3 The explicit mention to intrusion detection features refer to the variables that are
used for building user profiles and that are employed for intrusion detection
purposes. For example, the DIDS proposed in this thesis uses features such as the
elapsed time for processing each SQL user command, the number of processed
rows, the size of the resulting dataset, etc.

10

Introduction

1.2.4. Data Security Research Challenges in Data Warehousing

The two main characteristics that differentiate one data confidentiality
solution from the other is its ability to secure the protected data against
attacks and its speed and efficiency in doing this. Given the specificities of
data warehousing environments, we believe there are specific security and
performance issues and tradeoffs to evaluate and discuss, regarding the
use of data masking and encryption solutions in DWs, which can lead to
the development of solutions with better tradeoffs. We also believe that
higher efficiency and effectiveness can be achieved in DIDS for DWs if they
are designed and/or improved taking in consideration those specificities of
data warehousing environments. These are our motivations, which
establish the foundations for the research work presented in this thesis.

1.3 Thesis Statement and Main Contributions

This thesis makes several contributions for enhancing data security in DWs
at the database server level. We propose specific solutions for
implementing data confidentiality, namely novel data masking and
encryption techniques, as well as a Database Intrusion Detection System,
which consider the unique specificities of data warehousing environments.
A framework for integrating all the proposed solutions together is also
proposed, supporting the implementation of a unique system that allows
increasing the DW’s overall security strength.

In detail, the main contributions of this thesis are:

¢ A body of knowledge on performance of encryption solutions in
large analytical databases. While encryption solutions are typically
characterized and analyzed from a security perspective, we present
research findings concerning their performance. It is not within the
scope of this thesis to discuss the scientific merit or soundness of
the security strength of each technique, but rather to evaluate their
impact in database performance and applicability in data
warehousing environments. This is obtained by analyzing the
design and measured performance of several state-of-the-art and
standard encryption algorithms in DWs of various sizes.

e A body of knowledge on performance of database intrusion
detection techniques focusing on their applicability in data

11

Chapter 1

warehousing environments. We present state-of-the-art intrusion
detection techniques and make a clear distinction between them
given the way that they determine which features to use and how
they manage intrusion detection. Based on this and on the
characteristics of typical data warehousing environment
workloads, we discuss the suitability or unsuitability of each
distinct type of technique for detecting intrusions in DWs. We also
point out alert management and intrusion response issues, which
can become a critical matter in intrusion damage containment.

e A novel data masking technique that introduces small database
performance overheads while providing considerable security
strength. The technique is used transparently by means of a
middleware security broker and sustains the reversible features to
retrieve the true original values from the masked values, which
makes it useful in live databases such as DWs. It also promotes user
action auditing and accountability. Although its security strength
is not as high as that of encryption techniques, we believe that this
data masking technique is secure enough to be used in scenarios
where the performance overheads introduced by encryption are
unacceptable, presenting itself as a feasible solution by balancing
security and performance tradeoffs.

e A novel data encryption algorithm for numerical values that
provides considerable security strength while introducing small
database performance overhead. Similarly to the data masking
technique, our encryption solution is used transparently by means
of a middleware security broker and promotes user action auditing
and accountability. The proposed encryption technique avoids
storage space and computational overhead by preserving each
encrypted column’s original datatype. Each encrypted column may
have its own security strength by defining the number of
encryption rounds to execute, which also defines how many
encryption keys are used, since each round uses a distinct key (thus,
the true key length is the number of rounds multiplied by the length
of each round’s encryption key). This enables columns that store
less sensitive information to be protected with smaller-sized keys
and rounds and thus, process faster than more sensitive columns.

12

Introduction

Both data masking and encryption techniques maintain the stored
data masked or encrypted at all times, requiring only rewriting SQL
user commands to function properly and minimal changes to the
original data schemas. They use only standard SQL operations and
operators, which makes them directly implementable and
executable in any DBMS and database setup in a low-cost and
straightforward manner. Contrarily to solutions that pre-fetch data
to perform masking and unmasking or encryption and decryption,
by simply rewriting SQL commands we avoid I/O and network
bandwidth congestion due to data roundtrips between the database
and the encryption/decryption or masking/unmasking
mechanisms, and consequent response time overhead.

A specifically designed DIDS for DWs that works as an extension
of any DBMS, adding real-time intrusion detection and response
capabilities for each user action executed. The solution acts
transparently at the application layer between user applications
and the database without affecting their joint functionality. While
other DIDS just analyze the user command or its resulting dataset,
the proposed DIDS analyzes four distinct aspects of the user’s
action: SQL command, plus the accessed and processed data, plus
the resulting dataset, and enables stopping the user actions, both
before and after they are executed by the DBMS, with the ability to
avoid the disclosure of their results to the user or application that
requested the execution. A declarative SQL-like form for defining
intrusion detection and response rules at a fine-grain level is also
proposed. These rules allow defining a large spectrum of
possibilities for the detection of a wide range of intrusions as well
as adequately dealing with them.

A risk exposure approach to be used in the DIDS for ranking alerts,
improving the efficiency of damage or leakage containment by
pointing out the intrusions that might cause more damage. In cases
where the number of generated alerts to be checked is high, the
approach enables handling intrusions that indicate a potentially
higher risk to the enterprise more rapidly, efficiently and effectively
than using correlation techniques.

13

Chapter 1

e A security framework that integrates the proposed data masking
and encryption solutions with the DIDS into a single conformed
workflow between users and the database, which provides a mean
for increasing the overall security strength of any DW by enabling
each solution to optionally function individually or all together.
The framework also defines the guidelines for each type of solution,
given the characteristics of DWs and each solution’s individual
purpose.

e Although not included as fully developed and tested research and
therefore, not included as a regular chapter, in Appendix D we
include an initial proposal for a DW Intrusion Detection
Benchmark to test DIDS in DWs at the SQL level, given a controlled
DW environment with mixed intrusion and non-intrusion SQL
workloads. The main contribution of the benchmark is to provide a
feasible and objective mean for evaluating the efficiency of the
intrusion detection processes and impact on database performance
at the SQL level for DW DIDS. The proposed measures intend to
produce insight for aiding developers in the improvement of their
solutions and allow providers and users to compare between
different solutions.

1.4 Thesis Structure

This chapter discussed the importance of DWs and securing them. It
presented key definitions and issues concerning data security in data
warehousing environments, creating the ground for the research presented
in this thesis. The chapter also presented the objectives and main
contributions of the thesis.

Chapter 2 discusses background and related work in the domain
background. We characterize data warehousing environments and
describe the current state-of-the-art solutions and techniques in data
masking, encryption and database intrusion detection. We conclude the
chapter by pointing out the issues in each of these subjects from a data
warehousing perspective [Santos et al., 2011a; Santos et al., 2012a, Santos et
al., 2014].

Chapter 3 presents the integrated security framework, describing each of
its components and how they work together to accomplish their security

14

Introduction

goals. The framework is defined in a generic way to demonstrate how each
individual solution can come together to form a broad scoped overall
security approach. The set of principles that drived the development of
each data masking, encryption and intrusion detection solution proposed
in this thesis is also included.

Chapter 4 proposes a novel reversible data masking technique for
numerical values that provides significant security strength and complies
with the principles defined in the security framework [Santos et al., 2011b;
Santos et al., 2011c]. Besides demonstrating the proof of the masking
solution’s security strength, this chapter also includes an experimental
evaluation to demonstrate that the proposed approach is computationally
faster than existing standard and state-of-the-art encryption solutions.

Chapter 5 proposes a novel encryption algorithm for numerical values
[Santos et al., 2013]. This technique also complies with the set of principles
defined by the security framework. The chapter includes the proof of the
proposed solution’s security strength along with an experimental
evaluation that also show that it is computationally faster than standard
and state-of-the-art encryption solutions.

Chapter 6 presents our approach to develop a DIDS focusing on the
specificities of data warehousing environments, which is based on the
detection of anomalous user activities by joining the syntax-based analysis
of the user commands with features of the processed data and the
command execution’s resulting datasets [Santos et al., 2012b; Santos et al.,
2012c]. The DIDS works transparently as an extension of the database
server, placed between the user interface(s) and the DBMS, and uses a risk
exposure alert management approach that enables it to be more efficient
than commonly used alert correlation techniques. An experimental
evaluation is included to demonstrate its efficiency against other state-of-
the-art intrusion detection solutions proposed in former research.

The last chapter presents the conclusions on this thesis and points out
future research directions derived from our work.

Appendix A describes the Sales DW purpose along with its data schema,
scale and storage sizes, as well as a list of queries that make up the decision
support workloads used in the experimental evaluations presented in the
thesis.

15

Chapter 1

Appendix B shows the data masking and encryption experimental results
included in Chapters 4 and 5, with its respective statistical measures
(averages and standard deviations).

Appendix C shows the intrusion detection experimental results included
in Chapter 6, with its respective statistical measures.

Finally, Appendix D describes in detail our initial proposal for a DW
intrusion detection benchmark.

16

Chapter 2

Background and Related Work

Data Warehouses present unique characteristics that differ from other
types of database systems. In order to discuss data security from a data
warehousing perspective, summarizing those characteristics along with
those belonging to the data security solutions focused in this thesis is an
essential requirement. This chapter summarily describes the concepts
concerning DWs and presents relevant background and related work
focusing on standards and state-of-the-art solutions proposed by research
in the data security domains focused in this thesis, namely data masking,
encryption and DIDS.

The chapter is structured as follows: Section 2.1 summarizes the concepts
of data warehousing and the typical characteristics of those environments
in what concerns database features and workloads, while Sections 2.2 and
2.3 respectively describe the state-of-the-art data masking and encryption
techniques that are currently available for usage in DWs and discusses the
issues concerning their use in these analytical environments. Section 2.4
describes the main intrusion techniques and methods used in DIDS and
discusses their applicability from a data warehousing perspective. Finally,
Section 2.5 concludes the chapter.

2.1. Data Warehousing

In an enterprise, the transactional (alias operational) systems typically
consist of a set of applications and data sources that enable accomplishing
and storing business transactions, and guarantee their operationability
[Kimball and Ross, 2013]. Transactional databases are designed to manage
the data for supporting each individual business transaction instead of
cross-enterprise business analysis. Transactional systems typically consist
of many users reading and writing small amounts of data; for example, on
an ATM bank system, there are hundreds or thousands of users accessing

17

Chapter 2

their account balances at the same time, or withdrawing/transferring a
given amount of money. Another characteristic of the ATM system is that
it does not require keeping long periods of historical data; it only needs the
current balance and latest movement records to be able to adequately
support user requests and business transactions.

In contrast, Decision Support Systems (DSS) are usually accessed by fewer
users but that query large amounts of data to obtain business analysis
information to aid decision making. Using the same bank ATM system as
an example, the difference is that the people from the bank that need to
make decisions regarding the business (i.e., business managers,
administrators, executives, etc.) want to know the average balance for the
last six months or a year for the accounts with certain geographical region,
for instance, in order to make strategic decisions like opening a new branch
office or encourage people to increase their investments by offering better
interests. To execute this kind of query, the system needs to keep historical
data of the balances plus it would read millions of records of all clients
within certain region and compute that average.

These type of analytical actions result in very demanding data access
patterns, that if running on top of a transactional database can lock large
amounts of data and consume computational resources in a way that could
compromise the transactional system’s availability, ultimately making it
incapable of supporting the business transactions. Moreover, many
transactional systems operate isolated from each other with little or no
integration, and each system typically manages its own dataset. As a result,
the same data is represented and stored in many different ways throughout
the enterprise, one for each system. Consequently, there can be multiple
distinct versions of the truth, which can be inaccurate, outdated or simply
invalid.

To relieve resource consumption, reduce the operational risk in the
transactional applications that support business, deliver a unique source of
true information and provide an optimized data structure for analytical
cross-enterprise decision support purposes, Data Warehouses are used,
clearly separating the analytical business processes from the transactional
business processes. In the next subsection, we present the concepts and
definitions concerning DWs.

18

Background and Related Work

2.1.1. The Data Warehouse: Concepts and Definitions

The origin of the Data Warehouse concept can be traced back to the research
carried out at the Massachussets Institute of Technology and at IBM in the
late 1970s, focusing on ways to define an architectural model for the flow
of data from operational systems to decision support environments. From
this research work at MIT, for the first time a differentiation between the
operational and analytical processing is made. In 1988, Devlin and Murphy
from IBM introduced the term “Business Data Warehouse” [Devlin and
Murphy, 1988] that precedes the actual “Data Warehouse” term.

In 1992, Bill Inmon published the first edition of his book “Building the
Data Warehouse” [Inmon, 1992] where he defines the term “Data
Warehouse” and also consolidated the terms and techniques that have
been the foundation for DWs since then. In 1996, Ralph Kimball defined
the Star Schema and Multidimensional modeling techniques [Kimball,
1996], which enriched the DW definitions. The Inmon and Kimball
approaches were widely accepted by research and commercial database
communities and became the common guidelines for building DWs.

In the past, there have been many definitions on what is a Data Warehouse.
Although the Inmon and Kimball approaches differ from each other, as
well as other derived approaches, they agree on most characteristics that
define the concept of what a DW is.

A generic definition of a DW is given by [Kimball, 1996; Kimball and Ross,
2002; Kimball and Ross, 2013]:

“A Data Warehouse consists of a considerable sized database, which
consistently aggregates all the historical data belonging to a given
specific business field or business area, in a previously well-defined
level of detail that is considered adequate and relevant for decision
support purposes by the business itself. The data in a DW can be
separated and combined by means of every possible measure in a
business”.

According to [Simitsis, 2005], the most popular definition of DW is that in
[Inmon, 1996; Inmon, 2002]:

“A Data Warehouse is a centralized repository for the entire
enterprise, containing data that is used for analyzing the business and

19

Chapter 2

supporting decision making. The Data Warehouse has four main
attributes: it is subject-oriented (meaning the data in it is organized so
that all the data elements relating to the same business event or
subject are linked together and that the DW is developed in a way
that satisfies the analytical requirements of the users that will query
it); it is non-volatile (meaning that the data loaded into the database is
never erased or over-written, i.e., once the data is committed it
remains static and read-only and is retained for future reporting and
analysis); it is integrated (meaning it joins data from several
operational data sources into a conformed format in a consistent
way); and it is time-variant (meaning that it stores the history of the
business to which it was designed for).”

Based on these definitions, in this thesis we consider a DW as a large-sized
non-volatile cross-enterprise analytical database that stores historical, non-
volatile, integrated, consolidated, updated and consistent data, in a level of
detail and format considered adequate for providing decision support
information in a given business area or field by the business stakeholders.

Having explained the principles and concepts that define a DW, it is also
important to understand the environments in which they function.
Therefore, in the next subsection we characterize data warehousing
environments.

2.1.2. Data Warehousing Environments

The DW obtains its data from the operational data sources (which may
consist of transactional databases, flat files, legacy systems, etc.) through
the execution of Extraction, Transformation and Loading (ETL) processes, but
clearly separates the analytical decision support processes (which mainly
consist on executing On-Line Analytical Processing (OLAP) operations in
order to generate a diverse variety of Business Intelligence (BI) reports)
from the transactional business processes.

20

Background and Related Work

Figure 2-1 shows the traditional generic functional architecture of a DW,
composed by the ETL Layer, and the Data and Metadata Repository Layers*.
The ETL Layer is responsible for the execution of ETL processes and
typically contains a staging area which is used to store extracted and
transformed data until it is time to load that data into the DW database(s).
The Data and Metadata Layer contains all DW databases, in which the
Metadata Repository is used to describe in detail all DW objects and their
relationships. In some DWs, the databases are divided into data structures
named as Data Marts, which focus on storing the decision support data for
a specific business subject within the enterprise. The Presentation Layer
represents all front-end interfaces that are available to the DW end users
for accessing its data.

Operational

s Syst ETL Layer Data and Metadata Presentation
ource Systems Repository Layer Layer
Execution
Systems Exiraci,

Transformation,
- Transactional and Load (ETL)
Business Layer Enterprise
Applications * Data
-CRM - Cleanse Data Warehouse ,[\]ﬂzt:
-ERP - Filter Records
- Legacy - Standardize Values
- e-Commerce - Decode Values D7 F
. Mart
e - Apply Business Rules Metadata
-External Data - Householding Repositary
L - Dedupe Records Data
- Purchased - Merge Records M
Market Data

Figure 2-1. Generic Data Warehouse Functional Architecture

Separating the analytical business processes from the operational
transactional business processes allows the enterprise to gain at least two
major advantages:

o]t enables physically and logically separating the transactional
databases from the analytical databases and defining adequate specific
allocated resources for each type of process. This means that each

4 Diverse architectures such as that defined in [Kimball and Ross, 2013] also
include the Presentation Layer as part of the DW itself, but in this thesis we consider
the first two layers as the DW core and the third as a separate tier representing the
user interfaces.

21

Chapter 2

database can be designed and defined the best possible way in order
to adequately fulfill its purposes and maximize its performance
regarding those purposes;

¢ Reporting and ad hoc decision support querying is requested by the
Presentation Layer to the mechanisms existing in the Data and Metadata
Layer, which are isolated apart from the transactional business
databases and thus, does not affect the functionality and/or availability
of the operational source systems and vice-versa.

Bearing in mind the way a DW operates, there have been several
definitions of what is considered a data warehousing environment.
According to [Chaudhuri et al., 1997]:

“Data Warehousing is a collection of decision support technologies
that aim at enabling an enterprise to make better and faster
decisions.”

Another definition of data warehousing is given in [Castro, 2009]:

“The concept of data warehousing consists of architectures, tools,
technologies, algorithms and methodologies that allow for the
construction, usage, management and maintenance of the hardware
and software used for a data warehouse, as well as the data itself.”

Based on these definitions, in this thesis we consider data warehousing
environments as the full setup of hardware and software in which the ETL
processes and databases belonging to DWs operate, plus their user
workloads.

In what concerns the characterization of the type of users in data
warehousing environments - considering users as anyone who may
regularly access the DW database(s) for any reason - we consider three
main classes of users, given their typical activities:

1) The Database Administrator (DBA) or similar, which is anyone that can
create or modify any database object. Typical actions on behalf of this
user are the creation or modification of tables, indexes and views in
the DW, for example. DBAs typically have full (or almost) access
privileges to the databases.

22

Background and Related Work

2) The ETL User, which is any person or software responsible for
updating the contents of the DW. Typical actions are new row inserts
in fact tables and new row inserts or row updates in dimensional
tables.

3) The DW End User, which is any person belonging to the business that
queries the databases with the purpose of obtaining decision support
information or produce business knowledge, either by directly
querying it or by using business intelligence and OLAP tools.

In the next subsection, we describe the differences between operational
systems and data warehousing environments.

2.1.3. Data Warehousing Environments vs Operational Systems

From a perspective attending to its purpose, as we have previously
explained, a DW is mainly a database (or set of databases) system that has
been specifically designed to provide decision support information and
produce business knowledge, while an operational system is specifically
designed to support individual business transactions and store its
respective data. Given that the business often requires the operational
system to be online in order to accomplish a transaction, operational
system requirements focus on enabling high availability in order to avoid
compromising the accomplishment of the transactions themselves. On the
other hand, since most decision support queries often require processing a
large amount of data, DWs focus on enabling high throughput [Kimball
and Ross, 2013].

From a perspective attending to the size and shape of its contents, a DW is
composed of consolidated historical business data, mostly conformed and
within data schemas that allow optimizing the execution of OLAP queries
by tools that deliver the intended decision support information and
produce the intended business knowledge. In most cases, storing the
complete business history implies taking up a very large amount of storage
space, often ranging from gigabytes to terabytes. In contrast, operational
systems aim to keep their data sources “light”, i.e., small in size and
content, in order to minimize processing efforts and consequently keep
their availability as high as possible, therefore keeping only the exact
amount of data which is required to support current and near-future
business transactions.

23

Chapter 2

In what concerns their data schemas, transactional databases have highly
normalized schemas, mainly to avoid data redundancy and keep each table
small-sized, while DWs have denormalized schemas. Most DW database
schemas are based on star schemas, where business facts are stored in a
central table called fact table (e.g. sales table) and the tables containing the
business descriptors are called dimension tables (e.g. customer and product
tables) [Kimball and Ross, 2013]. Dimension tables are linked to the fact
table by their primary keys (e.¢. CustomerID and ProductID) and are
usually small in size (typically less than 10% of DW total storage space)
and have a small amount of rows (up to tens of thousands), when
compared with fact tables, which are typically very large in size and a huge
amount of rows (millions or billions). Business facts are mainly stored in
numerical-typed attributes within fact tables; since fact tables typically
take up at least 90% of the DW total storage size, in many cases DW
databases are mostly composed by numerical values [Kimball and Ross,
2013].

Attending to the user’s responsibility among the business, the typical DW
user is a business manager or someone that holds a considerable role of
responsibility in the enterprise, while the typical user of operational
systems are mainly transactional operators with low responsibility and
with few or none decision making privileges. Since they mainly consist of
business managers and decision makers, the number of DW users it
typically low (a few tens).

While in operational systems end users typically execute intensive read
and write instructions, DW end users only execute read-only instructions
such as queries, i.e., they are not allowed to change data, while DBAs and
ETL users may insert or modify data. More than 90% of actions executed
in DWs are typically decision support queries, (i.e. SELECT statements),
mainly executed against fact tables [Kimball and Ross, 2013]. Reporting (i.e.
periodically running reports for answering predefined decision support
queries) is typical in DWs. Besides predefined reporting, in many cases a
very significant amount of decision support queries are ad hoc, which
makes them mostly unpredictable in their syntax and frequency. In
operational systems, the queries are almost fully simple and predefined
and repetitive.

24

Background and Related Work

Although decision support queries may typically access huge amounts of
data, their response usually results in small datasets with a few hundred
bytes and a relatively low number of columns (no more than a few tens).
Most queries in DWs are CPU intensive and can take up to hours, while
operational system queries are intended to be computationally fast and
deliver very small response times.

Table 2-1 summarizes the main differences between operational systems
and DWs, based on [Inmon, 2002; Kimball and Ross, 2013; Ponniah, 2010].

Table 2-1. Main Differences between Operational Systems and Data Warehouses

Operational Systems

Data Warehouses

Workload nature/purpose

Transactional

Analytical

Temporal nature of the data

Current

Historical and current

Typical database storage size

As small as possible

Very large to huge

Typical number of tables

Medium to high

Small

Typical data schema type

Highly normalized

Denormalized

Typical number of users Medium to large Small

Typical user’s responsibility .

towards the business Low High

. Read/Write of small Read-only on large

Typical type of command amounts of data amounts of data

Typical command complexity Simple Medium to High
Static, predefined, Dynamic, ad hoc

Typical operation dynamics pred|<_:t_able and random and iterative
repetitive

Typical command response time Small Large

Typical command action

Read/write of a single
row or few rows

Reporting and
aggregation on many
rows, with roll-up, drill-
down, slice and dice

Amount of data typically
processed by each command

Small

Large or Very Large

Typical data update frequency

Often in a given period
of time

Once periodically

Dataset size typically resulting
from a command execution

Small

Variable (often Small)

25

Chapter 2

Conclusively, it is widely recognized that DW/BI systems have profoundly
different needs, clients, structures, and rhythms than those of operational
systems. DW users have drastically different needs than operational
system users [Kimball and Ross, 2013]. Thus, we can make the assumption
that data warehousing environments also require distinct security
solutions that are designed taking those specific characteristics under
account and that are able to cope with those specific requirements and
needs.

The following sections present the background in data masking,
encryption and intrusion detection.

2.2. Data Masking

An extensive survey on data masking (alias data obfuscation) techniques
is given in [Ravikumar et al., 2011]. The main goal of data masking is to
replace true data with realistic but not real data, so the true data is not
readable by unauthorized users. To assure a significant level of security
strength, the masked values should not allow attackers to easily discover
ways of retrieving the true values.

In this section, we shall explain the diverse forms of masking data, refer
available commercial masking packages and discuss the issues concerning
the use of data masking in data warehousing environments.

2.2.1. Forms of Data Masking

One way to accomplish data masking is to use value referencing, i.e., to
create and use a reference table for each masked value, as shown in Figure
2-2.

Original Values Reference Table Masked Values
16 Original Masked 3
12 9 1 2
9 12 2 1
31 —>[16 3 —> 5
9 23 4 1
16 31 5 3
23 4

Figure 2-2. Data masking using a reference table

26

Background and Related Work

Another way is to use a function against each original value to produce a
new masked value, such as shown in Figure 2-3.

| Original Values (x;) Masking Function f(x;) Masked Values (yi)
16 11
12 9
9 16
31 =) | f(x)=(3+9x)MOD17 — 10
9 16
16 11
23 6

Figure 2-3. Data masking using a masking function

There are several types of functions as shown in Figure 2-3 that can be used
for data masking, such as:

¢ Deterministic masking: A deterministic function f(x) = yi;, where f(xi)
always produces the same yi for a given value x;;

¢ Condition-based masking: Applying different mask formats to the
same dataset depending on the rows that match specific conditions
(e.. applying different national identifier masks based on country of
origin);

e Compound masking: A set of related columns is masked as a group
to ensure that the masked data across the related columns retain the
same relationship (e.g. city, state, and zip code values may need to be
consistent after masking, for maintaining referential integrity).

These functions are mainly used in two ways, which can be used separately
or mixed together:

e Substituting, where each value is replaced by the output of a
deterministic function or reference (e.g. Figures 2-2 and 2-3);

¢ Shuffling, where values switch places. This occurs by swapping the
values between two or more predefined similar typed columns in the
same row or in different rows, or swapping the characters that
compose the value in a predefined form (e.g. 12345 becomes 52143), or
mixing both these types of swap.

27

Chapter 2

The references and functions shown in Figures 2-2 and 2-3 show data
masking operations that are reversible, i.e., the original value can be
retrieved from the masked value if an authorized user executes a valid
query that should obtain a true result. This is the typical DW setting, where
data should be masked for avoiding disclosure to unauthorized users, but
all authorized user queries must be able to retrieve the true exact response.
However, there are situations in which the released data should not reveal
their true values or, at least, not all their true values, in any case (including
authorized users). These cases mostly refer to published data for public
consulting or outsourcing purposes, or the creation of production and
testing databases for aiding software development processes. In these
cases, several typical types of techniques allow the disclosure of only part
of the true data or entirely false data, such as:

e Random number generators (RNG), widely used for generating
statistically independent and apparently random values for simply
replacing the original true values in whole or in part;

¢ Random shuffling, where shuffling is used in conjunction with RNG
for randomly swapping the values;

e Nulling, where sensitive values that should not be disclosed are
simply replaced by a null value;

¢ Deleting, where rows with sensitive values are erased;

e Masking out, where predefined parts of the sensitive values are
replaced by universal characters (e.g. credit card number 9255 0614
0015 8925 becomes 9255 XXXX XXXX 8341 or 9X5X 0X1X 0X1X 8X2X);

¢ A mix of the previous techniques.

More recently, research has also proposed non-deterministic methods for
masking data, such as perturbation techniques [Agrawal et al., 2005;
Procopiuc and Srivastava, 2011; Xiao et al., 2009]. The work in [Agrawal et
al., 2005] proposes a solution based on data perturbation techniques and
explains data reconstruction for responding to queries, in a data
warehousing environment. Recent similar work proposing data
anonymization solutions which rely on perturbation or differential
techniques have been published in [Procopiuc and Srivastava, 2011] and
[Xiao et al., 2009].

28

Background and Related Work

2.2.2. Commercial Data Masking Solutions

Many similar commercial data masking packages have been developed.
Oracle, for instance, has developed the Oracle Data Masking (ODM) pack
[Oracle, 2010c], protecting data by replacing real values with realist-
looking data with the same type and characteristics as the original data.
ODM provides masking primitives such as random numbers, dates and
constants, as well as other built-in routines that shuffle the values in a
column across different rows. However, once applied, the ODM does not
allow retrieving the real values, i.e., the original values are forever
inaccessible.

ODM provides a centralized library of out-of-the-box mask formats for
common types of sensitive data such as credit card and phone numbers,
national identifiers (e.g. social security numbers), etc. By leveraging the
ODM Format Library, data privacy rules can be applied across enterprise-
wide databases from a single source, ensuring consistent compliance with
regulations. ODM supports the concept of application masking templates,
which are XML representations of the mask definitions. Security
administrators, software vendors or service providers can then import
these predefined XML templates into the ODM in order to ease and
accelerate the data masking implementation process. The ODM
automatically identifies and ensures referential integrity.

Oracle states that ODM is to be used mainly as a fast and easy way to
generate production databases for supporting outsourcing and software
application development. The ODM can also be used to mask Microsoft
SQL Server and DB2 databases for the same purposes. ODM requires new
data to be loaded into the database first, and only applies the masking
procedures afterwards. It is not possible to load previously masked data.
Masking in ODM is an a posteriori process. Most commercial data masking
solutions work in a similar fashion as ODM.

2.2.3. Using Data Masking in Data Warehouses

Organizations have partly strived to solve confidentiality and privacy
issues by using hand-crafted solutions or repurposed data manipulation
tools developed within the enterprise to solve the problem of sharing
sensitive information. The most common solution is probably to use scripts
with triggers in order to mask and unmask each value, or to embed the

29

Chapter 2

masking/unmasking logic within the wuser applications themselves,
keeping their secrecy aspects mostly within the development team.

However, these proprietary solutions are not the best way to achieve a
standard data masking solution. On one hand, embedding them into
applications makes their maintenance complex and costly. On the other
hand, not disclosing them to the security and database research
communities and keeping them as a hidden black box solution keeps their
security strength unproven. Another common solution is to use standard
commercial masking tools such as ODM.

Since DWs mainly require masking solutions to guarantee that the masked
values can be reengineered to retrieve their original true values, we can
state that using RNG, random shuffling, nulling, deleting, and masking out
techniques are mostly not suitable for data warehousing environments.
Thus, most leading commercial data masking packages such as ODM are
also not applicable to most data warehousing scenarios. Consequently, to
be useful, DW data masking routines must be based on reversible shuffling
or substituting techniques.

Designing an efficient substitution or shuffling routine is far from being a
trivial task. If the masking values produced by those methods can be easily
determined by comparison or other type of inference then the original true
data can be easily retrieved by attackers, making the routines useless. For
example, if the shuffle algorithm simply runs down a table swapping the
column data of the sensitive columns in between every group of two rows,
it would not take much effort from the attacker to break security.

Shuffling routines can ensure higher security strength than simple
substitution routines, because they shuffle the values and can add the use
of a value-function for changing their values before or after the shuffle.
However, shuffling routines may become extremely complex, namely in
determining how to swap the values in order to guarantee both an
acceptable security strength and processing time overheads. On one hand,
limiting the shuffling between columns of the same row allows minimizing
data access time for the masking actions but reduces security strength,
compared with shuffling throughout the typically huge number of rows in
DW sensitive fact tables. On the other hand, shuffling the values spaced
throughout those table rows greatly increases the leaps the DBMS engine
needs to execute in the datafile to retrieve the true data in the correct order,

30

Background and Related Work

since the masked values for each row are distributed up and down the
table. Given the large amount of data typically processed in DW queries,
the number of leaps to orderly access the data may easily produce dramatic
and unacceptable response time overheads.

When using data referencing, if the number of possible values to substitute
a certain value has low cardinality (e.g. swapping values TRUE and FALSE
for a boolean column with masking values 1 and 2) the reference lookup is
fast but there is a security problem because the attacker can easily infer
which is which. On the other hand, if the cardinality of the column to mask
by referencing is high, then the number of rows to seek in the reference
table will also be high, increasing security but decreasing response time for
retrieving each value. Thus, there is always a tradeoff between security and
performance to deal with: if the security level increases, performance
typically decreases.

Substitution and shuffling techniques also present important security and
performance issues. The main problem is that developing a value
substitution function that uses one or more linear transformations is not
secure because the attacker can build systems of equations and inference
models to discover how the function masks a value. To deal with this
problem, other bit-level manipulation operations need to be included,
along with the execution of a significant number of rounds. These features
are the basis for data encryption, which we explain in the next section. Data
encryption solutions are the successors of the simpler forms of data
masking substitution techniques and obey common principles and rules
established by the security research and regulations communities and
organizations.

For decision support purposes, in most DWs the user queries need to
obtain a true and accurate result. Given this requirement, since
perturbation techniques produce errors in data reconstruction, they should
be avoided and are mainly inadequate from a data warehousing
perspective.

Therefore, the following needs to be considered when applying data
masking in DWs:

31

Chapter 2

e Since it is not easy to ensure strong security strength (mainly when
compared with encryption solutions), data masking has been
considered a poor solution to protect data for real live DW databases,
from the security perspective;

e The data masking routines provided by most standard commercial
tools typically change data in an irreversible manner, i.e., transform
data in a way that makes it not possible to subsequently retrieve the
original true values, making them useless for real live DW databases;

¢ On the other hand, solutions that allow retrieving the true original
data mostly rely on cross-referencing actions, which imply huge
table joins in DWs. Given the consequent high performance
degradation, they have been discarded for use with real-live DWs;

e Given those security, usability and performance issues and
drawbacks (assumed by the research and commercial communities),
data masking is mostly recommended as an easy, efficient and fast
solution in the development lifecycle of user applications and not for
real-live databases. These facts have pushed data masking to a type
of solution used mainly for testing software development rather than
protect live sensitive data [Gartner, 2009; Huey, 2008; Natan, 2005;
Oracle, 2005; Oracle, 2010a; Oracle, 2010c; Ravikumar et al., 2011;
Yuhanna, 2009].

The next section describes standard and state-of-the-art encryption
techniques and discusses the issues involving the use of data encryption
solutions in DWs.

2.3. Data Encryption

The high security requirements for confidentiality in many scenarios
involving end-to-end data communication have led to the development of
encryption algorithms. The frontier between data masking and encryption
is often blurry, since they mainly aim to achieve the same purposes.
However, while data masking can be simply considered as any action that
changes a given value or set of values into another value or set of values
that should not allow retrieving the original value or set of values by
unauthorized users, encryption is mainly defined as a set of actions that
obey a strict number of principles and rules defined and accepted by the

32

Background and Related Work

security communities and is always a reversible action [Vaudenay, 2006].
Encryption makes ground on cryptography, defined as applying a coding
algorithm to a plaintext (alias original input value) that results in a
ciphertext (encrypted output value), which allows reversible action in
order to retrieve the plaintext once again [Vaudenay, 2006].

Typical encryption algorithms include iterative bit shifting and exclusive
Or (XOR) operations executing in a predefined number of rounds. These
operations rely on a key, which influences the “data mix” output of each
round. The higher the key length and the number of rounds executed, the
higher is the assumed security strength, given that the attacker typically
needs to generate a large amount of possible key values and decryption
rounds in order to break security [Elminaam et al., 2010]. Thus, encryption
is an advanced form of data masking, with well-accepted and well-defined
assumptions and high complexity, in order to make it extremely difficult
for attackers to break security when compared with simpler forms of data
masking.

We consider describing and analyzing ciphers according to the principles
following the Shannon Theory, where the Shannon Encryption Model is as
illustrated in Figure 2-4 [Vaudenay, 2006]:

“The purpose of encryption is to ensure communication secrecy. We
assume that we want to communicate, which means to transmit
information through a channel.”

Plaintext i) i . .
Plaintext X Encipherer C¢ Ciphertext ¥ DeC|phererC1‘ X
Source
i i
Key K
Key Source

Figure 2-4. The Shannon Encryption Model (adapted from [Vaudenay, 2006])

33

Chapter 2

Following the Shannon Theory, a cipher is given by:
1) A plaintext source (with its corresponding distribution);
2) A secret key or keys;
3) A ciphertext space;

4) A rule or set of rules represented as Cy, which transform any
plaintext X with a key K into a ciphertext YasY = Cy(X);

5) A rule or set of rules represented as Cx ' which enables recovering
plaintext X from the ciphertext Y using key K as X = Cg* (Y).

Categorization methods for encryption techniques commonly used in data
security are based on the form of the input data they operate on. The two
types are Block Ciphers and Stream Ciphers.

A block cipher is a type of symmetric-key encryption algorithm that
transforms a fixed-length block of plaintext (unencrypted text) data into a
block of ciphertext (encrypted text) data of the same length. All intermediate
blocks are called states. This transformation takes place under the action of
a user-provided secret key. Decryption is performed by applying the
reverse transformation to the ciphertext block using the same secret key.
The fixed length is called the block size.

Stream ciphers take a string (the encryption key) and deterministically
generate a set of random-seeming text (called keystream) from that key.
That keystream is then XORed against the message to encipher. To
decipher the text, the recipient simply hands the same key to the stream
cipher to produce an identical keystream and XORs it with the ciphertext,
thus retrieving the original message.

In the following subsections, we shall describe the standard encryption
techniques and algorithms as well as state-of-the-art encryption algorithms
that have been specifically proposed by research to be applied in databases,
and discuss the issues concerning their use in data warehousing
environments.

34

Background and Related Work

2.3.1. Standard Encryption Techniques and Algorithms

Data Encryption Standard (DES). The Data Encryption Standard (DES)
was the first encryption standard to be approved and recommended by the
National Institute of Standards and Technology (NIST), and became a
standard in 1977 [DES, 1977]. DES is a 64 bit block cipher, which means
that data is encrypted and decrypted in 64 bit chunks, and uses a 56 bit
encryption key. This has implications in short data lengths. Even 8 bit data,
when encrypted by the algorithm will always result in a 64 bit chunk. Its
algorithm is thus a set of permutations over the set of 64 bit block strings.

DES consists of a 16-round Feistel scheme, which is the most popular block
cipher skeleton [Vaudenay, 2006]. It is fairly easy to use a random function
in order to construct a permutation. In addition, encryption and decryption
hardly require separate implementations. A Feistel scheme is a ladder
structure which creates a permutation from a function. In each round, the
input string is split into two parts of equal length, and the result of passing
one part through a round function is XORed to the other part, then
obtaining two parts which are then exchanged (except in the final round).
The round function uses subkeys derived from a secret key.

The round function of DES has a 32-bit input, 48-bit subkey parameter
input, and a 32-bit output. For every round, the 48-bit subkey is generated
from a secret key by a key schedule. Basically, every 48-bit subkey consists
of a permutation and a selection of 48 out of the 56 bits of the secret key.
The round function is illustrated in Figure 2-5, consisting of [Vaudenay,
2006]:

¢ An expansion of the main input (one out of two input bits is duplicated
in order to get 48 bits);

¢ A XOR with the subkey;

e Eight Substitution Boxes (S-boxes) which transform a 6-bit input into
a 4-bit output; and

¢ A permutation of the final 32 bits.

35

Chapter 2

l

I
I

N
£
VAIVA

&S
7
i
1Al

%
fl

Ss =

|
:

Figure 2-5. DES Round Function [Vaudenay, 2006]

As referred, the DES cipher uses eight S-boxes in its round function (S: to
Ss). In cryptography, an S-box (Substitution-box) is a basic component of
symmetric key algorithms which performs substitution. In block ciphers,
they are typically used to obscure the relationship between the key and the
ciphertext. In many cases, the S-boxes are carefully chosen to resist
cryptanalysis. In general, an S-box takes some number of input bits, 7, and
transforms them into a number of output bits, n: an mxn S-box can be
implemented as a lookup table with 2" words of n bits each. Fixed tables
are normally used, as in DES, but in some ciphers the tables are generated
dynamically from the key; e.g. the Blowfish encryption algorithm [Radha
and Kumar, 2005].

36

Background and Related Work

3DES. DES has been proven to be an insecure cipher [Kim et al., 2010].
There has considerable controversy over its design, particularly in the
choice of a 56 bit key [Nadeem and Javed, 2005]. As an enhancement of
DES, the Triple DES (3DES) encryption standard was proposed [3DES,
2005]. In 3DES encryption algorithm is similar to the original DES
algorithm, but it is applied three times to increase the encryption level,
using three different 56 bit keys. Thus, the effective key length is 168 bits.
Since the algorithm increases the number of cryptographic operations it
needs to execute, it is a well known fact that the 3DES algorithm is one of
the slowest block cipher methods.

Advanced Encryption Standard (AES). After the DES standard was
deemed as no longer appropriate, the US Government started a process
leading to the Advanced Encryption Standard (AES). The AES is a
symmetric block cipher algorithm defined in the Federal Information
Processing Standard (FIPS) no. 197 [AES, 2001]. The AES algorithms are
block ciphers with a significant increase in the block size — from the old
standard of 64 bits up to 128 bits. AES provides three approved key
lengths: 128, 192 and 256 bits.

The AES consists of several rounds of a substitution-permutation network.
Its design consists of writing 128-bit message blocks as a 4x4 square matrix
of bytes. Encryption is performed through 10, 12 or 14 rounds depending
on whether the key size is 128, 196 or 256 bits. Each round (except the final
one) consists of four transformations:

1) SubBytes, a byte-wise substitution defined by a single table of 256
bytes;

2) ShiftRows, a circular shift of all rows (row i of the matrix is rotated
by i positions to the left for i =0, 1, 2, 3);

3) MixColumns, a linear transformation performed on each column
and defined by a 4x4 matrix of GF(28) elements (explained further);

4) AddRoundKey, a simple bitwise XOR with a round key defined by
another matrix.

The final round is similar, except for MixColumns which is omitted. The
round keys are generated by a separate key schedule.

37

Chapter 2

More formally, one block s is encrypted by the following process, in which
W is the output subkey sequence from the key schedule algorithm, as
shown in Figure 2-6.

AES encryption(s, W)
1: AddRoundKey(s, W)
s forr=1to Nr—1 do
SubBytes(s)
ShiftRows(s)
MixColumns(s)
AddRoundKey(s, W,)
end for
SubBytes(s)
ShiftRows(s)
10: AddRoundKey(s, Wy,)

i A AN

hd

Figure 2-6. AES Step-by-Step Algorithm [Vaudenay, 2006]

The block s is also called state and represented as a matrix of terms s; j for
i,j € {0, 1, 2, 3}. Each term is a byte, i.e., elements of a set Z of cardinality
256. SubBytes(s) is defined as follows:

FORi=0TO 3 DO
FORj=0TO3 DO
si,j = S-box(si j)

Where S-box is the substitution table. Mathematically, it is a permutation
of {0, 1, ..., 255}. ShiftRows(s) is defined as follows:

REPLACE [s10, 511, 512, 513] by [s1,1, 512, 513, 51,0]

{ROTATE row 1 BY ONE POSITION TO THE LEFT}
REPLACE [s20, s21, S22, 23] by [s22, 523, 52,0, 52.1]

{ROTATE row 2 BY TWO POSITIONS TO THE LEFT}
REPLACE [s3,0, 531, S3,2, 533] by [533, 530, 531, 53,2]

{ROTATE row 3 BY THREE POSITIONS TO THE LEFT}

Defining the set Z as the set of all the 256 possible combinations

ao+arx+axt+ ... +arx’

38

Background and Related Work

where ao, a1, az, ..., a7 are either 0 or 1 and x is a formal term. Elements of Z
are thus defined as polynomials of degree at most 7. AddRoundKey(s, k) is
defined as follows:

FORi=0TO3 DO
FORj=0TO3 DO
Sij=8i;i® kij

Here, the @ operation over Z is defined as an addition modulus, i.e.

7 7 7
(Z a; .xi> S <Z b; .xi) = Z(ai + b; mod 2). x*
i=0 i=0

i=0
Given that a multiplication x in Z defined as follows:

1) Perform the regular polynomial multiplication;

2) Make the Euclidian division of the product by the x8 + x*+x3+x +1
polynomial and take the remainder;

3) Reduce all its terms modulus 2.

This provides Z with the structure of the unique finite field of 256 elements.
This finite field is denoted by GF(2%). This means that any addition,
multiplication, or division by any nonzero element of Z with the same
properties always results in a regular number. Matrix operations with
terms in Z can be further defined. Thus, MixColumns(s) can be defined as:

FORi=0TO 3 DO
LET v BE THE 4-DIMENSIONAL VECTOR WITH COORDINATES

S0, S1i, S2,i, 53,
REPLACE so,, s1, sz, s3: BY THE COORDINATES OF M x v
Where M is a 4x4 matrix over Z defined by

X x+1 1 1
1 X x+1 1
M=1 1 x x+1
x+1 1 1 x

The substitution table S-box is defined by the inversion operation x
(except for x = 0, which is mapped to zero) in the finite field GF(2%). This
operation has good nonlinear properties [Vaudenay, 2006].

39

Chapter 2

AES is considered fast and able to provide stronger encryption, compared
to other well-known encryption algorithms such as DES [Nadeem and
Javed, 2005]. Brute force attack (in which the attacker tries all the possible
key combinations to unlock the encryption) is the only known effective
attack known against it.

2.3.2. Other Encryption Techniques and Algorithms

Besides the existence of standard encryption algorithms, the data security
research community has also proposed several solutions for encrypting
databases.

One of the main issues in database performance due to using encryption is
the inability to effectively manage useful indexing, since encryption
changes data values and thus renders the traditional index building as
useless. One way to deal with this is to ensure order preservation of the
generated encrypted values. Based on this principle, several approaches
have been proposed in order to enable direct querying against encrypted
data.

Order Preserving Encryption Scheme (OPES). In [Agrawal et al., 2004] an
Order Preserving Encryption Scheme (OPES) for numeric data is proposed,
flattening and transforming plain text distributions onto target
distributions defined from value-based buckets, given the attribute’s
domain values. This solution allows any comparison operation to be
directly applied on encrypted data, such as equality and range queries, as
well as SUM, AVG, MAX, MIN and COUNT queries. The authors define a
threat model with the following assumptions, given the transparent
encryption setting shown in Figure 2-7:

¢ The storage system used by the database software is vulnerable to
compromise;

o The database software (DBMS) is trusted;

o All disk-resident data (alias data-at-rest) is encrypted.

40

Background and Related Work

SQL queries with
plaintext constants]

Replace query
constants with
encrypted

constants

Client Application

Trusted database server

Rewrite Decrypt

query results

3

Compile query and
execute over
encrypted values

Enecrypted values in
both tables & mndexes

Tuples with
plaintext results

Convert
encrypted
results into
plaintext

Figure 2-7. Transparent Encryption Setting for OPES [Agrawal et al., 2004]

OPES works as a three stage process [Agrawal et al., 2004]:

1) Model: The input and target distributions are modeled as piece-wise

linear splines;

2) Flatten: The plaintext database P is transformed into a “flat” database
F such that the values in F are uniformly distributed;

3) Transform: The flat database F is transformed into the ciphered
database C such that the values in C are distributed according to the

target distribution.

The results of query processing over data encrypted by OPES are exact.
They neither contain any false positives nor miss any answer tuple. OPES
also handles updates gracefully; a value in a column can be modified or a
new value can be inserted without requiring changes in the encryption of
other values. The basic idea of OPES is to take as input a provided target
distribution and transform the plaintext values in such a way that the
transformation preserves the order while the transformed values follow

the target distribution.

41

Chapter 2

Executing SQL over Encrypted Data in the Database-Service-Provider
Model. A similar solution for processing queries without decrypting data
was proposed earlier by [Hacigumus et al., 2002], which uses the “Database
as a Service” provider model based on Internet availability. The authors
focus on assuring the owner of the data that the data stored in the service-
provider site is protected against those service providers themselves, if
they cannot be trusted, by keeping data always encrypted and executing
SQL queries directly against the encrypted data. To accomplish this, they
propose splitting the computation of the queries into two phases: the first
phase computes as much as possible against the encrypted data at the
service provider server without having to decrypt it, and a second phase
which processes the results obtained in the first phase at the client. The
data in the service provider is protected because the decryption only occurs
at the client side. The service-provider architecture for this solution is
shown in Figure 2-8.

 Client Site [e X Server Site :
: ry Temporary |« :
: Executor Results |
g)
a . .
O Query over Encrypted Data
« Query ,)
g‘ Translator
I
e .
‘ Original Query— - Encrypted
[p—1 Client
> Database) :
ll !-............................
Web Browser
(USER)

Figure 2-8. Encryption-as-a-Service Service-Provider Model [Hacigumus et al., 2002]

The encrypted data is stored at the service-provider according to the
following:

42

Background and Related Work

e For each relation R(4;, 4, ..., A,) of the original plaintext data, an
encrypted relation RS(etuple, A3, A3, ..., Ay,) is stored on the service-
provider server;

e The attribute etuple stores an encrypted string that corresponds to a
tuple in relation R;

e Each attribute A corresponds to the index for attribute A; that will be
used for query processing at the server.

Thus, each original unencrypted table is mapped to an encrypted table at
the service-provider server. To accomplish this, they define a series of
partitions on that server for each attribute, given the domain values of
attributes R. 4;, define an identification function to assign an identifier to
each partition of each attribute, and finally define a mapping function to
those partitions which ensures order-preservation of the attribute’s
original values. A practical evolution of the initial proposal was published
in [Hacigumus et al., 2004], based on the same model. In this work, the
authors focus on improving their transformation and mapping functions,
by exploring homomorphism techniques to support aggregation in
relational databases against encrypted data without decryption in the
presence of logical predicates.

Encryption in Column-Oriented DBMS. The authors of [Ge and Zdonik,
2007] propose a lightweight database encryption scheme for column-stores
in DWs with trusted servers, named FCE. This technique introduces low
decryption overhead to enable making comparisons of ciphertexts and
hence makes indexing operations fast. The authors also propose a relaxed
measure of security to demonstrate FCE’s security strength based on
information theoretic concepts. Using this same measure, they also show
that order-preserving encryption techniques are insecure under
straightforward attack scenarios.

Tiny Encryption Algorithm (TEA). In an effort to trying to simplify
encryption algorithms, the Tiny Encryption Algorithm (TEA) [Wheeler
and Needham, 1994] was proposed in 1994. This simple algorithm uses a
larger number of rounds against a small number of data transformations
than, rather than a more complex set of transformations with few rounds.

The main objective of the authors of the TEA was to provide a very simple
encryption algorithm instead of a complicated one. The authors claim that

43

Chapter 2

it uses little setup time and does a weak non-linear iteration a sufficient
number of rounds that makes it secure enough. There are no preset tables
or long setup times. It assumes 32 bit words and the authors suggest
executing 32 rounds. The TEA schema is shown in Figure 2-9.

K[0

:

— Delta,
E——th

1. IEHEIP__
Lk

—Delta,
m_ A m.
o

T

K[3]
e ____* —
_——'—__'—_:__-_—__—_—‘——_
i 3

Figure 2-9. TEA Schema

The proposed encoding routine, written in C, using four 32 bit keys k[0] to
k[3] (making up a 128 bit key), executing 32 rounds to encrypt 64 bits of
data in v[0] and v[1], is [Wheeler and Needham, 1994]:

void code(long* v, long* k) {
unsigned long y = vI[0],z = v[1], sum = 0, /* set up */
delta = 0x9e3779b9, /* a key schedule constant */
n=32;
while (n-->0) { /* basic cycle start */
sum += delta ;
y += ((z<<4)+k[0]) » (z+sum) ~ ((z>>5)+k[1])
z += ((y<<4)+k[2]) ~ (y+tsum) ~ ((y>>5)+k[3]) ;
} /* end cycle */
v[0]=y ; vI[l]l=z ;
}

44

Background and Related Work

TEA is a Feistel type routine although addition and subtraction are used as
the reversible operators rather than XOR. The routine relies on the alternate
use of XOR and ADD to provide nonlinearity. A dual shift causes all bits
of the key and data to be repeatedly mixed. The top five and bottom four
bits are probably slightly weaker than the middle bits. These bits are
generated from only two versions of z (or y) instead of three, plus the other
y or z. Thus, the convergence rate to even diffusion is slower. However, the
shifting evens this out with a possible delay of one or two extra cycles
[Wheeler and Needham, 1994].

Blowfish Encryption Algorithm. The Blowfish encryption algorithm
[Schneier, 2013] is one of the most common public domain encryption
algorithms. Blowfish is a variable length key, 64 bit symmetric block
cipher. This algorithm was first introduced in 1993. Each round of the
algorithm consists of a key-dependent permutation and a key-and-data-
dependent substitution. All operations are based on XORs and additions
on 32-bit words. The key has a variable length (with a maximum length of
448 bits) and is used to generate several subkey arrays. It has been
extensively analyzed and deemed “reasonably secure” by the
cryptographic community. Though it suffers from weak keys problem, no
attack is known to be successful against it [Nadeem and Javed, 2005]. A
graphical representation of the Blowfish algorithm can be seen in Figure 2-
10.

As shown in Figure 2-10, a 64-bit plaintext message is first divided into 32
bits. The “left” 32 bits are XORed with the first element of a P-array to create
a new value named as P’, run through a transformation function called F,
then XORed with the “right” 32 bits of the message to produce a new value
named as F’. F’ then replaces the “left” half of the message and P’ replaces
the “right” half, and the process is repeated 15 more times with successive
members of the P-array. The resulting P’ and F’ are then XORed with the
last two entries in the P-array (entries 17 and 18), and recombined to
produce the 64-bit ciphertext.

A graphical representation of the F transformation function is shown in
Figure 2-11. The function divides a 32-bit input into four bytes and uses
those as indices into an S-array. The lookup results are then added and
XORed together to produce the output.

45

Chapter 2

° = XOR (Plaintext }

Py s

Py
S E ’
(13 more iterations)"”

ponmeTs Yoo

P18

Ciphertext

Figure 2-10. The Blowfish Algorithm

46

Background and Related Work

8 bits 32 bits
-
Y XOR
9 32 bits ‘

1 8 bits 2bits A e' o
(=] '
v

32 bits

32 bits |
9
8 bits 3 32 bits
1:}4 > [S-box 3]

32 bits
it
8 bits 32 bits ﬁ‘
>

Figure 2-11. The Blowfish Transformation Function (F)

The P-array and S-array values used by Blowfish are precomputed based
on the user’s key. In effect, the user’s key is transformed into the P-array
and S-array; the key itself may be discarded after the transformation. The
P-array and S-array need not be recomputed (as long as the key doesn’t
change), but must remain secret. The P and S-arrays are summarized as
follows (according to [Schneier, 2013]):

¢ P is an array of eighteen 32-bit integers;
¢ S is a two-dimensional array of 32-bit integer of dimension 4x256;

e Both arrays are initialized with constants, which happen to be the
hexadecimal digits of 7t (a pretty decent random number source);

¢ The key is divided up into 32-bit blocks and XORed with the initial
elements of the P and S arrays. The results are written back into the
array. A message of all zeros is encrypted; the results of the encryption
are written back to the P and S arrays. The P and S arrays are now
ready for use.

47

Chapter 2

Snuffle (alias Salsa20) Encryption Algorithm. Recently, the Snuffle 2005
encryption algorithm (also known as Salsa20) was proposed [Bernstein,
2005; Bernstein, 2008]. The goal of Salsa20 is to produce a 64-byte block
given a key, nonce® and block counter. The author recommends executing
a number of 20 rounds, although 8 or 12 rounds are acceptable when
required to gain speed against sacrificing some security. This solution can
be seen as a 256-bit stream cipher and is based on a hash function with a
long chain of simple operations, instead of a short chain of more complex
operations (typical in standard encryption algorithms), on 32-bit words:

e 32-bit additions, producing the sum a + b mod 23 of two 32-bit words
a, b (which breaks linearity over Z/2);

¢ 32-bit exclusive-or (XOR), producing a © b of two 32-bit words a, b
(which breaks linearity over Z/2%); and

e Constant-distance 32-bit rotation, producing the rotation a <<< b of a
32-bit word a by b bits to the left, where b is constant (diffusing changes
from high bits to low bits).

The author of Salsa20 states that although these operations may be
considered too simplistic, they can easily emulate any circuit and are
therefore capable of reaching the same security level as any other selection
of operations. The real question for the cipher designer is whether a
different mix of operations could achieve the same security level at higher
speed.

Salsa20 expands a 256-bit key and a 64-bit nonce (unique message number)
into a 270-byte stream. It encrypts a b-byte plaintext by XORing the plaintext
with the first b bytes of the stream and discarding the rest of the stream. It
decrypts a b-byte ciphertext by XORing the ciphertext with the first b bytes
of the stream. There is no feedback from the plaintext or ciphertext into the
stream.

