Vastering

Embedded Linux
Programming

Second Edition

Unleash the full potential of Embedded Linux

T

Mastering Embedded Linux Programming

Second Edition

Unleash the full potential of Embedded Linux

Chris Simmonds

Packh

BIRMINGHAM - MUMBAI

Mastering Embedded Linux Programming

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book. Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

First published: December 2015
Second edition: June 2017
Production reference: 1280617

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-328-2

www.packtpub.com

http://www.packtpub.com

Author
Chris Simmonds

Reviewers
Daiane Angolini
Otavio Salvador
Alex Tereschenko

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Prateek Bharadwaj

Content Development Editor
Sharon Raj

Technical Editor
Vishal Kamal Mewada

Credits

Copy Editors
Madhusudan Uchil
Stuti Shrivastava

Project Coordinator
Virginia Dias
Proofreader

Safis Editing

Indexer
Rekha Nair

Graphics
Kirk D'Penha

Production Coordinator
Melwyn Dsa

About the Author

Chris Simmonds is a software consultant and trainer living in southern England. He has
almost two decades of experience in designing and building open-source embedded
systems. He is the founder and chief consultant at 2net Ltd, which provides professional
training and mentoring services in embedded Linux, Linux device drivers, and Android
platform development. He has trained engineers at many of the biggest companies in the
embedded world, including ARM, Qualcomm, Intel, Ericsson, and General Dynamics. He is
a frequent presenter at open source and embedded conferences, including the Embedded
Linux Conference and Embedded World. You can see some of his work on the Inner
Penguin blog at www.2net.co.uk.

I would like to thank Shirley Simmonds for being so supportive during the long hours that
I was shut in my home office researching and writing this book. I would also like to thank
all the people who have helped me with the research of the technical aspects of this book,
whether they realized that is what they were doing or not. In particular, I would like to
mention Klaas van Gend, Thomas Petazzoni, and Ralph Nguyen for their help and advice.
Lastly, I would like to thank Sharon Raj, Vishal Mewada, and the team at Packt Publishing
for keeping me on track and bringing the book to fruition.

About the Reviewers

Daiane Angolini has been working with embedded Linux since 2008. She has been working
as an application engineer at NXP, acting on internal development, porting custom
applications from Android, and on-customer support for i.MX architectures in areas such as
Linux kernel, u-boot, Android, Yocto Project, and user-space applications. However, it was
on the Yocto Project that she found her place. She has coauthored the books Embedded Linux
Development with Yocto Project and Heading for the Yocto Project, and learned a lot in the
process.

Otavio Salvador loves technology and started his free software activities in 1999. In 2002, he
founded O.S. Systems, a company focused on embedded system development services and
consultancy worldwide, creating and maintaining customized BSPs, and helping companies
with their product's development challenges. This resulted in him joining the
OpenEmbedded community in 2008, when he became an active contributor to the
OpenEmbedded project. He has coauthored the books Embedded Linux Development with
Yocto Project and Heading for the Yocto Project.

Alex Tereschenko is an embedded systems engineer by day, and an avid maker by night,
who is convinced that computers can do a lot of good for people when they are interfaced
with real-world objects, as opposed to just crunching data in a dusty corner. That's what's
driving him in his projects, and this is why embedded systems and the Internet of Things
are the topics he enjoys the most.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787283283.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283

Table of Contents

Preface 1
Chapter 1: Starting Out 8
Selecting the right operating system 9
The players 10
Project life cycle 12
The four elements of embedded Linux 12
Open source 13
Licenses 13
Hardware for embedded Linux 15
Hardware used in this book 16
The BeagleBone Black 16
QEMU 17
Software used in this book 18
Summary 19
Chapter 2: Learning About Toolchains 20
Introducing toolchains 21
Types of toolchains 22
CPU architectures 23
Choosing the C library 25
Finding a toolchain 26
Building a toolchain using crosstool-NG 28
Installing crosstool-NG 28
Building a toolchain for BeagleBone Black 28
Building a toolchain for QEMU 30
Anatomy of a toolchain 31
Finding out about your cross compiler 31
The sysroot, library, and header files 34
Other tools in the toolchain 34
Looking at the components of the C library 35
Linking with libraries — static and dynamic linking 36
Static libraries 37
Shared libraries 38
Understanding shared library version numbers 39

The art of cross compiling 40

Simple makefiles 40
Autotools 41

An example: SQLite 43
Package configuration 44
Problems with cross compiling 45
Summary 46
Chapter 3: All About Bootloaders 47
What does a bootloader do? 48
The boot sequence 48
Phase 1 — ROM code 49
Phase 2 — secondary program loader 50
Phase 3 — TPL 51
Booting with UEFI firmware 52
Moving from bootloader to kernel 53
Introducing device trees 54
Device tree basics 55
The reg property 56
Labels and interrupts 57
Device tree include files 58
Compiling a device tree 60
Choosing a bootloader 60
U-Boot 61
Building U-Boot 61
Installing U-Boot 63
Using U-Boot 65
Environment variables 66

Boot image format 66

Loading images 67
Booting Linux 69
Automating the boot with U-Boot scripts 69
Porting U-Boot to a new board 70
Board-specific files 71
Configuring header files 73
Building and testing 73
Falcon mode 75
Barebox 75
Getting barebox 75
Building barebox 76
Using barebox 77
Summary 78

[ii]

Chapter 4: Configuring and Building the Kernel 79

What does the kernel do? 80
Choosing a kernel 82
Kernel development cycle 82
Stable and long term support releases 83
Vendor support 84
Licensing 84
Building the kernel 85
Getting the source 85
Understanding kernel configuration — Kconfig 86
Using LOCALVERSION to identify your kernel 90
Kernel modules 91
Compiling — Kbuild 92
Finding out which kernel target to build 92
Build artifacts 93
Compiling device trees 95
Compiling modules 95
Cleaning kernel sources 96
Building a kernel for the BeagleBone Black 96
Building a kernel for QEMU 96
Booting the kernel 97
Booting the BeagleBone Black 97
Booting QEMU 98
Kernel panic 98
Early user space 98
Kernel messages 99
Kernel command line 100
Porting Linux to a new board 101
A new device tree 102
Setting the board compatible property 103
Additional reading 105
Summary 105
Chapter 5: Building a Root Filesystem 107
What should be in the root filesystem? 108
The directory layout 109
The staging directory 110
POSIX file access permissions 111
File ownership permissions in the staging directory 112

[iii]

Programs for the root filesystem

The init program

Shell

Utilities

BusyBox to the rescue!

Building BusyBox

ToyBox — an alternative to BusyBox
Libraries for the root filesystem

Reducing the size by stripping
Device nodes

The proc and sysfs filesystems
Mounting filesystems

Kernel modules
Transferring the root filesystem to the target
Creating a boot initramfs

Standalone initramfs

Booting the initramfs

Booting with QEMU

Booting the BeagleBone Black

Mounting proc
Building an initramfs into the kernel image
Building an initramfs using a device table
The old initrd format
The init program
Starting a daemon process
Configuring user accounts
Adding user accounts to the root filesystem
A better way of managing device nodes
An example using devtmpfs
An example using mdev
Are static device nodes so bad after all?
Configuring the network
Network components for glibc
Creating filesystem images with device tables
Booting the BeagleBone Black
Mounting the root filesystem using NFS
Testing with QEMU
Testing with the BeagleBone Black
Problems with file permissions
Using TFTP to load the kernel
Additional reading

113
113
113
114
114
115
116

116
118

119

120
121

122
122
123
123
124
124

124
125

125
126
127
127
128
129
131
131
131
132
133
133
134
135
137
137
139
140
140
140
141

[iv]

Summary 142
Chapter 6: Selecting a Build System 143
Build systems 143
Package formats and package managers 145
Buildroot 146
Background 146
Stable releases and long-term support 147
Installing 147
Configuring 147
Running 148
Creating a custom BSP 150
U-Boot 150

Linux 152

Build 153
Adding your own code 156
Overlays 156

Adding a package 157
License compliance 158
The Yocto Project 159
Background 159
Stable releases and supports 161
Installing the Yocto Project 161
Configuring 162
Building 163
Running the QEMU target 164
Layers 165
BitBake and recipes 167
Customizing images via local.conf 170
Writing an image recipe 171
Creating an SDK 172
The license audit 174
Further reading 174
Summary 175
Chapter 7: Creating a Storage Strategy 176
Storage options 177
NOR flash 177
NAND flash 178
Managed flash 180
MultiMediaCard and Secure Digital cards 180

eMMC

181

[v]

Other types of managed flash

181

Accessing flash memory from the bootloader 182
U-Boot and NOR flash 182
U-Boot and NAND flash 183
U-Boot and MMC, SD, and eMMC 183

Accessing flash memory from Linux 183
Memory technology devices 183

MTD partitions 184
MTD device drivers 187
The MTD character device, mtd 187
The MTD block device, mtdblock 189
Logging kernel oops to MTD 189
Simulating NAND memory 189
The MMC block driver 190

Filesystems for flash memory 190
Flash translation layers 190

Filesystems for NOR and NAND flash memory 191
JFFS2 192

Summary nodes 192
Clean markers 193
Creating a JFFS2 filesystem 193
YAFFS2 194
Creating a YAFFS2 filesystem 195
UBI and UBIFS 196
uBl 196
UBIFS 199

Filesystems for managed flash 201
Flashbench 201
Discard and TRIM 202
Ext4 203
F2FS 204
FAT16/32 205

Read-only compressed filesystems 205
squashfs 206

Temporary filesystems 207

Making the root filesystem read-only 208

Filesystem choices 209

Further reading 209

Summary 210

Chapter 8: Updating Software in the Field 211

What to update? 212

[vil

Bootloader 213

Kernel 213
Root filesystem 213
System applications 214
Device-specific data 214
Components that need to be updated 214
The basics of software update 214
Making updates robust 215
Making updates fail-safe 216
Making updates secure 218
Types of update mechanism 219
Symmetric image update 219
Asymmetric image update 220
Atomic file updates 221
OTA updates 223
Using Mender for local updates 224
Building the Mender client 224
Installing an update 226
Using Mender for OTA updates 229
Summary 233
Chapter 9: Interfacing with Device Drivers 235
The role of device drivers 236
Character devices 237
Block devices 239
Network devices 240
Finding out about drivers at runtime 241
Getting information from sysfs 244
The devices: /sys/devices 244

The drivers: /sys/class 245

The block drivers: /sys/block 246
Finding the right device driver 246
Device drivers in user space 247
GPIO 248
Handling interrupts from GPIO 249

LEDs 251
12C 252
Serial Peripheral Interface (SPI) 254
Writing a kernel device driver 254
Designing a character driver interface 255

[vii]

The anatomy of a device driver 256
Compiling kernel modules 259
Loading kernel modules 260
Discovering the hardware configuration 261
Device trees 261
The platform data 262
Linking hardware with device drivers 263
Additional reading 265
Summary 265
Chapter 10: Starting Up — The init Program 266
After the kernel has booted 266
Introducing the init programs 267
BusyBox init 268
Buildroot init scripts 269
System V init 270
inittab 272
The init.d scripts 274
Adding a new daemon 275
Starting and stopping services 276
systemd 277
Building systemd with the Yocto Project and Buildroot 277
Introducing targets, services, and units 278
Units 278
Services 280

Targets 280

How systemd boots the system 281
Adding your own service 281
Adding a watchdog 283
Implications for embedded Linux 284
Further reading 284
Summary 285
Chapter 11: Managing Power 286
Measuring power usage 287
Scaling the clock frequency 289
The CPUFreq driver 290
Using CPUFreq 291
Selecting the best idle state 294
The CPUldle driver 295
Tickless operation 298

[viii]

Powering down peripherals 298
Putting the system to sleep 300
Power states 301
Wakeup events 302
Timed wakeups from the real-time clock 303
Further reading 303
Summary 304
Chapter 12: Learning About Processes and Threads 305
Process or thread? 306
Processes 308
Creating a new process 308
Terminating a process 309
Running a different program 310
Daemons 313
Inter-process communication 313
Message-based IPC 314

Unix (or local) sockets 315

FIFOs and named pipes 315

POSIX message queues 315

Summary of message-based IPC 316

Shared memory-based IPC 316

POSIX shared memory 316

Threads 320
Creating a new thread 321
Terminating a thread 322
Compiling a program with threads 322
Inter-thread communication 323
Mutual exclusion 324
Changing conditions 324
Partitioning the problem 326
Scheduling 327
Fairness versus determinism 328
Time-shared policies 328
Niceness 329
Real-time policies 330
Choosing a policy 331
Choosing a real-time priority 332
Further reading 332
Summary 333
Chapter 13: Managing Memory 334

[ix]

Virtual memory basics 335
Kernel space memory layout 336
How much memory does the kernel use? 337
User space memory layout 339
The process memory map 341
Swapping 342
Swapping to compressed memory (zram) 343
Mapping memory with mmap 343
Using mmap to allocate private memory 344
Using mmap to share memory 344
Using mmap to access device memory 344
How much memory does my application use? 345
Per-process memory usage 346
Using top and ps 347
Using smem 348
Other tools to consider 350
Identifying memory leaks 350
mtrace 350
Valgrind 351
Running out of memory 353
Further reading 355
Summary 355
Chapter 14: Debugging with GDB 356
The GNU debugger 356
Preparing to debug 357
Debugging applications 358
Remote debugging using gdbserver 358
Setting up the Yocto Project for remote debugging 359
Setting up Buildroot for remote debugging 360
Starting to debug 361
Connecting GDB and gdbserver 361

Setting the sysroot 362

GDB command files 364
Overview of GDB commands 365
Breakpoints 365

Running and stepping 365

Getting information 366

Running to a breakpoint 366

Native debugging 367
The Yocto Project 367
Buildroot 368

[x]

Just-in-time debugging 368

Debugging forks and threads 369
Core files 369
Using GDB to look at core files 371
GDB user interfaces 372
Terminal user interface 372
Data display debugger 373
Eclipse 374
Debugging kernel code 374
Debugging kernel code with kgdb 375

A sample debug session 376
Debugging early code 377
Debugging modules 378
Debugging kernel code with kdb 379
Looking at an Oops 380
Preserving the Oops 383
Further reading 384
Summary 385
Chapter 15: Profiling and Tracing 386
The observer effect 387
Symbol tables and compile flags 387
Beginning to profile 388
Profiling with top 389
Poor man's profiler 390
Introducing perf 391
Configuring the kernel for perf 391
Building perf with the Yocto Project 392
Building perf with Buildroot 392
Profiling with perf 393
Call graphs 395
perf annotate 396
Other profilers — OProfile and gprof 397
Tracing events 399
Introducing Ftrace 400
Preparing to use Ftrace 400
Using Ftrace 401
Dynamic Ftrace and trace filters 403
Trace events 404
Using LTTng 406

[xi]

LTTng and the Yocto Project 406
LTTng and Buildroot 406
Using LTTng for kernel tracing 407
Using Valgrind 410
Callgrind 410
Helgrind 411
Using strace 411
Summary 414
Chapter 16: Real-Time Programming 415
What is real time? 416
Identifying sources of non-determinism 418
Understanding scheduling latency 419
Kernel preemption 420
The real-time Linux kernel (PREEMPT_RT) 421
Threaded interrupt handlers 422
Preemptible kernel locks 424
Getting the PREEMPT_RT patches 424
The Yocto Project and PREEMPT_RT 426
High-resolution timers 426
Avoiding page faults 427
Interrupt shielding 428
Measuring scheduling latencies 428
cyclictest 428
Using Ftrace 432
Combining cyclictest and Ftrace 434
Further reading 435
Summary 435
Index 437

[xii]

Preface

Linux has been the mainstay of embedded computing for many years. And yet, there are
remarkably few books that cover the topic as a whole: this book is intended to fill that gap.
The term embedded Linux is not well-defined, and can be applied to the operating system
inside a wide range of devices ranging from thermostats to Wi-Fi routers to industrial
control units. However, they are all built on the same basic open source software. Those are
the technologies that I describe in this book, based on my experience as an engineer and the
materials I have developed for my training courses.

Technology does not stand still. The industry based around embedded computing is just as
susceptible to Moore's law as mainstream computing. The exponential growth that this
implies has meant that a surprisingly large number of things have changed since the first
edition of this book was published. This second edition is fully revised to use the latest
versions of the major open source components, which include Linux 4.9, Yocto Project 2.2
Morty, and Buildroot 2017.02. Since it is clear that embedded Linux will play an important
part in the Internet of Things, there is a new chapter on the updating of devices in the field,
including Over the Air updates. Another trend is the quest to reduce power consumption,
both to extend the battery life of mobile devices and to reduce energy costs. The chapter on
power management shows how this is done.

Mastering Embedded Linux Programming covers the topics in roughly the order that you
will encounter them in a real-life project. The first 6 chapters are concerned with the early
stages of the project, covering basics such as selecting the toolchain, the bootloader, and the
kernel. At the conclusion of this this section, I introduce the idea of using an embedded
build tool, using Buildroot and the Yocto Project as examples.

The middle part of the book, chapters 7 through to 13, will help you in the implementation
phase of the project. It covers the topics of filesystems, the init program, multithreaded
programming, software update, and power management. The third section, chapters 14 and
15, show you how to make effective use of the many debug and profiling tools that Linux
has to offer in order to detect problems and identify bottlenecks. The final chapter brings
together several threads to explain how Linux can be used in real-time applications.

Each chapter introduces a major area of embedded Linux. It describes the background so
that you can learn the general principles, but it also includes detailed worked examples that
illustrate each of these areas. You can treat this as a book of theory, or a book of examples. It
works best if you do both: understand the theory and try it out in real life.

Preface

What this book covers

Chapter 1, Starting Out, sets the scene by describing the embedded Linux ecosystem and
the choices available to you as you start your project.

Chapter 2, Learning About Toolchains, describes the components of a toolchain and shows
you how to create a toolchain for cross-compiling code for the target board. It describes
where to get a toolchain and provides details on how to build one from the source code.

Chapter 3, All About Bootloaders, explains the role of the bootloader in loading the Linux
kernel into memory, and uses U-Boot and Bareboot as examples. It also introduces device
trees as the mechanism used to encode the details of hardware in almost all embedded
Linux systems.

Chapter 4, Configuring and Building the Kernel, provides information on how to select a
Linux kernel for an embedded system and configure it for the hardware within the device.
It also covers how to port Linux to the new hardware.

Chapter 5, Building a Root Filesystem, introduces the ideas behind the user space part of an
embedded Linux implementation by means of a step-by-step guide on how to configure a
root filesystem.

Chapter 6, Selecting a Build System, covers two commonly used embedded Linux build
systems, Buildroot and Yocto Project, which automate the steps described in the previous
four chapters.

Chapter 7, Creating a Storage Strategy, discusses the challenges created by managing flash
memory, including raw flash chips and embedded MMC (eMMC) packages. It describes the
filesystems that are applicable to each type of technology.

Chapter 8, Updating Software in the Field, examines various ways of updating the software
after the device has been deployed, and includes fully managed Over the Air (OTA)
updates. The key topics under discussion are reliability and security.

Chapter 9, Interfacing with Device Drivers, describes how kernel device drivers interact with
the hardware with worked examples of a simple driver. It also describes the various ways
of calling device drivers from the user space.

Chapter 10, Starting Up — The Init Program, shows how the first user space program--init--
starts the rest of the system. It describes the three versions of the init program, each suitable
for a different group of embedded systems, ranging from the simplicity of the BusyBox init,
through System V init, to the current state-of-the-art, systemd.

[2]

Preface

Chapter 11, Managing Power, considers the various ways that Linux can be tuned to reduce
power consumption, including Dynamic Frequency and Voltage scaling, selecting deeper
idle states, and system suspend. The aim is to make devices that run for longer on a battery
charge and also run cooler.

Chapter 12, Learning About Processes and Threads, describes embedded systems from the
point of view of the application programmer. This chapter looks at processes and threads,
inter-process communications, and scheduling policies

Chapter 13, Managing Memory, introduces the ideas behind virtual memory and how the
address space is divided into memory mappings. It also describes how to measure memory
usage accurately and how to detect memory leaks.

Chapter 14, Debugging with GDB, shows you how to use the GNU debugger, GDB, together
with the debug agent, gdbserver, to debug applications running remotely on the target
device. It goes on to show how you can extend this model to debug kernel code, making use
of the kernel debug stubs, KGDB.

Chapter 15, Profiling and Tracing, covers the techniques available to measure the system
performance, starting from whole system profiles and then zeroing in on particular areas
where bottlenecks are causing poor performance. It also describes how to use Valgrind to
check the correctness of an application's use of thread synchronization and memory
allocation.

Chapter 16, Real-Time Programming, provides a detailed guide to real-time programming on
Linux, including the configuration of the kernel and the PREEMPT_RT real-time kernel
patch. The kernel trace tool, Ftrace, is used to measure kernel latencies and show the effect
of the various kernel configurations.

What you need for this book

The software used in this book is entirely open source. In almost all cases, I have used the
latest stable versions available at the time of writing. While I have tried to describe the main
features in a manner that is not version-specific, it is inevitable that some of the examples
will need adaptation to work with later software.

Embedded development involves two systems: the host, which is used for developing the
programs, and the target, which runs them. For the host system, I have used Ubuntu 16.04,
but most Linux distributions will work with just a little modification. You may decide to
run Linux as a guest in a virtual machine, but you should be aware that some tasks, such as
building a distribution using the Yocto Project, are quite demanding and are better run on a
native installation of Linux.

[3]

Preface

I chose two exemplar targets: the QEMU emulator and the BeagleBone Black. Using QEMU
means that you can try out most of the examples without having to invest in any additional
hardware. On the other hand, some things work better if you do have real hardware, for
which, I have chosen the BeagleBone Black because it is not expensive, it is widely available,
and it has very good community support. Of course, you are not limited to just these two
targets. The idea behind the book is to provide you with general solutions to problems so
that you can apply them to a wide range of target boards.

Who this book is for

This book is written for developers who have an interest in embedded computing and
Linux, and want to extend their knowledge into the various branches of the subject. In
writing the book, I assume a basic understanding of the Linux command line, and in the
programming examples, a working knowledge of the C language. Several chapters focus on
the hardware that goes into an embedded target board, and, so, a familiarity with hardware
and hardware interfaces will be a definite advantage in these cases.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "You
configure tap0 in exactly the same way as any other interface."

A block of code is set as follows:

/A

#address-cells = <2>;

#size-cells = <2>;

memory@80000000 {

device_type = "memory";

reg = <0x00000000 0x80000000 0 0x80000000>;
bi
bi

Any command-line input or output is written as follows:

$ mipsel-unkown-linux—-gnu—gcc —dumpmachine
milsel-unknown-linux—-gnu

[4]

Preface

New terms and important words are shown in bold.

0 Warnings or important notes appear in a box like this.
8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub. com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.

SN

[5]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e TAR for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Mastering-Embedded-Linux-Programming-Second-Edition. We also have other
code bundles from our rich catalog of books and videos available at https://github.com/p
acktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/down

loads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https://www.packtpub.com/book
s/content/supportand enter the name of the book in the search field. The required
information will appear under the Errata section.

[6]

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[7]

Starting Out

You are about to begin working on your next project, and this time it is going to be running
Linux. What should you think about before you put finger to keyboard? Let's begin with a
high-level look at embedded Linux and see why it is popular, what are the implications of
open source licenses, and what kind of hardware you will need to run Linux.

Linux first became a viable choice for embedded devices around 1999. That was when Axis
(https://www.axis.com), released their first Linux-powered network camera and TiVo (ht
tps://business.tivo.com/) their first Digital Video Recorder (DVR). Since 1999, Linux
has become ever more popular, to the point that today it is the operating system of choice
for many classes of product. At the time of writing, in 2017, there are about two billion
devices running Linux. That includes a large number of smartphones running Android,
which uses a Linux kernel, and hundreds of millions of set-top-boxes, smart TVs, and Wi-Fi
routers, not to mention a very diverse range of devices such as vehicle diagnostics,
weighing scales, industrial devices, and medical monitoring units that ship in smaller
volumes.

So, why does your TV run Linux? At first glance, the function of a TV is simple: it has to
display a stream of video on a screen. Why is a complex Unix-like operating system like
Linux necessary?

The simple answer is Moore's Law: Gordon Moore, co-founder of Intel, observed in 1965
that the density of components on a chip will double approximately every two years. That
applies to the devices that we design and use in our everyday lives just as much as it does
to desktops, laptops, and servers. At the heart of most embedded devices is a highly
integrated chip that contains one or more processor cores and interfaces with main memory,
mass storage, and peripherals of many types. This is referred to as a System on Chip, or
SoC, and SoCs are increasing in complexity in accordance with Moore's Law. A typical SoC
has a technical reference manual that stretches to thousands of pages. Your TV is not simply
displaying a video stream as the old analog sets used to do.

https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/

Starting Out

The stream is digital, possibly encrypted, and it needs processing to create an image. Your
TV is (or soon will be) connected to the Internet. It can receive content from smartphones,
tablets, and home media servers. It can be (or soon will be) used to play games. And so on
and so on. You need a full operating system to manage this degree of complexity.

Here are some points that drive the adoption of Linux:

e Linux has the necessary functionality. It has a good scheduler, a good network
stack, support for USB, Wi-Fi, Bluetooth, many kinds of storage media, good
support for multimedia devices, and so on. It ticks all the boxes.

¢ Linux has been ported to a wide range of processor architectures, including some
that are very commonly found in SoC designs—ARM, MIPS, x86, and PowerPC.

e Linux is open source, so you have the freedom to get the source code and modify
it to meet your needs. You, or someone working on your behalf, can create a
board support package for your particular SoC board or device. You can add
protocols, features, and technologies that may be missing from the mainline
source code. You can remove features that you don't need to reduce memory and
storage requirements. Linux is flexible.

¢ Linux has an active community; in the case of the Linux kernel, very active. There
is a new release of the kernel every 8 to 10 weeks, and each release contains code
from more than 1,000 developers. An active community means that Linux is up to
date and supports current hardware, protocols, and standards.

e Open source licenses guarantee that you have access to the source code. There is
no vendor tie-in.

For these reasons, Linux is an ideal choice for complex devices. But there are a few caveats I
should mention here. Complexity makes it harder to understand. Coupled with the fast
moving development process and the decentralized structures of open source, you have to
put some effort into learning how to use it and to keep on re-learning as it changes. I hope
that this book will help in the process.

Selecting the right operating system

Is Linux suitable for your project? Linux works well where the problem being solved
justifies the complexity. It is especially good where connectivity, robustness, and complex
user interfaces are required. However, it cannot solve every problem, so here are some
things to consider before you jump in:

[9]

Starting Out

e Is your hardware up to the job? Compared to a traditional real-time operating
system (RTOS) such as VxWorks, Linux requires a lot more resources. It needs at
least a 32-bit processor and lots more memory. I will go into more detail in the
section on typical hardware requirements.

¢ Do you have the right skill set? The early parts of a project, board bring-up,
require detailed knowledge of Linux and how it relates to your hardware.
Likewise, when debugging and tuning your application, you will need to be able
to interpret the results. If you don't have the skills in-house, you may want to
outsource some of the work. Of course, reading this book helps!

e Is your system real-time? Linux can handle many real-time activities so long as
you pay attention to certain details, which I will cover in detail in Chapter 16,
Real-Time Programming.

Consider these points carefully. Probably the best indicator of success is to look around for
similar products that run Linux and see how they have done it; follow best practice.

The players

Where does open source software come from? Who writes it? In particular, how does this
relate to the key components of embedded development—the toolchain, bootloader, kernel,
and basic utilities found in the root filesystem?

The main players are:

e The open source community: This, after all, is the engine that generates the
software you are going to be using. The community is a loose alliance of
developers, many of whom are funded in some way, perhaps by a not-for-profit
organization, an academic institution, or a commercial company. They work
together to further the aims of the various projects. There are many of
them —some small, some large. Some that we will be making use of in the
remainder of this book are Linux itself, U-Boot, BusyBox, Buildroot, the Yocto
Project, and the many projects under the GNU umbrella.

e CPU architects: These are the organizations that design the CPUs we use. The
important ones here are ARM/Linaro (ARM-based SoCs), Intel (x86 and x86_64),
Imagination Technologies (MIPS), and IBM (PowerPC). They implement or, at the
very least, influence support for the basic CPU architecture.

[10]

Starting Out

e SoC vendors (Atmel, Broadcom, Intel, Qualcomm, TI, and many others). They
take the kernel and toolchain from the CPU architects and modify them to
support their chips. They also create reference boards: designs that are used by
the next level down to create development boards and working products.

¢ Board vendors and OEMs: These people take the reference designs from SoC
vendors and build them in to specific products, for instance, set-top-boxes or
cameras, or create more general purpose development boards, such as those from
Avantech and Kontron. An important category are the cheap development
boards such as BeagleBoard/BeagleBone and Raspberry Pi that have created their
own ecosystems of software and hardware add-ons.

These form a chain, with your project usually at the end, which means that you do not have
a free choice of components. You cannot simply take the latest kernel from https://www.ke
rnel.org/, except in a few rare cases, because it does not have support for the chip or
board that you are using.

This is an ongoing problem with embedded development. Ideally, the developers at each
link in the chain would push their changes upstream, but they don't. It is not uncommon to
find a kernel which has many thousands of patches that are not merged. In addition, SoC
vendors tend to actively develop open source components only for their latest chips,
meaning that support for any chip more than a couple of years old will be frozen and not
receive any updates.

The consequence is that most embedded designs are based on old versions of software.
They do not receive security fixes, performance enhancements, or features that are in newer
versions. Problems such as Heartbleed (a bug in the OpenSSL libraries) and ShellShock (a
bug in the bash shell) go unfixed. I will talk more about this later in this chapter under the
topic of security.

What can you do about it? First, ask questions of your vendors: what is their update policy,
how often do they revise kernel versions, what is the current kernel version, what was the
one before that, and what is their policy for merging changes up-stream? Some vendors are
making great strides in this way. You should prefer their chips.

Secondly, you can take steps to make yourself more self-sufficient. The chapters in section 1
explain the dependencies in more detail and show you where you can help yourself. Don't
just take the package offered to you by the SoC or board vendor and use it blindly without
considering the alternatives.

[11]

https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/

Starting Out

Project life cycle

This book is divided into four sections that reflect the phases of a project. The phases are not
necessarily sequential. Usually they overlap and you will need to jump back to revisit
things that were done previously. However, they are representative of a developer's
preoccupations as the project progresses:

¢ Elements of embedded Linux (Chapters 1 to 6) will help you set up the
development environment and create a working platform for the later phases. It
is often referred to as the board bring-up phase.

¢ System architecture and design choices (Chapters 7 to 11) will help you to look at
some of the design decisions you will have to make concerning the storage of
programs and data, how to divide work between kernel device drivers and
applications, and how to initialize the system.

e Writing embedded applications (Chapters 12 and 13) shows how to make
effective use of the Linux process and threads model, and how to manage
memory in a resource-constrained device.

¢ Debugging and optimizing performance (Chapters 14 and 15) describes how to
trace, profile, and debug your code in both the applications and the kernel.

The fifth section on real-time (Chapter 16, Real-Time Programming) stands somewhat alone
because it is a small, but important, category of embedded systems. Designing for real-time
behavior has an impact on each of the four main phases.

The four elements of embedded Linux

Every project begins by obtaining, customizing, and deploying these four elements: the
toolchain, the bootloader, the kernel, and the root filesystem. This is the topic of the first
section of this book.

e Toolchain: The compiler and other tools needed to create code for your target
device. Everything else depends on the toolchain.

¢ Bootloader: The program that initializes the board and loads the Linux kernel.

e Kernel: This is the heart of the system, managing system resources and
interfacing with hardware.

* Root filesystem: Contains the libraries and programs that are run once the kernel
has completed its initialization.

[12]

Starting Out

Of course, there is also a fifth element, not mentioned here. That is the collection of
programs specific to your embedded application which make the device do whatever it is
supposed to do, be it weigh groceries, display movies, control a robot, or fly a drone.

Typically, you will be offered some or all of these elements as a package when you buy
your SoC or board. But, for the reasons mentioned in the preceding paragraph, they may
not be the best choices for you. I will give you the background to make the right selections
in the first six chapters and I will introduce you to two tools that automate the whole
process for you: Buildroot and the Yocto Project.

Open source

The components of embedded Linux are open source, so now is a good time to consider
what that means, why open sources work the way they do, and how this affects the often
proprietary embedded device you will be creating from: it.

Licenses

When talking about open source, the word free is often used. People new to the subject often
take it to mean nothing to pay, and open source software licenses do indeed guarantee that
you can use the software to develop and deploy systems for no charge. However, the more
important meaning here is freedom, since you are free to obtain the source code, modify it
in any way you see fit, and redeploy it in other systems. These licenses give you this right.
Compare that with shareware licenses which allow you to copy the binaries for no cost but
do not give you the source code, or other licenses that allow you to use the software for free
under certain circumstances, for example, for personal use but not commercial. These are
not open source.

I will provide the following comments in the interest of helping you understand the
implications of working with open source licenses, but I would like to point out that I am an
engineer and not a lawyer. What follows is my understanding of the licenses and the way
they are interpreted.

Open source licenses fall broadly into two categories: the copyleft licenses such as the
General Public License (GPL) and the permissive licenses such as those from the Berkeley
Software Distribution (BSD), the Apache Foundation, and others.

[13]

Starting Out

The permissive licenses say, in essence, that you may modify the source code and use it in
systems of your own choosing so long as you do not modify the terms of the license in any
way. In other words, with that one restriction, you can do with it what you want, including
building it into possibly proprietary systems.

The GPL licenses are similar, but have clauses which compel you to pass the rights to obtain
and modify the software on to your end users. In other words, you share your source code.
One option is to make it completely public by putting it onto a public server. Another is to
offer it only to your end users by means of a written offer to provide the code when
requested. The GPL goes further to say that you cannot incorporate GPL code into
proprietary programs. Any attempt to do so would make the GPL apply to the whole. In
other words, you cannot combine a GPL and proprietary code in one program.

So, what about libraries? If they are licensed with the GPL, any program linked with them
becomes GPL also. However, most libraries are licensed under the Lesser General Public
License (LGPL). If this is the case, you are allowed to link with them from a proprietary
program.

All the preceding description relates specifically to GLP v2 and LGPL v2.1. I should
mention the latest versions of GLP v3 and LGPL v3. These are controversial, and I will
admit that I don't fully understand the implications. However, the intention is to ensure
that the GPLv3 and LGPL v3 components in any system can be replaced by the end user,
which is in the spirit of open source software for everyone. It does pose some problems
though. Some Linux devices are used to gain access to information according to a
subscription level or another restriction, and replacing critical parts of the software may
compromise that. Set-top-boxes fit into this category. There are also issues with security. If
the owner of a device has access to the system code, then so might an unwelcome intruder.
Often the defense is to have kernel images that are signed by an authority, the vendor, so
that unauthorized updates are not possible. Is that an infringement of my right to modify
my device? Opinions differ.

The TiVo set-top-box is an important part of this debate. It uses a Linux
kernel, which is licensed under GPL v2. TiVo have released the source
code of their version of the kernel and so comply with the license. TiVo
also has a bootloader that will only load a kernel binary that is signed by
them. Consequently, you can build a modified kernel for a TiVo box but
you cannot load it on the hardware. The Free Software Foundation (FSF)
takes the position that this is not in the spirit of open source software and
refers to this procedure as Tivoization. The GPL v3 and LGPL v3 were
written to explicitly prevent this happening. Some projects, the Linux
kernel in particular, have been reluctant to adopt the version three licenses
because of the restrictions it would place on device manufacturers.

[14]

Starting Out

Hardware for embedded Linux

If you are designing or selecting hardware for an embedded Linux project, what do you
look out for?

Firstly, a CPU architecture that is supported by the kernel —unless you plan to add a new
architecture yourself, of course! Looking at the source code for Linux 4.9, there are 31
architectures, each represented by a sub-directory in the arch/ directory. They are all 32- or
64-bit architectures, most with a memory management unit (MMU), but some without. The
ones most often found in embedded devices are ARM, MIPS PowerPC, and X86, each in 32-
and 64-bit variants, and all of which have memory management units.

Most of this book is written with this class of processor in mind. There is another group that
doesn't have an MMU that runs a subset of Linux known as microcontroller Linux or
uClinux. These processor architectures include ARC, Blackfin, MicroBlaze, and Nios. I will
mention uClinux from time to time but I will not go into detail because it is a rather
specialized topic.

Secondly, you will need a reasonable amount of RAM. 16 MiB is a good minimum,
although it is quite possible to run Linux using half that. It is even possible to run Linux
with 4 MiB if you are prepared to go to the trouble of optimizing every part of the system. It
may even be possible to get lower, but there comes a point at which it is no longer Linux.

Thirdly, there is non-volatile storage, usually flash memory. 8 MiB is enough for a simple
device such as a webcam or a simple router. As with RAM, you can create a workable Linux
system with less storage if you really want to, but the lower you go, the harder it becomes.
Linux has extensive support for flash storage devices, including raw NOR and NAND flash
chips, and managed flash in the form of SD cards, eMMC chips, USB flash memory, and so
on.

Fourthly, a debug port is very useful, most commonly an RS-232 serial port. It does not
have to be fitted on production boards, but makes board bring-up, debugging, and
development much easier.

Fifthly, you need some means of loading software when starting from scratch. A few years
ago, boards would have been fitted with a Joint Test Action Group (JTAG) interface for
this purpose, but modern SoCs have the ability to load boot code directly from removable
media, especially SD and micro SD cards, or serial interfaces such as RS-232 or USB.

[15]

Starting Out

In addition to these basics, there are interfaces to the specific bits of hardware your device
needs to get its job done. Mainline Linux comes with open source drivers for many
thousands of different devices, and there are drivers (of variable quality) from the SoC
manufacturer and from the OEMs of third-party chips that may be included in the design,
but remember my comments on the commitment and ability of some manufacturers. As a
developer of embedded devices, you will find that you spend quite a lot of time evaluating
and adapting third-party code, if you have it, or liaising with the manufacturer if you don't.
Finally, you will have to write the device support for interfaces that are unique to the
device, or find someone to do it for you.

Hardware used in this book

The worked examples in this book are intended to be generic, but to make them relevant
and easy to follow, I have had to choose specific hardware. I have chosen two exemplar
devices: the BeagleBone Black and QEMU. The first is a widely-available and cheap
development board which can be used in serious embedded hardware. The second is a
machine emulator that can be used to create a range of systems that are typical of
embedded hardware. It was tempting to use QEMU exclusively, but, like all emulations, it
is not quite the same as the real thing. Using a BeagleBone Black, you have the satisfaction
of interacting with real hardware and seeing real LEDs flash. I could have selected a board
that is more up-to-date than the BeagleBone Black, which is several years old now, but I
believe that its popularity gives it a degree of longevity and it means that it will continue to
be available for some years yet.

In any case, I encourage you to try out as many of the examples as you can, using either of
these two platforms, or indeed any embedded hardware you may have to hand.

The BeagleBone Black

The BeagleBone and the later BeagleBone Black are open hardware designs for a small,
credit card sized development board produced by CircuitCo LLC. The main repository of
information is at https://beagleboard.org/. The main points of the specifications are:

o TT AM335x 1 GHz ARM® Cortex-A8 Sitara SoC
512 MiB DDR3 RAM

2 or 4 GiB 8-bit eMMC on-board flash storage
Serial port for debug and development

MicroSD connector, which can be used as the boot device
Mini USB OTG client/host port that can also be used to power the board

[16]

https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/

Starting Out

e Full size USB 2.0 host port
¢ 10/100 Ethernet port
e HDMI for video and audio output

In addition, there are two 46-pin expansion headers for which there are a great variety of
daughter boards, known as capes, which allow you to adapt the board to do many different
things. However, you do not need to fit any capes in the examples in this book.

In addition to the board itself, you will need:

¢ A mini USB to full-size USB cable (supplied with the board) to provide power,
unless you have the last item on this list.

e An RS-232 cable that can interface with the 6-pin 3.3V TTL level signals provided
by the board. The Beagleboard website has links to compatible cables.

¢ A microSD card and a means of writing to it from your development PC or
laptop, which will be needed to load software onto the board.

¢ An Ethernet cable, as some of the examples require network connectivity.

e Optional, but recommended, a 5V power supply capable of delivering 1 A or
more.

