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Introduction

Chapter 1 examines the estimation of operational risk exposure of financial
institutions, and its dependence on the floor level at which operational losses
are collected. The chapter shows that the choice of the collection thresh-
old is not likely to influence the economic capital if extreme loss events
are properly accounted for. Overall, the choice of the collection threshold
should rather be guided by a simple profit/cost analysis than by regulatory
arbitrage considerations.

Chapter 2 introduces a risk measure defined on portfolio holdings. In
contrast to terminal portfolio values, this domain is conducive to having
diversification reduce portfolio risk. The risk of a portfolio is determined
by its distance from a set of acceptable portfolios. More importantly, this
distance involves as many components as there are available assets, which
includes but is not limited to risk-free capital. As a consequence, the role of
derivative as well as insurance contracts in risk management is recognized.

Chapter 3 looks at the sensitivity analysis of volatility and return models
that can be thought of as an essential ingredient in portfolio management.
The Differential Importance Measure (DIM) is a generalization of local sensi-
tivity analysis techniques and provides insights for the analysis of the impact
of parameter changes. By considering a portfolio GARCH model, we make
use of the DIM to identify the most important stocks in a given portfolio, i.e.
those stocks whose change is meant to generate substantial changes in the
portfolio return volatility. In order to provide some empirical application of
the proposed technique, we consider a portfolio of 30 stocks, replicating the
Dow Jones Index composition as at 2002.

Chapter 4 presents several applications of a two-factor continuous-time
model of the term structure of interest rates, previously presented in Moreno
(2003), for managing interest rate risk. New measures that generalize con-
ventional duration and convexity are presented and applied in different

xxi
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situations to manage market and yield curve risks. After showing how to
immunize a bond portfolio with bond options, the authors present and
illustrate numerically how these new measures can solve the limitations
of conventional duration.

Chapter 5 reviews the recent literature about stochastic volatility and
builds on the works of Nelson which reconcile continuous and discrete
volatility processes. The authors use the Extended Kalman Filter to deal with
the issue of the unobserved volatility of the yield curve. The authors also
introduce Bollinger bands as a brand-new variance reduction technique for
improving the Monte Carlo performance; a technique never applied before
to yield curve forecasting.

Chapter 6 examines the modern credit risk valuation which focuses on the
soundness of the risk assessment process since Basel II directives. Any risk
assessment requires comprehending the volatility of credit risky assets with
accuracy. For this purpose, the authors state a flexible credit risk valuation
framework while allowing such a volatility to evolve stochastically. Hence,
the structural approach of credit risk along with the modern option pricing
theory allows for an interesting and flexible stochastic credit risk valuation
framework.

Chapter 7 investigates simple intensity models that induce dependence
levels comparable to those induced by a Merton-style model using a
simulation model. The authors compare the respective loss distributions
obtained in each framework and provide some dependence indicators.
Moreover, they specify two promising and original intensity-based models
that emphasize their results: correlated frailty and alpha-stable distributions.

Chapter 8 discusses various mathematical techniques that can be used for
the modelling of weather derivatives portfolios. In particular, the authors
describe extensions to the most commonly used simulation algorithm.
These extensions include methods that improve estimates of the correla-
tion structure, deal with non-normality, incorporate hedging constraints,
estimate sampling error, allow consistency between single contract pricing
and portfolio modeling, and give quick estimates of VaR.

Chapter 9 links nominal interest payments (as in typical bond contracts)
with the demand for real payments (as in pension contracts), and models
for the inflation and for valuing inflation linked products. Here, the authors
introduce a simple continuous-time framework that is economically justified
and similar to the Garman–Kohlhagen model for foreign currencies. It allows
for valuation of inflation-linked derivatives, optimal investment into such
products and hedging of inflation risk. Explicit solutions for all these tasks
are provided and permit an easy implementation and calibration in real
world markets.

Chapter 10 examines the explosive growth in the use of financial models
in recent years that has allowed for the creation of more diverse financial
products and the development of new markets for such products. However,
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it also has some drawbacks, such as the creation of a new type of risk called
model risk. The latter arises as a consequence of incorrect modelling, model
identification or specification errors, inadequate estimation procedures, as
well as mathematical and statistical properties of financial models applied in
imperfect financial markets. Although models vary in their sophistication,
they all need to be subjected to an effective validation process to minimize
the risk of model errors.

Chapter 11 investgates the crucial question among risk managers and reg-
ulators; whether Value-at-Risk models are accurate enough. The authors
propose a methodology based on a cross-section analysis of portfolios,
aimed to assess the goodness of VaR using a simultaneous analysis of a
multitude of simulated portfolios, created starting from a common invest-
ment universe. This enhances the exploitation of the information content of
data, broadening the perspective of risk assessment.

Chapter 12 analyses the shocks in correlations that could significantly alter
outcomes in portfolio optimization and risk management estimates. The
chapter examines the relation between exponential correlation changes and
volatility for the different movements of markets and studies the magnitude
of errors among equity investments in the USA, the Euro area and Japanese
markets.

Chapter 13 explores the historical values of the asset returns process,
from which is derived the sequential control procedures for monitoring the
changes in the covariance matrix of asset returns that could influence the
selection of an optimal portfolio. In order to reduce the dimensionality of the
control problem we focus essentially on the transformation of the optimal
portfolio weights vector.

Chapter 14 reiterates the notion whereby one of the factors that contributes
to the portfolio diversification benefit is the correlation between the asset
returns. Correlations are time varying and the traditional method of using
unconditional correlations in portfolio optimization models may not cap-
ture the time-varying nature of asset return correlations. In this chapter
the authors compare the ex post performance of portfolios created using
unconditional correlations against those created using Dynamic Conditional
Correlation (DCC). The results using 20 stocks from the Dow Jones Industrial
Average show that portfolios created using the DCC model outperformed
those created using the unconditional correlations.

Chapter 15 deals with the evaluation of risky capital investment projects
when total risk is relevant. The authors demonstrate mathematically that the
NPV probability distribution does not conform strictly to the central limit
theorem asymptotic properties, whereas first-order autoregressive stochas-
tic stationary processes do. However, through simulation runs and statistical
tests, the authors show under realistic conditions that the CLT does apply to
the NPV probability distribution provided the discount rate does not exceed
some threshold value.
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Chapter 16 analyses the volatility transmission between the US and Span-
ish stock markets using a recent sample period including September 11. The
analysis is based on a multivariate GARCH model which takes into account
both the asymmetric volatility phenomenon and the non-synchronous trad-
ing problem. An examination of Asymmetric Volatility Impulse-Response
Functions (AVIRF) confirms that volatility transmission patterns between
both markets have changed as a result of the terrorist attacks.

Chapter 17 examines the volatility transmission between large and small
firms in Europe using Germany, France and UK stockmarket data. The
empirical results indicate that volatility spillovers take place between both
kinds of firms and that the volatility feedback hypothesis can explain asym-
metric volatility and covariance. Additionally, evidence is obtained showing
that in order to avoid error specification in the beta coefficient, it is necessary
to use a conditional model.

Chapter 18 analyzes the impact of model misspecification on the repli-
cation error associated with trading contingent claims in arbitrage free
markets. A general formula is determined for the total hedging error in the
light of stochastic volatility and numerical tests are performed on European
options to estimate the replication error probability density function.
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Impact of the Collection
Threshold on the

Determination of the
Capital Charge for
Operational Risk

Yves Crama, Georges Hübner∗ and Jean-Philippe Peters

1.1 INTRODUCTION

In 2004, the Basel Committee on Banking Supervision (hereafter the Basel
Committee) released the Revised Framework of the International Conver-
gence of Capital Measurement and Capital Standards (hereafter Basel II).
Together with new rules governing the calculation of regulatory capital
charge for credit risk, Basel II introduces explicit recommendations with
regard to operational risk, defined by the Basel Committee as the “risk of loss
resulting from inadequate or failed internal processes, people and systems
or from external events. This definition includes legal risk, but excludes
strategic and reputational risk” (BCBS, 2004).
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Achievement Award 2006, hosted by Operational Risk Magazine, in the best academic paper
category.
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Basel II leaves the choice between three approaches for quantifying the
regulatory capital for operational risk. Both the Basic Indicator Approach
(BIA) and the StandardizedApproach (SA) define the operational risk capital
of a business line as a fraction of its gross income, thus explicitly assuming
that operational risk is related to size. Under the Advanced Measurement
Approach (AMA), banks can develop their own model for assessing the reg-
ulatory capital that covers their operational risk exposure over a one-year
period within a confidence interval of 99.9 percent (henceforth Operational
Value at Risk, or OpVaR). They must apply this model for each of the
eight Business Lines and for each of the seven Loss Event Types defined
in the Revised Framework. By default, capital charges associated to all 56
combinations are added to compute the regulatory capital requirement for
operational risk.1

Although operational risk has been the focus of much attention in
the manufacturing industry for several decades, most financial institu-
tions have had a tendency to neglect this heterogeneous family of risks
which, except for fraud, are often perceived as diffuse and peripheral.
For the same reasons, until recently, very few banks had set up system-
atic procedures for the collection of data relative to operational losses. As a
consequence of Basel II, however, many banks are now in the process of set-
ting up a sound and homogeneous loss data collection system for all types
of risks.

A question that often arises when implementing a loss data collection
process is the determination of the collection threshold. Recording all the
operational loss events is indeed impossible, or at least wasteful, as the cost
(in terms both of systems and time) of the process would be much too high in
regard to its potential benefits. Therefore, banks are led to fixing a minimum
collection threshold under which losses are not collected.

While the literature on operational risk modeling is booming (see for
example, Frachot, Georges and Roncalli (2001), Cruz (2002), Alexander
(2003), Fontnouvelle, Jordan and Rosengren (2003), Fontnouvelle, Rosen-
gren and Jordan (2004), Moscadelli (2004), or Chapelle, Crama, Hübner and
Peters (2005)), few studies have paid specific attention to the choice of the
collection threshold for operational risk modeling and to its impact on the
capital charge.

This chapter examines the tradeoff between the cost of collecting data
from a very low money value and the loss of information induced by a
higher threshold. It is organized as follows. In section 1.2, we introduce the
LDA method to model operational risk losses. Next, we discuss the loss
data collection process, the related choice of the collection threshold and its
impact on estimated parameters. Section 1.4 uses real life data to examine
the impact of the collection threshold on the value of the capital charge for
operational risk. Section 1.5 contains some conclusions.
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1.2 MEASURING OPERATIONAL RISK

1.2.1 Overview

Although the application of AMA is in principle open to any proprietary
model, the most popular methodology is by far the Loss Distribution
Approach (LDA), a parametric technique that consists in separately estimat-
ing a frequency distribution for the occurrence of operational losses and a
severity distribution for the economic impact of the individual losses (see for
example, Klugman, Panjer and Willmott, 1998; Frachot, Georges and Ron-
calli, 2001; or Cruz, 2002). Both distributions are then combined through an
n-convolution of the severity distribution with itself, where n is a random
variable that follows the frequency distribution (see Frachot, Georges and
Roncalli, 2001, for details).

The output of the LDAmethodology is a full characterization of the distri-
bution of annual aggregate operational losses of the bank. This distribution
contains all relevant information for the computation of the regulatory
capital charge to cover operational risk, as this capital charge is obtained
by subtracting the expected loss from the 99.9 percent quantile of the
distribution.2

1.2.2 Loss distribution approach

In this section, we discuss the methodological treatment of a series of internal
loss data for a single category of risk events, so as to construct a complete
distribution of operational losses.

As mentioned before, the LDA separately estimates the frequency and
severity distributions of losses. The aggregate distribution of losses is then
obtained by an n-fold convolution of the severity distribution with itself,
where n is the (random) number of observations obtained from the frequency
distribution. As an analytical solution to this problem is extremely difficult to
derive in practice, we compute this convolution by Monte Carlo simulations.
A precise overall characterization of both distributions is required to achieve
a satisfactory level of accuracy.

Maximum Likelihood Estimation (MLE) techniques can be used to esti-
mate the parameters of both distributions. From a statistical point of view,
the MLE approach is considered to be the most robust and it yields estimators
with good statistical properties (consistent, unbiased, efficient, sufficient
and unique3).

More precisely, let f (x; θ) be a selected parametric density function, where
θ denotes the vector of parameters, and let F(x; θ) be the cumulative
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distribution function (or CDF) associated to f (x; θ). Then, the corresponding
log-likelihood function is

l(x; θ) =
N∑

i=1

ln( fi(xi; θ)) (1.1)

where (x1, . . . , xN) is the sample of observed ordinary losses. The maximum
likelihood estimates of the parameters θj are obtained by solving the system
of equations

δl

δθj
= 0

Frequency distribution

The frequency distribution models the occurrence of operational loss events
recorded by the bank. This distribution is by definition discrete. It is
frequently modeled either as a homogeneous Poisson or as a (negative)
binomial distribution. The choice between these distributions may appear
important as the intensity parameter is deterministic in the first case and
stochastic in the second (see Embrechts et al., 2003).

The mass function of the Poisson distribution is

Pr(N = x) = e−λλx

x! (1.2)

where λ is a positive integer. It can easily be estimated as λ is equal to
both the mean and the variance of the Poisson distribution. Note also
the following nice property of the Poisson distribution: if X1, X2, . . . ,
Xm are m independent random variables and Xi ∼Poisson(λi), then
X1 +X2 + · · ·+Xm ∼Poisson(λ1 + λ2 + · · ·+ λm).

The binomial distribution is given by

Pr(N = x) =
(

m
x

)
px(1 − q)m−x (1.3)

where
(

m
x

)
is the binomial coefficient defined as m(m− 1)...(m− x+ 1)

x! , p∈ (0, 1)

and m is a positive integer. Contrary to the Poisson case, the mean is not equal
to the variance for this distribution, as mean=mp and variance=mp(1− p).
It follows that the mean is larger than the variance for the binomial
distribution.

Finally, the negative binomial distribution has the following mass
function

Pr(N = x) =
(

x + r − 1
x

)
pr(1 − p)x (1.4)
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where p∈ (0, 1) and r is a positive integer. The relationship between
mean and variance is the opposite of the binomial as mean= r(1− p)

p and

variance= r(1− p)
p2 . Thus, the mean is smaller than the variance for the

negative binomial distribution.
A good starting point to determine the most adequate frequency distribu-

tion is therefore to check the relationship between mean and variance of the
observed frequency. If the observed variance is much higher (resp. lower)
than the observed mean, a negative binomial (resp. binomial) distribution
could be well-suited to model frequency.

Other techniques to discriminate between these distributions include
goodness-of-fit tests such as the χ2 test. The idea of this test is to split the
population into k adjacent “classes” of equal width, and then to compute
the following statistic:

χ2 =
k∑

j=1

(nj − Ej)2

Ej

where nj is the number of elements observed in class j and Ej is the theoretical
expected number of observations in the class. This test should be interpreted
as follows: the lower χ2, the better the fit.

If H0 is true (for example, the observed series follows the tested dis-
tribution), χ2 converges to the distribution function that lies between the
chi-square distributions with k − 1 and k −m− 1 degrees of freedom (where
m is the number of estimated parameters). Thus if χ2 >χ2

k−1,1−α where
χ2

k−1,1−α is the upper 1−α quantile of the asymptotic chi-square distribu-
tion, the null hypothesis is rejected.4 Finally, a rule of thumb to decide the
number of bins is that k ≥ 3 and Ej ≥ 5 for all j.

Severity distribution

The severity distribution models the economic impact of operational risk
loss events. Consequently, any strictly positive continuous distribution can
be used to model operational losses. However, operational risk databases are
often characterized by a large bulk of “high frequency/low impact” losses
and a few “low frequency/high impact” losses. Leptokurtic distributions
are thus most appropriate to model the severity distribution. Candidate dis-
tributions include log-normal, log-logistic, Pareto or Weibull distributions.
Table 1.1 summarizes the probability distribution functions (PDF) of these
distributions.5

To test the adequacy of the estimated distribution for the observed val-
ues, goodness-of-fit statistics can again be calculated, for example by the
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Table 1.1 Severity distributions

Distribution Probability distribution function

Lognormal(µ, σ) f(x)= 1

x
√

2π
exp

[
−(log x)2

2

]
LogLogistic(α, β) f(x)=− α(x/β)α−1

β[1 + (x/β)α]2

Pareto(θ, α) f(x)=αθαx−(α+1)

Weilbull(α, β) f(x)=αβ−αxα−1exp
(
−
(

x
β

)α)

Kolmogorov–Smirnov test (Kolmogorov, 1933, and Smirnov, 1939) defined
by the statistics,

DKS = max
i=1,...,n

[|Fn(xi) − F(xi; θ)|] (1.5)

This test does not depend on the underlying CDF being tested. On the other
hand, it has several drawbacks: it is only available for continuous distribu-
tions, the distribution must be fully specified and it is more sensitive near
the center than at the tails, which makes it somewhat conservative. In the
operational risk framework, the first two issues are not problematic but the
last one should be a source of concern. Severity distributions are usually
heavy-tailed and a good fit at the extreme right tail of the density is crucial.

The Cramer–von Mises test (Cramer, 1928) is quite similar to the KS test,
but introduces a size-based correction. It is defined by the statistics:

CVM = n
∫ ∞

−∞
(Fn(x) − F(x; θ))2dF(x) (1.6)

which in practice can be computed as

CVM = 1
12n

+
n∑

i=1

(Fn(xi) − F(xi; θ))2

where F(xi) is the cumulative distribution function value at xi, the i-th
ordered value.

Very often, the fat-tailed behavior of operational losses makes the accurate
estimation of the (regulatory required) extreme quantiles a tricky exercise.
Consequently, heavy-tailed distributions such as the ones presented above
are sometimes unable to correctly capture the probability of occurrence of
exceptional losses (for example, the extreme right part of the severity dis-
tribution). This is especially true since loss data collection is sometimes still
in its infancy at some banks, which results in internal loss databases lacking
very large losses. Some recent studies indeed indicate that classical distribu-
tions are unable to fit the entire range of observations in a realistic manner
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(see Fontnouvelle, Rosengren and Jordan, 2004, or Chapelle, Crama, Hübner
and Peters, 2005).

As a consequence, numerous authors propose to use alternative
approaches to improve the accuracy of the tail modeling. One of the
most common approaches relies on Extreme Value Theory (EVT), which
is presented in next section.

Modeling extreme losses

Extreme Value Theory (EVT) is a powerful theoretical tool to build statistical
models describing extreme events. It has been developed to answer the
crucial question: if things go wrong, how wrong can they go?

Two techniques are available: the Block Maxima method and the Peak
Over Threshold (POT) method. While the origins of the former date back
in the early twentieth century, it has been presented in a general context by
Gumbel (1958). It focuses on the modeling of maxima of different periods,
such as month or year (for example, the p observations are the maximum
observed value of each of the p periods considered). These extremes are then
modeled with the Generalized Extreme Value (GEV) distribution. While
useful in domains such as climatology, the Block Maxima approach is less
attractive for financial applications.

The POT approach builds upon results of Balkema and de Haan (1974) and
Pickands (1975) which state that, for a broad class of distributions, the values
of the random variables above a sufficiently high threshold follow a Gener-
alized Pareto Distribution (GPD) with location parameterµ, scale parameter
β and shape parameter ξ (also called the tail index). The GPD can thus be
thought of as the conditional distribution of X given X >µ (see Embrechts
et al., 1997, for a comprehensive review). Its cdf can be expressed as:

F(x; ξ,β,µ) = 1 −
(

1 + ξ
(x − µ)

β

)−1
ξ

(1.7)

A major issue when applying POT is the determination of the threshold
µ. A standard technique is based on the visual inspection of the Mean Excess
Function (MEF) plot (see Davidson and Smith, 1990, or Embrechts, Klüp-
perberg and Mikosch, 1997, for details). This graph plots the empirical mean
excess, defined as:

e(u) = 1
nu

nu∑
i=1

(xi − u)

where the xi’s are the nu values of X such that xi >u. The MEF plot is a
plot of e(u) against u. The method is to detect a significant shift in slope
at some high point. When the empirical plot seems to follow a reasonably
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straight line with positive gradient above a certain value, this indicates a
heavy-tailed distribution.

The visual inspection of MEF is sometimes tricky as no (or several)
“break(s)” can be observed. Several authors have suggested methods to
identify the optimal threshold (see, for example, Drees and Kaufmann,
1998; Dupuis, 1999; Matthys and Beirlant, 2003) but no single approach
has become widely accepted. A possible solution is proposed in Chapelle,
Crama, Hübner and Peters (2005) with an algorithmic procedure that builds
on ideas from Huisman, Koedijk, Kool and Palm (2001) and shares some
similarities with a procedure used by Longin and Solnik (2001) in a different
context. The Appendix summarizes the various steps of this algorithm.

1.3 THE COLLECTION THRESHOLD

1.3.1 Selection of a threshold

A sound loss data collection process is key to operational risk management
and measurement as statistical inference based on historical internal loss
data and monitoring/reporting activities both heavily rely on the quality of
the collected data. Coherence and completeness of collected data amongst
business units is therefore crucial.

Selecting the most adequate collection threshold is obviously bank-
specific, as each bank will examine the tradeoff between increasing the
number of observations in its internal database and the associated increase
in costs.

In addition to cost issues, reporting very low losses is likely to be viewed
as a waste of time by the employees. When this is the case, adhesion of
the employees is hard to obtain and the reliability of the collection process
can be questioned. On the measurement side, this results in an incomplete
database and the accuracy of the capital charge estimation is not ensured.

In contrast, however, fixing a very high threshold creates a truncation bias
that can lead to an over-estimation of the severity (see Frachot, Moudoulaud
and Roncalli, 2003).

To determine an adequate threshold, some banks rely on indications
given by Basel II, which recommends setting the collection threshold at
10,000 EUR.6 For banks that are members of a data collection consortium,
the decision is sometimes driven by the rules of the consortium:

� The Italian initiative DIPO led by the ABI (the Italian Bankers’ Associa-
tion) requires banks to provide all their operational risk losses above a
threshold fixed at 5,000 EUR.

� ORX is a private consortium comprising large internationally active
banks. It has fixed the reporting threshold at 20,000 EUR.
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For smaller banks, however, fixing a threshold at 10,000 EUR might
drastically reduce the amount of data available for computing the capital
requirements. A threshold of 1,000 EUR or 5,000 EUR can be more adequate.

Whatever the final choice, statistical methods used to calculate the regula-
tory capital charge for operational risk should be adapted to account for this
threshold. This issue is discussed in the following section, while an analysis
of the impact of the collection threshold on the value of the capital charge is
provided in section 1.4.

1.3.2 Impact of the collection threshold on the estimated
parameters

As noted by Frachot, Moudoulaud and Roncalli (2003):

the data collection threshold affects severity estimation in the sense that the
sample severity distribution (for example, the severity distribution of reported
losses) is different from the “true” one (for example, the severity distribution
one would obtain if all losses were reported). Unfortunately, the true distribu-
tion is the most relevant for calculating capital charge and also for being able
to pool different sources of data in a proper way. As a consequence, linking the
sample distribution to the true one is a necessary task.

Mathematically, this is a well-known phenomenon referred to as “trunca-
tion”. More precisely, the density function f ∗ (x; θ) of the losses in [L; ∞) can
be expressed as:

f ∗(x; θ) = f (x; θ)
1 − F(L; θ)

where f (x; θ) is the complete (non truncated) distribution on [0; ∞). The
corresponding log-likelihood function is:

l(x; θ) =
N∑

i=1

ln
(

fi(xi; θ)
1 − F(L; θ)

)
(1.8)

where (x1, . . . , xN) is the sample of observed losses and L is the collection
threshold. It must be maximized in order to estimate θ.

Usually, the quality of distribution fitting is assessed through goodness-
of-fit tests. All these tests are based on a comparison between the observed
cumulative distribution function and the hypothetical one. Consequently,
they should be adjusted to account for the collection threshold as well. For
instance, the Kolmogorov–Smirnov statistics becomes:

DKS = max
i=1,...,n

[∣∣∣∣Fn(xi) − F(xi;θ)
F(U; θ)

∣∣∣∣] (1.9)
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To show how spurious the estimates of the parameters or the goodness-
of-fit test can be when the collection threshold is not accounted for, consider
the generation of 10,000 random variables that follows a Weibull (0.001, 0.68)
distribution. Table 1.2 reports three cases:

� In Case 1, the whole series is considered (for example, there is no collection
threshold) and the parameters are estimated by the Maximum Likelihood
technique.

� In Case 2, we only consider losses larger than 1,000. Parameters are also
estimated by MLE and we do not modify the likelihood function to be
optimized (for example, we ignore the collection threshold).

Table 1.2 Adjusted parameters estimation for trun-
cated distribution

Case 1 Case 2 Case 3

N 10,000 8,910 8,910

a 0.0011 0.0002 0.0012

b 0.673 0.815 0.668

KS 0.0060 0.0571 0.1110

KS* – 0.0754 0.0047
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Figure 1.1 Impact of the truncation on estimated distributions
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� In Case 3, we also consider losses larger than 1,000, but we adjust the
likelihood function according to equation (1.8).

For each case, we also compute the Kolmogorov–Smirnov test. In Table
1.2, KS relates to the unmodified test (for example, not accounting for the
collection threshold), while KS* is the modified test.

The table clearly demonstrates the importance of accurately adjusting the
estimation techniques to account for the collection threshold. Without ade-
quate changes in the likelihood function and the goodness-of-fit statistics,
fallacious conclusions could be drawn as the parameters estimated in Case
2 (with KS= 0.06) could be preferred to those estimated in Case 3 (with
KS= 0.11). This would in turn lead to inaccurate Monte Carlo results, as
both distributions are very different. Figure 1.1 reports both distributions
and clearly shows that failing to adapt the estimation procedure to account
for truncation may have a significant impact. The estimated distribution in
Case 2 has an upper limit that is 25 percent smaller than the true distribution,
seriously impacting subsequent simulations.

1.4 EMPIRICAL ANALYSIS

1.4.1 Data

In this section, we apply the methodology outlined in the previous sections
to real operational loss data provided by a large European bank. For this
study, we focus our analysis on two complete business lines, regardless
of the loss event type.7 For the sake of confidentiality, we call these busi-
ness lines “BL1” and “BL2”. For the same reasons, we have scaled all loss
amounts by a same constant. The summary statistics of losses are given in
Table 1.3.

Table 1.3 Summary statistics for the operational loss
database

Business line 1 Business line 2

No. observations 1,666 7,841

Collection threshold 0.25 0.25

Median loss 1.35 0.94

Mean loss 118.7 20.7

Std. dev. 1,813 256

Total loss 197,707 162,034
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1.4.2 Calibration of AMA

First, we consider both business lines with a collection threshold of 0.25.
Preliminary analysis indicates that frequencies of both samples are well
described by a Poisson process. As this distribution is characterized by a
single parameter which is the average of the observed frequency, we use a
Poisson (1666) and a Poisson (7841) to model frequency for Business Line 1
(hereafter BL1) and Business Line 2 (hereafter BL2), respectively.

To model severity, we start by applying a single PDF for the whole distri-
bution. Based on the Cramer–von Mises test, the most adequate distributions
to model BL1 and BL2 among those presented in Table 1.1 are a Weibull (4.9,
0.09) and a Weibull (8.5, 0.07), respectively. But as often encountered with
operational risk losses, even these distributions are unable to satisfactorily
capture the whole distributional form, especially at the tail level. Figure 1.2
shows the QQ-plot for both cases. Points in the tail clearly depart from the
straight line that would indicate a good fit. To circumvent this problem, we
adopt the approach described in the modeling extreme losses section by
using EVT to model the tail of the severity distributions.

To estimate the cut-off point from which observations are used to estimate
the parameters of the GPD distribution, we first take a look at the Mean
Excess Plots (see Figure 1.3). Visual inspection indicates potential “breaks”
around 400 for BL1 and 500 for BL2.

To validate this first impression, we apply the algorithm described in the
Appendix. For both business lines, we consider all the observations above
100 to be potential threshold candidates. This means that m= 59 for BL1 and
m= 227 for BL2. The threshold values for which MSE is minimized are 375
and 450, for BL1 and BL2, respectively.8 MSE associated with each tested
threshold are plotted in Figure 1.4.

Table 1.4 reports the estimation of the three parameters for the GPD.
Location parameter is estimated through the algorithm described in the
Appendix, while scale and shape parameters are estimated with (con-
strained) MLE.9

The next step is to model the “body” of the distribution, for example,
the losses that are below the estimated extreme threshold. For BL 1, this
means all the losses between the collection threshold (0.25 in this case) and
375. For BL 2, this covers all the losses between 0.25 and 450. To do so, we
consider the distributions presented in Table 1.1 and we use the Cramer–
von Mises statistic as a discriminant factor to compare goodness of the fit.
Once the severity is fully characterized, 10,000 Monte Carlo simulations
are performed to derive the aggregate loss distribution for each business
line. Results are summarized in Table 1.5. The regulatory capital charge
amounts to 1.3 and 0.8 million for BL1 and BL2, respectively. Additionally,
it is interesting to note that these values represent 8.1 and 6.1 times the
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Table 1.4 Estimated parameters for the GPD

Business line 1 Business line 2

Optimal threshold 375 450

GPD – shape 1.041 0.750

GPD – scale 1677 601

Mean square error 0.0588 0.0402
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Table 1.5 Summary results for BL1 and BL2 (collection
threshold=0.25)

Business line 1 Business line 2

Frequency Poisson (1666) Poisson (7841)

“Body” Weibull Weibull

Parameter #1 3.056 11.852

Parameter #2 0.147 0.047

“Tail” GPD GPD

Location parameter 375 450

Shape parameter 1.041 0.750

Scale parameter 1677 601

Expected loss 282,429 179,893

Unexpected loss 1,596,046 990,471

Regulatory capital charge10 1,313,617 810,578

observed losses, respectively. The higher value for Business Line 1 is not
surprising as BL1 is characterized by a higher proportion of severe losses.
This is reflected in the aggregate loss distribution with a fatter tail and,
consequently, proportionally heavier capital requirements.

1.4.3 Sensitivity analysis

Next, we move on to the analysis of the impact of the collection threshold
on the regulatory capital charge. We thus apply the approach of section 1.4.2
to both business lines when considering 6 collection thresholds: 0.25, 1, 5,
10, 20 and 50. In all cases, using a single distribution to fit the entire severity
distribution appears to perform badly when it comes to model its extreme
right part. As a consequence, we use EVT in all 12 cases. Results are provided
in Table 1.6.

With all this information, Monte Carlo simulations are performed and
10,000 years of losses are simulated. The resulting 10,000 aggregate losses
form the aggregate loss distribution from which the capital charge is derived.

Table 1.7 summarizes the main results, while Figure 1.5 provides a visual
overview of the fluctuation of the capital charge depending on the collection
threshold.

1.5 CONCLUSION

This chapter has provided three kinds on evidence on the impact of
the choice of the collection threshold for operational losses that have
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Table 1.6 Estimated frequency and severity distributions

Business Line 1

Collection threshold 0.25 1 5 10 20 50

No. obs. 1,666 979 427 324 190 95

Frequency Poisson Poisson Poisson Poisson Poisson Poisson

Body Weibull Weibull Log-Normal Weibull Pareto Pareto

Parameter #1 3.056 2.447 1.658 14.249 20 50

Parameter #2 0.147 0.174 1.768 0.048 0.797 0.776

% of extremes 1.6% 2.7% 6.1% 8.0% 13.7% 27.4%

GPD – location 375 375 375 375 375 375

GPD – shape 1.041 1.041 1.041 1.041 1.041 1.041

GPD – scale 1677 1677 1677 1677 1677 1677

Business Line 2

Collection threshold 0.25 1 5 10 20 50

No. obs. 7,841 3,754 1,348 901 593 359

Severity Poisson Poisson Poisson Poisson Poisson Poisson

Body Weibull Pareto Pareto Pareto Pareto Pareto

Parameter #1 11.852 1 5 10 20 50

Parameter #2 0.047 0.551 0.514 0.492 0.402 0.375

% of extremes 0.6% 1.2% 3.3% 4.9% 7.4% 12.3%

GPD – location 450 450 450 450 450 450

GPD – shape 0.750 0.750 0.750 0.750 0.750 0.750

GPD – scale 601 601 601 601 601 601

not been previously documented in the operational risk management
literature.

First, the level of the collection threshold has little impact on regulatory
capital charge estimations. The own funds needed to cover operational risk
are indeed stable in both business lines. For BL1, it ranges from 1.26 million
to 1.43 million depending on the threshold. The variation range is narrower
for BL2 as capital charge fluctuates between 0.78 and 0.85 million.

Second, this result is mainly due to the way the tail is modeled. As we
rely on EVT to model the very high losses, the collection threshold has no
or little impact on the fatness of the tail for the severity distribution.

Finally, the choice of the collection threshold should thus not be guided
by capital requirements concerns but rather by a “pro/cons” analysis of the
practical implementation issues (costs, required systems, resources…) as
regulatory arbitrage seems not to be applicable in this case.
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Table 1.7 Statistics from the aggregate loss distributions

Business Line 1

Collection 0.25 1 5 10 20 50
Threshold

Observed 197,707 197,362 196,162 195,469 193,577 190,613
total loss

Median 207,382 206,234 202,775 203,900 193,577 197,428

Mean (EL) 282,429 283,843 275,686 276,033 274,708 273,983

VaR_90 569,446 571,079 554,891 551,029 549,296 559,235

VaR_95 772,580 782,968 745,494 742,276 744,448 758,515

VaR_99 1,129,687 1,156,350 1,113,569 1,123,954 1,128,338 1,149,638

VaR_999 (UL) 1,596,046 1,664,351 1,540,889 1,709,335 1,624,079 1,589,754

VaR_9995 1,990,333 1,841,773 1,742,146 1,791,703 1,801,347 1,763,800

Capital 1,313,617 1,380,508 1,265,203 1,433,302 1,349,371 1,315,771
Charge
(UL-EL)

UL/Observed 8.07 8.43 7.86 8.74 8.39 8.34
Loss

Business Line 2

Collection 0.25 1 5 10 20 50
Threshold

Observed 162,034 159,946 154,747 151,670 147,554 140,389
total loss

Median 159,668 163,497 174,317 153,049 151,411 144,668

Mean (EL) 179,893 182,426 155,161 172,279 172,345 164,182

VaR_90 242,829 243,356 235,854 233,870 234,269 226,114

VaR_95 305,361 292,105 285,729 284,993 297,339 282,444

VaR_99 520,023 513,738 505,102 526,324 548,432 526,876

VaR_999 (UL) 990,471 997,423 1,007,766 1,012,012 1,010,079 952,224

VaR_9995 1,017,129 1,108,098 1,070,175 1,077,630 1,100,504 1,017,359

Capital 810,578 814,997 852,605 839,733 837,734 788,042
Charge
(UL-EL)

UL/Observed 6.11 6.24 6.51 6.67 6.85 6.78
total loss
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Figure 1.5 Regulatory capital charge for BL1 and BL2 with various
collection thresholds

APPENDIX: FINDING THE EVT THRESHOLD

The algorithm performs the following steps:

1 Let (x1, . . . , xn) be the ordered sample of observations. Consider m candidate thresh-
olds U1, . . . , Um such that xn−i, . . . , xn >Ui for i= 1, . . . , m.

2 For each threshold Ui, use the weighted average of Hill estimators proposed in Huis-
man et al. (2001) to estimate the tail index ξi of the GPD distribution. This method
corrects for the small-sample bias of the original Hill estimator.

3 Then compute the maximum likelihood estimator of the scale parameterβi of the GPD,
with the tail index ξi fixed to the value obtained in step 2.

4 For each threshold Ui, compute the Mean Squared Error statistic11 MSE(Ui)= 1
ni

∑ni
k=1

(Fk − F̂k)2, where ni is the number of losses above threshold Ui, Fk is the cdf of the
GPD(ξk ,βk ,µk) and F̂k is the empirical cdf.

5 Identify MSE(Uopt)=min(MSE(U1), . . . , MSE(Um)); Uopt is retained as estimator of the
cut-off threshold and the fitted distribution is the GPD(ξopt,βopt, Uopt).

NOTES

1. The Basel Committee thus assumes perfect positive dependence between operational
risks; alternatively, it also allows banks to use internally defined correlations. See
paragraph 669 of BCBS (2004).

2. Basel II states: “Supervisors will require the bank to calculate its regulatory capital
requirement as the sum of expected loss (EL) and unexpected loss (UL), unless the
bank can demonstrate that it is adequately capturing EL in its internal business
practices” (BCBS, 2004, §669).
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3. Consistent means that for large n, the estimates converge to the true value of the
parameters, Unbiased means that for all sample sizes the parameter of interest is
calculated correctly, Efficient means that the ML estimate is the estimate with the
smallest variance while Sufficient indicates that is uses all the information in the
observations.

4. Note that, for the Poisson distribution, χ2converges exactly to the chi-square dis-
tributions with k − 1 degrees of freedom. See for instance section 6.6.2 of Law and
Kelton (2000) for a discussion on this test.

5. SeeAppendixAof Klugman et al. (1998) for a wider range of continuous distributions.
6. See BCBS, 2004, § 673.
7. This approach is not Basel II compliant as it assumes independence between the

various loss event types of a given business line. While this should be carefully kept
in mind, it does not have an impact of the results of the present study and allows us
increasing the size of samples under consideration.

8. The mean square errors associated with the optimum thresholds are 0.0588 and 0.0402
for BL1 and BL2, respectively.

9. In the MLE estimation, the location parameter is fixed to the optimized value
obtained with the algorithm.

10. We assume that the bank under consideration in this study accounts for expected
losses in its tariff policy. Regulatory capital charge is the difference between unex-
pected loss (the 0.999th quantile of the aggregate loss distribution) and expected loss
(the mean of the aggregate loss distribution).

11. We choose the MSE criterion because it explicitly accounts for both the bias and
inefficiency effects (see Theil, 1971).
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Incorporating
Diversification into
Risk Management

Amiyatosh Purnanandam, Mitch Warachka, Yonggan Zhao
and William T. Ziemba∗

2.1 INTRODUCTION

Risk measurement is of fundamental importance to financial practice. Given
the widespread usage of Value-at-Risk (VaR), firms actively manage their
risk. Unfortunately, VaR is not derived from fundamental economic princi-
ples and may lead to sub-optimal decisions as shown by Shapiro and Basak
(2001).

Substantial progress in the academic risk management literature began
with Artzner, Delbaen, Eber and Heath (1999), abbreviated ADEH hereafter,
who develop an axiomatic framework for risk measurement. Their axioms
stem from intuitive economic principles that define a coherent risk mea-
sure. The intent of ADEH is to provide a regulator with a methodology for
determining the riskfree capital requirements of a firm, conditional on their
existing portfolio. Indeed, a coherent risk measure is defined as the mini-
mum amount of riskfree capital a portfolio requires to become acceptable to
the regulator.

∗ Mitch Warachka and Yonggan Zhao gratefully acknowledge financial support from the
Wharton-SMU Research Center, Singapore Management University, and the Center for
Research in Financial Services, Nanyang Technological University. William T. Ziemba acknowl-
edges financial support from the Natural Sciences and Engineering Research Council of Canada.

22



AMIYATOSH PURNANANDAM ET AL. 23

An entire literature on extensions of coherent risk measures followed
ADEH. Rockafellar and Ziemba (2000) as well as Follmer and Schied (2002)
introduce convex risk measures that account for market frictions by allowing
risk to increase non-linearly with a portfolio’s size. Jarrow (2002) enables a
put option written on firm value (with zero strike price) to be coherent.

This chapter introduces a risk measure that is appropriate for the port-
folio selection decisions of firms, while maintaining the ADEH concept of
acceptable portfolios. To achieve this objective, we define risk on portfo-
lio holdings, a domain conducive to having diversification reduce portfolio
risk. We maintain an axiomatic structure and define the risk of a portfolio
as its distance from the set of acceptable portfolios. More importantly, dis-
tance involves as many components as available assets, including but not
limited to riskfree capital. As a consequence, derivative as well as insurance
contracts become important tools for risk management. Thus, our approach
conforms to market practice while its implementation involves quadratic
programming, a technique with prior applications in finance originating
from portfolio theory.

In contrast to coherent risk measures which focus on the regulator, this
paper operates from the firm’s perspective. In particular, we recognize that
firms prefer to pursue investment opportunities that are capable of earning
excess economic rents. This desire may stem from a perception of having
superior information or investment ability. By implication, these ambitions
result in portfolios that are not well-diversified. Intuitively, firms are unable
to demonstrate investment skill by increasing their position in the riskfree
asset. Thus, they are averse to adding riskfree capital to their portfolio for
performance considerations, yet are constrained by an external regulator.

Balancing the demands of an external regulator and the performance
objectives of firms is accomplished by introducing portfolio theory into the
measurement of risk. Specifically, our proposed risk measure offers firms
the ability to rebalance their portfolio. During this rebalancing, the addition
of riskfree capital remains feasible, but is not the exclusive means by which
a portfolio becomes acceptable. Since every asset portfolio weight may be
altered, diversification is capable of reducing portfolio risk. Consequently,
as discussed in Merton (1998), instruments with non-linear payoffs such as
derivative and insurance contracts become important tools for risk man-
agement. In addition, market frictions may be incorporated into a firm’s
rebalancing decisions.

We also consider the pricing of portfolio insurance, a single contract
whose addition to the existing portfolio is capable of ensuring its accept-
ability. This instrument provides more intuition for our risk measure, and
converts the required portfolio rebalancing into a dollar-denominated quan-
tity. The insurance contract does not reduce positive payoffs but insures
against negative outcomes to avoid insolvency. Provided a firm is willing to
rebalance their portfolio, only a fraction of this security is required.
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The organization of this chapter is as follows. Section 2.2 details the
properties of our proposed risk measure, while a simple example which
illustrates our approach is given in section 2.3. Section 2.4 focuses on the
implementation of our risk measure and demonstrates that coherent risk
measures are contained in our framework. Section 2.5 considers the pricing
of portfolio insurance while section 2.6 concludes.

2.2 RISK MEASURE WITH DIVERSIFICATION

Consider the time horizon [0, T] and a finite number N of risky assets
denoted xi for i= 0, 1, 2, . . . , N with x0 representing riskfree capital. Let P
denote a M × (N + 1) payoff matrix with M rows indexed by j= 1, 2, . . . , M
corresponding to the regulator’s set of scenarios and N + 1 columns corre-
sponding to the available assets. Elements of P are individual asset payoffs
in a given scenario.

P =


(1 + r) P1(ω1) . . . PN(ω1)
(1 + r) P1(ω2) . . . PN(ω2)

...
...

...

(1 + r) P1(ωM) . . . PN(ωM)


A vector of portfolio holdings η= [η0, η1, . . . , ηN]� represents the number

of units, not dollar amounts or fractions of a portfolio, invested in the various
assets. Portfolio values Pη in the M scenarios determine whether a portfolio
complies with the demands of an external regulator.

Coherent risk measures evaluate a portfolio’s risk according to its value
in the worst possible scenario or under the probability measure that pro-
duces the largest negative outcome. Mathematically, these risk measures
are defined in terms of terminal portfolio values, X =Pη, as

ρ(X) = max
j

EPj [−X|Pj ∈ P]
1 + r

(2.1)

with P representing a set of scenarios and r the riskfree rate of interest. In
our framework, EPj [−X] is replaced by Pη−j , the jth row of Pη− =−min{0,
Pη} as each row of Pη corresponds to a regulator’s scenario. Note that each
scenario represents a probability measure. However, the expected value
of the portfolio across multiple scenarios is not computed by the regulator.
Instead, the worst outcome across the scenarios defines the risk of a coherent
risk measure.

It is important to emphasize that coherent risk measures do not account
for diversification. Although ADEH have a subadditivity axiom that paral-
lels a property implied by our risk measure, their definition of risk applies
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to terminal portfolio values. Thus, the portfolio weights of the underlying
assets cannot be altered to exploit the benefits of diversification. Instead,
according to the stricter version of ADEH’s acceptance set which invokes
Axiom 2.2′, ADEH focus solely on the amount of riskfree capital required
to ensure the portfolio has non-negative terminal values in the scenarios
considered relevant by the regulator. This exclusive focus on riskfree capi-
tal is overcome by our methodology which operates on a different domain.
Specifically, define M ⊂RN+1 as the space of portfolio holdings with the
subset of acceptable portfolios denoted Aη⊂M.

As in ADEH, the definition of acceptable portfolios ensures the firm can-
not become insolvent in any of the regulator’s M scenarios. However, firms
may supplement this set of scenarios to obtain additional protection against
insolvency.

Definition 2.2.1 The set of acceptable portfolio holdings Aη⊂M contains
all portfolios that have non-negative outcomes, Pη≥ 0, in all M scenarios
evaluated by the regulator.

Clearly, the acceptance set Aη depends on the payoff matrix P with the reg-
ulator controlling the number of scenarios (rows). Moreover, the regulator
focuses on preventing insolvency but does not consider variability in a firm’s
portfolio value when measuring risk. With respect to risk factors such as
market, interest rate or foreign exchange movements, these variables may
define the M scenarios. For example, the Standard Portfolio Analysis of
Risk (abbreviated SPAN) risk management system employed by most inter-
national exchanges such as the CBOT, CME, NYBOT, NYMEX and LIFFE,
investigates 16 scenarios defined by changes in price and volatility. In each
of these scenarios, the firm’s portfolio is required to be non-negative.

Proposition 2.2.1 The acceptance set Aη has the following two properties:

1. Closed under multiplication by γ ≥ 0.

2. Convexity.

Proof: First, it must be shown that if η∈Aη, then γη∈Aη for γ ≥ 0. This
property follows from η∈Aη being equivalent to Pη≥ 0 and the property
P[γη]= γPη which is non-negative since both γ and Pη are non-negative.

Second, if η1, η2 ∈Aη, implying Pη1 ≥ 0 and Pη2 ≥ 0, then γη1 + (1− γ)η2 ∈
Aη for 0≤ γ ≤ 1 since P[γη1 + (1− γ)η2]= γPη1 + (1− γ)Pη2 ≥ 0.

Therefore, as in the ADEH framework, unless each element of Pη is
non-negative, the portfolio η is unacceptable. In this instance, an opti-
mal acceptable η* is found based on its proximity to η as we assume firms
prefer to engage in as little portfolio rebalancing as possible given their
initial preference for η. Quadratic programming solves for the portfolio η*
in section 2.4.
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Define a trivial acceptable portfolio ηc consisting of $1 invested only in
riskfree capital, in other words, a N + 1 vector with one as the first ele-
ment and zero in the remaining elements. This portfolio has the property
Pηc = (1+ r)1> 0 where 1 is a N + 1 vector of ones. Given the acceptance
set Aη in Definition 2.2.1, portfolio risk is defined in terms of the l2 norm,

||x− y||2 equals
√∑N

i=0 (xi − yi)2, on M. Our risk function ρ(η) maps from
the domain of portfolio holdings, M, into the non-negative real line, ρ(η):
M →R1+.

Definition 2.2.2 Given Aη defined by the payoff matrix P, the risk of a
portfolio η equals

ρ(η) = inf{||η− η′||2 : η′ ∈ Aη}

Observe the fundamental difference between our approach and that of
ADEH, instead of defining risk on terminal portfolio values, risk is defined
on portfolio holdings. Thus, although both measures of risk are defined by a
distance from an acceptance set, our concept of distance has N + 1 variables
(one for each asset) instead of only one (riskfree capital). Different objective
functions may be utilized with the important property in Definition 2.2.2
being the measurement of risk in terms of distance. The l2 norm is chosen
for tractability and because of its prior applications in portfolio theory.

At this stage, we state three important clarifications regarding our risk
measure. First, although ρ(η) is Euclidean distance, it has an immediate
dollar-denominated interpretation given prices for each of the assets as dis-
cussed in section 2.5. Second, firm preferences are easily incorporated into
our risk measure. Third, the dollar-denominated value of the original port-
folio differs from its acceptable counterpart denoted η′ in Definition 2.2.2.

As elaborated in section 2.4, our methodology recognizes that the firm is
not necessarily less willing to rebalance assets with higher prices. Instead,
deviations in the portfolio weights of the original portfolio are minimized
since relatively inexpensive assets such as out-of-the-money options or
futures contracts (with zero value after being market-to-market) may be
crucial to both the desirability and riskiness of a firm’s investment strategy.
Indeed, forward and swap contracts have zero initial value but potentially
large positive or negative payoffs. In contrast, the firm may be willing to alter
their holdings of expensive instruments such as Treasury bonds. Thus, our
primary objective is minimizing perturbations to the firm’s original portfo-
lio η, which is assumed to be its preferred allocation. Instead, the firm is able
to specify the cost of rebalancing each individual asset from their perspec-
tive when finding the acceptable portfolio’s solution. As seen in section 2.4,
one possibility simply has the rebalancing cost for each asset being equal
to its price. This special case minimizes the dollar-denominated amount
of rebalancing. However, such a formulation is not necessarily compati-
ble with our objective of including derivatives or other (leveraged) assets
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capable of offering negative correlation. Irrespective of this complication, the
dollar-denominated risk measure implied by Definition 2.2.2 is presented in
subsection 2.5.3.

In section 2.4, an enhanced methodology which accounts for firm prefer-
ences also becomes explicit, and addresses the second issue. This extension
is identical to the incorporation of market frictions such as transaction costs
and illiquidity into portfolio rebalancing decisions. The third observation
also applies to the ADEH risk measure as the addition of riskfree capital
increases the dollar-denominated value of the original portfolio. Indeed, no
existing risk management system reduces portfolio risk while preserving its
original value.

If η already comprises an acceptable portfolio, then its associated risk
equals zero. For example, the portfolio ηc has zero risk, ρ(ηc)= 0. Other-
wise, portfolio risk is determined by the amount of rebalancing a portfolio
requires to become acceptable. This illustrates a major advantage of our
risk measure. A firm may rebalance their portfolio by purchasing derivative
instruments, insurance contracts, or simply reducing their exposure to cer-
tain risky assets. In summary, portfolio rebalancing may include, but is not
limited to, increasing the amount of riskfree capital.

As a final observation, generalized scenarios considered in ADEH are
also addressed in our methodology. A generalized scenario is defined as
a combination of multiple scenarios aggregated by a specified probability
measure. For example, one element of the SPAN procedure considers a
30 percent chance of an extreme scenario in conjunction with a 70 percent
chance of another base scenario. In our context, the {0.3, 0.7} probability
forms the generalized scenario:

0.3 × Payoff vector in extreme scenario
+ 0.7 × Payoff vector in the base scenario

= Payoff vector of generalized scenario

which is no different than any other row of the P matrix. However, whether
or not the scenarios underlying the generalized scenario are themselves
included as distinct rows of P is immaterial to our analysis. For example,
the extreme scenario in SPAN is not evaluated as an individual scenario.

2.2.1 Properties of risk measure

The next proposition summarizes the properties of our risk measure. Inter-
estingly, all but one of ADEH’s coherence axioms are preserved. However,
removal of the translation invariance axiom results in an important gener-
alization by eliminating the strict dependence on riskfree capital to reduce
risk. To clarify, the operations η1 ± η2 are applied componentwise to signify
operations on two vectors representing portfolio holdings.
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Proposition 2.2.2 The proposed risk measure with diversification has the
following properties:

1 Subadditivity ρ(η1 + η2)≤ ρ(η1)+ ρ(η2)

2 Monotonicity ρ(η1)≤ ρ(η2) if Pη1 ≥Pη2

3 Positive homogeneity ρ(γη)= γρ(η) for γ ≥ 0

4 Riskfree capital monotonicity ρ(η+ γηc)≤ ρ(η) for γ ≥ 0

5 Relevance ρ(η)> 0 if η /∈Aη

6 Shortest path For every η /∈Aη and for 0≤ γ ≤ ||η− η∗||2:

ρ(η+ γ · ũ)= ρ(η)− γ

where ũ is the unit vector in the direction η∗ − η defined as
η∗ − η/||η∗ − η||2 given a portfolio η∗ that lies on the boundary of Aη

and minimizes the distance ||η− η∗||2.

The proof is contained in Appendix A. The shortest path property imposes
cardinality on the risk measure with ũ representing a unit of rebalancing.
Observe that riskier portfolios are farther from the acceptance set with larger
associated risk measures ρ(η). Versions of the subadditivity, monotonicity,
and positive homogeneity properties found in the original ADEH paper
remain with subadditivity responsible for incorporating diversification into
our framework. The second and third properties, monotonicity and posi-
tive homogeneity, are discussed in ADEH. Monotonicity guarantees that a
portfolio whose terminal payoffs are larger than another portfolio in every
scenario has lower risk than its counterpart. Positive homogeneity allows
a firm to scale an acceptable portfolio up or down with the resulting port-
folio remaining acceptable. To account for market frictions, Follmer and
Schied (2002) replace positive homogeneity and subadditivity with a con-
vexity axiom. In our framework, market frictions influence the solution for
η∗ as demonstrated in section 2.4.

The key distinction arises from ADEH’s translation invariance axiom.
Our risk measure with diversification employs a weaker concept manifested
in the riskfree capital monotonicity and shortest path properties. The rele-
vance property ensures the risk function is positive if there exists a scenario,
considered relevant by the regulator, where the terminal value of the portfo-
lio is negative. Consequently, the relevance property ensures unacceptable
portfolios have positive risk.

When ρ(η)= 0, an amount γ∗ of riskfree capital may be removed from
the portfolio according to supγ∗ρ(η− γ∗ηc)= 0, which is unique by the
monotonicity of riskfree capital property. Since Aη is closed, there exists
a boundary point which minimizes the required amount of riskfree capital.
Although quadratic programming is capable of solving for γ∗, this issue is
not elaborated on further as our focus concerns unacceptable η portfolios.
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2.2.2 Economic motivation

An unacceptable portfolio may initially be chosen by a firm which believes it
has superior information or investment skill. Moreover, additional riskfree
capital does not permit a firm to exhibit investment ability or skill. Provided
firms pursue excess economic rents and fail to maintain well diversified
portfolios, a coherent risk measure may overestimate portfolio risk. Funda-
mentally, a tradeoff exists between preventing insolvency and maximizing
the expected value of the portfolio. This tension motivates our risk manage-
ment framework since the firm is able to maintain an acceptable portfolio
as close as possible to their original positions while complying with the
external regulator.

To enhance the motivation behind our risk measure, we introduce a
non-negative function R(η)≥ 0 to determine the aggregate desirability of
a portfolio. This function is only intended as an example to illustrate the
desirability of rebalancing a portfolio in comparison to the addition of risk-
free capital. Therefore, neither the functional form nor the exact specification
of R(η) are necessary for our analysis. Since the selection criteria and per-
ceived desirability of individual assets are highly variable across firms, very
little structure is imposed on R(η). For illustration, we assume:

R(η) =
∑N

i=0 ηi · ci∑N
i=0 ηi

(2.2)

where ci implicitly denotes a ranking of the assets. For example, ci may
represent numerical weightings associated with strong outperform, weak out-
perform, or hold among other possibilities. Equation (2.2) allows several
variables, including expected returns and variances, to influence a portfo-
lio’s desirability. However, covariances are not considered in equation (2.2)
as diversification is reserved for our subsequent discussion of the proposed
risk measure.

Regardless of the exact functional form for R(η), the ci elements may be
derived from an infinite number of scenarios, not only those evaluated by the
regulator. Indeed, the regulator is primarily concerned with a small subset
of extreme scenarios. In contrast, the firm’s investment criteria is comprised
of more frequently occurring scenarios. This disparity reflects the diverging
interests of the regulator and firm which our proposed risk measure attempts
to bridge.

In the absence of portfolio rebalancing, define the amount of additional
riskfree asset required to ensure the portfolio η becomes acceptable as α≥ 0.
This quantity equals

α = inf{γ : η+ γηc ∈ Aη} (2.3)= −min{0, Pη}
and depends on ηbut is written asα rather thanα(η) for notational simplicity.
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Overall, for η /∈Aη, diversification is beneficial from the firm’s perspective
whenever there exists an η′ ∈M (not necessarily acceptable) such that:

Condition 1: η+ η′ ∈ Aη (2.4)

Condition 2: R(η+ η′) ≥ R(η+ αηc) (2.5)

The first condition ensures that η′, when added to η, is capable of constitut-
ing an acceptable portfolio. Asolution for η′ that satisfies the first condition is
provided in section 4. The second condition states that portfolio rebalancing
is preferred to the addition of riskfree capital when complying with the reg-
ulator. Indeed, setting η′ =αηc results in equality for the second condition.
The existence of a portfolio η′ is motivated by the inability of ηc to generate
excess economic rents. Other functions besides equation (2.2) are possible,
with the property ci ≥ c0 for i≥ 1 ensuring the second condition is satisfied.

In practice, the regulator may impose a fine denoted f on firms that con-
tinue to hold unacceptable portfolios. Thus, the second condition expressed
in equation (2.5) may be extended to

R(η+ η′) ≥ max
{
R(η+ αηc), R(η) − f 1{η/∈Aη}

}
(2.6)

Assuming the fine is large enough to satisfy both:

1 f ≥R(η)−R(η+αηc)

2 f ≥R(η)−R(η+ η′)

firms strive to be in compliance with the regulator. Indeed, the firm is better-
off rebalancing the portfolio than adding riskfree capital or paying the fine
and maintaining their original portfolio. Since R(η+ η′)≥R(η+αηc), the two
requirements above reduce to the first statement:

f ≥ R(η) − R(η+ αηc).

Hence, the required fine is a function of both η and the firm’s aversion to
adding riskfree capital expressed via R(η). Intuitively, firms which are less
averse to holding riskfree capital require smaller fines to induce compliance.

Observe that the addition of riskfree capital increases a portfolio’s payoffs
in all scenarios, even those for which the original portfolio already has non-
negative values. Indeed, the portfolio payoff increases in scenarios that are
not even considered by the regulator. Therefore, the addition of riskfree capi-
tal is a very conservative approach to risk management, one suitable from the
perspective of a regulator but not firms. Section 2.5 investigates the pricing
of portfolio insurance, a security which only increases payoffs in scenar-
ios that prevent the portfolio from being acceptable. Furthermore, firms are
able to evaluate scenarios beyond those considered by the regulator if their
internal risk management procedures are designed to be more stringent.

The next section considers a simple example to differentiate our risk
measure from coherent risk measures.
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2.3 NUMERICAL EXAMPLE

Consider an economy with two risky assets and riskfree capital. Uncertainty
in the economy is captured by a coin toss. For the first risky asset, the payoff is
$4 if heads and−$2 if tails, while their counterparts are $0 and $2 respectively
for the second risky asset. The rate of interest is assumed to be zero (r= 0)
implying risk-free capital is worth $1 at time T.

The two risky assets are negatively correlated. For emphasis, no probabil-
ity measure is required for the occurrence of the two states as the regulator
is not concerned with their likelihood. Instead, preventing insolvency in
each scenario is the regulator’s task, which is entirely independent of the
portfolio’s expected value across the scenarios. Indeed, the second risky
asset resembles a put option on the first security. Furthermore, the market
is complete since a portfolio weight of − 1

3 in the first asset combined with
4
3 of risk-free capital replicates the put option. Intuitively, the put option
provides negative correlation, facilitating greater diversification, by short-
ing the first asset while indirectly providing additional riskfree capital. As
illustrated in the remainder of this example, beyond serving as an effec-
tive means to hedge risk and ensure portfolio acceptability, the derivative
reduces the amount of riskfree capital required to be held by the firm.

The space of acceptable portfolio holdings whose terminal values are
non-negative in both scenarios is characterized by:

1η0 + 4η1 + 0η2 ≥ 0 Heads (2.7)

1η0 − 2η1 + 2η2 ≥ 0 Tails (2.8)

Consider the portfolio η= [1, 1, 0]� consisting of one unit of riskfree capital,
one unit of the first risky asset and none of the second. The portfolio η is not
acceptable since the payoff is negative if the coin toss results in tails.

In the coherent risk measure framework, η requires an additional unit of
riskfree capital resulting in η∗ADEH = [2, 1, 0]�.

Solving for our optimal portfolio η* involves minimizing the distance
between η= [1, 1, 0]� and η∗ ∈Aη under the l2 norm using quadratic pro-
gramming (QP). The portfolio η* equals [1.11, 0.78, 0.22]� with details
pertaining to its solution found in the next section. MATLAB code which
solves for η∗ is available from the authors.

As demonstrated above, a coherent risk measure evaluates the risk of η
as 1 due to the negative payoff when the coin toss is tails. However, the
portfolio [1.11, 0.78, 0.22]� ∈Aη implies the portfolio’s risk in our frame-
work is ||η∗ − η||2 =

√
(1.11− 1)2 + (0.78− 1)2 + (0.22− 0)2 = 0.33. Thus, our

proposed risk measure evaluates the risk of η at one third that of a coherent
risk measure. However, the rebalanced portfolio has non-negative payoffs
in both scenarios and therefore satisfies the regulator.



32 INCORPORAT ING DIVERS IF ICAT ION INTO RISK MANAGEMENT

Table 2.1 Asset payoffs at time T in both
scenarios

Asset Heads Tails

Riskfree capital 1 1

Risky asset #1 4 −2

Risky asset #2 0 2

Table 2.2 Payoffs at time T in both sce-
narios for the unacceptable portfolio η

Portfolio Heads Tails

η= [1,1,0]� 5 −1

Table 2.3 Payoffs at time T in both sce-
narios for the η∗ADEH portfolio

Acceptable portfolio – ADEH Heads Tails

η∗ADEH = [2,1,0]� 6 0

Table 2.4 Payoffs at time T in both
scenarios for the η∗ portfolio

Optimal Portfolio – QP Heads Tails

η∗ = [1.11,0.78,0.22]� 4.22 0

The distinction between the riskfree asset and its risky counterparts
is not central to our proposed risk management framework. In contrast to
traditional portfolio allocation decisions, the important issue in our context
is the tradeoff between additional risk-free capital versus rebalancing the
risky assets. A portfolio’s rebalancing may include the purchase of options,
futures contracts, insurance or reducing the portfolio’s exposure to certain
troublesome assets.

For example, to comply with the regulator, suppose the firm is faced
with two choices; adding $1,000,000 in riskfree capital (lowering their
expected return) versus acquiring positions in forward/futures/swap con-
tracts (which are costless at initiation) or inexpensive out-of-the-money
options. Naturally, deviating from the existing asset allocation between the
risky assets is essential since maintaining its exact composition would be
clearly inefficient. Subsection 2.2.2 contains additional economic motivation
in favor of rebalancing.



AMIYATOSH PURNANANDAM ET AL. 33

To clarify, portfolio theory selects portfolio weights to exploit diversifica-
tion before choosing the desired amount of riskfree capital. These decisions
are independent and sequential since the risky portfolio is assumed to
already be fully diversified. However, this assumption is not present in our
methodology. As demonstrated in the next section, we recognize that a fully
diversified portfolio results in our risk measure being identical to that of
ADEH. Furthermore, to minimize the assumptions and structure imposed
on firm preferences, our risk measure’s objective is to perturb the firm’s
original portfolio by the least amount possible while complying with the
regulator.

Section 2.4 also reveals that the firm may ignore all the flexibility offered
by our approach and preserve their original risky asset allocation. As alluded
to earlier, we provide the firm with N + 1 degrees of freedom to satisfy
the regulator in contrast to ADEH who only allow the portfolio weight of
riskfree capital to be manipulated. Thus, fixing the original positions in the
risky assets or focusing one’s attention on the division between the risky
portfolio and riskfree capital eliminates any possibility of diversification
since portfolio theory requires an optimal solution to be expressed in terms
of portfolio weights.

Finding more general solutions for η∗ that incorporate market frictions
into the rebalancing decision is addressed in section 2.4. In our previous
example, the positive portfolio payoff in the heads scenario was reduced.
Section 2.5 computes the value of a portfolio insurance contract which elimi-
nates negative terminal values without reducing their positive counterparts.

To summarize, this section offers an illustration of how firms may comply
with the demands of a regulator while holding less riskfree capital. Indeed,
regulators may adopt our risk measure without compromising their original
role of preventing insolvency in each scenario.

2.4 IMPLEMENTATION

If Pη has any negative elements, then the regulator deems the portfolio to be
unacceptable. This section is concerned with implementing our risk measure
by solving for the portfolio η∗ ∈Aη such that Pη∗ ≥ 0 and η∗ is “as close as
possible” to the firm’s original portfolio η.

Definition 2.4.1 Allowing g to represent the l2 norm, the portfolioη∗ ∈Aη

is the solution to the optimization problem:
minη∗∈RN+1 g(η∗ − η) (2.9)

subject to Pη∗ ≥ 0

Equation (2.9) solves for the minimum amount of portfolio rebalancing,
which is not a dollar-denominated quantity. Indeed, the properties of our
risk measure described in Proposition 2.2.2 apply to portfolio weights.
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Altering equation (2.9) to minimize a function of qT(η− η∗), where q denotes
a vector of asset prices, contradicts the initial portfolio η being preferred by
the firm. Specifically, there is no reason why the firm would be less willing to
rebalance assets with higher initial prices. At inception, forward, swap and
futures contracts have zero value but potentially large positive or negative
payoffs, while inexpensive out-of-the-money options have a similar prop-
erty. Consequently, deviations from the original portfolio are minimized
since relatively inexpensive assets may be crucial to a firm’s investment strat-
egy or have higher market frictions as discussed in the next subsection. The
dollar-denominated price of portfolio insurance is addressed in section 2.5.

In a financial context, quadratic programming, implied by the l2 norm, is
equivalent to the mean-variance analysis underlying much of portfolio the-
ory. Since the objective function g is twice differentiable and strictly convex
and the feasible region is also convex, the Kuhn Tucker conditions imply a
unique solution. Although this problem cannot be solved analytically, very
efficient numerical solutions are available. In particular, the problem is well
suited for a pivoting scheme described in Luenberger (1990).

Proposition 2.4.1 Let y=Pη∗ and g(η∗) = 1
2 (η∗ − η)�(n∗−η). The optimal

solution to equation (2.9) is given by η∗ = η+P�λwhereλ solves the linear
complementarity conditions:{

y − PP�λ = Pη
y ≥ 0, λ ≥ 0, λ�y = 0

(2.10)

Proof: The Kuhn Tucker conditions are:{
η∗ − P�λ = η

Pη∗ ≥ 0, λ ≥ 0, λ�Pη∗ = 0

since the gradient of the objective function, g(η∗)− (Pη∗)�λ, equals
η∗ − η−P�λ. Hence, with y=Pη∗, the above conditions become:{

y − PP�λ = Pη

y ≥ 0, λ ≥ 0, λ�y = 0

which completes the proof.
Hence, the optimization problem in equation (2.9) is reduced to solving

the linear complementary conditions in (2.10). Furthermore, the optimal
portfolio η∗ is a linear function of the vector λ which satisfies these linear
complementary conditions. However, there may exist multiple solutions to
(2.10), raising the question whether all possible solutions yield the same
optimal portfolio η∗ in Definition 2.4.1. This issue is addressed in the
following proposition whose proof is found in Appendix B.

Proposition 2.4.2 All solutions to the linear complementary conditions
in (2.10) yield the same optimal portfolio η∗ in Definition 2.4.1.
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The λ parameters have interesting interpretations as each element cor-
responds to a specific regulator scenario. If the constraint Pη≥ 0 is not
binding in scenario i with (Pη)i ≥ 0, then the corresponding λi equals 0. Oth-
erwise, the optimalλi is a positive number representing the cost of preventing
insolvency.

If Pη≥ 0, then (2.10) has an obvious solution; λ= 0 and y=Pη, implying
η is optimal. Otherwise, the general pivoting approach transforms (2.10) to
optimality. After finitely many pivots, bounded above by the number of
rows (scenarios), the vector Pη∗ is non-negative. In terms of computational
complexity, a total of M linear equations are solved for each pivot operation.
The algorithm stops when Pη∗ ≥ 0, providing the optimal solution to (2.10).

2.4.1 Incorporating market frictions and firm preferences

In general, the objective function g may be defined with respect to a positive
definite matrix A as in (η∗ − η)�A(η∗ − η). Consider a diagonal matrix of
positive elements ai:

A =


a0

a1
. . .

aN


representing the associated market friction (illiquidity and transaction costs)
of the ith asset as well as the firm’s unwillingness to alter their position in
this asset. Larger ai values correspond to larger penalties for altering that ele-
ment of the portfolio. Even if riskfree capital has the smallest corresponding
penalty, the addition of riskfree capital may still be sub-optimal. Indeed, a
portfolio may require a large amount of additional riskfree capital to become
acceptable, but only minor modifications to positions with larger ai penal-
ties. This issue is re-examined in the next section when pricing portfolio
insurance.

Alternatively, the price of each asset could define the ai elements. In this
circumstance, the dollar-denominated amount of rebalancing is minimized
as assets with higher prices are more expensive to rebalance. However, as
alluded to earlier, inexpensive futures contracts or out-of-the-money options
often provide large future payoffs and are crucial to a firm’s investment strat-
egy, while expensive instruments such as high-coupon bonds are not. Thus,
the price of an individual security is not necessarily representative of firm
preferences towards rebalancing. Nonetheless, the potential to incorporate
prices into the solution of η∗ is apparent.

Observe that the ci elements of the R(η) function in equation (2.2) are not
incorporated into A. Indeed, solving for the optimal acceptable portfolio that
maximizes R(η) is well-beyond the scope of this paper and would require
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far greater structure on firm preferences, information and beliefs. Since η

represents the firm’s optimal portfolio in the absence of the regulator, we
merely assume any deviation from η is disliked by the firm.

Proposition 2.4.1 has an immediate corollary when the positive definite
matrix A is inserted into the objective function which alters the values of
both η∗ and λ.

Corollary 2.4.1 Let y=Pη∗ and g(η∗)= 1
2 (η∗ − η)�A(η∗ − η) where A is

a positive definite matrix. The optimal portfolio η∗ equals η+A−1P�λ,
where λ satisfies the modified linear complementarity conditions:{

y − PA−1P�λ = Pη

y ≥ 0, λ ≥ 0, λ�y = 0
(2.11)

Given Corollary 2.4.1 above, we now reconsider the example in section 2.3
for different A matrices and their corresponding optimal acceptable portfo-
lios.

2.4.2 Continuation of example

Once again, the original unacceptable portfolio η= [1, 1, 0]� is considered.
Suppose a firm is extremely adverse to adding riskfree capital to their
portfolio. This preference is expressed through the matrix:

A1 =
∞

1
1


which implies η∗1 equals [1, 0.75, 0.25]�. When implementing the numerical
examples presented in this paper, ∞ is replaced with 1000. The portfolio
η∗1 is acceptable with Pη∗1 being non-negative in both scenarios. Therefore,
our proposed risk measure generates an acceptable portfolio without any
additional riskfree capital by reducing the firm’s exposure to the first risky
asset and purchasing a portion of the second risky asset as a hedge.

Interestingly, one may begin with the portfolio η= η− ηc = [0, 1, 0]� and
find η∗1, with the prevailing A1 matrix, without utilizing any additional
riskfree capital. Indeed, [0, 1, 1]� consists entirely of risky assets and is
acceptable.

Furthermore, suppose the firm also has a strong desire to maintain their
position in the first risky asset. Returning to the original η portfolio, the A
matrix:

A2 =
∞

∞
1
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generates an optimal portfolio η∗2 = [1, 1, 0.50]T . As expected, only the
position in the second risky asset is modified.

Finally, we examine an A matrix capable of replicating the optimal ADEH
portfolio:

AADEH =
1

∞
∞


which implies η∗ADEH = [2, 1, 0]�. In this situation, only additional riskfree
capital is chosen. Overall, by eliminating the possibility of rebalancing the
risky assets, the ADEH risk measure implicitly has ai �=0 =∞.

The above examples illustrate the ability of our methodology to find opti-
mal acceptable portfolios that reflect market frictions, as well as an aversion
to additional riskfree capital or altering positions in specific risky assets. In
summary, implementing our framework reduces to solving a quadratic pro-
gramming problem, a situation encountered in many financial applications
involving portfolio theory.

2.5 PRICING PORTFOLIO INSURANCE

This section determines the price of portfolio insurance, a single contract
whose combination with the original portfolio satisfies the regulator. Con-
sistent with the goal of incorporating derivative contracts into our risk
management framework, we assume the economy admits no arbitrage
opportunities. For notational simplicity, we assume A in the previous sec-
tion is an N + 1 identity matrix although incorporating this extension into
our analysis is immediate.

Conceptually, the insurance contract summarizes the amount of rebal-
ancing required to satisfy the regulator and provides a dollar-denominated
measure of risk. In particular, the insurance contract itself represents a port-
folio whose combination with the original portfolio may be interpreted as
rebalancing the latter. Furthermore, as expected, the negative correlation
introduced by the insurance contract in relation to the original portfolio
ensures that exploiting the benefits of diversification is feasible.

Let IC denote the non-negative price of the contract in circumstances
where Pη contains at least one negative value. Denote X+ =max{0, X} and
X− =−min{0, X}. To become acceptable, the firm requires a contract with
a payoff profile equal to (Pη)−. In addition, we ensure the portfolio, when
combined with the insurance contract, continues to provide (Pη)+ in sce-
narios with positive values. Thus, the insurance contract does not reduce
positive terminal values, it only increases negative terminal values to zero.
Hence, in contrast to riskfree capital, portfolio insurance only provides a
positive payoff in scenarios where it is necessary.
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We endogenously determine the value of portfolio insurance by equating
the dollar value of the optimal portfolios at time zero with and without this
contract. This indifference stems from portfolio insurance being redundant
since an acceptable portfolio may be obtained via rebalancing. Indeed, port-
folio insurance provides an economically intuitive short-cut to acceptability
by serving as a customized put option on the portfolio’s terminal value.

2.5.1 Insurance without rebalancing

Let q denote the price vector of the N + 1 assets at time zero which is assumed
to be free of arbitrage. The proposition below solves for the price of portfolio
insurance under the assumption that no additional rebalancing is conducted
after its introduction.

Proposition 2.5.1 The price of the portfolio insurance, without addi-
tional portfolio rebalancing, equals

ICwo = q�P�λwo

where λwo is determined by the resulting linear complementary
conditions.

Proof: Consider the alternative to purchasing an insurance contract. The
firm must rebalance their portfolio to obtain η∗ which satisfies Pη∗ ≥ (Pη)+.
The optimization problem which solves for η∗ is:

min
η∗

g(η∗ − η)
(2.12)

subject to Pη∗ ≥ (Pη)+

The Kuhn-Tucker conditions imply that the optimal solution is given by the
solution to the following linear complementarity conditions:{

y − PP�λ = −(Pη)−

y ≥ 0, λ ≥ 0, λ�y = 0
(2.13)

where y=Pη∗ − (Pη)+. The property Pη=−(Pη)− + (Pη)+ implies y−
PP�λ=−(Pη)− in (2.13) is equivalent to Pη∗ −Pη−PP�λ= 0 in Proposi-
tion 2.4.1.

Denote the solution to (2.13) by (ηwo, λwo) whereηwo represents the optimal
portfolio without the insurance contract. The following linear relationship
between ηwo and the original portfolio η holds:

ηwo = η+ P�λwo (2.14)

With firms indifferent between buying the contract or rebalancing their port-
folio, the dollar values of the two acceptable portfolios at time zero are
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equated. Thus, the price of the insurance contract equals ICwo + q�η= q�ηwo,
implying

ICwo = q�(ηwo − η) = q�P�λwo (2.15)

which completes the proof.
The value of ICwo is positive since the payoff (Pη)− is non-negative in

each scenario and strictly positive in at least one scenario. Specifically, the
property Pη≥ 0 with strict inequality in at least one scenario implies the
initial cost of the portfolio q�η is positive. The condition y≥ 0 in (2.13) yields
Pηwo − (Pη)+ ≥ 0 which implies that P(ηwo − η)≥ 0 with strict inequality in
at least one scenario provided (Pη)− �= 0. Therefore, no arbitrage implies
ICwo = q�(ηwo − η)> 0.

2.5.2 Insurance with rebalancing

The following analysis has firms willing to engage in additional rebalancing
to exploit the diversification benefit offered by the availability of portfolio
insurance. Let the insurance contract be the N + 2nd security resulting in an
additional column being appended to P to form Q= [P(Pη)−]. This column
increases negative terminal values in scenarios that previously implied insol-
vency. In addition, enhanced portfolios with and without portfolio insurance
are defined as:

δ1 =
[
η

1

]
and δ0 =

[
η

0

]
While δ0 is not acceptable, δ1 is acceptable since Qδ1 =Pη+ (Pη)− = (Pη)+ ≥ 0.
However, we later prove that δ1 is not optimal when there are fewer scenarios
than available assets.

Proposition 2.5.2 The price of portfolio insurance, with additional
portfolio rebalancing, equals

ICw = q�P�(λwo − λw)
((Pη)−)�λw

with λwo previously determined in Proposition 2.5.1 and λw by the
resulting linear complementary conditions.

Proof: Denote δ∗ =
[
ηw
xw

]
. The optimal solution defined over the N + 2

assets is

min
δ∗∈RN+2

g(δ∗ − δ0)

subject to Qδ∗ ≥ (Pη)+
(2.16)
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with linear complementarity conditions:{
y − QQ�λ = −(Pη)−

y ≥ 0, λ ≥ 0, λ�y = 0
(2.17)

for y=Qδ∗ − (Pη)+. Denote the optimal solution to (2.17) by (ηw, xw, λw)
which yields:[

ηw
xw

]
=
[
η

0

]
+
[

P�
((Pη)−)�

]
λw (2.18)

Therefore, the second equation of (2.18) implies the optimal amount of
insurance to purchase equals:

xw = ((Pη)−)�λw ≥ 0 (2.19)

Hence, conditional on additional rebalancing from η to ηw, the price of the
insurance contract is ICw · xw + q�ηw = q�ηwo which is equivalent to

ICw = q�P�(λwo − λw)
((Pη)−)�λw

(2.20)

by equation (2.19) and the relationship ηwo − ηw = η+P�λwo − η−P�λw =
P�(λwo − λw).

The magnitude of xw in equation (2.19) quantifies the importance of diver-
sification. Additional portfolio rebalancing reduces the required amount of
portfolio insurance contract from 1 to xw when P is of full row rank as proved
in the next corollary.

With little loss of generality, the matrix P is of full row rank with the
available N risky assets exceeding the number of scenarios M. For example,
consider a collection of futures contracts and options ranging across differ-
ent maturities and strike prices. Although the payoffs of these derivative
securities are correlated, it is important to clarify the distinction between
linear dependencies in the columns of P versus its rows. In particular, cor-
relation between the N risky securities influences the column rank of this
payoff matrix but not its row rank. Indeed, diversification implies the more
linearly dependent securities included in the optimization problem, the less
drastic is the necessary portfolio rebalancing to achieve acceptability. More
importantly, the row rank of P is a function of how “close” the M scenarios
are to one another. However, since the scenarios involve extreme events,
redundancy in the rows of P is not anticipated since this would imply the
scenarios produce identical payoffs for each asset.

Corollary 2.5.1 The optimal amount of portfolio insurance to purchase,
xw, is strictly less than one unit if P is of full row rank.

Proof: The inequality xw ≤ 1 follows from λ�wQQ�λw = λ�w(Pη)− by (2.17),
which is equivalent to λ�wPP�λw + (λ�w(Pη)−)2 = λ�w(Pη)−. When P is of full
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row rank, PP� is positive definite. This property impliesλ�wPP�λw ≥ 0 which
yields (λ�w(Pη)−)2 ≤ λ�w (Pη)− and proves that

xw = λ�w(Pη)− ≤ 1 (2.21)

Thus, the optimal amount of insurance to purchase is strictly less than one
unit.

The strict inequality in the above corollary reinforces the importance of
diversification. Specifically, we are able to diversify risk more effectively
once the insurance contract becomes available.

To summarize, it is not necessary for firms to purchase the entire insur-
ance contract provided they engage in subsequent portfolio rebalancing. As
indicated in the next corollary, fewer dollars are also required to be spent on
portfolio insurance in this circumstance, a result that is later reinforced by
Proposition 2.5.3.

Corollary 2.5.2 The dollar value of required insurance is less with
portfolio rebalancing, xwICw < ICwo, if P is of full row rank.

Proof: This result follows from equations (2.19) and (2.20),

xwICw = ICwo − q�P�λw

and the fact that the last term q�P�λw = q�(ηw − η) is positive. Indeed,
q�(ηw − η)> 0 is a consequence of the condition y=Qδ∗ − (Pη)+ =Pηw +
(Pη)−xw − (Pη)+ ≥ 0 from (2.17) which implies Pηw + (Pη)− − (Pη)+ ≥ 0 since
1> xw ≥ 0. Therefore, Pηw −Pη≥ 0 with strict inequality in at least one
scenario and by the assumption of no arbitrage, q�(ηw − η)> 0.

In addition, equation (2.18) implies that neither δ1 nor ηwo are optimal in
the presence of the insurance contract. These statements are formalized in
the following corollary.

Corollary 2.5.3 If η is an unacceptable portfolio and P is of full row rank,
then neither

δwo =
[
ηwo
0

]
nor δ1 =

[
η

1

]
are optimal in the presence of the insurance contract.

Proof: If δwo is acceptable, then it is also acceptable in the presence of
the insurance contract. But if δwo is optimal, then (2.14) and (2.18) jointly
imply that

P�(λwo − λw) = 0 and ((Pη)−)�λw = 0

Hence, with the payoff matrix P being of full row rank, it follows that
λwo = λw with (2.13) implying λ�woPP�λwo = 0 which contradicts PP� being
positive definite since (Pη)− is strictly greater than 0 in at least one scenario.
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Hence δwo is not optimal. A similar contradiction is obtained if one assumes
δ1 is optimal.

The next proposition states that the two portfolio insurance prices, ICwo
and ICw, is identical when the market is arbitrage-free.

Proposition 2.5.3 If η is an unacceptable portfolio, then the prices ICwo
and ICw are equal.

Proof: The binding properties of the constraints in equations (2.12) and
(2.16) imply:{

Pηwo = Pη+ (Pη)−

Pηw + (Pη)−xw = Pη+ (Pη)−

It follows that η plus the insurance contract, ηwo and δ∗ =
[
ηw
xw

]
all have the

same payoff, Pη+ (Pη)−. By no arbitrage, their values at time zero are also
equal with{

q�ηwo = q�η+ ICwo

q�ηw + ICw · xw = q�η+ ICw

implying ICwo − ICw = q�ηwo − q�ηw − ICw · xw = 0 which completes the
proof.

In summary, prices for portfolio insurance without portfolio rebalancing
and with portfolio rebalancing are given by Propositions 2.5.1 and 2.5.2
respectively. Additional portfolio rebalancing exploits the diversification
benefit offered by the introduction of the insurance contract. As a result, the
firm is able to purchase strictly less than one unit of the contract. However,
with or without portfolio rebalancing, the price for one unit of portfolio
insurance is identical according to Proposition 2.5.3. More intuition behind
Proposition 2.5.3 is given in the next subsection.

2.5.3 Insurance and dollar-denominated risk

We now demonstrate that although the risk measure ρ(η) is defined on
portfolio weights, our results may be interpreted in terms of a dollar-
denominated quantity. Furthermore, the dollar-denominated amount of
rebalancing equals the price of portfolio insurance.

Specifically, the difference between η∗ and η equals η∗ − η=PTλ, produc-
ing a dollar-denominated amount of risk equal to

qT(η∗ − η) = qTPTλ
(2.22)= ICwo
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Therefore, although risk is defined in terms of the l2 norm on portfo-
lio weights, it may be converted into the more traditional dollar-based
domain and coincides with the price of portfolio insurance (with or without
rebalancing).

As a consequence of equation (2.22), minimizing the distance in portfolio
weights between η and the acceptance set is equivalent to minimizing the
dollar-denominated amount of rebalancing. Therefore, the price of portfolio
insurance equals the amount of rebalancing, in dollars, required to ensure
the portfolio η becomes acceptable.

2.5.4 Example revisited

Returning to the example in section 2.3, let the price vector equal q=
[1, 1.3, 0.9]�. As discussed in section 2.3, the second asset’s price is obtained
by no arbitrage as − 1.3

3 + 4
3 = 0.90.

Existing specifications imply (Pη)− = [0, 1]�, and η= [1, 1, 0]� along with
the payoff matrix P illustrates the results in Propositions 2.5.1 and 2.5.2. The
vector λwo equals [0.0673, 0.1635]�, implying a price for portfolio insurance
of ICwo = q�P�λwo which equals $0.45. The λwo parameters are associated
with two restrictions; preventing negative terminal values and not reducing
positive terminal values.