Salsa20 generates the stream in 64-byte (512-bit) blocks. Each block is an
independent hash of the key, the nonce, and a 64-bit block number; there

5 In cryptography, a nonce is an arbitrary number used only once in a
cryptographic communication. It is often a random or pseudo-random number
issued in an authentication protocol to ensure that old communications cannot be
reused in replaying attacks. [Vaudenay, 2006]

48

Background and Related Work

is no chaining from one block to the next. The Salsa20 output stream can
therefore be accessed randomly, and any number of blocks can be
computed in parallel.

There are no hidden preprocessing costs in Salsa20. In particular, Salsa20
does not preprocess the key before generating a block; each block uses the
key directly as input. Salsa20 also does not preprocess the nonce before
generating a block; each block uses the nonce directly as input.

This solution is relatively simple when compared with other standard
encryption algorithms such as AES and has been recognized by the
cryptology research community as an interesting alternative to those
algorithms in contexts where speed is more important than confidence
[Tsunoo et al., 2007; Bernstein, 2008].

2.3.3. DBMS Data Encryption Packages

Many DBMS vendors such as Microsoft SQL Server and Oracle TDE
provide built-in standard encryption packages. These routines run in the
DBMS kernel and are optimized to work against their data structures and
across a large diversity of platforms.

Oracle has developed TDE (Transparent Data Encryption) [Oracle, 2005;
Oracle, 2010a] incorporating both AES and 3DES, providing column and
tablespace encryption. These routines can be used transparently without
requiring user application source code modifications. As Oracle, Microsoft
SQL Server also provides column and datafile 3DES and AES encryption
routines.

When using Oracle TDE tablespace encryption, all data in the tablespace’s
physical datafiles is encrypted and almost no storage space overhead is
generated. When using column encryption, a storage space overhead
between 1 and 52 bytes per encrypted value is added. The generation of
independently encrypted values for each column is done by using an
optional feature (SALT) in the encryption, which implies adding 16 bytes
of the storage space per encrypted column to each row. If the NO SALT
option is used, those extra 16 bytes are saved, but all encrypted values in
the column rely on one key only in the encryption algorithm, which lowers
its security strength. Tablespace encryption uses only the database master

49

Chapter 2

key and the tablespace’s encryption key, which makes its security level
lower than column encryption.

Encryption in Oracle TDE is transparently handled, including index
operations and table joins, even if the columns for the join condition are
encrypted. In TDE column encryption, the index needs to be a normal B-
Tree index. With TDE column encryption, the data remains encrypted in
the RAM (in the database cache), but with TDE tablespace encryption the
Oracle database will automatically decrypt data before it arrives in
database memory (SGA). This means that all data in the SGA is always
decrypted, which must be considered a weakness in security for this type
of encryption.

2.3.4. Using Data Encryption in Data Warehouses

One of our main objectives in this thesis is to discuss if the commonly used
data encryption algorithms are too slow for DWs. We are not interested in
discussing in detail each step of each algorithm focusing on their security,
but rather to compare and analyze the generic guidelines of the different
types of encryption algorithms and how their performance is affected as
well as how it affects DW performance.

When processing SQL on encrypted data, there are many database
performance issues that arise. For example, certain basic queries are not
supported, i.e., they cannot be executed because they cannot be handled by
the encryption/decryption schemas, or their execution is too inefficient
(especially joins and ordering operations), resulting in the introduction of
large response time overhead. Regarding this last issue, if no order
preserving scheme is ensured by the encryption solution indexing becomes
mostly useless, with its corresponding impact in database performance.

Many decision support workloads are based on actions in which the end-
user interacts with the system, like performing an OLAP analysis through
ad hoc querying or performing drill-down or roll-up reporting. When
performing this type of analysis, the end user is typically in front of a
computer waiting for the system to answer the query; therefore, if the
DBMS is slow the end-user can lose interest in the business analysis, leave
the query running and forget the business question s/he originally wanted
or feel exasperated by having to wait for a long time to get the answer

50

Background and Related Work

[Castro, 2009]. This may compromise the acceptability and credibility of
the DW system among its users and ultimately, jeopardize its usefulness.

As we have mentioned earlier, encryption algorithms typically execute a
significant number of bit management operations using one or more
encryption keys. In what concerns performance issues, the quality of each
set of operations in achieving the intended “data mix” affects how fast the
algorithm can execute. When comparing encryption algorithms referring
to what, how and how many operations they execute, most encryption
algorithms such as AES carry out considerably short chains of complex
operations, while other hash-based solutions such as Salsa20 execute
longer chains of simpler operations.

The argument in favor of using complicated operations such as the use of
S-boxes is that they provide a large amount of mixing at reasonable speed
on many CPUs, and thus achieve many desired security levels more
quickly than simple operations on those CPUs; a single table lookup can
mangle its input quite thoroughly — more thoroughly than a chain of
simple integer operations — in fewer rounds. This provides a large amount
of mixing at reasonable speed on many CPUs, reaching many desired
security levels more quickly than simple operations. The counterargument
is that potential speedup is fairly small and is accompanied by huge
slowdowns on other CPUs.

On the other hand, simple operations such as bit additions and XORs are
consistently fast, independently from the CPU. It is also not obvious that a
series of S-box lookups (even with rather large S-boxes, as in AES,
increasing L1 cache pressure on large CPUs and forcing different
implementation techniques for small CPUs) is generally faster than a
comparably complex series of simpler integer operations.

In what concerns the use of packaged encryption routines in DBMS’,
Oracle recommends the use of tablespace encryption when there is no way
of determining which columns are sensitive and which are not, or when
the majority of the data in the tablespace is sensitive [Oracle, 2010a]. They
state that column encryption should be preferred when a small number of
well defined columns are sensitive. This last scenario is typical in data
warehousing environments, which makes column encryption the
recommended solution according to Oracle. However, as we have shown

51

Chapter 2

in [Santos et al., 2012a], when applying column encryption in DWs the
storage overhead will be very significant.

On the other hand, since DWs are business knowledge data sources by
nature, we can assume that most of its data is sensitive. In this sense, we
may also state that TDE tablespace encryption should also be highly
considered. Nevertheless, data coming from tablespace encryption is made
immediately transparent once that data is loaded into the SGA (located in
RAM), making decryption straightforward and minimizing resource
consumption, but also allowing third party access to the real data, lowering
the level of security. Although we are focused on performance, we believe
this is a very relevant drawback in data security and that it should not be
considered a good solution, given the risk of data exposure.

There are also many situations where certain users or applications may
require querying data that is less sensitive or not sensitive at all to the
business. Since tablespace encryption encrypts the entire content of the
tablespace, in these scenarios using tablespace encryption would require
giving those users or applications the encryption keys or passwords that
allow them to access the data. Using column encryption would enable to
keep the columns that store less sensitive data unencrypted is this
desirable, avoiding the disclosure of security keys or passwords to ensure
the access to that data. Furthermore, tablespace encryption adds
computational overhead to decrypt less sensitive or non-sensitive columns
for query processing, that wouldn’t be selected for encryption when using
column encryption.

Other encryption solutions proposed by research work such as [Agrawal
et al, 2004] distribute data in well-defined groups to allow direct
operations on encrypted data. However, the impact in performance
produced by these solutions, in response time and storage space overhead,
depends on the skew in the target distributions, which can be a very
serious problem in DWs. There is no easy way around this. The proposal
from [Hacigumus et al., 2002] also suffers from the same problem.

The lightweight encryption in column-oriented DBMS proposed in [Ge
and Zdonik, 2007] aims on providing low decryption overheads. However,
their experiments show at least 50% of response time overhead to retrieve
the encrypted tuples, which is still extremely high for many DW scenarios,

52

Background and Related Work

such as long running queries. The fact that is aimed at column-DWs also
narrows its applications.

Topologies involving middleware solutions such as [Radha and Kumar,
2005] typically request the encrypted data from the database a priori and
execute the decrypting actions themselves locally. The proposal in [Radha
and Kumar, 2005] aims to ensure efficient query execution over encrypted
databases, by evaluating most queries at the application server and
retrieving only the necessary records from the database server. Only one
query (Q6) of the TPC-H benchmark is used in their experimental
evaluation, against a very small data subset (ranging from 10MB to 50MB,
where query execution time rises up to 5 times for the last).

This dataset size cannot be considered realistic for DWs, given its typical
very large sized databases. In a DW environment, previously transporting
all the required data from the database to the middleware is unreasonable,
since the amount of data accessed for processing decision support queries
is typically much larger than a few tens of MB. This would strangle the
network due to bandwidth consumption of data roundtrips between
middleware and database, jeopardizing data throughput and
consequently, response time. Thus, all encrypted data should be processed
at the DBMS itself, eliminating network overhead from the critical path.

After considering the referred issues that influence performance (and
security tradeoffs) of the described encryption solutions and to finish this
discussion, we have come to the following conclusions:

¢ Both standard encryption algorithms and specific research database
encryption solutions show large performance overheads;

e The type and number of operations for producing the “data mix”
output in each round of the algorithm, the length of the used
encryption keys, the size of the input and output blocks, and the
number of rounds to execute, are all variables that affect both security
and performance;

¢ In many software implementations of the security techniques, the CPU
architecture also varies the performance outcome;

53

Chapter 2

e Typically, most secure encryption algorithms will execute between 8
and 20 rounds against 64, 128 bit (or more) sized blocks, using a 128 or
256 bit key;

¢ Encryption algorithms which make use of chains of simple operations
such as bit additions and XORs scale better and have reduced CPU
dependency than solutions that make use of more complex operations
such as S-box lookups;

e Salsa20 seems to provide consistent speed in a wide variety of
applications across a wide variety of platforms. It is faster and simpler
than the complex-operations approach of the standard algorithms
3DES and AES, while granting significant security strength. However,
most commercial vendors just include AES and 3DES routines. The
AES became a standard only after a five-year long standardization
process that included extensive benchmarking on a variety of
platforms ranging from smart cards to high end parallel machines.
Thus, the adoption of encryption standards is probably only due to
legal impositions and public reliability issues, given that only AES and
3DES are the current well-accepted encryption standards.

e All major DBMS provide encryption to be used transparently by user
applications;

e When using tablespace encryption, the requested data is decrypted
and loaded into RAM memory (in the database cache) as clear text,
while column encryption does not and is thus more secure;

e Tablespace encryption does not create significant storage space
overhead, while column encryption does;

¢ Despite the well-known pros and cons, the best choice between
tablespace encryption and column encryption isn’t obvious;

¢ Leading DBMS use standard encryption algorithms AES and 3DES,
producing alphanumeric or binary values as a result of the encryption
process, even for numerical-typed attributes;

e In DWs5, transporting encrypted data to third party decrypting agents
would create unbearable communication bandwidth consumption
and compromise throughput.

54

Background and Related Work

2.4. Database Intrusion Detection Systems

Generically, intrusion detection (ID) is defined as the process of monitoring
the events occurring in a computer system and analyzing them for signs of
possible incidents, which are violations or imminent threats of violation of
computer security policies, acceptable user policies, or standard security
practices [Scarfone and Mell, 2007]. ID systems are typically classified in
two main types, depending on the environment in which they operate:

1) Network-based 1D systems, which perform surveillance using network
traffic or other network-based data;

2) Host-based ID systems, which are located at the host that is aimed to
be protected, analyzing the activity that happens there.

In this thesis, we specifically focus on Database Intrusion Detection Systems
(DIDS), which are host-based ID systems that analyze user actions
occurring at the database level in order to detect (and eventually stop or
prevent) intrusion actions. This section characterizes the way a typical ID
system operates and presents a descriptive analysis of selected samples
from each different type of approach and/or technique that can be applied
in DIDS, in order to characterize the broad scope of existing solutions.

2.4.1. How Intrusion Detection Systems Operate
The main requirements that ID systems are required to cope with are:

e The quest for adequately defining and building profiles that accurately
represent “normal”/“intrusion-free” behavior or workloads, as well as
identifying attack signatures;

¢ Given those profiles and/or attack signatures, define which behavioral
features as well as techniques and models that maximize the
performance and accuracy of the intrusion detection processes;

¢ Reporting system status to security staff and notifying them about
generated alerts;

e Promote a way of stopping or preventing the attack whenever an
intrusion alert is raised (this feature may or not be present in the ID
system; if it is the case, literature often refers to the ID system as an
Intrusion Detection and Response System, or an Intrusion Detection
and Prevention System).

55

Chapter 2

The typical components of an ID system according to [Scarfone and Mell,
2007] are shown in Figure 2-12 and are described as:

e A Sensor or Agent, which are responsible for capturing both the
information relating to the ID features that is necessary for building
the “normal”/“intrusion-free” profiles and/or attack signatures, as
well as the required information to execute the ID processes;

e A Management Server, which is a centralized device that receives the
information from the Sensor or Agent and manages the profile
building processes and the intrusion detection and response processes
of the ID system;

e A Repository, for storing the behavior profiles and/or attack signatures,
activity logs, generated alert information and other relevant data that
is useful to the ID system; and

e A Console, which is the interface responsible for the interaction
between security managers/staff and the ID system, i.e., it enables a
mean for configuring the ID system and displays the required
information concerning the behavior profiles, system status, generated
alerts, etc.

Sensor or Agent Management Server Console

Activity Source Repository

Figure 2-12. Typical ID System Architecture (adapted from [Scarfone and Mell, 2007])

56

Background and Related Work

Referring to Figure 2-12, the Activity Source is where the activity that should
be analyzed is generated; in a DIDS, it can represent a user or an
applications that generates SQL workloads to execute against the DW. This
activity is then captured by the Sensor or Agent and sent on to the
Management Server either to build behavior profiles and previously define
attack signatures (if the activity is considered “intrusion-free” and the ID
system is in the learning phase) or to perform intrusion detection and
consequent alert generation (and/or response actions if this is required).
The Management Server will both read and write data from the Repository in
order to retrieve or store all relevant information accordingly with what it
needs to do. The Console allows the security managers/staff to configure the
ID system and retrieve all relevant information for assessing system status,
user behavior and alert notifications.

In DIDS systems there is typically a learning or training phase (i.e.,
previous to intrusion detection), in which database and/or user logs
assumed as having “normal” or intrusion-free activity are used in order to
build the user behavior profiles and/or define attack signatures[Newman,
2011]. After this learning phase, the intrusion detectors match user actions
against those profiles and/or attack signatures to find significant deviations
which are signaled as potential intrusions.

From the intrusion perspective, an intruder in a data warehousing
environment can be one of the following [Treinen and Thurimella, 2006]:

¢ An authorized user, which is someone belonging to the enterprise that
has regular access to authorized database interfaces and acts with
malicious intent (also commonly referred to as the insider threat);

o A masqueraded user, which is someone that obtains the credentials of an
authorized user and impersonating that user takes control of an
authorized interface (which refers to the insider threat when the
attacker is someone from within the enterprise but without regular
authorized database access, and refers to an outsider threat when it
someone from outside the enterprise that manages to obtain the
credentials);

¢ An external attacker (commonly referred to as the outsider threat), which
is someone from outside the enterprise that is able to bypass the

57

Chapter 2

database security and gain direct database access using SQL injection®
or other exploiting techniques;

¢ Any combination of the above.

Considering the possible intruders” intentions, there are mainly three types
of attacks mobilized against DWs [Douligeris and Mitrokotsa, 2004]:

o Attacks aiming at corrupting data (integrity attacks). In these types of
attack, the intruder seeks access to the database for executing actions
that compromise its integrity, such as corrupting or deleting the data
in a given database object (e.g. such as a table or view);

o Attacks aiming at stealing information (confidentiality attacks). In these
attacks, the intruder is focused on breaking confidentiality issues, such
as stealing business information, rather than damaging data;

o Attacks aiming at making the DW unavailable (availability attacks). These
attacks aim on making database services unavailable to users, i.e., they
are mainly Denial of Service (DoS) attacks (e.g. flooding database
services and bandwidth with a large number of requests, halting or
crashing database server instances, deleting database objects, etc).

The way how ID processes are designed to operate is mainly based on two
approaches, depending on what they intend to search for:

1) Misuse or signature-based detection, which searches for well-known
attack patterns and signatures defined a priori to the attack itself; and

¢ SQL injection is a type of attack executed through means of a third party interface
(e.g. a web application) in which the attacker appends malicious code to an
authorized command that will be executed on behalf of that interface. SQL
injection is often considered as a particular form of attack on its own, following
very well-defined guidelines. Although the actions performed through SQL
injection can also be detected by DIDS, the forms of detecting SQL injection attacks
have been extensively studied and belong to a category of security mechanisms
that are differentiated appart from those that we intend to focus on in this thesis.
As a reference, the work in [Halfond et al., 2006; Kim, 2011; Kindy and Pathan,
2012] presents detailed surveys and countermeasures on SQL injection.

58

Background and Related Work

2) Anomaly detection, which searches for deviations from typical user
behavior by matching their actions against assumed “intrusion-free”
profiles that significantly represent that typical user behavior.

The first approach is mainly efficient against previously well-known and
expected intrusion actions. However, they are mostly incapable of acting
against intrusions that reveal new forms of attack or malicious actions that
seem “normal” (which, in many cases, refer to the insider threat), opening
a much wider spectrum of analysis possibilities that results in a threat that
is much harder to tackle and mitigate. Given the published work that refers
trends indicating an increase of attacks referring to the insider threat
[Jabbour and Menasce, 2009], to overcome those issues anomaly detection
techniques have been proposed in the most recent DIDS.

In the past, several types of intrusion detection techniques and methods
have been proposed to build behavior profiles and perform intrusion
detection processes that may be used in DIDS, which we shall describe and
discuss in the following subsections.

2.4.2. Intrusion Detection Techniques

The most common way to distinguish between distinct ID techniques is to
classify the way they select and analyze the features used for building user
profiles and execute the intrusion detection processes. In this subsection,
we distinguish and describe a set of main types/classes of analysis
techniques, referring prominent research work in each of these classes.

Temporal Analysis. These techniques focus on temporal features such as
the time span between user actions and the duration of those actions.

The approach in [Lee et al., 2000] uses a mean and standard deviation
model built from time signatures to check for outliers within a predefined
range in real-time database systems. This solution considers a transaction
as a set of read or write actions for each data object which is executed in
predefined update time periods. For example, the update of a temporal
data object (event) can trigger a rule such that the update time is checked
against the expected update time (condition) and rejects the update (action)
if the predicate returns false, considering it an intrusion.

The training period occurs until a significant mean with 99% confidence
level of a normal distribution is obtained for each object/update pair.

59

Chapter 2

Database behavior is monitored by sensors at the transaction level, which
are assumed to be small in size and have predefined semantics such as
write-only operations and well-defined data access patterns. If a
transaction tries to update a temporal data object that has already been
updated in that period, an alarm is raised.

Dependency and Relation Analysis. Intrusion detection techniques based
on dependency and relation analysis determine dependencies and/or
relations among the distinct sets of user actions and/or accessed data in
order to determine which columns, rows, tables, etc. and/or which
commands are usually issued or processed together.

For example, the DEMIDS system [Chung et al., 1999] builds user profiles
based on their activity by determining frequent itemsets from
feature/value pairs and computes distance measures of user activity
against the learnt frequent itemsets to detect intrusions, given a threshold.
The features are typically based on the syntactical analysis of user
commands, where the itemset domains are the sets of attributes issued
together.

Another approach using frequent itemset mining is presented in [Zhong
and Qin, 2004]. This approach summarizes each user command into a tuple
<Op, F, T, C> where Op is the type of SQL command (insert, select, etc), F
is the set of attributes, T is the set of tables, C is the constrained condition
set. An algorithm mines user query profiles using these tuples, based on
the pattern of the submitted queries at the transaction level. The algorithm
adapts the support and confidence of association rule mining by adding
query structure and attribute relations to the computation.

The Role-Based Access Control (RBAC) DIDS proposed in [Kamra et al.,
2008] improves a previous approach [Bertino et al., 2005b] using features
named quiplets for summarizing each user command. Considering a
generic command:
SELECT {Target-List}
FROM {Relation-List}
WHERE {Qualification}
A quiplet is defined as (c, PR, PA, SR, SA)where Cis the SQL main
command (insert, select, etc.), PR is the Projection-Relation information, pa
is the Projection-Attribute information, sr is the Selection-Relation

60

Background and Related Work

information, and sa is the Selection-Attribute information. The authors
define three types of quiplets with different granularities: given a relation

(alias table) r1 with attributes A1, B1, Cc1, D1 and a relation rR2 with

attributes A2, B2, c2, D2 and given the user command SELECT R1.Al,
R1.Cl, R2.B2, R2.D2 FROM R1, R2 WHERE R1.B1 = R2.B2, will
generate, as shown in Figure 2-13:

1) The coarse c-quiplet (select, <2>, <4>, <2>, <2>)
2) The medium m-quiplet (select, <1,1>, <2,2>, <1,1>, <1,1>)

3) The fine f-quiplet (select, <1,1>, <[1,0,1,0], [0,1,0,1]>,
<1,1>», <[0,1,0,01, [0,1,0,01>)

[SQL Command c-quiplet m-quiplet F-quiplet —]
SELECT R;.A;, R1.C1, R2.B2, R2.D5 | select<2><4><25<2> [select < 1,1 ><2,2> | select <1,1>
FROM Ry, R <l,l1><1,1> < [1,0,1,0],[0,1,0,1] >
WHERE R,.B, = R:.B; <1,1>[0,1,0,0],[0,1,0,0]

Figure 2-13. The quiplet construction process [Kamra et al., 2008])

For anomaly detection when the database has role-based users (i.e., it is
possible to link each user action to a given role), a Naive Bayes Classifier
(NBC) is used as follows:

e For all queries in the audit logs, and for each role, the classifier for each
type of quiplet is built (training phase);

e For each submitted query, if any of its classifiers is different from the
ones in its roles, the action is considered an intrusion and an alert is
generated (testing phase).

If role-based access policies are not implemented in the database, they
propose unsupervised anomaly detection. In this case, positional and
distance functions are defined for the quiplets and clustering techniques
(k-centers and k-means) map every user to its representative cluster, which
is the cluster with the highest number of training records for that user after
the clustering phase (training phase).

For each new query to test, two approaches can be used:

1) Given the determination of its representative cluster, use the NBC as
in the Role-Based anomaly detection to perform a similar test; or

61

Chapter 2

2) Verify if the new query is a statistical outlier using the MAD (Median
of Absolute Deviations) test [Pham-Gia and Hung, 2001], which if
true considers the action as an intrusion and generates an alert.

Sequence Alignment Analysis. Sequence alignment mainly consists in
determining common sequences of events (such as commands, data
attributes, accessed values, etc). DIDS using this type of techniques
typically learn and identify the repeatable series of events with significant
length and eventually break them into smaller-sized subsets to label or
classify those sequences and their subsets as normal user behavior. In the
detection phase, each sequence of new events is matched against the learnt
user sequences and their subsets for measuring how they differ in order to
evaluate its probability of being an intrusion.

The solution presented in [Kundu et al., 2010] identifies sequences of
accessed attributes, commands and tables for building user profiles. The
proposed features are the command types (insert, select, etc.), designed
sensitive attributes, all attributes, operations on attributes, and mixes of all
features. This work also defines criteria for choosing among user-based,
role-based or organization-based profiles, given the working context of the
database.

In the learning phase, it builds sequence models given a threshold for
determining the maximum number of differences. In the detection phase,
it also uses a threshold for computing the highest number of differences
allowed between the tested sequences and those retained in the learning
phase, to consider the sequences as normal or abnormal.

Integrating Dependency with Sequence Alignment Analysis. An
approach for finding dependency relationships among transaction-level
attributes with high support and confidence rules is proposed in [Hu and
Panda, 2004]. These authors observed that in real-world applications,
although the transaction application can often change, the whole database
structure and essential data correlations rarely change. They assume that
whenever an attribute is updated, this action is linked to a sequence of
other events logged in the database (e.g. due to an update of a given
attribute, other attributes are also read or written). Thus, each update is
defined by three sets: the read set, a set of attributes that have been read
because of the update; the pre-write set, a set of attributes that have been
written before the update and because of it; and the post-write set, a set of

62

Background and Related Work

attributes that have been written after the update as a consequence of it.
Transactions that do not follow any of the mined data dependency rules
are marked as malicious.

The work in [Srivastava et al., 2006a; Srivastava et al., 2006b] improves that
of [Hu and Panda, 2004] by considering attribute sensitivity, i.e., giving a
measure of importance to each attribute. They propose three levels of
attribute sensitivity, considering its support in the analyzed transactions:
high, medium and low. A weighted data mining algorithm is used to mine
the dependencies between database attributes and generate rules that
reflect that dependency, given the measured sequences of operations (read,
write) and the sensitivity of each attribute. Any transaction that does not
follow these rules is identified as malicious. The authors also present an
extension to the Entity-Relationship model to syntactically capture the
sensitivity level of the attributes.

In [Fonseca et al., 2008], a generic learning algorithm for representing
transactions by directed graphs describing execution paths is proposed.
New profiles that deviate from the ones learnt from those execution paths
are seen as unauthorized sequences of SQL commands. The features used
to build the execution paths are the command type (select, insert, delete,
etc.), target objects (tables) and selected columns, and restriction attributes,
all of which are obtained from typical DBMS audit entries [Newman, 2011]
storing information on the UserID, SessionID, CommandID,
TransactionID, user command, object owner, and a timestamp of its
execution.

Statistical Analysis. Statistical analysis is used in several DIDS for
computing user activity and/or data statistics ID features.

The approach presented in [Spalka and Lehnhardt, 2005] makes use of
statistical functions on reference values obtained from the data in relations
(alias tables) and A-relations (changes of the values of the monitored
objects/attributes for all reference values, per attribute, between two runs
of the DIDS) for anomaly detection.

An extension is defined as the set of all rows of an insertion/modification
of data and a relation refers to a table or view. The reference values include
count, minimum, maximum, average, standard deviation, ranges,
computed ratios, zero length checking and bit counting. A misuse

63

Chapter 2

detection method is also included, which works by examining database
objects (Database, Default, Function, Index, Privilege, Procedure, Rule,
Schema, Statistics, Table, Trigger, and View) and all operations on them.
This is done by previously defining if each pair <Database object,
operation> is dangerous or not.

The work proposed in [Mathew et al., 2010] is based on computing
summarized statistics such as counting, maximum, minimum, mean,
median, standard deviation and cardinality values of each attribute from
the dataset resulting or affected by the execution of each user command.
These statistics are stored in a vector with fixed dimension named as an S-
Vector, regardless of how large the command’s result dataset may be.
When the dataset for obtaining the S-Vector is large, the authors propose
sampling the dataset by fetching the first initial k tuples or a subset of
randomly picked k tuples, for maintaining performance and scalability.
The set of each user’s S-Vectors is then used for applying techniques such
as clustering, naive Bayes, support vector machines or decision trees in
order to obtain models that represent the user’s normal behavior given the
information in those S-Vectors. In the intrusion detection phase, statistical
deviation and outlier verification is applied to inspect each user command
and classify it as normal or abnormal.

Information-Theoretic Analysis. Approaches using information-theoretic
analysis compute measures like entropy and information gain for
characterizing user profiles and compare them with those of subsequent
user actions to see how they differ from the original ones.

The work in [Lee and Xiang, 2001] describes such a solution. Features are
composed by a tuple of audit data with n variables for each data object (e.g.
IP address, message size, etc). Entropy is used as a measure of regularity
of audit data (e.g. event types such as a list of commands), where each
record represents a class; the smaller the entropy, the fewer the number of
distinct records (i.e., the higher the redundancies), the more regular the
audit dataset. The fact that many events are repeated (or redundant) in a
dataset suggests that they are likely to appear in the future. Anomaly
detection models constructed using datasets with small entropy will likely
be simpler and have better detection performance.

Conditional entropy is used to define temporal sequences of audit data.
H(X1Y) shows how much uncertainty remains for the rest of the audit

64

Background and Related Work

events in a sequence X after seeing Y. For anomaly detection, it is used as
a measure of regularity of sequential dependencies. If the audit trail is a
sequence of events of the same type, then the conditional entropy is 0 and
the event sequences are deterministic. Conversely, large conditional
entropy indicates that the sequences are not as deterministic and hence
much harder to model.

Relative conditional entropy between distributions is used for measuring
regularities (distance) between two audit datasets, where the training
dataset is a validated audit dataset and the tested dataset is the one that
needs to be inspected. Once again, the best solution is the one with smaller
relative conditional entropy. Information gain is introduced to aid the
feature selection and construction process to improve the detection
performance because of its direct connection with conditional entropy. The
higher information gain owned by the feature, the smaller conditional
entropy, and hence the better detection performance.

Command Template Analysis. Command modeling DIDS use a command
database log to analyze all the regular user commands and build some sort
of summarized templates that are able to generically represent the typical
user workloads.

In [Lee et al., 2002], an algorithm summarizes a set of supposed
“legitimate” queries into SQL templates that represent the models of all
those queries. Each conditional filtering variables in the WHERE clause of
similar commands are considered as parameters. To see if an unbounded
variable should be used for each parameter or a finite list of values, a
Kolmogorov-Smirnov test is done at a 90% confidence level. The algorithm
also tabulates the frequency of each learnt fingerprint, i.e., how often it
occurs in the set of SQL statements.

Taking a new fingerprint F and a previously defined fingerprint F’, F is
considered legitimate if F differs from F’ only by: 1) any extra conditions
in the WHERE clause of F that are missing from F’ are joined with the
AND operator; and 2) F selects an equal or fewer number of columns than
F’. They also propose a method for deducing missing fingerprints (i.e.,
ranges of queries that are similar to the database log queries used in the
learning phase), based on mixing the possible combination of conditions in
the WHERE clause from the previously acquired fingerprints. In the testing

65

Chapter 2

phase, each command significantly differing from the computed
fingerprints is considered abnormal.

In [Bockermann et al., 2009] the authors propose applying a grammar-
based analysis using machine-learning techniques instead of commonly
used vector-based data. This approach applies tree-kernel based learning,
which has become popular in natural language processing, using the
parse-tree structure of SQL for correlating commands with applications
and to differentiate between benign and malicious ones by inspecting
changes in command syntax trees.

They derive a distance measure induced by a tree-kernel function to
measure the similarity of SQL commands using their parse-trees. Support
vector machines are used in the learning phase and clustering is applied
for distinguishing benign from malicious commands by outlier detection.
This method promotes a context sensitive similarity that enables locating
the nearest non-intrusive command for a malicious statement, which helps
in root cause analysis.

Table 2-2 summarizes the approaches previously described, mentioning
each type of technique along with the actions and user action elements that
can be analyzed. It also shows if each approach allows implementing
intrusion prevention, i.e., if it enables stopping the intrusion action a priori
to its execution.

In what concerns intrusion prevention, which is the capability of stopping
the intrusion action when it occurs or even before it occurs, it can be seen
that several solutions enable full intrusion prevention, while others can
only partially accomplish this. In [Lee et al., 2000], the temporal analysis
technique detects any queries that request execution outside a predefined
time schedule and may therefore deny their execution and prevent the
intrusion action. The sequence analysis technique used in [Kundu et al.,
2010] may enable intrusion prevention by avoiding subsequent user
actions when it detects a suspicious sequence of actions. However, it needs
to wait for a significant amount of actions that make up that sequence,
meaning that it will probably only detect the intrusion after some of those
actions have finished their execution, which makes it only capable of
partial intrusion prevention.

66

Background and Related Work

Table 2-2. Database intrusion detection techniques and their coverage

Elements that can be analyzed Intrusion
Technique Reference Command| Accessed |Processed| Result Preven.ti.on
q Syntax |Columns | Rows | Dataset | Capability

Temporal Analysis | [Lee et al., 2000] X Yes

[Chung et al., 1999] X X Yes
Dependency and [Zhong and Qin, 2004] X X X Yes
Relation Analysis [Bertino et al., 2005b] X X Yes

[Kamra et al., 2008] X X Yes
Sequence Analysis | [Kundu et al., 2010] X Partial
Integrated [Hu and Panda, 2004] X X Partial
Dependency and [Srivastava et al., 2006] X X Partial
Sequence Analysis [Fonseca et al., 2008] X X Partial

[Spalka and Lehnhardt, 2005] X X X Partial
Statistical Analysis

[Mathew et al., 2010] X X X No
Inform.atlon—Theory [Lee and Xiang, 2001] X Partial
Analysis
Command [Lee, 2002] X X Yes
Template Analysis | [Bockermann et al., 2009] X X Yes

All the solutions based on dependency and relation analysis that were
described [Bertino et al., 2005; Kamra et al., 2008; Zhong and Qin, 2004] are
fully capable of enabling intrusion prevention, since they may check each
individual user command syntax and if they find those commands
suspicious their execution can be stopped before their execution occurs.
The solutions integrating a mix of dependency and sequence analysis such
as [Fonseca et al., 2008; Hu and Panda, 2004; Srivastava et al., 2006a;
Srivastava et al., 2006b] are capable of performing only partial intrusion
prevention, for the same reasons pointed out in the previous paragraph
concerning the solution proposed in [Kundu et al., 2010].

The solutions presented in [Mathew et al., 2010; Spalka and Lehnhardt,
2005], which are based on statistical analysis, are mostly incapable of
intrusion prevention, as they mostly rely on analyzing the changes in data
or execution results after they have been processed. This means they can
only detect the intrusion a posteriori to the attack. However, the approach
in [Spalka and Lehnhardt, 2005] can be adapted to check a priori statistical
data concerning the rows requested to be processed by the user action,
enabling it to have partial intrusion prevention capabilities. For this same

67

Chapter 2

reason, the information-theory analysis approach presented in [Lee and
Xiang, 2001] may also accomplish partial intrusion prevention.

The solutions based on command template analysis proposed in
[Bockermann et al., 2009; Lee et al., 2002] can fully enable intrusion
prevention due to same reason as those previously mentioned that use
dependency and relational analysis [Bertino et al., 2005; Chung et al., 1999;
Kamra et al., 2008; Kamra, 2010; Zhong and Qin, 2004].

Besides the previously described specific ID techniques and approaches
that can be used in databases, other research works have been published
that can also contribute to this intrusion detection field. For example,
although it does not present itself as a DIDS, the work in [Motwani et al.,
2008] describes a method for auditing SQL queries to measure their
suspiciousness from a privacy and confidentiality perspective that may be
useful for intrusion detection purposes. A generic survey on how data
mining techniques can be applied to intrusion detection is shown in [Pei et
al., 2004].

2.4.3. Using Database Intrusion Detection Systems in Data Warehousing
Environments

By observing Table 2-2 it can be seen that most DIDS focus on analyzing
user command syntax (i.e., parsing the SQL-expression syntax of queries to
construct user profiles). As pointed out in [Mathew et al., 2010], the most
common problems with this type of approach is:

e Regular user queries may differ widely in syntax yet produce
“normal” (i.e.,, good non-intrusive) output, which generates false
positives (i.e., false alarms);

¢ Queries may be crafted by the attacker to differ slightly in syntax from
the “normal” user behavior profiles yet produce “abnormal” (i.e.,
malicious and intrusive) output, which generates false negatives (i.e.,
attacks that pass undetected).

Given the expressiveness of the SQL language and the need to determine
query equivalence or similarity, it is evident that syntax analysis is complex
and very difficult to perform correctly. In fact, query containment and
equivalence is NP-complete for conjunctive queries and uncertain for
queries involving negation [Mathew et al., 2010].

68

Background and Related Work

In databases where typical user workloads have a well-defined number of
distinct commands that are issued repetitively, relying on command
syntax analysis may be feasible to achieve high ID efficiency. This is
typically what occurs in transactional systems. However, in analytical
systems such as DW’s many actions are ad hoc and have variable execution
times with variable data access patterns and dimension-size frequencies
and thus, are mostly unpredictable and broad-scoped. This makes
distinguishing between normal and abnormal commands in DWs an
extremely difficult task. In such analytical databases, limiting ID to
command syntax analysis by simply modeling SQL command templates
or static frequent data access patterns (e.g. which tables or columns are
accessed) is unreliable or, at least, minimalist.

Regarding the previously presented characteristics of DW user workloads,
the ID solutions relying on temporal analysis such as presented in [Lee et
al., 2000] are inadequate and mostly produce very poor ID results due to
the unpredictable rate and execution time of those workloads. Due to the
ad hoc nature of most of those workloads, ID solutions such as [Bockermann
et al., 2009; Lee et al., 2002] that are based on command template analysis
lack the necessary dynamics to efficiently perform the ID processes and
therefore also produce poor ID results.

Although the approach proposed in [Mathew et al., 2010] adds a data-
centric analysis of each user command execution’s resulting dataset, the
analysis is performed a posteriori to that execution. Given the time span
between the start of the intrusion and its detection, together with resource
consumption and sensitivity of the targeted data, many enterprises can
suffer huge losses if their DIDS either takes too long to alert a malicious
intrusion or is unable to prevent or stop its execution. In this sense, these
approaches alone are not efficient solutions for intrusion detection in DWs.

Conclusively, the unpredictable execution frequency and ad hoc nature of
the user workloads make time-based and SQL templating ID approaches
such as [Bockermann et al., 2009; Lee et al., 2002; Lee et al., 2000] mostly
inadequate. On the other hand, DIDS performing ID at a coarse-grained
basis such as database sessions or transaction command sets, instead of a
fine-grained basis such as analyzing each SQL command, risk that a series
of malicious commands may be executed before the intrusion can be dealt
with. Therefore, data dependency and sequence alignment approaches

69

Chapter 2

such as [Chung et al., 1999] that are able to inspect each user command a
priori to its execution, but only after a considerable amount of actions have
been executed, should be used carefully according to each DW context.

Data-centric techniques such as [Mathew et al., 2010; Spalka and
Lehnhardt, 2005] are capable of bringing added value to a priori ID
techniques by executing an a posteriori analysis of the data affected by the
user action. Combining these techniques with data access pattern analysis
techniques such as [Bertino et al., 2005; Kamra et al., 2008], that deem the
processed data, seem a priori the most feasible and efficient DIDS for DWs.

2.5. Summary

This chapter presents the background and related work concerning the
data security domains focused by the research work in this thesis, namely
data masking, encryption and database intrusion detection.

The concepts concerning DWs are described and data warehousing
environments are characterized. The differences and characteristics that
distinguish operational systems from DWs have also been detailed.

We have also enumerated and described the standard and state-of-the-art
techniques and methods in data masking, encryption and database
intrusion detection systems, and discussed the issues concerning their
applicability in data warehousing environments.

70

Chapter 3

Data Warehouse Security
Framework

Despite the fact that published research and best practice guides from
many DBMS vendors state that the best way to protect data in databases is
to use encryption solutions together with intrusion detection systems, to
the best of our knowledge there has been no proposal regarding a
conceptual framework for integrating these distinct solutions together. In
this chapter, we propose a framework that enables integrating together the
proposed masking, encryption and intrusion detection solutions, which
are presented in the following chapters.

The proposed framework can be seen as a middle tier between the user
interfaces and the DBMS, working as an extension of the DBMS itself. We
define the sequence of steps within the scope of the framework, that occur
from the moment a user statement arrives at the data warehouse to be
processed, and describe the information flow and each of its components.
We also define a series of principles that drive the development of the
masking, encryption and DIDS solution proposed in this thesis. These
guidelines deal with the issues of data security and provide a body of
knowledge for the development of specific solutions for data warehousing
environments.

The chapter is organized as follows. Section 3.1 details the middle tier and
how it enables integrating data masking, encryption and intrusion
detection to deal with user actions in a single pass-through overall process.
Section 3.2 presents the guidelines for enhancing data masking and
encryption in data warehouses and Section 3.3 presents the guidelines for
enhancing intrusion detection in data warehouses. Finally, Section 3.4
concludes the chapter.

71

Chapter 3

3.1. Overview of the Data Warehouse Security Middle Tier

The typical information flow of data warehouse user actions between the
interface used by the user and the DW database(s) is shown in Figure 3-1.
In practice, the user interface typically issues a SQL statement and sends it
to the DBMS, which then processes it against the respective database(s),
receive the processed results, and finally send it back to the user interface
that requested its execution.

User query Write
User Interface DBMS
Response

Data Warehouse
Database(s)

Figure 3-1. Typical DW user action information flow

In the context of our work, each SQL statement is parsed and analyzed once
it arrives at the DBMS. Whenever required, data masking, encryption and
intrusion detection are applied given the command itself and its targeted
data, immediately before the command is executed. Intrusion detection is
also applied to the processed data and results after its execution finishes
and before disclosing the results back to the users. The sequence of steps
given a request to process a SQL statement issued by the user is shown in
Figure 3-2.

Analyze
User Statement Parse User Analyze User | _ | Mask/Encryptor | _ | ExecuteUser | | Processed Data -] Submit Results
Submitted Statement Statement Demask/Decrypt Statement back to User
and Results
| Alert | Alert
h i

Alert and Intrusion Response Management

LEGEND

— Regular Flow (mandatory for all user statements)

——-Optional (depending on using masking/encryption or not)

~ Conditional (user notification or resulting dataset feedback depending if there is any generated alert against the user statement or not)

Figure 3-2. Step sequence of the submittance of a SQL user statement

As shown in the figure, each user statement is parsed and then analyzed
before it is executed by the DBMS, to make an a priori verification of its
suspiciousness. If it is considered an intrusion, then an alert should be
raised against this user action and its execution can be stopped at this step.

72

Data Warehouse Security Framework

Contrarily, if it is not considered an intrusion, then the user statement can
be processed by the DBMS against the Data Warehouse Database(s) with or
without use of the data masking or encryption processes, according to the
security measures defined for the targeted data. After the user statement
tinishes being processed by the DBMS, the processed data and resulting
dataset are also be analyzed for suspiciousness. If it is considered an
intrusion, then an alert is also raised against the user action and disclosure
of the results can be stopped at this step, otherwise the results are sent back
to the user.

To accomplish the aimed functionality according to this sequence of steps,
the framework includes intrusion detection, masking and encryption
components, defining an information flow as shown in Figure 3-3.

The middle tier includes mandatory and optional components, considering
that the intrusion detection processes are mandatory and the masking and
encryption processes are optional, given the functionalities defined by the
security administrators. For example, parts of the database may require
encryption or masking due to security requirements, while other parts of
the database may not require encryption or masking. This means that a
user command is always subjected to the intrusion detection components,
but might not require going through the masking or encryption
components.

The main elements of the information flow of the middle tier and each of
its components are described in the following subsections.

73

Chapter 3

Command Security
»
User Interface > parser Eramework
Database
i
L
| | }
! I
| | |
| | |
I | I
| | |
| I
| } |
| I
Lo Data Warehouse
| [Command Security
|
! ! A Analyzer AN Interface
! |
} I | ! /
| I |
L | |
| | | | \
| ! | | \
P ! ‘ AN
| } } | \
I I | Y
o !
| |
! | | Command
| O — — — — — — — > DBM
| } } Rewriter S
| | |
I | |
| | |
! I } |
I | | |
! | | |
| | | |
! | | |
} | I !
|
o | !
| |
| e >
R i?;salponsf Data Warehouse
e yze Database(s)
Iy
LEGEND
Standard Information Flow .
Standard DW Additional Security ol
Component Component Additional Information Flow -

; ; _ _ OptionaliConditional Standard Information Fiow .
Optional Masking /
Figure 3-3. Integrated Data Warehouse Security Framework

3.1.1. The Security Framework Database

The Security Framework Database is a database that stores all the user data
that enables identifying each DW user (name and password) and his/her
data access policies (attributed role(s) and SQL grant privileges) and a
historical command log that stores all the issued user commands against
the data warehouse database(s), together with the information required for
each component of the masking, encryption and intrusion detection
processes.

74

Data Warehouse Security Framework

For masking and encryption, the Security Framework Database stores all the
necessary masking and encryption keys for each DW database that needs
to be masked or encrypted. On the other hand, for intrusion detection
purposes, the Security Framework Database stores all the DW user behavior
profiles that will be used to assess the incoming user statements. It also
contains the complete history of all the generated alerts in an alert log that
identifies the user command to which each alert refers and attributes for
enabling the Data Warehouse Security Administrator to confirm if that alert
concerns a true intrusion action or a false alarm. The rulebase for the risk
exposure method and the risk exposure measure computed for each alert
is also stored in the database.

3.1.2. The Data Warehouse Security Interface

The Data Warehouse Security Interface is used by the Data Warehouse Security
Administrator for managing the Security Framework Database and all the
masking, encryption and intrusion detection components. Whenever the
Data Warehouse Security Administrator wants to protect a data warehouse
database by applying the framework, the following actions should be
performed:

e After entering the DBA login and database connection data, the
Data Warehouse Security Interface scans all the data access policies
defined in the Data Warehouse Database(s) for identifying authorized
users and respective permissions;

e A user command log is created in the Security Framework Database
for recording all future user actions requested to execute against the
Data Warehouse Database(s);

e All user behavior profiles are then built using the Data Warehouse
Database(s) command log and the existing data.

The interface allows the Data Warehouse Security Administrator to define the
rules to be used by the intrusion detection risk exposure method. It also
displays the information concerning all the generated intrusion alerts and
allows the Data Warehouse Security Administrator to confirm the authenticity
of each alert, i.e., if it refers to a true intrusion or a false alarm.

The Data Warehouse Security Administrator may use the Data Warehouse
Security Interface to define, at any time, which attributes should be masked

75

Chapter 3

or encrypted. Each time this type of action is required, all the data
concerning such attributes is immediately masked or encrypted by
replacing the original values with the new masked or encrypted ones.
Whenever the Data Warehouse Database(s) needs to be updated, this must
always be done through the middle tier instead of directly through the
DBMS.

3.1.3. Analyzing the User Statement a Priori

Before the user statement can be processed by the DBMS, it must be
analyzed to verify its suspiciousness and assess if it is an intrusion or not.
The information flow referring to this initial process is shown in Figure 3-
4.

Security
Framework
Database

Command

User Interface p——————-
Parser

e

Data Warehouse
Command :
____________ AV Security
Interface

Figure 3-4. Information flow concerning the a priori analysis of the user statement

First, the user statement must go through the Command Parser component.
The Command Parser component is responsible for parsing the SQL
statement, splitting it into its individual sub-queries (if it has any sub-
query) and extracting the relevant intrusion detection features (defined by
the DIDS - the DIDS proposed in this thesis is explained in Chapter 6,
including its respective features), which are finally passed to the Command
Analyzer component. The command itself and the information that traces it
back to the user that requested its execution, as well as the moment when
that execution was requested, are stored in the Security Framework Database.

76

Data Warehouse Security Framework

Afterwards, the query (and sub-queries’ set) is passed on to the Command
Analyzer component. An important aspect is that the DBMS should be
configured to only process SQL statements that have gone through the
Command Analyzer component. All SQL statements that avoid going
through the Command Analyzer should be rejected by the DBMS. The
Command Analyzer retrieves the information regarding the user behavior
profile to which each command concerns from the Security Framework
Database, and performs the respective intrusion detection tests on each
command to verify if it should be considered an intrusion. If the user
command is considered an intrusion, the Security Framework Database is
updated by flagging the command as a potential intrusion and an alert is
generated, which is passed on to the Data Warehouse Security Interface in
order to be communicated to the Data Warehouse Security Administrator, and
the user action may be stopped. If the user action is not considered an
intrusion, it can then be executed by the DBMS against the Data Warehouse
Database(s), which is the next step.

3.1.4. Executing the User Statement

A user statement that has not been considered an intrusion by the Command
Analyzer component may be executed by the DBMS. There are two
possibilities:

1) If the user statement does not contain any reference to masked or
encrypted columns, then it is immediately executed by the DBMS;

2) If the user statement contains any reference to masked or encrypted
columns, then it is passed on to the Command Rewriter component
to be modified in order to correctly execute against the masked
and/or encrypted data, and then it is executed by the DBMS.

The information flow referring to this process of executing the user
statement is shown in Figure 3-5. In practice, for each user statement
deemed as a non-intrusion, the Command Analyzer component notifies the
Response Analyzer component to wait for a response so the targeted
processed data and the statement’s execution results can also be analyzed.

As we explain further in chapters 4 and 5, the proposed data masking and
encryption algorithms only use operators and transformations that are
native to standard SQL. This allows them to simply rely on SQL rewriting
to accomplish their masking/unmasking and encryption/decryption

77

Chapter 3

purposes. After receiving a user statement from the Command Analyzer, the
Command Rewriter queries the Security Framework Database(s) to retrieve the
necessary data masking and encryption keys for that user statement and
applies the required SQL rewriting to the user statement and sends it to be
executed by the DBMS. When a user statement completes its execution, the
results are sent to the Response Analyzer component to perform an a
posteriori verification.

__| Command Security
Analyzer N Framework
\ Database

Rewriter DBMS

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Command
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v
e Iiesalponse Data Warehouse
nalyzer Database(s)

Figure 3-5. Information flow concerning the execution of the user statement

3.1.5 Analyzing the Processed Data and Dataset Result a Posteriori

After the user statement has been processed by the DBMS against the Data
Warehouse Database(s), the results are sent to the Response Analyzer to check
if the processed data and the results themselves are suspicious, given the
behavior profile of the typically accessed data and resulting datasets of the
user to which the statement belongs. The information flow referring to this
process is shown in Figure 3-6.

78

Data Warehouse Security Framework

Security
Framework
Database

User Interface

Data Warehouse
Security
Interface

DBMS

———— >

Response
Analyzer

——— e —

Figure 3-6. Information flow of the a posteriori analysis of the user statement

The Response Analyzer retrieves the information from the Security
Framework Database regarding the features belonging to the behavior
profile of the typically accessed data and resulting datasets of the user to
which the statement belongs, and performs the respective intrusion
detection tests against the values of the processed data and resulting
dataset to verify if it should be considered an intrusion. If it is considered
an intrusion, then the Security Framework Database is updated by flagging
the command as a potential intrusion and an alert is generated, which is
then passed on to the Data Warehouse Security Interface in order to

79

Chapter 3

communicate the event to the Data Warehouse Security Administrator,
and the user action can be stopped. If the user action is not considered an
intrusion, the results are simply sent back to the user that requested the
execution and the Security Framework Database is updated by flagging the
action as a non-intrusion that has completed its execution.

3.2. Guidelines for Enhancing Data Masking and Encryption
Performance in Data Warehousing

In this section, we present the guidelines that drived the development of
the data masking and encryption solutions proposed in Chapters 4 and 5.
These generic principles intend to deal with the data masking and
encryption issues pointed out in Chapter 2, and establish the foundations
for each proposed solution in the context of the middle tier presented in
the previous section.

3.2.1. Numerical vs Textual Masked or Ciphered Input and Output

As mentioned in Chapter 2, standard encryption algorithms were
conceived for encrypting general-purpose data and therefore, receive and
output textual or binary data, while data warehouse data is mostly
composed by numerical datatype fact table columns that typically take up
90% or more of the total storage space [Kimball and Ross, 2013]. Most data
warehouse user workloads request processing arithmetic functions such as
sums, averages, etc., which implies that those textual or binary values need
to be converted back into their numerical format.

Since working with text values is much more computationally expensive
than working with numerical values, standard ciphers are much slower
than ciphers specifically designed for receiving numerical inputs and
producing numerical outputs.

Therefore, to avoid the overhead processing time concerning the referred
datatype conversions, the masking and encryption solutions proposed in
this thesis were specifically designed to receive numerical input and
produce numerical output.

3.2.2. Preserving Column Datatypes

Considering that numerical datatype sizes usually range from 1 to 8 bytes,
while standard encryption outputs have lengths of 8 to 32 bytes [Natan,

80

Data Warehouse Security Framework

2005] and that data warehouses have a huge amount of rows that typically
take up many gigabytes or terabytes of space, even a small increase of any
column size required by changing numeric datatypes to textual or binary
(in order to store encryption outputs) introduces very large storage space
overhead. This consequently increases the amount of data to process, as
well as the required storage and processing resources, which also degrades
database performance.

While the importance of encrypting text values might be significant or not
for data warehouses (depending on its context), efficiently encrypting
numerical values is critical, as these represent the business facts. The
masking and encryption solutions proposed in this thesis allow preserving
the original datatype and length of each encrypted column, which allows
maintaining their original data storage space.

3.2.3. Using Only Native SQL Operations to Mask/Encrypt Data

Another issue previously pointed out concerns the data roundtrips
between the database and the encryption and decryption mechanisms.
Topologies involving middleware solutions such as the one proposed in
[Radha and Kumar, 2005] typically request all the encrypted data from the
database and execute decrypting actions themselves locally, finally
sending the decrypted results back to the user that requested them. Given
the typically large amount of data accessed for processing DW queries,
previously acquiring all the data from the database for encrypting or
decrypting in a middle tier is unfeasible. This strangles the database server
and/or network with communication costs due to bandwidth consumption
and I/O bottlenecks, jeopardizing throughput and consequently, response
time.

As our approach is based on operators supported by native SQL, it requires
only query rewriting for masking/encrypting and unmasking/decrypting
actions. In fact, using only native SQL operators and functions brings
several major benefits:

e It allows building the sequence of steps for all masking/encrypting
and unmasking/decryption processes as a unique SQL statement,
and no external languages or resources need to be instantiated;

81

Chapter 3

e Computing the masking/encrypting and unmasking/decrypting
operations as a SQL statement enables them to run directly against
the data, avoiding data roundtrips between the database and the
masking and encrypting mechanisms and thus, avoiding I/O and
network overhead from the critical path;

e Contrarily to what happens with standard encryption algorithm
implementations, which are typically OS platform and CPU
dependent, using only native SQL makes our solutions DBMS
platform independent, making them usable in any data warehouse
running on any CPU model, without depending on any
programming language or external OS resource;

e Since the SQL statements can run directly against the masked or
encrypted data, it means that the data can remain masked or
encrypted at all times, only disclosing the computed results back to
the user which requested the statement’s execution.

3.2.4. Masking and Encryption Algorithm Design

As discussed in Chapter 2, the complexity of each transformation round in
masking and encryption algorithms is directly linked with the security
strength achieved by the algorithm, as is the number of rounds it executes
and the size of the used encryption key(s). It is assumed by the security
community as a general rule that, as the number of complex operations,
encryption key lengths, and/or number of encryption rounds increase, the
algorithms security strength also increases or, at least, remains the same
[Vaudenay, 2006]. However, increasing the complexity of the “data mix”,
the number of rounds or the encryption key length also introduces a
performance drawback, since it requires more machine resources and
processing time.

In what concerns the design of “data mixing” for each masking or
encryption round, we discard bit shifting and permutations, commonly
used by most ciphers [Vaudenay, 2006], since there is no standard SQL
support for these actions. We also discard the use of substitution boxes (e.g.
AES uses several 1024-byte S-boxes, each of which converts 8-bit inputs to
32-bit outputs), because of their complexity and resource consumption.

82

Data Warehouse Security Framework

Our masking and encryption approaches are based on the widely used and
well known XOR and MOD operators, which are available to be
implemented in native SQL. In practice, we propose the use of a set of
arithmetic operators combined with XOR and MOD operators to transform
numerical data.

The XOR operator is widely used in most encryption algorithms. In fact, it
is the baseline for achieving perfect secrecy in the most basic encryption
transformation, the Vernam Cipher” [Vaudenay, 2006]. Its properties in
achieving perfect secrecy given certain conditions and its ease in mixing
up the input values makes the XOR operator an excellent candidate for
building data transformation functions for masking or encryption
purposes.