QEMU

QEMU is a machine emulator. It comes in a number of different flavors, each of which can
emulate a processor architecture and a number of boards built using that architecture. For
example, we have the following:

e gemu-system—arm: ARM

® gemu-system-mips: MIPS

® gemu-system-ppc: PowerPC

® gemu-system-x86: x86 and x86_64

For each architecture, QEMU emulates a range of hardware, which you can see by using the
option—machine help. Each machine emulates most of the hardware that would normally
be found on that board. There are options to link hardware to local resources, such as using
a local file for the emulated disk drive. Here is a concrete example:

$ gemu-system—arm -machine vexpress—a9 -m 256M —-drive
file=rootfs.ext4,sd —-net nic —net use -kernel zImage -dtb vexpress-
v2p-ca9.dtb -append "console=ttyAMAO, 115200 root=/dev/mmcblk0" -
serial stdio —-net nic,model=1an9118 -net tap,ifname=tap0

[17]

Starting Out

The options used in the preceding command line are:

® —machine vexpress-a9: Creates an emulation of an ARM Versatile Express
development board with a Cortex A-9 processor

e —m 256M: Populates it with 256 MiB of RAM

e —drive file=rootfs.ext4, sd: Connects the SD interface to the local file
rootfs.ext4 (which contains a filesystem image)

e —kernel zImage: Loads the Linux kernel from the local file named zImage

e —dtb vexpress-v2p-ca9.dtb: Loads the device tree from the local file
vexpress—-v2p-ca9.dtb

e —append "...":Supplies this string as the kernel command-line

e —serial stdio: Connects the serial port to the terminal that launched QEMU,
usually so that you can log on to the emulated machine via the serial console

e —net nic,model=1an9118: Creates a network interface

® —net tap, ifname=tap0: Connects the network interface to the virtual network
interface tap0

To configure the host side of the network, you need the tunct1l command from the User
Mode Linux (UML) project; on Debian and Ubuntu, the package is named uml-utilites:

$ sudo tunctl -u $(whoami) -t tapO

This creates a network interface named t ap0 which is connected to the network controller
in the emulated QEMU machine. You configure tap0 in exactly the same way as any other
interface.

All of these options are described in detail in the following chapters. I will be using
Versatile Express for most of my examples, but it should be easy to use a different machine
or architecture.

Software used in this book

I have used only open source software, both for the development tools and the target
operating system and applications. I assume that you will be using Linux on your
development system. I tested all the host commands using Ubuntu 14.04 and so there is a
slight bias towards that particular version, but any modern Linux distribution is likely to
work just fine.

[18]

Starting Out

Summary

Embedded hardware will continue to get more complex, following the trajectory set by
Moore's Law. Linux has the power and the flexibility to make use of hardware in an
efficient way.

Linux is just one component of open source software out of the many that you need to
create a working product. The fact that the code is freely available means that people and
organizations at many different levels can contribute. However, the sheer variety of
embedded platforms and the fast pace of development lead to isolated pools of software
which are not shared as efficiently as they should be. In many cases, you will become
dependent on this software, especially the Linux kernel that is provided by your SoC or
Board vendor, and to a lesser extent, the toolchain. Some SoC manufacturers are getting
better at pushing their changes upstream and the maintenance of these changes is getting
easier.

Fortunately, there are some powerful tools that can help you create and maintain the
software for your device. For example, Buildroot is ideal for small systems and the Yocto
Project for larger ones. Before I describe these build tools, I will describe the four elements
of embedded Linux, which you can apply to all embedded Linux projects, however they are
created.

The next chapter is all about the first of these, the toolchain, which you need to compile
code for your target platform.

[19]

Learning About Toolchains

The toolchain is the first element of embedded Linux and the starting point of your project.
You will use it to compile all the code that will run on your device. The choices you make at
this early stage will have a profound impact on the final outcome. Your toolchain should be
capable of making effective use of your hardware by using the optimum instruction set for
your processor. It should support the languages that you require, and have a solid
implementation of the Portable Operating System Interface (POSIX) and other system
interfaces. Not only that, but it should be updated when security flaws are discovered or
bugs are found. Finally, it should be constant throughout the project. In other words, once
you have chosen your toolchain, it is important to stick with it. Changing compilers and
development libraries in an inconsistent way during a project will lead to subtle bugs.

Obtaining a toolchain can be as simple as downloading and installing a TAR file, or it can
be as complex as building the whole thing from source code. In this chapter, I take the latter
approach, with the help of a tool called crosstool-NG, so that I can show you the details of
creating a toolchain. Later on in chapter 6, Selecting a Build System, I will switch to using
the toolchain generated by the build system, which is the more usual means of obtaining a
toolchain.

In this chapter, we will cover the following topics:

¢ Introducing toolchains

Finding a toolchain
Building a toolchain using the crosstool-NG tool

Anatomy of a toolchain
Linking with libraries —static and dynamic linking
The art of cross compiling

Learning About Toolchains

Introducing toolchains

A toolchain is the set of tools that compiles source code into executables that can run on
your target device, and includes a compiler, a linker, and run-time libraries. Initially you
need one to build the other three elements of an embedded Linux system: the bootloader,
the kernel, and the root filesystem. It has to be able to compile code written in assembly, C,
and C++ since these are the languages used in the base open source packages.

Usually, toolchains for Linux are based on components from the GNU project (http://www.
gnu.org), and that is still true in the majority of cases at the time of writing. However, over
the past few years, the Clang compiler and the associated Low Level Virtual Machine
(LLVM) project (http://11lvm.org) have progressed to the point that it is now a viable
alternative to a GNU toolchain. One major distinction between LLVM and GNU-based
toolchains is the licensing; LLVM has a BSD license while GNU has the GPL. There are
some technical advantages to Clang as well, such as faster compilation and better
diagnostics, but GNU GCC has the advantage of compatibility with the existing code base
and support for a wide range of architectures and operating systems. Indeed, there are still
some areas where Clang cannot replace the GNU C compiler, especially when it comes to
compiling a mainline Linux kernel. It is probable that, in the next year or so, Clang will be
able to compile all the components needed for embedded Linux and so will become an
alternative to GNU. There is a good description of how to use Clang for cross compilation at
http://clang.llvm.org/docs/CrossCompilation.html. If you would like to use it as part
of an embedded Linux build system, the EmbToolkit (https://www.embtoolkit.org) fully
supports both GNU and LLVM/Clang toolchains, and various people are working on using
Clang with Buildroot and the Yocto Project. I will cover embedded build systems in
Chapter 6, Selecting a Build System. Meanwhile, this chapter focuses on the GNU toolchain
as it is the only complete option at this time.

A standard GNU toolchain consists of three main components:

¢ Binutils: A set of binary utilities including the assembler and the linker. It is
available at http://www.gnu.org/software/binutils.

¢ GNU Compiler Collection (GCC): These are the compilers for C and other
languages which, depending on the version of GCC, include C++, Objective-C,
Objective-C+t, Java, Fortran, Ada, and Go. They all use a common backend
which produces assembler code, which is fed to the GNU assembler. It is
available at http://gcc.gnu.org/.

e Clibrary: A standardized application program interface (API) based on the
POSIX specification, which is the main interface to the operating system kernel
for applications. There are several C libraries to consider, as we shall see later on
in this chapter.

[21]

http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/

Learning About Toolchains

As well as these, you will need a copy of the Linux kernel headers, which contain
definitions and constants that are needed when accessing the kernel directly. Right now,
you need them to be able to compile the C library, but you will also need them later when
writing programs or compiling libraries that interact with particular Linux devices, for
example, to display graphics via the Linux frame buffer driver. This is not simply a question
of making a copy of the header files in the include directory of your kernel source code.
Those headers are intended for use in the kernel only and contain definitions that will cause
conflicts if used in their raw state to compile regular Linux applications.

Instead, you will need to generate a set of sanitized kernel headers, which I have illustrated
in Chapter 5, Building a Root Filesystem.

It is not usually crucial whether the kernel headers are generated from the exact version of
Linux you are going to be using or not. Since the kernel interfaces are always backwards-
compatible, it is only necessary that the headers are from a kernel that is the same as, or
older than, the one you are using on the target.

Most people would consider the GNU Debugger (GDB) to be part of the toolchain as well,
and it is usual that it is built at this point. I will talk about GDB in Chapter 14, Debugging
with GDB.

Types of toolchains

For our purposes, there are two types of toolchain:

e Native: This toolchain runs on the same type of system (sometimes the same
actual system) as the programs it generates. This is the usual case for desktops
and servers, and it is becoming popular on certain classes of embedded devices.
The Raspberry Pi running Debian for ARM, for example, has self-hosted native
compilers.

e Cross: This toolchain runs on a different type of system than the target, allowing
the development to be done on a fast desktop PC and then loaded onto the
embedded target for testing.

Almost all embedded Linux development is done using a cross development toolchain,
partly because most embedded devices are not well suited to program development since
they lack computing power, memory, and storage, but also because it keeps the host and
target environments separate. The latter point is especially important when the host and the
target are using the same architecture, x86_64, for example. In this case, it is tempting to
compile natively on the host and simply copy the binaries to the target.

[22]

Learning About Toolchains

This works up to a point, but it is likely that the host distribution will receive updates more
often than the target, or that different engineers building code for the target will have
slightly different versions of the host development libraries. Over time, the development
and target systems will diverge and you will violate the principle that the toolchain should
remain constant throughout the life of the project. You can make this approach work if you
ensure that the host and the target build environments are in lockstep with each other.
However, a much better approach is to keep the host and the target separate, and a cross
toolchain is the way to do that.

However, there is a counter argument in favor of native development. Cross development
creates the burden of cross-compiling all the libraries and tools that you need for your
target. We will see later in this chapter that cross-compiling is not always simple because
many open source packages are not designed to be built in this way. Integrated build tools,
including Buildroot and the Yocto Project, help by encapsulating the rules to cross compile
a range of packages that you need in typical embedded systems, but if you want to compile
a large number of additional packages, then it is better to natively compile them. For
example, building a Debian distribution for the Raspberry Pi or BeagleBone using a cross
compiler would be very hard. Instead, they are natively compiled. Creating a native build
environment from scratch is not easy. You would still need a cross compiler at first to create
the native build environment on the target, which you then use to build the packages. Then,
in order to perform the native build in a reasonable amount of time, you would need a
build farm of well-provisioned target boards, or you may be able to use QEMU to emulate
the target.

Meanwhile, in this chapter, I will focus on the more mainstream cross compiler
environment, which is relatively easy to set up and administer.

CPU architectures

The toolchain has to be built according to the capabilities of the target CPU, which includes:

e CPU architecture: ARM, MIPS, x86_64, and so on

e Big- or little-endian operation: Some CPUs can operate in both modes, but the
machine code is different for each

e Floating point support: Not all versions of embedded processors implement a
hardware floating point unit, in which case the toolchain has to be configured to
call a software floating point library instead

e Application Binary Interface (ABI): The calling convention used for passing
parameters between function calls

[23]

Learning About Toolchains

With many architectures, the ABI is constant across the family of processors. One notable
exception is ARM. The ARM architecture transitioned to the Extended Application Binary
Interface (EABI) in the late 2000s, resulting in the previous ABI being named the Old
Application Binary Interface (OABI). While the OABI is now obsolete, you continue to see
references to EABI. Since then, the EABI has split into two, based on the way the floating
point parameters are passed. The original EABI uses general purpose (integer) registers,
while the newer Extended Application Binary Interface Hard-Float (EABIHF) uses floating
point registers. The EABIHEF is significantly faster at floating point operations, since it
removes the need for copying between integer and floating point registers, but it is not
compatible with CPUs that do not have a floating point unit. The choice, then, is between
two incompatible ABIs; you cannot mix and match the two, and so you have to decide at
this stage.

GNU uses a prefix to the name of each tool in the toolchain, which identifies the various
combinations that can be generated. It consists of a tuple of three or four components
separated by dashes, as described here:

e CPU: This is the CPU architecture, such as ARM, MIPS, or x86_64. If the CPU has
both endian modes, they may be differentiated by adding e1 for little-endian or
eb for big-endian. Good examples are little-endian MIPS, mipsel and big-endian
ARM, armeb.

¢ Vendor: This identifies the provider of the toolchain. Examples include
buildroot, poky, Or just unknown. Sometimes it is left out altogether.

e Kernel: For our purposes, it is always 1inux.
¢ Operating system: A name for the user space component, which might be gnu or

mus 1. The ABI may be appended here as well, so for ARM toolchains, you may
see gnueabi, gnueabihf, musleabi, or musleabihf.

You can find the tuple used when building the toolchain by using the ~dumpmachine
option of gcc. For example, you may see the following on the host computer:

$ gcc —dumpmachine
x86_64-1linux—gnu

When a native compiler is installed on a machine, it is normal to create
links to each of the tools in the toolchain with no prefixes, so that you can
call the C compiler with the gcc command.

[24]

Learning About Toolchains

Here is an example using a cross compiler:

$ mipsel-unknown-linux—-gnu-gcc —dumpmachine
mipsel-unknown-linux—gnu

Choosing the C library

The programming interface to the Unix operating system is defined in the C language,
which is now defined by the POSIX standards. The C library is the implementation of that
interface; it is the gateway to the kernel for Linux programs, as shown in the following
diagram. Even if you are writing programs in another language, maybe Java or Python, the
respective run-time support libraries will have to call the C library eventually, as shown
here:

Application

C library

Linux Kernel

Whenever the C library needs the services of the kernel, it will use the kernel system call
interface to transition between user space and kernel space. It is possible to bypass the C
library by making the kernel system calls directly, but that is a lot of trouble and almost
never necessary.

There are several C libraries to choose from. The main options are as follows:

e glibc: This is the standard GNU C library, available at http://www.gnu.org/sof
tware/libe. Itis big and, until recently, not very configurable, but it is the most
complete implementation of the POSIX API. The license is LGPL 2.1.

o musl libc: This is available at https://www.musl-1libc.org. The musl libc
library is comparatively new, but has been gaining a lot of attention as a small
and standards-compliant alternative to GNU libc. It is a good choice for systems
with a limited amount of RAM and storage. It has an MIT license.

[25]

https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/

Learning About Toolchains

¢ uClibc-ng: This is available at https://uclibc-ng.org/. uis really a Greek mu
character, indicating that this is the micro controller C library. It was first
developed to work with uClinux (Linux for CPUs without memory management
units), but has since been adapted to be used with full Linux. The uClibc-ng
library is a fork of the original uClibc project (https://uclibc.org/), which has
unfortunately fallen into disrepair. Both are licensed with LGPL 2.1.

¢ eglibc: This is available at http://www.eglibc.org/home. Now obsolete, eglibc
was a fork of glibc with changes to make it more suitable for embedded usage.
Among other things, eglibc added configuration options and support for
architectures not covered by glibc, in particular the PowerPC e500 CPU core.
The code base from eglibc was merged back into glibc in version 2.20. The
eglibc library is no longer maintained.

So, which to choose? My advice is to use uClibc-ng only if you are using uClinux. If you
have very limited amount of storage or RAM, then mus1 libc is a good choice, otherwise,
use glibc, as shown in this flow chart:

Yes uClibc-ng
—(me
glibc L—>| uClibc-ng

No

<32 MiB
storage?

No

Finding a toolchain

You have three choices for your cross development toolchain: you may find a ready built
toolchain that matches your needs, you can use the one generated by an embedded build
tool which is covered in chapter ¢, Selecting a Build System, or you can create one yourself
as described later in this chapter.

[26]

https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home

Learning About Toolchains

A pre-built cross toolchain is an attractive option in that you only have to download and
install it, but you are limited to the configuration of that particular toolchain and you are
dependent on the person or organization you got it from. Most likely, it will be one of these:

e An SoC or board vendor. Most vendors offer a Linux toolchain.

e A consortium dedicated to providing system-level support for a given
architecture. For example, Linaro, (https://www.linaro.org/) have pre-built
toolchains for the ARM architecture.

e A third-party Linux tool vendor, such as Mentor Graphics, TimeSys, or
MontaVista.

¢ The cross tool packages for your desktop Linux distribution. For example,
Debian-based distributions have packages for cross compiling for ARM, MIPS,
and PowerPC targets.

¢ A binary SDK produced by one of the integrated embedded build tools. The
Yocto Project has some examples at
http://downloads.yoctoproject.org/releases/yocto/yocto-[version
]/toolchain.

¢ A link from a forum that you can't find any more.

In all of these cases, you have to decide whether the pre-built toolchain on offer meets your
requirements. Does it use the C library you prefer? Will the provider give you updates for
security fixes and bugs, bearing in mind my comments on support and updates from
Chapter 1, Starting Out. If your answer is no to any of these, then you should consider
creating your own.

Unfortunately, building a toolchain is no easy task. If you truly want to do the whole thing
yourself, take a look at Cross Linux From Scratch (http://trac.clfs.org). There you will
find step-by-step instructions on how to create each component.

A simpler alternative is to use crosstool-NG, which encapsulates the process into a set of
scripts and has a menu-driven frontend. You still need a fair degree of knowledge, though,
just to make the right choices.

It is simpler still to use a build system such as Buildroot or the Yocto Project, since they
generate a toolchain as part of the build process. This is my preferred solution, as I have
shown in chapter 6, Selecting a Build System.

[27]

https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org

Learning About Toolchains

Building a toolchain using crosstool-NG

Some years ago, Dan Kegel wrote a set of scripts and makefiles for generating cross
development toolchains and called it crosstool (http://kegel.com/crosstool/). In 2007,
Yann E. Morin used that base to create the next generation of crosstool, crosstool-NG (http
://crosstool-ng.github.io/). Today it is by far the most convenient way to create a
stand-alone cross toolchain from source.

Installing crosstool-NG

Before you begin, you will need a working native toolchain and build tools on your host
PC. To work with crosstool-NG on an Ubuntu host, you will need to install the packages
using the following command:

$ sudo apt-get install automake bison chrpath flex g++ git gperf \
gawk libexpatl-dev libncurses5-dev libsdll.2-dev libtool \
python2.7-dev texinfo

Next, get the current release from the crosstool-NG Git repository. In my examples, I have
used version 1.22.0. Extract it and create the frontend menu system, ct -ng, as shown in the
following commands:

git clone https://github.com/crosstool-ng/crosstool-ng.git
cd crosstool-ng

git checkout crosstool-ng-1.22.0

. /bootstrap

./configure --enable-local

make

make install

v v n

The ——enable-local option means that the program will be installed into the current
directory, which avoids the need for root permissions, as would be required if you were to
install it in the default location /usr/local/bin. Type ./ct-ng from the current directory
to launch the crosstool menu.

Building a toolchain for BeagleBone Black

Crosstool-NG can build many different combinations of toolchains. To make the initial
configuration easier, it comes with a set of samples that cover many of the common use-
cases. Use . /ct-ng list-samples to generate the list.

[28]

http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/

Learning About Toolchains

The BeagleBone Black has a TI AM335x SoC, which contains an ARM Cortex A8 core and a
VFPv3 floating point unit. Since the BeagleBone Black has plenty of RAM and storage, we
can use glibc as the C library. The closest sample is arm-cortex_a8-linux-gnueabi.
You can see the default configuration by prefixing the name with show-, as demonstrated
here:

$./ct-ng show—arm-cortex_a8-linux—gnueabi

[L..] arm-cortex_a8-linux-gnueabi

0S : linux-4.3

Companion libs : gmp-6.0.0a mpfr-3.1.3 mpc-1.0.3 libelf-0.8.13 expat-2.1.0
ncurses—6.0

binutils : binutils-2.25.1

C compilers : gcc | 5.2.0

Languages : C,C++

C library : glibc-2.22 (threads: nptl)

Tools : dmalloc-5.5.2 duma-2_5_15 gdb-7.10 ltrace-0.7.3 strace-4.10

This is a close match with our requirements, except that it using the eabi binary interface,
which passes floating point arguments in integer registers. We would prefer to use
hardware floating point registers for that purpose because it would speed up function calls
that have float and double parameter types. You can change the configuration later on, so
for now you should select this target configuration:

$./ct-ng arm-cortex_a8-linux—gnueabi

At this point, you can review the configuration and make changes using the configuration
menu command menuconfig:

$./ct—-ng menuconfig

The menu system is based on the Linux kernel menuconfig, and so navigation of the user
interface will be familiar to anyone who has configured a kernel. If not, refer to chapter 4,
Configuring and Building the Kernel for a description of menuconfig.

There are two configuration changes that I would recommend you make at this point:

¢ In Paths and misc options, disable Render the toolchain read-only
(CT_INSTALL_DIR_RO)

e In Target options | Floating point, select hardware (FPU) (CT_ARCH_FLOAT_HW)

[29]

Learning About Toolchains

The first is necessary if you want to add libraries to the toolchain after it has been installed,
which I describe later in this chapter. The second selects the eabihf binary interface for the
reasons discussed earlier. The names in parentheses are the configuration labels stored in
the configuration file. When you have made the changes, exit the menuconfig menu and
save the configuration as you do so.

Now you can use crosstool-NG to get, configure, and build the components according to
your specification, by typing the following command:

$./ct-ng build

The build will take about half an hour, after which you will find your toolchain is present in
~/x-tools/arm—-cortex_a8-linux—gnueabihf.

Building a toolchain for QEMU

On the QEMU target, you will be emulating an ARM-versatile PB evaluation board that has
an ARM926E]-S processor core, which implements the ARMvV5TE instruction set. You need
to generate a crosstool-NG toolchain that matches with the specification. The procedure is
very similar to the one for the BeagleBone Black.

You begin by running . /ct-ng list-samples to find a good base configuration to work
from. There isn't an exact fit, so use a generic target, arm-unknown-1linux-gnueabi. You
select it as shown, running distclean first to make sure that there are no artifacts left over
from a previous build:

$./ct-ng distclean
$./ct-ng arm-unknown-linux-gnueabi

As with the BeagleBone Black, you can review the configuration and make changes using
the configuration menu command . /ct-ng menuconfig. There is only one change
necessary:

¢ In Paths and misc options, disable Render the toolchain read-only
(CT_INSTALL_DIR_RO)

Now, build the toolchain with the command as shown here:
$./ct-ng build

As before, the build will take about half an hour. The toolchain will be installed in ~/x-
tools/arm-unknown-linux—-gnueabi.

[30]

Learning About Toolchains

Anatomy of a toolchain

To get an idea of what is in a typical toolchain, I want to examine the crosstool-NG
toolchain you have just created. The examples use the ARM Cortex A8 toolchain created for
the BeagleBone Black, which has the prefix arm-cortex_a8-1linux-gnueabihf-.If you
built the ARM926E]-S toolchain for the QEMU target, then the prefix will be arm-unknown-
linux-gnueabi instead.

The ARM Cortex A8 toolchain is in the directory ~/x-tools/arm-cortex_a8-linux—
gnueabihf/bin. In there you will find the cross compiler, arm-cortex_a8-linux—
gnueabihf-gcc. To make use of it, you need to add the directory to your path using the
following command:

$ PATH=~/x-tools/arm-cortex_a8-linux-gnueabihf/bin:$PATH

Now you can take a simple helloworld program, which in the C language looks like this:

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv([])
{
printf ("Hello, world!\n");
return O;

}

You compile it like this:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -o helloworld

You can confirm that it has been cross compiled by using the £ile command to print the
type of the file:

$ file helloworld
helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 4.3.0, not stripped

Finding out about your cross compiler

Imagine that you have just received a toolchain and that you would like to know more
about how it was configured. You can find out a lot by querying gcc. For example, to find
the version, you use ~~version:

[31]

Learning About Toolchains

$ arm-cortex_a8-linux—-gnueabihf-gcc --version
arm-cortex_a8-linux—-gnueabihf-gcc (crosstool-NG crosstool-ng-1.22.0) 5.2.0
Copyright (C) 2015 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

To find how it was configured, use —v:

$ arm-cortex_a8-linux-gnueabihf-gcc -v

Using built-in specs.

COLLECT_GCC=arm-cortex_a8-linux—-gnueabihf-gcc
COLLECT_LTO_WRAPPER=/home/chris/x-tools/arm-cortex_a8-linux—
gnueabihf/libexec/gcc/arm-cortex_a8-linux—-gnueabihf/5.2.0/lto-wrapper
Target: arm-cortex_a8-linux—-gnueabihf

Configured with: /home/chris/crosstool-ng/.build/src/gcc-5.2.0/configure —-
build=x86_64-build_pc-linux-gnu —--host=x86_64-build_pc-linux-gnu —-—
target=arm-cortex_a8-linux—-gnueabihf --prefix=/home/chris/x-tools/arm-
cortex_a8-linux—gnueabihf —--with-sysroot=/home/chris/x-tools/arm-cortex_a8-—

linux—gnueabihf/arm-cortex_a8-linux—-gnueabihf/sysroot —--enable-
languages=c, c++ —--with-cpu=cortex—-a8 —--with-float=hard --with-
pkgversion='crosstool-NG crosstool-ng-1.22.0' --enable-__ cxa_atexit --

disable-libmudflap —--disable-libgomp —--disable-libssp —--disable-libgquadmath
——disable-libquadmath-support —--disable-libsanitizer —--with-
gmp=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm-

cortex_a8-linux—gnueabihf/buildtools —--with-
mpfr=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm-
cortex_a8-linux—gnueabihf/buildtools —--with-
mpc=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm—
cortex_a8-linux—gnueabihf/buildtools —--with-
isl=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm-
cortex_a8-linux—gnueabihf/buildtools —--with-
cloog=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm—
cortex_a8-linux—gnueabihf/buildtools —--with-

libelf=/media/chris/android/home/training/MELP/ch02/crosstool-
ng/.build/arm-cortex_a8-linux—gnueabihf/buildtools —--enable-lto —--with-
host-libstdcxx="'-static-libgcc -Wl,-Bstatic, -1lstdc++, -Bdynamic -1lm' --
enable-threads=posix —-—-enable-target-optspace —--enable-plugin --enable-gold
——disable-nls —--disable-multilib —--with-local-prefix=/home/chris/x—
tools/arm-cortex_a8-linux—gnueabihf/arm-cortex_a8-linux—gnueabihf/sysroot -
—enable-long-long

Thread model: posix

gcc version 5.2.0 (crosstool-NG crosstool-ng-1.22.0)

[32]

Learning About Toolchains

There is a lot of output there, but the interesting things to note are:

e ——with-sysroot=/home/chris/x-tools/arm-cortex_a8-linux-
gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot: Thisis the default
sysroot directory; see the following section for an explanation

e ——enable-languages=c, c++: Using this, we have both C and C++ languages
enabled

e ——with-cpu=cortex-a8: The code is generated for an ARM Cortex A8 core

e ——with-float=hard: Generates opcodes for the floating point unit and uses the
VEFP registers for parameters

e ——enable-threads=posix: This enables the POSIX threads

These are the default settings for the compiler. You can override most of them on the gcc
command line. For example, if you want to compile for a different CPU, you can override
the configured setting, ——with-cpu, by adding -mcpu to the command line, as follows:

$ arm-cortex_a8-linux—-gnueabihf-gcc -mcpu=cortex-a5 helloworld.c \
—-o helloworld

You can print out the range of architecture-specific options available using ——target -
help, as follows:

$ arm-cortex_a8-linux—gnueabihf-gcc —--target-help

You may be wondering if it matters that you get the configuration exactly right at this point,
since you can always change it as shown here. The answer depends on the way you
anticipate using it. If you plan to create a new toolchain for each target, then it makes sense
to set everything up at the beginning, because it will reduce the risks of getting it wrong
later on. Jumping ahead a little to chapter 6, Selecting a Build System, I call this the
Buildroot philosophy. If, on the other hand, you want to build a toolchain that is generic
and you are prepared to provide the correct settings when you build for a particular target,
then you should make the base toolchain generic, which is the way the Yocto Project
handles things. The preceding examples follow the Buildroot philosophy.

[33]

Learning About Toolchains

The sysroot, library, and header files

The toolchain sysroot is a directory which contains subdirectories for libraries, header
files, and other configuration files. It can be set when the toolchain is configured through —-
with-sysroot=, or it can be set on the command line using --sysroot=. You can see the
location of the default sysroot by using -print-sysroot:

$ arm-cortex_a8-linux—gnueabihf-gcc -print-sysroot

/home/chris/x-tools/arm-cortex_a8-linux—-gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot

You will find the following subdirectories in sysroot:

e 1ib: Contains the shared objects for the C library and the dynamic linker/loader,
ld-linux

e usr/lib, the static library archive files for the C library, and any other libraries
that may be installed subsequently

e usr/include: Contains the headers for all the libraries

¢ usr/bin: Contains the utility programs that run on the target, such as the 1dd
command

e use/share: Used for localization and internationalization

¢ sbin: Provides the 1dconfig utility, used to optimize library loading paths

Plainly, some of these are needed on the development host to compile programs, and others
- for example, the shared libraries and 1d-1inux - are needed on the target at runtime.

Other tools in the toolchain

The following table shows various other components of a GNU toolchain, together with a
brief description:

Command |Description

addr2line | Converts program addresses into filenames and numbers by reading the
debug symbol tables in an executable file. It is very useful when decoding
addresses printed out in a system crash report.

ar The archive utility is used to create static libraries.

as This is the GNU assembler.

c++filt | Thisis used to demangle C++ and Java symbols.

[34]

Learning About Toolchains

Command |Description

cpp This is the C preprocessor and is used to expand #define, #include, and other
similar directives. You seldom need to use this by itself.

elfedit |Thisis used to update the ELF header of the ELF files.

g++ This is the GNU C++ frontend, which assumes that source files contain C++ code.

gcc This is the GNU C frontend, which assumes that source files contain C code.

gcov This is a code coverage tool.

gdb This is the GNU debugger.

gprof This is a program profiling tool.

1d This is the GNU linker.

nm This lists symbols from object files.

objcopy | Thisis used to copy and translate object files.

objdump |This is used to display information from object files.

ranlib This creates or modifies an index in a static library, making the linking stage
faster.

readelf |This displays information about files in ELF object format.

size This lists section sizes and the total size.

strings | This displays strings of printable characters in files.

strip This is used to strip an object file of debug symbol tables, thus making it smaller.
Typically, you would strip all the executable code that is put onto the target.

Looking at the components of the C library

The C library is not a single library file. It is composed of four main parts that together
implement the POSIX API:

e libc: The main Clibrary that contains the well-known POSIX functions such as
printf, open, close, read, write, and so on

¢ 1ibm: Contains maths functions such as cos, exp, and log

[35]

Learning About Toolchains

e libpthread: Contains all the POSIX thread functions with names beginning
with pthread_

e librt: Has the real-time extensions to POSIX, including shared memory and
asynchronous I/O

The first one, 1ibc, is always linked in but the others have to be explicitly linked with the -
1 option. The parameter to -1 is the library name with 1ib stripped off. For example, a
program that calculates a sine function by calling sin () would be linked with 1ibm using -
Im:

$ arm-cortex_a8-linux—-gnueabihf-gcc myprog.c —-o myprog -1lm

You can verify which libraries have been linked in this or any other program by using the
readelf command:

$ arm-cortex_a8-linux—-gnueabihf-readelf -a myprog | grep "Shared library"
0x00000001 (NEEDED) Shared library: [libm.so.6]
0x00000001 (NEEDED) Shared library: [libc.so.6]

Shared libraries need a runtime linker, which you can expose using:

$ arm-cortex_a8-linux—-gnueabihf-readelf -a myprog | grep "program
interpreter"
[Requesting program interpreter: /lib/ld-linux-armhf.so.3]

This is so useful that I have a script file named 1ist-1ibs, which you will find in the book
code archive in MELP /1ist~-1ibs. It contains the following commands:

#!/bin/sh
S{CROSS_COMPILE}readelf -a $1 | grep "program interpreter"
S{CROSS_COMPILE}readelf -a $1 | grep "Shared library"

Linking with libraries — static and dynamic
linking

Any application you write for Linux, whether it be in C or C++, will be linked with the C
library 1ibc. This is so fundamental that you don't even have to tell gcc or g++ to do it

because it always links 1ibc. Other libraries that you may want to link with have to be
explicitly named through the -1 option.

[36]

Learning About Toolchains

The library code can be linked in two different ways: statically, meaning that all the library
functions your application calls and their dependencies are pulled from the library archive
and bound into your executable; and dynamically, meaning that references to the library
files and functions in those files are generated in the code but the actual linking is done
dynamically at runtime. You will find the code for the examples that follow in the book
code archive in MELP/chapter_02/library.

Static libraries

Static linking is useful in a few circumstances. For example, if you are building a small
system which consists of only BusyBox and some script files, it is simpler to link BusyBox
statically and avoid having to copy the runtime library files and linker. It will also be
smaller because you only link in the code that your application uses rather than supplying
the entire C library. Static linking is also useful if you need to run a program before the
filesystem that holds the runtime libraries is available.

You tell to link all the libraries statically by adding -static to the command line:

$ arm-cortex_a8-linux-gnueabihf-gcc -static helloworld.c -o helloworld-
static

You will note that the size of the binary increases dramatically:

$ 1s -1
—-rwxrwxr—-x 1 chris chris 5884 Mar 5 09:56 helloworld
—rwxrwxr—x 1 chris chris 614692 Mar 5 10:27 helloworld-static

Static linking pulls code from a library archive, usually named 1ib[name] .a. In the
preceding case, itis 1ibc.a, whichisin [sysroot]/usr/lib:

$ export SYSROOT=$ (arm—cortex_a8-linux—gnueabihf-gcc —-print-sysroot)
$ cd $SYSROOT

$ 1s -1 usr/lib/libc.a

—rw-r-—-r—— 1 chris chris 3457004 Mar 3 15:21 usr/lib/libc.a

Note that the syntax export SYSROOT=$ (arm-cortex_a8-linux-gnueabihf-gcc -
print-sysroot) places the path to the sysroot in the shell variable, SYSROOT, which
makes the example a little clearer.

Creating a static library is as simple as creating an archive of object files using the ar
command. If I have two source files named test1.c and test2.c, and I want to create a
static library named libtest.a, then I would do the following;:

[371]

Learning About Toolchains

$ arm-cortex_a8-linux—-gnueabihf-gcc -c testl.c
$ arm-cortex_a8-linux—-gnueabihf-gcc -c test2.c
$ arm-cortex_a8-linux—-gnueabihf-ar rc libtest.a testl.o test2.o
$ 1s -1
total 24
—-rw-rw-r—— 1 chris chris 2392 Oct 9 09:28 libtest.a
—-rw-rw-r—— 1 chris chris 116 Oct 9 09:26 testl.c
—-rw-rw-r—— 1 chris chris 1080 Oct 9 09:27 testl.o

1 chris chris 121 Oct 9 09:26 test2.c

1 chris chris 1088 Oct 9 09:27 test2.o

—IrW—IXrw—r——
—IrW—IXrw—r——

Then I could link libtest into my helloworld program, using:

$ arm-cortex_a8-linux—-gnueabihf-gcc helloworld.c -ltest \
-L../libs -I../libs -o helloworld

Shared libraries

A more common way to deploy libraries is as shared objects that are linked at runtime,
which makes more efficient use of storage and system memory, since only one copy of the
code needs to be loaded. It also makes it easy to update the library files without having to
re-link all the programs that use them.

The object code for a shared library must be position-independent, so that the runtime
linker is free to locate it in memory at the next free address. To do this, add the -fpIC
parameter to gcc, and then link it using the —shared option:

$ arm-cortex_a8-linux—-gnueabihf-gcc —-fPIC -c testl.c
$ arm-cortex_a8-linux—-gnueabihf-gcc —-fPIC -c test2.c
$ arm-cortex_a8-linux—gnueabihf-gcc —-shared -o libtest.so testl.o test2.o

This creates the shared library, 1ibtest.so. To link an application with this library, you
add -1test, exactly as in the static case mentioned in the preceding section, but this time
the code is not included in the executable. Instead, there is a reference to the library that the
runtime linker will have to resolve:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest \
-L../libs -I../1libs —-o helloworld

$ MELP/list-libs helloworld

[Requesting program interpreter: /lib/ld-linux-armhf.so.3]
0x00000001 (NEEDED) Shared library: [libtest.so]
0x00000001 (NEEDED) Shared library: [libc.so.6]

[38]

Learning About Toolchains

The runtime linker for this program is /1ib/ld-linux-armhf.so. 3, which must be
present in the target's filesystem. The linker will look for 1ibtest . so in the default search
path: /1ib and /usr/1ib. If you want it to look for libraries in other directories as well,
you can place a colon-separated list of paths in the shell variable LD_LIBRARY_ PATH:

export LD_LIBRARY PATH=/opt/lib:/opt/usr/lib

Understanding shared library version numbers

One of the benefits of shared libraries is that they can be updated independently of the
programs that use them. Library updates are of two types: those that fix bugs or add new
functions in a backwards-compatible way, and those that break compatibility with existing
applications. GNU/Linux has a versioning scheme to handle both these cases.

Each library has a release version and an interface number. The release version is simply a
string that is appended to the library name; for example, the JPEG image library 1ibjpegis
currently at release 8.0.2 and so the library is named 1ibjpeg.so.8.0.2. Thereis a
symbolic link named 1ibjpeg.so to libjpeg.so.8.0.2, so that when you compile a
program with -1 jpeg, you link with the current version. If you install version 8.0.3, the link
is updated and you will link with that one instead.

Now suppose that version 9.0.0. comes along and that breaks the backwards compatibility.
The link from 1ibjpeg.so now points to 1ibjpeg.so.9.0.0, so that any new programs
are linked with the new version, possibly throwing compile errors when the interface to
libjpeg changes, which the developer can fix. Any programs on the target that are not
recompiled are going to fail in some way, because they are still using the old interface. This
is where an object known as the soname helps. The soname encodes the interface number
when the library was built and is used by the runtime linker when it loads the library. It is
formatted as <library name>.so.<interface number>.For libjpeg.so0.8.0.2, the
soname is 1libjpeg.so.8:

$ readelf -a /usr/lib/libjpeg.so.8.0.2 | grep SONAME
0x000000000000000e (SONAME) Library soname:
[1ibjpeg.so0.8]

Any program compiled with it will request 1ibjpeg.so. 8 at runtime, which will be a
symbolic link on the target to 1ibjpeg.so.8.0.2. When version 9.0.0 of 1ibjpeg is
installed, it will have a soname of 1ibjpeg.so. 9, and so it is possible to have two
incompatible versions of the same library installed on the same system. Programs that were
linked with 1ibjpeg.so.8.*.* will load 1ibjpeg.so. 8, and those linked with
libjpeg.so.9.*.* will load 1ibjpeg.so.9.

[39]

Learning About Toolchains

This is why, when you look at the directory listing of <sysroot>/usr/1ib/libjpeg*, you
find these four files:

e libjpeg.a: This is the library archive used for static linking

® libjpeg.so —-> libjpeg.so.8.0.2: Thisis a symbolic link, used for dynamic
linking

e libjpeg.so.8 —-> libjpeg.so.8.0.2: Thisis a symbolic link, used when
loading the library at runtime

® libjpeg.so.8.0.2: This is the actual shared library, used at both compile time
and runtime

The first two are only needed on the host computer for building and the last two are needed
on the target at runtime.

The art of cross compiling

Having a working cross toolchain is the starting point of a journey, not the end of it. At
some point, you will want to begin cross compiling the various tools, applications, and
libraries that you need on your target. Many of them will be open source packages—each of
which has its own method of compiling and its own peculiarities. There are some common
build systems, including;:

e Pure makefiles, where the toolchain is usually controlled by the make variable
CROSS_COMPILE

e The GNU build system known as Autotools

e CMake (https ://cmake. org/)

I will cover only the first two here since these are the ones needed for even a basic
embedded Linux system. For CMake, there are some excellent resources on the CMake
website referenced in the preceding point.

Simple makefiles

Some important packages are very simple to cross compile, including the Linux kernel, the
U-Boot bootloader, and BusyBox. For each of these, you only need to put the toolchain
prefix in the make variable CROSS_COMPILE, for example arm-cortex_a8-linux-
gnueabi-. Note the trailing dash -.

[40]

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

Learning About Toolchains

So, to compile BusyBox, you would type:

$ make CROSS_COMPILE=arm—cortex_a8-linux—-gnueabihf-

Or, you can set it as a shell variable:

$ export CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf-
$ make

In the case of U-Boot and Linux, you also have to set the make variable ARCH to one of the
machine architectures they support, which I will cover in chapter 3, All About Bootloaders,
and chapter 4, Configuring and Building the Kernel.

Autotools

The name Autotools refers to a group of tools that are used as the build system in many
open source projects. The components, together with the appropriate project pages, are:

. CHQL]AlHOCODf(https://www.gnu.orq/software/autoconf/autoconf.html)

¢ GNU Automake (https://www.gnu.org/savannah-checkouts/gnu/automake/)
e GNU Libtool (https://www.gnu.org/software/libtool/libtool.html)

e Gnulib (https://www.gnu.org/software/gnulib/)

The role of Autotools is to smooth over the differences between the many different types of
systems that the package may be compiled for, accounting for different versions of
compilers, different versions of libraries, different locations of header files, and
dependencies with other packages. Packages that use Autotools come with a script named
configure that checks dependencies and generates makefiles according to what it finds.
The configure script may also give you the opportunity to enable or disable certain
features. You can find the options on offer by running . /configure --help.

To configure, build, and install a package for the native operating system, you would
typically run the following three commands:

$./configure
$ make
$ sudo make install

Autotools is able to handle cross development as well. You can influence the behavior of the
configure script by setting these shell variables:

e cC: The C compiler command
e CFLAGS: Additional C compiler flags

[41]

https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/

Learning About Toolchains

e LDFLAGS: Additional linker flags; for example, if you have libraries in a non-
standard directory <1ib dir>, you would add it to the library search path by
adding -L<1ib dir>

e 1LIBS: Contains a list of additional libraries to pass to the linker; for instance, -1m
for the math library

e CPPFLAGS: Contains C/C++ preprocessor flags; for example, you would add -
I<include dir> to search for headers in a non-standard directory <include
dir>

e cpP: The C preprocessor to use

Sometimes it is sufficient to set only the cC variable, as follows:

$ CC=arm-cortex_a8-linux—-gnueabihf-gcc ./configure
At other times, that will result in an error like this:

[...]

checking whether we are cross compiling... configure: error: in
'/home/chris/MELP/build/sqlite—autoconf-3081101":

configure: error: cannot run C compiled programs.