The second optimization in equation (2.16) based on δ0 and Q yields
λw = [0.0579, 0.1405]�. According to Proposition 2.5.2, the price ICw equals
$0.45, in accordance with Proposition 2.5.3.

However, the optimal amount of portfolio insurance to purchase is
xw = λ�w(Pη)− = (λw)2 = 0.1405, a quantity strictly less than one since P is
of full row rank. Thus, with additional portfolio rebalancing, the dollar-
denominated reduction in the amount of portfolio insurance that is required
equals ICwo − xwICw = (1− 0.1405)× 0.45= $0.39.

2.6 CONCLUSION

A risk measure defined on the space of portfolio holdings rather than ter-
minal values is proposed which enables diversification to reduce portfolio
risk. Consequently, derivative and insurance contracts have important roles
in risk management. Through portfolio rebalancing, our risk measure offers
firms greater flexibility than coherent risk measures when complying with an
external regulator. Indeed, our approach allows every asset in the portfolio,
including riskfree capital, to be adjusted. Thus, as in the existing literature,
risk is defined as the distance to an acceptance set. However, to incorporate
diversification, the concept of distance is extended to include the risky assets
as well as riskfree capital.
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Our analysis incorporates market frictions such as illiquidity and trans-
action costs into the portfolio rebalancing decision. The price of portfolio
insurance is also derived. When combined with the original portfolio, this
contract ensures non-negative portfolio values in every scenario considered
by the regulator. Furthermore, the amount of required portfolio insurance
is determined by the firm’s willingness to rebalance their portfolio once this
contract is available.

APPENDIX A: PROOF OF PROPOSITION 2.2.2

Recall the properties of Proposition 2.2.1 regarding the acceptance set Aη.
Consider two portfolios η1 and η2 and let η∗1 be the closest portfolio on the acceptance

set Aη. In other words, η∗1 = η′ such that inf {‖η1 − η′‖2 : η′ ∈Aη}. Similarly define η∗2 as the
equivalent quantity for η2. Therefore, by definition,

ρ(η1) = ∥∥η1 − η∗1
∥∥

2

ρ(η2) = ∥∥η2 − η∗2
∥∥

2

and the following holds by the triangle inequality property of norms:∥∥η1 + η2 − η∗1 − η∗2
∥∥

2 ≤ ∥∥η1 − η∗1
∥∥

2 +
∥∥η2 − η∗2

∥∥
2 = ρ(η1) + ρ(η2)

However, the quantity η∗1 + η∗2 is also in the acceptance set since Aη is convex and
closed under multiplication by γ ≥ 0. For two portfolios η∗1, η∗2 ∈Aη convexity implies
η∗ = 1

2η
∗
1 + 1

2η
∗
2 ∈Aη while 2η∗ = η∗1 + η∗2 ∈Aη as a consequence of Aη being closed under

multiplication of positive scalars. Therefore,

ρ(η1 + η2) ≤ ∥∥η1 + η2 − η∗1 − η∗2
∥∥

2 = ∥∥(η1 + η2) − (η∗1 + η∗2)
∥∥

2

since η∗1 + η∗2 is an element of Aη but need not be optimal. Hence, ρ(η1 + η2)≤ ρ (η1)+
ρ (η2) and subadditivity is proved.

Consider two portfolios η1 and η2 and let Pη1 ≥Pη2 a.s. The proof for monotonic-
ity follows by recognizing that η1 = η1 − η2 + η2 and ρ(η1 − η2)= 0 since the portfolio
η1 − η2 always generates a non-negative payoff implying η1 − η2 ∈Aη. Applying subad-
ditivity, ρ(η1)= ρ(η1 − η2 + η2)≤ ρ(η2), demonstrates that ρ(η1)≤ ρ(η2) and monotonicity
is proved.

Consider a portfolio η and a scalar γ ≥ 0. Define η∗ as in the proof of subadditivity.
The function ρ(η) is defined as ‖η− η∗‖2 which implies that:

γρ(η) = γ‖η− η∗‖2 = ‖γη− γη∗‖2 ≥ ‖γη− (γη)∗‖2 = ρ(γη)

since γη∗ is in the acceptance set but need not be optimal in terms of minimizing the
distance to the acceptable set. The reverse direction is proved by defining ρ(γη) as ‖γη−
(γη)∗‖2 = γ‖η − (γη)∗

γ
‖2 ≥ γρ(η) since 1

γ
(γη)∗ is an element of Aη but need not be optimal.

Thus, ρ(γη) and γρ(η) are equal and positive homogeneity is proved.
Consider two portfolios η1 and η2 that differ only in terms of the riskfree asset with

η2,0 >η1,0. It suffices to show that ρ(η2)≤ ρ(η1). Consider a portfolio that is a combination
of η1 and another portfolio γηc for γ ≥ 0 that consists entirely of an amount η2,0 − η1,0 in
riskfree capital. This new portfolio is equivalent to η2 and implies that:

η2 = η1 + γηc ⇒ ρ(η2) = ρ(η1 + γηc) ≤ ρ(η1) + ρ(γηc)
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using subadditivity. However, ρ(γηc) equals zero since this portfolio is accepted by the
regulator, γηc ∈Aη. Hence, ρ(η2)≤ ρ(η1) and the monotonicity of riskfree capital is proved.

Consider a portfolio η �∈Aη such that Pη−i < 0 for some i. It must be proved that ρ(η)> 0.
Proceed by contradiction by supposing that ρ(η)= 0 which implies that η∈Aη by Defini-
tion 2.2.2. However, Definition 2.2.1 requires that Pη≥ 0 for η∈Aη, contradicting Pη−i < 0
for any i. Hence, relevance is proved.

Consider a portfolio η that does not belong to the acceptance set. By the Separating
Hyperplane Theorem (the acceptance set Aη is a convex subset of RN+1 (according to
Proposition 2.2.1) and non-empty), there exists a point η∗ on the boundary of Aη such
that ‖η− η∗‖2 is the unique minimum distance of η from set Aη. Now consider any scalar
γ and let ũ be the unit directional vector in the direction η∗ − η. The vector η+ γ · ũ is a
point along the path of minimum distance and proves the shortest path property:

ρ(η+ γ · ũ) = ‖η+ γ · ũ − η∗‖2

=
∥∥∥∥η+ γ ·

(
η∗ − η

‖η− η∗‖2

)
− η∗

∥∥∥∥
=
∥∥∥∥η∗ − η− γ ·

(
η∗ − η

‖η− η∗‖2

)∥∥∥∥
2

=
(

1 − γ

‖η− η∗‖2

)
‖η− η∗‖2

= ‖η− η∗‖2 − γ

= ρ(η) − γ

APPENDIX B: PROOF OF PROPOSITION 2.4.2

It is sufficient to prove that any two solutions to the linear complementary conditions in
(2.10) yield the same optimal portfolio η∗. Therefore, our procedure is optimal. Let (y1,
λ1) and (y2, λ2) denote two solutions to (2.10) with the following conditions:


y1 − PP�λ1 = Pη

y2 − PP�λ2 = Pη

λ1 ≥ 0, λ2 ≥ 0, y1 ≥ 0, y2 ≥ 0

λ�1 y1 = 0, λ�2 y2 = 0.

(2.23)

We proceed to show:

P�λ1 = P�λ2

with both solutions generating the same optimal portfolio η∗ = η+P�λi for i= 1, 2. From
(2.23):

{
λ�1 Pη = −λ�1 PP�λ1

λ�2 Pη = −λ�2 PP�λ2
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Therefore,

(λ1 + λ2)�(y1 + y2) = λ�1 y2 + λ�2 y1

= λ�1 PP�λ2 + λ�2 PP�λ1 + λ�1 Pη+ λ�2 Pη

= −(λ1 − λ2)�PP�(λ1 − λ2)

≤ 0

Since λ1 ≥ 0, λ1 ≥ 0, y1 ≥ 0, and y2 ≥ 0, it follows that:

(λ1 − λ2)�PP�(λ1 − λ2) = 0

which implies

P�(λ1 − λ2) = 0

Therefore, the optimal solution to equation (2.9) is

η∗ = η+ P�λ1 = η+ P�λ2

which completes the proof.
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C H A P T E R 3

Sensitivity Analysis of
Portfolio Volatility:

Importance of Weights,
Sectors and Impact of

Trading Strategies
Emanuele Borgonovo and Marco Percoco∗

3.1 INTRODUCTION

This chapter discusses the application of a new method to the Sensitivity
Analysis (SA) of portfolio properties and proposes an SA scheme that is
capable of assessing the joint impact of changes in portfolio composition on
portfolio volatility (σp).

Recent years have seen the fast development of models for the estima-
tion of volatility. Studies in this field has moved from both a theoretical
and an empirical need to explain evidence on volatility behavior (for exam-
ple, volatility smile) that is not captured by constant volatility models as the
Black and Scholes one (Black and Scholes, 1973; Duan, 1995; Shephard, 2005).
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We also thank Guillermo Baquero for precious comments at the EFMAconference (Milan, 2005).
Financial support from Bocconi University is gratefully acknowledged.

47



48 SENS IT IV ITY ANALYS IS OF PORTFOL IO VOLAT IL ITY

Such models are usually categorized in the literature as Stochastic Volatility
models1 and autoregressive models, namely ARCH, GARCH and their gen-
eralizations (Bollerslev, 1986; Bollerslev and Engle, 1993; Engle, 1982). The
rapid development of the computation technology has enabled the utiliza-
tion of increasingly complex models. At the same time, some recent studies
have shown that, as the use of these models becomes widespread, it is felt
the need for the development of appropriate SA techniques capable of pro-
viding analysts with tools that fully exploit the information embedded in the
models (Drudi, Generale and Majnoni, 1997; Manganelli, 2004; Manganelli,
Ceci and Vecchiato, 2002; McNeal and Frey, 2000; Saltelli, 2003).

In a recent paper, Saltelli (2003) demonstrates how SA can be thought of
as an essential ingredient in portfolio management. McNeal and Frey (2000)
and Gourieroux, Laurent and Scaillet (2000) use partial derivatives (PD) to
study the sensitivity of the Value at Risk (VaR) models. These authors derive
analytically the expressions for the first and second derivatives of the VaR,
and explain how they can be used to simplify statistical inference and to
perform a local analysis of the VaR. A similar application of this technique
can be found in Drudi, Generale and Majnoni (1997), where the sensitivity of
risk assessment is tested with respect to the number of factors employed, the
measures of volatility (conditional versus unconditional) and correlations
(stable versus unstable), and the linearization of non-linear payoffs.

Manganelli, Ceci and Vecchiato (2002) propose a tool based on the cal-
culation of the PDs of σp estimated via the GARCH model to help “risk
managers to find out what the major sources of risk are, or allow them to
evaluate the impact on the portfolio variance of a certain transaction.” In a
more recent paper by Manganelli the implications of the approach in asset
allocation are discussed (Manganelli, 2004).

Recent studies in the SAliterature have highlighted that PD-based SAsuf-
fers of several limitations when used for parameter impact evaluation and
risk management purposes (Borgonovo and Apostolakis, 2001a; Borgonovo
and Apostolakis, 2001b; Borgonovo and Peccati, 2004; Borgonovo and Pec-
cati, 2005; Cheok, Parry and Sherry, 1998). More precisely, these studies show
that utilizing a PD-based SA to evaluate the impact of parameter changes
with respect to the generic model output:

1 is equivalent to neglecting the relative parameter changes, or, equiv-
alently, to impose that all the parameters are varied in the same
way;

2 does not allow the appreciation of the model sensitivity to changes in
groups of parameters.

One could think of replacing the pure PD with the parameter Elasticity
(E) (Simon and Blume, 1994). In this case Limitation 2 would still be in place,
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as E is not additive, and Limitation 1 would be replaced by the following
(Borgonovo and Apostolakis, 2001a; Borgonovo and Apostolakis, 2001b;
Borgonovo and Peccati, 2004; Borgonovo and Peccati, 2005):

3 utilizing E is equivalent to impose that all the parameters are changed by
the same proportion.

These mathematical considerations translate into shortfalls in using PDs
or E for the evaluation of the impact of weights on trading/reallocation
strategies (TRS):2 due to Limitations 1 and 3 it is not possible to evaluate
the impact of generic portfolio composition relative changes, and due to
limitation 2, it is not possible to test the impact of simultaneous changes
in groups of weights. In TRS, however, simultaneous changes in more
than one weight are involved and the relative changes are generally not
uniform/proportional.

In this study, we show that the use of an alternative SA technique, namely
the Differential Importance Measure (D), leads to overcome the two above
mentioned limitations. D generalizes other local SA techniques, and, in par-
ticular, contains PDs and E as particular cases. D shares two important prop-
erties – (i) additivity and (ii) relative changes consideration. With reference
to TRS analysis, we show that property (i) makes the computation of the sen-
sitivity of σp on groups of weights straightforward, and property (ii) enables
the analyst to accommodate any relative portfolio composition changes.

The empirical part of this chapter begins with the derivation of the analyt-
ical expression of individual portfolio weights D for the SA of σp estimated
via Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
models.3 Thanks to D additivity, we obtain the importance of group of
weights straightforwardly. As a result a method for the SA of σp with respect
to weight groups (Sectors) is provided.

We apply the approach to a portfolio composed of 30 stocks of the Dow
Jones index. We present numerical results for the impact of weights on σp
in TRS involving uniform, proportional and optimal weight changes.4 We
show how the utilization of Savage Score Correlation Coefficients (SSCC)
(Campolongo and Saltelli, 1997) can serve as a quantitative measure of
similarity among TRS. We then analyse the portfolio with respect to its sec-
torial composition, examining how the results can be interpreted in terms
of diversification across sectors.

In section 3.2, the definition of D and some SA background related to the
recent developments in this field are discussed, and in section 3 analytical
considerations on the SA of portfolio models highlighting the limitation of
PDs and E are presented. In section 3.4 results for the SA of σp estimated via
GARCH models are derived. Section 3.5 presents numerical results focusing
on financial management aspects and their implication in the analysis of
TRS. Section 3.6 offers conclusions and future research perspectives.



50 SENS IT IV ITY ANALYS IS OF PORTFOL IO VOLAT IL ITY

3.2 SENSITIVITY ANALYSIS BACKGROUND

Recently, the activity in the scientific field of SA of Model Output has been
steadily growing, due to the increasing complexity of numerical models,
whereby SA has acquired a key role in testing the correctness and corrob-
orating the robustness of models in several disciplines. This has led to the
development and application of several new SA techniques (Borgonovo and
Apostolakis, 2001a; Saltelli, 1997; Saltelli, 1999; Saltelli, Tarantola and Chan,
1999; Turany and Rabitz, 2000). Most of the recent literature in portfolio man-
agement has proposed SA approaches based on PDs (Drudi, Generale and
Majnoni, 1997; Gourieroux, Laurent and Scaillet, 2000; Manganelli, 2004;
McNeal and Frey, 2000). In the next paragraphs we present the Differen-
tial Importance Measure (D) and discuss in detail its relation to PDs and
Elasticity.

Let us consider the generic model output:

Y = f (x) (3.1)

where x={xi, i= 1, 2, . . . , n} is the set of the input parameters. Let also

dx = [dx1, dx2, . . . , dxn]T

denote the vector of changes.
If f (x) is differentiable, then the differential importance of xs at x0 is

defined as (Borgonovo and Peccati, 2004):

Ds(x0, dx) = dfs(x0)
df (x0)

= fs(x0) dxs∑n
j=1 fj(x0) dxj

(3.2)

D can be interpreted as the ratio of the (infinitesimal) change in Y caused
by a change in xs and the total change in Y caused by a change in all
the parameters. Thus, D is the normalized change in Y provoked by a
change in parameter xs. It can be shown that (Borgonovo and Apostolakis,
2001a; Borgonovo and Apostolakis, 2001b; Borgonovo and Peccati, 2004;
Borgonovo and Peccati, 2005):

A D shares the additivity property with respect to the various inputs, for
example, the impact of the change in some set of parameters coincides
with the sum of the individual parameter impacts. More formally, let
S⊆{1, 2, . . . , n} identify some subset of interest of the input set. We have:

DS(x0, dx) =
∑

s∈S fs(x0) dxs∑n
j=1 fj(x0) dxj

=
∑
S∈S

Ds(x0, dx) (3.3)
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As a consequence,
n∑

s=1

Ds(x0, dx) = 1 (3.4)

for example, the sum of the Di (i= 1, . . . , n) of all parameters is always
equal to unity.

B Equation (3.2) shows that D accounts for the relative parameters changes
through the dependence on dx. In fact, equation (3.2) can be rewritten as:

Ds(x0, dx) = fs(x0)∑n
j=1 fj(x0) dxj

dxs

(3.5)

In the hypothesis of uniform parameter changes (H1) (dxj = dxs ∀ j, s), one
finds:

D1s(x0) = fs(x0)∑n
j=1 fj(x0)

(3.6)

In the hypothesis of proportional changes (H2)
(

dxj

x0
j
= ω∀j

)
, one finds:

D2s(x0) = fs(x0) · x0
s∑n

j=1 fj(x0) · x0
j

(3.7)

It can be shown that D generalizes other local SA techniques as the
Fussell–Vesely importance measure and Local Importance Measures based
on normalized partial derivatives, also known as Criticality Importance or
E.5 More specifically, in case H2 it holds that (Borgonovo and Peccati, 2004):

D2s(x0) = Es(x0)∑n
j=1 Ej(x0)

(3.8)

where Es(x0) is the elasticity of Y with respect to xs at x0. Equation (3.8) shows
that E produces the importance of parameters for proportional changes in
their. In the next section, we examine how these results affect the SA of
portfolio properties.

3.3 EFFECT OF RELATIVE WEIGHT CHANGES

We now show a first portfolio management implication of equations (3.6)
and (3.7): relative weight changes cannot be neglected when evaluating
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the impact of TRS on portfolio properties. We begin with a simple
example.

Example 1, let

v = a1v1 + a2v2 (3.9)

be the value of a portfolio at a certain point in time. Let also a1 = 100,
a2 = 9900, v1 = 10EUR and v2 = 5EUR. The total value of the portfolio is then
v= 50500EUR. Let us undertake the SA of vwith respect to the weights, with
reference to two hypothetical trading strategies. The first TRS is to buy one
additional stock of 1 and 2. In this case we have a unitary change in a1 and
a2, for example, da1 = da2 = 1. Applying equation (3.6), one gets: D11 = 0.667
and D12 = 0.333. This result means that asset 1 is the most influential if a
TRS involving uniform weight changes is considered. Let us consider the
case in which the trader opts for a proportional change in the two assets, for
example, he buys (or sells) �% in each of them. Applying equation (3.7),
one gets: D21 = 0.02 and D22 = 0.98. In this case asset 2 would be the most
influential one on the portfolio value.

The above example clearly shows that to evaluate the impact of changes
in portfolio composition one must consider not only the rate of change (PD)
of the portfolio with respect to the weights, but also the relative way in
which the weights are changed [equation (3.5)].6

We now extend the meaning of “example” showing that evaluating the
impact of portfolio changes by means of the sole PD is equivalent to make
the implicit assumption of a TRS involving uniform weight changes.

Proposition 1 Ranking weights based on PDs is equivalent to consider-
ing TRS involving uniform weight changes.

Proof: Let Y0 = f (a0) denote a n-asset, differentiable portfolio property as a
function of the current allocation a0. We use the symbol ai � aj to indicate
that weight ai is more important than aj (Borgonovo, 2001b). If one utilizes
PD to rank weights, then one says that ai is more important than aj when the
magnitude of the change in Y0 provoked by a change in ai namely | fi(a0)|, is
greater than the magnitude of the change in Y0 provoked by a change in aj:

ai � aj ⇔ | fi(a0)| > | fj(a0)| (3.10)

Nothing changes in | fi(a0)|> | fj(a0)| if one multiplies and divides both sides
for |∑n

k=1 fk(a0)|. One gets:

ai � aj ⇔ | fi(a0)| > | fj(a0)| ⇔
∣∣ fi(a0)

∣∣∣∣∑n
k=1 fk(a0)

∣∣ >
∣∣ fj(a0)

∣∣∣∣∑n
k=1 fk(a0)

∣∣ (3.11)

The above is then equivalent to stating:

ai � aj ⇔ |D1i(a0)| > |D1j(a0)| (3.12)
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proving that ranking based on PDs is equivalent to ranking based on D1s(a0),
for example, to stating an assumption of uniform parameter changes. Q.E.D.

We now demonstrate that, if instead of PDs, the E of the weights were
considered, this would be equivalent to make the implicit assumption of a
TRS involving proportional weight changes.

Proposition 2 Ranking weights based on “elasticities” is equivalent to
consider TRS involving proportional weight changes.

Proof: In the same settings as in the above proof, let us assume that one
ranks weights utilizing Elasticity; for example:

ai � aj ⇔ |Ei(a0)| > |Ej(a0)| (3.13)

Nothing changes in |Ei(a0)|> |Ej(a0)| if one multiplies and divides both sides
for

∣∣∑n
k=1 Ek(a0)

∣∣; one gets:

ai � aj ⇔ |Ei(a0)| > |Ej(a0)| ⇔ |Ei(a0)|∣∣∑n
k=1 Ek(a0)

∣∣ > |Ej(a0)|∣∣∑n
k=1 Ek(a0)

∣∣ (3.14)

Utilizing equation (3.8), the above is then equivalent to stating:

ai � aj ⇔ |D2i(a0)| > |D2j(a0)| (3.15)

for example, analysing the influence of weights based on E is equivalent to
stating an assumption of proportional parameter changes. Q.E.D.

As mentioned in section 3.1, the implication on the analysis of TRS of
Propositions is that PDs/E are appropriate SA measures on the subset of
strategies involving a uniform/proportional change in the portfolio com-
position. As discussed in section 3.2, these limitations can be overcome by
applying D. In fact, equation (3.2) accommodates any TRS. Furthermore it
includes PDs and E as particular cases, as equations (3.6) and (3.7) show. In
the next section, we illustrate the application of these concepts to the SA of
σp estimated via GARCH models.

3.4 IMPORTANCE OF PORTFOLIO WEIGHTS IN GARCH
VOLATILITY ESTIMATION MODELS

Models of time-varying volatility have been popular since the early 1990s
in empirical research area of finance, following the influential papers by
Engle (1982). GARCH models are well-known in the time series Econo-
metrics literature. From the initial concern with an economic phenomenon,
for example, time-varying and autoregressive variance of inflation (Engle,
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1982), the utilization of these models has become widespread, ranging from
asset management (Manganelli, 2004), to derivatives pricing (Duan and
Zhang, 2001) and risk management (Manganelli, Ceci and Vecchiato, 2002).

A stochastic process is called GARCH(p,q) if its time-varying conditional
variance is heteroscedastic with both autoregression and moving average
(Bollerslev and Engle, 1993):

yt = εt, εt ∼ N(0, σ2) (3.16)

h2 = α0 +
q∑

i=1

αiε
2
t−i +

p∑
j=1

βjh2
t−j (3.17)

In equation (3.17) autoregression in the GARCH(p,q) process squared resid-
uals has an order of q, and the moving average component has an order
of p.

One of the features that has traditionally made GARCH models popular
is the fact that parameters of the model can be straightforwardly estimated,
since construction of the ML function is made direct from the fact that the
model is formulated “in terms of the distribution of the one step ahead
prediction error” (Shephard, 2005). The conditional log-likelihood of yt+1 is
(Campbell, Lo and McKinley, 1997; Hull, 1999; Noh, 1997):

LT(y1, . . . , yT) =T
t=1 lt(yt+1; q) (3.18)

where

lt(yt+1; q) = log
[

N
(

yt+1

ht

)]
− log (h2

t )
2

is the one-step conditional log-likelihood function, θ is the vector of the
parameters of the model and N(·) is a standard normal density function.
Parameters can then be estimated by maximization of equation (3.18).

Throughout our discussion we consider the following GARCH(p,q)
process for a portfolio of n assets (Manganelli, 2004):

yt =
√

htεt εt ∼ N(0, 1) (3.19)

ht = ztθ (3.20)

where yt is the return of a portfolio composed by n+ 1 assets calculated as
yt = ∑n+1

i=1 aiyt,i, where ai and yt,i are the weight and the return respectively
of asset i; zt = (1, y2

t−1, . . . , y2
t−q, ht−1, . . . , ht−q) and θ= (a0, a1, . . . , aq,b1, . . . , bp)

We now derive the expression of the differential importance of weights
on portfolio volatility.
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Proposition 3 The differential importance of weight ai with respect to
σGARCH

p for any change in portfolio composition is given by:

Di(a0, da) =

(
∂zt

∂ai
θ + zt

∂θ

∂ai

)
dai∑ n

j=1

(
∂zt

∂aj
θ + zt

∂θ

∂aj

)
daj

∣∣∣∣∣∣∣∣∣
a0

(3.21)

Proof: The proof is in the Appendix.
Equation (3.21) determines the analytical expression of the importance of

portfolio weights with respect to σp estimated via a GARCH model for the
generic TRS. From equation (3.21), it is then straightforward to estimate the
importance of weights for strategies that foresee a uniform or a proportional
change in weights.

Proposition 4 The importance of individual weights with respect to
σGARCH

p for a TRS that assumes of uniform weight changes is:

D1i(a0, da) =

(
∂zt

∂ai
θ + zt

∂θ

∂ai

)
∑ n

j=1

(
∂zt

∂aj
θ + zt

∂θ

∂aj

)
∣∣∣∣∣∣∣∣∣
a0

(3.22)

Proof: Combine equation (3.21) with equation (3.6).
Recalling Proposition 1, equation (3.22) shows that utilizing PDs [equa-

tion (3.27)] to evaluate the impact of weights on σGARCH
p , one would not

evaluate the impact of any transaction, but only of TRS involving a uniform
change in the portfolio weights.

Proposition 5 The importance of individual weights with respect to
σGARCH

p for a TRS that assumes proportional weight changes is:

D2i(a0) =

(
∂zt

∂ai
θ + zt

∂θ

∂ai

)
a0

i∑ n
j=1

(
∂zt

∂aj
θ + zt

∂θ

∂aj

)
a0

j

∣∣∣∣∣∣∣∣∣
a0

(3.23)

Proof: Combine equation (3.21) with equation (3.7).
Recalling Propositions 3.23, equation (3.23) states that utilizing elastic-

ity to evaluate the importance of weights with respect to σGARCH
p would be

equivalent to consider only the TRS involving proportional relative weight
changes.

Suppose now that the analyst wants to evaluate the impact of chang-
ing group A vs. group B of portfolio weights. Groups A and B could
be, for instance, the set of assets belonging to two selected Sectors. Let
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SA = {a1A,a2A, . . . , akA} and SB = {a1B,a2B, . . . , amB}, with kAand mB lower than
n be the assets belonging to group A and B respectively. Then:

Proposition 6 The influence of a change in set A of weights with respect
to σGARCH

p is determined by:

DSA (a0, da) =
∑

i=1,...,kA

(
∂zt

∂aiA
θ + zt

∂θ

∂aiA

)
da0

Ai∑ n
j=1

(
∂zt

∂aj
θ + zt

∂θ

∂aj

)
a0

j

∣∣∣∣∣∣∣∣∣
a0

(3.24)

for example, it is the sum of the importance of the weights in set A.

Proof: Combine equation (3.21) with equation (3.3).
The above result is a consequence of D additivity property and cannot be

obtained utilizing the PDs or E as a means for computing the sensitivity of
σp on the portfolio weights.

Similarly, the influence of a change in set B weights is determined by:

DSB (a0, da) =
∑

i=1,...,mB

(
∂zt

∂aiB
θ + zt

∂θ

∂aiB

)
da0

iB∑ n
j=1

(
∂zt

∂aj
θ + zt

∂θ

∂aj

)
a0

j

∣∣∣∣∣∣∣∣∣
a0

(3.25)

Thus, if |DSB (a0, da)|> |DSA (a0, da)| then set B is more influential or as
influential as set A onσp. Proposition 6 enables to perform the joint sensitivity
of σp on sets of portfolio weights in a straightforward way.

The next section is devoted to the illustration of empirical results and
insights found by application of the results in Propositions 1–6 and to a
portfolio composed by the 30 stocks of the Dow Jones index.

3.5 EMPIRICAL RESULTS: TRADING STRATEGIES
THROUGH SENSITIVITY ANALYSIS

In this section we present the implications of Propositions 1–6 in the analysis
of trading/reallocation strategies. We consider a portfolio of 30 stocks com-
posing the Dow Jones Industrial Average index (Table 3.1), as of 11 March
2002. Daily returns cover the period ranging from 2 January 1992 through
11 March 2002.

The classical portfolio choice problem (Campbell, Lo and McKinley, 1997;
Taggart, 1996) in its dual form is written as:

a∗ = argamin[Var(a′y)]

s.t. (3.26)

E(a′y) = µ
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Table 3.1 Composition of the Dow Jones Industrial Average Index

Stock Sector

Alcoa In. Manufacturing

American Express Co. Financial services

AT&T Corp. Telecommunication and ICT

Boeing Co. Manufacturing

Caterpillar Inc. Other

Citigroup Inc. Manufacturing

Coca-Cola Co. Manufacturing

Walt Disney Co. Others

E.I. DuPont de Nemours & Co. Manufacturing

Eastman Kodak Co. Manufacturing

Exxon Mobil Corp. Energy

General Electric Co. Energy

General Motors Corp. Manufacturing

Hewlett-Packard Co. Telecommunication and ICT

Hope Depot Inc. Others

Honeywell International Inc. Telecommunication and ICT

Intel Corp. Telecommunication and ICT

International Business Machines Corp. Telecommunication and ICT

International Paper Co. Manufacturing

Johnson&Johnson Manufacturing

J.P. Morgan Chase & Co. Financial Services

McDonald’s Corp. Others

Merck & Co. Others

Microsoft Corp. Telecommunication and ICT

3M Co. Telecommunication and ICT

Altria Group Inc. Others

Procter & Gamble Manufacturing

SBS Communications Inc. Telecommunication and ICT

United Technologies Corp. Others

Wal-Mart Stores Inc. Others

Problem (3.26) states that the optimal portfolio composition (a∗) is the one
that minimizes volatility for a given return. Since asset values change with
time, portfolio composition should be re-assessed in order to match a∗.
Given a suboptimal portfolio, an ideal strategy might consist in the fastest or
cheapest way to reach the minimum variance (as of March 2002). Manganelli
(2004) proposes a strategy based on volatility sensitivity analysis (VSA) to
achieve efficient reallocation. We refer to this strategy as to the “optimal”
strategy.7
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Figure 3.1 Portfolio returns

Figures 3.1 and 3.2 depict daily returns of the EWMA optimal portfolio
and the time series of the estimated variance respectively.

In order to assess the importance and impact of weights on σp, we
applied D. As we are to illustrate, this gives one the possibility of calibrating
strategies with respect to a specific stock or a group of assets, in considera-
tion of both the relative size of the imposed relative weight change [equation
(3.5)].

Table 3.2 shows the SAresults for the considered stocks under the hypoth-
esis of uniform and proportional changes and for the optimal strategy. As
expected, the results imply that the impact of weights on the portfolio
volatility varies depending on the TRS (see also Figure 3.3).

This is also evident from Table 3.3 that shows the ranking of assets and
Figure 3.3 that compares the asset importance in the three strategies.

Let us analyse the ranking in somewhat greater detail. Honeywell Inter-
national Inc. is the most influential stock for uniform and proportional
strategies (for example, it would rank first if one used PDs or E); it is
the fourth most influential for the optimal strategy. Alcoa In. is the most
important asset in the optimal strategy; it ranks 7th and 5th for uniform
and proportional strategies respectively. Hewlett-Packard Co. is the least
influential weight in the case of uniform changes; it ranks however 3rd for
proportional changes and 7th in the optimal strategy. We note that Table 3.2
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Figure 3.2 Volatility of the portfolio

columns 1 and 2 are the SA results that would be obtained if an analyst
made use of PDs or E respectively (see Propositions 1 and 2). The difference
in ranking shows that conclusions on σp sensitivity obtained by making use
of PD/E cannot be extended to TRS other than uniform/proportional ones
respectively.

Let us now discuss how the use of Savage Score correlation coeffi-
cients (SSCC) can enable the analyst to have a quantitative measure of TRS
similarity. We refer the reader to Campolongo and Saltelli (1997) for the
mathematical definition of SSCC’s. For the purposes of this paper, we need
only to recall that a high SSCC between two rankings means that the most
and least influential assets tend to be the same.

Table 3.4 displays the Savage Score correlation matrix for the three
strategies for the portfolio at hand.

The interpretation of Table 3.4 is as follows. Rankings in proportional and
optimal strategy tend to be more correlated than rankings of the uniform
and optimal strategy. This suggests that the optimal strategy is closer to a
proportional rather than a uniform one from an SA viewpoint.

Finally a note on the information that one can infer from the quantification
of the total change in volatility provoked by the three strategies (Table 3.2).
In the case shown in Table 3.2, the TRS imposing uniform changes will result
in a decrease of −7.0 in the volatility and the optimal strategy would reduce
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Table 3.2 DIMs for different strategies

Stock Uniform changes Proportional changes

Alcoa In. 0.051073 0.15398633

American Express Co. 0.069683 0.12372132

AT&T Corp. 0.044879 0.1134629

Boeing Co. 0.056514 0.05225033

Caterpillar Inc. 0.061969 0.03523841

Citigroup Inc. 0.049297 −0.0453762

Coca-Cola Co. 0.014888 −0.1265676

Walt Disney Co. 0.043174 −0.0264934

E.I. DuPont de Nemours & Co. 0.040858 −0.1400711

Eastman Kodak Co. 0.029535 −0.0074914

Exxon Mobil Corp. 0.037164 0.13972337

General Electric Co. 0.0334 0.0073784

General Motors Corp. 0.046271 0.0660631

Hewlett-Packard Co. −0.03921 0.23467628

Hope Depot Inc. 0.038471 0.0291163

Honeywell International Inc. 0.091107 0.45881233

Intel Corp. 0.035303 −0.0385615

International Business Machines Corp. 0.054383 0.20823972

International Paper Co. 0.035303 −0.0466493

Johnson&Johnson 0.005725 −0.0539873

J.P. Morgan Chase & Co. 0.039949 −0.077956

McDonald’s Corp. −0.00473 0.00894133

Merck & Co. 0.026424 −0.0438889

Microsoft Corp. 0.023015 −0.0013181

3M Co. 0.035772 −0.1002449

Altria Group Inc. −0.01725 0.26155141

Procter & Gamble 0.01172 0.01668587

SBS Communications Inc. 0.027916 −0.1251667

United Technologies Corp. 0.057395 −0.076075

Total Differential −7.039 0.1720617

volatility by −0.15 while the proportional changes strategy will increase
volatility by 0.17. The observations are: (i) clearly the proportional strategy
is the worst one, since it increases volatility, leading to higher risk for the
same return level; (ii) the uniform strategy seems the one that diversifies risk
the most, but it is not optimal since it would not respect the return constraint;
(iii) the magnitude of the changes (−0.15 vs. 0.17) shows that the effect of a
proportional strategy is closer to that of a proportional strategy, and seems
consistent with the SSCC results.
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Table 3.3 Rankings of stocks according to the DIM

Rank Uniform changes Proportional changes

1 Honeywell International Inc. Honeywell International Inc.

2 American Express Co. Altria Group Inc.

3 Caterpillar Inc. Hewlett-Packard Co.

4 United Technologies Corp. International Business Machines Corp.

5 Boeing Co. Alcoa In.

6 International Business Machines Corp. Exxon Mobil Corp.

7 Alcoa In. American Express Co.

8 Citigroup Inc. AT&T Corp.

9 General Motors Corp. General Motors Corp.

10 AT&T Corp. Boeing Co.

11 Walt Disney Co. Caterpillar Inc.

12 E.I. DuPont de Nemours & Co. Hope Depot Inc.

13 J.P. Morgan Chase & Co. Procter & Gamble

14 Hope Depot Inc. McDonald’s Corp.

15 Exxon Mobil Corp. General Electric Co.

16 3M Co. Microsoft Corp.

17 Intel Corp. Eastman Kodak Co.

18 International Paper Co. Walt Disney Co.

19 General Electric Co. Intel Corp.

20 Eastman Kodak Co. Merck & Co.

21 SBS Communications Inc. Citigroup Inc.

22 Merck & Co. International Paper Co.

23 Microsoft Corp. Johnson&Johnson

24 Coca-Cola Co. United Technologies Corp.

25 Procter & Gamble J.P. Morgan Chase & Co.

26 Johnson&Johnson 3M Co.

27 McDonald’s Corp. SBS Communications Inc.

28 Altria Group Inc. Coca-Cola Co.

29 Hewlett-Packard Co. E.I. DuPont de Nemours & Co.

These results are also influenced by the following two main factors:

� initial conditions (in our case the EWMA optimal portfolio);

� the choice of the feasible adjustment strategy.

Regarding the second point, even if it is not the proper object of the present
paper, it should be stated that by solving equation (3.26), no information are
provided on the optimal strategy to reach the optimum point. Computing D
provides information on how the optimum point is reached, by calculating
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Table 3.4 DIMs by sector and strategy

Sector Strategy

Uniform change Proportional change Optimal strategy

Manufacturing 0.353857 −0.050542 0.346473

Financial services 0.158929 0.000389 0.088251

Tcom and ICT 0.273164 0.7499 0.077969

Energy 0.070564 0.147101 0.318412

Others 0.143486 0.153151 0.168886
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Energy Others
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Figure 3.4 DIM by sector, absolute values

both the sign and magnitude of the impact of a given stock and by ranking
stocks according to that impact.

In all the previous cases, D provides the importance of a single asset in
inducing changes in volatility. However, it allows also finding the aggre-
gate importance in a straightforward way. More precisely, having equations
(3.24) and (3.25) in mind, in the uniform changes case, stocks ranking from
1–10 account for 46 percent of the result, whilst the lowest ranking 10 only
for 18.38 percent. This implies that the former assets are the most important
for the considered strategy.
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The additive property of the D is then useful in calibrating TRS aim-
ing at diversification across sectors. In our simple 30-stock portfolio, let us
consider five types of industries: manufacturing, financial services, telecom-
munication and information and communication technologies, energy,
and others (as a residual category). As Table 3.1 shows, stocks have
been divided in those groups by following a simple criterion over the
corresponding company main area of activity. Of course, the categoriza-
tion may result as loose or not adequate in some cases, but it has the
advantages of considering a small number of industries and it does fit
our scope of showing the empirical application of the D to a portfolio
GARCH(1,1).

Table 3.4 shows the D for the five sectors. By additivity, they are the
sum of the D of the assets belonging to the group, over different strategies.
Figure 3.4 presents the absolute values of D in Table 3.4.

It is interesting to note that:

� Manufacturing is the most important sector for the uniform and optimal
strategies. However, it is among the least influential (ranking 4th) for a
proportional strategy;

� Telecommunication and ICT is the most influential sector if a proportional
strategy is assumed; it ranks second for the uniform strategy and least
for the proportional one;

� Financial services assets rank 3rd, 5th and 4th respectively; hence they
tend to have a low impact with respect to the change in portfolio volatility
in the various strategies.

� Energy assets rank 5th, 3rd and 2nd in the three strategies: their influence
varies significantly across trading/reallocation strategies, as they are the
least influential for a uniform strategy, while ranking 2nd for the optimal
strategy;

� Others assets rank 4th, 2nd and 3rd for the three strategies respectively:
they tend to maintain an intermediate relevance across the strategies.

A final note, when recalling the definition of D and the interpretation of
volatility, the above results can be readily interpreted in terms of risk. For
example, considering the optimal strategy, most of the diversification would
be due to the Manufacturing and Energy categories, since the corresponding
assets are responsible for 66 percent of the change in σp.

3.6 CONCLUSION

In this study we have illustrated the sensitivity analysis (SA) of portfolio
volatility (σp) estimation models. We have suggested that performing the
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SA based on partial derivatives (PD) or elasticity (E) leads to limitations in
testing:

1 the sensitivity of a portfolio property with respect to simultaneous
changes in several parameters;

2 the sensitivity of a portfolio property for a strategy involving relative
weight changes other than uniform or proportional ones.

In particular, we have proven that (i) utilizing PDs to rank weights is equiva-
lent to state the assumption that all the weights are changed by same amount;
and (ii) utilizing E would be equivalent to state that all the weights are
changed by the same proportion.

We have illustrated that these limitations can be overcome if one utilizes
the Differential Importance Measure (D) as SA method. We have shown
that D: (i) makes the evaluation of the impact of changes in several weights
straightforward thanks to the additivity property; and (ii) allows to take into
account the effect of arbitrary relative changes in portfolio weights.

We have discussed the SA of σp estimated through GARCH models. We
have found the analytical expression of the D of portfolio weights with
respect to σp. We have examined the differences in the expressions for three
possible strategies: the uniform weight change strategy – equivalent to uti-
lizing PDs, the proportional change case – equivalent to utilizing E, and
the “optimal” strategy. We have also provided the expression for the joint
importance of weights with respect to σp by exploiting D additivity property.

Empirical results have been obtained by applying the proposed approach
to the SAof the portfolio composed by the 30 stocks of the Dow Jones index –
the same portfolio as in Manganelli (2004). We have analysed the importance
of weights for strategies involving uniform and proportional changes in the
weights, utilizing D in cases H1 [equation (3.22)] and H2 [equation (3.23)].
We then focused on the “optimal” strategy, and estimated quantitatively
the degree of similarity of the three TRS by making use of Savage Score
Correlation Coefficients. The corresponding strategy correlation matrix has
shown that the optimal strategy resulted closer to a proportional strategy
than to a uniform one. Such similarity is confirmed also by the magnitude
of total change in σp provoked by the two strategies. The numerical findings
confirm the fact that the effect of assets varies according to the adopted strat-
egy and that conclusions obtained applying PDs or E cannot be extended to
the examination of generic strategies.

We then studied the effect of diversification by examining the change
in σp with respect to the portfolio composition. This required the compu-
tation of the sensitivity of σp to groups of assets [equation (3.24)]. Each
group reflected the industry of operation (sector) of the firm. We have seen
that Manufacturing assets resulted the most important for the uniform and
optimal strategies, while “Telecommunication and ICT” assets resulted as
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the most influential in a proportional strategy. In the optimal strategy, most
of the diversification would be due to the Manufacturing and Energy cate-
gories, since the corresponding assets are responsible for 66 percent of the
change in σp.

Future research by the authors will involve the application of the pro-
posed method to the SA of other portfolio properties (for example, VaR),
and the examination of its role in asset allocation with dynamic portfolio
optimization.

APPENDIX: PROOF OF PROPOSITION 3

The PDs of σt with respect to the portfolio weights are (Theorem 1 of Manganelli, 2004):

∂ht

∂ai
= ∂zt

∂ai
· θ + zt · ∂θ

∂ai
(3.27)

where ∂zt/∂ai is immediately derived due to the linear dependence, and ∂θ/∂ai denotes
the ith row of the matrix:[

¶q
¶a

]
= −LT

aq × L−1
qq (3.28)

where ∂θ/∂a= [∂θj/∂ai] (i= 1, . . . , n, j= 1, . . . , m), Laθ = [∂2L/∂aiθj] (i= 1, . . . , n,
j= 1, . . . , m) and Lθθ = [∂2L/∂θsθr] (s, r = 1, . . . , m) and L is given by equation (3.18). Equa-
tion (3.28) is found by implicit differentiation from the solution to the set of conditions
determining the parameters:

∂LT

∂θi

∣∣∣∣
θ

= 0 i = 1, 2, . . . , m (3.29)

namely, θ={θ1,θ2, . . ., θm}, which can be regarded as an implicit function of the portfolio
weights:

θ = g(a0) (3.30)

where g is an m-dimensional vector of n-dimensional functions at a0. Combining equation
(3.28) with equations (3.27) and (3.2), one finds the result.

NOTES

1. See the monography Shephard (2005) for an overview of the literature on volatility
estimation.

2. By TRS we mean any change in portfolio composition.
3. After the seminal works of Bollerslev (1986) and Engle (1982), GARCH models

have become widespread tools in investment management (Duan, 1995; Manganelli,
2004).

4. We consider the VSA strategy proposed by Manganelli (2004).
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5. The discussion of the relationship between DIM and the Fussel–Vesely importance
can be found in Borgonovo and Apostolakis (2001a), the discussion on the relation-
ship between DIM and Elasticity can be found in Borgonovo and Peccati (2004) and
Borgonovo and Peccati (2005).

6. Geometrically this would correspond to considering the direction of the change, not
only its projection on the cartesian axes.

7. Some technical notes on computation. The optimal strategy in Manganelli (2004)
implies the change da∗ = a∗ − a0, where a0 is the initial point. More specifically, we
consider as a starting point a0 the result of the estimation of the weights for a given
portfolio as defined by the first-order conditions of an exponentially weighted mov-
ing average (EWMA) (Manganelli, 2004). The choice of that particular stochastic
process as a generator of the weights has been made as Manganelli (2004) demon-
strates that the volatility of the 30 stocks estimated by an EWMA is only 7.34% lower
than the one estimated by a GARCH(1,1) model in a∗, where a∗ is the vector of
optimal weights minimizing the variance of the portfolio. This result is particularly
interesting for our purposes as the EWMA optimal portfolio can be thought as a local
deviation, in terms of volatility, from the GARCH(1,1) computed in the optimum.
Furthermore, Following Wang’s (1998) arguments, we do not impose any constraint
on portfolio weights as to run the analysis under maximum attainable efficiency.
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C H A P T E R 4

Managing Interest Rate
Risk under Non-Parallel

Changes: An Application
of a Two-Factor Model

Manuel Moreno

4.1 INTRODUCTION

Two decades ago, fixed-income markets experienced a great increase in the
volatility of assets dealt in those markets.1 Because of this academics and
market participants developed and implemented tools and techniques to
manage the interest rate risk. In particular, we will consider default-free
securities and liquid markets. We will distinguish two types of risk: market
risk and the yield curve one, associated to parallel and non-parallel changes
in the yield curve, respectively.

The classic solution in managing market risk is to use duration to immu-
nize a certain bond portfolio. The main assumption of duration is that the
yields of different securities change in a parallel way. Hence, duration can
be an appropriate tool to manage market risk.

However, non-parallel movements2 in the yield curve limit the use of
duration.3 Several duration measures associated to non-parallel movements
in the yield curve have been proposed and tested in different papers, for
example in Bierwag, Kaufman and Toevs (1983), Elton, Gruber and Michaely
(1990), Klaffky, Ma and Nozari (1992), Ho (1992) and Reitano (1992, 1996).

69



70 MANAGING INTEREST RATE R ISK UNDER NON-PARALLEL CHANGES

These measures do not depart from a continuous-time model for interest
rates but they are arbitrarily specified. Several exceptions are Ingersoll, Skel-
ton and Weil (1978), Cox, Ingersoll and Ross (1979), Chen (1996), Munk
(1999), Jeffrey (2000) and Wu (2000).

Our main goal is to define and apply duration measures based on the
continuous-time model presented in Moreno (2003). Similarly to Chen
(1996), we will obtain several measures of generalized duration to reflect
the changes in the stochastic factors of this model. We can analyse the sensi-
tivity of a bond portfolio to changes in the yield curve and we can compute
hedging ratios to immunize a bond portfolio. Last but not least, we can solve
the limitations of the conventional duration.4

4.2 THE MODEL

We briefly present the two-factor model for interest rates that has been
proposed and analysed in Moreno (2003).

This model assumes that the price, at a certain time, of a default-free
discount bond depends only on the time to maturity and two state variables:
the long-term interest rate, denoted by L, and the spread (the difference
between the short-term (instantaneous) riskless interest rate, r, and the long-
term interest rate), denoted by s. This selection of state variables allows us
to use the assumption that both variables are orthogonal.5

After choosing the state variables, we assume that their dynamics over
time are given by the following system of stochastic differential equations:

ds = β1(s, L)dt + σ1(s, L)dw1
(4.1)

dL = β2(s, L)dt + σ2(s, L)dw2

where t denotes calendar time, and w1 and w2 are Wiener processes with
E[dw1]=E[dw1]= 0, dw2

1 = dw2
1 = dt and (by the orthogonality assumption)

E[dw1dw2]= 0. β1 and β2 are the expected instantaneous rates of change in
the state variables and σ2

1 and σ2
2 are the instantaneous variances of changes

in these two variables.
Let P(s, L, t, T)≡P(s, L, τ) be the price, at time t, of a default-free discount

bond that pays $1 at maturity T = t+ τ. Applying Itô’s lemma, setting up a
hedge portfolio, and assuming no-arbitrage conditions, we obtain the partial
differential equation (PDE) that the price of this bond for all maturities must
satisfy:

1
2

[σ2
1 (.)Pss + σ2

2 (.)PLL] + [β1(.) − λ1(.)σ1(.)]Ps

+ [β2(.) − λ2(.)σ2(.)]PL + Pt − rP = 0 (4.2)

where subscripts denote partial derivatives.
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The solution of this equation, subject to the terminal condition given
by the payment to be received by the bondholder at maturity, allows us to
price discount bonds and, thereafter, infer the term structure of interest rates.
To solve this valuation equation, we must make some assumptions about
the market prices of risk and the dynamics of the state variables. Since a
constant market price of risk implies strong restrictions on the preferences
of investors, we establish the following:

Assumption 1 The market price of each state variable risk is linear in
this variable, that is,

λ1(.) = a + bs, λ2(.) = c + dL (4.3)

Assumption 2 Each of the state variables follows a diffusion process,

ds = k1(µ1 − s)dt + σ1dw1
(4.4)

dL = k1(µ2 − L)dt + σ2dw2

Under Assumptions 1 and 2, we can rewrite equation (4.2) as:

1
2

[
σ2

1Pss + σ2
2PLL

]
+ q1[µ̂1 − s]Ps + [µ̂2 − L]PL

+Pt − (L + s)P = 0 (4.5)

subject to the terminal condition:

P(s, L, T, T) = 1, ∀s, L (4.6)

where

q1 = k1 + bσ1, µ̂1 = k1µ1 − aσ1

q1

(4.7)
q2 = k2 + dσ2, µ̂2 = k2µ2 − cσ2

q2

Solving the PDE (4.5), we obtain the following proposition:

Proposition 1 The value at time t of a discount bond6 that pays $1 at
time T, P(s, L, t, T)≡P(s, L, τ), is given by:

P(s, L, τ) = A1(τ)e−B(τ)s−C(τ)L (4.8)

where τ=T − t and

A(τ) = A1(τ)A2(τ)



72 MANAGING INTEREST RATE R ISK UNDER NON-PARALLEL CHANGES

A1(τ) = exp

(
− σ2

1
4q1

B2(τ) + s∗
(
B(τ) − τ

))

A2(τ) = exp

(
− σ2

2
4q2

C2(τ) + L∗ (C(τ) − τ
))

(4.9)

B(τ) = 1 − e−q1τ

q1

C(τ) = 1 − e−q2τ

q2

with

q1 = k1 + bσ1, s∗ = µ̂1 − 1
2
σ2

1

q2
1

, µ̂1 = k1µ1 − aσ1

q1

(4.10)

q2 = k2 + dσ2, L∗ = µ̂2 − 1
2
σ2

2

q2
2

, µ̂2 = k2µ2 − cσ2

q2

4.3 GENERALIZED DURATION AND CONVEXITY

We will generalize the concepts of conventional duration and convexity
using the above two-factor model. Hence, we can measure the interest rate
risk with respect to both stochastic factors.

The price, at time t, of a default-free zero-coupon bond that pays $1 at
maturity, T = t+ τ, is given by:

P(s, L, t, T) = P(t, T) = e−(T−t)Y(s,L,t,T) (4.11)

where Y(s, L, t, T)≡Y(s, L, τ) is the (continuously compounded) yield to
maturity of this bond.

Applying Itô’s lemma, using the closed-form expression (4.8) given
by Proposition 1 and the dynamics of the state variables (see (4.4)), the
instantaneous change in the bond price is given by:

dP(t, T) = µP(.)dt−(T−t)P(t, T)
[
∂Y(t, T)

∂s
σ1dw1 + ∂lY(t, T)

∂L
σ2dw2

]
(4.12)

with

µP(.) = Psk1(µ1 − s) + PLk2(µ2 − L) + Pt + 1
2

Pssσ
2
1 + 1

2
PLLσ

2
2 (4.13)

Next, we consider a coupon bond paying n coupons ci at times ti,
i= 1, 2, . . ., n. This bond has a nominal value equal to $1 and matures at
time T = tn. Let P∗(s, L, t, T)≡P∗(s, L, τ) be the price, at time t, of this bond.
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Since this bond can be interpreted as a portfolio of n discount bonds, we get:

P∗(t, T) =
n∑

i=1

ciP(t, ti) (4.14)

From (4.12), it is verified that the instantaneous percentage change in the
price of this coupon bond is given by:

dP∗(t, T)
P∗(t, T)

= 1
P∗(t, T)

n∑
i=1

ciµP(.)dt − Dsσ1dw1 − DLσ2dw2 (4.15)

where

Ds = 1
P∗(t, T)

n∑
i=1

ci(ti − t)P(t, ti)
∂Y(t, ti)

∂s
(4.16)

DL = 1
P∗(t, T)

n∑
i=1

ci(ti − t)P(t, ti)
∂Y(t, ti)
∂L

The values Ds and DL represent the generalized duration measures and
reflect the sensitivity of the bond yield to changes in the factors s and
L. In comparison with the conventional duration, we have two duration
measures, one for each factor. Moreover, there is an additional term:

∂Y(t, ti)
∂s

,
∂Y(t, ti)
∂L

, i = 1, 2, . . . , n (4.17)

that reflects the sensitivity of the yield to maturity to changes in each factor.
Formally, we establish the following definition:

Definition (generalized duration) The “generalized durations” Ds and
DL of a bond that pays n coupons ci at times ti, i= 1, 2, . . . , n with respect
to the factors s and L are given by the expressions:

Ds = 1
P∗(t, T)

n∑
i=1

ci(ti − t)P(t, ti)
∂Y(t, ti)

∂s

(4.18)
DL = 1

P∗(t, T)

n∑
i=1

ci(ti − t)P(t, ti)
∂Y(t, ti)
∂L

where P(t, ti) is the price, at time t, of a zero-coupon bond that matures at
time ti (see Proposition 1).

It is easily shown that these measures, for a zero-coupon bond, become:

Ds = B(t, T) = B(τ)
(4.19)

DL = C(t, T) = C(τ)

where we have used equations (4.8) and (4.11).
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Hence, B(τ) and C(τ) indicate the sensitivity of a zero-coupon bond to
changes in the spread and in the interest rates level, respectively. Then,
after assessing the behavior of the bond portfolio in the presence of both
changes, these measures can be an adequate tool for portfolio management.
Investors who want to immunize a portfolio against these changes must
equate its generalized durations to those of the asset to be replicated.

Convexity is a measure that can complement the estimation (obtained
from duration) of the change in the bond price when interest rates change
in a large amount. Similarly to duration, we generalize this measure:

Definition (generalized convexity) The generalized convexities δs and
δL of a bond that pays n coupons ci at times ti, i= 1, 2, . . . , n with respect
to the factors s and L are given by the expressions:

δs = 1
P∗(t, T)

n∑
i=1

ci(ti − t)P(t, ti)
∂2Y(t, ti)

∂s2

(4.20)
δL = 1

P∗(t, T)

n∑
i=1

ci(ti − t)P(t, ti)
∂2Y(t, ti)
∂L2

where P(t, ti) is the price, at time t, of a zero-coupon bond that matures at
time ti (see Proposition 1).

For a zero-coupon bond, we have:

δs = B2(t, T) = B2(τ)
(4.21)

δL = C2(t, T) = C2(τ)

4.4 HEDGING RATIOS

An alternative technique to duration for managing the interest rate risk may
be performed with bond options. Since duration measures the sensitivity
of a present value to changes in interest rates, it can be applied not only
to bonds but it can be extended to options. Thus, it is possible to define
measures of the sensitivity of different interest rate derivatives to several
factors and, then, to construct the corresponding hedging strategy.

We consider a European call option on a zero-coupon bond. Let K be its
strike price. If this option is exercised at expiration, Tc, the call holder pays
K and receives a discount bond that matures at time Tb >Tc.

The price at time t, C(s, L, t, Tc; K, Tb), of this option (see Moreno, 2003)
is given by:

C(s, L, t, Tc; K, Tb) = P(t, Tb)�(h + σP̃) − KP(t, Tc)�(h) (4.22)

where P(t, Ti) is the price, at time t, of a zero-coupon bond that matures
at time Ti (see Proposition 1), �(.) denotes the distribution function of a
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standard normal variable, and

h = ln (P(t, Tb)) − ln (KP(t, Tc))
σP̃

− 1
2
σP̃,

σ2
P̃
= Var(ln (P̃)), P̃ = P(Tc, Tb) (4.23)

Computing the derivative of (4.22), applying the chain’s rule, we obtain that
the generalized duration of this option to spread changes7 is given by:

∂C(.)
∂s

= [B(t, Tc) − B(t, Tb)]
[

P(t, Tb)
f (h + σP̃)

σP̃
− KP(t, Tc)

(
f (h)
σP̃

−�(h)
)]

−B(t, Tb)C (t, Tc; K, Tb) (4.24)

where f (.) denotes the density function of a standard normal variable.
Similarly, the generalized duration of the call option to changes in the

long-term interest rate is given by:

∂C(.)
∂L

= [C(t, Tc) − C(t, Tb)]
[
P(t, Tb)

f (h + σP̃)
σP̃

− KP(t, Tc)
(

f (h)
σP̃

−�(h)
)]

−C(t, Tb)C (t, Tc; K, Tb) (4.25)

We will apply a relationship8 that links the generalized durations of the
bond option with that of its underlying asset: this relationship establishes
that the generalized duration of an option is equal to the elasticity of this
option times the generalized duration of the bond where the elasticity of the
option is given by:

P(t, Tb)
C(t, Tc; K, Tb)

∂C(t, Tc; K, Tb)
∂P(t, Tb)

(4.26)

The elasticity of the option is the product of two terms, the leverage of the
option and the hedging ratio. Therefore, from equations (4.19) and (4.26), it
is deduced that the delta of the option is:

� = ∂C(.)
∂s

1
B(t, Tb)

C(t, Tc; K, Tb)
P(t, Tb)

(4.27)

where ∂C(.)/∂s is as given in (4.24).

4.5 A PROPOSAL OF A SOLUTION FOR THE LIMITATIONS
OF THE CONVENTIONAL DURATION

We consider two portfolios with the same generalized durations with respect
to the above factors. Both portfolios differ in yield and convexity. We will
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Table 4.1 Bonds included in portfolios 1 and 2

Bond A B C D

Coupon (%) 5.5 10 12 9

Maturity (years) 5 15 20 10

Yield (%) 5.5 10 12 9

Duration with respect to s (Ds) 0.5085 0.5499 0.6344 0.5346

Duration with respect to L (DL) 0.8714 0.9342 1.0750 0.9123

Convexity with respect to s (δs) 0.3686 0.3924 0.4519 0.3826

Convexity with respect to L (δL) 1.1002 1.1644 1.3354 1.1439

see that, because of the equality between their generalized durations, the
relative behavior of these portfolios does not depend on the magnitude or
on the type of changes in the yield curve.

Portfolio 1 consists of bonds A, B and C, and portfolio 2 includes only
the bond D. All these bonds have a nominal value equal to $100 and pay
coupons on a semi-year basis. Additionally, we have the features listed in
Table 4.1.

We choose the bond proportions in portfolio 1 to equate the generalized
durations (per a 100-basis-points change in yield) and the market values for
both portfolios, and obtain the following system of equations:

xADA
s + xBDB

s + xCDC
s = DD

s

xADA
L + xBDB

L + xCDC
L = DD

L (4.28)

xA + xB + xC = 1

where xj, j=A, B, C is the proportion invested on each bond and D j
i , i= s, L,

j=A, B, C represents the generalized duration of the j-th bond with respect
to the i-th factor. Solving this system of equations, we obtain that the pro-
portions for the three bonds are 59.930 percent, 11.203 percent, and 28.866
percent, respectively.

We compute the generalized convexities and the yield for both portfolios.
For portfolio 1, we compute the weighted average of the convexity and the
yield of its bonds; the weights are the proportions of the portfolio invested
on each bond. The results are as shown in Table 4.2.

As expected by design, both portfolios have the same generalized dura-
tions with respect to both factors. It can be seen that the generalized duration
with respect to the short-term interest rate and the yield of portfolio 2 are
greater than those of portfolio 1. The difference in yields suggests that the
best strategy consists of buying portfolio 2 and selling portfolio 1. Thus, we
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Table 4.2 Computations of the generalized convexities and the yield for
both portfolios

Portfolio 1 Portfolio 2

Duration with respect to s (Ds) 0.5346 0.5346

Duration with respect to L (DL) 0.9123 0.9123

Duration with respect to r (Dr) 2.8476 3.1155

Convexity with respect to s (δs) 0.3848 0.3826

Convexity with respect to L (δL) 1.1451 1.1439

Yield (%) 7.5272 9

can obtain a gain of 147.2 basis points. On the other hand, the generalized
convexities of portfolio 2 are slightly lower than those of portfolio 1. This
fact suggests that portfolio 1 can provide a greater yield than portfolio 2 if
there are certain shifts in the yield curve.

From now on, we will assume a shift in the yield curve instantaneously
after the acquisition of these portfolios and we will analyse the relative
behavior of both portfolios, measured by the difference between their yields.
We will consider three possibilities: a parallel change and two types of twist
in the slope of the yield curve: flattening and steepening.

For each case, at the end of the investment horizon, we obtain a certain
value for both portfolios. This value is the sum of three terms: the market
value of the portfolio, the coupons paid by the bonds, and the reinvestment
gain generated by the coupons. Changes in interest rates have two effects
on this value and, hence, on the portfolio yield: if interest rates increase,
the market value of the bond decreases (price risk) but the coupons gener-
ate a higher amount of money (reinvestment risk). The opposite situation
happens if interest rates fall. Therefore, the final gain will depend on the
changes in interest rates and the combined effect of both types of risk.

We consider an investment horizon of six months. Therefore, we need no
assumptions on the reinvestment rate of the coupons because each bond
is sold just after providing the first (and last) coupon. Hence, the final
(accumulated) value for each bond is its market price plus its coupon.

Table 4.3 shows this value and the yield (in annual terms) for the bonds
included in the portfolio 1 when there is a parallel change in the yield curve.
The first column of this table includes the change size. The coupons, in
percentage terms, paid by the bondsA, B and C are 2.75, 5 and 6, respectively.
We can observe that, when interest rates are increasing, each bond yield
decreases. The bond C provides the highest yield because it has the longest
maturity. On the contrary, the bond A, with the shortest maturity, shows the
narrowest interval of yields.
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Table 4.3 Relative behavior of the bonds included in the portfolio 1 with
respect to a parallel change in the yield curve

Yield Bond A Bond B Bond C
Change

Accumulated Yield Accumulated Yield Accumulated Yield
value (%) value (%) value (%)

5 85.176 −29.646 75.759 −48.480 77.809 −44.381

4.5 86.757 −26.485 78.042 −43.915 79.966 −40.067

4 88.374 −23.250 80.444 −39.110 82.242 −35.514

3.5 90.029 −19.940 82.974 −34.051 84.648 −30.703

3 91.722 −16.554 85.638 −28.722 87.191 −25.616

2.5 93.455 −13.088 88.447 −23.105 89.883 −20.233

2 95.229 −9.541 91.409 −17.181 92.735 −14.529

1.5 97.044 −5.911 94.534 −10.931 95.758 −8.482

1 98.901 −2.196 97.833 −4.333 98.967 −2.064

0.5 100.803 1.606 101.317 2.635 102.376 4.752

0 102.75 5.5 105 10 106 12

−0.5 104.742 9.485 108.892 17.785 109.856 19.713

−1 106.782 13.565 113.010 26.021 113.964 27.928

−1.5 108.871 17.743 117.369 34.738 118.343 36.687

−2 111.010 22.020 121.983 43.967 123.017 46.034

−2.5 113.200 26.401 126.872 53.744 128.008 56.016

−3 115.443 30.887 132.053 64.107 133.344 66.688

−3.5 117.740 35.481 137.547 75.095 139.054 78.108

−4 120.093 40.186 143.376 86.753 145.168 90.337

−4.5 122.502 45.005 149.563 99.127 151.723 103.447

−5 124.971 49.942 156.133 112.267 158.756 117.512

Table 4.4 includes the results for both portfolios. The accumulated value
of portfolio 1 is the weighted average of those of its bonds. As in Table 4.3,
the first column shows the changed size in the yield curve. The last column
shows the difference between both yields. Anegative (positive) value means
that portfolio 1 generates a higher (lower) yield than portfolio 2.

The strategy to follow with these portfolios depends on the sign of the
shift in the yield curve. As the last column of this table shows, portfolio 1
outperforms portfolio 2 if interest rates increase. On the other hand, we can
see that portfolio 2 provides a greater yield than portfolio 1 when interest
rates fall.

This result arises because the generalized duration with respect to the
short-term interest rate of portfolio 1 is lower than that of portfolio 2. Hence,
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Table 4.4 Relative behavior of two portfolios with respect to a parallel
change in the yield curve

Yield Portfolio 1 Portfolio 2 Difference
Change (%)

Accumulated Yield Accumulated Yield
value (%) value (%)

5 81.632 −36.734 78.661 −42.677 −5.943

4.5 83.480 −33.038 80.802 −38.395 −5.356

4 85.398 −29.202 83.030 −33.938 −4.736

3.5 87.390 −25.219 85.349 −29.301 −4.081

3 89.459 −21.081 87.762 −24.474 −3.392

2.5 91.609 −16.780 90.275 −19.448 −2.668

2 93.847 −12.305 92.892 −14.215 −1.909

1.5 96.175 −7.648 95.617 −8.764 −1.115

1 98.600 −2.798 98.457 −3.085 −0.287

0.5 101.128 2.256 101.41 2.832 0.576

0 103.763 7.527 104.5 9 1.472

−0.5 106.513 13.027 107.714 15.429 2.402

−1 109.385 18.770 111.066 22.133 3.363

−1.5 112.385 24.771 114.562 29.125 4.354

−2 115.523 31.046 118.209 36.419 5.373

−2.5 118.806 37.612 122.014 44.029 6.417

−3 122.243 44.487 125.985 51.971 7.483

−3.5 125.846 51.692 130.130 60.261 8.568

−4 129.623 59.247 134.457 68.915 9.668

−4.5 133.588 67.176 138.976 77.953 10.776

−5 137.751 75.503 143.696 87.392 11.888

an increase (decrease) in interest rates implies that the final value of portfo-
lio 2 decreases (increases) more than that of portfolio 1 and, so, portfolio 1
performs better (worse) than portfolio 2. The difference between these gen-
eralized durations also implies that the longer the change in interest rates,
the bigger the difference in the portfolio yields.

Next, we analyse the effects of two alternative changes in the slope of
the yield curve. Results are shown in Tables 4.5 to 4.6 and Tables 4.7 to 4.8,
respectively.

The first non-parallel change implies a decrease in the slope of the
yield curve. Specifically, we assume that the change in the 5 (15) [20]-
year interest rate is equal to the change in the 10-year interest rate+ 1%
(−0.5%) [−1%].
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Table 4.5 Relative behavior of the bonds included in the portfolio 1 with
respect to a decrease in the slope of the yield curve

Yield Bond A Bond B Bond C
Change

Accumulated Yield Accumulated Yield Accumulated Yield
value (%) value (%) value (%)

5 82.121 −35.757 78.042 −43.915 82.242 −35.514

4.5 83.631 −32.737 80.444 −39.110 84.648 −30.703

4 85.176 −29.646 82.974 −34.051 87.191 −25.616

3.5 86.757 −26.485 85.638 −28.722 89.883 −20.233

3 88.374 −23.250 88.447 −23.105 92.735 −14.529

2.5 90.029 −19.940 91.409 −17.181 95.758 −8.482

2 91.722 −16.554 94.534 −10.931 98.967 −2.064

1.5 93.455 −13.088 97.833 −4.333 102.376 4.752

1 95.229 −9.541 101.317 2.635 106 12

0.5 97.044 −5.911 105 10 109.856 19.713

0 98.901 −2.196 108.892 17.785 113.964 27.928

−0.5 100.803 1.606 113.010 26.021 118.343 36.687

−1 102.75 5.5 117.369 34.738 123.017 46.034

−1.5 104.742 9.485 121.983 43.967 128.008 56.016

−2 106.782 13.565 126.872 53.744 133.344 66.688

−2.5 108.871 17.743 132.053 64.107 139.054 78.108

−3 111.010 22.020 137.547 75.095 145.168 90.337

−3.5 113.200 26.401 143.376 86.753 151.723 103.447

−4 115.443 30.887 149.563 99.127 158.756 117.512

−4.5 117.740 35.481 156.133 112.267 166.308 132.616

−5 120.093 40.186 163.113 126.227 174.424 148.849

Table 4.5 shows the results for the bonds included in portfolio 1. The
first column shows the change in 10-year interest rates. The conclusions are
similar to those of the above change: an increase in interest rates leads to a
decrease in the bond yield and the highest (lowest) yields correspond to the
bond with the longest (shortest) maturity.

Table 4.6 includes the accumulated value and the yield for both portfolios.
As in Table 4.5, the first column shows the changes in the bond D. Results
are analogous to those obtained with a parallel change: portfolio 1 outper-
forms portfolio 2 if interest rates rise and vice versa if they fall. As above,
the difference between the generalized durations with respect to the short-
term interest rate in both portfolios implies that (a) in percentage terms, an
increase (decrease) in interest rates harms (benefits) portfolio 2 (1) more, and
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Table 4.6 Relative behavior of two portfolios with respect to a decrease in
the slope of the yield curve

Yield Portfolio 1 Portfolio 2 Difference (%)
Change

Accumulated Yield (%) Accumulated Yield (%)
value value

5 80.957 −38.085 78.661 −42.677 −4.592

4.5 82.825 −34.349 80.802 −38.395 −4.045

4 84.766 −30.466 83.030 −33.938 −3.471

3.5 86.784 −26.430 85.349 −29.301 −2.870

3 88.884 −22.231 87.762 −24.474 −2.242

2.5 91.069 −17.860 90.275 −19.448 −1.588

2 93.346 −13.307 92.892 −14.215 −0.907

1.5 95.718 −8.562 95.617 −8.764 −0.201

1 98.193 −3.612 98.457 −3.085 0.527

0.5 100.776 1.552 101.416 2.832 1.279

0 103.473 6.946 104.5 9 2.053

−0.5 106.292 12.584 107.714 15.429 2.844

−1 109.240 18.481 111.066 22.133 3.652

−1.5 112.326 24.652 114.562 29.125 4.473

−2 115.557 31.115 118.209 36.419 5.304

−2.5 118.944 37.889 122.014 44.029 6.139

−3 122.497 44.995 125.985 51.971 6.975

−3.5 126.227 52.454 130.130 60.261 7.806

−4 130.145 60.290 134.457 68.915 8.624

−4.5 134.264 68.528 138.976 77.953 9.424

−5 138.598 77.197 143.696 87.392 10.194

(b) the additional gain for each portfolio is monotonic with the size of the
change in interest rates.

The second non-parallel change reflects an increase in the slope of the
yield curve. We assume that the change in the 5 (15) [20]-year interest rate is
equal to the change in the 10-year interest rate −1% (+0.5%) [+1%]. Results
for the bonds included in portfolio 1 are shown in Table 4.7 while Table 4.8
contains the results for both portfolios.

Table 4.7 shows similar results to those obtained in the two previous
changes: an increase in interest rates decreases the bond yield and the longest
bond provides the highest yields. Looking at Table 4.8, we obtain the same
conclusion as in previous changes: portfolio 2 outperforms portfolio 1 if



82 MANAGING INTEREST RATE R ISK UNDER NON-PARALLEL CHANGES

Table 4.7 Relative behavior of the bonds included in the portfolio 1 with
respect to an increase in the slope of the yield curve

Yield Bond A Bond B Bond C
Change

Accumulated Yield Accumulated Yield Accumulated Yield
value (%) value (%) value (%)

5 88.374 −23.250 73.589 −52.821 73.823 −52.353

4.5 90.029 −19.940 75.759 −48.480 75.764 −48.471

4 91.722 −16.554 78.042 −43.915 77.809 −44.381

3.5 93.455 −13.088 80.444 −39.110 79.966 −40.067

3 95.229 −9.541 82.974 −34.051 82.242 −35.514

2.5 97.044 −5.911 85.638 −28.722 84.648 −30.703

2 98.901 −2.196 88.447 −23.105 87.191 −25.616

1.5 100.803 1.606 91.409 −17.181 89.883 −20.233

1 102.75 5.5 94.534 −10.931 92.735 −14.529

0.5 104.742 9.485 97.833 −4.333 95.758 −8.482

0 106.782 13.565 101.317 2.635 98.967 −2.064

−0.5 108.871 17.743 105 10 102.376 4.752

−1 111.010 22.020 108.892 17.785 106 12

−1.5 113.200 26.401 113.010 26.021 109.856 19.713

−2 115.443 30.887 117.369 34.738 113.964 27.928

−2.5 117.740 35.481 121.983 43.967 118.343 36.687

−3 120.093 40.186 126.872 53.744 123.017 46.034

−3.5 122.502 45.005 132.053 64.107 128.008 56.016

−4 124.971 49.942 137.547 75.095 133.344 66.688

−4.5 — — 143.376 86.753 139.054 78.108

−5 — — 149.563 99.127 145.168 90.337

interest rates fall, and conversely if they rise. As before, this behavior is
due to the differences in generalized durations with respect to the short-
term interest rate. It is also verified that the additional yield of the portfolio
increases with interest rates.

Hence, the analysis of these three types of changes suggests that the gen-
eralized duration measures inform appropriately about the future behavior
of a portfolio when there are unexpected changes in the yield curve. This fact
has important practical consequences for the management of fixed income
securities: given a certain portfolio, it is possible to build a second one with
the same sensitivity to changes in the spread and in the long-term rate. The
relative behavior of both portfolios does not depend on the type (nor the size)
of the future change in the yield curve. If we expect an increase (decrease) in
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Table 4.8 Relative behavior of two portfolios with respect to an increase in
the slope of the yield curve

Yield Portfolio 1 Portfolio 2 Difference (%)
Change

Accumulated Yield (%) Accumulated Yield (%)
value value

5 82.476 −35.047 78.661 −42.677 −7.630

4.5 84.312 −31.375 80.802 −38.395 −7.019

4 86.215 −27.569 83.030 −33.938 −6.369

3.5 88.188 −23.622 85.349 −29.301 −5.678

3 90.236 −19.526 87.762 −24.474 −4.947

2.5 92.363 −15.273 90.275 −19.448 −4.174

2 94.572 −10.855 92.892 −14.215 −3.359

1.5 96.868 −6.263 95.617 −8.764 −2.500

1 99.256 −1.487 98.457 −3.085 −1.598

0.5 101.741 3.483 101.416 2.832 −0.651

0 104.329 8.659 104.5 9 0.340

−0.5 107.026 14.052 107.714 15.429 1.377

−1 109.837 19.675 111.066 22.133 2.458

−1.5 112.771 25.542 114.562 29.125 3.583

−2 115.833 31.667 118.209 36.419 4.752

−2.5 119.032 38.065 122.014 44.029 5.963

−3 122.377 44.755 125.985 51.971 7.216

−3.5 125.876 51.753 130.130 60.261 8.507

−4 129.539 59.079 134.457 68.915 9.835

−4.5 — — 138.976 77.953 —

−5 — — 143.696 87.392 —

interest rates, we must choose the portfolio where the generalized duration
with respect to the short-term interest rates is lower (higher).

4.6 CONCLUSION

Interest rate risk is associated to changes in the yield curve. We can distin-
guish two types of risk: market risk and yield curve one. The conventional
duration is the classic solution to manage the first type of risk but it is not
so clear how to manage the second type of risk.

This chapter has presented and applied new measures of generalized
duration and convexity to manage this type of risk. These measures are
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based on a continuous-time model for interest rates. This model assumes
that default free discount bond prices are determined by the time to maturity
and two factors, the long-term interest rate and the spread.

The generalized duration is useful to compute hedging ratios. We have
also shown a numerical example that illustrates how these new measures can
mitigate the limitations of the conventional duration. Analysing different
situations, it has been checked that the generalized durations do provide
adequate information on the future behavior of a bond portfolio with respect
to unexpected changes in the yield curve.

Hence, these measures can be a useful tool for managing fixed income
portfolios. The relevant characteristics to determine the future behavior of
these portfolios are (a) the generalized duration with respect to the short-
term interest rate and (b) the expectations on the movements (increase or
decrease) in interest rates. Thus, if two portfolios have the same generalized
durations with respect to the spread and to the long-term rate, the best
portfolio is the one with lower (higher) generalized duration with respect
to the short-term interest rate if interest rates rise (fall).

NOTES

1. This fact is illustrated in Nelson and Schaefer (1983) and Smithson and Smith (1995).
2. Jones (1991), Litterman and Scheinkman (1991), and Knez, Litterman and Scheikman

(1994) show empirical evidence of these movements.
3. See for instance, Ingersoll, Skelton and Weil (1978), Cox, Ingersoll and Ross (1979),

and D’Ecclesia and Zenios (1994), among others.
4. These limitations are because conventional duration does not provide adequate infor-

mation about the future performance of a bond portfolio when the yield curve changes
in a non-parallel way. That is, the relative behavior of two portfolios with the same
modified duration, measured by the difference in yields, depends on the size and the
type of change in yields.

5. This assumption has been empirically shown in papers as Ayres and Barry (1980),
Schaefer (1980) and Nelson and Schaefer (1983), among others.

6. Many other types of interest rates derivatives were priced by solving the valuation
equation with the appropriate terminal condition. See Moreno (2003) for details.

7. This value is an indicative measure of the change in the call price to changes in this
factor.

8. See Fabozzi (1993), chapter 15.
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C H A P T E R 5

An Essay on Stochastic
Volatility and the

Yield Curve

Raymond Théoret, Pierre Rostan and,
Abdeljalil El-Moussadek∗

5.1 INTRODUCTION

In this chapter we consider the issue of forecasting the stochastic volatility
and the yield curve. These two concepts are very important in financial
engineering, especially in risk management. Forecasting stochastic volatility
is indeed an essential ingredient in VaR computations, and for immunizing
bond portfolios a prediction of the yield curve is a sine qua non.

Volatility has many avatars. Financial theory has evolved from the con-
cept of historical volatility to the concept of stochastic volatility. Between
these concepts, the apparition of conditional volatility, introduced by Engle
(1982) to forecast the volatility of inflation, among others, was perhaps
an accident in financial theory. Anyway, there is a relation between con-
ditional volatility and stochastic volatility which is confusing, even in
financial theory. Nelson (1990) was the first to show that ARCH models con-
verge weakly in distribution to continuous stochastic volatility diffusion

∗ The authors want to thank Mr François-Éric Racicot, PhD, Professor of Finance in the Depart-
ment of Administrative Sciences at the University of Quebec (Outaouais) for his help and
numerous suggestions.
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processes, so that the parameters of stochastic volatility models may be
estimated by ARCH processes. Consequently, we must postulate a distri-
bution to relate conditional volatility to the stochastic one. But this may
suggest that stochastic volatility is the continuous counterpart of condi-
tional volatility, which is not the case. Conditional volatility is an observed
variable while stochastic volatility is not: it is latent. This last one must be
filtered.

Campbell et al. (1997) mentioned in their book the work of Nelson
(1990) on the link between conditional volatility and stochastic volatil-
ity, but research on this subject was not developed. It revived recently
through an article written by Fornari and Mele (2005) who apply the
generalized error distribution to show how CEV-ARCH1 models are
approximations of volatility diffusion models in the sense that these
models are Euler–Maruyama discrete time approximations of diffusion
processes.

After reviewing the relation between conditional volatility and stochastic
volatility, which is fundamental in risk management, we transpose these
concepts to the forecasting of the term structure of interest rates.2 Fong and
Vasicek (1992) hereafter F&V, proposed a two-factor model with a mean-
reverting process and a structure that makes the short-rate variance depend
on the level of interest rates with a suitable restriction that the short-rate
could not become negative. This model is infrequently used in practice
by financial analysts because of the problem of hidden stochastic volatility
which is the black box for this kind of model.

In this chapter we use the F&V model to forecast the Canadian interest-
rate term structure and we apply the Extended Kalman Filter (EKF) as a
tool to compute the unobserved stochastic volatility. We also introduce
Bollinger bands, a well-known tool used in technical analysis, as a reduction
variance technique to improve the Monte Carlo simulation performance.3

This is a brand-new approach in the sense that we propose this variance
reduction technique based on Bollinger bands to restrain the movements
of volatility in a Monte Carlo simulation and, consequently, to improve its
performance. Incidentally, this method has been never applied before to
volatility forecasting.

The remaining of the chapter is organized as follows. In section 5.2 we dis-
cuss the concepts of stochastic volatility as opposed to conditional volatility.
In section 5.3 we discuss the importance of forecasting the yield curve. In
section 5.4 we present the most popular interest-rate term structure models
and we also provide some details about the F&V model (1992) and about
the intuition behind the EKF. In section 5.5 we explain the EKF scheme
and the implementation of our specific model. The data and calibration are
described in section 5.6. In section 5.7 we detail the approach used for the
simulation, and empirical results are discussed in section 5.8. Finally, some
interesting conclusions are offered in section 5.9.
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5.2 VARIATIONS ON STOCHASTIC VOLATILITY AND
CONDITIONAL VOLATILITY4

It is usual to model stochastic volatility, like conditional volatility, by using
a product process. Let P be the price of a financial instrument and let us
assume the following differential equation for the logarithm of P:

d(log(P)) = dP
P

= µdt + σ(t)dz1t (5.1)

where µ is the expected yield of the financial instrument; σ, the volatility of
the yield; dt, a small time increment; and dz, a standard Wiener process.

Its discrete time approximation is the following product process:

xt = µ+ σtUt (5.2)

with xt = �log(Pt) and Ut, a standard variable so that E(Ut)= 0 and
V(Ut)= 1.

The conditional variance of xt is equal to:

V (xt |σt ) = V(µ+ σtUt) = σ2
t

σt is consequently the conditional standard deviation of xt, or the conditional
volatility of xt.

According to Mills (1999), a lognormal distribution is appropriate for this
conditional volatility, so:

ht = log(σ2
t ) = γ0 + γ1ht−1 + ξt (5.3)

with ξt ∼N(0, σ2
ξ ). Equation (5.2) may be rewritten as:

xt = µ+ Ute
ht
2 (5.4)

Mills (1999) assumes that µ is nil in equation (5.4) because daily and intra-
daily stocks and currencies returns have a mean equal to 0. To linearize
equation (5.4), we square xt and we take logarithms:

x2
t = U2

t eht

log(x2
t ) = log(U2

t ) + ht (5.5)

We assume that Ut ∼N(0,1), and we consequently know the distribution
of log(U2

t ). It is a logarithmic χ2 distribution, with mean −1.27 and vari-
ance equal to 0.5π2, or approximately 4.93. Let us note that the distribution
of log(U2

t ) is very similar to the distribution of the payoffs of a short put
position. Consequently, this distribution is very appropriate for taking into
account left tail risk, a kind of risk associated with rare events like stock
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markets collapses.5 We will use this distribution in the empirical section of
this paper.

To take into account these results, let us add and subtract E log(U2
t ) in

equation (5.5). We have:

log(x2
t ) = E log(U2

t ) + ht + [log(U2
t ) − E log(U2

t )] (5.6)

We can rewrite (5.6) to estimate it as:

log(x2
t ) = 1.27 + ht + ςt (5.7)

with ςt = [log(U2
t )] − E log(U2

t )].
In equation (5.7), ς is an innovation with a logarithmic χ2 distribution.

Its expectation is:

E(ςt) = E[log(U2
t ) − E log(U2

t )] = E log(U2
t ) − E log(U2

t ) = 0

and its variance:

V(ςt) = E(ς2
t ) = E[log(U2

t ) − E log(U2
t )]2 = 0.5π2 ≈ 4.93

In equation (5.7), ht is the stochastic volatility expressed in logarithmic

form, i.e. σt =
√

e
ht
2 . It is unobserved and must be filtered. To do so, we use

the extended Kalman filter in this paper. We are now in a position to compare
the concept of stochastic volatility with the concept of conditional volatility
of the ARCH models. In a GARCH (1,1) model, the conditional volatility νt
may be expressed as:

yt = c + εtνt

ν2
t = β0 + β1ν

2
t−1 + β2ε

2
t−1 (5.8)

with yt a price variable and c, a constant. If we examine equation (5.8), we
note that the conditional volatility is observed at time t because it is condi-
tional on observations made at time (t− 1). But according to equation (5.3),
stochastic volatility is unobserved at time t because its equation contains
an innovation, contrarily to conditional volatility whose equation has no
innovation. This is the major difference between stochastic volatility and
conditional volatility.