The modulus (MOD) remainder operator is another good candidate for
data transformation functions with masking or encryption purposes,
because it enables building non-invertible functions. For a function to be
directly invertible, each output must correspond to no more than one
input, i.e., more than one different inputs cannot generate the same output;
a function with this property is called one-to-one, or information-
preserving, or an injection [Bartle, 1976]. An injective function is a function
that preserves distinctness: it never maps distinct elements of its domain
to the same element of its codomain. From an information theory
perspective, this means that for an injective function, each input-output
pair has intrinsically the exact same probability of occurrence. This
provides information to break the cipher’s key if the attacker has access to

7 The Vernam Cipher was published in 1926 by Gilbert Vernam from AT&T. It is
based on an encryption key with the same bit length as the input plaintext and
applies a XOR operation against both values to get the encrypted output. Shannon
proved that this cipher achieved perfect secrecy if the keys are generated in a
randomly uniform distribution and the same key is only used once to encrypt one
input value. In this case, there is no information leakage because the same key is
never used twice and the attacker needs to test all possible encryption key values
in each case to guarantee absolute success in the attack, requiring on average half
of that number in order to succeed. Statistically, perfect secrecy means that the a
posteriori distribution of the plaintext X after the encrypted ciphertext Y is known
is equal to the a priori distribution of the plaintext: the conditional distribution of
X given Y is equal to the original distribution. Formally, for all x and y such that
Pr[Y=y]#0, wehave Pr [X=x | Y=y]=Pr[X=x].

83

Chapter 3

its algorithm and set of outputs. Therefore, the main objective of a cipher
should be to assure a maximum of non-injective transformations in order
to introduce uncertainty over which inputs generate the output, thus
avoiding information disclosure to break the cipher.

The MOD operator is non-injective, given that for X MOD Y = Z, the same
output Z, considering Y a constant, can have an undetermined number of
possibilities in X as an input which will generate the same value Z when
applying the operator (e.g. 15 MOD 4=3, 19 MOD 4=3, 23 MOD 4=3, 27
MOD 4=3, etc). Since MOD operations are non-injective, this means that
the transformation functions that use MOD are also non-injective. Given
that injectivity is a required property for having invertibility, masking or
encryption algorithms that use MOD transformations are therefore, non-
invertible.

3.3. Guidelines for Enhancing Intrusion Detection in Data Warehousing

This section presents the guidelines that drove the development of the
intrusion detection solution proposed in Chapter 6. These principles intend
to deal with the data warehouse intrusion detection issues pointed out in
Chapter 2 in the context of the middle tier presented in Subsection 3.1.

3.3.1. Using Individual User Profiles

In typical transactional systems, it is normal to have a very high number of
predefined queries that are issued in a repetitive manner by each user,
making most queries extremely predictable. For example, each teller in a
supermarket store is always repeating queries to retrieve individual
product prices. Furthermore, independently from the number of tellers, all
of them mostly repeat the same type of query. Considering a generalization
of this typical operational business environment, it is easy to understand
that user profiling in transactional systems is relatively simple and user
role profiles can be built, instead of building an individual profile per each
user.

Decision support systems do not have the same user characteristics as
those of operational transactional systems. As previously mentioned in
Chapter 2, distinguishing normal from abnormal user behavior in data
warehouses is a very difficult task, given the typical high amount of ad hoc
queries issued by the users. On the other hand, given that each user has its

84

Data Warehouse Security Framework

own data query demands that are closely linked to his/her business role,
the portion of ad hoc queries inherent to each user should typically
contribute to reveal a unique profile that distinguishes each user from the
remaining. Therefore, in this work we claim that user profiles in DWs
should be built with the highest detail, i.e., individual profiles should be
built for each user in order to obtain high intrusion detection rates, against
role-based profiling as suggested in other approaches such as [Kamra et al.,
2008].

3.3.2. Analyzing the Targeted Tables and Columns, Processed Data and
Resulting Datasets

None of the intrusion detection techniques proposed in the past is capable
of analyzing all the aspects directly linked with user behavior in what
concerns database usage in an integrated manner. For instance, the RBAC
intrusion detection approach proposed by [Kamra et al., 2008] profiles the
columns and tables accessed by the users that belong to a given role. In our
opinion, reducing the analysis of user behavior merely to this type of
approach is too simplistic.

Most intrusion detection techniques focus on features that enable the
analysis of which tables and columns are being targeted by the user
actions. Few techniques focus on the data processed by the user actions or
on the resulting datasets themselves, which are a consequence of
processing those user actions. We argue that such distinct approaches
should be integrated so the features can reflect the impact produced by the
user actions for all the previously referred aspects or dimensions.

Therefore, the DIDS proposed in this thesis uses features that enable
analyzing the targeted tables and columns included in the user actions, the
data processed by those actions and its resulting datasets, in an integrated
manner, which never occurs in current DIDS.

3.3.3. Intrusion Detection and Prevention a Priori and a Posteriori

In the past, each DIDS approach for analyzing user actions from a timely
perspective could be divided into two main groups: 1) analyzing the user
action a priori to its execution; or 2) analyzing the user action a posteriori,
i.e., after it finished its execution. Of course, the second type of analysis
would not be able to provide intrusion prevention, which we consider

85

Chapter 3

critical for data warehouses. In this work we consider that both types of
analysis should be used, before and after the user actions are executed and
before its results are disclosed.

The DIDS approach proposed in this thesis focuses not only on building
user profiles regarding features holding information on the issued SQL
commands, but also includes features that infer information on the
processed data and resulting datasets. This enables our solution to perform
intrusion detection and prevention both a priori and a posteriori to the
execution of user actions, before the results are disclosed back.

3.3.4. Using Risk Exposure for Alert Management

When analyzing user actions, most DIDS output numerical measures that
require defining thresholds to determine if those values imply considering
the respective user actions as intrusions or non-intrusions. While defining
high thresholds could potentially produce less false alarms and give higher
assurance that a generated alert would in fact refer to a true intrusion, this
could also potentiate the number of false negatives, i.e., the number of true
intrusions that pass by undetected. Given the value and sensitivity of data
warehouse data, it is preferable to define low thresholds for the intrusion
detection processes. However, this typically generates an extremely high
number of alerts that mostly turn out to be false alarms, wasting time and
resources. There can typically be a significant amount of alerts with low
probability of referring to an intrusion, but those alerts however may
produce a very high negative impact on the business, given that DIDS
typically do not assess the damage that those intrusions can produce on
the business. Furthermore, not all intrusions represent the same potential
amount of danger to the enterprise.

In this work we propose a risk exposure method that evaluates the risk to
the enterprise represented by each alert without excluding any of them,
given the probability that it really refers to an intrusion and the potential
impact that the action may produce on the business. This allows
considering all generated alerts instead of excluding any of them just
because they have low probability thresholds. Ranking the alerts using a
measure of risk exposure enables checking them by their order of
importance, which means that security staff will spend time and resources
more efficiently, by quickly dealing with intrusions that can produce

86

Data Warehouse Security Framework

greater damage rather than wasting time checking for intrusions that
represent a lower risk of damage. Considering that none of the generated
alerts are discarded and that ranking them by the risk they present to the
enterprise, makes the proposed risk exposure method a much more
reliable and efficient alert management approach than those using
correlation techniques.

3.3.5. Fine-Tuning Intrusion Detection Features

In the proposed DIDS approach, each individual feature can generate
intrusion alerts. The diversity of user behavior characteristics caught by
each feature in each data warehouse environment depends on
heterogeneous (and sometimes unpredictable) events such as the business
context itself and the role played by each user, for example. This means
that the same feature can produce very different false positive (i.e., false
alarm), true positive (i.e., real intrusions detection), true negative (i.e., true
normal user behavior) and false negative (i.e., intrusions that pass
undetected) rates in different data warehousing environments.

Although in most data warehouses it may be very difficult to define a priori
which features should be deemed as more efficient to the intrusion
detection processes, the DIDS should be able to fine tune its sensitivity over
time. Considering that the features that produce the best intrusion
detection results are the most reliable for the intrusion detection processes,
these processes should be able to reflect the relative individual efficiency
between the complete set of feature to improve the overall results.

The DIDS proposed in this thesis uses a calibration technique that
computes a measure to assure that the features that show a higher
efficiency in intrusion detection are those who’s alerts have higher
probability of referring true intrusions. This is made effective in our
approach by using this measure in the risk exposure method to assess the
probability of each alert, given the feature that generated it, ie., the
feature’s efficiency measure is directly linked with the probability that the
generated alert refers to a true intrusion. Through time, the system is self-
adaptive by fine-tuning each feature’s measure according to its intrusion
detection efficiency, given its true positive and false positive rates.

87

Chapter 3

3.4. Summary

In this chapter we presented the middle tier that enables the integration of
the proposed data masking, encryption and intrusion detection for data
warehousing environments, and described each of its components.

We also described the information flow and how each individual
component works within the execution path of each individual user action
to form an overall security solution that deals with those actions in real-
time.

The guidelines that drove the development of each data masking,
encryption and intrusion detection solution proposed in this thesis were
also presented. The following chapters will explain in detail how each of
these solutions operate and demonstrate their efficiency.

88

Chapter 4

MOBAT: A Data Masking Solution
for Data Warehouses

The irreversibility and lack of proven security strength attributed to data
masking routines have made them an unacceptable choice when it comes
to securing sensitive data in live production and reporting databases
[Natan, 2005; Ravikumar et al., 2011]. On the other hand, data masking is
the main choice for generating test databases for software development
environments or when there is a need to publish data that has values with
privacy issues. However, we argue that it may be worth considering the
usage of a reversible data masking solution in a data warehousing context,
as it can effectively provide an alternative solution for protecting data with
some level of security strength while introducing low overheads in
database storage space and response time performance.

In this chapter, we propose MOBAT (MOdulus BAsed data masking
Technique), a low cost and straightforward data masking technique for
numerical values that aims at balancing the tradeoff between data security
and database performance. The data masking function uses the MOD-
modular operator (which returns the remainder of a division expression)
and simple arithmetic operations to mask data. Storage space overhead is
avoided by preserving each masked column’s datatype and by simply
using SQL rewriting to mask and unmask values. This also allows avoiding
I/O and network bandwidth bottlenecks by discarding data roundtrips
between the database and the masking and unmasking mechanisms.

Note that this proposal does not intend to replace any standard encryption
algorithms currently available as built-in packages in most DBMS, but
rather should be viewed as an alternative solution for protecting the
confidentiality of DW data. The main objective is to provide a significant
level of security while introducing very small overheads in storage space
and database performance, i.e., acceptable tradeoffs between security and

89

Chapter 4

performance, which is a critical issue in order to assure the feasibility of
these solutions in DWs.

To evaluate our proposal, we include experiments using two leading
commercial DBMS, Oracle 11g and Microsoft SQL Server 2008, and one
open-source DBMS, MySQL Server 5.5. The experiments allow to compare
the proposed data masking solution against the built-in AES (with 128 bit
and 256 bit security) and 3DES168 encryption algorithms provided in the
referred DBMS, as well as research state-of-the-art proposals such as
Order-Preserving Encryption (OPES) and Salsa20 (alias Snuffle), using the
TPC-H decision support benchmark and a real-world sales DW.

The remainder of this chapter is organized as follows. In Section 4.1 we
present and describe our masking technique and point out the main issues
regarding its use, while Section 4.2 describes its functional architecture. In
Section 4.3 we discuss our solution’s security and performance issues.
Section 4.4 presents the experimental evaluations that were conducted
using the well-known TPC-H decision support benchmark and a real-
world DW to assess the proposed data masking technique’s performance
and compare it against standard and state-of-the-art encryption
algorithms. Section 4.5 includes a discussion on the proposed data masking
solution and on the results obtained in the experiments. Finally, Section 4.6
presents our conclusions.

4.1 MOBAT Masking Expression

Generally, most facts in DWs are columns with numerical values [Kimball
and Ross, 2013]. Since fact tables usually represent more than 90% of the
DW's total size [Kimball and Ross, 2013], it is fair to assume that numeric
type columns also represent the largest portion of business data. The
solution proposed in this chapter aims at masking the DW’s numerical
values while introducing small overheads in the computational efforts for
query processing.

Our MOdulus-BAsed data masking Technique (MOBAT), which allows
replacing sensitive data with realistic (but not real) data without heavily
impacting database performance, is based on a quite simple masking
expression. Assume a table T with a set of N numerical columns Ci = {C;,
C2, Gs, ..., Cn) to be masked and a total set of M rows Rj={R1, Rz, Rs, ..., Rm).
Each value to mask in the table will be identified as a pair (R;, Ci), where R;

90

MOBAT: A Data Masking Solution for Data Warehouses

and Cirespectively represent the row and column to which the value refers.
The masking expression depends on the following predefinitions:

e Kiis a 128 bit random generated value, constant for table T;

e Kz is a 128 bit random generated value, ranging between the
minimum and maximum positive integer value possible of column
Ci, given the maximum storage size of the column’s datatype. There
is a Kz for each column Ci to be masked, represented by K, ;;

e Ksisapublic key based on a 128 bit column appended to each row R;
in T, filled in with a random value in [1; 2'%], represented by Ks,;.

Assume each value to be masked represented as (Rj, Ci). Each new masked
value (R;j, Ci)’ is obtained by applying the following Formula (1) for row j
and column i of table T:

(R, Ci)’ = (Rj, C)) — ((Ks ; MOD K1) MOD Ky, i) + Ko, (1)

Since K: and K i are constant values for the table and each column,
respectively, and K3 j is stored along with each row in the table, the inverse
formula of (1) for retrieving the original value is shown as Formula (2):

(Rj, Ci) = (R;, Ci)’ + ((K3,j MOD K1) MOD K3,i) — Kz, (2)

Given that an independent value of K3, is required for each row, if the
values of Ks j were stored in a lookup table separate from table T a heavy
join operation between those tables would be required to unmask data,
which should be avoided at all cost due to the typical enormous number of
rows in fact tables. In order to avoid table joins in query processing when
using MOBAT, the values of K3 j must be stored along with each row j in
table T. To accomplish this, there are two possible solutions:

1) A new column is added to table T for storing each K3, value;

2) Table T is recreated with the inclusion of K3, ; using the CREATE
TABLE statement from the start and then restoring the table’s data.

The second option implies additional efforts and amount of time to rebuild
table T, depending on its size. However, it should speed up query response
time, when compared with the first option, since the new column K3,; is
physically included with the original data in each row from the start; the
second option may make it to be physically stored apart from the
remaining original data in the table because it is added a posteriori to its

91

Chapter 4

creation. The impact on database performance can be compared be
observing the results in Section 4.4.

A third option for defining K3 ; values which speeds up MOBAT
performance is to use any long integer typed column Cz, which is already
part of the original data structure of table T, as K3 j, instead of creating an
extra column for Kz;in T. In this case, no changes in table T data structure
are required, eliminating storage space overhead in T. However, this limits
the security strength of the masking Formula (1), since the value of K3 j also
depends on the range and cardinality of the values of Cz, and the
predictability of knowing the values of Cz on behalf of an attacker. The
results for this third option for defining Ks; are also shown in Section 4.4.

As a simple example on how MOBAT is applied, consider the following:
assume a table T that requires two masked columns, Column1 and Column2.
Suppose that the generated values for masking keys Ki= 9264 for table T
and Kz1=12 and K:2= 78254 for each respective column. Table 4-1 shows
the original data for T on the left and its resulting masked content on the
right, represented as T".

Table 4-1. Example of original dataset and resulting MOBAT masked dataset

T — Original dataset T’ — MOBAT Masked dataset
Columnl Column2 Ks,j Columni’ Column2’ Ks,j
11 91873 7537 22 162590 7537
2 38824 1808 6 115270 1808
18 71624 29636 22 148034 29636
19 38824 50877 22 112521 50877
15 84624 34997 22 155673 34997
12 46926 41395 17 120841 41395

It can be seen in Table 4-1 that the same original values of Column2 result
in different masked values and that the same masked values in Columnl’
also correspond to different original true values in Columnl, achieving
apparent randomness. Of course, this is a very small dataset used only to
illustrate these features. We discuss MOBAT’s security issues further on in
Section 4.3. In the next section we explain how to query the masked
database.

92

MOBAT: A Data Masking Solution for Data Warehouses

4.2 Functional Architecture

The functional architecture for using MOBAT in practice is shown in
Figure 4-1, and comprises three key entities:

e The masked database and its DBMS;
e The MOBAT security middleware interface;
e User/client interfaces to query the masked database.

The MOBAT middleware interface acts as a broker between the masked
database DBMS and the user interfaces, using the MOBAT masking and
unmasking methods, ensuring that the queried data is securely processed
and proper results are returned to those interfaces. All communications are
executed through SSL/TLS secure connections, to protect SQL instructions
and returned results between the system’s entities. In the Black Box, the
middleware will store all the generated masking keys and predefined data
access policies for the database to which it concerns.

Black Box
(Masking Keys,
User Access Definitions,
SQL Command Log)

Query Query
Results Results
User - MOBAT | 4 -
Interface »| Middleware »| DBMS [MSSIt(ebda DW
User Interface Rewritten atabase
Queries User Queries

Figure 4-1. The MOBAT Data Security Architecture

The Black Box is stored in the Security Framework Database database server,
as described in Chapter 3, and there is one Black Box created for each
masked DW database. This process is similar to the creation of an Oracle
Wallet, which keeps all the encryption keys and definitions for each Oracle
Database [Huey, 2008; Oracle, 2010a]. However, contrarily to what
happens in Oracle, where the DBA is free to access the Oracle Wallet
whenever s/he wishes, in our solution only the MOBAT middleware itself
can access the Black Box, i.e., absolutely no user has direct access to its
content because it is encrypted using the AES standard encryption
algorithm [AES, 2001] with a 256 bit key only known by MOBAT.

93

Chapter 4

The MOBAT middleware also creates a historical command log for
recording all the instructions and actions executed against the database, for
auditing and control purposes. In case of losing the Black Box of a certain
database, there is no way to restore its true data, except to crack the
masking keys or restoring a replica that has been previously backed up.

Masking keys” privacy depends on where the keys are stored and who has
access to them. Our solution uses three masking keys (Ki, K2 and Ks): two
are private and one is public. The private masking keys are generated by
the MOBAT middleware, and encrypted and stored by it in the Black Box.
The values of those keys are never shown or known by the DBA or any
other user. To obtain true results, all user queries or actions must pass
through the MOBAT middleware, which will store a copy of those
instructions in the Black Box command history log.

Each time a user requests the execution of a query or any other action, the
MOBAT middleware will receive and parse the instructions, fetch the
necessary masking keys, rewrite the query, send it to be processed by the
DBMS and retrieve the processed results, and finally send those results
back to the user interface that issued the request. Thus, MOBAT is
transparently used, since SQL command rewriting is transparently
managed by the middleware. The only change required to user
applications is that commands should be sent to the middleware, instead
of directly to the DBMS.

To mask a database, a DBA must require this action through the MOBAT
middleware. After inputting the DBA login and database connection
information, the MOBAT middleware will attempt to log on to that
database. If it succeeds, it then scans all the data access policies defined in
the database for identifying authorized users and respective permissions.
The Black Box is then created for that database and updated with those user
access definitions and data policies, and an action log for recording all
further user actions requested to execute in the database is also created, as
explained earlier. Afterwards, the tables and columns to be masked are
chosen by the DBA. All the required private masking keys for each table
and column are then generated, encrypted by an AES256 algorithm and
stored in the respective Black Box.

Finally, the MOBAT middleware applies the data masking formula on all
rows of all columns to be masked, replacing the original values with the

94

MOBAT: A Data Masking Solution for Data Warehouses

new masked values. Inserting new data or modifying or deleting existing
data must always be done through the MOBAT middleware, which applies
the masking routine to any value referring to any masked column, and
stores the masked value directly in place for update and insert actions.
Contrarily to most standard commercial data masking solutions, MOBAT
also allows reversing the masked database back to its original data, if
masking is no longer needed.

Whenever user applications wish to execute a query, they submit it to the
MOBAT middleware instead of directly querying the database. The
middleware then rewrites the received query in order to process it with the
real data values, using Formula (2) to replace the respective masked
columns used in the query, and checking the user access definitions in the
Black Box to see if it comes from an authorized user. To rewrite the user
query, the MOBAT middleware searches for which tables and columns it
needs to process, and looks up the Black Box for retrieving the needed Ki
and K:i data masking keys for each of those tables and columns, as well as
the additional Ks,j key columns used by MOBAT in those tables.

As an example, suppose the Lineltem table of the TPC-H benchmark [TPC-
H] has three numerical fact columns (i = 3) (L_Quantity, L_ExtendedPrice,
and L_Discount) masked by MOBAT. Suppose also that MOBAT has
generated and filled in a new column L_KeyK3 for the j rows of the Lineltem
table, which will act as the public Ks,j key values, and has stored the value
of 9342 (for example) for key Ki referring to the Lineltem table, as well as Kz,
L_Quantity = 12, Ko, 1_Extendedrrice = 51234, and Kz, _piscont = 4 (for example also).
Consider TPC-H query 6:
SELECT SUM(L ExtendedPrice * L Discount) AS Revenue
FROM LineItem
WHERE L ShipDate>=TO DATE ('1994-01-01")

AND L ShipDate<TO DATE ('1995-01-01")

AND L Discount BETWEEN 0.05 AND 0.07

AND L Quantity<24

The new query, rewritten by the MOBAT middleware and submitted to
the DBMS is as follows:

95

Chapter 4

SELECT SUM((L ExtendedPrice +
MOD (MOD (L _KeyK3,9342),51234)-51234)
* (L Discount+MOD (MOD (L KeyK3,9342),4)-4))
AS Revenue
FROM LinelItem
WHERE L ShipDate>=TO DATE('1994-01-01")
AND L ShipDate<TO DATE ('1995-01-01")
AND (L_Discount-l—MOD (MOD (L_KeyK3, 9342),4)-4)
BETWEEN 0.05 AND 0.07
AND (L Quantity+MOD (MOD (L KeyK3,9342),12)-12)<24

As shown in the example, query parsing and rewriting is a straightforward
operation, replacing each masked column with their respective unmasking
Formula (2). This is valid for any type of query, including equality and
range queries, as well as built in functions. These changes to the queries
are handled transparently by the middleware and kept hidden from the
users. Only the query results are returned to the user interface.

4.3 Security Issues

In this section we discuss the security issues concerning the use of the
proposed data masking technique. We present the threat model, explain
why we use the MOD operator as the base operation for the masking
expression and highlight the advantages of having data-at-rest masked at
all times, and describe the attack costs for breaking MOBAT’s security.

4.3.1 Threat Model

All user queries and instructions that come through are managed by the
MOBAT middleware, which transparently parses and rewrites them to
query the DBMS and retrieve the intended results. The stored copy of those
commands can never be changed or erased, and users never see the
rewritten instructions. For security purposes, any historical logging on the
DBMS should be shut off or made secure (e.g. via encryption) before
requesting the execution of the rewritten instructions, so that they are not
stored in the DBMS as plain text, since this would disclose the masking
keys. Note that for security auditing and to be able to comply with legal
auditing regulations, the MOBAT command log always stores a copy of all
the issued user commands. All communications between user applications,
the MOBAT middleware and the DBMS are performed through encrypted
SSL/TLS connections. In what concerns the Black Box, all contents are

96

MOBAT: A Data Masking Solution for Data Warehouses

encrypted using the standard AES 256 bit algorithm, making it as secure in
this aspect as any other similar encryption solution for stored data (e.g.
Oracle 11g TDE and Microsoft SQL Server 2008 TDE).

The MOBAT middleware allows any user with administration privileges
to query the read-only historical command log, so anyone can watch over
anyone to check for misuse. All database access is controlled by the
middleware, extracting the predefined data access policies in the first
instantiation with the database to mask, from the data access policies
previously defined using the DBMS. Subsequent changes in data access
policies by DBAs must be done through the MOBAT middleware. As these
changes are also stored in the Black Box history command log, changes in
data access policies with the purpose of executing malicious actions can
always be checked.

The only allowed access to the masking keys in the Black Box is done by the
middleware, which is managed only by the middleware itself. We assume
that the DBMS is a trusted server because it is expected to correctly execute
the SQL commands that are sent to it. However, we consider the database
as untrusted as it may be compromised by an attacker able to bypass the
network and MOBAT access controls, gaining direct access to the database
itself. We also assume that the MOBAT expressions are public, so the
attacker can replicate the masking and unmasking mechanisms, meaning
that the goal of the attacker is to obtain the private masking keys in order
to break security.

4.3.2 Using Column Datatype Key Lengths and Consecutive MOD
Operations

In order to minimize the impact in data storage space and query response
time overheads, the private keys for each column have the same length as
the defined column datatype. Although this might imply using small sized
keys and make the masking expression to produce a small amount of
possible distinct outputs, it should not be very significant from a practical
perspective. For example, if the masked column has a bit datatype, there is
no point in generating masked values in a range of [0...2%%], since the
attacker probably knows a priori that it can only hold a 0 or 1 by observing
the column’s name. Given that the best practices in DWs suggest using
meaningful names for the columns in the database tables for the sake of

97

Chapter 4

readability [Kimball and Ross, 2013], this also suggests that there is not
much to gain in incrementing the size of the masked output range of values
because this will probably not imply an increase of the level of security
strength.

As previously mentioned, the MOD operator is used as the main operation
in the masking expression because it is non-injective, given that for X MOD
Y = Z, the same output Z, considering Y as a constant, can have an
undetermined number of possibilities in X as an input that will generate
the same value Z. This is illustrated in Section 4.1 (Table 4-1), where the
same original values originate different masked values and vice-versa.
Since MOD operations are non-injective, the masked outputs are also non-
injective. Given that injectivity is a required property for invertibility, the
proposed masking expression is thus not directly invertible, enforced by
using two consecutive MOD operations. Thus, the objective of the attacker
should be focused on obtaining the private masking keys in order to break
security.

4.3.3 Data-at-rest is Always Masked

Since MOBAT operates simply by rewriting SQL commands to be
processed against the data, this enables running SQL directly against the
masked data, which means that the data-at-rest stored within the database
files is masked at all times.

This also means that even if someone gains direct access to the database,
s/he will only see masked data values. As the masked values are realistic-
looking and maintain their original column datatypes, if an attacker was to
query the database s/he would view expected values, although they would
be incorrect. This means that MOBAT would potentially be able to produce
misleading effects against attackers.

4.3.4 Attack Costs on MOBAT

As known (and as we assume the attackers have access to the masking
expression), the level of security of data masking or encryption solutions
does not depend on its secrecy, but on its keys [Elminaam et al., 2010;
Nadeem and Javed, 2005]. The quality of each set of operations in achieving
the intended “data mix” affects the performance of the algorithm. Thus,
there is always a tradeoff between security and performance in these

98

MOBAT: A Data Masking Solution for Data Warehouses

algorithms, because the achievement of higher complexity often implies
the consumption of a higher amount of resources and processing time.

As mentioned before, there keys are used in our proposal: Ki is a unique
value generated once for each table and made constant for all values to
mask in that table; Kz is a unique value generated once for each column in
each table and made constant for all values to mask in that column; and Ks
is a value generated for each row in the table, made constant for all the
values in the columns to mask in that row. Since Ks is public (given that it
is stored in the fact table), only key values Ki: and Kz need to be discovered
for retrieving the real data values.

Kiis a 16 byte integer key, i.e., a set of 128 bits. K2 depends on the maximum
storage size defined for each column, typically varying between 1 and 128
bits. This means that our technique implies a minimum of 2'* key
combinations, for K: and K: together (at least 16 bytes + 1 bit), and roughly
needs an average number of 2!? tests (half of the total amount of possible
brute force tests = 50% chance) for discovering the keys using brute force,
for each masked column in the table, since K: is column dependant.
Consequently, the minimum number of combinations needed to discover
all the needed key values for a i number of columns is i * 2!, resulting in
an average of i * 212 ~ i * 3.4 x 10 brute force tests in order to discover the
keys.

This is however the worst case scenario for the attacker and executing a
chosen ciphertext attack would allow the attacker to reduce the key search
space in the following way (considering the masking expression defined in
Formula (1)):

Consider x’1i and xi as the masked values for two given rows
(respectively 1 and 2) of column i and X,j and X.,i as their respective original
true values, i.e., x'1,i = (Ry, Ci)’, x2,i = (R2, Ci)’, x1,i = (Ry, Ci), and X2,i = (Rz,
Ci). In this case,

x'1,i=X1,i— ((Ks 1 MOD K3) MOD K3,j) + Kz, i
X2 i =Xoi— ((K3,2 MOD Kl) MOD Kj, i) + Ky i

Knowing that K3 j is a public value key, if the attacker chooses two masked
outputs where K3 j have very small values (close to zero), then it is highly
probable that those values are smaller than the Ki private key, i.e., K3 1< Ki
and Ks,2 < Ki. In this case, the masking expression would be reduced to:

99

Chapter 4

x'1,i=Xy,i— (Ks 1 MOD Ky,i) + Ky i
x’2i=Xz,i— (K3 2 MOD Ky,i) + Ky i
where all values are known except for the private key K, i.

Building up an expression with the difference between both variables, we
have:

(x'1i—x72i) = (X,i— (K31 MOD K3,i) + Kz,i) — (x2,i — (K3, 2 MOD K3,i) + K3, i)
= (Xl, i— (K3, 1 MOD Kz, |)) — (Xz, i— (K3,2 MOD Kz, |))

Finally, isolating the expressions with known values from those having
unknown values:

(x1i—x2i) —(X1i—X2,i) = (K3 1 MOD Kz,i — K3 2 MOD K3,)

which would significantly reduce the search space for Ko, i. After breaking
Ko, i the attacker could then discover Ki in a similar manner by using the
original expressions of Formula (1) for the masked values.

To evaluate the database performance when using the proposed masking
solution, the following section presents experimental results obtained by
MOBAT against standard and state-of-the-art encryption solutions.

4.4 Experimental Evaluation

To evaluate the proposed masking technique, we used the TPC-H decision
support benchmark [TPC-H] (1GB and 10GB scale sizes) and a real-world
sales DW storing one year of commercial data taking up 2GB of storage
space (full description of TPC-H can be found in [TPC-H Specifications],
while full description of the sales DW including its description, size, data
schema and query workload can be seen in Appendix A). We tested all
scenarios using the Oracle 11g and Microsoft SQL Server 2008 R2 DBMS
with default settings, on a Pentium IV 2.8GHz CPU with a 1.5TB SATA
hard disk and 2GB of RAM, 512MB of which devoted to the database
memory cache. Oracle 11g ran on Windows XP Professional, while SQL
Server ran on Windows 2003 Server.

Although we include experiments from both DBMS, it is not our aim to
compare the results between the DBMS, but rather to compare the
performance of each standard and research solution with that of MOBAT
within the same DBMS.

100

MOBAT: A Data Masking Solution for Data Warehouses

The columns chosen for testing the masking solution were those referring
to numerical datatype columns belonging to the fact tables. The database
schema of TPC-H has one fact table (Lineltem), and seven dimension tables.
The Sales DW database schema has one fact table (Sales) and four
dimension tables connected to it. In the TPC-H setups, four columns of
Lineltem were masked (L_Quantity, L_ExtendedPrice, L_Tax and
L_Discount), given that they are the numerical fact columns. In the Sales
DW, five numerical columns were masked (S_ShipToCost, S_Tax,
S_Quantity, S_Profit, and S_SalesAmount), for the same reasons.

Since our solution is column-based, for fairness we compare it with
column-based AES128 and 3DES168 encryption algorithms. Note that
tablespace encryption has functional primitives that speedup performance,
which makes it unfair to compare it with column-based techniques [Huey,
2008; Oracle, 2010a]. Moreover, best practices for encryption in the
documentation from both DBMSs [Huey, 2008; Oracle, 2010a] recommend
using column-based encryption when the sensitive data consists on a small
number of well-defined columns. We used the AES128 and 3DES168
Transparent Data Encryption (TDE) algorithms provided by both DBMS
for comparison because they are, respectively, the fastest and slowest
available algorithms in those DBMS [Huey, 2008; Oracle, 2010a], and OPES
[Agrawal et al., 2004] and Salsa20/20 [Bernstein, 2005; Bernstein, 2008].
OPES and Salsa20 were implemented using C#.

Table 4-2 shows the experimental encryption/masking scenarios. The
results for MOBAT where the new K3 j masking key columns are added to
the fact tables are referenced as MOBAT AddCol; and the results for
MOBAT where the K; j columns are added in the fact tables from the start
and completely rebuilt are referenced as MOBAT_CreateCol. The results for
the tests using an existing table column as Ks,j instead of adding a new
column to the fact table is referred as MOBAT_ColKey, where L_OrderKey
and S_SalelD are used as Cz in the TPC-H and real-world sales DW,
respectively; i.e., each value of L_OrderKey and S_SalelD in each row j of
tables Lineltem and Sales, respectively, function as K3, j for MOBAT.

101

Chapter 4

Table 4-2. Experimental Encryption/Masking Scenarios

Reference/Label Description
Standard Standard data without masking/encryption
AES128 Col Data encrypted with TDE AES 128 bit key column encryption
3DES168 Col Data encrypted with TDE 3DES168 column encryption
OPES Data encrypted with Order-Preserving Encryption [Agrawal et al., 2004]
Salsa20 Data encrypted with Salsa20/20 encryption [Bernstein, 2008]
Data masked by MOBAT formula (1), where a column for masking keys
MOBAT AddCol K3, j has been added to the existing fact table
Data masked by MOBAT formula (1), where a column for masking keys
MOBAT CreateCol K3, j was added to the fact table, which has been completely recreated
Data masked by MOBAT formula (1), using a numerical column from
MOBAT ColKey the original fact table data structure as key Ks,

All loading time and query response time results shown in this section are
an average of six executions in each described setup/scenario. Given the
resulting standard deviations are relatively small assures that this number
of executions if sufficient enough to be representative for comparisons. The
complete set of results and respective statistical measures can be seen in
Appendix B.

4.4.1 Analyzing Storage Space

Figures 4-2a and 4-2b respectively show the results of total data storage
space (in MB) and percentage of storage space overhead for loading the
TPC-H 1GB Lineltem fact table in Oracle, while Figures 4-3a and 4-3b show
the same results in SQL Server. To execute the loading processes, all
indexes were dropped on the fact tables.

As shown, the standard storage space for the TPC-H Lineltem fact table
without using any sort of encryption or masking solution takes up 772MB
of storage space in Oracle and 1237MB of storage space in SQL Server.
There is a significant difference in the standard data storage space sizes
between the DBMS because they have distinct ways of storing data, in
which Oracle standardly uses a type of compression algorithm while SQL
Server does not.

Note that the resulting values registered for MOBAT refer to
MOBATAdACol (adding a column to the fact table) and MOBATCreateCol
(recreating the fact table with the addition of a column), involving the

102

MOBAT: A Data Masking Solution for Data Warehouses

creation of an extra public key column (referred to as K, as described in
the previous sections). The MOBAT ColKey setup (in which the column
used as the public key column is a column that originally belongs to the
fact table) is not included, since it does not require changing the fact table
data structure to handle the implementation of MOBAT. Thus, the
overhead for MOBATColKey is actually inexistent, making it the best
technique in what concerns avoiding storage space overhead.

Oracle TPC-H 1GB
Lineltem Fact Table Storage Size (MB)

Oracle TPC-H 1GB
Lineltem Storage Size Overhead (%)

2500 200%
2250 1960 180% je4n
2000 160%
1750 140%
1500 120% 104%
1250 100%
1000 80%
750 60% 38%
500 40%
250 20% 2% 12%
) a% R |
© o & o g ~
’b 04 "b QF‘ el o 2 X
! o A\) v &
S S5 ﬂ?\" ® o S S ®
¥ =

Figure 4-2a. Storage Size in Oracle
for the TPC-H 1GB Fact Table per

Figure 4-2b. Storage Overhead (%)
in Oracle for the TPC-H 1GB Fact

Solution

SQL Server TPC-H 1GB
Lineltem Fact Table Storage Size (MB)

2500
2250
2000
1750
1500
1250
1000
750
500
250
]

2181

1553

I 1339

2 0@“

1258

g
F &

&

Figure 4-3a. Storage Size in SQL
Server for the TPC-H 1GB Fact Table
per Solution

Table per Solution

SQL Server TPC-H 1GB
Lineltem Storage Size Overhead (%)

200%
180%
160%
140%
120%
100%
80%
60%
40%
20%
0%

26%

.
I

i A
T ol
& (oid

Figure 4-3b. Storage Overhead (%)
in SQL Server for the TPC-H 1GB
Fact Table per Solution

103

Chapter 4

As shown, OPES and MOBAT produce much smaller storage space
overheads than the remaining solutions. OPES shows a 2% overhead for
both DBMS, corresponding to an extra 18MB of storage space in Oracle and
21IMB in SQL Server, and 12% and 8% overhead for MOBAT respectively
in Oracle and SQL Server, corresponding to an extra 96MB and 102MB of
storage space. OPES produces a small storage space overhead because the
smallest and largest gaps between the sorted values for its target
distributions are mostly small in the TPC-H database. This attests what is
explained in [Agrawal et al., 2004], where the authors express that they
would expect a small increase of the required space for the ciphertexts.

Salsa20 introduces more storage space overhead than OPES and MOBAT,
namely 38% in Oracle, corresponding to adding 292MB, and 26% in SQL
Server, which adds 316MB of extra storage space. The standard encryption
solutions produce the highest overhead, with AES being the worst by
requiring 154% in Oracle and 95% in SQL Server of storage space overhead,
corresponding to respectively adding 1188MB and 1173MB and 154%,
while 3DES168 produced a storage space overhead of 104% in Oracle and
76% in SQL Server, respectively corresponding to 800MB and 944MB of
extra storage space.

Figures 4-4a and 4-4b respectively show the results of total data storage
space (in MB) and percentage of storage space overhead for loading the
TPC-H 10GB Lineltem fact table in Oracle, while Figures 4-5a and 4-5b show
the same results in SQL Server. Figures 4-4a to 4-5b show that the extra
storage space added to the 10GB database by each solution is
approximately proportional to those of the 1GB database, which means ten
times bigger. Thus, the analysis of the results for the 10GB sized TPC-H
database is similar to that of the 1GB sized TPC-H database.

104

MOBAT: A Data Masking Solution for Data Warehouses

Oracle TPC-H 10GB
Lineltem Fact Table Storage Size (MB)

25000
22500
20000
17500
15000
12500
10000
7500
5000
2500
0

19580

7712 II 7892

Figure 4-4a. Storage Size in Oracle
for the TPC-H 10GB Fact Table
per Solution

10629

I]

’\

s’g@
P

&

SQL Server TPC-H 10GB
Lineltem Fact Table Storage Size (MB)

Oracle TPC-H 10GB
Lineltem Storage Size Overhead (%)

200%
180%
160%
140%
120%
100%
80%
60%
40%
20%
0%

154%

104%

38%
12%
.

AL
&
-

(Y

"
i

ST

Figure 4-4b. Storage Overhead (%)
in Oracle for the TPC-H 10GB Fact
Table per Solution

SQL Server TPC-H 10GB
Lineltem Storage Size Overhead (%)

25000 200%
22500 21657 180%
20000 160%
17500 140%
15000 12272 12420 13234 120% g5y
12500 100% 76%
10000 80%
7500 60%
5000 40% 26%
2500 20% I 8%
0 0% o —
& /o) EN
e é’@ »9‘3’ 0@‘ o7 %‘5\’@ OQQ(? e"éb S
‘:_@ H.;u K o < oy) g
w W

Figure 4-5a. Storage Size in SQL
Server for the TPC-H 10GB Fact Table
per Solution

Figure 4-5b. Storage Overhead (%)
in SQL Server for the TPC-H 10GB
Fact Table per Solution

Figures 4-6a and 4-6b show the total data storage space (in MB) and
percentage of storage space overhead for loading the Sales DW fact table
in Oracle, while Figures 4-7a and 4-7b show the same results in SQL Server.
It can be seen that the standard storage space for the Sales fact table without
using any encryption or masking solution takes up 1664MB of storage
space in Oracle and 1932MB of storage space in SQL Server.

105

Chapter 4

Oracle Sales DW 2GB
Sales Fact Table Storage Size (MB)

15000
13500
12000
10500 9352
3000
7500 6739
5000
4500
3000 1726 2073
1500
0
& S
i~ o)
& & \‘* O
%@ @5\’» - ¢ &

Figure 4-6a. Storage Size in Oracle
for the Sales DW Fact Table
per Solution

SQL Server Sales DW 2GB
Sales Fact Table Storage Size (MB)

15000
13300
12000
10500
5000
7500
6000
4500
3000
1500
0

13356

3750

2005 2568

1932

=3 ©

L q;\,.t}

c}'a {.;\Tlr
W

&
";QQ' ‘5"& @0%
Figure 4-7a. Storage Size in SQL
Server for the Sales DW Fact Table
per Solution

Oracle Sales DW 2GB
Sales Storage Size Overhead (%)

600%

540%

462%

480%
420%

360%

308%

300%
240%
180%

120%
60%

88%
2% 25%
- |

& o <
& & & &
S <P <

0%

%}
\:ﬁ;f’
&
Figure 4-6b. Storage Overhead (%)

in Oracle for the Sales DW Fact

Table per Solution

SQL Server Sales DW 2GB
Sales Storage Size Overhead (%)

600%
540%
480%

420%

390%

360%
300%
240%
180%

120%
60%

94%
N
|

& o <
& & & &
S <P <

0%

%}
&
&
Figure 4-7b. Storage Overhead (%)
in SQL Server for the Sales DW Fact

Table per Solution

As shown in Figures 4-6a to 4-7b, OPES and MOBAT continue to produce
much smaller storage space overheads than the remaining solutions,
similarly to the occurred with TPC-H. OPES shows a 4% overhead for both
DBMS, corresponding to an extra 64MB of storage space, and MOBAT
presents 25% and 33% overhead respectively in Oracle and SQL Server,
corresponding to an extra 415MB and 636MB of storage space. OPES
continues to present the best results because of the same reasons that were
previously mentioned, i.e., the data values in the Sales DW allow it to

106

MOBAT: A Data Masking Solution for Data Warehouses

generate target distributions which do not require much additional space
to store the ciphertexts.

Salsa20 also introduces more storage space overhead than OPES and
MOBAT, namely 88% in Oracle, corresponding to adding 1464MB, and
94% in SQL Server, which adds 1818MB of extra storage space. The
standard encryption solutions produce the highest overhead, with AES
also being the worst by requiring 462% in Oracle and 591% in SQL Server
of storage space overhead, corresponding to respectively adding 7688MB
and 11424MB of storage space, while 3DES168 produced a storage space
overhead of 308% in Oracle and 390% in SQL Server, respectively
corresponding to 5125MB and 7532MB of extra storage space.

Tables 4-3, 4-4 and 4-5 summarize the fact table storage space results
respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, for each
DBMS, highlighting the best solutions in each case.

Table 4-3. TPC-H 1GB Lineitem Fact Table Storage Size Overhead

Oracle TPC-H 1GB SQL Server TPC-H 1GB
Storage Size (Overhead) Storage Size (Overhead)
Standard 772MB 1237MB
AES128/256 1960MB (+1188MB / 154%) 2410MB (+1173MB / 95%)
3DES168 1572MB (+800MB / 104%) 2181MB (+944MB / 76%)
OPES 790MB (+18MB / 2%) 1258MB (+21MB / 2%)
Salsa20 1064MB (+292MB / 38%) 1553MB (+316MB / 26%)
MOBAT 868MB (+96MB / 12%) 1339MB (+102MB / 8%)

Table 4-4. TPC-H 10GB Lineitem Fact Table Storage Size Overhead

Oracle TPC-H 10GB SQL Server TPC-H 10GB
Storage Size (Overhead) Storage Size (Overhead)
Standard 7712MB 12272MB
AES128/256 19580MB (+11868MB / 154%) | 23909MB (+11637MB / 95%)
3DES168 15704MB (+7992MB / 104%) 21637MB (+9365MB / 76%)
OPES 7892MB (+180MB / 2%) 12480MB (+208MB / 2%)
Salsa20 10629MB (+2917MB / 38%) 15407MB (+3135MB / 26%)
MOBAT 8671MB (+959MB / 12%) 13284MB (+1012MB / 8%)

107

Chapter 4

Table 4-5. Sales DW 2GB Fact Table Storage Size Overhead

Oracle Sales DW 2GB SQL Server Sales DW 2GB

Storage Size (Overhead) Storage Size (Overhead)
Standard 1664MB 1932MB
AES128/256 9352MB (+7688MB / 462%) 13356MB (+11424MB / 591%)
3DES168 6789MB (+5125MB / 308%) 9464MB (+7532MB / 390%)
OPES 1726MB (+62MB / 4%) 2005MB (+73MB / 4%)
Salsa20 3128MB (+1464MB / 88%) 3750MB (+1818MB / 94%)
MOBAT 2079MB (+415MB / 25%) 2568MB (+636MB / 25%)

4.4.2. Analyzing Loading Time

In this subsection, we analyze the loading time for populating the fact table
of each DW, which is affected by both the execution of the masking or
encryption processes and the need to write additional data taking up extra
storage space. Figures 4-8a and 4-8b respectively show the results of total
loading time (in seconds) and percentage of time overhead for loading the
TPC-H 1GB Lineltem fact table in Oracle, while Figures 4-9a and 4-9b show
the same results in SQL Server. It can be observed that the standard loading
time for the TPC-H Lineltem fact table without using any sort of encryption
solution is 310 seconds in Oracle and 212 seconds in SQL Server.

As shown in the figures, MOBAT produces much smaller loading time
overheads than the remaining solutions, introducing between 3% and 8%
of overhead in both DBMS, respectively corresponding to adding between
6 and 25 seconds of loading time. OPES comes after MOBAT in loading
time performance, showing an overhead of 49% in Oracle and 44% in SQL
Server, which respectively correspond to adding 151 and 93 seconds.
Salsa20 introduces more loading time overhead than OPES and MOBAT,
namely 73% in Oracle, corresponding to adding 227 seconds, and 70% in
SQL Server, which adds 149 seconds of extra loading time.

108

MOBAT: A Data Masking Solution for Data Warehouses

Oracle TPC-H 1GB
Lineltem Fact Table Loading Time (sec)

1200
1100

1000
900
300
700
600
500
400 335 323 318
300
200
100
]
WP P F @ PSP @
;5@(\ ‘?35’ ‘?gr? 0@ © i .\V“b c}?:;“ ‘;\Lo
@0‘2"‘“@{\ S
@0

Figure 4-8a. Loading Time in Oracle
for the TPC-H 1GB Fact Table per
Solution

SQL Server TPC-H 1GB
Lineltem Fact Table Loading Time (sec)
1200

1100
1000
900
800
700
600 507
00 472 485
400
300 227 221 218
200
< B liia

0

b "\(? "S- Q bbo Q,L'o i{—'i\
r-g'@(\ ‘?iéj &%Q@ o & ?,_g‘?”b Gcﬁu ‘;&(’o
T
&

Figure 4-9a. Loading Time in SQL
Server for the TPC-H 1GB Fact Table
per Solution

Oracle TPC-H 1GB
Lineltem Loading Time Overhead (%)

300%
275%
250%
225%
200%

175%
150%
125%
100%
75%
50%
c&

19 0% 19 2%

S e

o] & (O)
U ST
SV Q N
& @ ’§§o BSOS &»9- ,\cP
v S o
F r &
NI

Figure 4-8b. Loading Time Overhead
(%) in Oracle for the TPC-H 1GB Fact
Table per Solution

SQL Server TPC-H 1GB
Lineltem Loading Time Overhead (%)

300%
275%
250%
225%
200%
175%
150% 1550 222 129%
125%
100%
70%
75%
a4%
50%
25% . T 4% 3%
D% E s —
RS T T - N ST R
s P &
&G S S
Lol oY 9% AF @7 A
'l «D %'?“
F & O
v

Figure 4-9b. Loading Time Overhead
(%) in SQL Server for the TPC-H 1GB
Fact Table per Solution

109

Chapter 4

Similarly to what occurred with storage space, the standard encryption
solutions produced the highest loading time overheads. AES with 128 bit
security produced 190% in Oracle and 123% in SQL Server, respectively
corresponding to adding 589 and 260 seconds to the standard loading time.
AES with 256 bit security shows an overhead of 209% in Oracle and 139%
in SQL Server, respectively corresponding to 648 and 295 seconds of extra
loading time. 3DES168 introduces 192% loading time overhead in Oracle,
corresponding to adding 596 seconds, and 129% in SQL Server, which adds
273 seconds of extra loading time.

Figures 4-10a and 4-10b respectively show the results of total loading time
(in seconds) and percentage of loading time overhead for loading the TPC-
H 10GB Lineltem fact table in Oracle, while Figures 4-11a and 4-11b show
the same results in SQL Server.

From observing the results in Figures 4-10a to 4-11b, it can be seen that the
extra loading time added to the 10GB database by each encryption solution
is approximately over-proportional to those of the 1GB database, as
occurred with the storage space, which means slightly over ten times
bigger. Thus, the analysis of the results for the 10GB sized TPC-H database
is also similar to that of the 1GB sized TPC-H database.

Oracle TPC-H 10GB Oracle TPC-H 10GB
Lineltem Fact Table Loading Time (sec) Lineltem Loading Time Overhead (%)
12000 11114 300%
11000 10185 275%
10000 250% 246%215%
9000 225% 217%
8000 200%
7000 291 175%
6000 2943 1502
3000 3597 125
4000 3211 e 100%
3000 75% 54%
2000 50%
1000 25% 12% 7% 5%
0% | -
o % Y
AP & 0 & O N ’1‘? 'b Sfr’o ['O &
< 5&?@*\. v‘ g ‘é;\- & r.,'b b&' %‘c“(,*_z \?(;’7 é‘"} ’:JQQ, c’-b\" R &,;\- ’\(_‘o
o A A Q’?‘ .-\[' %?‘
& ‘_C‘ & &
< QQ’ <« &®
&
Figure 4-10a. Loading Time in Figure 4-10b. Loading Time Overhead
Oracle for the TPC-H 10GB Fact (%) in Oracle for the TPC-H 10GB Fact
Table per Solution Table per Solution

110

MOBAT: A Data Masking Solution for Data Warehouses

SQL Server TPC-H 10GB SQL Server TPC-H 10GB

Lineltem Fact Table Loading Time (sec) Lineltem Loading Time Overhead (%)
12000 300%
11000 275%
10000 250%

3000 225%

8000 200: 174%

7000 175

6000 43415635 1so% 141% [%%

5000 -’-1-[]88 125%

4000 100% 80%

2550243

3000 2272 381 75% 46%

2000 50%

1000 III 25% l 12% 7% 5%

] 0% [e—
> B & & & i R R SIS R)
y i) .5 N: NS N 8 el S &
L;@‘\ :i‘&’ & s ° s’b\%,\vb ‘e?ez\(f} RS R R
& vﬁb\?p“’v i Q;?L @0@
%
& S W+ &

Figure 4-11a. Loading Time in SQL Figure 4-11b. Loading Time Overhead

Server for the TPC-H 10GB Fact Table (%) in SQL Server for the TPC-H
per Solution 10GB Fact Table per Solution

Figures 4-12a and 4-12b respectively show the results of total loading time
(in seconds) and percentage of time overhead for loading the Sales DW fact
table in Oracle, while Figures 4-13a and 4-13b show the same results in SQL
Server. It can be seen that the standard loading time for the Sales fact table
without using any encryption solution is 1195 seconds in Oracle and 1247
seconds in SQL Server.

As seen in both figures, MOBAT continues to produce much smaller
loading time overheads than the remaining solutions, similarly to the
occurred with TPC-H. MOBAT AddCol shows 15% and 16% overhead in
Oracle and SQL Server, respectively corresponding to an extra 178 and 200
seconds in loading time. MOBAT CreateCol shows 9% and 10% in Oracle
and SQL Server, corresponding to adding 113 seconds in Oracle and 120
seconds in SQL Server, and when using MOBAT ColKey the loading time
overhead was 5% in Oracle and 6% in SQL Server, corresponding to 65
seconds of extra loading time in Oracle and 71 seconds of extra loading
time in SQL Server.

111

Chapter 4

Oracle Sales DW 2GB
Sales Fact Table Loading Time (sec)

4000 257475993635
3600
3200
2800 2408
2400
1929
2000
1600 995 13731308260
1200
800
400
0
£ © P P S
ST FE AL L
PO P @ 4~
&
RS
&

Figure 4-12a. Loading Time in
Oracle for the Sales DW Fact Table
per Solution

SQL Server Sales DW 2GB
Sales Fact Table Loading Time (sec)
4000
3600 393733813339

3200
2800
2400
2000
1600 147 135?
1200
80
40
0
K

S e ¢
'@{\b {5‘? YSE;‘:)’Q@ © \'c, bb :
3

1963

(==

G o5

@ A R
Q7 oF 4O

PP

<

Figure 4-13a. Loading Time in SQL

Server for the Sales DW Fact Table per

Solution

Oracle Sales DW 2GB
Sales Loading Time Overhead (%)

300%
275%
250%
225% 199% 210%209%

200%

175%

150%

125% 102%

100%

5%

30

25% 15% g% 5%
0% [J—

*®

% 0 & O
(:?'O' é;’ é} 'b\‘;;l' bé" ,;-L b(;gb
Lol o ';JQ G 4 09.: {_\

Fe &
v

Figure 4-12b. Loading Time
Overhead (%) in Oracle for the Sales
DW Fact Table per Solution

SQL Server Sales DW 2GB

Sales Loading Time Overhead (%)
300%
275%
250%
225%
200%
175%
150%
125%
100%
75%
50%
25%

0%

1?1%153%

--—

Q
Q:'J %) ,b\‘:

Figure 4-13b. Loading Time
Overhead (%) in SQL Server for the
Sales DW Fact Table per Solution

MOBAT: A Data Masking Solution for Data Warehouses

OPES comes after MOBAT in loading time performance, showing a 61%
overhead in Oracle and 57% in SQL Server, respectively corresponding to
an extra 734 seconds and 716 seconds of loading time, and Salsa20 presents
102% and 97% overhead for respectively in Oracle and SQL Server,
corresponding to 1213 and 1212 seconds of extra loading time.

The standard encryption solutions continue to produce the highest
overhead, where AES with 128 bit security produced 199% in Oracle and
159% in SQL Server, respectively corresponding to adding 2379 and 1985
seconds to the standard loading time. AES with 256 bit security shows an
overhead of 210% in Oracle and 171% in SQL Server, respectively
corresponding to 2504 and 2134 seconds of extra loading time. 3DES168
introduces 209% loading time overhead in Oracle, corresponding to
adding 2500 seconds, and 168% in SQL Server, which adds 2092 seconds of
extra loading time.

Tables 4-6, 4-7 and 4-8 summarize the fact table loading time results (in
hh:mm:ss format) respectively for the TPC-H 1GB, TPC-H 10GB and Sales
DW, for each DBMS, highlighting the best solutions in each case.