If you meant to cross compile, use '—-host'.

See 'config.log' for more details

The reason for the failure is that configure often tries to discover the capabilities of the
toolchain by compiling snippets of code and running them to see what happens, which
cannot work if the program has been cross compiled. Nevertheless, there is a hint in the
error message on how to solve the problem. Autotools understands three different types of
machines that may be involved when compiling a package:

e Build is the computer that builds the package, which defaults to the current
machine.

¢ Host is the computer the program will run on; for a native compile, this is left
blank and it defaults to be the same computer as build. When you are cross
compiling, set it to be the tuple of your toolchain.

e Target is the computer the program will generate code for; you would set this
when building a cross compiler, for example.

So, to cross compile, you just need to override the host, as follows:

$ CC=arm-cortex_a8-linux—gnueabihf-gcc \
./configure —--host=arm-cortex_a8-linux—gnueabihf

[42]

Learning About Toolchains

One final thing to note is that the default install directory is <sysroot>/usr/local/*. You
would usually install it in <sysroot>/usr/*, so that the header files and libraries would
be picked up from their default locations. The complete command to configure a typical
Autotools package is as follows:

$ CC=arm-cortex_a8-linux—gnueabihf-gcc \
./configure —-host=arm-cortex_a8-linux—gnueabihf —--prefix=/usr

An example: SQLite

The SQLite library implements a simple relational database and is quite popular on
embedded devices. You begin by getting a copy of SQLite:

$ wget http://www.sqlite.org/2015/sqlite—autoconf-3081101.tar.gz
$ tar xf sqlite—autoconf-3081101.tar.gz
$ cd sglite—autoconf-3081101

Next, run the configure script:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc \
./configure --host=arm-cortex_a8-linux-gnueabihf --prefix=/usr

That seems to work! If it had failed, there would be error messages printed to the Terminal
and recorded in config. log. Note that several makefiles have been created, so now you
can build it:

$ make

Finally, you install it into the toolchain directory by setting the make variable DESTDIR. If
you don't, it will try to install it into the host computer's /usr directory, which is not what
you want:

$ make DESTDIR=$ (arm—cortex_a8-linux—gnueabihf-gcc —-print-sysroot) install

You may find that the final command fails with a file permissions error. A crosstool-NG
toolchain is read-only by default, which is why it is useful to set CT_INSTALL_DIR RO toy
when building it. Another common problem is that the toolchain is installed in a system
directory, such as /opt or /usr/local, in which case you will need root permissions
when running the install.

After installing, you should find that various files have been added to your toolchain:

e <sysroot>/usr/bin: sqglite3: Thisis a command-line interface for SQLite
that you can install and run on the target

[43]

Learning About Toolchains

e <sysroot>/usr/lib: libsglite3.s0.0.8.6,1libsglite3.s0.0,
libsqglite3.so, libsqglite3.1la, libsqglite3.a: These are the shared and
static libraries

e <sysroot>/usr/lib/pkgconfig: sqglite3.pc: Thisis the package
configuration file, as described in the following section

e <sysroot>/usr/lib/include: sqglite3.h, sqlite3ext.h: These are the
header files

e <sysroot>/usr/share/man/manl: sqlite3.1: This is the manual page

Now you can compile programs that use sqlite3 by adding -1sqglite3 at the link stage:
$ arm-cortex_a8-linux—-gnueabihf-gcc -lsqglite3 sqglite-test.c -o sqlite-test

Here, sqlite-test.c is a hypothetical program that calls SQLite functions. Since sqlite3
has been installed into the sysroot, the compiler will find the header and library files
without any problem. If they had been installed elsewhere, you would have had to add -
L<lib dir>and -I<include dir>.

Naturally, there will be runtime dependencies as well, and you will have to install the
appropriate files into the target directory as described in chapter 5, Building a Root
Filesystem.

Package configuration

Tracking package dependencies is quite complex. The package configuration utility pkg-
config (https://www.freedesktop.org/wiki/Software/pkg-config/) helps track which
packages are installed and which compile flags each needs by keeping a database of
Autotools packages in [sysroot]/usr/lib/pkgconfig. For instance, the one for SQLite3
isnamed sglite3.pc and contains essential information needed by other packages that
need to make use of it:

$ cat $(arm-cortex_a8-linux—gnueabihf-gcc -print-
sysroot) /usr/lib/pkgconfig/sqlite3.pc
Package Information for pkg-config

prefix=/usr
exec_prefix=${prefix}
libdir=${exec_prefix}/1lib
includedir=${prefix}/include

Name: SQLite
Description: SQL database engine

[44]

https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/

Learning About Toolchains

Version: 3.8.11.1

Libs: -L${libdir} -1lsglite3
Libs.private: -1dl -lpthread
Cflags: -I${includedir}

You can use pkg—-config to extract information in a form that you can feed straight to gcc.
In the case of a library like 1ibsqglite3, you want to know the library name (--1ibs) and
any special C flags (-—cflags):

$ pkg-config sqlite3 —--libs —--cflags

Package sglite3 was not found in the pkg-config search path.

Perhaps you should add the directory containing “sglite3.pc'

to the PKG_CONFIG_PATH environment variable
No package 'sqglite3' found

Oops! That failed because it was looking in the host's sysroot and the development
package for 1ibsglite3 has not been installed on the host. You need to point it at the
sysroot of the target toolchain by setting the shell variable PKG_CONFIG_LIBDIR:

$ export PKG_CONFIG_LIBDIR=$ (arm—cortex_a8-linux—-gnueabihf-gcc \
-print-sysroot) /usr/lib/pkgconfig

$ pkg-config sqlite3 —--libs —--cflags -lsqlite3

Now the output is -1sglite3. In this case, you knew that already, but generally you
wouldn't, so this is a valuable technique. The final commands to compile would be:

$ export PKG_CONFIG_LIBDIR=$ (arm—-cortex_a8-linux—-gnueabihf-gcc \
-print-sysroot) /usr/lib/pkgconfig

$ arm-cortex_a8-linux-gnueabihf-gcc $(pkg-config sqlite3 --cflags --1libs) \
sqlite-test.c -o sqglite-test

Problems with cross compiling

The sqlite3 is a well-behaved package and cross compiles nicely, but not all packages are the
same. Typical pain points include:

¢ Home-grown build systems; z1ib, for example, has a configure script, but it does
not behave like the Autotools configure described in the previous section

e Configure scripts that read pkg-config information, headers, and other files
from the host, disregarding the -~host override

e Scripts that insist on trying to run cross compiled code

[45]

Learning About Toolchains

Each case requires careful analysis of the error and additional parameters to the configure
script to provide the correct information, or patches to the code to avoid the problem
altogether. Bear in mind that one package may have many dependencies, especially with
programs that have a graphical interface using GTK or QT, or that handle multimedia
content. As an example, mplayer, which is a popular tool for playing multimedia content,
has dependencies on over 100 libraries. It would take weeks of effort to build them all.

Therefore, I would not recommend manually cross compiling components for the target in
this way, except when there is no alternative or the number of packages to build is small. A
much better approach is to use a build tool such as Buildroot or the Yocto Project, or avoid
the problem altogether by setting up a native build environment for your target
architecture. Now you can see why distributions like Debian are always compiled natively.

Summary

The toolchain is always your starting point; everything that follows from that is dependent
on having a working, reliable toolchain.

Most embedded build environments are based on a cross development toolchain, which
creates a clear separation between a powerful host computer building the code and a target
computer on which it runs. The toolchain itself consists of the GNU binutils, a C compiler
from the GNU compiler collection—and quite likely the C++ compiler as well —plus one of
the C libraries I have described. Usually, the GNU debugger, GDB, will be generated at this
point, which I describe in chapter 14, Debugging with GDB. Also, keep a watch out for the
Clang compiler, as it will develop over the next few years.

You may start with nothing but a toolchain—perhaps built using crosstool-NG or
downloaded from Linaro—and use it to compile all the packages that you need on your
target, accepting the amount of hard work this will entail. Or you may obtain the toolchain
as part of a distribution which includes a range of packages. A distribution can be generated
from source code using a build system such as Buildroot or the Yocto Project, or it can be a
binary distribution from a third party, maybe a commercial enterprise like Mentor
Graphics, or an open source project such as the Denx ELDK. Beware of toolchains or
distributions that are offered to you for free as part of a hardware package; they are often
poorly configured and not maintained. In any case, you should make your choice according
to your situation, and then be consistent in its use throughout the project.

Once you have a toolchain, you can use it to build the other components of your embedded
Linux system. In the next chapter, you will learn about the bootloader, which brings your
device to life and begins the boot process.

[46]

All About Bootloaders

The bootloader is the second element of embedded Linux. It is the part that starts the
system up and loads the operating system kernel. In this chapter, I will look at the role of
the bootloader and, in particular, how it passes control from itself to the kernel using a data
structure called a device tree, also known as a flattened device tree or FDT. I will cover the
basics of device trees, so that you will be able to follow the connections described in a
device tree and relate it to real hardware.

I will look at the popular open source bootloader, U-Boot, and show you how to use it to
boot a target device, and also how to customize it to run on a new device, using the
BeagleBone Black as an example. Finally, I will take a quick look at Barebox, a bootloader
that shares its past with U-Boot, but which has, arguably, a cleaner design.

In this chapter, we will cover the following topics:

e What does a bootloader do?

¢ The boot sequence.

¢ Booting with UEFI firmware.

e Moving from bootloader to kernel.
e Introducing device trees.

e Choosing a bootloader.

e U-Boot.

e Barebox.

All About Bootloaders

What does a bootloader do?

In an embedded Linux system, the bootloader has two main jobs: to initialize the system to
a basic level and to load the kernel. In fact, the first job is somewhat subsidiary to the
second, in that it is only necessary to get as much of the system working as is needed to
load the kernel.

When the first lines of the bootloader code are executed, following a power-on or a reset,
the system is in a very minimal state. The DRAM controller would not have been set up,
and so the main memory would not be accessible. Likewise, other interfaces would not have
been configured, so storage accessed via NAND flash controllers, MMC controllers, and so
on, would also not be usable. Typically, the only resources operational at the beginning are
a single CPU core and some on-chip static memory. As a result, system bootstrap consists of
several phases of code, each bringing more of the system into operation. The final act of the
bootloader is to load the kernel into RAM and create an execution environment for it. The
details of the interface between the bootloader and the kernel are architecture-specific, but
in each case it has to do two things. First, bootloader has to pass a pointer to a structure
containing information about the hardware configuration, and second it has to pass a
pointer to the kernel command line. The kernel command line is a text string that controls
the behavior of Linux. Once the kernel has begun executing, the bootloader is no longer
needed and all the memory it was using can be reclaimed.

A subsidiary job of the bootloader is to provide a maintenance mode for updating boot
configurations, loading new boot images into memory, and, maybe, running diagnostics.
This is usually controlled by a simple command-line user interface, commonly over a serial
interface.

The boot sequence

In simpler times, some years ago, it was only necessary to place the bootloader in non-
volatile memory at the reset vector of the processor. NOR flash memory was common at
that time and, since it can be mapped directly into the address space, it was the ideal
method of storage. The following diagram shows such a configuration, with the Reset
vector at Oxfffffffc at the top end of an area of flash memory. The bootloader is linked so
that there is a jump instruction at that location that points to the start of the bootloader
code:

[48]

All About Bootloaders

ssssssse L%
W flash

N\

Reset vector

DRAM

0x00000000

From that point, the bootloader code running in NOR flash memory can initialize the
DRAM controller, so that the main memory, the DRAM, becomes available and then it
copies itself into the DRAM. Once fully operational, the bootloader can load the kernel
from flash memory into DRAM and transfer control to it.

However, once you move away from a simple linearly addressable storage medium like
NOR flash, the boot sequence becomes a complex, multi-stage procedure. The details are
very specific to each SoC, but they generally follow each of the following phases.

Phase 1 — ROM code

In the absence of reliable external memory, the code that runs immediately after a reset or
power-on has to be stored on-chip in the SoC; this is known as ROM code. It is loaded into
the chip when it is manufactured, and hence the ROM code is proprietary and cannot be
replaced by an open source equivalent. Usually, it does not include code to initialize the
memory controller, since DRAM configurations are highly device-specific, and so it can
only use Static Random Access Memory (SRAM), which does not require a memory
controller.

[49]

All About Bootloaders

Most embedded SoC designs have a small amount of SRAM on-chip, varying in size from
as little as 4 KB to several hundred KB:

ROM code
M code loads

The ROM code is capable of loading a small chunk of code from one of several pre-
programmed locations into the SRAM. As an example, TI OMAP and Sitara chips try to
load code from the first few pages of NAND flash memory, or from flash memory
connected through a Serial Peripheral Interface (SPI), or from the first sectors of an MMC
device (which could be an eMMC chip or an SD card), or from a file named MLO on the first
partition of an MMC device. If reading from all of these memory devices fails, then it tries
reading a byte stream from Ethernet, USB, or UART,; the latter is provided mainly as a
means of loading code into flash memory during production, rather than for use in normal
operation. Most embedded SoCs have a ROM code that works in a similar way. In SoCs
where the SRAM is not large enough to load a full bootloader like U-Boot, there has to be an
intermediate loader called the secondary program loader, or SPL.

At the end of the ROM code phase, the SPL is present in the SRAM and the ROM code
jumps to the beginning of that code.

Phase 2 — secondary program loader

The SPL must set up the memory controller and other essential parts of the system
preparatory to loading the Tertiary Program Loader (TPL) into DRAM. The functionality of
the SPL is limited by the size of the SRAM. It can read a program from a list of storage
devices, as can the ROM code, once again using pre-programmed offsets from the start of a
flash device. If the SPL has file system drivers built in, it can read well known file names,
such as u-boot . img, from a disk partition. The SPL usually doesn't allow for any user
interaction, but it may print version information and progress messages, which you can see
on the console. The following diagram explains the phase 2 architecture:

[50]

All About Bootloaders

DRAM

SPL loads
TPL TPL into
DRAM

SoC

SRAM
77

e
ROM code zj‘////A
jumps
to SPL

ROM code

[]

The SPL may be open source, as is the case with the TI x-loader and Atmel AT91Bootstrap,
but it is quite common for it to contain proprietary code that is supplied by the
manufacturer as a binary blob.

At the end of the second phase, the TPL is present in DRAM, and the SPL can make a jump
to that area.

Phase 3 - TPL

Now, at last, we are running a full bootloader, such as U-Boot or BareBox. Usually, there is
a simple command-line user interface that lets you perform maintenance tasks, such as
loading new boot and kernel images into flash storage, and loading and booting a kernel,
and there is a way to load the kernel automatically without user intervention.

[51]

All About Bootloaders

The following diagram explains the phase 3 architecture:

DRAM
initramfs TPL loads
kernel (+
FDT optional FDT
and
Kernel initramfs)
image into DRAM
SoC
SPL jumps SRAM
to TPL SPL
ROM code

At the end of the third phase, there is a kernel in memory, waiting to be started.

Embedded bootloaders usually disappear from memory once the kernel is running, and
perform no further part in the operation of the system.

Booting with UEFI firmware

Most embedded x86/x86_64 designs, and some ARM designs, have firmware based on the
Universal Extensible Firmware Interface (UEFI) standard. You can take a look at the UEFI
website at http://www.uefi.org/ for more information. The boot sequence is
fundamentally the same as that described in the preceding section:

e Phase 1: The processor loads the platform initialization firmware from flash
memory. In some designs, it is loaded directly from NOR flash memory, while in
others, there is ROM code on-chip which loads the firmware from SP1I flash
memory into some on-chip static RAM.

[52]

http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/

All About Bootloaders

Phase 2: The platform initialization firmware performs the role of SPL. It
initializes the DRAM controller and other system interfaces, so as to be able to
load an EFI boot manager from the EFI System Partition (ESP) on a local disk, or
from a network server via PXE boot. The ESP must be formatted using FAT16 or
FAT32 format and it should have the well-known GUID value of C12A7328-
F81F-11D2-BA4B-00A0C93EC93B. The path name of the boot manager code
must follow the naming convention
<efi_system_partition>/boot/boot<machine_type_short_name>.efi.
For example, the file path to the loader on an x86_64 system would be
/efi/boot/bootx64.efi.

Phase 3: The UEFI boot manager is the tertiary program loader. The TPL in this
case has to be a bootloader that is capable of loading a Linux kernel and an
optional RAM disk into memory. Common choices are:

e systemd-boot: This used to be called gummiboot. It is a simple
UEFI-compatible bootloader, licensed under LGPL v2.1. The
website is https://www.freedesktop.org/wiki/Software/syste
md/systemd-boot/.

e Tummiboot: This is the gummiboot with trusted boot support
(Intel's Trusted Execution Technology (TEX)).

Moving from bootloader to kernel

When the bootloader passes control to the kernel it has to pass some basic information,
which may include some of the following:

The machine number, which is used on PowerPC, and ARM platforms without
support for a device tree, to identify the type of the SoC

Basic details of the hardware detected so far, including at least the size and
location of the physical RAM, and the CPU clock speed

The kernel command line
Optionally, the location and size of a device tree binary

Optionally, the location and size of an initial RAM disk, called the initial RAM
file system (initramfs)

[53]

https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/

All About Bootloaders

The kernel command line is a plain ASCII string which controls the behavior of Linux by
giving, for example, the name of the device that contains the root filesystem. I will look at
the details of this in the next chapter. It is common to provide the root filesystem as a RAM
disk, in which case it is the responsibility of the bootloader to load the RAM disk image into
memory. I will cover the way you create initial RAM disks in chapter 5, Building a Root
Filesystem.

The way this information is passed is dependent on the architecture and has changed in
recent years. For instance, with PowerPC, the bootloader simply used to pass a pointer to a
board information structure, whereas, with ARM, it passed a pointer to a list of A tags.
There is a good description of the format of A tags in the kernel source in
Documentation/arm/Booting.

In both cases, the amount of information passed was very limited, leaving the bulk of it to
be discovered at runtime or hard-coded into the kernel as platform data. The widespread
use of platform data meant that each board had to have a kernel configured and modified
for that platform. A better way was needed, and that way is the device tree. In the ARM
world, the move away from A tags began in earnest in February 2013 with the release of
Linux 3.8. Today, almost all ARM systems use device tree to gather information about the
specifics of the hardware platform, allowing a single kernel binary to run on a wide range
of those platforms.

Introducing device trees

If you are working with ARM or PowerPC SoCs, you are almost certainly going to
encounter device trees at some point. This section aims to give you a quick overview of
what they are and how they work, but there are many details that are not discussed.

A device tree is a flexible way to define the hardware components of a computer system.
Usually, the device tree is loaded by the bootloader and passed to the kernel, although it is
possible to bundle the device tree with the kernel image itself to cater for bootloaders that
are not capable of loading them separately.

The format is derived from a Sun Microsystems bootloader known as OpenBoot, which
was formalized as the Open Firmware specification, which is IEEE standard IEEE1275-1994.
It was used in PowerPC-based Macintosh computers and so was a logical choice for the
PowerPC Linux port. Since then, it has been adopted on a large scale by the many ARM
Linux implementations and, to a lesser extent, by MIPS, MicroBlaze, ARC, and other
architectures.

I would recommend visiting https://www.devicetree.org/ for more information.

[54]

https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/

All About Bootloaders

Device tree basics

The Linux kernel contains a large number of device tree source files in

arch/$ARCH/boot /dts, and this is a good starting point for learning about device trees.
There are also a smaller number of sources in the U-boot source code in arch/$ARCH/dts.
If you acquired your hardware from a third party, the dts file forms part of the board
support package and you should expect to receive one along with the other source files.

The device tree represents a computer system as a collection of components joined together
in a hierarchy, like a tree. The device tree begins with a root node, represented by a forward
slash, /, which contains subsequent nodes representing the hardware of the system. Each
node has a name and contains a number of properties in the form name = "value".Here
is a simple example:

/dts-v1l/;
/4
model = "TI AM335x BeagleBone";
compatible = "ti,am33xx";
#address—cells = <1>;
#size—-cells = <1>;
cpus {
#address—cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm, cortex-a8";
device_type = "cpu";
reg = <0>;
}i
}i
memory@0x80000000 {
device_type = "memory";
reg = <0x80000000 0x20000000>; /* 512 MB */
}i
}i

Here we have a root node which contains a cpus node and a memory node. The cpus node
contains a single CPU node named cpu@0. It is a common convention that the names of
nodes include an @ followed by an address that distinguishes this node from other nodes of
the same type.

Both the root and CPU nodes have a compatible property. The Linux kernel uses this
property to find a matching device driver by comparing it with the strings exported by each
device driver in a structure of_device_id (more on this in chapter 9, Interfacing with
Device Drivers).

[551]

All About Bootloaders

It is a convention that the value is composed of a manufacturer name and a component
name, to reduce confusion between similar devices made by different manufacturers; hence,
ti,am33xx and arm, cortex-a8. It is also quite common to have more than one value for
the compatible property where there is more than one driver that can handle this device.
They are listed with the most suitable first.

The CPU node and the memory node have a device_type property which describes the
class of device. The node name is often derived from device_type.

The reg property

The memory and cpu nodes have a reg property, which refers to a range of units in a
register space. A reg property consists of two values representing the start address and the
size (length) of the range. Both are written as zero or more 32-bit integers, called cells.
Hence, the memory node refers to a single bank of memory that begins at 0x80000000 and
is 0x20000000 bytes long.

Understanding reg properties becomes more complex when the address or size values
cannot be represented in 32 bits. For example, on a device with 64-bit addressing, you need
two cells for each:

/A
#address-cells = <2>;
#size-cells = <2>;
memory@80000000 {
device_type = "memory";
reg = <0x00000000 0x80000000 0 0x80000000>;
bi
bi

The information about the number of cells required is held in the #address-cells and
#size_cells properties in an ancestor node. In other words, to understand a reg
property, you have to look backwards down the node hierarchy until you find #address-
cells and #size_cells. If there are none, the default values are 1 for each-but it is bad
practice for device tree writers to depend on fall-backs.

Now, let's return to the cpu and cpus nodes. CPUs have addresses as well; in a quad core
device, they might be addressed as 0, 1, 2, and 3. That can be thought of as a one-
dimensional array without any depth, so the size is zero. Therefore, you can see that we
have #address—cells = <1>and #size-cells = <0>in the cpus node, and in the
child node, cpu@0, we assign a single value to the reg property, reg = <0>.

[561]

All About Bootloaders

Labels and interrupts

The structure of the device tree described so far assumes that there is a single hierarchy of
components, whereas in fact there are several. As well as the obvious data connection
between a component and other parts of the system, it might also be connected to an
interrupt controller, to a clock source, and to a voltage regulator. To express these
connections, we can add a label to a node and reference the label from other nodes. These
labels are sometimes referred to as phandles, because when the device tree is compiled,
nodes with a reference from another node are assigned a unique numerical value in a
property called phandle. You can see them if you decompile the device tree binary.

Take as an example a system containing an LCD controller which can generate interrupts
and an interrupt-controller:

/dts-v1/;
{
intc: interrupt-controller@48200000 {
compatible = "ti,am33xx-intc";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x48200000 0x1000>;
bi

lcdc: 1cdc@4830e000 A
compatible = "ti,am33xx-tilcdc";
reg = <0x4830e000 0x1000>;
interrupt—-parent = <&intc>;
interrupts = <36>;
ti, hwmods = "lcdc";
status = "disabled";

bi

bi

Here we have node interrupt—-controller@48200000 with the label intc. The
interrupt-controller property identifies it as an interrupt controller. Like all interrupt
controllers, it has an #interrupt-cells property, which tells us how many cells are
needed to represent an interrupt source. In this case, there is only one which represents the
interrupt request (IRQ) number. Other interrupt controllers may use additional cells to
characterize the interrupt, for example to indicate whether it is edge or level triggered. The
number of interrupt cells and their meanings is described in the bindings for each interrupt
controller. The device tree bindings can be found in the Linux kernel source, in the directory
Documentation/devicetree/bindings/.

[571

All About Bootloaders

Looking at the 1cdc@4830e000 node, it has an interrupt-parent property, which
references the interrupt controller it is connected to, using the label. It also has an
interrupts property, 36 in this case. Note that this node has its own label, lcdc, which is
used elsewhere: any node can have a label.

Device tree include files

A lot of hardware is common between SoCs of the same family and between boards using
the same SoC. This is reflected in the device tree by splitting out common sections into
include files, usually with the extension .dtsi. The Open Firmware standard defines
/include/ as the mechanism to be used, as in this snippet from vexpress-v2p-ca9.dts:

/include/ "vexpress-v2m.dtsi"

Look through the . dts files in the kernel, though, and you will find an alternative include
statement that is borrowed from C, for example in am335x-boneblack.dts:

#include "am33xx.dtsi"
#include "am335x-bone-common.dtsi"

Here is another example from am33xx.dtsi:

#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/pinctrl/am33xx.h>

Lastly, include/dt-bindings/pinctrl/am33xx.h contains normal C macros:

#define PULL_DISABLE (1 << 3)
#define INPUT_EN (1 << 5)
#define SLEWCTRL_SLOW (1 << 6)
#define SLEWCTRL_FAST 0

All of this is resolved if the device tree sources are built using the Kbuild system, which first
runs them through the C pre-processor, CPP, where the #include and #define statements
are processed into text that is suitable for the device tree compiler. The motivation is
illustrated in the previous example; it means that the device tree sources can use the same
definitions of constants as the kernel code.

[581]

All About Bootloaders

When we include files, using either syntax, the nodes are overlaid on top of one another to
create a composite tree in which the outer layers extend or modify the inner ones. For
example, am33xx.dtsi, which is general to all am33xx SoCs, defines the first MMC
controller interface like this:

mmcl: mmc@48060000 A
compatible = "ti, omap4-hsmmc";
ti,hwmods = "mmcl";
ti,dual-volt;
ti,needs-special-reset;
ti,needs-special-hs-handling;
dmas = <&edma 24 &edma 25>;

dma-names = "tx", "rx";
interrupts = <64>;
interrupt-parent = <&intc>;
reg = <0x48060000 0x1000>;
status = "disabled";

}i

Note that the status is disabled, meaning that no device driver should be bound to it,
and also that it has the label mmc1.

Both the BeagleBone and the BeagleBone Black have a microSD card interface attached to
mmc1, hence in am335x-bone-common. dtsi, the same node is referenced by its label,
&mmcl:

gmmcl |
status = "okay";
bus-width = <0x4>;
pinctrl-names = "default";
pinctrl-0 = <&mmcl_pins>;
cd-gpios = <&gpio0 6 GPIO_ACTIVE_HIGH>;
cd-inverted;
bi

The status property is set to okay, which causes the mmc device driver to bind with this
interface at runtime on both variants of the BeagleBone. Also, a label is added to the pin
control configuration, mmc1_pins. Alas, there is not sufficient space here to describe pin
control and pin multiplexing. You will find some information in the Linux kernel source in
directory devicetree/bindings/pinctrl.

[591]

All About Bootloaders

However, interface mmc1 is connected to a different voltage regulator on the BeagleBone
Black. This is expressed in am335x-boneblack.dts, where you will see another reference
to mmc1, which associates it with the voltage regulator via label vmmcsd_fixed:

gmmcl |
vmmc-supply = <&vmmcsd_fixed>;
Vi

So, layering device tree source files like this gives flexibility and reduces the need for
duplicated code.

Compiling a device tree

The bootloader and kernel require a binary representation of the device tree, so it has to be
compiled using the device tree compiler, dtc. The result is a file ending with . dtb, which is
referred to as a device tree binary or a device tree blob.

There is a copy of dtc in the Linux source, in scripts/dtc/dtc, and it is also available as
a package on many Linux distributions. You can use it to compile a simple device tree (one
that does not use #include) like this:

$ dtc simpledts-1.dts -o simpledts-1.dtb
DTC: dts—->dts on file "simpledts-1.dts"

Be wary of the fact that dt c does not give helpful error messages and it makes no checks
other than on the basic syntax of the language, which means that debugging a typing error
in a source file can be a lengthy business.

To build more complex examples, you will have to use the kernel Kbuild, as shown in the
next chapter.

Choosing a bootloader

Bootloaders come in all shapes and sizes. The kind of characteristics you want from a
bootloader are that they be simple and customizable with lots of sample configurations for
common development boards and devices. The following table shows a number of
bootloaders that are in general use:

[60]

All About Bootloaders

Name Main architectures supported

Das U-Boot ARC, ARM, Blackfin, Microblaze, MIPS, Nios2, OpenRiec, PowerPC, SH
Barebox ARM, Blackfin, MIPS, Nios2, PowerPC

GRUB 2 X86, X86_64

Little Kernel ARM

RedBoot ARM, MIPS, PowerPC, SH

CFE Broadcom MIPS

YAMON MIPS

We are going to focus on U-Boot because it supports a good number of processor
architectures and a large number of individual boards and devices. It has been around for a
long time and has a good community for support.

It may be that you received a bootloader along with your SoC or board. As always, take a
good look at what you have and ask questions about where you can get the source code
from, what the update policy is, how they will support you if you want to make changes,
and so on. You may want to consider abandoning the vendor-supplied loader and using the
current version of an open source bootloader instead.

U-Boot

U-Boot, or to give its full name, Das U-Boot, began life as an open source bootloader for
embedded PowerPC boards. Then, it was ported to ARM-based boards and later to other
architectures, including MIPS and SH. It is hosted and maintained by Denx Software
Engineering. There is plenty of information available, and a good place to startis http://ww
w.denx.de/wiki/U-Boot. There is also a mailing list at u-boot@lists.denx.de.

Building U-Boot

Begin by getting the source code. As with most projects, the recommended way is to clone
the . git archive and check out the tag you intend to use, which, in this case, is the version
that was current at the time of writing:

$ git clone git://git.denx.de/u-boot.git

$ cd u-boot
$ git checkout v2017.01

Alternatively, you can get a tarball from ftp://ftp.denx.de/pub/u-boot.

[61]

http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot

All About Bootloaders

There are more than 1,000 configuration files for common development boards and devices
in the configs/ directory. In most cases, you can make a good guess of which to use, based
on the filename, but you can get more detailed information by looking through the per-
board README files in the board/ directory, or you can find information in an appropriate
web tutorial or forum.

Taking the BeagleBone Black as an example, we find that there is a likely configuration file
named configs/am335x_boneblack_defconfig and we find the text The binary
produced by this board supports ..Beaglebone Black in the board README files for
the am335x chip, board/ti/am335x/README. With this knowledge, building U-Boot for a
BeagleBone Black is simple. You need to inform U-Boot of the prefix for your cross compiler
by setting the make variable CROSS_COMPILE, and then selecting the configuration file
using a command of the type make [board]_defconfig. Therefore, to build U-Boot
using the Crosstool-NG compiler we created in chapter 2, Learning About Toolchains, you
would type:

$ source MELP/chapter_02/set-path-arm-cortex_a8-linux—-gnueabihf
$ make CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf-
am335x_boneblack_defconfig

$ make CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf-

The results of the compilation are:

e u-boot: U-Boot in ELF object format, suitable for use with a debugger
e u-boot .map: The symbol table
® u-boot .bin: U-Boot in raw binary format, suitable for running on your device

e u-boot.img: Thisis u-boot .bin with a U-Boot header added, suitable for
uploading to a running copy of U-Boot

e u-boot.srec: U-Boot in Motorola S-record (SRECORD or SRE) format, suitable
for transferring over a serial connection

The BeagleBone Black also requires a secondary program loader (SPL), as described earlier.
This is built at the same time and is named MLO:

$ 1s -1 MLO u-boot*

-rw-rw-r—— 1 chris chris 78416 Mar 9 10:13 u-boot/MLO

—rwxrwxr—-x 1 chris chris 2943940 Mar 9 10:13 u-boot/u-boot

-rwxrwxr—-x 1 chris chris 368348 Mar 9 10:13 u-boot/u-boot.bin

—rw-rw-r—— 1 chris chris 368412 Mar 9 10:13 u-boot/u-boot.img

—rw-rw—-r—— 1 chris chris 520741 Mar 9 10:13 u-boot/u-boot.map
1

—IWXTWXT—X chris chris 1105162 Mar 9 10:13 u-boot/u-boot.srec

The procedure is similar for other targets.

[62]

All About Bootloaders

Installing U-Boot

Installing a bootloader on a board for the first time requires some outside assistance. If the
board has a hardware debug interface, such as JTAG, it is usually possible to load a copy of
U-Boot directly into RAM and set it running. From that point, you can use U-Boot
commands to copy itself into flash memory. The details of this are very board-specific and
outside the scope of this book.

Many SoC designs have a boot ROM built in, which can be used to read boot code from
various external sources, such as SD cards, serial interfaces, or USB mass storage. This is the
case with the am335x chip in the BeagleBone Black, which makes it easy to try out new
software.

You will need an SD card reader to write the images to a card. There are two types: external
readers that plug into a USB port, and the internal SD readers that are present on many
laptops. A device name is assigned by Linux when a card is plugged into the reader. The
command 1sblk is a useful tool to find out which device has been allocated. For example,
this is what I see when I plug a nominal 8 GB microSD card into my card reader:

$ 1lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 477G 0 disk

F-sdal 8:1 0 500M 0 part /boot/efi

F-sda2 8:2 0 40M 0 part

F-sda3 8:3 0 3G 0 part

F-sda4 8:4 0 457.6G 0 part /

L-sda5 8:5 0 15.8G 0 part [SWAP]

sdb 8:16 1 7.2G 0 disk

L-sdbl 8:17 1 7.2G 0 part /media/chris/101F-5626

In this case, sda is my 512 GB hard drive and sdb is the microSD card. It has a single
partition, sdb1, which is mounted as directory /media/chris/101F-5626.

Although the microSD card had 8 GB printed on the outside, it was only
7.2 GB on the inside. In part, this is because of the different units used. The
advertised capacity is measured in Gigabytes, 10, but the sizes reported
by software are in Gibibytes, 2*. Gigabytes are abbreviated GB, Gibibytes
as GiB. The same applies for KB and KiB, and MB and MiB. In this book, I
have tried to use the right units. In the case of the SD card, it so happens
that 8 Gigabytes is approximately 7.4 Gibibytes. The remaining
discrepancy is because flash memory always has to reserve some space for
bad block handling. This is a topic that I will return to in Chapter 7,
Creating a Storage Strategy.

[63]

All About Bootloaders

If I use the built-in SD card slot, I see this:

$ 1lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 477G 0 disk

-sdal 8:1 0 500M 0 part /boot/efi
F-sda2 8:2 0 40M 0 part

-sda3 8:3 0 3G 0 part

-sda4 8:4 0 457.6G 0 part /
L-sda5 8:5 0 15.8G 0 part [SWAP]

mmcblk0 179:0 0 7.2G 0 disk
LmmcblkOpl 179:1 0 7.2G 0 part /media/chris/101F-5626

In this case, the micro SD card appears as mmcb1k0 and the partition is mmcb1k0p1. Note
that the microSD card you use may have been formatted differently to this one and so you
may see a different number of partitions with different mount points. When formatting an
SD card, it is very important to be sure of its device name. You really don't want to mistake
your hard drive for an SD card and format that instead. This has happened to me more than
once. So, I have provided a shell script in the book's code archive named MELP/format—
sdcard. sh, which has a reasonable number of checks to prevent you (and me) from using
the wrong device name. The parameter is the device name of the microSD card, which
would be sdb in the first example and mmcb1k0 in the second. Here is an example of its use:

$ MELP/format-sdcard.sh mmcblkO

The script creates two partitions: the first is 64 MiB, formatted as FAT32, and will contain
the bootloader, and the second is 1 GiB, formatted as ext 4, which you will use in Chapter
5, Building a Root Filesystem.

After you have formatted the microSD card, remove it from the card reader and then re-
insert it so that the partitions are auto mounted. On current versions of Ubuntu, the two
partitions should be mounted as /media/ [user] /boot and /media/ [user]/rootfs.
Now you can copy the SPL and U-Boot to it like this:

$ cp MLO u-boot.img /media/chris/boot

Finally, unmount it:

$ sudo umount /media/chris/boot

[64]

All About Bootloaders

Now, with no power on the BeagleBone board, insert the micro-SD card into the reader.
Plug in the serial cable. A serial port should appear on your PC as /dev/ttyUSBO. Start a
suitable terminal program, such as gtkterm, minicom, or picocom, and attach to the port
at 115200 bps (bits per second) with no flow control. gt kterm is probably the easiest to
setup and use:

$ gtkterm -p /dev/ttyUSBO -s 115200

Press and hold the Boot Switch button on the Beaglebone Black, power up the board using
the external 5V power connector, and release the button after about 5 seconds. You should
see a U-Boot prompt on the serial console:

U-Boot#

Using U-Boot

In this section, I will describe some of the common tasks that you can use U-Boot to
perform.

Usually, U-Boot offers a command-line interface over a serial port. It gives a Command
Prompt which is customized for each board. In the examples, I will use U-Boot #. Typing
help prints out all the commands configured in this version of U-Boot; typing help
<command> prints out more information about a particular command.

The default command interpreter for the BeagleBone Black is quite simple. You cannot do
command-line editing by pressing cursor left or right keys; there is no command
completion by pressing the Tab key; and there is no command history by pressing the
cursor up key. Pressing any of these keys will disrupt the command you are currently
trying to type, and you will have to type Ctrl + C and start over again. The only line editing
key you can safely use is the backspace. As an option, you can configure a different
command shell called Hush, which has more sophisticated interactive support, including
command-line editing.

The default number format is hexadecimal. Consider the following command as an
example:

nand read 82000000 400000 200000

This will read 0x200000 bytes from offset 0x400000 from the start of the NAND flash
memory into RAM address 0x82000000.

[65]

All About Bootloaders

Environment variables

U-Boot uses environment variables extensively to store and pass information between
functions and even to create scripts. Environment variables are simple name=value pairs
that are stored in an area of memory. The initial population of variables may be coded in
the board configuration header file, like this:

#define CONFIG_EXTRA_ENV_SETTINGS
"myvarl=valuel"
"myvar2=value2"

[...]

You can create and modify variables from the U-Boot command line using setenv. For
example, setenv foo bar creates the variable foo with the value bar. Note that there is
no = sign between the variable name and the value. You can delete a variable by setting it to
anull string, setenv foo. You can print all the variables to the console using printenv,
or a single variable using printenv foo.

If U-Boot has been configured with space to store the environment, you can use the
saveenv command to save it. If there is raw NAND or NOR flash, then an erase block can
be reserved for this purpose, often with another used for a redundant copy to guard against
corruption. If there is eMMC or SD card storage, it can be stored in a reserved array of
sectors, or in a file named uboot . env in a partition of the disk. Other options include
storing in a serial EEPROM connected via an I2C or SPI interface or non-volatile RAM.

Boot image format

U-Boot doesn't have a filesystem. Instead, it tags blocks of information with a 64-byte
header so that it can track the contents. You prepare files for U-Boot using the mkimage
command. Here is a brief summary of its usage:

$ mkimage

Usage: mkimage -1 image

-1 ==> list image header information

mkimage [-x] —-A arch -0 os -T type -C comp —-a addr -e ep -n name -d
data_file[:data_file...] image

—A ==> set architecture to 'arch'

-0 ==> set operating system to 'os'

-T ==> set image type to 'type'

—-C ==> set compression type 'comp'

—a ==> set load address to 'addr' (hex)
—e ==> set entry point to 'ep' (hex)

-n ==> set image name to 'name'

-d ==> use image data from 'datafile'

[66]

All About Bootloaders

-x ==> set XIP (execute in place)

mkimage [-D dtc_options] [-f fit-image.its|-F] fit-image

-D => set options for device tree compiler

—f => input filename for FIT source

Signing / verified boot not supported (CONFIG_FIT_SIGNATURE undefined)
mkimage -V ==> print version information and exit

For example, to prepare a kernel image for an ARM processor, the command is:

$ mkimage -A arm -O linux -T kernel -C gzip -a 0x80008000 -e 0x80008000 \
-n 'Linux' -d zImage ulmage

Loading images

Usually, you will load images from removable storage, such as an SD card or a network. SD
cards are handled in U-Boot by the mmc driver. A typical sequence to load an image into
memory would be:

U-Boot# mmc rescan

U-Boot# fatload mmc 0:1 82000000 uimage
reading uimage

4605000 bytes read in 254 ms (17.3 MiB/s)
U-Boot# iminfo 82000000

Checking Image at 82000000

Legacy image found

Image Name: Linux-3.18.0C

reated: 2014-12-23 21:08:07 UIC

Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 4604936 Bytes = 4.4 MiB

Load Address: 80008000

Entry Point: 80008000

Verifying Checksum ... OK

The command mmc rescan re-initializes the mmc driver, perhaps to detect that an SD card
has recently been inserted. Next, fatload is used to read a file from a FAT-formatted
partition on the SD card. The format is:

fatload <interface> [<dev|[:part]> [<addr> [<filename> [bytes [pos]]]]]

[67]

All About Bootloaders

If <interface> is mmc, as in our case, <dev:part> is the device number of the mmc
interface counting from zero, and the partition number counting from one. Hence, <0: 1> is
the first partition on the first device. The memory location, 0x82000000, is chosen to be in
an area of RAM that is not being used at this moment. If we intend to boot this kernel, we
have to make sure that this area of RAM will not be overwritten when the kernel image is
decompressed and located at the runtime location, 0x80008000.