Taylor (1994) reported that there is a mixing variable Mt which relates
stochastic volatility to conditional volatility. This variable is distributed like
an inverse gamma. We can write:

σt = (Mtν
2
t )

1
2 (5.9)

with σt, the stochastic volatility and νt, the conditional volatility. It is con-
sequently a random variable which links stochastic volatility to conditional
volatility. This random variable Mt represents the uncertainty associated to
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the news revealed at time t. That is why σt is unobserved, contrarily to νt
which is observed at time t.

Perhaps the view initiated by Nelson (1990) that ARCH models are
approximations of diffusion models created confusion in the financial lit-
erature about the relation between stochastic and conditional volatility. Let
us see how this approximation works. Assume the following GARCH (1,1)
process:

ν2
n+1 = w + βν2

n + αε2
n (5.10)

with ε=µν, µ∼N(0,1). We can write (5.10) as:

ν2
n+1 − ν2

n = w − (1 − αE(µ2) − β)ν2
n + αν2

n(µ2 − E(µ2)) (5.11)

This equation converges weakly in distribution to:

dν(τ)2 = (ω − ϕν(τ)2) dτ + ψν(τ)2 dz(τ) (5.12)

with zt a Wiener process. The convergence between the parameters of the
discrete equation (5.10) to the parameters of the continuous equation (5.12)
is the following:

lim h−1wh = ω

lim h−1(1 − αh − βh) = ϕ

lim h− 1
2
√

2αh = ψ

(5.13)

with h a very small time increment expressed in fraction of year. The
√

2 term
in the equation ofψ is explained by the fact that ξ=µ2 −E(u2) is a chi-square
variable with one degree of freedom and a variance of 2. The sequence ξn
is consequently a sequence of chi-square variables and is the discrete time
approximation of the Brownian increments dz.6

Fornari and Mele (2005) have generalized Nelson’s (1990) model to the
class of CEV-ARCH models. They show how volatility diffusions may be
approximated by these models by assuming a distribution for the innovation
which encompasses the normal distribution: the generalized error distribu-
tion (ged). Let us assume the following CEV-ARCH model for the interest
rate r in its continuous form:

dr(τ) = (ι− θrτ) dτ + ν(τ)
√

r(τ) dz1

dν(τ)δ = (ω − ϕν(τ)δ)dτ + ψν(τ)δη
(
ρ dz1 +

√
1 − ρ2 dz2

)
(5.14)

with dz1 and dz2, two Wiener processes with a correlation ofρ, the correlation
being performed by a Cholesky decomposition. Equation (5.14) is the con-
tinuous representation of the CEV-ARCH model. There are three additional
parameters to estimate in comparison with standard ARCH models: δ, η and
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ρ; η is the coefficient of elasticity. The GARCH(1,1) model is a special case
of equation (5.14) for which δ= 2, η= 1 and ρ= 0.

Let us consider the following discrete time approximation of equa-
tion (5.14):

νδn+1 = w + αν
δη
n |µn|δη + βνδn + αE(|µ|δη)(νδn − ν

ηδ
n ) (5.15)

This process converges weakly in distribution to:

dσ(τ)δ = (ω − ϕσ(τ)δ) dτ + ψσ(τ)δη dz2 (5.16)

Fornari and Mele (2005) assume that µ obeys to the ged distribution. Let us
write:

nδ,υ =
2

δ
υ
−1∇δ

υ�
(
δ+ 1
υ

)
�(υ−1)

with ∇δ
υ = �(υ−1)

2
δ
υ �(3υ−1)

and �, the gamma function. When the distribution is

assumed normal, the coefficient of the gamma function υ is equal to 2 and

consequently: ∇2
2 =

�
(

1
2

)
2�

(
3
2

) = 1. At the limit, we have the following relations

between the coefficients of equations (5.15) and (5.16):

ϕ = 1 − nδ,υ
[
(1 − γ)δ + (1 + γ)δ

]
α− β

ψ =
√(

mδ,υ − n2
δ,υ

) (
(1 − γ)2δ + (1 + γ)2δ

)
− 2n2

δ,υ (1 − γ)δ (1 + γ)δ

with mδ,υ = 2
2δ
υ −1∇2δ

υ �( 2δ+1
υ

)
�(υ−1)

According to equations (5.15) and (5.16), the CEV-ARCH model con-
verges weakly in distribution to a continuous diffusion model. But this link
is only an approximation. We must assume a distribution to prove this con-
vergence and the choice of this distribution has a great impact on the relation
between the coefficients of an ARCH model and the corresponding diffu-
sion model. Anyway, for simulating stochastic volatility via the Monte Carlo
method, we must have estimates of the parameters of the diffusion process
governing stochastic volatility; and, as we saw, ARCH models are a way to
compute them.

It is relevant to repeat that stochastic volatility is forwards-looking while
conditional volatility as estimated by anARCH model is backwards-looking.
Stochastic volatility is based on the uncertainty of the news revealed to
markets at time t as evidenced by equation (5.9): it anticipates this informa-
tion. On its side, conditional volatility as computed by an ARCH model is
based on observed information incorporated in market prices. Conditional
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volatility consequently has an advantage on stochastic volatility in the sense
that the first is observed and the second is latent. But stochastic volatility is
susceptible to deliver more information to the risk manager about the market
pulse. Consequently, it must be estimated and compared with more tradi-
tional measures of volatility as we do in this essay for the case of interest rates.

5.3 INTEREST RATE TERM STRUCTURE FORECASTING

Forecasting the term structure is of great interest because it is considered as a
leading indicator of economic activity. Some findings suggest that the spread
between long-term and short-term interest rates has proven to be an excellent
predictor of changes in economic activity. As a general rule, when long-term
interest rates have been much above short-term rates, strong increases in
output have followed within about one year; however, whenever the yield
curve has been inverted for any extended period of time, a recession has
followed.7 Day and Lange (1997) have shown that the slope of the nominal
term structure from 1- to 5-year maturities is a reasonably good predictor of
future changes in inflation over these horizons.

5.4 INTEREST RATE TERM STRUCTURE MODELS

The recent literature has produced major advances in theoretical models of
the term structure. Term structure models include no-arbitrage and equi-
librium models. The no-arbitrage tradition focuses on perfectly fitting the
term structure at a point in time to ensure that no arbitrage possibilities
exist, which is essential for pricing derivatives. The equilibrium tradition
focuses on modeling the dynamics of the instantaneous rate, typically using
affine models that provide clear economic intuitions connecting the term
structure with economic fundamentals. Equilibrium and arbitrage models
have similar structures. The difference comes from the nature of the input
used to calibrate the model parameters. The equilibrium models explicitly
specify the market price of risk; the model parameters, assumed to be time-
invariant, are estimated statistically from historical data. These models are
often used by economists to understand the relationship between the shape
of the term structure and its forecast for future economic conditions. Traders,
however, would rather use arbitrage models because they are calibrated to
match the model price of the underlying security with its market price but
also because they circumvent the difficult estimation of the market price of
risk. Another classification of term structure models can be made according
to the number of factors involved. One should make a distinction between
one-factor and multifactor models. One-factor models are popular because
of their simplicity. Empirical evidence on principal component analysis has
shown that almost 90 percent of the variation in the changes of the yield
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Table 5.1 Interest-rate term structure models

Equilibrium models No-arbitrage models

Vasicek (1977)* Ho-Lee

Cox-Ingersoll Ross (CIR 85)* Hull-White (90)

Brennan-Schwartz (79)** Black-Derman-Toy (BDT-90)

Fong-Vasicek (92)** Heath-Jarrow Morton (HJM 92)

Longstaff-Schwartz (92)**

∗One-factor models; ∗∗Two factor models.

curve is attributable to the variation in the first factor which is considered to
be the level of the interest rate.8 Because the first factor relates to the interest
rate level, any point on the yield curve may be used as a proxy for it. For
most one-factor models, the factor is generally taken to be the instantaneous
short rate, r(t). On the other hand, the multifactor models postulate that the
evolution of the interest-rate term structure is driven by the dynamics of
several factors and therefore, the yields are functions of these factors. These
factors can be represented by macroeconomics shocks or be related to the
level, slope and curvature of the yield curve itself. Table 5.1 outlines the
most popular interest-rate term structure models.

Interest rate forecasting is crucial for bond portfolio management and
for predicting the future changes in economic activity. The arbitrage-free
term structure literature has little to say about dynamics or forecasting, as
it is concerned primarily with fitting the term structure at a point in time.
The affine equilibrium term structure literature is concerned with dynamics
driven by the short rate, and so is potentially linked to forecasting.

Since the main aim of this chapter is to forecast the Canadian interest-rate
term structure, we choose a two-factor model that belongs to equilibrium
models.

5.4.1 The Fong–Vasicek model (1992)

Empirical studies have revealed that the volatility of the changes in the
short rate is time-varying and stochastic. To explicitly model the stochastic
changes in the interest rate volatility and their effect on bond prices and
option values, Fong and Vasicek (1992) proposed a two-factor extension of
the Vasicek model in which the Ornstein–Uhlenbeck process is modified to
include a stochastic variance that follows a square-root process:

drt = k(µ− rt) dt +√
vt dWt

dvt = λ(ν − vt) dt + τ
√
vt dWs
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with E(dWt, dWs)= ρ and where Wt and Ws are two correlated Brownian
motions under the risk-neutral distribution. We are positioning ourselves in
a risk-neutral world where investors require no compensation for risk and
the expected return of securities is the risk-free interest rate.

As we can see, this model allows for a stationary mean reverting pro-
cess whose variance is again a stationary stochastic process. Here µ is the
unconditional expectation of the short rate process and k controls the degree
of persistence in interest rates in the sense that it measures the speed with
which the interest rate returns to its mean. In order to interpret the other
parameters, let us observe that the second equation of the model is just
a square root process for variance vt. Now we can interpret parameter v
as the unconditional average variance. The parameter λ accounts for the
degree of persistence in the variance. Finally, the parameter τ is the uncondi-
tional infinitesimal variance of the unobserved variance process. The hidden
volatility is an obvious weakness of the model and makes it hard to use. In
this case using the technique of filtering is very natural to infer the values
of the unobserved volatility process.

5.4.2 The extended Kalman filter (EKF)

To use the F&V model we have to deal with the unobserved volatility pro-
cess. To estimate it, we apply the Kalman filter.9 This filter is a widely used
methodology which recursively calculates optimal estimates of unobserv-
able state variables, given all the information available up to some moment
in time. Estimates are improved as new data arrive. The application of
Kalman filtering methods in the estimation of term structure models using
cross-sectional/time series data has been investigated by Pennacchi (1991),
Lund (1994, 1997), Chen and Scott (1995), Duan and Simonato (1995), Geyer
and Pichler (1996), Ball and Torous (1996), Jegadeesh, and Nowman (1999),
Babbs, De Jong and Santa-Clara (1999), De Jong (2000), Dewachter and Maes
(2001) and Sørensen (2002). James and Webber (2000, chap. 18) gives and
extensive survey of the EKF method and its use for estimating term structure
models while Hamilton (1994, chap. 13) does a rigorous presentation of the
Kalman filter and its extended version from which we borrowed.

The use of the state space formulation of term structure models and the
application of the Kalman filter have the advantage to allow the underlying
state variables to be handled correctly as unobservable variables compared
to using a short-term rate historical volatility as a proxy.

5.5 METHODOLOGY

In this section, we provide a brief overview of the EKF method followed by
its application to the F&V model.
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5.5.1 The extended Kalman filter (EKF)

The Kalman filter uses data observed in the market to infer values for unob-
served state variables. The idea is to express a dynamic system in a particular
form called the state-space representation. A state-space model is character-
ized by a measurement equation and a transition one. Once this has been
made, a three-step iteration process can begin. There is one iteration for
each observation date t, and one iteration includes three steps, as is shown
in Figure 5.1.

During the first step called the prediction phase, the values of non-
observable variables in (t− 1) are used to compute their expected value
in t, conditionally to the information available in (t− 1). The predictions
rely on the transition equation. The predicted values α̃t/t−1 are then intro-
duced in the measurement equation to determine the measure ỹt. In this
equation, the errors have zero mean and are not serially nor temporarily
correlated. They represent every kind of disturbances likely to lead to errors
in the data. The second step or innovation phase allows for the computation
of the innovation νt. Lastly, non-observable variables values, which where
computed in the prediction phase, are updated conditionally to the infor-
mation given by νt. Once this calculation has been made, α̃t is used to begin
a new iteration.

Innovation computation

Prediction

Updating the parameters

Iteration 1: at�1, yt
~

Iteration 2: at, yt�1
~

at � f(at/t�1, nt)
~

nt � yt �yt/t�1
~

transitionat�1
~ at/t�1

~ measure yt/t�1
~

Figure 5.1 The three steps of an iteration
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5.5.2 Algorithm

A standard setup of the Kalman filter is applicable to the linear state-space
model of the form:

yn = Znαn + dn + εn

αn = Tαn−1 + cn + Rnηn

with var(εn)=Hn and var(ηn)=Qn. The first equation is the measurement
equation and the second equation is the transition equation. (εn) and (ηn)
are independent normal random variables with zero mean.

The Kalman filter for this approximate state-space model is then given by:

an/n−1 = Tn(an−1),

Pn/n−1 = T̂nPn−1T̂′
n + R̂nQnR̂′

n,

Fn = ẐnPn/n−1Ẑ′
n + Hn,

an = an/n−1 + Pn/n−1Ẑ′
nF−1

n (yn − Zn(an/n−1)),

Pn = Pn/n−1 − Pn/n−1Ẑ′
nF−1

n ẐnPn/n−1

To apply this algorithm, one should proceed to a discretization and a
linearization of the F&V short rate model which is discussed in next section.

5.5.3 Applying the Kalman filter to the F&V model

Recall that Fong and Vasicek model the short rate and its stochastic variance
with the following equations:

drt = k(µ− rt) dt +√
vt dWt

dvt = λ(ν − vt) dt + τ
√
vt dWs

As we can see, the model respects the Kalman filter state-space form.
One can consider the first and the second equation as the measurement
equation and the transition equation respectively. But the model is still in its
continuous and non linear form. Before applying directly the algorithm of
extended Kalman filter, we try to put these two equations in their discrete
and linear form.10

Discretization

An application of Ito formula to the first equation of the F&V model yields:

dekt(rt − µ) = ekt√vt dWt
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After integrating by parts, we obtain the discrete time specification of the
F&V model:

rt+h = µ+ e−kh(rt − µ) + εt(h)t

υt+h = ν + e−λh(υt − v) + ηt(h)t
t = 0, h, 2h, ...,

Where h denotes the sampling interval expressed in year (for example, on
quarterly frequency h= 3/12), and where εt(h) and ηt(h) are innovations.

Linearization

To get the linear form of the F&V model, we apply the procedure of lin-
earization, proposed by the EKF and explained above, to the discrete form
of F&V model. We consider the observation yn to be ln(R2

n/h):

yn = ln Vn + ln ε2
n

Clearly ln ε2
n is not Gaussian, but has the distribution of ln χ2

1. To use EKF, we
replace this by a normal random variable with mean−1.270363 and variance
4.934802, the mean and variance, respectively, of a ln χ2

1 random variable as
explained in section 5.2. We then apply the EKF methodology with:

Zn(x) = ln x − 1.270363; Hn = 4.934802;

Tn(x) = e−λhx + (1 − e−λh)v; Rn(x) = τe−λh
√

h
√

x; Qn = 1

Using the usual Taylor expansion to perform the linearization, we finally
get the discrete and linear form of the F&V state-space model:

yn = 1
an/n−1

αn + ln (an/n−1) − 2.2703 + εn

αn = e−λkαn−1 + (1 − eλh)ν + τe−λh
√

h
√

an−1ηn

The last step, before applying directly the Kalman filter to infer the values
of unobserved volatilities, and proceed to the forecasting of the interest rate
term structure, is to estimate the values of the parameters of the model. The
next section gives a data description and explains the methodology adopted
for calibration.

5.6 DATA AND CALIBRATION OF THE FONG AND
VASICEK MODEL11

5.6.1 Data

We use Treasury bill yields provided by the Bank of Canada for the 1-, 3-,
6-month, 1-year maturity and the Canadian government yield curve
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Table 5.2 Example of ML parameter
estimates obtained for the 10 Dec. 2002

Parameter F&V (1992)

k 0.176272

µ 0.055796

λ 3.860698

ν 0.00135

τ 0.003576

ρ 0.611125816

provided by Bloomberg for the 2-, 5-, 10-, 20-, 30-year maturities. We con-
sider each yield of the government bond term structure as the “short interest
rate r” of the Fong and Vasicek model as well as its corresponding variance
v. The span of data goes from 23 October 2002 to 23 October 2003 (250 days).

5.6.2 Calibration of the model

The inputs are: (1) the daily Canadian government yield curve obtained
from the Bank of Canada and from Bloomberg; and (2) the daily Canadian
government yield variances term structure computed from GARCH(1,1)
model12 applied to historical data (400 past daily observations of the inter-
est rate) adjusted for the interest rate using the Campbell, Lo and Mc Kinlay
methodology (1997). The yield and variance curves have been smoothed
by 3rd degree polynomial functions to generate 3,000 data for each curve.
The outputs of the calibration, k, µ, λ, ν and τ from the F&V model, and
the correlation ρ13 between the two factors are obtained by Full Informa-
tion Maximum Likelihood Marquardt (ML) (see Table 5.2) or Three-Stage
Least-Squares 3SLS method when the ML did not converge. The 3SLS is an
appropriate technique when right-hand-side variables are correlated with
the error terms, and there is both heteroskedasticity, and contemporaneous
correlation in the residuals.

5.7 SIMULATION

5.7.1 Evolved approach

The simulation approach adopted in this chapter is based on the Monte Carlo
simulation of every yield of the Canadian yield curve. We simulate a 1,000
trajectories for each yield; r0 and v0, the initial values of the simulation, are
respectively the yield observed at day 1 and its annualized variance obtained
from EKF.
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5.7.2 Improvement of the Monte Carlo simulation

To improve the performance of Monte Carlo simulation, we use in conjunc-
tion two variance reduction techniques: the classical antithetic variable and
Bollinger bands,14 a technique borrowed to the technical analysis. Bollinger
bands become narrower during less volatile periods and wider during more
volatile periods. Variance reduction with Bollinger bands is obtained by
forcing the simulated rate to remain inside predetermined upper and lower
bands during the simulation.

Remembering that Bollinger bands are bands usually drawn at ±2 stan-
dard deviations off the value of the 20-day moving average of the times series
under study, have the standard deviation used to compute Bollinger bands
is the conditional standard deviation obtained from the extended Kalman
filter for each simulated yield. Moreover, instead of using the 20-day mov-
ing average of the yield that we are simulating as the central value of the
bands, we use the value of the expected 3-month CDOR (Canadian Dollar
Offer Rate) in 20 days15 minus the 20-day historical average spread of the
simulated yield over the 3-month CDOR spot. Our assumptions are that
(1) the spreads between the CDOR rate and the other yields of the term
structure over 20 days remain constant; and (2) the implied future CDOR
rates obtained from the BAX futures contract prices are a good proxy of what
will be the level of the CDOR rates in 20 days.

More precisely, we test the performance of the Monte Carlo simulation
with Bollinger bands drawn at ±1 or ±2 standard deviations off the spread.

Each yield that has been computed with the Monte Carlo simulation is
the forecasted yield in 20 days. Repeating the methodology for each com-
ponent of the curve, we forecast the Canadian Government yield curve in
20 days.

5.8 EMPIRICAL RESULTS

The extended Kalman filter allows us to obtain an estimation of the stochastic
volatility for each maturity and for each day in our sample. In other words,
the output of the filter is a vector of 250 variance term structures (one term
structure per day). Figure 5.2 illustrates the variance term structure for the
first day of our sample (October, 23 2002).

The variance term structure provided by the extended Kalman filter has
the same shape of what we can empirically observe. We observe that the
variance of the long-term interest rate is lower than the variance of the short-
term interest rate which gives a downward-sloping curve.

We generate 1,000 trajectories for each yield. The number of time steps

x is computed with the following equation: 30 years
3,000 = 20

250
x given x= 8 time
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Figure 5.2 Variance term structure obtained from EKF for 23 October 2002

steps for 20 days of simulation, dt= 20/250= 0.08, 30 years, the maximum
maturity of the yield curve and 3,000 the number of observations used to
calibrate the F&V model.

5.8.1 Quality of fit

The simulation procedure yields 250 interest rate term structures. Figure 5.3
shows the forecasted term structures obtained by various methods of
simulation on 23 October 2002.

The EKF method gives the best fit to the observed interest rate term struc-
ture followed closely by the evolved method with ±1 sigma.16 In addition,
we observe that the quality of forecast decreases as the Bollinger bands
become larger. In the following section, we measure more precisely the
simulation performance by computing the error of estimation.

5.8.2 Root Mean Square Error (RMSE)

On one hand, we obtain from the simulation 250 forecasted interest rate term
structures. On the other hand, we observe 250 realized interest rate term
structures, we are thus able to measure the performance of the simulation
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Figure 5.3 Interest-rate term structures forecasted versus realized on
23 October 2002

by computing the RMSE:

RMSE =
√√√√1

n

n∑
i=1

(Forecasted yield − Realized yield)2

Figure 5.4 shows the term structures of the RMSE obtained from different
methods. We observe that the EKF approach with Bollinger bands and anti-
thetic variable with±1 sigma performs best. Followed by the same approach
except that the volatility has been estimated by GARCH (1,1). The evolved
approach with ±2 sigma whatever the method of volatility estimation (EKF
or GARCH) performs better than the naïve approach.17

In addition, we observe that the RMSE term structures are downward-
sloping. One of the possible reasons is that this method probably does not use
all the information about the factor values contained in the cross-sectional
dimension.

In order to measure the exact contribution of introducing the Bollinger
bands to the F&V and EKF models, we perform the F-ratio test on
the RMSE.

H0 is rejected in both tests since Fstat > F(241,240,.05). We conclude that the
differences in RMSE are significant for the two levels of Sigma (One-sigma
and Two-sigma) used in the Bollinger bands technique compare to F&V
coupled to EKF without Bollinger bands. This result suggests that associating
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Figure 5.4 RMSE for different maturities of the forecasted interest-rate
term structures versus realized on the whole sample (252 days)

Bollinger bands to the F&V model and EKF increases the performance of the
Monte Carlo simulation in term of reducing the estimation error. Moreover,
the RMSE decreases as we make the interval of Bollinger bands narrower
(from ±2 sigma to ±1 sigma).

5.9 CONCLUSION

We have proposed a method of forecasting the interest-rate term structure.
This method is based on applying the EKF to the F&V model (1992). We
found that the estimation of the unobservable component approach by EKF
improved significantly the 20-day forecast of the yield curve.

Furthermore, we observed a drastic improvement of the RMSE by using
the Extended Kalman Filter instead of the GARCH(1,1) method when
the two methods are separately applied to the F&V model. We conclude
of the superiority of the EKF method over the GARCH(1,1) method to
estimate the volatility.

In addition, the test of equality of mean applied to the RMSEs provided by
the F&V model coupled to EKF and provided by the addition of the Bollinger
bands technique suggests that the Bollinger bands technique significantly
improves the Monte Carlo simulation when it is applied to the F&V model.
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Table 5.3 F&V+ EKF are the RMSE computed with the plain F&V model
coupled to EKF

Root Mean Square Error

Time to maturity in F&V + EKF Boll F&V + EKF Boll
years 2-Sigma 1-Sigma F&V + EKF

0,0833 0.0021976 0.0012302 0.0017157

0,25 0.0022187 0.0014267 0.0017856

0,5 0.0023247 0.0017646 0.0023786

1 0.00244 0.0019703 0.0041471

2 0.0025822 0.0020256 0.0063822

5 0.0026933 0.0016508 0.0091518

10 0.0029729 0.001552 0.0066138

20 0.0025283 0.0015518 0.0040684

30 0.0033794 0.0015318 0.0038321

Total RMSE 0.0233371 0.0147038 0.0400753

F-ratio test (Fstat) 1.717235646 2.725506332 F(241,240,.05) ≈ 1.24

F&V + EKF Boll 2-Sig and F&V + EKF Boll 1-Sig are the RMSE obtained with F&V+ EKF model
improved by the reduction technique which is the Bollinger bands with two levels of sigma. We
perform two different F-ratio tests.
Test 1: H0: RMSE0σ =RMSE1σ versus H1: RMSE0σ �=RMSE1σ
Test 2: H0: RMSE0σ =RMSE2σ versus H1: RMSE0σ �=RMSE2σ
With: α= .05, df1 =241, df2 =240.

However, we have seen that one of the fundamental hypotheses of the
EKF is that the errors should be Gaussian which is not the case in our model.
As indicated by De Jong (2000), the EKF in this situation leads to inconsistent
estimation of parameters, though without high bias.

Therefore, we can suggest for future research that other filtering tech-
niques suitable for nonlinear models with non-Gaussian errors, like ged
innovations, are necessary. Nevertheless, the use of Kitagawa method (1987)
removes the inconsistency problem (De Jong, 2000) that comes with the use
of Kalman filter. This technique has been used by Danilov and Mandal (2000)
to estimate stochastic volatility in two-factor short rate models.

Another way of research would be to compare our method to other meth-
ods of forecasting the interest-rate term structure such as Diebold and Li
(2003).

NOTES

1. For example, constant elasticity of variance (CEV) ARCH models.
2. Previous studies on this subject are: Litterman and Scheinkman (1991), Chen and

Scott (1993), Dai and Singleton (2000), and De Jong (2000).
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3. This technique of variance reduction was first introduced by Théoret and Rostan
(2002a, 2002b).

4. In writing this section we have used Mills (1999), Taylor (1994) and Fornari and Mele
(2005). For a recent review on stochastic volatility see Andersen, T.G., Bollerslev, T.,
Christoffersen, P.F. and Diebold, F. (2006). See also Racicot and Théoret (2005).

5. Incidentally, many hedge funds have a return distribution which is similar to the
distribution of the payoffs of a short put position.

6. This intuition linking the Brownian motion increment to its discrete counterpart is
due to Fornari and Mele (2005).

7. An explanation of this result is that the term spread reflects both current monetary
conditions, which affect short-term interest rates, and expected real returns on invest-
ment and expectations of inflation, which are the main determinants of long-term
rates. For more details see Clinton (1995).

8. See Champman and Pearson (2001) for a detailed discussion.
9. To estimate unobserved state variables and nonlinearities, we can also use the

Markov–Chain Monte Carlo. See Eraker (2001).
10. For more details on linearization and discretization of interest rate models, Jarrow

(1996) is a very good reference from which we have borrowed. See also James and
Webber (2000) and Gouriéroux and Monfort (1996).

11. The empirical work was performed on EViews and Matlab softwares.
12. The variance obtained from GARCH(1,1) is used only for calibration purposes. For

forecasting purposes, we used the variance provided by the extended Kalman filter.
13. We impose the correlation between the two random variables during the simulation

by applying the Cholesky decomposition.
14. This method is detailed in Théoret and Rostan (2002a.).
15. The expected 3-month CDOR (Canadian Dollar Offer Rate) in 20 days is obtained

from the BAX futures price traded on the Montreal Exchange (MX), using a linear
interpolation of the BAX futures price. Our assumption is that the CDOR rate will
vary linearly overtime. In Canada, the 3-month CDOR rate is the 3-month bankers’
acceptance rate. It is used as the floating leg rate to price plain-vanilla swap contracts.
It represents the main benchmark of the Canadian money market.

16. The results of the EKF method have been compared to the results obtained from the
evolved approach. In the latter, the simulation is performed in the same conditions
as the EKF approach except for using GARCH(1,1) as a volatility estimation method
instead of EKF.

17. The naïve approach consists on computing the spreads between the 3-month CDOR
over the yields composing the term structure. These spreads are assumed to be
constant in the next 20 days. Only the reference 3-month CDOR will be simulated
overtime to obtain the forecasted interest-rate term structure.
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C H A P T E R 6

Idiosyncratic Risk,
Systematic Risk and

Stochastic Volatility: An
Implementation of

Merton’s Credit Risk
Valuation

Hayette Gatfaoui∗

6.1 INTRODUCTION

Originally Sharpe (1963) stated the dependence of stock returns vis-à-vis
systematic (for example, market or undiversifiable) risk and idiosyncratic
(for example, specific or diversifiable) risk. Indeed, systematic risk is com-
mon to any risky asset in the financial market whereas idiosyncratic risk is
peculiar to the asset under consideration. Therefore, credit risky assets, such
as corporate bonds or debt, should satisfy such a dependence feature. Many

∗ I would like to thank participants at the International AFFI conference (Cergy, France, June
2004) and Deloitte Risk Management Conference (Antwerp, Belgium, May 2005). I also thank
Professors J.-P. Chateau and J. Wu (ESC Rouen) for their remarks. The usual disclaimer applies.
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authors have investigated this assumption to test whether credit risk is of
systematic or idiosyncratic nature. We focus on the most recent findings (see
Gatfaoui, 2003, for a brief survey).

In 1989, Fama and French showed the influence of systematic risk on
default risk premia of corporate bonds. Specifically, as systematic risk is cor-
related with macro-economy, its influence on credit risk is studied through
business-cycle indicators (see Wilson, 1998; Nickell, Perraudin and Varotto,
2000; Gatfaoui and Radacal, 2001; Bangia, Diebold, Kronimus, Schlagen
and Schuermann, 2002). Further, Spahr, Schwebach and Sunderman (2002)
study speculative grade debt along with the (Fama and French, 1989) defini-
tion of bonds’ risk premia. Estimating historical default losses with Altman’s
actuarial approach, the authors find that the speculative bond market prices
both default and systematic risk with efficiency. Studying contemporane-
ous and first order correlations between frequency and severity of annual
defaults, they show that default and systematic risk are coincident risks. In
the same way, Koopman and Lucas (2005) resort to a multivariate unob-
served component approach to describe jointly credit spreads and business
failure rates with macro-economic behavior. They find empirical evidence
of a correlation between credit risk and macro-economy. Moreover, Elton,
Gruber, Agrawal and Mann (2001) show the existence of a systematic risk
premium in corporate spot spreads (for example, the difference between
corporate and Treasury yields). Further, Delianedis and Geske (2001) study
the components of corporate credit spreads in the lens of a structural model.
First, they find that default risk represents only a small portion of credit
spreads. Then, they conclude that both default and recovery risk fail to
explain fully credit risk and credit spreads whereas taxes, jumps in firm
value, liquidity and market risk factors explain mainly such variables. More
precisely, Collin-Dufresne, Goldstein and Martin (2001) find that a com-
mon latent factor in corporate bonds drives mostly credit spreads’ changes.
Analogously, Aramov, Jostova and Philipov (2004) find that systematic fac-
tors drive two thirds of credit spread changes whereas the other third is
driven by firm-level fundamentals. Differently, Campbell and Taksler (2003)
study the effect of equity volatility on corporate bond yields. They find that
idiosyncratic volatility is as much important as credit ratings in explaining
cross-sectional variation in yields. On average, idiosyncratic risk and rat-
ings explain two-thirds of such variations. Along the same lines, Malkiel
and Xu (2002) conclude that idiosyncratic volatility explains cross-sectional
expected asset returns more than the CAPM beta coefficient or size measures
do. Linear as well as non-linear influences of the beta coefficient on returns
are mitigated. Later in 2003, they show that idiosyncratic risk affects market
returns. Whereas, Goyal, and Santa-Clara (2003) study the average stock
risk in addition to market risk. They estimate the average stock risk (for
example, cross-sectional average stock variances) with the methodology of
Campbell, Lettau, Malkiel and Xu (2001). First, they find that average stock
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risk is mainly driven by idiosyncratic risk (Campbell and Taksler, 2003).
Though market variance has no predictive power for market return, a sig-
nificant positive relationship prevails between average stock variance and
market return. Finally, Stein, Kocagil, Bohn and Akhavein (2003) analyze
default risk in the lens of idiosyncratic and systematic risk. Given their
results, idiosyncratic information is mostly important for predicting middle
market defaults.

Documented research has shed light on the typology and components
of credit risk. Given the state of the art, credit risk has to be envisioned
along with two dimensions, namely systematic and idiosyncratic risk. Such
a typology is used by Gatfaoui (2003) to price risky debt in a Merton (1974)
framework where diffusion parameters are constant. However, under its
constant parameter assumption, Merton’s model leads to implied spreads,
which are far below observed credit spreads. Indeed, Eom, Helwege, and
Huang (2004) show that adding stochastic interest rates correlated with
firm value in Merton’s model fails to offset the implied credit spreads’ pre-
diction problem. To solve this problem, Hull, Nelken, and White (2003)
study the implications of Merton’s model regarding implied at-the-money
volatility and volatility skews. Their findings are supported by empirical
data. First, implied volatility is sufficient to predict credit spreads. Second,
there is a positive relationship between credit spreads and implied volatility,
and between volatility skews and both implied credit spreads and implied
volatility.

Third, implied volatility plays a major role in explaining credit spreads.
Finally, as historical volatility leads to implied credit spreads, which
underestimate their observed counterparts, the implied volatility approach
exhibits a superior performance in predicting credit spreads over time. Such
findings are consistent with Black and Scholes (1973) option pricing-type
models. Specifically, such models exhibit a volatility smile (for exam-
ple, implied volatility is a U-shaped function of the option’s moneyness),
which is determined by stochastic volatility, maturity and systematic risk
among others (see Äijö, 2003; Backus, Foresi, Li and Wu, 1997; Duque
and Lopes, 2003 for details, and Psychoyios, Skiadopoulos and Alexakis,
2003, for a survey about stylized facts of volatility as well as stochastic
volatility models). Moreover, Eberlein, Kallsen and Kristen (2002/2003)
study different representations of asset returns’ volatility. They consider
successively a constant parameter, a non-parametric model, a GARCH
model, an autoregressive exponential model, a composite model,1 and
finally a stochastic volatility diffusion model generating an implied volatil-
ity. Their classification according to Basel rules2 shows that first implied
volatility models, and second GARCH-type models perform much bet-
ter than other volatility representations in terms of Value-at-Risk forecasts
(for example, frequency of excessive losses that determines required capital
reserves).
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In the light of such results, we extend the work of Gatfaoui (2003) to
price risky debt in a Merton framework with stochastic volatility. For this
purpose, our chapter is organized as follows: section 6.2 states the basis for
the stochastic functional-based credit pricing model, then we underline the
link with stochastic volatility models and introduce our pricing methodol-
ogy. After specifying our stochastic functionals, we formalize our stochastic
volatility model in section 6.3. Then, section 6.4 undertakes a simulation
study to assess the impact of stochastic volatility both on risky debt val-
uation and credit spreads, and finally section 6.5 draws some concluding
remarks.

6.2 THE GENERAL MODEL

We introduce the dynamic pricing of a firm’s risky debt while valuing its total
assets (for example, firm assets value). The mathematical background as well
as pricing methodology is introduced along with the setting proposed by
Gatfaoui (2003).

6.2.1 Basic setting

Consider a probability space (�, F, P) with a natural filtration Ft = σ(ws, 0≤
s≤ t) where w′

t = (WX
t , WI

t ). (WX
t ) and (WI

t ) are two independent P-Brownian
motions and represent the public information set at current time t. Let
F = (Ft)t∈ [0,T] be the P-augmentation of Ft with T< ∞. We set the assump-
tions prevailing in the Black and Scholes (1973) and Merton (1974) worlds
except that diffusion parameters are rather stochastic than constant (for
example, incompleteness of financial market). Briefly, there is no arbitrage
opportunity and the spot risk free interest rate r is constant.

Consider a firm whose assets value at current time t is Vt, which is an
Ft-adapted process. This firm is supposed to issue two kinds of financial
assets, namely a risky debt represented by a discount bond maturing at time
T with terminal value B (for example, promised payment to debtholders),
and no-dividend-paying equity. The firm’s potential default can only occur
at time T. Let Xt and It be the systematic and idiosyncratic risk factors
respectively, describing any financial asset in the market, and therefore firm
value. Namely, Xt represents that part of firm value, which depends purely
on market conditions, and It represents that part of firm value, which results
from firm-specific patterns. These two risk factors are Ft-adapted processes
whose dynamics are:

dXt

Xt
= µX(t, Xt)dt + σX(t, Xt)dWX

t (6.1)
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dIt

It
= µI(t, It)dt + σI (t, It)dWI

t (6.2)

where functionals µX(t, Xt), σX(t, Xt), µI(t, It) and σI(t, It) are continuous Ft-
measurable functions on [0,T]×R. To ensure strong solutions to previous
SDEs, we assume that these functionals are also bounded (Karatzas and
Shreve, 1991). For this purpose, we set whatever t∈ [0, T] and Xt, It ∈R:
µl

X <µX(t, Xt)<µu
X , σl

X <σX(t, Xt)<σu
X , µl

I <µI(t, It)<µu
I , σl

I <σI(t, It)<σu
I

with µl
X ,µu

X , σl
X > 0, σu

X ,µl
I ,µ

u
I , σl

I > 0, σu
I constant values. As introduced in

Gatfaoui (2003), the dependence of firm assets value vis-à-vis the two risk
factors is as follows:

Vt = Xβ
t It (6.3)

where β is the beta of firm assets value (for example, a constant estimate over
our time horizon) as defined by the CAPM. Recall that X represents market
conditions as well as business cycle, and I represents firm-specific features
such as default and liquidity risk. Moreover, beta parameter is commonly
thought as a systematic risk measure. As in Gatfaoui (2003), observing simul-
taneously systematic risk factor X and idiosyncratic risk factor I is equivalent
to observe simultaneously firm assets value V and its specific risk factor I.
Moreover, applying generalized Ito’s lemma leads to the next expression for
firm value under original probability P:3

dVt

Vt
= µV(t, Vt, It)dt +

[
βσX(t, Xt)dWX

t + σI(t, It)dWI
t

]
(6.4)

with4 µV(t, Vt, It) = βµX

(
t,
(

Vt
It

) 1
β

)
+µI(t, It)+ 1

2β(β − 1)σ2
X

(
t,
(

Vt
It

) 1
β

)
.

Setting d〈V, I〉t = ρ(t, Vt, It)dt, the instantaneous (stochastic) correlation
between firm value and its idiosyncratic risk factor is then:

ρ(t, Vt, It) = σI(t, It)
σV(t, Vt, It)

(6.5)

whereσV(t, Vt, It)=
√
β2σ2

X

(
t,
(

Vt
It

) 1
β

)
+ σ2

I (t, It) is the global volatility of the

instantaneous return of a firm’s assets value. This global stochastic volatility
depends on the beta parameter, and the respective volatilities of the two risk
factors affecting firm value. Since our diffusions’ functionals are bounded,
global volatility is therefore bounded as a continuous function of these func-
tionals. Our specification follows the results of Campbell, Lettau, Malkiel
and Xu (2001) who show that the global volatility of any financial asset has
both a systematic component (systematic volatility) and an idiosyncratic
component (a specific volatility). Specifically, unsystematic volatility allows
for accounting for security- as well as event-specific factors (for example,
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financial and corporate events), which are known to impact asset returns’
volatility (Hilliard and Savickas, 2002). However, though idiosyncratic risk
plays an increasing role, given market history, global volatility remains
driven by its systematic component (market volatility). Recall that global
volatility is the global risk level’s target of the firm in accordance with its
shareholders’ interests (financial and dividend policies). Moreover, volatil-
ity is also considered as a proxy of liquidity risk. Indeed, Karpoff (1987),
Lamoureux and Lastrapes (1990) and Schwert (1989) show that volatility is
correlated with trading volume.

Moreover, considering expression (6.5) of the correlation coefficient and
the firm’s value dynamic (6.4), the diffusion of the firm’s assets value takes
a new form in the historical universe:

dVt

Vt
= µV(t, Vt, It)dt + σV(t, Vt, It)

[
ςβ

√
1 − ρ2(t, Vt, It)dWX

t

+ ρ(t, Vt, It) dWI
t

]
(6.6)

where ζβ= sign(β) represents the sign of beta (for example, ζβ= 1 if β≥ 0
and ζβ=−1 if β< 0). Therefore, describing the firm value’s dynamic with
relations (6.1), (6.2) and (6.3) is equivalent to characterizing the firm’s assets
value with relations (6.4) or, equivalently, (6.6) and (6.2). As this specifica-
tion introduces two risk factors whilst we only observe firm assets value, we
therefore lie in an incomplete market. Such a setting appears to be equiv-
alent to a stochastic volatility framework provided that global volatility
σV(t, Vt, It) is non-zero whatever (t, Vt, It)∈ [0, T] × R2.

6.2.2 Stochastic volatility and Merton’s pricing

Indeed, relations (6.6) and (6.2) are similar to the state-diffusion and stochas-
tic volatility model of Hofmann, Platen and Schweizer (1992). In this case,
we have more risk factors (systematic and idiosyncratic risk) than exist-
ing or, equivalently, primary assets (firm value). Consequently, we are
unable to give a unique price to any contingent claim on firm assets value.
At best, we can define bounds for such a price (Frey and Sin, 1999) or
minimize the uncertainty while computing a price. We address these two
points therein. First, to shed light on the stochastic volatility analogy, we
assume that firm value’s global volatility σV(t, Vt, It) is a C1,2([0, T] × R2)
function (continuous, once derivable relative to time, and twice derivable
relative to its two last arguments). It is sufficient to assume that σX(t, Xt)
and σI(t, It) are two C1,2([0, T] × R2) functions. Consider the firm value’s
global variance R(t, Vt, It)= σV

2(t, Vt, It), and let Rx(t, Vt, It)= ∂R(t, Vt, It)/
∂x, Rxx(t, Vt, It)= ∂2R(t, Vt, It)/∂x2 and Rxy(t,Vt, It)= ∂2R(t, Vt, It)/∂x∂y for
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x, y∈ {t, Vt, It}. Applying multivariate Ito’s lemma to the global variance of
firm value’s instantaneous return gives dR(t, Vt, It)=Trend dt + Vol1 dWX

t +
Vol2 dWI

t :

Trend = Rt(t, Vt, It) + RV(t, Vt, It) VtµV(t, Vt, It) + RI(t, Vt, It)µI(t, It) It

where

+ RVV(t, Vt, It)
2

σ2
V(t, Vt, It) V2

t + RII(t, Vt, It)
2

σ2
I (t, It) I2

t

+RVI(t, Vt, It) σV(t, Vt, It) Vtρ(t, Vt, It) σI(t, It) It

Vol1 = RV(t, Vt, It)σV(t, Vt, It)Vtςβ

√
1 − ρ2(t, Vt, It)

Vol2 = RV(t, Vt, It)σV(t, Vt, It)Vtρ(t, Vt, It) + RI(t, Vt, It)σI(t, It) It

Hence, the stochastic volatility framework becomes obvious. Indeed, the
dynamics of firm value and its global variance depend on two stochas-
tic parts which are correlated.5 This setting has important implications for
Merton-type pricing models.

Following Merton (1974), the firm assets value is the sum of equity value
E(V, τ) and debt value D(V, τ) such that Vt =E(Vt, τ) + D(Vt, τ) with τ= (T−
t) time to maturity, and following conditions: E(0, τ)= 0, E(Vt, τ)=Vt −
D(Vt, τ)≥ 0, E(VT , 0)=max(0, VT − B)= (VT − B)+. The option nature of
a firm’s balance sheet leads to consider equity as a European call on firm
value, with a strike equal to the promised payment (to debtholders) at firm
debt’s maturity. Hence, valuing risky debt requires pricing a European call.
However, as we lie in an incomplete market, there exists an infinity of equiv-
alent martingale measures allowing to price this European call (Mele and
Fornari, 2000). On the other hand, taking the risk-free asset as a numeraire,
the discount price of firm value becomes a semi-martingale under histor-
ical probability P. Nevertheless, among the set of equivalent martingale
measures compatible with V, there exists a unique equivalent martingale
measure P̂, which minimizes the surrounding uncertainty or, equivalently,
the relative entropy measure (Delbaen and Schachermayer, 1996; Föllmer
and Schweizer, 1991; Gouriéroux, Laurent and Pham, 1998; Musiela and
Rutkowski, 1998). Similar to a Hull and White (1987) setting, fluctuations in
stochastic volatility generate a risk, which is not compensated. This feature
explains the existence of P̂, which is called the minimal equivalent martin-
gale measure. Probability measure P̂ is uniquely defined by its Girsanov
density (Karatzas and Shreve, 1991) and Karatzas (1996) as:

L̂(t) = dP̂
dP

∣∣∣∣∣
Ft

= exp
{
− ∫ t

0 α1(s, Vs, Is)dWX
s − ∫ t

0 α2(s, Vs, Is)dWI
s

}
× exp

{
− 1

2

∫ t
0 (s, Vs, Is)ds

}
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where α1(t, Vt, It)=α(t, Vt, It)ςβ
√

1 − ρ2(t, Vt, It); α2(t, Vt, It)=α(t, Vt, It)
ρ(t, Vt, It) ; α(t, Vt, It)= µV (t, Vt, It)−r

σV (t, Vt, It)
.

α(t, Vt, It) is the global market risk premium due to the global (aggregate)
risk borne by firm value whereas α1(t, Vt, It) and α2(t, Vt, It) are the market
risk premia related respectively to the systematic and idiosyncratic risk fac-
tors affecting firm value. Consequently, the dynamic of ln(V) (for example,
firm value’s dynamic) under the minimal martingale measure P̂ writes after
applying generalized Ito’s lemma:

d ln (Vt) =
[

r − σ2
V(t, Vt, It)

2

]
dt + σV(t, Vt, It) ςβ

√
1 − ρ2(t, Vt, It)dŴX

t

+ σV(t, Vt, It) ρ(t, Vt, It)dŴI
t (6.7)

where dŴX
t =α1(t, Vt, It)dt+ dWX

t and dŴI
t =α2(t, Vt, It)dt+ dWI

t are two
independent Ft-adapted P̂-Brownian motions. Under the incomplete-
market assumption, the no-arbitrage principle and minimal martingale
measure allow us to price the European call on firm value V (see Hofmann,
Platen and Schweizer (1992) for option pricing in an incomplete market,
and El Karoui, Jeanblanc and Shreve (1998) for properties of the Black and
Scholes formula). Indeed, the European call’s current value (firm’s equity)
is the expected discount value of its terminal payoff:

E(Vt, τ) = EP̂ ⌊ e−rτ(VT − B)+
∣∣Ft

⌋
(6.8)

Using a Monte Carlo method (Jäckel, 2002) allows us to compute this
expectation, and finally estimate debt value since we have D(Vt, τ) =
Vt − E(Vt, τ) = Vt − EP̂� e−rτ(VT − B)+

∣∣Ft�.
The stochastic volatility framework has nice properties since it adds flex-

ibility to asset pricing, and then can improve Merton’s debt valuation.
However, the computational cost may be high since we need to simulate
two Brownian motion paths. Nevertheless, such a setting may be extremely
simple in some cases and highly useful for debt pricing. We focus on some
useful and optimal simplification for Merton’s debt pricing.

6.3 A STOCHASTIC VOLATILITY MODEL

In this section, we price risky debt under our previous stochastic volatility
framework. We start from a general case, and then concentrate on a particu-
lar case while specifying our functionals. Our simplified framework allows
for a tractable and easy computation of a firm’s debt.
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6.3.1 Model specification

Targeting a convenient degree of simplification, we make two major assump-
tions. First, we assume that the volatility functional of the idiosyncratic risk
factor depends only on I. Second, we assume that the drift and volatil-
ity functionals of the systematic risk factor are deterministic functions of
time. Our assumptions are motivated by the empirical features exhibited
by equity volatility. To account for realistic features of equity volatility (see
Psychoyios, Skiadopoulos and Alexakis, 2003, and Phoa, 2003), the stochas-
tic global volatility of firm value has to be a stationary and mean reverting
process (to encompass some shock effects on volatility). We explain therein
how our assumptions fit the empirical characteristics.

Let constant real numbers ω and δ depend on prevailing financial and
economic conditions, and assume that whatever t∈ ]0, T] forµX(t) and σX(t),
and whatever t∈ [0,T] else:

µX(t) = ωtδ σX(t) = γtα µI(It) = λ

(
ε

It
− 1

)
σI(It) = �

√
It

where γ > 0, α< 0, λ> 0, ∈ > 0 and, �> 0 are constant parameters such that:

dXt

Xt
= ωtδdt + γtα dWX

t dIt = λ(ε− It)dt +�It
√

ItdWI
t

We can also assume that debt is issued at time t0 > 0 and matures at
T = t0 + τ where τ is the initial lifetime of debt. Moreover, we exclude the
case t= 0 for µX(t) since δ can take negative values. We also assume that
µX(0)=µ0 and σX(0)= σ0 where µ0 ∈R and σ0 > 0 are bounded constant
values. Hence, the variance of instantaneous return of firm value writes
σ2

V(t, It)= β2σ2
X(t)+ σ2

I (It)=β2γ2t2α+�2It =R(t, It) whatever t∈ ]0, T], with
R(0, I0)= σ2

V(0, I0)=β2σ2
0 +�2I0 being bounded. Our specification is con-

sistent with Andersen, Bollerslev, Diebold and Ebens (2001) who study
model-free measures of volatility and correlation of daily stock prices. The
authors analyse time-varying features of stock returns (see, Bekaert and
Wu, 2000; Bollerslev and Mikkelsen, 1999; Campbell, Lettau, Malkiel and
Xu, 2001; Christensen and Prabhala, 1998) and they find two main results.
First, variances exhibit a systematic common component in their evolution.
Second, an asymmetric relationship prevails between returns and volatility.
We then obtain:

RV(t, It) = RVV(t, It) = RII(t, It) = RIV(t, It) = 0 RI(t, It) = �2

Rt(t, It) = 2αβ2γ2t2α−1

In this case, the variance satisfies the following SDE in historical universe:

dR(t, It) =
[
2αβ2γ2t2α−1 +�2λ(ε− It)

]
dt +�3It

√
It dWI

t (6.9)
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or, equivalently, under the minimal martingale measure:

dR(t, It) =
⌊

2αβ2γ2t2α−1 +�2λ(ε− It) −�3It
√

Itα2(t, It)
⌋

dt +�3It
√

It dŴI
t

with α2(t, It)= µV (t, It)− r
σV (t, It)

ρ(t, It) ; ρ(t, It)= σI (t, It)
σV (t, It)

; µV(t, It)=βµX(t)+µI(t, It)+
1
2β(β − 1) σ2

X(t).
In the original universe, such a diffusion process behaves almost like a

mean reverting square-root process except that the random shocks affecting
its trend are higher in magnitude.6 Moreover, when time t tends towards
infinity, the stochastic variance of a firm’s value tends towards R(t, It)=�2It
such that global volatility reads

√
R(t, It)=�

√
It. In the same way, the

previous diffusion asymptotically takes the new form:

dR(t, It) = λ
[
�2ε− R(t, It)

]
dt + R(t, It)

√
R(t, It) dWI

t

If variance is asymptotically zero, then its diffusion becomes
dR(t, It)= λ�2ε dt> 0. Therefore, when t tends towards infinity and variance
is zero, the zero threshold becomes a reflecting barrier for firm value’s vari-
ance. Indeed, empirical features of equity volatility exhibit stationarity and
mean reversion patterns. In the asymptotic case, �2ε is the long-run mean
of firm value’s stochastic variance, and λ is the velocity of mean reversion.
Our specification implies that the randomness in global variance comes only
from idiosyncratic risk factor. Indeed, stochastic volatility comes from the
non-observability of idiosyncratic risk factor. Namely, stochastic volatility
is due to the intrinsic risk of firm value because such a risk is non-tradable.
This setting gives some nice properties to firm’s debt pricing. Under this
framework, the next section undertakes some simulations of It and R(t, It)
for given parameter values, and varying β and λ.

6.3.2 Implication for debt pricing

The randomness of firm value’s variance depends only on idiosyncratic
risk factor (relation (6.9)). Moreover, correlation coefficient now expresses
ρ(t, It)= �

√
It√

β2γ2t2α +�2It
, and the firm value’s dynamic under the minimal

martingale measure P̂ then reads on time subset [t, T]:

ln
(

VT

Vt

)
=
(

r − σ̄2
V

2

)
τ +

∫ T

t
σV(s, Is)ςβ

√
1 − ρ2(s, Is)dŴX

s

+
∫ T

t
σV(s, Is) ρ(s, Is)dŴI

s

where σ̄2
V = 1

τ

∫ T
t σ2

V(s, Is)ds is the firm value’s average variance over the
time to maturity of debt (remaining life of the European call). Consider
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Gt =Ft ∪ {Is, t≤ s≤T} and compute the two first moments of probability dis-

tribution of ln
(

VT
Vt

)
conditional on Gt: EP̂

[
ln
(

VT
Vt

)∣∣∣Gt

]
=

(
r − σ̄2

V
2

)
τ, and

VarP̂
[

ln
(

VT
Vt

)∣∣∣ Gt

]
= σ̄2

V τ.7 Hence, conditional on Gt, the firm value’s natu-

ral logarithm ln
(

VT
Vt

)
follows a normal law (firm value follows a lognormal

law) with volatility parameter
√
σ̄2

V .
On the other hand, recall expression (6.8) of firm’s equity or, equi-

valently, the European call on firm value under the minimal martingale
measure. Applying the iterated expectations theorem, we get E(Vt, τ)=
EP̂

⌊
EP̂ [ e−rτ(VT − B)+

∣∣Gt
]∣∣∣Ft

⌋
. However, given the law of ln

(
VT
Vt

)
condi-

tional on Gt, equity value then reads E(Vt, τ)=EP̂
[

CBS

(
τ, r, Vt, B,

√
σ̄2

V

)∣∣∣∣Ft

]
where CBS

(
τ, r, Vt, B,

√
σ̄2

V

)
is the Black and Scholes (1973) price employed

with an average time-dependent volatility. Consequently, equity value is the
average Black and Scholes European call price over each possible volatility
path. Our deterministic systematic risk volatility assumption leads then to
an optimal Monte Carlo European call pricing. Indeed, we only need to
generate one Brownian motion, namely the randomness affecting stochastic
volatility (for example, idiosyncratic risk’s Brownian motion). This setting
allows a simple computation of debt value since:

D(Vt, τ) = Vt − EP̂
[

CBS

(
τ, r, Vt, B,

√
σ̄2

V

)∣∣∣∣ Ft

]
(6.10)

Given current information set, we can price firm’s debt such that
uncertainty is minimized. Moreover, as functional diffusion parameters
are bounded on [0, T], stochastic volatility is also bounded whatever
t∈ [0, T] since σl

V <σV(t, It)
√

1 − ρ2(s, Is)<σu
V , with σl

V =β2σl2
X + σl2

I > 0 and
σu

V =β2σu2
X + σu2

I . Therefore, the Black & Scholes call price is bounded by
(Frey and Sin, 1999):

CBS(τ, r, Vt, B, σl
V) < CBS

(
τ, r, Vt, B,

√
σ̄2

V

)
< CBS(τ, r, Vt, B, σu

V) (6.11)

which implies that both firm equity and debt values are bounded. We are
then able to price corporate debt under the minimal martingale measure. We
can also establish debt bounds depending on the magnitude of variations
in firm value’s volatility. Under our assumptions, systematic risk drives
volatility’s trend whereas idiosyncratic risk affects this trend through shocks.
Consequently, the magnitude of variations in firm value’s global volatility
is driven by the impact of both systematic and idiosyncratic risk factors.
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6.4 SIMULATION STUDY

We use Monte Carlo accelerators to examine behaviors of debt pricing as
well as its related credit spread in a stochastic volatility setting. We study
our pricing framework as a function of a systematic risk measure β and
velocity λ. For statistical investigation purposes, the range of values we
consider can be larger than the realistic range of values that describes the
real world.

6.4.1 Volatility and debt

We simulate stochastic volatility and its impact on a firm’s debt and equity.
Then, we plot the paths obtained for these random variables or display their
average values (arithmetic means of simulated data). Assuming that the
initial debt’s time to maturity is τ=T − t= 10 years, we set α=− 1

4 , ε= 0.5,

γ = 1, It = 3.5, �=
√

0.2
ε

, and R(t, It)=β2t−
1
2 + 0.4 It. Specifically, we assume

that debt is issued at time t> 0 and matures at T = t+ τ. We also assume
that the starting value of the remaining life of firm’s debt is τ= τ0 = 10 years.
Daily values of global volatility

√
R(t, It) (equation (6.9)) are computed for

different values of beta and lambda parameters (for example, β= 0, 0.5, 1,
1.5 and λ= 0.2, 1, 5) with t running from T-t to T (see Figures 6.1 to 6.3).
Recall that Vt = It when β= 0. Moreover, only β2 intervenes in our global
volatility.

The higher lambda is, the more stable are the evolutions and convergence
to long-run means of stochastic volatility

√
R(t, It), idiosyncratic factor It
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Figure 6.1 Simulated volatility when λ=0.2
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and correlation coefficient ρ(t, It). On the other hand, the greater beta is,
the higher firm value’s volatility is for fixed λ. An increase in firm’s global
volatility can result from short-term capital movements as well as short-
term investments among others. Moreover, Savickas (2003) focuses on event-
induced variance increases while underlining the stochastic feature of asset
returns’ volatility. Specifically, the occurrence of given events in the market
often engenders increases in volatility of asset returns. In contrast, the higher
beta is, the lower the correlation coefficient becomes (Table 6.1). Notice that
the idiosyncratic risk factor It depends only on λ and not on β.

Since I is independent of β, its average simulated values are 2.10, 1.50 and
0.60 whenλ is 0.2, 1 and 5 respectively. First, the average level of idiosyncratic
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Figure 6.2 Simulated volatility when λ=1

0
11

3
22

6
33

9
45

2
58

6
67

8
79

1
90

4
10

17
11

30
12

43
13

56
14

69
15

82
16

95
18

08
19

21
20

34
21

47
22

60
23

73
24

86
25

99
27

12
28

25
29

38
30

51
31

64
32

77
33

90
35

03
36

16

Time (days)

2.5

2

1.5

Vo
la

til
ity

 (
10

 y
ea

rs
)

1

0

0.5

Beta � 0 Beta � 0.5 Beta � 1 Beta � 1.5

Figure 6.3 Simulated volatility when λ=5



120 ID IOSYNCRAT IC R ISK , SYSTEMATIC R ISK AND STOCHAST IC VOLAT IL ITY

Table 6.1 Average values of daily simulated variables on [t, T ]

Variable λ∓β 0 0.5 1 1.5

σV(%) 0.2 71.69 80.53 101.19 127.24

ρ 0.2 1.00 0.85 0.65 0.51

σV(%) 1 64.10 73.36 94.87 121.76

ρ 1 1.00 0.84 0.63 0.49

σV(%) 5 47.79 58.57 82.68 111.76

ρ 5 1.00 0.81 0.58 0.43

risk factor is a decreasing function of λ. Second, the average correlation
coefficient ρ(.) and global volatility σV(.) are respectively decreasing and
increasing functions of the absolute value of β. Such a behavior is trivial
given that ρ(.) is the correlation between firm value and its idiosyncratic
risk factor. Third, average correlation coefficient ρ(.) and global volatility
σV(.) are both decreasing functions of λ.

We further set It = 0.1 and assume ω= 0, which implies that µX(t)= 0
whatever t. The diffusion of the idiosyncratic factor under the minimal
martingale measure then writes as:

dIt =
[
λ(ε− It)− �2I2

t

σ2
V(t, It)

(µV(t, It) − r)

]
dt +�It

√
It dŴI

t

with σ2
V(t, Vt, It)=R(t, Vt, It), and µV(t, It)= λ( 0.5

It
− 1)+ 1

2β(β− 1)t− 1
2 . Then,

the related average stochastic variance σ̄2
V conditional on Gt reads

σ̄2
V = 1

τ

∫ T
t σ2

V(s, Is)ds= 2β2

τ

(√
T −√

t
)
+ �2

τ

∫ T
t Isds when ρ(s, Is) is zero.

From formula (6.10), debt computation requires the estimation of the
call’s price, which we realize with Monte Carlo simulation and antithetic
variables-based accelerators for variance reduction principle (Jäckel, 2002;
Ripley, 1987; Rubinstein, 1981). Let nsim be the number of simulations and
CBS,k(.) be the call’s price of the k-th simulation. Then, the estimated equity
value conditional on current information is the arithmetic mean of simulated
variables, namely:

E(Vt, τ) = EP̂
[

CBS

(
τ, r, Vt, B,

√
σ̄2

V

)∣∣∣∣Ft

]

= 1
nsim

nsim∑
k=1

CBS,k

(
τ, r, Vt, B,

√
σ̄2

V

)
+ CBS,k

(
τ, r, Vt, B,−

√
σ̄2

V

)
2

We realize monthly simulations with r = 8%, B= 13, Vt = 52 where V and
B are expressed in billions of dollars. Our examination then uses varying
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Table 6.2 Average monthly simulated values of firm’s debt

�
�

�
λ

β −1.5 −1 −0.5 0 0.5 1 1.5

0.2 2.25 4.93 8.02 8.94 7.65 4.24 1.79

1 3.48 4.54 7.47 8.94 6.86 3.75 1.82

5 3.70 4.34 7.08 8.94 6.72 3.65 1.88

moneyness (ratio Vt/B), volatility and time to maturity insofar as we focus
on the combined effect of these determinants. After nsim= 1000 simulations,
we compute average values of firm’s debt for various levels of β and λ; as
in Table 6.2.

Whatever λ, the firm’s average debt is a concave function of β with a
maximal value at β∗ = 0. When |β|< 1.5, debt is a decreasing function of
λ. In contrast, when |β|> 1.5, the reverse behavior takes place. Moreover,
average debt’s value is constant whatever λ when β= 0 since debt value
is independent of λ under the minimal martingale measure. Debt value
depends on equity, and equity does not depend on λ under the minimal
martingale measure. Indeed, equity is a function of both firm value and
idiosyncratic risk factor (see European call’s expression). However, neither
firm value nor idiosyncratic factor depends on λ when β is zero. Finally,
realistic values of beta in Table 6.2 (for example, β∈ [0, 1]) lead to interesting
conclusions. First, an increase in beta generates a decrease in debt value.
Namely, increasing systematic risk’s impact allows for reducing debt level.
Such a pattern represents the kind of phenomenon that takes place in a good
side of business cycle. Indeed, a growth business cycle trend will improve
the financial market’s trend. Hence, increasing the correlation between firm
value and market will decrease the firm’s credit risk and debt level (good
spillover effect, and benefits from the good side of the business cycle). Sec-
ond, increasing idiosyncratic risk control (high λ) reduces the firm value’s
global risk, and then decreases the debt level for a given systematic risk
level. Hence, when idiosyncratic risk is managed and stabilized around a
convenient level, the firm can concentrate on the systematic risk side that
impacts its business profile and profits. Systematic risk becomes the most
important risk dimension in this case. Conversely, when idiosyncratic risk
cannot be conveniently managed (low λ), such a risk can highly disturb
the firm’s financial and economic equilibrium since market conditions can
strongly magnify its consequences. Specifically, the firm can undergo hard
times before any mean reversion in idiosyncratic risk occurs. The two dimen-
sions of a firm’s business risk have then to be jointly managed. Indeed, the
firm exhibits an increased level of structural financial risk when idiosyncratic
risk is uncontrolled. Namely, the firm’s accounting and financial patterns
usually behave quite badly in such a situation (see Table 6.3).
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Table 6.3 Average monthly simulated values of firm’s equity

�
�

�
λ

β −1.5 −1 −0.5 0 0.5 1 1.5

0.2 50.07 61.55 70.32 71.52 56.83 59.55 129.46

1 51.19 60.47 67.87 71.52 52.76 58.64 135.57

5 54.15 62.77 70.97 71.52 57.51 65.90 154.30

Table 6.4 Average monthly simulated values of path dependent
stochastic volatility in percent

�
�

�
λ

β −1.5 −1 −0.5 0 0.5 1 1.5

0.2 85.32 68.82 45.45 27.22 50.20 71.45 97.46

1 84.53 73.00 51.80 27.22 58.28 75.32 100.10

5 82.96 74.39 54.19 27.22 56.56 74.97 100.26

Generally, equity is a non-monotonous function of β and λ parameters.
Equity increases for growing β≤ 0, decreases in β= 0.5, and goes on increas-
ing for growing β∈ ]0.5, 1.5]. Specifically, equity is a convex function of λ for
|β|< 1.5 with a minimum at λ∗ = 1. Finally, it becomes an increasing func-
tion of λ for |β| = 1.5. Hence, results show global volatility’s impact on both
firm’s equity and debt. Incidentally, existing literature has also shown that
firm’s global volatility impacts capital structure. Indeed, Leland and Toft
(1996) shows that the longer debt’s maturity is, the more sensitive are firm
and debt values to firm value’s global volatility. Moreover, the sensitivity of
debt relative to an increase in global volatility reacts in the opposite way to
equity’s sensitivity relative to the same increase in global volatility.

Briefly, we also display in Table 6.4 the conditional expected value of
average monthly stochastic volatility

σ̄e
V = EP̂

√
1
τ

∫ T

t
σ2

V(s, Is)ds

∣∣∣∣∣∣Gt

 = EP̂
[√

σ̄2
V

∣∣∣∣Gt

]
over the remaining time to maturity of debt, and under the minimal mar-
tingale measure. The stochastic integral composing firm value’s variance
is computed using the finite difference method, and average stochastic
volatility is computed always using Monte Carlo simulation methodology.

Whatever λ, the average stochastic volatility is a convex function of β
with a minimal value at β∗ = 0. When −1.5<β< 0 and β= 1.5, the average
stochastic volatility is an increasing function ofλ. In contrast, whenβ=−1.5,
the average stochastic volatility decreases as a function of λ. On the other
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Table 6.5 Average monthly simulated values of credit spreads in basis
points

�
�

�
λ

β −1.5 −1 −0.5 0 0.5 1 1.5

0.2 4265.33 1921.20 345.89 2.86 507.29 2486.03 5285.82

1 2945.94 2194.89 566.89 2.86 862.23 2908.93 5156.47

5 2748.30 2348.05 743.01 2.86 938.75 2982.52 5030.70

hand, when β= 0.5 or β= 1, the average stochastic volatility is a concave
function of λ. Moreover, the average stochastic volatility is constant what-
ever λ when β= 0. Such a behavior of stochastic volatility has some impact
on the term structure of corporate credit spreads.

6.4.2 Credit spread

We extend our study while assessing the impact of stochastic volatility on
credit spreads. In particular, we focus on the term structure of credit spreads.

Let y(τ) be the yield-to-maturity of firm’s risky debt (for example, the
default risky yield). Such a yield is linked with the current value of firm’s

debt such that D(Vt, τ)= e−y(τ)τB, which implies that y(τ)= −1
τ

ln
(

D(Vt,τ)
B

)
.

Hence, related credit spreads (for example, yield spreads against gov-

ernment bonds) write S(τ)= y(τ) − r = −1
τ

ln
(

D(Vt, τ)
B

)
− r. For the sake of

simplicity, we assume a flat risk-free term structure here. Then, simulated
debt values allow to compute monthly related credit spreads with varying
moneyness and time to maturity. Results are first displayed in Table 6.5.
Second, part of these results is summarized in Figure 6.4, which plots credit
spreads when lambda is 5.

Whatever λ, credit spreads are a convex function of β with a minimum
at β∗ = 0. Moreover, credit spread behaviors relative to λ are mitigated. For
|β| = 1.5, credit spreads are decreasing functions of λ whereas the reverse
is true for |β| = 0.5 or 1. Finally, credit spreads are constant when β= 0 due
to the independence of debt relative to λ under the minimal martingale
measure.

First, the higher the absolute value of beta is, the wider the related credit
spread becomes for a given level of lambda. Second, the credit spread’s
level related to a given negative value of beta lies slightly under the credit
spread’s level related to the corresponding positive value of beta. Finally,
credit spreads are convex decreasing functions of time to maturity. Equiv-
alently, credit spreads are convex increasing functions of debt’s maturity.
Indeed, when time to maturity τ decreases from τ0 = 10 years to 0, maturity
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Figure 6.4 Credit spread when λ=5

Tincreases from current time t to (t+ τ0). Moreover, current time t is equal to
(T − τ0) and T when τ is respectively τ0 and 0. Such a behavior is consistent
with the work of Collin-Dufresne and Goldstein (2001) and Gemmill (2002).
Indeed, Gemmill (2002) exhibits an upward-sloping credit spread term
structure, which is consistent with Merton-type profiles provided that firms’
leverages exhibit a drift over time. Collin-Dufresne and Goldstein (2001) find
a convex decreasing shape (relative to time to maturity) for credit spreads of
firms with stationary leverages. Moreover, the convexity pattern describes
investment grade bonds whereas a concavity pattern describes speculative
grade bonds (junk bonds). Analogously to Collin-Dufresne and Goldstein
(2001), we consider the quasi-debt leverage ratio dt = Be−rτ

Vt
of (Merton, 1974).

Our log-leverage ratio d�t = ln(dt) follows a stationary normal process such

that d�t ∼ N
(
σ2

V (t, Vt, It)
2 dt, σ2

V(t, Vt, It)dt
)

conditional on Ft. The starting value
of our quasi-debt leverage is 11.23% under our assumptions. Thus, we con-
sider investment grade-type debt in a high volatility framework where firm’s
global volatility stabilizes after the first five years following debt’s issue.
Notice that the first two moments describing dt’s lognormal law depend on
firm value’s global variance σ2

V(t, Vt, It), which follows an asymptotically
mean reverting process. However, unlike Collin-Dufresne and Goldstein
(2001), our quasi-debt leverage is not mean-reverting, which allows to take
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Table 6.6 Average bounds of simulated
aggregate volatility in percent

�
�

�
λ

β 0 0.5 1 1.5

0.2 17.84 41.13 64.68 90.34

34.04 65.74 103.07 151.35

1 17.84 45.10 66.92 92.17

34.04 84.04 104.06 151.45

5 17.84 46.56 67.91 92.39

34.04 74.97 103.63 151.33

into account part of speculative grade corporate debt. Under convenient
assumptions about starting values and stochastic variables, a relevant choice
of stochastic functionals will describe some specific rating grades among
given speculative grade rating classes of corporate debt.

In our bounded volatility/bounded diffusion parameters setting, we
can establish bounds for credit spreads. Hence, we propose an alternative
approach to the one of Chen and Huang (2002). The authors give analytical
bounds to credit spread term structure in order to solve the problem of neg-
ative implied default probabilities. Such a problem arises when calibrating
credit models to empirical data, and comes from the no-arbitrage principle’s
violation. In the same way, we establish bounds for implied credit spreads.
We first give the average aggregate volatility’s bounds we get under our
framework. Briefly, we compute related bounds σl

V and σu
V for our nsim

simulations of Vt, as well as the arithmetic mean of all obtained σl
V and σu

V
in Table 6.6.

Whatever λ, average volatility’s bounds are constant when β= 0.
When beta is non-zero, average aggregate volatility’s upper bounds
are concave functions of λ with a maximum value at λ∗ = 1. Dif-
ferently, average aggregate volatility’s lower bounds increase strictly
with λ. Moreover, our volatility’s bounds are increasing functions of
beta parameter. Consequently, formulae (6.10) and (6.11) allow to bound
debt Dl(τ)<D(Vt, τ)<Du(τ) with Dl(τ)=Vt −EP̂[CBS(τ, r, Vt, B, σu

V)|Ft] and

Du(τ)=Vt − EP̂[CBS(τ, r, Vt, B, σl
V)|Ft]. Thus, the risky yield-to-maturity

becomes bounded as 1
τ

ln
(

B
Du(τ)

)
< y(τ) < 1

τ
ln
(

B
Dl(τ)

)
. Hence, related credit

spread is bounded since Sl(τ)<S(τ)<Su(τ) where Sl(τ)= 1
τ

ln
(

B
Du(τ)

)
− r,

and Su(τ)= 1
τ

ln
(

B
Dl(τ)

)
− r (see Table 6.7).

Average credit spread bounds behave like the average monthly credit
spreads reported in Table 6.5. Therefore, we can give an interval for possible
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Table 6.7 Average bounds of simulated credit spreads in basis points

�
�

�
λ

β −1.5 −1 −0.5 0 0.5 1 1.5

0.2 3481.72 1349.20 159.84 0.06 205.49 1493.86 3779.83

5220.18 2316.99 373.59 20.93 614.73 2521.02 5686.73

1 2583.16 1479.75 268.96 0.06 305.11 2263.50 3549.02

3636.47 2394.72 665.56 20.93 1173.51 3260.99 5517.20

5 2537.73 1630.65 377.01 0.06 473.15 2422.85 3114.64

3231.33 2545.06 781.39 20.93 1215.32 3362.97 5178.89

variation of credit spread at each time between debt’s issue date and matu-
rity. Evolutions of credit spread bounds over time can be viewed as extreme
scenarios describing credit spread’s evolution (best and worst possible
situations).

6.5 CONCLUSION

We focused on the credit risk valuation of Gatfaoui (2003) whose model-
ing proposes to value corporate debt in a Merton framework, and accounts
for systematic and idiosyncratic risk. Specifically, the option nature of debt
allows the author to price corporate debt through a call on firm value con-
sistently with the constant parameter-based dynamics of systematic and
idiosyncratic risk factors. Our work addressed the extension of such a setting
in two key points.

First, we considered the stochastic parameter-based dynamics of the two
previous risk factors. Under regularity conditions, this setting is equivalent
to a stochastic volatility option pricing (stochastic credit pricing) model.
Namely, we consider two risk sources affecting firm value, whereas we only
observe firm value. Consequently, we lie in an incomplete market where
incompleteness is due to the unobservable idiosyncratic part of firm value
(incompleteness engenders a stochastic volatility for firm value). Hence,
the no-arbitrage principle and minimal martingale measure allow to price
firm’s equity and therefore debt. Such a valuation becomes possible in the
historical universe as well as the minimal martingale measure’s universe
under a bounded volatility assumption. The equivalent minimal martingale
measure is useful insofar as it reduces global risk to its minimal component,
namely intrinsic (idiosyncratic) risk.

Second, we illustrated such a framework while specifying the stochastic
parameters of the diffusions under consideration. We undertook corporate
debt pricing in a bounded volatility case. Under our functional assumptions,
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we obtain an asymptotically mean reverting stochastic volatility process
relative to time. Moreover, an interesting implication of our model is
the stochastic correlation coefficient prevailing between firm value and its
idiosyncratic risk factor. We study this dependence feature as well as the
stochastic volatility process through simulations. Specifically, accelerator-
based Monte Carlo simulations are undertaken to study the behaviors of
equity, debt and credit spreads as functions of our model’s parameters. In
the same way, we also simulated the path-dependent average stochastic
volatility of our pricing framework. The advantage of such a setting is the
flexibility given by parameters since we are able to account for many risk
scenarios and various market-linked firms. Moreover, the boundedness of
firm value’s stochastic volatility implies the boundedness of related equity,
debt and credit spreads. Such bounds can be viewed as extreme scenar-
ios (worst/minimal potential losses due to increased/reduced global risk
where the level of firm’s global risk depends on systematic and idiosyncratic
risk factors). In particular, our stochastic setting can allow for a more accu-
rate computation of historical conditional default probabilities. As default
probabilities allows for assessing creditworthiness of counterparts, the pos-
sible boundedness of such probabilities given likely scenarios has some
non-negligible importance and significance.

Our paper presents then some non-negligible advantages. First, volatility
is fundamental for asset valuation, risk management and portfolio diver-
sification (Eberlein, Kallsen and Kristen, 2002/2003). Stochastic volatility
models are useful tools to account for fundamental time-varying volatility
(latent volatility component) of financial assets (Hwang and Satchell, 2000).
Moreover, volatility is commonly thought as a liquidity indicator (Kerpoff,
1987; Lamoureux and Lastrapes, 1990; Schwert, 1989). Hence, incorporating
a stochastic volatility in credit risk modeling implicitly accounts for some
liquidity effects describing credit risky assets (Collin-Dufresne, Goldstein
and Martin, 2001; Delianedis and Geske, 2001). Incidentally, Ericsson and
Renault (2003) show that credit spreads encompass a liquidity premium,
which is an increasing function of firm value, leverage and aggregate volatil-
ity. Therefore, stochastic volatility will help accounting for a widening of
credit spreads due to an increase in the liquidity premium they encompass
(Cunningham, Dixon and Hayes, 2001, regarding sovereign bonds). Finally,
the stochastic aggregate volatility we obtain is the result of our stochastic
functionals’ combination. Thus, the flexibility offered by possible specifica-
tions of such functionals allows considering investment grade debt and part
of speculative grade debt.

On the other hand, our credit pricing model is equivalent to a stochastic
volatility Merton-type pricing model, which is valuable. Indeed, Kealhofer
and Kurbat (2001) show that Merton’s approach outperforms both Moody’s
credit ratings and well-known accounting ratios in predicting default. The
Merton-type approach contains any information embedded in such ratings
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and ratios. In the same way, Phoa (2003) underlines the coherency of Merton-
type structural models with observed risky debt market data. This author
points out the usefulness of such models as risk management tools. In con-
trast, Eom, Helwege and Huang (2004) find that new simplified structural
models misestimate credit risk. Therefore, our stochastic volatility frame-
work can solve this problem by better fitting to empirical behavior of credit
spreads, and then reconciling all points of view. To investigate this issue,
future research should estimate the result of our model using risky debt
data, and then test its performance.

Our work’s significance and future implementation are of major impor-
tance for a sound assessment of credit risk. First, credit spreads and default
rates are key determinants for both pricing and hedging of credit instruments
along with dynamic credit portfolio management. Second, as idiosyncratic
risk is diversifiable, systematic risk is more important at a portfolio level
(Jarrow, Lando and Yu, 2005; Frey and McNeil, 2001; Lucas, Klaassen, Spreij
and Straetmans, 2001; Giesecke and Weber, 2004). However, Goetzmann
and Kumar (2001) show the existence of many under-diversified portfo-
lios. Such portfolios are usually naively diversified and bear an important
idiosyncratic risk. Consequently, credit portfolio management has to inte-
grate idiosyncratic and systematic risk trade-off. Such a consideration is all
the more important at an individual firm viewpoint.

NOTES

1. Volatility is represented by a combination of both an autoregressive process and an
additional ARCH process.

2. Such rules require computing the frequency of occurrence of excessive losses (for
example, observed losses that lie above the loss forecasts computed from Value-at-Risk
models). The lower this frequency, the better the model performs.

3. Sharpe (1963) proposes a two-factor model where only one factor plays a role on
an average basis. Analogously to the asset pricing theory, we propose a two-factor
model where idiosyncratic risk is explicitly taken into account. Moreover, our general
framework reduces to Sharpe’s (1963) setting when E[d ln It]= (1−β)r. Notice also

that E[d ln It |Ft]=�µI(t, V)− σ2
I (t, V)

2 � dt.
4. Such a characterization is only valid when β is non-zero (for example, 1/β is defined).

When β is zero, drift µV (t, Vt, It) reduces to µV (t, It)=µI(t, It), and global volatility
σV (t, Vt, It) reduces to σV (t, It)= σI(t, It) since Vt = It.

5. In general, stochastic variance and firm value are non-perfectly correlated. First,
assume that the volatility of the systematic risk factor X is at best a determinis-
tic function of time, the firm value’s global variance is then independent of X. In
this case, we have a non-perfect correlation between firm value and its variance
Corr(dσ2

V (t, Vt, It), dVt)= ρ(t, Vt, It) since RV (t, Vt, It)= 0. Second, assume that the
volatility of idiosyncratic risk factor I is at best a deterministic function of time, then
the firm value’s global variance is independent of I. In this case, we have a perfect
correlation between firm value and its variance Corr(dσ2

V (t, Vt, It), dVt)= 1 since
RI(t, Vt, It)= 0.
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6. When µI(It)= λε
�

− (
�
2 − λ

)
ln(It), σI (It) =

√
� ln (It), and It > 1; R(t, It)=β2γ2t2α+

� ln(It). Then, R(t, It)=� ln (It) when t is infinity, and variance follows a mean revert-
ing square-root process dR(t, It)= λ[ε−R(t, It)]dt+�√R(t, It) dWI

t . However, we avoid
logarithmic specifications, which require values of random variables to be above unity.

7. We assumed some specific constraints such that:∫ T

t
σV (s, Is)ρ(s, Is)dŴI

s = 0

conditional on Gt. Such constraints are compatible with our following framework.
Simulations were undertaken with respect to such constraints insofar as we selected
the simulated paths satisfying this criterion while computing the firm value (that is,
call pricing).
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C H A P T E R 7

A Comparative Analysis
of Dependence Levels in

Intensity-Based and
Merton-Style Credit

Risk Models
Jean-David Fermanian and Mohammed Sbai

7.1 INTRODUCTION

In finance, especially for credit portfolio modeling, basket credit derivatives
(CDOs, n-th to default) pricing and hedging, the building of an accurate mea-
sure of the dependence between the underlying default events is becoming a
key-challenge (see Crouhy, Galai and Mark, 2002; Koyluoglu and Hickman,
1998, for a review of the current credit risk portfolio models). This new fron-
tier has induced a huge amount of literature for several years: Nyfeler (2000),
Frey and McNeil (2001), Schönbucher and Schubert (2001), Das, Geng and
Kapadia (2002), Elizalde (2003), Turnbull (2003), Yu (2003), among others.

There are mainly two usual approaches to simulate dependent default
events (Schlögl, 2002, for example): in the structural framework (Merton,
1974) a firm is falling into default when its asset value falls below its debt
level. In its multidimensional version, the default process of all the underly-
ing obligors is directly deduced from the joint process of asset values. Most
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of the time, the increments of the asset process are assumed Gaussian. Thus,
a correlation matrix allows a full description of the dependence between the
default events.

In the intensity-based (or reduced-form) approach (Jarrow, Lando and
Turnbull, 1997; Duffie and Singleton, 1999), we focus directly on the joint
law of defaults, conditionally on some factors, without trying to explain the
firm behaviors. Sometimes, such models seek to exhibit some observable
variables for explaining the defaults, or consider defaults simpler as exoge-
nous processes. They are trying to answer the following questions: “How
and when do rating transitions happen”, or “how do the spread curves
behave”, rather than “why”.

Such a distinction may appear to be a bit artificial. As every duration
model, Merton-style models can be rewritten in terms of intensities.1 More-
over, when dealing with portfolios, the dependence structures obtained by
both approaches are induced most of the time by some extra-random fac-
tors. Thus, most of the models that are built in practice can be considered
as factor-models (Schönbucher, 2001). Nonetheless, we keep the distinction
between structural and intensity models because it is now a type of common
language in the credit risk arena.

The aim of this chapter is to exhibit simple intensity models that induce
a sufficient amount of dependence. To be more specific, we would like
that some dependence indicators cover a large scope of values. We prove
the intensity-based approach is as flexible as the Merton-style one, in
terms of dependence between obligors. It is just necessary to adopt the
right point of view, and to specify conveniently such intensity-based
models.

In sections 7.2 and 7.3, we detail both frameworks, and compare the
respective loss distributions. Subsequently, some dependence indicators are
provided and compared in section 7.4. In section 7.5, we extend the previ-
ous basic intensity-based model towards two directions : correlated frailty
models and α-stable distributions.

7.2 MERTON-STYLE MODELS

In such approaches, a value Ai is associated with any firm i. An obligor is
defaulting when its asset value falls below a barrier, generally representing
its debt. Given these barrier levels and the dynamic of the asset values, we
are able to draw the loss distribution for a whole portfolio. Thus, we consider
a portfolio of k obligors and we set a fixed time horizon T, typically T = 1
year. The default probability for firm i= 1, . . . , k is:

pi = P(Ai < Di)
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In this model, the correlation between default events is related to the
correlation between assets values. Here, the latter correlation coefficient is
equal to

corrij = corr(Ai, Aj)

Even if there exist many alternative models for setting the dynamic of the
asset value, we will consider in this paper the usual simple one factor model:

Ai = ρV +
√

1 − ρ2εi, (7.1)

where V follows a standard normally distributed random variable. It may be
seen as an overall macro-economic factor that influences all the firm values.
ρ is a constant between −1 and 1. We will consider positive ρ only because it
is the case most of the time in practice.2 εi is a standard normally distributed
random variable, specific to the obligor i. As usual, we assume that all the
εi are mutually independent and independent from V.