Table 4-6. TPC-H 1GB Lineitem Fact Table Loading Time Overhead

Oracle TPC-H 1GB
Loading Time (Overhead)

SQL Server TPC-H 1GB
Loading Time (Overhead)

Standard Loading Time

00:05:10

00:03:32

AES128

00:14:59 (00:09:49 / 190%)

00:07:52 (00:04:20 / 123%)

AES256

00:15:58 (00:10:48 / 209%)

00:08:27 (00:04:55 / 139%)

3DES168

00:15:06 (00:09:56 / 192%)

00:08:05 (00:04:33 / 129%)

OPES

00:07:41 (00:02:31 / 49%)

00:05:05 (00:01:33 / 44%)

Salsa20

00:08:57 (00:03:47 / 73%)

00:06:01 (00:02:29 / 70%)

MOBAT AddCol

00:05:35 (00:00:25 / 8%)

00:03:47 (00:00:15 / 7%)

MOBAT CreateCol

00:05:23 (00:00:13 / 4%)

00:03:41 (00:00:09 / 4%)

MOBAT ColKey

00:05:18 (00:00:08 / 3%)

00:03:38 (00:00:06 / 3%)

113

Chapter 4

Table 4-7. TPC-H 10GB Lineitem Fact Table Loading Time Overhead

Oracle TPC-H 10GB
Loading Time (Overhead)

SQL Server TPC-H 10GB
Loading Time (Overhead)

Standard Loading Time

00:53:31

00:37:52

AES128

02:49:45 (01:56:14 / 217%)

01:31:24 (00:53:32 / 141%)

AES256

03:05:14 (02:11:43 / 246%)

01:43:49 (01:05:57 / 174%)

3DES168

02:53:44 (02:00:13 / 225%)

01:33:55 (00:56:03 / 148%)

OPES

01:22:23 (00:28:52 / 54%)

00:55:25 (00:17:33 / 46%)

Salsa20

01:38:01 (00:44:30 / 83%)

01:08:08 (00:30:16 / 80%)

MOBAT AddcCol

00:59:57 (00:06:26 / 12%)

00:42:30 (00:04:38 / 12%)

MOBAT CreateCol

00:57:29 (00:03:58 / 7%)

00:40:34 (00:02:42 | 7%)

MOBAT ColKey

00:56:02 (00:02:31 / 5%)

00:39:41 (00:01:49 / 5%)

Table 4-8. Sales DW 2GB Fact Table Loading Time Overhead

Oracle Sales DW 2GB
Loading Time (Overhead)

SQL Server Sales DW 2GB
Loading Time (Overhead)

Standard Loading Time

00:19:55

00:20:47

AES128

00:59:34 (00:39:39 / 199%)

00:53:52 (00:33:05 / 159%)

AES256

01:01:39 (00:41:44 | 210%)

00:56:21 (00:35:34 / 171%)

3DES168

01:01:35 (00:41:40 / 209%)

00:55:39 (00:34:52 / 168%)

OPES

00:32:09 (00:12:14 / 61%)

00:32:43 (00:11:56 / 57%)

Salsa20

00:40:08 (00:20:13 / 102%)

00:40:59 (00:20:12 / 97%)

MOBAT AddCol

00:22:53 (00:02:58 / 15%)

00:24:07 (00:03:20 / 16%)

MOBAT CreateCol

00:21:48 (00:01:53 / 9%)

00:22:47 (00:02:00 / 10%)

MOBAT ColKey

00:21:00 (00:01:05 / 5%)

00:21:58 (00:01:11 / 6%)

4.4.3. Analyzing Query Performance

To analyze the query performance of the masking technique and the
selected encryption algorithms, we defined a query workload for each
database. The TPC-H workload included the benchmark queries 1, 3, 6, 7,
8, 10, 12, 14, 15, 17, 19 and 20 (which correspond to all queries in TPC-H
that access the Lineltem fact table). For the Sales DW, the workload was a
set of 29 queries, all processing the Sales fact table, as a set of usual decision
support reports, gathering daily (9 queries), monthly (9 queries) and
annual (11 queries) values, including actions such as row selection, joining,

114

MOBAT: A Data Masking Solution for Data Warehouses

aggregates, and ordering. These queries represent typical reporting
workloads against the fact table for each database. For fairness, databases
were optimized in a best practice manner (including primary keys, foreign
keys, and referential integrity constraints and join indexes).

As previously mentioned, all response time results are an average obtained
from six executions in each scenario on each DBMS. The standard
execution time (average of the execution times of the workload against a
non-encrypted database) for each scenario is 625, 6155, and 2233 seconds
in Oracle 11g, and 580, 5301, and 2211 seconds in SQL Server 2008, for the
1GB, 10GB TPC-H and Sales DW, respectively.

Figures 4-14a and 4-14b respectively show the total workload execution
time and its overhead in Oracle and Figures 4-15a and 4-15b show the total
workload execution time and overhead in SQL Server, for the TPC-H 1GB
database.

It can be seen that MOBAT executes much faster than the remaining
solutions, introducing overheads between 22% and 35% of query workload
execution time in Oracle, respectively corresponding to adding between
138 and 221 seconds to total execution time, and overheads between 23%
and 40% in SQL Server, respectively corresponding to adding between 132
and 233 seconds to total execution time.

All the remaining encryption solutions are approximately leveled and
present overheads between 176% and 203% in Oracle, corresponding to
adding an extra 1102 to 1270 seconds to total execution time, and overheads
between 163% and 195% in SQL Server, corresponding to adding an extra
943 to 1132 seconds to total execution time. Regarding these solutions,
Salsa20 was the fastest with AES128 coming afterwards, followed by OPES
and AES256, with 3DES168 as the slowest solution. This means that
MOBAT produces overheads that are roughly one sixth of the encryption
solutions, on average, in the chosen experimental setups.

115

Chapter 4

Oracle TPC-H 1GB
Query Workload Execution Time (sec)

2000 17531837 18051813
1727
1200

1600
1400
1200
1000
200
00
400
]

Figure 4-14a. Query Workload
Execution Time per Solution in
Oracle for TPC-H 1GB

246 309 753

SQL Server TPC-H 1GB
Query Workload Execution Time (sec)

2000
1200
1600
1400
1200
1000
00
600
400
200
o

1551 1646 17129635

«b O g
oS 4
STEEF O

1523
213 775 1z

‘r.-

@
49‘19%?‘ 49

Figure 4-15a. Query Workload
Execution Time per Solution in SQL
Server for TPC-H 1GB

Oracle TPC-H 1GB

Query Workload Exec. Time Overhead (%)

25084
2255
20084
1755%
1508
1255
1008

T5%

50%

25%

203%
194%
188% 150% 1758

35% 9% o0

Figure 4-14b. Query Workload
Execution Time Overhead (%) per
Solution in Oracle for TPC-H 1GB

SQL Server TPC-H 1GB
Query Workload Exec.Time Overhead (%)

2508
L2155 1gan; 195%
0084 181%
175 163%
1508
1255
1005
755
0% 0% a5
5 -
b 1-_,.;‘.‘-‘ O Q.
& W
F 5 & & g &
FES CIE LS
Gq?‘ A~ o
o ‘1@# <

Figure 4-15b. Query Workload
Execution Time Overhead (%) per
Solution in SQLServer for TPC-H 1GB

Figures 4-16a and 4-16b respectively show the total workload execution
time and its overhead in Oracle and Figures 4-17a and 4-17b show the total
workload execution time and overhead in SQL Server, for the TPC-H 10GB
database. As can be observed, the results lead to similar results as those
seen in the TPC-H 1GB database, in what concerns the ranking of the tested
solutions. MOBAT remains the solution having the best execution time,

116

MOBAT: A Data Masking Solution for Data Warehouses

with lower overhead for all scenarios in both DBMS. When compared with
the results for the TPC-H 1GB database, it can be seen that the differences
between the solutions are slightly enforced with the higher amount of data
that need to be processed in the 10GB scale size.

Oracle TPC-H 10GB Oracle TPC-H 10GB
Query Workload Execution Time (sec) Query Workload Exec. Time Overhead (%)
20000 2509
Ta000 1espd2E T essg o, 225% -

16000
14000
12000
10000
3000 B155
6000
4000
2000

0

2008 175% 181% 1?491':
175%
1508
75279344 1258
1008
75%
50% 2% 19%
et 17%
% I EE ==
&

bq’ {,:'J --E} t\ Q‘.\ L
<£"' & o té* *-31* 43\ @
I__;_'a':@ & < S “&@'@ & LR - S ,\v@ d"& ,\b
F &C & & & F
® ‘1&?‘ o F ‘ﬁ? <«
Figure 4-16a. Query Workload Figure 4-16b. Query Workload
Execution Time per Solution in Execution Time Overhead (%) per
Oracle for TPC-H 10GB Solution in Oracle for TPC-H 10GB
SQL Server TPC-H 10GB SQL Server TPC-H 10GB
Query Workload Execution Time (sec) Query Workload Exec.Time Overhead (%)
18000 255
1500 13308388 ol 0 5% 152 t61% 14591': 139%
12000 1508
10000 125%
8000 6420618209, 100%
6000 5=
4000 oo 21% 16% 13%
zunn 5% [P p—
0%
‘*' o @ P S B
§ &
R ?%*»" & & w&f"f";,df’ T & o
‘;g@‘ & ‘agq?‘ @Q@“ qg;‘b ‘:p“?'
* *
Figure 4-17a. Query Workload Figure 4-17b. Query Workload Exec.
Execution Time per Solution in SQL Time Overhead (%) per Solution in
Server for TPC-H 10GB SQLServer for TPC-H 10GB

117

Chapter 4

Furthermore, MOBAT executes much faster than the remaining solutions,
introducing overheads between 17% and 22% of query workload execution
time in Oracle, respectively corresponding to adding between 1063 and
1372 seconds to total execution time, and overheads between 13% and 21%
in SQL Server, respectively corresponding to adding between 680 and 1119
seconds to total execution time.

All the remaining encryption solutions are approximately leveled and
present overheads between 155% and 192% in Oracle, corresponding to
adding an extra 9549 to 11818 seconds to total execution time, and
overheads between 139% and 184% in SQL Server, corresponding to
adding an extra 7390 to 9757 seconds to total execution time. Regarding
these solutions, Salsa20 continues being the fastest, followed by OPES,
AES128 and AES256, with 3DES168 as the slowest solution. This means
that MOBAT continues to produce overheads that are roughly one eighth
to one tenth of the encryption solutions, on average, in the chosen
experimental setups, similar to what occurred in the TPC-H 1GB.

Figures 4-18a and 4-18b respectively show the total workload execution
time and its overhead in Oracle and Figures 4-19a and 4-19b show the total
workload execution time and overhead in SQL Server, for the Sales DW
database.

As shown, MOBAT also executes much faster than the remaining solutions
in the Sales DW, introducing overheads between 78% and 128% of query
workload execution time in Oracle, respectively corresponding to adding
between 1733 and 2851 seconds to total execution time, and overheads
between 64% and 124% in SQL Server, which respectively correspond to
adding between 1426 and 2735 seconds to total execution time.

118

MOBAT: A Data Masking Solution for Data Warehouses

Oracle Sales DW
Query Workload Execution Time (sec)

24000
22000

20000 1?504

18000 o csan

16000

13888

18000 s084

Eggg sz .4‘43535"EE
2000 HE

5 0
& o "p o8 §2 55
‘@?-6’?-"’{)‘” t? ‘é_"‘* (f'
P e

‘ﬁj‘;@‘ &

Figure 4-18a. Query Workload
Execution Time per Solution in
Oracle for the Sales DW

SQL Server Sales DW
Query Workload Execution Time (sec)

7ax¥EIed
16923 leBag_ .

4313
2211 . 353?

‘;‘"}\ ‘;' {ié;’ é‘ &4’

GF’ "L

é’@p&

Figure 4-19a. Query Workload
Execution Time per Solution in SQL
Server for the Sales DW

Oracle Sales DW
Query Workload Exec. Time Overhead (%)

1000%
?2896 I

B0
B0
'\-
4,, =
.g.i‘*

O
6005
i
A0
3005
2005
100%

[0

128% gogy o5

-'S"
"\ {_}E'q?“‘\

49‘;@49

éf’ Sl

Figure 4-18b. Query Workload
Execution Time Overhead (%) per
Solution in Oracle for the Sales DW

SQL Server Sales DW

Query Workload Exec.Time Overhead (%)

1000%
S00%
B00%
T00%
B00%
LS00
400%
300%
200%
100%

02

EEE'!EM

P o é‘ﬁ'
)

124% gooy 5435
- ==

*
5 (j* <&

é}\a@

b,
&

Figure 4-19b. Query Workload Exec.
Time Overhead (%) per Solution in
SQLServer for the Sales DW

All the remaining encryption solutions continue approximately leveled
and present overheads between 598% and 815% in Oracle, corresponding
to adding an extra 13349 to 18192 seconds to total execution time, and
overheads between 588% and 759% in SQL Server, corresponding to
adding 13001 to 16773 seconds to total execution time. Regarding these
solutions, Salsa20 continues to be the fastest with OPES and AES128

119

Chapter 4

coming afterwards, followed by AES256 and 3DES168 as the slowest
solution. This means that MOBAT produces overheads that are roughly
one sixth to one eighth of the encryption solutions, on average, in the
chosen experimental setups.

Tables 4-9, 4-10 and 4-11 summarize the query workload execution time
results respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, for
each DBMS, highlighting the best solutions in each case.

Table 4-9. TPC-H 1GB Query Workload Execution Time Overhead

Oracle TPC-H 1GB
Execution Time (Overhead)

SQL Server TPC-H 1GB
Execution Time (Overhead)

Standard Loading Time

00:10:25

00:09:40

AES128

00:29:58 (00:19:33 / 188%)

00:26:31 (00:16:51 / 174%)

AES256

00:30:37 (00:20:12 / 194%)

00:27:26 (00:17:46 / 184%)

3DES168

00:31:35 (00:21:10 / 203%)

00:28:32 (00:18:52 / 195%)

OPES

00:30:13 (00:19:48 / 190%)

00:27:09 (00:17:29 / 181%)

Salsa20

00:28:47 (00:18:22 / 176%)

00:25:23 (00:15:43 / 163%)

MOBAT AddcCol

00:14:06 (00:03:41 / 35%)

00:13:33 (00:03:53 / 40%)

MOBAT CreateCol

00:13:29 (00:03:04 / 29%)

00:12:55 (00:03:15 / 34%)

MOBAT ColKey

00:12:43 (00:02:18 / 22%)

00:11:52 (00:02:12 / 23%)

Table 4-10. TPC-H 10GB Query Workload Execution Time Overhead

Oracle TPC-H 10GB
Execution Time (Overhead)

SQL Server TPC-H 10GB
Execution Time (Overhead)

Standard Loading Time

01:42:35

01:28:21

AES128

04:42:07 (02:59:32 / 175%)

03:42:24 (02:14:03 / 152%)

AES256

04:48:03 (03:05:28 / 181%)

03:50:46 (02:22:25 / 161%)

3DES168

04:59:33 (03:16:58 / 192%)

04:10:58 (02:42:37 / 184%)

OPES

04:41:29 (02:58:54 | 174%)

03:40:15 (02:11:54 / 149%)

Salsa20

04:21:44 (02:39:09 / 155%)

03:31:31 (02:03:10 / 139%)

MOBAT AddcCol

02:05:27 (00:22:52 / 22%)

01:47:00 (00:18:39 / 21%)

MOBAT CreateCol

02:01:54 (00:19:19 / 19%)

01:42:42 (00:14:21 / 16%)

MOBAT ColKey

02:00:18 (00:17:43 / 17%)

01:39:41 (00:11:20 / 13%)

120

MOBAT: A Data Masking Solution for Data Warehouses

Table 4-11. Sales DW 2GB Query Workload Execution Time Overhead

Oracle Sales DW 2GB SQL Server Sales DW 2GB
Execution Time (Overhead) | Execution Time (Overhead)
Standard Loading Time 00:37:13 00:36:51
AES128 04:53:24 (04:16:11 / 688%) 04:42:03 (04:05:12 / 665%)
AES256 05:08:04 (04:30:51 / 728%) 04:57:07 (04:20:16 / 706%)
3DES168 05:40:25 (05:03:12 / 815%) 05:16:24 (04:39:33 / 759%)
OPES 04:51:05 (04:13:52 / 682%) 04:40:45 (04:03:54 / 662%)
Salsa20 04:19:42 (03:42:29 / 598%) 04:13:32 (03:36:41 / 588%)
MOBAT AddCol 01:24:44 (00:47:31 / 128%) 01:22:26 (00:45:35 / 124%)
MOBAT CreateCol 01:13:55 (00:36:42 / 99%) 01:11:53 (00:35:02 / 95%)
MOBAT ColKey 01:06:06 (00:28:53 / 78%) 01:00:37 (00:23:46 / 64%)

To demonstrate the effects of using masking and encryption on each
individual query, Figure 4-20 shows the results for individual query
execution time in Oracle for the TPC-H 10GB scenarios, with a logarithmic
scale. These results show that all queries have similar proportional
overhead to those of the complete workload. This is also true for all the
other scenarios, making it redundant to include all of them. Query Q1
presents the most significant results because it processes more than 90% of
the fact table data, while the other process less than 10%. It can be seen that
mostly all queries processed using the encryption solutions have
introduced overheads of several orders of magnitude higher than MOBAT,
individually matching what has been shown in the total query workload
results through Figures 4-14 to 4-19.

The individual query execution times for the Sales DW are not included,
given that this set of queries can produce a certain amount of insight as a
whole (and shown in the total query workload execution graphs in Figures
4-18a to 4-19b), but should mainly not be considered as appropriate for
individual analysis, since this DW is a specific real-world database and it
is not a standard nor a benchmark.

121

Chapter 4

10000%

1000%

100%

10%

1%

10000%

1000%

100%

10%

1% : : :
12 Q214 Q14 T Q19 Q20
mAES128 s AES256 #3DES168 = OPES

=Salsazl =MOBAT AddCol tMOBAT CreateCaol = MOBAT Colkey

Figure 4-20. TPC-H 10GB Individual Query Execution Time Overhead per Query
per Solution in Oracle 11g

4.5 Discussion on MOBAT

Contrarily to typical commercial data masking tools which provide data
masking routines that, once applied, do not allow reversing the operations
to retrieve the original data, the technique proposed in this chapter
manages full masking and unmasking processes. MOBAT accomplishes
continuous data protection similarly to commercial masking tools, since it
maintains data-at-rest masked at all times, and adds the advantage of
enabling its usage in live databases.

Basing the masking and unmasking processes simply on SQL rewriting
enables executing direct queries against masked/unmasked data without
having that data transferred between the database and the
masking/unmasking mechanisms, thus avoiding the I/O and network
bandwidth congestion that other solutions introduce due to those data
roundtrips.

122

MOBAT: A Data Masking Solution for Data Warehouses

High-level SQL rewriting also makes MOBAT a straightforward portable
technique to be universally used in any DBMS regardless of the CPU and
operating system, contrarily to what occurs with most standard encryption
packages supplied by DBMS. Most of these packages are CPU optimized,
i.e., designed and programmed for specific processor models and therefore
depending on those CPUs, meaning that they may fail to execute on other
machines. MOBAT is completely processor-independent, since all CPUs
support basic modular and arithmetic operations.

As we discussed before, while DW data is mainly composed by numerical
values, standard encryption algorithms are designed to output generic
textual values. In the encryption packages supplied by commercial DBMS,
the output they produce is textual or varbinary type values (char, varchar,
varbinary, etc). Given that most sensitive columns in DW fact tables store
numerical values, using these packages to encrypt data requires converting
those values to a textual or varbinary format. Once decrypted for
processing, these values also must be transformed back into numerical
format in order to apply arithmetical operations such as sums, averages,
etc. This is a significant drawback, introducing extra computational
overheads with evident impact in performance. MOBAT is specifically
designed for masking numerical values, and in this sense, it is much more
performance efficient for protecting DW facts. The data loading and query
execution response time results shown in the experimental evaluations
demonstrate this, and show that using encryption does in fact introduce
extremely high storage space, loading time and query response time
overhead.

In what concerns storage space, OPES and MOBAT introduce much
smaller storage space overheads than the remaining solutions (less than
25% of extra storage space), followed by Salsa20 at a considerable
difference (adding approximately 30% of storage space in TPC-H and
almost 100% in the Sales DW), while the standard encryption solutions
produce the highest storage space overheads by far. The standard
encryption solutions introduce the highest overheads, roughly requiring
duplicating the original database storage space for the TPC-H scenarios
tested and between 308% and 591% of extra storage space in the Sales DW
scenarios.

123

Chapter 4

Note that in the best case scenarios for the standard encryption algorithms
in TPC-H 10GB, an overhead of 104% in Oracle implies using more 8GB of
storage space, and for an overhead of 308% in the Sales DW implies using
more 5GB of storage space. OPES only requires a storage space overhead
of 2% for TPC-H, which means that the worst case scenarios would imply
using more 208MB of storage space in TPC-H 10GB and 62MB in the Sales
DW.MOBAT would require almost 1GB of extra storage space for the TPC-
H 10GB worst case scenario, and 73MB of extra storage space for the Sales
DW. Salsa20 requires approximately three times more storage space
overhead than MOBAT, and ten to twenty times more than OPES. These
results show that Salsa20 and the standard encryption solutions effectively
introduce a much higher increase of extra storage space than OPES and
MOBAT.

In what concerns loading time, MOBAT is much faster than all the
remaining solutions, introducing 3% to 16% of extra loading time in the
tested scenarios. OPES has the second best performance, introducing 46%
to 71% of extra loading time, more than four times worse than MOBAT on
average. Salsa20 presents loading time overheads from 72% to 114%, on
average roughly nine or ten times worse than MOBAT, while the standard
encryption solutions introduce overheads of more than 100%, reaching
more than 200% in several scenarios. In practice, while MOBAT introduces
an extra 6 minutes of loading time in the worst case scenario, the standard
algorithms introduce at least almost one hour of extra loading time.

Considering the results obtained in the query workload executions,
MOBAT is also much faster than the remaining solutions. By observing the
results, it can be seen that the relative differences between the solutions are
approximately proportional throughout the different scenarios, with
MOBAT always as the fastest solution and therefore introducing the
smallest execution time overheads by several orders of magnitude, roughly
one sixth, on average, of the remaining solutions. In practice, MOBAT adds
less than 12 minutes of extra execution time in all TPC-H 10GB and Sales
DW scenarios, and the remaining solutions introduce at least 30 more
minutes up to more than 2 hours.

All the results in all scenarios and databases for both DBMS also show that
the performance of CreateCol Masking is better than AddCol Masking, which
was expected. The performance results of ColKey Masking are the best,

124

MOBAT: A Data Masking Solution for Data Warehouses

given the absence of changes in the original fact table data structure and
size.

Given that decision support environments typically execute long running
queries (i.e., queries that can run for many minutes up to hours), the
response time overheads introduced due to the use of encryption solutions
represent high absolute values that can easily make query responses
overdue and jeopardize the usefulness of the DW itself. Considering the
magnitude of the results shown in the experimental evaluations, even a
minimum gain in response/CPU time can be considered as an important
achievement.

Although not nearly as secure as standard or state-of-the-art encryption
algorithms, the proposed data masking technique is able to provide at least
acceptable security while requiring a small amount of computational
resources, introducing small response time and storage space overhead.
Moreover, it keeps the data-at-rest always masked. Assuming that
implementing a minimum amount of security strength concerning data
confidentiality is better than not implementing any security at all, this
makes the proposed masking technique a feasible and valid alternative for
data warehousing contexts in which minimizing response time is so critical
that using encryption to protect the DW is not acceptable.

Given that the proposed masking technique is straightforward and nearly
effortless to implement, the masking keys may be periodically refreshed
by rebuilding the masked table values, frequently switching the values of
all or any one of the Ki, Kz, and Ks keys before refreshing masked data in
order to ensure that data is properly protected. Although it is not possible
to absolutely prove that a particular algorithm is absolutely secure
[Elminaam et al., 2010; Ge and Zdonik, 2007; Kim et al., 2010; Mattson, 2004;
Nadeem and Javed, 2005; Natan, 2005], we believe that our technique is
secure enough to be acceptable for use and that the small overheads
introduced in both data loading and query execution performance are also
acceptable, allowing us to state that it may be considered as a valid
alternative for enhancing data confidentiality in DWs.

4.6 Summary

In this chapter we proposed a data masking solution specifically designed
for enhancing data confidentiality in DWs. The proposed data masking

125

Chapter 4

formula is composed by a set of two consecutive modulus (division
remainder) operations and two simple arithmetic operations. It requires
small computational efforts and can be easily implemented in any DBMS.
The proposed solution is transparently used and to query the database the
user interfaces only need to send their queries to a middleware instead of
to the DBMS. Data at rest is always masked and only the processed results
are returned to the authorized user interfaces that requested them. All SQL
commands and actions are encrypted and stored in a log by the
middleware security broker, which can be audited by security staff. If an
attacker bypasses the broker and gains direct access to stored data, s/he just
views masked “realistic-looking” but not real values.

Since it basically works by transparently rewriting user queries, the
approach minimizes the required changes to user applications, and does
not jeopardize network bandwidth. The masked database can be directly
used for production purposes, while applications under development may
directly query the database without passing through the MOBAT
application (e.g. for software testing purposes), therefore retrieving
realistic data, but never the real data. This also avoids disclosure of the real
original data if any attacker bypasses database access control and is able to
retrieve data directly from the database.

Although it was not conceived as a direct alternative to standard
encryption solutions, we have compared it with the AES and 3DES
encryption algorithms provided by leading commercial DBMS, as well as
two state-of-the-art encryption proposals. The experimental results show
that the storage space increase and the degradation of database
performance in response time introduced by these standard and research
solutions is very significant from the DW perspective. This enforces stating
that those techniques are in fact too complex to be used in DW scenarios.

Given that most DW data consists on numerical values, our masking
technique is tailored for this kind of data, thus showing better database
performance than the remaining encryption solutions, while managing to
maintain a significant level of security strength. Thus, it is an efficient
overall solution and a valid alternative for balancing performance and
security issues from the DW perspective. In the next chapter, we propose
an encryption solution based on the masking solution that enhances its
security while maintaining low performance overhead.

126

Chapter 5

SES-DW: A Specific Encryption
Solution for Data Warehouses

As we discussed in Chapter 2 and demonstrated in Chapter 4, database
storage size and response time overheads introduced by using encryption
in very large databases such as DWs may jeopardize their feasibility.
However, given the value of DW data, it is not advisable to avoid using
encryption to secure that data just because of those overheads. This arises
the need for encryption solutions that are capable of maintaining database
performance as high as possible while providing significant security
strength. Although the data masking solution proposed in the previous
chapter provides some security strength, it is far from being a full-poof
solution. Therefore, in this chapter we propose an encryption algorithm
that computes a series of data transformations based on the data masking
solution proposed in the previous chapter, which improves its security
strength while maintaining low performance overhead.

The proposed Specific Encryption Solution tailored for Data Warehouses
(SES-DW) consists on a lightweight encryption cipher for numerical
values, which uses only mixes of standard SQL operators such as eXclusive
OR (XOR) and modulus (MOD, that return the remainder of a division
expression), together with additions and subtractions, similarly to the data
masking solution proposed in the previous chapter. Storage space
overhead is also avoided by preserving each encrypted column’s datatype,
while using only standard SQL operators enables the transparent use of
SQL rewriting in order to avoid I/O and network bandwidth bottlenecks
by discarding data roundtrips between the database and the encryption
and decryption mechanisms (similarly to the masking solution presented
in Chapter 4).

Also similarly to what we mentioned in the previous chapter it is important
to note that it is not our aim to propose an encryption solution as strong in

127

Chapter 5

security as any state-of-the-art encryption algorithm, but rather a
technique that provides a considerable level of overall security strength
while introducing small performance overhead, i.e., that presents better
security-performance balancing. Nevertheless, we include a thorough
security analysis of the proposed cipher. As the data masking technique
proposed in the previous chapter, this encryption technique fits into the
middleware layer of the security framework described in Chapter 3,
working transparently between user interfaces and the DBMS.

Experiments are included in order to compare the proposed solution with
the standard encryption algorithms available in current DBMS, namely
AES and 3DES, and also with state-of-the-art proposals such as Order-
Preserving Encryption (OPES) and Salsa20 (alias Snuffle), using the TPC-
H decision support benchmark and a real-world DW running on top of the
Oracle 11g and Microsoft SQL Server 2008 DBMS.

The remainder of this chapter is organized as follows. Section 5.1 presents
the encryption cipher and Section 5.2 describes its functional architecture.
Section 5.3 presents a security analysis on the proposed cipher. Section 5.4
presents the experimental evaluation. Section 5.5 includes a discussion on
the proposed encryption solution and on the results obtained in the
experiments. Section 5.6 presents our conclusions.

5.1 SES-DW Encryption Cipher

Given x as the plaintext value to cipher and y as the encrypted ciphertext,
the external view for encrypting x using the SES-DW cipher is shown in
Figure 5-1, and considers the following assumptions:

e NR s the number of rounds executed by the cipher;

¢ RowK is a 2'? bit random encryption key (in a database table T, each
row j has its own RowK, meaning each encrypted table T has a vector
RowK][j] where j =[1...number of rows in T);

e Operation[t] is a random binary vector with NR elements (i.e., each
element is randomly 1 or 0), where t represents each encryption
round’s number (i.e., t = 1...NR);

o XorK[t] and ModK[t] are vectors where each element is a random
value encryption subkey with the same bit length as the plaintext x,
(where t =1...NR);

128

SES-DW: A Specific Encryption Solution for Data Warehouses

e F(t) is a MOD/XOR mix function (explained further), where ¢t
represents each encryption round’s number (i.e., t =1...NR).

X
RowK
input
Operaﬂon[l]o—»r___ELB___W:::JyggfiEL_4’

output

) 4

6}4—0 XorK[1]

yinput

Operation[2] e—»| F(2) > ModK[2] |

output

) 4

Pe—e XorK[2]

v

input
Operation[NR] F(NR) ModK[NR]

output

) 4

P<+—eXorK[NR]

v

y

Figure 5-1. The SES-DW Data cipher for encryption

The MOD/XOR mix function F(t) for encryption, considering input as the
function’s input and output as its output, is defined as:

IF Operation[t] = 1 THEN

output = input+ (RowK MOD ModK[t])-ModK|[t]
ELSE

output = input
END IF

Given this, the SES-DW cipher encryption function for encrypting x by
executing NR rounds is as shown:
FUNCTION Encrypt (x, NR)

EncrOutput = x
FOR t = 1 TO NR

IF Operation[t] = 1 THEN
EncrOutput = EncrOutput+ (RowK MOD ModK[t])-ModK|[t]
END IF
EncrOutput=EncrOutput XOR XorK[t]
END FOR

RETURN EncrOutput

129

Chapter 5

As illustrated, SES-DW randomly mixes MOD with XOR throughout the
encryption rounds, given a random distribution of 1 and 0 values of the
vector Operation. In the rounds where Operation[t] = 0, only XOR is used
with the respective XorK[¢]; in rounds where Operation[t] =1, SES-DW first
performs MOD with addition and subtraction using the respective ModK([¢]
and RowK][j], and afterwards XOR with the respective XorK[t]. To avoid
generating a ciphertext that may overflow the bit length of x it must be
assured that the bit length of the term using MOD (EncrOutput + (RowK]j]
MOD ModK]t]) - ModK][t]) is smaller or equal to the bit length of x.

As a practical example of encrypting with SES-DW, consider the
encryption of an 8 bit numerical value (x = 126) executing 4 rounds (NR=
4), for a row that has RowK = 15467801, given the following assumptions
for Operation, XorK and ModK:

Operation = [0, 1, 0, 1]
XorK = [31, 2, 28, 112]
ModK = [87, 36, 123, 19]

Then for t =1 (round 1), EncrOutput = 126 XOR 31 = 97
For t=2 (round 2), EncrOutput = (97+ (15467801 MOD 36)-36) XOR 2
= 64
For t=3 (round 3), EncrOutput = 64 XOR 28 = 92
For t=4 (round 4), EncrOutput = (92+(15467801 MOD 19)-19) XOR 112
= 40
Thus, Encrypt(126, 4) = 40. To decrypt, SES-DW inverts the cipher. Figure
5-2 shows the external view of the SES-DW decryption cipher steps, in
which F!(x) also represents the reverse MOD/XOR mix function for
decryption. Given this, the SES-DW cipher decryption function for
decrypting y with NR rounds is:
FUNCTION Decrypt (y, NR)
DecrOutput =y

FOR t = NR DOWNTO 1
DecrOutput = DecrOutput XOR XorK|[t]

IF Operation[t] = 1 THEN
DecrOutput = DecrOutput- (RowK MOD ModK[t])+ModKI[t]
END IF
END FOR

RETURN DecrOutput

130

SES-DW: A Specific Encryption Solution for Data Warehouses

X RowK

) 4
P<+—eXorK[NR]
yinput

Operation{NR] e~ _FT(NR)_J4-2 ModkINR]_J

output
Y

é«—oXorK[NR-u

vinput

Operation[NR-1] F*(NR-1) ModK[NR-1] \
output

é§<—o XorK[1]

Figure 5-2. The SES-DW Data cipher for decryption

Considering the encryption example previously shown, we now
demonstrate the decryption process for y = 40, given the same Operation,
RowK, XorK and ModK:

For t=4 (round 1), DecrOutput=(40 XOR 112)-(15467801 MOD 19)+19
=92
For t=3 (round 2), DecrOutput=92 XOR 28=64

For t=2 (round 3), DecrOutput=(64 XOR 2)- (15467801 MOD 36)+36
=97

For t=1 (round 4), DecrOutput=97 XOR 31=126
Thus, Decrypt(40, 4) = 126, which is the original x plaintext value. Although
the SES-DW cipher aims to work only with numerical values, we maintain

the designation of plaintext and ciphertext respectively for the true original
input value and ciphered output value.

5.2 Functional Architecture

The functional architecture for using SES-DW in practice is shown in
Figure 5-3, which is similar to what was presented for MOBAT in the
previous chapter. The architecture is made up by three entities:

131

Chapter 5

o The encrypted database and its DBMS;
e The SES-DW security middleware interface;
e User/client interfaces to query the encrypted database.

The SES-DW middleware interface acts as a broker between the DBMS and
the user interfaces, using the SES-DW encryption and decryption methods
and ensuring the queried data is securely processed and the proper results
are returned to those interfaces. All communications are executed through
SSL/TLS secure connections, to protect SQL instructions and returned
results between the system’s entities.

Black Box
(Encryption Keys,
User Access Definitions,
SQL Command Log)

Query Query
Results Results
< SES-DW <

User

Interfface |—— | Middleware > DBMS
User Interface Rewritten

Queries User Queries
Figure 5-3. The SES-DW Data Security Functional Architecture

Encrypted
DW Database

The Black Box is stored in the Security Framework Database database server,
and there is one Black Box created for each encrypted DW database. Only
the SES-DW middleware itself can access the Black Box, where all
encryption keys and predefined data access policies for the database are
stored.

As in MOBAT, the SES-DW middleware also creates a history command
log that can also be used for intrusion detection purposes, when integrated
with the DIDS proposed in the following chapter. All Black Box contents
are encrypted using AES with a 256 bit key, and there is no way to restore
its true data, except by cracking the encryption keys. These keys are
generated by the SES-DW middleware and are never shown or known by
the DBA or any other user.

To obtain true results, all user queries or actions must pass through the
SES-DW middleware, which will store a copy of those instructions in the
Black Box command history log. Each time a user requests any action, the

132

SES-DW: A Specific Encryption Solution for Data Warehouses

middleware will receive and parse the instructions, fetch the encryption
keys, rewrite the command, send it to be processed by the DBMS and
retrieve the results, and finally send those results back to the user interface
that issued the request. Thus, SES-DW is transparently used, since SQL
command rewriting is transparently managed by the middleware.
Obviously, user applications should send the commands to the
middleware, instead of querying the DBMS directly.

To encrypt a database, a DBA requires it through the SES-DW middleware.
After entering login and database connection information, the middleware
connects to the database and creates the corresponding Black Box, as
explained earlier. Afterwards, the middleware allows the DBA to define
which tables and columns to encrypt. All the required encryption keys
(RowK, XorK, ModK) for each table and column are generated, encrypted
by an AES256 algorithm and stored in the Black Box. Finally, the
middleware encrypts all values in each column that were marked for
encryption. Subsequent updates on the database data must always be done
through the middleware, which will apply the cipher to the values and
store them directly in the database.

In order to implement SES-DW encryption in a given table T, consider the
following: suppose table T with a set of N numerical columns Ci = {C1, C,
..., Cn} to be encrypted and a total set of M rows R;j= {Ry, Ro, ..., Ru}. Each
value to encrypt in the table is identified as a pair (R), Ci), where Rj and Ci
respectively represent the row and column to which the value refers (j =
{1.M} and i = {1..N}). To use the SES-DW cipher, we generate the following
encryption keys and requirements:

e An encryption key TabK, a 128 bit random generated value,
constant for table T;

e Vector RowK][j], with j = {1..M}, for each row j in table T. Each
element holds a random 128 bit value;

e Define NRi with i = {1..N}, which gives the number of encryption
rounds to execute for each column Ci. We define NRi =
SBLi/BitLength(Ci), where SBLi is the desired security bit strength
for the XorK and ModK encryption keys of column Ci and
BitLength(Ci) is the datatype bit length of column Ci (e.g. if we want

133

Chapter 5

to secure a 16 bit column Ci with a security strength of 256 bits, then
the number of encryption rounds would be 256/16 = 16);

e Vectors XorKi[t] and ModKi[t], with t = {1..NRi}, for each C; filled
with randomly generated unique values. The bit length of each key
is equal to the bit length of each Ci’s datatype;

e A vector Operationi[t], with t = {1.NRi}, for each column C; filled
randomly with 1 and 0 values, so that the count of elements equal
to 1 is the same as the count of elements equal to 0 (e.g. Operationi=
[0,1,0,0,1, 1,0, 1], with NRi=8). This makes Prob(Operation[t]=0)
<> Prob(Operation[t]=1), i.e., the probability of executing or not
MOD operations in each cipher round is uniformly distributed, in
order to avoid information leakage in attempting to break security.

Since the number of rows in a DW fact table is often very big, the need to
store a RowK][j] encryption key for each row j poses a challenge. If these
values were stored in a lookup table separate from table T, a heavy join
operation between those tables would be required to decrypt data. Given
the typically huge number of rows in fact tables, this must be avoided. For
the same reasons, storing RowK][j] in RAM is also impracticable. To avoid
table joins, as well as oversized memory consumption, the values of
RowK([j] must be stored along with each row j in table T, as an extra column
Cn+1. This is the only change needed in the DW data structure in order to
use SES-DW. To secure the value of RowK(j], it should be XORed with key
TabK before being stored. To retrieve the true value of RowK]|j] in order to
use the SES-DW algorithms, we need to simply calculate (Rj, Cn:1) XOR
TabK.

5.3 Security Issues

Most security issues and assumptions concerning the threat model,
datatype preservation, having data-at-rest masked or encrypted at all
times, and the use of MOD and XOR operations for SES-DW are similar to
those described in the previous chapter for MOBAT. In this section we
present the security proof specifically concerning the SES-DW algorithm,
as well as the entropy produced by SES-DW.

134

SES-DW: A Specific Encryption Solution for Data Warehouses

5.3.1 Using Variable Key Lengths and MOD-XOR Mixes

The bit length of the encryption subkeys XorK and ModK are the same as
the bit length of each encrypted column, meaning that an 8 bit sized
column datatype will have 8 bit sized encryption subkeys. It is obvious that
using 8 bit subkeys on their own is not secure at all. However, since all keys
are distinct in each round, executing 16 rounds would be roughly
equivalent to having a 16*8 = 128 bit key in the encryption process. As
discussed in [Elminaam et al., 2010; Kim et al., 2010; Mattson, 2004; Nadeem
and Javed, 2005], there is no easy way of obtaining impartial and widely
accepted values for defining the minimum number of secure rounds for
each algorithm. It is up to the DW security administrator to decide how
strongly secure each column should be, which defines how many rounds
should be executed, considering the bit length of the column’s datatype.

As previously mentioned in Chapter 3, the MOD operator is used in the
cipher because it is non-injective and consequently makes our cipher not
directly invertible. It is also true that the same ciphered output values are
most likely to come from different original input values and have
approximately the same probability for any output value within the full
range of possible output values. This is formally demonstrated in
Subsection 5.3.3, where the cipher’s entropy is computed, showing a nearly
uniform probability distribution.

Randomly using the XOR and MOD operators as the two possible
operators for each round also increases the number of possibilities an
attacker needs to test in exhaustive searches for the output values of each
encryption round, since the attacker does not know the rounds in which
MOD is used with XOR and needs to test both hypothesis (XOR and MOD-
XOR). Furthermore, if the attacker does not know the security strength
chosen for encrypting each column, s/he does not know how many
encryption rounds were executed for each ciphered value.

By making the values of XorKi and ModK: distinct between columns, we
also make encrypted values independent from each other between
columns. Even if the attacker breaks the security of one column in one table
row, the information obtained from discovering the remaining encryption
keys is limited. Thus, the attacker cannot infer information enough to break
overall security; in order to succeed, s/he must perform recover all the keys
for all columns.

135

Chapter 5

5.3.2 Attack Costs on SES-DW

To break security by key search in a given column C;, the attacker needs to
have at least one pair (plaintext, ciphertext) for a row j of C;, as well as the
security bit strength involved, as explained in Section 5.2, because it will
indicate the number of rounds that were executed. In this case, taking that
known plaintext, its respective ciphertext, and the Cn+ value (storing RowK;
XOR TabK, as explained in Section 5.2), s/he may then execute an
exhaustive key search.

The number of cipher rounds for a column Ciis given by NRi, and {3 is the
bit-length of C/s datatype. Since half the values of vector Operation are
zeros and the other half are ones, the probability of occurrences of 1 and 0
is equal, i.e., Prob(Operation[t]=0) = Y2 = Prob(Operation[t]=1), where the
number of possible values for Operation[t] is 2NRi,

Considering {3, each XorK and ModK subkey also has a length of 3 bits and
thus, each XorK and ModK subkeys have a search space with 2¢ possible
values. TabK is a 128 bit value, thus with a search space of 2'? possible
values. Considering the cipher’s algorithm and given the probability of {0,
1} values in Operation, a XOR is executed in all rounds (NRi), while a MOD
is executed before the XOR in half the rounds (NRi/2). Given this, the key
search space dimension considering the combination of XOR and
MOD/XOR rounds is given by G(x):

NRi+NEE
G) =T,0, * Flx).20%128

(NRi—x
(NRi) x=1
= X

NRi—x
Flx —=1)+ (-1)* (NRL’ > ,2<=x<=NRi/2
—-x

2
F(x) = < F(x—1) , NRi/2+1 <= x <= NRi
NRi

x—2-1
2

x—NRi—1

NRi.
Fx—1)+(D&2) < > , NRi+1 <= x <= NRi + NRi/2 - 1

NRi
(Nm) ,x = NRi + NRi/2

2

136

SES-DW: A Specific Encryption Solution for Data Warehouses

Considering Y as the number of attempts to discover the keys, Y is a
discrete random variable with support S = {1...N }, where N represents the
search space’s dimension. For one attempt, considering a random variable
B, it has only two possibilities:
B= { 0, given the attempt is not successful
1, given the attempt is successful

Therefore, B follows a Bernoulli distribution with probability p = Prob(B=1)
= 1/N. Since the number of attempts is limited, given the search space is
finite, variable Y also has a finite support S = {1...N}. The probability of
being successful after k attempts is given by:

_ _ _ 1 k-1 1
Prob(sz)=Prob(AnAn...nAnA)=(1—N) 2 k=1..N

Note that the probability of needing more than m attempts is given by:

Prob(Y >m) = ZN Prob(Y = k)

k=m+1

5 et -2

The probability of needing n more attempts, given m initial unsuccessful
attempts (for m > 1 and n > 1) is defined by Prob(Y >m+n | Y >m) =
Prob(Y>m+n) | Prob(Y>m), since the event {Y > m+n} is contained in {Y > m},
which means that after having m unsuccessful attempts, being successful
after n more attempts only depends on those n additional attempts and not
on the initial m attempts, i.e., it does not depend on the past. For the
complete search space, the average number of attempts is then given by:

Z:=1k.Prob(Y k)= %Z:ﬂk (1 - %) R

From the series theory it is known that

k-1

+ oo k 1 .
_o X" =—,if lxlI<1
k=0 1-x

Which is the case in
() for (1 - %)
Thus,

+ k _ 1) + k-1 _ 1
(e xk) = (E) & Tk kTt = x| <1

137

Chapter 5

Thus, the average number of attempts for finding the keys is

1 1
()=—o—— =N

N 2
1
(1-(-7)
which is equal to the dimension of the key search space (N). Note however,
that this is the worst case complexity. It is possible for the attacker to reduce
the key search space by chosen plaintext attacks. Since the same TabK key

is used for encrypting all RowK, as explained in section 5.2 (Cn+1(row j) =
RowK[j] @ TabK), the information leakage is given by

1@ y2=(x1 @ TabK) ® (x2 ® TabK) <
S 1@ 2= (x1 ® x2) @ (TabK @ TabK)
SY®yp=x1dx2

This implies that Cns(row j) @ Cwns(row j+1) = RowK[j] @ RowK[j+1],
reducing the possible search space for RowK to 2% instead of 2'? in each
row. If the attacker manages to use very low RowK values, which are most
probably smaller than the value of the ModK encryption keys (i.e.
RowK<ModK][t]), then the (RowK MOD ModK[t]) — ModK[t] operation in the
cipher will be reduced to RowK - ModK[t], thus further reducing
complexity. In this case, for example, taking more than one (plaintext,
ciphertext) pair y1 = Encrypt(x1,2) and y2= Encrypt(x2,2) for 2 encryption
rounds on the same row, where Operation=[0,1]:
V1@ y, = (x,® XorK[1] + RowK — ModK[2]) ® (x,® XorK[1] + RowK — ModK[2])

Considering that each xi has a length of bits, given the encryption key
RowK has a reduced search space of 2% (as previously mentioned) and each
XorK and ModK have a search space of 2, the key search space in this
example is given by 22%+64 Since XorK[1] and ModK][2] are just half the keys
for the 2 round SES-DW, to obtain the remaining XorK[2] and ModK[1]
keys, the search space is incremented by 22"

As the number of XorK and ModK encryption keys is the same as the
number of rounds, the generic expression for the reduced key search space
in this type of attack is given by G(x) = 2NR*B+64 4 INRP Note that for an 8 bit
value (B = 8) encrypted by 16 rounds (NRi = 16), using 16 XorK and ModK
subkeys with 8 bits each (each total key length for XorK and ModK is 16*8

138

SES-DW: A Specific Encryption Solution for Data Warehouses

= 128 bits), the key search space complexity is 212+ 2128 = 6.3x10%, which
remains a considerable measure of security strength.

5.3.3 SES-DW Entropy

In information theory, entropy is a measure of randomness or uncertainty
[Vaudenay, 2006]. In this context, the term usually refers to Shannon’s
entropy, which quantifies the randomness of a variable based upon the
knowledge of the information contained in its message. The entropy of a
discrete variable X with n bits in length is given by the following
expression, where Prob(xi) is the probability of occurrence of each xi within
the probability distribution of all possible integer values [1...2"]:

Entropy(X) = — Y2, (Prob(X = x;).log,Prob(X = x;))

Since numeric datatype storage sizes are typically 8, 16, 32, 64 or 128 bits,
each of our cipher’s input/output values (as well as the encryption keys)
respectively have a number of 28, 21, 232, 264, or 2128 possible combinations.
While it is computationally fast to obtain the probability distribution in the
first case by combining all possible input and encryption key values (with
all 8 bit values =[1...2%]) using two cipher rounds (the minimum number of
rounds), for the remaining (26, 232, 2¢* and 21?%) the task gets exponentially
time-expensive.

Therefore, after a series of statistical regression experiments using the
calculated 8 bit probability distribution for SES-DW, we found that the
logarithmic regression (y = a+ b.In(x)) generated the most adjusted
statistical model for representing the cipher’s probability distribution (with
correlation R?>= 0.98 and a standard error of 0.001). Knowing that the
accumulated probability for n bits must be equal to 1, using the logarithmic
regression function we must ensure that:

zn
f a+b.ln(x)dx=1
1
This expression leads to Prob(x;) =a + b. In(x;), which represents the

estimated probability distribution function for n bits SES-DW, where:

- n ~ X—(2n-141
_1 n.b.2".in(2) +b A b= (2)

2n-1 22nm2-2op gn-1In(2)

Q

139

Chapter 5

Given Prob(x), the entropy of SES-DW for n = 8, 16, 32, 64 and 128 bits is
shown in Table 5-1. As can be seen, the entropy produced for n bits is
nearly n, thus meaning the generated ciphertexts are very close to a
uniformly random 7 bit value and therefore, have very little information
leakage because very little can be inferred from the output generated by
the cipher.

Table 5-1. Estimated SES-DW entropy values

Number of bits (n) SES-DW Entropy
8 7.967144
16 15.972308
32 31.979863
64 63.986246
128 127.989741

5.4 Experimental Evaluation

In these experiments we wused the TPC-H benchmark [TPC-H]
implemented in its 1GB and 10GB scale sizes, and a real-world sales DW
storing one year of commercial data taking up 2GB of storage space (as we
previously mentioned, full description of the sales DW can be seen in
Appendix A). We tested all scenarios using the Oracle 11g and Microsoft
SQL Server 2008 DBMS with default settings, on a Pentium Core2Duo
3GHz CPU with a 1.5TB SATA hard disk and 2GB RAM (512MB of devoted
to database memory cache), running Windows 2003 Server.

As in the experiments involving the data masking solution, the columns
chosen for testing the masking solution were those referring to numerical
datatype columns belonging to the fact tables. The TPC-H schema has one
fact table (Lineltem), and seven dimension tables. In TPC-H setups, four
numerical columns of Lineltem were encrypted (L_Quantity,
L_ExtendedPrice, L_Tax and L_Discount). The Sales DW database schema
has one fact table (Sales) and four dimension tables. In the Sales DW, five
numerical columns were encrypted (S_ShipToCost, S_Tax, S_Quantity,
S_Profit, and S_Sales Amount).

In these experiments, we compare the storage size overhead and query
response time of SES-DW with the column-based AES (with 128 bit and
256 bit security) and 3DES168 algorithms available as built-in options of

140

SES-DW: A Specific Encryption Solution for Data Warehouses

each DBMS, and OPES [Agrawal et al., 2004] and Salsa20/20 [Bernstein,
2005; Bernstein, 2008]. OPES and Salsa20 were implemented using C#. We
use the column-based solutions for the same reasons as explained in the
previous chapter in Section 4.4 (see Table 4-2).

All loading time and query response time results shown in this section
were obtained from an average of six executions in each described
setup/scenario, given the relatively small standard deviation values, as in
Chapter 4. The complete set of results and respective statistical measures
can be seen in Appendix B. Note that the experiments included in this
chapter cannot be directly compared with those of the data masking
chapter, since different CPUs were used.

5.4.1. Analyzing Storage Space

The storage space results measured in these experimental evaluations are
exactly the same as those presented for the data masking experimental
evaluation in Subsection 4.4.1, making it redundant and unnecessary to
repeat the analysis here. This happens because the implementation of SES-
DW requires exactly the same changes to the DW data schemas as MOBAT,
and the remaining encryption algorithms that we tested against are also
the same as in the previous experiments. Therefore, in this subsection we
just remind the main storage space results and conclusions.

For TPC-H 1GB:

e OPES and SES-DW produce much smaller storage space overheads
than the remaining solutions;

e OPES adds a 2% overhead for both DBMS, corresponding to 18MB
of extra storage space in Oracle and 21MB in SQL Server;

e SES-DW adds 8% and 12% overhead respectively in Oracle and SQL
Server, corresponding to an extra 96MB and 102MB of storage space;

e Salsa20 introduces 38% overhead in Oracle, corresponding to adding
292MB, and 26% in SQL Server, which adds 316MB of extra storage
space;

e The standard encryption solutions produce the highest overhead,
with AES being the worst by requiring 154% in Oracle and 95% in
SQL Server of storage space overhead, corresponding to respectively

141

Chapter 5

adding 1188MB and 1173MB and 154% in each DBMS, while
3DES168 produced a storage space overhead of 104% in Oracle and
76% in SQL Server, respectively corresponding to 800MB and 944MB
of extra storage space.

In what concerns the TPC-H 10GB DW, the extra storage space added to
the 10GB database by each encryption solution is approximately
proportional to those of the 1GB database, which means ten times bigger.
Thus, the analysis of the results for the 10GB sized TPC-H database is
similar to that of the 1GB.

For the Sales DW:

e OPES and SES-DW continue to produce much smaller storage space

overheads than the remaining solutions, similarly to the occurred
with TPC-H;

e OPES shows a 4% overhead for both DBMS, corresponding to an
extra 62MB of storage space in Oracle and 73MB in SQL Server

e SES-DW presents 25% and 33% overhead for SES-DW respectively in
Oracle and SQL Server, corresponding to an extra 415MB and 636MB
of storage space;

e Salsa20 also introduces more storage space overhead than OPES and
SES-DW, namely 88% in Oracle, corresponding to adding 1464MB,
and 94% in SQL Server, which adds 1818MB of extra storage space;

e The standard encryption solutions continue to produce the highest
overhead, with AES also being the worst by requiring 462% in Oracle
and 591% in SQL Server of storage space overhead, corresponding to
respectively adding 7688MB and 11424MB of storage space, while
3DES168 produced a storage space overhead of 308% in Oracle and
390% in SQL Server, respectively corresponding to 5125MB and
7532MB of extra storage space.

5.4.2. Analyzing Loading Time

Figures 5-4a and 5-4b respectively show the results for the total loading
time (in seconds) and percentage of time overhead for loading the TPC-H
1GB Lineltem fact table in Oracle, while Figures 5-5a and 5-5b show the
same results in SQL Server. It can be observed that the standard loading

142

SES-DW: A Specific Encryption Solution for Data Warehouses

time for the TPC-H Lineltem fact table without using any sort of encryption
solution is 253 seconds in Oracle and 171 seconds in SQL Server.

As shown, SES-DW produces much smaller loading time overheads than
the remaining solutions with the same bit security. SES-DW with 128 bit
security shows 10% and 12% overhead in Oracle and SQL Server,
respectively corresponding to an extra 26 and 20 seconds in loading time.
SES-DW with 256 bit security shows 16% and 18% in Oracle and SQL
Server, respectively corresponding to adding 41 and 30 seconds, and when
using 1024 bit security (at least four times higher than the remaining
solutions) the loading time overhead was 78% in Oracle and 66% in SQL
Server, respectively corresponding to an extra 198 and 113 seconds of
loading time.

Oracle TPC-H 1GB Oracle TPC-H 1GB

Lineltem Fact Table Loading Time (sec) Lineltem Loading Time Overhead (%)
800 200%
700 5 636 617 175%
600 150% 140% *144
500 125%
400 100%
300 279 2% 75%
200 50%
100 25% I 10% 15%

] 0%

& 60 & &2 A & ¢.§o o>
o b’bv{;’ @’Lo“’@’ qu} %0*3'%0‘5&9\3‘ & v‘;;:o“i’x ° c),o S ’L‘Q >
& &7 P ¥

Figure 5-4a. Loading Time in Oracle =~ Figure 5-4b. Loading Time Overhead
for the TPC-H 1GB Fact Table per (%) in Oracle for the TPC-H 1GB Fact
Encryption Solution Table per Encryption Solution

143

Chapter 5

SQL Server TPC-H 1GB SQL Server TPC-H 1GB
Lineltem Fact Table Loading Time (sec) Lineltem Loading Time Overhead (%)
800 200%

200 180%
160%
500 138%

140% q9304 e 127%

500 , 407 359 120%
100%
80%
60%
. 34%
o 12% 18% I
0%

R R

c?' %"f "J'\’ &P

L SR & @S*“
& S &
& &

Figure 5-5a. Loading Time in SQL Figure 5-5b. Loading Time Overhead
Server for the TPC-H 1GB Fact Table (%) in SQL Server for the TPC-H 1GB
per Encryption Solution Fact Table per Encryption Solution

OPES comes after SES-DW 128 and 256 bit security in loading time
performance, showing an overhead of 40% in Oracle and 34% in SQL
Server, which respectively correspond to adding 100 and 110 seconds.
Salsa20 introduces more loading time overhead than OPES and the
referred bit security versions of SES-DW, namely 66% in Oracle,
corresponding to adding 166 seconds, and 64% in SQL Server, which adds
110 seconds of extra loading time.

Note that, although SES-DW 1024 does introduce higher overhead than
OPES and Salsa20, it does use a much higher security bit strength, which
consequently has impact on its performance.

Similarly to what occurred with storage space, the standard encryption
solutions produced the highest loading time overheads. AES with 128 bit
security produced 140% in Oracle and 123% in SQL Server, respectively
corresponding to adding 355 and 211 seconds to the standard loading time.
AES with 256 bit security shows an overhead of 151% in Oracle and 138%
in SQL Server, respectively corresponding to 383 and 236 seconds of extra
loading time. 3DES168 introduces 144% loading time overhead in Oracle,
corresponding to adding 364 seconds, and 127% in SQL Server, which adds
218 seconds of extra loading time.

144

SES-DW: A Specific Encryption Solution for Data Warehouses

Figures 5-6a and 5-6b respectively show the results of total loading time (in
seconds) and percentage of loading time overhead for loading the TPC-H
10GB Lineltem fact table in Oracle, while Figures 5-7a and 5-7b show the

same results in SQL Server.