To load image files over a network, you use the Trivial File Transfer Protocol (TFTP). This
requires you to install a TFTP daemon, t ftpd, on your development system and start it
running. You also have to configure any firewalls between your PC and the target board to
allow the TFTP protocol on UDP port 69 to pass through. The default configuration of TFTP
allows access only to the directory /var/lib/tftpboot. The next step is to copy the files
you want to transfer to the target into that directory. Then, assuming that you are using a
pair of static IP addresses, which removes the need for further network administration, the
sequence of commands to load a set of kernel image files should look like this:

U-Boot# setenv ipaddr 192.168.159.42

U-Boot# setenv serverip 192.168.159.99

U-Boot# tftp 82000000 uImage

link up on port 0, speed 100, full duplex

Using cpsw device

TFTP from server 192.168.159.99; our IP address is 192.168.159.42
Filename 'ulmage'.

Load address: 0x82000000

Loading:

FH A R R R
FH A R R R
FHH A R R R
FHHH SRR A

FHHH AR A

3 MiB/s

done

Bytes transferred = 4605000 (464448 hex)

Finally, let's look at how to program images into NAND flash memory and read them back,
which is handled by the nand command. This example loads a kernel image via TFTP and
programs it into flash:

U-Boot# tftpboot 82000000 uimage
U-Boot# nandecc hw
U-Boot# nand erase 280000 400000

NAND erase: device 0 offset 0x280000, size 0x400000
Erasing at 0x660000 -- 100% complete.
OK

[68]

All About Bootloaders

U-Boot# nand write 82000000 280000 400000

NAND write: device 0 offset 0x280000, size 0x400000
4194304 bytes written: OK

Now you can load the kernel from flash memory using the nand read command:

U-Boot# nand read 82000000 280000 400000

Booting Linux

The bootm command starts a kernel image running. The syntax is:

bootm [address of kernel] [address of ramdisk] [address of dtb].

The address of the kernel image is necessary, but the address of ramdisk and dtb can be
omitted if the kernel configuration does not need them. If there is dtb but no initramfs, the
second address can be replaced with a dash (-). That would look like this:

U-Boot# bootm 82000000 - 83000000

Automating the boot with U-Boot scripts

Plainly, typing a long series of commands to boot your board each time it is turned on is not
acceptable. To automate the process, U-Boot stores a sequence of commands in environment
variables. If the special variable named boot cmd contains a script, it is run at power-up
after a delay of bootdelay seconds. If you watch this on the serial console, you will see the
delay counting down to zero. You can press any key during this period to terminate the
countdown and enter into an interactive session with U-Boot.

The way that you create scripts is simple, though not easy to read. You simply append
commands separated by semicolons, which must be preceded by a backslash escape
character. So, for example, to load a kernel image from an offset in flash memory and boot
it, you might use the following command:

setenv bootcmd nand read 82000000 400000 200000\;bootm 82000000

[69]

All About Bootloaders

Porting U-Boot to a new board

Let's assume that your hardware department has created a new board called Nova that is
based on the BeagleBone Black and that you need to port U-Boot to it. You will need to
understand the layout of the U-Boot code and how the board configuration mechanism
works. In this section, I will show you how to create a variant of an existing board —the
BeagleBone Black—which you could go on to use as the basis for further customizations.
There are quite a few files that need to be changed. I have put them together into a patch file
in the code archive in MELP/chapter_03/0001-BSP-for-Nova.patch. You can simply
apply that patch to a clean copy of U-Boot version 2017.01 like this:

$ cd u-boot
$ patch -pl < MELP/chapter_03/0001-BSP-for-Nova.patch

If you want to use a different version of U-Boot, you will have to make some changes to the
patch for it to apply cleanly.

The remainder of this section is a description of how the patch was created. If you want to
follow along step-by-step, you will need a clean copy of U-Boot 2017.01 without the Nova
BSP patch. The main directories we will be dealing with are:

e arch: Contains code specific to each supported architecture in directories arm,
mips, powerpc, and so on. Within each architecture, there is a subdirectory for
each member of the family; for example, in arch/arm/cpu/, there are directories
for the architecture variants, including amt 926ejs, armv7, and armv8.

¢ board: Contains code specific to a board. Where there are several boards from
the same vendor, they can be collected together into a subdirectory. Hence, the
support for the am335x evm board, on which the BeagleBone is based, is in
board/ti/am335x.

e common: Contains core functions including the command shells and the
commands that can be called from them, each in a file named cmd_ [command
name] .c.

¢ doc: Contains several README files describing various aspects of U-Boot. If you
are wondering how to proceed with your U-Boot port, this is a good place to
start.

¢ include: In addition to many shared header files, this contains the very
important subdirectory include/configs/ where you will find the majority of
the board configuration settings.

[70]

All About Bootloaders

The way that Kconfig extracts configuration information from Kconfig files and stores the
total system configuration in a file named . config is described in some detail in cChapter

4, Configuring and Building the Kernel. Each board has a default configuration stored in
configs/ [board name]_defconfig. For the Nova board, we can begin by making a copy
of the configuration for the BeagleBone Black:

$ cp configs/am335x_boneblack_defconfig configs/nova_defconfig

Now edit configs/nova_defconfig and change line four from
CONFIG_TARGET_AM335X_EVM=y to CONFIG_TARGET_NOVA=y:

1 CONFIG_ARM=y

2 CONFIG_AM33XX=y

3 # CONFIG_SPL_NAND_SUPPORT is not set
4 CONFIG_TARGET NOVA=y

[...]

Note that CONFIG_ARM=y causes the contents of arch/arm/Kconfig to be included, and on
line two, CONFIG_AM33XX=y causes arch/arm/mach-omap2/am33xx/Kconfig to be
included.

Board-specific files

Each board has a subdirectory named board/ [board name] or board/ [vendor]/ [board
name], which should contain:

¢ Kconfig: Contains configuration options for the board

e MAINTAINERS: Contains a record of whether the board is currently maintained
and, if so, by whom

e Makefile: Used to build the board-specific code

e README: Contains any useful information about this port of U-Boot; for example,
which hardware variants are covered

In addition, there may be source files for board specific functions.

Our Nova board is based on a BeagleBone which, in turn, is based on a TI am335x EVM, so,
we should take a copy of the am335x board files:

$ mkdir board/ti/nova
$ cp —a board/ti/am335x/* board/ti/nova

[71]

All About Bootloaders

Next, edit board/ti/nova/Kconfig and set SYS_BOARD to "nova", so that it will build the
files in board/ti/nova, and set SYS_CONFIG_NAME to "nova" also, so that the
configuration file used will be include/configs/nova.h:

1 if TARGET_NOVA

config SPL_ENV_SUPPORT
default y

config SPL_WATCHDOG_SUPPORT
default y

O ~J oy U W N

9 config SPL_YMODEM_SUPPORT
10 default y

11

12 config SYS_BOARD

13 default "nova"

14

15 config SYS_VENDOR

16 default "ti"

17

18 config SYS_SOC

19 default "am33xx"

20

21 config SYS_CONFIG_NAME
22 default "nova"

[...]

There is one other file here that we need to change. The linker script placed at
board/ti/nova/u-boot.1lds has a hard-coded reference to board/ti/am335x/built-
in.o on line 39. Change it as shown:

35 {

36 *(.__image_copy_start)

37 * (.vectors)

38 CPUDIR/start.o (.text¥)

39 board/ti/nova/built-in.o (.text*)
40 *(.text*)

41 }

Now we need to link the Kconfig file for Nova into the chain of Kconfig files. First, edit
arch/arm/Kconfig and add a menu option for Nova, and then source its Kconfig file:

[...]
1069 source "board/ti/nova/Kconfig"

[...]

[72]

All About Bootloaders

Then, edit arch/arm/mach-omap2/am33xx/Kconfig and add a configuration option for
TARGET_NOVA:

[...]
21 config TARGET_NOVA

22 bool "Support the Nova! board"
23 select DM

24 select DM_SERIAL

25 select DM_GPIO

26 select TI_I2C_BOARD_DETECT

27 help

28 The Nova target board

Configuring header files

Each board has a header file in include/configs/ which contains the majority of the
configuration information. The file is named by the sYS_CONFIG_NAME identifier in the
board's Kconfig. The format of this file is described in detail in the README file at the top
level of the U-Boot source tree. For the purposes of our Nova board, simply copy
include/configs/am335c_evm.h to include/configs/nova.h and make a small
number of changes, the most significant of which is to set a new Command Prompt so that
we can identify this bootloader at run-time:

[...]

16 #ifndef _ CONFIG_NOVA_H

17 #define _ CONFIG_NOVA_H

[...]

38 #define CONFIG_SYS_LDSCRIPT "board/ti/nova/u-boot.lds"
vl

68 #undef CONFIG_SYS_PROMPT

69 #define CONFIG_SYS_PROMPT "nova!> "

vl

421 #endif /* | __CONFIG_NOVA_H */

[

[

Building and testing

To build for the Nova board, select the configuration you have just created:

$ make CROSS_COMPILE=arm—-cortex_a8-linux—-gnueabi- distclean
$ make CROSS_COMPILE=arm—-cortex_a8-linux-gnueabi- nova_defconfig
$ make CROSS_COMPILE=arm-cortex_a8-linux—-gnueabi-

[73]

All About Bootloaders

Copy MLO and u-boot . img to the boot partition of the microSD card you created earlier
and boot the board. You should see output like this (note the Command Prompt):

U-Boot SPL 2017.01-dirty (Apr 20 2017 - 16:48:38)
Trying to boot from MMCIMMC partition switch failed
*** Warning - MMC partition switch failed, using default environment

reading u-boot.img
reading u-boot.img

U-Boot 2017.01-dirty (Apr 20 2017 - 16:48:38 +0100)

CPU : AM335X-GP rev 2.0

I2C: ready

DRAM: 512 MiB

MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1

**% Warning - bad CRC, using default environment

<ethaddr> not set. Validating first E-fuse MAC
Net: cpsw, usb_ether

Press SPACE to abort autoboot in 2 seconds
nova!>

You can create a patch for all of these changes by checking them into Git and using the git
format-patch command:

$ git add
$ git commit -m "BSP for Nova"
[nova-bsp-2 e160£82] BSP for Nova
12 files changed, 2272 insertions (+)
create mode 100644 board/ti/nova/Kconfig
create mode 100644 board/ti/nova/MAINTAINERS
create mode 100644 board/ti/nova/Makefile
create mode 100644 board/ti/nova/README
create mode 100644 board/ti/nova/board.c
create mode 100644 board/ti/nova/board.h
create mode 100644 board/ti/nova/mux.c
create mode 100644 board/ti/nova/u-boot.lds
create mode 100644 configs/nova_defconfig
create mode 100644 include/configs/nova.h
$ git format-patch -1
0001-BSP-for-Nova.patch

[74]

All About Bootloaders

Falcon mode

We are used to the idea that booting a modern embedded processor involves the CPU boot
ROM loading an SPL, which loads u-boot . bin which then loads a Linux kernel. You may
be wondering if there is a way to reduce the number of steps, thereby simplifying and
speeding up the boot process. The answer is U-Boot Falcon mode. The idea is simple: have
the SPL load a kernel image directly, missing out u-boot .bin. There is no user interaction
and there are no scripts. It just loads a kernel from a known location in flash or eMMC into
memory, passes it a pre-prepared parameter block, and starts it running. The details of
configuring Falcon mode are beyond the scope of this book. If you would like more
information, take a look at doc/README . falcon.

of all, capable of reaching speeds of more than 200 miles per hour in a

Falcon mode is named after the Peregrine falcon, which is the fastest bird
0 dive.

Barebox

I will complete this chapter with a look at another bootloader that has the same roots as U-
Boot but takes a new approach to bootloaders. It is derived from U-Boot and was actually
called U-Boot v2 in the early days. The barebox developers aimed to combine the best parts
of U-Boot and Linux, including a POSIX-like API and mountable filesystems.

The barebox project website is http://barebox.org/ and the developer mailing list is
barebox@lists.infradead.org.

Getting barebox

To get barebox, clone the Git repository and check out the version you want to use:

$ git clone git://git.pengutronix.de/git/barebox.git
$ cd barebox
$ git checkout v2017.02.0

[75]

http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/
http://barebox.org/

All About Bootloaders

The layout of the code is similar to U-Boot:

¢ arch: Contains code specific to each supported architecture, which includes all
the major embedded architectures. SoC support is in
arch/[architecture] /mach-[SoC]. Support for individual boards is in
arch/[architecture] /boards.

e common: Contains core functions, including the shell.
e commands: Contains the commands that can be called from the shell.

* Documentation: Contains the templates for documentation files. To build it,
type make docs. The results are put in Documentation/html.

e drivers: Contains the code for the device drivers.
e include: Contains header files.

Building barebox

Barebox has used Kconfig/Kbuild for a long time. There are default configuration files in
arch/[architecture] /configs. As an example, assume that you want to build barebox
for the BeagleBoard C4. You need two configurations, one for the SPL, and one for the main
binary. Firstly, build MLO:

$ make ARCH=arm CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf- \
am335x_mlo_defconfig
$ make ARCH=arm CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf-

The result is the secondary program loader, images/barebox-am33xx-beaglebone-
mlo.img.

Next, build barebox:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux—gnueabihf- \
am335x_defconfig
$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux—-gnueabihf-

Copy MLO and the barebox binary to an SD card:

$ cp images/barebox-am33xx-beaglebone-mlo.img /media/chris/boot/MLO
$ cp images/barebox-am33xx-beaglebone.img /media/chris/boot/barebox.bin

[76]

All About Bootloaders

Then, boot up the board and you should see messages like these on the console:

barebox 2017.02.0 #1 Thu Mar 9 20:27:08 GMT 2017

Board: TI AM335x BeagleBone black
detected 'BeagleBone Black'
[...]

running /env/bin/init...
changing USB current limit to 1300 mA... done

Hit m for menu or any other key to stop autoboot: 3

type exit to get to the menu
barebox@TI AM335x BeagleBone black:/

Using barebox

Using barebox at the command line you can see the similarities with Linux. First, you can
see that there are filesystem commands such as 1s, and there is a /dev directory:

1ls /dev
full mdio0-phy00 mem mmc0 mmcO0.0
mmc0.1 mmcl mmcl.0 null ramQ zero

The device /dev/mmc0. 0 is the first partition on the microSD card, which contains the
kernel and initial ramdisk. You can mount it like this:

mount /dev/mmc0.0 /mnt

Now you can see the files:

1ls /mnt
MLO am335x-boneblack.dtb barebox.bin
u-boot.img uRamdisk zImage

Boot from the root partition:

global.bootm.oftree=/mnt/am335x-boneblack.dtb
global linux.bootargs.root="root=/dev/mmcblkOp2 rootwait"
bootm /mnt/zImage

[77]

All About Bootloaders

Summary

Every system needs a bootloader to bring the hardware to life and to load a kernel. U-Boot
has found favor with many developers because it supports a useful range of hardware and
it is fairly easy to port to a new device. Over the last few years, the complexity and ever
increasing variety of embedded hardware has led to the introduction of the device tree as a
way of describing hardware. The device tree is simply a textual representation of a system
that is compiled into a device tree binary (dtb) and which is passed to the kernel when it
loads. It is up to the kernel to interpret the device tree and to load and initialize drivers for
the devices it finds there.

In use, U-Boot is very flexible, allowing images to be loaded from mass storage, flash
memory, or a network, and booted. Likewise, barebox can achieve the same but with a
smaller base of hardware support. Despite its cleaner design and POSIX-inspired internal
APIs, at the time of writing it does not seem to have been accepted beyond its own small
but dedicated community.

Having covered some of the intricacies of booting Linux, in the next chapter you will see the
next stage of the process as the third element of your embedded project, the kernel, comes
into play.

[78]

Configuring and Building the
Kernel

The kernel is the third element of embedded Linux. It is the component that is responsible
for managing resources and interfacing with hardware, and so affects almost every aspect
of your final software build. It is usually tailored to your particular hardware configuration,
although, as we saw in chapter 3, All About Bootloaders, device trees allow you to create a
generic kernel that is tailored to particular hardware by the contents of the device tree.

In this chapter, we will look at how to get a kernel for a board, and how to configure and
compile it. We will look again at bootstrap, this time focusing on the part the kernel plays.
We will also look at device drivers and how they pick up information from the device tree.

In this chapter, we will cover the following topics:

e What does the kernel do?
¢ Choosing a kernel.

Building the kernel.

Booting the kernel.

Porting Linux to a new board.

Configuring and Building the Kernel

What does the kernel do?

Linux began in 1991, when Linus Torvalds started writing an operating system for Intel 386-
and 486-based personal computers. He was inspired by the Minix operating system written
by Andrew S. Tanenbaum four years earlier. Linux differed in many ways from Minix; the
main differences being that it was a 32-bit virtual memory kernel and the code was open
source, later released under the GPL v2 license. He announced it on 25th August, 1991, on
the comp . os.minix newsgroup in a famous post that began with:

Hello everybody out there using minix—1I1'm doing a (free) operating system (just a hobby,
won 't be big and professional like GNU) for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I'd like any feedback on things people like/dislike
in minix, as my OS resembles it somewhat (same physical layout of the filesystem (due to
practical reasons) among other things).

To be strictly accurate, Linus did not write an operating system, rather he wrote a kernel,
which is only one component of an operating system. To create a complete operating
system with user space commands and a shell command interpreter, he used components
from the GNU project, especially the toolchain, the C-library, and basic command-line tools.
That distinction remains today, and gives Linux a lot of flexibility in the way it is used. It
can be combined with a GNU user space to create a full Linux distribution that runs on
desktops and servers, which is sometimes called GNU/Linux; it can be combined with an
Android user space to create the well-known mobile operating system, or it can be
combined with a small BusyBox-based user space to create a compact embedded system.
Contrast this with the BSD operating systems, FreeBSD, OpenBSD, and NetBSD, in which
the kernel, the toolchain, and the user space are combined into a single code base.

The kernel has three main jobs: to manage resources, to interface with hardware, and to
provide an API that offers a useful level of abstraction to user space programs, as
summarized in the following diagram:

[801]

Configuring and Building the Kernel

Application
PP User
C library space
System call handler
)] Kernel
Generic services space

Device drivers

Hardware

Applications running in User space run at a low CPU privilege level. They can do very little
other than make library calls. The primary interface between the User space and the Kernel
space is the C library, which translates user level functions, such as those defined by
POSIX, into kernel system calls. The system call interface uses an architecture-specific
method, such as a trap or a software interrupt, to switch the CPU from low privilege user
mode to high privilege kernel mode, which allows access to all memory addresses and CPU
registers.

The System call handler dispatches the call to the appropriate kernel subsystem: memory
allocation calls go to the memory manager, filesystem calls to the filesystem code, and so
on. Some of those calls require input from the underlying hardware and will be passed
down to a device driver. In some cases, the hardware itself invokes a kernel function by
raising an interrupt.

The preceding diagram shows that there is a second entry point into
kernel code: hardware interrupts. Interrupts can only be handled in a
device driver, never by a user space application.

In other words, all the useful things that your application does, it does them through the
kernel. The kernel, then, is one of the most important elements in the system.

[81]

Configuring and Building the Kernel

Choosing a kernel

The next step is to choose the kernel for your project, balancing the desire to always use the
latest version of software against the need for vendor-specific additions and an interest in
the long term support of the code base.

Kernel development cycle

Linux is developed at a fast pace, with a new version being released every 8 to 12 weeks.
The way that the version numbers are constructed has changed a bit in recent years. Before
July 2011, there was a three number version scheme with version numbers that looked like
2.6.39. The middle number indicated whether it was a developer or stable release; odd
numbers (2.1.x%, 2.3.%, 2.5.x) were for developers and even numbers were for end users.
From version 2.6 onwards, the idea of a long-lived development branch (the odd numbers)
was dropped, as it slowed down the rate at which new features were made available to the
users. The change in numbering from 2.6.39 to 3.0 in July 2011 was purely because Linus felt
that the numbers were becoming too large; there was no huge leap in the features or
architecture of Linux between those two versions. He also took the opportunity to drop the
middle number. Since then, in April 2015, he bumped the major from 3 to 4, again purely
for neatness, not because of any large architectural shift.

Linus manages the development kernel tree. You can follow him by cloning the Git tree like
so:

$ git clone
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

This will check out into subdirectory 1inux. You can keep up to date by running the
command git pull in that directory from time to time.

Currently, a full cycle of kernel development begins with a merge window of two weeks,
during which Linus will accept patches for new features. At the end of the merge window,
a stabilization phase begins, during which Linus will produce weekly release candidates
with version numbers ending in -rc1, -rc2, and so on, usually up to ~rc7 or ~rc8. During
this time, people test the candidates and submit bug reports and fixes. When all significant
bugs have been fixed, the kernel is released.

The code incorporated during the merge window has to be fairly mature already. Usually, it
is pulled from the repositories of the many subsystem and architecture maintainers of the
kernel. By keeping to a short development cycle, features can be merged when they are
ready. If a feature is deemed not sufficiently stable or well developed by the kernel
maintainers, it can simply be delayed until the next release.

[82]

Configuring and Building the Kernel

Keeping a track of what has changed from release to release is not easy. You can read the

commit log in Linus' Git repository but, with roughly 10,000 or more entries, it is not easy to
get an overview. Thankfully, there is the Linux Kernel Newbies website, http://kernelne
wbies.org, where you will find a succinct overview of each version at http://kernelnewbi

es.org/LinuxVersions.

Stable and long term support releases

The rapid rate of change of Linux is a good thing in that it brings new features into the
mainline code base, but it does not fit very well with the longer life cycle of embedded
projects. Kernel developers address this in two ways, with stable releases and long term
releases. After the release of a mainline kernel (maintained by Linus Torvalds) it is moved
to the stable tree (maintained by Greg Kroah-Hartman). Bug fixes are applied to the stable
kernel, while the mainline kernel begins the next development cycle. Point releases of the
stable kernel are marked by a third number, 3.18.1, 3.18.2, and so on. Before version 3, there
were four release numbers, 2.6.29.1, 2.6.39.2, and so on.

You can get the stable tree by using the following command:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-
stable.git

You can use git checkout to get a particular version, for example version 4.9.13:

$ cd linux-stable
$ git checkout v4.9.13

Usually, the stable kernel is updated only until the next mainline release (8 to 12 weeks
later), so you will see that there is just one or sometimes two stable kernels at https://www.
kernel.org/. To cater for those users who would like updates for a longer period of time
and be assured that any bugs will be found and fixed, some kernels are labeled long term
and maintained for two or more years. There is at least one long term kernel release each
year. Looking at https://www.kernel.org/ at the time of writing, there are a total of nine
long term kernels: 4.9, 4.4, 4.1, 3.18, 3.14, 3.12, 3.10, 3.4, and 3.2. The latter has been
maintained for five years and is at version 3.2.86. If you are building a product that you will
have to maintain for this length of time, then the latest long term kernel might well be a
good choice.

[83]

http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
http://kernelnewbies.org/LinuxVersions
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/

Configuring and Building the Kernel

Vendor support

In an ideal world, you would be able to download a kernel from https://www.kernel.org
/ and configure it for any device that claims to support Linux. However, that is not always
possible; in fact mainline Linux has solid support for only a small subset of the many
devices that can run Linux. You may find support for your board or SoC from independent
open source projects, Linaro or the Yocto Project, for example, or from companies providing
third party support for embedded Linux, but in many cases you will be obliged to look to
the vendor of your SoC or board for a working kernel. As we know, some are better at
supporting Linux than others. My only advice at this point is to choose vendors who give
good support or who, even better, take the trouble to get their kernel changes into the
mainline.

Licensing

The Linux source code is licensed under GPL v2, which means that you must make the
source code of your kernel available in one of the ways specified in the license.

The actual text of the license for the kernel is in the file COPYING. It begins with an
addendum written by Linus that states that code calling the kernel from user space via the
system call interface is not considered a derivative work of the kernel and so is not covered
by the license. Hence, there is no problem with proprietary applications running on top of
Linux.

However, there is one area of Linux licensing that causes endless confusion and debate:
kernel modules. A kernel module is simply a piece of code that is dynamically linked with
the kernel at runtime, thereby extending the functionality of the kernel. The GPL makes no
distinction between static and dynamic linking, so it would appear that the source for
kernel modules is covered by the GPL. But, in the early days of Linux, there were debates
about exceptions to this rule, for example, in connection with the Andrew filesystem. This
code predates Linux and therefore (it was argued) is not a derivative work, and so the
license does not apply. Similar discussions took place over the years with respect to other
pieces of code, with the result that it is now accepted practice that the GPL does not
necessarily apply to kernel modules. This is codified by the kernel MODULE_LICENSE macro,
which may take the value Proprietary to indicate that it is not released under the GPL. If
you plan to use the same arguments yourself, you may want to read though an oft-quoted
e-mail thread titled Linux GPL and binary module exception clause? which is archived at http
://yarchive.net/comp/linux/gpl_modules.html.

[84]

https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html
http://yarchive.net/comp/linux/gpl_modules.html

Configuring and Building the Kernel

The GPL should be considered a good thing because it guarantees that when you and I are
working on embedded projects, we can always get the source code for the kernel. Without
it, embedded Linux would be much harder to use and more fragmented.

Building the kernel

Having decided which kernel to base your build on, the next step is to build it.

Getting the source

Both of the targets used in this book, the BeagleBone Black and the ARM Versatile PB, are
well supported by the mainline kernel. Therefore, it makes sense to use the latest long-term
kernel available from https://www.kernel.org/, which at the time of writing was 4.9.13.
When you come to do this for yourself, you should check to see if there is a later version of
the 4.9 kernel and use that instead since it will have fixes for bugs found after 4.9.13 was
released. If there is a later long-term release, you may want to consider using that one, but
be aware that there may have been changes that mean that the following sequence of
commands do not work exactly as given.

Use this command to clone the stable kernel and check out version 4.9.13:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-
stable.git

$ cd linux-stable

$ git checkout v4.9.13

Alternatively, you could download the tar file from https://cdn.kernel.org/pub/linux
/kernel/v4.x/linux-4.9.13.tar.xz.

There is a lot of code here. There are over 57,000 files in the 4.9 kernel containing C-source
code, header files, and assembly code, amounting to a total of over 14 million lines of code,
as measured by the SLOCCount utility. Nevertheless, it is worth knowing the basic layout
of the code and to know, approximately, where to look for a particular component. The
main directories of interest are:

¢ arch: Contains architecture-specific files. There is one subdirectory per
architecture.

e Documentation: Contains kernel documentation. Always look here first if you
want to find more information about an aspect of Linux.

[85]

https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.9.13.tar.xz

Configuring and Building the Kernel

e drivers: Contains device drivers, thousands of them. There is a subdirectory for
each type of driver.
¢ £s: Contains filesystem code.

¢ include: Contains kernel header files, including those required when building
the toolchain.

e init: Contains the kernel start-up code.

¢ kernel: Contains core functions, including scheduling, locking, timers, power
management, and debug/trace code.

e mm: Contains memory management.
¢ net: Contains network protocols.

¢ scripts: Contains many useful scripts, including the device tree compiler, DTC,
which I described in chapter 3, All About Bootloaders.

¢ tools: Contains many useful tools and including the Linux performance
counters tool, perf, which I will describe in chapter 15, Profiling and Tracing.

Over a period of time, you will become familiar with this structure, and realize that if you
are looking for the code for the serial port of a particular SoC, you will find it in
drivers/tty/serial and notin arch/$ARCH/mach-foo, because it is a device driver
and not something central to the running of Linux on that SoC.

Understanding kernel configuration — Kconfig

One of the strengths of Linux is the degree to which you can configure the kernel to suit
different jobs, from a small dedicated device such as a smart thermostat to a complex
mobile handset. In current versions, there are many thousands of configuration options.
Getting the configuration right is a task in itself but, before that, I want to show you how it
works so that you can better understand what is going on.

The configuration mechanism is called Kconfig, and the build system that it integrates
with is called Kbuild. Both are documented in Documentation/kbuild.
Kconfig/Kbuild is used in a number of other projects as well as the kernel, including
Crosstool-NG, U-Boot, Barebox, and BusyBox.

[86]

Configuring and Building the Kernel

The configuration options are declared in a hierarchy of files named Kconfig, using a
syntax described in Documentation/kbuild/kconfig-language.txt. In Linux, the top
level Kconfig looks like this:

mainmenu "Linux/$ARCH SKERNELVERSION Kernel Configuration”

config SRCARCH
string
option env="SRCARCH"

source "arch/$SRCARCH/Kconfig"

The last line includes the architecture-dependent configuration file which sources other
Kconfig files, depending on which options are enabled. Having the architecture play such
a role has two implications: firstly, that you must specify an architecture when configuring
Linux by setting ARCH=[architecture], otherwise it will default to the local machine
architecture, and second, that the layout of the top level menu is different for each
architecture.

The value you put into ARCH is one of the subdirectories you find in directory arch, with the
oddity that ARCH=1386 and ARCH=x86_64 both source arch/x86/Kconfig.

The Kconfig files consist largely of menus, delineated by menu and endmenu keywords.
Menu items are marked by the keyword config. Here is an example, taken from
drivers/char/Kconfig:

menu "Character devices"
[...]
config DEVMEM
bool "/dev/mem virtual device support"
default vy
help
Say Y here if you want to support the /dev/mem device.
The /dev/mem device is used to access areas of physical
memory.
When in doubt, say "Y".
[...]

endmenu

The parameter following config names a variable that, in this case, is DEVMEM. Since this
option is a bool (Boolean), it can only have two values: if it is enabled, it is assigned to y, if
it is not enabled, the variable is not defined at all. The name of the menu item that is
displayed on the screen is the string following the bool keyword.

[871]

Configuring and Building the Kernel

This configuration item, along with all the others, is stored in a file named . config (note
that the leading dot (.) means that it is a hidden file that will not be shown by the 1s
command, unless you type 1s -a to show all the files). The line corresponding to this
configuration item reads:

CONF IG_DEVMEM=y
There are several other data types in addition to bool. Here is the list:

e bool: Either y or not defined.

e tristate: Used where a feature can be built as a kernel module or built into the
main kernel image. The values are m for a module, y to be built in, and not
defined if the feature is not enabled.

¢ int: Aninteger value using decimal notation.

e hex: An unsigned integer value using hexadecimal notation.

® string: A string value.

There may be dependencies between items, expressed by the depends on construct, as
shown here:

config MTD_CMDLINE_PARTS
tristate "Command line partition table parsing”
depends on MTD

If cONFIG_MTD has not been enabled elsewhere, this menu option is not shown and so
cannot be selected.

There are also reverse dependencies; the select keyword enables other options if this one
is enabled. The Kconfig file in arch/$ARCH has a large number of select statements that
enable features specific to the architecture, as can be seen here for ARM:

config ARM
bool
default vy
select ARCH_CLOCKSOURCE_DATA
select ARCH_HAS_DEVMEM_IS_ALLOWED
[...]

There are several configuration utilities that can read the Kconfig files and produce a
.config file. Some of them display the menus on screen and allow you to make choices
interactively. menuconfig is probably the one most people are familiar with, but there are
also xconfig and gconfig.

[881]

Configuring and Building the Kernel

You launch each one via the make command, remembering that, in the case of the kernel,

you have to supply an architecture, as illustrated here:

$ make ARCH=arm menuconfig

Here, you can see menuconfig with the DEVMEM config option highlighted in the previous

paragraph:

.config - Linux/arm 4.9.13 Kernel Configuration
> Device Drivers > Character devices
Character devices

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in []

[§] /dev/mem virtual device support

[*] /dev/kmem virtual device support
Serial drivers --->
TTY driver to output user messages via printk
ARM JTAG DCC console
Virtio console
IPMI top-level message handler ----
Hardware Random Number Generator Core support
Siemens R3964 line discipline

< Exit > < Help > < Save >

< > Trace data sink for MIPI P1149.7 cJTAG standard

< Load >

The star (*) to the left of an item means that it is selected (Y) or,

selected to be built as a kernel module.

if it is an M, that it has been

You often see instructions like enable CONFIG_BLK_DEV_INITRD, but with
so many menus to browse through, it can take a while to find the place
where that configuration is set. All configuration editors have a search
function. You can access it in menuconfig by pressing the forward slash
key, /.In xconfig, it is in the edit menu, but make sure you miss off
CONFIG_ part of the configuration item you are searching for.

With so many things to configure, it is unreasonable to start with a clean sheet each time
you want to build a kernel, so there are a set of known working configuration files in
arch/$ARCH/configs, each containing suitable configuration values for a single SoC or a

group of SoCs.

[891]

Configuring and Building the Kernel

You can select one with the make [configuration file name] command. For example,
to configure Linux to run on a wide range of SoCs using the ARMv7-A architecture, you
would type:

$ make ARCH=arm multi_v7_defconfig

This is a generic kernel that runs on various different boards. For a more specialized
application, for example, when using a vendor-supplied kernel, the default configuration
file is part of the board support package; you will need to find out which one to use before
you can build the kernel.

There is another useful configuration target named oldconfig. This takes an existing
.config file and asks you to supply configuration values for any options that don't have
them. You would use it when moving a configuration to a newer kernel version; copy
.config from the old kernel to the new source directory and run the make ARCH=arm
oldconfig command to bring it up to date. It can also be used to validate a . config file
that you have edited manually (ignoring the text "Automatically generated file; DO NOT
EDIT" that occurs at the top; sometimes it is OK to ignore warnings).

If you do make changes to the configuration, the modified . config file becomes part of
your board support package and needs to be placed under source code control.

When you start the kernel build, a header file, include/generated/autoconf.h, is
generated, which contains #define for each configuration value so that it can be included
in the kernel source.

Using LOCALVERSION to identify your kernel

You can discover the kernel version that you have built using the make kernelversion
target:

$ make ARCH=arm kernelversion
4.9.13

This is reported at runtime through the uname command, and is also used in naming the
directory where kernel modules are stored.

If you change the configuration from the default, it is advisable to append your own version
information, which you can configure by setting CONFIG_LOCALVERSION. As an example, if
I wanted to mark the kernel I am building with the identifier me1p and version 1.0, I would
define the local version in menuconfig like this:

[90]

Configuring and Building the Kernel

.config - Linux/arm 4.9.13 Kernel Configuration
> General setup
General setup
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in []

() Cross-compiler tool prefix

[] compile also drivers which will not load

(gnelp-v1.0) Local version - append to kernel releasel

[*] Automatically append version information to the version strin
Kernel compression mode (Gzip) --->

((none)) Default hostname

[*] Support for paging of anonymous memory (swap)

[*] System V IPC

[] POSIX Message Queues

[*]

*] Enable process_vm_readv/writev syscalls

< Exit > < Help > < Save > < Load >

Running make kernelversion produces the same output as before, but now if I run make
kernelrelease, I see:

$ make ARCH=arm kernelrelease
4.9.13-melp-vl1.0

Kernel modules

I have mentioned kernel modules several times already. Desktop Linux distributions use
them extensively so that the correct device and kernel functions can be loaded at runtime,
depending on the hardware detected and features required. Without them, every single
driver and feature would have to be statically linked in to the kernel, making it infeasibly
large.

On the other hand, with embedded devices, the hardware and kernel configuration is
usually known at the time the kernel is built, and therefore modules are not so useful. In
fact, they cause a problem because they create a version dependency between the kernel
and the root filesystem, which can cause boot failures if one is updated but not the other.
Consequently, it is quite common for embedded kernels to be built without any modules at
all.

[91]

Configuring and Building the Kernel

Here are a few cases where kernel modules are a good idea in embedded systems:

e When you have proprietary modules, for the licensing reasons given in the
preceding section.

e To reduce boot time by deferring the loading of non-essential drivers.

e When there are a number of drivers that could be loaded and it would take up
too much memory to compile them statically. For example, you have a USB
interface that supports a range of devices. This is essentially the same argument
as is used in desktop distributions.

Compiling — Kbuild

The kernel build system, Kbuild, is a set of make scripts that take the configuration
information from the . config file, work out the dependencies, and compile everything that
is necessary to produce a kernel image containing all the statically linked components,
possibly a device tree binary and possibly one or more kernel modules. The dependencies
are expressed in makefiles that are in each directory with buildable components. For
instance, the following two lines are taken from drivers/char/Makefile:

obj-y += mem.o random.o
obj-$ (CONFIG_TTY_PRINTK) += ttyprintk.o

The obj-y rule unconditionally compiles a file to produce the target, so mem.c and
random. c are always part of the kernel. In the second line, ttyprintk.c is dependent on a
configuration parameter. If CONFIG_TTY_PRINTK is y, it is compiled as a built-in; if it is m, it
is built as a module; and if the parameter is undefined, it is not compiled at all.

For most targets, just typing make (with the appropriate ARCH and CROSS_COMPILE) will do
the job, but it is instructive to take it one step at a time.

Finding out which kernel target to build

To build a kernel image, you need to know what your bootloader expects. This is a rough
guide:

¢ U-Boot: Traditionally, U-Boot has required uImage, but newer versions can load
a zImage file using the boot z command

* x86 targets: Requires a bzImage file
e Most other bootloaders: Require a zImage file

[92]

Configuring and Building the Kernel

Here is an example of building a zImage file:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm—cortex_a8-linux—-gnueabihf- zImage

The -3 4 option tells make how many jobs to run in parallel, which
reduces the time taken to build. A rough guide is to run as many jobs as
you have CPU cores.

There is a small issue with building a uImage file for ARM with multi-platform support,
which is the norm for the current generation of ARM SoC kernels. Multi-platform support
for ARM was introduced in Linux 3.7. It allows a single kernel binary to run on multiple
platforms and is a step on the road toward having a small number of kernels for all ARM
devices. The kernel selects the correct platform by reading the machine number or the
device tree passed to it by the bootloader. The problem occurs because the location of
physical memory might be different for each platform, and so the relocation address for the
kernel (usually 0x8000 bytes from the start of physical RAM) might also be different. The
relocation address is coded into the uImage header by the mkimage command when the
kernel is built, but it will fail if there is more than one relocation address to choose from. To
put it another way, the uImage format is not compatible with multi-platform images. You
can still create a uImage binary from a multi-platform build, so long as you give the
LOADADDR of the particular SoC you are hoping to boot this kernel on. You can find the load
address by looking in mach —[your SoC]/Makefile.boot and noting the value of
zreladdr-y:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm—-cortex_a8-linux-—-gnueabihf-
LOADADDR=0x80008000 uImage

Build artifacts

A kernel build generates two files in the top level directory: vmlinux and System.map. The
first, vmlinux, is the kernel as an ELF binary. If you have compiled your kernel with debug
enabled (CONFIG_DEBUG_INFO=y), it will contain debug symbols which can be used with
debuggers like kgdb. You can also use other ELF binary tools, such as size:

$ arm-cortex_a8-linux-gnueabihf-size vmlinux

text data bss dec hex filename
10605896 5291748 351864 16249508 f7f2a4 vmlinux

System.map contains the symbol table in a human readable form.

[93]

Configuring and Building the Kernel

Most bootloaders cannot handle ELF code directly. There is a further stage of processing
which takes vmlinux and places those binaries in arch/$ARCH/boot that are suitable for
the various bootloaders:

e Image: vmlinux converted to raw binary format.

¢ zImage: For the PowerPC architecture, this is just a compressed version of
Image, which implies that the bootloader must do the decompression. For all
other architectures, the compressed Image is piggybacked onto a stub of code
that decompresses and relocates it.

® uImage: zImage plus a 64-byte U-Boot header.

While the build is running, you will see a summary of the commands being executed:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux—gnueabihf- \
zImage

CHK include/config/kernel.release

CHK include/generated/uapi/linux/version.h

HOSTCC scripts/basic/fixdep

HOSTCC scripts/kallsyms

HOSTCC scripts/dtc/dtc.o

[...]