Therefore, the firm’s value is also normally distributed and

corrij = corr(Ai, Aj) = ρ2. (7.2)

In order to simulate the portfolio loss distribution, we follow these
successive steps:

1 For any firm i, we get its mean historical default probability pi at the
horizon T, as given by the rating agencies (here Standard & Poor’s).

2 We calculate the barrier li =�−1(pi) where� is the cumulated distribution
function of a N(0, 1) (see (7.1)).

3 We generate some random variables V for the whole portfolio and εi for
every firm. Both are N(0, 1). Then, we compare ρV +√

1− ρ2εi with li
and record if a i’s default is triggered or not.

4 We finally cumulate the losses and repeat the same procedure many times
in order to get the loss distribution.

The calibration will be done on ρ. Below is an example of what we get
with the following parameters:

� ρ=√
0.2 (the choice promoted by Basel 2).

� A time-horizon T = 1 year.

� One year default probabilities given by Standard & Poor’s in Table 7.1:

� A portfolio of 100 firms:3

– 10 firms rated AAA

– 20 firms rated AA
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Table 7.1 Average default rates over 1981–2002

Rating CCC B BB BBB A AA AAA

PD (%) (1 year) 27.87 6.20 1.38 0.37 0.05 0.01 0.00

Source: Standard & Poor’s.
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Figure 7.1 Histogram of losses in the Merton model

– 20 firms rated A

– 20 firms rated BBB

– 15 firms rated BB

– 10 firms rated B

– 5 firms rated CCC

� Constant exposure levels drawn randomly between 0 and 100.4 Once they
have been simulated, these exposure levels will be kept constant during
the whole study. Their maturities are assumed infinite: when a default
event is simulated, it always induces a non zero loss (whose value is the
previous level associated with the defaulted counterparty). With such
choices, we obtain Figure 7.1.
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Table 7.2 One-year default events correlations between firms as a
function of their ratings (%), with ρ=√

0.2

AAA AA A BBB BB B CCC

AAA 0.27 0.27 0.32 0.58 0.80 1.04 1.09

AA 0.27 0.27 0.32 0.58 0.80 1.04 1.09

A 0.32 0.32 0.38 0.69 0.96 1.27 1.35

BBB 0.58 0.58 0.69 1.33 1.94 2.70 3.06

BB 0.80 0.80 0.96 1.94 2.90 4.20 5.02

B 1.04 1.04 1.27 2.70 4.20 6.42 8.23

CCC 1.09 1.09 1.35 3.06 5.02 8.23 11.65

For ρ=√
0.2, we also calculate the linear correlation between the default

events for couples of firms that belong to pre-specified rating classes. The
results are gathered in Table 7.2. In the Appendix we explain how we calcu-
late such correlations. As empirically measured previously, the correlation
levels we get among speculative grade firms are higher than those obtained
with investment firms. They cover a range between 0.7 percent up to 11.6
percent, which is coherent with the empirical literature (de Servigny and
Renault, 2002).

7.3 INTENSITY-BASED MODELS

Such models are based on a direct evaluation of the intensity processes them-
selves. We are reminded that the default intensity is the instantaneous arrival
rate of default:

λ(t) = lim
�t→0

1
�t

P(τ ∈ [t, t +�t]|τ > t)

denoting by τ the default time. Let f be the probability density function of τ
and S its survival function. For every time t, we have obviously:

λ(t) = f (t)
S(t)

Just as the density f , the functions λ and S determine the law of τ, because

S(t) = exp
(
−
∫ t

0
λ(s)ds

)
The model we consider now belongs to the well-known frailty models

family (Clayton and Cuzick, 1985). It has been used extensively in Survival
Analysis (Hougaard, 2000). Frailty models are extensions of the Cox model
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(Cox, 1972), where the (conditionally on the covariates) default intensities
are multiplied by some unobservable random effects. Thus, in the basic
version of frailty models, we set for every time t and every firm i:

λi(t, Xi, Z) = Zλ0(t) exp (βTXi), (7.3)

where β is a vector-valued parameter of interest. Xi is the vector of observ-
able covariates of the firm i. They may be firm specific and/or systemic
(macro-economic indices). λ0 is the deterministic baseline hazard function. Z
is a frailty, an unobservable gamma distributed random variable. We assume
it is the same for every obligor.

The random variable Z can be interpreted as a synthetic macro-economic
factor that has not been included into the observable covariates Xi. For the
sake of simplicity, we assume that λ0 is a constant function and that β is
equal to 0 (no observable covariates). Thus, the dependence is driven by Z
only. Moreover, the Z realizations are assumed constant. This constancy is
clearly a strong assumption, but it is realistic when we restrict ourselves to
a one or two year horizon. This is indeed the case in this section. Then:

λi(t) = λi = Zλ0,i where Z is following a gamma law G(α, θ) (7.4)

This implies that the expectation of Z is α/θ and that its variance is α/θ2.
The default probabilities are taken from the same source as in the Merton
model. We consider one year as the time unit, say T is expressed in years.
Thus, λi can be identified with the yearly default intensity. We get the random
default probability at time T as:

pi(T|λi ) = P(τ ≤ T|λi ) = 1 − exp(−λiT) (7.5)

When we take the expectation with respects to Z, we have:

E(1 − exp(−Tλi)) = 1 −
(

θ

θ + Tλ0,i

)α
= pi(T) (7.6)

This provides a first condition on the parameters (α, θ) and λ0,i since we
know the mean historical probabilities pi(T). In order to make the baseline
hazard function λ0,i identifiable, we normalize the frailty variable : E(Z)= 1,
i.e α= θ. In this case, Var(Z)= 1/α. Now, the key parameter is α.

We consider the same portfolio as in the Merton model and we follow the
following steps to get the loss distribution: for every time T

1 we invoke pi(T), the mean default probability (see(7.6)) to deduce λ0,i;

2 we simulate Z and deduce λ0,i for each obligor i (see (7.4));

3 we draw a uniform random variable and we compare it to pi(T|λi ) to see
if a default is triggered or not; see (7.5); and finally,

4 we cumulate the losses and we repeat the same procedure many times.
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Figure 7.2 Histogram of the losses in an intensity-based model

Table 7.3 One-year default events correlations between firms with
different ratings (%), with α=1

AAA AA A BBB BB B CCC

AAA 0.03 0.03 0.04 0.10 0.20 0.42 0.78

AA 0.03 0.03 0.04 0.10 0.20 0.42 0.78

A 0.04 0.04 0.05 0.13 0.26 0.54 1.00

BBB 0.10 0.10 0.13 0.37 0.71 1.46 2.72

BB 0.2 0.2 0.26 0.71 1.36 2.81 5.25

B 0.42 0.42 0.54 1.46 2.81 5.84 11.00

CCC 0.78 0.78 1.00 2.72 5.25 11.00 21.79

For example, for α= 1 and T = 1, we get the histogram of the losses in
Figure 7.2. Such empirical distribution looks like the one obtained with the
Merton-style model (graph 1), especially in the right tail.

Again, forα= 1 we calculate the default events correlations between firms
with different ratings: Table 7.3. We get levels that are comparable with those
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obtained in Table 7.2, especially for speculative grade firms. Nonetheless,
the differences by rating classes seem to be even stronger in the intensity
framework. In other words, it is not easy to get significant correlation levels
for couple of investment grade firms.

The same tabulars have been calculated with larger time horizons T = 5
and T = 20 years. See Appendix B. The conclusions are broadly the same,
in terms of comparison between Merton-style and intensity-style models.
Nonetheless, it is difficult to draw any general conclusions by focusing on
some particular values for ρ and α.

7.4 COMPARISONS BETWEEN SOME DEPENDENCE
INDICATORS

For several years, there has been a debate in the financial literature and
among practitioners to compare the advantages and the drawbacks of both
the previous approaches. Some authors5 have come to the conclusion that
realistic dependence levels between obligors cannot be easily obtained with
intensity models. Notably, Schönbucher (2003) argues that, under some
hypotheses, the strongest possible default correlation in an intensity-based
model is of the same order of magnitude as the default probabilities. We
briefly detail his technical argument.

Consider two firms A and B. For a fixed time horizon T, let

� pA and pB be the two individual default probabilities of A and B;

� λA and λB their random default intensities. For every realization ω, the
functions λA(ω) and λB(ω) are assumed constant between 0 and T for the
sake of simplicity;

� pAB their joint default probability;

� ρAB the correlation coefficient between both default events.

By simple calculations, we obtain:

pAB = E(1{A}1{B})

= E(E(1{A}1{B}|λ))

= E

(
1 − exp

(
−
∫ T

0
λA(s)ds

))(
1 − exp

(
−
∫ T

0
λB(s)ds)

))

= 1 − (1 − pA) − (1 − pB) + E

(
exp

(
−
∫ T

0
λA(s) + λB(s)ds

))

= pA + pB + E

(
exp

(
−
∫ T

0
λA(s) + λB(s)ds

))
− 1
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If both intensities are perfectly correlated: λA = λB = λ, then:

pAB = 2p + E

(
exp

(
−2

∫ T

0
λ(s)ds

))
− 1, where p = pA = pB

The correlation between the two default events is then:

ρ
def=
AB

pAB − pApB√
pA(1 − pA)pB(1 − pB)

(7.7)

= 2p + E(exp(−2
∫ T

0 λds)) − 1 − p2

p(1 − p)

= E(exp(−2
∫ T

0 λds)) − (1 − p)2

p(1 − p)

= Var(exp(− ∫ T
0 λds))

p(1 − p)
(7.8)

If we assume that the variance of the survival probability is at most of order
p2, then the correlation is of order p. Nonetheless, we argue that this is far
from being satisfied usually.

To justify his assumption, Schönbucher (2003) suggested a normally dis-
tributed integrated intensity, for which we assume that the integrated hazard
function between 0 and T is following a normal law N (µ, σ2).

Note that such an assumption does not generate a “true” intensity pro-
cess because some values of the integrated intensity may be negative.
Nonetheless, forgetting such a detail, we get:

E

(
exp

(
−
∫ T

0
λ(s)ds

))
= 1 − p = exp

(
−µ+ 1

2
σ2
)

E

(
exp

(
−2

∫ T

0
λ(s)ds

))
= exp(−2µ+ 2σ2)

and we deduce:

ρ = (e−2µ+2σ2 − e−2µ+σ2
)/(p − p2) ≈ (1 − p)(eσ

2 − 1)/p (7.9)

If σ≈ λT, we get that ρ and p are of the same order with this normal inten-
sities specification. Clearly, it is a very crude approximation. A more careful
approximation provides:

exp(σ2) − 1 ≈ σ2 ≈ 2(µ− p),

because 1− p= exp(−µ+ σ2/2)≈ 1−µ+ σ2/2. Thus, we get ρ≈ 2(µ− p)/p,
but we have no ideas (a priori) concerning the size of the latter ratio. To
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conclude, it seems that no strong argument has been done to conclude that
the correlation levels ρ induced by intensity-based models are most of the
time insufficient in practice.

In our previous setting, it would be more realistic to assume the random
intensities follow the usual log-normal assumption:

λ = λ0 exp(−σ2/2 + σε), ε ∼ N(0, 1)

In this case, the intensities are positive and they can be dealt as usual
market factors in pricing formulas. Thus, we can evaluate the variance of
the survival probability in equation (7.8). Remind that, if a random variable
X follows a lognormal law, say X = exp(Z) with Z following a N(0,1), then:

E(exp(−tX)) =
∞∑

p=0

(−t)p

p! exp

(
pµ+ p2σ2

2

)

Here, λ is assumed constant between 0 and T. Thus:

E

(
exp

(
−t

∫ T

0
λ

))
=

∞∑
p=0

(−t)p

p! (λ0T)pexp

(
−pσ2

2
+ p2σ2

2

)
.

By a limited expansion, we get:

Var

(
exp

(
−
∫ T

0
λ

))
= E

[
exp

(
−2

∫ T

0
λ

)]
− E

[
exp

(
−
∫ T

0
λ

)]2

≈ (λ0T)2
(
exp(σ2 − 1)

)
Thus, from equation (7.8), the correlation level between the two default
times of the obligors A and B is approximately:

ρAB ≈ p(exp(σ2) − 1)

Note that the coefficient σ has not the same meaning as in (7.9). More-
over, Var(λ)= λ2

0 (exp(σ2)− 1). It is reasonable to assume that the standard
deviation of the variations of λ is two or three times λ0 (see Figure 7.3).

Thus, exp(σ2)− 1 is easily 4, 9 or more. For instance, if the default rate of
the obligors is 1 percent between 0 and T, then the correlation level can rea-
sonably be of the order 5 percent or 10 percent. Higher correlation levels can
even be reached when assuming more volatility for the random intensities.
In our current framework,6 we can remind the following useful rule-of-
thumb: when the standard deviation of the changes in random intensities is
q times the mean level of these intensities, then the correlation levels are of
order q2 times the mean probability of default.
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Figure 7.3 Monthly default rates, US bonds speculative grade,
trailing 12 months, in percents

Source: Moody’s

Table 7.4 Features of the loss distribution for different ρ values (Merton
model), T =1 year

ρ 0.01 0.1 0.3 0.4 0.6 0.7 0.9 0.95

Quantile of order 99% 320 328 413 473 679 876 1163 1297

E(losses | losses > q99%) 356 367 482 571 858 1266 1615 1945

Skewness 0.64 0.70 1.15 1.50 2.47 4.13 4.33 5.47

K kurtosis 3.19 3.27 4.80 6.25 13.49 35.67 29.82 49.76

Average correlation (%) 10−4 0.04 0.46 0.94 3.31 6.06 20.82 28.93

We led many simulations for different values of the parameters ρ and
α. Tables 7.4 and 7.5 summarize the results we obtained. We took the same
default probabilities and the same exposure in the two cases in order to have
the same mean distribution.

We note that the dependence indicators between default events take some
values of the same order of magnitude in the two cases. Empirically, default
event correlations are varying from 0 percent to 30 percent for the Mer-
ton model, and from 0 percent to 20 percent for the reduced-form model.
For some “reasonable” ρ and α levels (ρ= 0.4 and α= 2, for instance), the
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Table 7.5 Features of the loss distribution for different α values (intensity-
based model), T =1 year

Var(Z) = 1/α 0.01 0.1 0.5 2 5 10 50 100

Quantile of order 99% 331 350 414 592 783 946 1278 1401

E(losses | losses > q99%) 368 392 477 685 912 1112 1638 1803

Skewness 0.69 0.79 1.09 1.60 2.03 2.46 3.73 4.06

k kurtosis 3.36 3.54 4.22 5.74 7.50 9.87 19.84 23.50

Average correlation (%) 0.01 0.08 0.39 1.37 2.80 4.46 10.78 14.56

sizes of the dependence indicators are the same. These levels are consistent
with those obtained by de Servigny and Renault (2002): the latter authors
report intra industries empirical correlation levels between one-year default
events less than 10 percent, with typical levels around 2–3 percent for the
speculative grade firms.

We note that the values of α considered in Table 7.5 are not unrealistic:
they correspond to a standard deviation of the frailty variable Z varying from
0.1 to 10. Historically, important variations of default rates from one year to
another have been met: see Figure 7.3. For instance, the mean default rate
for US speculative grade bonds was more than 12 percent at the mid-year
1991, and fell below 2 percent in 1995.7

We have calculated the same indicators for T = 10 years: see Appendix B.
The Merton model seems to generate relatively more dependence in this
case, especially under some extreme conditions (small or large ρ).

7.5 EXTENSIONS OF THE BASIC INTENSITY-BASED MODEL

7.5.1 A multi-factor model

The main idea here is to introduce an additional idiosyncratic unobservable
random variable that summarizes the effect of an unobservable micro-
economic factor.8 We keep the same notations as in the first intensity model.
We choose the correlated frailty model framework (Yashin and Iachine, 1995)
whose asymptotic theory has been studied in Parner (1998). Such mod-
els allow taking into account simultaneously systematic and idiosyncratic
random effects. In this case, we assume that

λi(t, Xi, Z) = (Z0 + Zi)λ0 exp(βTXi) (7.10)

where Z0 is an unobservable systemic gamma random variable, and Zi is an
unobservable gamma random variable that is specific to the obligor i.

The random variable Zi’s are mutually independent and Z0 is indepen-
dent from all the Zi. The simulation method is almost the same as in the



144 A COMPARAT IVE ANALYS IS OF DEPENDENCE LEVELS

200
0

4

8

12

%
 F

re
q

ue
nc

y

16

20

24

600 1000 1400

Losses

alpha 0 � 0.5 et alpha � 0.5

Figure 7.4 Histogram of the losses in the multi-factor intensity-based
model (T =1 year)

first model. We just have to draw the realizations of additional gamma ran-
dom variables (one for each obligor). In practice, there are now two free
parameters α0 and αi, related to Z0 and Zi respectively. This may cause
some estimation complications, even if the log-likelihood of the observa-
tions can be written in closed form (Parner, 1998). In Figure 7.4, we draw
the histogram of the losses obtained with model (7.10). Since we impose
that the expectation of the global frailty component Z0 +Zi equals one,
we draw Z0 ∼G(α0,α0 +α) and Zi ∼ G(α, α0 +α). We have chosen the
parameter values α0 = 0.5 and α= 0.5 for every i in Figure 7.4.

In this case

Var(Z0 + Zi) = α0/(α0 + α)2 + α/(α0 + α)2 = 1

and the correlated frailty Z0 +Zi has the same two first moments as in
Figure 7.2. The loss distributions seem to be very similar. At first glance,
the introduction of specific components does not lessen too much the
dependence between defaults.9
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Figure 7.5 Combined effect of the parameters α0 and α in the multi-factor
intensity model

We lead many simulations with different values of the parameters α0
and αi in order to study their combined effects on the loss distribution (see
Figure 7.5).

The variance of Z0 +Zi varies from 0.005 to 50 when (α0, α) varies from
0.01 to 100, which seems to be reasonable. The levels of our dependence
indicators seem to be in line with those obtained in section 7.3. Note that we
lose some dependence when the relative importance between Z0 and Zi is
balanced. This is due to a diversification effect inside both components of the
frailty factors. Globally, adding an idiosyncratic frailty allow more flexibility
in the model, without losing the ability to reach realistic dependence levels.
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Actually, the ratio r =α/α0 provides a good measure of the dependence we
obtain: the larger r, the higher the dependence indicators.

7.5.2 α-stable distributions

Properties of the family

Stable distributions allow building a rich class of probability distributions.
They induce highly skewed and heavy tails features and have many interest-
ing mathematical properties: see the survey of Samorodnitsky and Taqqu
(1994), Hougaard (1986), or Mittnik and Rachev (1999) and Carr and Wu
(2002) for financial applications. However, the lack of closed-form formu-
las for their densities and their cumulative distribution functions, despite
a few exceptions, has been a major drawback that has limited their use by
practitioners. To correct the ideas, we recall some basic theoretical results
concerning such distributions.

Definition 1 A random variable X is said to be α-stable if for any X1 and
X2, some independent copies of X, and for any positive numbers c1 and
c2, there exist c∈R

+ and d∈R such that:

cX + d
d= c1X1 + c2X2

If d= 0, X is said to be strictly stable.

There are other equivalent definitions of α-stable distributions (see Nolan,
2004, for a more detailed presentation of this distribution family) and we
are going to invoke the following one because it is much more tractable:

Definition 2 Arandom variable X is said to beα-stable if its characteristic
function takes the form:

�X(t)
def= E(eitX) =

{
exp(−γα |t|α (1 − iβ tan

(
πα
2

)
sign(t)) + iδt) if α �= 1

exp(−γ |t| (1 + iβ 2
π

sign(t) ln (|t|)) + iδt) if α = 1

(7.11)

where α∈ [0, 2],β∈ [−1, 1], γ ≥ 0 and δ∈R.

This definition shows that an α-stable distribution generally requires four
parameters as inputs:

� α, the index of stability. It is related to the tail behavior of the distribution.
The smaller α, the stronger the leptokurtic feature of the distribution.

� β, the skewness parameter. If β= 0 then the distribution is symmetrical.
If β> 0 then it is right skewed. Otherwise, it is left skewed.

� γ , the scale parameter.
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� δ, the location parameter (When α> 1, it measures the mean of the
distribution).

There are multiple parameterizations for α-stable laws which may lead to
some confusion. We keep the previous one, and we denote the α-stable
distribution by S(α, β, γ , δ) and its probability distribution function by f .

Definition 3 The support of an α-stable distribution is:

support ( f (x)) =


[δ,+∞] if α < 1 and β = 1

[−∞, δ] if α < 1 and β = −1

R otherwise.

(7.12)

Because of the presence of heavy tails, all moments do not exist. Actually,
we have:

Definition 4 Let X∼S(α, β, γ , δ).

E(|X|r) < +∞ if and only if 0 < r < α

As far as we are concerned, for example, within the framework of frailty
models the Laplace transforms are key tools.

Definition 5 Let X∼S(α,β, γ , δ). Its Laplace transform is defined if and
only if β= 1, in which case it equals:

LX(t) ≡ E
(

e−tX
)
=exp

(
−tδ− tαγα sec

(πα
2

))
, t ≥ 0 (7.13)

by denoting sec(x)= 1/cos(x). We will also need the following property:

Definition 6 Let X∼ S(α, β, γ , δ) where α �= 1. Then for all α �= 0 and
b∈R we have aX+ b∼ S(α, sign(a) β, |a|γ , aδ+ b).

In particular, if Z∼ S(α, β, 1, 0) and

X =
{
γZ + δ ifα �= 1

γZ + (δ+ 2β
π
γ ln (γ)) ifα = 1

then X ∼S(α, β, γ , δ). We will simply note S(α, β) instead of S(α, β, 1, 0).
Thus, by some linear transformations, we get all the α-stable laws starting
from the family S(α, β).

7.5.3 Simulation of an α-stable distribution

As mentioned earlier, α-stable density functions do not admit closed forms.
The usual method to obtain these functions is to inverse their character-
istic functions f (x)= 1

2π

∫
exp(−itx)�X(t) dt. Except in a few cases,10 the

estimation of the latter expression is difficult, and will rather use the method
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in Chambers, Mallows and Stuck (1996). Let W be a random variable
exponentially distributed with parameter λ= 1, and U a random variable
uniformly distributed on [−π

2 , π2 ] and let ξ= arctan(β tan(πα/2))/α and the
random variable:

Z =



sin (α(ξ + U))
α
√

cos (αξ) cos (U)

(
cos (αξ + (α− 1)U)

W

)1 − α

α ifα �= 1

2
π

(π
2
+ βU

)
tan (U) − β ln

 π
2 W cos U
π

2
+ βU


 ifα = 1

(7.14)

Then Z∼S(α,β). To get S(α, β, γ , δ), we invoke the linear transform of
Definition 6.

7.5.4 α-stable intensity-based model

To simulate more heavy tailed random intensities, we are going to replace
the gamma frailty random variable in (7.3) by an α-stable distributed frailty.
As an intensity process is always positive and according to (7.12), we impose
that α< 1, β= 1 and δ= 0 in order that the support of the frailty is [0, +∞].
We keep the same simple specification as in our first intensity model: for
every obligor i and every time t,

λi(t) = λi = Zλ0,i

Therefore, Z∼S(α, 1, γ ,0) where α∈ [0, 1]. Indeed, as the frailty variable has
a multiplicative effect on the intensity, its baseline hazard function plays
the role of a scale parameter. Thus, the parameter γ is unnecessary. In fact,
we identify λ0,i by using the Laplace transform of the α-stable distribution
(7.13), which leads to the one-year default probability:

pi = 1 −exp
(
−γα sec

(πα
2

)
γα λα0,i

)
This implies:

λ0 = 1
γ

 ln
(

1
1−pi

)
sec

(
πα
2

)


1
α

Hence

λ
d= λ0Z

= 1
γ

 ln
(

1
1−pi

)
sec

(
πα
2

)


1
α

γS(α, 1) (7.15)

=
 ln

(
1

1−pi

)
sec(πα2 )


1
α

S(α, 1)
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Figure 7.6 Histogram of the losses in the α–stable intensity based model

Obviously, the random intensities, and so the whole model, depend on
α. In order to simulate the loss distribution, we draw a random variable
Z∼S(α,1) (see (7.14)) and we deduce λ from (7.15). We then follow the same
steps as with the other models. For example, setting α= 0.8 we obtain the
histogram of portfolio11 losses in Figure 7.6.

As expected, it is now easier to get large dependence levels between
individual defaults inside the portfolio. Actually, the correlation between
default events is even stronger than in our previous Merton-type model.
Thus, α-stable frailties are a simple way to induce a strongly dependent
credit-risky portfolio.

Table 7.6 presents the characteristics of the distribution for different values
of the parameter α. The smaller the α, the larger the dependence between
default events. The dependence indicators we get with α-stable laws are
stronger than previously. Thus, it is a relatively simple way to generate
highly dependent defaults, without modifying the intensity-based frame-
work. Surprisingly, the kurtosis is increasing when the VaR and Expected
Shortfall are decreasing. This can be explained by a type of degeneracy of
the loss distributions: when α is very small, the losses are concentrated
near the origin and very far towards the right. The implicit reference to the



150 A COMPARAT IVE ANALYS IS OF DEPENDENCE LEVELS

Table 7.6 α-stable intensity-based model, T =1 year

α 0.1 0.3 0.5 0.7 0.8 0.9 0.95

Quantile of order 99% 1588 1416 1170 1108 990 663 505

E(losses | losses > q99%) 2048 1905 1766 1654 1510 1066 844

Skewness 5.33 5.22 5.51 6.81 6.98 6.74 7.07

k kurtosis 45.59 46.10 51.11 87.51 90.26 95.60 115.48

Average correlation (%) 44.33 40.19 33.72 23.86 17.26 9.35 4.86

Gaussian distribution (when dealing with kurtosis) has no more sense in
such situations.

7.6 CONCLUSION

We find some evidence that realistic and comparable dependence levels
can be obtained by both intensity-style models and Merton-style models.
With long time horizons, the latter approach gains a relative advantage, but
the former can be strengthened by some extensions towards α-stable frailty
models. Thus, the issue is not really to choose between both approaches but
rather to specify conveniently a model, an intensity-based one or a Merton-
style one. In practice, it is important to solve the following issues:

� What is the correlation scope that the model needs to cover?

� Observable and/or unobservable exogenous factors?

� Which distribution for such factors?

� Constant or time dependent frailties? If yes, which process is best suited?

Moreover, one of the main practical issues concerns the estimation of the
key dependence parameters, typically ρ and α in our previous frameworks.
Such an issue may become a hurdle for the implementation of such models.
For instance, clean estimations of the simplistic frailty model (7.3) are far
from trivial (see Andersen, Gill, Borgan and Keiding, 1997, for the theory,
and Metayer, 2004, for a financial application). And, even more, the intro-
duction of dynamic frailties12 induces likelihoods without any closed form,
which imposes some delicate numerical optimization procedures (simulated
maximum likelihood, EM algorithm, and so for).

APPENDIX A: CALCULATION OF CORRELATION BETWEEN
DEFAULT EVENTS

Our goal is the calculation of the correlation between default events and between the dates
t= 0 and t=T, controlling eventually by the rating categories. Technically speaking, it is
equivalent to the calculation of joint default probabilities.
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To calculate the joint default probability of two obligors, say A and BB, with different
ratings in the intensity-based model, we note that:

P(τA < T, τBB < T) = E [E[1(τA < T)1(τBB < T) |λ]]

= E

[(
1 − exp

(
−
∫ T

0
λA

)
·
(

1 − exp

(
−
∫ T

0
λBB

)]
= 1 − (1 − pA) − (1 − pBB)

+E

[
exp(−

∫ T

0
(λA + λBB))

]

= pA + pBB − 1 + E
[
exp

(
−T

(
λ0

AZ + λ0
BBZ

))]
= pA + pBB − 1 + LG(α,α)

(
T(λ0

A + λ0
BB)Z

)
= pA + pBB − 1 +

(
α

α+ T(λ0
A + λ0

BB)

)α

where LG(α,θ)(t) is the Laplace transform of a gamma-distributed random variable with
parameter (α, θ).

From (7.9), we deduce the default correlation coefficient between default events for
firms that are rated A and BB. Finally, to get an average correlation, we calculate a mean
over all the possible couples of different firms. To be specific, we calculate:

ρm = 1
7∑

i,j=1
ninj

7∑
i,j=1

ninjρi,j

where ni is the number of firms of rating i, and ρi,j is the correlation coefficient obtained
as previously explained.

To calculate the joint default probability of two obligors with different ratings in the
Merton-style model, for example A and BB, we use the usual technique. According to
(7.1) and (7.2) we have:(

AA

ABB

)
∼ N

(
0,

[
1

ρ2

ρ2

1

])
,

which provides:

P(τA < 1year, τBB < 1year)

= 1
2π
√

1−ρ4

∫ DA
−∞

∫ DBB
−∞ exp

(
− x2+y2−2ρ2xy

2(1−ρ4)

)
dx dy.

We estimate numerically the latter double integral and deduce the average correlation
between default events for every couple of ratings, as we made in the intensity-
based model. The average correlation level is obtained by weighting conveniently such
quantities.
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APPENDIX B: EXTENSIONS OF THE RESULTS TO LARGE TIME
HORIZONS

We use the same method as in sections 7.2 and 7.3. We choose the following default
probabilities:

Average default rates over 1981–2002

Rating CCC B BB BBB A AA AAA

PD (%) (5 years) 61.35 33.02 14.45 3.83 0.75 0.27 0,11

PD (%) (20 years) 73.94 67.68 48.09 19.48 6.78 4.38 1.13

Source: Standard & Poor’s Credit Pro.

We obtain default event correlations for the time horizons T = 5 years and T = 20
years (Tables 7.7, 7.8, 7.10 and 7.11), and the usual dependence indicators with T = 10
years (Tables 7.9 and 7.12). In the latter case, particularly, the scope of values obtained in
both cases is similar.

Note that when the time horizon T is increasing, it is surely questionable to assume the
same values ρ and α as when T = 1 year apply. Indeed, in the Merton-style models there
is some empirical evidence that the asset correlations depend on T (see the discussion in
de Servigny and Renault, 2002, for example).

Moreover, since we assumed the random default intensities λi are constant func-
tions between 0 and T, their (random) levels should be less and less variable when T is
increasing.13 It should be more relevant to simulate an annual process (Zt) for the frailty,
but this does not belong in our simple framework. Thus, a realistic range of α-values is

Table 7.7 5-years default events correlations in the Merton model, with ρ=√
0.2 (%)

AAA AA A BBB BB B CCC

AAA 0.63 0.82 1.10 1.59 1.89 1.85 1.51

AA 0.82 1.10 1.48 2.21 2.68 2.67 2.22

A 1.10 1.48 2.04 3.12 3.90 3.98 3.40

BBB 1.59 2.21 3.12 5.05 6.67 7.11 6.37

BB 1.89 2.68 3.90 6.67 9.32 10.43 9.84

B 1.85 2.67 3.98 7.12 10.43 12.15 12.01

CCC 1.51 2.22 3.40 6.37 9.84 12.01 12.53

Table 7.8 20-years default events correlations in the Merton model, with ρ=√
0.2 (%).

AAA AA A BBB BB B CCC

AAA 2.60 3.68 4.02 4.64 4.41 3.78 3.50

AA 3.68 5.41 6.01 7.22 7.20 6.35 5.92

A 4.02 6.01 6.70 8.17 8.30 7.40 6.93

BBB 4.64 7.22 8.17 10.41 11.16 10.27 9.73

BB 4.41 7.20 8.30 11.16 12.81 12.28 11.81

B 3.78 6.35 7.40 10.27 12.28 12.09 11.74

CCC 3.50 5.92 6.93 9.73 11.81 11.74 11.43



153

Table 7.9 10-years Merton model

ρ 0.01 0.1 0.3 0.4 0.6 0.7 0.9 0.95

Q99% quantile of order 99% 1,193 1,254 1,543 1,827 2,357 2,664 3,537 3,757

E(losses | losses > q99%) 1,253 1,339 1,663 2,020 2,704 3,089 4,145 4,426

skewness 0.15 0.22 0.46 0.75 1.05 1.20 1.53 1.5

k kurtosis 2.95 3.08 3.15 3.68 4.50 4.78 5.87 6.42

average correlation (%) 10"3 0.24 2.26 4.19 10.62 15.62 31.60 37.72

Table 7.10 5-years default events correlations in the intensity model,
with α=1 (%)

AAA AA A BBB BB B CCC

AAA 0.04 0.05 0.08 0.16 0.30 0.36 0.31

AA 0.05 0.08 0.12 0.24 0.44 0.55 0.53

A 0.08 0.12 0.18 0.39 0.71 0.93 0.94

BBB 0.16 0.24 0.39 0.84 1.57 2.14 2.22

BB 0.30 0.44 0.71 1.57 3.02 4.19 4.31

B 0.36 0.55 0.93 2.14 4.19 6.24 7.34

CCC 0.31 0.53 0.94 2.22 4.31 7.34 13.01

Table 7.11 20-years default events correlations in the intensity model,
with α=1 (%)

AAA AA A BBB BB B CCC

AAA 0.13 0.07 0.12 0.23 0.29 0.33 0.26

AA 0.07 0.49 0.44 0.57 1.10 0.93 0.27

A 0.12 0.44 0.48 0.67 1.07 1.02 0.47

BBB 0.23 0.57 0.67 1.06 1.59 1.65 1.11

BB 0.29 1.10 1.07 1.59 3.03 2.99 2.04

B 0.33 0.93 1.02 1.65 2.99 3.46 3.41

CCC 0.26 0.27 0.47 1.11 2.04 3.41 8.39

Table 7.12 10-years intensity-based model

Var(Z) = 1/α 0.01 0.1 0.5 2 5 10 50 100

quantile of order 99% 1190 1209 1283 1508 1766 2015 2722 3026

E(losses | losses > q99%) 1256 1275 1364 1621 1897 2178 3003 3333

skewness 0.16 0.14 0.15 0.31 0.41 0.52 0.87 0.99

k kurtosis 2.99 2.98 2.96 2.89 2.72 2.63 2.87 3.16

average correlation (%) 0.01 0.09 0.44 1.68 3.82 6.72 18.24 24.17
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becoming thinner and thinner when the time horizon is growing. That is why a straight
comparison between Tables 7.8 and 7.11 particularly is not fully satisfying, because α= 1
is probably too high is such a case.

NOTES

1. See Luciano (2004) for a discussion in the finance field. In a more general context,
there is no issue to rewrite the marginal laws of the default times with intensities. At
the opposite, it is more challenging to rewrite the full joint law of defaults because one
needs to invoke multivariate hazard rates (Dabrowska, 1988; Fermanian, 1997). For
example, a large number of intensities has to be modelized: 2m − 1 when m denotes
the number of firms in the portfolio. In practice, such a number is unrealistic when
dealing with more than 2 or 3 obligors.

2. Even if some firms or more generally some industries may be considered as neg-
atively correlated with the “market”, or rather with the vast majority of other
corporates.

3. Since most of bank portfolios are composed mainly with investment grade debts, we
overweight such firms.

4. The recovery rate is assumed to be zero here. This is not a limitation of our purpose.
Indeed, in this chapter we do not try to study the internal source of randomness
given by the exposure amounts.

5. Particularly Hull and White (2001), Schönbucher and Schubert (2003).
6. A random intensity model with constant levels between 0 and T and the same frailty

for all obligors.
7. The relative sizes of the monthly default rates in Figure 7.3 are comparable with

annual default rates because the former are trailed over 12 months.
8. The unobservable explanatory variables that are specific to i and that have not been

taken into account previously in the vector Xi.
9. At least when we keep the balance between both Z0 and Zi.

10. For example, α= 2 provides a Gaussian law and α= 1, β= 0 provides a Cauchy
distribution.

11. We are always dealing with the same portfolio from the beginning.
12. Paik et al. (1994) or Yue and Chan (1997), for instance.
13. because such λi are comparable with mean monthly default rates over a period T.
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C H A P T E R 8

The Modeling of
Weather Derivative

Portfolio Risk
Stephen Jewson

8.1 INTRODUCTION

The companies that trade weather derivatives typically hold portfolios of
between 100 and 1,000 weather derivative contracts. Different contracts have
payoffs that may depend on different weather variables measured at dif-
ferent locations over different time periods. The payoffs between any two
contracts may be highly correlated or anticorrelated (if they are based on
the same or similar variables, locations or time periods), or they may be
uncorrelated (if the weather variables, locations or time periods are very
different). How, then, should the total financial risk in such portfolios be
estimated?

In this chapter we present a number of methods for estimating this total
portfolio risk and discuss some of the issues and trade-offs that arise when
deciding which method to use. Several of the issues we discuss and the
solutions we propose are novel in that, to our knowledge, they have not
previously appeared in the literature on weather derivatives.

The chapter is structured as follows. We start with a brief description of
what weather derivatives are.1 We then explain how risk is usually defined
for portfolios of weather derivatives, and follow that with a discussion of
the two simplest methods for the evaluation of the risk of a weather deriva-
tive portfolio: burn analysis, and the application of the multivariate normal
distribution to contract indices. In the main part of the chapter we then

156



STEPHEN JEWSON 157

look beyond these basic methods and discuss a number of more complex
issues: how simulations should be set up to account for sampling error;
how estimates of the correlation matrix can be improved; how index non-
normality can be accounted for; how the magnitude of model error can
be estimated; how simulations can be re-engineered to incorporate hedg-
ing constraints between contracts; how consistency between single contract
pricing and portfolio analysis can be achieved; how to calculate a simple
linear approximation to the sampling error; and finally, how VaR can be
estimated efficiently over short time horizons.

8.2 WHAT ARE WEATHER DERIVATIVES?

Weather derivatives are contracts between two parties that have a finan-
cial payoff that depends on some measured aspect of the weather. Since the
future weather can be considered as random, the payoff of a weather deriva-
tive is also random. The economic purpose of weather derivatives is to allow
companies that have profits that are affected by the weather to hedge some
or all of that risk. This can be illustrated by a simple example, adapted from
Jewson and Jones (2005):

A weather derivative example

ABC gas company doesn’t like warm winters because they sell less natural gas to
their domestic customers, who use the gas for heating their homes. ABC can lose
up to £10 million in a warm winter relative to an average year. They decide to use
weather derivatives to help hedge this warm winter risk. They analyse their his-
torical revenues against historical weather data and conclude that there is a high
correlation between their revenues and the total number of heating degree days
measured in London between November and March (note that heating degree
days, or HDDs, are a measure of the extent to which the temperature falls below
18 degrees Centrigrade, and, in this case, can be taken as a proxy for tempera-
ture on an inverted scale). Because of this high correlation they decide to base
their weather derivative on a London November to March HDD index. This has
the advantage that there is a well-traded market on this index, which makes it
more likely that they will get a good price in the market because of the price-
transparency brought about by such trading. In the first year of hedging they buy
a put option, which will pay them if the number of HDDs is low (correspond-
ing to a warm winter). A reasonable estimate of the average number of HDDs
at this location and over this period is 1670 HDDs, with a standard deviation of
120HDDs, and the distribution of possible numbers of HDDs is close to normal.
ABC decide to hedge themselves from 1650 HDDs downwards. They buy a put
option with a strike of 1650HDDs, a tick of £50,000/HDD and a limit of £10,000,000
(this limit corresponds to 200HDDs below the strike, or 1450 HDDs). They com-
pare quotes from a number of banks, and end up paying a premium of £2,000,000
for this contract. When the actual weather comes in at 1500 HDD they receive a
payout of £7,500,000, and hence make an overall profit on the weather derivative of
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£5,500,000. This roughly balances the money they lose on their gas supply business.
In the second year they test a different strategy: they sell a swap with a strike of 1670
HDDs, a tick of £50,000/HDD, and limits at both ends of £10,000,000. Again the
weather comes in warmer than normal, this time at 1640 HDDs. Again, they lose
money on their gas business but make money on the weather derivative: this time
£1,500,000.

This example illustrates the following important points. First, weather
derivatives are based on weather measured at a specific location: in this
case, London (in a real example it would probably be London’s Heathrow
Airport, weather station 03772). Second, weather derivatives are based on
a weather index that has a single value per year: in this case, this index is
the total number of HDDs during the winter season for this location. Third,
there is a function that relates the value of the weather index to a payoff.
Puts, calls and swaps are the most common functions used, but any other
function is also possible. Swaps are typically traded without a premium,
while options have a premium. Fourth, weather derivatives may have a
limit on the financial payout. Typically, over the counter (OTC) contracts
have limits while exchange traded contracts do not.

The example given above is very typical of trades in the weather market.
Variations include:

(a) Using different locations: London, New York, Chicago and Tokyo are the
most commonly traded locations, but many hundreds of other locations
have also been used, and any location with reliable weather measure-
ments is a potential candidate. For a hedger there may be a trade-off
between using a location at which the weather correlates highly with
their business, and using a commonly traded location for which better
prices would be available.

(b) Using different weather variables: the bulk of the current market is
based on temperature, but precipitation contracts are common, and
wind contracts have also traded.

(c) Using different indices: temperature contracts are usually based on
HDDs, as above, but can also be based on average temperature, the
sum of daily temperatures, the number of days where the temperature
exceeds a certain threshold, and so on.

(d) Using different time periods: monthly and seasonal contracts are the
most common, although there are also contracts traded OTC with time
periods as short as one hour.

(e) Using multiple locations or multiple variables at once in a single
contract.

(f) Combining the definition of the index with financial variables such as
gas price or power price.
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The companies that sell weather derivatives to corporate hedgers like
ABC gas company in our example are typically banks, insurance compa-
nies or hedge funds. Such companies endeavour to make a profit by selling
weather derivatives using one or more of a number of possible strategies.
Almost all such strategies involve selling more than one contract, and in
many cases may involve trading many hundreds of contracts. They then
have to consider the total financial risk in their portfolio.

8.3 DEFINING RISK FOR WEATHER DERIVATIVE
PORTFOLIOS

A company that trades a weather derivative immediately assumes some
financial risk, in that the ultimate outcome of the trade is uncertain. The risk
from owning a portfolio of weather derivatives comes from the uncertainty
associated with all the possible outcomes for the payouts of the contracts in
that portfolio.

From the point of view of risk measurement, weather derivatives have
similarities to both insurance contracts and financial derivatives. The risk
of a portfolio of insurance contracts is typically measured in terms of the
amounts of money, at various levels of probability, that the insurer may
have to pay out to policy holders over the course of a year. In contrast, the
risk of a portfolio of financial derivatives is typically measured in terms
of how the liquidation value of the portfolio might reduce over a short
time period, of maybe a day or a week. The rationale for this approach is
that if the estimated risk is too large then one can consider actually liqui-
dating the portfolio. The difference between the measurement of risk for
insurance contracts and financial derivatives arises because insurance con-
tracts cannot typically be liquidated or hedged, while financial derivatives
can be.

Which of these two approaches is most appropriate for weather deriva-
tives? In spite of the name, the insurance framework is the best starting
point for understanding weather derivative risk. This is because the weather
derivatives market is still rather small, and most weather derivatives cannot
be liquidated or hedged in any practical way. The owner of the deriva-
tive usually has to face the possibility that they may have to hold the
contract to expiry, and so the outcome at expiry is very important. The
exception to this is that some contracts, particularly monthly and seasonal
contracts based on temperature at locations such as London, Chicago and
New York, are more heavily traded, and for these contracts it may be pos-
sible to liquidate or hedge positions. For these contracts, it may therefore
be reasonable to start thinking about risk over short time-horizons, as with
other financial derivatives. For most of this chapter, however, we will deal
with the insurance definition of risk, which we will call “expiry risk”, since
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it considers the outcome of contracts at expiry. Then in section 8.12 we
briefly come back to the question of how to estimate risk over shorter time
horizons.

8.4 BASIC METHODS FOR ESTIMATING THE RISK IN
WEATHER DERIVATIVE PORTFOLIOS

We now present the two most basic methods that one might use to estimate
the risk in a weather derivative portfolio, as a starting point for our subse-
quent discussion. These methods are (a) burn analysis, and (b) use of the
multivariate normal distribution to model weather indices.

8.4.1 Burn analysis

Burn analysis, which is the simplest method for analysing risk in a weather
derivative portfolio, typically works as follows:

1 For each contract in the portfolio, 10 years of cleaned historical weather
data is purchased.

2 For each of these 10 years, the historical settlement indices for each
contract in the portfolio are calculated.

3 Trends (such as the global warming trend) may be removed from these
historical settlement indices, if appropriate.

4 The detrended historical settlement indices are converted into historical
payoffs for each contract and each historical year.

5 The historical payoffs are aggregated over the portfolio, giving a portfolio
historical payoff for each of the 10 years.

6 The 10 portfolio historical payoffs thus obtained are taken as an empirical
estimate for the distribution of possible payoffs for the portfolio. Quan-
tities such as the expected payoff, the variance of payoffs or the risk of
extreme losses can then be estimated.

This method is sufficiently simple that it could be implemented in a
spreadsheet. However, it has two major shortcomings. First, since the esti-
mate of the distribution of payoffs is based on only 10 points, the highest
level of risk than can be estimated is 1 in 10 year risk. More years of historical
data could be used in order to estimate risk at higher levels, but even in the
best cases the maximum number of years of reliable data typically available
is only around 50. This is not particularly satisfactory for risk managers, who
often like to see estimates of the 1 in 100 or 1 in 1,000 year risk. One might
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be tempted to fit a distribution to the historical payoffs of the portfolio, and
use the fitted distribution to extrapolate the risk to higher levels (we have
occasionally called this extended burn analysis). However, such fitting and
extrapolation is more guesswork than science since we have no a priori idea
which distribution to fit. The payoff distribution is seldom close to normal,
even for very large portfolios, because of the non-linearity of many of the
contracts in a typical portfolio. The second shortcoming of burn analysis is
that estimates of the greeks of the portfolio, and other important diagnos-
tics such as the regression coefficients, or “betas”, of the portfolio, cannot be
calculated in an accurate way.

These shortcomings motivate the use of simulations, as we now describe.

8.4.2 Basic use of the multivariate normal

Both the shortcomings described above can be overcome by using simula-
tions, and the simplest example of using simulations is one particular use
of the multivariate normal distribution, as follows:2

1–3 As for burn analysis.

4 A multivariate normal distribution is fitted to the detrended historical
settlement indices. The covariance matrix of the multivariate normal is
estimated using the empirical covariance matrix of these indices.

5 10,000 years of simulated settlement indices are created from this fitted
distribution.

6 The simulated settlement indices are converted into payoffs for each
contract and each simulated year.

7 The simulated payoffs are aggregated over the portfolio, giving a port-
folio simulated payoff for each simulated year.

8 The 10,000 portfolio simulated payoffs thus obtained are taken as
an empirical estimate for the distribution of possible payoffs of the
portfolio.

Risk can then be estimated at levels as high as 1 in 10,000 years, or even higher
levels if more years of simulations are used. Of course, these estimates are
only as good as the data and assumptions on which they are based, and these
assumptions become more dubious the further one progresses into the tail,
but at least this method gives us some way for estimating the probabilities
of extreme losses.

In the following sections we now discuss various extensions and alterna-
tives to the use of the multivariate normal distribution as described above.
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We will refer to this basic method as the BMVN (Basic MultiVariate Normal)
method.

8.5 THE INCORPORATION OF SAMPLING ERROR IN
SIMULATIONS

The BMVN method described above is not strictly correct, from a statisti-
cal point of view, even in the case in which all the assumptions hold (for
example, the weather indices really are multivariate normal and we know
the correct model for the trends). This is because it ignores the sampling,
or estimation, uncertainty on the covariance matrix, and does not propa-
gate that uncertainty into the simulations. For instance, in this method the
variance of a particular weather index is estimated using the available data,
and the simulations are driven by that estimated variance. However, the
estimated variance is only an estimate, and the variance of the simulations
should include an extra term that takes this into account (this issue is identi-
cal to the question of how to derive prediction intervals in classical statistics).
Deriving the extra terms in the expressions for the covariances can be some-
what complicated, but may make a significant difference to the final results.
In the case in which the weather indices have not been detrended the extra
terms are rather simple, and are typically rather small. In the case in which
the weather indices have been detrended with a linear trend, the extra terms
are more complex, and become much more significant. In the case in which
other trend shapes are used, deriving the extra terms is complex, but very
important. Jewson and Penzer (2004) give expressions for these extra terms
for a number of cases. It should be noted that these extra terms are in addition
to the standard corrections to expressions for covariances that account for
changes in the number of degrees of freedom due to detrending.

8.6 ACCURATE ESTIMATION OF THE CORRELATION
MATRIX

The BMVN method, step 4, involves estimating the correlation matrix
among the historical weather indices using the empirical correlation matrix;
that is, calculating the observed correlations between historical weather
indices. Curiously, however, the empirical correlation matrix is not a par-
ticularly good estimator of the real correlation matrix, particularly for large
portfolios. This is because the elements of the correlation matrix are very
poorly estimated given the little data available. For example, for a portfolio
of 1,000 contracts, we must estimate roughly 500,000 correlations, but with
perhaps only 50,000 historical data values. This situation can be improved
using a technique known as shrinkage, in which the correlation matrix is
estimated using a combination of the empirical correlation matrix with a
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much simpler estimate such as a correlation matrix based on independence.
A non-parametric approach to implementing such shrinkage for weather
data, based on the Quenouille–Tukey jackknife, has been described in Jew-
son (2005), while a parametric approach for implementing shrinkage for
financial data correlation matrices has been described in Ledoit and Wolf
(2003). As far as the author is aware there has been no attempt to compare
the two approaches.

8.7 DEALING WITH NON-NORMALITY

One of the most obvious assumptions in the BMVN method is that the
joint distribution of the weather indices underlying the weather derivative
portfolio is multivariate normal. The assumption of multivariate normality
consists of the assumption that the marginals are normal and the assump-
tion that the copula is a Gaussian copula. With respect to the first of these
assumptions, empirical tests have shown that normality is a good model
for the marginals for seasonal temperature contracts, but is often not satis-
factory for monthly temperature contracts. It is certainly not a good model
for counting indices (such as an index which counts the number of freezing
days) when the counts are small.

There is a simple, and standard, method for incorporating non-normal
marginals into multivariate simulations. This method was apparently first
described by Iman and Conover (1982), and has recently been popularized
by Wang (1998). The method works as follows:

1 Marginal distributions are fitted to each weather index.

2 Using the CDFs for these marginal distributions, and the inverse of
the CDF of the normal distribution, the historical weather indices are
transformed to come from a normal distribution.3

3 The transformed values are simulated using the multivariate normal
distribution.

4 The simulated values are transformed back to the original marginal
distributions, using the reverse of step 2.

The simulated values produced by this method do not have the same linear
correlations as the original historical values, but it is usually argued that
linear correlation is not a good measure of dependence anyway when con-
sidering non-normal distributions. Instead, the method yields simulated
values with the correct rank correlations.

This method is a simple example of the use of copulas. In this case,
the copula being used is the normal copula, since the historical values are
transformed to a multivariate normal for the simulation step. Alternatively,
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one could transform to any other multivariate distribution, such as a multi-
variate t-distribution, or a multivariate non-parametric distribution. There
is no weather-derivative specific published work in this area, however, at
this point, and no evidence has been presented either for or against the
general validity of the Gaussian copula for weather indices (although one
would assume that there are probably cases where the Gaussian copula is
not a good model).

8.8 ESTIMATING MODEL ERROR

One of the biggest shortcomings of the BMVN method is that the results
may depend in a sensitive way on the assumptions in the method, and
the assumptions may be wrong. For comparison, analysis of the pricing
of single weather derivative contracts has shown that the results are very
sensitive to the choice of the numbers of years of historical data used and
the form of detrending, but less sensitive to the choice of distribution (see
Jewson (2004)). These results presumably carry over to the portfolio case.
This presents a serious problem for the risk manager: an apparently innocu-
ous decision to use 30 rather than 40 years of historical data may have a
large impact on the final results. What can be done about this? We offer two
approaches:

1 Run scenario tests on the assumptions used. By this we mean: vary each
assumption within a reasonable range, see how much the final results
change, and combine all the results together. For instance, repeat all cal-
culations with 40 rather than 30 years of data, with non-linear rather than
linear trends, with non-parametric rather than parametric distributions,
and with different estimators for the correlation matrix. The advantage of
this approach is that it is simple to do. The disadvantage is that it is ad hoc,
and very subjective. Two different practitioners would vary different
sets of assumptions, and by different amounts, and would get different
results.

2 Use a number of different models, with likelihood weighting (also called
“Bayesian Model Averaging”: see Hoeting, Madigan, Raftery and Volin-
sky, 1999). This is a slightly more formal version of the previous method
that avoids some of the subjectivity. This time, for each set of assump-
tions, we calculate the likelihood of the historical observations. Only the
sets of assumptions that give high values for the likelihood are retained,
and the final simulations are combined using the likelihood values for
each model. This method still involves some subjectivity in the definition
of the set of models to be considered, but avoids the ad-hockery in the
decision of how much each assumption should be varied.
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8.9 INCORPORATING HEDGING CONSTRAINTS

Obvious constraints between the payoffs of contracts within a weather
derivative portfolio are not necessarily preserved by the BMVN method,
or its extension to non-normal distributions. This is an aspect of the fact that
it is never possible to exactly capture the correct multivariate distribution of
the weather indices, even if using copulas.

As an example, consider the following three contract portfolio: contract 1
is based on the number of freezing days in Chicago in November; contract
2 is based on the number of freezing days in Chicago in December; and
contract 3 is based on the number of freezing days in Chicago in November
and December. Clearly, in any particular year the index for contract 3 is the
sum of the indices from contracts 1 and 2. However, the BMVN method
(even with extensions to copulas) is not guaranteed to preserve this con-
straint i.e. may produce simulated years in which this constraint does not
hold. This is unlikely to be a problem in most cases, since the errors will
probably be small, but if contracts are being traded in such a way that one
is relying on this constraint to get exact cancellation of risk (for instance,
with long swaps as contracts 1 and 2 and a short swap as contract 3) and the
simulations miss the exact cancellation and give a finite instead of zero risk,
then this may be a problem.

The most obvious way to ensure that hedging constraints are captured
is to use some level of atomic simulation.4 That is, simulating at a more
detailed level than the contract index level. For instance, one could con-
sider all seasonal indices as sums of monthly indices, simulate the monthly
indices, and create simulated seasonal indices by summing the simulated
monthly indices. This would have the advantage that it would correctly
capture constraints related to sums of monthly indices. However, it would
introduce various disadvantages too: first, that monthly indices are harder
to model because they are less likely to be normally distributed, second
that modelling monthly rather than seasonal indices may involve estimat-
ing many more parameters, and thus introduce extra sources of parameter
error, and third that simulating monthly indices may increase the dimen-
sionality of the problem (increasing the size of the correlation matrix), which
will make the whole modelling process slower.

An even more atomic approach would be to simulate daily temperatures,
and there have been a number of articles written on this topic, such as
those of Dischel (1998), Cao and Wei (2000), Dornier and Queruel (2000),
Moreno (2000), Torro, Meneu and Valor (2001), Alaton and Djehiche and
Stillberger (2001), Moreno and Roustant (2002), Caballero, Jewson and Brix
(2002), Brody, Syroka and Zervos (2002) and Jewson and Caballero (2003).
This is, however, a very difficult statistical problem to solve in general and
the simulations can be very slow.
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This particular issue highlights that there is no single best solution for
modeling weather derivative portfolios. In many cases, simulating at the
contract index level may be best. In other cases, in which constraints between
monthly contracts are very important, simulating at the monthly level may
be better. Finally, for some contracts, and for some trading situations,
simulation at a daily level may be optimal.

8.10 CONSISTENCY BETWEEN THE VALUATION OF
SINGLE CONTRACTS AND PORTFOLIOS

Single weather contracts can be priced using closed-form expressions or
simulations. Whichever method is used, however, the estimate of the
expected payoff for a single contract will not be the same as the estimate
of the expected payoff of the same contract when included as part of a
portfolio which is being valued using the BMVN method. If the single
contract is valued using closed-form expressions then this difference arises
because the BMVN method uses simulations, which necessarily introduces
a small random error. If the single contract is valued using simulations then
this difference arises because different simulation engines must be used
for the two sets of simulations, since one is univariate and the other is
multivariate.

As long as many years of simulations are being used the differences are
not likely to be material relative to sampling and model error, but they can
be rather inconvenient and confusing. It would therefore be useful to be able
to make these two sets of results numerically consistent. One way to do this
is as follows:

1 When pricing stand-alone contracts, use simulations from a univariate
random number generator.

2 When modelling the portfolio, start by running simulations for the
marginal distributions using the same univariate random number gen-
erator as used for pricing individual contracts, with the same seeds on a
contract by contract basis.

3 Then, induce the desired correlation matrix between the independent
univariate simulations of the marginals by reordering the simulated val-
ues. The reordering is based on the observed rank correlation matrix and
a set of correlated multivariate normal simulations.

The result is that the simulated marginal distribution for each contract is the
same in both the univariate and multivariate cases. The only disadvantages
of this method appear to be (a) that simulations have to be used for the
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pricing of stand-alone contracts (instead of closed-form expressions, which
are faster and more accurate), and (b) that it may be slightly slower than the
BMVN method since it involves two stages of simulation.

8.11 ESTIMATING SAMPLING ERROR

As discussed in section 8.5, even if the assumptions used to model a set
of weather indices (in terms of the shapes of trends and distributions) are
correct, then the actual values of the fitted parameters are always estimated,
and this induces errors into the final results that we call sampling error
(sampling error is to be contrasted with model error, as discussed in section
8.8 above, which is caused by the models being wrong).

It may be useful to estimate the role of sampling error when pricing a
weather derivative or valuing a weather derivative portfolio. This is because
sampling error is a major contributor to overall error, and knowledge of the
level of error in pricing can lead to better decisions about whether to trade,
and how to set risk loading levels.

Unlike model error, sampling error can be estimated rather straight-
forwardly using linear theory. The case for a single weather derivative is
described in Jewson (2003a). This can be generalised to the portfolio case,
at least for the multivariate normal, although the derivation is somewhat
involved, and, to the author’s knowledge, has not been published.

8.12 ESTIMATING VaR

As discussed in section 8.3, risk in weather derivatives portfolios is princi-
pally measured by considering the distribution of outcomes of contracts at
expiry. However, it is also of interest to estimate the likely fluctuations in
the value of a weather derivative portfolio over much shorter time horizons.
This is particularly interesting for commonly traded contracts for which liq-
uidation or hedging may be an option. There are two common cases: either
one wishes to derive the possible changes in the expected expiry value,
or one wishes to derive the possible changes in the market value. With
respect to the first of these two cases, a full calculation is extremely complex,
depending, as it does, on modelling changes in weather forecasts, changes
in weather, and the correlations between the two. But a linearized estimate,
likely to be accurate for short time periods, is much simpler. Calculating such
an estimate involves linearising the non-linearities in the payoff functions
and modelling the short term changes in expected weather indices using
Brownian motion. The resulting expressions, which can be derived for both
single contracts and portfolios, are very simple (see Jewson, 2003b). With
respect to the second of these cases, that of estimating possible changes in the
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market value of a portfolio of weather derivatives, one has to consider mod-
elling the fluctuations in market prices. If one assumes that market prices
are given by expectations, this is identical to the first case. If, however, one
assumes that the market contains additional supply and demand dynamics
that are also important, then this is a rather more difficult question. The
starting point for any attack on this problem would have to be an attempt
to model fluctuations in observed market prices.

8.13 CONCLUSION

We have discussed methods that can be used for the estimation of risk in
portfolios of weather derivatives. The simplest, but very limited, method is
burn analysis. To improve on burn analysis one can use simulations, and
the simplest way to do that is to use the multivariate normal distribution
for the weather indices underlying the contracts in a portfolio. However,
this method has a number of shortcomings. We discuss how some of these
shortcomings can be addressed. Some of the methods we describe are stan-
dard in industry. Most, however, are the subject of current research, and are
yet to be applied in practice. Furthermore we have highlighted a number of
areas where further research would be useful. In particular it would be ben-
eficial to develop a better understanding of methods for accurate estimation
of correlation matrices, and to explore whether there may be benefits to be
had from using copulas other than the Gaussian copula.

NOTES

1. More details can be found in books on weather derivatives such as Element Re (2002),
Dischel (2002) or Jewson, Brix and Ziehmann (2005).

2. The earliest references we have seen for this method are Goldman Sachs (1999) and
Zeng and Perry (2002).

3. In fact there is a shortcut for this step: see Wang (1998).
4. Thanks to Seth Padowitz for the terminology, and discussions on this issue.
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C H A P T E R 9

Optimal Investment with
Inflation-Linked Products

Taras Beletski and Ralf Korn∗

9.1 INTRODUCTION

With the growing number of traded inflation linked bonds and inflation
linked life insurance products there is also a growing interest in models
for the evolution of inflation indexes and the inclusion of inflation linked
financial products into an optimal portfolio of an investor who is otherwise
investing in bonds and stocks. We will look at this problem in a model
that is a combination of the standard diffusion type model of continuous-
time portfolio optimization and a modeling framework for inflation indexes
described in Korn and Kruse (2004) (which itself is in some aspects related
to Jarrow and Yildirim, 2003).

There, an inflation index such as the harmonized consumer price index
(HCPI) is modelled as a (generalized) geometric Brownian motion with a
drift equal to the difference of the nominal and the real interest rate. This
modeling process will be shortly described in section 9.2. As a consequence
of it there will be Black–Scholes type formulae for the prices of inflation
linked bonds and options on inflation. Picking up an approach of Korn and
Trautmann (1999) – later generalized by Kraft (2003) – a mixed investment
problem including those products and conventional investment into stocks

∗ The work of Taras Beletski was supported by the DFG-Graduiertenkolleg “Mathematik und
Praxis”. The work of Ralf Korn was supported by the Rheinland-Pfalz excellence cluster
“Dependable adaptive systems and mathematical modeling”.
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and the money market account will be set up and solved in section 9.3.
Finally, in section 9.4 we show how inflation-linked products can be used to
hedge inflation dependent claims.

9.2 MODELING THE EVOLUTION OF AN INFLATION INDEX

The harmonized consumer price index (HCPI) is designed to measure infla-
tion in the countries of the European monetary union. It is an average over
11 country-based inflation indices. As it is therefore an official index it is a
natural candidate for options to be written on its future value or for linking
bond payments to it. However, to value these contracts we need a model for
the evolution of an inflation index over time.

To develop such a model we will base our considerations on macro-
economic foundations as there should of course be relations between
(different kinds of) interest rates and inflation. The most prominent rule
in this area is the so-called Fisher equation (Fisher, 1930). It states that the
nominal interest rate is the sum of the real interest rate and the expected
inflation:

rN(t) = rR(t) + E[i(t)] (9.1)

where rN(t) is the nominal interest rate for the bond maturing at time t, E[i(t)]
is the expected (simple) inflation rate for the time horizon t and rR(t) is the
real interest rate for the bond with maturity t, which corresponds to the
growth of real purchasing power in the case of investment with the nominal
interest rate rN(t). In the special case of constant real interest rates, thus
the nominal interest rates follow the movements of expected inflation rate
(a fact empirically supported by Ang and Bekaert (2003) and Nielsen (2003)).
By interpreting the relative instantaneous change:

dI(t)
I(t)

of the inflation index I(t) as the (instantaneous) rate of inflation i(t) the Fisher
equation suggests the following model of a generalized geometric Brownian
motion for the evolution of the inflation index:

dI(t) = I(t)((rN(t) − rR(t))dt + σIdWI(t)), I(0) = i (9.2)

where now rN(t), rR(t) are interpreted as the relevant instantaneous rates.
Even more, we assume that this equation holds in equilibrium, for example,
equation (9.1) is valid with respect to the risk-neutral pricing measure (the
modeling of the evolution of the inflation index under a subjective mea-
sure can be done by including an additional drift rate such as for example,
λσI ∈ IR; see also sections 9.3 and 9.4). According to the specification of the



172 OPTIMAL INVESTMENT WITH INFLAT ION-L INKED PRODUCTS

nominal and the real interest rate we can produce models of different com-
plexity out of relation (9.2). Note also that we have a mean-reverting drift
with the real rate being the mean reversion level. Especially, with this geo-
metric Brownian motion based model we are able to derive option pricing
formulae of Black–Scholes type. To understand their derivation note that
our situation can be viewed as an alternative to the pricing of a foreign
exchange option. The inflation index allows us to switch between an invest-
ment in the nominal and in the real currency (see also Korn and Kruse, 2004,
for the formal argument):

Proposition 1 Under the assumptions of deterministic real and nominal
interest rates in equation (9.2) the fair price of a European call option on
the inflation index I(T) at time t with strike price K and maturity T is
given by:

CI(t, I(t)) = I(t) exp

(
−
∫ T

t
rR(s)ds

)
N(d(t))

− K exp

(
−
∫ T

t
rN(s)ds

)
N(d(t) − σI

√
T − t) (9.3)

where N is the cumulative distribution function of the standard normal
distribution and

d(t) =
ln
(

I(t)
K

)
+ ∫ T

t (rN(s) − rR(s))ds + 1
2σ

2
I (T − t)

σI
√

T − t
(9.4)

Of course, much more natural products than call options on a consumer
price index such as an inflation index are inflation linked bonds. A typical
such example is a coupon bond with coupons protected against inflation
and the final payment of the notional being protected against inflation and
deflation, for example, it consists of payments:

Ci
I(ti)
I(t0)

, at times ti, i = 1, . . . , n, (9.5)

max
{

F
I(tn)
I(t0)

, F
}

, at time tn = T (9.6)

Under the above assumptions of deterministic interest rates we can again
derive a closed formula for its price (Korn and Kruse, 2004):

Proposition 2 Under the assumptions of deterministic real and nominal
interest rates in equation (2.2) the fair price of an inflation-linked T-bond at
time t with a reference date t0 ≤ t≤ t1, face value F and coupon payments
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Ci (before adjustment to the inflation) at times ti is given by:

BIL(t, I(t)) =
n∑

i=1

Ci
I(t)
I(t0)

exp
(
−
∫ ti

t
rR(s)ds

)

+ F

(
exp

(
−
∫ T

t
rN(s)ds

)
+ CI(t, I(t))

I(t0)

)
(9.7)

where t0 ≤ t< t1 ≤ · · · ≤ tn =T and CI(t, I(t)) is a fair price of the European
call option on consumer price index I(T) at time t with strike price K = I(t0)
and date of maturity T.

Remark (i) Of course one could also link a deflation protection to the single
coupon payments (for example, to pay at least their nominal values). Then,
the price of the so constructed inflation linked bond is given as the sum of
n+ 1 call options on the inflation index. A special case of the above consid-
ered coupon bond is an inflation linked zero coupon bond with deflation
protection that is obtained by setting Ci = 0. Also, the necessary modifi-
cations for considering an inflation-linked coupon bond without deflation
protection of the final payment are quite obvious.

(ii) Another possible approach for inflation modeling is the direct mod-
eling of an (instantaneous) inflation rate similar to the short rate approach
of interest rate modeling. We refer to Korn and Kruse (2004) for details on
this method. A similar approach based in stead on the HJM framework is
presented in Jarrow and Yildirim (2003).

9.3 OPTIMAL PORTFOLIOS WITH INFLATION LINKED
PRODUCTS

In this section we will look at various optimization problems including
aspects of inflation. The main problem of investment in the presence of
inflation is of course that inflation itself is not a traded good. However,
inflation-linked bonds or options on an inflation index are traded and can
serve as investment alternatives. As they are derivatives on the underly-
ing inflation index we can use portfolio optimization methods for portfolios
with derivatives as in Korn and Trautmann (1999) or in Kraft (2003). This
approach roughly consists of the following two-step procedure:

Step 1: Solve the optimal portfolio problem (P) as if all the underlyings
(and in particular the inflation index) were tradable (“the basic
portfolio problem”).

Step 2: Replicate the optimal positions of the non-tradable assets via
positions in suitable derivatives and the money market account.
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Of, course to use it we first have to set up the relevant optimization problem.
For this, we assume that an investor is allowed to trade into a riskless bond
with price given by:

dP0(t) = P0(t)rN dt, P0(0) = 1 (9.8)

In addition, he can invest into n further risky securities which might be
stocks, inflation linked bonds, or more general derivatives on inflation
and/or stocks. For a given initial wealth of x and an admissible portfo-
lio process π(.)∈A(x) (to be specified later) including the above investment
possibilities let Xπ(t) denote the corresponding wealth process. Then, the
investor’s task will be to maximize the expected utility from final wealth,
for example, he tries to solve the portfolio problem (P):

sup
π(.)∈A(x)

E(U(Xπ(T))) (P)

where U(x) is a utility function (for example, a strictly concave, monoton-
ically increasing and differentiable function). To simplify matters we will
assume that besides the riskless bond above the investor can invest into a
risky stock with price dynamics given by:

dP1(t) = P1(t)(b dt + σI dW1(t) + σ2 dW2(t)), P1(0) = p1 (9.9)

and in some inflation linked product where the inflation dynamics are
given by:

dI(t) = I(t)((rN − rR + λσI)dt + σI dW2(t)), I(0) = i (9.10)

with (W1, W2) denoting a two-dimensional Brownian motion. If in such a
situation we assume that it is possible to trade in two derivatives on the
stock and on the inflation with price processes given by:

f (i)(t, P1(t), I(t)), f (i) ∈ C1, 2([0, T) × (0,∞)2), i = 1, 2 (9.11)

then the relevant result from Korn and Trautmann (1999) can be formulated
as (where we will omit a proof here as it would be totally similar to the one
given in the Korn and Trautmann (1999) for the case of optimal investment
in stock derivatives).

Theorem 1 Under the assumption that the delta-matrix �(t)= (�ij(t)),
i, j= 1, 2 with

� =
(

f (1)
p1 (t, P1(t), I(t)) f (1)

I (t, P1(t), I(t))

f (2)
p1 (t, P1(t), I(t)) f (2)

I (t, P1(t), I(t))

)
(9.12)

(with the subscripts denoting the corresponding partial derivatives) is
regular for all t∈ [0, T) then the option portfolio problem (P1)

max
ϕ(.)∈B(x)

E(U(Xϕ(T))) (OP)



TARAS BELETSK I AND RALF KORN 175

with

Xϕ(t) = ϕ0(t)P0(t) + ϕ1(t) f (1)(t, P1(t), I(t))

+ ϕ2(t) f (2)(t, P1(t), I(t)) (9.13)

(and B(x) the set of all admissible trading strategies in the bond and the
two derivatives for an initial wealth of x) admits the following solution:

(a) The optimal final wealth B* coincides with the optimal final wealth
in the corresponding basic portfolio problem (P) where the investor is
assumed to be able to trade the stock and the inflation index.

(b) Let ξ(t)= (ξ0(t), ξ1(t), ξ2(t)) denote the optimal trading strategy of the
corresponding basic portfolio problem (P). Then the optimal trading
strategy for the option portfolio problem ϕ(t)= (ϕ0(t), ϕ1(t), ϕ2(t)) is
given by:

ϕ̄(t) = (�(t)′)−1 · ξ̄(t),

ϕ0(t) =

(
X(t) −

d∑
i=1

ϕi(t) f (i)(t, P1(t), . . . , Pd(t))

)
P0(t)

(9.14)

with ϕ̄(t)= (ϕ1(t),ϕ2(t))′ and ξ̄(t)= (ξ1(t), ξ2(t)).

Equipped with this result we are now able to solve various particular port-
folio problems related to inflation explicitly. But first we recall examples of
explicit solutions of the basic portfolio problem (P):

Step 1: Solving the basic portfolio problem (P). In this step we will treat the
inflation index as a tradable good and solve the portfolio problem (P) for
the choices of

U(x) ∈ {ln (x), 1/γ xγ } with γ < 1 (9.15)

With the notation of

σ =
(
σ1 σ2
0 σI

)
(9.16)

the solutions of the basic portfolio problem (P) for these choices of the utility
functions are well-known and are given by:

π∗(t) = 1
1 − γ

(σσ′)−1
(

b − rN
λσI − rR

)
(9.17)
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where the case of γ = 0 corresponds to the choice of the logarithmic utility
function. If in particular the stock price is independent of the inflation index
(for example, we have σ2 = 0) then we obtain the special form of

π∗(t) = 1
1 − γ

( (
b − rN

)
/σ2

1

(λσI − rR) /σ
2
I

)
(9.18)

So in both cases, the optimal fractions of wealth invested in the risky
assets are functions of the excess return suitably weighted by their volatili-
ties. Note especially that the subjective excess returnλσI has to be bigger than
the real rate – an assumption that rarely seems to hold. So in this – hypothet-
ical – portfolio problem a risk averse investor typically sells inflation when
behaving optimally!

Step 2: Optimal portfolios with inflation linked products.
Problem 1: Inflation-linked bond and non-inflation linked bond.
In this first setting we assume that the investor has access to a market con-
sisting of the riskless bond with price P0(t) and an inflation-linked coupon
bond with coupon payments as described in relation (9.5) and a final pay-
ment as in (9.6), for example, we look at the following special case of the
portfolio problem (OP):

max
ϕ(.)∈B(x)

E(U(Xϕ(T))) (OP1)

with

Xϕ(t) = ϕ0(t)P0(t) + ϕ1(t) f (1)(t, I(t)) (9.19)

and where the function f (1) coincides with BIL(t, I(t)) of Proposition 9.2. As
shown in Korn and Trautmann (1999) we only have to use the replication
strategy in the riskless bond and the inflation index for this inflation-linked
bond to determine the optimal trading strategy for the corresponding port-
folio problem (OP), the dynamics of its price process BIL(t, I(t)) play no
explicit role. However, as can be directly verified, the number of the shares
in the inflation index of this replication strategy has the following form:

ψ1(t) =
∑
i:ti>t

Ci

I(t0)
exp(−rR(ti − t)) + Fexp(−rR(T − t))N(d(t))

I(t0)
(9.20)

Combining this with the results of Step 1 and Theorem 1 leads to the optimal
trading strategy in the inflation-linked bond of

ϕ1(t) = ξ1(t)
ψ1(t)

= λσI − rR(t)
(1 − γ)σ2

I

· X(t)
ψ1(t)I(t)

(9.21)

with X(t) being the optimal wealth process of the basic portfolio problem
(P) (which coincides with the optimal wealth process of (OP1) by Korn and
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Trautmann (1999)). To understand the qualitative behavior of the optimal
strategy we look at the corresponding portfolio process:

π1(t) = ϕ1(t)BIL(t, I(t))
X(t)

= λσI − rR

(1 − γ)σ2
I

BIL(t, I(t))
ψ1(t)I(t)

= λσI − rR

(1 − γ)σ2
I

θ(t, I(t)). (9.22)

By comparing relations (9.20) and (9.5) and using

ψ1(t)I(t) = BIL(t, I(t)) − e−rN (T−t)F(1 −�(d(t) − σI
√

T − t)) (9.23)

we obtain the following relations:

θ(t, I(t)) > 1, θ(t, I(t)) →
{+∞, for I(t) → 0

1, for I(t) → +∞ (9.24)

for example, the absolute value of the optimal portfolio process for the port-
folio problem (OP1) is always bigger than the one of the corresponding basic
problem (P). To interpret this, we look at the following two

Special cases

a) In the special case of an inflation-linked zero coupon bond, for exam-
ple, for

Ci = 0, i = 1, . . . , n

we obtain

ψ1(t) = F exp(−rR(T − t))N(d(t))
I(t0)

(9.25)

BIL(t, I(t)) = F
(

exp(−rN(T − t)) + CI(t, I(t))
I(t0)

)
(9.26)

which would lead to the same limiting behavior of the quotient θ(t, I(t)) as
in relation (9.24).

In the special case of an inflation-linked bond without deflation protection,
for example, a usual inflation-linked coupon bond where the final payment
of the notional has the form:

F
I (T)
I (t0)

(9.6*)
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we obtain:

ψ1(t) =
∑
i:ti>t

Ci

I(t0)
exp(−rR(ti − t)) + F exp(−rR(T − t))

I(t0)
(9.27)

BIL(t, I(t)) =
∑
i:ti>t

Ci
I(t)
I(t0)

exp(−rR(ti − t))

+ F
I(t)
I(t0)

exp(−rR(T − t)) (9.28)

leading to:

π1(t) = λσI − rR

(1 − γ)σ2
I

BIL(t, I(t))
ψ1(t)I(t)

= λσI − rR

(1 − γ)σ2
I

(9.29)

for example, we have the same optimal portfolio process as in the basic prob-
lem (P). This is not surprising as the inflation-linked bond without deflation
protection is simply a linear product with regard to the inflation index which
therefore can be identified as a tradeable good.

If we now put the insights from the two special cases together then we
note that the higher absolute value of the optimal portfolio process for (OP1)
compared to (P) has its reason in the protection against deflation. As for small
values of the inflation index the total payment of the inflation linked bond
is typically dominated by the final payment, the price of the inflation linked
bond then behaves more like a nominal bond. To mimic the optimal stock
position, therefore more and more units of the inflation linked bond have to
be sold short.

The following numerical example illustrates the above discussion. In
Figure 9.1 the simulated path of the inflation index is presented for the
time interval t= [0, 30], where the time unit represents one year. The infla-
tion index is assumed to follow the geometric Brownian motion of (9.10)
with the following parameters: nominal and real interest rates, rN = 0.07
and rR = 0.05 respectively, market price of risk λ= 0.3, volatility σI = 0.20 on
the yearly basis and I(0)= 100 (the seemingly high value of λσI is chosen for
demonstrational purposes to obtain positive values for the optimal fractions
of inflation products later on).

In Figure 9.2 we present the optimal portfolio processes for three different
portfolio problems, each characterized by the structure of the inflation-
linked bond available as investment opportunity. These different structures
are an inflation-linked zero coupon bond with deflation protection (9.26), an
inflation-linked bond without deflation protection (9.28) and an inflation-
linked bond with deflation protection (9.5). The inflation-linked bonds are
assumed to have the following characteristics: face value F = 100, date of
maturity T = 30, coupon payments Ci = 10 and coupon dates ti = i, where
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Figure 9.1 Simulated path of an inflation index as a
geometric Brownian motion

i= 1, 2, … , 30, as well as the reference inflation index of t0 = 100. The opti-
mization is done for the HARAutility function withγ = 0.5. The paths shown
in Figure 9.2 of course correspond to the simulated path of the inflation index
of Figure 9.1.

As already stated, the figure illustrates the fact if an inflation-linked
bond without deflation protection is used the optimal portfolio process for
problem (P) is constant. For the other two inflation-bonds that are deflation-
protected at par one can observe that the optimal portfolio of the zero
inflation-bond is always higher than the one of the inflation-bond contain-
ing coupon payments, which are not deflation-protected, due to the fact that
the zero inflation-bond’s structure is totally option-like, where as including
coupon payments creates a mixture of the inflation index (stock) and an
option-like inflation-bond.

Further, the opposite movements of the inflation index and the optimal
portfolio processes of inflation-linked bonds with deflation protection can be
detected. The optimal pure fraction of the bond and inflation index (taking
over the role of the stock) in the portfolio is given by the solution of the basic
problem (P) and coincides with the optimal portfolio of the inflation-linked
bond without deflation protection. An inflation-linked bond with deflation
protection can be seen as the combination of the inflation index (replicating
strategy (9.20)) and the conventional bond (the remaining part of (9.5)), for
example, can be replicated by the inflation index and this conventional bond.
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Figure 9.2 Optimal portfolio process of inflation-linked bonds with
different structure characteristics

In order to maintain this optimal pure fraction of the bond and inflation
index (stock) in the portfolio, one has to increase the relative fraction of the
inflation-bond in the portfolio, when the inflation index is getting lower,
because the replicating strategy (9.20) becomes smaller, too.

The other interesting aspect of this example is the asymptotic behavior of
the optimal portfolio processes of inflation-linked bonds with deflation pro-
tection at the maturity date T. Depending on the level of the inflation index
I(t) the price of the inflation-linked bond BIL(t, I(t)) approaches three differ-
ent asymptotical forms. In the case of inflation, for example, when I(t)> I(t0),
the asymptote is equal to ψ(t)I(t). For I(t)= I(t0) we have ψ(t)I(t)+F/2
as an asymptote and in the case of deflation, for example, I(t)< I(t0), the
asymptotic function for BIL(t, I(t)) is ψ(t)I(t)+F. In these different cases the
asymptotic representations of the optimal portfolio process π1(t) are:

π1(t) ∼ λσI − rR

(1 − γ)σ2
I

, t → T, I(t) > I(t0)

π1(t) ∼ λσI − rR

(1 − γ)σ2
I

(
1 + F

2ψ(t)I(t)

)
, t → T, I(t) = I(t0)
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π1(t) ∼ λσI − rR

(1 − γ)σ2
I

(
1 + F

ψ(t)I(t)

)
, t → T, I(t) < I(t0)

This asymptotic behavior of the optimal portfolio process π1(t) shows the
same feature as the inverse dependence between the optimal portfolio pro-
cess and inflation index I(t). Having a higher probability for deflation, for
example, I(t)< I(t0), the related fraction of the inflation-linked bond, for
example, the optimal portfolio process π1(t), has a higher value compared
to the situation with a lower deflation probability, for example, I(t)> I(t0).

Problem 2: Inflation-linked bond, stock and non-inflation linked bond.
In addition to the setting in Problem 1 the investor can now also invest

into a stock with price given by equation (9.9). For simplicity we now assume
that the final payment has no protection against deflation and that inflation
and the stock price evolution are independent. More precisely, we look at
the problem:

max
ϕ(.)∈B(x)

E(U(Xϕ(T))) (OP2)

with Xϕ(t)=ϕ0(t)P0(t)+ϕ1(t)P1(t)+ϕ2(t)BIL(t) where BIL(t) is given as in
Equation (9.28). To solve Problem (OP2) we first determine the replication
strategies of the stock (by itself) and the inflation-linked bond as:

ψ1(t) = 1

ψ2(t) = ∑
i:ti>t

Ci

I(t0)
exp(−rR(ti − t)) + F exp(−rR(T − t))

I(t0)
(9.30)

Application of Theorem 1 then yields the optimal trading strategy in stock
and the inflation-linked bond as:

ϕ1(t) = ξ1(t)
ψ1(t)

= b − rN(t)
(1 − γ)σ2

1
· X(t)

P1(t)

ϕ2(t) = ξ2(t)
ψ2(t)

= λσI − rR(t)
(1 − γ)σ2

I

· X(t)
ψ1(t)I(t)

or in terms of the portfolio process as:

π1(t) = b − rN

(1 − γ)σ2
1

, π2(t) = λσI − rR

(1 − γ)σ2
I

(9.31)

We thus have the same optimal portfolio process as in the basic problem (P).
This is not a surprise as our traded products are just linear functions of the
ones traded in (P). As the portfolio process only describes the fraction of the
total wealth invested in the different products we should therefore have this
coincidence which of course disappears for the inflation-linked bond and
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the inflation index if we would compare the actual amount of units of both
products we optimally have to hold in both portfolio problems.

Remarks

(a) Looking at the explicit form of the optimal fraction of wealth in the
inflation-linked product as given in relation (9.31), we realize that unless
we have a very strong opinion for a very high inflation rate (for example,
the excess return of the inflation should be higher than the real interest
rate) it would be optimal to sell inflation-linked bonds short.

(b) In the more general case of an inflation-linked bond with deflation pro-
tection and a non-vanishing correlation between the inflation index and
the stock price, explicit calculation shows that we obtain the following
optimal portfolio processes:

[
ϕ1(t)

ϕ2(t)

]
= (ψ(t)′)−1ξ̄(t)

= 1
1 − γ

X(t)


b − rN

σ2
1P1(t)

− λσI − rR

σ2
I P1(t)

· σ2σI

σ2
1

λσI − rR

σ2
I Iψ22(t)

·
(

1 + σ2
2

σ2
1

)
− b − rN

σ2
1 I(t)ψ22(t)

· σ2σI

σ2
I


(9.32)

with X(t) denoting the optimal wealth process of both the basic portfolio
problem (P) and the just considered optimal option portfolio problem and
where the replication strategies are given by:

ψ(t) =
1 0

0
n∑

i:ti>t

Ci

I(t0)
exp(−rR(ti − t)) + F exp(−rR(T − t))N(d(t))

I(t0)

 (9.33)

Hence, the moral of both remarks is that the type of risk-averse investors
we are considering are typically selling inflation-linked bond products
short. However, there should be market participants which are interested
in purchasing such inflation-linked products as otherwise there is no use
in offering them at all. Therefore, in the next section we are presenting a
situation where those products are needed.