Oracle TPC-H 10GB
Lineltem Fact Table Loading Time (sec)

8000
674257

7000 6375
6000
5000
4000

4481
3766
oI I

30243216
3000
2000
1000
SRS
& P o
q$§ Q, Q? c:?» C§ \5b ng ng
& v TSP
&7 & é?

Figure 5-6a. Loading Time in Oracle
for the TPC-H 10GB Fact Table

SQL Server TPC-H 10GB
Lineltem Fact Table Loading Time (sec)
2000

7000
6000
5000 1as®5320230
4000 2106 3516
3000 e 213?2320
2000
“illkitii

0

O AP % o
o v‘*i’ov‘-‘"’rfp“? o ““N’ "'ﬁi"é”’

c:

Figure 5-7a. Loading Time in SQL
Server for the TPC-H 10GB

Oracle TPC-H 10GB

Lineltem Loading Time Overhead (%)
200%
180%
160%
140%
120%
100%

80%
60

0%

20
0%

162%

> & O © o
o & @ ‘ng’ S
¥ S

&£ & é@

147%

&=
S &

® ‘>
o G
¥

Figure 5-6b. Loading Time Overhead
(%) in Oracle for the TPC-H 10GB

SQL Server TPC-H 10GB
Lineltem Loading Time Overhead (%)
200%

180%
160%
140% 131% 139%
120% -
100%
20%
60%
0% 29%
19%
20%
0%
> % 5 0 co ™
Ladi ,,,o c? 9
<<5’ & SO
& & &

Figure 5-7b. Loading Time Overhead
(%) in SQL Server for the TPC-H 10GB

145

Chapter 5

From observing the results in Figures 5-6a to 5-7b, it can be seen that the
extra loading time added to the 10GB database by each encryption solution
is approximately proportional to those of the 1GB database, as occurred
with the storage space, which means ten times bigger. Thus, the analysis of
the results for the 10GB sized TPC-H database is also similar to that of the
1GB sized TPC-H database.

Figures 5-8a and 5-8b respectively show the results of total loading time (in
seconds) and percentage of time overhead for loading the Sales DW fact
table in Oracle, while Figures 5-9a and 5-9b show the same results in SQL
Server. It can be seen that the standard loading time for the Sales fact table
without using any encryption solution is 994 seconds in Oracle and 1013
seconds in SQL Server. As seen in both Figures, SES-DW continues to
produce much smaller loading time overheads than the remaining
solutions, similarly to the occurred with TPC-H. SES-DW with 128 bit
security shows 13% and 15% overhead in Oracle and SQL Server,
respectively corresponding to an extra 130 and 148 seconds in loading time.
SES-DW with 256 bit security shows 22% in both DBMS, corresponding to
adding 217 seconds in Oracle and 224 seconds in SQL Server, and when
using 1024 bit security the loading time overhead was 82% in Oracle and
86% in SQL Server, corresponding to an extra 814 and 868 seconds of
loading time.

Oracle Sales DW 2GB Oracle Sales DW 2GB
Sales Fact Table Loading Time (sec) Sales Loading Time Overhead (%)
4000 240%
3500 210% 1913, 197%
28893949
3000 2676 180% 169%
2500 150%
2000 1902 1308 120%
1500 11241211 90%
1000 60%
500 30% I 13%
0 0%
B o B S D
b (P & D o A N <o '1, o>
(;f: %\‘o O@’v c;;\. e Q’\, & égb @N & ‘&Q {51, A
,bo K> o N S S .55
& > P <é'-’ & P
& &G KL

Figure 5-8a. Loading Time in Oracle Figure 5-8b. Loading Time Overhead
for the Sales DW Fact Table (%) in Oracle for the Sales DW

146

SES-DW: A Specific Encryption Solution for Data Warehouses

SQL Server Sales DW 2GB SQL Server Sales DW 2GB
Sales Fact Table Loading Time (sec) Sales Loading Time Overhead (%)
4000 240%
3500 210%
3000 a1 257311 180% 154%,158%
2500 150% 139%
2000 18?9 1881 120%
86%
1500 1237 90%
1013 1161 53%
1000 60%
500 30% 15% 22%
0 0%
o @ Ak
@*f{?’h‘o \,cbﬁf’wfz ’ﬁ’é‘f
S 0Q & $ T
o ¥ cﬁ@ﬁ‘:ﬁ‘kg Ll S ‘726._, %@ @Q“é'
& & =
Figure 5-9a. Loading Time in SQL Figure 5-9b. Loading Time Overhead
Server for the Sales DW Fact Table per (%) in SQL Server for the Sales DW
Encryption Solution Fact Table per Encryption Solution

OPES comes after SES-DW in loading time performance, showing a 56%
overhead in Oracle and 53% in SQL Server, respectively corresponding to
an extra 561 seconds and 541 seconds of loading time, and Salsa20 presents
91% and 86% overhead for respectively in Oracle and SQL Server,
corresponding to an extra 908 and 866 seconds of loading time in each
DBMS.

The standard encryption solutions continue to produce the highest
overhead, where AES with 128 bit security produced 169% in Oracle and
139% in SQL Server, respectively corresponding to adding 1682 and 1403
seconds to the standard loading time. AES with 256 bit security shows an
overhead of 191% in Oracle and 154% in SQL Server, respectively
corresponding to 1895 and 1560 seconds of extra loading time. 3DES168
introduces 197% loading time overhead in Oracle, corresponding to
adding 1955 seconds, and 158% in SQL Server, which adds 1598 seconds of
extra loading time.

Overall, the loading time results presented in this section mostly confirm
those shown in the previous chapter, although different CPUs were used
between them. Tables 5-2, 5-3 and 5-4 summarize the fact table loading

147

Chapter 5

time results respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW,
for each DBMS, highlighting the best solutions in each case.

Table 5-2. TPC-H 1GB Lineitem Fact Table Loading Time Overhead

Oracle TPC-H 1GB
Loading Time (Overhead)

SQL Server TPC-H 1GB
Loading Time (Overhead)

Standard Loading Time

00:04:13

00:02:51

AES128

00:10:08 (00:05:55 / 140%)

00:06:22 (00:03:31 / 123%)

AES256

00:10:36 (00:06:23 / 151%)

00:06:47 (00:03:56 / 138%)

3DES168

00:10:17 (00:06:04 / 144%)

00:06:29 (00:03:38 / 127%)

OPES

00:05:53 (00:01:40 / 40%)

00:03:49 (00:00:58 / 34%)

Salsa20

00:06:59 (00:02:46 / 66%)

00:04:41 (00:01:50 / 64%)

SES-DW128

00:04:39 (00:00:26 / 10%)

00:03:11 (00:00:20 / 12%)

SES-DW256

00:04:54 (00:00:41 / 16%)

00:03:21 (00:00:30 / 18%)

SES-DW1024

00:07:31 (00:03:18 / 78%)

00:04:44 (00:01:53 / 66%)

Table 5-3. TPC-H 10GB Lineitem Fact Table Loading Time Overhead

Oracle TPC-H 10GB
Loading Time (Overhead)

SQL Server TPC-H 10GB
Loading Time (Overhead)

Standard Loading Time

00:42:56

00:29:56

AES128

01:46:15 (01:03:19 / 147%)

01:09:04 (00:39:08 / 131%)

AES256

01:52:22 (01:09:26 / 162%)

01:15:32 (00:45:36 / 152%)

3DES168

01:48:47 (01:05:51 / 153%)

01:11:30 (00:41:34 / 139%)

OPES

01:02:46 (00:19:50 / 46%)

00:42:22 (00:12:26 / 42%)

Salsa20

01:14:41 (00:31:45 / 74%)

00:51:46 (00:21:50 / 73%)

SES-DW128

00:50:24 (00:07:28 / 17%)

00:35:37 (00:05:41 / 19%)

SES-DW256

00:53:36 (00:10:40 / 25%)

00:38:40 (00:08:44 / 29%)

SES-DW1024

01:20:44 (00:37:48 / 88%)

00:58:36 (00:28:40 / 96%)

148

SES-DW: A Specific Encryption Solution for Data Warehouses

Table 5-4. Sales DW 2GB Fact Table Loading Time Overhead

Oracle Sales DW 2GB
Loading Time (Overhead)

SQL Server Sales DW 2GB
Loading Time (Overhead)

Standard Loading Time 00:16:34 00:16:53

AES128 00:44:36 (00:28:02 / 169%) | 00:40:16 (00:23:23 / 139%)
AES256 00:48:09 (00:31:35/191%) | 00:42:53 (00:26:00 / 154%)
3DES168 00:49:09 (00:32:35/197%) | 00:43:31 (00:26:38 / 158%)
OPES 00:25:55 (00:09:21 / 56%) | 00:25:54 (00:09:01 / 53%)
Salsa20 00:31:42 (00:15:08 / 91%) | 00:31:19 (00:14:26 / 86%)
SES-DW128 00:18:44 (00:02:10 / 13%) 00:19:21 (00:02:28 / 15%)
SES-DW256 00:20:11 (00:03:37 / 22%) 00:20:37 (00:03:44 | 22%)
SES-DW1024 00:30:08 (00:13:34 / 82%) | 00:31:21 (00:14:28 / 86%)

5.4.3. Analyzing Query Performance

To analyze the query performance of the encryption algorithms, we
defined a decision support query workload for each database similar to
what was described in the data masking technique’s experimental
evaluation in the previous chapter. The TPC-H workload included the
benchmark queries were the same as those used in the data masking
experiments in the previous chapter (i.e., TPC-H queries number 1, 3, 6, 7,
8, 10, 12, 14, 15, 17, 19 and 20, which correspond to all that access the
Lineltem fact table). For the Sales DW, the workload was also the same set
of 29 queries all processing the Sales fact table. For fairness, databases were
also optimized in a best practice manner (including primary keys, foreign
keys, and referential integrity constraints and join indexes).

As we previously mentioned, all response time results are an average
obtained from six executions in each scenario on each DBMS. The standard
execution time (average of execution time of the workload against a non-
encrypted database) for each scenario is 492, 5037, and 1766 seconds in
Oracle 11g, and 452, 4694, and 1690 seconds in SQL Server 2008, for the
1GB, 10GB TPC-H and Sales DW, respectively.

Figures 5-10a to 5-11b show the total workload execution time and its
overhead in Oracle and SQL Server for the TPC-H 1GB database, while
Figure 5-12 shows the CPU execution time overhead in Oracle and SQL

149

Chapter 5

Server for the same database. SES-DW with 128-bit and 256-bit security has
the best response and CPU time overheads for all scenarios, respectively
106% and 154% of execution time overhead in Oracle, corresponding to 523
and 759 seconds of added response time, and 105% and 152% in SQL
Server, corresponding to 475 and 688 seconds of added response time. The
results are followed by Salsa20 and further by AES, while OPES has results
leveled between AES and 3DES, while SES-DW with 1024 bit security
presents values approximately similar to AES.

Oracle TPC-H 1GB Oracle TPC-H 1GB

Query Workload Execution Time (sec) Query Workload Exec. Time Overhead (%)

2000 250%
1800 1702 275%

1600 13572956 2% 1453 200%
1400 1268 1251 175%
1200 1015 150%
om0 125%
200 100%
Z I I I =
400 50%
200 25%
o 0%

B P F ff° & '\',‘3’ M
5-@ & R @‘3‘ «
& & &
Figure 5-10a. Query Workload Figure 5-10b. Query Workload Exec.
Execution Time in Oracle for the Time Overhead (%) in Oracle for the

TPC-H 1GB per Encryption Solution ~ TPC-H 1GB per Encryption Solution

SQL Server TPC-H 1GB SQL Server TPC-H 1GB
Query Workload Execution Time (sec) Query Workload Exec. Time Overhead (%)
2000 250%
1800 igx 194% 201% 1935, 193%
1600 172%
1200 133013521325 1325 435 1505 1529
1200 1131 1140 1509
1000 125% 105%
200 100%
GO0 452 75%
400 50%
200 25%
0 0%
& c;rq’ FF L P FE P € FFF S
o 7 0SS & v‘9 7 O cﬁ“ o
& & G & &
< <
Figure 5-11a. Query Workload Figure 5-11b. Query Workload Exec.
Execution Time in SQL Server for the Time Overhead (%) in SQL Server for

TPC-H 1GB per Encryption Solution the TPC-H 1GB p/ Encryption Solution

150

SES-DW: A Specific Encryption Solution for Data Warehouses

Query Workload CPU Time Overhead (%)

Oracle TPC-H 1GB SQL Server TPC-H 1GB
500% 474% 456%
430% 435%
450% 412% 394% 308%
0% 376%
350% 08
300% 253% 270%
250% 199% 201%
200%
150%
100%
50%
0%
& &
c;» L;, & '» '1, ,\, L,\- L;, & ¢ '\, '1, '\,
Sy $o ;“;“‘ & @ .,9*« & ﬁ‘ﬁ‘ S
&7 & cgé’ & &

Figure 5-12. Query Workload CPU Time Overhead (%) for the TPC-H 1GB per
Encryption Solution in each DBMS

It can be seen that in what concerns the processing efforts of the encryption
algorithms themselves, which can be observed through analyzing the CPU
execution time overhead, the results shown in Figure 5-12 show that SES-
DW introduces an overhead of approximately 200% to 270% respectively
with 128 and 256 bit security. Salsa20, which is the best of the remaining
solutions, introduces approximately 300%, while all other solutions add
nearly 400% of CPU execution time overhead.

Figures 5-13a to 5-14b show the total workload execution time and its
overhead in Oracle and SQL Server for the TPC-H 10GB database, while
Figure 5-15 shows the CPU execution time overhead in Oracle and SQL
Server for the same database. As can be observed, the results lead to similar
conclusions as those seen in the TPC-H 1GB database, in what respects the
ranking performance of the tested solutions. SES-DW remains the solution
having the best response and CPU time overheads for all scenarios, with
128-bit and 256-bit security in both DBMS. When compared with the
results for the TPC-H 1GB database, it can be seen that the differences
between the solutions are slightly enforced with the higher amount of data
which needs to be processed in the 10GB scale size.

151

Chapter 5

Oracle TPC-H 10GB
Query Workload Execution Time (sec)

ggggg 22053
1907
igggg 17205
4623
15000 1519
12500 5893
10000
7500 5037
5000
2500
0
P @ ®
el ‘ﬂv 1
‘-?" R T
5@ \73' W T 9‘9 0‘*\9

Figure 5-13a. Query Workload
Execution Time in Oracle for the
TPC-H 1GB per Encryption Solution

SQL Server TPC-H 10GB
Query Workload Execution Time (sec)

25000
22500
20000

1665
Egg 141583540 13713
1028

12500 qaag
10000

7500 zp9a

5000

=

I R RN
@?‘5’(’59%“?07}%“‘;&
fa“'é?

18821

Figure 5-14a. Query Workload
Execution Time in SQL Server for the
TPC-H 10GB per Encryption Solution

Oracle TPC-H 10GB
Query Workload Exec. Time Overhead (%)

350%
gmﬁ% 279%
%E% 242%
225% 202% 197%
200%
E% 139%
125%
100%

75%

S0%

25%

0%

"
3
@4‘?’0‘3%&”4\%'\9
& e
EFg SF S

Figure 5-13b. Query Workload Exec.
Time Overhead (%) in Oracle for the
TPC-H 1GB per Encryption Solution

SQL Server TPC-H 10GB
Query Workload Exec. Time Overhead (%)
350%

33504 301%
3?5% 255%
250%
§25% 200% 202%188% 192%
175%
%g% 101%119%
100%
75%
50%
25%
0%
Nl O =
PP S &
o) o 99
) &S 2
S

Figure 5-14b. Query Workload Exec.
Time Overhead (%) in SQL Server for
the TPC-H 10GB p/ Encryption Solution

152

SES-DW: A Specific Encryption Solution for Data Warehouses

Query Workload CPU Time Overhead (%)

Oracle TPC-H 10GB SQL Server TPC-H 10GB

7508 B62% 699%
584%

6008 544%

501%

489%
345%

- 429%
315%
241%
1??%294"5 I I 196%

] S A Q
A9 &

i c,» & P s;‘f" QQ P i :Sf"
W S *N’ “' ?g, i .<>$ N ~‘S‘\’

& & & &
cp%gé? R

300% 4709

402%

Sy

Figure 5-15. Query Workload CPU Time Overhead (%) for the TPC-H 10GB per
Encryption Solution in each DBMS

Figures 5-16a to 5-17b show the results of total workload execution time
and respective overhead for the Sales DW fact table in both DBMS. It can
be seen that SES-DW continues to produce much smaller execution time
overheads than the remaining solutions, similarly to the occurred with
TPC-H. SES-DW with 128 bit security shows 262% and 236% overhead in
Oracle and SQL Server, respectively corresponding to an extra 4627 and
3988 seconds in response time. SES-DW with 256 bit security shows 409%
and 361% in Oracle and SQL Server, corresponding to adding 7223 seconds
in Oracle and 6101 seconds in SQL Server, and when using 1024 bit security
the loading time overhead was 610% in Oracle and 493% in SQL Server,
respectively corresponding to an extra 10773 and 8332 seconds of loading
time.

Salsa20 comes after SES-DW 128 bit and 256 bit in execution time
performance, showing a 539% overhead in Oracle and 492% in SQL Server,
and OPES presents more than 700% and 600% overhead respectively in
Oracle and SQL Server. The standard encryption solutions continue to
produce the highest overhead, roughly between 700% and 800% of extra
loading time in both DBMS.

153

Chapter 5

Oracle Sales DW
Query Workload Execution Time (sec)

20000
18000
16000
14000
12000
10000
8000
6000
4000 4766
2000

154505860

1410 14189
12546
1254
8998
IESQE
B WP
Figure 5-16a. Query Workload

Execution Time in Oracle for the
Sales DW per Encryption Solution

<o

SQL Server Sales DW
Query Workload Execution Time (sec)

20000
12000
16000
14000
12000
10000
8000
6000
4000 qggp

2000
0 -

4898
134284188

2381
10019 10032
7806
5532

S .9
c;\, &@Qc;\, QQ'\G;S"' \&g, \!g,

Lj
=§"t-;<é°

c}’b

Figure 5-17a. Query Workload
Execution Time in SQL Server for the
Sales DW per Encryption Solution

Oracle Sales DW

Query Workload Exec. Time Overhead (%)

1000%
00%:
800%

698% 703%

700% 610%
500% 540%
500% 410%
400%
00 262%
200%
100%

0%

PO
& s
‘si’x@""«f’“’ S S
Y "@@ b

S &

777% 798%

Figure 5-16b. Query Workload Exec.
Time Overhead (%) in Oracle for the
Sales DW per Encryption Solution

SQL Server Sales DW
Query Workload Exec. Time Overhead (%)

1000%
S00%
800%
700%
600%
500%
400%
300%
200%
100%

]

782%
595%?39%

633%
4593% 494%
362%
I 236%

S D A & o

& & O P
,qg,vg,é? 08@@&0\@.
C,

& &

Figure 5-17b. Query Workload Exec.
Time Overhead (%) in SQL Server for
Sales DW p/ Encryption Solution

Figure 5-18 shows the CPU time overhead per solution for the Sales DW in
each DBMS. In what concerns CPU time overhead, by observing Figure 5-
18 and comparing it with the results from the TPC-H 1GB in Figure 5-12
and TPC-H 10GB in Figure 5-15, it can be seen that the CPU execution time
overhead obtained in the Sales DW are very leveled and similar to those
obtained in the TPC-H databases. This reveals a similar difference and
impact in CPU processing efforts between the different solutions.

154

SES-DW: A Specific Encryption Solution for Data Warehouses

Query Workload CPU Time Overhead (%)
Oracle Sales DW 2GB SQL Server Sales DW 2GB
525%

600%
550%
S00%
450%
400%
350%
300%
250%
200%
150%
100%
50%
0%

429%

530%
a42% 460%
392% 401%
201% 313%
152%199% I 179%20%%

408%

b & & P ® & @ o

& &7 "lv‘:r ¥

S5 CFIES «,‘;«,é"cﬁﬁ’@&@

v ey F DS F 0L S
& & G ¥ & P

Figure 5-18. Query Workload CPU Time Overhead (%) for the Sales DW 2GB per
Encryption Solution in each DBMS

Tables 5-5, 5-6 and 5-7 summarize the query workload execution time
results respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, for
each DBMS. We highlight SES-128 as the solution that achieves the best
results.

Table 5-5. TPC-H 1GB Query Workload Execution Time Overhead

Oracle TPC-H 1GB SQL Server TPC-H 1GB

Execution Time (Overhead) | Execution Time (Overhead)
Standard Loading Time 00:08:12 00:07:32
AES128 00:22:37 (00:14:25 / 176%) 00:20:31 (00:12:59 / 172%)
AES256 00:24:56 (00:16:44 / 204%) 00:22:10 (00:14:38 / 194%)
3DES168 00:28:22 (00:20:10 / 246%) 00:22:42 (00:15:10 / 201%)
OPES 00:25:35 (00:17:23 / 212%) 00:22:06 (00:14:34 / 193%)
Salsa20 00:21:08 (00:12:56 / 158%) 00:18:51 (00:11:19 / 150%)
SES-DW128 00:16:55 (00:08:43 / 106%) 00:15:27 (00:07:55 / 105%)
SES-DW256 00:20:51 (00:12:39 / 154%) 00:19:00 (00:11:28 / 152%)
SES-DW1024 00:24:13 (00:16:01 / 195%) 00:22:05 (00:14:33 / 193%)

155

Chapter 5

Table 5-6. TPC-H 10GB Query Workload Execution Time Overhead

Oracle TPC-H 10GB
Execution Time (Overhead)

SQL Server TPC-H 10GB
Execution Time (Overhead)

Standard Loading Time

01:23:57

01:18:14

AES128

04:13:11 (02:49:14 / 202%)

03:54:23 (02:36:09 / 200%)

AES256

05:17:53 (03:53:56 / 279%)

04:37:30 (03:19:16 / 255%)

3DES168

06:07:33 (04:43:36 / 338%)

05:13:41 (03:55:27 / 301%)

OPES

04:46:45 (03:22:48 / 242%)

03:55:55 (02:37:41 / 202%)

Salsa20

04:03:43 (02:39:46 / 190%)

03:45:40 (02:27:26 / 188%)

SES-DW128

02:44:53 (01:20:56 / 96%)

02:37:26 (01:19:12 / 101%)

SES-DW256

03:20:56 (01:56:59 / 139%)

02:51:29 (01:33:15/ 119%)

SES-DW1024

04:09:36 (02:45:39 / 197%)

03:48:33 (02:30:19 / 192%)

Table 5-7. Sales DW 2GB Query Workload Execution Time Overhead

Oracle Sales DW 2GB
Execution Time (Overhead)

SQL Server Sales DW 2GB
Execution Time (Overhead)

Standard Loading Time

00:29:26

00:28:10

AES128

03:55:01 (03:25:35 / 698%)

03:43:49 (03:15:39 / 695%)

AES256

04:18:10 (03:48:44 | 777%)

03:56:20 (03:28:10 / 739%)

3DES168

04:24:20 (03:54:54 | 798%)

04:08:18 (03:40:08 / 782%)

OPES

03:56:29 (03:27:03 / 703%)

03:26:21 (02:58:11 / 633%)

Salsa20

03:08:14 (02:38:48 / 540%)

02:46:59 (02:18:49 / 493%)

SES-DW128

01:46:36 (01:17:10 / 262%)

01:34:42 (01:06:32 / 236%)

SES-DW256

02:29:58 (02:00:32 / 410%)

02:10:06 (01:41:56 / 362%)

SES-DW1024

03:29:06 (02:59:40 / 610%)

02:47:12 (02:19:02 / 494%)

To demonstrate the effects of using encryption on each individual query,
the results for individual query execution time in Oracle for the TPC-H
10GB scenarios are shown in Figure 5-19, with a logarithmic scale. These
results show that all queries have similar proportional overhead to those
of the complete workload. This is also true for all the other scenarios,
making it redundant to include all. It can be seen that most queries

156

SES-DW: A Specific Encryption Solution for Data Warehouses

processed by AES and 3DES have overheads of several orders of
magnitude higher than SES-DW.

10000%

10000%
1000%
100% -
10% - =
Zas
: : ! ; 7=
3 3 : 0, & L Z=5
W Tan
m AES128 m AES256 # 3DES168

= Salsa20 = SES-DW128 1 SES-DW256 m SES-DW1024

Figure 5-19. TPC-H 10GB Individual Query Execution Time Overhead per
Encryption Algorithm in Oracle 11g

For the same reasons as in the experimental evaluation subchapter of the
proposed data masking solution, the individual query execution time
results for the Sales DW are not included, given this set of queries can
produce a certain amount of insight as a whole, but should mainly not be
considered as appropriate for individual analysis, since this DW is a
specific real-world database and it is not a standard nor a benchmark.

5.5 Discussion on SES-DW

Contrarily to typical encryption packages such as those supplied by the
leading commercial DBMS, SES-DW preserves the encrypted columns’
datatype and bit length. This avoids introducing storage space overhead
and type conversions in decryption, consequently decreasing the amount
of data that needs to be accessed in order to process queries, as well as
computation efforts, when compared with typical encryption. As the data

157

Chapter 5

masking technique proposed in the previous chapter, SES-DW
accomplishes continuous data protection similarly to commercial
encryption packages, since it maintains data-at-rest encrypted at all times,
while adding the mentioned benefits of datatype preservation.

SES-DW also has similar advantages to MOBAT, such as executing direct
queries against encrypted/decrypted data without having that data
transferred between the database and the encryption/decryption
mechanisms. This also avoids I/O and network bandwidth congestion that
other solutions introduce due to those data roundtrips, enabled by the fact
that the encrypting and decrypting processes simply rely on SQL
rewriting. As MOBAT, SES-DW is a straightforward and portable
technique to be universally used in any DBMS regardless of the CPU and
operating system, contrarily to what occurs with most standard encryption
packages supplied by DBMS.

Another advantage in SES-DW that is similar to MOBAT is that SES-DW is
specifically designed for masking numerical values, and in this sense, is
therefore much more performance efficient for protecting DW facts, when
compared with standard encryption techniques that require executing data
type conversions. The data loading and query execution response time
results shown in the experimental evaluations demonstrate this, as it also
proves that using encryption does in fact introduce extremely high storage
space, loading time and query response time overheads.

In what concerns storage space, SES-DW presents similar overhead as
MOBAT, concerning the addition of an extra column in the fact table. OPES
and SES-DW introduce much smaller storage space overheads than the
remaining solutions (less than 25% of extra storage space), followed by
Salsa20 at a considerable difference (adding approximately 30% of storage
space in TPC-H and almost 100% in the Sales DW), while the standard
encryption solutions produce the highest storage space overheads by far.

In what concerns loading time, SES-DW with 128 bit and 256 bit security
(those similar to the key lengths of the other solutions) is much faster than
all the remaining solutions, introducing 10% to 29% of extra loading time
in the tested scenarios. OPES has the second best performance, introducing
34% to 61% of extra loading time, more than two times worse than SES-
DW on average. Salsa20 presents loading time overheads from 64% to
102%, on average roughly four times worse than SES-DW, while the

158

SES-DW: A Specific Encryption Solution for Data Warehouses

standard encryption solutions introduce overheads of more than 100%,
reaching more than 200% in several scenarios. On the other hand, while
SES with 1024 bit security does present greater overhead than OPES and
Salsa20, it does have a superior bit security strength than these solutions.

Considering the results obtained in the query workload executions, SES-
DW with security strengths similar to the remaining solutions is also much
faster. By observing the results, it can be seen that the relative differences
between the solutions are approximately proportional throughout the
different scenarios, with SES-DW being always the fastest solution (using
the same bit security strength as the key length of the remaining solutions)
and therefore introducing the smallest execution time overheads by several
orders of magnitude, roughly half to a quarter, on average, of the
remaining solutions.

SES-DW can be considered as a much more efficient overall solution,
introducing small overheads when compared to the remaining solutions,
for similar key sizes. Note that the worst result for SES-DW is that with
1024 bit security, which is similar to Salsa20. However, it does refer to using
1024 bit encryption, far higher than the remaining tested solutions.

As we previously mentioned, given that decision support environments
typically execute long running queries (i.e., queries that can run for many
minutes up to hours), the response time overheads introduced due to the
use of encryption solutions represent high absolute values that can easily
make query responses overdue and jeopardize the usefulness of the DW
itself. Considering the magnitude of the results shown in the experimental
evaluations, even a minimum gain in response/CPU time can be
considered as an important achievement.

The proposed encryption technique is straightforward and nearly
effortless to implement in a similar fashion as the data masking technique,
and the encryption keys may also be periodically refreshed and used to
refresh the encrypted table values without much effort, by frequently
switching the values of all or any one of the set of encryption keys for each
encrypted column before refreshing encrypted data in order to ensure that
data is properly protected. Therefore, given all of its security and
performance features discussed and demonstrated in this chapter, we
believe our technique is secure enough to be acceptable for use and that it

159

Chapter 5

may be considered as a valid alternative for enhancing data confidentiality
in DWs.

5.6 Summary

In this chapter we propose an encryption solution specifically designed for
enhancing data confidentiality in DWs. The proposed encryption
algorithm requires only operations that can be executed using standard
SQL, such as modulus, exclusive or and arithmetic operators. As the
masking technique, it requires small computational efforts and is
straightforward and easily implemented in any DBMS. The proposed
solution is transparently used and to query the database the user interfaces
only need to send their queries to a middleware broker instead of the
DBMS. Data-at-rest is always encrypted and only the final processed
results are returned to the authorized user interfaces that requested them.
All SQL commands and actions are encrypted and stored in a log by the
middleware security broker, which can be audited by any security staff.

We have compared SES-DW with the AES and 3DES encryption
algorithms provided by leading commercial DBMS, as well as two state-of-
the-art encryption proposals. The experimental results confirm the same
kind of storage space and database performance results as in the previous
chapter. Given that most DW data consists on numerical values, our
encryption technique is tailored for this kind of data. Given both security
proof and performance results, our technique shows better security
strength versus database performance tradeoffs than the remaining
encryption solutions. Thus, it is an efficient overall solution and a valid
alternative for balancing performance and security issues from the DW
perspective.

160

Chapter 6

DW-DIDS: An Intrusion Detection
Mechanism for Data Warehouses

In a defense in depth scenario, an intruder needs to overcome a series of
security mechanisms against invasive or unauthorized actions, such as
routers, firewalls, network-based intrusion detectors, OS-based intrusion
detectors, and finally, Database Intrusion Detection Systems (DIDS). The
DIDS represents the last bastion of defense before any intruder gains access
to the data itself. In this chapter, we propose a Data Warehouse Database
Intrusion Detection System (DW-DIDS) based on the analysis of user
actions at the SQL command level, including measures concerning what
data was processed as well as the resulting datasets from the command’s
execution. The proposed DIDS complies with the principles defined by the
framework presented in Chapter 3.

To accomplish this, we define what an intruder is and what types of attack
can occur against data warehouses, proposing a classification of each
intruder action according to those intents. Given this classification and the
characteristics of typical end user workloads, we propose a set of features
analyzed by the DIDS which we consider relevant to analyze and monitor
their behavior.

We then define how to construct each user’s behavior profile using the
chosen Intrusion Detection (ID) features in a defined learning phase for the
DIDS, and how to perform ID in the detection phase for generating alerts.

For performing alert and response management, we propose a risk
exposure method that assesses the risk inherent to each generated alert,
given its probability and impact, which indicates the alerts that potentially
present greater risk to the enterprise. This allows security staff to quickly
check the alerts showing the highest risk and deal with the potentially most

161

Chapter 6

dangerous intrusions first. The approach includes a SQL-like set of rules
that allow determining the probability that each alert refers to a true
intrusion given the feature that generated that alert, as well as the impact
that the user action can produce on the enterprise. These rules also enable
to deal with intrusions automatically, given the alert’s risk exposure
measure.

The chapter is organized as follows. In Section 6.1 we describe the basics of
intrusion behavior in data warehousing environments, classifying the
types of intrusion actions and proposing the relevant features for
monitoring user behavior and performing intrusion detection. In Section
6.2 we present the overall architecture of the proposed DIDS, describing
each of its components and how they operate together during the
workflow of the user command’s execution. Section 6.3 describes how to
build user profiles, while Section 6.4 describes how to perform ID given
each user action. Section 6.5 presents the risk exposure method for alert
and response management. Section 6.6 includes an experimental
evaluation of the proposed DIDS against two other ID techniques
proposed by recent state-of-the-art research. In Section 6.7 we discuss open
issues regarding the proposed DIDS and finally, Section 6.8 summarizes
and concludes the chapter.

6.1. Selecting Intrusion Detection Features in Data Warehouses

Selecting the appropriate features for performing intrusion detection
requires understanding what an intruder is and which are the distinct type
of intentions that can drive an attack, i.e., what the intruder aims to achieve
with the attack.

From a database perspective, an intruder in a data warehousing
environment can be one of the following [Treinen and Thurimella, 2006]:

¢ An authorized user, which is someone that has regular access to
authorized database interfaces and acts with malicious intent;

¢ A masqueraded user, which is someone that obtains the credentials
of an authorized user and impersonating that user takes control of an
authorized interface connecting to the database;

¢ An insider attacker, which is someone that holds valid credentials to
access the database as a regular activity;

162

Intrusion Detection Mechanism

e An external attacker, which is someone that does not have valid
credentials to access the database, but is able to bypass database
security mechanisms and gain direct database access using SQL
injection or other exploiting techniques;

e Any combination of the above.

Considering the possible intruders” intentions, there are mainly three types
of attacks mobilized against DWs [Douligeris and Mitrokotsa, 2004]:

e Attacks aiming at corrupting data (integrity attacks). In this type of
attack, the intruder seeks access to the database for executing actions
that compromise its integrity, such as corrupting or deleting the data
in a given database object (e.g. such as a table or view);

e Attacks aiming at stealing information (confidentiality attacks). In
these attacks, the intruder focuses on confidentiality issues, such as
stealing business information, rather than damaging data;

e Attacks aiming at making the DW unavailable (availability
attacks). These attacks aim on making database services unavailable,
i.e., they are mainly Denial of Service (DoS) attacks (e.g. flooding
database services and bandwidth with a large number of requests,
and halting or crashing database server instances).

Given these intruder intents and types of attacks, we define ten classes of
intrusion action types (A...J) as shown in Table 6-1. This classification
distinguishes the intruder’s intentions apart from each other (shown in the
“Attack Profile/Intent/Focus” column), defining a taxonomy for each
action accordingly to what s/he might be aiming to achieve with the attack.

Considering that integrity attacks focus on compromising the consistency
and accurateness of the data content itself, we consider as integrity attacks
all intruder actions that attempt to insert new false data values (class H),
change the existing data values in order to make them incorrect or
inaccurate (class I) and deleting existing data (class J). Any one of these
attacks will cause inaccurate query responses against the affected data and
they can also compromise referential integrity constraints if dimensional
data is affected.

163

Chapter 6

Table 6-1. SQL Intrusion Action Type Classification

Security dimension affected

SQL -]
Action by the intrusion Intruder Command Attack Profile/Intent/Focus
Class - - - Action Description
Confid | Integrity | Availab
Attempts to discover Brute force attack or dictionary-based
A X valid database attacks for attempting to obtain valid
credentials/logins application/database logins
Query retrieving Retrieving information on database
B X information on tables, views, triggers, etc. as well as
database objects or index column names and types, in order
data structures to compose further attack instructions
Malicious Era_sin_g or renaming performance
A optimization data structures (e.g.
modification of - L
C X auxiliary data erasure of indexes or materialized
views), database objects (e.g. tables or
structures ;)
physical datafiles)
Retrieving all possible information of
Query retrieving all fact tables (in order to steal business
D X X data from a table secrets or strangle network bandwidth)
(integral table copy) or dimension tables (e.g. customer
information)
Stealing of selected sensitive factual
(e.g. fact rows about sales concerning a
Query retrieving a given product or time period, or the
E X significant portion of rows with a small well-chosen set of
data from a table sensitive table columns) or dimensional
data (e.g. a list of customer credit cards
or addresses)
Query retrieving a Stealing a small amount of specifically
F X specific and relatively | targeted data (e.g. total year sales value
small portion of data of a given product)
Execution of an overwhelming amount
of concurrent queries that access large
. volumes of data (creating database
G X Query flooding server processing bottlenecks) or that
return large volumes of data (causing
network bandwidth strangulation)
Insertion of rows with false data in fact
H X Insertion of false data tables and/or dimension tables to
compromise user query results
Malicious Modification of stqred da_ta values in
| X o fact tables and/or dimension tables to
modification of data .
compromise user query results
Deletion of fact and/or dimensional
J X Deletion of data table rows to produce false user query

results and erase sensitive data

164

Intrusion Detection Mechanism

We consider as confidentiality attacks all those that attempt to disclose
information that should not be disclosed. In these intruder actions, there
can be distinct intentions such as: attempting to retrieve valid credentials
to access the database with certain privileges (class A, which will allow the
intruder to gain access to certain parts of the database), retrieving
information on the database structures, such as table names and column
names, for example (class B, which will allow identifying how the data is
stored in the database and how the business is analyzed); and retrieving
all or certain amounts of data from the database (classes D, E and F, which
discloses business information to the intruder that s/he may use in her/his
benefit or dismay the enterprise).

Data availability attacks aim at keeping the database services from
providing the responses back to the users or to simply keep them from
operating. We consider as availability attacks user actions that: attempt to
rename or delete database objects that hold data, such as tables or
materialized views, or which are required to process regular user
commands, such as table views (class C); request the database server to
process a huge amount of data in a single command (e.g. retrieving all data
from a fact table, defined in class D); and overwhelming the database
server with commands, alias known as query flooding (class G).

As can be seen, the classes defined in Table 6-1 cover a broad scope of
intentions posed by intrusions. This classification is generic and can be
easily modified in order to widen its scope by including other classes of
different types of attack.

As previously discussed, a DIDS at the database command level should be
able to analyze all the aspects triggered by the execution of the user’s
action: the commands themselves, processed data, and resulting datasets.
Given the described issues, the features required for monitoring database
user actions are those focusing on the following usability dimensions:

e Action-type: what type of actions are being requested;
e Traceability: from who/where does the requested action come;

e Selectivity: what data will be affected by that action and what data
composes the resulting dataset;

e Time: when are the actions requested to execute and their duration.

165

Chapter 6

In order to analyze the referred dimensions given each user action, we need
to capture observable measures of user behavior from each of the following
inputs:

e The user’s ID and his/her session ID. Identifying the user and
session allows building individual behavior profiles, as well as trace
back each requested database command;

e The SQL commands issued by the user. The SQL command allows
using features that identify the type of command (insert, update,
select, delete, etc.) and accessed data structures (columns, tables,
materialized views, etc.), selection attributes and values, grouping
attributes, union queries, etc.;

e A timestamp of the issued execution request. This allows defining
the temporal behavior of each user, identifying sequences of
measures as well as frequencies of occurrences, how long does it take
to process each command (elapsed time), etc.;

e The data processed by each SQL command. The measures from the
processed data allow using features concerning the data that is
processed by each command that is not intrinsic to the command (e.g.
how many rows were processed in the command’s execution);

e The dataset resulting from each SQL command’s execution. The
measures from the dataset resulting from the command’s execution
allow using features that enable analyzing what sort of data is
returned to the user (the size of the resulting dataset, how many rows
and columns, data values, etc.).

Considering these inputs and the characterization of data warehousing
environments and intrusion actions previously described, the intrusion
detection features considered interesting to capture the relevant measures
for the proposed DIDS are shown in Table 6-2. Note that although these
features may seem general-purpose and well fit for intrusion detection in
most types of databases, they are in fact the most relevant features for
collecting the required information for monitoring data warehouse user
actions and analyze their behavior, given the characteristics inherent to
data warehouse user activity, as described in [Bockermann et al. 2009;
Douligeris and Mitrokotsa, 2004; Kimball and Ross, 2013; TPC-H; TPC-DS;
Treinen and Thurimella, 2006].

166

Intrusion Detection Mechanism

F#

Table 6-2. SQL Intrusion Detection Features

‘ FeatureName

User-based features

‘ Description

Fi #ConsecFailedLoginAttempts The number of consecutive failed database login attempts
by a UserID or from an IPAddress (accumulated or in a
given timespan)

F, #SimultaneousSQLSessions The number of active simultaneous database connections on
behalf of a UserID or IPAddress

Fs #Unauthorized AccessAttempts The number of consecutive requests to execute

unauthorized actions (e.g. requesting to modify read-only
data, or query data that he does not have access privileges)
from a UserID or IPAddress

SQL Command-based features

Fa CPUTime CPU time spent by the DBMS to process each command

Fs ResponseSize Size (in bytes) of the result of the command’s execution

Fe #ResponseLines Number of lines and columns in the result of the
command’s execution

F; #ResponseColumns Number of columns in the result of the command’s
execution

Fs #ProcessedRows Number of accessed rows for processing the command’s
execution

Fo #ProcessedColumns Number of accessed columns for processing the command’s
execution

Fio CommandLength Number of characters in the command

Fi1 #GroupBy Number of GROUP BY columns in the command

Fi #Union Number of UNION clauses in the command

Fis...F17 #Sum, #Max, #Min, #Avg, Number of appearances of SUM, MAX, MIN, AVG and

#Count COUNT functions in the command

Fis, F1o #And , #Or Number of appearances of AND and OR operators in the
command’s WHERE clause(s)

Fao #LiteralValues Number of appearances of literal values in the command’s

WHERE clause(s)

Session-based features

Far...Fa #Select, #Insert, #Delete, Number of executed SELECT, INSERT, DELETE,
#Update, #Create, #Alter, UPDATE, CREATE, ALTER, and DROP commands per
#Drop session
Fas #Insert-Select Number of executed INSERT commands that used
SELECT commands for inserting or building datasets, per
session
Fao #Create-Select Number of executed CREATE commands that used
SELECT commands for inserting or building datasets, per
session
Fao TimeBetwCommands Time period (in seconds) between execution of commands,
per session
Fa1 #SimultaneousCommands Number of commands simultaneously executing, per

session

167

Chapter 6

Table 6-2. SQL Intrusion Detection Features (continued)

F# ‘ FeatureName Description

Table-based features

Fs2 #ProcessedRows Number of accessed rows per table

Fa3 #ProcessedColumns Number of accessed columns per table

Fas...Fsg #Sum, #Max, #Min, #Avg, Nr. of appearances of SUM, MAX, MIN, AVG and
#Count COUNT functions executed per table

Fag...Fa #Select, #Insert, #Delete, Number of executed SELECT, INSERT, DELETE, and
#Update UPDATE commands per table

Column-based features

Fas #GroupBy Number of issued GROUP BY clauses per column

Faa...Fag #Sum, #Max, #Min, #Avg, Nr. of SUM, MAX, MIN, AVG and COUNT functions
#Count executed per column

Fag, Fso #Select, #Update Number of executed SELECT, and UPDATE commands

per column

As can be observed in Table 6-2, the features are divided into five main
groupings: user-based, command-based, session-based, table-based and
column-based. This allows testing features by applying different levels of
grouping (per user / per user session / per SQL command / per table / per
column) as roll-up and drill-down techniques, widening the detection
scope and coverage of user behavior variability.

Table 6-3 shows the coverage of the intrusion detection features defined in
Table 6-2 against the intrusion action classes described in Table 6-1. Given
the diverse types of intrusion detection techniques discussed in Chapter 2,
the set of proposed features presented in our approach manages to cover
an extremely broad scope of possible forms of intrusion detection. For
example, features Fi, F2, F3, Fi, Fs5, F30, F31 are commonly used in intrusion
detection systems that inspect network traffic; Fs, Fs...F29, Fs...Fs0 are
widely used for SQL command analysis; Fs, Fs, Fe, F13...F17, F34...Fs8, Fas...Fus
are used in statistical intrusion detection systems; Fs, Fz1...F27, Fso, F,
Fs9...Fu, Fu9, Fs0 are used for sequence analysis; Fs...Fo, Fi1, F12, Foi1...F29, F3,
Fss, Fso...Fu3, Fa9, F50 focus on the accessed data and are used in intrusion
detection systems for data access pattern analysis; and features Fu...F;,
Fs0...F33 are used in intrusion detection systems that analyze the action’s
resulting dataset.

168

Intrusion Detection Mechanism

Table 6-3. SQL Intrusion Detection Features Coverage per Intrusion Action Class

SQL Action Intrusion Detection Features
Class

A F1, Fa, Fs, Fs, Fo, Fio, F12, F1s, F19, F20, F30, Fa1, F32, Fss, Fag

B Fa, Fs, Fs, Fo, F1s, F19, F20, Fao, Fa1, Fa2, Fa3, Fag

c Fs, Fs, Fo, Fi0, Fis, F1o, F20, F22, Fos, Faa, Fas, Fas, F27, Fas, Fao, Fa1, Fa2, Fss, Fao, Fa1, Faz,
Fso

D Fa, F3, Fa, Fs, Fe, F7, Fs, Fo, Fio, F12, F1s, F19, F20, Fa1, F22, Fas, Fae, Fas, F29, F3o, Fa1, Fa2,
F33| F39| F49

E Fa, F3, Fa, Fs, Fe, F7, Fs, Fo, Fio, F11, F12, F13, Fu4, Fis, Fas, F17, Fis, F1o, F20, F21, Fa2, Fos,

FZG; FZB; FZQ; F3O; F31; F321 F331 F34y F35y F36y F37y F38y F39y F43y F441 F45, FAGy F47v F48v F49

F21 F31 F4; F51 F61 F7; FB; F91 FlO; Flly FlZy Fl3y F14y FlSy Fle F17y Fl& Flgy FZOy ley FZZy F25v

F
Fas, Fas, F29, Fa0, Fa1, Fa2, Fss, Faa, Fas, Fss, Fa7, Fas, Fao, Fa3, Faa, Fas, Fas, Faz, Fag, Fao

G Fa, Fs, Fa, Fs, Fe, F7, Fs, Fo, F1o, F11, F12, F1g, F1o, Fo0, F21, F22, Fas, Fao, Fs0, Fa1, Faz, Fas,
Fao, Fao, Fa3, Fao

H Fa, F3, Fa, Fs, Fo, F10, F18, F19, Fa0, F22, Fas, Fa0, F30, Fa1, Fs2, Faa, Fzo, Fao, Fag

| Fa, F3, Fa, Fg, Fo, F1o, F1s, F19, Fa0, F24, Fas, F3o, Fa1, Fa2, Fss, Fa2, Fso

J Fa, F3, Fa, Fs, Fio, F1s, F19, F20, F23, F27, Fa0, Fa1, F32, Fas

6.2. DW-DIDS Architecture

The Data Warehouse Database Intrusion Detection System’s (DW-DIDS)
architecture is shown in Figure 6-1. The DataBase Administrator (DBA) is the
person in charge of managing the DW Database(s), namely managing all
database objects such as datafiles, tablespaces, tables, indexes, views, etc.
The Authorized End User is a regular authorized DW end user that is
interested in querying data for decision support purposes or an ETL tool.
The Intruder represents the attackers as defined in the previous section.

The DW Security Administrator is responsible for handling the DW-DIDS
through the Security Manager Interface by managing the contents of the DW-
DIDS Database (which is a part of the Security Framework Database, as
explained in Chapter 3). This database contains:

e A historical SQL command log for storing all commands requested
to be executed by the DBMS;

e The individual user feature profiles and respective statistical models;

e A historical alert log for storing and monitoring all generated alerts;

169

Chapter 6

¢ A rule-base dataset containing the rules for computing risk exposure
and indicating how to deal with intrusions according to each
generated alert (the syntax of the risk exposure rules will be
explained further in Section 6.5).

The generated alerts stored in the alert log are also manually confirmed as
true or false positive outcomes by the DW Security Administrator, after their
veracity have been checked out. The true and false positive outcomes are
used to fine-tune each feature’s contribution in the overall intrusion
detection process, as explained further in Subsection 6.5.4.

Database Intrusion Detection Engine

DW v
Database(s)
10 / Command Parser Response Parser
A o 3 11
8 v Y Y
DataBase 2 Command Analyzer Response Analyzer
Management System 5| 4 13 A 12
A \ J \
16
1] 7,15 Intrusion <51 _/_\
DBA, ETL and End Response Manager |——» pw-DIDS
User Interfaces 7 15 A Database
oy
Security Manager | SQLCommandLog
Interface - UserFeatureStats
Intruder Authorized DataBase ;Jﬁ;g‘:ge
End User Administrator

N~

DW Security Administrator

Figure 6-1. DW-DIDS Architecture

In our approach, intrusion detection is handled at the SQL command level
in two moments:

1) when the DBMS receives a command to execute, that command is
analyzed before it is executed (step 2);

2) after its execution is completed (if the command is not considered an
intrusion in step 2), its response and the data that was processed is
also analyzed before being returned to the user which requested the
execution (step 10).

170

Intrusion Detection Mechanism

The sequence of steps is labeled in Figure 6-1. In practice, before executing
any command, the Command Parser retrieves the command text and
starting date/time, as well as user identification (User type, UserlD,
IPAddress, SessionID), parses the command according to the intrusion
detection features and passes all the information to the Command Analyzer
(step 3). The Command Analyzer stores this information in the SQL Command
Log and retrieves the respective user features’ statistical models (step 4),
and applies the intrusion detection algorithms (explained in the next
subsections) to determine if an alert should be generated concerning the
analyzed command. The information referring the parsed user command
and its outcome results from the intrusion detection tests is then passed on
to the Intrusion Response Manager (IRM) (step 5).

When the IRM receives indication that an alarm should be generated, it
retrieves the probability, impact and risk exposure rule set from the DW-
DIDS Database (step 6), evaluates the intrusion’s risk exposure and stores
the data concerning the alert and the features which generated it in the
database (for future reference), and notifies the DW Security Administrator
through the Security Manager Interface (step 7). Moreover, it also takes the
suitable actions for dealing with the possible intrusion through the DBMS,
accordingly to what is defined by the risk exposure rules. The IRM takes
action against intrusions by suspending or killing its execution, or killing
the user session, either automatically or on request of the DW Security
Administrator after s/he has seen the alert information and decided what
action should be taken.

If the command is not considered an intrusion a priori to its execution, i.e.,
if no alarm is generated after analyzing the command, DW-DIDS will
simply update each feature’s statistical model for the corresponding user
in the DW-DIDS Database and notify the DBMS to execute the command.
In this case, after its execution, the resulting dataset and the data that was
processed is parsed by the Response Parser and analyzed by the Response
Analyzer (in a similar way as the applied by the Command Parser to the user
command) (steps 10 to 13).

If the Response Analyzer does not request to generate an alarm against the
command’s resulting dataset, i.e., if it is not considered an intrusion, then
each feature’s statistical models for the concerning user is updated once
more in the DW-DIDS Database and the command’s results are disclosed

171

Chapter 6

back to the user that requested them. On the other hand, if the IRM receives
indication that an intrusion alert should be generated, then it takes action
similarly to what was previously described for steps 6 and 7.

6.3. Learning Phase: Building User Behavior Profiles

Our user profiling approach is based on adjusting a probabilistic
distribution for each ID feature { Fi, ..., Fso } (as shown in Table 6-2) per
user, except F1 and Fs (which use absolute values), from observations
(feature values) extracted in an initial training (alias learning) stage. To
obtain those observations, we assume the existence of a previous
“intrusion-free” database command log or a set of queries supplied by the
DW administrator, which also identify the user that issued each command.

To build the user profiles, each SQL user command in that log or set of
queries is parsed and executed against the DW to extract the required
information, i.e., the observations from the command itself, those referring
to the data processed by the command, and the resulting dataset, for
building each feature’s statistical distribution per user. The workflow of
this training stage is shown in Figure 6-2, where the continuous lines show
the flow a priori to the user command’s execution and the dashed lines
indicate the flow a posteriori.

Statistical adjustment tests are performed in order to obtain each
population’s distribution model at a level of 5% significance using Qui-
square (which is valid for any distribution), Kolmogorov-Smirnov (which
is valid for a continuous distribution) or Shapiro-Wilks (valid for normal
distributions) to verify if each set of observations comes from a population
with a given distribution function Fo, specified on the null hypothesis.

172

Intrusion Detection Mechanism

Command Parser/Analyzer
<SQLCommandID, UserID, i
UserID, SessionID, UserRole, SessionID, = veFaledioni —:_.""
CommandText /| 1 | CommandText StartbateTime> |~ Soae oo =
1 2 gl
T Glipdats
| A
E’gg;‘rf;;e' Feature Value Extraction

(o3}

joo-—----------2--

<UserID, set of Features Fy Fy, | 3
Feature Values V;_Vy> v

User Stat Model Generator

s

5 AN

28 € p f I8

User Command
Execution Information
and Resulting Dataset

<SQLCommandID, IPAddress,

UserID, UserType, SessionID,
ResponseDateTime,
ElapsedCPUTime,

ProcessedRows,

ProcessedColumns,

ResponseSize, ResponseRows,
ResponseColumns>

Response Analyzer Update User Behavior Profile

Yl A

<UserID, set of Features Fy_F,, | 4 8
Feature Values V; V>

Feature Value Extraction

DW-DIDS
Database

SQLCommandLog
UserFeatureStats

Figure 6-2. DW-DIDS Learning Stage Workflow for each SQL User Command

6.4. Detection Phase: Intrusion Detection against User Commands

The testing phase workflow for performing intrusion detection is shown in
Figure 6-3, where continuous lines show the flow a priori to the user
command’s execution and the dashed lines indicate the flow a posteriori. To
detect an intrusion, each user command is analyzed before it is executed
by the DBMS. A statistical test is performed for each feature given its
original statistical model for the respective user and a new sample set built
by gathering the existent observations with the current respective user
session sample set for that feature. New statistical tests are performed to
adjust a new probability distribution to the former data collection.
Afterwards, we test if the new distribution matches the original
distribution of the feature (Ho).

The Chi-square, Kolmogorov-Smirnov or Shapiro-Wilk statistical tests,
mentioned in the previous subsection, are always used as the testing
methods in all cases, all performed at a level of 5% significance. These

173

Chapter 6

methods test whether one distribution (e.g. one data set) is significantly
different from another (e.g. a normal distribution) and produce a binary
answer, corresponding to yes or no. We use the Shapiro-Wilk test if the
sample size is small (between 3 and 2000) and the Kolmogorov-Smirnov
test if the sample size is big (greater than 2000). The Chi-square test is used
to verity if a data sample came from a population with a specific
distribution.

If no test in this first phase (i.e., a priori to the user command’s execution by
the DBMS) rejects Ho, then the DBMS is notified to run the command. After
the command has been processed, feature value extraction is performed on
the resulting dataset and the processed data and the corresponding
statistical tests are executed in a similar fashion as described in the
previous paragraph. In any testing phase, for each feature’s test result that
rejects the distribution’s equality (Ho) in any moment, the respective user
action is considered an intrusion and an alarm is generated.

For features F: and Fs a different approach is chosen, considering the
following: in systems such as ATM, banking, e-governance, and most web
applications, for instance, the number of allowed consecutive unsuccessful
login attempts is typically three (which is the most used option) to five
(usually the maximum number of allowed consecutive unsuccessful
attempts). It is considered common to accept two consecutive unsuccessful
attempts followed by a successful attempt as a non-intrusion, while more
consecutive unsuccessful attempts indicate a possible intrusion tentative
or a true user that has forgotten his/her login information. Thus, DW-DIDS
considers an intrusion more than two consecutive failed login attempts
(F:1>2) on behalf of a given user/IP address and generates the correspondent
alert.

In a similar fashion, a situation where a user that manages to login and tries
to view or process data to which s/he does not have or is not supposed to
access may also match an intrusion action. Therefore, two consecutive
attempts from a given user/IP address for accessing unauthorized data or
for executing an unauthorized command (e.g. an INSERT, UPDATE,
DROP, etc, by a DW End User, which has only SELECT statement
privileges) (Fs>=2) is also considered an intrusion by DW-DIDS, generating
the correspondent alert.