Sometimes, when the kernel build fails, it is useful to see the actual commands being
executed. To do that, add v=1 to the command line:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux—gnueabihf- \
V=1 zImage
[...]

arm-cortex_a8-linux—-gnueabihf-gcc -Wp,-MD, arch/arm/kernel/.irg.o.d -
nostdinc —-isystem /home/chris/x-tools/arm-cortex_a8-linux-—
gnueabihf/lib/gcc/arm-cortex_a8-linux—-gnueabihf/5.2.0/include -
I./arch/arm/include -I./arch/arm/include/generated/uapi -
I./arch/arm/include/generated -I./include -I./arch/arm/include/uapi -
I./include/uapi -I./include/generated/uapi -include
./include/linux/kconfig.h -D__KERNEL__ -mlittle-endian -Wall -Wundef -
Wstrict-prototypes -Wno-trigraphs —-fno-strict-aliasing —-fno-common -Werror-—
implicit-function-declaration -Wno-format-security -std=gnu89 -fno-PIE -
fno-dwarf2-cfi-asm -fno-ipa-sra -mabi=aapcs-linux -mno-thumb-interwork -
mfpu=vfp -funwind-tables -marm -D__LINUX_ARM_ARCH__=7 -march=armvi-a -
msoft-float -Uarm -fno-delete-null-pointer-checks -02 —--param=allow-store-—
data-races=0 -Wframe-larger-than=1024 -fno-stack-protector -Wno-unused-but-
set-variable -fomit-frame-pointer -fno-var-tracking-assignments -
Wdeclaration-after-statement -Wno-pointer-sign -fno-strict-overflow -
fconserve-stack -Werror=implicit-int -Werror=strict-prototypes -
Werror=date-time -Werror=incompatible-pointer-types -DCC_HAVE_ASM_GOTO -
DKBUILD_BASENAME='"irg"' -DKBUILD_MODNAME='"irqg"' -c -o

[94]

Configuring and Building the Kernel

arch/arm/kernel/irg.o arch/arm/kernel/irqg.c

[...]

Compiling device trees

The next step is to build the device tree, or trees if you have a multi-platform build. The
dtbs target builds device trees according to the rules in

arch/$ARCH/boot /dts/Makefile, using the device tree source files in that directory.
Following is a snippet from building the dtbs target for multi_v7_defconfig:

$ make ARCH=arm dtbs

[...]

DTC arch/arm/boot/dts/alpine-db.dtb

DTC arch/arm/boot/dts/artpecé-devboard.dtb

DTC arch/arm/boot/dts/at91-kizbox2.dtb

DTC arch/arm/boot/dts/at91l-sama5d2_xplained.dtb
DTC arch/arm/boot/dts/at91l-sama5d3_xplained.dtb
DTC arch/arm/boot/dts/sama5d3lek.dtb

[...]

The compiled . dtb files are generated in the same directory as the sources.

Compiling modules

If you have configured some features to be built as modules, you can build them separately
using the modules target:

$ make -j 4 ARCH=arm CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf- \
modules

The compiled modules have a . ko suffix and are generated in the same directory as the
source code, meaning that they are scattered all around the kernel source tree. Finding them
is a little tricky, but you can use the modules_install make target to install them in the
right place. The default location is /1ib/modules in your development system, which is
almost certainly not what you want. To install them into the staging area of your root
filesystem (we will talk about root filesystems in the next chapter), provide the path using
INSTALL_MOD_PATH:

$ make -j4 ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux—gnueabihf- \
INSTALL_MOD_PATH=$HOME/rootfs modules_install

Kernel modules are put into the directory /1ib/modules/ [kernel version], relative to
the root of the filesystem.

[95]

Configuring and Building the Kernel

Cleaning kernel sources

There are three make targets for cleaning the kernel source tree:

e clean: Removes object files and most intermediates.

e mrproper: Removes all intermediate files, including the . config file. Use this
target to return the source tree to the state it was in immediately after cloning or
extracting the source code. If you are curious about the name, Mr Proper is a
cleaning product common in some parts of the world. The meaning of make
mrproper is to give the kernel sources a really good scrub.

e distclean: This is the same as mrproper, but also deletes editor backup files,
patch files, and other artifacts of software development.

Building a kernel for the BeagleBone Black

In light of the information already given, here is the complete sequence of commands to
build a kernel, the modules, and a device tree for the BeagleBone Black, using the Crosstool-
NG ARM Cortex A8 cross compiler:

cd linux-stable

make ARCH=arm CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf- mrproper
make ARCH=arm multi_v7_defconfig

make —-j4 ARCH=arm CROSS_COMPILE=arm—-cortex_a8-linux—-gnueabihf- zImage
make —-j4 ARCH=arm CROSS_COMPILE=arm—-cortex_a8-linux—-gnueabihf- modules
make ARCH=arm CROSS_COMPILE=arm—cortex_a8-linux—gnueabihf- dtbs

v v v »n

These commands are in the script MELP /chapter_04/build-linux-bbb.sh.

Building a kernel for QEMU

Here is the sequence of commands to build Linux for the ARM Versatile PB that is emulated
by QEMU, using the Crosstool-NG V5te compiler:

$ cd linux-stable
$ make ARCH=arm CROSS_COMPILE=arm—-unknown-linux—-gnueabi- mrproper

$ make -j4 ARCH=arm CROSS_COMPILE=arm—unknown-linux—-gnueabi- zImage
$ make -j4 ARCH=arm CROSS_COMPILE=arm—unknown-linux—-gnueabi- modules
$ make ARCH=arm CROSS_COMPILE=arm-unknown-linux-gnueabi- dtbs

These commands are in the script MELP /chapter_04/build-linux-versatilepb.sh.

[96]

Configuring and Building the Kernel

Booting the kernel

Booting Linux is highly device-dependent. In this section, I will show you how it works for
the BeagleBone Black and QEMU. For other target boards, you must consult the information
from the vendor or from the community project, if there is one.

At this point, you should have the zImage file and the dtbs targets for the BeagleBone
Black or QEMU.

Booting the BeagleBone Black

To begin, you need a microSD card with U-Boot installed, as described in the section
Installing U-Boot. Plug the microSD card into your card reader and from the 1inux-stable
directory the files arch/arm/boot/zImage and arch/arm/boot/dts/am335x~
boneblack.dtb to the boot partition. Unmount the card and plug it into the BeagleBone
Black. Start a terminal emulator, such as gtkterm, and be prepared to press the space bar as
soon as you see the U-Boot messages appear. Next, power on the BeagleBone Black and
press the space bar. You should get a U-Boot prompt, . Now enter the following commands
to load Linux and the device tree binary:

U-Boot# fatload mmc 0:1 0x80200000 zImage

reading zImage

7062472 bytes read in 447 ms (15.1 MiB/s)
U-Boot# fatload mmc 0:1 0x80£00000 am335x-boneblack.dtb
reading am335x-boneblack.dtb

34184 bytes read in 10 ms (3.3 MiB/s)
U-Boot# setenv bootargs console=ttyO0
U-Boot# bootz 0x80200000 — 0x80£00000

Flattened Device Tree blob at 80£00000

Booting using the fdt blob at 0x80£00000

Loading Device Tree to 8fff4000, end 8ffff587 ... OK

Starting kernel

[0.000000] Booting Linux on physical CPU 0x0
[...]

Note that we set the kernel command line to console=tty00. That tells Linux which
device to use for console output, which in this case is the first UART on the board, device
tty00. Without this, we would not see any messages after Starting the kernel...,
and therefore would not know if it was working or not. The sequence will end in a kernel
panic, for reasons I will explain later on.

[97]

Configuring and Building the Kernel

Booting QEMU

Assuming that you have already installed gemu-system-arm, you can launch with the
kernel and the . dtb file for the ARM Versatile PB, as follows:

$ QEMU_AUDIO_DRV=none \
gemu-system—arm -m 256M —-nographic -M versatilepb -kernel zImage \
—append "console=ttyAMAO,115200" -dtb versatile-pb.dtb

Note that setting QEMU_AUDIO_DRV to none is just to suppress error messages from QEMU
about missing configurations for the audio drivers, which we do not use. As with the
BeagleBone Black, this will end with a kernel panic and the system will halt. To exit from
QEMU, type Ctrl + A and then x (two separate keystrokes).

Kernel panic
While things started off well, they ended badly:

[1.886379] Kernel panic - not syncing: VEFS: Unable to mount root fs on
unknown-block (0, 0)

[1.895105] —-—-[end Kernel panic - not syncing: VFS: Unable to mount root
fs on unknown-block (0, 0)

This is a good example of a kernel panic. A panic occurs when the kernel encounters an
unrecoverable error. By default, it will print out a message to the console and then halt. You
can set the panic command-line parameter to allow a few seconds before reboots following
a panic. In this case, the unrecoverable error is no root filesystem, illustrating that a kernel is
useless without a user space to control it. You can supply a user space by providing a root
filesystem, either as a ramdisk or on a mountable mass storage device. We will talk about
how to create a root filesystem in the next chapter, but first I want to describe the sequence
of events that leads up to panic.

Early user space

In order to transition from kernel initialization to user space, the kernel has to mount a root
filesystem and execute a program in that root filesystem. This can be achieved via a ramdisk
or by mounting a real filesystem on a block device. The code for all of this is in
init/main.c, starting with the function rest_init (), which creates the first thread with
PID 1 and runs the code in kernel_init (). If there is a ramdisk, it will try to execute the
program /init, which will take on the task of setting up the user space.

[98]

Configuring and Building the Kernel

If fails to find and run /init, it tries to mount a filesystem by calling the function
prepare_namespace () in init/do_mounts.c. This requires a root= command line to
give the name of the block device to use for mounting, usually in the form:

root=/dev/<disk name><partition number>

Or, for SD cards and eMMC:

root=/dev/<disk name>p<partition number>

For example, for the first partition on an SD card, that would be root=/dev/mmcblk0p1. If
the mount succeeds, it will try to execute /sbin/init, followed by /etc/init,
/bin/init, and then /bin/sh, stopping at the first one that works.

The program can be overridden on the command line. For a ramdisk, use rdinit=, and for
a filesystem, use init=.

Kernel messages

Kernel developers are fond of printing out useful information through liberal use of
printk () and similar functions. The messages are categorized according to importance,
with 0 being the highest:

Level Value | Meaning

KERN_EMERG 0 The system is unusable
KERN_ALERT 1 Action must be taken immediately
KERN_CRIT 2 Critical conditions

KERN_ERR 3 Error conditions

KERN_WARNING |4 Warning conditions
KERN_NOTICE |5 Normal but significant conditions
KERN_INFO 6 Informational

KERN_DEBUG |7 Debug-level messages

They are first written to a buffer, __1og_buf, the size of which is two to the power of
CONFIG_LOG_BUF_SHIFT. For example, if CONFIG_LOG_BUF_SHIFT is 16, then __log_buf
is 64 KiB. You can dump the entire buffer using the command dmesg.

[991]

Configuring and Building the Kernel

If the level of a message is less than the console log level, it is displayed on the console as
well as placed in __1og_buf. The default console log level is 7, meaning that messages of
level 6 and lower are displayed, filtering out KERN_DEBUG, which is level 7. You can change
the console log level in several ways, including by using the kernel parameter
loglevel=<level>, or the command dmesg -n <level>.

Kernel command line

The kernel command line is a string that is passed to the kernel by the bootloader, via the
bootargs variable in the case of U-Boot; it can also be defined in the device tree, or set as
part of the kernel configuration in CONFIG_CMDLINE.

We have seen some examples of the kernel command line already, but there are many more.
There is a complete list in Documentation/kernel-parameters.txt. Here is a smaller
list of the most useful ones:

Name Description

debug Sets the console log level to the highest level, 8, to ensure that you see all the
kernel messages on the console.

init= The init program to run from a mounted root filesystem, which defaults to
/sbin/init.

lpj= Sets loops_per_jiffy to a given constant. There is a description of the

significance of this in the paragraph following this table.

panic= Behavior when the kernel panics: if it is greater than zero, it gives the number
of seconds before rebooting; if it is zero, it waits forever (this is the default); or
if it is less than zero, it reboots without any delay.

quiet Sets the console log level to , suppressing all but emergency messages. Since
most devices have a serial console, it takes time to output all those strings.
Consequently, reducing the number of messages using this option reduces

boot time.
rdinit= The init program to run from a ramdisk. It defaults to /init.
ro Mounts the root device as read-only. Has no effect on a ramdisk, which is

always read/write.

root= Device to mount the root filesystem.

[100]

Configuring and Building the Kernel

rootdelay= |The number of seconds to wait before trying to mount the root device; defaults
to zero. Useful if the device takes time to probe the hardware, but also see
rootwait.

root fstype= | The filesystem type for the root device. In many cases, it is auto-detected
during mount, but it is required for j££s2 filesystems.

rootwait Waits indefinitely for the root device to be detected. Usually necessary with
mmc devices.

rw Mounts the root device as read-write (default).

The 1pj parameter is often mentioned in connection with reducing the kernel boot time.
During initialization, the kernel loops for approximately 250 ms to calibrate a delay loop.
The value is stored in the variable 1oops_per_jiffy, and reported like this:

Calibrating delay loop... 996.14 BogoMIPS (lpj=4980736)

If the kernel always runs on the same hardware, it will always calculate the same value.
You can shave 250 ms off the boot time by adding 1pj=4980736 to the command line.

Porting Linux to a new board

Porting Linux to a new board can be easy or difficult, depending on how similar your board
is to an existing development board. In chapter 3, All About Bootloaders, we ported U-Boot
to a new board, named Nova, which is based on the BeagleBone Black. very few changes to
be made to the kernel code and so it very easy. If you are porting to completely new and
innovative hardware, there will be more to do. I am only going to consider the simple case.

The organization of architecture-specific code in arch/$ARCH differs from one system to
another. The x86 architecture is pretty clean because most hardware details are detected at
runtime. The PowerPC architecture puts SoC and board-specific files into sub directory
platforms. The ARM architecture, on the other hand, is quite messy, in part because there is
a lot of variability between the many ARM-based SoCs. Platform-dependent code is put in
directories named mach-*, approximately one per SoC. There are other directories named
plat—* which contain code common to several versions of an SoC. In the case of the
BeagleBone Black, the relevant directory is arch/arm/mach-omap2. Don't be fooled by the
name though; it contains support for OMAP2, 3, and 4 chips, as well as the AM33xx family
of chips that the BeagleBone uses.

In the following sections, I am going to explain how to create a device tree for a new board
and how to key that into the initialization code of Linux.

[101]

Configuring and Building the Kernel

A new device tree

The first thing to do is create a device tree for the board and modify it to describe the
additional or changed hardware of the Nova board. In this simple case, we will just copy
am335x-boneblack.dts to nova.dts and change the board name in nova.dts, as shown
highlighted here:

/dts-v1/;

#include "am33xx.dtsi"
#include "am335x-bone-common.dtsi"
#include <dt-bindings/display/tda998x.h>

/A

model = "Nova'";

compatible = "ti,am335x-bone-black", "ti,am335x-bone", "ti,am33xx";
}i
[...]

We can build the Nova device tree binary explicitly like this:

$ make ARCH=arm nova.dtb

If we want the device tree for Nova to be compiled by make ARCH=arm dtbs whenever an
AM33xx target is selected, we could add a dependency in arch/arm/boot/dts/Makefile
as follows:

[...]
dtb-$ (CONFIG_SOC_AM33XX) +=
nova.dtb

[...

We can see the effect of using the Nova device tree by booting the BeagleBone Black,
following the same procedure as in the section Booting the BeagleBone Black, with the same
zImage file as before, but loading nova.dtb in place of am335x-boneblack.dtb. The
following highlighted output is the point at which the machine model is printed out:

Starting kernel

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.9.13-melp-v1.0-dirty (chris@chris-xps) (gcc
version 5.2.0 (crosstool-NG crosstool-ng-1.22.0)) #2 SMP Fri Mar 24
17:51:41 GMT 2017

[0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7), cr=10c5387d
[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing
instruction cache

[102]

Configuring and Building the Kernel

[0.000000] OF: fdt:Machine model: Nova
[...]

Now that we have a device tree specifically for the Nova board, we could modify it to
describe the hardware differences between Nova and the BeagleBone Black. There are quite
likely to be changes to the kernel configuration as well, in which case you would create a
custom configuration file based on a copy of arch/arm/configs/multi_v7_defconfig.

Setting the board compatible property

Creating a new device tree means that we can describe the hardware on the Nova board,
selecting device drivers and setting properties to match. But, suppose the Nova board needs
different early initialization code than the BeagleBone Black; how can we link that in?

The board setup is controlled by the compatible property in the root node. This is what
we have for the Nova board at the moment:

/A

model = "Nova'";

compatible = "ti,am335x-bone-black", "ti,am335x-bone", "ti,am33xx";
}i

When the kernel parses this node, it will search for a matching machine for each of the
values of the compatible property, starting on the left and stopping with the first match
found. Each machine is defined in a structure delimited by DT_MACHINE_START and
MACHINE_END macros. In arch/arm/mach-omap2/board-generic.c, we find:

#ifdef CONFIG_SOC_AM33XX

static const char *const am33xx_boards_compat[] __ initconst = {
"ti,am33xx",
NULL,

bi

DT_MACHINE_START (AM33XX_DT, "Generic AM33XX (Flattened Device Tree)")

.reserve = omap_reserve,
.map_1io = am33xx_map_1io,
.init_early = am33xx_init_early,
.init_machine = omap_generic_init,
.init_late = am33xx_init_late,
.init_time = omap3_gptimer_timer_init,
.dt_compat = am33xx_boards_compat,
.restart = am33xx_restart,

MACHINE_END

fendif

[103]

Configuring and Building the Kernel

Note that the string array, am33xx_boards_compat , contains "ti, am33xx" which
matches one of the machines listed in the compatible property. In fact, it is the only match
possible, since there are none for ti, am335x-bone-black or ti, am335x-bone. The
structure between DT_MACHINE_START and MACHINE_END contains a pointer to the string
array, and function pointers for the board setup functions. You may wonder why bother
with ti, am335x-bone-black and ti, am335x-bone if they never match anything? The
answer is partly that they are place holders for the future, but also that there are places in
the kernel that contain runtime tests for the machine using the function
of_machine_is_compatible ().For example, in drivers/net/ethernet/ti/cpsw-
common. C:

int ti_cm_get_macid(struct device *dev, int slave, u8 *mac_addr)
{
[...]
if (of_machine_is_compatible("ti, am33xx"))
return cpsw_am33xx_cm_get_macid(dev, 0x630, slave, mac_addr);

[...]

Thus, we have to look through not just the mach-* directories but the entire kernel source
code to get a list of all the places that depend on the machine compatible property. In the 4.9
kernel, you will find that there are still no checks for ti, am335x-bone-black and

ti, am335x-bone, but there may be in the future.

Returning to the Nova board, if we want to add machine specific setup, we can add a
machine in arch/arm/mach-omap2/board-generic.c, like this:

#ifdef CONFIG_SOC_AM33XX

[...]

static const char *const nova_compat|[] __initconst = {
"ti,nova",
NULL,

bi

DT_MACHINE_START (NOVA_DT, "Nova board (Flattened Device Tree)")

.reserve = omap_reserve,
.map_io = am33xx_map_io,
.init_early = am33xx_init_early,
.init_machine = omap_generic_init,
.init_late = am33xx_init_late,
.init_time = omap3_gptimer_timer_init,
.dt_compat = nova_compat,
.restart = am33xx_restart,

MACHINE_END

fendif

[104]

Configuring and Building the Kernel

Then we could change the device tree root node like this:

/A
model = "Nova'";
compatible = "ti,nova", "ti,am33xx";

bi

Now, the machine will match ti, nova in board-generic.c. We keep ti, am33xx because
we want the runtime tests, such as the one in drivers/net/ethernet/ti/cpsw-
common . ¢, to continue to work.

Additional reading

The following resources have further information about the topics introduced in this
chapter:

o Linux Kernel Development, 3rd Edition by Robert Love
e Linux weekly news, https://lwn.net/

Summary

Linux is a very powerful and complex operating system kernel that can be married to
various types of user space, ranging from a simple embedded device, through increasingly
complex mobile devices using Android, to a full server operating system. One of its
strengths is the degree of configurability. The definitive place to get the source code is http
s://www.kernel.org/, but you will probably need to get the source for a particular SoC or
board from the vendor of that device or a third-party that supports that device. The
customization of the kernel for a particular target may consist of changes to the core kernel
code, additional drivers for devices that are not in mainline Linux, a default kernel
configuration file, and a device tree source file.

Normally, you start with the default configuration for your target board, and then tweak it
by running one of the configuration tools such as menuconfig. One of the things you
should consider at this point is whether the kernel features and drivers should be compiled
as modules or built-in. Kernel modules are usually no great advantage for embedded
systems, where the feature set and hardware are usually well defined. However, modules
are often used as a way to import proprietary code into the kernel, and also to reduce boot
time by loading non-essential drivers after boot.

[105]

https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/

Configuring and Building the Kernel

Building the kernel produces a compressed kernel image file, named zImage, bzImage, or
uImage, depending on the bootloader you will be using and the target architecture. A
kernel build will also generate any kernel modules (as . ko files) that you have configured,
and device tree binaries (as . dtb files) if your target requires them.

Porting Linux to a new target board can be quite simple or very difficult, depending on how
different the hardware is from that in the mainline or vendor supplied kernel. If your
hardware is based on a well-known reference design, then it may be just a question of
making changes to the device tree or to the platform data. You may well need to add device
drivers, which I discuss in chapter 9, Interfacing with Device Drivers. However, if the
hardware is radically different to a reference design, you may need additional core support,
which is outside the scope of this book.

The kernel is the core of a Linux-based system, but it cannot work by itself. It requires a root
filesystem that contains the user space components. The root filesystem can be a ramdisk or
a filesystem accessed via a block device, which will be the subject of the next chapter. As we
have seen, booting a kernel without a root filesystem results in a kernel panic.

[106]

Building a Root Filesystem

The root filesystem is the fourth and the final element of embedded Linux. Once you have
read this chapter, you will be able build, boot, and run a simple embedded Linux system.

The techniques I will describe here are broadly known as roll your own or RYO. Back in the
earlier days of embedded Linux, this was the only way to create a root filesystem. There are
still some use cases where an RYO root filesystem is applicable, for example, when the
amount of RAM or storage is very limited, for quick demonstrations, or for any case in
which your requirements are not (easily) covered by the standard build system tools.
Nevertheless, these cases are quite rare. Let me emphasize that the purpose of this chapter
is educational; it is not meant to be a recipe for building everyday embedded systems: use
the tools described in the next chapter for this.

The first objective is to create a minimal root filesystem that will give us a shell prompt.
Then, using this as a base, we will add scripts to start up other programs and configure a
network interface and user permissions. There are worked examples for both the
BeagleBone Black and QEMU targets. Knowing how to build the root filesystem from
scratch is a useful skill, and it will help you to understand what is going on when we look at
more complex examples in later chapters.

In this chapter, we will cover the following topics:

e What should be in the root filesystem?
e Transferring the root filesystem to the target.

Creating a boot initramfs.

The init program.

Configuring user accounts.

A better way of managing device nodes.

Building a Root Filesystem

¢ Configuring the network.
¢ Creating filesystem images with device tables.
e Mounting the root filesystem using NFS.

What should be in the root filesystem?

The kernel will get a root filesystem, either an initramfs, passed as a pointer from the
bootloader, or by mounting the block device given on the kernel command line by the
root= parameter. Once it has a root filesystem, the kernel will execute the first program, by
default named init, as described in the section Early user space in chapter 4, Configuring and
Building the Kernel. Then, as far as the kernel is concerned, its job is complete. It is up to the
init program to begin starting other programs and so bring the system to life.

To make a minimal root filesystem, you need these components:

e init: This is the program that starts everything off, usually by running a series of
scripts. I will describe how init works in much more detail in chapter 10, Starting
Up — The init Program

e Shell: You need a shell to give you a command prompt but, more importantly,
also to run the shell scripts called by init and other programs.

e Daemons: A daemon is a background program that provides a service to others.
Good examples are the system log daemon (syslogd) and the secure shell
daemon (sshd). The init program must start the initial population of daemons to
support the main system applications. In fact, init is itself a daemon: it is the
daemon that provides the service of launching other daemons.

¢ Shared libraries: Most programs are linked with shared libraries, and so they
must be present in the root filesystem.

¢ Configuration files: The configuration for init and other daemons is stored in a
series of text files, usually in the /etc directory.

¢ Device nodes: These are the special files that give access to various device
drivers.

e /proc and /sys: These two pseudo filesystems represent kernel data structures
as a hierarchy of directories and files. Many programs and library functions
depend on proc and sys.

¢ Kernel modules: If you have configured some parts of your kernel to be
modules, they need to be installed in the root filesystem, usually in
/lib/modules/ [kernel version].

[108]

Building a Root Filesystem

In addition, there are the device-specific applications that make the device do the job it is
intended for, and also the run-time data files that they generate.

In some cases, you could condense most of these components into a single,
statically-linked program, and start the program instead of init. For
example, if your program was named /myprog, you would add the
following command to the kernel command line: init=/myprog. I have
come across such a configuration only once, in a secure system in which
the fork system call had been disabled, thus making it impossible for any
other program to be started. The downside of this approach is that you
can't make use of the many tools that normally go into an embedded
system; you have to do everything yourself.

The directory layout

Interestingly, the Linux kernel does not care about the layout of files and directories beyond
the existence of the program named by init=or rdinit=, so you are free to put things
wherever you like. As an example, compare the file layout of a device running Android to
that of a desktop Linux distribution: they are almost completely different.

However, many programs expect certain files to be in certain places, and it helps us
developers if devices use a similar layout, Android aside. The basic layout of a Linux
system is defined in the Filesystem Hierarchy Standard (FHS), which is available at
http://refspecs.linuxfoundation.org/fhs.shtml. The FHS covers all the
implementations of Linux operating systems from the largest to the smallest. Embedded
devices tend to use a subset based on their needs, but it usually includes the following:

¢ /bin: Programs essential for all users

e /dev: Device nodes and other special files

e /etc: System configuration files

e /1lib: Essential shared libraries, for example, those that make up the C-library

e /proc: The proc filesystem

e /sbin: Programs essential to the system administrator

e /sys: The sysf£s filesystem

e /tmp: A place to put temporary or volatile files

e /usr: Additional programs, libraries, and system administrator utilities, in the
directories /usr/bin, /usr/lib and /usr/sbin, respectively

e /var: A hierarchy of files and directories that may be modified at runtime, for
example, log messages, some of which must be retained after boot

[109]

http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml

Building a Root Filesystem

There are some subtle distinctions here. The difference between /bin and /sbin is simply
that the latter need not be included in the search path for non-root users. Users of Red Hat-
derived distributions will be familiar with this. The significance of /usr is that it maybe in a
separate partition from the root filesystem, so it cannot contain anything that is needed to
boot the system up.

The staging directory

You should begin by creating a staging directory on your host computer where you can
assemble the files that will eventually be transferred to the target. In the following
examples, I have used ~/root fs. You need to create a skeleton directory structure in it, for
example, take a look here:

$ mkdir ~/rootfs

$ cd ~/rootfs

$ mkdir bin dev etc home lib proc sbin sys tmp usr var
$ mkdir usr/bin usr/lib usr/sbin

$ mkdir -p var/log

To see the directory hierarchy more clearly, you can use the handy t ree command used in
the following example with the —d option to show only the directories:

$ tree -d

F— bin
F— dev
Fgfetc

[110]

Building a Root Filesystem

POSIX file access permissions

Every process, which in the context of this discussion means every running program,
belongs to a user and one or more groups. The user is represented by a 32-bit number called
the user ID or UID. Information about users, including the mapping from a UID to a name,
is kept in /etc/passwd. Likewise, groups are represented by a group ID or GID with
information kept in /etc/group. There is always a root user with a UID of 0 and a root
group with a GID of 0. The root user is also called the superuser because; in a default
configuration, it bypasses most permission checks and can access all the resources in the
system. Security in Linux-based systems is mainly about restricting access to the root
account.

Each file and directory also has an owner and belongs to exactly one group. The level of
access a process has to a file or directory is controlled by a set of access permission flags,
called the mode of the file. There are three collections of three bits: the first collection
applies to the owner of the file, the second to the members of the same group as the file, and
the last to everyone else: the rest of the world. The bits are for read (r), write (w), and execute
(x) permissions on the file. Since three bits fit neatly into an octal digit, they are usually
represented in octal, as shown in the following diagram:

200 -w------- - Owner permissions

020 ----w---- Group permissions

002 ------- w- + World permissions

There is a further group of three bits that have special meanings:

e SUID (4): If the file is executable, it changes the effective UID of the process to
that of the owner of the file when the program is run.

e SGID (2): Similar to SUID, this changes the effective GID of the process to that of
the group of the file.

e Sticky (1): In a directory, this restricts deletion so that one user cannot delete files
that are owned by another user. This is usually set on /tmp and /var/tmp.

[111]

Building a Root Filesystem

The SUID bit is probably used most often . It gives non-root users a temporary privilege
escalation to superuser to perform a task. A good example is the ping program: ping opens
a raw socket, which is a privileged operation. In order for normal users to use ping, it is
owned by user root and has the SUID bit set so that when you run ping, it executes with
UID 0 regardless of your UID.

To set these bits, use the octal numbers, 4, 2, and 1 with the chmod command. For example,
to set SUID on /bin/ping in your staging root directory, you could use the following:

$ cd ~/rootfs
$ 1s -1 bin/ping
-rwxr-xr-x 1 root root 35712 Feb 6 09:15 bin/ping

$ sudo chmod 4755 bin/ping
$ 1s -1 bin/ping
—rwsr-xr-x 1 root root 35712 Feb 6 09:15 bin/ping

Note that the second 1s command shows the first three bits of the mode to be rws, whereas
previously, they had been rwx. That 's' indicates that the SUID bit is set.

File ownership permissions in the staging
directory

For security and stability reasons, it is vitally important to pay attention to the ownership
and permissions of the files that will be placed on the target device. Generally speaking, you
want to restrict sensitive resources to be accessible only by the root and wherever possible,
to run programs using non-root users so that if they are compromised by an outside attack,
they offer as few system resources to the attacker as possible. For example, the device node
called /dev/mem gives access to system memory, which is necessary in some programs. But,
if it is readable and writeable by everyone, then there is no security because everyone can
access everything in memory. So, /dev/mem should be owned by root, belong to the root
group, and have a mode of 600, which denies read and write access to all but the owner.

There is a problem with the staging directory though. The files you create there will be
owned by you, but when they are installed on the device, they should belong to specific
owners and groups, mostly the root user. An obvious fix is to change the ownership to
root at this stage with the commands shown here:

$ cd ~/rootfs
$ sudo chown -R root:root *

[112]

Building a Root Filesystem

The problem is that you need root privileges to run the chown command, and from that
point onward, you will need to be root to modify any files in the staging directory. Before
you know it, you are doing all your development logged on as root, which is not a good
idea. This is a problem that we will come back to later.

Programs for the root filesystem

Now, it is time to start populating the root filesystem with the essential programs and the
supporting libraries, configuration, and data files that they need to operate. I will begin
with an overview of the types of programs you will need.

The init program

Init is the first program to be run, and so it is an essential part of the root filesystem. In this
chapter, we will be using the simple init program provided by BusyBox.

Shell

We need a shell to run scripts and to give us a command prompt so that we can interact
with the system. An interactive shell is probably not necessary in a production device, but it
is useful for development, debugging, and maintenance. There are various shells in
common use in embedded systems:

e bash: This is the big beast that we all know and love from desktop Linux. It is a
superset of the Unix Bourne shell with many extensions or bashisms.

e ash: Also based on the Bourne shell, it has a long history with the BSD variants of
Unix. BusyBox has a version of ash, which has been extended to make it more
compatible with bash. It is much smaller than bash, and hence it is a very
popular choice for embedded systems.

e hush: This is a very small shell that we briefly looked at in chapter 3, All about
Bootloaders. It is useful on devices with very little memory. There is a version of
hush in BusyBox.

test your shell scripts on the target. It is very tempting to test them only on
the host, using bash, and then be surprised that they don't work when

E If you are using ash or hush as the shell on the target, make sure that you
you copy them to the target.

[113]

Building a Root Filesystem

Utilities

The shell is just a way of launching other programs, and a shell script is little more than a
list of programs to run, with some flow control and a means of passing information
between programs. To make a shell useful, you need the utility programs that the Unix
command line is based on. Even for a basic root filesystem, you need approximately 50
utilities, which presents two problems. Firstly, tracking down the source code for each one
and cross-compiling it would be quite a big job. Secondly, the resulting collection of
programs would take up several tens of megabytes, which was a real problem in the early
days of embedded Linux when a few megabytes was all you had. To solve this problem,
BusyBox was born.

BusyBox to the rescue!

The genesis of BusyBox had nothing to do with embedded Linux. The project was
instigated in 1996 by Bruce Perens for the Debian installer so that he could boot Linux from
a 1.44 MB floppy disk. Coincidentally, this was about the size of the storage on
contemporary devices, and so the embedded Linux community quickly took it up. BusyBox
has been at the heart of embedded Linux ever since.

BusyBox was written from scratch to perform the essential functions of those essential
Linux utilities. The developers took advantage of the 80:20 rule: the most useful 80% of a
program is implemented in 20% of the code. Hence, BusyBox tools implement a subset of
the functions of the desktop equivalents, but they do enough of it to be useful in the
majority of cases.

Another trick BusyBox employs is to combine all the tools together into a single binary,
making it easy to share code between them. It works like this: BusyBox is a collection of
applets, each of which exports its main function in the form [applet]_main. For example,
the cat command is implemented in coreutils/cat.c and exports cat_main. The main
function of BusyBox itself dispatches the call to the correct applet, based on the command-
line arguments.

So, to read a file, you can launch BusyBox with the name of the applet you want to run,
followed by any arguments the applet expects, as shown here:

$ busybox cat my_file.txt

You can also run BusyBox with no arguments to get a list of all the applets that have been
compiled.

[114]

Building a Root Filesystem

Using BusyBox in this way is rather clumsy. A better way to get BusyBox to run the cat
applet is to create a symbolic link from /bin/cat to /bin/busybox:

$ 1ls -1 bin/cat bin/busybox
-rwxr—-xr—-x 1 root root 892868 Feb 2 11:01 bin/busybox
lrwxrwxrwx 1 root root 7 Feb 2 11:01 bin/cat —-> busybox

When you type cat at the command line, BusyBox is the program that actually runs.
BusyBox only has to check the command tail passed in argv [0], which will be /bin/cat,
extract the application name, cat, and do a table look-up to match cat with cat_main. All
this is in 1ibbb/appletlib.c in this section of code (slightly simplified):

applet_name = argv([0];
applet_name = bb_basename (applet_name) ;
run_applet_and_exit (applet_name, argv);

BusyBox has over three hundred applets including an init program, several shells of
varying levels of complexity, and utilities for most admin tasks. There is even a simple
version of the vi editor, so you can change text files on your device.

To summarize, a typical installation of BusyBox consists of a single program with a
symbolic link for each applet, but which behaves exactly as if it were a collection of
individual applications.

Building BusyBox

BusyBox uses the same Kconfig and Kbuild system as the kernel, so cross compiling is
straightforward. You can get the source by cloning the Git archive and checking out the
version you want (1_26_2 was the latest at the time of writing), such as follows:

$ git clone git://busybox.net/busybox.git

$ cd busybox
$ git checkout 1_26_2

You can also download the corresponding TAR file from http://busybox.net/downloads.

Then, configure BusyBox by starting with the default configuration, which enables pretty
much all of the features of BusyBox:

$ make distclean
$ make defconfig

[115]

http://busybox.net/downloads

Building a Root Filesystem

At this point, you probably want to run make menuconfig to fine tune the configuration.
For example, you almost certainly want to set the install path in Busybox Settings |
Installation Options (CONFIG_PREFIX) to point to the staging directory. Then, you can
cross compile in the usual way. If your intended target is the BeagleBone Black, use this
command:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux—-gnueabihf-

If your intended target is the QEMU emulation of a Versatile PB, use this command:

$ make ARCH=arm CROSS_COMPILE=arm—-unknown-linux—-gnueabi-

In either case, the result is the executable, busybox. For a default configuration build like
this, the size is about 900 KiB. If this is too big for you, you can slim it down by changing
the configuration to leave out the utilities you don't need.

To install BusyBox into the staging area, use the following command:

$ make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux—gnueabihf- install

This will copy the binary to the directory configured in CONFIG_PREFIX and create all the
symbolic links to it.

ToyBox — an alternative to BusyBox

BusyBox is not the only game in town. In addition, there is ToyBox, which you can find at h
ttp://landley.net/toybox/. The project was started by Rob Landley, who was previously
a maintainer of BusyBox. ToyBox has the same aim as BusyBox, but with more emphasis on
complying with standards, especially POSIX-2008 and LSB 4.1, and less on compatibility
with GNU extensions to those standards. ToyBox is smaller than BusyBox, partly because it
implements fewer applets. However, the main difference is the license, which is BSD rather
than GPL v2. This makes it license compatible with operating systems with a BSD-licensed
user space, such as Android, and hence it is part of all the new Android devices.

Libraries for the root filesystem

Programs are linked with libraries. You could link them all statically, in which case, there
would be no libraries on the target device. But, this takes up an unnecessarily large amount
of storage if you have more than two or three programs. So, you need to copy shared
libraries from the toolchain to the staging directory. How do you know which libraries?

[116]

http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/
http://landley.net/toybox/

Building a Root Filesystem

One option is to copy all of the . so files from the sysroot directory of your toolchain, since
they must be of some use otherwise they wouldn't exist! This is certainly logical and, if you
are creating a platform to be used by others for a range of applications, it would be the
correct approach. Be aware, though, that a full glibc is quite large. In the case of a
crosstool-NG build of glibc 2.22, the libraries, locales, and other supporting files come to
33 MiB. Of course, you could cut down on that considerably using musl libc or uClibc-

ng.

Another option is to cherry pick only those libraries that you require, for which you need a
means of discovering library dependencies. Using some of our knowledge from chapter 2,
Learning About Toolchains, we can use the readelf command for this task:

$ cd ~/rootfs

$ arm-cortex_a8-linux-gnueabihf-readelf -a bin/busybox | grep "program
interpreter"

[Requesting program interpreter: /lib/ld-linux-armhf.so.3]

$ arm-cortex_a8-linux-gnueabihf-readelf -a bin/busybox | grep "Shared
library"

0x00000001 (NEEDED) Shared library: [libm.so.6]

0x00000001 (NEEDED) Shared library: [libc.so.6]

Now, you need to find these files in the toolchain sysroot directory and copy them to the
staging directory. Remember that you can find sysroot like this:

$ arm-cortex_a8-linux—-gnueabihf-gcc -print-sysroot
/home/chris/x-tools/arm-cortex_a8-linux—-gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot

To reduce the amount of typing, I am going to keep a copy of that in a shell variable:

$ export SYSROOT=$ (arm—-cortex_a8-linux-gnueabihf-gcc —-print-sysroot)

If you look at /1ib/ld-linux-armhf.so.3in sysroot, you will see that, it is, in fact, a
symbolic link:

$ cd $SYSROOT

$ 1s -1 1ib/ld-linux-armhf.so.3

lrwxrwxrwx 1 chris chris 10 Mar 3 15:22 lib/ld-linux-armhf.so.3 ->
1d-2.22.s0

[117]

Building a Root Filesystem

Repeat the exercise for 1ibc.so.6 and 1libm. so. 6, and you will end up with a list of three
files and three symbolic links. Now, you can copy each one using cp -a, which will
preserve the symbolic link:

cd ~/rootfs

cp —a $SYSROOT/1lib/ld-linux—-armhf.so.3 1lib
cp —a $SYSROOT/1lib/1d-2.22.so 1lib

cp —a $SYSROOT/1lib/libec.so.6 1lib

cp —a $SYSROOT/1lib/libec-2.22.s0 1lib

cp —a $SYSROOT/1lib/libm.so.6 1lib

cp —a $SYSROOT/1lib/libm-2.22.so0 lib

v v n

Repeat this procedure for each program.

It is only worth doing this to get the very smallest embedded footprint
possible. There is a danger that you will miss libraries that are loaded
through dlopen(3) calls—plugins mostly. We will look at an example with
the name service switch (NSS) libraries when we come to configure
network interfaces later on in this chapter.

Reducing the size by stripping

Libraries and programs are often compiled with some information stored in symbol tables
to aid debugging and tracing. You seldom need these in a production system. A quick and
easy way to save space is to strip the binaries of symbol tables. This example shows 1ibc
before stripping:

$ file rootfs/lib/libec-2.22.s0

lib/libc-2.22.s0: ELF 32-bit LSB shared object, ARM, EABI5 version 1
(GNU/Linux), dynamically linked (uses shared libs), for GNU/Linux 4.3.0,
not stripped

$ 1s -og rootfs/lib/libc-2.22.s0
-rwxr-xr—-x 1 1542572 Mar 3 15:22 rootfs/lib/libc-2.22.s0

Now, let's see the result of stripping debug information:

$ arm-cortex_a8-linux—gnueabihf-strip rootfs/lib/libc-2.22.so

$ file rootfs/lib/libec-2.22.s0

rootfs/lib/libc-2.22.s0: ELF 32-bit LSB shared object, ARM, EABI5 version 1
(GNU/Linux), dynamically linked (uses shared libs), for GNU/Linux 4.3.0,
stripped

$ 1ls -og rootfs/lib/libc-2.22.s0
—rwxr-xr-x 1 1218200 Mar 22 19:57 rootfs/lib/libc-2.22.s0

[118]

Building a Root Filesystem

In this case, we saved 324,372 bytes, or about 20% of the size of the file before stripping.