9.4 HEDGING WITH INFLATION-LINKED PRODUCTS

As we have seen in the last section, a risk-averse investor is usually not
attracted by inflation linked products of the type we considered here. The
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only exception is if he is pretty sure that there will be a tendency for a
huge increase of the inflation index expressed via a high risk premium. On
the other side, there are companies that have to hedge inflation to do their
original business. Typical such candidates for buying the above inflation-
linked products are (usually non-life) insurance companies who are facing
a risk process due to their insurance business that is closely linked to the
inflation as the value of the insured goods are obviously related to it. To study
one of their relevant problems we consider a financial market consisting of a
riskless bond, a stock and some inflation-linked product where we assume
the following price processes (for simplicity we assume the inflation index
to be tradable which – as seen – is equivalent to the assumption that an
inflation-linked bond without deflation protection is traded):

dP0(t) = P0(t)rN dt, P0(0) = 1 (9.34)

dP1(t) = P1(t)(µdt + σ11dW1(t)), P1(0) = p1 (9.35)

dI(t) = I(t)((rN − rR + ν)dt + σ21 dW1 (t)+ σ22 dW2(t)) I(0) = i (9.36)

We assume that an insurer wants to hedge a payment that is inflation related
(for example, payments arising from a car insurance) and has the form,

B̃ = B · I(T)

where B is independent of the Brownian motion W and represents the value
of the insurance premium that has to be paid out if the insurance case would
happen today. Further, B can be interpreted as the total outcome of the
risk process of the insurance company until the time horizon. The hedging
problem we are considering is

min
π

E(B̃ − Xπ(T))2 (9.37)

where the utility criterion can be simplified to

E(B̃2) − 2E(B)E(I(T)Xπ(T)) + E(Xπ(T)2) (9.38)

for example, it is sufficient to consider the utility maximization problem
with the following (random) utility function:

U(x) = U(x; I(T)) = −x2 + 2cx · I(T) (9.39)

with a suitable constant c. Note that this utility function – although strictly
concave – is not strictly increasing, but has an invertible derivative. As
in Korn (1997) one can show that the usual procedure of the martingale
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approach to portfolio optimization (see Korn (1997b)) is still valid but cannot
ensure a non-negative final wealth process. Let us first consider the case of:

9.4.1 Investment in bond, stock and inflation

In this setting we have a complete market. If the investor can afford it then
he will use a trading strategy that will minimize the utility function U(x) of
(9.39) pathwise, for example, his final wealth should satisfy

Xπ(T) = cI(T) (9.40)

which – by completeness of the market – the investor can exactly attain with
an initial wealth of

x̃ = cE(H(T)I(T)) = I(0)E(B) (9.41)

where H(T) is given by:

H(T) = exp(−(rN + ½‖θ‖2)T − θ′W(T)),

θ := σ−1
((

µ

rN − rR + ν

)
− rN1

)
(9.42)

In the case of x≥ x̃ it is not necessary for the investor to use more money than
x̃ for hedging activities as this would lead to a deviation from the optimal
final wealth of (4.7). We therefore have proved:

Proposition 3 Let x̃ be defined as in (9.41) and assume x≥ x̃. Then,
the optimal final wealth for the hedging problem (9.37) is given by rela-
tion (9.40), the optimal hedging strategy is to buy c units of the inflation
index (respectively a suitable inflation product delivering the same final
payment) and to hold it until maturity T. The corresponding minimal
quadratic hedging error equals:

Var(B)E(I(T)2) (9.43)

The remaining money x− x̃ can be used for different purposes.

Proof: In light of the arguments preceding Proposition 3 only (9.43) has to be
shown, but this follows directly from the final wealth of the form of relation
(9.40) into the utility function (9.38).

In the case of x< x̃ we are in the situation of Korn (1997a) and can use the
martingale approach. Note first that we have:

U′(x) = 2c · I(T) − 2x
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which implies (with the notation of Korn (1997a)):

Ĩ(y) = (U′)−1(y) = cI(T) − ½ y

leading to

X(y) = E(H(T)Ĩ(yH(T))) = E(cH(T)I(T)) − ½ yE(H(T)2)

Y(x) = (X)−1(x) = 2(E(cH(T)I(T)) − x)/E(H(T)2)

As in Korn (1997a) we then obtain:

Proposition 4 In the case of x< x̃ the optimal final wealth for problem
(9.37) is given by:

B∗ = I(T)E(B) − (E(B)I(0) − x)
H(T)

E(H(T)2)
(9.44)

with a minimal quadratic hedging error of:

Var(B)E(I(T)2) + (E(B)I(0) − x)2

E(H(T)2)
(9.45)

Proof: The form of B∗ follows from the main result of Korn (1997a) as we
there have:

B∗ = Ĩ(Y(x)H(T)) = E(B)I(T) − E(E(B)H(T)I(T) − x)
H(T)

E(H(T)2)

Using E(H(T)I(T))= I(0) and B∗ instead of B in (9.38), simplifying the result-
ing expression leads directly to the minimal hedging error as given in
(9.45).

Remark (i) Note that the hedging error above consists of two different com-
ponents. First, there is the unavoidable error term Var(B)E(I(T)2) which only
vanishes if the height of the premium (more precisely, the part not depend-
ing on price changes due to inflation) is exactly foreseeable. The remaining
part

(E(B)I(0)) − x)2

E(H(T)2)

is non-negative, but can vanish depending on the amount of money x avail-
able for hedging activities (for example, for x=E(B)I(0)) which also shows
that Propositions 3 and 4 are consistent for exactly this choice of x).
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(ii) The form of the hedging error obtained in Proposition 3 is quite natural
as due to the independence of B and the capital market, E(B) is the best
forecast for B made up out of the actions at the capital market, and E(I(T)2)
represents the minimal possible uncertainty due to inflation.

To demonstrate the effect that the use of the inflation index has on the
hedging error we also have to solve problem (9.37) if we are not allowed to
trade the inflation index (or any other inflation-linked product – besides the
stock, of course). We will reduce this problem to solving again a (modified)
quadratic problem but now in the market that consists only of the bond and
the stock.

9.4.2 Investment in bond and stock

If we can only invest in bond and stock then we cannot hedge the
randomness that is caused by W2(.). We therefore introduce:

I(t) = Î(t)exp(−½ σ2
22t + σ22W2(t)) (9.46)

and thereby directly obtain that the utility criterion in this reduced market
equals:

E(B̃2) − 2E(B)E(Î(T)Xπ(T)) + E(Xπ(T)2) (9.47)

for example, we can now solve a conventional utility maximization problem
in the complete market made up of the stock and the bond with:

U(x) = U(x; Î(T)) = −x2 + 2cx · Î(T) (9.48)

Ĥ(T) = exp(−(rN + ½θ̂2)T − θ̂W1(T)), θ̂ = (µ− rN)/σ11 (9.49)

x̂ = cE(Ĥ(T)Î(T)) = I (0) exp
((

−rR + ν − (µ− rN)
σ21

σ11

)
T
)

E (B) (9.50)

Exactly the same arguments as in the case (i) lead to:

Proposition 5 Let x̂ be defined as in (9.50).

(i) For x≥ x̂, the optimal final wealth for the hedging problem (4.4) if
only investment in bond and stock is allowed is given by:

E(B) Î(T) (9.51)
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with a corresponding minimal quadratic hedging error equalling,

Var(B)E(I(T)2) + (E(B))2E((I(T) − Î(T))2) (9.52)

The remaining money x− x̂ can be used for different purposes.

(ii) In the case of x< x̂ the optimal final wealth for problem (9.38) is given
by:

B̂∗ = Î(T)E(B) − E(E(B)Ĥ(T)Î(T) − x)
Ĥ(T)

E(Ĥ(T)2)
(9.53)

with a minimal quadratic hedging error of:

Var(B)E(I(T)2) + (E(B))2E((I(T) − Î(T))2) +

+ (E(B)E(Ĥ(T)Î(T)) − x)2

E(Ĥ(T)2)
(9.54)

Proof: The form of the optimal final wealth in both cases follows exactly
as in the situations of Propositions 3 and 4, but now in the reduced market
consisting only of the bond and stock. To show the form (9.52) of the hedging
error, note:

E[BI(T) − E(B)Î(T)]2 = E[BI(T) − E(B)I(T) + E(B)(I(T) − Î(T))]
2

= Var(B)E(I(T)2) + (E(B))2E((I(T) − Î(T))2)

+ 2E(B − E(B))E(I(T)(I(T) − Î(T)))

= Var(B)E(I(T)2) + (E(B))2E((I(T) − Î(T))2)

With this, the form of the hedging error (9.54) follows as in Proposition 4.

Remark Note that for σ11 = 0 the results of Proposition 3 and 4 coincide with
those of Proposition 5. The form of both the hedging errors and the optimal
final wealths indicate that they are the results of two succeeding projections.
First, B̃ is projected onto the market that allows for a perfect replication of
inflation (see Propositions 3 and 4) and then to the market that only allows
a partly hedging of inflation via trading stock and bond (see Proposition
5). This becomes most transparent when we are in case (i) of Proposition 5
where the two sums making up the hedging error exactly correspond to this
interpretation.
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9.4.3 Numerical examples

We are now illuminating the gains for our hedging problem by using
inflation-linked products via some numerical examples. Note that to per-
form our computations we need the following explicit forms of the hedging
errors in the above propositions:

� The quadratic hedging error H1 corresponding to B* (trading in bond,
stock, inflation) is given by:

H1 = Var(B)I(0)2 exp((2(rN − rR + ν) + σ2
21 + σ2

22)T)

+ (I(0)E(B) − x)2

exp((θ′θ − 2rN)T)

with θ =


µ− rN

σ11
ν − rR

σ22
− µ− rN

σ11
· σ21

σ22


� The quadratic hedging error H2 corresponding to B̂* (“trading in bond

and stock”) is given by:

H2 = Var(B)I(0)2 exp((2(rN − rR + ν) + σ2
21 + σ2

22)T)

+ I(0)2 exp((2(rN − rR + ν) + σ2
21)T)(E(B))2(exp(σ2

22T) − 1)

+ (I(0)E(B) exp((−rR + ν − θσ21)T) − x)2

exp((θ2 − 2rN)T)

with θ= µ− rN

σ11

It is now easiest to see the hedging effect of using inflation products by
considering a deterministic B which we therefore assume to equal 1. We will
further choose:

µ = 0.1, σ11 = 0.3, rN = 0.04, ν = 0.01, σ22 = 0.04 I(0) = 100

and vary x, σ21, rR and report the corresponding hedging errors in Table 9.1
where we choose rR = 0.03 (panel A) and rR = 0.05 (panel B) respectively.

What can be clearly seen is that with tradable inflation the hedging error
is smaller than if we can only use the stock for hedging inflation. The error
increases with decreasing covariance between inflation and the stock. Thus,
we have demonstrated that there are indeed investors who have advantages
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Table 9.1 Corresponding hedging errors

Panel A

σ21 0.04 0 −0.04

x H1 H2 H1 H2 H1 H2

100 0 16.69 0 16.67 0 16.69
95 15.94 21.91 20.26 26.16 23.79 31.78
90 63.76 71.23 81.06 83.61 95.12 97.42

Panel B

σ21 0.04 0 −0.04

x H1 H2 H1 H2 H1 H2

100 0 16.04 0 16.01 0 16.04
95 6.16 16.14 9.57 17.22 13.72 19.60
90 24.66 45.42 38.29 54.47 54.88 64.89

from buying inflation-linked products and so there are counterparts to the
risk-averse investors of section 3.

9.5 CONCLUSION

We have presented a simple modeling framework for pricing and deal-
ing with inflation-linked products. After having derived Black–Scholes-type
pricing formulae in section 9.2, we considered standard portfolio problems
for investing in bond, stocks and inflation-linked products which could be
solved by the martingale method. As a consequence we obtained that typ-
ically risk-averse investors sell standard inflation-linked products (such as
inflation-linked coupon bonds) short. The necessary counterparts for cre-
ating an active market of inflation-linked products are investors that have
to hedge inflation related payments (such as insurance companies), a fact
which is demonstrated in section 9.4.

Future research will be centered around more detailed models including
perhaps stochastic interest rates as in Jarrow and Yildirim (2003) or in general
incomplete markets.
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C H A P T E R 10

Model Risk and Financial
Derivatives
François-Serge Lhabitant

10.1 INTRODUCTION

Since the introduction of option trading in Chicago in 1973, derivatives
have shaped the evolution of capital markets by allowing efficient risk
unbundling and transfer. Financial intermediaries immediately recognized
that derivatives were the perfect tool to customize state-contingent payoffs
for both speculators and hedgers alike. Consequently, the volume and var-
ious types of derivative contracts traded on organized exchanges as well
as in over the counter markets have grown steadily. The catalysts of this
success were the development of financial theory and sophisticated pricing
mathematical models, the availability of real-time information, the techno-
logical innovation (in particular increasingly powerful computers) as well
as the move from open-outcry trading to electronic trading. Today, we have
reached the point where derivatives have become an essential feature of
practically any financial contract. They have changed the way companies
and individuals make investments, raise capital, and even measure, manage
and understand risk.

The fundamental risks associated with derivatives (for example, credit,
market, operational and legal risks, among others) are no different from
those that many financial institutions and firms face in their traditional
businesses. However, the risks associated with derivatives can be far more
complex to assess and manage due to their dynamic nature, the asymmetry
of their payoffs and the implicit leverage of derivatives positions. Unlike

191
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stocks or bond traders, derivatives traders cannot sell an option contract,
hedge it, place the paperwork in a drawer and forget about it. Indeed,
there is a need to constantly monitor the corresponding commitments and
adjust the hedge dynamically. Therefore, the need to accurately price and
hedge derivative contracts throughout their life – and, more generally, to
develop models to manage their risks – rapidly became self-evident among
the financial community.

It is therefore not surprising to see that modelling has also significantly
evolved alongside derivatives markets. A few decades ago, the derivatives
industry was lacking sophisticated models, and traders primarily relied
on experience and intuition, with mixed results. Today, there is a prolif-
eration of sophisticated models, which includes well-established models
from academia, proprietary models developed for internal use by leading-
edge financial institutions, and third-party applications intended for sale
or distribution (for example, commercial software). A standard off-the-
shelf financial package typically contains between five and twenty models
to value the same option, whereas a proprietary derivatives pricing soft-
ware in an investment bank might contain several hundred models. As a
result, derivatives traders simultaneously utilize a seemingly disparate col-
lection of models to perform similar or related tasks. These models may
be inconsistent with each other, or even inadequate for the task they are
used for. Nevertheless, their results are often taken for granted, aggregated,
compared and used for making strategic and tactical decisions.

For academics, the abundance of models is clearly unsatisfactory. For
some practitioners, it is simply confusing. For others, it is just a warning
sign of an early developmental stage in the modelling technology. For all,
it should be a signal that a new type of risk has emerged, namely: model
risk. As summarized by Robert C. Merton in his Nobel Prize address, “The
mathematics of financial models can be applied precisely, but the models
are not at all precise in their application to the real world.” The abundance
of models and the imperfect assumptions and hypothetical solutions that
go into them result in model errors becoming more of a probability than
a remote possibility. This hazard is called model risk, and it is generally
categorized as a form of operational risk.

Broadly speaking, model risk encompasses all financial losses directly
attributable to the use of a quantitative model. Derman (1996) lists several
examples of situations associated with model risk, for example, inapplica-
bility of modelling, incorrect model, correct model with incorrect solution,
correct model with inappropriate use, badly approximated solution, soft-
ware and hardware bugs, or unstable data. As illustrated by Green and
Figlewski (1999) or Gibson, Lhabitant, Pistre and Talay (1999), model risk
may lead to a number of problems for financial institutions, such as deriva-
tives trading too low or too high in price, incorrect hedging strategies,
liquidity issues, etc.
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Table 10.1 A few examples of model risk and its consequences

Period Institution Problem Loss (M)

1970s Merrill Lynch Pricing of bond issues with an inadequate US$ 70
US interest rate curve.

1970 Merrill Lynch Use of an incorrect yield curve to price US$ 70
stripped Government bonds

1987 Merrill Lynch Incorrect pricing model for stripped US $350
mortgage-backed securities

1992 J.P. Morgan Inadequate models of prepayments US$ 200
for mortgage-backed securities.

1997 Natwest Markets Pricing of options based on a naïve GBP 90
volatility feed.

1997 Bank of Tokyo- Inadequate calibration of a model for US$ 83
Mitsubishi swaptions.

1997 UBS AG Inadequate pricing model for structured CHF 120
equity derivatives

1998 LTCM Inadequate models for arbitrage Unknown
between US and European interest
rates, and excessive leverage

2001 Lipper Convertible Inadequate mark to model for US$ 600
Hedge Fund convertible bond arbitrage.

2003 Fourth District Modelling error in its auto-leasing US$ 67
Institution Provident business identified 7 years later
Bank

2005 Various hedge funds Market reaction to the GM and Ford Unknown
credit downgrades too improbable an
event for credit risk models to capture it

Far from remaining a theoretical concern, the percentage of losses
attributed to model risk has been consistently increasing over recent years,
and the deficiencies in current quantitative models continue to be brought to
light by market events (see Table 10.1). In 1999, a report by Capital Markets
Risk Advisors (CMRA) and Meridien Research estimated the annual model
risk losses reach $5.5 billion. Since, it is almost de rigueur to have a major
model risk-related disaster every year. The loss may be absorbable, but the
acute embarrassment is not. It is, therefore, essential for model users and
builders to be aware of the existence of model risk, to understand its poten-
tial sources and to implement business practices and technology solutions
to mitigate it.

In this chapter, we discuss the potential impact on model risk in the
particular case of derivatives pricing and hedging. Section 10.2 recalls the
evolution of pricing models for derivatives. Section 10.3 illustrates the exam-
ple of implied volatility – a necessary input in most pricing models that is
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in fact a patch against model errors – while section 10.4 discusses the role
that financial models play for derivatives contracts. Section 10.5 reviews the
different steps in the model building process where model risk can start.
Section 10.6 presents a short technical study of how things can turn wrong
when an option trader uses the wrong model to hedge his or her book,
while section 10.7 contains a series of (often forgotten) common sense rules
to manage and mitigate model risk. Section 10.8 summarizes our findings
and opens the way to future research.

10.2 FROM MATHEMATICAL THEORY TO
FINANCIAL PRACTISE

Derivatives pricing finds its roots in the doctoral thesis of Louis Bache-
lier (1900), which developed the first analytical model for the valuation
of financial options. Unfortunately, Bachelier’s theoretical contribution was
too innovative for his time. Consequently, his peers essentially focused on
the weaknesses of his model – normally distributed asset prices allow for
negative security prices and may result in call option prices that exceed the
price of the underlying asset. Therefore, Bachelier was granted his doctoral
degree, but he was only offered a chair in a second-tier university, and his
work remained undiscovered for more than fifty years. In a sense, Bache-
lier became the first publicly known victim of financial model risk, and
quantitative finance went back to sleep.

One has to wait until the late 1960s to see quantitative work laying
again some foundations in finance, with Markowitz’s (1959) and Sharpe’s
(1966) works on portfolio selection and modern portfolio theory. But
the major event was undoubtedly the publication of the option-pricing
model developed by Black and Scholes (1973) and Merton (1973). Though
mathematically complex, their formula was directly applicable, easy to
understand and only required a series of rather straightforward inputs:
the price of the underlying asset, the strike price, the time to maturity, the
volatility of the underlying asset and the risk-free interest rate. Moreover,
their model came out simultaneously with the opening of option trading
at the CBOT. Needless to say, it was an immediate success. Practitioners
and option traders adopted the model as a useful tool for understanding
what the price of an option should be, how to make money from mispriced
options, and how to hedge an option book.

Since then, the interaction between mathematical theory and financial
practice has never ceased. As the mathematical awareness in the financial
research community increased, financial markets became more quantified
and derivatives research actively evolved in three directions in order to
improve the Black, Scholes and Merton framework. The first direction
involved the relaxation of some of the original underlying assumptions,
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with a view toward developing a theory that accounts for market imperfec-
tions (for example, transaction costs, liquidity problems, feedback effects,
etc.). The second direction focused on generalizing the price dynamics of
the traded assets to include broader classes of stochastic processes, such as
the so-called Levy processes and their extensions. Finally, the third direc-
tion started considering the case of more complex financial products, such
as exotic options and structured products. In each of these directions, new
quantitative models and techniques have been developed and applied, and
this trend towards more financial engineering is likely to persist. There is
no turning back, despite the fact that quantitative finance is regularly pro-
nounced dead, particularly after major market events such as the crashes of
1987, 1994 or 1998.

Unfortunately, the level of complexity in the new financial models is also
rising. The new science behind quantitative finance is relying more and more
on applied probability theory and numerical analysis, and uses mathemati-
cal techniques such as stochastic calculus and partial differential equations to
achieve its results. It also draws on wide areas of physics, notably heat diffu-
sion and fluid mechanics where the dynamics are similar to those of financial
markets.1 As a side effect, not surprisingly, the mathematics encapsulating
many of the more innovative derivatives is less and less accessible to the
majority of market participants, including senior management. This resulted
in the creation of a series of new models whose role is to help senior managers
understanding the risks of instruments that are themselves heavily depen-
dent on models. It is a vicious circle, which was summarized as follows by
Alan Greenspan in one of his allocutions in March 1995: “The technology that
is available has increased substantially the productivity for creating losses”,
and empirical evidence showed that these losses could be significant.2

10.3 AN ILLUSTRATION OF MODEL RISK

The concept of implied volatility is probably among the best illustrations of
what we mean by model risk. Consider for instance the case of the Black
and Scholes option-pricing framework. The price of an option depends
upon the price of the underlying asset, the exercise price, the time to matu-
rity, the future volatility of the underlying asset, and the risk-free interest
rate. All these parameters are observable, except the volatility parameter,
which needs to be estimated. Now, how can one estimate something that is
unobservable?

The usual way to price an option is to plug a volatility estimate into a pric-
ing model (as well as all the others necessary observed variables) and thus
obtain the corresponding option price. Alternatively, one can also “invert
the model”. Starting from a market-quoted option price, one can compute
the implied volatility assuming that the Black-Scholes formula is the correct
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pricing model for options.3 This implied volatility figure can then be used
as an input to other models, for instance to value more complicated options
on the same underlying asset for which we have no market price or illiquid
markets, typically over-the-counter derivatives.

In theory, there is nothing wrong with this type of approach. In fact,
derivative prices observed at any given time should contain forward looking
information on volatility. This means that the models used to price and hedge
derivatives must be determined partially from econometric information and
partially by solving “inverse problems” (in the sense of partial differential
equations) that reflect current market prices. However, the problem starts
when (a) we have several option prices available from which we can obtain
an implied volatility, and (b) different options on the same underlying asset
display different implied volatility. This phenomenon was originally called
the smile, because a graph of the implied volatility against the strike of
the corresponding option would typically look like a smile, deep in and
out of the money options having higher implied volatility. After the 1987
crash, the smile disappeared and usually became a frown, with implied
volatility generally decreasing as the strike price increase. As a result, in the
money call options and out of the money puts tend to have prices that are
above their respective theoretical Black and Scholes values, while out of the
money calls and in the money puts are priced below their respective Black–
Scholes values. Rubinstein (1994) attributed part of this phenomenon to
crash-phobia, that is, investors valuing more out of the money puts because
they fear a new crash. In addition to the frown, market participants often
observe a term structure effect: options with the same strike price but with
different maturities also tend to display systematic volatility patterns with
respect to time to maturity.

In order to account for these biases with respect to the Black and Scholes’
constant volatility assumption, market participants started to build up mod-
els that accept a volatility surface rather than a single volatility number as
an input. That is, depending upon the maturity date, the degree of money-
ness of their options and whether it was a put or a call, market participants
were considering different levels of volatility. These different levels were
obtained by inverting the Black and Scholes model to yield a local volatility
figure (see Figure 10.1).

From a practical perspective, the models that use an implied volatility
surface are extremely convenient. They can explain and quantify the skew-
ness and kurtosis in the empirical distribution of stock returns. They are
consistent with different types of stochastic processes for the underlying
asset. Moreover, they can be recalibrated to market data several times a
day and their pricing errors are extremely small, which gives a false sense
of security to their users. However, from a theoretical perspective, implied
volatility surface models are by definition unsatisfactory. If the Black and
Scholes assumptions hold, the volatility surface should be … flat. And if the
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Figure 10.1 An example of the volatility surface observed on
the Swiss market index

Black and Scholes assumptions do not hold, then any information implied
by applying their model should by definition be considered suspicious. For a
given option, the single number that we call “implied volatility” is, in some
sense, just an amalgamation of all the unobservable, untradable, omitted
and/or incorrectly specified parameters in the Black and Scholes model.
Nevertheless, most financial institutions and researchers continue to use
implied volatilities and even build more sophisticated models on top of
them.4

10.4 THE ROLE OF MODELS FOR DERIVATIVES

Not all derivatives models were created equal. Depending on the role they
are playing, models may be more likely or less likely to generate model risk.
Three different perspectives should be considered.

10.4.1 A model is just shorthand

The first series of models are just convenient mathematical shorthand with
no real meaning. They provide a useful tool to summarize a large amount



198 MODEL R ISK AND F INANCIAL DER IVAT IVES

of information in a few standardized and comparable numbers. This is the
case, for instance, of the yield to maturity of a bond or the implied volatility
of an option. In the latter case, a model (say the Black and Scholes formula)
is a filter that turns quoted dollar values into an indicator of expected future
volatility. As long as the result is taken cautiously, the quality of the model
used plays a limited role. What really matters is the price the shorthand
stands for, not the model itself. As an analogy, measuring and comparing
distance using a biased meter does not matter as long as all distances are
biased by the same factor. With such models, model risk is virtually non-
existent or irrelevant. However, trouble may start if the model output is used
as an input to another model (for example, relying on implied volatility to
implement a hedging strategy).

10.4.2 A model is an approximation too

The second series of models are meant to serve as reasonable approximations
or abstractions of some real-world behavior. They seek to explain relation-
ships between observed phenomena and their generating process in an
idealized way. They are less complicated than reality and hence easier to deal
with. Their simplicity often lies in the fact that only the relevant properties
of reality are represented, so that reasonable and acceptable approxima-
tions of reality are obtained for specific problems in ordinary situations. For
instance, models that provide theoretical values to traders and investors
and/or estimate risk exposures for risk managers enter into this category.

These models are usually popular and do not generate model risk per se.
However, model risk can appear because of self-confidence. When a model
seems to be consistent with the recurrence of similar expected results, we
begin to become confident about its validity, assume that the model is correct,
and often start using it as an extrapolation device outside of its definition
range (for example, for rare and unusual situations) to predict and control
the future. As an illustration, consider again the Black and Scholes model.
As illustrated previously, it provides a useful pricing approximation for
most at-the-money options close to expiry, but will give incorrect results for
in-the-money and out-of-the-money options, resulting in the well known
volatility smile.

10.4.3 A model is all that there is

In some extreme cases, a model may be the only tool available for valuation
and/or decision-making. This is the case, for instance, with derivative
instruments traded on OTC markets with only one market-maker, or with
automated quoting and trading machines. Models in this latter category are,
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of course, the most likely candidates to generate model risk, since common
sense is of little use.

10.5 THE MODEL-BUILDING PROCESS AND MODEL
RISK-CREATION

Model risk is somehow similar to a virus: it is relatively easy to catch, and
once in, it becomes extremely contagious. To understand how easy it is
to introduce model risk within an institution, let us focus on the model-
building process, that is, the procedure for the construction and verification
of models for financial derivatives. A typical model-building process can be
split into three steps: (1) model selection or creation; (2) model calibration;
and (3) model usage. Each of these steps is capable of generating model risk.

10.5.1 Model selection/creation

In finance, most models have predictable regular features (deterministic)
and unpredictable ones (stochastic). Since the unpredictable features are
the ones which derivatives target, it is not surprising that the principal
mathematical tool to build derivatives models relies heavily on probabilistic
techniques and the theory of stochastic processes. As an illustration, the stan-
dard approach to option pricing consists of specifying the stochastic process
followed by an underlying asset price and then deriving the option price as
a function of the process parameters. Unfortunately, academic research has
long stressed mathematical elegance as a key to quality.

Since analytic and closed-form solutions were the only noble outputs for
option-pricing models, several researchers carefully selected the stochastic
processes they were using in order to obtain closed-form solutions for their
results. Sometimes, trade-offs were made between mathematical elegance
and realism. Consequently, speculative prices underlying financial deriva-
tives are not necessarily well represented by the few stochastic processes –
and their related probability distributions – that are now commonly used in
finance (for example, essentially normal and log-normal distributions, and
diffusion-like processes). Financial time series exhibit highly non-trivial sta-
tistical features which are hard to model and even harder to explain, for
example, intermittent behavior, volatility clustering (amplitudes of succes-
sive price movements are persistent, but not necessarily their signs), heavy
tailed increments, and subtle dependence structures.

Nowadays, computer power is readily available, and closed-form solu-
tions are considered to be a luxury that most practitioners cannot afford the
time to find, thus preferring crude numerical schemes. Most of the time,
these will work fine. However, numerical and poor semi-analytic methods
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inevitably carry their drawbacks. They produce discontinuities, which can
be inherent numerical artefacts or genuine jumps in the portfolio sensitivi-
ties. The uniqueness (and meaningfulness) of a numerical solution should
also imperatively be checked. Estimating the errors involved in a numerical
scheme is a hard task, and numerical errors tend to accumulate and bias the
final result.

10.5.2 Model calibration

The usefulness of a model and the value of its output are only as good as
the model’s ability to be effectively calibrated to its market environment.
In the case of backward-looking models, information is available and there
are numerous econometric techniques to estimate the necessary parameters
and calibrate a model to market data. In the case of forward-looking mod-
els, validation can only occur after the fact, that is, when the authors will
typically be unavailable. The calibration is then possible in only one way, by
back-testing, that is using the spatial and statistical properties of the past to
predict the present.

Although often neglected, the calibration stage is essential to detecting
model risk. Indeed, the theory of parameter estimation generally assumes
that the true model is known, and that the true model parameters must be
estimated using a representative set of data. Are these properties verified in
practice? Fitting a time-series model is usually straightforward nowadays
in the use of appropriate computer software. However, model errors are
likely to result in parameter instability. This was easy to observe in the case
of simpler static models with observable parameters, but as soon as a model
includes time-varying or stochastic parameters, these will absorb all the
errors and output them as a simple change in value. Things get even worse
when some of the quantities we are dealing with are pure abstractions, such
as the expected future volatility. Even if we assume that this quantity is
constant, how can we measure it?

Last but not least, instability in the calibration process can also result
from numerical problems (such as near-singular matrix inversion) or from
implementation problems: a model may require a large number of iterations
to converge (a typical problem in Monte-Carlo simulations or in solving
partial differential equations), may require a higher precision for floating-
point numbers, or may use inappropriate approximations.

10.5.3 Model usage

Finally, model risk may arise during the model usage, even though all
of the previous steps were correctly performed. For instance, some of the
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hypotheses of the model may simply not hold true in the real world, result-
ing in a model that performs poorly. As an illustration, a model may assume
that zero-coupon bonds exist for all required maturities, while in practice
the set of available maturity dates will be restricted. One should always
remember that markets are driven by psychology, by supply and demand,
by consensus, and not by simple diffusion processes.

10.6 WHAT IF THE MODEL IS WRONG? A CASE STUDY

When running a derivatives book, the first obvious impact of model risk is
on pricing – model-based prices will diverge from observed ones. However,
model risk also affects hedging, in a more subtle way. As an illustration,
let us consider the case of the Black and Scholes (1973) framework. In a
complete perfect market, a stock price S(t) follows a geometric Brownian
motion with constant volatility parameter and drift parameters:5

dS(t)
S(t)

= µdt + σdW(t) (10.1)

Equation (10.1) defines the true model, for example, the ones that rules the
world. We denote by C(t) the value at time t of a European call option with
maturity T and exercise price K on this stock. By Ito’s lemma, we obtain:

dC(t) =
(
∂C(t)
∂ S(t)

µS(t) + ∂C(t)
∂ t

+ 1
2
∂2 C(t)
∂ S2(t)

σ2S2(t)

)
dt + ∂C(t)

∂ S(t)
σS(t)dW(t)

(10.2)

Furthermore, we know that the call price C(t) must satisfy the following
partial differential equation:

∂C(t)
∂ S(t)

rS(t) + ∂C(t)
∂ t

+ 1
2
∂2 C(t)
∂ S2(t)

σ2S2(t) − rC(t) = 0 (10.3)

with boundary condition C(T)=Max [S(T) − K, 0].
Now, consider the case of a trader that is short one call option and needs

to hedge his position. In theory, if he knew the “true” model, he could hedge
perfectly in continuous-time by holding ∂C(t)

∂S(t) units of the underlying asset

and
(

C(t) − ∂C(t)
∂S (t) S(t)

)
units of a zero-coupon bond maturing at time T. In

the absence of arbitrage opportunities, the value of his overall portfolio�(t)
is equal to zero, and its instantaneous variations are defined by:

d�(t) = −dC(t) + ∂C(t)
∂ S (t)

dS(t) +
(

C(t) − ∂C(t)
∂ S(t)

S(t)
)

rdt (10.4)

which can also be shown to equal zero.
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Now, in reality, the trader does not know perfectly equation (10.1),
and may therefore use a mis-specified and/or mis-estimated model. By
mis-specified, we mean a model different from Black-Scholes, such as an
arithmetic Brownian motion with time-varying parameters, or a mean-
reverting diffusion process. By mis-estimated, we mean that the trader uses
the Black and Scholes model, but mis-estimates the parameters µ and/or σ.

In either cases, the wrong option pricing model will give a price Ĉ(t) for
the option that differs from the true (market) price C(t). Moreover, the wrong

option pricing model will also provide an incorrect hedge ratio ∂Ĉ(t)
∂S(t) . At time

t, the trader’s replicating portfolio will then be worth:

�(t) = −C(t) + ∂ Ĉ(t)
∂ S(t)

S(t) +
(

Ĉ(t) − ∂ Ĉ(t)
∂ S(t)

S(t)

)
(10.5)

which is no longer necessarily equal to zero. The portfolio instantaneous
variations are:

d�(t) = −dC(t) + ∂ Ĉ(t)
∂ S(t)

dS(t) +
(

Ĉ(t) − ∂ Ĉ(t)
∂ S(t)

S(t)

)
rdt (10.6)

Using equations (10.5) and (10.6) and rearranging terms yields:

d�(t) =
(

Ĉ(t) − C(t)
)

rdt

+
[
∂Ĉ(t)
∂S(t)

− ∂C(t)
∂S(t)

]
(µ− r)S(t)dt

+
[
∂Ĉ(t)
∂S(t)

− ∂C(t)
∂S(t)

]
σS(t)dW(t) (10.7)

This equation summarizes the consequences of model risk for our trader.

� The first term is a pricing error. The trader uses the model price (Ĉ(t)) to
determine the initial investment to set up the hedging portfolio. If Ĉ(t)
differs from the market price C(t), the initial investment is excessive or
insufficient, and the difference is carried through time at the risk-free rate.
As a consequence, the delta hedge strategy is no longer self-financing. In
particular, at some point, the hedger may need to borrow and infuse
external funds in order to maintain the delta-hedge. Since the amount
borrowed may become larger than the value of his portfolio, this signifies
that delta hedging with model risk can lead to bankruptcy.

� The second term results from (i) the difference between the true delta
parameter and the delta given by the model, and (ii) the difference
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between the drift of the underlying asset and the risk-free rate. Depend-
ing on the sign of these differences, at maturity, the hedging strategy
may yield a profit or a loss. Therefore, the trader may end-up with
a replicating portfolio that is far from what he should have in order
to fulfil his liabilities. For some exotic options, delta hedging can
actually even increase the risk of the option writer, as evidenced by
Gallus (1996).

� The third term results again from a difference between the true delta
parameter and the delta given by the model. In addition, it depends
on a stochastic term (dW(t)), making the hedging strategy result both
stochastic and path-dependent. Last, but not least, it also depends on the
true level of volatility.

Clearly, in the presence of model risk, even though we assume frictionless
markets, the delta hedging strategy of our trader is no longer replicating or
self-financing. Even worse, it becomes path-dependent.

How can we one deal with model risk in practice when delta hedging a
position? The answer is not straightforward. Rebalancing the hedge more
frequently does not help, because there is still a difference between the true
hedging parameters and those given by the model. A possible solution con-
sists of looking for a super-hedging strategy, for example, a strategy such
that the hedging result is guaranteed with a given probability whatever
the true model6. Unfortunately, super-hedging strategies become rapidly
expensive as the probability of being hedged increases. Another solution
consists of specifying a loss function to be minimized by the hedging strat-
egy. In this case, perfect hedging is transformed into minimum residual
risk hedging. But as a consequence, pricing is not uniquely determined
and risk neutrality cannot be used – different agents may have different
loss functions, and therefore, reach different prices for the option being
considered.

10.7 ELEVEN RULES FOR MANAGING MODEL RISK

Managing and controlling model risk is a difficult and complicated pro-
cess, which should generally be performed almost on a case-by-case basis
and cover at least three distinct areas: (a) the choice, testing and safe-
keeping of the mathematics and computer code that form the model;
(b) the choice of inputs and calibration of models to market data; and
(c) the management issues associated with these activities. The success
of model risk management and control will often depend crucially on
personal judgement and experience. Therefore, the following set of rules
should not be considered as a series of recipes, but rather as a minimum
checklist.
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Rule 1: Define what should be a good model

Before qualifying a model as being better than another model, one needs to
define precisely the model-quality metrics. What makes a model superior to
another often varies according to its usage. Consider, for instance, a pricing
model versus a risk management model. The former must match closely
the values of known liquid securities and focuses on absolute prices today,
while the latter needs to realistically represent the possible future evolution
of market variables and focuses on relative variations tomorrow. Both goals
are sufficiently different to result in divergences in the ranking of competing
models, depending on the context. Therefore, a good pricing model will not
necessarily be a good risk-management model, and vice-versa. Nor will
the hypothesis or conclusions reached for the pricing model be necessarily
applicable to the hedging model.

In addition to the model usage, what makes a model superior to another
also varies according to the preferences of the model user and the necessary
underlying assumptions. Unfortunately, practitioners often understate or
neglect this aspect. For instance, it is common practice to test an option pric-
ing model’s quality by comparing the model’s predicted prices with market
prices, and using some sort of loss function such as the mean pricing error
(with respect to the market), the mean absolute pricing error or the mean
squared pricing error. The approach implicitly assumes that (i) model users
display symmetric preferences (for example, equally consider under- and
over-pricing, or care equally about losses and gains); (ii) the option pric-
ing model is correct; and (iii) the market is efficient in its pricing process.
If the option pricing model is rejected, we do not know if (ii) is untrue;
(iii) is untrue; or (ii) and (iii) are untrue! And even if the model has been val-
idated, the validation process may not hold true for an individual displaying
asymmetric preferences (for example, downside risk aversion). It is therefore
crucial to agree on the model-quality metrics prior to ranking any type of
model.

Rule 2: Keep track of the models in use

Fighting model risk should start with a detailed inventory of the various
models available within a financial institution. This means keeping records
of which models are used, who uses them, and how they’re used. For
computer-based models, it also implies keeping track of who built them,
who keeps the code and who is allowed to change it. It is not uncommon to
see banks where the only version of the source code is stored on a magnetic
tape somewhere in the archives.

An up-to-date inventory should significantly enhance productivity and
reliability. Typically, in a financial institution, each time a new product is
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developed, there is a tendency to either quickly adapt an older model with
or without authorized modifications (the spreadsheet syndrome), or rebuild
a new model from scratch (the blank sheet syndrome). Neither of these
approaches is efficient and both are potential model risk generators. By
storing models in a common library, by documenting them and knowing
their users, a significant amount of time and money can be saved and model
risk is significantly reduced.

An up to date inventory will also help in understanding and explaining
internal divergences. For instance, traders, risk managers and back-offices
frequently use different models. This leads to an internal control problem
and opens the door to conflicts regarding unexplained profit-and-loss dif-
ferences. Although it would be preferable that all of them rely on the same
approved model, this is rather wishful thinking, because their needs are fun-
damentally different. Knowing who uses what can significantly help solve
such internal control problems.

Rule 3: Define a model-testing framework

This may appear as a tautology, but each financial institution should estab-
lish a complete and rigorous model-testing framework. Too often, model
testing is limited to proofing some mathematical formulations and enter-
ing a few parameters in a spreadsheet to observe the model’s output.
This is clearly insufficient. Data mining techniques make it easy to obtain
statistical proofs of nearly any relationship by selecting an appropriate
historical dataset. Therefore, a rigorous model-testing framework should
include:

� Adedicated model validation team, which should be independent of both
the models’ developers and final users to ensure impartiality and elim-
inate the operational risk embedded in the implementation of a model.
Independent assessment is the only way to provide a welcome degree
of comfort, useful suggestions and improvements, and avoid the set of
incentives to realize profits early.

� A precise framework to guide all persons involved in models validation.
This should include a standardized series of test procedures and data sets,
as well as minimum precise requirements to qualify a model as acceptable
(the model risk metric). These should not be considered as exhaustive,
but rather as minima. For instance, whatever the option pricing model,
a deep in the money call option should behave like a forward, while a
deep out of the money call should behave like a zero-coupon bond.

� A clear formalization of internal responsibilities for validation. As a rule,
if somebody is supposed to do it, nobody will do it.
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It is important to realize that the role of model testing should not be
reduced to validate or invalidate a model, but should also include increasing
its reliability, revealing its weaknesses, confirming its strengths and pro-
moting improvements. Consequently, it is essential that (1) any information
generated during the test phase be recorded and documented; and (2) pur-
chasing a model from an external vendor does not exempt it from the
validation process.

Rule 4: Regularly challenge and revise your models

At the root of the model risk problem is that market and mathematical
assumptions (for example, simplifications of market behavior) are often
hard-coded and remain stagnant within the model, while things do change
in real life. Consequently, models should not be carved in stone, but rather
evolve and improve with time. All models used within an institution should
be regularly revised and their adequacy to the current market conditions
challenged. This process should include an analysis of the underlying
assumptions as well as a consistency check with the best-accepted practices
in the industry. In addition to this regular revision, institutions extending
existing businesses or entering new ones should also make a special effort
to reassess existing models, procedures, data and best practices before they
adopt. Very naturally, model users should be involved in the process as they
are likely to be aware of the latest developments in the field.

Rule 5: Mark to market or to market standards, not to a model

Following the Group of Thirty’s (G30) recommendations, the calculation
of the mark-to-market value7 of derivative positions is widely practiced in
the financial industry as a natural way to avoid model risk. Unfortunately,
marking to market has its own dangers and may induce a false sentiment of
security and overconfidence.

For positions where there is a conventional market price (for example,
closing bid), one would expect the results of a good model to be quite close
to those observable on the market. Appreciable differences should be seen as
an early warning system, so that one needs to fully understand the sources
of these differences to form an opinion of the model being tested. As an
illustration, the 1997 disaster at NatWest could have been easily avoided by
obtaining external implied volatility quotes from brokers or other institu-
tions that trade in the marketplace and by comparing them with Natwest’s
values.

For more complex or illiquid derivative instruments, marking to market
becomes a difficult exercise. When prices are not easily available, traders
tend to use theoretical prices as a benchmark, generating an important
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model risk source (the mark to model syndrome). If the benchmark model is
wrong, everything can go wrong. Institutions following this direction will be
particularly at risk if its traders (relying on the wrong model) are themselves
the unique providers of a given financial instrument on the market. Then,
the market prices coincide with the incorrect model prices which means that
large neutral positions could in fact generate important accumulated losses
when the situation is discovered.

Although not ideal, marking to model may be acceptable if all market
participants agree on a standard. However, there are fields with no consen-
sus on a particular model. Consider for instance fixed income securities and
interest rate modeling. Since the valuation of most assets relies on discount-
ing cash flows, interest rate modeling is a very important area of finance.
However, no definitive interest rate model has yet emerged.8 This is good
news for those who wish to carry out research in this line, but it is also a
source of concern to investment banks and their regulators, as a mark to
model gain or loss is clearly meaningless.

Rule 6: Simple is beautiful

The development of modern financial theory has come to a stage in which
finance produces a rich source of challenging questions for a range of
mathematical disciplines, including the theory of stochastic processes and
stochastic differential equations, numerical analysis, the theory of optimiza-
tion, and statistics. Theoretical results and computational tools are used,
for instance, in the pricing of financial derivatives, for the development of
hedging strategies associated with these derivatives, and for the assessment
of risk in portfolios. Unfortunately, as the mathematics of finance reaches
higher levels, the level of common sense seems to drop. Rather than starting
with some idea, some concrete economic or physical or financial mecha-
nism, and then expressing it in mathematics, researchers increasingly just
write down an equation and try to solve it without any consideration of
the usefulness of the overall process or its applicability to the real world.
We believe this approach is clearly wrong: models should be based on con-
cepts, information and insight, not just on advanced mathematics. Although
mathematics is important to modeling, it should not be primary, but mostly
complementary. Most financial models users will be fast-thinking actors
in dynamic markets. Therefore, avoiding unnecessarily complicated mod-
els should be the rule. Whenever available, simple, intuitive and realistic
models should always be preferred to complex ones.

For the same reason, model-users should only move to a more complex
model or approach only when there’s a value in doing so. In a sense, the
science of modeling should be seen as an evolutionary process, a sort of
chicken-or-egg problem. Better models should in turn allow for a better
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understanding of risks, the creation of new financial products, and, there-
fore, the need for additional models. As an illustration, the elegance of
the Black and Scholes model is its rationality and logic. The model was
not successful because prices of financial assets were actually log-normally
distributed (which they may or may not be), but because the formula was
easy to apply and understand, it arose as a valid first order approximation in
a much wider class of models. The later Black and Scholes stochastic exten-
sions (for example, with stochastic interest rates and/or stochastic volatility)
were never as successful as the original model because they lost most of the
qualities of their ancestor. As a rule, users should always understand the
ideas behind a model and be comfortable with the model results. Treating a
model as a black box is definitely the wrong approach.

Rule 7: Verify your data

A few years ago, the lack of reliable financial data was a major problem. It is
still the case in a few areas (for example, the modeling of exotic derivatives
or of credit risk). However, most of the time, we are rather awash with data.
The key is turning this data into knowledge. Information should no longer
be represented by data, but by data verified and organized in a meaning-
ful way. The quality of a model’s results depends heavily on the quality of
its data feed. Garbage in, garbage out (GIGO) is the law, and data which
is faulty to start with is likely to produce faulty conclusions after process-
ing, and further, may ruin the benefit of sophisticated analytical models.
Ensuring the integrity and accuracy of data feeds in models should there-
fore be key, even though it may require considerable effort and time. This
implies checking both the series of data against errors, but also the seman-
tics of the feed. Should the fair value be the price at which the firm could
incrementally unwind the position, or the price at which they could sell
the entire book, or the price above which they start to lose clients’ inter-
est? These questions need to be addressed at the beginning of the modeling
process.

As an illustration, in the 1970s, Merrill Lynch had to book a US$70 mil-
lion loss because it underpriced the interest component and overpriced the
principal component of a 30-year strip issue.9 The market identified the
mis-pricing and only purchased the interest component. The problem was
simply that the par-yield curve Merrill used to price both components was
different from the annuity and the zero-yield curves that should have been
used for each component. Oops! Wrong feed … As a rule, one should also
beware of multiple data sources and non-synchronous data feeds (for exam-
ple, stock indices and foreign exchange for daily close values) should also be
reduced to a minimum, as they can lead to wrong pricing or create artificial
arbitrage opportunities.
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Rule 8: Use a model for what it is made for

Most models were initially created for a specific purpose. Things may start
breaking down when a model is used outside its range of usefulness, or is
not appropriate for the intended purpose. For instance, a good model for
value at risk (VaR) will not necessarily be a good pricing model. The reason
is that VaR estimates focus only on price variations, but not on price levels.
Pricing errors are therefore not translated in the VaR. For the same reasons, a
good pricing model is not necessarily a good hedging model, and vice versa.
For example, using a stochastic or a deterministic volatility does not make
a huge difference as far as the pricing is concerned if one gets the average
volatility right. It makes a big difference as far as hedging is concerned.

Rule 9: Stress test your models

The G30 states that dealers should regularly perform simulations to deter-
mine how their portfolio would perform under stress conditions. This is
often implemented through scenario analysis, which is appealing for its
simplicity and wide applicability. Unfortunately, most institutions tend to
focus solely on extreme market events such as the October 1987 crash. They
neglect to test the impact of violations of the model hypothesis, and how
sensitive the model’s answers are to its assumptions. A small change in one
parameter may result in dramatic changes in the model output, while a large
change in another parameter may not necessarily change things at all.

Because there is no standard way of carrying out stress model risk testing
and no standard set of scenarios to be considered, the danger is that one does
not really suspect a model until something dramatic happens. To borrow a
metaphor from a well-known movie, the threat of a North Atlantic iceberg
was just a theory on 14 April 1912 – until the Titanic hit one. This is why the
process should also depend on the qualitative judgement and experience of
the model builder.

Rule 10: Beware of exotics!

By definition, exotic derivatives are highly subject to model risk. Firstly,
exotic derivatives are not traded on liquid markets, but over the counter.
Prices are therefore not the result of the equilibrium between supply and
demand with numerous arbitrageurs waiting to capture any mispricing,
but are rather supply driven. Secondly, exotic derivatives are often sensi-
tive to some exotic parameters that cannot be hedged, are embedded into
the model assumption, or are themselves linked to the difficulty of manag-
ing the risk. For instance, yield curve options pose vega spread volatility
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issues; Bermudian options create modeling problems due to their hybrid
nature between American and European; and ratchet options pose difficul-
ties associated with the existence of a volatility smile slope. None of these
variables are directly hedgeable. And finally, models may produce similar
plain vanilla option prices (and therefore fit to the market data), yet give
markedly different prices of exotic options. This is documented for instance
in Hirsa, Courtadon and Madan (2002).

Rule 11: Beware of correlations!

Correlations are found almost everywhere in finance, from portfolio con-
struction to option pricing and hedging. As soon as there is more than
one random parameter to be considered, correlations have a role to play.
Unfortunately, correlations are among the most unstable parameters in real
life, particularly during periods of heightened volatility. Risk managers
often consider the possible effects of high return volatilities, but fail to
account for the higher correlations between asset returns that would gener-
ally accompany the elevated volatility. One way to do so would be to employ
information from historical periods of high volatility in order to form esti-
mates of correlations conditional to a period of heightened volatility. These
conditional correlations could then be used to evaluate the distribution of
returns under a high volatility scenario. Put differently, the method used for
stress testing a portfolio must not exclude the empirical feature that periods
of high volatility are also likely to be periods of elevated correlation.

10.8 CONCLUSION

Acknowledging the rapid increase in sophistication of the financial commu-
nity and products in recent years, most banks and trading rooms have been
hiring people with the most up-to-date set of mathematical and quantita-
tive skills. This directly resulted in a profusion of complex models – math
engines that spit out risk and instruments valuations based on a flood of
market data – that corporations are relying on to steer them through volatile
markets.

Although most money is still made or lost because of market movements,
not because of modeling, institutions are increasingly aware that no matter
how advanced and refined financial models are, they are all subject to model
risk and they should all be extensively tested, validated and tempered with
judgment. However, intensive model-auditing, stress-testing and smart risk
managers are all necessary – but they aren’t enough. All the math geniuses
in the world don’t help if management either neglects to implement the
procedures necessary to produce accurate calculations of risk or ignores



FRANÇOIS -SERGE LHAB ITAN T 211

those outputs. In all the recent derivatives losses, management can be faulted
for a lack of understanding the problem. Murphy’s Law holds; what can go
wrong will go wrong. You can only tell when a model is wrong. It will always
be more difficult to tell when a model is right.

NOTES

1. The Black – Scholes option-pricing formula, for example, can also be expressed as the
solution to the heat-diffusion equation.

2. Note that the consequences of model risk are also visible in non-financial areas. For
instance, a simple programming error – trying to store a 64-bit number into a 16-
bit space – exploded the European Agency rocket Ariane 5 shortly after take off,
destroying $7 billion of investment and 10 years of work.

3. The implied volatility is the volatility figure that one would need to plug in the Black
and Scholes formula to obtain a theoretical price equal to the market price.

4. For instance, Derman and Kani (1994) construct implied binomial trees from an
observed volatility smile and use it for pricing and hedging both standard and exotic
options. Dupire (1994) provides an algorithm to recover a unique risk-neutral diffusion
process consistent with observed (or fitted) option prices.

5. Working in the Black and Scholes framework leads to important analytic simplification
without any loss of generality. The equivalent derivation in the case of a more general
model can be found in Bossy et al. (1998).

6. See for instance Lhabitant, Martini and Reghai (2001) for options on a zero-coupon
bond.

7. Marking to market is the process of regularly evaluating a portfolio on the basis of its
prevailing market price or liquidation value.

8. See for instance Gibson, Lhabitant and Talay (2001) who survey more than 60 different
models of interest rates.

9. In a strip issue, a bond is stripped into its regular coupon annuity payment (interest
only) and principal repayment (principal only).
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Evaluating Value-at-Risk
Estimates: A

Cross-Section Approach
Raffaele Zenti, Massimiliano Pallotta and Claudio Marsala

11.1 INTRODUCTION

Since 1998, regulatory guiding principles have required banks with signifi-
cant trading activity to set aside capital to insure against extreme portfolio
losses. The size of the market risk capital requirement is directly related to a
measure of portfolio risk. Currently, in the regulatory framework, portfolio
risk is measured in terms of its Value-at-Risk (VaR).Also in the community of
asset management companies the quest for reliable risk management tech-
niques has grown in recent years. The concept of VaR is now widespread
among asset managers. This is an answer to the demand of sophisticated
investors, such as pension funds and foundations, and it is also a clear
response to the growing interest of asset managers for analytical tools that
give better control on their portfolios.

Therefore, an important issue for risk managers and regulators is whether
the VaR models in use are accurate enough. Verifying the accuracy of VaR
models requires backtesting and now there is a variety of tests that exam-
ine the validity of these models. Existing methods tend to absorb a large
amount of data and often show low power when used in small samples
(those typically available).

In contrast with previous research on assessing the accuracy of risk met-
rics, which has focused on back-testing models on a time-series basis, we

213
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propose a methodology based on cross-section analysis of randomly gener-
ated portfolios. This exploits in a better way the information content of the
multivariate distribution of returns used to estimate VaR.

The plan of this chapter is as follows. The next section (11.2) formalizes
the notion of VaR and section 11.3 reviews existing backtesting methods. In
section 11.4 we present our methodology and in section 11.5 we give some
examples that show how this approach can be successfully applied. Section
11.6 concludes.

11.2 VALUE-AT-RISK

In general, VaR models attempt to forecast the time-varying distributions
of portfolio returns, and different models provide different estimates. In
addition, VaR estimates vary over time as market conditions and portfolio
composition change. From a formal point of view, throughout the rest of
this chapter, we will refer to a portfolio’s value at risk as the α quantile of
portfolio’s return distribution:

VaRt,j(α, wt, H) = F−1
t,j (α | It, wt) (11.1)

where wt is the vector of weights at time t for a given portfolio, H is the time
horizon (say 10 days), F−1

t,j (·) is the inverse of the cumulative probability
distribution of portfolio’s returns, estimated at time t using model j, and It
is the information set on market conditions available at time t to estimate
VaR. For a survey on VaR models and current risk management practice, see
Jorion (2001).

11.3 REVIEW OF EXISTING METHODS FOR BACKTESTING

An assortment of tests has been proposed so far to check the accuracy of VaR
models. We try to identify a taxonomy of the most popular testing methods.

11.3.1 Tests based on the hit function

These are by far the most popular. Consider the event that Rt,t+H(wt), the
portfolio return on given period [t, t+H], is less than VaRt,j(α, wt, H), for
example, its reported VaR at time t. This event is a VaR failure.

The Hit function for model j counts failures as follows:

Hitt+H,j(α, wt) =
{

1 if Rt,t+H ≤ VaRt,j (α, wt, H)

0 if Rt,t+H > VaRt,j (α, wt, H)
(11.2)

Thus, the Hit function over time is a binary time series, {Hitt+H,j}, that
registers the history of VaR failures. As pointed out by Christoffersen (1998),
the sequence {Hitt+H,j} should satisfies two fundamental properties.
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Unconditional coverage property

A given model j satisfies this property if:

Pr�Hitt+H,j(α, wt) = 1� = α (11.3)

then on average the model is correct.
There are a variety of tests able to verify this property. Kupiec (1995)

models {Hitt+H,j} as a sequence of independent draws from a binomial dis-
tribution with probability of occurrence equal toα. Campbell (2005) suggests
a test performed directly on the sample average of failures. It is well-known,
see among others Kupiec (1995) and Lopez (1999), that a key issue with these
tests is their statistical power: they exhibit low power in relatively small sam-
ples (for example, 250 days, as in the regulatory framework). This implies
that the chance of misclassifying an erroneous VaR model as accurate is high.

Independence property

A given model j satisfies this property if the sequence {Hitt+H,j} is inde-
pendently and identically distributed (i.i.d.), that is, failures do not exhibit
serial correlation. A model that exhibits the correct unconditional coverage
property but that violates the independence property might display clusters
of failures over time. This is undesirable, as the consequence could be an
exposure to financial losses for quite a few periods in a row. The two proper-
ties, for example, unconditional coverage and independence, can be jointly
expressed as:

Hitt+H,j(α, wt)
i.i.d.∼ Binomial(α) (11.4)

where Binomial(α) is a binomial variate with probability α. In words,
the sequence of failures must be a series of independent and identically
distributed binomial events. The main contribution in this area is by
Christoffersen (1998) that depicts a joint test of these two properties, as they
are both crucial. If the two properties are tested in a standalone fashion,
there is the risk of not detecting a model which is poor in one or the other
property. Conversely, joint tests lack of the ability to identify models that
are deficient only in one of the two properties.

These methods are quite data-intensive, since they only make use of
whether or not a failure occurred. They need a lot of information. The reason
is simple: with α equal to 1 percent as in the banking regulatory framework,
or equal to 5 percent (more common among asset managers that use VaR for
portfolio management purposes), one has to collect a lot of history in order
to see some failures, if the model adopted is decent. The power of these tests
is rather scarce.
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11.3.2 Tests based on multiple VaR levels or the entire probability
density function

Especially with small samples, a more accurate use of the information at
disposal is vital: models can be more precisely tested examining more quan-
tiles, for example, VaRs for different αi i= 1, 2, 3, . . . , p levels, extending the
procedure outlined in the previous section. In a more general fashion and
broadening the idea, evaluating the entire probability density function of
portfolio’s return. The evaluation of the entire density forecast extracts a
greater amount of information from available data, as it uses the full range
of forecasted outcomes.

Among others, Chatfield (1993), Crnkovic and Drachman (1997), Diebold,
Gunther and Tay (1998), Christoffersen (1998) as well as Berkowitz (2001)
have proposed methods for evaluating VaR according to multiple VaR lev-
els or the entire probability density function. The idea behind this class
of testing methods is to transform ex-post portfolio’s returns into a new
variable, which is defined in (0,1). The transformation is made using the fore-
casted (for example, ex-ante) cumulative probability distribution of portfolio
returns. Formally:

zj
t,t+H = Ft,j(Rt,t+H |It, wt) (11.5)

Now, for any variate x∈� and any probability density function φ(x), the
cumulative probability distribution:

�(x) =
x∫

−∞
φ(s)ds (11.6)

is a uniform variate on the unit interval, as�(x) is just a probability measure,
that is uniform by definition. Hence, the testing procedures rely on the time
series {zj

t,t+H}, that should simultaneously exhibit two properties:

1 it should be uniformly distributed on the unit interval, as implied by
(11.6); and

2 it should not exhibit serial correlation.

The two properties above can be jointly expressed as:

zj
t,t+H

i.i.d.∼ Uniform(0, 1) (11.7)

and can be tested, individually or jointly.
One limit of these approaches is that they can require large data sets in

order to check the accuracy of VaR models. This is not always true, for
example, the test proposed by Berkowitz (2001) is relatively parsimonious.
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The crucial point about this methods is that they need the entire cumulative
probability distribution of portfolio’s returns estimated at time t with model
j, for example, Ft,j(·). This is not a trivial requirement, as not every VaR model
has the goal to predict the entire distribution, or at least it does not pretend
to predict well the entire distribution. The reason is that VaR models focus
on the left tail of returns’ distribution. Typical examples are models based on
Extreme Value Theory or Quantile Regression. They could possibly perform
very well on lower quantiles, say 1 percent or 5 percent quantiles, but they
cannot provide useful information on less extreme quantiles.

Tests based on a given Loss function

Alternative methods are based on loss functions that assign numerical scores
to VaR estimates according to some metric that measures the impact of
failures. Formally the loss function is any function of the general form:

Lt+H,j(VaRt,j(α, wt, H), Rt,t+H ,α,!) (11.8)

that depends on VaR estimates and realized returns (typically according to a
distance measure, because realized returns far below VaR have to be penal-
ized), on the probability level α (as different α can be evaluated differently),
and on some parameter ! that reflects the specific concerns that this func-
tion has to take into consideration. The Hit function (11.2) is a very simple
example of (11.8). Different VaR models can be evaluated based on the scores
arising from (11.8).

Lopez (1999), who pioneered this approach, suggests this methodology
as a flexible alternative to statistical hypothesis testing. Once a regulatory
loss function is specified, he argues, VaR estimates could be compared across
time and across financial institutions. Anyway, it might be a difficult task
to specify a proper loss function. Another drawback comes from the fact
that, in order to calibrate the assessment procedure, it is necessary to make
assumptions about the distribution of portfolio’s returns.

11.4 AN EXTENSION: THE CROSS-SECTION APPROACH

So far we have seen that there is an intrinsic difficulty in testing the accuracy
of a VaR model: intuitively, this is becauseα is usually small, thus failures are
rare events, and one needs large data-sets to test rare events. Data limitation
is the issue. So it is crucial to increase the amount of information at our
disposal when assessing a VaR model.

The starting point is that a portfolio’s VaR depends on its assets’ weights
and a forecast of the multivariate distribution of the assets’ returns. As
portfolio weights are exogenous, for example are given, at the very roots
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of any process aimed to assess VaR model there is an evaluation of the
forecasted multivariate distribution of assets returns. The problem is that all
the methods outlined in section 11.3 lose the multivariate framework as they
focus on portfolio’s VaR and portfolio’s actual returns that are conceptually
univariate objects. We wish to make this point clear.

Considering an investment universe made of N assets, the actual returns
rt,t+H on given period [t,t+H] are an N-dimensional process, portfolio
weights are collected in a N-dimensional column vector, but the portfo-
lio return, for example Rt,t+H = r′t,t+H · wt, is a univariate process. Hence a
‘portfolio perspective’ implies a reduction of dimensionality, from N to 1.

In a similar way, when estimating VaR one starts (at least in principle) with
a forecast of the multivariate probability density function of returns, a very
granular piece of information. However, in order to estimate a portfolio’s
VaR, this granular information is combined with the assets’ weight, and
because of this mapping, at the end of the process there is a univariate
object. Again, a portfolio perspective involves a decrease of the number
of dimensions we are dealing with. This has a big impact. Think about
a portfolio whose weights are unequally distributed: a small number of
assets have a large weight, while the others exhibit small weights. Note
that this is a fairly common situation in the asset management industry, as
many portfolios have approximately the same structure of indexes made of
hundreds of securities. Passive mutual funds are a typical example, as well
as low tracking-error portfolios, very common in the industry (just to name
two real-world situations). Now, if a large number of securities has a small
weight, a portfolio’s VaR estimate would be determined mainly by a subset
of the information content of multivariate distribution: the subset that relates
to larger positions. This tends to obscure VaR model capability, as the model
could be overall poor but, by chance, could be good at estimating the risk of
the dominating assets. This could lead to an erroneous positive assessment,
and subject to more sampling error. One could argue that small positions are
not important by definition. The key point is that a portfolio’s composition
changes over time: a small position today could be a large position tomorrow.

Therefore the idea is to recover more information from the multivari-
ate estimated distribution, which allows us to measure more correctly the
forecasting capability of the model under consideration.

The methodology is simple and is based on the following steps:

1 At time t, considering an investment universe made of N assets, we
randomly generate K portfolios (where K is large number, say some hun-
dreds), whose weights are collected in the K ×N matrix Wt (each column
is a portfolio).

2 We estimate VaR for each portfolio using model j according to (1), so that
we have a vector of VaRs, VaRt,j(α, Wt, H).
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3 At t+H, it is possible to compute the actual returns for the K portfolios,
collected in the vector Rt,t+H =Wt·rt,t+Ht.

4 Armed with VaRt,j and Rt,t+H , it is possible to calculate the number (or
alternatively the relative frequency) of failures n_ failures across the K
portfolios through the Hit function.

5 We apply one or more statistical tests, in order to assess VaR model j, eval-
uating if n_ failures is significantly different from the theoretical frequency,
under the null hypothesis that the model is correct. This can be done using
most of the tests outlined in Section 11.3. The theoretical frequency of fail-
ures depends on the forecasted multivariate distribution of returns. In the
scholastic case of independent returns, the total number of failures fol-
lows a binomial distribution Pr[n_ failures= x]=Binomial(α, K), while in
presence of some degree of comovements, it must be computed using the
estimated multivariate distribution. This involves computing a cumula-
tive distribution function, which can be done numerically, for example, by
Monte Carlo simulation. Given the degree of computing power currently
available in most cases this is not a major obstacle for most practitioners.
For Gaussian models like RiskMetrics® this computation is rather fast.

6 It is possible to check that, over time, the VaR model under examination
does not display serial correlation. This can be done, for example, by
monitoring the time series of failures {n_ failurest}, where the matrix of K
portfolios is kept fixed over time, that is Wt =W. Basically we keep track
of a large number of portfolios’ failures.

It is clear that there is a lot of additional information available on the per-
formance of one (or more) VaR models, as we focus on a high number of
portfolios on each assessment date, that is, we keep a cross-section perspec-
tive. After a small number of runs of this procedure, it is possible to judge a
model in a rather precise way. Of course, this can also be done using an his-
torical backtesting method (running the model in the past). However, this
requires a lot of historical data, with the associated problems, for example
some securities have no price in the past, there are corporate actions that
alter the history, and so on.

11.5 APPLICATIONS

11.5.1 An intuitive example

Let us look at a simple example. We assume that the data generation process

(DGP) is an N-dimensional process such that rt,t+H
i.i.d.∼ NormalN(0, I), where

I is the identity matrix. We assume that N is equal to 1,000. We then estimate
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Table 11.1 Proportion of failures

Model 1 Model 2 Model 3

Run 1 POF 5.4% 4.7% 3.6%
Kupiec statistic 0.27 2.28 10.00
p-value 39.6% 86.9% 99.8%

Run 2 POF 5.1% 4.6% 3.7%
Kupiec statistic 0.88 2.73 9.04
p-value 65.2% 90.2% 99.7%

Run 3 POF 4.9% 3.8% 3.5%
Kupiec statistic 1.49 8.13 11.02
p-value 77.8% 99.6% 99.9%

Run 4 POF 6.5% 5.0% 4.2%
Kupiec statistic 0.92 1.16 50.3
p-value 66.3% 71.9% 97.5%

Run 5 POF 5.2% 4.0% 3.1%
Kupiec statistic 0.64 6.48 15.72
p-value 57.5% 98.9% 100.0%

VaR, with α equal to 5 percent, according to several models that differ for
the hypothesis made about the DGP:

1 model 1 assumes rt,t+H
i.i.d.∼ NormalN(0, I);

2 model 2 assumes rt,t+H
i.i.d.∼ NormalN(0, 1.1 · I), that is, variance is 10%

greater than reality; and

3 model 3 assumes rt,t+H
i.i.d.∼ NormalN(0, 1.2 · I), that is, variance is 20%

greater than reality;

We apply our procedure, generating K random portfolios with K equal
to 1,000. We also create a market scenario, generating a vector of returns
rt,t+H using the chosen DGP. We then test the unconditional coverage prop-
erty using the binomial test proposed by Kupiec (1995), probably the most
popular method among practitioners. We calculate the proportion of fail-
ures (POF), the Kupiec statistic and the associated p-value. We apply the
procedure for five consecutive periods (5 days). Results are reported in
Table 11.1.

It is apparent that VaR estimates obtained using Model 1 (corresponding
to the DGP) are better than those obtained from the other models: the
number of failures and the other statistics say that the performance of
this model is closer to what we expect in theory. If we assume that the
DGP is a completely different process, for example a multivariate t-student
with 3 degrees of freedom a with correlation equal to zero, such that
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Table 11.2 Proportion of failures

Model 1 Model 2 Model 3

POF 1.8% 1.5% 1.2%
Kupiec statistic 39.24 47.03 56.04
p-value 100.0% 100.0% 100.0%

rt,t+H
i.i.d.∼ t−studentN(0, I, 3 dgf ), after a single run we see that all the models

are in difficulties, as can be seen in Table 11.2.
After a small number of days, the picture becomes clearer. In order to get

more information, one can use some Bayesian analysis, as outlined below.

11.5.2 Comparative Bayesian analysis of the performance of
the VaR models

In the case of the POF test, we are testing the null hypothesis that the pro-
portion of failures p=n_ failures/K is equal to Binomial(α, K)= pα,K ≈ 5.8% in
our case (because, for the sake of simplicity, we are assuming absence of
correlation).

Hence, it would be reasonable to assume as a prior, a Beta distribution
with parameters a0 =K · pα,K + 1, b0 =K · (1− pα,K)+ 1. Thus, our prior can
be written as:

π(p) ∝ pa0−1(1 − p)b0−1 (11.9)

Basically, we center our prior distribution on 5.8 percent, that is the
theoretical POF if the model is correct.

After the first run we have some data: we observe n_ failures out of K
results. The likelihood function l(n_ failures, K, p) is given by the binomial
distribution:

l(n_ failures, K, p) =
(

K
n_ failures

)
pn_ failures(1 − p)K−n_ failures (11.10)

that can be rewritten as:

l(n_ failures, K, p) ∝ pn_ failures(1 − p)K−n_ failures (11.11)

We combine the likelihood function with our prior distribution and we get
the posterior distribution which turns out to be a Beta distribution (as we
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are using a conjugate prior):

f (p|n_ failures, K) ∝ π(p) · l(n_ failures, K, p)

= Beta(a0 + n_ failures, b0 + K − n_ failures) (11.12)

= Beta(a1, b1)

so we have a Bayesian updating scheme that enables us to understand how
a given VaR model performs over time. After t steps, the distribution of
p is:

Betat(at, bt) = Beta

(
a0 +

t∑
i=1

n_ failuresi, b0 +
t∑

i=1

(K − n_ failuresi)

)
(11.13)

For example, Figure 11.1 shows the prior distribution and the posterior
distribution, calculated using (11.13), for Model 1 and Model 2 of the pre-
vious example. The prior is common to both models, as the null is that any
given model is correct, but the posterior is different: it is rather evident that
Model 1 is closer to the prior distribution which corresponds to the null. As
time passes, the distribution of Model 1 will eventually converge to the prior
(true by definition). Thus this methodology can help in ranking different risk
models.

Depending on the perspective of the analysis, one could instead use a
non-informative prior, for example a uniform distribution over the unit
interval.

For global risk models (for example, models that can be applied across
the whole spectrum of asset classes – many specialized software products
claim to be global risk analysers), this procedure can be applied in a parallel
fashion to several investment universes. This enables regulators and finan-
cial institutions to assess the model on several areas, for instance European
equities, US equities, Far East equities, emerging markets equities, inter-
national government bonds, international corporate bonds, and so on. It is
possible to understand how and where a model fails. For example, if among
the randomly generated K portfolios, portfolio s exhibits a large failure, it is
possible to analyse the sources of this loss, as suggested below.

11.5.3 Failures analysis

First, consider the shortfall of model j on a given period [t, t+H] for portfolio
s, defined by the vector of weights ws

t :

Dj
t,t+H(α, ws

t , H) = Rt,t+H(ws
t) − VaRt,j(α, ws

t , H). (11.14)
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Then compute the derivative ∂Dj
t,t+H/∂ws

t , that, for asset k is given by:

rk
t,t+H − ∂VaRt,t+H

∂ws
t(k)

(11.15)

It is easy to notice that (24.15) is simply the difference between the actual
return on asset k and its marginal VaR, that is the change in portfolio VAR
resulting from a marginal change in a given position. Ranking all the securi-
ties on the basis of (11.15) can be of help to understand where a model fails,
and can suggest improvements to the model itself.

There are other applications. In order to chose the appropriate VaR model,
several models can be put in competition and in a reasonable time one can
collect a large amount of information about their behavior. As no financial
model is strictly true, this kind of testing procedure should provide support
as to choosing the most appropriate model.

11.6 CONCLUSION

We have presented an approach to backtesting VaR models that introduces
a new perspective on models’ behavior, as it is performed as a kind of
cross-section analysis of randomly generated portfolios. With this approach,
regulators and financial institutions can use basically all the existing tech-
niques, augmented by extra information coming from the cross-sectional
analysis.

Aside from formal testing, this kind of approach to backtesting can help to:

� understand quickly if a model does work;

� learn how and under what conditions models fail;

� track their performance over time using detailed information coming
from many portfolios;

� test global risk models simultaneously on more markets and asset classes;
and

� discriminate among competing VaR models (as no financial model is ever
factually true), helping in the choice of the best model.
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C H A P T E R 12

Correlation Breakdowns
in Asset Management

Riccardo Bramante and Giampaolo Gabbi

12.1 INTRODUCTION

Over recent years, financial and real market globalization has accelerated
the process of increasing positive values of correlations. This phenomenon
changed many portfolio managers’ practices, which are now strictly linked
with sector behaviors. In order to verify whether portfolio managers can
correctly estimate the eventual correlation jump over time, we provide some
new evidences for correlation dynamics among equity markets.

The chapter aims to answer the following questions:

1 Is there a relation between exponential correlation changes and volatility
movements?

2 Is this relation structurally constant for all the movements of correlations,
or do correlation jumps show different behaviors?

3 What errors might we make in not considering correlation jumps in
portfolio optimizations?

12.2 DATA AND DESCRIPTIVE STATISTICS

The data consist of daily exponential volatility and correlations for equity
markets of the United States, the Euro area and Japan. The data source is
JPMorgan RiskMetricsTM. The way RiskMetrics computes correlations and
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volatilities is through the method of exponentially weighted daily histor-
ical observations with a decay factor of 0.94. The complete time series is
recorded from 1 January 2003 to 30 September 2005 consisting of 687 data
points: 558 of them, until 31 March 2005, were used for historical model
estimation whereas the remaining ones were used for out of sample testing.
From these data we computed all the variations, from positive to negative.
Figures 12.1 to 12.3 depict the distribution function of correlation jumps in
all the markets considered.
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Figure 12.3 Distribution function of jumps JPY–USD, 2003–05

The correlation statistics show that historical data with skewness is near
zero, while the kurtosis shows a value far from 3 in the case of the correla-
tion between the Euro and the US market (1.83). In the other two cases the
values are, respectively, 3.79 and 3.04. In the case of volatility, skewness is
always far from symmetry, while kurtosis is closer to 3 (correspondingly,
3.03, 3.46 and 2.76 for the three markets considered). Afterwards we com-
puted the absolute value of correlation jumps. The resulting time series are
divided into two groups: the first is the complete time series of 558 obser-
vations; the second is that characterized by the 10 percent highest changes
(56 observations).

12.3 CORRELATION JUMPS AND VOLATILITY BEHAVIOR

Firstly, we studied the behavior of correlation jumps in the equity indexes, as
explained by the volatility changes observed in the originating markets. The
methodology follows the idea that it could be possible to explain correlation
changes through volatility differences. The model estimated is

�ρA, Bt = α+ β ·�σAt + γ ·�σBt + εt (12.1)

where �ρA, Bt is the daily correlation difference computed at time t between
the two generic markets, A and B; �σAt is the market A daily volatility
difference at time t; and �σBt is the market B daily volatility difference at
time t.
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Table 12.1 Regression equation of correlation EUR–USD changes explained
by volatility differences

Variable Coefficient Std. error t-statistic Prob.

DEURV 1.062701 0.128748 8.254101 0.0000

DUSDV 0.926331 0.132735 6.978780 0.0000

MA(1) 0.136762 0.042159 3.243962 0.0012

R-squared 0.180499 Mean dependent var 0.065814

Adjusted R-squared 0.177546 S.D. dependent var 0.113572

S.E. of regression 0.102997 Akaike info criterion −1.702865

Sum squared residuals 5.887696 Schwarz criterion −1.679615

Log likelihood 478.0992 F-statistic 61.12074

Durbin–Watson stat. 1.971937 Prob(F-statistic) 0.000000

Notes: The dependent variable; differences of exponential correlations between the equity euro mar-
ket and the equity US market. Explanatory variables are DEURV: differences of exponential volatility
of the equity euro market; DUSDV: differences of exponential volatility of the equity US market; and
MA(1): moving average of first-order component. Number of observations=558 daily changes.

For all the three correlations we also estimated the model:

�ρA, Bt = α+ β1 ·�σAt−1 + . . .+ βn ·�σAt−n

+ γ1 ·�σBt−1 + . . .+ γn ·�σBt−n + εt (12.2)

where n is a time lag which was set up to 10 days during regression stepwise
search.

To model the regression equation, in many cases it was useful to introduce
a moving average component:

�ρA,Bt = α+ β1 ·�σAt−1 + . . .+ βn ·�σAt−n

+ γ1 ·�σBt−1 + . . .+ γn ·�σBt−n

+ ϑ1εt−1 + . . .+ ϑqεt−q + εt (12.3)

where the order of the MA term was generally set to one.
Table 12.1 shows a relative capability (R-squared is around 18 percent) to

explain correlation changes through volatility variables, even when a mov-
ing average factor was selected. All variables demonstrate a high value of the
student t-test, that is a significant statistical contribution. The sum squared
of errors is by the way 80.5 percent lower than the complete time series.

As for the residuals, depicted in Figure 12.4, the Durbin–Watson (DW)
statistic which measures the serial correlation was very close to 2.1

For the Euro area market and the USA we selected the first 10 percent of
higher correlation changes (56 data points). We then estimated the regres-
sion equation (12.2) as previously described and the results are displayed
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Figure 12.4 Plot of residuals of correlation EUR–USD changes explained
by volatility differences

in Table 12.2. In particular, only a variable of the Euro market is statistically
significant (3 days lag), while the US market explains the dependent vari-
able with three variables (1–3 and 8 days lag). But, what is clearly higher is
the R-squared value which reaches a level around 50 percent. In this case,
the Durbin–Watson statistic shows a value of 2.26, which should be a little
negative correlation. Actually, there are some limitations of the DW test as
a test for serial correlation. One of them is the fact that if there are lagged
dependent variables on the right-hand side of the regression equation the
DW test is no longer valid.2

Consistent with the higher R-squared value, residuals are graduated
within a range of (−0.35; 0.42) while the equation estimated over the com-
plete time series has a range of (−0.55; 1.19). In Figure 12.5 the Euro–US
market correlation residuals are reported. Table 12.3 proves that the correla-
tion delta between the Euro area market and the Japanese market cannot be
as well explained as the Euro area market versus the US market. In particu-
lar, the R-squared index is about 5.5 percent. The sum of squared residuals
of the Euro–Japan market is 181.68.

Figure 12.6 demonstrates that the range of residuals is (−1.87; 9.53). In
this case, the residuals of the higher correlations (Figure 12.7). Move within
a range which is very similar in the negative side (−1.93) but lower in the
positive side (8.11).

Even though the R-squared value is lower, the value of the higher cor-
relation changes is 11 percent. In this case only two explicative variables
enter the equation, respectively the variation of the volatility measured in
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Table 12.2 Regression equation of higher correlation EUR–USD changes
explained by volatility differences

Variable Coefficient Std. error t-statistic Prob.

C 0.256095 0.058295 4.393106 0.0001

DEURV3 3.887041 0.978974 3.970526 0.0002

DUSDV1 3.251217 0.572326 5.680705 0.0000

DUSDV3 −2.514702 0.769123 −3.269570 0.0019

DUSDV8 −2.420236 1.361542 −1.777570 0.0814

R-squared 0.500639 Mean dependent var 0.321851

Adjusted R-squared 0.461473 S.D. dependent var 0.199156

S.E. of regression 0.146150 Akaike info criterion −0.923327

Sum squared residuals 1.089344 Schwarz criterion −0.742492

Log likelihood 30.85316 F-statistic 12.78261

Durbin–Watson stat. 2.262736 Prob(F-statistic) 0.000000

Notes: The dependent variable; differences of exponential correlations between the equity euro mar-
ket and the equity US market. Explanatory variables are DEURV3: equity euro market exponential
volatility differences with 3 days lag; DUSDV1: equity US market exponential volatility differences with
1 day lag; DUSDV3: equity US market exponential volatility differences with 3 days lag; and DUSDV8:
equity US market exponential volatility differences with 8 days lag. C: constant in regression. Number
of observations=bigger 56 daily changes.
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Figure 12.5 Plot of residuals of correlation EUR–USD higher changes
explained by volatility differences

the Euro market 7 days before, and the variation of the volatility measured
in the Japanese market 7 days before (Table 12.4).

Very similar outcomes are found for the US and Japanese market corre-
lations. When we estimate the correlation breakdowns, we obtain a lower
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Table 12.3 Regression equation of correlation EUR–JPY changes explained
by volatility differences

Variable Coefficient Std. error t-statistic Prob.

DEURV 3.136068 0.655131 4.786932 0.0000

DJPYV 3.246925 0.580543 5.592912 0.0000

R-squared 0.056743 Mean dependent var 0.221726

Adjusted R-squared 0.055047 S.D. dependent var 0.588052

S.E. of regression 0.571638 Akaike info criterion 1.722956

Sum squared residuals 181.6841 Schwarz criterion 1.738456

Log likelihood −478.7048 F-statistic 33.44724

Durbin–Watson stat. 1.932469 Prob(F-statistic) 0.000000

Notes: The dependent variable; differences of exponential correlations between the equity euro mar-
ket and the equity Japanese market. Explanatory variables are DEURV: differences of exponential
volatility of the equity euro market; and DJPYV: differences of exponential volatility of the equity
Japanese market. Number of observations=558 daily changes.
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Figure 12.6 Plot of residuals of correlation EUR–JPY changes explained by
volatility differences

value of the sum of squared residuals which is roughly 30 percent lower
(from 43.136 to 30.321). R-squared is 95 percent higher in the shorter time
series (0.099577 instead of 0.004663). The complete time series has been
estimated twice, the first time using the two changes in volatilities. The
volatility of the Japanese market is statistically non-significant (student
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Figure 12.7 Plot of residuals of correlation EUR–JPY higher changes
explained by volatility differences

Table 12.4 Regression equation of higher correlation EUR–JPY changes
explained by volatility differences

Variable Coefficient Std. error t-statistic Prob.

DEURV7 22.98515 5.336414 4.307229 0.0001

DJPYV6 17.61808 5.908526 2.981807 0.0044

R-squared 0.113741 Mean dependent var 1.296226

Adjusted R-squared 0.096698 S.D. dependent var 1.472966

S.E. of regression 1.399940 Akaike info criterion 3.547069

Sum squared residuals 101.9112 Schwarz criterion 3.620735

Log likelihood −93.77087 F-statistic 6.673604

Durbin–Watson stat. 1.920604 Prob(F-statistic) 0.012636

Notes: The dependent variable; differences of exponential correlations between the equity euro mar-
ket and the equity US market. Explanatory variables are DEURV7: differences of exponential volatility
of the equity euro market with 7 days lag; DJPYV6: differences of exponential volatility of the equity
US market with 6 days lag. Number of observations=bigger 56 daily changes.

t equals 0.286315 in Table 12.5). Table 12.6 contains the regression estimates
explained only by differences of exponential volatility of the equity US mar-
ket and Figure 12.8 displays the plot of residuals of correlation between
the USD–JPY changes explained by volatility differences. As in the other
cases, Table 12.7 shows how statistics improve using only the highest corre-
lation changes between the US and the Japanese market. Figure 12.9 displays
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Table 12.5 Regression equation of correlation USD–JPY changes explained
by volatility differences

Variable Coefficient Std. Error t-statistic Prob.