174

Intrusion Detection Mechanism

UserID, SessionID, IPAddress,

CommandText l 1
DBMS
A <SQLCommandiD, IPAddress,
UserlID, UserType, SessionID,
CommandText, StartDateTime>
2
v
Command Parser/Analyzer
Featurefiame Walus
HCorsecutiveFailed.egindttempts V.
#5Irn 1 atan poassi 431nns
User Command , Jpdite
Execution Resultset —
Feature Value Extraction

<SQLCommandID,
IPAddress, UserlD,
UserType, SessionID,
ResponseDateTime,
ElapsedCPUTime,
ProcessedRows,
ProcessedColumns,
ResponseSize,
ResponseRows,
ResponseColumns>

o

Disclose
results to
User

or each feature Fy
perform statistical
hypothesis test

4 3
...... <Set of Features F;_F, and Feature Values V;_V,,
SQLCommandID, IPAddress, UserID, UserRole,
SessionlD, CommandText, StartDateTime,
Stat. test shows intrusion? Yes Probability, Impact andSRlsk Exposure Ruleset>
No intrusion | <UserID, set of Features Fy_F, A J
Feature Values Vi V,>
Execute User Intrusion Response Manager
Command
Probability and Impact Assessment
7 Risk Exposure Evaluation
- User Stat M?d el Update Update Alert Log
Discl osure DW-DIDS Notify Security Administrator
authorization Database Take Defined Response Actions
13 2t otz SQLCommandLog
4 UserFeatureStats
11!

: <UserID, set of Features F;_Fn,
Feature Values V. V>

Stat. test shows
intrusion?

<Set of Features F;_F, and Feature Values V1 _V;,
SQLCommandID, IPAddress, UserID, UserRole,
SessionID, CommandText, StartDateTime,
Probability, Impact and Risk Exposure Ruleset>

<
= \
VAN |
ARSI S 19
For each feature F, |
perform statistical /
__ hypothesis test A

1
I
10 |
|
\

Response Parser/Analyzer
| Valus

Feature Value Extraction

Figure 6-3. DW-DIDS Intrusion Test/Detection Stage Workflow for each SQL User Command

6.5. Alert

and Response Management

For each user action that flags an alert, the Intrusion Response Manager (IRM)
evaluates the potential damage the action may cause to the enterprise,
assessing the action’s risk exposure according to the feature(s) that
generated the alert. After computing that risk exposure measure, it notifies
the DW Security Administrator about the alert and adequately responds to

175

Chapter 6

the intrusion accordingly with the defined risk exposure rule. In this
section we define risk exposure and explain how this measure is computed
in order to rank the alerts and take action against the attack. We also show
how to calibrate the contribution of each intrusion detection feature in the
overall intrusion detection process.

6.5.1. Defining the Risk Exposure

Many DIDS evaluate what data is accessed, while others focus on how data
is accessed. Both assess the probability of a given user action being
suspicious to classify that particular action or set of actions to which it
belongs as an intrusion; when that probability exceeds a predefined
threshold, an alert is generated. As we have previously mentioned, any
thresholds used to filter out intrusion alerts given their probability should
be defined with low values that minimize the risk of false negatives, i.e., to
minimize the number of true intrusions that pass undetected. Given the
sensitivity of DW data, it is preferable to have low thresholds, as the
potential cost of undetection is often considered too high or unacceptable.
However, this exponentially increases the number of generated alerts in
most scenarios, making alert management one of the most critical issues in
intrusion detection scenarios.

To improve the efficiency of intrusion detection systems when the number
of generated alerts is extremely high, alert correlation techniques such as
[Debar and Wespi, 2001; Ning et al., 2002; Pietraszek, 2004; Pietraszek and
Tanner, 2005; Valdes and Skinner, 2001; Yu et al., 2007] have been
proposed. These techniques typically filter sets of alerts to distinguish
which are worthy of being checked from those that are more probably false
alarms. However, we argue that alert correlation on itself is not the best
way to determine which alerts should be checked and in which order of
priority.

Since the value of DWs resides on the fact that they store the secrets of the
business, the impact resulting from an intrusion on the enterprise is
intimately linked with what data was exposed or corrupted. When using
alert correlation techniques, there can be an alert that has been positively
correlated for checking but has a low potential impact on the enterprise
(e.g. the exposed or damaged data is not very sensitive), while an alert
referring a true intrusion with high impact can be filtered out if it has a low

176

Intrusion Detection Mechanism

correlation value. Moreover, not evaluating the potential impact of the
intrusion means that security staff do not know which alerts are more
important, implying that resources may be wasted in checking intrusion
alerts referring to actions that would cause minimal damage to the
enterprise, while a highly prejudicial intrusion occurs and is left to be dealt
with later on.

To avoid this, we propose considering all alerts admissible and apply a
method for ranking them, given a measure of risk exposure. Given a user
action, risk exposure is a function of both the probability that the action has
of referring an intrusion and the impact that it may produce, i.e., the
potential magnitude of the cost to the enterprise related with the damage
or disclosure of the data targeted by the action. The computation of the risk
exposure of each alert is done according to the matrix shown in Figure 6-4,
given its measured probability and impact.

Impact
Very Low Low
£ | VeryHigh High High
3 High Low High High
S Low Very Low Low High High
a Very Low | Very Low | Very Low Low High

Figure 6-4. The risk exposure matrix

The risk exposure method assures that all generated alerts will be ranked
and automatically inform security staff to check out and deal with the most
significant intrusions (given alerts with higher risk exposure) prior to
possible intrusions that might potentially produce less damage, thus
performing alert management more efficiently.

To determine which actions are taken as a response for each alert given its
risk exposure assessment, the DW Security Administrator should define
rules with the following syntax (where the values enclosed in {} represent
sets of values to choose from and those in [] are optional clauses):

177

Chapter 6

GIVEN RISK EXPOSURE AS {VeryLow, Low, High, VeryHigh,
Critical}
ON FEATURE {FeatureNamel, FeatureName2, ...},
[AllFeatures]
[WHERE {List of filtering conditions}]
[WHEN {List of time-based conditions}]
TAKE ACTION {DoNothing, PauseUserCommand,
TerminateUserCommand, KillUserSession}
FOR USERS {Userl, User2, ...} [, [AllUsers,]
USERS WITH ROLE {Rolel, Role2, ...}

This SQL-like rule covers all user action classes and dimensions mentioned
in Section 6.1. The FOR USERS, WHEN and WHERE clauses allow
conditioning the application of the intrusion response actions defined in
the TAKE ACTION clause, according to the specified features included in
the ON FEATURE clause to which the generated alert refers. The FOR
USERS clause allows the rule to be applied only to a limited subset of users,
the WHEN clause allows the rule to be valid only during a given time
schedule, and the WHERE clause allows the rule to be valid only given
certain conditions using feature weight values — feature weighting is
explained in the next subsection.

As an example of defining risk exposure rules, consider feature
#ConsecFailedLoginAttempts from Table 6-2. Supposing the DW Security
Administrator wants to be alerted each time an alert is risen by this feature
and defines that High and Very High risk exposure assessments for this
feature should terminate the respective user commands, while a Low
assessment should suspend the user command until the administrator
checks if everything is alright, for all users. This is accomplished by:
GIVEN RISK EXPOSURE AS Low
ON FEATURE #ConsecFailedLoginAttempts

TAKE ACTION PauseUserCommand
FOR USERS AllUsers

GIVEN RISK EXPOSURE AS VeryHigh, High
ON FEATURE #ConsecFailedLoginAttempts
TAKE ACTION TerminateUserCommand
FOR USERS AllUsers

As another example, if all users requesting to execute any command that
generates critical alerts — regardless of the feature that generated them —
should immediately be banned, the following rule can be defined:

178

Intrusion Detection Mechanism

GIVEN RISK EXPOSURE AS Critical
ON FEATURE AllFeatures

TAKE ACTION TerminateUserCommand, KillUserSession
FOR USERS AllUsers

On the other hand, considering that all the command that generate alerts
which present a Very Low risk exposure measure can be executed normally,
although the Security Manager Interface still displays the alert to the DW
Security Administrator so they can be checked out, the following rule can be
defined:
GIVEN RISK EXPOSURE AS VeryLow
ON FEATURE AllFeatures

TAKE ACTION DoNothing
FOR USERS AllUsers

6.5.2. Defining the Probability

DW-DIDS defines the probability of each intrusion alert with rules, given
the feature that generated the alert. In a similar manner to the risk exposure
rules, these rules have the following syntax:

DEFINE PROBABILITY AS {VeryLow, Low, High, VeryHigh}

ON FEATURE {FeatureNamel, FeatureName2, ...},
[AllFeatures]
[WHERE {List of filtering conditions}]
[WHEN {List of time-based conditions}]

FOR USERS {Userl, User2, ...}, [AllUsers,]
USERS WITH ROLE {Rolel, Role2, ...}

It is quite obvious that, depending on each DW’s context, each feature has
its own importance in the overall intrusion detection process, which is
directly related to its risk probability, i.e., its efficiency in producing high
true positive rates (detection of a high amount of true intrusions) and low
false positive rates (small amounts of false alarms). To define this
importance, each feature has a weight attributed to it, which is a real value
within the range [0...1]. Using the probability rule syntax, we propose that
the risk probability of each feature Fi should have a significance directly
linked to its weight, as:

179

Chapter 6

DEFINE PROBABILITY AS VeryLow
ON FEATURE Fi WHERE Weight (Fi)<0.25
FOR AllUsers
DEFINE PROBABILITY AS Low
ON FEATURE Fi WHERE Weight (Fi)>=0.25 AND Weight (Fi)<0.50
FOR AllUsers

DEFINE PROBABILITY AS High
ON FEATURE Fi WHERE Weight (Fi)>=0.50 AND Weight (Fi)<0.75
FOR AllUsers

DEFINE PROBABILITY AS VeryHigh
ON FEATURE Fi WHERE Weight (Fi)>=0.75
FOR AllUsers

After the learning phase in which all user profiles are built and DW-DIDS
runs for the first time to detect and respond to intrusions, we suggest
giving an equal weight of 0.5 to all features (Weight (Fi)=0.5), since it is
not possible to know a priori which features will reveal to be more
significant in the intrusion detection process. However, after the DW
security staff checks each generated intrusion alert, the value of each
feature’s weight is calibrated by its revealed efficiency. This weight
calibration technique is explained in Subsection 6.5.4.

For the fixed value features F: and Fs we use predefined constants for
defining the probability rule. For example, in banking and e-governance
applications the number of consecutive unsuccessful login attempts that
are allowed typically ranges from three to five. As mentioned before, it is
common to accept that two consecutive unsuccessful login attempts
followed by a successful attempt as a non-intrusion, while more
consecutive unsuccessful tries indicate a possible intrusion attempt. Given
this, the probability of an intrusion given the number of consecutive failed
login attempts can be defined as:
DEFINE PROBABILITY AS VeryLow
ON FEATURE #ConsecFailedLoginAttempts

WHERE #ConsecFailedLoginAttempts<=2
FOR AllUsers

DEFINE PROBABILITY AS Low

ON FEATURE #ConsecFailedLoginAttempts
WHERE #ConsecFailedLoginAttempts=3

FOR AllUsers

DEFINE PROBABILITY AS High

ON FEATURE #ConsecFailedLoginAttempts
WHERE #ConsecFailedLoginAttempts=4

FOR AllUsers

180

Intrusion Detection Mechanism

DEFINE PROBABILITY AS VeryHigh

ON FEATURE #ConsecFailedLoginAttempts
WHERE #ConsecFailedLoginAttempts>=5

FOR AllUsers

Note that this is only an example and that although the statistical features
have a proposed predefined set of rules given their computed
importance/weight in the overall intrusion detection process, the DW
Security Administrator can define new rules to widen the probability scope
(in the same way s/he can add new features). To give an example on using
temporal conditioning on any feature, consider a context in which no user
is expected to access the DW between 8p.m. and 7a.m. on the server time
clock. This may be defined in a rule as:
DEFINE PROBABILITY AS VeryHigh
ON FEATURE #ProcessedRows, CommandLength
WHERE (Server.Time>20:00 OR Server.Time<7:00) AND

(#ProcessedRows>0 OR CommandLength>0)
FOR AllUsers

Given the wide scope allowed by the defined rules, there may be more than
one type of probability assessed when checking the rules that concern a
generated intrusion alert. For instance, the same feature might have a High
probability given from one of the rules and a VeryHigh probability
attributed by another rule. In this case, the Intrusion Response Manager
always chooses to assign the highest value (in this case, VeryHigh).

6.5.3. Defining the Impact

The assessment of the impact caused by a user action is also defined by
rules in a similar fashion as those previously described. This assessment is
based on which, how much, and when sensitive data can be exposed or
damaged by the user command, as well as who is the user. The impact for
the actions ranged by each user’s command is managed by the following
rules, valid for the list of nominal-based, value-based and/or temporal-
based conditions is defined through rules with the following syntax:

181

Chapter 6

DEFINE IMPACT AS VeryLow, Low, High, VeryHigh
ON FEATURE {FeatureNamel, FeatureName2, ...},
[AllFeatures]
[ON COMMAND Insert, Update, Delete, Select,
CreateAll, DropAll, AlterAll,
CreateTable, DropTable, AlterTable,
CreateIndex, DroplIndex, AlterIndex,
CreateProcedure, DropProcedure,
AlterProcedure, CreateFunction,
DropFunction, AlterFunction,
CreateView, DropView, AlterView,
CreateTrigger, DropTrigger,
AlterTrigger, AllCommands, DML, DDL]
[WITH COLUMNS {Columnl, Column2, ...}, [AllColumns]]
[WHERE {List of filtering conditions}]
[WHEN {List of time-based conditions}]
[JOINED WITH {Columnl, Column2, ...}, [AllColumns]]
FOR USERS {Userl, User2, ...}, [AllUsers,]
USERS WITH ROLE {Rolel, Role2, ...}

This impact assessment is left entirely to the DW Security Administrator, as
it depends on the nature and structure of each DW itself and is mostly
unique in each real-world context. The clauses are used in a similar manner
to those in the probability rules, plus the clause that allows distinguishing
which is the user command (ON COMMAND), which columns are
processed (WITH COLUMNS), and the clause defining the impact of two
or more columns being processed or shown together by the same
command (JOINED WITH COLUMNYS).

As an example, suppose that a credit sales DW has a Sales fact table with
column SalesAmount, storing the total amount value of each sale. It is
probable that a command that retrieves a single row or two of SalesAmount
values from the fact table probably represents low exposure risk for the
enterprise in case of an intrusion, while that risk may probably be very
high if the number of retrieved rows is higher (e.g. greater than 20). This
can be defined by the following rules:
DEFINE IMPACT AS Low
ON FEATURE #ProcessedRows
ON COMMAND Select

WITH COLUMNS Sales.SalesAmount
WHERE COUNT (*) <=2 FOR USERS AllUsers

182

Intrusion Detection Mechanism

DEFINE IMPACT AS VeryHigh
ON FEATURE #ProcessedRows
ON COMMAND Select
WITH COLUMNS Sales.SalesAmount
WHERE COUNT (*)>=20 FOR USERS AllUsers

6.5.4. Calibrating Feature Weight

The efficiency of intrusion detection mechanisms is typically analyzed
recurring to several measures [Kamra et al., 2008; Kamra, 2010]:

o True Positive (TP): an alert referring to a true intrusion;
e False Positive (FP): an alert which reveals a false alarm;

e True Negative (TN): a user action that is correctly classified as a non-
intrusion by the ID process;

e False Negative (FN): an intrusion action that is misclassified by the ID
process as a non-intrusion (i.e., resulting in a missed intrusion).

The importance of each feature in DW-DIDS is computed by a self-
calibrating technique, using its individual) TP and } FP values. For each
feature F;, its weight is given by:

(Z TP; — » FPi)

) ZTPi+ZFPi
Weight (Fi)=0.5 + > , X2TP, >0V Y FP; >0

where) TP; and) FP; respectively represent the total number of true
positives and false positives achieved by all the alerts generated by feature
Fi. In our approach we assume a priori that each statistical feature initially
has the same relevance. When DW-DIDS runs for the first time (and until
the first alert generated by Fi, which allows computing TP: and FPi), each
feature’s weight is set to an initial value of 0.50, as previously explained in
Subsection 6.5.2. This value represents a neutral value in the formula,
where the number of alerts generated by the feature refers to a true
intrusion are the same as the number of alerts referring to false alarms:

(Z TP; — Y FP;

TP, = Y FP;
LTP = LFP; Y TP;+ Y FP;

0
) =0 = Weight (F))=0.5+ 5" 0.5

Every time an intrusion alert is generated, it needs to be checked a posteriori
by the DW Security Administrator and then its status (true positive or false
positive) is stored in the DW-DIDS Database. Each feature’s weight linked

183

Chapter 6

to that alert is then updated accordingly to the calibration weight formula.
In case }; TP; >) FP;, the second term of the sum is positive, which makes
the feature’s weight higher than 0.5. Contrarily, when } TP; < Y FP; the
second term of the sum is negative, which makes the feature’s weight
lower than 0.5, implying it erroneously alerts intrusions more than it
accurately does. As the values of TP: or FPi grow, the computed weight will
also respectively get higher or lower, meaning that as the values of TP: and
FPi vary through time the computed weight will faithfully reflect the
feature’s intrusion detection probability.

6.6. Experimental Evaluation

Given the inexistence of an intrusion detection benchmark at the SQL
command level, we used the well-known TPC-H decision support
benchmark [TPC-H] to build the “true” non-intrusion workloads and a set
of diverse artificially created “intrusion” workloads in the experiments.

For the “true” DW users, the respective workloads were taken from the
TPC-H benchmark due to its representativeness of typical DW workloads,
and defined according to the following assumptions:

e A number of randomly chosen TPC-H benchmark queries were
selected for each user’s workload, i.e., each user has different queries
to execute, as well as a different number of queries to execute;

e Within the queries for each workload, several were randomly picked
for modifying the benchmark’s fixed parameters (namely in their
WHERE clause) by randomly changing their values to obtain a larger
scope of diverse user actions from the benchmark queries;

e A number of randomly built queries (by randomly picking a set of
tables, columns, functions to execute, grouping and sorting, and
literal restrictions for columns in the WHERE clauses) were also
generated for each workload, representing the ad hoc user queries in
DW environments;

e The proportion of TPC-H and randomly built queries used in each
workload is respectively 80% and 20% (on average), representing the
typical reporting behavior in DW’s as the majority of the running
tasks, while ad hoc queries are simulated by the random queries, in
smaller number.

184

Intrusion Detection Mechanism

Given that TPC-H has 23 predefined queries, the composed workload for
each “true” user is shown in Table 6-4 for a setup consisting of 10 users,
where O means that we are using the original TPC-H query, and M stands
for a TPC-H query with modified parameters, as explained previously.

Table 6-4. “Non-Intrusion” True User Workloads (TUW)

Users
Queries 1 2 3 4 5 6 7 8 9 10
TPC-H Q1 ol o M M| O
TPC-H Q2 M| O o 0
TPC-H Q3 M o} (6] M (6]
TPC-H Q4 o | M M M | O
TPC-H Q5 M| O M
TPC-H Q6 O | M o M
TPC-H Q7 M (6] o} M
TPC-H Q8 M O M (6]
TPC-H Q9 M| O M o)
TPC-H Q10 0 M 0 0
TPC-H Q11 0} M M
TPC-H Q12 M o} o} M o}
TPC-H Q13 0 M M
TPC-H Q14 0| M 0
TPC-H Q15 M M o} o
TPC-H Q16 o} M M (6]
TPC-H Q17 o M o M
TPC-H Q18 M (0} (0} M M
TPC-H Q19 M o} M o}
TPC-H Q20 o M o M M
TPC-H Q21 0} M M M (0]
TPC-H Q22 M 0
TPC-H Q23 o} M M o} (6]
Nr. of Random Queries 2 3 1 5 3 2 5 1 2 2

To build each “intruder” workload, we generated a random number of
actions for each intrusion action type defined in Section 6.1 and executed
them in a random order. The types of intrusion actions cover a wide range

185

Chapter 6

of attacks against the database, accordingly with the DW attack actions and
classes formerly described in Section 6.1, as follows:

Inserting a random amount of rows;
Changing a random amount of rows and columns;
Deleting a random amount of rows and columns;

Selecting a random amount of columns from a random number of
tables, without range value restrictions (1);

Selecting a random amount of columns with a random amount of
functions (MAX, SUM, etc.) from a random number of tables,
without range value restrictions (2);

Selecting a random amount of columns from a random number of
tables with a random amount of grouping columns, without range
value restrictions (3);

Selecting a random amount of columns with a random amount of
functions (MAX, SUM, etc.) from a random number of tables with a
random amount of grouping columns, without range value
restrictions (4);

Similar to (1), with range value restrictions;

Similar to (2), with range value restrictions;

Similar to (3), with range value restrictions;

Similar to (4), with range value restrictions;

Union queries with a random number of columns and tables;
Query flooding;

Unauthorized DW end user actions (create, drop, etc).

For comparison with other DIDS, we repeated the experiments using the
fine-grained Role-Based access control DIDS (RB-DIDS) solution proposed
in [Kamra et al., 2008] and the clustered Data-Centered DIDS (DC-DIDS)
proposed in [Mathew et al., 2010]. Both these solutions are explained in
Chapter 2. The machine used in these experiments was the same used for
the experiments presented in Chapter 5, with a Core2Duo 3GHz CPU and
2GB of RAM, using Oracle 11g as the DBMS.

186

Intrusion Detection Mechanism

DC-DIDS was implemented accordingly to the referred paper, using K-
means clustering [Mathew et al., 2010]. In their paper [Kamra et al., 2008],
the authors of RB-DIDS define vectors named quiplets that store
information on the columns used in the WHERE selection clause as well as
the accessed tables and columns to be displayed included in the SELECT
projection clause. They also propose three types of granularity (coarse,
medium-grain and fine-grained quiplets) for building the user profiles. For
fairness, we include the results from the implementation using the
medium-coarse quiplet, which obtained the best results in our tests, using
K-means clustering with 10 iterations and the statistical Median Absolute
Deviation (MAD) test for the detection process.

For our testing scenario, we consider that the most sensitive data relates to
the most recent data. Since TPC-H has approximately seven years of
business data, the implementation of DW-DIDS defined the data from the
most recent year to have very high impact due to intrusion actions, the data
from the two previous years as high impact, the data from the two years
before that as low impact and the remaining as having very low impact. Of
course, this is not a real scenario, but we consider it to be a sufficiently
realistic setup to test our approach. As we previously explained, the
definition of impact on the data is directly related to the sensitivity of the
data values themselves, which varies from case to case. This is why this
assessment should be done by the DW Security Administrator according to
the specific business context.

Four user scenarios were considered for testing, with a total of 10 users in
each scenario. Scenario 10-0 specifies a setup without any intruder activity,
i.e., there is no “intruder” workload running, while in scenarios 9-1, 8-2 and
5-5 there are respectively one, two and five “intruders” amongst the 10
users.

6.6.1. Building User Profiles

Each user profile is comprised by the set of statistical models (one per
feature) that refer to his/her workloads. To build the statistical models for
each feature of each “true” user, we used 5, 25, 50 and 100 executions of the
“True” Users” Workloads (TUW) previously shown in Table 6-4. The data
and user workload in the learning phases are considered intrusion-free and
representative of normal usage because they are built and run “as defined”

187

Chapter 6

in the TPC-H benchmark. We shall now analyze the time and resources
required to build these profiles.

Table 6-5 shows the required storage space (in kilobytes) for building the
user profiles. As can be seen, the smallest user profile database was built
from 305 SQL commands, referring to the 5-5 Scenario with the execution
of 5 TUW workloads, while the largest user profile database, referring to
Scenario 10-0 with the execution of 100 TUW workloads, which contains a
set of 12000 SQL queries.

As shown in Table 6-5 in the largest setup, RBAC-DIDS, DC-DIDS and
DW-DIDS respectively needed nearly 234 KB, 1031 KB and 2767 KB of
storage space, corresponding to an average of 20, 88 and 236 bytes of data
per SQL command. Given that the storage space typically required by DWs
ranges through many gigabtyes or terabtyes, we may conclude that the
measured sizes for the user profiles can be considered insignificant.

Table 6-5. Required Storage Space for building User Profiles

Scenario K Executions # TUW SQL Required Storage Space (Kbytes)
Commands | RBAC-DIDS | DC-DIDS DW-DIDS
5 600 11.7 51.6 138.3
25 3000 58.6 257.8 691.7
100 50 6000 117.2 515.6 1383.4
100 12000 2344 1031.3 2766.8
5 540 10.5 46.4 1245
91 25 2700 52.7 232.0 622.5
50 5400 105.5 464.1 1245.1
100 10800 210.9 928.1 2490.1
5 485 9.5 41.7 111.8
25 2425 47.4 208.4 559.1
o2 50 4850 94.7 416.8 1118.1
100 9700 189.5 833.6 2236.3
5 305 6.0 26.2 71.4
25 1525 29.8 131.1 356.8
> 50 3050 59.6 262.1 713.7
100 6100 119.1 524.2 1427.3

188

Intrusion Detection Mechanism

In what concerns the time spent in building the user profiles, the measured
costs can also be deemed insignificant when compared with the typical
response time of long running queries, intrinsic characteristics of user
actions in DW environments. For building all the user profiles, RBAC-
DIDS took less than 1 minute, DC-DIDS took approximately 4 minutes and
DW-DIDS nearly 6 minutes.

6.6.2. Intrusion Detection Efficiency

The complete “true” user and intruder workload of the testing (intrusion
detection) phase for each scenario is shown in Table 6-6.

Table 6-6. Workload Quantification for each User Scenario

Scenario # “True” Queries | # Attack Queries
10-0 1250 0
9-1 1130 100
8-2 1020 200
5-5 660 500

Based on the previously mentioned TP, TN, FP and FN measures, derived
calculations are commonly used to measure the efficiency of intrusion
detection mechanisms, such as [Kamra ef al., 2008; Kamra, 2010]:

TP
e TP Rate (TPR) =
TP+FN
FP
e [P Rate (FPR) =
FP+TN
TP+TN
e Accuracy =
TP+FP+TN+FN
. TP
e Precision =
TP+FP

For the performed experiments, Figures 6-5a to 6-5c respectively show the
TP Rate (TPR) and FP Rate (FPR) of DW-DIDS, RBAC-DIDS and DC-DIDS
for each scenario using the user profiles built in the learning stage for each
TUW training set, and Figures 6-6a to 6-6c show their Accuracy and
Precision. All results are the average of 10 repeated executions for each
setup (and there full statistical measures can be seen in Appendix C).

189

Chapter 6

Figure 6-5a. DW-DIDS Figure 6-5b. RBAC-DIDS Figure 6-5¢c. DC-DIDS
TP and FP rates TP and FP rates TP and FP rates

Figure 6-6a. DW-DIDS Figure 6-6b. RBAC-DIDS Figure 6-6¢c. DC-DIDS
Accuracy (ACC) and Accuracy (ACC) and Accuracy (ACC) and
Precision (PREC) Precision (PREC) Precision (PREC)

As shown in Figures 6-5.a to 6-5.c, the TP rates resulting from the scenarios
in which the user profiles were built from only 5 TUW executions are
relatively low for all DIDS (ranging from 52% to 78%), while in those built
from 25 or more TUW executions the TP rates ranged between 85% and
94% for DW-DIDS and between 79% and 94% for RB-DIDS, while DC-
DIDS obtains the worst TPR result, ranging between 65% and 72%.

The observed FP rates are all relatively low for DW-DIDS and RB-DIDS
(ranging from 1% to 7%) in all scenarios except the 5-5 scenario, where 14%
to 23% of the alerts result in false alarms for DW-DIDS, 15% to 30% for RB-
DIDS, and 19% to 31% for DC-DIDS. This should be somewhat expected,
since the 5-5 scenario represents an environment with heavy intrusion
activity (£50% of the total input workload). This results in a heavy increase
of alarm generation, and given the high difficulty in distinguishing normal
from abnormal behavior (as previously described), the probability of
generating false alarms consequently increases.

190

Intrusion Detection Mechanism

As seen in Figures 6-6.a to 6-6.c, the accuracy is high in all scenarios except
5-5, ranging between 90% and 99% for DW-DIDS, between 83% and 99%
for RB-DIDS, and between 82% and 90% for DC-DIDS. In the 5-5 scenario,
DW-DIDS maintains the best accuracy results between 72% and 90%, RB-
DIDS between 62% and 89%, and DC-DIDS between 68% and 78%. The
precision results are considerably high for DW-DIDS in all scenarios,
ranging from 58% to 83%, variable in RB-DIDS by ranging from 36% to
83%, and the poorest for DC-DIDS, ranging from 29% to 50%.

Another commonly used metric to evaluate ID efficiency is the F-score (or
F-measure) [Kamra et al., 2008; Kamra, 2010]. This measure is preferred by
many authors to score efficiency, because it scores the balance (as a
harmonic mean) between Precision and Recall (alias TP rate) in a single
output:

2xPrecision*Recall

e [-score = —
Precision+Recall

Figures 6-7.a to 6-7.c show the F-score results in each scenario for each
DIDS. It can be seen that DW-DIDS obtains the best results for all scenarios
and TUW setups, followed by RB-DIDS, while DC-DIDS has the worst
results in most cases. DW-DIDS and RB-DIDS present very similar results
for the setups in which the training SQL dataset is fairly significant in size
(>=25 TUW), although DW-DIDS has always a slight advantage. On the
other hand, the DC-DIDS presents better results than RB-DIDS when the
training dataset is small (5 TUW) in the 9-1 and 8-2 scenarios, suggesting
that in these cases the data-centric analysis produces more efficient results
than the command-centric analysis. Since DW-DIDS includes analysis on
both data and command features, this mostly explains why DW-DIDS
presents better results in all cases.

100% 100% 100%

50% 90N 50% —
0% ————t 80% - t 3 §0% ——

70% —t 70% * 0% A

80% F—u . a 0% et = 4 BO%

S0% £ * st ¥ sas ¥

0% ¥ 40% 40

30% o

20% 208 20%

10% 10% 10%

0% g fal

5T 5 TUW 50 TN 100 T 5 TN 25 TUW S0 TURN 100 TN 5TUW 25 TR 50 TUn 100 T

* DDt - RB-DID% i atel]e] + DIDsDW L] EB-DIDS i DC-DIDS * DIDSDnw L R2.0IDS [OL.DIDs

Figure 6-7a. F-Score for Figure 6-7b. F-Score for the Figure 6-7c. F-Score for
the 9-1 Scenario 8-2 Scenario the 5-5 Scenario

191

Chapter 6

6.6.3. Analyzing the Generated Alerts per Risk Exposure Measure

Given that one of the main advantages of ranking the alerts using the risk
exposure approach is to separate the most urgent alerts that need to be
checked out from those which represent a lower risk to the enterprise, we
shall now analyze the generated alerts per risk exposure measure. Tables
6-7a to 6-7d show the number of generated alerts for each risk exposure
measure, in each scenario. Recall the previously presented Table 6-6
referring to the number of “true” SQL instructions versus the number of

“intrusion” SQL instructions for each scenario (10-0, 9-1, 8-2 and 5-5).

Table 6-7a. Alerts per Risk Exposure Measure w/ Profiles built from 5 TUW Executions

192

Scenario Very Low Low High M —I;)Iiltj
10-0 11 13 14
9-1 27 28 28
8-2 41 52 59
5-5 88 93 116

Scenario Very Low Low High Critical -I;leltj
10-0 2 2 3

9-1 22 30 31

8-2 40 52 57

5-5 103 118 139

Scenario Very Low Low High Eﬁltj
10-0 1 2 3

9-1 20 30 30

8-2 36 50 59

5-5 108 123 138

Scenario || Very Low Low High Téaﬁltf
10-0 1 1 2

9-1 22 23 26

8-2 34 51 55

5-5 109 125 131

Intrusion Detection Mechanism

By observing the previous tables it can be seen that in scenario 10-0, while
there are no “intrusion” actions, DW-DIDS using profiles built from 25
TUW raises 19 false alerts (corresponding to 1,5% of user statements),
while in the remaining setups that amount of false alarms decreases to 1%
or less, as a result of building more accurate profiles due to having more
TUW to build it from.

Figure 6-8 shows the percentage of alerts per risk exposure measure, given
each scenario and user profile database setup. It can be seen that the most
relevant alerts (very high and critical) represent approximately one third
of all alerts, which should be the ones first deserving full attention on
behalf of the security staff, instead of wasting potentially precious time
checking the remaining alerts.

Scenario 10-0 Scenario 9-1 Scenario 8-2 Scenario 5-5
0.6
_ 12;0
5TUwW
Executions 22.8% 29.4% 18.7%
24.5% 22.4% 23.3%

P

21.8%

25 TUW ﬂ
Executions '

‘q

25.7%

2. >

24.4%

16.8 '
50 TUW "l 16.6%
Executions 24.3% 22.2%
25.0%
24.3% 26.2% 24.5%
20.0
100 TUW gy =
Executions 20.0% Jaes — 21.8%
20.6% 24.3% 22.9%

Figure 6-8. Percentage of Alerts per Risk Exposure Method in each Setup

193

Chapter 6

It can be seen that the alerts that are potentially most critical to the
enterprise (assuming this to be Very High + Critical) are approximately 35-
40% of the total number of alerts in most cases. This gives a measure of
how many alerts (60-65%) can be left to check subsequently to those that
are most urgent to check.

To analyze the efficiency of the risk exposure alert ranking method, we
recalculated the TPR, FPR, Accuracy, Precision and F-score measures for
DW-DIDS, considering only the generated alerts referring to attacks that
fell within the High, Very High and Critical measures, i.e. filtering those
which present a greater threat to the enterprise. Figures 6-9 to 6-11 show
these results.

5o TN

PR
8.2 Scenario TPR
#- = 5.5 Scenario TPR

Figure 6-9. DW-DIDS Figure 6-10. DW-DIDS Figure 6-11. DW-DIDS
TPR and FPR Accuracy and Precision F-Score considering only
considering only High, considering only High, High, Very High and
Very High and Critical Very High and Critical Critical Risk Exposure
Risk Exposure Alerts Risk Exposure Alerts Alerts

Considering Figure 6-9, the TP rate presents nearly the same results as
when all alerts are considered (Figure 6-5a), but the FP rate is much better
than the previous, obtaining much fewer false alarms. The measured
accuracy and precision, shown in Figure 6-10, is very high and also
significantly better than the previous (Figure 6-6a). In fact, the accuracy for
the majority of the scenarios in almost 100%, while in many setups the
precision rises above 90%. Figure 6-11 shows that the overall F-score
measure translates this, by presenting almost 10% of improvement for each
scenario considering the previous results shown in Figures 6-7a to 6-7c.

Conclusively, this allows to state that considering the alerts referring to
higher risk exposure present higher efficiency results in intrusion

194

Intrusion Detection Mechanism

detection, thus demonstrating that the risk exposure method is an
adequate form of defining the priority on which alerts should be checked
first and consequently reduce intrusion damage.

6.6.4. Database Response Time Overhead due to Intrusion Detection

In what concerns the impact on database performance, i.e. the increase of
query response time, we measured an average overhead for each DIDS in
each scenario as shown in Figure 6-12.

2006
159¢
100
“w b b B
05 -
10-0 9-1 8-2 E-5

B DW-DIDS W DC-DIDS RB-DIDS

Figure 6-12. Database Response Time Overhead for each DIDS in each Scenario

By observing the previous figure, it can be seen that RB-DIDS is the fastest,
introducing an overhead of equal or lesser than 2% to user query workload
response time, while DW-DIDS is the slowest, given that it joins data-
centric and command-centric analysis and processes a significantly higher
amount of data than the remaining DIDS in the intrusion detection process,
introducing response time overheads ranging from 4% to 11%. However,
although DW-DIDS does in fact have the worse results, we argue that its
intrusion detection efficiency shown in the experiments make these
overheads worthwhile when compared to the remaining solutions.

6.7. Discussion on DW-DIDS

In DW-DIDS, all risk exposure, probability and impact rules are stored in
the DW-DIDS Database and used by the Intrusion Response Manager (IRM)
as formerly explained. Although probability is initially predefined, each
rule may be redefined by the DW Security Administrator at any time for fine
tuning. For instance, the DW Security Administrator may grant a different
probability to any feature or grant higher or lower weights to specific

195

Chapter 6

features that s/he knows are most likely to lead to better or less reliable ID
rates given the DW’s context.

The conditional clauses in the DW-DIDS rules (similarly to SQL clauses)
allow an extremely wide range of definitions that, due to space feasibility
issues, are not included. We just want to make clear that, besides the
examples described in the former subsections, the algorithms can be easily
adapted to cope with a wide range of rule possibilities using standard SQL
functions with the DW-DIDS features, tables and columns, and the DW’s
tables and columns, providing a very wide intrusion detection scope
coverage.

Using qualitative measures instead of quantitative measures allows
providing a much more comprehensive rank; it is humanly much more
intuitive and straightforward to interpret a High or Low measure of
evaluation than the difference between a value of 0.46 and 0.58, or having
just a High measure instead of differencing values such as 0.76 and 0.78.
The qualitative measures smoothen the ranges of the quantitative values,
providing better understanding to security staff.

Combining quantitative probability and impact assessments into a unique
qualitative risk exposure measure also improves the efficiency of alert
management. For example, if an alert refers to an attack with Low
probability — probably, a false positive — or refers to an attack with Low
impact — probably, against non-sensitive data — it can be assessed as having
Low risk exposure, which means that checking it can be postponed (or the
intrusion may even be tolerated); if another alert with higher risk exposure
— and thus, probably capable of causing greater damage — is generated
simultaneously, it is more significant and quickly dealt with. The
credibility and assertiveness of these assumptions are demonstrated by the
experimental results shown in Figures 6-9, 6-10 and 6-11 described in
Subsection 6.6.3, where the analysis containing the most relevant alerts (i.e.
High, Very High and Critical risk exposure) shows particularly good
accuracy, precision and F-score results.

Figure 6-12 illustrates the alert correlation and risk exposure approaches for
alert management. Standard alert correlation techniques are a weakness in
most existing DIDS because they may exclude part of the generated alerts
and do not consider the impact of the user actions, while our approach

196

Intrusion Detection Mechanism

considers all the alerts, focusing on their importance rather than solely on
their probability.

The alert correlation approach might lead to wasting time dealing with an
attack on unimportant data while an attack on vital data occurs. With the
risk exposure alert ranking method proposed in this thesis, it is guaranteed
that the attacks focusing on the most sensitive data or capable of producing
more damage to the enterprise can be dealt with first, effectively increasing
damage containment. Furthermore, while alert correlation may exclude
some alert that refers to an intrusion potentially capable of producing high
impact on the enterprise, the risk exposure does not exclude any alert, but
rather ranks them given their respectively assessed risk measure.

ALERT MANAGEMENT USING ALERT MANAGEMENT USING
ALERT CORRELATION APPROACH RISK EXPOSURE APPROACH

Intrusion Detector I Intrusion Detector I

Generated Generated
Alerts Alerts

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
Risk E
Alert Correlator | ISk Exposure
| Assessment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FlAlfs:;d Filtered Alerts
considered considered Ranked
Relevant Alerts (All)
Irrelevant
. @
S %@ @ @ .
Security Staff Security Staff

Figure 6-12. Risk Exposure Approach vs Alert Correlation for Alert Management

Although discussable, we argue that the contribution of each feature to the
overall intrusion detection efficiency is subjective. The rules that define
attack probability depend on the intrusion detection features in DW-DIDS
are initially tuned to 0.5 by default, given the system has no knowledge a
priori on which feature is more relevant for the intrusion detection process.

197

Chapter 6

However, if the DW Security Administrator has know-how or any way of
defining the relevance of each feature a priori, the rules provide a way to
accomplish this by adding whichever extra rules s/he wishes to the rule
base. On the other hand, the rules that define the sensitivity of data (i.e.
impact rules) must be defined by the DW Security Administrator because it
depends on the nature and importance of that data to the enterprise, which
only s/he (and mainly business managers) know, and depends on the DW
context itself. Therefore, there isn't any automatic setup for these rules
because, from our point of view, it is not relevant.

Our proposal is both syntax-centric and data-centric. Although this rises
its execution time overhead, we argue that this is worthwhile because it
allows our approach to analyze the complete set of dimensions affecting
the data due to the user action — the command itself, the processed data
and the data resulting from the command’s execution — which is left out by
the IDS used for comparison in the experiments (they only analyze
command syntax - RBAC - and resulting dataset - Data-Centric). To the
best of our knowledge, no other DIDS proposes this threefold analysis.

The main reasons why we chose the role-based and data-centered
approaches proposed in [Kamra et al., 2008; Mathew, 2010] is that DIDS
analyzing data access patterns such as [Bertino et al., 2005; Kamra et al.,
2010] and analyzing the targeted data such as [Mathew et al., 2010; Spalka
and Lehnhardt, 2005] seem more adequate for DW intrusion detection than
solutions using other techniques such as sequence alignment,
fingerprinting commands or transactional read-write rules, as we
previously discussed in Chapter 2. Therefore, we chose one of each type of
these intrusion detection techniques.

The differences in storage size and time cost are justified by the type of
dataset required by each DIDS to build the profiles: RBAC-DIDS just parses
the SQL command and splits it into the relevant features, which basically
works by accessing the command log and executing string manipulation;
DC-DIDS considers, on average, a higher number of features than RBAC-
DIDS and executes statistics per feature on each resulting command’s
dataset, thus requiring data access actions, which are much more time-
expensive than those executed by RBAC-DIDS; and DW-DIDS executes
both types of actions of RBAC-DIDS and DC-DIDS, plus accessing the data
rows processed by the command, and has the highest number of features.

198

Intrusion Detection Mechanism

Although this makes DW-DIDS the slowest solution in building the
profiles and the one that requires the highest amount of storage space,
collecting and combining the information regarding the user command
with the resulting dataset and the rows processed by the command enables
it to compose the richest feature dataset, which would add value to
improve its intrusion efficiency, as was demonstrated in the experiments.

By analyzing all results, it may be concluded that DW-DIDS showed the
best results, followed closely by RB-DIDS in most scenarios, mainly when
the training set was significantly large (>=25 TUW), while DC-DIDS
obtained the worst results. By integrating features that enable both data-
centric and command-centric analysis, DW-DIDS is capable of producing
the expected added value when compared with the application of those
distinct analysis in separate. We may also conclude that a training set of 5
TUW is insufficient in size for producing an efficient user profile database,
as these scenarios yielded relatively low intrusion detection efficiency. The
better results were obtained using the highest number of user workloads
in the training stage.

The results presented in the experiments suffer from the predefined data
values and user commands used in the setups. Although both the DW-
DIDS and RBAC-based approaches obtained good results in our
experiments, it is extremely difficult to state that these results can be
generalized to assess the efficiency of both DIDS. Most DIDS use the well-
known KDD99 benchmark [DARPA] to compare results. However, this
benchmark uses network-based traffic for its purpose, which in our case is
not applicable. In fact, given the absence of an SQL-based intrusion
detection benchmark, the results published in this field of research are not
comparable and thus, they cannot be generalized. We therefore argue that
research in both the data warehousing and intrusion detection
communities should make an effort to propose a benchmark for DIDS at
the SQL level, possibly a compromise between the well-known TPC-DS or
TPC-H decision support benchmarks and the KDD99 benchmark.

6.8. Summary

In this chapter, we proposed a DIDS specifically designed for DWs, which
can work transparently between the user interfaces and the database server
as an extension of the DBMS itself. User behavior profiles are built using

199

Chapter 6

features that enable analyzing the diverse dimensions of DBMS user
behavior: SQL commands, processed data and result datasets. Statistical
tests are used to verify user actions against those profiles and generate
intrusion alerts.

The probability of each alert referring to a true intrusion and the impact
that might be caused by the user action to which the alert refers can be
managed by a set of SQL-like rules previously defined by the DW Security
Administrator. This rule-base allows extending DBMS data access policies
and provides a mean to assess the risk exposure of each intruder action for
an extremely wide range of possibilities. The risk exposure method is used
to rank the generated alerts and prioritize response to intrusions,
presenting clear advantages when compared to standard correlation
techniques: it does not allow any intrusion alert to be neglected and it
enables rapidly responding to alerts which may cause greater damage to
the enterprise. The experimental results show the proposed approach
achieves high intrusion detection efficiency and accuracy results in the
tested setups.

200

Chapter 7

Conclusions and Future Work

Protecting business secrets from disclosure is a critical issue for many
enterprises. This implies that ensuring data confidentiality in extremely
sensitive data repositories such as DWs, which store many of those secrets,
is of vital importance. To deal with this, many data security solutions have
been proposed in the past. Research and best practice guides have stated
that the best way to promote confidentiality at the database level is
probably to use a mix of DIDS together with encryption for live user
databases, and use data masking techniques for protecting sensitive
published or outsourced data.

Despite the development of these solutions for protecting data
confidentiality, internal as well as external attacks against databases in the
recent past have been rising in both number and complexity. This makes
the continuous development and improvement of data security solutions
an imposing business requirement, in which this thesis seeks to make a
contribution. In this sense, this thesis addressed the feasibility issues
involving solutions that promote data confidentiality and deal with
intrusions against DWs at the database level, focusing on data masking,
encryption and DIDS.

As discussed, data masking solutions are typically not used to protect live
databases because they are not considered secure enough, and have been
mostly applied as an irreversible process as a mean to secure sensitive data
that has to be outsourced or publicly published. On the other hand, it is
revealed throughout this thesis that the database performance overheads
introduced by encryption techniques might effectively lead business
stakeholders and end users to consider their use infeasible in many data
warehousing environments. Finally, the reasons why there should be DIDS
specifically tailored for data warehousing environments have also been
discussed, as well as the issues relating alert management and dealing with

201

Chapter 7

intrusions against DWs according to the potential cost they represent to the
business.

Founded on the research and analysis of current commercial and state-of-
the-art data masking and encryption solutions as well as database
intrusion detection techniques, the overall objective of this thesis was the
proposal of new feasible, efficient and effective solutions in these fields that
contribute to enhance data security in data warehousing environments. To
achieve this overall objective given the importance of securing
confidentiality in DWs and comparing with the currently available data
security solutions from the fields covered, our work introduces a series of
solid key contributions, which are detailed in the following paragraphs:

e A body of knowledge focusing on the impact on database
performance caused by the use of encryption in very large
databases. Most discussions around the development of new
encryption techniques are focused on their security proof, i.e., on the
demonstration of how secure they are against attackers. The focus on
their performance, i.e., how fast they are able to execute, is often
considered a secondary issue. We have built a body of knowledge
focusing on the development guidelines of modern encryption
solutions and their performance concerning implementations to be
used against very large databases. Experimental evaluations
included in state-of-the-art standards and published research as well
as experimental results throughout this thesis effectively show that
the storage space and response time overheads introduced by
encryption algorithms dramatically degrade database performance
to a magnitude that jeopardizes their feasibility in data warehousing
environments. Since database performance is a critical issue in DWs,
we conclude that current encryption solutions are not suitable. Data
warehouses operate in a well-determined specific environment with
tight security, performance and scalability requirements and,
therefore, need specific solutions able to cope with these directives.
Since there is always a tradeoff between security strength and
performance, developing specific data confidentiality solutions for
DWs must always balance security requirements with the desire for
high performance, i.e., ensuring a strong level of security while
keeping database performance acceptable. This is a critical issue that

202

Conclusions and Future Work

justifies the development of new solutions in this domain, given the
lack of specific solutions for data warehousing environments.

¢ A body of knowledge on database intrusion detection techniques.
Although intrusion detection has been well studied in the past
decades, it has mostly focused on network and operating system
level intrusions rather than on the data level intrusions. We have
built a body of knowledge that gathers, describes and classifies the
most recently proposed intrusion detection techniques that can be
used at the data level to develop DIDS. We have discussed their
usage from a data warehousing perspective, given the typical DW
workloads. We have justified why DWs are database systems with
unique user and data processing requirements that differ from other
types of systems and require distinctively tailored intrusion
detection approaches. To the best of our knowledge, we have
concluded that up to date there has been no database intrusion
detection proposal that accounts for: 1) the impact that the intrusion
might cause to the business; 2) realizing intrusion detection and
response both a priori and a posteriori to the execution of the user
action; and 3) performing intrusion detection by analyzing the user
action, processed data and the outcome of processing the user action,
together in the same workflow. We have also discussed why alert
correlation techniques are not the most appropriate solutions for
performing alert management, given that these techniques exclude
possible intrusions that could be alerted, by relying solely on
probability assessments. Given the sensitivity of DW data and its
critical security requirements, these facts justify the development of
new DIDS that incorporate these capabilities.

¢ Anintegrated data security framework that enables the use of data
masking, encryption and intrusion detection in a single workflow.
To the best of our knowledge, this is the first framework that
transversally integrates a diversity of solutions across several distinct
security domains/purposes such as masking, encryption and
intrusion detection. The proposed framework describes the
implementation of an architecture that enables integrating all
solutions proposed in this thesis together in a unique workflow. The
framework also proposes the guidelines for improving or developing

203

Chapter 7

new data masking, encryption and DIDS from a data warehousing
perspective, considering the issues pointed out by the discussion
derived from the bodies of knowledge in each domain presented in
Chapter 2. This framework provides an overall functional security
architecture and guides the development of the solutions proposed
in this thesis for each referred domain.

o A reversible data masking technique for numeric values on live
databases using only standard SQL operators. Although data
masking techniques are not seen as reliable solutions to be used in
live sensitive databases and are mostly used as an irreversible
process which is applied to the data that is to be publicly available or
outsourced, we have shown that they might still be a viable option
in data warehousing environments in which response time is a
critical concern. Given the overhead introduced by using encryption,
using a lightweight data masking solution that provides some
security strength is better than not having any sort of security at all.
In this thesis, we have proposed a reversible data masking technique,
which provides a certain level of security strength while producing
low database performance overheads. It relies on data type
preservation and restrains its data transformations to operators
existing in standard SQL, requiring only SQL rewriting to achieve its
security purpose. This gives it several advantages: 1) data type
preservation avoids database storage space overhead and extra
computational efforts in datatype conversions when compared with
standard encryption; 2) executing SQL commands directly against
the masked data; 3) due to the previous advantage, it avoids data
roundtrips between the database and the masking/unmasking
mechanisms, thus avoiding critical path I/O and network bandwidth
consumption bottlenecks, contrarily to other solutions which require
this; 4) data-at-rest is masked at all times; 5) It executes faster than
standard and state-of-the-art encryption algorithms; and 6) the
solution can be transversally and transparently applied and used in
any DBMS against any database. The experimental results have
confirmed these advantages and demonstrated that it can effectively
be a valid way to protect data confidentiality in DWs.

204

Conclusions and Future Work

¢ A lightweight encryption algorithm for securing numeric values
using only standard SQL operators. We have proposed a novel
encryption algorithm that, although might not be as secure as other
standard and state-of-the-art encryption algorithms, presents
significantly better database performance while providing
considerable security strength, ie. better performance-security
tradeoffs. It follows similar guidelines as those on which the data
masking technique was based, also relying on data type preservation
and restraining its data transformations to operators existing in
standard SQL, requiring only SQL rewriting to achieve its security
purpose. Thus, it also achieves the same advantages, when compared
with standard and state-of-the-art encryption algorithms. The
experimental results have also confirmed these advantages and the
included security proof makes it an acceptable alternative to the
former, making it a feasible and efficient encryption option to protect
data confidentiality in DWs.

¢ A DIDS focused on typical end user workloads and intrusions in
DWSs, capable of analyzing the user action, processed data and
resulting outcome from the execution of the user action, performing
intrusion detection and response both a priori and a posteriori, and a
risk exposure method for ranking alerts and responding to possible
intrusions in a much more reliable and efficient way than standard
alert correlation techniques. Our DIDS specifically accounts for the
characteristics of DW users, gathering the set of features that allow
adequately building their behavior profiles and analyze their actions.
The proposed features handle intrusion detection by analyzing from
several aspects of user workloads, such as the user command, the
data processed by the command and the results of its processing. The
intrusion detection processes may run before the command’s
execution and after it finishes executing (but before disclosing results
back to the user). Each generated intrusion alert is never discarded,
but ranked by a risk exposure method that is able to prioritize
dealing with the intrusions that potentially present a higher threat to
the business. The proposed set of risk exposure rules (including
probability and impact) enables defining a particularly large scope of
possibilities that provide a wide coverage of intrusions. The
relevance of each feature in the intrusion detection processes is

205

Chapter 7

adjusted according to its efficiency given its TP and FP rates and self-
calibrates through time. Therefore, the proposed solution is
effectively better than those that perform intrusion detection in only
one of the mentioned moments or only on one aspect of the user
action, and particularly better than those that rely on alert correlation
techniques for alert management purposes. The experimental results
demonstrate its efficiency against similar state-of-the-art intrusion
detection solutions, comproving these statements.

Future Work

The work presented in this thesis represents the initial ground for our
research in data security for data warehousing. Related to the issues and
questions addressed in this thesis, we propose the following priority
developments and improvements:

¢ Increase the scope of both data masking and encryption techniques
to consider protecting the confidentiality of textual attributes,
besides numerical attributes. Both data masking and encryption
techniques proposed in this thesis were specifically designed as
intended to mask and encrypt numeric values, because in most DWs
the main portion of sensitive data is numerical. Nevertheless, other
datatypes may also be used to store sensitive data. A natural and
logical improvement of the proposed solutions is its adaptation to be
able to accomplish protecting data of all datatypes. Therefore,
researching the best ways to develop and implement these
improvements, and verify their feasibility, namely by assessing
performance impact as well as security strength, is one of the future
works to be executed.

¢ Investigate ways to enhance the security strength of the proposed
data masking and encryption solutions, without losing focus on
their feasibility for data warehousing environments. As we have
discussed in this thesis, the execution performance and security
strength of both data masking and encryption techniques depend on
their algorithm, keys and block length. Investigating changes to the
proposed data masking formula or encryption algorithm in any one
of these aspects to improve their performance or their security and

206

Conclusions and Future Work

respective tradeoffs is always an open research possibility for future
work, as in any other similar solution. Additionally, any of the
proposed solutions can use the row masking keys to enable a method
for injecting false rows into the fact tables. This would make it
increasingly difficult to distinguish true and false data, increasing the
overall DW security level and misleading attackers that gain direct
access to the database. To achieve this, instead of generating
independent random numbers for the values of the masking or
encryption row keys in each fact table row j, we redefine those keys
Kj as a multiple of the sum of the true original values of all Ci
columns to be masked, for each true row j:

Ki= (ECi,]‘) *k, {i=1...n} where k is a random integer constant
that does not overflow for Kj and n is the number of masked
columns C in row j)

For false rows, random values for filling each column Cij would be
generated, and the value of Kj would be equal to any value different
from those possibly generated by Formula (3). Thus, true rows are
verifiable through testing if Kj is a multiple of the sum of the true
unmasked values of all masked columns, using the MOD remainder
operator. The following formula shows how to test if a certain row j
is true or false:

Given R= K3 MOD (2Cij), {i=1...n}
IF R=0 THEN row j is True ELSE row j is False

However, although potentially increasing the fact table’s security
strength, there is a tradeoff between security and performance that
needs to be considered when using this false data injection method.
The more false data is injected, the stronger is the level of security of
the table. However, the more data is injected, the more data is
scanned and verified by the queries, decreasing database
performance. The increased overall security strength for each fact
table is directly dependent on how many false rows should be
injected into each table, and how to distribute the false rows
throughout the existing data. Thus, the injection of false data to
increase security strength is at least, arguable, since it increases the
amount of data to be accessed when the queries are being processed,
consequently introducing overhead in response time.