Be careful about stripping kernel modules. Some symbols are required by
the module loader to relocate the module code, and so the module will fail
to load if they are stripped out. Use this command to remove debug
symbols while keeping those used for relocation: strip —-strip-
unneeded <module name>.

Device nodes

Most devices in Linux are represented by device nodes, in accordance with the Unix
philosophy that everything is a file (except network interfaces, which are sockets). A device
node may refer to a block device or a character device. Block devices are mass storage
devices, such as SD cards or hard drives. A character device is pretty much anything else,
once again with the exception of network interfaces. The conventional location for device
nodes is the directory called /dev. For example, a serial port maybe represented by the
device node called /dev/ttyS0.

Device nodes are created using the program named mknod (short for make node):

mknod <name> <type> <major> <minor>
The parameters to mknod are as follows:

¢ name is the name of the device node that you want to create.
e type is either ¢ for character devices or b for a block.

e major and minor are a pair of numbers, which are used by the kernel to route
file requests to the appropriate device driver code. There is a list of standard
major and minor numbers in the kernel source in the file
Documentation/devices.txt.

You will need to create device nodes for all the devices you want to access on your system.
You can do so manually using the mknod command, as I will illustrate here; or you can
create them automatically at runtime using one of the device managers that I will mention
later.

[119]

Building a Root Filesystem

In a really minimal root filesystem, you need just two nodes to boot with BusyBox: console
and null. The console only needs to be accessible to root, the owner of the device node, so
the access permissions are 600. The null device should be readable and writable by
everyone, so the mode is 666. You can use the —m option for mknod to set the mode when
creating the node. You need to be root to create device nodes, as shown here:

$ cd ~/rootfs
$ sudo mknod -m 666 dev/null ¢ 1 3
$ sudo mknod -m 600 dev/console ¢ 5 1

$ 1s -1 dev

total 0

Crw——————— 1 root root 5, 1 Mar 22 20:01 console
crw—-rw-rw— 1 root root 1, 3 Mar 22 20:01 null

You can delete device nodes using the standard rm command: there is no rmnod command
because, once created, they are just files.

The proc and sysfs filesystems

proc and sysfs are two pseudo filesystems that give a window onto the inner workings of
the kernel. They both represent kernel data as files in a hierarchy of directories: when you
read one of the files, the contents you see do not come from disk storage; it has been
formatted on-the-fly by a function in the kernel. Some files are also writable, meaning that a
kernel function is called with the new data you have written and, if it is of the correct
format and you have sufficient permissions, it will modify the value stored in the kernel's
memory. In other words, proc and sysfs provide another way to interact with device
drivers and other kernel code. The proc and sysfs filesystems should be mounted on the
directories called /proc and /sys:

mount -t proc proc /proc
mount -t sysfs sysfs /sys

Although they are very similar in concept, they perform different functions. proc has been
part of Linux since the early days. Its original purpose was to expose information about
processes to user space, hence the name. To this end, there is a directory for each process
named /proc/<PID>, which contains information about its state. The process list
command, ps, reads these files to generate its output. In addition, there are files that give
information about other parts of the kernel, for example, /proc/cpuinfo tells you about
the CPU, /proc/interrupts has information about interrupts, and so on.

[120]

Building a Root Filesystem

Finally, in /proc/sys, there are files that display and control the state and behavior of
kernel subsystems, especially scheduling, memory management, and networking. The
manual page is the best reference for the files you will find in the proc directory, which you
can see by typing man 5 proc.

On the other hand, the role of sys£s is to present the kernel driver model to user space. It
exports a hierarchy of files relating to devices and device drivers and the way they are
connected to each other. I will go into more detail on the Linux driver model when I
describe the interaction with device drivers in chapter 9, Interfacing with Device Drivers.

Mounting filesystems

The mount command allows us to attach one filesystem to a directory within another,
forming a hierarchy of filesystems. The one at the top, which was mounted by the kernel
when it booted, is called the root filesystem. The format of the mount command is as
follows:

mount [-t vfstype] [-o options] device directory

You need to specify the type of the filesystem, vEstype, the block device node it resides
on, and the directory you want to mount it to. There are various options you can give
after-o; have a look at the manual page mount(8) for more information. As an example, if
you want to mount an SD card containing an ext 4 filesystem in the first partition onto the
directory called /mnt, you would type the following code:

mount -t ext4 /dev/mmcblkOpl /mnt

Assuming the mount succeeds, you would be able to see the files stored on the SD card in
the directory: /mnt. In some cases, you can leave out the filesystem type, and let the kernel
probe the device to find out what is stored there.

Looking at the example of mounting the proc filesystem, there is something odd: there is
no device node, such as /dev/proc, since it is a pseudo filesystem and not a real one. But
the mount command requires a device parameter. Consequently, we have to give a string
where device should go, but it does not matter much what that string is. These two
commands achieve exactly the same result:

mount -t proc procfs /proc
mount -t proc nodevice /proc

The strings "procfs" and "nodevice" are ignored by the mount command. It is fairly common
to use the filesystem type in the place of the device when mounting pseudo filesystems.

[121]

Building a Root Filesystem

Kernel modules

If you have kernel modules, they need to be installed into the root filesystem, using the
kernel make target modules_install, as we saw in the last chapter. This will copy them
into the directory called /1ib/modules/<kernel version> together with the
configuration files needed by the modprobe command.

Be aware that you have just created a dependency between the kernel and the root
filesystem. If you update one, you will have to update the other.

Transferring the root filesystem to the target

After having created a skeleton root filesystem in your staging directory, the next task is to
transfer it to the target. In the sections that follow, I will describe three possibilities:

e initramfs: Also known as a ramdisk, this is a filesystem image that is loaded into
RAM by the bootloader. Ramdisks are easy to create and have no dependencies
on mass storage drivers. They can be used in fallback maintenance mode when
the main root filesystem needs updating. They can even be used as the main root
filesystem in small embedded devices, and they are commonly used as the early
user space in mainstream Linux distributions. Remember that the contents of the
root filesystem are volatile, and any changes you make in the root filesystem at
runtime will be lost when the system next boots. You would need another storage
type to store permanent data such as configuration parameters.

¢ Disk image: This is a copy of the root filesystem formatted and ready to be
loaded onto a mass storage device on the target. For example, it could be an
image in the ext 4 format ready to be copied onto an SD card, or it could be in the
jffs2 format ready to be loaded into flash memory via the bootloader. Creating
a disk image is probably the most common option. There is more information
about the different types of mass storage in chapter 7, Creating a Storage Strategy.

¢ Network filesystem: The staging directory can be exported to the network via an
NFS server and mounted by the target at boot time. This is often done during the
development phase, in preference to repeated cycles of creating a disk image and
reloading it onto the mass storage device, which is quite a slow process.

I will start with ramdisk, and use it to illustrate a few refinements to the root filesystem,
such as adding usernames and a device manager to create device nodes automatically.
Then, I will show you how to create a disk image and how to use NFS to mount the root
filesystem over a network.

[122]

Building a Root Filesystem

Creating a boot initramfs

An initial RAM filesystem, or initramfs, is a compressed cpio archive. cpio is an old
Unix archive format, similar to TAR and ZIP but easier to decode and so requiring less code
in the kernel. You need to configure your kernel with CONFIG_BLK_DEV_INITRD to support
initramfs.

As it happens, there are three different ways to create a boot ramdisk: as a standalone cpio
archive, as a cpio archive embedded in the kernel image, and as a device table which the
kernel build system processes as part of the build. The first option gives the most flexibility,
because we can mix and match kernels and ramdisks to our heart's content. However, it
means that you have two files to deal with instead of one, and not all bootloaders have the
facility to load a separate ramdisk. I will show you how to build one into the kernel later.

Standalone initramfs

The following sequence of instructions creates the archive, compresses it, and adds a U-Boot
header ready for loading onto the target:

$ cd ~/rootfs
$ find . | cpio -H newc -ov —-owner root:root > ../initramfs.cpio

$ cd ..

$ gzip initramfs.cpio

$ mkimage -A arm -0 linux -T ramdisk -d initramfs.cpio.gz uRamdisk

Note that we run cpio with the option: ——owner root:root. This is a quick fix for the file
ownership problem mentioned earlier, making everything in the cpio archive have UID

and GID of 0.

The final size of the uRamdi sk file is about 2.9 MB with no kernel modules. Add to that 4.4
MB for the kernel zImage file and 440 KB for U-Boot, and this gives a total of 7.7 MB of
storage needed to boot this board. We are a little way off the 1.44 MB floppy that started it
all off. If size was a real problem, you could use one of these options:

Make the kernel smaller by leaving out drivers and functions you don't need

Make BusyBox smaller by leaving out utilities you don't need
e Usemusl libc or uClibc-ngin place of glibc

Compile BusyBox statically

[123]

Building a Root Filesystem

Booting the initramfs

The simplest thing we can do is to run a shell on the console so that we can interact with the
target. We can do that by adding rdinit=/bin/sh to the kernel command line. The next
two sections show how to do that for both QEMU and the BeagleBone Black.

Booting with QEMU

QEMU has the option called ~initrd toload initramfs into memory. You should already
have from chapter 4, Configuring and Building the Kernel, a zImage compiled with the arm-
unknown-linux-gnueabi toolchain and the device tree binary for the Versatile PB. From
this chapter, you should have created initramfs , which includes BusyBox compiled with
the same toolchain. Now, you can launch QEMU using the script in
MELP/chapter_05/run-gemu-initramfs.sh or using this command:

$ QEMU_AUDIO_DRV=none \

gemu-system—arm -m 256M -nographic -M versatilepb -kernel zImage \
—append "console=ttyAMAO rdinit=/bin/sh" -dtb versatile-pb.dtb \
—initrd initramfs.cpio.gz

You should get a root shell with the prompt / #.

Booting the BeagleBone Black

For the BeagleBone Black, we need the microSD card prepared in chapter 4, Configuring
and Building the Kernel, plus a root filesystem built using the arm-cortex_a8-linux-
gnueabihf toolchain. Copy uRamdisk you created earlier in this section to the boot
partition on the microSD card, and then use it to boot the BeagleBone Black to point that
you get a U-Boot prompt. Then enter these commands:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80£00000 am335x-boneblack.dtb
fatload mmc 0:1 0x81000000 uRamdisk

setenv bootargs console=tty00,115200 rdinit=/bin/sh
bootz 0x80200000 0x81000000 0x80£00000

If all goes well, you will get a root shell with the prompt / # on the serial console.

[124]

Building a Root Filesystem

Mounting proc

You will find that on both platforms the ps command doesn't work. This is because the
proc filesystem has not been mounted yet. Try mounting it:

mount -t proc proc /proc
Now, run ps again, and you will see the process listing.

A refinement to this setup would be to write a shell script that mounts proc, and anything
else that needs to be done at boot-up. Then, you could run this script instead of /bin/sh at
boot. The following snippet gives an idea of how it would work:

#!/bin/sh

/bin/mount -t proc proc /proc

Other boot-time commands go here
/bin/sh

The last line, /bin/sh, launches a new shell that gives you an interactive root shell prompt.
Using a shell as init in this way is very handy for quick hacks, for example, when you want
to rescue a system with a broken init program. However, in most cases, you would use an
init program, which we will cover later on in this chapter. But, before this, I want to look at
two other ways to load initramfs.

Building an initramfs into the kernel image

So far, we have created a compressed initramfs as a separate file and used the bootloader
to load it into memory. Some bootloaders do not have the ability to load an initramfs file in
this way. To cope with these situations, Linux can be configured to incorporate initramfs
into the kernel image. To do this, change the kernel configuration and set
CONFIG_INITRAMFS_SOURCE to the full path of the cpio archive you created earlier. If you
are using menuconfig, it is in General setup | Initramfs source file(s). Note that it has to
be the uncompressed cpio file ending in . cpio, not the gzipped version. Then, build the
kernel.

Booting is the same as before, except that there is no ramdisk file. For QEMU, the command
is like this:

$ QEMU_AUDIO_DRV=none \
gemu-system—-arm -m 256M -nographic -M versatilepb -kernel zImage \
—-append "console=ttyAMAO rdinit=/bin/sh" -dtb versatile-pb.dtb

[125]

Building a Root Filesystem

For the BeagleBone Black, enter these commands at the U-Boot prompt:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80£00000 am335x-boneblack.dtb
setenv bootargs console=tty00,115200 rdinit=/bin/sh
bootz 0x80200000 - 0x80£00000

Of course, you must remember to regenerate the cpio file each time you change the
contents of the root filesystem, and then rebuild the kernel.

Building an initramfs using a device table

A device table is a text file that lists the files, directories, device nodes, and links that go into
an archive or filesystem image. The overwhelming advantage is that it allows you to create
entries in the archive file that are owned by the root user, or any other UID, without
having root privileges yourself. You can even create device nodes without needing root
privileges. All this is possible because the archive is just a data file. It is only when it is
expanded by Linux at boot time that real files and directories get created, using the
attributes you have specified.

The kernel has a feature that allows us to use a device table when creating an initramfs.
You write the device table file, and then point CONFIG_INITRAMFS_SOURCE at it. Then,
when you build the kernel, it creates the cpio archive from the instructions in the device
table. At no point do you need root access.

Here is a device table for our simple root fs, but missing most of the symbolic links to
BusyBox to make it manageable:

dir /bin 775 0 0

dir /sys 775 0 0

dir /tmp 775 0 0

dir /dev 775 0 0

nod /dev/null 666 0 0 ¢ 1 3

nod /dev/console 600 0 0 ¢ 5 1

dir /home 775 0 0

dir /proc 775 0 0

dir /lib 775 0 0

slink /lib/libm.so.6 libm-2.22.s0 777 0 0

slink /lib/libc.so.6 libc-2.22.s0 777 0 0

slink /lib/ld-linux-armhf.so.3 1d-2.22.s0 777 0 O

file /1lib/libm-2.22.s0 /home/chris/rootfs/lib/libm-2.22.s0 755 0 0
file /1lib/libc-2.22.s0 /home/chris/rootfs/lib/libc-2.22.s0 755 0 0
file /1ib/1d-2.22.s0 /home/chris/rootfs/lib/1d-2.22.s0 755 0 0

[126]

Building a Root Filesystem

The syntax is fairly obvious:

e dir <name> <mode> <uid> <gid>
e file <name> <location> <mode> <uid> <gid>
® nod <name> <mode> <uid> <gid> <dev_type> <maj> <min>

e slink <name> <target> <mode> <uid> <gid>

The commands dir, nod, and s1ink create a file system object in the initramfs cpio
archive with the name, mode, user ID and group ID given. The file command copies the
file from the source location into the archive and sets the mode, the user ID, and the group
ID.

The task of creating an initramfs device table from scratch is made easier by a script in
the kernel source code in scripts/gen_initramfs_list.sh, which creates a device table
from a given directory. For example, to create the initramfs device table for directory
rootfs, and to change the ownership of all files owned by user ID 1000 and group ID

1000 to user and group ID 0, you would use this command:

$ bash linux-stable/scripts/gen_initramfs_list.sh -u 1000 -g 1000 \
rootfs > initramfs-device-table

Note that the script only works with a bash shell. If you have a system with a different
default shell, as is the case with most Ubuntu configurations, you will find that the script
fails. Hence, in the command given previously, I explicitly used bash to run the script.

The old initrd format

There is an older format for a Linux ramdisk, known as initrd. It was the only format
available before Linux 2.6 and is still needed if you are using the mmu-less variant of Linux,
uClinux. It is pretty obscure and I will not cover it here. There is more information in the
kernel source in Documentation/initrd.txt.

The init program

Running a shell, or even a shell script, at boot time is fine for simple cases, but really you
need something more flexible. Normally, Unix systems run a program called init that starts
up and monitors other programs. Over the years, there have been many init programs,
some of which I will describe in chapter 9, Interfacing with Device Drivers. For now, I will
briefly introduce the init from BusyBox.

[127]

Building a Root Filesystem

The init program begins by reading the configuration file, /etc/inittab. Here is a simple
example, which is adequate for our needs:

::sysinit:/etc/init.d/rcS
::askfirst:-/bin/ash

The first line runs a shell script, rcS, when init is started. The second line prints the message
Please press Enter to activate this console to the console and starts a shell
when you press Enter. The leading - before /bin/ash means that it will become a login
shell, which sources /etc/profile and $HOME/ .profile before giving the shell prompt.
One of the advantages of launching the shell like this is that job control is enabled. The most
immediate effect is that you can use Ctrl + C to terminate the current program. Maybe you
didn't notice it before but, wait until you run the ping program and find you can't stop it!

BusyBox init provides a default inittab if none is present in the root filesystem. It is a little
more extensive than the preceding one.

The script called /etc/init.d/rcS is the place to put initialization commands that need to
be performed at boot, for example, mounting the proc and sysfs filesystems:

#!/bin/sh

mount -t proc proc /proc
mount -t sysfs sysfs /sys

Make sure that you make rcs executable like this:

$ cd ~/rootfs
$ chmod +x etc/init.d/rcS

You can try it out on QEMU by changing the —~append parameter like this:
—append "console=ttyAMAO rdinit=/sbin/init"
For the BeagleBone Black, you need to set the bootargs variable in U-Boot as shown here:

setenv bootargs console=tty00,115200 rdinit=/sbin/init

Starting a daemon process

Typically, you would want to run certain background processes at startup. Let's take the log
daemon, syslogd, as an example. The purpose of syslogd is to accumulate log messages
from other programs, mostly other daemons. Naturally, BusyBox has an applet for that!

[128]

Building a Root Filesystem

Starting the daemon is as simple as adding a line like this to etc/inittab:
: :respawn:/sbin/syslogd -n

respawn means that if the program terminates, it will be automatically restarted; -n means
that it should run as a foreground process. The log is written to /var/log/messages.

You may also want to start k1ogd in the same way: k1ogd sends kernel
log messages to syslogd so that they can be logged to permanent storage.

Configuring user accounts

As I have hinted already, it is not good practice to run all programs as root, since if one is
compromised by an outside attack, then the whole system is at risk. It is preferable to create
unprivileged user accounts and use them where full root is not necessary.

User names are configured in /etc/passwd. There is one line per user, with seven fields of
information separated by colons, which are in order:

¢ The login name

A hash code used to verify the password, or more usually an x to indicate that
the password is stored in /etc/shadow

The user ID
The group ID

e A comment field, often left blank

The user's home directory

(Optional) the shell this user will use

Here is a simple example in which we have user root with UID 0, and user daemon with
UID 1:

root:x:0:0:root:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/false

Setting the shell for user daemon to /bin/false ensures that any attempt to log on with
that name will fail.

[129]

Building a Root Filesystem

Various programs have to read /etc/passwd in order to look up user names and UlDs,
and so the file has to be world readable. This is a problem if the password hashes are stored
in there as well, because a malicious program would be able to take a copy and discover the
actual passwords using a variety of cracker programs. Therefore, to reduce the exposure of
this sensitive information, the passwords are stored in /etc/shadow and x is placed in the
password field to indicate that this is the case. The file called /etc/shadow only needs to be
accessed by root, so as long as the root user is not compromised, the passwords are safe.
The shadow password file consists of one entry per user, made up of nine fields. Here is an
example that mirrors the password file shown in the preceding paragraph:

root::10933:0:99999:7:::
daemon:*:10933:0:99999:7:::

The first two fields are the username and the password hash. The remaining seven fields are
related to password aging, which is not usually an issue on embedded devices. If you are
curious about the full details, refer to the manual page for shadow(5).

In the example, the password for root is empty, meaning that root can log on without
giving a password. Having an empty password for root is useful during development but
not for production. You can generate or change a password hash by running the passwd
command on the target, which will write a new hash to /etc/shadow. If you want all
subsequent root filesystems to have this same password, you could copy this file back to the
staging directory.

Group names are stored in a similar way in /etc/group. There is one line per group
consisting of four fields separated by colons. The fields are here:

¢ The name of the group

¢ The group password, usually an x character, indicating that there is no group
password

¢ The GID or group ID
¢ An optional list of users who belong to this group, separated by commas

Here is an example:

root:x:0:
daemon:x:1:

[130]

Building a Root Filesystem

Adding user accounts to the root filesystem

Firstly, you have to add to your staging directory the files etc/passwd, etc/shadow, and
etc/group, as shown in the preceding section. Make sure that the permissions of shadow
are 0600. Next, you need to initiate the login procedure by starting a program called getty.
There is a version of getty in BusyBox. You launch it from inittab using the keyword
respawn, which restarts getty when a login shell is terminated, so inittab should read
like this:

::sysinit:/etc/init.d/rcS
::respawn:/sbin/getty 115200 console

Then, rebuild the ramdisk and try it out using QEMU or the BeagleBone Black as before.

A better way of managing device nodes

Creating device nodes statically with mknod is quite hard work and inflexible. There are
other ways to create device nodes automatically on demand:

e devtmpfs: This is a pseudo filesystem that you mount over /dev at boot time.
The kernel populates it with device nodes for all the devices that the kernel
currently knows about, and it creates nodes for new devices as they are detected
at runtime. The nodes are owned by root and have default permissions of 0600.
Some well-known device nodes, such as /dev/null and /dev/random, override
the default to 0666. To see exactly how this is done, take a look at the Linux
source file: drivers/char/mem.c and see how struct memdev is initialized.

e mdev: This is a BusyBox applet that is used to populate a directory with device
nodes and to create new nodes as needed. There is a configuration file,
/etc/mdev.conf, which contains rules for ownership and the mode of the
nodes.

¢ udev: This is the mainstream equivalent of mdev. You will find it on desktop
Linux and in some embedded devices. It is very flexible and a good choice for
higher end embedded devices. It is now part of systemd.

Although both mdev and udev create the device nodes themselves, it is
more usual to let devtmpfs do the job and use mdev/udev as a layer on
top to implement the policy for setting ownership and permissions.

[131]

Building a Root Filesystem

An example using devtmpfs

Support for the devtmp£s filesystem is controlled by kernel configuration variable:
CONFIG_DEVTMPFS. It is not enabled in the default configuration of the ARM Versatile PB,
so if you want to try out the following using this target, you will have to go back and enable
this option. Trying out devtmpf£s is as simple as entering this command:

mount -t devtmpfs devtmpfs /dev

You will notice that afterward, there are many more device nodes in /dev. For a permanent
fix, add this to /etc/init.d/rcs:

#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

If you enable CONFIG_DEVTMPFS_MOUNT in your kernel configuration, the kernel will
automatically mount devtmpfs just after mounting the root filesystem. However, this
option has no effect when booting initramfs, as we are doing here.

An example using mdev

While mdev is a bit more complex to set up, it does allow you to modify the permissions of
device nodes as they are created. You begin by running mdev with the -s option, which
causes it to scan the /sys directory looking for information about current devices. From this
information, it populates the /dev directory with the corresponding nodes. If you want to
keep track of new devices coming online and create nodes for them as well, you need to
make mdev a hot plug client by writing to /proc/sys/kernel/hotplug. These additions
to /etc/init.d/rcs will achieve all of this:

#!/bin/sh

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t devtmpfs devtmpfs /dev

echo /sbin/mdev > /proc/sys/kernel/hotplug
mdev -s

[132]

Building a Root Filesystem

The default mode is 660 and the ownership is root : root. You can change this by adding
rules in /etc/mdev.conf. For example, to give the null, random, and urandom devices
their correct modes, you would add this to /etc/mdev.conf:

null root:root 666
random root:root 444
urandom root:root 444

The format is documented in the BusyBox source code in docs/mdev . txt, and there are
more examples in the directory named examples.

Are static device nodes so bad after all?

Statically created device nodes do have one advantage over running a device manager: they
don't take any time during boot to create. If minimizing boot time is a priority, using
statically-created device nodes will save a measurable amount of time.

Configuring the network

Next, let's look at some basic network configurations so that we can communicate with the
outside world. I am assuming that there is an Ethernet interface, eth0, and that we only
need a simple IPv4 configuration.

These examples use the network utilities that are part of BusyBox, and they are sufficient for
a simple use case, using the old-but-reliable i fup and i fdown programs. You can read the
manual pages for both to get the details. The main network configuration is stored in
/etc/network/interfaces. You will need to create these directories in the staging
directory:

etc/network
etc/network/if-pre-up.d
etc/network/if-up.d
var/run

For a static IP address, /etc/network/interfaces would look like this:

auto 1lo
iface lo inet loopback

auto ethO
iface eth0O inet static
address 192.168.1.101

[133]

Building a Root Filesystem

netmask 255.255.255.0
network 192.168.1.0

For a dynamic IP address allocated using DHCP, /etc/network/interfaces would look
like this:

auto 1lo
iface lo inet loopback

auto ethO
iface ethO inet dhcp

You will also have to configure a DHCP client program. BusyBox has one named udchpcd.
It needs a shell script that should go in /usr/share/udhcpc/default.script. Thereisa
suitable default in the BusyBox source code in the directory
examples/udhcp/simple.script.

Network components for glibc

glibc uses a mechanism known as the name service switch (NSS) to control the way that
names are resolved to numbers for networking and users. Usernames, for example, maybe
resolved to UlDs via the file /et c/passwd, and network services such as HTTP can be
resolved to the service port number via /etc/services. All this is configured by
/etc/nsswitch.conf; see the manual page, nss(5), for full details. Here is a simple
example that will suffice for most embedded Linux implementations:

passwd: files
group: files
shadow: files
hosts: files dns
networks: files
protocols: files
services: files

Everything is resolved by the correspondingly named file in /etc, except for the host
names, which may additionally be resolved by a DNS lookup.

To make this work, you need to populate /et c with those files. Networks, protocols, and
services are the same across all Linux systems, so they can be copied from /etc in your
development PC. /etc/hosts should, at least, contain the loopback address:

127.0.0.1 localhost

[134]

Building a Root Filesystem

The other files, passwd, group, and shadow, have been described earlier in the section
Configuring user accounts.

The last piece of the jigsaw is the libraries that perform the name resolution. They are
plugins that are loaded as needed based on the contents of nsswitch.conf, meaning that
they do not show up as dependencies if you use readelf or 1dd. You will simply have to
copy them from the toolchain's sysroot:

$ cd ~/rootfs
$ cp —a $SYSROOT/lib/libnss* 1lib
$ cp —a $SYSROOT/lib/libresolv* lib

Creating filesystem images with device
tables

We saw earlier in the section Creating a boot initramfs that the kernel has an option to create
initramfs using a device table. Device tables are really useful because they allow a non-
root user to create device nodes and to allocate arbitrary UID and GID values to any file or
directory. The same concept has been applied to tools that create other filesystem image
formats, as shown in this table:

Filesystem format Tool

Jjffs2 mkfs.jffs2
ubifs mkfs.ubifs
ext?2 genext2fs

We will look at j££s2 and ubifs in chapter 7, Creating a Storage Strategy, when we look at
filesystems for flash memory. The third, ext 2, is a format commonly used for managed
flash memory, including SD cards. The example that follows uses ext 2 to create a disk
image that can be copied to an SD card.

[135]

Building a Root Filesystem

They each take a device table file with the format <name> <type> <mode> <uid> <gid>
<major> <minor> <start> <inc> <count>, where the meanings of the fields is as
follows:

® name:

e type: One of the following:
e f: Aregular file

d: A directory
¢ c: A character special device file

b: A block special device file

p: A FIFO (named pipe)

e uid The UID of the file

e gid: The GID of the file

e major and minor: The device numbers (device nodes only)

e start, inc, and count: Allow you to create a group of device nodes starting
from the minor number in start (device nodes only)

You do not have to specify every file, as you do with the kernel initramfs table. You just
have to point at a directory —the staging directory —and list the changes and exceptions you
need to make in the final filesystem image.

A simple example which populates static device nodes for us is as follows:

/dev 4 755 0 0 - - - — -

/dev/null ¢ 666 0 0 1 3 0 0 -
/dev/console ¢ 600 0 0
/dev/tty00 ¢ 600 0 0 25

5100 -
2000 -

Then, you can use genext2fs to generate a filesystem image of 4 MB (that is 4,096 blocks of
the default size, 1,024 bytes):

$ genext2fs -b 4096 -d rootfs -D device-table.txt -U rootfs.ext2

Now, you can copy the resulting image, rootfs.ext2, to an SD card or similar, which we
will do next.

[136]

Building a Root Filesystem

Booting the BeagleBone Black

The script called MELP/format-sdcard. sh creates two partitions on the micro SD card:
one for the boot files and one for the root filesystem. Assuming that you have created the
root filesystem image as shown in the previous section, you can use the dd command to
write it to the second partition. As always, when copying files directly to storage devices
like this, make absolutely sure that you know which is the micro SD card. In this case, I am
using a built-in card reader, which is the device called /dev/mmcb1k0, so the command is
as follows:

$ sudo dd if=rootfs.ext2 of=/dev/mmcblk0p2

Then, slot the micro SD card into the BeagleBone Black, and set the kernel command line to
root=/dev/mmcblk0p2. The complete sequence of U-Boot commands is as follows:

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80£00000 am335x-boneblack.dtb

setenv bootargs console=tty00,115200 root=/dev/mmcblk0p2
bootz 0x80200000 - 0x80£00000

This is an example of mounting a filesystem from a normal block device, such as an SD
card. The same principles apply to other filesystem types and we will look at them in more
detail in chapter 7, Creating a Storage Strategy.

Mounting the root filesystem using NFS

If your device has a network interface, it is often useful to mount the root filesystem over
the network during development. It gives you access to the almost unlimited storage on
your host machine, so you can add in debug tools and executables with large symbol tables.
As an added bonus, updates made to the root filesystem on the development machine are
made available on the target immediately. You can also access all the target's log files from
the host.

To begin with, you need to install and configure an NFS server on your host. On Ubuntu,
the package to install is named nfs-kernel-server:

$ sudo apt-get install nfs-kernel-server

[137]

Building a Root Filesystem

The NEFS server needs to be told which directories are being exported to the network, which
is controlled by /etc/exports. There is one line for each export. The format is described in
the manual page exports(5). As an example, to export the root filesystem on my host, I have
this:

/home/chris/rootfs * (rw, sync,no_subtree_check,no_root_squash)

* exports the directory to any address on my local network. If you wish, you can give a
single IP address or a range at this point. There follows a list of options enclosed in
parentheses. There must not be any spaces between * and the opening parenthesis. The
options are here:

e rw: This exports the directory as read-write.

e sync: This option selects the synchronous version of the NES protocol, which is
more robust but a little slower than the async option.

* no_subtree_check: This option disables subtree checking, which has mild
security implications, but can improve reliability in some circumstances.

® no_root_squash: This option allows requests from user ID 0 to be processed
without squashing to a different user ID. It is necessary to allow the target to
access correctly the files owned by root.

Having made changes to /etc/exports, restart the NFS server to pick them up.

Now, you need to set up the target to mount the root filesystem over NFS. For this to work,
your kernel has to be configured with CONFIG_ROOT_NFS. Then, you can configure Linux to
do the mount at boot time by adding the following to the kernel command line:

root=/dev/nfs rw nfsroot=<host-ip>:<root-dir> ip=<target-ip>
The options are as follows:

e rw: This mounts the root filesystem read-write.

e nfsroot: This specifies the IP address of the host, followed by the path to the
exported root filesystem.

e ip: This is the IP address to be assigned to the target. Usually, network addresses
are assigned at runtime, as we have seen in the section Configuring the network.
However, in this case, the interface has to be configured before the root filesystem
is mounted and init has been started. Hence it is configured on the kernel
command line.

[138]

Building a Root Filesystem

There is more information about NFS root mounts in the kernel source in
Documentation/filesystems/nfs/nfsroot.txt.

Testing with QEMU

The following script creates a virtual network between the network device called tap0 on
the host and eth0 on the target using a pair of static IPv4 addresses, and then launches
QEMU with the parameters to use tap0 as the emulated interface.

You will need to change the path to the root filesystem to be the full path to your staging
directory and maybe the IP addresses if they conflict with your network configuration:

#!/bin/bash

KERNEL=zImage
DTB=versatile-pb.dtb
ROOTDIR=/home/chris/rootfs
HOST_IP=192.168.1.1
TARGET_IP=192.168.1.101
NET_NUMBER=192.168.1.0
NET_MASK=255.255.255.0

sudo tunctl -u $(whoami) -t tapO

sudo ifconfig tap0 ${HOST_IP}

sudo route add -net S${NET_NUMBER} netmask ${NET_MASK} dev tap0
sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

QEMU_AUDIO_DRV=none

gemu-system—-arm -m 256M -nographic -M versatilepb -kernel ${KERNEL} -append
"console=ttyAMAQO, 115200 root=/dev/nfs rw nfsroot=${HOST_IP}:${ROOTDIR}
ip=${TARGET_IP}" -dtb ${DTB} -net nic -net tap,ifname=tap0,script=no

The script is available in MELP/chapter_05/run-gemu-nfsroot.sh.

It should boot up as before, now using the staging directory directly via the NFS export.
Any files that you create in that directory will be immediately visible to the target device,
and any files created in the device will be visible to the development PC.

[139]

Building a Root Filesystem

Testing with the BeagleBone Black

In a similar way, you can enter these commands at the U-Boot prompt of the BeagleBone
Black:

setenv serverip 192.168.1.1

setenv ipaddr 192.168.1.101

setenv npath [path to staging directory]

setenv bootargs console=tty00,115200 root=/dev/nfs rw
nfsroot=${serverip}:${npath} ip=${ipaddr}

fatload mmc 0:1 0x80200000 zImage

fatload mmc 0:1 0x80f00000 am335x-boneblack.dtb

bootz 0x80200000 - 0x80£00000

There is a U-Boot environment file in chapter_05/uEnv.txt, which contains all these
commands. Just copy it to the boot partition of the microSD card and U-Boot will do the
rest.

Problems with file permissions

The files that you copied into the staging directory will be owned by the UID of the user
you are logged on as, typically 1000. However, the target has no knowledge of this user.
What is more, any files created by the target will be owned by users configured by the
target, often the root user. The whole thing is a mess. Unfortunately, there is no simple
way out. The best solution is to make a copy of the staging directory and change ownership
to UID and GID to 0, using the command sudo chown -R 0:0 *.Then, export this
directory as the NFS mount. It removes the convenience of having just one copy of the root
filesystem shared between development and target systems, but, at least, the file ownership
will be correct.

Using TFTP to load the kernel

Now that we know how to mount the root filesystem over a network using NFS, you may
be wondering if there is a way to load the kernel, device tree, and initramfs over the
network as well. If we could do this, the only component that needs to be written to storage
on the target is the bootloader. Everything else could be loaded from the host machine. It
would save time since you would not need to keep reflashing the target, and you could
even get work done while the flash storage drivers are still being developed (it happens).

[140]

Building a Root Filesystem

The Trivial File Transfer Protocol (TFTP) is the answer to the problem. TFTP is a very
simple file transfer protocol, designed to be easy to implement in bootloaders such as U-
Boot.

But, firstly, you need to install a TFTP daemon on your development machine. On Ubuntu,
you could install the t ftpd-hpa package, which, by default, grants read-only access to files
in the directory /var/lib/tftpboot. With t ftpd-hpa installed and running, copy the
files that you want to copy to the target into /var/lib/tftpboot, which, for the
BeagleBone Black, would be zImage and am335x-boneblack.dtb. Then enter these
commands at the U-Boot Command Prompt:

setenv serverip 192.168.1.1

setenv ipaddr 192.168.1.101

tftpboot 0x80200000 zImage

tftpboot 0x80f00000 am335x-boneblack.dtb

setenv npath [path to staging]

setenv bootargs console=tty00,115200 root=/dev/nfs rw
nfsroot=${serverip}:${npath} ip=S${ipaddr}

bootz 0x80200000 - 0x80£00000

You may find that the t ftpboot command hangs, endlessly printing out the letter T, which
means that the TFTP requests are timing out. There are a number of reasons why this
happens, the most common ones being:

e There is an incorrect IP address for serverip.
e The TFTP daemon is not running on the server.

e There is a firewall on the server which is blocking the TFTP protocol. Most
firewalls do indeed block the TFTP port, 69, by default.

Once you have resolved the problem, U-Boot can load the files from the host machine and
boot in the usual way. You can automate the process by putting the commands into a
uEnv.txt file.

Additional reading

Filesystem Hierarchy Standard, Version 3.0, http://refspecs.linuxfoundation.org/fhs.sh
tml

ramfs, rootfs and initramfs , Rob Landley, October 17, 2005, which is part of the Linux source in
Documentation/filesystems/ramfs—-rootfs—initramfs.txt.

[141]

http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml

Building a Root Filesystem

Summary

One of the strengths of Linux is that it can support a wide range of root filesystems, and so
it can be tailored to suit a wide range of needs. We have seen that it is possible to construct
a simple root filesystem manually with a small number of components and that BusyBox is
especially useful in this regard. By going through the process one step at a time, it has given
us insight into some of the basic workings of Linux systems, including network
configuration and user accounts. However, the task rapidly becomes unmanageable as
devices get more complex. And, there is the ever-present worry that there may be a security
hole in the implementation, which we have not noticed.

In the next chapter, I will show you how using an embedded build system can make the
process of creating an embedded Linux system much easier and more reliable. I will start by
looking at Buildroot, and then go onto look at the more complex, but powerful, Yocto
Project.

[142]

Selecting a Build System

In the preceding chapters, we covered the four elements of embedded Linux and showed
you step-by-step how to build a toolchain, a bootloader, a kernel, a root filesystem, and then
combined them into a basic embedded Linux system. And there are a lot of steps! Now, it is
time to look at ways to simplify the process by automating it as much as possible. I will look
at how embedded build systems can help and look at two of them in particular: Buildroot
and the Yocto Project. Both are complex and flexible tools, which would require an entire
book to describe fully how they work. In this chapter, I only want to show you the general
ideas behind build systems. I will show you how to build a simple device image to get an
overall feel of the system, and then how to make some useful changes using the Nova board
example from the previous chapters.

In this chapter, we will cover the following topics:

¢ Build systems

¢ Package formats and package managers
e Buildroot

¢ The Yocto Project

Build systems

I have described the process of creating a system manually, as described in chapter 5,
Building a Root Filesystem, as the Roll Your Own (RYO) process. It has the advantage that
you are in complete control of the software, and you can tailor it to do anything you like. If
you want it to do something truly odd but innovative, or if you want to reduce the memory
footprint to the smallest size possible, RYO is the way to go. But, in the vast majority of
situations, building manually is a waste of time and produces inferior, unmaintainable
systems.

Selecting a Build System

The idea of a build system is to automate all the steps I have described up to this point. A
build system should be able to build, from upstream source code, some or all of the
following;:

A toolchain

A bootloader

A kernel

A root filesystem

Building from upstream source code is important for a number of reasons. It means that
you have peace of mind that you can rebuild at any time, without external dependencies. It
also means that you have the source code for debugging and also that you can meet your
license requirements to distribute the code to users where necessary.

Therefore, to do its job, a build system has to be able to do the following;:

1. Download the source code from upstream, either directly from the source code
control system or as an archive, and cache it locally.

2. Apply patches to enable cross compilation, fix architecture-dependent bugs,
apply local configuration policies, and so on.

3. Build the various components.

-~

Create a staging area and assemble a root filesystem.
5. Create image files in various formats ready to be loaded onto the target.

Other things that are useful are as follows:

1. Add your own packages containing, for example, applications or kernel changes.

2. Select various root filesystem profiles: large or small, with and without graphics
or other features.

3. Create a standalone SDK that you can distribute to other developers so that they
don't have to install the complete build system.

4. Track which open source licenses are used by the various packages you have
selected.

5. Have a user-friendly user interface.

In all cases, they encapsulate the components of a system into packages, some for the host

and some for the target. Each package is defined by a set of rules to get the source, build it,
and install the results in the correct location. There are dependencies between the packages
and a build mechanism to resolve the dependencies and build the set of packages required.

[144]

Selecting a Build System

Open source build systems have matured considerably over the last few years. There are
many around, including the following:

e Buildroot: This is an easy-to-use system using GNU make and Kconfig (https
://buildroot.org/)

e EmbToolkit: This is a simple system for generating root filesystems; the only one
so far that supports LLVM/Clang out of the box (https://www.embtoolkit.org)

¢ OpenEmbedded: This is a powerful system, which is also a core component of
the Yocto Project and others (http://openembedded.org)

e OpenWrt: This is a build tool oriented towards building firmware for wireless
routers (https://openwrt.org)

e PTXdist: This is an open source build system sponsored by Pengutronix
(http://www.pengutronix.de/software/ptxdist/index_en.html)

¢ The Yocto Project: This extends the OpenEmbedded core with metadata, tools
and documentation: probably the most popular system (http://www.yoctoproje
ct.org)

I will concentrate on two of these: Buildroot and the Yocto Project. They approach the
problem in different ways and with different objectives.

Buildroot has the primary aim of building root filesystem images, hence the name, although
it can build bootloader and kernel images as well. It is easy to install and configure and
generates target images quickly.