DUSDV 14.29453 8.641957 1.654085 0.0987

DJPYV 2.155165 7.527247 0.286315 0.7747

R-squared 0.004810 Mean dependent var 0.135836

Adjusted R-squared 0.003020 S.D. dependent var 8.821442

S.E. of regression 8.808111 Akaike info criterion 7.192801

Sum squared residuals 43136.04 Schwarz criterion 7.208300

Log likelihood −2004.791 F-statistic 2.687343

Durbin–Watson stat. 1.988807 Prob(F-statistic) 0.101714

Notes: The dependent variable; differences of exponential correlations between the equity US market
and the equity Japanese market. Explanatory variables are DUSDV: differences of exponential volatility
of the equity US market; and DJPYV: differences of exponential volatility of the equity Japanese market.
Number of observations: 558 daily changes.

Table 12.6 Regression equation of correlation USD–JPY changes explained
by volatility differences

Variable Coefficient Std. error t-statistic Prob.

DUSDV 14.29993 8.634812 1.656078 0.0983

R-squared 0.004663 Mean dependent var 0.135836

Adjusted R-squared 0.004663 S.D. dependent var 8.821442

S.E. of regression 8.800849 Akaike info criterion 7.189364

Sum squared resid 43142.40 Schwarz criterion 7.197114

Log likelihood −2004.833 Durbin–Watson stat 1.989381

Notes: The dependent variable; differences of exponential correlations between the equity US market
and the equity Japanese market. Explanatory variables are DUSDV: differences of exponential volatility
of the equity US market. Number of observations=558 daily changes.

the plot of residuals of correlation between the USD–JPY higher changes
explained by volatility differences.

Our estimates demonstrate that correlation jumps can be modeled rather
than the complete time series in all the reported cases. Table 12.8 shows the
measures of the improvement obtained for all the correlations. As for out of
sample predictability in our daily intermarket correlation series, the results
reported in Table 12.9 are coherent with those obtained in the sample period.
In particular, correlation jumps mean absolute errors are everywhere lower
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Figure 12.8 Plot of residuals of correlation USD–JPY changes explained by
volatility differences

Table 12.7 Regression equation of correlation USD–JPY changes explained
by volatility differences

Variable Coefficient Std. error t-statistic Prob.

DJPYV1 252.7362 131.7969 1.917619 0.0605

DJPYV5 276.4569 144.7156 1.910346 0.0614

R-squared 0.099577 Mean dependent var 13.08877

Adjusted R-squared 0.082902 S.D. dependent var 24.74389

S.E. of regression 23.69604 Akaike info criterion 9.203554

Sum squared residuals 30321.12 Schwarz criterion 9.275888

Log likelihood −255.6995 F-statistic 5.971798

Durbin–Watson stat. 2.022590 Prob(F-statistic) 0.017834

Notes: The dependent variable; differences of exponential correlations between the equity US market
and the equity Japanese market; Explanatory variables are DJPYV1: differences of exponential volatility
of the equity Japanese market with 1 day lag; and DJPYV5: differences of exponential volatility of the
equity Japanese market with 5 days lag. Number of observations=56 daily changes.

than the corresponding errors for the whole time series. It is necessary to
note, on the other hand, that the correlation higher changes analysis refers
to series composed of only 10 data points and it is not useful in predicting
the time point in the future where these changes will occur.
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Figure 12.9 Plot of residuals of correlation USD–JPY higher changes
explained by volatility differences

Table 12.8 Improvement of statistical tests applied to correlation jumps

EUR/USD EUR/JPY USD/JPY

Sum squared residuals 81.50% 43.91% 29.71%

R-squared 63.95% 50.11% 95.32%

Notes: R-squared is the statistical measure of the success of the regression in predicting the values of
the dependent variable within the sample. This measure is the fraction of the variance of the depen-
dent variable explained by the independent variables. The statistic will equal one if the regression fits
perfectly, and zero if it fits no better than the simple mean of the dependent variable. All these values
are obtained as the complement to 1 of the ratio between the test of the complete time series and
the same test of the higher correlations.

Table 12.9 Out of sample model efficiency: mean absolute error

All the correlations

MAE EUR/USD EUR/JPY USD/JPY

11.38% 35.05% 66.41%

Correlations higher changes

MAE EUR/USD EUR/JPY USD/JPY

8.47% 29.61% 47.15%

Note: MAE=mean absolute error.
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12.4 IMPACT ON PORTFOLIO OPTIMIZATION

This last section is dedicated to a portfolio optimization simulation for
the three equity markets considered. We optimize three different efficient
frontiers:

1 The first frontier is determined by optimizing the historical returns along
with volatilities and the correlation matrix (Table 12.10, panel A).

2 The second frontier is determined by optimizing the historical returns
and volatilities. The correlation has been changed with the maximum
negative jumps observed during the historical window, that is 1 January
2003 until 31 March 2005 (Table 12.10, panel B).

3 The third frontier is also determined by optimizing the historical returns
and volatilities. The correlation has been changed with the maximum pos-
itive jumps observed during the historical period (Table 12.10, panel C).

The outcomes are reported in Table 12.11. There are 100 optimized port-
folios, and have reported portfolio n. The number 1 implies that it is the
less hazardous, and the number 75 avoids the concentration problem which
characterizes all the optimizations à la Markowitz. Our results demonstrate
that by introducing correlation jumps, in both directions, we would obtain
portfolios with volatilities that in the left side (less risky) could have changed
in a range of 3.49 percent (20.09–16.6). In the right side (portfolio no. 75) the
range of volatility is 1.72 percent (23.67–21.95).

12.5 CONCLUSION

The possible occurrence of correlation jumps would considerably change the
profile of the investor. Our statistical results, presented in the third section,
demonstrate that not only correlations can change in the short run, but
also, in some cases, these events occur with volatility shocks. Correlation
breakdowns should be considered in order to evaluate:

(a) the impact for portfolios volatilities estimated by investors and their
private bankers;

(b) the decisions of portfolio managers; and

(c) the monitoring process of risk managers.

The answers offered by the study are:

1 there is a relation between exponential correlation changes and volatility
movements, even though it depends on the market where outcomes are
estimated;
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Table 12.10 Optimization inputs

Panel A: optimization no. 1

Historical correlation

Historical Historical Topix S&P 500 DJ Euro
return volatility Index Stoxx 50

Topix 6.15 20.80 1

S&P 500 Index 7.10 25.38 0.55 1

DJ Euro Stoxx 50 6.59 23.52 0.45 0.81 1

Notes: First column: historical average returns determined in the long run (1976–2005) for Topix and
S&P 500 Composite; the Euro Stoxx has been computed for the period 1976–2004.
Second column: historical average volatility determined in the long run (1976–2005) for Topix and
S&P 500 Composite; the Euro Stoxx has been computed for the period 1976–2004. The methodology
is the exponential weighted with a 0.94 decay factor.
Third to fifth column: correlation matrix determined in the long run (1976–2005) for Topix and S&P
500 Composite; the Euro Stoxx has been computed for the period 1976–2004. The methodology is
the exponential weighted with a 0.94 decay factor.

Panel B: optimization no. 2

Historical correlation

Historical Historical Topix S&P 500 DJ Euro
return volatility Index Stoxx 50

Topix 6.15 20.80 1

S&P 500 Index 7.10 25.38 0.34 1

DJ Euro Stoxx 50 6.59 23.52 0.14 0.61 1

Note: Third to fifth column: correlation matrix determined applying the max negative jumps observed
in the 2003–05 period.

Panel C: optimization no. 3

Historical correlation

Historical Historical Topix S&P 500 DJ Euro
return volatility Index Stoxx 50

Topix 6.15 20.80 1

S&P 500 Index 7.10 25.38 0.8 1

DJ Euro Stoxx 50 6.59 23.52 0.69 0.96 1

Note: Third to fifth column: correlation matrix determined applying the max positive jumps observed
in the 2003–05 period.
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Table 12.11 Optimization outputs

Frontier no. Portfolio 1 Portfolio 75

1 (no jumps) Return volatility 6.32 6.91

18.70 22.83

2 (negative jumps) Return volatility 6.37 6.92

16.60 21.95

3 (positive jumps) Return volatility 6.28 6.90

20.09 23.67

Notes: The table shows the return/risk values of the first optimization obtained with the historical
average values; the second optimization obtained with negative correlation jumps; and the first
optimization, obtained with positive correlation jumps.

2 this relation is, on a qualitative basis, demonstrated in all our analy-
sis; the benefits obtained in the correlation-jumps dataset are statistically
significant; and

3 in analysing only equity portfolios, errors we could make in ignoring
daily correlation jumps are around 18 percent (3.49 over 18.7) of volatility
in the less risky part of the frontier, and 7.5 percent (1.72 over 22.83) in
the most risky portfolios.

NOTES

1. If the (DW) is less than 2 (until 0), there is evidence of positive serial correlation. If
there is no serial correlation, the DW statistic will be around 2. Finally, if there is
negative correlation, the statistic will lie somewhere between 2 and 4

2. The other limitations are: (a) the distribution of the DW statistic under the null
hypothesis depends on the data matrix. The usual approach to handling this problem
is to place bounds on the critical region, creating a region where the test results are
inconclusive; (b) me may only test the null hypothesis of no serial correlation against
the alternative hypothesis of first-order serial correlation.

REFERENCES

Brock, W.A., Dechert, W.D. and Scheinkman, J.A. (1987) “A Test for Independence Based on
the Correlation Dimension”, Working Paper, University of Houston and University of
Chicago.

Erb, C.B., Harvey, C.R. and Viskanta, T.E. (1994) “Forecasting International Equity
Correlations”, Financial Analysts Journal, 50(6): 32–45.

Fong, W.M. (2003) “Correlation Jumps”, Journal of Applied Finance, 13(2): 29–45.
Groenen, P.J.F. and Franses, P.H. (2000) “Visualizing Time-Varying Correlations across

Stock Markets”, Journal of Empirical Finance, 7(2): 155–72.
Longin, F. and Solnik, B. (1995) “Is the Correlation in International Equity Returns

Constant?” Journal of International Money and Finance, 14(1): 3–26.
Longin, F. and Solnik, B. (2001) “Extreme Correlation of International Equity Markets”,

Journal of Finance, 56(2): 649–76.



240 CORRELAT ION BREAKDOWNS IN ASSET MANAGEMENT

Loretan, M. and English, W.B. (2000) “Evaluating Correlation Breakdowns During Periods
of Market Volatility”, International Finance Discussion Papers no. 658, Board of Governors
of the Federal Reserve System.

Pagnoni, C. and Gabbi, G. (2001) “Tactical Asset Allocation and Time Diversification
for Bond and Equity Markets”, in A. Smith and B. Jones (eds), Forecasting Finan-
cial Markets, Presentation at the Pensions Institute: London, May 30–June 1, 2001,
httpp://www.pensions-institute.org/conferences/ffm20001.pdf.

RiskMetrics (1996) RiskMetrics – Technical Document, 4th edn (New York, J.P. Morgan).
Solnik, B., Boucrelle, C. and Le Fur, Y. (1996) “International Correlation and Volatility”,

Financial Analysts Journal, 52(5): 17–34.



C H A P T E R 13

Sequential Procedures
for Monitoring

Covariances of Asset
Returns

Olha Bodnar

13.1 INTRODUCTION

Time variability of the expected returns as well as the volatility of asset
returns can be caused by changes in the fundamental factors; for example,
changes in commodity prices, macroeconomic policy, market trading activ-
ity, technological development, governmental policies, and so on. This leads
to the deviation of a selected optimal portfolio from the Markowitz efficient
frontier that consists of all portfolios with the highest expected return for
the given level of risk or with the smallest risk for a preselected profit and,
thus, is fully defined by the first two moments of asset returns (Markowitz,
1952). Changes in these characteristics are subject to structural breaks of
the efficient frontier location in the mean–variance space and the optimal
portfolios allocated on it.

For a long time financial studies have been concentrated on the proper
estimation of the covariance matrix of asset returns. To reduce the estimation
error in the covariance matrix of asset returns when the sample portfolio is
constructed, Ledoit and Wolf (2003, 2004) proposed the shrinkage estimator
of the covariances. In another branch of studies (Andersen, Bollerslev,
Diebold and Ebens, 2001; Barndorff-Nielsen and Shephard, 2002, 2004) the

241
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returns with the higher frequency are used for calculating the covariance
matrix. The question of interest is not only estimation, but also monitoring
the break in the covariance structure of asset returns. We want to consider
this problem in the present chapter in more detail.

Statistical control methods have been recently developed for monitoring
the mean vector and covariance matrix of a random vector (see for example
Bodnar, 2005, for a detailed survey). The dimension of the control problem
depends on the number of assets included in the portfolio and could be
extremely large. This leads to a delay in detecting changes in the portfolio
structure and can lead to large losses for the investor. In order to reduce the
dimensionality of the control problem the optimal portfolio weights (parts of
the investor’s wealth allocated into an asset) are considered in this chapter.
We show that the changes in the covariance matrix of asset returns generates
changes in the weights of the global minimum variance portfolio (GMVP).

Sequential procedures for monitoring financial data-sets have already
been discussed in the financial literature. For instance, Theodossiou (1993)
applied multivariate CUSUM control charts for predicting business failures.
Financial decision strategies based on the MEWMA control scheme are dis-
cussed by Schipper and Schmid (2001) and Schmid and Tzotchev (2004).
Andersson, Bock and Frisen (2003, 2005) made used of the statistical surveil-
lance for the detection of turning points in business cycles. However, nobody
up to now has adopted sequential procedures in asset management, with
the exception of Yashchin, Steinand and Philips (1997). It is our aim, based
on the historical values of the asset returns process, to derive sequential
control schemes for monitoring changes in the covariance matrix of asset
returns that could influence the selection of an optimal portfolio. In order to
reduce the dimensionality of the control problem we focus essentially on the
transformation of the vector of the optimal portfolio weights. A great advan-
tage of this suggested approach is that structural breaks in the covariance
matrix lead to shifts in both the mean vector and covariance matrix of this
transformed vector. It also possesses several nice distributional properties
and thus can be easily monitored in practice. We develop the corresponding
sequential procedures.

The remainder of the chapter is organized as follows. In the next sec-
tion we shed light on the relationship between the covariance matrix of
asset returns and the weights of the GMVP. In Theorem 1 it is shown that
the simple transformation of the estimator for the GMVP weights is mul-
tivariate t-distributed. Theorem 2 motivates the application of the control
charts to the transformed vector of the portfolio weights. The link between
covariances and portfolio weights is investigated. The multivariate statisti-
cal surveillance is introduced in section 13.2, while section 13.3 deals with
the simultaneous control schemes. The two approaches are compared in
section 13.4. As the measure of the control charts performance the average
run length (ARL) is used. As no explicit formula for the ARL is available
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we estimate this quantity within an extensive Monte Carlo study. Final
remarks are presented in section 13.5. The proofs of all results are given
in the Appendix.

13.2 COVARIANCE STRUCTURE OF ASSET RETURNS AND
OPTIMAL PORTFOLIO WEIGHTS

We consider a portfolio consisting of p assets. The weight of the i-th asset in
the portfolio is denoted by wi. The p-dimensional vector of portfolio weights
w= (w1, … , wp)′ specifies the investment policy. It is assumed that the whole
investor’s wealth is shared between the selected assets and the possibility
of short-selling. Mathematically, it means that the sum of the weights is one,
w′1= 1, where 1 denotes the p-dimensional vector of ones, and the portfolio
weights are not obviously positive.

Suppose the vector of asset returns possesses the second moment. Its
mean we denote by µ and the covariance matrix by #, which is assumed
to be positive definite. Then the expected return of the portfolio is given
by w′µ and its variance is equal to w′#w. Following the seminal paper of
Markowitz (1952) and his mean–variance analysis, the optimal portfolio is
selected by minimizing the portfolio variance for the given level of portfolio
return, or by maximizing the expected return for the given risk.

In the present study we make use of the weights of the global minimum
variance portfolio (GMVP) for monitoring the covariance structure of asset
returns. The main advantage of the suggested approach is that we control
only the (p− 1) -dimensional vector of the portfolio weights instead of mon-
itoring the p(p+ 1)/2 vector of the variances and covariances (see Bodnar
(2005) for details). It leads to the significant reduction of the dimensionality
of the control problem and improves considerably its power properties.

The weights of the GMVP are:

wM = #−11
1′#−11

(13.1)

obtained by minimizing the portfolio’s variance subject to w′1= 1. This port-
folio corresponds to the case of a fully risk averse investor. Clearly more
complex portfolio weights could be used for monitoring the covariance
matrix of asset returns, like the weights of the optimal portfolio in the sense
of maximizing the expected quadratic utility, the weights of the tangency
portfolio, and others. The goal however is to keep this simple.

The situation becomes more difficult with the practical implementation of
the model. The covariance matrix # of asset returns is usually an unknown
parameter, and, thus, the investor cannot determine his portfolio policy.
Instead he has to estimate the quantity by previous observations. This
approach leads to heavy discussion in financial and econometric literature.
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The different estimation procedures and their influences on the distribu-
tional properties of the estimator for the optimal portfolio weights has been
discussed (see, for example, Scwert (1989), Ledoit and Wolf (2003, 2004),
Bodnar and Schmid (2004), Kan and Zhou (2004) and references therein).
For our purposes, given the sample of portfolio asset returns X1, … , Xn, the
most common estimator of # is chosen:

#̂ = 1
n − 1

n∑
t=1

(Xt − X)(Xt − X)′ = 1
n − 1

X(I − 1
n

11′)X′ (13.2)

with X= (X1, … , Xn) and X=X1/n. Then using the standard plug-in portfo-
lio rule, for example, replace # in (13.1) by #̂, the estimator for the GMVP
is given by:

ŵM = #̂−1 1

1′#̂−1 1
(13.3)

Bodnar and Schmid (2004) showed that a q-dimensional vector of
the estimator for the linear combinations of the GMVP weights, LŵM,
follows the multivariate t-distribution with the mean vector LwM and
the covariance matrix 1

n− p+ 1 LRL′/1′#−11, where L denotes the q× p
dimensional matrix of constants. This assertion we denote by LŵM ∼ tq

(n− p+ 1, LwM, 1
n−p+1 LRL′/1′#−11), where R=#−1 −#−11′#−1/1′#−11.

However, it appears that the distribution of the estimator for the GMVP
weights does depend on the unknown parameter # and thus cannot be
directly monitored. To avoid the problem in the paper it is proposed to
make use of the simple transformation of the estimator given by:

v̂ = √
n − p

√
1′#̂−11

(
L#̂−1L′ − L#̂−111′#̂−1L′

1′#̂−11

)− 1
2

L(ŵM − wM)

(13.4)

In Theorem 1 it is shown that its finite sample distribution depends only
on the current GMVP weights and is independent of #. We also preserve
the nice properties of the t-distribution.

Theorem 1 Let the vectors of portfolio asset returns X1,…, Xn be inde-
pendent and identical, normally distributed with the mean vector µ and
covariance matrix #. Let n≥ p > q≥ 1 and n> p+ 2. Assume # to be pos-
itive definite. Then the vector v̂ has a multivariate t-distribution with
n− p degrees of freedom, the mean vector 0 and the covariance matrix
(n− p)I/(n− p− 2).

Theorem 1 leads to several interesting procedures that are easily imple-
mented in practice. First, it allows us to construct the confidence intervals
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for the GMVP weights. For example, taken L= e1 = (1,0, …, 0) as the p dimen-
sional vector with the first element being 1 and the rest zeros, we obtain the
two-sided 1−α confidence interval for the first weight of the GMVP:

ŵM;1 − tn−p;1−α/2√
n − p

√
e′1R̂e1

1′#̂−11
, ŵM;1 + tn−p;1−α/2√

n − p

√
e′1R̂e1

1′#̂−11


where tn−p;1−α/2 is the 1−α/2 quantile of the standard univariate
t-distribution. Consequently it can be used as a tool for controlling the
weights of the GMVP. It leads to a decision whether the portfolio should
be adjusted or not.

Second, it permits us to apply the sequential control procedures for mon-
itoring the efficiency of the GMVP using the distributional properties of the
random vectors v̂.

Third, which is also a main feature for our purposes, the breaks in the
covariance matrix of asset returns lead to the changes in the mean vector and
the covariance matrix of v̂. Thus, by monitoring these two parameters we
control both covariance structure of returns and the efficiency of the GMVP.
To show this we need the following result. It is assumed that Xt ∼Np(µ,#)
for t≤ t0, and Xt ∼Np(µ̃, #̃) for t> t0, which leads to the following GMVP
weights:

w = #−11/1′#−11 for t ≤ t0 and w̃ = #̃−11/1′#̃−11 for t > t0

The vector ˆ̃v we define similar to v̂ using ˆ̃
#−1 instead of #̂with ˆ̃

#−1 being
the estimator of #̃ (see (13.2). In Theorem 2 the influence of the changes in the
covariance structure of assets returns on the mean vector and the covariance
matrix of the vector ˆ̃v is presented:

Theorem 2 Let the vectors of portfolio asset returns X1,…, Xn be inde-
pendent and identical normally distributed with the mean vector µ and
covariance matrix #. Let n≥ p> q≥ 1 and n> p+ 2. Assume # and #̃ to
be positive definite. Then:

(a) The expectation of ˆ̃v is equal to

E( ˆ̃v) =√
n − p

√
H̃(−)

22 b̃−
1
2 A(w̃M;q − wM;q)

where A = diag(a11, . . . , aqq) with (13.5)

aii =
B
(

n−p−q−i
2 + 1, n−p−1

2

)
B
(

n−p−q−i+1
2 , n−p

2

) , i = 1, q.
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(b) The covariance matrix of ˆ̃v is equal to:

Var( ˆ̃v) = n − p
2

�

(n − p
2

−1

)

�

(n − p
2

) (
I + H̃(−)

22 b̃− 1
2 Gb̃− 1

2
′)

+

�

(n − p − 1
2

)

�

(n − p
2

)


2

H̃(−)
22 b̃− 1

2 Fb̃− 1
2
′


where the matrices G and F are given in the Appendix.

We make use of these results in the next section, where the multivariate
and simultaneous control charts are constructed for detecting changes in
the covariances of returns.

13.3 MULTIVARIATE STATISTICAL SURVEILLANCE

The covariance matrix of asset return for a given horizon of interest is esti-
mated from the returns of higher frequency. Using non-overlapping samples
of data permits us to construct a sequence of covariance matrix estimators
that are independent through time. This point has already been discussed in
the financial literature. For instance, Schwert (1989) proposed estimating the
variance of monthly returns using daily data, while Andersen, Bollerslev,
Diebold and Ebens (2001) made use of this approach for the approximation
of daily variances and covariances from high-frequency return data.

For a given sample of asset returns X1, … , Xn we constrain m sub-
samples of size ñ, that is {X(1);j}ñ

j=1, {X(2);j}ñ
j=1, . . . , {X(m);j}ñ

j=1, where X(i);j =
Xñ(i−1)+j , i= 1, . . . , m and j= 1, . . . , ñ. For the i-th subsample the estima-
tors for #, w, and v, namely #̂(i), ŵ(i), and v̂(i), are defined using (13.2),
(13.3), and (13.4) correspondingly. From Theorem 1 it follows that under the
assumption of no change in the covariance matrix of returns v̂(i) are inde-
pendently identically t -distributed with ñ− p degrees of freedom, with the
mean vector 0, and the covariance matrix (ñ− p)I/(ñ− p− 2). We consider
the q+ q(q+ 1)/2 dimensional vector:

η(i) = (v̂(i);1, ..., v̂(i);q, v̂(i);1v̂(i);1, v̂(i);1v̂(i);2, ..., v̂(i);q−1v̂(i);q, v̂(i);qv̂(i);q) , (13.6)

which is used to construct control schemes for detection changes in the mean
vector and the covariance matrix of v̂(i) simultaneously. In case of no breaks
in the returns covariances the expected value of the vectors η(i) is:

µη = E(η(i)) =
(

0, ..., 0,
ñ − p

ñ − p − 2
, 0, ..., 0,

ñ − p
ñ − p − 2

)
(13.7)
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where all elements of µη at positions q+ 1, 2q+ 1, 3q, 4q− 2, 5q− 3,…, q+
q(q+ 1)2 are equal to (ñ−p)/(ñ−p−2) and the others are zero. Furthermore,
let denote != {1, q+ 1, 2q, 3q− 2, 4q− 3,…, q(q+ 1)2}. Then it follows that
the covariance matrix of the vector η(i), i= 1,…, m, in the in-control state is:

#η =
 ñ − p

ñ − p − 2
I 0

0 #̃η

 (13.8)

with B(.,.) being the Beta function and

#̃η =



a 0 ... 0 b ... b
0 c ... 0 0 ... 0
...

. . .
...

0 0 ... c 0 ... 0
b 0 ... 0 a ... b
... ...

...
. . .

b 0 ... 0 b ... a


(13.9)

The elements are equal to a= 3(ñ− p)2/((ñ− p− 2)(ñ− p− 4)) at positions
(j, j), where j∈!, b= (ñ− p)2/((ñ− p− 2)(ñ− p− 4))− ((ñ− p)/(ñ− p− 2))2

at positions ( j1, j2), where j1, j2 ∈! and j1 �= j2, c= (ñ− p)2/((ñ− p− 2)
(ñ− p− 4)) at positions (j, j), where j∈ {1,…, q(q + 1)/2}\!, and the others
are zero (Fang and Zhang, Lemma 5.6.3, 1990).

To test if there is a change in the covariance matrix # requires check-
ing whether the mean of the vector η(i), whose estimator is given in (13.6),
departs significantly from µη. Hence, at time t the testing problem is
given by:

H0,t : E(η(t)) = µη against H1,t : E(η(t)) = µ1 �= µη (13.10)

No change occurs in the covariance matrix of asset returns and, corre-
spondingly, the GMVP is efficient up to time t if H0 is valid for all s∈ 1, ..., t.
We refer to this as an in-control state. In other case the portfolio is not longer
efficient, starting at the time, when the first shift has occurred. The corre-
sponding state of the system is called out-of-control. It also means that an
investor has to adjust his portfolio. As a measure of the performance of con-
trol schemes the average run length (ARL) is chosen. By this criteria the best
control chart possesses the smallest out-of-control ARL for a given in-control
one. Following Schipper and Schmid (2001) the in-control ARL is taken 60
that corresponds to three months returns data.
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13.3.1 T 2 Control chart

The multivariate Shewhart control chart (Hotelling, 1947) is based on mea-
sure the distance between the vector of observation and the target mean of
the process. Becauseµη is known (see (13.7)), the control statistic is given by:

T2
t = (η(t) − µη)′#−1

η (η(t) − µη)

The null hypothesis of no changes should be rejected at time t if T2
t > h1,

which is determined under the condition that the in-control ARL is equal to
a preselected value ξ. For further discussion of the properties of the T2 chart
we refer to Alt and Smith (1988) and Runger, Alt and Montgomery (1996).

13.3.2 MC1

The most frequent application of CUSUM schemes is the case when a detec-
tion of small changes in the process parameter is of interest. An important
property of the CUSUM chart for univariate data is that it can be derived
via the sequential probability ratio test of Wald (1947). In the multivariate
case it leads to a control scheme which depends on the direction of the shift
(Healy, 1987). Because this is a very unpleasant property, three other types
of CUSUM charts for multivariate observations have been introduced by
Crosier (1988) and Pignatiello and Runger (1990), Ngai and Zhang (2001).
A more detailed discussion of these schemes can be found in Bodnar and
Schmid (2006).

Let Sm,l = ∑l
i=m+1 (η(i) −µη) for l, m≥ 0. For an arbitrary vector x and a

positive definite matrix C we define the norm ||x||C =√
x′C−1x.

The MC1 control chart is constructed by applying the MC1 control scheme
of Pignatiello and Runger (1990) to the process η(t):

MC1t = max (||St−nt,t||#η
− knt, 0), t ≥ 1

where nt being the number of observations since the most recent reconstruc-
tion of the CUSUM chart:

nt =
{

nt−1 + 1 if MC1t−1 > 0
1 if MC1t−1 = 0

(13.11)

for t≥ 1 with MC10 = 0.
When MC1t exceeds an upper control limit then the process is considered

to be off-target. For the interpretation of the out-of-control signal one can
consider the components of the St−nt,t/nt +µη which indicate the direction
of the shift provided that it is not a false alarm.
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13.3.3 Vector valued CUSUM

Crosier (1988) proposed the multivariate CUSUM control chart, namely
MCUSUM, that is based on the shrinking method. This procedure gener-
alized the univariate proposal of Crosier (1986) to the multivariate situation
by replacing the scalar quantities in the univariate CUSUM recursion by
the vectors in the multivariate case. The idea is to first update the vector
of cumulative sums, then to shrink it towards zero, and, finally, to use the
length of the updated and shrunken CUSUM to test whether or not the
process is out-of-control.

Let Ct be the length of the vector St−1 + (η(t) −µη):

Ct = ||St−1 + (η(t) − µη)||#η

k> 0 is the reference value. Then the vector-valued CUSUM scheme for the
vector η(t) is given by:

St =
{

0 if Ct ≤ k
(St−1 + η(t) − µη)(1 − k

Ct
) if Ct > k

(13.12)

for t≥ 1 with S0 = 0. The scheme gives an out-of-control signal as soon as
the length of the vector St:

MCUSUMt = (St′#
−1
η St)

1
2 = max{0, Ct −k}

exceeds a preselected value h2, which is determined with the condition that
the in-control ARL is equal to a fixed value ξ. In practice the last equation has
to be solved by simulations. A practical advantage of the shrinking method
is that the components of St give an indication in which direction the mean
has shifted, provided that it is not a false alarm.

13.3.4 Projected pursuit CUSUM

An extension of the CUSUM chart, namely PPCUSUM which is based on
the idea of projection pursuit, was proposed by Ngai and Zhang (2001).
For the direction a0 with ||a0||2 = 1 (Euclidean norm), we define the CUSUM
statistic by:

Ca0
0 = 0, Ca0

t = max{0, Ca0
t−1 + a′0(η(t) − µη) − k}, t ≥ 1

Pollak (1985) and Moustakides (2004) showed that the univariate CUSUM
chart possesses certain optimality properties. If the direction of the shift
would be known in the multivariate context then the CUSUM chart based
on the projected observations a′Xt would reflect this desirable behavior. The
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problem is that the direction is unknown and therefore the statistic cannot be
directly applied. Ngai and Zhang (2001) proposed to solve this problem by
estimating a0 by â0, and approximate Ca0

t by Câ0
t . Here â0 is the value at which

Ca0
t attains its maximum on the unit circle, for example, Câ0

t = max||a||2=1 Ca
t .

They proved that max||a||2=1 Ca
t =PPCUSUMt with:

PPCUSUMt = max{0, ||St−1,t||#η
− k, ||St−2,t||#η

− 2k, ..., ||S0,t||#η
− tk}

(13.13)

for t≥ 1. St−v,t and ||St−v,t||#η
are defined in section 3.2.

When a process is appeared to be out-of-control at time t0, then it exists

t1 < t0 such that
√

S′
t1,t0

#−1
η St1,t0 − (t0 − t1)k = max||a||2=1 Ca

t0
> h3, where h3 is

a preselected value. Then the direction of the shift is estimated by:

â0 = #
− 1

2
η St1,t0

S′
t1,t0

#−1
η St1,t0

13.3.5 Multivariate EWMA control chart

The EWMA control chart, first introduced by Roberts (1959), was adapted
to multidimensional observations by Lowry, Woodall, Champ and Rigdon
(1992). In an ARL comparison the authors showed that the properties of
the multivariate EWMA chart are similar to or even better than those of the
multivariate CUSUM charts of Crosier (1988) and Pignatiello and Runger
(1990). Additionally, the design of the multivariate EWMA chart is much
simpler than that of the multivariate CUSUM charts. Prabhu and Runger
(1997) gave recommendations on the choice of the EWMA parameter.

We define the MEWMA recursion for the vector η(t) by:

Zt = Rη(t) + (I − R)Zt−1 t ≥ 1

where R= diag(r1, r2, ..., rq+q(q+1)/2), 0< rj < 1, j= 1, ..., q+ q(q+ 1)/2.
Rewriting gives:

Zt = (I − R)tZ0 + R
t−1∑
j=0

(I − R)tη(t−j)

= (I − R)t(Z0 − µη) + R
t−1∑
j=0

(I − R)t(η(t−j) − µη) + µη

since (I−R)t +R
∑t−1

j=0 (I−R)t = I. Hence, in the in-control scenario the
mean of the vector Zt is E0(Zt)= (I−R)t(Z0 −µη)+µη. In the following it is
always assumed that the process Zt starts in the target value µη, Z0 =µη.
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The MEWMA chart gives an alarm when

Qt = (Zt − µη)′#−1
Zt

(Zt − µη) > h4 (13.14)

where #Zt is the covariance matrix of Zt, which is calculated by

�Zt =
t∑

j=1

Var(R(I−R)t−jXj) =
t∑

j=1

R(I−R)t−j#η(I−R)t−jR (13.15)

In the case r1 = r2 = . . .= rq+q(q+1)/2 = r the formula (13.15) simplifies to

�Zt = #η

r(1 − (1 − r)2t)
2 − r

In equation (13.14) the control limit h4 is defined such that the in-control ARL
is equal to a fixed quantity ξ. In practice this has to be done by simulations.

It is possible to monitor changes in the covariance matrix of the asset
returns based on the asymptotic MEWMA control chart, namely, MEW-
MAas. In this case the Mahalanobis distance in the equation (13.14) is taken
due to the asymptotic covariance matrix �Zt;asymp =#ηr/(2 − r) instead of
the exact one �Zt .

13.4 SIMULTANEOUS STATISTICAL SURVEILLANCE

In this section we use the same notation as in section 13.3. However, instead
of calculating the vector v̂(i) for the whole vector of portfolio weights ŵ(i)

we calculate the sequence of {v̂( j)
(i) }, j∈ 1,…, p, for each component ŵ(j)

(i) cor-
respondingly. Then the two-dimensional control procedures for detecting
shifts in the mean and variance of v̂(j)

(i) are constructed simultaneously. We
consider the sequence of

η
(j)
(i) = (v̂(j)

(i), v̂
(j)
(i) v̂

(j)
(i))

with the in-control mean and covariance matrix given by

µη( j) = E(η(j)
(i)) =

(
0,

ñ − p
ñ − p − 2

)
, j ∈ {1, ..., p} (13.16)

and

#η(j) =


ñ − p

ñ − p − 2
0

0
3(ñ − p)2

(ñ − p − 2)(ñ − p − 4)
−
(

ñ − p
ñ − p − 2

)2

 (13.17)
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The testing problem for the simultaneous control charts is presented by

H0,t : E(η(j)
(t)) = µη(j) for each j

against

H1,t : E(η(j)
(t)) = µ

(j)
1 �= µη(j) for some j.

When the simultaneous T2 control chart is applied the null hypothesis is
rejected as soon as

max
j=1,...,p

{T(j) 2
t } > h5, with T(j) 2

t = (η(j)
(t) − µη(j) )′#−1

η(j) (η
(j)
(t) − µη(j) )

h5 determined from the condition that the in-control ARL is equal to a
preselected value ξ.

The simultaneous MC1 scheme is defined similar to the multivariate MC1
control chart. Let S(j)

m,l =
∑l

i=m+1 (η(j)
(i)−µη(j) ) for l, m≥ 0, and furthermore, let

MC1(j)
t = max (||S(j)

t−nt,t||#η(j) − kn(j)
t , 0), t ≥ 1

n(j)
t is calculated by analogy to (13.11). The MC1 control scheme gives a signal

as soon as the statistic

simMC1t = max
j=1,...,p

MC1(j)
t > h6

exceeds a preselected control limit h6.
For the simultaneous MCUSUM we consider C(j)

t = ||S(j)
t−1 + (η(j)

(t) −µη(j) )||#
η(j)

with S(j)
t−1 as in (13.12). The control statistic is given by

simMCUSUMt = max
j=1,...,p

MCUSUM(j)
t (13.18)

where

MCUSUM(j)
t = (S(j)′

t #−1
η(j) S

(j)
t )

1
2 = max{0, C(j)

t − k}

The simultaneous PPCUSUM control statistic is defined as

simPCUSUMt = max
j=1,...,p

PPCUSUM(j)
t

with

PPCUSUM(j)
t = max{0, ||S(j)

t−1,t||#η(j)−k, ..., ||S(j)
0,t||#η(j) − tk}
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A large value of simPPCUSUMt is a hint that a change in the covariance
matrix of the asset returns has occurred. Furthermore, this change leads to
the reconstruction of the GMVP. The control limit is determined as described
above. It is obtained within an extensive Monte Carlo study.

The simultaneous MEWMA control statistic is given by

simMEWMAt = max
j=1,...,p

MEWMA(j)
t

where Q(j)
t is defined as in section 13.5. Application of the asymptotic covari-

ance matrix in constructing the quadratic forms Q(j)
t leads to the asymptotic

analog of the MEWMA control scheme which we denote by simMEWMAas.
As usual for both control designs the control limits are obtained within an
extensive Monte Carlo study.

13.5 A COMPARISON OF THE MULTIVARIATE AND
SIMULTANEOUS CONTROL CHARTS

In this section we compare the multivariate control charts and simultaneous
control schemes.

13.5.1 Structure of the Monte Carlo Study

Without loss of generality, in this section the in-control process is taken to
be a four-dimensional Gaussian process {Xt} with zero mean vector and the
covariance matrix as:

# =


0.84813 0.3726 0.18718 0.15418
0.3726 1.52624 0.31376 0.35488
0.18718 0.31376 1.83864 0.28748
0.15418 0.35488 0.28748 2.06115


To calculate # we made use of monthly data from Morgan Stanley Capital
International for equity markets returns of four developed countries (the
USA, the UK, Japan and Germany). This choice is not restrictive because
in the in-control state the proposed statistics v̂ has the same distribution
independent of the constant matrix L. As a result, the calculated control lim-
its can be used for the non-singular matrix #. Note, that in case where the
number of elements in each subsample {X(i);j}ñ

j=1 is large enough, the dis-
tribution of the vector v̂(i) is very accurately approximated by the standard
normal distribution. Thus, we can use the control limits that are calculated
for detecting changes in the mean vector and the covariance matrix of the
standard normally distributed random vector.

In our simulation study we set ñ= 20. This choice corresponds to estima-
tion of the covariance matrix of the four weeks (roughly monthly) returns
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by the daily returns (Schwert, 1989). It follows from Theorem 1 that for each
i, the random vectors v̂(i) have a multivariate standard t-distribution with 16
degrees of freedom independently distributed as their construction is based
on the non-overlapping samples.

In order to obtain the performance of the proposed sequential procedures
the out-of-control situation has to be determined. In our simulation study
the changes are generated by the following model:

Xt ∼ Np(0,#), t ≤ 0

Xt ∼ Np(0, �#�), t ≥ 1

where

� =


1 + a1 a2 a2 a2

a2 1 + a1 a2 a2

a2 a2 1 + a1 a2

a2 a2 a2 1


As a measure of the performance of a control chart the average run length

(ARL) is applied. All multivariate and simultaneous control schemes are
calibrated to have the same in-control ARLs, namely 60. Because no explicit
formula for the in-control and the out-of-control ARLs are available, a Monte
Carlo study is used to estimate these quantities. We estimate the in-control
ARLs based on 105 simulated independent realizations of the process. The
control limits of all charts are determined by applying the Regula falsi to the
estimated ARLs. In Table 13.1 the control limits of the multivariate charts
are given for various values of the reference value k and the smoothing
parameter r, while Table 13.2 contains the control limits for the simulta-
neous schemes. Because the vectors v̂(i) are independent and identically
standard t-distributed the control limits of the charts do not depend on
the covariance matrix of asset returns. In the out-of-control state they are
again independent but no longer identically distributed (see Theorem 2).
Consequently they are not directionally invariant. For the MEWMA charts
the control limits increase as the parameter r increases. Conversely, for the
CUSUM schemes the control limits decrease as k increases. The control limit
for the multivariate T2 control scheme is 356.8, while for the simultaneous
T2 it is equal to 37.42. Finally, almost in all cases the control limits of the
simultaneous control charts are much smaller than the corresponding limits
of the multivariate schemes.

In order to study the out-of-control behavior of the proposed control
charts we take various reference values k into account. For the mul-
tivariate CUSUM charts k is chosen as an element of the set {1.4, 1.5,
1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3}, while for the simultaneous schemes from
{1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}. For the MEWMA and asymptotic
MEWMA charts the smoothing matrix is taken as a diagonal matrix with
equal diagonal elements r ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.



OLHA BODNAR 255

Table 13.1 Control limits of the multivariate MEWMA, MEWMAas, MC1,
MCUSUM, T 2 charts (section 13.3, in-control, ARL=60)

Type\k = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.3+,r=

MEWMA 213.41 235.84 263.56 494.55 313.70 330.83 344.69 358.55 358.55

MEWMAas 199.55 229.29 261.53 289.25 313.70 330.83 344.40 358.26 358.55

MC1 33.76 31.24 29.16 27.36 25.89 24.50 23.69 22.91 22.16 21.60

MCUSUM 39.62 36.45 33.72 31.47 29.62 28.26 26.74 25.85 24.79 23.97

Table 13.2 Control limits of the simultaneous MEWMA, MEWMAas, MC1,
MCUSUM, T 2 charts Section 4 (in-control ARL=60)

Type\k = 1.3+,r= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

simMEWMA 12.02 17.32 21.65 25.88 29.21 32.23 34.41 36.07 37.10

simMEWMAas 10.75 16.45 21.33 25.49 29.02 31.91 34.41 36.07 37.10

simMC1 5.41 5.24 5.09 4.95 4.82 4.72 4.56 4.48 4.33 4.22

simMCUSUM 5.60 5.41 5.22 5.07 4.93 4.80 4.66 4.53 4.40 4.28

13.5.2 Behavior in the out-of-control state

For the determination of the out-of-control ARLs we made use of 106 inde-
pendent realizations of the underlying process. In Tables 13.3 and 13.4 the
out-of-control ARLs of all control charts within our study are presented. The
corresponding values r and k at which the smallest out-of-control ARLs are
attained, are given in brackets. These values should be taken to detect the
specific shift in the mean vector of the process {η(t)}. For a given shift the
ARL of the best chart is printed boldfaced.

Table 13.3 presents the results of the multivariate charts. For the given
choice of the covariance matrix the best result is attained by the MEWMA
control charts. In almost all cases it provides the smallest out-of-control ARL.
On the second to fourth places the multivariate asymptotic MEWMA, MC1
and MCUSUM schemes can be ranked. They are clearly worse than the
nonasymptotic MEWMA approach. The multivariate MEWMAas overper-
forms for the small values of the out-of-control ARL while for the moderate
and large values the MC1 and MCUSUM designs show a better performance.
The multivariate T2 scheme behaves considerably worse. For nearly all shifts
under consideration it has a larger out-of-control ARL than the other charts.

The results of the out-of-control ARLs for the simultaneous charts can
be found in Table 13.4. In all cases the best performance is obtained by the
simultaneous MEWMA control scheme which overperforms the rest of the
control schemes in all cases. It possesses much smaller out-of-control ARLs
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Table 13.3 Minimal out-of-control ARL of the multivariate MEWMA,
MEWMAas, MC1, MCUSUM, T 2 charts for different values of parameters
k and r

a1\a2 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

−0.9 1.30 (0.1) 1.43 (0.1) 1.55 (0.1) 1.61 (0.1) 1.54 (0.1) 1.39 (0.1) 1.20 (0.1)

1.42 (0.8) 1.64 (0.6) 1.86 (0.6) 1.97 (0.4) 1.92 (0.4) 1.69 (0.6) 1.39 (0.7)

1.48 (2.3) 1.70 (2.3) 1.90 (2.3) 2.01 (2.3) 1.95 (2.3) 1.76 (2.3) 1.49 (2.3)

1.54 (2.3) 1.78 (2.3) 2.00 (2.3) 2.12 (2.3) 2.07 (2.3) 1.87 (2.3) 1.57 (2.3)

1.43 1.67 1.95 2.10 2.04 1.76 1.41

−0.6 1.18 (0.1) 1.23 (0.1) 1.23 (0.1) 1.13 (0.1) 1.03 (0.1) 1.00 (0.1) 1.00 (0.1)

1.25 (0.9) 1.35 (0.7) 1.38 (0.7) 1.24 (0.8) 1.06 (0.9) 1.00 (0.9) 1.00 (0.1)

1.30 (2.3) 1.42 (2.3) 1.45 (2.3) 1.33 (2.3) 1.11 (2.3) 1.00 (2.3) 1.00 (1.5)

1.33 (2.3) 1.47 (2.3) 1.52 (2.3) 1.39 (2.3) 1.14 (2.3) 1.01 (2.3) 1.00 (1.4)

1.25 1.36 1.39 1.25 1.06 1.00 1.00

−0.3 1.08 (0.1) 1.02 (0.1) 1.00 (0.2) 1.00 (0.1) 1.02 (0.1) 1.17 (0.1) 1.30 (0.1)

1.10 (0.9) 1.03 (0.8) 1.00 (0.3) 1.00 (0.1) 1.04 (0.9) 1.34 (0.7) 1.56 (0.6)

1.12 (2.3) 1.05 (2.3) 1.00 (1.8) 1.00 (1.4) 1.08 (2.3) 1.44 (2.3) 1.65 (2.3)

1.13 (2.3) 1.06 (2.3) 1.00 (3.1) 1.00 (1.5) 1.11 (2.3) 1.51 (2.3) 1.74 (2.3)

1.10 1.03 1.00 1.00 1.04 1.35 1.60

0.0 1.20 (0.1) 2.61 (0.1) 9.85 (0.1) MEWMA 80.11 (0.1) 21.92 (0.1) 8.03 (0.1)

1.23 (0.9) 2.95 (0.4) 11.08 (0.2) MEWMAas 76.02 (0.1) 22.75 (0.1) 9.74 (0.1)

1.26 (2.3) 2.97 (2.3) 10.21 (2.2) MC1 65.94 (1.4) 19.22 (1.7) 8.20 (2.1)

1.27 (2.3) 3.08 (2.3) 10.49 (2.3) MCUSUM 65.38 (1.4) 19.91 (1.8) 8.55 (2.3)

1.23 3.06 13.10 T 2 92.38 53.37 23.18

0.3 1.48 (0.1) 1.12 (0.1) 2.27 (0.1) 14.10 (0.1) 186.57 (0.9) 76.42 (0.1) 11.14 (0.1)

1.57 (0.7) 1.14 (0.8) 2.65 (0.4) 15.89 (0.1) 188.19 (0.9) 70.17 (0.2) 12.67 (0.1)

1.64 (2.3) 1.16 (2.3) 2.64 (2.3) 13.99 (1.9) 300.51 (2.3) 44.28 (1.4) 10.64 (1.9)

1.67 (2.3) 1.17 (2.3) 2.77 (2.3) 14.63 (2.0) 299.16 (2.3) 44.05 (1.4) 11.12 (2.2)

1.58 1.15 2.79 22.76 183.68 142.91 39.71

0.6 1.00 (0.1) 3.26 (0.1) 1.21 (0.1) 8.22 (0.1) 248.34 (0.9) 14.75 (0.1) 4.33 (0.1)

1.00 (0.7) 3.80 (0.4) 1.25 (0.9) 9.72 (0.2) 247.14 (0.9) 15.97 (0.1) 5.59 (0.2)

1.00 (2.3) 3.81 (2.3) 1.28 (2.2) 8.59 (2.2) 422.18 (2.3) 13.19 (1.9) 4.88 (2.3)

1.00 (2.3) 3.88 (2.3) 1.31 (2.3) 8.86 (2.3) 181.66 (2.3) 13.61 (2.0) 5.15 (2.3)

1.00 3.93 1.25 14.03 242.34 58.32 12.62

0.9 1.00 (0.1) 1.00 (0.3) 1.00 (0.1) 6.44 (0.1) 3.83 (0.1) 1.51 (0.1) 1.17 (0.1)

1.01 (0.9) 1.00 (0.5) 1.00 (0.1) 7.71 (0.2) 4.99 (0.2) 1.95 (0.4) 1.37 (0.6)

1.03 (2.3) 1.00 (2.3) 1.00 (1.4) 6.90 (2.2) 4.41 (2.3) 1.98 (2.3) 1.47 (2.3)

1.04 (2.3) 1.00 (2.3) 1.00 (1.4) 7.21 (2.3) 4.66 (2.3) 2.12 (2.3) 1.56 (2.3)

1.01 1.00 1.00 11.00 10.73 2.20 1.39
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Table 13.4 Minimal out-of-control ARL of the simultaneous MEWMA,
MEWMAas, MC1, MCUSUM, T 2 charts for different values of parameters
k and r

a1\a2 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

−0.9 1.75 (0.1) 1.63 (0.1) 1.49 (0.1) 1.33 (0.1) 1.19 (0.1) 1.09 (0.1) 1.03 (0.1)

2.70 (0.2) 2.46 (0.2) 2.16 (0.2) 1.85 (0.3) 1.56 (0.4) 1.31 (0.6) 1.13 (0.7)

2.77 (1.1) 2.51 (1.1) 2.18 (1.1) 1.86 (1.1) 1.56 (1.2) 1.31 (1.9) 1.13 (2.0)

2.82 (1.1) 2.55 (1.1) 2.21 (1.3) 1.88 (1.3) 1.57 (1.5) 1.32 (2.0) 1.13 (1.9)

3.97 3.42 2.77 2.18 1.70 1.35 1.13

−0.6 1.72 (0.1) 1.46 (0.1) 1.22 (0.1) 1.06 (0.1) 1.00 (0.1) 1.00 (0.1) 1.00 (0.1)

2.63 (0.2) 2.15 (0.2) 1.64 (0.3) 1.24 (0.4) 1.03 (0.9) 1.00 (0.7) 1.00 (0.1)

2.70 (1.1) 2.16 (1.2) 1.64 (1.2) 1.24 (2.0) 1.03 (2.0) 1.00 (1.5) 1.00 (1.1)

2.76 (1.1) 2.20 (1.3) 1.66 (1.3) 1.25 (1.9) 1.03 (2.0) 1.00 (1.7) 1.00 (1.1)

3.83 2.75 1.82 1.26 1.03 1.00 1.00

−0.3 1.76 (0.1) 1.10 (0.1) 1.00 (0.1) 1.00 (0.1) 1.00 (0.1) 1.02 (0.1) 1.03 (0.1)

2.67 (0.2) 1.34 (0.4) 1.00 (0.7) 1.00 (0.1) 1.02 (0.9) 1.11 (0.6) 1.15 (0.6)

2.74 (1.1) 1.34 (1.9) 1.00 (1.5) 1.00 (1.1) 1.02 (2.0) 1.12 (1.7) 1.15 (2.0)

2.80 (1.1) 1.34 (2.0) 1.00 (1.7) 1.00 (1.1) 1.02 (2.0) 1.12 (1.9) 1.15 (1.9)

3.89 1.39 1.00 1.00 1.02 1.12 1.16

0.0 1.00 (0.1) 1.34 (0.1) 6.21 (0.1) simMEWMA 9.52 (0.1) 3.21 (0.1) 1.84 (0.1)

1.00 (0.3) 1.84 (0.3) 8.14 (0.1) simMEWMAas 11.77 (0.1) 4.67 (0.1) 2.74 (0.2)

1.00 (1.1) 1.84 (1.1) 11.83 (1.1) simMC1 19.42 (1.1) 5.38 (1.1) 2.81 (1.1)

1.00 (1.3) 1.87 (1.3) 11.94 (1.1) simMCUSUM 19.53 (1.1) 5.44 (1.1) 2.85 (1.1)

1.00 2.17 20.95 simT 2 29.03 9.56 4.03

0.3 1.00 (0.1) 1.17 (0.1) 2.58 (0.1) 8.61 (0.1) 9.97 (0.1) 3.46 (0.1) 1.84 (0.1)

1.01 (0.8) 1.51 (0.4) 3.96 (0.1) 10.88 (0.1) 12.40 (0.1) 5.09 (0.1) 2.77 (0.2)

1.01 (2.0) 1.51 (1.7) 4.34 (1.1) 17.31 (1.1) 20.53 (1.1) 6.03 (1.1) 2.84 (1.1)

1.01 (2.0) 1.52 (1.8) 4.42 (1.1) 17.49 (1.1) 20.90 (1.1) 6.13 (1.1) 2.91 (1.1)

1.01 1.64 7.38 26.38 28.44 10.53 4.12

0.6 1.00 (0.1) 1.00 (0.1) 1.44 (0.1) 5.08 (0.1) 5.11 (0.1) 1.95 (0.1) 1.28 (0.1)

1.00 (0.1) 1.01 (0.9) 2.10 (0.2) 6.96 (0.1) 7.21 (0.1) 3.00 (0.2) 1.78 (0.3)

1.00 (1.1) 1.02 (2.0) 2.11 (1.1) 9.37 (1.1) 10.12 (1.1) 3.13 (1.1) 1.79 (1.2)

1.00 (1.1) 1.02 (2.0) 2.15 (1.1) 9.46 (1.1) 10.29 (1.1) 3.19 (1.1) 1.81 (1.2)

1.00 1.02 2.68 16.43 16.30 4.64 2.06

0.9 1.00 (0.2) 1.00 (0.1) 1.00 (0.1) 4.07 (0.1) 1.23 (0.1) 1.02 (0.1) 1.00 (0.1)

1.00 (0.7) 1.00 (0.1) 1.00 (0.1) 5.79 (0.1) 1.68 (0.3) 1.10 (0.6) 1.02 (0.8)

1.00 (1.7) 1.00 (1.1) 1.00 (1.1) 7.19 (1.1) 1.68 (1.2) 1.11 (1.9) 1.02 (2.0)

1.00 (1.3) 1.00 (1.1) 1.00 (1.1) 7.29 (1.1) 1.70 (1.4) 1.11 (1.8) 1.02 (2.0)

1.00 1.00 1.00 12.85 1.88 1.11 1.02
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than other competitors. In second places the asymptotic MEWMA chart. For
moderate and large values of the out-of-control ARLs this scheme shows
a much better performance than the simultaneous MC1 and MCUSUM
approaches that are in third and fourth places, while for small values all three
charts behave similarly. The worst results are gives by the simultaneous T2

control chart.
The comparison between the multivariate and the simultaneous charts

leads to interesting results. If the ARL of a multivariate scheme is com-
pared with its simultaneous counterpart, then for almost all considered
shifts the simultaneous approach has the smaller out-of-control ARL for
the process under consideration. While the multivariate charts have some
difficulties for some shift constellations, all the changes are detected by the
simultaneous control schemes. In all of our simulations the MEWMA chart
provides very good results. The simultaneous MEWMA scheme shows the
best performance. A possible explanation of this fact is based on the results
of Woodall and Mahmoud (2005) who showed that the MC1 approach can
build up a large amount of inertia. For that reason we recommend applying
the MEWMA control chart for detecting changes in the covariance matrix of
asset returns that could influence the optimal portfolio weights. For simplic-
ity we have taken the smoothing values of the MEWMA chart as all equal.
This chart has much more flexibility, and improvements can be expected
if different values are chosen. The best results for the EWMA charts are
obtained in the case of r = 0.1, for example, the smallest of the considered
smoothing values. This result is in line with the findings of Frisen (2003),
who argued that the best performance of the EWMA scheme is attained for
small values of the parameter r. For further discussion of optimality for the
control procedures we refer the reader to Pollak (1985), Srivastava and Wu
(1997), Yakir (1997) and Moustakides (2004).

13.6 CONCLUSION

One of the most important problems in portfolio management is monitoring
the covariance structure of asset returns. While Ledoit and Wolf (2003, 2004)
have discussed the influence of the estimation error on the estimator for
the covariance matrix, we have focused on the question of monitoring an
optimal portfolio using the distributional properties of the estimator for the
covariance matrix. This problem has been presented widely in the literature
lately, for example Jobson and Korkie (1989), Gibbons, Ross and Shanken
(1989), Britten-Jones (1999), Bodnar and Schmid (2004) and others. However,
none of these proposals deals with sequential procedures.

In this chapter we derive sequential multivariate and simultaneous pro-
cedures for detecting changes in the covariance matrix of asset returns that
have an influence on the weights of the global minimum variance portfolio.
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All these control charts are of the residual type. To construct them we have
made use of the findings presented in Theorems 1 and 2. The multivari-
ate and simultaneous control procedures are independent of the covariance
matrix of asset returns, which constitutes a great advantage of our findings.
No additional information, except the portfolio weights, is required for con-
structing control limits and monitoring the efficiency. Finally, our findings
have financial and statistical significance even for the distribution of the
portfolio asset returns that do not possess the second and higher moments.

The performance of the proposed procedures is obtained within an exten-
sive Monte Carlo study. The best results are reached by the simultaneous
MEWMA control chart, and in second place we can rank the multivariate
MEWMA approach. For that reason we recommend applying either the
multivariate or the simultaneous MEWMA schemes.

APPENDIX

We denote K′ = (µ1, …, µq, 1). Let H= (K#−1K′)−1 = {Hij}i,j=1,2 and Ĥ= (K#̂−1K′)−1 =
{Ĥij}i,j=1,2. Let Ĥ(−) = Ĥ−1 ={Ĥ(−)

ij }i,j=1,2, where Ĥ(−)
22 = 1′#̂−11. Then ŵM;p = Ĥ(−)

12 /Ĥ(−)
22 .

Proof of Theorem 1

From Corollary 3.2.2 of Muirhead (1982) it holds that (n − 1)#̂∼Wp(n − 1,#). Thus,

(n − 1)−1Ĥ(−) ∼W−1
q+1(n− p+ 2q+ 2, K#−1K′). Let us denote b̂= Ĥ(−)

11 − Ĥ(−)
21 Ĥ(−)

12 /Ĥ(−)
22

and b=H(−)
11 −H(−)

21 H(−)
12 /H(−)

22 . Then, from Proposition 1 of Bodnar (2004), it follows that

(n − 1)−1Ĥ(−)
12

(n − 1)−1Ĥ(−)
22

|(n − 1)−1b̂ ∼ N

(
H(−)

12

H(−)
22

,
(n − 1)−1b̂

H(−)
22

)

Thus

(n − 1)−1Ĥ(−)
12

(n − 1)−1Ĥ(−)
22

− H(−)
12

H(−)
22

|(n − 1)−1b̂ ∼ N

(
0,

(n − 1)−1b̂

H(−)
22

)

Hence, Ĥ(−)
12 /Ĥ(−)

22 and Ĥ(−)
22 are independently distributed and

√
H(−)

22

√
n − 1b̂− 1

2

(
Ĥ(−)

12

Ĥ(−)
22

− H(−)
12

H(−)
22

)
|(n − 1)−1b̂ ∼ N(0, I)

The righthand side of the last expression does not depend on b̂. Hence,
√

H(−)
22

√
n − 1b̂− 1

2

(Ĥ(−)
12 /Ĥ(−)

22 −H(−)
12 /H(−)

22 )∼N(0, I) and is independent on Ĥ(−)
22 . From the other side with

Theorem 3.2.11 of Muirhead (n − 1)H(−)
22 / Ĥ(−)

22 ∼χ2
n−p. Combining the results and using

the definition of the multivariate t-distribution the statement of the theorem follows.



260 MONITORING COVAR IANCES OF ASSET RETURNS

Proof of Theorem 2

In this proof we make use of the same notation as in proving Theorem 1. Here the tilde
means that the corresponding quantities are calculated for the process with a covariance
matrix #̃ instead of #. Furthermore, from Proposition 1 of Bodnar (2004) it follows that
ˆ̃b−1 ∼W−1

q (n− p+ q, b̃−1).

(a) Hence it follows that

E( ˆ̃v) = E(
√

n − p
√

ˆ̃H(−)
22

ˆ̃b− 1
2 ( ˆ̃wM;q − wM;q))

From the independency of ˆ̃H
(−)

22 and ˆ̃b (Proposition 1 of Bodnar (2004)) and independency

of ˆ̃H
(−)

22 and ˆ̃wM;q (see the proof of Theorem 1) the last equation transforms to:

E( ˆ̃v) = E

√
n − p

√ ˆ̃H(−)
22

√
n − 1

√
H̃(−)

22

E(
√

n − 1
√

H̃(−)
22

ˆ̃b− 1
2 ( ˆ̃wM;q − wM;q)) (13.19)

Note that H̃(−)
22 /

ˆ̃H
(−)

22 ∼ χ2
n−p, and it holds that:

E

√
n − p

√ ˆ̃H(−)
22

√
n − 1

√
H̃(−)

22

 =
√

n − p√
2

�
(

n−p−1
2

)
�
(

n−p
2

)
Let consider the second term in the product (13.19). From the proof of Theorem 1 it follows
that

ˆ̃wM;q|(n − 1)−1 ˆ̃b ∼ N

w̃M;q,
(n − 1)−1 ˆ̃b

H̃(−)
22


Thus

( ˆ̃wM;q − wM;q)|(n − 1)−1 ˆ̃b ∼ N

w̃M;q − wM;q,
(n − 1)−1 ˆ̃b

H̃(−)
22


Hence√

H̃(−)
22

√
n − 1 ˆ̃b− 1

2 ( ˆ̃wM;q − wM;q)|(n − 1)−1 ˆ̃b (13.20)

∼ N(
√

n − 1
√

H̃(−)
22

ˆ̃b− 1
2 (w̃M;q − wM;q), I)

As a result

E(
√

n − 1
√

H̃(−)
22

ˆ̃b− 1
2 ( ˆ̃wM;q − wM;q)) = √

n − 1
√

H̃(−)
22

ˆ̃b− 1
2 (w̃M;q − wM;q)

where w̃M;q = #̃−11/1′#̃−11. To calculate the unconditional density we make use of

Theorem 3.2.14 of Muirhead (1982), for example the fact that ˆ̃b− 1
2 = b̃− 1

2 T, where
T= (tij)i=1,...,q,j=1,...,i is a q× q lower triangular matrix with t2

ii ∼χ2
n−p+q−i+1i= 1,…, q,
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tij ∼N(0, 1) i= 1, . . ., q, j= 1, . . ., i, and tii and tij are mutually independently distributed.
Hence, the expectation of the second term is equal to

E(
√

n − 1
√

H̃
(−)
22

ˆ̃b− 1
2 ( ˆ̃wM;q − wM;q)) =

√
H̃

(−)
22 b̃−

1
2

E(t11)
. . .

E(tqq)

 (w̃M;q − wM;q)

Denote A=diag(a11, . . ., aqq) with aii =
B
(

n− p− q− i+ 1+ 1
2 , n− p− 1

2

)
B
(

n− p− q− i+ 1
2 , n− p

2

) , i = 1, q. The first part of

the theorem is proved.

(b) Here we denote c=√
n − 1

√
H̃

(−)
22

ˆ̃b− 1
2 ( ˆ̃wM;q − wM;q). Then it holds that:

E( ˆ̃v ˆ̃v′
) = E

 (n − p) ˆ̃H
(−)

22

(n − 1)H̃
(−)
22

E(cc′) = (n − p)
2

�
(

n− p− 1
2

)
�
(

n− p
2

) (Var(c) + E(c)E(c)′)

To evaluate the covariance matrix of the random vector c we apply the following formula
of conditional variance:

Var(c) = E(Var(c|(n − 1)−1 ˆ̃b)) + Var(E(c|(n − 1)−1 ˆ̃b)) (13.21)

From equation (26.20) it follows that Var(c|(n − 1)−1 ˆ̃b)= I and, respectively,

E(Var(c| (n − 1)−1 ˆ̃b)) = I (13.22)

Let consider the second term in equation (13.21). It follows from the proof of part (a)
that

E(c|(n − 1)−1 ˆ̃b) = √
n − 1

√
H̃

(−)
22 b̃− 1

2 T(W̃M;q − wM;q)

where T is a lower triangle random matrix.
Let us denote W= (w̃M;q − wM;q)(w̃M;q − wM;q)′ = (wij)i,j=1,...,q. Then

Var(E(c|(n − 1)−1 ˆ̃b)) = H̃
(−)
22 b̃−

1
2 E(TWT′)b̃−

1
2
′

−H̃
(−)
22 b̃−

1
2 E(T)WE(T′)b̃−

1
2
′ = H̃

(−)
22 b̃−

1
2 (G − F)b̃−

1
2
′

where G = (gij)i,j=1,...,q and F = (fij)i,j=1,...,q with

gij = E(
i∑

l=1

j∑
k=1

til wlk tjk) = wij E(tii tjj)

=


2wii

�
(

n− p+ q−i+ 1
2 +1

)
�
(

n− p+ q− i+ 1
2

) , if i = j

2wij
�
(

n− p+ q− i+ 1+ 1
2

)
�
(

n− p+ q− i+ 1
2

) �
(

n− p+ q− j+ 1+ 1
2

)
�
(

n− p+ q− j+ 1
2

) otherwise

.
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Here we have applied Theorem 3.2.14 of Muirhead (1982), for example the fact that tii
and tij are mutually independently distributed. Similar calculations lead to:

fij =
i∑

l=1

j∑
k=1

E(til)wlkE(tjk) = wijE(tii)E(tjj)

= 2wij

�
(

n− p+ q− i+ 1+ 1
2

)
�
(

n− p+ q− i+ 1
2

) �
(

n− p+ q− j+ 1+ 1
2

)
�
(

n− p+ q− j+ 1
2

)

Thus

E(cc′) = Var(c) + E(c)E(c)′ = I + H̃(−)
22 b̃−

1
2 G b̃−

1
2
′

(13.23)

As a result

Var( ˆ̃v) = E( ˆ̃v ˆ̃v′) − E( ˆ̃v)E( ˆ̃v)′

= (n − p)
2

�
(

n− p
2 − 1

)
�
(

n− p
2

) (I + H̃
(−)
22 b̃−

1
2 Gb̃−

1
2
′
)

+
�

(
n− p− 1

2

)
�
(
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2

)
2
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1
2 Fb̃−

1
2
′


The proof is complete.
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C H A P T E R 14

An Empirical Study of
Time-Varying Return
Correlations and the

Efficient Set of Portfolios
Thadavillil Jithendranathan

14.1 INTRODUCTION

Modern portfolio theory was first introduced in 1952 (Markowitz, 1952), and
since then it has been the mainstay of asset allocation models. In the mean-
variance paradigm of Markowitz, an efficient set of portfolios is estimated by
maximizing the expected return of the portfolio and minimizing its risk, as
measured by the standard deviation. For practical purposes, efficient port-
folio construction requires estimation of expected returns and variances of
expected returns of individual assets in the portfolio, as well as the covari-
ance matrix of the asset returns. The most widely used method of estimating
these inputs into a portfolio model is to use the past return data for a period
of five years and use the historic average values of returns, variances and
co-variances as proxies for expected values. One of the implicit assumptions
in this method of efficient portfolio construction is that the variances and
co-variances are time-invariant during the holding period of the portfolio
(Jobson and Korkie, 1981).

Despite its theoretical appeal, practitioners are generally cautious in
applying mean-variance optimization models in practice. As pointed out
by Michaud (1989), the optimization tends to give higher weights for secu-
rities with large expected returns, low variances and negative correlations
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with other securities in the portfolio. Other studies have indicated that the
forecasted returns by the optimization model are highly sensitive to changes
in the expected returns and co-variances (Best and Grauer, 1991; Chopra and
Ziemba, 1993).

Several methods have been suggested to reduce the sensitivity of the
errors of the mean-variance optimization model (Jorion, 1986; Jorion, 1991;
Fletcher and Hiller, 2001). Most of these studies focus on reducing the sensi-
tivity of the optimization model to the input parameters. In this chapter I try
to improve the ex post returns of efficient portfolios by using time-varying
variances and co-variances.

Several studies into the nature of variances and co-variances of asset
returns have indicated that variances and co-variances do change over time
(Goetzmann, Li and Rouwenhorst, 2005; Forbes and Rigbon, 2002). If the
variances and co-variances are time varying, then the next question is which
is the best method of estimating these. The most popular method is to use a
moving average specification in which the correlations are estimated using a
moving window of time. The drawback of this method is that it gives equal
weight to all the observations during the time period used in the moving
average calculations. The other method of estimating the time varying cor-
relations is to use multivariate GARCH models. The first set of models of
this genre is based on the Constant Correlation Coefficient model of Boller-
slev (1990). But the assumption that the correlation coefficient was constant
remained the main weakness of theses models. The second set of GARCH
models are based on the multivariate GARCH models introduced by Kroner
and Ng (1998). Even though these multivariate GARCH models are appeal-
ing from a theoretical standpoint, computationally they suffered from the
problem of estimating too many coefficients at the same time. Engle (2002)
introduced a new class of multivariate GARCH models called “Dynamic
Conditional Correlation Models”, which combined flexibility of the uni-
variate models with the theoretical appeal of time-varying correlations. In
this chapter I use this technique to estimate the time-varying correlations.

The main focus of this chapter is to test whether the efficient portfo-
lios created with variances and co-variance estimates using the multivariate
GARCH models will have superior ex post performance over the traditional
approach of estimating the same using a moving or rolling window of time.
Two sets of efficient portfolios are created – one using the rolling window of
time and other using the multivariate GARCH models and ex post returns of
these portfolios are calculated for periods of one, three and six months. The
ex post returns of these two sets of efficient portfolios are then compared to
see if there is any statistically significant difference between the two.

The rest of the chapter is organized as follows. Section 14.2 describes the
empirical methodology and the sources and details of data. The results of the
tests are detailed in section 14.3 and the results are discussed in section 14.4.
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14.2 EMPIRICAL METHODOLOGY AND DATA

In portfolio optimization models, the objective is to maximize the return and
minimize the risk of the portfolio. The expected return of a portfolio is the
weighted average of the returns of individual securities in the portfolio and
the weights are the proportion of each of the securities in the portfolio and
can be expressed as follows:

−
RP =

N∑
i=1

Xi
−
Ri (14.1)

where Xi is the weight of the ith security in the portfolio and Ri is the expected
return of that asset.

The standard deviation of a portfolio can be expressed as:

σ2
P =

N∑
i=1

X2
i σ

2
i +

N∑
i=1

N∑
k=1
k �=i

XiXkσi,k (14.2)

where σ2s are the variances and σi,k is the covariance between the two
securities i and k.

The standard method of optimization is to find a set of portfolios, which
will give the maximum return for a given level of risk. This set of portfolios
are called the efficient set of portfolios and based on their individual risk
preferences investors can choose a specific portfolio from this set of optimal
portfolios.

Mathematically the optimization problem can be stated as follows:

Min σ2
P =

N∑
i=1

X2
i σ

2
i +

N∑
i=1

N∑
k=1
k �=i

XiXkσi,k (14.3)

Subject to the following constraint:

N∑
i=1

Xi = 1 (14.4)

Portfolios can be created with or without short-selling constraints. In this
chapter the portfolios are constructed with short selling constraints, which
require the following additional constraint:

0 ≤ Xi < 1 (14.5)

In this chapter I use two different approaches to estimate the expected
returns, variances and co-variances using the historic data. The first method
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is the commonly used rolling estimator, where the unconditional means,
variances and co-variances are estimated using a rolling window of fixed N
observations over a sample period T. The unconditional mean return and
variance of a security i is estimated as:

Ri = 1
N

N∑
t=1

Rit (14.6)

σ2
i = 1

N − 1

N∑
t=1

(
Rit −

−
Ri

)2

(14.7)

The co-variance between the returns of two securities i and k are estimated
as follows:

σi,k = 1
N − 1

N∑
t=1

(
Rit − Ri

) (
Rkt − Rk

)
(14.8)

One of the main problems with such rolling estimators is that it does
not capture the time-varying nature of means, variances and co-variances.
To capture the time varying nature of variances and co-variances, the sec-
ond method of estimation uses the Dynamic Conditional Correlation (DCC)
model of Engle (2002). The conditional correlation between two random
variable r1 and r2 that have mean zero can be written as:

ρ12,t = Et−1(r1,tr2,t)√
Et−1(r2

1,t)Et−1(r2
2,t)

(14.9)

Let hi,t =Et−1(r2
i,t) and ri,t =

√
hi,tεi,t for i= 1, 2, where εi,t is a standardized

disturbance that has zero mean and variance of one.
Substituting the above into equation (14.1) we get:

ρ12,t = Et−1(ε1,tε2,t)√
Et−1(ε2

1,t)Et−1(ε2
2,t)

= Et−1(ε1,tε2,t) (14.10)

Using a GARCH (1,1) specification, the covariance between the random
variables can be written as:

q12,t = ρ12 + α
(
ε1,t−1ε2,t−1 − ρ12

)+ β
(
q12,t−1 − ρ12

)
(14.11)

The unconditional expectation of the cross product is ρ12, while for the
variances ρ12 = 1
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The correlation estimator is:

ρ12,t = q12,t√
q11,t q22,t

(14.12)

This model will be mean-reverting if α+β< 1. The matrix version of this
model can then be written as:

Qt = S(1 − α− β) + α(εt−1ε
′
t−1) + βQt−1 (14.13)

where S is the unconditional correlation matrix of the disturbance terms and
Qt = |q1,2,t|.

The log-likelihood for this estimator can be written as:

L = −1
2

T∑
t=1

(
n log (2π) + 2 log |Dt| + log |Rt| + ε′tR

−1
t εt

)
(14.14)

where Dt = diag
{√

hi,t

}
and Rt is the time-varying correlation matrix. With

these estimates of variances and correlations, the covariance matrix is
constructed.

The main purpose of this chapter is to study whether the use of time-
varying variances and co-variances in portfolio optimization models will
result in better ex post results as compared to the traditional rolling estimates.
For this purpose portfolios are created using twenty stocks from Dow Jones
Industrial Average Index. The time period covered is from January 1995 and
December 2004. For consistency the stocks used in this study are the ones
that were part of the Dow Jones Index for the entire period of study, except
for Microsoft, which was included in the list in 1999. The weekly returns for
each of these stocks are obtained from Bloomberg.

A window of five years is used in estimating the means, variances and co-
variances using the rolling estimator. This window is moved by one month
for the next five years, creating a total set of 60 separate estimates. These
estimates are the inputs used in the portfolio optimization model. With each
set of monthly inputs, a set of efficient portfolios is estimated. Each of these
efficient portfolios contain one minimum variance portfolio and ten efficient
portfolios with increasing levels of risk compared to the minimum variance
portfolio.

For the DCC estimators I use the same set of five-year rolling windows,
but to capture the time-varying nature of variances and co-variances, the
end of the period values of the same is input into the portfolio optimization
model. For example, using the DCC model one can estimate 260 variances
and correlations for a period of five years. But for estimating the efficient
set of portfolios, only the variances and correlations for the last week of
the sample period is used. For example, for the time period from 3 January
2000 to 27 December 2004, the variances and correlations used are taken
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for the last week of the time period, which is 27 December 2004. In this
way it is possible to capture the full extent of the time-varying nature of
these variables as it existed at the time of construction of the portfolio. To be
consistent with the time-varying nature of variances and correlations, the
mean returns for the last four weeks of the sample is used as the expected
mean for each of the stocks.

Using the above procedure, I am able to get the weights of the indi-
vidual stocks in each of the efficient portfolio. Using these weights and
the actual returns of each of the 20 stocks for periods of one-month, three-
months and six-months from the date when the efficient portfolio is created,
ex post returns of the efficient set of portfolios are calculated for each of the
60 months for which efficient sets are calculated. The performance of effi-
cient portfolios computed using the rolling method and the DCC method
are then compared using the following regression equation:

Rj,t = α+ βDummyj,t + εj,t (14.15)

where Rj,t is the pooled returns of all eleven efficient portfolios for a period
of sixty months and Dummyj,t is a dummy variable, which is 1 if the portfolio
is estimated using the DCC method and 0 if it is estimated using the rolling
method. If the regression coefficient β is significant, then it indicates that
there is difference in the ex post performance of the portfolios estimated using
the two different methods. The value of this variable is also the difference
between the ex post returns of portfolios estimated using the two different
methods.

14.3 RESULTS

The descriptive statistics of weekly returns of the 20 stocks in this study are
given in Table 14.1.

The time period in this study covers the tech bubble of the latter half of the
1990s as well as the dramatic events of 9/11 and the subsequent downturn
in the stockmarkets. The average returns for all the 20 stocks are positive
for the entire period, with Microsoft having the highest and General Motors
the lowest weekly returns. There is also considerable variation in standard
deviation of the returns of these 20 stocks, with a low of 0.030 for Exxon Mobil
and a high of 0.053 for Coca-Cola. Fourteen out of the 20 stocks had negative
skewness, which is an indication that during this period these stocks had
more crashes than booms. Kurtosis measures the heaviness of tails, and
ten of the stocks had a measure greater than three, which is an indication
that these stock returns had fatter tails than that for a normal distribution.
Finally, the Jarque-Bera test strongly rejects the normality assumption for
the returns of all 20 stocks in the sample.
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Table 14.1 Descriptive statistics of weekly returns from 9 January 1995 to
27 December 2004

Name Mean Std. dev. Skewness Kurtosis Jarque-Bera

3M Co. 0.00269 0.035925 0.128619 2.899320 183.5649

Alcoa Inc. 0.00234 0.049083 0.092774 1.559698 53.4535

American Express 0.00370 0.046580 −0.689641 4.191052 421.7922

Boeing Co. 0.00178 0.050970 −1.294453 9.671405 2171.8343

Caterpillar Inc. 0.00281 0.046521 0.072897 1.022872 23.1296

E.I. du Pont 0.00165 0.041369 −0.275150 1.255070 40.6906

Exxon Mobil 0.00287 0.029678 −0.363687 2.217943 118.0474

General Electric 0.00320 0.039681 −0.321620 3.536954 280.0157

General Motors 0.00102 0.043620 −0.349797 3.129738 222.8350

Honeywell 0.00176 0.052903 −1.477493 10.179735 2434.4439

IBM 0.00332 0.048704 0.233023 2.151064 104.9592

JP Morgan 0.00231 0.052093 0.007047 1.218793 32.1892

McDonald’s 0.00176 0.040196 −0.096122 1.434563 45.3901

Merck & Co. 0.00162 0.043450 −0.899514 4.107817 435.7310

Microsoft 0.00400 0.050139 −0.229235 1.463085 50.9342

SBC Comm. 0.00134 0.043267 0.175905 2.952786 191.5921

Coca-Cola 0.00239 0.053019 −0.746449 7.363402 1223.0493

P & G 0.00283 0.041425 −3.865948 41.841616 39227.5663

United Technology 0.00390 0.043373 −2.294469 21.525604 10495.5498

Walt Disney 0.00131 0.047635 −0.533730 4.322953 429.5935

The average standard deviations of the 20 stocks estimated using the two
methods for the five-year period from January 2000 to December 2004 is
plotted in Figure 14.1. With the rolling method, the standard deviations
of individual stock returns are calculated using equation (14.7). The first
observation in the plot is the average of standard deviations estimated for
the time period from 9 January 1995 to 27 December 1997 using the weekly
returns. From that point onwards, each observation is for a period that
is moved ahead by one week. For example, the second observation is for
the period from 16 January 1995 to 3 January 2000. In this way weekly
observations are created using the rolling window of five years worth of
weekly data.

The dynamic volatility estimates in the plot also covered the period from
3 January 2000 to 27 December 2000 and are computed using a GARCH(1,1)
model. The difference between the two methods is that the rolling model
uses past data to estimate the standard deviations and the GARCH models
use only the data within the time period to estimate the standard deviations.
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The plots indicate how the GARCH model is able to capture the changes
in volatility associated with the 9/11 incident, whereas the rolling method
tends to smooth out the volatility.

With 20 stocks in the portfolio, there are 180 covariance estimates for
each time period. The average of these correlations calculated using the
rolling model and the DCC model are plotted in Figure 14.2. The rolling
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correlations are calculated using equation (14.8) and, in a similar fashion
as the standard deviations, by using a rolling window of five years. The
other set of correlations are estimated using the DCC method described in
section 14.2.

As can be seen in this plot, the rolling correlation estimates tend to smooth
out the short-term changes in correlations. There is a dramatic increase in
the correlations after 9/11, which is much more pronounced with the DCC
model than the rolling correlations model. The rolling correlations model
and the DCC model are very similar at the beginning and towards the end of
the period, where the fluctuations in the average correlations are relatively
small. On the other hand for the period after 9/11, the average correlations
estimated using DCC method had much higher variability than the rolling
model.

The plots of efficient set of portfolios estimated using the DCC model is
given in Figure 14.3. This plot contains 36 efficient portfolio sets for each
of the months from January 2002 to December 2004. The purpose of this
graph is to illustrate how the efficient frontier changes with the changes in
expected returns, variances and co-variances.

It is clear from the plots of efficient frontiers that the frontier moved
around quite a bit during the 30 months. In most of the instances, the stan-
dard deviations of the minimum variance portfolios are very close to each
other, but the expected returns are substantially different in most of the cases.
It may also be observed that in some instances entire sets of efficient port-
folios have negative returns. This is due to the fact that I use the four-week
average returns in my portfolio optimization model, and in a few instances
all the stocks in the portfolio has negative returns.
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Figure 14.3 Efficient portfolios for the months January 2003 to
December 2004
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Table 14.2 Descriptive statistics of ex post returns of efficient portfolios

Model Mean Std. dev. Skewness Kurtosis Jarque-Bera

All portfolios

One-month returns

Rolling −0.0044 0.066813 −0.514897 2.3146 179.4399

DCC 0.0033 0.070526 0.012346 2.87996 233.5973

Three-month returns

Rolling −0.0032 0.097966 −0.844897 0.92505 83.4231

DCC 0.0044 0.100200 0.649588 3.00677 299.9517

Six-month returns

Rolling 0.0048 0.127424 −0.753842 0.89383 85.8892

DCC 0.0077 0.131530 0.038403 2.02565 114.8855

[Low-risk portfolios]

One-month returns

Rolling 0.0001 0.058357 0.315829 1.28023 25.8994

DCC 0.0045 0.060822 0.351980 1.85805 50.1717

Three-month returns

Rolling 0.0057 0.083142 −0.328805 0.81550 13.9494

DCC 0.0037 0.089233 0.186751 2.63235 89.8324

Six-month returns

Rolling 0.0157 0.1084 −0.485141 0.60520 16.6189

DCC 0.0113 0.111627 −0.289139 0.07091 4.3136

[High-risk portfolios]

One-month returns

Rolling −0.0081 0.072990 −0.537141 2.32654 100.1449

DCC 0.0023 0.077762 0.325195 2.85595 130.8367

Three-month returns

Rolling −0.0106 0.108346 −0.784015 0.51280 41.5057

DCC 0.0049 0.108615 0.847932 2.88417 170.7150

Six-month returns

Rolling −0.0122 0.140195 −0.745651 0.55011 38.5307

DCC 0.0048 0.146148 0.184092 2.23437 78.2019

The summary statistics of ex post returns of efficient portfolios created
using the rolling model and DCC model are given in Table 14.2. For each of
the 60 months, one minimum variance portfolio and ten efficient portfolios
are created and the ex post returns of each of these portfolios are calculated
for periods of one month, three months and six months. Furthermore, these
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Table 14.3 OLS regression output for ex post returns against the DCC
dummy

Period α β Adj. R2 Obs.
(t-stat) (t-stat) (F-stat)

[All portfolios]

One month −0.0044 0.0077 0.0024 1340

(1.6540)*** (2.0513)** (4.2080)**

Three months −0.0032 0.0076 0.0007 1340

(0.8353) (1.4128) (1.9961)

Six months 0.0005 0.0072 0.0001 1340

(0.0962) (1.0264) (1.0536)

[Low-risk portfolios]

One month 0.0001 0.0045 0.0001 610

(0.0197) (0.9282) (0.8616)

Three months 0.0057 −0.0018 0.0001 610

(1.1507) (0.2605) (0.0679)

Six months 0.0157 −0.0044 0.0001 610

(0.0962) (1.0264) (1.0536)

[High risk portfolios]

One month −0.0081 0.0104 0.0034 732

(2.0543)** (1.8604)*** (3.4612)***

Three months −0.0106 0.01553 0.0037 732

(1.8682)*** (1.9365)*** (3.7498)***

Six months −0.0122 0.01696 0.0021 732

(1.6261)*** (1.6320)*** (3.3672)***

∗ Significant at 1%; ∗∗ Significant at 5%; ∗∗∗ Significant at 10%.

portfolios are divided into two groups based on the standard deviations
of the efficient portfolios. For each month, the sample is divided into a set
of low-risk portfolios comprising of five of the lowest variance portfolios,
and another set of high-risk portfolios comprising of six portfolios with the
highest risk.

From the results it is clear that except for two out of the nine cases, the
ex post returns of efficient portfolios created using the DCC model are higher
than those of the portfolios created using the rolling model. This point is
further proved in the regression analysis that follows.