207

Chapter 7

e Investigate ways to enhance the efficiency and effectiveness of the
intrusion detection methods. Our intrusion detection approach
appears to work best when the number of intrusions is relatively low.
This happens because its statistical probability provides that a
greater number of false alarms is likely to be generated given an
increasing number of attack attempts. However, the statistical
approach used to detect abnormal commands was our first approach.
As future work, testing techniques such as the Naive Bayes Classifier,
Clustering, SVM, etc. for the intrusion detection process should be
approached and their efficiency should be compared in order to
choose the most efficient solution(s).

e Improve the practical application and performance of the risk
exposure method rules. The execution of the verification tasks
referring to the impact and probability rules introduce extra response
time because they need to be processed before the user command is
executed and before the results are disclosed back to the user. Given
the expressiveness of the rules” syntax (similar to SQL), the efforts in
processing them may be significant. Therefore, the impact produced
in database performance by the referred verification tasks for the
generated alerts should be thoroughly evaluated and analyzed, and
ways of improving and optimizing the execution of these tasks
should be researched.

e Develop a database intrusion detection benchmark. Benchmarks
are an essential instrument used in the development and
implementation of many systems. They provide a mean to test those
systems and significantly contribute to supply end users and
developers with feedback on their performance, allowing to compare
between different solutions, as well as give the developers insight for
improving the proposed solutions. In the past, the KDD99
benchmark [KDD99] has been widely used for testing intrusion
detection solutions, as we have previously mentioned. However, this
benchmark focuses on intrusion actions at the network and operating
system (OS) level, and the datasets and attack loads used in most
published research are either synthetic or come from real-world
applications. To the best of our knowledge, there has been no
proposal from the research community regarding an intrusion

208

Conclusions and Future Work

detection benchmark focusing on the data level. In such a sensitive
matter as data security, we find that the inexistence of a recognized
standard database intrusion detection benchmark at the data level is
an important lack in assessing the feasibility, credibility and
efficiency of DIDS. Therefore, we propose a first draft version of such
a benchmark, which can be seen in Appendix D of this thesis.

¢ Realize and produce a survey with an objective comparison
between distinct state-of-the-art database intrusion detection
techniques and mechanisms using the proposed database
intrusion detection benchmark. Once the benchmark is defined and
accepted by the database research and security communities, use it
to test a sample of distinct state-of-the-art intrusion detection
techniques (e.g. those described in Chapter 2). The obtained results
can then be used to produce a formal report to disclose them to those
communities and drive discussion around them as well as around
the benchmark itself.

e Demonstrate the feasibility, efficiency and effectiveness of the
proposed solutions in real-world data warehousing contexts.
Perform implementations and tools using the proposed solutions in
real-world DWs and gather feedback to measure and analyze their
accomplishments in order to assess their feasibility, efficiency and
effectiveness in real-world data warehousing contexts.

In conclusion, this thesis has focused on proposing feasible, efficient and
effective techniques that can enhance data security in data warehousing
environments. Overall, the main objective for the future is to investigate
ways of enhancing these proposals and go from research prototypes and
laboratory environments to real-world scenarios as much as possible. We
will aim verifying our experimental results and expectations and to
provide both the research community as well as the industrial community
with knowledge and tools that can truly enhance data security in data
warehousing environments. We also wish that our work can make way for
innovative solutions in this domain, not only data masking, encryption and
intrusion detection techniques specifically designed for DWs, but also for
the conception of a novel standard database intrusion detection benchmark

209

Chapter 7

at the database level. Ultimately, we hope our work is considered as an
effective concrete valid contribution to keep the secrets of the business safe.

210

References

3DES (2005), Triple DES, National Bureau of Standards, National Institute of
Standards and Technology (NIST), Federal Information Processing
Standards (FIPS) Pub. 800-67, ISO/IEC 18033-3.

AES (2001), Advanced Encryption Standard, National Bureau of Standards,
National Institute of Standards and Technology (NIST), Federal
Information Processing Standards (FIPS)-197.

Agrawal, R., Kiernan, J., Srikant, R. and Y. Xu (2004), “Order-Preserving
Encryption for Numeric Data”, ACM SIG International Conference
on Management Of Data (SIGMOD).

Avizienis, A., Laprie, J., Randell, B. and C. Landwehr (2004), Basic
Concepts and Taxonomy of Dependable and Secure Computing,
IEEE Transactions on Dependable and Secure Computing (TDSC), Vol.
1, No. 1, January-March.

Baer, H. (2004), On-Time Data Warehousing with Oracle Database 10g —
Information at the Speed of Your Business, Oracle White Paper,
Oracle Corporation.

Barker, E., Barker, W., Burr, W., Polk, W. and M. Smid (2012),
Recommendation for Key Management, Special Publication, National
Institute of Standards and Technology (NIST), available at
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-

57 partl rev3 general.pdf .

Bartle, R. G. (1976), The Elements of Real Analysis, 24 Edition, John Wiley &
Sons.

Bernstein, D. J. (2005), Snuffle 2005: The Salsa Encryption Function,
http://cr.yp.to/snuffle.html.

Bernstein, D. J. (2008), The Salsa20 Family of Stream Ciphers, New Stream
Cipher Designs - The eSTREAM Finalists 2008, Springer LNCS 4986.

211

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://cr.yp.to/snuffle.html

References

Bertino, E. and R. Sandhu (2005a), Database Security — Concepts,
Approaches and Challenges, IEEE Transactions on Dependable and
Secure Computing (TDSC), Vol. 2, No. 1.

Bertino, E., Leggieri, T. and E. Terzi (2005b), “Intrusion Detection in
RBAC-Administered Databases”, Annual Computer Security
Applications Conference (AC-SAC).

Bockermann, C., Apel, M. and M. Meier (2009), “Learning SQL for
Database Intrusion Detection using Context-Sensitive Modeling”,
International Conference on Knowledge Discovery and Machine
Learning (KDML).

Castro, V. G. (2009), The Use of Alternative Data Models in Data Warehousing
Environments, PhD dissertation thesis, School of Mathematical and
Computer Sciences, Heriot-Watt University, Edinburgh, UK.

Chaudhuri, S. and U. Dayal (1997), An Overview of Data Warehousing
and OLAP technology, SIGMOD Record, 26(1), September.

Chung, C. Y., Gertz, M. and K. Levitt (1999), “DEMIDS: A Misuse
Detection System for Database Systems”, IFIP TC11 WG11.5
Conference on Integrity and Internal Control in Information Systems,
Kluwer Academic Publishers.

DARPA archive, Task Description of the KDD99 Benchmark,
http://www .kdd.ics.uci.edu/databases/kddcup99/task.html.

Debar, H. and A. Wespi (2001), “Aggregation and Correlation of
Intrusion-Detection Alerts”, International Conference on Recent
Aduvances in Intrusion Detection (RAID).

DES (1977), Data Encryption Standard, National Bureau of Standards,
National Institute of Standards and Technology (NIST), Federal
Information Processing Standards (FIPS) Pub 46, 1977.

Devlin, B. A. and P. T. Murphy (1988), An Architecture for a Business and
Information System, IBM Systems Journal, Vol. 27, No. 1, USA.

Douligeris, C. and A. Mitrokotsa (2004), DDoS Attacks and Defense
Mechanisms: Classification and State-of-the-Art, International
Journal of Computer Networks (I[CN), Elsevier B. V., 44.

212

http://www.kdd.ics.uci.edu/databases/kddcup99/task.html

References

Elminaam, D., Kader, H. and M. Hadhoud (2010), Evaluating the
Performance of Symmetric Encryption Algorithms, International
Journal of Network Security, Vol. 10, No. 3.

Fonseca, J., Vieira, M. and H. Madeira (2008), “Online Detection of
Malicious Data Access using DBMS Auditing”, ACM International
Symposium on Applied Computing (SAC).

Gartner Inc. (2009), Selection Criteria for Data Masking Technologies,
Research Report ID G00165388, February.

Ge, T. and S. Zdonik (2007), “Fast, Secure Encryption for Indexing in a
Column-Oriented DBMS”, International Conference on Data
Engineering (ICDE).

Hacigumus, H., Iyer, B. R, Li, C. and S. Mehrotra (2002), “Executing SQL
over Encrypted Data in the Database-Service-Provider Model”,
ACM SIG International Conference on Management Of Data
(SIGMOD,).

Hacigumus, H., Iyer, B. R. and S. Mehrotra (2004), “Efficient Execution of
Aggregation Queries over Encrypted Relational Databases”,

International Conference on Databases Systems for Advanced
Applications (DASFAA).

Halfond, W., Viegas, J. and A. Orso (2006), “A Classification of SQL
Injection Attacks and Prevention Techniques”, International
Symposium on Secure Software Engineering (SSE).

Hu, Y. and B. Panda (2004), “A Data Mining Approach for Database
Intrusion Detection”, International Symposium on Applied Computing
(SAC).

Huey, P. (2008), Oracle Database Security Guide 11g, Oracle Corporation.

Inmon, W. H. (1996), Building the Data Warehouse, 2" Edition, John Wiley
& Sons, Inc.

Inmon, W. H. (2002), Building the Data Warehouse, 3 Edition, John Wiley
& Sons, Inc.

Jabbour, G. and D. Menasce (2009), “The Insider Threat Security
Architecture: A Framework for an Integrated, Inseparable, and

213

https://www.cisuc.uc.pt/publication/show/3070
https://www.cisuc.uc.pt/publication/show/3070
https://www.cisuc.uc.pt/publication/show/3070

References

Uninterrupted Self-Protection Mechanism”, International
Conference on Computational Science and Engineering (ICCSE).

Kamra, A., Terzi, E. and E. Bertino (2008), Detecting Anomalous Access
Patterns in Relational Databases, Springer VLDB Journal (17).

Kamra, A. (2010), Mechanisms for Database Intrusion Detection and Response,
PhD dissertation thesis, Purdue University, USA, August.

Kim, J. (2011), “Injection Attack Detection Using the Removal of SQL
Query Attribute Values”, International Conference on Information
Science and Applications (ICISA).

Kim, J., Lee, Y. and S. Lee (2010), DES with any reduced masked rounds is
not secure against side-channel attacks, International Journal of
Computers and Mathematics with Applications, 60.

Kimball, R. (1996), The Data Warehouse Toolkit, 1+ Edition, Wiley & Sons,
Inc.

Kimbeall, R. and M. Ross (2002), The Data Warehouse Toolkit, 2" Edition,
Wiley & Sons, Inc.

Kimball, R. and M. Ross (2013), The Data Warehouse Toolkit, 3 Edition,
Wiley & Sons, Inc.

Kindy, D. A. and A. K. Pathan (2012), A Detailed Survey on Various Aspects
of SQL Injection: Vulnerabilities, Innovative Attacks and Remedies,
Computing Research Repository (CoRR), Cornell University, USA.

Kobielus, J. (2009), The Forrester Wave: Enterprise Data Warehousing
Platforms, Forrester Research Report, Q1.

Kundu, A., Sural, S. and A. K. Majumdar (2010), Database Intrusion
Detection Using Sequence Alignment, International Journal of
Information Security (9).

Lappas, T., and K. Pelechrinis (2007), Data Mining Techniques for (Network)
Intrusion Detection Systems, Technical Report, Department of
Computer Science and Engineering, University of California,
Riverside.

214

References

Lee, S. Y., Low W. L. and P. Y. Wong (2002), “Learning Fingerprints for a
Database Intrusion Detection System”, European Symposium on
Research in Computer Security (ESORICS).

Lee, V. C. S, Stankovig, J. A. and S. H. Son (2000), “Intrusion Detection in
Real-time Database Systems via Time Signatures”, Real-time
Technology and Applications Symposium (RTAS).

Lee, W. (2002), Applying Data Mining to Intrusion Detection: the Quest
for Automation, Efficiency, and Credibility, SIGKDD Explorations,
Vol. 4, Issue 2.

Lee, W. and D. Xiang (2001), “Information-Theoretic Measures for
Anomaly Detection”, IEEE Symposium on Security and Privacy
(S&P).

Marsland, S. (2011), Machine Learning, CRC Press, §4.1.1, 2011.

Mathew, S., Petropoulos, M., Ngo, H. Q. and S. Upadhyaya (2010), “A
Data-Centric Approach to Insider Attack Detection in Database
Systems”, International Conference on Recent Advances in Intrusion
Detection (RAID).

Matsumoto, M. and T. Nishimura (1998). “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator”, ACM Transactions on Modeling and Computer Simulation
8 (1): 3-30.

Mattson, U. T. (2004), Database Encryption — How to Balance Security with

Performance, Protegrity Corporation Technical Paper.

McKendrick, J. (2012), IOUG Enterprise Data Security Survey 2012:
Closing the Security Gap, The Independent Oracle Users Group
(IOUG) Security Report, November.

Mogull, R. (2006), Top Five Steps to Prevent Data Loss and Information Leaks,
Gartner Research Report.

Motwani, R., Nabar, S. U. and D. Thomas (2004), “Auditing SQL
Queries”, International Conference on Data Engineering (ICDE).

Nadeem, A. and M. Y. Javed (2005), “A Performance Comparison of Data
Encryption Algorithms”, IEEE International Conference on
Information and Communication Technologies (ICICT).

215

References

Natan, R. B. (2005), Implementing Database Security and Auditing, Digital
Press.

Newman, A. C. (2011), Intrusion Detection and Security Auditing in Oracle,
Application Security Inc. White Paper.

Nicolett, M., and]. Wheatman (2007), DAM Technology Provides
Monitoring and Analytics with Less Overhead, Gartner Research
Report.

Ning, P., Cui, Y. and D.S. Reeves (2002), “Analyzing Intensive Intrusion
Alerts via Correlation”, International Conference on Recent Advances
in Intrusion Detection (RAID).

Oracle Corporation (2005), Security and the Data Warehouse, Oracle White
Paper, April.

Oracle Corporation (2010a), Oracle Advanced Security Transparent Data
Encryption Best Practices, Oracle White Paper, July.

Oracle Corporation (2010b), Oracle Real Application Clusters (RAC),
http://www.oracle.com/us/products/database/options/real-
application-clusters/index.htm, September.

Oracle Corporation (2010c), Data Masking Best Practices, Oracle White
Paper.

Ponniah, P (2010), Data Warehouse Fundamentals for IT Professionals, 2
Edition, Wiley & Sons, Inc.

Pei, J., Upadhyaya, S. J., Farooq, F. and V. Govindaraju (2004), “Data
Mining for Intrusion Detection”, Keynote in International
Conference on Data Engineering (ICDE).

Pietraszek, T. (2004), “Using Adaptive Alert Classification to Reduce
False Positives in Intrusion Detection”, International Conference on
Recent Advances in Intrusion Detection (RAID).

Pietraszek, T., and A. Tanner (2005), Data Mining and Machine Learning
— Towards Reducing False Positives in Intrusion Detection,
Information Security Technical Report, 10(3).

216

http://www.oracle.com/us/products/database/options/real-application-clusters/index.htm
http://www.oracle.com/us/products/database/options/real-application-clusters/index.htm

References

Pietraszek, T. (2006), Alert Classification to Reduce False Positives in Intrusion
Detection, PhD dissertation thesis, University of Freiburg,
Germany, July.

Radha, V. and N. H. Kumar (2005), “EISA — An Enterprise Application
Security Solution for Databases”, International Conference on
Information Systems Security (ICISS).

Ravikumar, G. K., Manjunath, T. N., Ravindra, S. H. and I. M. Umesh
(2011), A Survey on Recent Trends, Process and Development in

Data Masking for Testing, International Journal of Computer Science
Issues (IJCSI), Vol. 8, Issue 2.

Santos, R. J., Bernardino, J. and M. Vieira (2011a), “A Survey on Data
Security in Data Warehousing”, International Conference on Computer
as a Tool (EUUROCON).

Santos, R. J., Bernardino, J. and M. Vieira (2011b), “A Data Masking
Technique for Data Warehouses”, International Database Engineering
& Applications Symposium (IDEAS).

Santos, R. J., Bernardino, J. and M. Vieira (2011c), “Balancing Security and
Performance for Enhancing Data Privacy in Data Warehouses”, in
IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TRUSTCOM).

Santos, R.], Bernardino, J. and M. Vieira (2012a), “Evaluating the
Feasibility Issues of Data Confidentiality Solutions from a Data
Warehousing Perspective”, International Conference on Data
Warehousing and Knowledge Discovery (DAWAK).

Santos, R.]., Bernardino, J. and M. Vieira (2012b), “DBMS Application
Layer Intrusion Detection for Data Warehouses”, International
Conference on Information Systems Development (ISD).

Santos, R. J., Bernardino,]J., Vieira, M. and D. Rasteiro (2012c), “Securing
Data Warehouses from Web-based Intrusions”, International
Conference on Web Information Systems Engineering (WISE).

Santos, R. J., Rasteiro, D. M. L., Bernardino, J. and M. Vieira (2013), “A
Specific Encryption Solution for Data Warehouses”, International
Conference on Databases Systems for Advanced Applications (DASFAA).

217

https://www.cisuc.uc.pt/publication/show/2849
https://www.cisuc.uc.pt/publication/show/2849
https://www.cisuc.uc.pt/publication/show/2849
https://www.cisuc.uc.pt/publication/show/2852
https://www.cisuc.uc.pt/publication/show/2852
https://www.cisuc.uc.pt/publication/show/2852
https://www.cisuc.uc.pt/publication/show/2852
https://www.cisuc.uc.pt/publication/show/3070
https://www.cisuc.uc.pt/publication/show/3070
https://www.cisuc.uc.pt/publication/show/3070

References

Scarfone, K. and P. Mell (2007), Guide to Intrusion Detection and
Prevention Systems (IDPS), Recommendations of the National
Institute of Standards and Technology (NIST), Special Publication 800-
94.

Schneier, B. (2013), The Blowfish Encryption Algorithm,
http://www.schneier.com/blowfish.html.

Schulman, A. (2007), Top 10 Database Attacks, The Chartered Institute for
IT — Enabling the Information Society,
http://www.bcs.org/content/ConWebDoc/8852.

Simitsis, A. (2005), Modelling and Optimization of Extraction-Transformation-
Loading (ETL) Processes in Data Warehouse Environments, PhD
dissertation thesis, School of Electrical and Computer Engineering,
National Technical University of Athens, Greece.

Spalka, A. and J. Lehnhardt (2005), “A Comprehensive Approach to
Anomaly Detection in Relational Databases”, IFIP International
Conference on Data and Applications Security and Privacy (DBSec).

Srivastava, A., Sural, S. and A. K. Majumdar (2006), Database Intrusion
Detection using Weighted Sequence Mining, Journal of Computers,
Vol. I, No. 4.

TPC-H, Transaction Processing Performance Council, The TPC Decision
Support Benchmark H, http://www.tpc.org/tpch/

TPC-H Specifications, Transaction Processing Performance Council, The
TPC Decision Support Benchmark H Standard Specifications review
2.16.0, http://www.tpc.org/tpch/spec/tpch2.16.0.pdf

TPC-DS, Transaction Processing Performance Council, The TPC Decision
Support Benchmark, http://www.tpc.org/tpcds/

Treinen, J. and R. Thurimella (2006), “A Framework for the Application of
Association Rule Mining in Large Intrusion Detection
Infrastructures”, International Conference on Recent Advances in
Intrusion Detection (RAID).

Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T. and H. Nakashima (2007),
Differential Cryptanalysis of Salsa20/8, in Workshop Record of SASC

218

http://www.schneier.com/blowfish.html
http://www.bcs.org/content/ConWebDoc/8852
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/spec/tpch2.16.0.pdf
http://www.tpc.org/tpcds/

References

2007: The State-of-the-art of Stream Ciphers, eSSTREAM Report
2007/010.

Vaudenay, S. (2006), A Classical Introduction to Cryptography — Applications
for Communications Security, Swiss Federal Institute of
Technologies (EPFL), Springer Science+Business Media Inc.

Valdes, A. and K. Skinner (2001), “Probabilistic Alert Correlation”,
International Conference on Recent Advances in Intrusion Detection
(RAID).

Vimercati, S. C., Foresti, S., Jajodia, S., Paraboschi, S. and P. Samarati
(2007), “Over-encryption: Management of Access Control
Evolution on Oursourced Data”, International Conference on Very
Large DataBases (VLDB).

Wheeler, D. and R. Needham (1995), TEA, a Tiny Encryption Algorithm,
International Workshop on Fast Software Encryption, Springer
Lecture Notes in Computer Science, Volume 1008, pp 363-366.

Yu, Z., Tsai, J. P. and T. Weigert (2007), An Automatically Tuning
Intrusion Detection System, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 37, No. 2.

Yuhanna, N. (2009), Your Enterprise Database Security Strategy 2010,
Forrester Research, September.

Zhong, Y. and X. Qin (2004), “Database Intrusion Detection based on User
Query Frequent Itemsets Mining with Item Constraints”,
International Information Security Conference (InfoSecu,).

219

http://link.springer.com/bookseries/558

220

Appendix A

Sales Data Warehouse

In this appendix we describe the purpose and data schemas of the Sales
DW as well as its scale and query workloads used in the experimental
evaluations included in this thesis.

A.1. Purpose

The Sales DW is withdrawn from a real-world enterprise data mart of an
online retail business, which aims on analyzing sales revenue, given
customers, products and promotions.

A.2. Data Schema

The Sales DW data schema is shown in Figure A-1. It is a star schema with
a central fact table named Sales, which stores the relevant measures
regarding sales and promotions, and four dimension tables that describe
the business, respectively containing the descriptive information
concerning Customers, Products and Promotions, as well as a temporal
dimension named as Time.

A.3. Table Scale Size

The number of rows and approximate storage space size for the Sales DW
used in the experimental evaluations is shown in Table A-1, corresponding
to one year of business activity.

Table A-1. Scale-size features of the Sales Data Warehouse

Number of Rows Storage Size
Time 8760 0,12 MB
Customers 250 000 90 MB
Products 50 000 7 MB
Promotions 89 812 10 MB
Sales 31536 000 1927 MB

221

Appendix A

TIME
T_TimelD
T Date PRODUCTS
T_Time P_ProductiD
T_Quarter P_Name
T_Week P_Description
P_Brand
P_Category
P_Department
CUSTOMERS SALES P_BarCode
C CustomerlD 5_SalelD P_Package
C MName §_LineNumber P_Weight
C:Address | 5 TimelD P_WaeightUnits
C_City 5 ProductlD g P StorageType
C_Country S_CustomerlD P_Comments
© Stale S_PromotionID |«4—
C_ZipCode S_SalesMean
C_Phone 5_ShipToCost
C_CellPhone S_Quantity
C_Fax 5_SalesAmount
C_EMail g_F‘mﬂt
C_TaxPayerir _Tax
C_BillToName PROMOTIONS
C_BilToAddrass PR_PromotionlD
C_BillToCity PR_Description
C_BilToCountry PR_BeginDate
C_BillToState PR_BeginHour
C_BilToZipCode PR_EndDate
C_Gender FR_EndHour
C_BirthData PR_Comments
C_Income
C_MNumberOfKids
C_Comments

Figure A-1. Sales Data Warehouse Star Schema

A.4. Query Workloads

Following is the list of 29 queries against the Sales DW data schema that
were used in the experiments.

222

Sales Data Warehouse

Q1. YEAR SALES PROFITS QUOTA PER DEPARTMENT, ORDERED BY QUOTA
SELECT

P Department,

Profit/TotalProfit*100 AS ProfitQuota

FROM

(SELECT
P Department,
SUM(S profit) AS Profit

FROM
Products, Sales, Times

WHERE
S ProductID=P ProductID AND
S TimeID=T TimeID AND
T_Date>=to_date('01—01—2008','DD—MM—YYYY') AND
T_Date<=to_date('31—12—2008','DD—MM—YYYY')

GROUP BY
P Department) A,

(SELECT
SUM(S_profit) AS TotalProfit

FROM
Sales, Times

WHERE
S TimeID=T TimeID AND
T_Date>=to_date('01—01—2008','DD—MM—YYYY') AND
T_Date<=to_date('31—12—2008','DD—MM—YYYY')) B

ORDER BY

ProfitQuota DESC

Q2. MONTH SALES PROFITS QUOTA PER DEPARTMENT, ORDERED BY QUOTA
SELECT

P Department,

Profit/TotalProfit*100 AS ProfitQuota

FROM

(SELECT
P Department, SUM(S profit) AS Profit

FROM
Products, Sales, Times

WHERE
S_ProductID=P ProductID AND
S TimeID=T TimeID AND
T_Date>=to_date('01—11—2008','DD—MM—YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY')

GROUP BY
P Department) A,

(SELECT
SUM(S_profit) AS TotalProfit

FROM
Sales, Times

WHERE
S TimeID=T TimeID AND
TiDate>=toidate('01—11—2008','DD—MM—YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY')) B

ORDER BY

ProfitQuota DESC

223

Appendix A

Q3. DAY SALES PROFITS QUOTA PER DEPARTMENT, ORDERED BY QUOTA
SELECT

P Department,

Profit/TotalProfit*100 AS ProfitQuota

FROM
(SELECT
P Department,
SUM(S profit) AS Profit
FROM
Products, Sales, Times
WHERE
S ProductID=P ProductID AND
S TimeID=T TimeID AND
T_Date=to_date('01—12—2008','DD—MM—YYYY')
GROUP BY
P Department) A,
(SELECT
SUM(S_profit) AS TotalProfit
FROM
Sales, Times
WHERE
S TimeID=T TimeID AND
T Date=to date('01-12-2008', 'DD-MM-YYYY')) B
ORDER BY

ProfitQuota DESC

Q4. YEAR TOTAL SALES, PROFIT AND SHIPCOST VALUES

SELECT
SUM(S_salesamount) AS TotalSalesAmount,
SUM(S_profit) AS TotalSalesProfit,
SUM(S_shiptocost) AS TotalShipToCost

FROM
Sales, Times

WHERE
S TimeID=T TimeID AND
T_Date>=to_date('01—01—2008','DD—MM—YYYY') AND
T Date<=to date('31-12-2008', 'DD-MM-YYYY')

Q5. MONTH TOTAL SALES, PROFIT AND SHIPCOST VALUES
SELECT
SUM (S _salesamount) AS TotalSalesAmount,
SUM(S profit) AS TotalSalesProfit,
SUM(S_shiptocost) AS TotalShipToCost
FROM
Sales, Times
WHERE
S _TimeID=T TimeID AND
T_Date>=to_date('01—11—2008','DD—MM—YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY')

224

Sales Data Warehouse

Q6. DAY TOTAL SALES, PROFIT AND SHIPCOST VALUES
SELECT
SUM (S _salesamount) AS TotalSalesAmount,
SUM(S profit) AS TotalSalesProfit,
SUM(S_shiptocost) AS TotalShipToCost
FROM
Sales, Times
WHERE
S TimeID=T TimeID AND
T Date=to date('01-12-2008', 'DD-MM-YYYY')

Q7. TOP 100 CUSTOMERS OF A YEAR WITH HIGHEST TOTAL SALES VALUE,
ORDERED BY VALUE

SELECT
TOP 100
S CustomerID, C Name, C City, TotalSalesAmount
FROM
(SELECT
S CustomerID,
SUM (S salesamount) AS TotalSalesAmount
FROM
Sales, Times
WHERE

S TimeID=T TimeID AND
T Date>=to date('01-01-2008', 'DD-MM-YYYY') AND
T Date<=to date('31-12-2008', 'DD-MM-YYYY')
GROUP BY
S_CustomerID) A, Customers
WHERE
C CustomerID=S CustomerID
ORDER BY
TotalSalesAmount DESC

Q8. TOP 100 CUSTOMERS OF A MONTH WITH HIGHEST TOTAL SALES VALUE,
ORDERED BY VALUE

SELECT
TOP 100
S CustomerID, C Name, C City, TotalSalesAmount
FROM
(SELECT
S CustomerID,
SUM(S_salesamount) AS TotalSalesAmount
FROM
Sales, Times
WHERE

S TimeID=T TimeID AND
T Date>=to date('01-11-2008', 'DD-MM-YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY')
GROUP BY
S CustomerID) A, Customers
WHERE
C CustomerID=S CustomerID
ORDER BY
TotalSalesAmount DESC

225

Appendix A

Q9. TOP 100 CUSTOMERS OF A DAY WITH HIGHEST TOTAL SALES VALUE,
ORDERED BY VALUE

SELECT
TOP 100
S CustomerID, C Name, C City, TotalSalesAmount
FROM
(SELECT
S CustomerlID,
SUM (S salesamount) AS TotalSalesAmount
FROM
Sales, Times
WHERE

S TimeID=T TimeID AND
T Date=to date('01-12-2008', 'DD-MM-YYYY"')
GROUP BY
S CustomerID) A, Customers
WHERE
C CustomerID=S CustomerID
ORDER BY
TotalSalesAmount DESC

Q10. YEAR TOTAL SALES QUANTITY AND VALUE PER PROMOTION/PRODUCT OF
BRAND #1, ORDERED BY PROMOTION/PRODUCT
SELECT

S PromotionID, PR Description, S ProductID, P Name,

Qty, SalesAmount

FROM
(SELECT
S PromotionID, S ProductID,
SUM(S_quantity) AS Qty,
SUM(S_salesamount) AS SalesAmount #
FROM
Sales, Times, Products
WHERE
S ProductID=P ProductID AND
P Brand='BRAND #1' AND
S _PromotionID>0 AND
S TimeID=T TimeID AND
T_Date>=to_date('01—01—2008','DD—MM—YYYY') AND
T Date<=to date('31-12-2008', 'DD-MM-YYYY')
GROUP BY
S PromotionID, S ProductID
ORDER BY
S PromotionID, S ProductID), Products, Promotions
WHERE

S _PromotionID=PR PromotionID AND
S_ProductID=P ProductID

226

Sales Data Warehouse

Q11. MONTH TOTAL SALES QUANTITY AND VALUE PER PROMOTION/PRODUCT
OF BRAND #1, ORDERED BY PROMOTION/PRODUCT
SELECT

S _PromotionID, PR Description, S ProductID, P Name,

Qty, SalesAmount

FROM
(SELECT
S _PromotionID, S ProductID,
SUM(S_gquantity) AS Qty,
SUM (S _salesamount) AS SalesAmount
FROM
Sales, Times, Products
WHERE
S ProductID=P ProductID AND
P_Brand='BRAND #1' AND
S _PromotionID>0 AND
S TimeID=T TimeID AND
T_Date>=to_date('01—11—2008','DD—MM—YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY"')
GROUP BY
S PromotionID, S ProductID
ORDER BY
S PromotionID, S ProductID), Products, Promotions
WHERE

S PromotionID=PR PromotionID AND
S ProductID=P ProductID

Q12. DAY TOTAL SALES QUANTITY AND VALUE PER PROMOTION/PRODUCT OF
BRAND #1, ORDERED BY PROMOTION/PRODUCT
SELECT

S PromotionID, PR Description, S ProductID, P_Name,

Qty, SalesAmount

FROM
(SELECT
S PromotionID, S ProductID,
SUM(S_quantity) AS Qty,
SUM (S _salesamount) AS SalesAmount
FROM
Sales, Times, Products
WHERE
S ProductID=P ProductID AND
P Brand='BRAND #1' AND
S _PromotionID>0 AND
S _TimeID=T TimeID AND
T Date=to date('01-12-2008', 'DD-MM-YYYY')
GROUP BY
S PromotionID, S ProductID
ORDER BY
S PromotionID, S ProductID), Products, Promotions
WHERE B

S_PromotionID=PR PromotionID AND
S ProductID=P ProductID

227

Appendix A

Q13. YEAR TOTAL SALES VALUE PER COUNTRY/ZONE, ORDERED BY
COUNTRY/ZONE
SELECT

C Country, ZipCode,

SUM (S salesamount) AS TotalSalesAmount

FROM
(SELECT
DISTINCT (SUBSTR(c_zipcode,1,3)) AS ZipCode
FROM
Customers), Sales, Customers, Times
WHERE

S CustomerID=C CustomerID AND
S TimeID=T TimeID AND
T Date>=to date('01-01-2008', 'DD-MM-YYYY') AND
T Date<=to date('31-12-2008', 'DD-MM-YYYY') AND
SUBSTR(C_ZipCode, 1, 3)=ZipCode
GROUP BY
C Country, ZipCode
ORDER BY
C Country, TotalSalesAmount DESC, ZipCode

Q14. MONTH TOTAL SALES VALUE PER COUNTRY/ZONE, ORDERED BY
COUNTRY/ZONE
SELECT

C Country, ZipCode,

SUM (S _salesamount) AS TotalSalesAmount

FROM
(SELECT
DISTINCT (SUBSTR(c_zipcode,1,3)) AS ZipCode
FROM
Customers), Sales, Customers, Times
WHERE

S CustomerID=C CustomerID AND
S TimeID=T TimeID AND
T_Date>=to_date('01—11—2008','DD—MM—YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY') AND
SUBSTR(C ZipCode, 1, 3)=ZipCode

GROUP BY
C Country, ZipCode

ORDER BY
C Country, TotalSalesAmount DESC, ZipCode

Q15. DAY TOTAL SALES VALUE PER COUNTRY/ZONE, ORDERED BY
COUNTRY/ZONE
SELECT

C Country, ZipCode,

SUM(S_salesamount) AS TotalSalesAmount

FROM
(SELECT
DISTINCT (SUBSTR(c_zipcode,1,3)) AS ZipCode
FROM
Customers), Sales, Customers, Times
WHERE

S CustomerID=C CustomerID AND

228

Sales Data Warehouse

S TimeID=T TimeID AND
T Date=to date('01-12-2008', 'DD-MM-YYYY')
SUBSTR(C_ZipCode, 1, 3)=ZipCode
GROUP BY
C Country, ZipCode
ORDER BY
C Country, TotalSalesAmount DESC, ZipCode

Q16. YEAR TOTAL SALES VALUE PER CUSTOMER AGE CLASS, PER PRODUCT,
ORDERED BY SALES VALUE
SELECT
S ProductID, P Name, C Gender,
SUM (CASE WHEN C Income<600 THEN S salesamount
ELSE 0 END) AS MinimumIncome,
SUM (CASE WHEN C Income>=600 AND C Income<1000 THEN S salesamount
ELSE 0 END) AS ReasonableIncome,
SUM (CASE WHEN C Income>=1000 AND C Income<1500 THEN S salesamount
ELSE 0 END) AS MediumIncome,
SUM (CASE WHEN C Income>=1500 AND C Income<2500 THEN S salesamount
ELSE 0 END) AS HighIncome,
SUM (CASE WHEN C Income>=2500 THEN S salesamount
ELSE 0 END) AS VeryHighIncome
FROM
Sales, Products, Customers, Times
WHERE
S CustomerID=C CustomerID AND
S ProductID=P ProductID AND
S TimeID=T TimeID AND
T_Date>=to_date('01—01—2008','DD—MM—YYYY') AND
T_Date<:to_date(‘31—12—2008','DD—MM—YYYY')
GROUP BY
S ProductID, P Name, C Gender
ORDER BY
MinimumIncome+ReasonableIncome+MediumIncome+
HighIncome+VeryHighIncome DESC

Q17. MONTH TOTAL SALES VALUE PER CUSTOMER AGE CLASS, PER PRODUCT,
ORDERED BY SALES VALUE
SELECT
S ProductID, P Name, C Gender,
SUM (CASE WHEN C Income<600 THEN S salesamount
ELSE 0 END) AS MinimumIncome,
SUM (CASE WHEN C Income>=600 AND C Income<1000 THEN S salesamount
ELSE 0 END) AS ReasonablelIncome,
SUM (CASE WHEN C Income>=1000 AND C Income<1500 THEN S salesamount
ELSE 0 END) AS MediumIncome,
SUM (CASE WHEN C Income>=1500 AND C Income<2500 THEN S salesamount
ELSE 0 END) AS HighIncome,
SUM (CASE WHEN C Income>=2500 THEN S salesamount
ELSE 0 END) AS VeryHighIncome
FROM
Sales, Products, Customers, Times
WHERE
S CustomerID=C CustomerID AND

229

Appendix A

S ProductID=P ProductID AND
S _TimeID=T TimeID AND
T Date>=to date('01-11-2008', 'DD-MM-YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY')
GROUP BY
S ProductID, P Name, C Gender
ORDER BY
MinimumIncome+ReasonableIncomet+MediumIncome+
HighIncome+VeryHighIncome DESC

Q18. DAY TOTAL SALES VALUE PER CUSTOMER AGE CLASS, PER PRODUCT,
ORDERED BY SALES VALUE
SELECT
S ProductID, P Name, C Gender,
SUM (CASE WHEN C Income<600 THEN S salesamount
ELSE 0 END) AS MinimumIncome,
SUM (CASE WHEN C Income>=600 AND C Income<1000 THEN S salesamount
ELSE 0 END) AS ReasonablelIncome,
SUM (CASE WHEN C Income>=1000 AND C Income<1500 THEN S salesamount
ELSE 0 END) AS MediumIncome,
SUM (CASE WHEN C Income>=1500 AND C Income<2500 THEN S salesamount
ELSE 0 END) AS HighIncome,
SUM (CASE WHEN C Income>=2500 THEN S salesamount
ELSE 0 END) AS VeryHighIncome
FROM
Sales, Products, Customers, Times
WHERE
S CustomerID=C CustomerID AND
S ProductID=P ProductID AND
S TimeID=T TimeID AND
T Date=to date('01-12-2008', 'DD-MM-YYYY")
GROUP BY
S ProductID, P Name, C Gender
ORDER BY
MinimumIncome+ReasonableIncome+MediumIncome+
HighIncome+VeryHighIncome DESC

Q19. YEAR TOTAL SALES VALUE AND RESPECTIVE QUOTA PER COUNTRY,
ORDERED BY VALUE
SELECT

C Country, SalesAmount,

SalesAmount/TotalSalesAmount*100 AS SalesQuota

FROM

(SELECT
SUM(S_salesamount) AS TotalSalesAmount

FROM
Sales, Times

WHERE
S TimeID=T TimeID AND
T_Date>:to_date('01—01—2008','DD—MM—YYYY') AND
T Date<=to date('31-12-2008', 'DD-MM-YYYY')),

(SELECT

C Country,
SUM(S_salesamount) AS SalesAmount

230

Sales Data Warehouse

FROM
Sales, Customers, Times
WHERE
S CustomerID=C CustomerID AND
S TimeID=T TimeID AND
T Date>=to date('01-01-2008', 'DD-MM-YYYY') AND
T Date<=to date('31-12-2008', 'DD-MM-YYYY')

GROUP BY
C Country)
ORDER BY

SalesAmount DESC

Q20. MONTH TOTAL SALES VALUE AND RESPECTIVE QUOTA PER COUNTRY,
ORDERED BY VALUE
SELECT

C Country, SalesAmount,

SalesAmount/TotalSalesAmount*100 AS SalesQuota

FROM

(SELECT
SUM (S salesamount) AS TotalSalesAmount

FROM
Sales, Times

WHERE
S TimeID=T TimeID AND
T_Date>=to_date('01—11—2008','DD—MM—YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY')),

(SELECT
C Country,
SUM (S _salesamount) AS SalesAmount

FROM
Sales, Customers, Times

WHERE
S CustomerID=C CustomerID AND
S TimeID=T TimeID AND
T_Date>=to_date('01—11—2008','DD—MM—YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY')

GROUP BY
C_Country)

ORDER BY

SalesAmount DESC

Q21. DAY TOTAL SALES VALUE AND RESPECTIVE QUOTA PER COUNTRY,
ORDERED BY VALUE
SELECT

C Country, SalesAmount,

SalesAmount/TotalSalesAmount*100 AS SalesQuota

FROM
(SELECT
SUM (S salesamount) AS TotalSalesAmount
FROM B
Sales, Times
WHERE

S TimeID=T TimeID AND
T Date=to date('01-12-2008', 'DD-MM-YYYY')),

231

Appendix A

(SELECT

C Country,

SUM (S _salesamount) AS SalesAmount
FROM

Sales, Customers, Times
WHERE

S CustomerID=C CustomerID AND
S TimeID=T TimeID AND
T Date=to date('01-12-2008"', 'DD-MM-YYYY'")

GROUP BY
C_Country)
ORDER BY

SalesAmount DESC

Q22. LIST OF PRODUCTS NEVER SOLD DURING THE YEAR, ORDERED BY
PRODUCT
SELECT

S ProductID, P Name, P Brand, P Category, P Department
FROM

Sales, Products
WHERE

S ProductID=P ProductID AND

S ProductID NOT IN

(SELECT
DISTINCT (S ProductID)
FROM

Sales, Times
WHERE

S TimeID=T TimeID AND
T Date=to date('01-01-2008"', 'DD-MM-YYYY'))
ORDER BY
S ProductID

Q23. LIST OF PRODUCTS NEVER SOLD DURING THE MONTH, ORDERED BY
PRODUCT
SELECT

S ProductID, P Name, P Brand, P Category, P Department
FROM

Sales, Products
WHERE

S ProductID=P ProductID AND

S ProductID NOT IN

(SELECT
DISTINCT (S _ProductID)
FROM
Sales, Times
WHERE

S TimeID=T TimeID AND
T Date>=to date('01-11-2008"', 'DD-MM-YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY'))
ORDER BY
S _ProductID

232

Sales Data Warehouse

Q24. LIST OF PRODUCTS NEVER SOLD DURING THE DAY, ORDERED BY
PRODUCT
SELECT
S ProductID, P Name, P Brand, P Category, P Department
FROM
Sales, Products
WHERE
S ProductID=P ProductID AND
S ProductID NOT IN
(SELECT
DISTINCT (S _ProductID)
FROM
Sales, Times
WHERE
S TimeID=T TimeID AND
T Date=to date('01-12-2008"', 'DD-MM-YYYY'))
ORDER BY
S ProductID

Q25. NUMBER OF PURCHASES MADE PER CUSTOMER DURING THE YEAR,
ORDERED BY COUNTRY, CITY, ZONE, NUMBER OF PURCHASES
SELECT
S CustomerID, C Name, C City, C ZipCode, C Country
FROM
(SELECT
S CustomerlID,
COUNT (*) AS Conta
FROM
Sales, Times
WHERE
S TimeID=T TimeID AND
T Date>=to date('01-01-2008', 'DD-MM-YYYY') AND
T Date<=to date('31-12-2008', 'DD-MM-YYYY')
GROUP BY
S_CustomerID), Customers
WHERE
S CustomerID=C CustomerID AND
Conta>0
ORDER BY
C Country, C City, C_ZipCode, Conta DESC

Q26. NUMBER OF PURCHASES MADE PER CUSTOMER DURING THE MONTH,
ORDERED BY COUNTRY, CITY, ZONE, NUMBER OF PURCHASES
SELECT
S CustomerID, C Name, C City, C ZipCode, C Country
FROM
(SELECT
S CustomerlID,
COUNT (*) AS Conta
FROM
Sales, Times
WHERE
S TimeID=T TimeID AND
T Date>=to date('01-11-2008', 'DD-MM-YYYY') AND

233

Appendix A

T Date<=to_date('30-11-2008"', 'DD-MM-YYYY')
GROUP BY
S CustomerID), Customers
WHERE
S CustomerID=C CustomerID AND
Conta>0
ORDER BY
C Country, C City, C ZipCode, Conta DESC

Q27. NUMBER OF PURCHASES MADE PER CUSTOMER DURING THE DAY,
ORDERED BY COUNTRY, CITY, ZONE, NUMBER OF PURCHASES
SELECT
S CustomerID, C Name, C City, C ZipCode, C Country
FROM
(SELECT
S CustomerID,
COUNT (*) AS Conta
FROM
Sales, Times
WHERE
S TimeID=T TimeID AND
T Date=to date('01-12-2008"', 'DD-MM-YYYY')
GROUP BY
S CustomerID), Customers
WHERE
S CustomerID=C CustomerID AND
Conta>0
ORDER BY
C Country, C City, C_ZipCode, Conta DESC

Q28. MONTHLY TOTAL SALES VALUE AND RESPECTIVE QUOTA FOR THE YEAR,
ORDERED BY MONTH
SELECT
SalesMonth, MonthTotalSalesAmount,
MonthTotalSalesAmount/TotalSalesAmount AS MonthQuota
FROM

(SELECT

SUM (S _salesamount) AS TotalSalesAmount
FROM

Sales, Times
WHERE

S _TimeID=T TimeID AND

T_Date>=to_date('01—01—2008','DD—MM—YYYY') AND

T Date<=to date('31-12-2008', 'DD-MM-YYYY')) a,
(SELECT SalesMonth,

SUM (TotSalesAmount) AS MonthTotalSalesAmount

FROM
(SELECT
to char (T Date, 'Month') AS SalesMonth,
S salesamount AS TotSalesAmount
FROM
Sales, Times
WHERE

S TimeID=T TimeID AND

234

Sales Data Warehouse

T Date>=to date('01-01-2008'", 'DD-MM-YYYY') AND

T Date<=to date('31-12-2008', 'DD-MM-YYYY')) b
GROUP BY
SalesMonth) c
ORDER BY
SalesMonth

Q29. DAILY TOTAL SALES VALUE AND RESPECTIVE QUOTA FOR A MONTH,
ORDERED BY DAY
SELECT
T Date, DayTotalSalesAmount,
DayTotalSalesAmount/TotalSalesAmount AS DayQuota
FROM

(SELECT

SUM (S salesamount) AS TotalSalesAmount
FROM

Sales, Times
WHERE

S TimeID=T TimeID AND
T Date>=to date('01-11-2008', 'DD-MM-YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY')) a,
(SELECT
T Date,
SUM (S _salesamount) AS DayTotalSalesAmount
FROM
Sales, Times
WHERE
S TimeID=T TimeID AND
T_Date>=to_date('01—11—2008','DD—MM—YYYY') AND
T Date<=to date('30-11-2008', 'DD-MM-YYYY')
GROUP BY
T Date) b
ORDER BY
T Date

235

Appendix A

236

Appendix B

Data Masking and Encryption
Experimental Results

In this appendix we present the averages and standard deviations for the

data masking and encryption experimental results described in the thesis.
As mentioned in the respective chapters, each result is obtained from the
execution of six rounds of experiments, referring to the following legend

labels:
Reference/Label Description
Standard Standard data without masking/encryption
AES128 Col Data encrypted with TDE AES 128 bit key column encryption
3DES168 Col Data encrypted with TDE 3DES168 column encryption
OPES Data encrypted with OPES
Salsa20 Data encrypted with Salsa20/20
Data masked by MOBAT, where a column for masking keys has
MOBAT AddcCol been added to the existing fact table
MOBAT CreateCol Data masked by MOBAT, where a column for masking keys was

added to the fact table, which has been completely recreated

MOBAT ColKey

Data masked by MOBAT, using a numerical column from the
original fact table data structure as key K3, j

SES-DW128 Data encrypted using SES-DW with 128 bit security
SES-DW256 Data encrypted using SES-DW with 256 bit security
SES-DW1024 Data encrypted using SES-DW with 1024 bit security

237

Appendix B

B.1. Data Masking Chapter Loading Time Results

Tables B-1 to B-3 show the results in seconds for the average (u) and
standard deviation (o) of the data masking loading experiments, obtained
using a Pentium IV 2.8 GHz CPU with 2GB RAM.

Table B-1. TPC-H 1GB Loading Time

Oracle 11g SQL Server 2008

1! c U c
Standard 310 9,86777 212 8,99475
AES128 899 46,94247 472 36,75193
AES256 958 44,63968 507 31,48409
3DES168 906 33,61551 485 21,38157
OPES 461 20,87444 305 22,10521
Salsa20 537 26,42794 361 26,65626
MOBAT AddCol 335 14,81949 227 12,39097
MOBAT CreateCol 323 14,70876 221 11,69447
MOBAT ColKey 318 12,81143 218 11,93016

Table B-2. TPC-H 10 GB Loading Time

Oracle 11g SQL Server 2008

1! o u o
Standard 3211 121,9969 2272 96,2474
AES128 10185 387,1303 5484 233,5230
AES256 11114 434,7008 6229 254,6556
3DES168 10424 508,4449 5635 257,1251
OPES 4943 222,8019 3325 160,8512
Salsa20 5881 185,4172 4088 180,0211
MOBAT AddCol 3597 181,0830 2550 155,7417
MOBAT CreateCol 3449 151,5198 2434 154,1759
MOBAT ColKey 3362 144,0208 2381 131,4362

Table B-3. Sales DW Loading Time

Oracle 11g SQL Server 2008

1! o u o
Standard 1195 74,2938 1247 70,9444
AES128 3574 155,6558 3232 111,3055
AES256 3699 162,8546 3381 117,3645
3DES168 3695 140,0080 3339 146,1417
OPES 1929 117,5107 1963 71,6937
Salsa20 2408 84,0577 2459 97,3811
MOBAT AddCol 1373 83,7072 1447 76,2599
MOBAT CreateCol 1308 79,9533 1367 80,6815
MOBAT ColKey 1260 80,7588 1318 78,5291

238

Data Masking and Encryption Experimental Results

B.2. Data Masking Chapter Query Workloads Execution Time Results

Tables B-4 to B-6 show the results in seconds for the average (1) and
standard deviation (o) of the data masking query workload execution
experiments, obtained using a Pentium IV 2.8 GHz CPU with 2GB RAM.

Table B-4. TPC-H 1GB Query Workload Execution Time

Oracle 11g SQL Server 2008

1! c U c
Standard 625 50,6069 580 54,4009
AES128 1798 223,0013 1591 199,6768
AES256 1837 212,8436 1646 172,8946
3DES168 1895 175,8836 1712 186,4174
OPES 1813 158,0126 1629 137,4651
Salsa20 1727 163,8821 1523 154,9399
MOBAT AddCol 846 76,7923 813 82,0243
MOBAT CreateCol 809 79,0004 775 69,8340
MOBAT ColKey 763 86,0046 712 76,4791

Table B-5. TPC-H 10 GB Query Workload Execution Time

Oracle 11g SQL Server 2008

1! o u o
Standard 6155 481,3438 5301 406,6876
AES128 16927 1701,2962 13334 949,9173
AES256 17283 1767,3377 13846 1213,7299
3DES168 17973 1741,0874 15058 1266,3514
OPES 16889 1575,5657 13215 1172,8934
Salsa20 15704 1118,5171 12691 1054,1071
MOBAT AddCol 7527 762,7053 6420 715,2876
MOBAT CreateCol 7314 819,1865 6162 480,4649
MOBAT ColKey 7218 702,9792 5981 447,6100

Table B-6. Sales DW Query Workload Execution Time

Oracle SQL Server

K c W c
Standard 2233 172,8706 2211 200,3533
AES128 17604 1399,6442 16923 1974,8563
AES256 18484 1619,3473 17827 1578,0671
3DES168 20425 1777,9447 18984 1827,5253
OPES 17465 1376,6070 16845 1497,5728
Salsa20 15582 845,2452 15212 1435,1688
MOBAT AddCol 5084 390,5519 4946 279,9171
MOBAT CreateCol 4435 462,5449 4313 240,3703
MOBAT ColKey 3966 283,0312 3637 264,4148

239

Appendix B

B.3. Encryption Chapter Loading Time Results

Tables B-7 to B-9 show the results in seconds for the average (1) and
standard deviation (o) of the encryption loading experiments, obtained
using a Core2Duo 3 GHz CPU with 2GB RAM.

Table B-7. TPC-H 1GB Loading Time

Oracle 11g SQL Server 2008

1! c U c
Standard 253 12,2420 171 9,6231
AES128 608 28,4159 382 14,3341
AES256 636 29,6265 407 19,2423
3DES168 617 31,9687 389 20,1096
OPES 353 17,3743 229 21,5238
Salsa20 419 24,6833 281 21,5931
SES-DW128 279 15,9888 191 15,8537
SES-DW256 294 20,3858 201 18,3346
SES-DW1024 451 21,4445 284 19,7159

Table B-8. TPC-H 10 GB Loading Time

Oracle 11g SQL Server 2008

1! o u o
Standard 2576 132,6468 1796 99,7148
AES128 6375 302,7141 4144 214,7684
AES256 6742 342,2266 4532 193,2705
3DES168 6527 384,4802 4290 245,6537
OPES 3766 153,7396 2542 102,1442
Salsa20 4481 190,5514 3106 129,0725
SES-DW128 3024 140,4549 2137 103,1846
SES-DW256 3216 153,7929 2320 109,6005
SES-DW1024 4844 200,5901 3516 133,9737

Table B-9. Sales DW Loading Time

Oracle 11g SQL Server 2008

1! o u o
Standard 994 38,4313 1013 47,0286
AES128 2676 125,6391 2416 97,7693
AES256 2889 89,9725 2573 111,7741
3DES168 2949 78,9573 2611 123,8752
OPES 1555 77,0835 1554 57,2072
Salsa20 1902 84,6333 1879 78,4652
SES-DW128 1124 46,8944 1161 54,5001
SES-DW256 1211 57,4479 1237 64,4903
SES-DW1024 1808 71,6928 1881 89,6482

240

Data Masking and Encryption Experimental Results

B.4. Encryption Query Workloads Execution Time Results

Tables B-10 to B-12 show the results in seconds for the average (i) and
standard deviation (o) of the encryption query workload execution
experiments, obtained using a Core2Duo 3 GHz CPU with 2GB RAM.

Table B-10. TPC-H 1GB Query Workload Execution Time

Oracle 11g SQL Server 2008

1! c U c
Standard 492 48,4052 452 39,2937
AES128 1357 124,1525 1231 124,3141
AES256 1496 130,1163 1330 153,0616
3DES168 1702 167,9543 1362 159,4373
OPES 1535 136,5459 1326 99,6848
Salsa20 1268 95,7280 1131 98,4518
MOBAT AddCol 1015 93,4154 927 89,7789
MOBAT CreateCol 1251 126,5178 1140 106,7907
MOBAT ColKey 1453 117,9790 1325 96,2909

Table B-11. TPC-H 10 GB Query Workload Execution Time

Oracle 11g SQL Server 2008

1! o u o
Standard 5037 531,1588 4694 459,2833
AES128 15191 1358,3464 14063 993,7016
AES256 19073 1116,7794 16650 1276,2821
3DES168 22053 2105,4593 18821 1447,4942
OPES 17205 1205,4704 14155 1256,6578
Salsa20 14623 965,2504 13540 1080,3754
SES-DW128 9893 671,6570 9446 580,0519
SES-DW256 12056 973,8139 10289 916,5035
SES-DW1024 14976 1520,3692 13713 1153,3621

Table B-12. Sales DW Query Workload Execution Time

Oracle SQL Server

K c W c
Standard 1766 143,4475 1690 181,5121
AES128 14101 1409,7929 13429 1117,5437
AES256 15490 1160,3142 14180 1013,8596
3DES168 15860 1645,6413 14898 1467,3108
OPES 14189 1272,7239 12381 1149,5012
Salsa20 11294 1078,3294 10019 868,6609
SES-DW128 6396 374,6025 5682 434,3993
SES-DW256 8998 512,0796 7806 612,9569
SES-DW1024 12546 1131,3574 10032 980,1660

241

Appendix B

242

Appendix C

Intrusion Detection Experimental
Results

In this appendix we present the experimental results on intrusion detection
described in Chapter 6 of the thesis. Tables C-1 to C-4 show the results for
the average (1) and standard deviation (o) of the number of true positives
(TP), false positives (FP), true negatives (TN) and false negatives (FN)
generated by DW-DIDS in each scenario (“number of true users”-“number
of intruders”).