The Yocto Project, on the other hand, is more general in the way it defines the target system,
and so it can build fairly complex embedded devices. Every component is generated as a
binary package, by default, using the RPM format, and then the packages are combined
together to make the filesystem image. Furthermore, you can install a package manager in
the filesystem image, which allows you to update packages at runtime. In other words,
when you build with the Yocto Project, you are, in effect, creating your own custom Linux
distribution.

Package formats and package managers

Mainstream Linux distributions are, in most cases, constructed from collections of binary
(precompiled) packages in either RPM or DEB format. RPM stands for the Red Hat package
manager and is used in Red Hat, Suse, Fedora, and other distributions based on them.
Debian and Debian-derived distributions, including Ubuntu and Mint, use the Debian
package manager format, DEB. In addition, there is a light-weight format specific to
embedded devices known as the Itsy package format or IPK, which is based on DEB.

[145]

https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
http://openembedded.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
https://openwrt.org
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org

Selecting a Build System

The ability to include a package manager on the device is one of the big differentiators
between build systems. Once you have a package manager on the target device, you have
an easy path to deploy new packages to it and to update the existing ones. I will talk about
the implications of this in chapter 8, Updating Software in the Field.

Buildroot

The Buildroot project website is at http://buildroot.org.

The current versions of Buildroot are capable of building a toolchain, a bootloader, a kernel,
and a root filesystem. It uses GNU make as the principal build tool. There is good online
documentation at http://buildroot.org/docs.html, including The Buildroot user manual
at https://buildroot.org/downloads/manual/manual.html.

Background

Buildroot was one of the first build systems. It began as part of the uClinux and uClibc
projects as a way of generating a small root filesystem for testing. It became a separate
project in late 2001 and continued to evolve through to 2006, after which it went into a
rather dormant phase. However, since 2009, when Peter Korsgaard took over stewardship,
it has been developing rapidly, adding support for glibc based toolchains and a greatly
increased number of packages and target boards.

As a matter of interest, Buildroot is also the ancestor of another popular build system,
OpenWrt (http://wiki.openwrt.org), which forked from Buildroot around 2004. The
primary focus of OpenWrt is to produce software for wireless routers, and so the package
mix is oriented toward the networking infrastructure. It also has a runtime package
manager using the IPK format so that a device can be updated or upgraded without a
complete reflash of the image. However, Buildroot and OpenWrt have diverged to such an
extent that they are now almost completely different build systems. Packages built with one
are not compatible with the other.

[146]

http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
http://buildroot.org/docs.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org
http://wiki.openwrt.org

Selecting a Build System

Stable releases and long-term support

The Buildroot developers produce stable releases four times a year, in February, May,
August, and November. They are marked by git tags of the form: <year>.02, <year>.05,
<year>.08, and <year>.11. From time to time, a release is marked for Long Term
Support (LTS), which means that there will be point releases to fix security and other
important bugs for 12 months after the initial release. The 2017.02 release is the first to
receive the LTS label.

Installing

As usual, you can install Buildroot either by cloning the repository or downloading an
archive. Here is an example of obtaining version 2017.02.1, which was the latest stable
version at the time of writing:

$ git clone git://git.buildroot.net/buildroot -b 2017.02.1
$ cd buildroot

The equivalent TAR archive is available at http://buildroot.org/downloads.

Next, you should read the section titled System requirement from The Buildroot user
manual available at http://buildroot.org/downloads/manual/manual.html, and make
sure that you have installed all the packages listed there.

Configuring

Buildroot uses the kernel Kconfig/Kbuild mechanism, which I described in the section
Understanding kernel configuration in Chapter 4, Configuring and Building the Kernel. You can
configure Buildroot from scratch directly using make menuconfig (xconfig or gconfig),
or you can choose one of the 100+ configurations for various development boards and the
QEMU emulator, which you can find stored in the directory, configs/. Typing make
list-defconfigs lists all the default configurations.

Let's begin by building a default configuration that you can run on the ARM QEMU
emulator:

$ cd buildroot
$ make gemu_arm_versatile_defconfig
$ make

[147]

http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
http://buildroot.org/downloads
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html

Selecting a Build System

You do not tell make how many parallel jobs to run with a -j option:
Buildroot will make optimum use of your CPUs all by itself. If you want to
limit the number of jobs, you can run make menuconfig and look under
the Build options.

The build will take half an hour to an hour or more depending on the capabilities of your
host system and the speed of your link to the internet. It will download approximately 220
MiB of code and will consume about 3.5 GiB of disk space. When it is complete, you will
find that two new directories have been created:

e d1/: This contains archives of the upstream projects that Buildroot has built
e output/: This contains all the intermediate and final compiled resources

You will see the following in output/:

* build/: Here, you will find the build directory for each component.

¢ host/: This contains various tools required by Buildroot that run on the host,
including the executables of the toolchain (in output /host/usr/bin).

e images/: This is the most important of all since it contains the results of the
build. Depending on what you selected when configuring, you will find a
bootloader, a kernel, and one or more root filesystem images.

¢ staging/: This is a symbolic link to the sysroot of the toolchain. The name of
the link is a little confusing, because it does not point to a staging area as I
defined it in Chapter 5, Building a Root Filesystem.

e target/: This is the staging area for the root directory. Note that you cannot
use it as a root filesystem as it stands because the file ownership and the
permissions are not set correctly. Buildroot uses a device table, as described in the
previous chapter, to set ownership and permissions when the filesystem image is
created in the image/ directory.

Running

Some of the sample configurations have a corresponding entry in the directory board/,
which contains custom configuration files and information about installing the results on
the target. In the case of the system you have just built, the relevant file is
board/gemu/arm-versatile/readme.txt, which tells you how to start QEMU with this
target. Assuming that you have already installed gemu-system-arm as described in
Chapter 1, Starting Out, you can run it using this command:

[148]

Selecting a Build System

$ gemu-system—arm -M versatilepb -m 256 \

-kernel output/images/zImage \

-dtb output/images/versatile-pb.dtb \

—-drive file=output/images/rootfs.ext2,if=scsi, format=raw \
—append "root=/dev/sda console=ttyAMAO,115200" \

—-serial stdio —net nic,model=rtl18139 —-net user

There is a script named MELP/chapter_06/run-gemu-buildroot. sh in the book code
archive, which includes that command. When QEMU boots up, you should see the kernel
boot messages appear in the same terminal window where you started QEMU, followed by
a login prompt:

Booting Linux on physical CPU 0x0

Linux version 4.9.6 (chris@chris-xps) (gcc version 5.4.0
(Buildroot 2017.02.1)) #1 Tue Apr 18 10:30:03 BST 2017

CPU: ARM926EJ-S [41069265] revision 5 (ARMvS5TEJ), cr=00093177
[...]

VEFS: Mounted root (ext2 filesystem) readonly on device 8:0.
devtmpfs: mounted

Freeing unused kernel memory: 132K (c042£f000 - c0450000)

This architecture does not have kernel memory protection.
EXT4-fs (sda): warning: mounting unchecked fs, running e2fsck is
recommended

EXT4-fs (sda): re-mounted. Opts:
block_validity,barrier,user_xattr,errors=remount-ro

Starting logging: OK

Initializing random number generator... done.
Starting network: 8139cp 0000:00:0c.0 ethO: link up, 100Mbps, full-duplex,
lpa 0x05E1

udhcpc: started, v1.26.2

udhcpc: sending discover

udhcpc: sending select for 10.0.2.15

udhcpc: lease of 10.0.2.15 obtained, lease time 86400
deleting routers

adding dns 10.0.2.3

OK

Welcome to Buildroot
buildroot login:

Log in as root, no password.

You will see that QEMU launches a black window in addition to the one with the kernel
boot messages. It is there to display the graphics frame buffer of the target. In this case, the
target never writes to the framebuffer, which is why it appears black. To close QEMU,
either type Ctr1-Alt-2 to get to the QEMU console and then type quit, or just close the
framebuffer window.

[149]

Selecting a Build System

Creating a custom BSP

Next, let's use Buildroot to create a BSP for our Nova board using the same versions of U-
Boot and Linux from earlier chapters. You can see the changes I made to Buildroot during
this section in the book code archive in MELP/chapter_06/buildroot.

The recommended places to store your changes are here:

® board/<organization>/<device>: This contains any patches, binary blobs,
extra build steps, configuration files for Linux, U-Boot, and other components

e configs/<device>_defconfig: This contains the default configuration for the
board

® package/<organization>/<package_name>: This is the place to put any
additional packages for this board

Let's begin by creating a directory to store changes for the Nova board:

$ mkdir -p board/melp/nova

Next, clean the artifacts from any previous build, which you should always do when
changing configurations:

$ make clean

Now, select the configuration for the BeagleBone, which we are going to use as the basis of
the Nova configuration.

$ make beaglebone_defconfig

U-Boot

In chapter 3, All About Bootloaders, we created a custom bootloader for Nova, based on the
2017.01 version of U-Boot and created a patch file for it, which you will find in
MELP/chapter_03/0001-BSP-for-Nova.patch. We can configure Buildroot to select the
same version and apply our patch. Begin by copying the patch file into board/melp/nova,
and then use make menuconfig to set the U-Boot version to 2017.01, the patch file to
board/melp/nova/0001-BSP-for—-Nova.patch, and the board name to Nova, as shown
in this screenshot:

[150]

Selecting a Build System

/home /chris/buildroot/.config - Buildroot 2017.02.1 Configuration
> Bootloaders
Bootloaders
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
selectes a feature, while <N> will exclude a feature. Press
<Esc»<Esc> to exit, <?> for Help, </> for Search. Legend: [*] feature

afboot-stm32
Earebox
mxs-bootlets
=500-bootloader
t54800-mbrboot
U-Boot
Build system (Kconfig) --->
U-Boot Version (Custom version) --->

(2017.81) U-Boot version
ﬂbuard melp/nova/0001-BSP-for-Nova.patch) Custom U-Boot patches|

U-Boot configuration (Using an in-tree board defconfig file
(am335x_evm) EBoard defconfig
[*] U-Boot needs dtc

< Exit = < Help = < Save > < Load =

We also need a U-Boot script to load the Nova device tree and the kernel from the SD card.
We can put the file into board/melp/nova/uEnv.txt. It should contain these commands:

bootpart=0:1
bootdir=

bootargs=console=tty00,115200n8 root=/dev/mmcblkOp2 rw rootfstype=exti
rootwait

uenvcmd=fatload mmc 0:1 88000000 nova.dtb;fatload mmc 0:1 82000000 zImage;
bootz 82000000 - 88000000

[151]

Selecting a Build System

Linux

In chapter 4, Configuring and Building the Kernel, we based the kernel on Linux 4.9.13 and
supplied a new device tree, which is in MELP/chapter_04/nova.dts. Copy the device tree
to board/melp/nova, change the Buildroot kernel configuration to select Linux version
4.9.13, and the device tree source to board/melp/nova/nova.dts, as shown in the
following screenshot:

[home/chris/buildroot/.config - Buildroot 2017.02.1 Configuration
> Kernel
Kernel
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <¥Y=>
selectes a feature, while <N> will exclude a feature. Press
<Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] feature

[*] Linux Kernel

kernel version (Custom version) --->
(4.9.13) Kernel version
Q) Custom kernel patches

kernel configuration (Using an in-tree defconfig file)
(omap2plus) Defconfig name
() Additional configuration fragment files

kernel binary format (zImage) ---»

kernel compression format (gzip compression) --->
[*] Build a Device Tree Blob (DTB)

Device tree source (Use a custom device tree file) --->

ﬂhuard melp/nova/nova.dts) Device Tree Source file paths|

[1 Install kernel image to /boot in target

< Exit > < Help > < Save > < Load >

[152]

Selecting a Build System

We will also have to change the kernel series to be used for kernel headers to match the
kernel being built:

fhomefchris/buildroot/.config - Buildroot 2017.02.1 Configuration
> Toolchain
Toolchain
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
selectes a feature, while <N> will exclude a feature. Press
<Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] feature

Toolchain type (Buildroot toolchain) --->

%* Toolchain Buildroot Options *
(buildroot) custom toolchain vendor name

C library (uClibc-ng) ---=>

*** Kernel Header Options *=**

Kernel Headers (Same as kernel being built) --->
I

*** yClibc Options #***
(package/uclibc/uClibc-ng.config) uClibc configuration file to us

) Additional uClibc configuration fragment files

Enable RPC support

Enable WCHAR support

Enable toolchain locale/i18n support

< Exit > < Help > < Save > < Load >

Build

In the last stage of the build, Buildroot uses a tool named genimage to create an image for
the SD card that we can copy directory to the card. We need a configuration file to layout
the image in the right way. We will name the file board/melp/nova/genimage.cfg and
populate it as shown here:

image boot.vfat {

viat {
files = {
"MLO",
"u-boot.img",
"zImage",
"uEnv.txt",
"nova.dtb",
}
}

size = 16M

[153]

Selecting a Build System

image sdcard.img {
hdimage {
}

partition u-boot {
partition-type = 0xC
bootable = "true"
image = "boot.vfat"

partition rootfs {
partition-type = 0x83
image = "rootfs.ext4"
size = 512M

}

This will create a file named sdcard. img, which contains two partitions named u-boot
and root fs. The first contains the boot files listed in boot . vfat, and the second contains
the root filesystem image named root fs.ext 4, which will be generated by Buildroot.

Finally, we need to create a post image script that will call genimage, and so create the SD
card image. We will put it in board/melp/nova/post-image. sh:

#!/bin/sh
BOARD_DIR="S$ (dirname $0)"

cp ${BOARD_DIR}/uEnv.txt $BINARIES_DIR/uEnv.txt

GENIMAGE_CFG="${BOARD_DIR}/genimage.cfg"
GENIMAGE_TMP="${BUILD_DIR}/genimage.tmp"

rm -rf "${GENIMAGE_TMP}"

genimage \

——rootpath "${TARGET_DIR}" \
——tmppath "${GENIMAGE_TMP}" \
——inputpath "${BINARIES_DIR}" \
——outputpath "${BINARIES_DIR}" \
—-—config "S${GENIMAGE_CFG}"

This copies the uEnv . txt script into the output/images directory and runs genimage
with our configuration file.

[154]

Selecting a Build System

Now, we can run menuconfig again and to change the System configuration option,
Custom scripts to run before creating filesystem images, to run our post-image. sh
script, as shown in this screenshot:

/media/chris/android/home/training/MELP/ch06/buildroot/.config - Buildroot 2017
.> System configuratio¢n ———""——F- ——-«———— " —
System configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
selectes a feature, while <N> will exclude a feature. Press
<Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] feature

() Network interface to configure through DHCP

[*] Purge unwanted locales

(C en_US) Locales to keep

[1 Install timezone info

() Path to the users tables

() Root filesystem overlay directories

() custom scripts to run before creating filesystem images

() Custom scripts to run inside the fakeroot environment
Eh

O Extra arguments passed to custom scripts

< Exit > < Help > < Save > < Load =

Finally, you can build Linux for the Nova board just by typing make. When it has finished,
you will see these files in the directory, output/images/:

boot.vfat rootfs.ext2 sdcard.img uEnv.txt
MLO rootfs.ext4 u-boot.img zImage
nova.dtb rootfs.tar u-boot-spl.bin

To test it, put a microSD card in the card reader, unmount any partitions that are auto
mounted, and then copy sdcard. img to the root of the SD card. There is no need to format
it beforehand, as we did in the previous chapter, because genimage has created the exact
disk layout required. In the following example, my SD card reader is /dev/mmcb1kO0:

$ sudo umount /dev/mmcblk0*
$ sudo dd if=output/images/sdcard.img of=/dev/mmcblk0 bs=1M

Put the SD card into the BeagleBone Black and power on while pressing the boot button to
force it to load from the SD card. You should see that it boots up with our selected versions
of U-Boot, Linux, and with the Nova device tree.

[155]

Selecting a Build System

Having shown that our custom configuration for the Nova board works, it would be nice to
keep a copy of the configuration so that you and others can use it again, which you can do
with this command:

$ make savedefconfig BR2_DEFCONFIG=configs/nova_defconfig

Now, you have a Buildroot configuration for the Nova board. Subsequently, you can
retrieve this configuration by typing the following command:

$ make nova_defconfig

Adding your own code

Suppose there is a program that you have developed and that you want to include it in the
build. You have two options: firstly to build it separately using its own build system, and
then roll the binary into the final build as an overlay. Secondly, you could create a Buildroot
package that can be selected from the menu and built like any other.

Overlays

An overlay is simply a directory structure that is copied over the top of the Buildroot root
filesystem at a late stage in the build process. It can contain executables, libraries, and
anything else you may want to include. Note that any compiled code must be compatible
with the libraries deployed at runtime, which, in turn, means that it must be compiled with
the same toolchain that Buildroot uses. Using the Buildroot toolchain is quite easy. Just add
it to PATH:

$ PATH=<path_to_buildroot>/output/host/usr/bin: $PATH

The prefix for the toolchain is <ARCH>-1inux-. So, to compile a simple program, you
would do something like this:

$ PATH=/home/chris/buildroot/output/host/usr/bin:$PATH
$ arm-linux-gcc helloworld.c -o helloworld

Once you have compiled your program with the correct toolchain, you just need to install
the executables and other supporting files into a staging area, and mark it as an overlay for
Buildroot. For the helloworld example, you might put it in the board/melp/nova
directory:

$ mkdir -p board/melp/nova/overlay/usr/bin
$ cp helloworld board/melp/nova/overlay/usr/bin

[156]

Selecting a Build System

Finally, you set BR2_ROOTFS_OVERLAY to the path to the overlay. It can be configured in
menuconfig with the option, System configuration | Root filesystem overlay directories.

Adding a package

Buildroot packages are stored in the package directory, over 2,000 of them, each in its own
subdirectory. A package consists of at least two files: Config. in, containing the snippet of
Kconfig code required to make the package visible in the configuration menu, and a
makefile named <package_name>.mk. Note that the package does not contain the code,
just the instructions to get the code by downloading a tarball, doing git pull or whatever
is necessary to obtain the upstream source.

The makefile is written in a format expected by Buildroot and contains directives that allow
Buildroot to download, configure, compile, and install the program. Writing a new package
makefile is a complex operation, which is covered in detail in the Buildroot user manual.
Here is an example which shows you how to create a package for a simple program stored
locally, such as our helloworld program.

Begin by creating the package/helloworld/ subdirectory with a configuration file,
Config.in, which looks like this:

config BR2_PACKAGE_HELLOWORLD
bool "helloworld"
help
A friendly program that prints Hello World! every 10s

The first line must be of the format, BR2_PACKAGE_<uppercase package name>. Thisis
followed by a Boolean and the package name, as it will appear in the configuration menu,
which will allow a user to select this package. The help section is optional (but hopefully
useful).

Next, link the new package into the Target Packages menu by editing
package/Config.in and sourcing the configuration file as mentioned in the preceding
section. You could append this to an existing submenu but, in this case, it seems neater to
create a new submenu, which only contains our package:

menu "My programs"
source "package/helloworld/Config.in"
endmenu

[157]

Selecting a Build System

Then, create a makefile, package/helloworld/helloworld.mk, to supply the data
needed by Buildroot:

HELLOWORLD_VERSION = 1.0.0
HELLOWORLD_SITE = /home/chris/MELP/helloworld
HELLOWORLD_SITE_METHOD = local

define HELLOWORLD_BUILD_CMDS
$ (MAKE) CC="$ (TARGET_CC)" LD="$(TARGET_LD)" -C $(@D) all
endef

define HELLOWORLD_INSTALL_TARGET_CMDS
S (INSTALL) -D -m 0755 $(@D)/helloworld $(TARGET_DIR) /usr/bin/helloworld
endef

$(eval $(generic-package))

You can find my helloworld package in the book code archive in
MELP/chapter_06/buildroot/package/helloworld and the source code for the
program in MELP /chapter_06/helloworld. The location of the code is hard coded to a
local pathname. In a more realistic case, you would get the code from a source code system
or from a central server of some kind: there are details of how to do this in the Buildroot
user manual and plenty of examples in other packages.

License compliance

Buildroot is based on an open source software as are the packages it compiles. At some
point during the project, you should check the licenses, which you can do by running:

$ make legal-info

The information is gathered into output/legal-info/. There are summaries of the
licenses used to compile the host tools in host-manifest.csv and, on the target, in
manifest .csv. There is more information in the README file and in the Buildroot user
manual.

[158]

Selecting a Build System

The Yocto Project

The Yocto Project is a more complex beast than Buildroot. Not only can it build toolchains,
bootloaders, kernels, and root filesystems as Buildroot can, but it can generate an entire
Linux distribution for you with binary packages that can be installed at runtime. The Yocto
Project is primarily a group of recipes, similar to Buildroot packages but written using a
combination of Python and shell script, together with a task scheduler called BitBake that
produces whatever you have configured, from the recipes.

There is plenty of online documentation at https://www.yoctoproject.org/.

Background

The structure of the Yocto Project makes more sense if you look at the background first. It's
roots are in OpenEmbedded, http://openembedded.org/, which, in turn, grew out of a
number of projects to port Linux to various hand-held computers, including the Sharp
Zaurus and the Compaq iPaq. OpenEmbedded, which came to life in 2003 as the build
system for those hand-held computers. Soon after, other developers began to use it as a
general build asystem for devices running embedded Linux. It was developed, and
continues to be developed, by an enthusiastic community of programmers.

The OpenEmbedded project is set out to create a set of binary packages using the compact
IPK format, which could then be combined in various ways to create a target system and be
installed on the target at runtime. It did this by creating recipes for each package and using
BitBake as the task scheduler. It was, and is, very flexible. By supplying the right metadata,
you can create an entire Linux distribution to your own specification. One that, which is
fairly well-known is the Angstrém Distribution, http://www.angstrom-distribution.or
g, but there are many others as well.

At some time in 2005, Richard Purdie, then a developer at OpenedHand, created a fork of
OpenEmbedded, which had a more conservative choice of packages and created releases
that were stable over a period of time. He named it Poky after the Japanese snack (if you are
worried about these things, Poky is pronounced to rhyme with hockey). Although Poky
was a fork, OpenEmbedded and Poky continued to run alongside each other, sharing
updates and keeping the architectures more or less in step. Intel brought out OpenedHand
in 2008, and they transferred Poky Linux to the Linux Foundation in 2010 when they
formed the Yocto Project.

[159]

https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://openembedded.org/
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org

Selecting a Build System

Since 2010, the common components of OpenEmbedded and Poky have been combined into
a separate project known as OpenEmbedded Core or just OE-Core.

Therefore, the Yocto Project collects together several components, the most important of
which are the following;:

¢ OE-Core: This is the core metadata, which is shared with OpenEmbedded

e BitBake: This is the task scheduler, which is shared with OpenEmbedded and
other projects

e Poky: This is the reference distribution

¢ Documentation: This is the user's manuals and developer's guides for each
component

e Toaster: This is a web-based interface to BitBake and its metadata
e ADT Eclipse: This is a plugin for Eclipse

The Yocto Project provides a stable base, which can be used as it is or can be extended using
meta layers, which I will discuss later in this chapter. Many SoC vendors provide BSPs for
their devices in this way. Meta layers can also be used to create extended or just different
build systems. Some are open source, such as the Angstrom Distribution, and others are
commercial, such as MontaVista Carrier Grade Edition, Mentor Embedded Linux, and
Wind River Linux. The Yocto Project has a branding and compatibility testing scheme to
ensure that there is interoperability between components. You will see statements like
Yocto Project compatible on various web pages.

Consequently, you should think of the Yocto Project as the foundation of a whole sector of
embedded Linux, as well as being a complete build system in its own right.

You maybe wondering about the name, Yocto. yocto is the SI prefix for

10 *, in the same way that micro is 10 °. Why name the project Yocto? It
was partly to indicate that it could build very small Linux systems
(although, to be fair, so can other build systems), but also to steal a march
on the Angstrom Distribution, which is based on OpenEmbedded. An
Angstrt')m is 10 ". That's huge, compared to a yocto!

[160]

Selecting a Build System

Stable releases and supports

Usually, there is a release of the Yocto Project every six months: in April and October. They
are principally known by the code name, but it is useful to know the version numbers of the
Yocto Project and Poky as well. Here is a table of the six most recent releases at the time of
writing:

Code name | Release date | Yocto version | Poky version
Morty October 2016 (2.2 16
Krogoth |April 2016 2.1 15
Jethro October 2015 |2.0 14
Fido April 2015 1.8 13
Dizzy October 2014 (1.7 12
Daisy April 2014 1.6 11

The stable releases are supported with security and critical bug fixes for the current release
cycle and the next cycle. In other words, each version is supported for approximately 12
months after the release. As with Buildroot, if you want continued support, you can update
to the next stable release, or you can backport changes to your version. You also have the
option of commercial support for periods of several years with the Yocto Project from
operating system vendors, such as Mentor Graphics, Wind River, and many others.

Installing the Yocto Project

To get a copy of the Yocto Project, you can either clone the repository, choosing the code
name as the branch, which is morty in this case:

$ git clone -b morty git://git.yoctoproject.org/poky.git

You can also download the archive from nhttp://downloads.yoctoproject.org/releases
/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2. In the first case, you will find everything
in the directory, poky/, in the second case, poky-morty-16.0.0/.

In addition, you should read the section titled System Requirements from the Yocto Project
Reference Manual (http ://www.yoctoproject.org/docs/current/ref-manual/ref-manual
.html#detailed-supported-distros); and, in particular, you should make sure that the
packages listed there are installed on your host computer.

[161]

http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros

Selecting a Build System

Configuring

As with Buildroot, let's begin with a build for the QEMU ARM emulator. Begin by sourcing
a script to set up the environment:

$ cd poky
$ source oe-init-build-env

This creates a working directory for you named build/ and makes it the current directory.
All of the configuration, intermediate, and target image files will be put in this directory.
You must source this script each time you want to work on this project.

You can choose a different working directory by adding it as a parameter to ce-init-
build-env, for example:

$ source oe-init-build-env build-gemuarm

This will put you into the directory: build-gemuarm/ . This way you can have several
build directories, each for a different project: you choose which one you want to work with
through the parameter to oe-init-build-env.

Initially, the build directory contains only one subdirectory named conf/, which contains
the configuration files for this project:

e local.conf: This contains a specification of the device you are going to build
and the build environment.

® bblayers.conf: This contains paths of the meta layers you are going to use. I
will describe layers later on.

e templateconf.cfg: This contains the name of a directory, which contains
various conf files. By default, it points to meta-poky/conf/.

For now, we just need to set the MACHINE variable in 1ocal. conf to gemuarm by removing
the comment character (#) at the start of this line:

MACHINE ?= "gemuarm"

[162]

Selecting a Build System

Building
To actually perform the build, you need to run BitBake, telling it which root filesystem
image you want to create. Some common images are as follows:

e core-image-minimal: This is a small console-based system which is useful for
tests and as the basis for custom images.

¢ core-image-minimal-initramfs: This is similar to core-image-minimal, but
built as a ramdisk.

e core-image-x11: This is a basic image with support for graphics through an
X11 server and the xterminal terminal app.

® core-image-sato: This is a full graphical system based on Sato, which is a
mobile graphical environment built on X11, and GNOME. The image includes
several apps including a Terminal, an editor, and a file manager.

By giving BitBake the final target, it will work backwards and build all the dependencies
first, beginning with the toolchain. For now, we just want to create a minimal image to see
how it works:

$ bitbake core-image-minimal

The build is likely to take some time, probably more than an hour. It will download about 4
GiB of source code, and it will consume about about 24 GiB of disk space. When it is
complete, you will find several new directories in the build directory including
downloads/, which contains all the source downloaded for the build, and tmp/, which
contains most of the build artifacts. You should see the following in tmp/:

e work/: This contains the build directory and the staging area for the root
filesystem.
e deploy/: This contains the final binaries to be deployed on the target:
e deploy/images/ [machine name]/: Contains the bootloader, the
kernel, and the root filesystem images ready to be run on the target
e deploy/rpm/: This contains the RPM packages that went to make
up the images
e deploy/licenses/: This contains the license files extracted from
each package

[163]

Selecting a Build System

Running the QEMU target

When you build a QEMU target, an internal version of QEMU is generated, which removes
the need to install the QEMU package for your distribution, and thus avoids version
dependencies. There is a wrapper script named rungemu to run this version of QEMU.

To run the QEMU emulation, make sure that you have sourced ce-init-build-env, and
then just type this:

$ rungemu gemuarm

In this case, QEMU has been configured with a graphic console so that the boot messages
and login prompt appear in the black framebuffer, as shown in the following screenshot:

.1798081 md: If you don’t use raid, use raid-noautodetect

.1931521 md: fAutodetecting RAID arrays.

L1972921 md: Scammed © and added 0 devices.

2013231 md: autorun ...

.Z2043391 md: ... autorun DONE.

.2145681 EXT4-fs (udal): couldn’t mount as ext3 due to feature incompatibil

.2249431 EXT4-fs (uda): couldn’t mount as extZ due to feature incompatibil
.2673651 EXT4-fs (vdal): mounted filesystem with ordered data mode. Opts: (

2762841 UFS: Mounted root (ext4 filesystem) on device 253:0.

2830721 devtnpfs: mounted

.305016]1 Freeing unused kernel memory: 412K (c0945000 - c0%ac000)

.3104171 This architecture does not have kernel memory protectiom.
¢ version 2.88 booting

9.3165131 udevd[115]1: starting version 3.2
9.4365441 wdevd[116]1: starting eudev-3.2
L 12.0732431 EXT4-f= (vwda): re-mounted. Opts: data=-ordered
Populating dev cache
INIT: Entering runlevel: 5
Configuring network interfaces... done.
Starting syslogdrsklogd: dome

Poky (Yocto Project Reference Distro) 2.2.1 gemuarm rdeurttyl

genuarn login:

You can login as root, without a password. You can close down QEMU by closing the
framebuffer window.

You can launch QEMU without the graphic window by adding nographic to the
command line:

$ rungemu gemuarm nographic

[164]

Selecting a Build System

In this case, you close QEMU using the key sequence Ctrl + A and then x.

The rungemu script has many other options. Type rungemu help for more information.

Layers

The metadata for the Yocto Project is structured into layers. By convention, each layer has a
name beginning with meta. The core layers of the Yocto Project are as follows:

e meta: This is the OpenEmbedded core with some changes for Poky
e meta-poky: This is the metadata specific to the Poky distribution

e meta-yocto-bsp: This contains the board support packages for the machines
that the Yocto Project supports

The list of layers in which BitBake searches for recipes is stored in
<your build directory>/conf/bblayers.conf and, by default, includes all three
layers mentioned in the preceding list.

By structuring the recipes and other configuration data in this way, it is very easy to extend
the Yocto Project by adding new layers. Additional layers are available from SoC
manufacturers, the Yocto Project itself, and a wide range of people wishing to add value to
the Yocto Project and OpenEmbedded. There is a useful list of layers at http://layers.ope
nembedded.org/layerindex/branch/master/layers/. Here are some examples:

¢ meta-angstrom: The Angstrom distribution
e meta-qgt5: Qt5 libraries and utilities

e meta—intel: BSPs for Intel CPUs and SoCs
e meta-ti: BSPs for TI ARM-based SoCs

Adding a layer is as simple as copying the meta directory into a suitable location, usually
alongside the default meta layers and adding it to bblayers.conf. Make sure that you
read the REAMDE file that should accompany each layer to see what dependencies it has on
other layers and which versions of the Yocto Project it is compatible with.

To illustrate the way that layers work, let's create a layer for our Nova board, which we can
use for the remainder of the chapter as we add features. You can see the complete
implementation of the layer in the code archive in MELP/chapter_06/poky/meta-nova.

[165]

http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/
http://layers.openembedded.org/layerindex/branch/master/layers/

Selecting a Build System

Each meta layer has to have at least one configuration file, named conf/layer.conf, and
it should also have the README file and a license. There is a handy helper script that does
the basics for us:

$ cd poky
$ scripts/yocto-layer create nova

The script asks for a priority, and whether you want to create sample recipes. In the
example here, I just accepted the defaults:

Please enter the layer priority you'd like to use for the layer:
[default: 6]

Would you like to have an example recipe created? (y/n) [default: n]

Would you like to have an example bbappend file created? (y/n)
[default: n]

New layer created in meta-nova.

Don't forget to add it to your BBLAYERS (for details see
meta-nova/README) .

This will create a layer named meta-nova with a conf/layer.conf, an outline README
and an MIT LICENSE in COPYING.MIT. The layer.conf file looks like this:

We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

We have recipes—* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb
${LAYERDIR}/recipes—*/*/* .bbappend"

BBFILE_COLLECTIONS += "nova"
BBFILE PATTERN nova = "“${LAYERDIR}/"
BBFILE_PRIORITY nova = "6"

It adds itself to BBPATH and the recipes it contains to BBFILES. From looking at the code,
you can see that the recipes are found in the directories with names beginning recipes-
and have filenames ending in .bb (for normal BitBake recipes) or . bbappend (for recipes
that extend existing recipes by overriding or adding to the instructions). This layer has the
name nova added to the list of layers in BBFILE_COLLECTIONS and has a priority of 6. The
layer priority is used if the same recipe appears in several layers: the one in the layer with
the highest priority wins.

Since you are about to build a new configuration, it is best to begin by creating a new build
directory named build-nova:

$ cd ~/poky
$ source oe-init-build-env build-nova

[166]

Selecting a Build System

Now, you need to add this layer to your build configuration using the command:
$ bitbake-layers add-layer ../meta-nova
You can confirm that it is set up correctly like this:

$ bitbake-layers show-layers

layer path priority
meta /home/chris/poky/meta 5
meta-yocto /home/chris/poky/meta-yocto 5
meta-yocto-bsp /home/chris/poky/meta-poky-bsp 5
meta-nova /home/chris/poky/meta-nova 6

There you can see the new layer. It has a priority 6, which means that we could override
recipes in the other layers, which all have a lower priority.

At this point, it would be a good idea to run a build, using this empty layer. The final target
will be the Nova board but, for now, build for a BeagleBone Black by removing the
comment before MACHINE ?= "beaglebone" in conf/local.conf. Then, build a small
image using bitbake core-image-minimal as before.

As well as recipes, layers may contain BitBake classes, configuration files for machines,
distributions, and more. I will look at recipes next and show you how to create a
customized image and how to create a package.

BitBake and recipes

BitBake processes metadata of several different types, which include the following:

¢ Recipes: Files ending in .bb. These contain information about building a unit of
software, including how to get a copy of the source code, the dependencies on
other components, and how to build and install it.

¢ Append: Files ending in .bbappend. These allow some details of a recipe to be
overridden or extended. A bbappend file simply appends its instructions to the
end of a recipe (.bb) file of the same root name.

¢ Include: Files ending in . inc. These contain information that is common to
several recipes, allowing information to be shared among them. The files maybe
included using the include or require keywords. The difference is that require
produces an error if the file does not exist, whereas include does not.

[167]

Selecting a Build System

¢ Classes: Files ending in .bbclass. These contain common build information, for
example, how to build a kernel or how to build an autotools project. The classes
are inherited and extended in recipes and other classes using the inherit
keyword. The class classes/base.bbclass is implicitly inherited in every
recipe.

¢ Configuration: Files ending in . conf. They define various configuration
variables that govern the project's build process.

A recipe is a collection of tasks written in a combination of Python and shell script. The
tasks have names such as do_fetch, do_unpack, do_patch, do_configure, do_compile,
and do_install. You use BitBake to execute these tasks. The default task is do_build,
which performs all the subtasks required to build the recipe. You can list the tasks available
in a recipe using bitbake -c listtasks [recipe].For example, you can list the tasks
in core-image-minimal like this

$ bitbake —-c listtasks core-image-minimal

[...]

core—-image-minimal-1.0-r0 do_listtasks: do_build
core—image-minimal-1.0-r0 do_listtasks: do_bundle_initramfs
core—image-minimal-1.0-r0 do_listtasks: do_checkuri
core—image-minimal-1.0-r0 do_listtasks: do_checkuriall
core—image-minimal-1.0-r0 do_listtasks: do_clean

[...]

In fact, -c is the option that tells BitBake to run a specific task in a recipe with the task being
named with the do_ part stripped off. The task do_1listtasks is simply a special task that
lists all the tasks defined within a recipe. Another example is the fetch task, which
downloads the source code for a recipe:

$ bitbake -c fetch busybox

You can also use the fetchall task to get the code for the target and all the dependencies,
which is useful if you want to make sure you have downloaded all the code for the image
you are about to build:

$ bitbake -c fetchall core-image-minimal

The recipe files are are usually named <package-name>_<version>.bb. They may have
dependencies on other recipes, which would allow BitBake to work out all the subtasks that
need to be executed to complete the top level job.

[168]

Selecting a Build System

As an example, to create a recipe for our helloworld program in meta-nova, you would
create a directory structure like this:

meta-nova/recipes—local/helloworld

F— files
| L— helloworld.c
L— helloworld_1.0.bb

The recipe is helloworld_1.0.bb and the source is local to the recipe directory in the
subdirectory files/. The recipe contains these instructions:

DESCRIPTION = "A friendly program that prints Hello World!"
PRIORITY = "optional"

SECTION = "examples"

LICENSE = "GPLv2"

LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/GPL-2.0;

md5=801£80980d171dd6425610833a22dbeb6"

SRC_URI = "file://helloworld.c"
S = "${WORKDIR}"
do_compile () {

S${CC} S${CFLAGS} S${LDFLAGS} helloworld.c -o helloworld
}

do_install() {

install -d ${D}${bindir}

install -m 0755 helloworld ${D}${bindir}
t

The location of the source code is set by SRC_URI:. In this case, the file:// URI means
that the code is local to the recipe directory. BitBake will search directories, files/,
helloworld/, and helloworld-1.0/ relative to the directory that contains the recipe. The
tasks that need to be defined are do_compile and do_install, which compile the one
source file and install it into the target root filesystem: ${D} expands to the staging area of
the recipe and ${bindir} to the default binary directory, /usr/bin.

Every recipe has a license, defined by LICENSE, which is set to GPL V2 here. The file
containing the text of the license and a checksum is defined by LIC_FILES_CHKSUM.
BitBake will terminate the build if the checksum does not match, indicating that the license
has changed in some way. The license file may be part of the package or it may point to one
of the standard license texts in meta/files/common-licenses/, as is the case here.

[169]

Selecting a Build System

By default, commercial licenses are disallowed, but it is easy to enable them. You need to
specify the license in the recipe, as shown here:

LICENSE_FLAGS = "commercial"

Then, in your conf/local.conf, you would explicitly allow this license, like so:

LICENSE_FLAGS_WHITELIST = "commercial"

Now, to make sure that our helloworld recipe compiles correctly, you can ask BitBake to
build it, like so:

$ bitbake helloworld

If all goes well, you should see that it has created a working directory for it in
tmp/work/cortexa8hf-vfp-neon-poky-linux—-gnueabi/helloworld/. You should

also see there is an RPM package for it in
tmp/deploy/rpm/cortexa8hf_vfp_neon/helloworld-1.0-

r0.cortexa8hf_vfp_neon.rpmn.

It is not part of the target image yet, though. The list of packages to be installed is held in a
variable named IMAGE_INSTALL. You can append to the end of that list by adding this line
to conf/local.conf:

IMAGE_INSTALL_append = " helloworld"

Note that there has to be a space between the opening double quote and the first package
name. Now, the package will be added to any image that you bitbake:

$ bitbake core-image-minimal

If you look in tmp/deploy/images/beaglebone/core-image-minimal-
beaglebone.tar.bz2, you will see that /usr/bin/helloworld hasindeed been
installed.

Customizing images via local.conf

You may often want to add a package to an image during development or tweak it in other
ways. As shown previously, you can simply append to the list of packages to be installed by
adding a statement like this:

IMAGE_INSTALL_append = " strace helloworld"

[170]

Selecting a Build System

You can make more sweeping changes via EXTRA_IMAGE_FEATURES. Here is a short list
which should give you an idea of the features you can enable:

¢ dbg-pkgs: This installs debug symbol packages for all the packages installed in
the image.

¢ debug-tweaks: This allows root logins without passwords and other changes
that make development easier.

* package-management: This installs package management tools and preserves
the package manager database.

e read-only-rootfs: This makes the root filesystem read-only. We will cover this
in more detail in chapter 7, Creating a Storage Strategy.

e x11: This installs the X server.

e x11-base: This installs the X server with a minimal environment.

¢ x11-sato: This installs the OpenedHand Sato environment.

There are many more features that you can add in this way. I recommend you look at the
Image Features section of the Yocto Project Reference Manual and also read through the code
inmeta/classes/core—-image.bbclass.

Writing an image recipe
The problem with making changes to 1local.conf is that they are, well, local. If you want

to create an image that is to be shared with other developers or to be loaded onto a
production system, then you should put the changes into an image recipe.

An image recipe contains instructions about how to create the image files for a target,
including the bootloader, the kernel, and the root filesystem images. By convention, image
recipes are put into a directory named images, so you can get a list of all the images that
are available by using this command:

$ 1ls meta*/recipes*/images/*.bb

You will find that the recipe for core-image-minimal isinmeta/recipes—
core/images/core—-image-minimal .bb.