The results of the regressions using equation (14.15) are given in
Table 14.3. Pooled ex post returns of efficient portfolios are regressed against
the dummy variable that has a value of one for those portfolios for which
the inputs were computed using the DCC model. Three sets of regressions
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are made, one for the total sample, one for the low-risk portfolios and one
for the high-risk portfolios.

With the complete sample of all portfolios, the DCC model portfolios has
significantly higher ex post returns than those of the rolling model. With
the low-risk portfolios the DCC model do not have a statistically significant
difference in returns as compared to the portfolios created using the rolling
model. On the other hand, the DCC model is clearly superior to the rolling
model for high-risk portfolios. In this case, the DCC model has returns
statistically significant from that of the rolling model for all the three periods
for which the comparison is made.

14.4 CONCLUSION

Even though the mean-variance optimization models have been around for
more than 50 years, practical uses of these models have been limited for
two reasons. Initially the model was not widely used due to the lack of
widespread availability of the computational power required for both the
estimation of variances and correlations, as well as the running of the opti-
mization model itself. With the advent of faster computers, this problem
has been considerably reduced in the past 20 years. The second and more
serious limitation of the model is the way the inputs into the model are esti-
mated. Until recently, computationally efficient multivariate models were
not available for estimating the co-variances between asset returns. With
the introduction of various multivariate GARCH models, this problem is
somewhat mitigated. This chapter has used one such model for estimat-
ing the co-variances to see whether portfolios created using these inputs
exhibit superior performance over those created with traditional estimates
of co-variances. The results indicate that the use of time-varying variances
and co-variances enhances the ex post performance of the efficient set of
portfolios.
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C H A P T E R 15

The Derivation of the
NPV Probability

Distribution of Risky
Investments with

Autoregressive Cash
Flows

Jean-Paul Paquin,∗ Annick Lambert and Alain Charbonneau

15.1 INTRODUCTION

Frederick Hillier’s (1963) seminal paper was probably the first to propose
the use of probabilistic information to assess risk in the process of capital
budgeting. However, such an approach to investment decision was short-
lived when Sharpe published his 1964 paper, supplemented by Lintner’s
(1965) and Mossin’s (1966) articles, thus setting the conceptual ground for
what was to become the modern capital asset pricing model (CAPM). Even
Hertz’s (1964) simulation methodology and Wagle’s (1967) statistical analy-
sis of risk in capital investment projects did not fare better. In fact, all the

∗ I would like to thank Dr F.-E. Racicot for his useful comments and encouragement.
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probabilistic approaches to risky investment decisions were swept away
by the Sharpe–Lintner–Mossin CAPM revolution as it became the creed of
modern financial theory. Such a result was unavoidable given that, under the
capital asset pricing theory, the dispersion (as well as the higher moments)
in the probability distribution of future cash flows became an irrelevant
statistic. Systematic risk, as calculated by the beta, became the only relevant
measure of risk.

However, probabilistic information has crept back into the process of
risky investment evaluation when various authors have drawn a close par-
allel between risky capital investments and financial options, thus giving rise
to real option theory (Brennan and Schwartz, 1985; Copeland andAntikarov,
2001; Cox, Ross and Rubinstein, 1979; Dixit and Pindyck, 1994; Ingersoll, Jr.
and Ross, 1992; Trigeorgis, 1993). However, notwithstanding the CAPM
orthodoxy, how can one justify the reintroduction of total risk considera-
tions in the investment decision when systematic risk should be the only
relevant datum?

In pursuance of the Hillier probabilistic approach, this chapter deals with
capital investment decisions for which total risk is relevant to the firm. In the
first part we revisit and summarize some of the main research results that
have lead some authors to come to the conclusion that under financial dis-
tress total risk matters to the firm. Such a conclusion is reached after drawing
a clear distinction between the concept of systematic risk as proposed by aca-
demics under the Modigliani–Miller capital budgeting normative paradigm
and the concept of total effective risk as implicitly used by managers under a
positive probabilistic paradigm. Such a distinction will entail the use of two
totally different measures of risk: (a) risk measured by the mean volatility
of rates of return around a market index of central tendency, and (b) risk
measured by the lower-tail of a NPV probability distribution. Section 15.2
discusses the systematic risk and the perfect economy, while section 15.3
deals with the total risk and the real economy.

Section 15.4 will address the question of the project NPV probability
distribution; for one cannot estimate the lower-tail of a NPV probability dis-
tribution without specific knowledge as to its total probability distribution.
In the second part, we derive important results concerning the investment
project NPV distribution when the operating cash flows probability distribu-
tions are unknown and not independent in probability (for example, are not
independent identically distributed (independent identically distributed)
random variables, or are not normal independently distributed random
variables). Specifically, we will deal with serially correlated discounted net
cash flows. We will also demonstrate that, although first-order autocorre-
lated cash flows do not invalidate the Central Limit Theorem’s asymptotic
convergence properties to a Normal distribution, the introduction of any
discount rate in the NPV equation does so, except for the very special case
where net cash flows are normally distributed. Does this result imply that
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the probabilistic approach, as a general approach to capital investment, is
at a dead-end? This is the question which will be addressed in part three of
the article.

Section 15.5 will explore the extent to which positive discount rates can
invalidate the applicability of the CLT to the derivation of the NPV prob-
ability distribution. Such an exploration is carried out in two steps. The
first step involves computer simulations to generate NPV probability distri-
butions with first-order and second-order autoregressive cash flows under
three probability distributions (normal, uniform, and double-exponential).
Section 15.6 consists in testing the statistical difference between the simu-
lated NPV probability distributions and a normal probability distribution.
The statistical test will involve a chi-square test and will aim at deter-
mining at the 1% level of significance the threshold discount rate over
which the CLT is invalidated when applied to the NPV model. Section 15.7
concludes.

15.2 SYSTEMATIC RISK AND THE PERFECT ECONOMY

When the CAPM was introduced in the mid-1960s, it was rapidly adopted by
the academic community because of its theoretical elegance, its conceptual
contribution, and also because of its mathematical and statistical simplic-
ity. However, many of the model’s assumptions did not hold in reality.
According to Milton Friedman (1953), this should not be considered as a
fundamental flaw for any theory has to be judged, not by the realism of its
assumptions, but by extent to which it provides meaningful explanations
and valid predictions. An examination of the CAPM’s logical consequences
against observed reality becomes unavoidable.

A plethoric number of empirical studies have therefore attempted to val-
idate the CAPM as an explanatory and predictive theory. “However, in
general, the results offer only limited support of the CAPM” (Levy and
Sarnat, 1994: 337). In complete contradiction with the CAPM’s most fun-
damental precept, studies by Miller and Scholes (1972) and Levy (1978)
showed that unsystematic risk (measured by the residual variance) turned
out to be statistically significant in the determination of securities’ required
rates of return. Such a result could be attributed to the violation of one of
the CAPM’s most basic sine qua non assumption which states that investors
hold diversified portfolios. However, as was shown by Blume, Crocket and
Friend (1974), the typical investor holds but a very limited number of secu-
rities in his portfolio, less than four stocks on average. This might very well
explain the greatest challenge to the CAPM when Fama and French (1992)
found no systematic relation between return and risk as measured by beta.
Given that investors do not hold diversified market portfolios, it was no
surprise for Levy and Sarnat (1994: 339) also to conclude that systematic
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risk, as measured by beta, contributed significantly less than did total risk
to the explanation of securities’ required rates of return.

From a different perspective, theoretical considerations from the CAPM
would also imply that companies in the same sector should face similar
systematic risks and, therefore, should apply similar discount rates when
assessing their investment projects. However, many surveys have found
high variation in the hurdle rates used within same companies and same
industry sectors; this would indicate that hurdle rates are not related directly
to the cost of capital as prescribed by the CAPM. For instance, Poterba and
Summers (1995) found from a sample of 228 companies (out of all Fortune
1000 companies) that only 12 percent of the hurdle rates total variance could
be explained by the industry sector. A simple linear regression of the hurdle
rates of firms on their respective beta coefficient revealed that the beta was
not statistically significant in explaining variations in the hurdle rates. Their
results also indicated that depending on the project, hurdle rates varied
substantially within a same company, strategic projects having much lower
hurdle rates. According to Jagannathan and Meier (2002), firms generally use
much higher hurdle rates than the CAPM prescribed cost of capital. What
is rationed is not financial capital, as usually assumed by a MM frictionless
and transparent economy, but managerial talent and organisational capital.
They demonstrate that when the firm has substantial real options, the project
selection decision will be optimal as long as the hurdle rate is sufficiently
high.

Finally, Roll’s 1980 article casts serious doubts on the very empirical
testability of the CAPM. Roll’s critique, which has not yet been rebutted,
is even more devastating to the CAPM for it brings us back to Popper’s
Falsifiable Principle (1934) according to which scientific theories should
always lead to propositions that are potentially falsifiable by experimental
observation.

Nevertheless, until a better theory is proposed, the CAPM will continue
to exercise a dominant role in the theory of modern finance. The same can be
said about the Modigliani–Miller perfect markets assumptions. Replacing
these by more realistic assumptions has resulted in capital investment rules
for each possible change in assumptions; each new rule not being sufficiently
compelling to justify the replacement of the perfect market assumption.
The unique decision criterion obtained under the perfect market assump-
tion thus becomes a simplifying and unifying concept for teaching capital
budgeting.

The Modigliani–Miller paradigm with its no default risk assumption
might explain why the CAPM proponents have adopted equity return vari-
ance as a measure of risk. Again, in view of the fact that under the CAPM no
default risk is assumed for any security and that only undiversifiable mean
volatility of stock returns is relevant in determining the security’s required
rate of return, then the only relevant measure of risk is provided by the
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undiversifiable rate of return variance. Volatility of stock returns and risk
became conceptual equivalents for the academic community. However, such
a definition of risk runs counter to the everyday and commonly understood
dictionary definition of risk. Risk is generally associated with the probability
of occurrence of an undesirable event, for example, the probability of loss.
One might then very well argue the CAPM has adopted a surrogate measure
of risk which does not fit well in a world where the actual risk of default is
very real.

15.3 TOTAL RISK AND THE REAL ECONOMY

Under the Modigliani–Miller (MM) paradigm, the economy is completely
transparent and frictionless. A transparent economy implies that all eco-
nomic agents share the same information and that there does not exist
informational asymmetries between various stakeholders, such as cur-
rent shareholders, debtholders, future shareholders, managers, suppliers,
employees and customers among others. A frictionless economy means
that the economy adjusts instantaneously and costlessly (no transaction or
default costs) and that its workings are not hampered by various material,
financial, managerial or organizational constraints. Consequently, financing
an investment project through debt or equity is irrelevant in a MM econ-
omy. This explains why a project’s value is the same irrespective of the firm
that undertakes it or of its contribution to the firm’s total risk. All valuable
investment projects can be financed whatever the firm’s financial position.

A similar type of reasoning is adopted under the CAPM efficient mar-
ket hypothesis as shareholders are assumed to be investing directly into a
project providing a required rate of return satisfying the one-period efficient
market equilibrium conditions. Again, the economy is transparent and fric-
tionless. Such a rule has been proposed and adopted by academics for over
40 years even though Eugene Fama’s article (1970) demonstrates that the
CAPM formula cannot generally be used for discounting cash flows in a
multi-period framework. The CAPM decision rule states that any invest-
ment project with a positive expected NPV should be accepted, irrespective
of its own volatility or of its contribution to the firm’s total risk, for only sys-
tematic risk is relevant. We may qualify such a point estimate or certainty
equivalent approach as normative to the extent that market conditions under
which the investment process is taking place as well as the required rate of
return both represent idealised conditions and are not at all descriptive of
the actual workings of the real economy. Obviously, the proposed CAPM
certainty equivalent evaluation and decision rule aim at determining the
market value of an investment project. However, the market to which it is
referring is the one of a one-period transparent and frictionless economy
abiding by the Modigliani–Miller paradigm. In the very same sense, the
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CAPM efficient market completely ignores the fact that the real economy is
neither transparent nor frictionless.

Indeed, the legal system establishes a clear distinction as to the roles,
the rights and obligations of debtholders, shareholders and managers. Such
legal constraints imply informational asymmetries which explain why the
financing of risky investment projects, even those profitable, is not easily
obtained. The difficulty to finance risky investment projects is even exac-
erbated under conditions of financial distress as the total risk of the firm
rapidly becomes the fundamental and dividing issue between the main
stakeholders.

For instance, when the probability of financial distress or bankruptcy
of a firm is not trivial, and, consequently, when its equity value is low,
then funds provided by shareholders serve essentially to make safer the
debtholders’ risky outstanding debt, in addition to providing at their own
expense the rate of return that the new shareholders will be seeking (Myers,
1977). We may also add that when a firm’s probability of bankruptcy is
significant, it becomes quite rational for shareholders to increase the total
risk of the firm by accepting very risky investment projects that might
very well rescue the value of their equity even if this implies increased
risks at the expense of debtholders. The shareholders risk to lose little
and to gain much for in the worst case scenario shares would become
worthless anyway. The shareholders would be actually transferring part
of their total risk to the debtholders and thus maximizing the wealth
of shareholders instead of the value of the firm (Jensen and Meckling,
1976).

Also, as a firm’s probability of financial distress increases, investors might
find it evermore difficult, due to asymmetrical information, to distinguish
sound projects that might increase the shareholders’ value from pet projects
that aim essentially at increasing the size of the firm and consequently the
powerbase, perquisites consumption, salaries and stock options of top man-
agers. As a consequence of informational asymmetries, valuable projects
might be foregone in the process of capital budgeting given the cash shortage
experienced by a firm under financial distress (Stulz, 1999).

The proposition according to which managers should be risk neutral and
should be using the CAPM certainty equivalent decision rule is therefore not
applicable when a firm experiences financial distress. That such a certainty
equivalent decision rule has been proposed and used by academics for the
last 40 years is understandable given that under the Modigliani–Miller per-
fect market paradigm it is always feasible to finance any profitable project
even when a firm is close to financial distress. It should surprise nobody
to learn that the CAPM equilibrium share price equation exposes itself to
large values of probability of loss (Laughhunn and Sprecher, 1977). Now,
considering that the CAPM assumes no default risk, it is quite logical that
such an efficient market would set security prices without regard to the risk
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of bankruptcy caused by any failure to meet legal debt claims. Under the
MM assumption of perfect and costless contracting:

the problems that crop up when a firm becomes close to financial distress dis-
appear because the firm can always costlessly recapitalize itself so that it is no
longer close to financial distress. In the real world, such costless recapitalization
is a dream. As a result, total risk matters and has to be taken into account when
a firm evaluates a project. (Stulz, 1999: 9)

When a risky investment project imposes an additional cost on a financially
strained firm through an increase of its total risk, the decision makers must
quantify the marginal increase in total risk. To take this cost into account,
managers have to quantify their total risk and have to understand how a
new project might impact the firm’s total risk. Being close to action, man-
agers have both ex ante and ex post information advantage over shareholders
and debtholders. They might therefore try to maximize their own welfare
(as any typically rational person might do) at the expense of shareholders
or debtholders. However, given appropriate incentives (this is what stock
options aim at), managers will take decisions to the shareholders’ advantage.
However, when projects go astray, shareholders will hold project managers
responsible for the failed project and will certainly not think about blaming
the economy’s systematic risk for its failure, the more so when the firm is in
financial distress. The probability of loss then becomes important informa-
tion, not as a criterion but as a constraint, in the selection and management
of investment projects. Contrary to the concept of systematic risk which is
drawn from a normative paradigm, the concept of total risk is derived from
a positive probabilistic paradigm and aims at assessing the effective prob-
ability of loss. Therefore, it is just comes as a logical consequence that the
hurdle rate that should be used to assess investment projects in a positive
probabilistic paradigm should not be the CAPM prescribed cost of capital
but the effective weighted marginal cost of capital of the firm.

The cost of total risk depends, among other things (a) on how the project
is incorporated or organized, and (b) on how the firm is financed. The con-
ventional capital budgeting practice is to include the project within the firm.
Such a practice may not always be efficient considering that the credit risk
supported by creditors is related to the firm’s total risk, rather than just the
project’s risk. Given that creditors have claims against the entire firm, this
implies the obligation to assess the firm’s total portfolio of projects’ and oper-
ations’ risks, a costlier operation than assessing the risk of a single project
(Shaw and Thakor, 1987). Furthermore, incorporating the project within the
firm creates an asset substitution moral hazard whereby cash flows can be
diverted from safe projects to riskier ones at the creditors’ expense. Unless
covenants prevent such substitution, creditors would recognize such a moral
hazard and adjust the marginal cost of capital accordingly thereby impact-
ing the total risk of the firm. On the other hand, organizing the project as
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a distinctive legal entity prevents such a substitution but generates its own
types of risk. To the increased overhead costs and underinvestment moral
hazard problem, one must consider the increased financial cost generated
by the increased financial risk that must be supported by the incorporated
project (Flannery, Houston and Venkataraman, 1993).

Contrary to what the MM paradigm asserts, the cost of total risk depends
also on how the firm is financed. Debt financing improves the profitability
of the firm by confering tax benefits and thus lowering its cost of capital,
but makes the probability of financial distress and bankruptcy more likely.
A highly levered firm must therefore assess the impact on the firm’s total
risk. Debt financing has a cost, so has equity financing. Otherwise, as Stulz
(1999) remarks, all firms would be all-equity financed with no probability
of financial distress. Agency costs and asymmetrical information explains
why equity financing is costly since there are few all-equity firms. The cost
of equity financing is, at the margin, equal to the cost of total risk (Stulz,
1999). When total risk matters, the appropriate measure of risk is obviously
not an equity return volatility index. A firm can increase at no additional
cost its total risk when the probability of financial distress is unaffected by
a risky project:

However, any increase in risk that increases the probability of distress is costly
and should be accounted for when evaluating the costs and benefits of a project.
Because the risk that is costly is the risk associated with large losses, the appro-
priate measures of risk are lower-tail measures of risk such as Value-at-Risk or
Cash-flow-at-Risk rather than measures such as volatility of stock returns or
volatility of cash-flows. (Stulz, 1999: 9)

In other words, one needs to know the probability distribution of risky
investment projects.

15.4 THE NPV PROBABILITY DISTRIBUTION AND THE CLT:
THEORETICAL RESULTS

Hillier (1963) invoked the Central Limit Theorem (CLT) to explain why the
NPV probability distribution should be Normal. His conclusion rests on the
argument that when the discounted cash flows are

mutually independent random variables, with finite means and variances,
which are either identically distributed or uniformly bounded, then (by the
Lindeberg Theorem) the Central Limit Theorem will hold and the sum of these
random variables will be approximately normal if n is large. If this holds, the
probability distribution of the measures of the merit of an investment will
be approximately normal, regardless of whether the Xj random variables are
normal or not. (Hillier, 1963: 446)

However, Hillier (1964) would later on modify such a statement by pointing
out that since the net present value equation is not the direct sum of random
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variables, but rather a sum of discounted cash flows, then the shape of the
NPV distribution would be dominated by the early cash flows, the more so
the higher the discount rate. Wagle (1967) would correctly conclude, without
providing any mathematical proof:

Thus even if we had independently distributed cash flows continuing forever,
the variance of the present value of the first n cash flows would remain finite as
n→∞, and in this case it is known that the distribution of the present value will
not tend to normality unless each of the net cash flows is normally distributed.
(Wagle, 1967: 18)

It is true that most versions of the CLT apply to a direct sum of indepen-
dent random variables. However, as Wagle correctly argues, the fact that
the NPV is the sum of discounted random cash flows does invalidate the
CLT asymptotic convergence of the NPV probability distribution towards
a Normal distribution. As shown in Appendix 1, the CLT does not apply
strictly to the NPV probability distribution whenever the discount rate dif-
fers from zero; unless, of course, the probability distribution of cash flows is
Normal.

As for the assumption of probability independence between net cash
flows, a certain number of authors (Hoeffding and Robbins, 1948) have
extended the CLT to the case of dependent random variables. However,
the conditions under which these theorems are stated require conditional
distributions, are subjected to very restrictive conditions, or involve spe-
cial conditions which are difficult to comply with or to assess, most of all
in the context of cash flow analysis. We prove in Appendix 2 that proba-
bility independence is not a necessary condition for obtaining asymptotic
convergence towards a Normal distribution. More specifically, we show
that the sum of equally-weighted first-order autoregressive cash flows con-
verges toward a Normal probability distribution. Still, in the case where
one would be dealing with discounted and first-order autoregressive cash
flows, the NPV probability distribution would not strictly comply with the
CLT. Considering that in a strict sense the discount rate, however small, ulti-
mately invalidates the CLT, must we conclude, for practical purposes, that
the CLT should never be used? Before exploring such a matter by simulation,
let us consider (Appendix 1) the logarithm of the characteristic function in
terms of its cumulants:

� ∑
αtεt√∑
α2

t

=
n∑

t=1

log ϕε

 αth√∑
α2

t

 = −h2

2
− i

3!
n∑

t=1

 αt√∑
α2

t


3

h3K3

+ 1
4!

n∑
t=1

 αt√∑
α2

t


4

h4K4 + . . .



J EAN-PAUL PAQUIN, ANNICK LAMBERT AND ALA IN CHARBONNEAU 287

Table 15.1 Discount rates and the first term factor of
the cumulants of the NPV probability distribution

kc K3 K4 K5

0.01 0.00276 0.000388 0.000034

0.05 0.02834 0.008643 0.002635

0.10 0.07230 0.03012 0.01254

0.15 0.12042 0.05946 0.02936

0.20 0.16890 0.15277 0.05160

0.25 0.21600 0.12960 0.07776

0.30 0.26088 0.16669 0.10651

0.35 0.30310 0.20367 0.13682

0.40 0.34278 0.23990 0.16789

0.45 0.37972 0.27496 0.19916

0.50 0.41408 0.30860 0.23004

We show in Appendix 1 that the limit of the first term in the expansion of
the factor multiplying each cumulant is given by:

lim
n→∞

α2
1

n∑
t=1

α2
t

= 1 − 1
(1 + kc)2 �= 0 whenever kc �= 0

When kc = 0, then all the cumulants of an order higher than 3 are multi-
plied by a weight of 0, thus ensuring the asymptotic convergence of the
NPV probability distribution towards the Normal probability distribution.
So what happens as to the effectiveness of the CLT when starting from 0 the
discount rate kc is increased progressively? Table 15.1 gives, for increasing
values of the discount rate kc, the limit value of the first and the largest term
serving as weight for cumulants of order 3, 4 and 5.

From Table 15.1, it is obvious that the importance of the various cumulants
decreases as their order increases. Therefore, there is no need to consider
higher order cumulants. On the other hand, the importance of the weights
of the various cumulants increases as the discount rate is increased. Also, the
relative difference between the cumulant factors decreases as the discount
rate is increased. In other words, higher-order cumulants acquire relative
importance as the discount rate is increased. For low values of kc, from 1%
to 10%, we could be justified in assuming that the cumulants of order higher
than 2 might not hamper the effectiveness of the CLT’s asymptotic properties
concerning the NPV probability distribution. For higher values of kc, that is
rates over 30%, it would seem quite plausible to assume that cumulants of
order higher than 2 might invalidate the asymptotic properties of the NPV
probability distribution.
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15.5 THE NPV PROBABILITY DISTRIBUTION AND THE CLT:
SIMULATION MODELS AND STATISTICAL TESTS

Our fundamental assumption is to the effect that as long as the discount
rate does not exceed a threshold value (to be determined statistically), then
the CLT applies to the NPV, for example, the NPV probability distribution
does not differ significantly from a Normal distribution. To test such an
assumption we have resorted to a simulation experiment using three prob-
ability distributions: (a) a uniform distribution, (b) a double exponential
distribution, and finally (c) a normal distribution. The uniform probability
distribution was chosen because it represents the case where uncertainty is
at its maximum (for example, maximum entropy). This distribution is sym-
metrical and represents any extreme case for which decision-makers have
very limited information. Thus, this case would apply when probability
distributions are relatively symmetrical and are bell-shaped. The double
exponential has the feature of having a thick tail. This might reveal particu-
larly important and instructive considering that risk analysis, in the context
of financial distress, focuses on the lower-tail of a probability distribution.
However, we are quite aware that the double exponential distribution does
provide a realistic description for net cash flows. As for the normal probabil-
ity distribution, it was used to ensure, in accordance with our demonstration
in Appendix 2 and contrary to what many authors have stated, the validity
of the CLT even in situations with highly correlated cash flows.

The density of the uniform probability distribution is defined in the
following fashion:

fU(ũt) =


1/2 for ũt ∈ [−1,+1]

0 otherwise
with EU(ũ) = 0 and σU(ũ) = √

3/3

The double exponential distribution has the following density:

fDE(ũt) = 1
2

e−|u| with EDE(ũ) = 0 and σDE(ũ) = √
2

The normal probability distribution is given the standardized form:

fN(ũt) = 1√
2π

e−
u2
2 with EN(ũ) = 0 and σN(ũ) = 1

To generate these random variables, we have used the University of Water-
loo’s Maple.8 simulation software. Simulations of 5,000 runs (NS: number of
simulations) were carried out respectively on first-order and second-order
autoregressive processes for increasing values of the NPV discount rate kc.
The first-order autoregressive process is defined by the following model:

ε̃t = ρ ε̃t−1 + ũt for : 0 ≤ ρ < 1
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while the second-order autoregressive process is defined by:

ε̃t = ρ1 ε̃t−1 + ρ2 ε̃t−2 + ũt for: ρ1 + ρ2 < 1

ρ1 − ρ2 < 1

|ρ2| < 1

Thus, these two models comply with the conditions required for stochastic
processes to be stationary in mean and in variance (Kendall, 1976; Nelson,
1973). All initial conditions of the simulation experiment were set at: ε̃1 = ũ1.

The chi-square distribution was used to test all the simulated NPV results
for any significant statistical difference between the simulated distribu-
tion and a standardized Normal distribution. For the null hypothesis to be
accepted, the differences between the theoretical and observed results must
be attributable to sampling variability at the designated level of significance.
The Normal probability distribution had been subdivided symmetrically
into 8 classes with nearly equal probability.

The null hypothesis H0 is the following: The simulated NPV probability
distribution is Normal. The null hypothesis is to be rejected at the 1% level
of significance for a chi-square distribution with 7 degrees of liberty when
the calculated chi-square values are greater than 18.48. Otherwise, the null
hypothesis is not rejected. The calculated chi-square statistic is given by:

χ2
c =

r=8∑
i=1

(ni − Nπi)2

Nπi

where N = total number of simulation runs; πi = theoretical probability
from the standardized Normal distribution; ni =number of simulation
observations in class i; and r = total number of classes (r = 8).

15.6 THE NPV PROBABILITY DISTRIBUTION AND
THE CLT: SIMULATION RESULTS

Let us consider the case of normally distributed cash flows. Table 15.2 sum-
marizes the chi-square statistical test results for cash flows governed by a
first-order autoregressive process extending over a 10-year period.

These results make it quite clear that highly correlated cash flows do
not invalidate the normality of the NPV probability distribution and conse-
quently the effectiveness of the CLT. Naturally, using a high discount rate
does not invalidate the CLT. However, at the 5% level of significance, we
would have found six cases for which the null hypothesis would have been
rejected. This is quite normal, for this represents 6.66 percent of the total
number of simulation trials, a percentage in agreement with such a level of
significance.
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Table 15.2 Calculated Chi-square table normal distribution ε̃ = ρε̃t−1 + ũt

kc|rho 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 5.0 2.7 7.9 5.5 3.6 1.4 3.6 10.9 5.7 6.4

0.05 7.3 14.7 9.0 7.3 5.7 0.6 8.6 3.7 3.9 3.9

0.10 4.8 3.9 6.9 2.3 3.3 12.2 17.2 15.9 11.7 14.2

0.15 4.8 11.1 3.0 10.2 5.1 11.8 4.1 3.3 7.1 1.7

0.20 2.9 4.2 7.8 2.5 2.0 3.1 3.2 4.8 3.7 7.3

0.25 7.9 4.3 3.9 4.6 5.1 1.5 8.5 4.8 1.7 9.9

0.30 3.2 2.0 15.7 4.6 5.2 3.5 2.2 0.9 1.9 11.0

0.35 4.1 4.5 4.0 3.6 8.9 7.6 14.0 5.9 4.1 8.3

0.40 3.0 13.5 15.1 2.6 8.1 2.5 1.8 11.3 9.2 4.4

n = 10 NS=5,000 χ2
7(α=0.01)=18.48 χ2

7(α=0.05)=14.07

Table 15.3 Calculated Chi-square table uniform distribution ε̃t = ρε̃t−1+ ũt

kc |rho 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 1.4 12.1 8.7 12.6 4.2 3.5 7.8 10.3 8.1 5.4

0.05 5.1 8.6 4.1 3.1 5.8 7.8 5.6 8.3 7.6 9.9

0.10 7.8 15.6 1.1 5.8 6.5 4.2 5.4 4.1 3.9 13.5

0.15 9.9 6.2 7.3 9.2 8.4 5.4 0.8 6.8 9.6 4.9

0.20 7.2 6.4 7.4 7.2 18.6(∗) 14.8 12.9 7.0 11.2 11.4

0.25 6.7 11.8 16.9 16.1 8.7 5.8 7.3 10.2 10.0 11.7

0.30 6.1 10.0 15.6 12.9 9.8 14.3 15.9 16.0 14.6 17.5

0.3 11.9 13.0 13.8 13.0 16.1 20.7(∗) 24.1(∗) 7.7 20.6(∗) 13.9

0.40 24.1(∗) 14.4 18.0 32.8(∗) 15.4 17.4 14.8 14.5 24.0(∗) 20.0(∗)

n = 10 NS=5,000 χ2
7(α=0.01)=18.48 χ2

7(α=0.05)=14.07

The following three Tables (15.3, 15.4 and 15.5) illustrate the results for
uniformly distributed cash flows over three different time periods: 10, 20 and
40 years for a first-order autoregressive process. The bolded single asterisked
(*) values represent cases where the null hypothesis has been rejected at the
1% level of significance.

These results make it quite clear that highly correlated cash flows do
not invalidate the effectiveness of the CLT at ensuring the converging of
the NPV probability distribution towards a normal distribution. We also
observe that the CLT is not invalidated for discount rates lower than 30%,
which is still quite high. Only at extremely high discount rates, such as 40%,
can we say that the CLT is invalidates and the more so when a 5% level
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Table 15.4 Calculated Chi-square table uniform distribution ε̃t = ρε̃t−1+ ũt

kc |rho 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 4.7 6.1 2.9 6.8 6.8 16.2 11.1 6.9 3.5 5.7

0.05 2.8 6.5 5.0 7.0 9.5 6.2 6.9 5.4 4.1 9.3

0.10 9.4 7.9 4.0 14.3 5.2 12.8 6.4 19.0(∗) 5.2 2.2

0.15 8.3 7.7 3.9 7.0 9.1 8.0 9.7 15.6 7.3 2.9

0.20 9.7 10.4 4.1 14.3 6.4 12.1 9.0 6.3 7.0 17.4

0.25 17.4 13.5 5.8 19.3(∗) 11.1 5.8 12.9 11.6 6.5 13.1

0.30 8.8 16.6 16.9 12.1 4.0 9.8 12.3 10.7 10.7 10.9

0.35 15.9 15.5 15.2 20.0(∗) 10.9 20.2(∗) 15.2 9.8 6.1 14.1

0.40 13.3(∗) 14.8(∗) 16.1(∗) 21.7(∗) 14.9(∗) 18.6(∗) 11.9 13.7(∗) 19.5(∗) 24.5(∗)

n = 20 NS=5,000 χ2
7(α=0.01)=18.48 χ2

7(α=0.05)=14.07

Table 15.5 Calculated Chi-square table uniform distribution ε̃t = ρε̃t−1+ ũt

kc |rho 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 8.2 6.2 4.4 10.8 11.9 6.0 5.2 14.9 5.3 6.0

0.05 19.0(∗) 1.8 8.5 2.4 5.2 18.0 5.9 10.4 4.0 3.8

0.10 6.7 8.5 6.4 3.8 4.3 6.9 7.3 7.1 7.4 7.0

0.15 8.6 9.9 5.5 6.6 6.1 6.3 5.1 3.7 8.1 8.4

0.20 5.3 9.4 3.6 10.7 7.7 3.7 11.9 5.9 6.9 9.2

0.25 11.6 11.9 8.5 14.4 6.9 8.0 5.1 16.4 5.1 6.6

0.30 14.4 10.5 7.6 21.3(∗) 24.1(∗) 12.4 2.5 7.0 11.0 8.1

0.35 19.4(∗) 14.7 7.8 14.1 9.3 19.8(∗) 11.3 8.9 15.6 13.8

0.40 10.3 14.1 24.1(∗) 11.5 20.6(∗) 13.9 13.9 17.9 12.2 15.9

n = 40 NS=5,000 χ2
7(α=0.01)=18.48 χ2

7(α=0.05)=14.07

of significance is used. However, we see that that increasing the number
of years increases the effectiveness of the CLT. The following three tables
(Table 15.6, 15.7 and 15.8) provide us the results for double exponential dis-
tributed cash flows over three different time periods: 10, 20 and 40 years
for a first-order autoregressive process. These results make it quite clear
that highly correlated cash flows do not invalidate the effectiveness CLT.
Increasing the number of periods, however, improves the effectiveness of
the CLT for values of the discount rate kc lower than 20%. However, over this
20% threshold value, the CLT does not allow convergence of the NPV prob-
ability distribution towards a Gaussian distribution. Over the 25% discount
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Table 15.6 Calculated Chi-square table double exponential distribution
ε̃t = ρε̃t−1 + ũt

kc |rho 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 11.7 19.2(∗) 3.1 12.8 13.2 4.9 5.5 11.7 20.4(∗) 17.9
0.05 10.7 11.5 12.0 11.8 18.4 16.5 9.9 15.3 22.3(∗) 29.1(∗)

0.10 23.7(∗) 5.1 19.8(∗) 13.9 9.5 11.1 13.7 11.9 19.9(∗) 20.0(∗)

0.15 9.3 10.5 16.8 10.5 7.2 14.4 18.5(∗) 15.4 9.5 10.7

0.20 25.2(∗) 16.1 17.9 28.7(∗) 21.1(∗) 47.4(∗) 17.0 35.1(∗) 27.4(∗) 35.0(∗)

0.25 24.9(∗) 18.6(∗) 25.1(∗) 17.2 17.1 37.0(∗) 28.2(∗) 15.7 21.7(∗) 29.1(∗)

0.30 36.4(∗) 26.4(∗) 31.8(∗) 30.3(∗) 30.0(∗) 21.2(∗) 35.5(∗) 30.6(∗) 44.1(∗) 37.8(∗)

0.35 40.0(∗) 35.1(∗) 33.9(∗) 24.5(∗) 30.6(∗) 37.8(∗) 20.2(∗) 26.8(∗) 43.1(∗) 39.4(∗)

0.40 51.1(∗) 34.6(∗) 45.6(∗) 28.6(∗) 42.0(∗) 58.1(∗) 49.8(∗) 45.3(∗) 61.8(∗) 47.8(∗)

n = 10 NS=5,000 χ2
7(α=0.01)=18.48 χ2

7(α=0.05)=14.07

Table 15.7 Calculated Chi-square table double exponential distribution
ε̃t = ρε̃t−1 + ũt

kc |rho 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 2.9 10.7 9.3 5.3 9.0 5.2 10.9 7.9 10.0 6.8

0.05 19.3(∗) 8.1 2.5 3.5 9.3 10.3 3.8 4.7 9.4 5.7

0.10 9.9 10.8 16.8 6.4 13.9 15.5 6.6 12.2 6.1 7.8

0.15 13.8 10.4 13.2 13.1 12.9 13.7 15.9 14.2 11.0 11.5

0.20 19.4(∗) 15.5 17.9 8.2 6.6 6.2 18.6(∗) 32.9(∗) 18.8(∗) 10.

0.25 42.3(∗) 29.2(∗) 28.0(∗) 30.2(∗) 34.0(∗) 29.1(∗) 28.6(∗) 27.6(∗) 38.2(∗) 33.5(∗)

0.30 31.4(∗) 46.5(∗) 33.3(∗) 34.5(∗) 40.7(∗) 31.9(∗) 15.9 27.6(∗) 52.2(∗) 17.4

0.35 17.9 52.4(∗) 39.2(∗) 42.1(∗) 60.4(∗) 33.7(∗) 39.1(∗) 62.0(∗) 23.2(∗) 31.9(∗)

0.40 42.6(∗) 42.9(∗) 31.4(∗) 48.1(∗) 48.0(∗) 43.0(∗) 27.9(∗) 55.3(∗) 40.8(∗) 39.6(∗)

n = 10 NS=5,000 χ2
7(α=0.01)=18.48 χ2

7(α=0.05)=14.07

rate, the null hypothesis is rejected systematically as cash flows obeying a
double exponential probability distribution do not conform to the CLT.

The simulation results, however, differ drastically from the uniform dis-
tribution when the discount rate is increased. We observe that as soon as the
discount rate crosses the 20% line, then the CLT ceases to ensure convergence
of the NPV probability distribution towards a normal distribution.

We therefore come to the conclusion that, up to a certain point, a thick-
tailed distribution like the double exponential would limit the effectiveness
of the CLT in ensuring the normality of the NPV distribution. In such a case,
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Table 15.8 Calculated Chi-square table double exponential distribution
ε̃t = ρε̃t−1 + ũt

kc |rho 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 5.1 3.2 7.9 10.4 4.2 4.1 4.6 5.0 3.2 5.3

0.05 5.3 6.0 5.8 2.4 6.6 2.3 9.5 5.5 5.0 5.7

0.10 6.7 15.7 16.4 13.5 7.2 4.7 11.0 5.9 11.1 5.2

0.15 4.5 22.4(∗) 15.6 12.5 17.9 20.4(∗) 19.1(∗) 26.3(∗) 13.7 23.2(∗)

0.20 19.4(∗) 15.7 22.4(∗) 16.7 21.2(∗) 10.5 33.4(∗) 11.1 28.3(∗) 12.3

0.25 20.6(∗) 13.1 26.5(∗) 21.8(∗) 42.0(∗) 20.0(∗) 21.0(∗) 19.0(∗) 19.5(∗) 29.6(∗)

0.30 35.1(∗) 32.9(∗) 22.5(∗) 24.3(∗) 19.2(∗) 35.7(∗) 35.4(∗) 39.3(∗) 35.1(∗) 22.2(∗)

0.35 34.7(∗) 47.9(∗) 24.5(∗) 42.1(∗) 20.1(∗) 30.1(∗) 42.0(∗) 38.5(∗) 25.7(∗) 23.0(∗)

0.40 41.4(∗) 31.3(∗) 39.4(∗) 45.7(∗) 43.5(∗) 57.6(∗) 47.8(∗) 34.3(∗) 37.4(∗) 43.8(∗)

n = 40 NS=5000 χ2
7(α=0.01)=18.48 χ2

7(α=0.05)=14.07

a 20% discount rate would constitute an upper limit, which, incidentally, is
still pretty high. On the other hand, one has to ask oneself if such a thick-
tailed distribution provides a realistic description of investment decision
problems facing managers. One would suspect that such a distribution is
fairly rare considering that they imply highly probable extreme values. Now,
it is a well known fact that most investment decisions involve bounded
monetary consequences. Decision-makers always have the possibility of
opting out of an investment project in order to avoid the extremely negative
consequences.

Simulation trials have also been carried out for second-order autoregres-
sive processes. The results do not bring any noticeable difference from those
obtained with first-order autoregressive processes under the same three
probability distributions. The conclusion remains unchanged.

15.7 CONCLUSION

This chapter has dealt with the evaluation of risky capital investment
projects when cash flows are serially dependent and conform either to a
first-order or a second-order autoregressive stochastic stationary process.
The authors have demonstrated mathematically that the NPV probability
distribution does not strictly conform to the CLT asymptotic Normal distri-
bution properties. The only exception occurs when the discount rate is set
to zero. Under such conditions, it is also demonstrated that the CLT’s limit
property is not hampered when cash flows are serially dependant and obey
a first-order autoregressive process.
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However and as soon as a positive discount rate is introduced into the
NPV equation, then the CLT does not apply in a strict mathematical sense.
In fact, the higher the investment project discount rate and the less the
CLT would be applicable to the NPV probability distribution. The authors
explore through simulation runs and statistical testing, using the normal,
uniform and double exponential probability distributions, the boundaries
limiting the applicability of the CLT in ensuring convergence towards a
Normal distribution.

In summary, the results are the following: managers and analysts are justi-
fied in invoking the CLT when assigning the normal probability distribution
to an investment project probability distribution. As long as the cash flows
are bell-shaped or uniformly distributed, the CLT may be invoked however
highly serially correlated are the project cash flows and the discount rate.
However, those projects whose cash flows have extremely high or low val-
ues with high probability may invalidate the CLT whenever the discount
rate exceeds 15 to 20 percent; for low discount rates, the CLT would still be
effective and reliable.

APPENDIX 1: THE CLT AND THE NPV PROBABILITY
DISTRIBUTION

Let P be the present value of net cash flows Xt over a period of n years. Now, let us assume
that these net cash flows are random variables X̃t with the additional features of being
independent in probability and stationary in mean and in variance. The present value P
must therefore be considered as a random variable P̃ equal to the weighted sum of the n
net random cash flows X̃t:

P̃ =
n∑

t=1

X̃t(1 + kc)−t

where kc, the cost of capital, is the appropriate discount or hurdle rate. We posit that:

X̃t = µX + ε̃t (µX is a constant or a trend)

We further require the cash flow series to be stationary in mean and in variance. The cash
flows are therefore expressed in terms of their deviation to such a trend, and without loss
in generality, we may write:

X̃t = ε̃t for t = 1, 2, 3, · · · , n

These random error terms are assumed independent in probability and obey the following
probabilistic assumptions:

E(ε̃t) = 0

V(ε̃t) = σ2
u = 1 constant for all t

with Cov(ε̃τ , ε̃θ) = 0, for τ �= θ.
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To simplify the notation, let us define αt = (1+ kc)−t. Equation (1) becomes:

P̃ =
n∑

t=1

αtε̃t

We must therefore verify, in accordance with the CLT, whether this weighted average
of random error terms converges towards a normal probability distribution. Given our
initial assumptions we deduct:

E(P̃) =
n∑

t=1

αtE(ε̃t) = 0

whereas

V(P̃) =
n∑

t=1

α2
t V(ε̃t) =

n∑
t=1

α2
t .

Therefore, to verify the CLT we must demonstrate that:

lim
n→∞

n∑
t=1

αtε̃t√
n∑

t=1
α2

t

→ N(0, 1)

LetϕX̃(h)=E(eihX̃)= 1+ ∑∞
t=1

(ih)t

t! µt be the characteristic function of any random vari-
able X̃. Given that the ε̃t’s are independent in probability, we may write the characteristic
function of their weighted sum in term of their argument as:

ϕ n∑
t=1

αt ε̃t√
n∑

t=1
α2

t

(h) = E

(
e

ih
∑

αt ε̃t√∑
α2

t

)
=

n∏
t=1

e
ihαt ε̃t√∑

α2
t =

n∏
t=1

ϕε̃

 αth√∑
α2

t



Let us take the logarithm of the characteristic function in term of its arguments and thus
define the � function:

� ∑
αt ε̃t√∑
α2

t

=
n∑

t=1

log ϕε̃t

 αth√∑
α2

t



=
n∑

t=1

log

1 + i
αt√∑
α2

t

hµ1 − 1
2

 αt√∑
α2

t


2

h2µ2

− i
3!

 αt√∑
α2

t


3

h3µ3 + 1
4!

 αt√∑
α2

t


4

h4µ4 + . . .
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Using the development of log(1+ z), given by log(1+ z)= z− z2

2 + z3

3 − z4

4 + . . ., we obtain
the logarithm of the characteristic function in terms of its cumulants:

� ∑
αt ε̃t√∑
α2

t

=
n∑

t=1

log ϕε̃t

 αth√∑
α2

t



=
n∑

t=1

i
αt√∑
α2

t

hK1 − 1
2

 αt√∑
α2

t


2

h2K2 − i
3!

 αt√∑
α2

t


3

h3K3

+ 1
4!

 αt√∑
α2

t


4

h4K4 + . . .



where Kj is the cumulant of order j. By assumption, we have set K1 = 0 et K2 = 1 whereas

it is obvious that
n∑

t=1

(
αt√∑
α2

t

)2

= 1. Hence:

� ∑
αt ε̃t√∑
α2

t

=
n∑

t=1

log ϕε

 αth√∑
α2

t

 = −h2

2
− i

3!
n∑

t=1

 αt√∑
α2

t


3

h3K3

+ 1
4!

n∑
t=1

 αt√∑
α2

t


4

h4K4 + . . .

which may be written as:

� ∑
αt ε̃t√∑
α2

t

=
n∑

t=1

log ϕε

 αth√∑
α2

t

 = −h2

2
− i

3!
n∑

t=1

(
α2∑
α2

t

)3/2

h3K3

+ 1
4!

n∑
t=1

(
α2

t∑
α2

t

)2

h4K4 + . . .

and quite obviously:

lim
n→∞

α2
1

n∑
t=1

α2
t

= lim
n→∞

(1 + kc)−2

n∑
t=1

(1 + kc)−2t
= (1 + kc)2 − 1

(1 + kc)2 = 1 − 1
(1 + kc)2 �= 0

whenever kc �= 0.
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Given that the cumulants of order higher than 2 generally are not equal to zero, it then
follows that:

lim
n→∞� ∑

αt ε̃t√∑
α2

t

= lim
n→∞

n∑
t=1

log ϕε̃

 αth√∑
α2

t



= lim
n→∞

−h2

2
− i

3!
n∑

t=1

 αt√∑
α2

t


3

h3K3

+ 1
4!

n∑
t=1

 αt√∑
α2

t


4

h4K4 + . . .

 �= −h2

2

However, when the discount rate is set equal to zero then:

lim
n→∞

α2
1

n∑
t=1

α2
t

= 1
n

and the logarithm of the characteristic function in terms of its cumulants can be written as:

� ∑
αt ε̃t√∑
α2

t

=
n∑

t=1

log ϕε̃

(
αth∑
α2

t

)
= −h2

2
− i

3!
n∑

t=1

(
1√
n

)3

h3K3

+ 1
4!

n∑
t=1

(
1√
n

)4

h4K4 + . . .

Consequently, its limit value can be written as:

lim
n→∞� ∑

αt ε̃t√∑
α2

t

= lim
n→∞

n∑
t=1

log ϕε̃

(
αth∑
α2

t

)
= −h2

2

and therefore lim
n→∞ϕε̃

(
αth∑
α2

t

)
= e− h2

2 , which is the characteristic function of the Normal

probability distribution.

APPENDIX 2: THE CLT AND THE FIRST-ORDER
AUTOREGRESSIVE PROCESS

We consider a weighted sum of random cash flows X̃t such that each variate has an equal

weight. We thus define the random mean ˜̄X as the sum of n equally weighted random
cash flows X̃t as:

˜̄X =
n∑

t=1

X̃t

n
(A.1)

for which X̃t = µX + ε̃t, for t = 1, 2, 3 . . . , n.
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We require the series to be stationary in mean and in variance which implies that they have
a constant mean and that they fluctuate about the mean with a constant variance. Such
constraints imply that the generating mechanism of the series remains constant through
time. We therefore consider series from which the trend has been removed, or in which it
was never present (for example, µX = 0). The cash flows are therefore expressed in terms
of their deviation to such a trend, and:

X̃t = ε̃t for t = 1, 2, 3, . . . , n (A.2)

We furthermore assume that the random terms ε̃t obey a first-order autoregressive process
defined by:

ε̃t = ρε̃t−1 + ũt for t = 2, 3, 4, . . . , n (A.3)

Stationarity in variance imposes the following additional condition:

0 ≤ ρt,t−1 < 1

Since the process begins at a specific date, we impose the following initial condition:

ε̃1 = ũ1

Finally, we introduce the following probabilistic assumptions:

E(ũt) = 0

V(ũt) = σ2
u = 1 constant for all t

Cov(ũθ , ũτ ) = 0 for: θ �= τ

Cov(ũt, ε̃t−1) = 0 for: t = 2, 3, 4, . . . , n

Under such conditions, we demonstrate that the density probability function of ˜̄X con-
verges towards a Normal distribution. In other words, first-order autocorrelation between
undiscounted cash flows does not invalidate the Central Limit Theorem. To demonstration
such an assertion we may write from equation (A.3):

ε̃t =
t−1∑
τ=0

ρτ ũt−τ for t = 1, 2, 3, . . . , n (A.4)

and equation (1) may be rewritten as:

X̃ =
n∑

t=1

ε̃t

n
= 1

n

n∑
t=1

t−1∑
τ=0

ρτ ũt−τ

Thus yielding:

X̃ = 1
n

[
ũ1

n−1∑
τ=0

ρτ + ũ2

n−2∑
τ=0

ρτ + · · · + ũn−2

2∑
τ=0

ρτ + ũn−1

1∑
τ=0

ρτ + ũn

]

for example:

X̃ = 1
n

[
ũ1

(
1 − ρn

1 − ρ

)
+ ũ2

(
1 − ρn−1

1 − ρ

)
+ ũ3

(
1 − ρn−2

1 − ρ

)
+ · · ·

+ ũn−2

(
1 − ρ3

1 − ρ

)
+ ũn−1

(
1 − ρ2

1 − ρ

)
+ ũn

(
1 − ρ

1 − ρ

)]
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and

X̃ = 1
n (1 − ρ)

[ũ1( 1 − ρn) + ũ2( 1 − ρn−1) + ũ3( 1 − ρn−2) + · · ·

+ ũn−2( 1 − ρ3) + ũn−1( 1 − ρ2) + ũn( 1 − ρ)]

By setting wt = 1− ρn−t+1 the mean random variable becomes equal to:

X̃ = 1
n (1 − ρ)

n∑
t=1

wtũt (A.5)

Let us now demonstrate that the weighted sum of random variables ũt obeys the CLT.
Given the initial assumptions governing the random ũt’s, we obtain:

E(X̃) = 1
n(1 − ρ)

n∑
t=1

wtE(ũt) = 0

and

V(X̃) = 1
n2(1 − ρ)2

n∑
t=1

w2
t V(ũt) = 1

n2(1 − ρ)2

n∑
t=1

w2
t

The CLT will be established once we show that:

lim
n→∞

n∑
t=1

wt ũt√
n∑

t=1
w2

t

→ N(0, 1)

Given that the ũt’s are independent in probability, then the characteristic function is
equal to:

ϕ n∑
t=1

wtũt√
n∑

t=1
w2

t

(h) = E

(
e

ih
∑

wtũt√∑
w2

t

)
=

n∏
t=1

e
ihwtũt√∑

w2
t =

n∏
t=1

ϕũ

 wth√∑
w2

t



The logarithm of the characteristic function then becomes:

� ∑
wtũt√∑

w2
t

=
n∑

t=1

log ϕũt

 wth√∑
w2

t



=
n∑

t=1

log

1 + i
wt√∑

w2
t

hµ1 − 1
2

 wt√∑
w2

t


2

h2µ2

− i
3!

 wt√∑
w2

t


3

h3µ3 + 1
4!

 wt√∑
w2

t


4

h4µ4 + . . .
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We may express the logarithm of the characteristic function in terms of its cumulants:

� ∑
wtũt√∑

w2
t

=
n∑

t=1

log ϕε̃t

 wth√∑
w2

t



=
n∑

t=1

i
wt√∑

w2
t

h K1 − 1
2

 wt√∑
w2

t


2

h2K2

− i
3!

 wt√∑
w2

t


3

h3K3 + 1
4!

 αt√∑
α2

t


4

h4K4 + . . .



By assumption, we have set K1 = 0 et K2 = 1 whereas
n∑

t=1

(
wt√∑

w2
t

)2

= 1. Therefore:

� ∑
wtũt√∑

w2
t

=
n∑

t=1

log ϕε

 wth√∑
w2

t

 = −h2

2
− i

3!
n∑

t=1

 wt√∑
w2

t


3

h3K3

+ 1
4!

n∑
t=1

 wt√∑
w2

t


4

h4K4 + . . .

The limit value of the logarithm of the characteristic function becomes:

lim
n→∞� ∑

wtũt√∑
w2

t

= lim
n→∞

n∑
t=1

log ϕε̃

 wth√∑
w2

t



= lim
n→∞

−h2

2
− i

3!
n∑

t=1

 wt√∑
w2

t


3

h3K3

+ 1
4!

n∑
t=1

 wt√∑
w2

t


4

h4K4 + . . .


Furthermore, given 0≤ ρ< 1, it follows that:

lim
n→∞

w2
1

n∑
t=1

w2
t

= lim
n→∞

(1 − ρn−t+1)
n∑

t=1
(1 − ρn−t+1)2

= lim
n→∞

(1 − ρn−t+i)
n∑

t=1
(1 + ρ2(n−t+1) − 2ρn−t+1)

= lim
n→∞

1
n
= 0
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Consequently:

lim
n→∞� ∑

wtũt√∑
w2

t

= lim
n→∞

n∑
t=1

log ϕũ

(
wth∑

w2
t

)
= −h2

2

and

lim
n→∞ ϕũ

(
wth∑

w2
t

)
= e−

h2
2

which is the characteristic function of the Normal probability distribution.
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Have Volatility
Transmission Patterns
between the USA and
Spain Changed after

September 11?

Helena Chuliá, Francisco J. Climent, Pilar Soriano
and Hipòlit Torró∗

16.1 INTRODUCTION

On 11 September 2001, the USA experienced its most devastating terrorist
attack. This attack had an influence over several economic variables and
it obviously affected financial markets. Taking into account the increas-
ing global financial integration, an important question arises: Could recent
terrorist attacks have increased even more interrelations between financial
markets?
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The main objective of this study is to analyze whether volatility trans-
mission patterns between the US and Spanish stock markets have changed
after September 11. In order to do this, we use a multivariate GARCH model
and take into account both the asymmetric volatility phenomenon and the
non-synchronous trading problem.

An extensive literature has explored volatility transmission across global
financial markets. Earlier studies, such as Engel, Ito and Lee (1990), Hamao,
Masulis and Ng (1990), Susmel and Engle (1994), Karolyi (1995), Darbar and
Deb (1997) and Booth, Martikainen and Tse (1997), use symmetric univariate
or multivariate GARCH models. More recent studies introduce asymmetric
multivariate GARCH models allowing volatility and covariance to be sensi-
tive to the sign and size of the innovations (see Brooks and Henry, 2000; Ng,
2000; Isakov and Perignon, 2001; Baele, 2005; Cifarelli and Paladino, 2005).

Major global events such as the crisis in the USA in 1987, Mexico in 1994,
East Asia in 1997 and Russia in 1998 have received special attention when
studying volatility transmission and correlation between countries (Hamao,
Masulis and Ng,1990; King and Wadhwani, 1990; Koutmous and Booth,
1995; and Rigobon, 2003). These studies use a sample size that includes one
or more crisis and they estimate the model for the pre-crisis and post-crisis
periods.

It must be highlighted that most existing studies on spillovers between
developed countries focus on the USA, Canada, Japan, the UK, France and
Germany.1 As far as we know, volatility transmission between the USA and
Spain has only been studied by Peña (1992), Perez and Torra (1995) and
Fernández and Aragó (2003). Peña (1992) uses a symmetric univariate model
and the others use multivariate GARCH models. All of them find volatility
transmission patterns between the USA and Spain. However, this chapter
will be the first to take into account the non-synchronous trading problem
and use a sample period that includes the September 11 terrorist attack.

Until now, few studies have examined the effects of the attacks of Septem-
ber 11 on financial markets. Most of them focus on the economy as a whole2

or on different concrete aspects of the economy. For instance, Poteshman
(2005) analyzes whether there was unusual option market activity prior to
the terrorist attacks. Ito and Lee (2005) assess the impact of the September 11
attack on US airline demand. Glaser and Weber (2005) focus on how the
terrorist attack influenced expected returns and volatility forecasts of indi-
vidual investors. However, none of them analyzes volatility transmission
patterns and how they have been affected by the event. The only paper
which analyzes changes in interrelations between stock markets would be
Hon, Strauss and Yong (2004), but it tests whether the terrorist attack resulted
in an increase in correlation across global financial markets.

When studying volatility transmission between different financial mar-
kets, an important fact to take into account is the trading hours in each
market. In the case of partially overlapping markets (like Spain and
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the USA), a jump in prices can be observed in the first market to open when
the second one starts trading, reflecting information contained in the open-
ing price. Therefore, this could make volatility increase in this first market.
Moreover, as suggested by Hamao, Masulis and Ng (1990), a correlation
analysis between partially overlapping markets using close to close returns
could produce false spillovers, both in mean and volatility. This is so because
it is difficult to separate effects coming from the foreign market from those
coming from the own market while it remains closed.

There are several solutions in order to artificially synchronize interna-
tional markets. First of all, in the case of the USA, information transmission
with other markets can be analyzed through American Depositary Receipts
(ADRs), which will share trading hours with the US market. The prob-
lem is that there are no many ADRs, they are not actively traded and
there are microstructure differences between the North American stock mar-
ket and that from the original country (Wongswan, 2003). Some studies,
such as Longin and Solnik (1995) and Ramchand and Susmel (1998), use
weekly or monthly data in order to avoid the non-synchronous trading
problem. However, the use of low frequency data leads to small samples,
which is inefficient for multivariate modeling. On the other hand, some
studies, such as Hamao, Masulis and Ng (1990) and Koutmos and Booth
(1995), use daily non-synchronous open-to-close and close-to-open returns.
Nevertheless, these studies cannot distinguish volatility spillovers from
contemporaneous correlations. Finally, Martens and Poon (2001) use 16:00-
to-16:00 synchronous stock market series in order to solve this problem. By
doing this, they find a bidirectional spillover between the USA and France
and between the USA and the UK, contrary to previous studies that only
found volatility spillovers from the USA to other countries.

This study innovates with respect the existing literature in two ways. First,
we study volatility transmission between the USA and Spain using a recent
sample period including the terrorist attack occurred in the USA. As far as
we know, September 11 has not yet been included in any paper analyzing
volatility transmission in international markets. Second, we use 16:00-to-
16:00 synchronous stock market series which reduce the non-synchronous
trading problem.

The rest of the chapter is organized as follow. Section 16.2 presents the
data and offers some preliminary analysis. Section 16.3 deals with the econo-
metric approach and the asymmetries analysis; section 16.4 presents the
empirical results, and, finally, section 16.5 summarizes the main results.

16.2 DATA

The data consist of daily stock market prices recorded at 16:00 Spanish time
for the USA(S&P500 index) and Spain (IBEX35 index). Trading at the Spanish
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Figure 16.1 Price indexes and returns

Stock Exchange starts at 9:00 and finishes at 17:35 Spanish time. The New
York Stock Exchange trades from 9:30 to 16:00 US eastern standard time
(15:30 to 22:00 Spanish time). Apart from a few days when these countries
change to the summer daylight saving time and again later to the winter
time, the overlapping trading hours correspond to Spanish time 15:30 to
17:35. We use stock market prices recorded at 16:00 Spanish time in order
to avoid the use of index prices near the open (USA) and close (Spain) of
trading.

The data is extracted from Visual Chart Group (www.visualchart.com)
for the period 18 January 2000 to 11 April 2005.3 When there are no common
trading days due to holidays in one of the markets, the index values recorded
on the previous day are used. Figure 16.1 displays the daily evolution of the
indexes and their returns in the studied period.

Table 16.1 presents some summary statistics on the daily returns, which
are defined as log differences of index values. The Jarque–Bera test rejects
normality of the returns for both countries. This is caused mainly by the
excess kurtosis, suggesting that any model for equity returns should accom-
modate this characteristic of equity returns. The ARCH test reveals that
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Table 16.1 Summary statistics

R1, t p-value R2, t p-value

Mean −0.00015 −0.00013

Variance 0.00014 0.00019

Skewness 0.11161 [0.0927] −0.06255 [0.3461]

Kurtosis 5.97705 [0.0000] 4.90041 [0.0000]

Bera–Jarque 506.536 [0.0000] 206.146 [0.0000]

Q(6) 6.34085 [0.3861] 2.93234 [0.8172]

Q2(6) 214.134 [0.0000] 230.674 [0.0000]

ARCH(6) 126.292 [0.0000] 125.215 [0.0000]

ADF(4) −1.86827 [0.3476] −1.72608 [0.4179]

PP(6) −1.89895 [0.3330] −1.74016 [0.4107]

Notes: p-values displayed as [.]. R1,t and R2,t represent the log-returns of the S&P500 and
the IBEX35 indices. The Bera–Jarque statistic tests for the normal distribution hypothesis
and has an asymptotic distribution X2(2). Q(6) and Q2(6) are Ljung-Box tests for sixth-
order serial correlation in the returns and squared returns. ARCH(6) is Engle’s test for sixth
order ARCH, distributed as X2(6). The ADF (number of lags) and PP (truncation lag) refer to
the Augmented Dickey–Fuller (1981) and Phillips and Perron (1988) unit-root tests. Critical
value at 5% significance level of Mackinnon (1991) for the ADF and PP tests (process with
intercept but without trend) is −2.86.

returns exhibit conditional heteroskedasticity, while the Ljung–Box test (of
sixth order) indicates significant autocorrelation in both markets in squared
returns but not in levels. Fat tails and non-normal distributions are common
features of financial data. Finally, both the augmented Dickey–Fuller (ADF)
and Philips and Perron (PP) tests indicate that both series have a single
unit root.

The sample has been divided into two similar-length sub-samples in
order to separately analyze the volatility patterns before (18 January 2000–10
September 2001) and after (11 October 2001–11 October 2003) the terrorist
attack. There is one month excluded between the pre- and post- sub-samples
because during the crisis period other events, such as the attack of the USA
on Afghanistan, affected stock market returns making them more unstable.
Moreover, US financial markets were closed until 17 September. Finally, it
took one month for the S&P500 index to recover to the original level it had
before the tragic event occurred.

Table 16.2 displays returns, correlations and volatilities, period by period,
for both stock indexes, the S&P500 and the IBEX35. Three facts can be high-
lighted from these panels. Firstly, in all periods, means equality test can not
be rejected. Secondly, the IBEX35 is more volatile than the S&P500 and the
Levene’s test rejects variance equality in all periods except before September
11. This last result is significant, since it may suggest a change in volatility
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Table 16.2 Returns, correlations and volatilities

Panel A: returns and correlations

Period µ1 µ2 Mean Test ρ1,2
Ho :µ1 = µ2

Total −0.00015 −0.00013 0.05543 0.6945

Pre-09/11 −0.00069 −0.00087 0.19266 0.6165

Post-09/11 −0.00004 −0.00011 0.07929 0.7332

Mean test 0.73899 0.76731 – –
Ho:µpre= µpost

Panel B: volatilities

Period σ1 σ2 Levene Test
Ho :σ2

1 = σ2
2

Total 0.01203 0.01399 20.38690∗

Pre-09/11 0.01314 0.014449 2.48221

Post-09/11 0.01381 0.01629 12.03559∗

Levene test 0.01171 3.62934 –
Ho:σpre = σpost

Notes: µ1(µ2) displays the daily mean return of the S&P500 (IBEX35). σ2
1 (σ2

2) displays the daily
standard deviation of the S&P500 (IBEX35). Mean test tests the null hypothesis of equality of daily
mean returns. The Levene’s statistic tests the null hypothesis of equality of daily variances. ρ1,2 displays
the correlation between both indexes computed from their daily returns in that period. An asterisk
(*) denotes a test statistic that exceeds 5% critical value.

Table 16.3 Johansen (1988) test for cointegration

Lags Null λtrace (r) Critical Value λmax(r) Critical Value

3 r=0 17.97919 19.96 14.76784 15.67

r=1 3.211352 9.24 3.211352 9.24

Notes: The lag length is determined using the AIC criterion. λtrace (r ) tests the null hypothesis
that there are at most r cointegration relationships against the alternative that the number
of cointegration vectors is greater than r. λmax (r ) tests the null hypothesis that there are r
cointegration relationships against the alternative that the number of cointegration vectors
is greater than r +1. Critical values are from Osterwald–Lenum (1992).

transmission patterns following the terrorist attack and, therefore, motivates
the analysis that will follow. Finally, correlation between both series has
increased over time. Table 16.3 shows that both series are not cointegrated,
being three the optimal lag length following the AIC criterion.
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16.3 THE ECONOMETRIC APPROACH

16.3.1 The model

The econometric model is estimated in a three-step procedure. First, a VAR
model is estimated to clean up any autocorrelation behavior. Then, the resid-
uals of the model are orthogonalized. These orthogonalized innovations
have the convenient property that they are uncorrelated both across time
and across markets. Finally, the orthogonalized innovations will be used as
an input to estimate a multivariate asymmetric GARCH model.

Equation (16.1) models the mean equation as a VAR(1) process:

[
R1,t
R2,t

]
=
[
µ1
µ2

]
+
[

d11 d12
d21 d22

] [
R1,t−1
R2,t−1

]
+
[

u1,t
u2,t

]
(16.1)

where R1,t and R2,t are USA and Spain returns, respectively, µi and dij for
i= 1, 2 are the parameters to be estimated and u1,t and u2,t are the non-
orthogonal innovations. The VAR lag has been chosen following the AIC
criterion.

The innovations u1,t and u2,t are non-orthogonal because, in general,
the covariance matrix

∑ =E(utu′
t) is not diagonal. In order to overcome

this problem, in a second step, the non-orthogonal innovations (u1,t and
u2,t) are orthogonalized (ε1,t and ε2,t). If we choose any matrix M so that
M−1 ∑M′−1 = I, then the new innovations:

εt = utM−1 (16.2)

satisfy E(εtε
′
t)= I. These orthogonalized innovations have the convenient

property that they are uncorrelated both across time and across equations.
Such a matrix M can be any solution of MM′ = ∑

. In this study we have used
a structural decomposition of the form suggested by Bernanke (1986) and
Sims (1986). In contrast to the Cholesky factorization, this methodology does
not embody strong assumptions about the underlying economic structure.

To model the conditional variance-covariance matrix we use an asym-
metric version of the BEKK model (see Baba, Engle, Kraft and Kroner, 1989;
Engle and Kroner, 1995; and Kroner and Ng, 1998). The compacted form of
this model is:

Ht = C′C + B′Ht−1B + A′εt−1ε
′
t−1A + G′ηt−1η

′
t−1G (16.3)

where C, A, B and G are matrices of parameters, being C upper-triangular
and positive definite and Ht is the conditional variance-covariance
matrix in t.
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In the bivariate case, the BEKK model is written as follows:[
h11t h12t

· h22t

]
=
[

c11 c12

0 c22

]′ [c11 c12

0 c22

]

+
[

b11 b12

b21 b22

]′ [h11,t−1 h12,t−1

· h22,t−1

][
b11 b12

b21 b22

]

+
[

a11 a12

a21 a22

]′ [
ε2

1,t−1 ε1,t−1ε2,t−1

· ε2
2,t−1

][
a11 a12

a21 a22

]

+
[

g11 g12

g21 g22

]′ [
η2

1,t−1 η1,t−1η2,t−1

· η2
2,t−1

][
g11 g12

g21 g22

]
(16.4)

where ci,j,bi,j,ai,j and gi,j for all i, j= 1, 2 are parameters, ε1,t and ε2,t are the
unexpected shock series coming from equation (16.2),η1,t =max[0,− ε1,t]
and η2,t =max[0,− ε2,t] are the Glosten, Jagannathan and Runkle (1993)
dummy series collecting a negative asymmetry from the shocks and, finally,
hij,t for all i, j= 1, 2 are the conditional second-moment series.

Equation (16.4) allows for both own-market and cross-market influences
in the conditional variance, therefore allowing the analysis of volatility
spillovers between both markets. Moreover, the BEKK model guarantees by
construction that the variance-covariance matrix will be positive definite.

In equation (16.4), parameters ci,j,bi,j,ai,j and gi,j for all i, j= 1, 2 can not be
interpreted individually. Instead, we have to interpret the non-linear func-
tions of the parameters which form the intercept terms and the coefficients
of the lagged variances, covariances and error terms. We follow Kearney
and Patton (2000) and calculate the expected value and the standard error
of those non-linear functions. The expected value of a non-linear function of
random variables is calculated as the function of the expected value of the
variables, if the estimated variables are unbiased. In order to calculate the
standard errors of the function, a first-order Taylor approximation is used.
This linearizes the function by using the variance-covariance matrix of the
parameters as well as the mean and standard error vectors.

The parameters of the bivariate BEKK system are estimated by maximiz-
ing the conditional log-likelihood function:

L (θ) = −TN
2

ln (2π)− 1
2

T∑
t=1

(
ln |Ht (θ)| + ε′tH

−1
t (θ) εt

)
(16.5)

where T is the number of observations, N is the number of variables in
the system and θ denotes the vector of all the parameters to be estimated.
Numerical maximization techniques were used to maximize this non-linear
log likelihood function based on the BFGS algorithm.
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In order to estimate the model in equations (16.1), (16.2) and (16.3), it is
assumed that the vector of innovations is conditionally normal and a quasi-
maximum likelihood method is applied. Bollerslev and Wooldridge (1992)
show that the standard errors calculated using this method are robust even
when the normality assumption is violated.

16.3.2 Asymmetric volatility impulse response functions (AVIRF)

The Volatility Impulse-Response Function (VIRF), proposed by Lin (1997),
is a useful methodology for obtaining information on the second-moment
interaction between related markets. The VIRF, and its asymmetric ver-
sion, measure the impact of an unexpected shock on the predicted volatility.
This is:

Rs,3 = ∂vechE [Ht+s|ψt]
∂dg(εtε

′
t)

(16.6)

where Rs,3 is a 3× 2 matrix, s= 1, 2, . . . is the lead indicator for the condi-
tioning expectation operator, Ht is the 2× 2 conditional covariance matrix,
∂dg(εtε

′
t)= (ε2

1,t, ε2
2,t)

′ and ψt is the set of conditioning information. The
vech operator transforms a symmetric NxN matrix into a vector by stack-
ing each column of the matrix underneath the other and eliminating all
supradiagonal elements.

In volatility symmetric structures, it is not necessary to distinguish
between positive and negative shocks, but with asymmetric structures the
VIRF can change with the sign of the shock. The asymmetric VIRF (AVIRF)
for the asymmetric BEKK model is taken from Meneu and Torró (2003) by
applying (16.6) to (16.3):

R+
s,3 =

{
a s = 1

(a + b + 1/2g)R+
s−1,3 s > 1 (16.7)

R−
s,3 =

{
a + g s = 1

(a + b + 1/2g)R−
s−1,3 s > 1 (16.8)

where R+
s,3 (R−

s,3) represents the VIRF for positive (negative) initial shocks
and a, b and g are 3× 3 parameter matrices. Moreover, a=D+

N (A′ ⊗A′)DN ,
b=D+

N (B′ ⊗B′)DN , g =D+
N(G′ ⊗G′)DN , where DN is a duplication matrix,

D+
N is its Moore-Penrose inverse and⊗denotes the Kronecker product

between matrices, that is:

DN =


1 0 0
0 1 0
0 1 0
0 0 1

 D+
N =


1 0 0 0
0 ½ 0 0
0 0 ½ 0
0 0 0 1

 (16.9)
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It is important to note that this impulse response function examines how
fast asset prices can incorporate new information. This fact lets us test for
the speed of adjustment, analyze the dependence of volatilities across the
returns of the S&P500 and the IBEX35 and distinguish between negative and
positive shocks.

16.4 EMPIRICAL RESULTS

16.4.1 Model estimation

Table 16.4 displays the estimated VAR-asymmetric BEKK model of equations
(16.1) to (16.3). Panels A, B and C show the estimation results for the total
period, the pre-September 11 period and the post-September 11 periods
respectively. The low p-values obtained for most of the parameters shows
that the model fits well the data. Table 16.5 shows the standardized residuals
analysis. It can be observed that the standardized residuals appear free from
serial correlation and heteroskedasticity.

As has been mentioned above, the parameters of Table 16.4 cannot
be interpreted individually. Instead, we have to focus on the non-linear
functions that form the intercept terms and the coefficients of the lagged
variance, covariance and error terms. Panels A, B and C of Table 16.6

Table 16.4 Estimation results for the VAR(1)-asymmetric BEKK
model

Panel A: total period

R1,t R2,t

µ −0.000152 −0.000118

(0.64) (0.75)

R1,t−1 0.000906 0.081108

(0.98) (0.06)

R2,t−1 −0.008487 −0.037128
(0.79) (0.32)

C=
−0.001149

(0.00)
0.000160

(0.29)

−0.000469
(0.00)

 B=
 0.949919

(0.00)
0.031741

(0.00)

−0.024743
(0.04)

0.943548
(0.00)



A=
−0.155282

(0.00)
0.222199

(0.00)

−0.110431
(0.00)

−0.059604
(0.09)

 G=
0.317651

(0.00)
0.018773

(0.64)

0.033911
(0.06)

0.266847
(0.00)


Continued
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Table 16.4 Continued

Panel B: pre-September 11

R1,t R2,t

µ −0.00705 −0.000866

(0.26) (0.21)

R1,t−1 0.023479 0.048834

(0.70) (0.47)

R2,t−1 −0.045542 −0.028893

(0.41) (0.63)

C=
0.002731

(0.00)
0.004694

(0.00)

−0.000000
(0.99)

 B=
−0892311

(0.00)
0.038724

(0.17)

0.099708
(0.00)

−0.860363
(0.00)



A=
0.066746

(0.43)
−0.207397

(0.00)

0.123347
(0.17)

0.026290
(0.73)

 G=
0.445703

(0.00)
−0.015082

(0.84)

0.206972
(0.00)

0.274034
(0.00)


Panel C: post-september 11

R1,t R2,t

µ −0.000091 −0.000191

(0.87) (0.78)

R1,t−1 −0.002057 0.163352

(0.97) (0.03)

R2,t−1 −0.006250 −0.095988

(0.90) (0.13)

C=
0.001351

(0.00)
−0.001115

(0.00)

−0.000000
(0.99)

 B=
0.954493

(0.00)
0.029803

(0.17)

0.004472
(0.18)

0.958434
(0.00)



A=
−0.137017

(0.00)
0.180273

(0.00)

−0.138980
(0.00)

0.044365
(0.12)

 G=
0.295883

(0.00)
−0.018435

(0.20)

0.029120
(0.19)

0.178761
(0.00)


Notes: This table shows the estimation of the model defined in equations (16.1), (16.2)
and (16.3). p-values appear in brackets. In the three cases the necessary conditions
for the stationarity of the process are satisfied.

display the expected value and the standard errors of these non-linear func-
tions for the total period, the pre-September 11 and the post-September 11
period.
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Table 16.5 Summary statistics for the standardized residuals of
the model

Panel A: summary statistics for the standardized residuals of the
total period

ε1,t/
√

h11,t ε2,t/
√

h22,t

Q(6) 3.94519 [0.68409] 4.40124 [0.62255]

Q2(6) 3.85331 [0.69652] 5.51455 [0.47970]

ARCH(6) 1.25783 [0.97393] 3.26566 [0.77484]

Panel B: summary statistics for the standardized residuals of the
pre-September 11 period

ε1,t/
√

h11,t ε2,t/
√

h22,t

Q(6) 1.94140 [0.92501] 3.48928 [0.74540]

Q2(6) 2.57484 [0.86000] 12.4568 [0.05252]

ARCH(6) 1.58439 [0.95369] 7.36116 [0.28873]

Panel C: summary statistics for the standardized residuals
of the post-September 11 period

ε1,t/
√

h11,t ε2,t/
√

h22,t

Q(6) 4.19449 [0.65037] 1.18848 [0.97745]

Q2(6) 5.52306 [0.47867] 2.06753 [0.91338]

ARCH(6) 1.01880 [0.98489] 3.65743 [0.72292]

Notes: Q(6) and Q2(6) are Ljung–Box tests for sixth order serial correlation in the stan-
dardized residuals and squared residuals. ARCH(6) is Engle’s test for sixth order ARCH,
distributed as χ2(6). The p-value of these tests are displayed as [.].

Panel A indicates that, during the total period, the S&P500 volatility is
directly affected by its own volatility (h1,1) but not by the IBEX35 volatility
(h2,2). Our findings suggest that the S&P500 volatility is affected by its own
shocks (ε2

1) and indirectly by the IBEX35 shocks (ε1ε2). Finally, the coefficient
for its own asymmetric term (η2

1) is significant, indicating that the negative
shocks on the S&P500 returns affect more its volatility than the positive
shocks. Thus, our findings suggest that S&P500 volatility is directly affected
by its own events.

The behavior of the IBEX35 volatility does not differ much from that of the
S&P500 during the total period. The IBEX35 volatility is affected by its own
volatility (h2,2), but not by the S&P500 volatility. Interestingly, the IBEX35
volatility is affected by the S&P500 shocks (ε2

1) but not by its own shocks
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Table 16.6 Results of the linearized multivariate BEKK model

Panel A: total period

S&P500 conditional variance equation

h11,t =1,32×10−6 +0,9023 h11,t−1 +0,0603 h12,t−1 +0,0006 h22,t−1 +0,02411ε2
1,t−1 −0,069ε1,t−1ε2,t−1 +0,0122ε2

2,t−1 +0,1009η2
1,t−1 +0,0215η1,t−1η2,t−1 +0,0012η2

2,t−1
2,35×10−6 0,0044 0,0188 0,0006 0,0060 0,0039 0,0087 0,0123 0,0565 0,0012
(0,5617) (203,15) (3,2127) (1,0312) (3,9983) (−17,711) (1,4079) (8,1658) (0,3813) (0,9457)

IBEX35 conditional variance equation

h22,t =2,46×10−7 +0,0010h11,t−1 +0,0599h12,t−1 +0,8903h22,t−1 +0,0494ε2
1,t−1 −0,026ε1,t−1ε2,t−1 +0,0035ε2

2,t−1 +0,0003η2
1,t−1 +0,0100η1,t−1η2,t−1 +0,0712η2

2,t−1
1,01×10−7 0,0006 0,0183 0,0134 0,0102 0,0142 0,0042 0,0015 0,0210 0,0129

(2,4325) (1,5978) (3,2716) (66,158) (4,8342) (−1,8657) (0,8499) (0,2324) (0,4769) (5,5200)

Panel B: pre-September 11 period

S&P500 conditional variance equation

h11,t =7,46×10−6 +0,7962 h11,t−1 +0,0691 h12,t−1 +0,0099 h22,t−1 +0,0044ε2
1,t−1 −0,0277ε1,t−1ε2,t−1 +0,0152ε2

2,t−1 +0,1986η2
1,t−1 +0,1845η1,t−1η2,t−1 +0,0428η2

2,t−1
2,80×10−6 0,0261 0,0509 0,0006 0,0115 0,0393 0,0225 0,0506 0,1133 0,0257

(2,6631) (30,547) (1,3559) (1,5813) (0,3882) (−0,7039) (0,6770) (3,9265) (1,6279) (1,6643)

IBEX35 conditional variance equation

h22,t =2,20×10−5 +0,0015 h11,t−1 +0,0666 h12,t−1 +0,7402 h22,t−1 +0,0430ε2
1,t−1 −0,0110ε1,t−1ε2,t−1 +0,0007ε2

2,t−1 +0,0002η2
1,t−1 +−0,0083η1,t−1η2,t−1 +0,0751η2

2,t−1
1,50×10−5 0,0022 0,0474 0,1459 0,0320 0,0329 0,0041 0,0023 0,0432 0,0451

(1,4693) (0,6793) (1,4054) (5,0739) (1,3429) (−0,3309) (0,1675) (0,0977) (−0,1912) (1,6656)

Continued
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Table 16.6 Continued

Panel C: post-September 11 period

S&P500 conditional variance equation

h11,t =1,82×10−6 + 0,9110 h11,t−1 + 0,0569 h12,t−1 + 0,0002 h22,t−1 + 0,0188ε2
1,t−1 − 0,0494ε1,t−1ε2,t−1 + 0,0193ε2

2,t−1 + 0,0875η2
1,t−1 + 0,0172η1,t−1η2,t−1+ 0,0008η2

2,t−1
6,05×10−7 0,0018 0,0043 0,00003 0,0036 0,0049 0,0055 0,0042 0,0544 0,0013

(3,0171) (517,13) (13,0777) (0,6622) (5,2752) (−10,069) (3,4925) (20,966) (0,3165) (0,6577)

IBEX35 conditional variance equation

h22,t =1,24×10−6 + 0,0009 h11,t−1 + 0,0571 h12,t−1 + 0,9186 h22,t−1 + 0,0325ε2
1,t−1 − 0,01596ε1,t−1ε2,t−1 + 0,0019ε2

2,t−1 + 0,0003η2
1,t−1 − 0,0066η1,t−1η2,t−1 + 0,0319η2

2,t−1
4,82×10−7 0,0001 0,0043 0,0013 0,0037 0,0099 0,0025 0,0005 0,0049 0,0032

(2,5799) (6,6162) (13,1568) (709,68) (8,6504) (1,6033) (0,7843) (0,6382) (−1,3466) (9,8872)

Notes: h11 and h22 denote the conditional variance for the S&P500 and IBEX35 return series, respectively. Below the estimated coefficients are the standard errors, with the corresponding t-values given in
parentheses.

The expected value is obtained taking expectations to the non-linear functions, therefore involving the estimated variance-covariance matrix of the parameters. In order to calculate the standard errors,
the function must be linearized using first-order Taylor series expansion. This is sometimes called the “delta method”. When a variable Y is a function of a variable X, i.e., Y = F (X), the delta method allows
us to obtain approximate formulation of the variance of Y if: (1) Y is differentiable with respect to X and (2) the variance of X is known. Therefore:

V(Y) ≈ (�Y)2 ≈
(
∂Y
∂X

)2

(�X)2 ≈
(
∂Y
∂X

)2

V(X)

When a variable Y is a function of variables X and Z in the form of Y = F (X, Z), we can obtain approximate formulation of the variance of Y if: (1) Y is differentiable with respect to X and Z and (2) the
variance of X and Z and the covariance between X and Z are known. This is:

V(Y) ≈
(
∂Y
∂X

)2

V(X) +
(
∂Y
∂Z

)2

V(Z) + 2
(
∂Y
∂X

)(
∂Y
∂Z

)
Cov(X, Z)

Once the variances are calculated it is straightforward to calculate the standard errors.
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(ε2
2). Moreover, the coefficient for its own asymmetric term (η2

2) is significant,
indicating that the negative shocks on the IBEX35 returns affect more its
volatility than the positive shocks.

Panel B indicates that, during the pre-September 11 period, the S&P500
volatility is directly affected by its own volatility (h1,1) but not by the IBEX35
volatility. The results show that the S&P500 volatility is neither affected by
its own shocks (ε2

1) nor by the shocks on the IBEX35 (ε2
2). Thus, our findings

suggest that S&P500 volatility is only affected by its own volatility.
The equation for the IBEX35 in Panel B, shows that the index volatility is

only affected by its own volatility (h2,2). Therefore, higher levels of condi-
tional volatility in the past are associated with higher conditional volatility
in the current period. Our results indicate that the IBEX35 volatility is not
affected by shocks affecting neither the IBEX35 returns (ε2

2) nor the S&P500
returns (ε2

1).
Panel C displays the result for the post-September 11 period. The S&P500

volatility is directly affected by its own volatility (h1,1) but not by the IBEX35
volatility (h2,2). Our findings suggest that the S&P500 volatility is affected by
its own shocks (ε2

1) and the IBEX35 shocks (ε2
2). Finally, the coefficient for its

own asymmetric term (η2
1) is significant, indicating that the negative shocks

on the S&P500 returns affect more its volatility than the positive shocks.
The IBEX35 volatility is affected by its own volatility (h2,2) and by the

S&P500 volatility (h1,1). Again, the IBEX35 volatility is not affected by its
own shocks (ε2

2) but it is affected by the S&P500 shocks (ε2
1). Finally, the

coefficient for its own asymmetric term (η2
2) is significant, indicating that

the negative shocks on the IBEX35 returns affect more its volatility than the
positive shocks.

If we compare the results for the pre-September 11 and post-September
11 periods, it can be observed that, before September 11, both variances
(S&P500 and IBEX35) were only affected by their own past volatilities. How-
ever, after September 11, the S&P500 volatility is also affected by its own
shocks and the IBEX35 shocks. On the other hand, the IBEX35 volatility is
also affected by the S&P500 shocks and the S&P500 variance. These results
show that, after September 11, there has been an increase in the volatility
transmission between the USA and Spain.