Table C-1. DW-DIDS ID Results for Profiles built from 5 “True” User Workloads

TP FP ™ FN
Scenario u c u c u c 1} c
10-0 0 0 57 2,7358 1193 | 70,1898 0 0
9-1 62 3,3922 54 2,5322 1076 | 58,6154 38 1,0416
8-2 131 7,4332 76 4,2092 944 | 55,5715 69 2,9680
5-5 327 | 20,9846 282 | 15,3613 378 | 21,0100 173 | 10,0307

Table C-2. DW-DIDS ID Results for Profiles built from 25 “True” User Workloads

TP FP TN FN
Scenario H o H c H o H c
10-0 0 0 14 0,9442 1236 | 66,7567 0 0
9-1 81 4,8560 42 2,0296 1088 | 63,1729 19 | 1,9311
8-2 167 7,9252 54 2,6129 966 | 57,5426 33 | 1,4605
5-5 427 | 25,1637 221 | 12,8374 439 | 26,4010 73 | 3,9543

243

Appendix C

Table C-3. DW-DIDS ID Results for Profiles built from 50 “True” User Workloads

TP FP TN FN
Scenario H o K c H c H c
10-0 0 0 12 | 0,7048 1238 | 65,5332 0 0
9-1 85 | 4,4048 38 1,0416 1092 | 67,4688 15 | 1,1095
8-2 177 | 11,1384 48 1,9226 972 | 53,1624 23 | 0,9102
5-5 459 | 27,7095 204 | 11,5661 456 | 23,2852 41 | 2,3537

Table C-4. DW-DIDS ID Results for Profiles built from 100 “True” User Workloads

TP FP TN FN
Scenario u c M c u c u c
10-0 0 0 9 0,8625 1241 | 75,2322 0 0
9-1 88 | 15,0469 32 | 1,2429 1098 | 65,9825 12 | 0,7329
8-2 183 | 11,0307 43 2,0296 977 | 54,1515 17 1,4190
5-5 477 | 28,3424 193 | 11,2083 467 | 28,4039 23 1,8280

244

Appendix D

Intrusion Detection Benchmark

As current work under development, in this appendix we present a draft
proposal for a DW Intrusion Detection Benchmark (DWID-Bench) for
testing DIDS in DWs at the SQL level, given a controlled DW environment
with mixed intrusion and non-intrusion SQL workloads.

The benchmark’s main aim is to provide a feasible and objective mean of
evaluating the efficiency of the intrusion detection processes and impact in
database performance at the SQL level for DW DIDS. The proposed
measures intend to produce insight for aiding developers in the
improvement of their solutions and allow solution providers and clients to
compare between different solutions.

To accomplish this, we consider the typical DW user workloads and
intrusion detection techniques described in Chapter 2 and the SQL
intrusion action type classification in Chapter 6. The chosen “intrusion”
workload covers a broad scope of distinct types of SQL intrusion actions
against DWs. The “intrusion” workload is executed concurrently with
defined “non-intrusion” workloads, which are selected from the well-
known TPC-DS benchmark to represent a typical decision support user
workload, in order to simulate a scenario as close to reality as possible.

The remainder of this appendix is organized as follows. In Section D.1 we
present the benchmark and describe its setup. In Section D.2 we present
the database schema used in the benchmark. Sections D.3 and D.4
respectively explain the “non-intrusion” and “intrusion” workloads and
how they are defined. Section D.5 describes the benchmark’s execution
rules and procedures, while Section D.6 describes its proposed metrics. In
Section D.7 we discuss open issues regarding the development of the
benchmark and finally, Section D.8 summarizes the benchmark proposal
and points out future work.

Appendix D

D.1. DWID-Bench: Data Warehouse Intrusion Detection Benchmark

Figure D-1 shows the key components of the experimental setup required
to run DWID-Bench. As in TPC-DS [TPC-DS], the main elements are the
System Under Test (SUT) and the Driver System. The goal of the Driver
System is to emulate the client applications and respective users and control
all the aspects of each benchmark run. In the Driver System we include both
the “non-intruder” and “intruder” users. Additionally, the Driver System
also records the raw data needed to calculate the benchmark measures
(which are computed afterwards by analyzing the data collected during
each benchmark run).

TPWF" System Under Test (SUT)
omman > ; ‘

Driver “Intrﬁder" SQL Commarﬁds>

System <S(‘QJT Commands Resppnse| DIDS | DBMS
Inwag,;wbs |
behavior

Figure D-1. DWID-Bench experimental setup

| Storage
- devices

The SUT represents a client-server system fully configured to run both
intruder and non-intruder workloads coming from the Driver System and
includes the DIDS to be evaluated. From the benchmark point of view, the
SUT is composed by the DIDS and the set of processing units used to run
the workloads and to store all the data processed. In other words, the SUT
can be any (hardware + software) system able to run the complete
benchmark workload and execute the DIDS algorithms under the
conditions specified by the benchmark procedure. The communication
between the Driver System and the SUT may be executed through any type
of LAN or WAN network infrastructures.

D.2. DWID-Bench Database Schema

In DWID-Bench, we partially use the data schemas proposed by TPC-DS.
The TPC-DS has been released after we had partially executed the
experiments presented throughout the thesis, and is the latest and
probably the currently mostly used benchmark for measuring the
throughput performance of Decision Support Systems (DSS). The TPC-DS

246

Intrusion Detection Benchmark

benchmark has been mapped to a typical business environment and claims
to significantly represent DSS that:

e Examine large volumes of data;
¢ Give answers to real-world business questions;

e Execute queries of various operational requirements and
complexities (e.g. ad-hoc instructions, reporting actions, data mining
operations, etc);

e Are characterized by high CPU and I/O load;

e Are periodically synchronized with transactional source databases
through database maintenance functions.

Assuming these features are common to a typical DW environment, as
described in [Kimball and Ross, 2013], we accept the TPC-DS as
representative of DSS and partially use its defined data schemas and
workloads in DWID-Bench. The “intrusion” and “non-intrusion” DWID-
Bench workloads focus on users with ETL and DW End User privileges,
since these are the type of actions covered by the TPC-DS benchmark. We
also define a set of actions for simulating DBA users as a mix of ETL + DW
End User actions, plus DDL commands relating to the creation of tables,
constraints and indexes belonging to the chosen schema.

The TPC-DS focuses on a generic retail business DSS for any industry that
must manage, sell and distribute products. Its schema models the sales and
sales returns process for an organization that employs three primary sales
channels: stores, catalogs, and the Internet. Each of these channels has two
fact tables, for storing the facts concerning sales and sales returns. There is
also another fact table for modeling inventory for the catalog and Internet
sales channels. Each fact table is linked with its respective dimensions in a
star schema, which means the complete TPC-DS data schema is a set of
seven star schemas, interlinked by their shared dimensions.

In DWID-Bench, we chose to use the TPC-DS store sales star schema,
illustrated in Figure D-2. We chose this particular schema because it
represents a common business DW scenario for many enterprises, within
the set of proposed star schemas in TPC-DS. Moreover, the Store_Sales fact
table is the biggest sized fact table of all generated tables in the complete
TPC-DS database. As shown in Figure D-2, it is composed of one fact table

247

Appendix D

and ten dimension tables. In the following sections, we explain how the
“intrusion” and “non-intrusion” workloads are defined.

Date Dlm Store

| liem |' {Store Salesl—* Time_Dim |

| F'romotlon |

[Customer_
Mﬂphﬂ Customer_ Hc-usehold
Address Demographms
\ = Income_
o Band

| Customer |

Figure D-2. TPC-DS store sales E-R diagram [TPC-DS]

D.3. DWID-Bench “Non-intrusion” Workload

The TPC-DS models a database that is continuously available 24 hours a
day, 7 days a week, for data modifications against any/all tables and
various types (e.g. ad hoc, reporting, iterative OLAP and data mining) of
queries originating from multiple concurrent user sessions. This
environment allows potentially long running and multi-part queries where
the DBA cannot assume that the database can be inactive during any
particular period. Queries and data maintenance functions may execute
concurrently. Since we use the store sales star schema for our DW database,
we use the predefined TPC-DS query and data maintenance workloads for
the store sales star schema as our chosen “non-intruder” workloads in
DWID-Bench.

From the DWID-Bench perspective, each session with an open connection
to the database refers to a given type of user (ETL, DW end user, or DBA,
as described in Chapter 6 of this thesis). The benchmark expects each
session to execute a stream of actions, which depend on the type of user
and defined as the following:

248

Intrusion Detection Benchmark

e For sessions simulating “non-intrusion” users with ETL database
privileges, data maintenance routines for all the tables of the store
sales data schema are executed, exactly as defined in TPC-DS;

e For sessions simulating “non-intrusion” DW end users (i.e. typical
business managers, analysts and decision makers), each session will
execute a query stream with the complete set of SQL queries defined
in TPC-DS that request processing data from the store sales star
schema, thus totalizing 32 distinct queries for each stream, taken
from the total of 99 queries defined in TPC-DS. The complete set of
selected TPC-DS queries for composing the DWID-Bench “non-
intrusion” workload is thus { Q3, Q6, Q7, Q8, Q13, Q19, Q27, Q28,
Q34, Q36, Q42, Q43, Q44, Q46, Q47, Q48, Q52, Q53, Q55, Q59, Q61,
Q63, Q65, Q67, Q68, Q70, Q73, Q79, Q88, Q89, Q96, QI8 }. For each
benchmark run, each stream is expected to execute each distinct
query once, in which their execution order is defined by the query
ordering established in TPC-DS;

e For sessions simulating users with DBA privileges, the workload
definition is very difficult to define, given the dynamic and huge
scope of actions they can execute. The TPC-DS benchmark does not
have any type of approach on actions coming from users with this
profile, and to present an abstraction that strictly defines a finite set
of particular actions for this type of user may risk the
representativeness of the workload for this type of users in what
concerns the benchmark. From this perspective, we consider the
DBA user as someone that has privileges to execute any type of
action that can be performed by ETL and DW end users (i.e., DML
commands — insert, update and select; delete is not considered, since
typical DW maintenance involves only modifying or insertion of new
data), plus common database object creation and maintenance
actions such as creating, modifying and deleting tables and indexes
(i.e., any sort of DDL commands — drop, create, etc). Thus, in DWID-
Bench we define the DBA workload as the mix of the ETL and DW
end user workloads together, plus all the DDL commands needed for
creating tables, constraints and indexes (i.e., primary and secondary
indexes, possible bitmap join indexes, key and referential integrity
constraint instructions) for the store sales star schema.

249

Appendix D

The execution matrix for the “non-intrusion” workloads can be seen in
Table D-1, displaying the query order for the maximum of 20 DW End User
streams that can be executed in DWID-Bench. It shows the order in which
each of the 32 queries chosen from the TPC-DS queries (identified by their
number in TPC-DS) should be executed, depending on which user (1 to 20)
it refers to. The assumptions and rules on how each user workload should
be executed for each user stream in each benchmark run will be explained
further in Section D.5.

Table D-1. “Non-Intrusion” DW End-User Workload - Query Ordering

Query DW End-User Stream Number
Sequence

Number 1 2 3 4 5 6 7 8 9 |10(11|12 |13 |14 15|16 |17 |18 |19 | 20
1 96 | 98 |98 (89 |79 |73 |34 |70 |98 |88 |43 | 7 |68 |61 |46 |27 |48 |61 |42 |47
2 7 |96 |59 |52| 8 (98 |88|53|59 |52|48 |43 |88 |53 |42 |47 |63 | 8 |19 |55
3 44113 (88|53 |89 (88|44 | 6 |70 |13 |53 |13 |44 |98 |79 |73 |61 |67 |47 |13
4 19 (36| 6 | 7 |46 |19 |53 |34 (44| 7 |96 |36 (28 |89 | 6 |46 |34 |42 |53 |44
5 43 63|27 |63 |48 |65| 7 |13 |73 |27 |63 |98 | 3 |68 |96 |13 (36|88 | 7 |73
6 27| 3 | 28|13 (59| 3 |73|28| 3 [34|70| 8 |19|13| 8 |59 |52 |70 |48 |28
7 36| 6 |68(19|19|79 (36|98 | 7 |65|36 |88 |53 (43|89 (88|53 |13 (79|27
8 46 (28| 8 |96 | 6 |13 |89 |79 |36 |28 | 7 |28 |52 |63 |88 |68|28|28|70]|67
9 63 |27 |63 | 8 |28 | 6 |28 |48 |61 |42 |98 |59 (27|36 |28 |36 |88 |46 |36 |34
10 59| 8 |19 (36|44 |52 | 6 |47 |65 |67 |47 |96 |98 |96 | 55 |44 | 73 |89 | 73 | 52
11 98 |52 | 55|43 |88 | 7 | 65|46 |67 |36 |28 |55 |67 |65 (48|19 |42 | 6 |59 |36
12 70 |61 |42 |47 |36 |36 |42 |55 | 6 |48 |55 |63 |61 |42 |36 |79 |89 |53 |96
13 67 |88 |53 | 3 |61|61|47 |52 (47| 6 |44 | 3 | 8 |19 |47 |53 |67 |34 |65
14 28 | 68 | 67 | 46 |55 |53 |59 |44 |55 (59|27 |52 | 7 | 7 |59 |61| 8 |47 |55 |96
15 47 | 67 |44 (|59 |52 |68 | 8 3 |42 |61 |59 |47 (55|44 (27| 3 |59 |79 |44 |88
16 3 |79(61 (55|27 |28 (19|19 (34|68 |67 |46 |48 |67 |44 |28 |65|19 |88 |53
17 89 |43 |73 (27|63 |42 (61|42 |79 |47 |52 |53 |63 | 3 |65 6 6 |48 [63| 8
18 6 |47 |96 |42 |47 |67 | 3 |43 |28 |98 |42 |67 |43 |48 |98 |65 |46 |27 |89 |65
19 52 (19|36 |34 |70 |48 |67 |61 |89 |70|65|27 |42 |55 |19 |52 |68 |52 |27 |79
20 42 |53 43|68 | 7 | 63|98 | 7 |46 |73 |88 |70 |65| 8 (53|63 |44 |55 |46 | 3
21 8 | 55|52 |44 |96 | 8 (48|73 |19 | 3 |34 |61 |59 |88 |68 |98 |43 |96 |28 |63
22 88|46 |70 |67 |68 |46 |79 |89 | 8 |79 |73 |34 |36 |47 |43 |55| 3 |36 |52 |46
23 65 65| 7 6 [43 | 55|46 (36|96 |89 |79 (73 |70|52| 3 [96 |98 |59 |68 |59
24 3470|7928 |65|89(9% | 8 |88 |19 | 6 6 |34 |28| 7 (67|70 |68 |43 |43
25 48 [59 | 65 |65 |98 | 96 (68 [63 |43 |96 |68 (89 |79 |70 |34 |43 |96 |98 |61 |61
26 73 |48 34|61 |42 |27 |63 |68 (53|46 |89 |65(89|73|73|48|79| 3 |34]|89
27 55|34 | 3 [73|34 |44 (27|67 52|53 |61 |44 |46 (79|70 | 7 |55|73 | 3 |42
28 53 (89|13 |98 | 3 |43 |43 |88 |68 |55|46|79|96 |34 |67 |70|13 |43 |13 |70
29 79| 7 |46 |70 |13 (47 |52 |65 |13 |44 (13|42 (73|27 |13 |34|19 (63| 6 |68
30 13 (73|89 |48 |73 |70|13 |59 |48 |63 | 8 |48 (47| 6 |63 |89 |27 | 7 | 8 |48
31 68 |44 |47 |79 |67 |59 |70 |96 (27 |43 | 3 |19 |13 |59 |52 | 8 |47 |44 |67 |19
32 61 |42 |48 |88 |53 (34 |55|27 (63| 8 |19|68| 6 [46 |61 |42 | 7 [65|98 |98

250

Intrusion Detection Benchmark

In the following section we define the benchmark’s “intrusion” workload.

D.4. DWID-Bench “Intrusion” Workload

The chosen intrusion actions intend to provide a wide coverage of the
possible types of attacks described in Section 6.1 and most of the database
threats discussed in published work [Schulman, 2007] that can be dealt
with at the SQL level. Considering these threats, the types of attacks against
DWs (described in Chapter 6), the classes of intruder actions presented in
Table 6-1, and focusing on the specific business of the TPC-DS store sales
data schema, we assume that the possible “intruder” profile is an attacker

that has access to the database and pursues answers for the following

generic questions:

How are the store sales DW data structures (i.e. table, indexes and
column names and types) implemented in the database, and how can
they be reached? (SQL intrusion action class B defined in Table 6-1)

How can the optimization data structures such as indexes be deleted
so database performance is degraded? (SQL action class B and C)

How can the existing data structures such as tables and views be
deleted so that DW availability is affected and business information
is lost? (SQL action class C)

How to obtain the complete set of business values from the fact or
dimension tables? (SQL action class D)

How to obtain the full set of business values for a certain item, item
brand, class or category, time period, city, county or state? (SQL
action class E and F)

How to obtain the grouped set (e.g. sum, average, count) of
interesting business values for a certain item, item brand, item class,
item category, time period, city, county or state? (SQL action class F)

How to flood the database services with requests that can overwhelm
them by creating CPU and I/O server and network bottlenecks? (SQL
action class G)

How can false data be inserted into the store sales fact table so that
decision support may be compromised? (SQL action class H)

251

Appendix D

e How to modify or erase data so that decision support may become
compromised? (SQL action class I and J)

In DWID-Bench we assume a set of instructions that are able to respond to
these questions as the set of representative “intrusion” actions for the
chosen database schema.

For each intrusion action in which there are parameter variables (shown in
brackets []), these should be given a value as defined in the list of random
parameter variables. Each parameter value should be refreshed for each
query in each intrusion action stream, so that the same parameters which
are used in more than one action in the stream does not have its value
repeated amongst the remaining actions (e.g. ITEM_K should have five
distinct values for actions 1A06, IA12, IA17, 1A22, and IA34, shown further
on).

The random generator is defined as a Mersenne Twister Pseudo-Random
Number Generator® [Matsumoto and Nishimura, 1998], which is, by far,
the most widely used PRNG [Marsland, 2011]. Its name derives from the
fact that its period length® is chosen to be a Mersenne prime. The most
commonly used version of the Mersenne Twister algorithm is based on the
Mersenne prime 2'%¥-1 (alias MT19937). It has a period of 2!*¥—1 iterations
(4.3x10), is proven to be equidistributed in (up to) 623 dimensions (for

8 A pseudorandom number generator (PRNG), also known as a deterministic
random bit generator (DRBG) is an algorithm for generating a sequence of
numbers that approximates the properties of random numbers [Barker et al.,
2012]. The sequence is not truly random in that it is completely determined by a
relatively small set of initial values, called the PRNG's state, which includes a
truly random seed. Although sequences that are closer to truly random can be
generated using hardware random number generators, pseudorandom numbers
are important in practice for their speed in number generation and their
reproducibility.

9 A PRNG can be started from an arbitrary starting state using a seed state. It will
always produce the same sequence thereafter when initialized with that state.
The period of a PRNG is defined as the maximum over all starting states of the
length of the repetition-free prefix of the sequence. The period is bounded by the
size of the state, measured in bits. However, since the length of the period
potentially doubles with each bit of 'state’ added, it is easy to build PRNGs with
periods long enough for many practical applications.

252

http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Random_seed
http://en.wikipedia.org/wiki/Hardware_random_number_generator

Intrusion Detection Benchmark

32-bit values), and runs faster than other statistically reasonable generators
[Marsland, 2011].

For DWID-Bench, the following piece of pseudocode is assumed as the
PRNG, generating uniformly distributed 32-bit integers in the range [0,
232 — 1] with the MT19937 algorithm (withdrawn from an original code
listing written by Matsumoto and Mishimura and available at
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html):

/*
Extracted from a C-program for MT19937, with initialization improved
2002/1/26, coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init genrand(seed).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

*/
#include <stdio.h>

/* Period parameters */

#define N 624

#define M 397

#define MATRIX A 0x9908b0dfUL /* constant vector a */

#define UPPER MASK 0x80000000UL /* most significant w-r bits */
#define LOWER MASK Ox7fffffffUL /* least significant r bits */

static unsigned long mt[N]; /* the array for the state vector */
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */

/* initializes mt[N] with a seed */
void init genrand(unsigned long s)
{
mt[0]= s & OxXffffffffuL;
for (mti=1; mti<N; mti++) {
mt[mti] =
(1812433253UL * (mt[mti-1] ~ (mt[mti-1] >> 30)) + mti);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array mt[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
mt [mti] &= OxXffffffffuL;
/* for >32 bit machines */

/* initialize by an array with array-length */

/* init key is the array for initializing keys */
/* key length is its length */

/* slight change for C++, 2004/2/26 */

253

Appendix D

void init by array(unsigned long init key[], int key length)
{

int i, 3j, k;

init genrand(19650218UL);

i=1; j=0;
k = (N>key length ? N : key length);
for (; k; k--) {
mt[i] = (mt[i] ~ ((mt[i-1] ~ (mt[i-1] >> 30)) * 1664525UL))

+ init key[j] + Jj; /* non linear */
mt[i] &= OxfEffffffUL; /* for WORDSIZE > 32 machines */
i+4; J++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }
if (j>=key_length) 3=0;

for (k=N-1; k; k--) {
mt[i] = (mt[i] ~ ((mt[i-1] ~ (mt[i-1] >> 30)) * 1566083941UL))
- i; /* non linear */
mt[i] &= OxffffffffuL; /* for WORDSIZE > 32 machines */
i++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }
}

mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
}

/* generates a random number on [0,0xffffffff]l-interval */
unsigned long genrand int32 (void)
{

unsigned long y;

static unsigned long mag01[2]={0x0UL, MATRIX A};

/* mag0l[x] = x * MATRIX A for x=0,1 */

if (mti >= N) { /* generate N words at one time */
int kk;

if (mti == N+1) /* if init genrand() has not been called, */
init genrand(5489UL); /* a default initial seed is used */

for (kk=0;kk<N-M;kk++) {

y = (mt[kk]&UPPER MASK) | (mt [kk+1] SLOWER MASK) ;
mt [kk] = mt[kk+M] *~ (y >> 1) ~ mag0l[y & Ox1UL];
}
for (;kk<N-1;kk++) {
y = (mt[kk]&UPPER MASK) | (mt [kk+1] SLOWER MASK) ;
mt [kk] = mt[kk+(M-N)] ~ (y >> 1) ”~ mag0l[y & Ox1UL];
}
y = (mt[N—l]&UPPER_MASK)l(mt[O]&LOWER_MASK);
mt[N-1] = mt[M-1] ~ (y >> 1) » magOl[y & O0x1UL];
mti = 0;

y = mt[mti++];

/* Tempering */
y h= (y >> 11);
y (y << 7) & 0x9d2c5680UL;
y "= (y << 15) & 0xefc60000UL;
y = (y >> 18);

A

return y;

254

Intrusion Detection Benchmark

}

/* generates an integer random number on

long random(long x)

{

}

/* EXAMPLE OF USAGE - Generate first 10 random numbers

/* 1
int

{

[0, xI

*/

return trunc(genrand int32()*(1.0/4294967296.0) *x) ;

23456789 used as the initial seed */
main (void)

int i, x=100;
unsigned long s=123456789;
init genrand(s);
printf ("10 random outputs in
for (i=0; i<10; i++) {
printf (random(x)) ;
printf ("\n");
}

return 0;

[0, 100[\n")

in [0, 100[*/

’

The random function based on the Mersenne Twister should be used the
following way:

For each benchmark run, the PRNG should be reinitialized using
seed 123456789 (execute function init genrand(123456789));

Given random(x), where x represents

a fixed integer value, the

function result should be a randomized number belonging to range

[0...x-1];

Given random(x), where x represents a list of values, the function
result should be one of those values randomly chosen from the list.

All random values should be generated sequentially for all random
parameters of the previous user workload, before moving on to generate
the random values for the random parameters of the next user workload,
i.e., the random values should be sequentially generated for the complete
set of random parameters (R_TABLE, R_INDEX, ..., P_VALUE2) in the
parameters’ order, for user 1, and then moving on to user 2, and so on and
so forth.

The complete list of defined used random parameter variable values is:

255

Appendix D

List of Random Parameter Variables

DEFINE R_TABLE = random('Store_sales’, "'Time_dim’, 'Date_dim’, ‘Customer’, "Item’,
"Store ’, ‘Customer_address’, "Customer_demographics’, "Household_demographics’,
"Promotion’, 'Income_band’)

DEFINE R_INDEX = random(select index_name from dba_indexes where table_name =
[D_TABLE])

DEFINE ITEM_K = random(select max(i_item_sk) from item)

DEFINE ITEM_N = random(select distinct i_product_name from item)

DEFINE RD_DOM = random(14)+1

DEFINE RD_MOY = random(12)+1

DEFINE RD_YEAR = random(6)+1998

DEFINE CA_TYPE = random(’ca_state’, ca_county’, "ca_city’)

DEFINE CA_VALUE = random(select distinct [SS_CATYPE] from customer_address)
DEFINE CA_STATE = random(select distinct ca_state from customer_address)
DEFINE I_TYPE =random(‘i_brand’, 'i_class’, 'i_category”)

DEFINE I_VALUE = random(select distinct [SS_ITYPE] from item)

DEFINE SS_COLUMN = random('ss_wholesale_cost’, ‘ss_list_price’, "ss_salesprice’,
’ss_ext_discount_amt’, ‘ss_ext_sales_price’, 'ss_ext_wholesale_cost’, 'ss_ext_list_price’,
’ss_ext_tax’, ‘ss_coupon_amt’, ‘ss_net_paid’, 'ss_net_paid_inc_tax’, 'ss_net_profit’)

DEFINE SS_VALUE = random(select max([SS_COLUMN]) from store_sales)
DEFINE SS_TICKET = random(select max(ss_ticket_number) from store_sales)

DEFINE SS_ITEM_T = random(select ss_item_sk from store_sales where ss_ticket_number
=SS_TICKET)

DEFINE SS_SDATE = random(select max(d_date_sk) from date_dim)

DEFINE SS_STIME = random(select max(t_date_sk) from time_dim)

DEFINE SS_SITEM = random(select max(i_item_sk) from item)

DEFINE SS_SCUST = random(select max(c_customer_sk) from customer)

DEFINE SS_SCDEMO = random(select max(cd_demo_sk) from customer_demographics)

DEFINE SS_SHDEMO = random(select max(hd_demo_sk) from
household_demographics)

DEFINE SS_SADDR = random(select max(ca_address_sk) from customer_address)
DEFINE SS_SSTORE = random(select max(s_store_sk) from store)
DEFINE SS_SPROMO-=random(select max(p_promo_sk) from promotion)

256

Intrusion Detection Benchmark

DEFINE SS_STICK = (select max(ss_ticket_number) from store_sales)+1

DEFINE SS_ITICK = random(select ss_item_sk from store_sales where ss_ticket_number =
[SS_STICK])

DEFINE SS_QUANTITY = random(99)+1

Fori=1to12
DEFINE SS_VALUES[i] = random(9999999)/100
Next

DEFINE I_COLUMN = random(‘i_current_price’,'i_wholesale_cost")
DEFINE I_VALUE_2 = random(select max[I_COLUMN] from item)

DEFINE P_COLUMN_1 = random(‘p_start_date_sk’, ‘p_end_date_sk’, "p_item_sk’,
"p_cost’)

DEFINE P_VALUE_1 = random(select max([P_COLUMN_1]) from promotion)
DEFINE PROMO_K = random(select max(p_promo_sk) from promotion)

DEFINE P_COLUMN_2 = random(‘p_start_date_sk’, "p_end_date_sk’, "p_cost’)
DEFINE P_VALUE_2 = random(select max([P_COLUMN_2]) from promotion)

The complete list of proposed intrusion actions that represent the
“intruder” workload is as follows, composed by 34 SQL instructions
(Intrusion Action TAO1 to TA34.

Intrusion Action IA01. Query for retrieving information on the tables and columns of the
database schema.

select table_name, column_name, data_type from user_tab_columns;

Intrusion Action IA02. Deleting an index from the database.

drop index [D_INDEX];

Intrusion Action IA03. Deleting the fact table.

drop table store_sales;

Intrusion Action IA04. Retrieving all data from the fact table.

select * from store_sales;

Intrusion Action IA05. Query flooding by requesting several joins on all data from the
fact table to be processed and returned.

257

Appendix D

select * from
(select * from store_sales) a, (select * from store_sales) b, (select * from store_sales) c,
(select * from store_sales) d, (select * from store_sales) e, (select * from store_sales) f,
(select * from store_sales) g, (select * from store_sales) h, (select * from store_sales) i,
(select * from store_sales) j;

Intrusion Action IA06. Query retrieving all sales, date, item and customer data for all
sales of a given item.

select * from store_sales, item, customer, date_dim
where ss_item_sk = [[TEM_K] and ss_item_sk =i_item_sk and
ss_customer_sk = c_customer_sk and ss_sold_date = d_date_sk;

Intrusion Action IA07. Query retrieving all sales, item and date data for all sales in a
random period of two weeks.

select * from store_sales, item, date_dim

where ss_sold_date_sk =d_date_sk and
d_year = [RD_YEAR] and d_moy = [RD_MOY] and
d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14

Intrusion Action IA08. Query retrieving all sales, customer address, date and item data
for all sales in a given state, county or city.

select store_sales.”, customer_address.*, item.*, d_year, d_moy, d_dom
from store_sales, customer_address, item, date_dim
where ss_addr_sk = ca_address_sk and
ss_item_sk =i_item_sk and ss_sold_date_sk = d_date_sk and
[CA_TYPE] = [CA_VALUE];

Intrusion Action IA09. Query retrieving all sales, item, date and customer address data
for all sales of a given item in a given state in a random period of two weeks.

select store_sales.”, item.*, d_year, d_moy, d_dom, customer_address.*
from store_sales, date_dim, item, customer_address
where ss_item_sk =i_item_sk and
i_product_name = [ITEM_N] and ss_sold_date_sk = d_date_sk and
d_year = [RD_YEAR] and d_moy = [RD_MOY] and
d_dom >=[RD_DOM] and d_dom <= [RD_DOM]+14 and
ss_addr_sk = ca_address_sk and ca_state = [CA_STATE];

Intrusion Action IA10. Query retrieving all sales, item and date data for all sales of all
items of a given brand, class or category.

select * from store_sales, item, date_dim
where ss_item_sk =1i_item_sk and ss_sold_date_sk =d_date_sk and

258

Intrusion Detection Benchmark

[LTYPE] = [LVALUE];

Intrusion Action IA11. Query retrieving the total quantity and total value of a given sales
column, per item, for all items.

select ss_item_sk, i_product_name,sum(ss_quantity),sum([SS_COLUMN])
from store_sales, item

where ss_item_sk =i_item_sk

group by ss_item_sk;

Intrusion Action IA12. Query retrieving the total quantity and total value of a given sales
column as well as the row count of those sales, for a given item.

select ss_item_sk, i_product_name, sum(ss_quantity), sum([SS_COLUMN]), count(*)
from store_sales, item
where ss_item_sk =i_item_sk and ss_item_sk = [[TEM_K];

Intrusion Action IA13. Query retrieving the total value of a given sales column as well as
the row count of those sales, per day, in a given period of two weeks.

select d_year, d_moy, d_dom, sum([SS_COLUMN]), count(*)
from store_sales, date_dim
where ss_sold_date_sk = d_date_sk and
d_year = [RD_YEAR] and d_moy = [RD_MOY] and
d_dom >=[RD_DOM] and d_dom <= [RD_DOM]+14
group by d_year, d_moy, d_dom
order by d_year, d_moy, d_dom;

Intrusion Action IA14. Query retrieving the total value of a given sales column as well as
the row count of those sales, per city per month, for a given state, county or city.

select ca_city, d_year, d_moy, sum([SS_COLUMN], count(*)

from store_sales, customer_address, date_dim

where ss_addr_sk=ca_address_sk and ss_sold_date_sk=d_date_sk and
[CA_TYPE]=[CA_VALUE]

group by ca_city, d_year, d_moy

order by ca_city, d_year, d_moy;

Intrusion Action IA15. Query retrieving the total quantity and total value of a given sales
column as well as the row count of those sales, for a given item in a given state, per city
per day, in a given period of two weeks.

select ca_city, ca_county, ca_state, ss_item_sk, i_product_name, d_year,
d_moy, d_dom, sum(ss_quantity), sum([SS_COLUMN]), count(*)

from store_sales, date_dim, customer_address, item

where ss_item_sk =1i_item_sk and i_product_name = [ITEM_N] and

259

Appendix D

ss_sold_date_sk =d_date_sk and
d_year = [RD_YEAR] and d_moy = [RD_MOY] and
d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14
ss_addr_sk = ca_address_sk and ca_state = [CA_STATE]
group by ca_city, d_year, d_moy, d_dom
order by ca_city, d_year, d_moy, d_dom;

Intrusion Action IA16. Query retrieving the total value of a given sales column for all
sales of a given brand, class or category, per city per month.

select [I_TYPE], ca_city, d_year, d_moy, sum(R_COLUMN)

from store_sales, item, customer_address, date_dim

where ss_item_sk =i_item_sk and [I_TYPE] = [[_VALUE] and
ss_addr_sk = ca_address_sk and ss_sold_date_sk =d_date_sk

group by ca_city, d_year, d_moy

order by ca_city, d_year, d_moy;

Intrusion Action IA17. Modifying the values of a given sales column for all the sales rows
of a certain item.

update store_sales set [SS_COLUMN] = [SS_VALUE] where ss_item_sk = [ITEM_K];

Intrusion Action IA18. Modifying the values of a given sales column for all the sales rows
of a certain item belonging to a certain ticket number.

update store_sales set [SS_COLUMN] = [SS_VALUE]
where ss_ticket_number = [SS_STICK] and ss_item_sk = [SS_ITICK];

Intrusion Action IA19. Modifying the values of a given sales column for all the sales rows
of a certain state, county or city.

update store_sales set [SS_COLUMN] = [SS_VALUE]
where (select count(*) from customer_address where
ss_addr_sk = ca_address_sk and [CA_TYPE] = [CA_VALUE])>0;

Intrusion Action IA20. Modifying the values of a given sales column for all the sales rows
of a certain brand, class or category.

update store_sales set [SS_COLUMN] = [SS_VALUE]
where (select count(*) from item where ss_item_sk = i_item_sk and
[L_TYPE]=[I_VALUE])>0;

Intrusion Action IA21. Modifying the values of a given sales column for all the sales rows
of a certain day.

update store_sales set [SS_COLUMN] = [SS_VALUE]

260

Intrusion Detection Benchmark

where (select count(*) from date_dim where ss_sold_date_sk = d_date_sk
and d_year = [RD_YEAR] and d_moy = [RD_MOY] and
d_dom = [RD_DOM])>0;

Intrusion Action IA22. Deleting all the sales rows of a certain item.
delete from store_sales where ss_item_sk = [[TEM_K];

Intrusion Action IA23. Deleting all the sales rows of a certain item belonging to a certain
ticket number.

delete from store_sales
where ss_ticket_number = [SS_STICK] and ss_item_sk = [SS_ITICK];

Intrusion Action IA24. Deleting all the sales rows of a certain state, county or city.

delete from store_sales where (select count(*) from customer_address where
ss_addr_sk=ca_address_sk and [CA_TYPE] = [CA_VALUE])>0;

Intrusion Action IA25. Deleting all the sales rows of a certain brand, class or category.
delete from store_sales where (select count(*) from item where
ss_item_sk =i_item_sk and [I_TYPE] = [[_VALUE])>0;

Intrusion Action IA26. Deleting all the sales rows of a certain day.

delete from store_sales where (select count(*) from date_dim where
ss_sold_date_sk=d_date_sk and d_year=[RD_YEAR] and
d_moy=[RD_MOY] and d_dom=[RD_DOM])>0;

Intrusion Action IA27. Inserting false data in the store sales fact table.

insert into store_sales (*) values (S§S_SDATE, SS_STIME, SS_SITEM, SS_SCUST,
SS_SCDEMO, SS_SHDEMO, SS_SADDR, SS_SSTORE, SS_SPROMO, SS_STICK,
SS_QUANTITY, SS_VALUE[1], SS_VALUE[2], SS_VALUE[3], SS_VALUE[4],
SS_VALUE[5], SS_VALUE][6], SS_VALUEJ[7], SS_VALUE[8], SS_VALUE][9],
SS_VALUE[10], SS_VALUE[11], SS_VALUE[12]);

Intrusion Action IA28. Retrieving all data from any table in the database.

select * from [R_TABLE];

Intrusion Action IA29. Retrieving the most sensitive customer data from all customer
tables the database.

select * from customer, customer_address, customer_demographics
where c_current_addr_sk = ca_address_sk and ¢_current_cdemo_sk = cd_demo_sk;

261

Appendix D

Intrusion Action IA30. Retrieving a portion of sensitive customer data from all customers
belonging to a given state, county or city.

select c_customer_sk, c_first_name, c_last_name, c_birth_day, c_birth_month,
c_birth_year, c_email_address, customer_address.*, customer_demographics.*
from customer, customer_address, customer_demographics
where c_current_addr_sk = ca_address_sk and
c_current_cdemo_sk = cd_demo_sk and [CA_TYPE] = [CA_VALUE];

Intrusion Action IA31. Retrieving the data of all promotions concerning a given item on a
given month.

select promotion.*, item.*, d_year, d_moy, d_dom

from promotion, item, date_dim

where p_item_sk =i_item_sk and
i_product_name = [ITEM_N] and p_start_date_sk = d_date_sk and
d_year = [RD_YEAR] and d_moy = [RD_MOY];

Intrusion Action IA32. Modifying the current price or wholesale cost of a given item.

update item set [[_ COLUMN] = [[_VALUE_2]
where i_product_name = [ITEM_NJ;

Intrusion Action IA33. Modifying the start date, end date, item or cost of a given
promotion.

update promotion set [P_COLUMN_1] = [P_VALUE_1]
where p_promo_sk = [PROMO_K];

Intrusion Action IA34. Modifying the start date, end date, or cost of all promotions of a
given item.

update promotion set [P_COLUMN_2] = [P_VALUE_2]
where p_item_sk = [ITEM_K]

Table D-2 resumes the user types that may execute each instruction, the
action class and affected security dimensions, as well as the tables targeted
to be affected by the instruction. From observing the table it can be seen
that each DBA “intrusion” workload is composed by all 34 intrusion actions,
the ETL “intrusion” workload is defined by 28 intrusion actions (all except
IA03, TA22, TA23, TA24, TA25 and 1A26), and the DW end user “intrusion”
workload is defined by 18 intrusion actions (all intrusion actions that can be
executed by “Any” user type). The definition of the number of streams
each type of user should be running for each benchmark run will be
described in the next section.

262

Intrusion Detection Benchmark

The chosen instructions that compose the intruder actions were guided by
the assumption that each table has its own relative sensitivity, given the
importance and business knowledge revealed by its contents. Obviously,
the Store_sales fact table is much more sensitive (and therefore, more
important from the intruder’s perspective) than the Date_dim dimension
table, since the first stores the operational secrets of the business and the
second just serves as support for temporal definitions of the business.
Thus, the majority of the defined intrusion actions were designed for
targeting actions against the most important tables (which, for the store
sales DW, concern the tables that store sales, items, promotions and
customer information, namely tables Store_sales, Item, Customer,
Customer_address, Customer_demo and Promotion).

Table D-2. “Intrusion” Workload

TARGET TABLES

sQL Store_ . " . . [o C
Action | User Type | sales Customer | Item |Promotion |Date_dim | Time_dim| Store

pa (factsy | @m) |(dim) | (dim) | (cim) (dim) | (dim)

Intrusion
Action

address | demo - _demo band_
(dim) (dim) (dim) (dim)

1A01 A Any X X X X X X X X X X

1A02 B |ETL, DBA X X X X X X X X X X

IA03 DBA

1A04 Any

1A05 Any

TA06 Any

1A07 Any

TA08 Any

1A09 Any

XX X |X [X
x

1A10 Any

IA11 Any

XX XX [X|X [X

1A12 Any

IA13 Any

1A14 Any

IA15 Any

x
x

XX XX

1A16 Any

1A17 ETL, DBA

1A18 ETL, DBA

1A19 ETL, DBA

1A20 ETL, DBA

1A21 ETL, DBA

1A22 DBA

1A23 DBA

1A24 DBA

1A25 DBA

1A26 DBA

1A27 ETL, DBA

XXX 33X [[X|3X[3X3X[3X3X [XXX XXX XX XX [X | X

1A28 Any

1A29 Any

=
x
x

1A30 Any X X X

1A31 Any X X X

1A32 ETL, DBA X

1A33 ETL, DBA X

IOl 00| |=|=|Z|(T|T|T|T MMM |m|m|O|0O(mM|[0C|0|0|7|(0O|(w

1A34 ETL, DBA X

263

Appendix D

The Date_dim dimension table is also often used in the “intrusion” action
instructions; however, it is a static table, i.e., it has fixed content and does
not change over time. Furthermore, its content does not reveal any
business information nor does it require external knowledge to be
regenerated. Therefore, it can be easily and quickly rebuilt in case the
content is damaged and is not so important as those previously mentioned.

Table D-3 shows the order in which each intrusion action should be
executed for each user “intrusion” workload stream. The number of
intrusion actions in each benchmark run ranges from 28+18+34 = 80 (for a
setup composed by 1 “Intrusion” ETL User + 1 “Intrusion” DW End User
+1 “Intrusion” DBA User) to 28+180+34 = 242 (for a setup composed by 1
“Intrusion” ETL User + 10 “Intrusion” DW End Users + 1 “Intrusion” DBA
User).

Table D-3. “Intrusion” Workload - Query Ordering

Sequence ETL DW End Users DBA
Order User 1 2 3 4 5 6 7 8 9 10 User
1 1A02 IA05 | 1A07 | 1A31 | IA10 | IA16 | I1A28 | 1A07 | 1A29 | 1A05 | IA28 IA01
1A05 IA16 | 1A28 | 1A13 | 1A04 | 1A06 | IA14 | 1A12 | 1A01 | IA10 | IAO8 IA28

3 1A09 IA15 | 1A06 | IA15 | 1A15 | IA31 | 1A29 | 1A29 | IA04 | 1A08 | 1A09 IA14
4 IA33 IAO7 | 1A04 | 1A09 | 1A09 | 1A08 | IA30 | 1A09 | IA08 | IA31 | IA13 IA03
5 IA17 1A06 | 1A13 | 1A16 | 1A08 | 1A07 | I1A13 | 1A14 | 1A15 | IA12 | IA29 1A22
6 1A34 1A01 | 1A05 | 1A30 | 1A28 | 1A04 | 1A04 | 1A05 | 1A12 | 1A29 | IAO1 IA19
7 1A14 IA10 | 1A30 | 1A05 | IA13 | IA13 | 1A01 | 1A08 | 1A11 | IA01 | IA15 IA05
8 1A28 IA12 | 1A14 | 1A28 | I1A30 | IA28 | 1A08 | 1A28 | 1A31 | IA14 | IA04 IA25
9 IA16 1A28 | 1A08 | 1A06 | 1A06 | IA11 | 1A09 | I1A13 | 1A30 | 1A06 | IA06 IA34
10 1A04 1A29 | 1A12 | 1A12 | 1A29 | IA30 | IA12 | 1A06 | 1A09 | 1A07 | IA31 IA06
11 1A31 IA31 | 1A01 | 1A08 | 1A01 | IA15 | 1A06 | 1A31 | 1A13 | IA30 | IA11 IA12
12 1A01 IA30 | 1A31 | 1A29 | IA12 | 1A01 | IA10 | 1A10 | 1A05 | IA11 | IAO7 1A24
13 1A21 IA09 | 1A16 | 1A01 | IA11 | IA05 | IAO5 | 1A04 | 1A14 | 1A16 | IA12 IA31
14 IA13 I1A04 | 1A10 | 1A04 | IA31 | IA10 | I1A07 | IA11 | 1A06 | 1A09 | IAO5 IA16
15 1A06 IA14 | 1A11 | 1A11 | 1A16 | 1A09 | IA15 | 1A16 | 1A07 | 1A04 | IA16 IA15
16 IA18 IA11 | 1A09 | 1A07 | 1A05 | IA12 | I1A16 | I1A15 | 1A28 | IA15 | IA30 1A20
17 1A30 IA13 | 1A15 | 1A10 | 1A14 | I1A29 | I1A31 | 1A30 | 1A16 | 1A13 | IA14 1A23
18 1A07 I1A08 | 1A29 | 1A14 | 1A07 | I1A14 | IA11 | 1A01 | 1A10 | 1A28 | IA10 IA33
19 1A27 IA32
20 I1A08 IA17
21 1A32 1A21
22 IA15 IA09
23 1A20 IA11
24 1A29 IA30
25 1A12 IA08
26 IA11 IA10
27 IA10 1A27
28 IA19 IA18
29 I1A26
30 1A29
31 IA02
32 1A04
33 IA07
34 IA13

264

Intrusion Detection Benchmark

D.5. DWID-Bench Rules and Execution Procedure

In this section we define the rules for implementing the DWID-Bench setup
and its execution procedure. The rules for implementing the benchmark
are the following;:

e The store sales data schema should be implemented exactly as
described in the TPC-DS benchmark;

¢ The database maintenance routines should run exactly as described
in TPC-DS, representing the “non-intrusion” ETL workload streams.
Each of these ETL streams may execute concurrently with DW End
User streams or DBA streams, or alone. The “non-intrusion” ETL
streams do not overlap; all operations need to have finished on “non-
intrusion” ETL workload x before any procedure can start on behalf
of “non-intrusion” ETL workload x+1. The first refresh data set can
only start after 3*S (where S represents the number of running “non-
intrusion” DW end user query streams) “non-intrusion” queries
have completed their execution. Each subsequent refresh set can start
after completion of an additional 64 queries (the total number of
instructions in two complete workloads). The purpose of linking data
maintenance operations to completion of queries is so that the
updates are interspersed among execution of queries in the
benchmark runs, although concurrent execution of updates and
queries is not required;

e Each “non-intrusion” query instruction should be exactly as
described in the TPC-DS benchmark, while each “non-intrusion”
instruction should be exactly as defined in Table D-1 (including
instruction modification and the substitution of query parameters for
both types of workloads);

e The same hardware and software should be used during the
complete benchmark run without changes. The only allowed
changes are those concerning the updating of both DW and DIDS
databases and logs;

e The DIDS cannot be specifically optimized a priori for the set of SQL
actions defined in the intrusion workload, i.e., it may not know or
take in account information regarding previous knowledge of the

265

Appendix D

intrusion workloads before the workloads” execution in the
benchmark run;

e Each stream should be run only once, to avoid repeating instruction
ordering;

e The driver system shall submit “intrusion” and “non-intrusion”
workloads through one or more sessions on the SUT. Each session
corresponds to one stream composed by a complete “intrusion” or
“non-intrusion” user workload;

e If any of the workloads fails to execute, the benchmark results are
invalid.

The DWID-Bench benchmark is defined by the execution of the Training
Phase, followed by the Testing Phase. The Training Phase includes all activity
required to bring the SUT to the configuration that immediately precedes
the execution of the “non-intrusion” and “intrusion” workloads that will
measure the intrusion detection and performance metrics of the DIDS,
which composes the Testing Phase. For fairness of the database performance
measures, the database server should be restarted before starting the
Testing Phase, in order to reinitialize the database cache. The benchmark
methodology is shown in Figure D-3. The Training Phase includes:

1) The execution of all SQL DDL commands that create the store sales
DW data schema (datafiles, tables and views) and constraints, as well
as any performance optimization objects (e.g. indexes);

2) The execution of all data loading procedures to populate the DW
with the initial data defined by TPC-DS for the chosen scale factor as
defined in that benchmark;

3) During the execution of the two previous steps, the DIDS can access
and analyze the executed operations to build the “normal” ETL
and/or DBA user profiles, in any way, if needed;

4) The execution of one to five “non-intrusion” ETL data maintenance
workload streams as the first one to five refresh sets as defined in
TPC-DS and following the rules previously presented in this section,
and one to ten DW End User “non-intrusion” workload streams, for
allowing the DIDS to build the “normal” non-intruder ETL and DW
end user profiles, in any way.

266

Intrusion Detection Benchmark

The Testing Phase includes:

1) The execution of the same number of “non-intrusion” ETL and “non-
intrusion” DW End User workload streams as those used in the

Training Phase;

2) The execution of one “intrusion” DBA stream, one to ten “intrusion”
DW End User streams, and one “intrusion” ETL stream, concurrently

DIDS Learning Phase

DIDS Testing Phase

with the “non-intrus

1. STORE_SALES DW CREATION
- Create database instance

- Create database datafiles
(tablespaces)

- Create tables, primary keys and
referential constraints

- Load data into tables

- Create bitmap join indexes (when
allowed by the DBMS)

v

2. NON-INTRUSION WORKLOAD
EXECUTION

- Execution of 1 to 10 “non-intrusion”
DW End User workload streams with 1
to 5 “non-intrusion” ETL workload
streams

/e

ion” workloads.

Build DBA “Non-intrusion”
profiles (if needed)

Build ETL and DW End
User “Non-intrusion”
profiles (if needed)

3. NON-INTRUSION+INTRUSION
WORKLOAD EXECUTION

- Execution of 1 to 10 “non-intrusion”
DW End User workload streams with 1
to 5 “non-intrusion” ETL workload
streams + 1 to 10 “intrusion” DW End
User workload streams + 1 “intrusion”
DBA workload stream + 1 “intrusion”

/N

Run DIDS for test against
intrusions and update user
profiles (if needed)

S

ETL workload stream

Y

No

4. GENERATE NEW “NON-
INTRUSION” AND “INTRUSION”
WORKLOAD

- Substitution of the random parameters
based on the sequence generated
values from the PRNG

FINISH?

Yes

5. COMPUTE
BENCHMARK
MEASURES

Figure D-3. DWID-Bench benchmark methodology

Figure D-4 illustrates the execution sequence of the Testing Phase. Note that
the “non-intrusion” ETL workload is executed as defined in TPC-DS, with
the only difference that it refreshes the database after completing the

267

Appendix D

processing of a group of 64 queries instead of 192 (because the complete
DWID-Bench “non-intrusion” workload has 32 queries, instead of 99 as
defined in TPC-DS; 64 is an approximate proportional number).

3*n queries 64 queries (n/2)-3 groups of 64
completed completed quenes completed
P — TS — — ~ — =
&1 Non-intruder DW’End User 1 Workload (32 queries))
Non-intrusion b —
DWEnd User f_y Nonintruder DW’End User 2 Workload (32 queries))
Workload || | || : |
Streams | I ! : |
" 1 Non-intruder DWJEnd T WhAE {32 queries) D)
o ____)
. : Non-intruder Non-intruder Non—intruder
'\gl"gt”u ston [ETL User] [ETL User] ------ ETL User
reams Workload 1 Workload 2 Workload n/2

[Intruder DBA User Workload (34 intrusion action instructions))

[Intruder DW End User 1 Workload (18 intrusion action instructions))

Intrusion [‘ntruder DW End User 2 Workload (18 intrusion action instructions))
Workload :

Streams

@ntruder DW End User ni Workload (18 intrusion action instructions))

C Intruder ETL User Workload (28 intrusion action instructions))

Time
[] >

Figure D-4. Benchmark Testing Phase execution flow for n “non-intrusion” DW
End Users and ni “intrusion” DW End Users

The following section defines the benchmark’s metrics.

D.6. DWID-Bench Metrics

To evaluate the overall efficiency of a DIDS in a data warehousing
environment, we propose focusing on the following aspects concerning
intrusion detection in DWs:

e The efficiency of the intrusion detection processes themselves, i.c.,
their ability to effectively detect intrusion actions (true positives) and
minimize the number of false alarms (false positives), and minimize
the number of intrusions that pass undetected (false negatives);

268

Intrusion Detection Benchmark

e How quickly after an intrusion action occurs is the DIDS able to
produce an alert, given that in many cases it is critical to detect an
intrusion as quickly as possible, before it may damage the DW;

¢ The ability of the DIDS to evolve by improving its intrusion detection
efficiency through time.

Given this, in DWID-Bench we define the Data Warehouse Intrusion
Detection Benchmark Coefficient (DWIDB¢,.;) metric, which involves two
main components that respectively measure a DIDS’ efficiency and speed
in intrusion detection time, where ne represents the number of benchmark
runs, F-scorei the F-score’® obtained by the DIDS in each benchmark run,
Atoworkionds the total execution time (in seconds) of the “non-intrusion” and
“intrusion” workloads of all benchmark runs, and Atfirrcesses the total
execution time (in seconds) of the DIDS of all benchmark runs:

ne ;
. IxF—score; At
DWIDBCoef — 21—1 — L QWorkloads " 100
Li=p Atoworkloadst AtipProcesses
L]\ |
! Y

Evaluates the intrusion Evaluates the impact of the time

detection efficiency taken to execute the intrusion
through time, giving detection processes
higher weight to the

most recent F-scores

Given its expression, DWIDB.,.; will output a real value in the range
[0...100]. A higher benchmark value indicates a better DIDS. To illustrate
the outcome of the proposed metric, consider the following values shown
in Table D-4 as fictional examples of three DIDS to be evaluated by DWID-
Bench.

Table D-4. DWID-Bench DIDS benchmarking examples

1%t Benchmark Run (ne = 1) 2M Benchmark Run (ne = 2)
Atowork | Atipproc [PWIDBc| F-SCOTe2 | Atgyory | Atipproc |PWIDBc
DIDS 1 60% 1000 200 50.0 80% 2000 400 61.1
DIDS 2 70% 1000 200 58.3 70% 2000 400 58.3
DIDS 3 70% 1000 250 56.0 60% 2000 500 50.7

F-scorex

10 The F-score measure was explained in Chapter 6, Subsection 6.6.2.

269

Appendix D

Observing the table, it can be seen that after the first benchmark run, DIDS
2 and DIDS 3 are those presenting the highest intrusion detection
efficiency, i.e., they have higher F-score than DIDS 1, but since DIDS 2 takes
less time in its intrusion detection processes than DIDS 3 it outputs a higher
benchmark value, making it the best DIDS after the first benchmark run.
Moreover, although DIDS 1 executes its intrusion detection processes
faster than DIDS 3, this last DIDS presents a higher intrusion detection
efficiency with an F-score that overcomes the fact that it is slower.

However, after the second benchmark run, and assuming that they all take
the same time in execution as the first benchmark run, DIDS 1 improves its
intrusion detection efficiency to an F-score of 80%, which allows it to
improve its benchmark value to a measure that makes it the best solution.
And DIDS 1 is in fact the best solution after both benchmark runs, since its
F-score average and running times are the same as DIDS 2, but its most
recent intrusion detection efficiency has the best results of all DIDS. On the
other hand, the fact that DIDS 3 presented worse results in the second
benchmark run has made it the worst DIDS.

Therefore, the DWIDB,.; results shown in Table D-4 demonstrate that the
benchmark metric is indeed able to track the efficiency of the intrusion
detection processes and its evolution, along with the ability to also measure
the impact of the required time spent by those processes.

D.7. Discussion

The proposed benchmark abstracts the diversity of the described classes of
possible intrusion actions, while retaining custom normal user activity and
DW environment requirements. As it is necessary to execute a large
number of queries and data maintenance operations to completely manage
any business analysis environment, no benchmark can succeed in exactly
mimicking a particular environment and remain broadly applicable. We
acknowledge that the definition and implementation of benchmarks is not
a trivial task and that there are always discussable issues concerning the
objectivity and effectiveness of each proposal. However, in DWID-Bench
we have tried to provide a wide coverage of possible intrusion activity in
DWs, while simulating their execution in a realistic-like data warehousing
environment. Given the importance of intrusion detection in DWs and the

270

Intrusion Detection Benchmark

lack of both DIDS at the SQL level as available packages supplied by DBMS
vendors as well as standard benchmarks to test them, we believe that the
issues presented in this appendix are worthy of notice and hope that our
work may drive the discussion around the subject in both the
benchmarking and intrusion detection research communities, and possibly
make way for a standardized benchmark for this purpose.

D.8. Summary and Future Work

In this appendix we have proposed a novel benchmark that focuses on
evaluating DIDS at the SQL command level in DW environments. The
proposed metrics provide an objective and comprehensive mean of
evaluating the intrusion detection efficiency and ability to improve, as well
as the impact on database response time, of proposed DIDS for DWs. The
benchmark’s implementation procedures and metrics also comply with the
principles of comprehensibility and reproducibility required in
benchmarking proposals.

While this benchmark offers a representative scenario of possible intrusion
attacks on DWs, it does not reflect the entire range of possibilities. As future
work, we intend to increase and develop the “intrusion” workload for
widening the coverage of possible intrusion actions and therefore produce
more thorough tests.

271