16.4.2 Asymmetric volatility impulse response functions (AVIRF)

Figures 16.2 to 16.7 present the AVIRFs computed following Lin (1997) and
Meneu and Torró (2003). When unexpected shocks are positive (Figures 16.2,
16.4 and 16.6), graphical analysis shows that in the post-September 11 and
total period, there exists a significant volatility spillover from the S&P500 to
the IBEX35 (about 5% of the shock, Figures 16.2-C and 16.6-C). Thus, there
is no significant volatility spillover from the S&P500 to the IBEX35 before
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Figure 16.2 AVIRF to positive unexpected shocks from the VAR-asymmetric
BEKK. Total period (dashed lines display the 90% confidence interval)

September 11, as suggested by the wide confidence intervals, but it becomes
significant after the terrorist attack. However, the reverse is only detected in
the post-September 11, although the effect is almost imperceptible (Figures
16.2-B, 16.4-B and 16.6-B).

If unexpected shocks are negative, Figures 16.3, 16.5 and 16.7 show that
there is only significant volatility spillover from the S&P500 to the IBEX35. As
in the case of a positive shock, it becomes significant only after September 11.
Negative shocks in the IBEX35 have an important effect on its own volatility
that takes about 40 days to be absorbed when the whole sample is analyzed
(Figure 16.3-D). This effect also becomes significant only after September 11
(Figures 16.3-D and 16.7-D) but not before (Figure 16.5-D). Negative shocks
in the S&P500 also have an important effect on its own volatility that takes
more than 100 days to be absorbed in all analyzed periods (Figures 16.3-A,
16.5-A and 16.7-A).

By comparing positive and negative shocks coming from the IBEX35,
we can observe that they have a different impact on its own volatility.
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Figure 16.3 AVIRF to negative unexpected shocks from the
VAR-asymmetric BEKK. Total period (dashed lines display

the 90% confidence interval)

There is no significant impact coming from positive shocks (Figures 16.2-D,
16.4-D and 16.6-D) and, after September 11, negative shocks have a signifi-
cant effect that takes a very long time to die out due to its persistence. This
asymmetric effect can explain why, when estimation results where analyzed
in the previous section, we concluded that the IBEX35 was not affected by
its own unexpected shocks. This occurs when unexpected shocks are taken
as a whole. In the case of the S&P500, there also exists an asymmetric effect,
which is observed in all analyzed periods.

The AVIRF figures depend on the estimated coefficients coming from
matrix G. In all periods, the figures confirm the existence of an asymmetric
effect of positive and negative shocks on own conditional variances (related
to coefficients g11 and g22). A negative shock has a stronger impact than a
positive one. However, this asymmetric effect does not exist in the case of
shocks coming from another market (coefficients g12 and g21).
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Figure 16.4 AVIRF to positive unexpected shocks from the
VAR-asymmetric BEKK. Pre-September 11 period (dashed lines display

the 90% confidence interval)

In general, the most appealing results are: (1) conditional variances are
more sensitive to negative than to positive shocks; (2) unexpected shocks in
S&P500 have more impact on the whole covariance matrix than unexpected
shocks in IBEX35; (3) IBEX35 variance is more sensitive to any shock than
S&P500 variance; (4) before September 11, there are no significant volatility
spillovers in any direction and, after the terrorist attack, there is unidi-
rectional variance causality from the S&P500 to the IBEX35; (4) generally,
significant shocks take a long time to die out; and (5) the IBEX35 volatil-
ity has an overshooting reaction to a negative shock in the S&P500 when
the whole sample is analyzed. This could be due to the high persistence of
the IBEX35 or to an overreaction in the Spanish market because, at 16:00,
Spanish investors will only have one and a half hours left to react before the
market closes at 17:30.

Therefore, these results add evidence in favor of the hypothesis of uni-
directional variance causality from the S&P500 to the IBEX35. The AVIRF
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Figure 16.5 AVIRF to negative unexpected shocks from the
VAR-asymmetric BEKK. Pre-September 11 period (dashed lines display

the 90% confidence interval)

analysis shows that, after September 11, any volatility shock coming from
the S&P500 is directly affecting the IBEX35 but the reverse is not true in
any period (it exists in the case of positive shocks in the post-September 11
period, but the effect is hardly noticeable). Moreover, a negative shock in
the S&P500 is more persistent than a positive shock. Therefore, it can be
said that the main source of information comes from negative unexpected
returns arising from the S&P500 and it spreads into the Spanish market.

16.5 CONCLUSION

The main objective of this study has been to analyze whether volatility trans-
mission patterns between the US and Spanish stock markets have changed
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Figure 16.6 AVIRF to positive unexpected shocks from the
VAR-asymmetric BEKK. Post-September 11 period (dashed lines display

the 90% confidence interval)

after 11 September 2001. In order to do this, we have used a multivari-
ate GARCH model and taken into account both the asymmetric volatility
phenomenon and the non-synchronous trading problem. In particular, an
asymmetric VAR-BEKK model has been estimated both before and after the
terrorist attack, with daily stock market prices recorded at 16:00 Spanish
time for the USA (S&P500 index) and Spain (IBEX35 index).

We also present a complementary analysis, the Asymmetric Volatility
Impulse Response Functions (AVIRF), which distinguishes effects coming
from a positive shock from those coming from a negative shock.

The results confirm that there exist own asymmetric volatility effects
in both markets and that volatility transmission from the USA to Spain
increased after September 11. Before the event, volatilities in the S&P500
and IBEX35 were only affected by their own past volatilities. However, after
September 11, the IBEX35 volatility becomes affected by volatility and shocks
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Figure 16.7 AVIRF to negative unexpected shocks from the
VAR-asymmetric BEKK. Post-September 11 period (dashed lines display

the 90% confidence interval)

in the S&P500, and the S&P500 volatility becomes affected by its own shocks.
Therefore, these results show that, after the terrorist attack, there has been
an increase in the volatility transmission between the USA and Spain. These
results agree with Hon, Strauss and Yong (2004), suggesting that interna-
tional stock markets respond more closely to US stock market shocks after
the crisis than before.

NOTES

1. See Koutmous and Booth (1995), Karolyi (1995), Karolyi and Stulz (1996), Darbar
and Deb (1997), Ramchand and Susmel (1998), Brooks and Henry (2000), Longin
and Solnik (2001), Martens and Poon (2001) and Bera and Kim (2002).

2. A special issue of the Economic Policy Review of the Federal Reserve Bank of New
York (2002, vol. 8, no. 2) analyzes general economic consequences of September 11.
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A special issue of the Journal of Risk and Uncertainty (2003, vol. 26, nos 2/3) deals with
the risks of terrorism with a special focus on September 11. A special issue of the
European Journal of Political Economy (2004, vol. 20, issue 2) deals with the economic
consequences of terror.

3. Before 17 January 2000 continuous trading was from 9:30 to 17:00 Spanish Time;
therefore, the overlapping trading period was just one hour and a half. Additionally,
the beginning of the daylight saving time in October for Spain and the USAcoincides.
However, the end of this daylight saving time is the first Sunday of April in the USA
and the last Sunday of March in Spain. Hence, during the last week of March, the
markets overlap only for one hour.
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C H A P T E R 17

Large and Small Cap
Stocks in Europe:

Covariance Asymmetry,
Volatility Spillovers and

Beta Estimates
Helena Chuliá and Hipòlit Torró∗

17.1 INTRODUCTION

Several studies show that small cap returns tend to behave differently from
large cap returns (Banz, 1981; Chan and Chen, 1991). This fact suggests that
diversifying into small cap stocks might improve portfolio performance. In
fact, the main empirical evidence on small cap returns shows that small caps
distinguish themselves from large caps due to economic and market related
characteristics (for a literature review on this topic see Petrella, 2005).

Moreover, a large number of papers have shown that returns of large cap-
italization stocks can be used to predict the returns of smaller stocks, but not
vice versa (Lo and Mackinlay, 1990). This asymmetry in the predictability
of mean returns does not necessarily imply that all the information is

∗Financial support from CICYT project BEC2003-09607-C04-04, and project GV04A/153 from
Generalitat Valenciana, the Instituto Valenciano de Investigaciones Económicas (IVIE) and an
FPU grant from the Ministerio de Educación y Ciencia are gratefully acknowledged.
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transmitted from large to small capitalization companies but suggests that
there are differences in the dynamics of stocks prices of firms with different
market value (Conrad, Gultekin and Kaul, 1991). In addition, Ross (1989)
showed that variance changes are directly related to the rate of information
flow. Therefore, one way of studying how information spreads between
large and small firms take place is studying their volatility spillovers.

Most studies that analyse the effect of news on second moments focus
on the US, Australian and Japanese markets. They conclude that volatility
surprises for large firms can be used to predict volatility of small firms but not
vice versa. Conrad, Gultekin and Kaul (1991), find that shocks to large firm
returns are important to the future dynamics of their own volatility as well
as the volatility of small firm returns in the US market. Conversely, shocks
to small firms have no impact on the behavior of the volatility of large firms.
Hendry and Sharma (1999) obtain similar results for the Australian market,
and Kroner and Ng (1998) confirm the conclusion of Conrad, Gultekin and
Kaul (1991) in a more general context.

When the dynamic relationships between volatility of large and small
firms returns are studied, it is necessary to consider asymmetric volatility
and covariance. The first one refers to the empirical evidence according to
which a negative return shock (unexpected drop in the value of the stock)
generates an increase in volatility higher than a positive return shock (unex-
pected increase in the value of the stock) of the same size (for a literature
review on asymmetric volatility see Bekaert and Wu, 2000). Asymmetric
covariance refers to the empirical evidence according to which covariance
between market and stock returns responds more after negative than after
positive market shocks.

In the financial literature, two explanations of the asymmetries in equity
markets have been put forward. The first one is based on the leverage
effect hypothesis. According to this explanation, a drop in the value of the
stock (negative return) increases financial leverage, which makes the stock
riskier and increases its volatility (Black, 1976; Christie, 1982). The second
explanation is known as the volatility feedback hypothesis. This explana-
tion maintains that the asymmetry in volatility responds to the fact that
returns could simply reflect the existence of time-varying risk premiums.
If volatility is priced an anticipated increase in volatility raises the required
return on equity, leading to an immediate stock price decline (Campbell and
Hentschel, 1992; Pindyck, 1984; French, Schewert and Stambaugh, 1987).
This hypothesis relies on two basic tenets. Firstly, volatility is persistent and
secondly, there exists a positive inter-temporal relation between expected
returns and conditional variances.

Consequently, the causality of the asymmetry in equity markets is dif-
ferent. According to the leverage effect, the return shocks lead to changes
in conditional volatility; whereas according to the volatility feedback
hypothesis return shocks are caused by changes in conditional volatility.
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Which effect, leverage effect or volatility feedback effect, is the main
determinant of asymmetric volatility, remains an open question. Those stud-
ies that focus their analysis on the leverage hypothesis (Christie, 1982 and
Schwert, 1989) show that this effect is too small to explain the full asym-
metry. On the other hand, authors like Braun et al. (1995), Bekaert and Wu
(2000) and Wu (2001) find clear evidence in favor of the volatility feedback
effect as the main cause of the asymmetric behavior.

Our main contributions to the research in this field are threefold. Firstly,
we analyse volatility spillovers between large and small firms in the French,
German and British stockmarkets since the existing empirical studies have
focused in the American, Japanese and Australian equity markets. In order
to do so, a conditional CAPM with an asymmetric multivariate GARCH-in-
mean covariance structure is used. Results show that there exist bidirectional
volatility spillovers between both types of companies. Secondly, we explore
the volatility feedback hypothesis as a possible explanation of asymmetric
volatility in stock returns, finding significant evidence for this hypothesis.
Finally, the study uncovers that conditional beta coefficient estimates within
the used model are insensitive to sign and size asymmetries in the unex-
pected shock returns but unconditional beta estimates have a significant
specification error.

The remainder of the chapter is organized as follows. Section 17.2 for-
mulates the empirical model, while section 17.3 presents the data. Section
17.4 discusses the empirical results; section 17.5 shows an analysis of asym-
metries; section 17.6 analyses volatility spillovers between large and small
firms; and section 17.7 summarizes the results.

17.2 THE ECONOMETRIC FRAMEWORK

Following Bekaert and Wu (2000), in the present study a conditional ver-
sion of the CAPM is used to examine the interaction between means and
variances. In the assumed version of the conditional CAPM, excess returns
of the large cap index is proportional to its conditional variance and excess
returns of the small cap index is proportional to the conditional covariance
between the small cap and the large cap index returns, being the proportion
(constant) the same in both cases: the price of risk. Therefore, the conditional
mean equations are defined as:

r1,t − r f
t−1,t = Yσ2

1,t + ε1,t

r2,t − r f
t−1,t = Yσ12,t + ε2,t

(17.1)

where r1,t and r2,t refer to the large and small stock indexes respectively, Y

is the price of risk and r f
t−1,t is the risk-free interest rate known at time t− 1.
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Since the CAPM does not restrict the time variation in second moments,
we employ a multivariate GARCH model. The three most widely used mod-
els are: (1) the VECH model proposed by Bollerslev et al. (1988), (2) the
constant correlation model, CCORR, proposed by Bollerslev (1990), and (3)
the BEKK model of Engle and Kroner (1995). Each model imposes different
restrictions on the conditional covariance and gives very different variance
and covariance estimates. More recently, Kroner and Ng (1998) have derived
another multivariate GARCH model, the Asymmetric Dynamic Covariance
Matrix model, ADC. This model encompasses the above models in the
sense that, under certain restrictions, any particular model can be obtained.
These authors introduce asymmetries following the Glosten, Jagannathan
and Runkel (1993) approach.

The bivariate ADC can be written as:[
σ2

1,t σ12,t

· σ2
2,t

]
=
[√

θ11,t 0

0
√
θ22,t

][
1 ρ12

ρ12 1

][√
θ11,t 0

0
√
θ22,t

]

+
[

0 φ12

φ12 0

]
◦
[
θ11,t θ12,t

· θ22,t

]

=
[
θ11,t φ12θ12,t + ρ12

√
θ11,t

√
θ22,t

· θ22,t

]
(17.2)

where[
θ11,t θ12,t

· θ22,t

]
=
[
ω11 ω12

· ω22

]
+
[

b11 b12

b21 b22

]′ [
σ2

1,t−1 σ12,t−1

· σ2
2,t−1

][
b11 b12

b21 b22

]

+
[

a11 a12

a21 a22

]′ [
ε2

1,t−1 ε1,t−1ε2,t−1

· ε2
2,t−1

][
a11 a12

a21 a22

]

+
[

g11 g12

g21 g22

]′ [
η2

1,t−1 η1,t−1η2,t−1

· η2
2,t−1

][
g11 g12
g21 g22

]
where ◦ is the Hadamard product operator (element-by-element matrix
multiplication), ωij, bij, aij and gij for i, j= 1, 2 are parameters, ε1,t and ε2,t
are the unexpected shocks series, η1,t =max[0, −ε1,t] and η2,t =max[0,
−ε2,t] are the Glosten, Jagannathan and Runkel (1993) dummy series col-
lecting a negative asymmetry from the shocks and, finally, σij,t for all
i, j= 1, 2 are the conditional second moment series. The specification test
proposed by Kroner and Ng (1998) is as follow: (1) if ρ12 = b12 = b21 =
a12 = a21 = g12 = g21 = 0, a restricted asymmetric VECH is obtained, (2) if
φ12 = b12 = b21 = a12 = a21 = g12 = g21 = 0, the asymmetric CCORR model is
derived; (3) if φ12 = 1 and ρ12 = 0 the asymmetric BEKK model is obtained.
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There are two main advantages in simultaneously modeling the condi-
tional mean and variance. First, it is possible to quantify volatility cross
effects between both types of firms. Second, it is possible to quantify the
influence of the second moments cross effects in the expected returns.

17.3 DATA AND PRELIMINARY ANALYSIS

The data used for the French market come from Euronext, provided by the
French Stock Exchange. It consists of daily closing values of the CAC40
index and the MIDCAC index. The data period runs from 2 January 1991
to 25 August 2004. The CAC40 index is calculated from a sample of 40
French stocks listed on the Monthly Settlement market. Component stocks
are selected on the basis of their market capitalization and liquidity. The
100 MIDCAC components stocks are selected among the French companies
listed on the “Premier Marche” or “Second Marche”, after eliminating: (1)
the financial and property companies, (2) the 20% highest ant 20% lowest
capitalized companies and (3) issues with a trading-day ratio below 70% (for
example, traded on less than 175 of the total 250 trading days in the year).

In the case of the German market, the data has been provided by the
German Stock Exchange. It consists of daily closing values of the DAX index
and the SDAX index. The data period runs from 2 January 1991 to 25 August
2004. The DAX index is composed by the 30 largest and more actively traded
German companies that are listed at the Frankfurt Stock Exchange. On the
other hand, the SDAX comprises 50 continuously traded shares of small-
sized companies.

The data used for the British market has been provided by the FTSE com-
pany. It consists of daily closing values of the FTSE 100 index and SMALL
CAP index. The data period runs from 3 March 1993 to 25 August 2004.
The FTSE index is composed of the 100 most capitalized British compa-
nies that are listed at the London Stock Exchange. On the other hand, the
FTSE SMALL CAP index is composed of the next 350 issues that are ranked
immediately below the FTSE 100 and FTSE 250. The minimum size of the
component stocks of this index is reviewed annually.

Return series are obtained by taking first differences in the log prices of
the three markets. The common test of unit roots (Dickey and Fuller, 1981;
Philips and Perron, 1988) offered no doubt about this point. The accumu-
lated weekly Treasury bill repo rate of each country is used as the risk free
interest rate.

Despite the fact that all the indices are composed by the most liquid
stocks traded in the Stock Exchange of each country, weekly frequency is
used to overcome possible problems associated with thin trading. In order
to transform daily data to weekly frequency, Wednesday closing values, or
the previous day if the Wednesday is not a trading day, are used.
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The use of market indices, instead of portfolios, provides two advantages
to the practitioners of the market. Firstly, they can take signals directly from
market indices quotations, therefore, it is not necessary to build portfolios
and, secondly, the cost of implementing any potential trading rules can be
reduced due to the existence of derivative contracts on the large stock index
(Pardo and Torró, 2005).

Figure 17.1 displays the weekly evolution of the indices in the studied
period and preliminary data analysis is presented in Tables 17.1 and 17.2.

Table 17.1 displays a summary of the principal statistics for the returns.
It can be stated that all indices offer very similar statistics. All series present
significant skewness except the CAC40 and the FTSE. Moreover, all present
significant kurtosis and the Jarque-Bera statistic indicates that the hypoth-
esis of normality is rejected for all indices. On the other hand, all series
present significant autocorrelation and heteroskedasticity. Finally, although
equality in means between large and small indices of each country cannot
be rejected, the variances equality test is rejected.

Panel (A) in Table 17.2 displays returns, volatilities and correlation coeffi-
cients, year by year through the sample period for the French indices. Three
facts can be highlighted from this table. First, there are five years (1991,
1992, 1995, 2000 and 2003) in which both indices offer a different sign return
but the means equality hypothesis cannot be rejected. Secondly, for every
year, except 2000, the CAC40 volatility is larger than the MIDCAC volatil-
ity. Another appealing fact is that except in two years (1998 and 2000), the
hypothesis of variance equality is rejected. Finally, the correlation between
both indices has dropped over time, becoming very small.

Panel (B) in Table 17.2 displays returns, volatilities and correlation coeffi-
cients, year by year through the sample period for the German indices. Three
facts can be highlighted from this table. First, there are six years (1991, 1992,
1995, 1998, 2000 and 2004) in which both indices offer a different sign return
but the means equality hypothesis cannot be rejected. Secondly, for every
year, except 1996, the DAX is more volatile than the SDAX. Thirdly, except
in three years (1993, 1996 and 2004), the hypothesis of variance equality is
rejected. Finally, the correlation between both indices has decreased over
time, becoming very small.

Panel (C) in Table 17.2 displays returns, volatilities and correlation coef-
ficients, year by year through the sample period for the British indices. Four
facts can be highlighted from this table. First, there are three years (1998, 2000
and 2004) in which both indices offer a different sign but the means equal-
ity hypothesis cannot be rejected. Secondly, for every year, except 2000 and
2001, the FTSE volatility is larger than the SMALL CAP volatility. Thirdly, at
the beginning of the sample the hypothesis of variance equality is rejected
but, at the end of the sample the hypothesis of variance equality cannot be
rejected. Finally, the correlation between both indices has dropped over time.

Three facts must be highlighted from the previous analysis. Firstly, from
Tables 17.1 and 17.2 it can be accepted that there exist significant differences
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Figure 17.1 Evolution of the stock indices over the studied period
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Table 17.1 Summary statistics for the data

Panel A: summary statistics for French indices series

Large cap index return Small cap index return

Mean 0.0018 0.0010

Mean test 0.2613 [0.609]

Variance 0.0009 0.0006

Levene test 55.4551 [0.000]

Skewness −0.11225 [0.222] −0.96712 [0.000]

Kurtosis 2.75102 [0.000] 6.42473 [0.000]

Normality 226.016 [0.000] 1335.55 [0.000]

Q(20) 46.2156 [0.000] 91.9528 [0.000]

Q2(20) 287.913 [0.000] 140.8845 [0.000]

A(20) 281.982 [0.000] 171.7787 [0.000]

Panel B: summary statistics for German indices series

Large cap index return Small cap index return

Mean 0.0009 −0.0003

Mean test 0.0407 [0.967]

Variance 0.0012 0.0003

Levene test 34.8751 [0.000]

Skewness −0.6176 [0.000] −0.6286 [0.000]

Kurtosis 7.2543 [0.000] 2.1093 [0.000]

Normality 1608.72 [0.000] 179.138 [0.000]

Q(20) 43.3366 [0.002] 103.311 [0.000]

Q2(20) 135.494 [0.000] 60.2548 [0.000]

A(20) 297.652 [0.000] 85.3739 [0.000]

Panel C: summary statistics for British indices series

Large cap index return Small cap index return

Mean 0.0007 0.0008

Mean test 0.0787 [0.937]

Variance 0.0005 0.0003

Levene test 40.3885 [0.000]

Skewness 0.14599 [0.147] −0.93398 [0.000]

Kurtosis 3.61978 [0.000] 4.31934 [0.000]

Normality 325.854 [0.000] 547.1904 [0.000]

Continued
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Table 17.1 Continued

Q(20) 42.6930 [0.002] 165.3912 [0.003]
Q2(20) 196.426 [0.000] 162.9281 [0.000]

A(20) 252.419 [0.000] 216.6783 [0.000]

Notes: Data frequency is weekly. Mean test tests the null hypothesis of means equal-
ity and its p-value are displayed as [.]. Levene statistic tests the null hypothesis of
variances equality and its p-value is displayed as [.]. Skewness refers to series skew-
ness coefficient. The asymptotic distribution of the skewness coefficient under the null
hypothesis is N(0,6/T ), where T is the sample size. The null hypothesis tested is whether
that coefficient is equal to zero. Kurtosis refers to the series kurtosis coefficient. The null
hypothesis tested is whether that coefficient is equal to zero. The asymptotic distribu-
tion of the kurtosis coefficient under the null hypothesis is N(0,24/T ), where T is the
sample size. Normality refers to the Bera-Jarque statistic test. This statistic tests the nor-
mality or non-normality of the series. The Bera-Jarque statistic is calculated as follows,
T [S2/6+ (K −3)2/24], where S is the skewness coefficient and K is the kurtosis coef-
ficient. Under the null hypothesis of normal distribution, the Bera-Jarque statistic has
an asymptotic χ2(2) distribution. Q(20) and Q2(20) are Ljung-Box tests for twentieth-
order serial correlation in the returns and squared returns. A(20) is Engle (1982) test
for twentieth-order ARCH. The p-values of these tests are displayed as[.]

in variance between the large cap and small cap indices. Secondly, there are
not significant differences in means, although for many years, like 2000, the
return was quite different indicating that both markets could be offering dif-
ferent sensitivities to risk factors. Large firms depend on global risk factors,
however, risk factors that affect small firms are located basically in their own
economy. Thirdly, in all countries the correlation between both indices has
dropped. We can interpret this last fact as a segmentation of both markets.
Therefore, diversification strategies would be gaining an important role in
portfolio management. These results point out that it is important to study
more accurately the covariance dynamic between both financial time series.

17.4 RESULTS

This section presents the model estimates. With the ADC model it is possible
to quantify volatility spillovers and contrast the volatility feedback effect.
In order to estimate the model in equations (17.1) and (17.2), a conditional
normal distribution for the innovation vector is assumed and the quasi-
maximum likelihood method is applied. Bollerslev and Wooldridge (1992)
show that the standard errors calculated by this method are robust even
when the normality assumption is violated. Panel (A) of Table 17.3 displays
the quasi-maximum likelihood estimates of the CAPM-ADC model for the
three countries. Panel (B) displays the Wald test for the restrictions imposed
on the ADC model to obtain the encompassed models.

The results for the three countries are quite similar, and three facts can
be highlighted from the estimation. Firstly, the price of risk (Y) is positive
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Table 17.2 Returns, volatilities and correlations

Panel A: returns, volatilities and correlations of French indices series

Year Annualized Returns (%) Annualized Volatilities (%) Correlation(3)

CAC MID Mean CAC MID Levene(2)

40 CAC Test(1) 40 CAC Test

1991 15.87 −0.54 0.72 17.49 14.47 4.18∗ 0.78

1992 4.42 −5.78 0.40 19.31 11.78 8.46∗ −0.06

1993 27.45 32.38 0.52 17.04 10.47 16.24∗ −0.04

1994 −12.55 −3.20 0.38 19.91 11.84 17.70∗ −0.06

1995 0.61 −17.12 1.07 14.12 8.66 10.97∗ 0.55

1996 22.96 33.50 0.58 14.04 11.30 4.47∗ 0.53

1997 29.06 18.64 0.44 19.00 14.25 4.20∗ 0.70

1998 29.31 5.58 0.74 25.08 19.95 3.47 0.69

1999 42.45 30.26 0.18 17.91 11.03 10.77∗ −0.06

2000 −1.71 21.88 0.30 22.13 31.79 0.75 −0.16

2001 −26.71 −22.41 0.18 25.18 23.03 4.97∗ 0.29

2002 −36.84 −26.72 0.32 37.48 29.69 8.57∗ 0.43

2003 8.43 −13.41 0.78 27.04 12.14 12.13∗ 0.31

2004(4) 6.56 32.32 1.36 13.24 7.69 6.45∗ 0.06

Panel B: returns, volatilities and correlations of German indices series

Year Annualized Returns (%) Annualized Volatilities (%) Correlation(3)

DAX SDAX Mean DAX SDAX Levene(2)

Test(1) Test

1991 8.73 −1.76 1.08 16.42 11.00 6.50∗ 0.72

1992 0.34 −10.25 0.56 16.19 10.18 5.03∗ 0.7

1993 33.78 33.84 6.00 13.48 10.68 3.18 −0.06

1994 −4.89 −5.82 0.04 18.51 8.60 20.96∗ 0.62

1995 7.61 −11.35 1.18 14.28 7.29 13.92∗ 0.53

1996 22.34 8.45 0.41 3.25 8.28 3.05 0.08

1997 39.35 18.28 0.89 20.10 13.07 4.75∗ 0.71

1998 16.30 −1.85 0.62 24.95 15.45 12.00∗ 0.71

1999 31.57 6.93 0.86 25.95 12.08 19.36∗ 0.63

2000 −8.06 4.98 0.47 24.26 12.97 16.40∗ 0.67

2001 −21.24 −25.48 0.13 30.46 14.19 22.65∗ 0.63

2002 −0.53 −35.45 0.44 36.94 16.05 20.48∗ 0.77

2003 15.97 40.96 0.74 33.82 13.06 17.70∗ 0.18

2004(4) −13.48 9.09 0.82 17.83 13.95 1.82 0.08

Continued



HELENA CHUL IÁ AND HIPÒL IT TORRÓ 337

Table 17.2 Continued

Panel C: returns, volatilities and correlations of British indices series

Year Annualized Returns (%) Annualized Volatilities (%) Correlation(3)

FTSE SMALLCAP Mean FTSE SMALLCAP Levene(2)

Test(1) Test

1993 20.65 22.06 0.09 11.98 6.81 10.08∗ 0.63

1994 −11.18 −6.19 0.27 15.29 9.35 15.69∗ 0.55

1995 17.19 10.27 0.58 10.51 5.26 20.87∗ 0.60

1996 7.45 7.61 0.25 9.01 6.71 4.79∗ −0.07

1997 21.84 6.47 0.93 14.88 7.33 23.26∗ 0.02

1998 13.59 −11.07 0.94 20.23 16.38 4.49∗ 0.11

1999 11.04 39.56 1.35 18.44 10.25 18.92∗ −0.03

2000 −7.50 2.62 0.25 13.86 14.24 0.002 0.02

2001 −16.72 −21.00 0.15 18.67 20.95 0.07 −0.13

2002 −33.20 −32.59 0.02 28.01 15.79 7.34∗ 0.19

2003 17.47 34.67 0.74 18.90 13.59 0.08 0.53

2004(4) 0.65 −11.23 0.64 10.76 8.24 0.99 0.56

Notes: Data frequency is weekly.
(1) This column displays the means equality test. Significant coefficients at 95% of confidence level
are highlighted with one asterisk (∗). (2) This column displays the variances equality test known as
Levene test. Significant coefficients at 95% of confidence level are highlighted with one asterisk (∗).
(3) This column displays the annual correlation between both indices. (4) This row displays the results
for the period 7 January to 25 August 2004.

and significant for all countries. Therefore, in these markets the risk is val-
ued. This is a surprising result because most studies find a positive but
non-significant relationship between expected return and risk (French,
Schwert and Stambaugh, 1997; Campbell and Hentschel, 1992) or a neg-
ative and significant relationship (Campbell, 1987; Officer, 1973; Glosten,
Jagannatham and Runkle, 1993). Moreover, this result is consistent with the
volatility feedback hypothesis. If volatility is priced, an anticipated increase
in volatility raises the required return on equity, and therefore there will be
observed time-varying risk premiums. Secondly, coefficients g11 and g22 are
significant, showing that in both indices (large cap and small cap), nega-
tive asymmetric firm volatility is important for their own dynamic, with the
exception of the SDAX index. For this index, the estimated coefficient g22 is
not significant. Thirdly, coefficients g12 and g21 are both significant, showing
that cross-relationships between negative shocks in both markets are also
significant.

The encompassing model restrictions on the ADC were rejected. This
result means that the ADC cannot be reduced to any nested model. The esti-
mated values of φ12 (close but significantly different to 1) and ρ12 (close but
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Table 17.3 Conditional CAPM ADC-in-mean model estimates and restric-
tions tests

Estimates of the conditional CAPM ADC-in-mean model in the French market
Panel (A): model estimates

Y =2.27
(0.00)

C=
0.0039

(0.00)
0.0025

(0.00)

0.0018
(0.00)

 B=
 0.9238

(0.00)
0.0344

(0.00)

−0.1168
(0.00)

0.7576
(0.00)



A=
−0.2231

(0.00)
−0.0577

(0.00)

0.3573
(0.00)

0.4894
(0.00)

 G=
0.2441

(0.00)
0.0899

(0.00)

0.3302
(0.00)

0.5943
(0.00)


φ12 =1.0278

ρ12 =−0.0251

Panel (B): testing restrictions for nested models

BEKK 1.95×105 (0.00)

VECH 3.80×106 (0.00)

CCORR 4.26×106 (0.00)

Estimates of the conditional CAPM ADC-in-mean model in the German market
Panel (C): model estimates

Y =5.84
(0.00)

C=
0.0052

(0.00)
0.0019
(0.00)

−0.0019
(0.00)

 B=
 0.8895

(0.00)
−0.0036

(0.01)

−0.1869
(0.00)

0.7948
(0.00)



A=
0.2895

(0.00)
−0.0526

(0.00)

0.2678
(0.00)

0.4590
(0.00)

 G=
0.2466

(0.00)
0.0244

(0.02)

0.1361
(0.00)

0.0052
(0.88)


φ12 =1.0067

ρ12 =−0.0732

Panel (D): testing restrictions for nested models

BEKK 2.96×105 (0.00)

VECH 4.62×106 (0.00)

CCORR 4.81×106 (0.00)

Continued
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Table 17.3 Continued

Estimates of the conditional CAPM ADC-in-mean model in the British market
Panel (E): model estimates

Y =2.75
(0.00)

C=
0.0048

(0.88)
0.0016
(0.00)

−0.0002
(0.07)

 B=
 0.7199

(0.00)
0.0355

(0.00)

−0.2777
(0.00)

0.7935
(0.00)



A=
 0.4118

(0.00)
0.1649
(0.00)

−0.2244
(0.00)

−0.4323
(0.00)

 G=
0.1216

(0.00)
0.3958

(0.00)

0.6651
(0.00)

0.1287
(0.00)


φ12 =1.0142

ρ12 =−0.0632

Panel (F): testing restrictions for nested models

BEKK 2.75×105 (0.00)

VECH 4.25×106 (0.00)

CCORR 4.37×106 (0.00)

Notes: Panels (A), (C) and (E) of this table display the quasi-maximum likelihood estimates of the
conditional CAPM ADC-M model defined in equations (1) and (2). P-values appear in brackets. In
the three cases, the necessary conditions for the stationarity of the process are satisfied.
Panels (B), (D) and (F) display the Wald test for the restrictions imposed on the ADC model to obtain
the encompassed models. p-values appear in brackets. The specification test proposed by Kroner
and Ng (1998) is as follows: (1) If ρ12 = b12 = b21 = a12 = a21 =g12 = g21 =0, a restricted asymmet-
ric VECH is obtained; (2) if φ12 = b12 = b21 = a12 = a21 = g12 = g21 =0, the asymmetric CCORR is
derived; (3) if φ12 =1 and ρ12 =0 the asymmetric BEKK model is obtained.

significantly below zero) reveal that the estimated ADC model has similar
properties to the BEKK model, although the encompassing restrictions are
clearly rejected.

Table 17.4 displays an analysis of the standardized residuals. It can be
observed that, in the large firm index, autocorrelation and heteroskedas-
ticity problems have been successfully amended. Regarding the small cap
index, heteroskedasticity disappears but autocorrelation remains. However,
it must be highlighted that our main focus is on conditional second moments,
and Nelson (1992) shows that misspecification in the conditional mean does
not affect the key properties of the second moments.

Figure 17.2 displays the annualized conditional volatility of both indices
over the studied period for the three countries. Both volatility series have
similar patterns but large stock index volatility is almost always higher than
small stock index volatility.
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Table 17.4 Summary statistics for the standardized residuals

Panel A: summary statistics for the standardized residuals of France

ε1,t /
√

h11,t ε2,t /
√

h22,t

Mean −0.0146 0.0101

Variance 0.9866 1.0179

Skewness −0.1160 [0.221] −0.2340 [0.011]

Kurtosis −0.0311 [0.866] 1.3391 [0.000]

Normality 13.4101 [0.001] 59.6086 [0.000]

Q(20) 29.9128 [0.171] 147.223 [0.000]

Q2(20) 32.5969 [0.137] 20.8033 [0.408]

A(20) 14.7484 [0.790] 20.5445 [0.424]

Panel B: summary statistics for the standardized residuals of Germany

ε1,t /
√

h11,t ε2,t /
√

h22,t

Mean −0.0819 −0.0714

Variance 0.9861 0.9996

Skewness −1.7001 [0.000] −0.3606 [0.000]

Kurtosis 11.3915 [0.000] 1.3637 [0.000]

Normality 4192.75 [0.000] 70.5993 [0.000]

Q(20) 30.3931 [0.263] 105.185 [0.000]

Q2(20) 1.5671 [0.999] 13.4789 [0.855]

A(20) 2.2071 [0.999] 15.8992 [0.722]

Panel C: summary statistics for the standardized residuals of Great Britain

ε1,t /
√

h11,t ε2,t /
√

h22,t

Mean −0.0547 0.0490

Variance 0.9709 0.9653

Skewness −0.2925 [0.003] −0.2296 [0.022]

Kurtosis 0.4162 [0.039] 0.6244 [0.002]

Normality 12.7144 [0.001] 14.8173 [0.000]

Q(20) 19.9705 [0.459] 163.784 [0.000]

Q2(20) 16.1603 [0.706] 19.4896 [0.490]

A(20) 21.9096 [0.345] 20.0035 [0.457]

Notes: Skewness refers to series skewness coefficient. The asymptotic distribution of the skewness
coefficient under the null hypothesis is N(0, 6/T ), where T is the sample size. The null hypothesis
tested is whether that coefficient is equal to zero. Kurtosis refers to the series kurtosis coefficient. The
null hypothesis tested is whether that coefficient is equal to zero. The asymptotic distribution of the
kurtosis coefficient under the null hypothesis is N(0,24/T ), where T is the sample size. Normality refers
to the Bera-Jarque statistic test. This statistic tests the normality or non-normality of the series. The Bera-
Jarque statistic is calculated as follows, T [S2/6+ (K−3)2/24], where S is the skewness coefficient and K
is the kurtosis coefficient. Under the null hypothesis of normal distribution, the Bera-Jarque statistic has
an asymptotic χ2 (2) distribution. Q(20) and Q2(20) are Ljung Box tests. The null hypothesis tested is
the no existence of twentieth order serial correlation in ε1,t, ε2,t and ε2

1,t, ε
2
2,t respectively. Finally, A(20)

is the Engle (1982) test. The null hypothesis tested is the non-existence of twentieth-order ARCH in
the residuals. The p-values of these tests are displayed as [.].



341

19
91

0

5

10

15

20

25

30

35

40
Va

ria
nc

e

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

19
91

0

5

10

15

20

25

30

Va
ria

nc
e

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

0

5

10

15

20

25

30

Va
ria

nc
e

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

Variance CAC4O

Variance MIDCAC

Variance FTSE

Variance SMALL CAP

Variance DAX

Variance SDAX

Figure 17.2 Annualized conditional volatility of the stock indices
over the studied period
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Table 17.5 Unconditional moment estimates of all markets

Unconditional moment estimates

France Germany Great Britain

Large cap index variance 9.31 11.73 5.52

Small cap index variance 5.30 3.19 3.04

Covariance 4.38 3.41 0.80

Beta coefficient 0.47 0.29 0.15

Correlation 0.62 0.55 0.20

Notes: The beta coefficient is defined as the quotient between the large cap and small cap indices
covariance and the large cap index variance. Variances and covariance are reported in percentage
terms.

17.5 ASYMMETRIES ANALYSIS

The asymmetries analysis is carried out in two steps. First, a graphical anal-
ysis of news impact surfaces is displayed. Second, the robust conditional
moment test of Wooldridge (1990) is conducted before and after estimating
the covariance model.

Table 17.5 displays the unconditional moment estimates of all markets in
order to facilitate comprehension of the following sections.

17.5.1 News impact surfaces

The news impact surfaces are the multivariate generalization of the news
impact curves introduced by Engle and Ng (1993) and Hentschel (1995). The
univariate applications plot the conditional variance against the last period’s
shocks. The multivariate generalization plots the conditional variance and
covariance against large- and small-firm shocks from the last period, holding
past conditional variances and covariances constant at their unconditional
sample levels.

Figure 17.3 shows the news impact surfaces for the conditional second
moments and conditional betas obtained from the asymmetric bivariate
GARCH specification. Following Engle and Ng (1993) and Kroner and Ng
(1998), each surface is represented in the region εi,t = [−5, 5] for i= 1, 2. The
news impact surfaces try to reflect the sensitivity of variances, covariances
and betas to the sign and size of the innovations.

Panel (A) of Figure 17.3 displays the news impact surfaces for the French
market. It can be seen that the CAC40 variance increases the most when
cross-signed shocks take place. The MIDCAC variance surface shows a clear
sensitivity to its own negative shocks when positive or negative shocks on
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the CAC40 come together. In addition, the covariance surface is quite flat,
increasing as negative shocks in the MIDCAC take larger values. Finally, it
can be observed that the beta coefficient surface is quite stable.

Panel (B) of Figure 17.3 displays the news impact surfaces for the German
market. It can be appreciated that the DAX variance surface shows a clear
asymmetry; variance increases the most when both shocks are of the same
sign. In addition, this increase is larger when both shocks are negative. The
SDAX variance increases the most when both the large stock index shock
and the small stock index shock are of the same sign. Moreover, covariance
only increases when both shocks are of the same sign. When shocks are cross-
signed, covariance slightly decreases. Finally, it can be appreciated that the
beta coefficient has the expected behavior, it increases with the shock size
when both socks are of the same sign and decreases when shocks are of
different sign.

Panel (C) of Figure 17.3 displays the news impact surfaces for the British
market. It can be seen that the FTSE variance increases the most when cross-
signed shocks take place or, when both shocks are negative. The SMALL
CAP variance increases the most when both shocks are negative. Moreover
the covariance surface shows a clear asymmetry; the covariance increases
when both shocks are of the same sign whereas decreases when shocks are of
different sign. Finally, the beta coefficient surface is very sensitive to extreme
positive shocks in the small cap index.

17.5.2 Robust conditional moment test

The robust conditional moment test of Wooldridge (1990) is applied to
test how the Glosten et al. (1993) modification to the multivariate GARCH
model cleans the asymmetries in the conditional covariance matrix. This
test enables the identification of possible sources of misspecification in
the model and is robust to distributional assumptions. In order to test
the validity of a model, a natural approach is to compare the ex post
cross-product matrix of the residuals (

√
T-consistent estimator) to the

estimated covariance matrix. Thus, Kroner and Ng (1998) define a “gen-
eralized residual” as vijt = εitεjt − hijt for all i, j= 1, 2. If the model is correct,
Et−1(vijt)= 0, and therefore vijt should be uncorrelated with any variable
known at time t− 1. These variables are called misspecification indicators.
Kroner and Ng (1998) use three kinds of misspecification indicators. These
indicators try to detect misspecification caused by shocks’ sign (I(ε1t < 0)
and I(ε2t < 0)), the four quadrant sign combinations (I(ε1t−1 > 0; ε2t− 1 > 0),
I(ε1t− 1 < 0; ε2t− 1 > 0), I(ε1t− 1 > 0; ε2t− 1 < 0), I(ε1t− 1 < 0; ε2t− 1 < 0)) and
the misspecification due to the cross effects of shocks’ size and sign
(ε2

1t−1I(ε1t− 1 < 0), ε2
1t−1I(ε2t− 1 < 0), ε2

2t−1I(ε1t− 1 < 0), ε2
2t−1(ε2t− 1 < 0)). I(.)

denotes an indicator function that equals one if the argument is true and zero
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otherwise. Using these misspecification indicators, the robust conditional
moment test of Wooldridge (1990) is applied.

Table 17.6 shows the result of the robust conditional moment test. Panels
(A), (C) and (E) display the test result when unconditional moment estimates
are used. It can be seen that asymmetries are very important, especially in the
beta coefficient. Panels (B), (D) and (F) offer the test result when conditional
moment estimates are used. After this, no asymmetric pattern remains in
the conditional covariance specification. This is an important result because
it means that the GARCH specification is gathering all the possible asymme-
tries in the conditional covariance matrix. This result also guarantees that
the analysis of volatility contagion carried out later will be reliable.

Special attention is required for the beta coefficient (following
Wooldridge, 1990, a consistent estimator of the beta coefficient is built using
the continuous function property on consistent estimators; see Hamilton,
1994: 182). Last column in Table 17.6 shows that the unconditional beta
estimate has a significant error specification but the conditional beta esti-
mates within the used model are insensitive to sign and size asymmetries
in unexpected shock returns. As beta coefficients are market risk sensitivity
measures, it is important to use a conditional model in order to avoid error
specification on estimating the beta coefficients.

17.6 VOLATILITY SPILLOVERS

In this section, volatility spillovers between large and small firms are quan-
tified. We differentiate between positive and negative shocks, but we also

Table 17.6 Robust conditional moment tests

Robust Conditional Moment Test in the French Market

Panel (A): applied on original returns

υ12,t = r1,t r2,t − σ12 υ1,t = r2
1,t − σ2

1 υ2,t = r2
2,t − σ2

2 υbetat = r1,t r2,t /r2
1,t

− σ12/σ2
1

I(r1,t−1 <0) 52.57695∗∗∗ 1.68619 0.94676 317.99998∗∗∗

I(r2,t−1 <0) 44.80857∗∗∗ 4.31226∗∗ 0.59401 317.08568∗∗∗

I(r1,t−1 <0; r2,t−1 <0) 24.47034∗∗∗ 3.44086∗ 1.55390 230.99999∗∗∗

I(r1,t−1 <0; r2,t−1 >0) 64.00011∗∗∗ 7.41064∗∗∗ 0.84142 87.94500∗∗∗

I(r1,t−1 >0; r2,t−1 <0) 30.81728∗∗∗ 0.87521 3.92127∗∗ 87.03500∗∗∗

I(r1,t−1 >0; r2,t−1 >0) 163.14585∗∗∗ 20.95558∗∗∗ 0.31124 305.02800∗∗∗

r2
1,t−1I(r1,t−1 <0) 1.13863 4.87991∗∗ 5.12130∗∗ 67.88843∗∗∗

r2
1,t−1I(r2,t−1 <0) 1.43294 6.23543∗∗ 5.38658∗∗ 72.96868∗∗∗

r2
2,t−1I(r1,t−1 <0) 2.56038 6.59357∗∗ 6.08929∗∗ 29.55023∗∗∗

r2
2,t−1I(r2,t−1 <0) 2.69359 6.74448∗∗∗ 5.88425∗∗ 27.93598∗∗∗

Continued
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Table 17.6 Continued

Panel (B): applied on the residuals of the model estimates

υ12,t = ε1,tε2,t − σ12,t υ1,t = ε2
1,t − σ2

1,t υ2,t = ε2
2,t − σ2

2,t υbetat = ε1,tε2,t /ε2
1,t

− σ12,t/σ
2
1,t

I(ε1,t−1 <0) 0.10825 0.0791841 0.02020 0.02748

I(ε2,t−1 <0) 1.28730 0.0212508 0.00353 0.21586

I(ε1,t−1 <0; ε2,t−1 <0) 0.50478 0.445375 0.04633 0.14528

I(ε1,t−1 <0; ε2,t−1 >0) 0.50645 0.0306266 0.02375 0.59168

I(ε1,t−1 >0; ε2,t−1 <0) 0.81626 0.101018 0.39831 0.01141

I(ε1,t−1 >0; ε2,t−1 >0) 0.00228 0.923719 0.01846 0.00738

ε2
1,t−1I(ε1,t−1 <0) 1.79865 0.326715 0.04021 1.30713

ε2
1,t−1I(ε2,t−1 <0) 1.22818 0.00153 0.44407 1.47350

ε2
2,t−1I(ε1,t−1 <0) 0.78609 0.0259686 0.00129 1.56487

ε2
2,t−1I(ε2,t−1 <0) 1.79558 0.048851 0.04021 1.77788

Robust Conditional Moment Test in the German Market

Panel (C): applied on original returns

υ12,t = r1,t r2,t − σ12 υ1,t = r2
1,t − σ2

1 υ2,t = r2
2,t − σ2

2 υbetat = r1,t r2,t /r2
1,t

− σ12/σ2
1

I(r1,t−1 <0) 51.85540∗∗∗ 0.38040 1.46245 308.99998∗∗∗

I(r2,t−1 <0) 48.82691∗∗∗ 0.01518 1.95438 331.99997∗∗∗

I(r1,t−1 <0; r2,t−1 <0) 20.48819∗∗∗ 0.58614 3.76918∗ 217.99998∗∗∗

I(r1,t−1 <0; r2,t−1 >0) 67.68802∗∗∗ 0.00253 7.80934∗∗∗ 91.00000∗∗∗

I(r1,t−1 >0; r2,t−1 <0) 37.72143∗∗∗ 1.79143 1.06502 113.99999∗∗∗

I(r1,t−1 >0; r2,t−1 >0) 179.36793∗∗∗ 0.01328 2.41438 288.00000∗∗∗

r2
1,t−1I(r1,t−1 <0) 0.10512 2.18227 3.09202∗ 33.20338∗∗∗

r2
1,t−1I(r2,t−1 <0) 0.03183 1.96722 3.73741∗ 42.87739∗∗∗

r2
2,t−1I(r1,t−1 <0) 1.08555 1.58957 4.87424∗∗ 59.51383∗∗∗

r2
2,t−1I(r2,t−1 <0) 0.29315 2.26819 5.76897∗∗ 58.65094∗∗∗

Panel (D): applied on the residuals of the model estimates

υ12,t = ε1,tε2,t − σ12,t υ1,t = ε2
1,t − σ2

1,t υ2,t = ε2
2,t − σ2

2,t υbetat = ε1,tε2,t /ε2
1,t

− σ12,t/σ
2
1,t

I(ε1,t−1 <0) 0.57405 2.22941 0.61996 1.45365

I(ε2,t−1 <0) 0.42169 1.64955 0.61688 1.26071

I(ε1,t−1 <0; ε2,t−1 <0) 2.17062 0.88730 2.06230 0.88062

I(ε1,t−1 <0; ε2,t−1 >0) 1.57036 1.90948 1.79316 0.03676

I(ε1,t−1 >0; ε2,t−1 <0) 2.48587 0.44863 1.66942 1.03544

I(ε1,t−1 >0; ε2,t−1 >0) 0.04044 1.21521 0.00106 0.71961

ε2
1,t−1I(ε1,t−1 <0) 0.88337 0.65406 0.30436 1.09062

Continued
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Table 17.6 Continued

ε2
1,t−1I(ε2,t−1 <0) 0.68327 0.02167 0.30698 0.83677

ε2
2,t−1I(ε1,t−1 <0) 1.28405 0.01642 1.04079 0.93523

ε2
2,t−1I(ε2,t−1 <0) 1.29078 0.65406 0.30436 0.98573

Robust Conditional Moment Test in the British Market

Panel (E): applied on original returns

υ12,t = r1,t r2,t − σ12 υ1,t = r2
1,t − σ2

1 υ2,t = r2
2,t − σ2

2 υbetat = r1,t r2,t /r2
1,t

− σ12/σ2
1

I(r1,t−1 <0) 90.99919∗∗∗ 3.13913∗ 0.31223 274.00000∗∗∗

I(r2,t−1 <0) 66.41886∗∗∗ 4.32508∗∗ 2.61077 254.99999∗∗∗

I(r1,t−1 <0; r2,t−1 <0) 35.15208∗∗∗ 5.16067∗∗ 1.20278 146.00000∗∗∗

I(r1,t−1 <0; r2,t−1 >0) 71.82084∗∗∗ 3.13945∗ 1.38575 128.00000∗∗∗

I(r1,t−1 >0; r2,t−1 <0) 31.81919∗∗∗ 0.19653 1.61586 109.00000∗∗∗

I(r1,t−1 >0; r2,t−1 >0) 156.81439∗∗∗ 24.13232∗∗∗ 10.78132∗∗∗ 208.00000∗∗∗

r2
1,t−1I(r1,t−1 <0) 0.93860 3.34471∗ 2.58045 56.42158∗∗∗

r2
1,t−1I(r2,t−1 <0) 0.84860 3.14928∗ 2.82037∗ 49.64218∗∗∗

r2
2,t−1I(r1,t−1 <0) 4.56553∗∗ 5.69538∗∗ 1.83772 33.92826∗∗∗

r2
2,t−1I(r2,t−1 <0) 4.89998∗∗ 6.07446∗∗ 2.87220∗ 33.51451∗∗∗

Panel (F): applied on the residuals of the model estimates

υ12,t = ε1,tε2,t − σ12,t υ1,t = ε2
1,t − σ2

1,t υ2,t = ε2
2,t − σ2

2,t υbetat = ε1,tε2,t /ε2
1,t

− σ12,t/σ
2
1,t

I(ε1,t−1 <0) 0.04181 1.49114 0.05898 0.27055

I(ε2,t−1 <0) 1.87779 0.02587 0.81170 0.75620

I(ε1,t−1 <0; ε2,t−1 <0) 0.11286 1.21553 0.32800 1.30884

I(ε1,t−1 <0; ε2,t−1 >0) 0.86349 0.32819 0.16350 0.70133

I(ε1,t−1 >0; ε2,t−1 <0) 1.93700 1.25880 0.07043 0.02128

I(ε1,t−1 >0; ε2,t−1 >0) 1.40476 0.21308 0.39134 0.28494

ε2
1,t−1I(ε1,t−1 <0) 0.36570 0.00452 0.15896 0.93864

ε2
1,t−1I(ε2,t−1 <0) 0.60704 0.84934 0.85204 0.92168

ε2
2,t−1I(ε1,t−1 <0) 0.25875 0.49954 0.16039 0.03524

ε2
2,t−1I(ε2,t−1 <0) 0.31650 0.00452 0.15896 1.10559

Notes: Panels (A), (C) and (E) give the robust conditional moment test statistic applied on unconditional moment
estimates, where σ2

1 , σ2
2 , σ12 and beta coefficient are unconditional estimates of the large stock index variance,

small stock index variance, its covariance and beta, respectively. Panels (B), (D) and (F) give the robust conditional
moment test on the conditional estimates, where σ2

1,t, σ
2
2,t, σ12,t and betat coefficient are conditional estimates of

the large stock index variance, small stock index variance, its covariance and beta, respectively, obtained from the
asymmetric GARCH model. The misspecification indicators are listed in the first column and the remaining columns
in each panel give the test statistic computed for the generalized residual calculated as shown in the first row in
each panel. r1,t−1 and r2,t−1 are the return series of the large stock and small stock indexes respectively. ε1,t−1 is the
return shock to the large index and ε2,t−1 is the return shock to the small index. The indicator function I() takes the
value one if the expression inside the parentheses is satisfied and zero otherwise. All the statistics are distributed as
χ2(1). Test values highlighted with one (∗), two (∗∗) and three (∗∗∗) asterisks are significant at 90%, 95% and 99%,
respectively.
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look at the combined effect of typical shocks occurring simultaneously on
large cap and small cap indexes. Since the unconditional correlation coeffi-
cients between the large cap and the small cap index returns are 0.62, 0.55
and 0.20 for France, Germany and United Kingdom respectively, it can be
assumed that, in all markets, shocks of the same sign occur more frequently
than shocks of different sign.

As it was mentioned in section 17.1, the volatility feedback hypothesis
is one of the theories that try to explain the asymmetric volatility phe-
nomenon. This theory relies on the existence of a positive intertemporal
relation between expected returns and conditional variances, therefore, risk
premiums are variable throughout the time. In the context of the conditional
CAPM that we are considering, the relevant measure of risk for large firms
is their variance whereas the relevant risk measure for small firms is their
covariance with large firms. Therefore, in this work, the asymmetric volatil-
ity in small firms, will be determined by their covariance with large firms.

Table 17.7 shows the incremental effect (annualized and in percentage
terms) on variances and covariances produced by a unitary shock in the large
and/or small cap indices. Results are quite similar for the three countries. In
this table, we can observe volatility and covariance asymmetry and volatility
spillovers. Volatility of both indices increase more after negative shocks
coming from any market than after positive shocks, with the exception of the
SDAX volatility. Positive and negative shocks affecting returns on the SDAX
produce the same effect on the SDAX volatility (remind that the estimated
coefficient g22 was not significant). Covariance also increases more after
negative shocks than after positive shocks. It drops in some cases when
shocks are of opposite sign or positives. These results are consistent with the
existence of time-varying risk premiums and, therefore, with the volatility
feedback hypothesis.

If we focus on volatility spillovers, we observe that volatility spillovers
between both type of firms, large and small firms, are bidirectional. Both,
news coming from large firms and news coming from small firms affect
the other market. However, it must be highlighted that news coming
from the small cap index increase more the volatility of the large cap index
than the opposite, especially, bad news. These volatility spillovers highlight
that relevant information for portfolio management comes from the small
firms market.

17.7 CONCLUSION

In this chapter we have investigated volatility spillovers between large firms
and small firms in the French, German and British Stock Exchanges, tak-
ing into account volatility and covariance asymmetry. We use a conditional
CAPM with an asymmetric GARCH-in-mean covariance structure that
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Table 17.7 Sensitivity of volatility, covariance and risk premium to unitary shocks (1%)

Panel A: sensitivity of volatility, covariance and risk premium of the French indices to unitary shocks (1%)

CAC40 shock MIDCAC shock Common shock

+ − + − CAC40(+) CAC40(−) CAC40(+) CAC40(−)
MIDCAC(+) MIDCAC(−) MIDCAC(−) MIDCAC(+)

CAC40

Volatility 1.6088 2.3847 2.5765 3.5083 0.9677 4.2529 4.8152 4.5406

Risk premium 0.0588 0.1291 0.1507 0.2794 0.0213 0.4106 0.5240 0.4659

MIDCAC

Volatility 0.4161 0.7703 3.5291 5.5516 3.1130 5.8338 5.8252 3.9986

Covariance 0.0067 0.0181 0.0912 0.1934 0.0302 0.2347 0.2671 0.1765

Risk premium 0.0152 0.0412 0.2070 0.4391 0.0686 0.5329 0.6038 0.3990

Panel B: sensitivity of volatility, covariance and risk premium of the German indices to unitary shocks (1%)

DAX shock SDAX shock Common shock

+ − + − DAX(+) DAX(−) DAX(+) DAX(−)
SDAX(+) SDAX(−) SDAX(−) SDAX(+)

DAX

Volatility 2.0876 2.7423 1.9311 2.1662 4.0187 4.8751 0.9941 1.7851

Risk premium 0.2545 0.4392 0.2178 0.2740 0.9432 1.3879 0.0577 0.1861

SDAX

Volatility 0.3793 0.4181 3.3099 3.3101 3.6892 3.6954 2.9311 2.9362

Covariance 0.0074 0.0103 0.0604 0.0610 0.1384 0.1420 −0.0042 −0.0014

Risk premium 0.0432 0.0600 0.3527 0.3562 0.8083 0.8293 −0.0246 −0.0085

Continued
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Table 17.7 Continued

Panel C: sensitivity of volatility, covariance and risk premium of the British indices to unitary shocks (1%)

FTSE shock SMALL CAP shock Common shock

+ − + − FTSE(+) FTSE(−) FTSE(+) FTSE(−)
SMALL CAP(+) SMALL CAP(−) SMALL CAP(−) SMALL CAP(+)

FTSE

Volatility 2.9695 3.0963 1.6182 5.0617 1.3514 5.8317 6.6371 4.6710

Risk premium 0.2425 0.2636 0.0720 0.7046 0.0502 0.9352 1.2070 0.5978

SMALL CAP

Volatility 1.1891 3.0920 3.1174 3.2526 1.9282 4.2454 4.4058 5.1668

Covariance 0.0336 0.0551 0.0480 0.0859 −0.0281 0.1755 0.2421 0.2226

Risk premium 0.0923 0.1516 0.1319 0.2362 −0.0772 0.4827 0.6633 0.6100

Notes: The table shows the incremental effect produced in volatility and covariances by a unitary shock (1%) in the large and/or small index returns. All increases are
annualized and in percentage terms. The headline of each column shows the sign of the shock.
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accommodates both the sign and the magnitude of return innovations. More-
over, the volatility feedback effect is explored as a possible explanation for
asymmetric volatility in stock returns.

We have obtained three important results. First, the estimated price of risk
is positive and significant in the three countries. This result indicates that
the risk is valued and is consistent with the volatility feedback hypothesis.
If volatility is priced, an anticipated increase in volatility raises the required
return on equity, leading to an immediate stock price decline. Therefore,
time-varying risk premiums will be observed. Moreover, the asymmetric
behavior of variances and covariances has been shown; both increase more
after negative than after positive shocks.

Second, we find consistent evidence that volatility spillovers between
large and small firms are bidirectional in the three countries, as Chuliá and
Torró (2006) and Pardo and Torró (2005) find in the Spanish market. More-
over, news coming from the small cap index increases more the volatility
of the large cap index than the opposite, especially, bad news. This result
adds evidence against the common conclusion according to which volatility
spillovers are unidirectional, from large firms to small ones, and shows that
news on small firms can also cause volatility in their own returns and in
large firm returns.

Finally, the study uncovers that conditional beta coefficient estimates
within the model are insensitive to sign and size asymmetries in unexpected
shock returns, and that the unconditional beta estimate has a significant
specification error. Therefore, for dynamic portfolio management it is nec-
essary to use conditional models in order to avoid specification errors on
estimating beta coefficients.

REFERENCES

Banz, R. (1981) “The Relationship Between Return and Market Value of Common Stocks”,
Journal of Financial Economics, 9(1): 3–18.

Bekaert, G. and Wu, G. (2000) “Asymmetric Volatility and Risk in Equity Markets”, The
Review of Financial Studies, 13(1): 1–42.

Black, F. (1976) “Studies of Stock Price Volatility Changes”, Proceedings of the 1976 Meetings
of the American Statistical Association, Business and Economical Statistics Section.

Bollerslev, T. (1990) “Modelling the Coherence in Short-Run Nominal Rates: A Mul-
tivariate Generalized ARCH Approach”, Review of Economics and Statistics, 72(3):
498–505.

Bollerslev, T. and Wooldridge, J.M. (1992) “Quasi-maximum Likelihood Estimation and
Inference in Dynamic Models with Time-Varying Covariances”, Econometric Reviews,
11(2): 143–72.

Bollerslev, T., Engle, R.F. and Wooldridge, J.M. (1988) “A Capital Asset Pricing Model
with Time Varying Covariances”, Journal of Political Economy, 96(1): 116–31.

Braun, P.A., Nelson, D.B. and Sunier, A.M. (1995) “Good News, Bad News, Volatility and
Betas”, The Journal of Finance, 50(5): 1575–603.

Campbell, J.Y. (1987) “Stock Returns and the Term Structure”, Journal of Financial
Economics, 18(4): 373–99.



352 LARGE AND SMALL CAP STOCKS IN EUROPE

Campbell, J.Y. and Henstschel, L. (1992) “No News Is Good News: An Asymmetric Model
of Changing Volatility in Stock Returns”, Journal of Financial Economics, 31(2): 281–318.

Chan, K.C., and Chen, N. (1991) “Structural and Return Characteristics of Small and Large
Firms”, Journal of Finance, 46(4): 1467–84.

Christie, A.A. (1982) “The Stochastic Behaviour of Common Stock Variances-Value,
Leverage and Interest Rate Effects”, Journal of Financial Economics, 10(4): 407–32.

Chuliá H. and Torró, H. (2006) “Asimetrías en Volatilidad, Beta y Contagios entre las
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C H A P T E R 18

On Model Selection and
its Impact on the

Hedging of Financial
Derivatives

Giuseppe Di Graziano and Stefano Galluccio

18.1 INTRODUCTION

The mathematical theory of derivatives pricing and risk-management is one
of the most active fields of research for both academics and practitioners. The
celebrated Black–Scholes–Merton (BS) pioneering work paved the way to
the development of a general theory of option pricing through the concept of
absence of market arbitrage and dynamic replication (Harrison and Pliska,
1981). As is well-known, the simplistic assumptions behind the BS model
make it unsuitable to capture and explain the risk borne by complex (exotic)
financial derivatives. The need for a departure from the BS paradigm is in
fact evident from the analysis of historical time series (Bates, 1996; Pan,
2002; Chernov, Gallant, Ghysels and Tauchen, 2003; and Eraker, Johannes
and Polson, 2003, among others), as well as from the observation of the
volatility smile phenomenon (Heston, 1993; Dupire, 1994, among others).
For these reasons a number of alternative models have been advocated by
many authors. Roughly speaking, all dynamic arbitrage-free models aiming
at generalizing BS theory can be divided in three main classes, according
to the characteristics of the stochastic process driving the dynamics of the
underlying assets.
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Deterministic or local volatility (LV) models assume that the asset follows
an Itô diffusion with a volatility function that is a deterministic (non-linear)
function of the underlying state variables. Derman and Kani (1994) and, in
particular, Dupire (1994) succeeded in showing that, if noise is driven by
a single Brownian motion, it is possible to uniquely determine the form of
volatility function out of the market prices of traded options. This approach
is often referred to as “implied volatility theory”.

An alternative, more sophisticated framework consists of assuming that
the volatility itself is driven by an independent noise source, usually a
Wiener process. This approach, known as stochastic volatility (SV) modeling,
was introduced and developed by Hull and White (1987), Stein and Stein
(1991) and Heston (1993) among others. SV models have recently become
very popular in the industry since they provide a simple (yet satisfactory)
approach to the modeling of the smile dynamics while LV models are less
appealing from this point of view (Andersen and Andreasen, 2000a).

Finally, a generalization of BS can be achieved by relaxing the assump-
tion of diffusive-type dynamics and by assuming the presence of jumps
in the asset, in the volatility or in both. From a pure statistical perspec-
tive, jump-diffusion (JD) models (possibly with the inclusion of stochastic
volatility features, or SVJD models) are in excellent agreement with empir-
ical observations, as shown for instance in Eraker, Johannes and Polson
(2003). Unfortunately, pricing and hedging in presence of jumps is in gen-
eral a much harder task to achieve than in pure diffusion models (Duffie,
Pan and Singleton, 2000; Föllmer and Schweizer, 1991).

Despite the differences among these three approaches, as some authors
have observed (see for instance Schoutens, Simons and Tistaert, 2003), they
are all capable of reproducing the observed shape of the implied volatility
surface.1 In fact, one can always parametrically adjust a given model to
enforce its unconditional probability distributions to be very “close” to a
pre-assigned marginal distribution to the point that the resulting differences
would be indistinguishable from a practical point of view. As is well-known,
however, two processes with different conditional distributions give rise
to totally different sample paths even if their unconditional distributions
are the same. Therefore, one might argue that the price of certain path-
dependent options and, more importantly, the dynamic risk-management
are both heavily affected by model selection. This is indeed the case as the
results of this chapter suggest.

This remark is particularly relevant in the context of model implied cal-
ibration, a common and well-known market practice. To avoid potential
arbitrage opportunities and identify the market price of risk practitioners
“calibrate” their models to the market prices of vanilla European options
(i.e. the smile) and use the resulting dynamics to evaluate, by arbitrage,
more complex derivatives whose prices are not directly available in the mar-
ket. In doing so, one implicitly assumes that the market contains enough
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“information” to uniquely identify the model and its associated risk-neutral
pricing measure. However, the market prices of European vanilla options
do not contain any information about the conditional distributions of the
underlying stochastic process. As the above argument suggests, unique
model identification is an impossible task to achieve and for any model
choice there exists an associated model risk. Although many different defini-
tions of model risk are possible (see Cont, 2005, for a review) here we refer
to model risk as the residual uncertainty on the price of financial derivatives
and on their risk-management once that all relevant market information has
been properly included in the pricing model (through model calibration).

In this chapter we examine the impact of model choice on the hedging of
financial derivatives in a simplified set-up. In particular, we will assume that
the true dynamics of the underlying asset (the stock) follows a given stochas-
tic volatility process while market agents, lacking this information, trade
according to a different model. In order to guarantee market consistency,
we will further require that all available market information be captured
by the “wrong” model. This will be achieved by calibrating the model to
all option market prices, which we generate using the “right” model. We
shall address the hedging error problem both analytically and numerically
and show that using the “wrong” model for risk management purposes can
generate significant replication errors even for short maturity options and
despite the fact that the market smile is almost perfectly matched by trader’s
model. Needless to say, we do not expect to provide a good representation
of real world asset dynamics; our study is meant to gather some intuition
about model errors in risk management. In particular, our results suggest
that model selection must take into account historical information to obtain
a proper representation of the real asset dynamics.

The rest of the chapter is organized as follows. Section 18.2 introduces the
model and the notation, while section 18.3 is devoted to the computation of
the total hedging error in models with stochastic volatility. Numerical tests
are performed in section 18.4. Finally, section 18.5 draws some conclusions
and perspectives for future research.

18.2 MODEL AND MATHEMATICAL SETUP

We shall assume that the market consists of a single (non-dividend-paying)
underlying asset St whose P-dynamics are driven by a two dimensional
Brownian motion B= (B1, B2) defined on a probability space (�, F, P), where
F = (Ft)t≥0 is the natural filtration of B and P the “physical” probability mea-
sure. In addition, we postulate the existence of a money market account
βt = exp(rt), where r indicates the constant riskless interest rate.2 Stochastic
volatility models, like the ones considered in this paper, are intrinsically
incomplete. It is however possible to “complete” the market by adding
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a number of tradable (non-redundant) securities, typically liquid vanilla
options. In what follows, we will assume that agents are allowed to trade
an additional option, say D, on St to risk manage their books. The latter
assumption, together with the no arbitrage condition and the market price
of volatility risk, uniquely determines the risk neutral probability measure
P∗ under which discounted asset prices are martingales. For convenience
we will use βt as numéraire. The corresponding Wiener process under P∗
will be denoted by W = (W1, W2). We shall further assume that the covari-
ance process is given by 〈W1, W2〉= ρt for a given choice of the constant
correlation coefficient ρ.

In order to introduce the concept of hedging error, we define two different
dynamics for St under P∗, specifically:

dSt = rStdt + γ(t, S, v)dW1
t

dvt = ϕ(t, v)dt + ϕ(t, v)dW2
t

(18.1)

and

dSt = rStdt + �(t, S, v)dW1
t

dvt = �(t, v)dt +!(t, v)dW2
t

(18.2)

We will also assume that the generic functions γ , ϕ, ϑ, �, �, ! satisfy the
usual conditions of existence and unicity to the solutions of the above SDE’s
(see for instance Jacod and Shiryaev (1987)). In our set-up, equation (18.1)
represents the real (unknown to the trader) dynamics of St, while equation
(18.2) corresponds to the model used by traders as a proxy of the “true” mar-
ket dynamics. We also assume that the correlation between Wiener noises
in the “wrong” model (18.2) is ρ′ �= ρ. Our goal is to estimate the hedging
error that traders incur when using model (18.2) to risk-manage a vanilla
European option written on St.

It should be noted that our modeling setup is fairly generic as many well-
known models can be recovered by appropriately specifying the functions
γ , ϕ, ϑ, �, �, !. For instance, the following special cases are well-known:

1 If γ(t, S, v)= vSt, ϕ=ϑ= 0 we recover the Black–Scholes-model.

2 If γ(t, S, v)=√
vtSt, ϕt = a(b − vt) and ϑ=α

√
vt for given constants a, b, α

we recover the Heston (1993) stochastic volatility model (in this case vt is
the square of the volatility, i.e. the instantaneous variance).

3 If γ(t, S, v)= vtSt, ϕt = a(b − vt) and ϑ=α for given constants a, b, α we
recover the Stein–Stein (1991) stochastic volatility model.

It is in principle possible to extend the results presented in section 18.3 to
more general processes (in particular to include the presence of jumps in the
state variables) but the mathematical setup needed is more involved and it
will be addressed in a separate paper (Di Graziano and Galluccio, 2005).
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18.3 ANALYTICAL EXPRESSION OF THE
TOTAL HEDGING ERROR

Consider the following situation: a trader sells at time t a European call
option struck at K expiring at T > t, with payoff C(ST)= (ST −K)+. We will
first assume that the agent believes the BS model to be correct. In order to
hedge his exposure, he will form a dynamic portfolio consisting of�t′ shares,
where�t′ = ∂C

∂S |t=t′ is the option “Delta”, and invest an amountψt′ = Ct′−�t′St′
βt

in the money market account for t≤ t′ ≤T. If the “true” market dynamics
were lognormal with constant coefficient as postulated in the BS theory, the
agent would be able to perfectly replicate the option price and the hedg-
ing error would be identically zero (in a frictionless market). In general,
the replication error incurred by using the simple delta hedging strategy
does not vanish since, in particular, asset prices do not follow lognormal
processes.

In two separate works Carr and Madan (1997) and, independently, El
Karoui, Jeanblanc and Shreve (1997) proved that if the asset follows a contin-
uous diffusion process (with possibly time-dependent, adapted coefficients)
then the simple delta hedging strategy based on the BS model would result
in a total error:

Yt,T =
∫ T

t
βT−s

S2
s

2
∂2Cs

∂S2 (σ2
BS − σ(s)2)ds (18.3)

at time T, where σBS is the BS volatility corresponding to the price at which
the trader bought the option and σ(t) is the actual (or “realized”) volatility
process. The above fundamental formula indicates that the total hedging
error is a function of:

1 The difference of the squares of the volatilities. In particular the trader
realizes a gain if the realized volatility path is below the BS volatility and
to lose money in the opposite case.

2 The option’s Gamma ∂2CS
∂S2 . Ceteris paribus, the larger the Gamma the more

pronounced is the hedging error.

Although this result is strikingly simple and intuitive, the hedging strategy
is too simple to be realistic. For this reason we provide here a different
formula that postulates a “true” dynamics for the underlying asset as in
equation (18.1) and a hedging model at the trader disposal as in equation
(18.2). Moreover, we will also allow market agents to hedge their volatility
exposure. For the sake of simplicity we will limit ourselves to provide the
error formula and indicate a sketch of its proof. The interested reader will
find all details (in a more general setting) in Di Graziano and Galluccio
(2005).
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The main idea of the proof is the following. At any time t ≤ T, build a
portfolio Vt consisting of an amount ψ(1)

t of stocks, ψ(2)
t units in the money

market account and a quantity ψ
(3)
t of another option Dt (which is used

to complete the market). At inception, the trader observes a set of market
option prices and calibrates what he believes to be the right model (18.2) to
those prices. We assume, for the sake of simplicity, that all relevant option
prices are well reproduced by the model (18.2). Assume that the option price
function associated to the trader’s “wrong” model is given by Ct =C(St, vt,
t). He will then choose coefficients ψ(i)

t in Vt so as to make the process Yt:

Yt = ψ
(1)
t St + ψ

(2)
t βt + ψ

(3)
t Dt − Ct

vanish at any time when St and vt satisfy equation (18.2). In particular, the
amount of stocks and options held in the portfolio will be given by:

ψ
(1)
t = ∂C

∂S
− ∂C

∂v

(
∂D
∂v

)−1
∂D
∂S

, ψ
(3)
t = ∂C

∂v

(
∂D
∂v

)−1

(18.4)

respectively. Note that the hedging ratios involve only price sensitivities cal-
culated by using the “wrong” model. If the real asset dynamics where given
by (18.2), then Yt would be identically zero. In general this is not true since
equation (18.1) (as opposed to equation (18.2)) describes the “true” asset
dynamics. By applying Ito’s formula toYt, by using the correct asset dynam-
ics (18.1) for St and vt, and by remembering that option prices generated with
model (18.1) are matched by model (18.2), we finally arrive at the following
expression of the total hedging error (Di Graziano and Galluccio, 2005):

Yt,T = −
∫ T

t
βT−s

∂CS

∂v

(
∂DS

∂v

)−1
[

1
2

(�2
s − γ2

s )
∂2Ds

∂S2 + 1
2

(!2
s − ϑ2

s )
∂2Ds

∂v2

+ (ρ′�s!s − ργsϑs)
∂2Ds

∂S∂v

]
ds

+
∫ T

t
βT−s

[
1
2

(�2
s − γ2

s )
∂2Cs

∂S2 + 1
2

(!2
s − ϑ2

s )
∂2Cs

∂v2

+(ρ′�s!s − ργsϑs)
∂2Cs

∂S∂v

]
ds (18.5)

This formula is the extension of equation (18.3) in a set-up given by equations
(18.1) and (18.2).

To shed some light on our result, we first notice that the total hedging
error is made of two contributions: one integral is associated to the option to
hedge C, the other to the additional claim D in the replicating portfolio. Each
of them is in turn composed of three additive terms that can be identified
as follows. One term is proportional to the Gamma of the option, i.e. the
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second derivative of the claim respect to the asset, ∂2Cs
∂S2 . This is analogous

to the term in equation (18.3) but, differently from that simplified case, our
result shows that the actual Gamma-induced error depends on the difference
of the squares of the volatility functions �(t, S, v) and γ(t, S, v). In particu-
lar, different functional assumptions result in completely different hedging
errors. A second term is proportional to the option’s “Volga”, that is to the
second derivative with respect to volatility, ∂2Cs

∂v2 . Finally, the third term is
proportional to the option’s “Vanna”, that is the mixed second derivative
with respect to asset and volatility, ∂2Cs

∂S∂v . Each of these terms multiplies a
factor that, roughly speaking, depends on the difference between “true”
and “false” model. Thus, any such term can take both positive and negative
values. This last observation is crucial in the applications (section 18.4) since
it clearly indicates that if the characteristics �, �, ! of the wrong model are
biased respect to those of the real one γ , ϕ, ϑ then the total hedging error
assumes largely positive or negative values.

As an important remark, we notice that the first integrand in equation

(18.5) is proportional to the ratio of the option’s Vega ∂Cs
∂v

(
∂Ds
∂v

)−1
. Interest-

ingly, this provides a useful hint on how to optimally select D: one should
better choose a claim whose Vega is close to that of the option to hedge C so
that Yt,T in equation (18.5) is not systematically biased.

As shown in Schoutens, Simons and Tistaert (2003) and in section 18.4,
the fact that the model is made consistent with the relevant set of market
option prices is not enough to identify the characteristics of the process
and therefore a residual hedging error is always present. In the next sec-
tion we perform (based on equation (18.5)) a number of empirical tests to
quantitatively assess the replication error in two benchmark scenarios.

18.4 NUMERICAL RESULTS

In order to give a quantitative estimate of the hedging error in practical
situations we perform two independent empirical tests. In the first we aim
at measuring the impact of model misspecification on the replicating strategy,
while the latter is aimed at estimating the impact of parameters misspecifi-
cation. We say that a model is misspecified if the functional form of the
characteristics �, �, ! is different from that of the true set γ , ϕ, ϑ. A typical
example is that of a trader that uses the BS model to hedge a contingent
claim written on an asset that follows a stochastic volatility process. Simi-
larly, we say that model parameters are misspecified if the functional form
of the characteristics �, �, ! is correct but the numerical coefficients are
different from the corresponding ones in γ , ϕ, ϑ. The latter situation arises
when, for instance, the trader has the right intuition and uses a stochastic
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volatility model but he assumes that the Brownian motions are uncorre-
lated. Interestingly, a number of papers have recently appeared where the
assumption of zero correlation is essentially justified as it makes the model
analytically tractable (Andersen and Andreasen, 2000b; Piterbarg, 2003).
Our simple example below demonstrates that, even if a model with no
correlation is made consistent with the smile, the residual hedging error
can be significant if the actual dynamics is driven by correlated Brownian
motions.

We remind the reader that from a mathematical point of view there is no
difference between the two kinds of model risk, as correctly pointed out by
Cont (2005). However, our empirical tests show that the errors originating
from model misspecification are generally much larger and then, potentially,
much more dangerous.

To fix the ideas, we specialize equation (18.1) to the following case γ(t,
St, vt)=Sx

t
√
vt, ϕ(t, St, vt)= a(b− vt), ϑ(t, St, vt)=α

√
vt with x≥ 0. This model

corresponds to a Heston model with CEV-type local volatility and can be
analytically handled if ρ= 0 (Di Graziano and Galluccio, 2005). In terms of
its market explicative power our framework is qualitatively similar to the
celebrated SABR model (Hagan, Kumar, Lesniewski and Woodward, 2002)
but has the advantage, over SABR, of possessing a mean-reverting instan-
taneous variance process, which is beneficial in the applications (Galluccio
and Le Cam, 2005). In any case, we point out that the qualitative picture
emerging from our empirical tests is not affected by the fine details of the
model specification equation (18.1).

As anticipated, equation (18.1) will be our benchmark “model”; that is,
it will be assumed to represent the actual asset dynamics. We thus generate
(by Monte-Carlo simulation) a set of benchmark call option prices using
equation (18.1) at different strikes that are meant to approximate to a good
degree of accuracy the actual smile observed in the market (for example the
S&P index).3

In our first study we postulate that the trader believes that BS is the “right”
model and risk-manages his hedging portfolio accordingly. He then sells at
t= 0 a 1 year call struck at K = 0.975 when S= 1 and enters into a standard
delta-hedging self-financing strategy. We simulate the actual path followed
by the asset from equation (18.1) and, at expiry T = 1, we record the hedging
error Yt,T . In Figure 18.1 we show the empirical probability distribution of
the random variable Yt,T .

Two things are worth noticing. First, the average total error is positive.
This is mainly a consequence of the particular choice of the parameters
used to generate the “true” smile. A different choice of parameters (con-
sistent with the price of the call) can lead to the opposite bias. Second, the
result suggests that if one risk manages the portfolio using a simple BS delta
hedging argument, then there is a non-negligible probability to get a
total error that is a significant fraction of the total profit from the option.
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Figure 18.1 Hedging error probability density function in the B–S case.
The “real” asset dynamics is given by equation (18.1). All errors are

expressed as a percentage cost of the option

Table 18.1 Evaluation of the hedging errors

Model parameters

r a b α x ρ

True model 0.02 0.508 0.151 0.4 0.8 −0.2

Trader’s model 0.02 0.534 0.75 0.201 0.65 0

Notes: The table shows the values of the parameters used to evaluate the hedging errors. “True”
model parameters have been selected to provide a realistic shape of the smile. Trader’s model
parameters are obtained by minimizing the difference between the smiles generated by the two
models. Calibration errors are within the typical implied volatility bid/ask spread of 1%.

This example clearly demonstrates that if the trader’s model is a bad
representation of reality, the hedging error can be very large.

As a second test, we now assume that the trader uses a stochastic volatility
model to hedge the contingent claim which is structurally similar to the
“real” one but he has a bad assessment of some parameters. In this case,
equation (18.5) holds. In particular he believes that correlation is zero; that
is ρ′ = 0, while in reality ρ �= 0. In our example, we fixed ρ=−20% and to
ensure that all market information is captured we calibrate model (18.2)
to the smile generated by equation (18.1). In this procedure we determine
the unknown parameters by minimizing the squared difference of option
prices between the two models for different values of the strike, following a
standard practice. The resulting errors are within the typical bid–ask spread
and amount to a fraction of a percent in log-normal units (Table 18.1).
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Figure 18.2 The hedging error probability density function obtained by
assuming that the additional claim has the same expiry (1 year) as the

option to hedge but different strike (K =1). The trader uses a
stochastic volatility model. All errors are expressed as a percentage

of the initial cost of the option
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Figure 18.3 The hedging error probability density function obtained by
assuming that the additional claim has the same strike (K =0.975) as the

option to hedge but different expiry (2 years). The trader uses a
stochastic volatility model. All errors are expressed as percentage

of the initial cost of the option

We study two different cases. First we assume that we choose for D a liq-
uid at-the-money option that has the same expiry as the option to hedge (i.e.
a one-year call). In Figure 18.2 we show the hedging error coming from the
Gamma, the Volga and the Vanna terms separately, as well as the total error.
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We immediately notice that large errors are now less likely when compared
to the BS delta hedging strategy. In addition, the largest contribution to the
total error comes from the two Vanna terms since they are the most affected
by the wrong assumption on correlation.

As a second example, we consider the situation where D, like C, is an
option struck at K = 0.975 but it expires one year later, i.e. T = 2. Results
are shown in Figure 18.3. We now see that the largest contribution to the
total error comes from the Gamma terms since the two options have very
different Gamma in this case. However, all errors are still much smaller than
in the simple BS case.

CONCLUSION

In this chapter we have examined the errors arising from hedging a con-
tingent claim written on a tradable asset that follows a generic stochastic
volatility model when traders have a bad assessment of the real dynamics.
We provide a general formula for the total hedging error extending some
known results to the case of state variables driven by stochastic volatility pro-
cesses. We have numerically shown that errors due to a bad representation of
the whole dynamics are significantly larger than those arising from just a bad
estimation of model parameters, in general. However, even if the trader uses
a model that is formally equivalent to the true one, errors due to parameters
misspecification can still be quite large. This in particular should generate
some concern when hedging is performed with a model that assumes no
correlation between Wiener noises, a framework that has recently gained
some favor in the market due to its mathematical tractability.

NOTES

1. It must be noticed, however, that in general one needs to artificially assume strong
time-dependency of model parameters to achieve a good model “calibration”, i.e. to
ensure that market vs. model errors are within the bid–ask spread (Galluccio and Le
Cam, 2005). Despite this, at least theoretically it is possible to well-approximate any
smile shape by properly adjusting the postulated dynamics if coefficients are allowed
to take arbitrary values.

2. We will assume throughout the paper that interest rates are deterministic. Extending
the present approach to include the effect of stochastic rates is possible but results are
essentially unaffected by this choice in the range of options expiry we consider.

3. We recall that we do not address here the question of whether equation (18.1) is the
correct representation of reality, thus we do not need to calibrate our “benchmark”
model to the S&P market. Instead, we assume that equation (18.1) is the true model and
study the replication error induced by taking equation (18.2) as a good approximation
of the market, described by equation (18.1).
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