A simple approach is to take an existing image recipe and modify it using statements
similar to those you used in 1ocal.conf.

[171]

Selecting a Build System

For example, imagine that you want an image that is the same as core-image-minimal
but includes your helloworld program and the strace utility. You can do that with a two-
line recipe file, which includes (using the require keyword) the base image and adds the
packages you want. It is conventional to put the image in a directory named images, so add
the recipe nova-image .bb with this content in meta-nova/recipes-local/images:

require recipes-core/images/core-image-minimal.bb
IMAGE_INSTALL += "helloworld strace"

Now, you can remove the IMAGE_INSTALL_append line from your local.conf and build
it using this:

$ bitbake nova-image

Creating an SDK

It is very useful to be able to create a standalone toolchain that other developers can install,
avoiding the need for everyone in the team to have a full installation of the Yocto Project.
Ideally, you want the toolchain to include development libraries and header files for all the
libraries installed on the target. You can do that for any image using the populate_sdk
task, as shown here:

$ bitbake -c populate_sdk nova-image
The result is a self-installing shell script in tmp/deploy/sdk:

poky—-<c_library>-<host_machine>-<target_image><target_machine>
—-toolchain—-<version>.sh

For the SDK built with the nova-image recipe, it is this:
poky-glibc-x86_64-nova-image-cortexa8hf-neon-toolchain-2.2.1.sh

If you only want a basic toolchain with just C and C++ cross compilers, the C-library and
header files, you can instead run this:

$ bitbake meta-toolchain

[172]

Selecting a Build System

To install the SDK, just run the shell script. The default install directory is /opt/poky, but
the install script allows you to change this:

$ tmp/deploy/sdk/poky-glibc-x86_64-nova-image-cortexa8hf-neon-
toolchain-2.2.1.sh
Poky (Yocto Project Reference Distro) SDK installer version 2.2.1

Enter target directory for SDK (default: /opt/poky/2.2.1):

You are about to install the SDK to "/opt/poky/2.2.1". Proceed[Y/n]?
[sudo] password for chris:

Extracting SDK. .. vt ie ittt tenenenneenns done

Setting it up...done

To make use of the toolchain, first source the environment and set up the script:

$ source /opt/poky/2.2.1/environment-setup—-cortexa8hf-neon—-poky
—-linux—-gnueabi

The environment-setup-* script that sets things up for the SDK is not
compatible with the oe~init-build-env script that you source when
working in the Yocto Project build directory. It is a good rule to always
start a new terminal session before you source either script.

The toolchain generated by Yocto Project does not have a valid sysroot directory:

$ arm-poky-linux—-gnueabi-gcc —-print-sysroot
/not/exist

Consequently, if you try to cross compile, as I have shown in previous chapters, it will fail
like this:

$ arm-poky-linux—-gnueabi-gcc helloworld.c -o helloworld
helloworld.c:1:19: fatal error: stdio.h: No such file or directory
#include <stdio.h>

A

compilation terminated.

This is because the compiler has been configured to work for a wide range of ARM
processors, and the fine tuning is done when you launch it using the right set of flags.
Instead, you should use the shell variables that are created when you source the
environment-setup script for cross compiling. They include these:

e cC: The C compiler
e CcxX: The C++ compiler
e CpP: The C preprocessor

[173]

Selecting a Build System

e AS: The assembler
e LD: The linker

As an example, this is what we find that cC has been set to this:

$ echo $cCC

arm-poky-linux—-gnueabi-gcc -march=armv7-a -mfpu=neon
-mfloat-abi=hard -mcpu=cortex-a8 --sysroot=/opt/poky/
2.2.1/sysroots/cortexa8hf-neon-poky-linux-gnueabi

So long as you use $CC to compile, everything should work fine:

$ $CC helloworld.c -o helloworld

The license audit

The Yocto Project insists that each package has a license. A copy of the license is placed in
tmp/deploy/licenses/ [package name] for each package as it is built. In addition, a
summary of the packages and licenses used in an image are put into the directory: <image
name>-<machine name>-<date stamp>/.For nova-image we just built, the directory
would be named something like this:

tmp/deploy/licenses/nova-image-beaglebone-20170417192546/

Further reading

You may want to look at the following documentation for more information:

e The Buildroot User Manual,
http://buildroot.org/downloads/manual /manual .html

e Instant Buildroot, by Daniel Manchdn Vizuete, Packt Publishing, 2013

e Yocto Project documentation: There are nine reference guides plus a tenth which is
a composite of the others (the so-called Mega-manual) at https://www.yoctopro
ject.org/documentation

e Embedded Linux Systems with the Yocto Project, by Rudolf]. Streif, Prentice Hall,
2016

e Embedded Linux Projects Using Yocto Project Cookbook, by Alex Gonzalez, Packt
Publishing, 2015

[174]

http://buildroot.org/downloads/manual/manual.html
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation
https://www.yoctoproject.org/documentation

Selecting a Build System

Summary

Using a build system takes the hard work out of creating an embedded Linux system, and it
is almost always better than hand crafting a roll-your-own system. There is a range of open
source build systems available these days: Buildroot and the Yocto Project represent two
different approaches. Buildroot is simple and quick, making it a good choice for fairly
simple single-purpose devices: traditional embedded Linux as I like to think of them. The
Yocto Project is more complex and flexible. It is package based, meaning that you have the
option to install a package manager and perform updates of individual packages in the
field. The meta layer structure makes it easy to extend the metadata, and indeed there is
good support throughout the community and industry for the Yocto Project. The downside
is that there is a very steep learning curve: you should expect it to take several months to
become proficient with it, and even then it will sometimes do things that you don't expect,
or at least that is my experience.

Don't forget that any devices you create using these tools will need to be maintained in the
field for a period of time, often many years. Both Yocto Project and Buildroot provide point
releases for about one year after the initial release. In either case, you will find yourself
having to maintain your release yourself or else paying for commercial support. The third
possibility, ignoring the problem, should not be considered an option!

In the next chapter, I will look at file storage and filesystems, and at the way that the choices
you make there will affect the stability and maintainability of your embedded Linux.

[175]

Creating a Storage Strategy

The mass-storage options for embedded devices have a great impact on the rest of the
system in terms of robustness, speed, and methods of in-field updates. Most devices
employ flash memory in some form or other. Flash memory has become much less
expensive over the past few years as storage capacities have increased from tens of
megabytes to tens of gigabytes.

In this chapter, I will begin with a detailed look at the technology behind flash memory and
how different memory organization affects the low-level driver software that has to manage
it, including the Linux memory technology device layer, MTD.

For each flash technology, there are different choices of filesystem. I will describe those
most commonly found on embedded devices and complete the survey with a section giving
a summary of choices for each type of flash memory. The final sections consider techniques
to make the best use of flash memory and draw everything together into a coherent storage
strategy.

We will cover the following topics:

e Storage options

e Accessing flash memory from the bootloader

¢ Accessing flash memory from Linux

e Filesystems for flash memory

e Filesystems for NOR and NAND flash memory
e Filesystems for managed flash

¢ Read-only compressed filesystems

e Temporary filesystems

e Making the root filesystem read-only

e Filesystem choices

Creating a Storage Strategy

Storage options

Embedded devices need storage that takes little power and is physically compact, robust,
and reliable over a lifetime of perhaps tens of years. In almost all cases, this means solid-
state storage. Solid-state storage was introduced many years ago with read-only memory
(ROM), but for the past 20 years, it has been flash memory of some kind. There have been
several generations of flash memory in that time, progressing from NOR to NAND to
managed flash such as eMMC.

NOR flash is expensive but reliable and can be mapped into the CPU address space, which
allows you to execute code directly from flash. NOR flash chips are low capacity, ranging
from a few megabytes to a gigabyte or so.

NAND flash memory is much cheaper than NOR and is available in higher capacities, in the
range of tens of megabytes to tens of gigabytes. However, it needs a lot of hardware and
software support to turn it into a useful storage medium.

Managed flash memory consists of one or more NAND flash chips packaged with a
controller that handles the complexities of flash memory and presents a hardware interface
similar to that of a hard disk. The attraction is that it removes complexity from the driver
software and insulates the system designer from the frequent changes in flash technology.
SD cards, eMMC chips, and USB flash drives fit into this category. Almost all of the current
generation of smartphones and tablets have eMMC storage, and this trend is likely to
progress with other categories of embedded devices.

Hard drives are seldom found in embedded systems. One exception is digital video
recording in set-top boxes and smart TVs, in which a large amount of storage is needed
with fast write times.

In all cases, robustness is of prime importance: you want the device to boot and reach a
functional state despite power failures and unexpected resets. You should choose
filesystems that behave well under such circumstances.

NOR flash

The memory cells in NOR flash chips are arranged into erase blocks of, for example, 128
KiB. Erasing a block sets all the bits to 1. It can be programmed one word at a time (8, 16, or
32 bits, depending on the data bus width). Each erase cycle damages the memory cells
slightly, and after a number of cycles, the erase block becomes unreliable and cannot be
used anymore. The maximum number of erase cycles should be given in the data sheet for
the chip but is usually in the range of 100K to 1M.

[177]

Creating a Storage Strategy

The data can be read word by word. The chip is usually mapped into the CPU address
space, which means that you can execute code directly from NOR flash. This makes it a
convenient place to put the bootloader code as it needs no initialization beyond hardwiring
the address mapping. SoCs that support NOR flash in this way have configurations that
provide a default memory mapping such that it encompasses the reset vector of the CPU.

The kernel, and even the root filesystem, can also be located in flash memory, avoiding the
need for copying them into RAM, and thus creating devices with small memory footprints.
The technique is known as eXecute In Place, or XIP. It is very specialized and I will not
examine it further here. I have included some references at the end of the chapter.

There is a standard register-level interface for NOR flash chips called the Common Flash
Interface or CFI, which all modern chips support. The CFI is described in standard JESD68,
which you can get from https://www.jedec.org/.

NAND flash

NAND flash is much cheaper than NOR flash and has a higher capacity. First-generation
NAND chips stored one bit per memory cell in what is now known as an SLC or single-
level cell organization. Later generations moved on to two bits per cell in multi-level cell
(MLC) chips and now to three bits per cell in tri-level cell (TLC) chips. As the number of
bits per cell has increased, the reliability of the storage has decreased, requiring more
complex controller hardware and software to compensate. Where reliability is a concern,
you should make sure you are using SLC NAND flash chips.

As with NOR flash, NAND flash is organized into erase blocks ranging in size from 16 KiB
to 512 KiB and, once again, erasing a block sets all the bits to 1. However, the number of
erase cycles before the block becomes unreliable is lower, typically as few as 1K cycles for
TLC chips and up to 100K for SLC. NAND flash can only be read and written in pages,
usually of 2 or 4 KiB. Since they cannot be accessed byte-by-byte, they cannot be mapped
into the address space and so code and data have to be copied into RAM before they can be
accessed.

Data transfers to and from the chip are prone to bit flips, which can be detected and
corrected using error-correction codes (ECCs). SLC chips generally use a simple Hamming
code, which can be implemented efficiently in software and can correct a single-bit error in
a page read. MLC and TLC chips need more sophisticated codes, such as Bose-Chaudhuri-
Hocquenghem (BCH), which can correct up to 8-bit errors per page. These need hardware
support.

[178]

https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/
https://www.jedec.org/

Creating a Storage Strategy

The ECCs have to be stored somewhere, and so there is an extra area of memory per page
known as the out-of-band (OOB) area, or the spare area. SLC designs usually have 1 byte of
OOB per 32 bytes of main storage, so for a 2 KiB page device, the OOB is 64 bytes per page,
and for a 4 KiB page, it is 128 bytes. MLC and TLC chips have proportionally larger OOB
areas to accommodate more complex ECCs. The following diagram shows the organization
of a chip with a 128 KiB erase block and 2 KiB pages:

0o0oB
64 bytes

Page
2 KiB

NAND
erase block
128 KiB

During production, the manufacturer tests all the blocks and marks any that fail by setting a
flag in the OOB area of each page in the block. It is not uncommon to find that brand new
chips have up to 2% of their blocks marked bad in this way. Furthermore, it is within the
specification for a similar proportion of blocks to give errors on erase before the erase cycle
limit is reached. The NAND flash driver should detect this and mark it as bad.

After space has been taken in the OOB area for a bad block flag and ECC bytes, there are
still some bytes left. Some flash filesystems make use of these free bytes to store filesystem
metadata. Consequently, many parts of the system are interested in the layout of the OOB
area: the SoC ROM boot code, the bootloader, the kernel MTD driver, the filesystem code,
and the tools to create filesystem images. There is not much standardization, so it is easy to
get into a situation in which the bootloader writes data using an OOB format that cannot be
read by the kernel MTD driver. It is up to you to make sure that they all agree.

Access to NAND flash chips requires a NAND flash controller, which is usually part of the
SoC. You will need the corresponding driver in the bootloader and kernel. The NAND flash
controller handles the hardware interface to the chip, transferring data to and from pages,
and may include hardware for error correction.

[179]

Creating a Storage Strategy

There is a standard register-level interface for NAND flash chips known as the Open
NAND Flash Interface or ONFi, which most modern chips adhere to. See http://www.onf

i.org/.

Managed flash

The burden of supporting flash memory in the operating system, NAND in particular,
becomes less if there is a well-defined hardware interface and a standard flash controller
that hides the complexities of the memory. This is managed flash memory, and it is
becoming more and more common. In essence, it means combining one or more flash chips
with a microcontroller that offers an ideal storage device with a small sector size that is
compatible with conventional filesystems. The most important types of chips for embedded
systems are Secure Digital (SD) cards and the embedded variant known as eMMC.

MultiMediaCard and Secure Digital cards

The MultiMediaCard (MMC) was introduced in 1997 by SanDisk and Siemens as a form of
packaged storage using flash memory. Shortly after, in 1999, SanDisk, Matsushita, and
Toshiba created the Secure Digital (SD) card, which is based on MMC but adds encryption
and DRM (the secure in the name). Both were intended for consumer electronics such as
digital cameras, music players, and similar devices. Currently, SD cards are the dominant
form of managed flash for consumer and embedded electronics, even though the encryption
features are seldom used. Newer versions of the SD specification allow smaller packaging
(mini SD and microSD, which is often written as uSD) and larger capacities: high capacity
SDHC up to 32 GB and extended capacity SDXC up to 2TB.

The hardware interface for MMC and SD cards is very similar, and it is possible to use full-
sized MMC cards in full-sized SD card slots (but not the other way round). Early
incarnations used a 1-bit Serial Peripheral Interface (SPI); more recent cards use a 4-bit
interface.

[180]

http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/
http://www.onfi.org/

Creating a Storage Strategy

There is a command set for reading and writing memory in sectors of 512 bytes. Inside the
package is a microcontroller and one or more NAND flash chips, as shown in the following
diagram:

Micro
controller

NAND
flash

The microcontroller implements the command set and manages the flash memory,
performing the function of a flash translation layer, as described later on in this chapter.
They are preformatted with a FAT filesystem: FAT16 on SDSC cards, FAT32 on SDHC, and
exFAT on SDXC. The quality of the NAND flash chips and the software on the
microcontroller varies greatly between cards. It is questionable whether any of them are
sufficiently reliable for deep embedded use, and certainly not with a FAT filesystem, which
is prone to file corruption. Remember that the prime use case for MMC and SD cards is for
removable storage on cameras, tablets, and phones.

eMMC

eMMC or Embedded MMC is simply MMC memory packaged so that it can be soldered
on to the motherboard, using a 4- or 8-bit interface for data transfer. However, they are
intended to be used as storage for an operating system so the components are capable of
performing that task. The chips are usually not preformatted with any filesystem.

Other types of managed flash

One of the first managed flash technologies was CompactFlash (CF), which uses a subset of
the Personal Computer Memory Card International Association (PCMCIA) hardware
interface. CF exposes the memory through a parallel ATA interface and appears to the
operating system as a standard hard disk. They are common in x86-based single board
computers and professional video and camera equipment.

[181]

Creating a Storage Strategy

One other format that we use every day is the USB flash drive. In this case, the memory is
accessed through a USB interface and the controller implements the USB mass storage
specification as well as the flash translation layer and interface to the flash chip, or chips.
The USB mass storage protocol, in turn, is based on the SCSI disk command set. As with
MMC and SD cards, they are usually preformatted with a FAT filesystem. Their main use
case in embedded systems is to exchange data with PCs.

A recent addition to the list of options for managed flash storage is Universal Flash Storage
(UFS). Like eMMC, it is packaged in a chip that is mounted on the motherboard. It has a
high-speed serial interface and can achieve data rates greater than eMMC. It supports a
SCSI disk command set.

Accessing flash memory from the
bootloader

In chapter 3, All About Bootloaders, I mentioned the need for the bootloader to load kernel
binaries and other images from various flash devices, and to perform system maintenance
tasks such as erasing and reprogramming flash memory. It follows that the bootloader must
have the drivers and infrastructure needed to support read, erase, and write operations on
the type of memory you have, whether it be NOR, NAND, or managed. I will use U-Boot in
the following examples; other bootloaders follow a similar pattern.

U-Boot and NOR flash

U-Boot has drivers for NOR CFI chips in drivers/mtd and has the commands erase to
erase memory and cp.b to copy data byte by byte, programming the flash cells. Suppose
that you have NOR flash memory mapped from 0x40000000 to 0x48000000, of which 4
MiB starting at 040040000 is a kernel image, then you would load a new kernel into flash
using these U-Boot commands:

U-Boot# tftpboot 100000 uImage
U-Boot# erase 40040000 403fffff
U-Boot# cp.b 100000 40040000 $(filesize)

The variable filesize in the preceding example is set by the t ftpboot command to the
size of the file just downloaded.

[182]

Creating a Storage Strategy

U-Boot and NAND flash

For NAND flash, you need a driver for the NAND flash controller on your SoC, which you
can find in the U-Boot source code in the directory drivers/mtd/nand. You use the nand
command to manage the memory using the sub-commands erase, write, and read. This
example shows a kernel image being loaded into RAM at 0x82000000 and then placed into
flash starting at offset 0x280000:

U-Boot# tftpboot 82000000 uImage
U-Boot# nand erase 280000 400000
U-Boot# nand write 82000000 280000 $(filesize)

U-Boot can also read files stored in the JFFS2, YAFFS2, and UBIFS filesystems.

U-Boot and MMC, SD, and eMMC

U-Boot has drivers for several MMC controllers in drivers/mmc. You can access the raw
data using mmc read and mmc write at the user interface level, which allows you to
handle raw kernel and filesystem images.

U-boot can also read files from the FAT32 and ext 4 filesystems on MMC storage.

Accessing flash memory from Linux

Raw NOR and NAND flash memory is handled by the Memory Technology Device
subsystem, or MTD, which provides basic interfaces to read, erase, and write blocks of flash
memory. In the case of NAND flash, there are also functions to handle the OOB area and to
identify bad blocks.

For managed flash, you need drivers to handle the particular hardware interface. MMC/SD
cards and eMMC use the mmcb1k driver; CompactFlash and hard drives use the SCSI disk
driver, sd. USB flash drives use the usb_storage driver together with the sd driver.

Memory technology devices

The MTD subsystem was started by David Woodhouse in 1999 and has been extensively
developed over the intervening years. In this section, I will concentrate on the way it
handles the two main technologies, NOR and NAND flash.

[183]

Creating a Storage Strategy

MTD consists of three layers: a core set of functions, a set of drivers for various types of
chips, and user-level drivers that present the flash memory as a character device or a block
device, as shown in the following diagram:

/dev/mtd /dev/mtdblock
character driver block driver
MTD core
NOR NAND
chip drivers chip drivers

The chip drivers are at the lowest level and interface with flash chips. Only a small number
of drivers are needed for NOR flash chips, enough to cover the CFI standard and variations
plus a few non-compliant chips, which are now mostly obsolete. For NAND flash, you will
need a driver for the NAND flash controller you are using; this is usually supplied as part
of the board support package. There are drivers for about 40 of them in the current mainline
kernel in the directory drivers/mtd/nand.

MTD partitions

In most cases, you will want to partition the flash memory into a number of areas, for
example, to provide space for a bootloader, a kernel image, or a root filesystem. In MTD,
there are several ways to specify the size and location of partitions, the main ones being:

e Through the kernel command line using CONFIG_MTD_CMDLINE_PARTS
¢ Via the device tree using CONFIG_MTD_OF_PARTS
e With a platform-mapping driver

In the case of the first option, the kernel command-line option to use is mtdparts, which is
defined as follows in the Linux source code in drivers/mtd/cmdlinepart.c:

mtdparts=<mtddef>[; <mtddef]

<mtddef> := <mtd-id>:<partdef>[,<partdef>]

<mtd-id> := unique name for the chip

<partdef> := <size>[W@<offset>] [<name>][ro] [1lk]

<size> := size of partition OR "-" to denote all remaining
space

<offset> := offset to the start of the partition; leave blank
to follow the previous partition without any gap

<name> := '"(' NAME ')'

[184]

Creating a Storage Strategy

Perhaps an example will help. Imagine that you have one flash chip of 128 MiB that is to be
divided into five partitions. A typical command line would be this:

mtdparts=:512k (SPL) ro, 780k (U-Boot) ro, 128k (U-BootEnv) ,
4m (Kernel), - (Filesystem)

The first element, before the colon, is mt d-id, which identifies the flash chip, either by
number or by the name assigned by the board support package. If there is only one chip, as
here, it can be left empty. If there is more than one chip, the information for each is
separated by a semicolon. Then, for each chip, there is a comma-separated list of partitions,
each with a size in bytes, KiB (k) or MiB (m) and a name in parentheses. The ro suffix makes
the partition read-only to MTD and is often used to prevent accidental overwriting of the
bootloader. The size of the last partition for the chip may be replaced by a dash (-),
indicating that it should take up all the remaining space.

You can see a summary of the configuration at runtime by reading /proc/mtd:

cat /proc/mtd

dev: size erasesize name

mtd0: 00080000 00020000 "SPL"

mtdl: 000C3000 00020000 "U-Boot"
mtd2: 00020000 00020000 "U-BootEnv"
mtd3: 00400000 00020000 "Kernel"
mtd4: 07A9D000 00020000 "Filesystem"

There is more detailed information for each partition in /sys/class/mtd, including the
erase block size and the page size, and it is nicely summarized using mtdinfo:

mtdinfo /dev/mtdoO

mtdo

Name: SPL

Type: nand

Eraseblock size: 131072 bytes, 128.0 KiB
Amount of eraseblocks: 4 (524288 bytes, 512.0 KiB)
Minimum input/output unit size: 2048 bytes

Sub-page size: 512 bytes

OOB size: 64 bytes

Character device major/minor: 90:0

Bad blocks are allowed: true

Device is writable: false

Another way of specifying MTD partitions is through the device tree. Here is an example
that creates the same partitions as the command-line example:

nand@0,0 {
#address-cells = <1>;
#size-cells = <1>;

[185]

Creating a Storage Strategy

partition@0 {

bi

partition@80000 {
label = "U-Boot";

bi

partition@143000 {

ri

partition@163000 {
label = "Kernel";

bi

partition@563000 {

ri
bi

label = "SPL";
reg = <0 0x80000>;

reg = <0x80000 0xc3000>;

label = "U-BootEnv";
reg = <0x143000 0x20000>;

reg = <0x163000 0x400000>;

label = "Filesystem";
reg = <0x563000 0x7a9d000>;

A third alternative is to code the partition information as platform data in an
mtd_partition structure, as shown in this example taken from arch/arm/mach-
omap2/board-omap3beagle.c (NAND_BLOCK_SIZE is defined elsewhere to

be 128 KiB):
static struct mtd_partition omap3beagle_nand_partitions([] = {
{
.name "X-Loader",
.offset 0,
.size 4 * NAND_BLOCK_SIZE,
.mask_flags = MTD_WRITEABLE, /* force read-only */
}I
{
.name "U-Boot",
.offset 0x80000;
.size 15 * NAND_BLOCK_SIZE,
.mask_flags = MTD_WRITEABLE, /* force read-only */
}I
{
.name "U-Boot Env",
.offset 0x260000;
.size 1 * NAND_BLOCK_SIZE,
}I
{
.name "Kernel",
.offset 0x280000;

[186]

Creating a Storage Strategy

.size = 32 * NAND_BLOCK_SIZE,
}l

.name = "File System",

.offset = 0x680000;

.size = MTDPART_SIZ_FULL,

}l
bi

Platform data is deprecated: you will only find it used in BSPs for old SoCs that have not
been updated to use a device tree.

MTD device drivers
The upper level of the MTD subsystem is a pair of device drivers:

e A character device, with a major number of 90. There are two device nodes per
MTD partition number, N: /dev/mtdN (minor number=N*2) and /dev/mtdNro
(minor number=(N*2 + 1)). The latter is just a read-only version of the former.

¢ A block device, with a major number of 31 and a minor number of N. The device
nodes are in the form /dev/mtdblockN.

The MTD character device, mtd

The character devices are the most important: they allow you to access the underlying flash
memory as an array of bytes so that you can read and write (program) the flash. It also
implements a number of ioctl functions that allow you to erase blocks and to manage the
OOB area on NAND chips. The following list is taken from include/uapi/mtd/mtd-
abi.h:

IOCTL Description

MEMGETINEFO Gets basic MTD characteristic information
MEMERASE Erases blocks in the MTD partition
MEMWRITEOOB Writes out-of-band data for the page
MEMREADOOB Reads out-of-band data for the page
MEMLOCK Locks the chip (if supported)

MEMUNLOCK Unlocks the chip (if supported)

[187]

Creating a Storage Strategy

IOCTL Description

MEMGETREGIONCOUNT | Gets the number of erase regions: non-zero if there are erase blocks of
differing sizes in the partition, which is common for NOR flash, rare
on NAND

MEMGETREGIONINFO |If MEMGETREGIONCOUNT is non-zero, this can be used to get the
offset, size, and block count of each region

MEMGETOOBSEL Deprecated

MEMGETBADBLOCK This gets the bad block flag

MEMSETBADBLOCK This sets the bad block flag

OTPSELECT This sets OTP (one-time programmable) mode, if the chip supports it

OTPGETREGIONCOUNT | This gets the number of OTP regions

OTPGETREGIONINFO | This gets information about an OTP region

ECCGETLAYOUT Deprecated

There is a set of utility programs known as mtd-utils for manipulating flash memory that
makes use of these ioctl functions. The source is available from git://git.infradead.org
/mtd-utils.gitand is available as a package in the Yocto Project and Buildroot. The
essential tools are shown in the following list. The package also contains utilities for the
JFES2 and UBI/UBIFS filesystems, which I will cover later. For each of these tools, the MTD
character device is one of the parameters:

e flash_erase: Erases a range of blocks.

e flash_lock: Locks a range of blocks.

e flash_unlock: Unlocks a range of blocks.

¢ nanddump: Dumps memory from NAND flash, optionally including the OOB
area. Skips bad blocks.

¢ nandtest: Tests and diagnostics for NAND flash.
¢ nandwrite: Writes (programs) data from a file in to NAND flash, skipping bad

blocks.

You must always erase flash memory before writing new contents to it:
flash_erase is the command to do that.

[188]

https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git
https://git.infradead.org/mtd-utils.git

Creating a Storage Strategy

To program NOR flash, you simply copy bytes to the MTD device node using a file copy
command such as cp.

Unfortunately, this doesn't work with NAND memory as the copy will fail at the first bad
block. Instead, use nandwrite, which skips over any bad blocks. To read back NAND
memory, you should use nanddump, which also skips bad blocks.

The MTD block device, mtdblock

The mtdblock driver is little used. Its purpose is to present flash memory as a block device
you can use to format and mount as a filesystem. However, it has severe limitations because
it does not handle bad blocks in NAND flash, it does not do wear leveling, and it does not
handle the mismatch in size between filesystem blocks and flash erase blocks. In other
words, it does not have a flash translation layer, which is essential for reliable file storage.
The only case where the mtdblock device is useful is to mount read-only file systems such
as Squashfs on top of reliable flash memory such as NOR.

If you want a read-only filesystem on NAND flash, you should use the
8 UBI driver, as described later in this chapter.

Logging kernel oops to MTD

A kernel error, or oops, is normally logged via the klogd and syslogd daemons to a circular
memory buffer or a file. Following a reboot, the log will be lost in the case of a ring buffer,
and even in the case of a file, it may not have been properly written to before the system
crashed. A more reliable method is to write oops and kernel panics to an MTD partition as a
circular log buffer. You enable it with CONFIG_MTD_00OPS and add console=ttyMTDN to
the kernel command line, N being the MTD device number to write the messages to.

Simulating NAND memory

The NAND simulator emulates a NAND chip using system RAM. The main use is for
testing code that has to be NAND-aware without access to physical NAND memory. In
particular, the ability to simulate bad blocks, bit flips, and other errors allows you to test
code paths that are difficult to exercise using real flash memory. For more information, the
best place to look is in the code itself, which has a comprehensive description of the ways
you can configure the driver. The code is in drivers/mtd/nand/nandsim.c. Enable it
with the kernel configuration CONFIG_MTD_NAND_NANDSIM.

[189]

Creating a Storage Strategy

The MMC block driver

MMC/SD cards and eMMC chips are accessed using the mmcblk block driver. You need a
host controller to match the MMC adapter you are using, which is part of the board support
package. The drivers are located in the Linux source code in drivers/mmc/host.

MMC storage is partitioned using a partition table in exactly the same way you would for
hard disks, using £disk or a similar utility.

Filesystems for flash memory

There are several challenges when making efficient use of flash memory for mass storage:
the mismatch between the size of an erase block and a disk sector, the limited number of
erase cycles per erase block, and the need for bad block handling on NAND chips. These
differences are resolved by a Flash translation layer, or FTL.

Flash translation layers

A flash translation layer has the following features:

¢ Sub allocation: Filesystems work best with a small allocation unit, traditionally a
512-byte sector. This is much smaller than a flash erase block of 128 KiB or more.
Therefore, erase blocks have to be subdivided into smaller units to avoid wasting
large amounts of space.

¢ Garbage collection: A consequence of suballocation is that an erase block will
contain a mixture of good data and stale data after the filesystem has been in use
for a while. Since we can only free up whole erase blocks, the only way to reclaim
the free space is to coalesce the good data into one place and return the now
empty erase block to the free list: this is garbage collection, and is usually
implemented as a background thread.

e Wear leveling: There is a limit on the number of erase cycles for each block. To
maximize the lifespan of a chip, it is important to move data around so that each
block is erased roughly the same number of times.

¢ Bad block handling: On NAND flash chips, you have to avoid using any block
marked bad and also mark good blocks as bad if they cannot be erased.

¢ Robustness: Embedded devices may be powered off or reset without warning, so
any filesystem should be able to cope without corruption, usually by
incorporating a journal or log of transactions.

[190]

Creating a Storage Strategy

There are several ways to deploy the flash translation layer:

o In the filesystem: as with JFFS2, YAFFS2, and UBIFS

e In the block device driver: the UBI driver, on which UBIFS depends, implements
some aspects of a flash translation layer

¢ In the device controller: as with managed flash devices

When the flash translation layer is in the filesystem or the block driver, the code is part of
the kernel and so it is open source, meaning that we can see how it works and we can
expect that it will be improved over time. On the other hand, if the FTL is inside a managed
flash device, it is hidden from view and we cannot verify whether or not it works as we
would want. Not only that, but putting the FTL into the disk controller means that it misses
out on information that is held at the filesystem layer, such as which sectors belong to files
that have been deleted and so do not contain useful data anymore. The latter problem is
solved by adding commands that pass this information between the filesystem and the
device. I will describe how this works in the section on the TRIM command later on.
However, the question of code visibility remains. If you are using managed flash, you just
have to choose a manufacturer you can trust.

Filesystems for NOR and NAND flash
memory

To use raw flash chips for mass storage, you have to use a filesystem that understands the
peculiarities of the underlying technology. There are three such filesystems:

¢ JFFS2 (Journaling Flash File System 2): This was the first flash filesystem for
Linux, and is still in use today. It works for NOR and NAND memory, but is
notoriously slow during mount.

e YAFFS2 (Yet Another Flash File System 2): This is similar to JFFS2, but
specifically for NAND flash memory. It was adopted by Google as the preferred
raw flash filesystem on Android devices.

e UBIFS (Unsorted Block Image File System): This works in conjunction with the
UBI block driver to create a reliable flash filesystem. It works well with both NOR
and NAND memory, and since it generally offers better performance than JFFS2
or YAFFS2, it should be the preferred solution for new designs.

All of these use MTD as the common interface to flash memory.

[191]

Creating a Storage Strategy

JFFS2

The Journaling Flash File System had its beginnings in the software for the Axis 2100
network camera in 1999. For many years, it was the only flash filesystem for Linux and has
been deployed on many thousands of different types of devices. Today, it is not the best
choice, but I will cover it first because it shows the beginning of the evolutionary path.

JFES2 is a log-structured filesystem that uses MTD to access flash memory. In a log-
structured filesystem, changes are written sequentially as nodes to the flash memory. A
node may contain changes to a directory, such as the names of files created and deleted, or
it may contain changes to file data. After a while, a node may be superseded by information
contained in subsequent nodes and becomes an obsolete node.

Erase blocks are categorized into three types:

e Free: This contains no nodes at all
¢ Clean: This contains only valid nodes
¢ Dirty: This contains at least one obsolete node

At any one time, there is one block receiving updates, which is called the open block. If
power is lost or the system is reset, the only data that can be lost is the last write to the open
block. In addition, nodes are compressed as they are written, increasing the effective storage
capacity of the flash chip, which is important if you are using expensive NOR flash
memory.

When the number of free blocks falls below a threshold, a garbage-collector kernel thread is
started, which scans for dirty blocks, copies the valid nodes into the open block, and then
frees up the dirty block.

At the same time, the garbage collector provides a crude form of wear leveling because it
cycles valid data from one block to another. The way that the open block is chosen means
that each block is erased roughly the same number of times so long as it contains data that
changes from time to time. Sometimes a clean block is chosen for garbage collection to make
sure that blocks containing static data that is seldom written are also wear-leveled.

JFES2 filesystems have a write-through cache, meaning that writes are written to the flash
memory synchronously as if they have been mounted with the ~o sync option. While
improving reliability, it does increase the time to write data. There is a further problem with
small writes: if the length of a write is comparable to the size of the node header (40 bytes)
the overhead becomes high. A well-known corner case is log files, produced, for example,
by syslogd.

[192]

Creating a Storage Strategy

Summary nodes

There is one overriding disadvantage to JFFS2: since there is no on-chip index, the directory
structure has to be deduced at mount-time by reading the log from start to finish. At the
end of the scan, you have a complete picture of the directory structure of the valid nodes,
but the time taken is proportional to the size of the partition. It is not uncommon to see
mount times of the order of one second per megabyte, leading to total mount times of tens
or hundreds of seconds.

To reduce the time to scan during mount, summary nodes became an option in Linux 2.6.15.
A summary node is written at the end of the open erase block just before it is closed. The
summary node contains all of the information needed for the mount-time scan, thereby
reducing the amount of data to process during the scan. Summary nodes can reduce mount
times by a factor of between two and five, at the expense of an overhead of about 5% of the
storage space. They are enabled with the kernel configuration CONFIG_JFFS2_SUMMARY.

Clean markers

An erased block with all bits set to 1 is indistinguishable from a block that has been written
with 1's, but the latter has not had its memory cells refreshed and cannot be programmed
again until it is erased. JFFS2 uses a mechanism called clean markers to distinguish
between these two situations. After a successful block erase, a clean marker is written, either
to the beginning of the block or to the OOB area of the first page of the block. If the clean
marker exists, then it must be a clean block.

Creating a JFFS2 filesystem

Creating an empty JFFS2 filesystem at runtime is as simple as erasing an MTD partition
with clean markers and then mounting it. There is no formatting step because a blank JFFS2
filesystem consists entirely of free blocks. For example, to format MTD partition 6, you
would enter these commands on the device:

flash_erase -j /dev/mtdé 0 O
mount -t jffs2 mtd6é /mnt

The -j option to f1ash_erase adds the clean markers, and mounting with type jffs2
presents the partition as an empty filesystem. Note that the device to be mounted is given as
mtd6, not /dev/mtdé. Alternatively, you can give the block device node /dev/mtdblocké.
This is just a peculiarity of JFFS2. Once mounted, you can treat it like any other filesystem.

[193]

Creating a Storage Strategy

You can create a filesystem image directly from the staging area of your development
system using mkfs. j££fs2 to write out the files in JFFS2 format, and sumtool to add the
summary nodes. Both of these are part of the mtd-utils package.

As an example, to create an image of the files in root £s for a NAND flash device with an
erase block size of 128 KiB (0x20000) and with summary nodes, you would use these two
commands:

$ mkfs.jffs2 -n -e 0x20000 -p -d ~/rootfs —-o ~/rootfs.jffs2
$ sumtool -n -e 0x20000 -p -i ~/rootfs.jffs2 -o ~/rootfs—-sum.jffs2

The —p option adds padding at the end of the image file to make it a whole number of erase
blocks. The —n option suppresses the creation of clean markers in the image, which is
normal for NAND devices, as the clean marker is in the OOB area. For NOR devices, you
would leave out the —n option. You can use a device table with mkfs. jf££s2 to set the
permissions and the ownership of files by adding -D [device table]. Of course,
Buildroot and the Yocto Project will do all this for you.

You can program the image into flash memory from your bootloader. For example, if you
have loaded a filesytem image into RAM at address 0x82000000 and you want to load it
into a flash partition that begins at 0x163000 bytes from the start of the flash chip and is
0x7a9d000 bytes long, the U-Boot commands would be:

nand erase clean 163000 7a9d000
nand write 82000000 163000 7a9d000

You can do the same thing from Linux using the mtd driver like this:

flash_erase -j /dev/mtdé 0 O
nandwrite /dev/mtd6é rootfs—sum.jffs2

To boot with a JFFS2 root filesystem, you need to pass the mtdblock device on the kernel
command line for the partition and a root fstype because JFFS2 cannot be auto-detected:

root=/dev/mtdblock6 rootfstype=jffs2

YAFFS2

The YAFFS filesystem was written by Charles Manning, beginning in 2001, specifically to
handle NAND flash chips at a time when JFFS2 did not. Subsequent changes to handle
larger (2 KiB) page sizes resulted in YAFFS2. The website for YAFFSis http://www.yaffs.

net.

[194]

http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/
http://www.yaffs.net/

Creating a Storage Strategy

YAFEFS is also a log-structured filesystem following the same design principles as JFFS2. The
different design decisions mean that it has a faster mount-time scan, simpler and faster
garbage collection, and has no compression, which speeds up reads and writes at the
expense of less efficient use of storage.

YAFFS is not limited to Linux; it has been ported to a wide range of operating systems. It
has a dual license: GPLv2 to be compatible with Linux, and a commercial license for other
operating systems. Unfortunately, the YAFFS code has never been merged into mainline
Linux, so you will have to patch your kernel.

To get YAFFS2 and patch a kernel, you would use this:

$ git clone git://www.alephl.co.uk/yaffs2
$ cd yaffs2
$./patch-ker.sh c m <path to your link source>

Then, configure the kernel with CONFIG_YAFFS_YAFFS2.

Creating a YAFFS2 filesystem

As with JFFS2, to create a YAFFS2 filesystem at runtime, you only need to erase the
partition and mount it, but note that in this case, you do not enable clean markers:

flash_erase /dev/mtd/mtdé 0 O
mount -t yaffs2 /dev/mtdblock6 /mnt

To create a filesystem image, the simplest thing to do is use the mkyaffs2 tool from https
://code.google.com/p/yaffs2uti lsusing the following command:

$ mkyaffs2 —c 2048 —-s 64 rootfs rootfs.yaffs2

Here, —c is the page size and -s the OOB size. There is a tool named mkyaffs2image that is
part of the YAFFS code, but it has a couple of drawbacks. Firstly, the page and OOB size are
hard-coded in the source: you will have to edit and recompile if you have memory that does
not match the defaults of 2,048 and 64. Secondly, the OOB layout is incompatible with MTD,
which uses the first two bytes as a bad block marker, whereas mkyaf fs2image uses those
bytes to store part of the YAFFS metadata.

[195]

https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils
https://code.google.com/p/yaffs2utils

Creating a Storage Strategy

To copy the image to the MTD partition from a Linux shell prompt on the target, follow
these steps:

flash_erase /dev/mtd6é 0 0O
nandwrite -a /dev/mtdé rootfs.yaffs2

To boot with a YAFFS2 root filesystem, add the following to the kernel command line:

root=/dev/mtdblock6 rootfstype=yaffs2

UBI and UBIFS

The Unsorted Block Image (UBI) driver is a volume manager for flash memory that takes
care of bad block handling and wear leveling. It was implemented by Artem Bityutskiy and
first appeared in Linux 2.6.22. In parallel with that, engineers at Nokia were working on a
filesystem that would take advantage of the features of UBI, which they called UBIFS; it
appeared in Linux 2.6.27. Splitting the flash translation layer in this way makes the code
more modular and also allows other filesystems to take advantage of the UBI driver, as we
shall see later on.

UBI

UBI provides an idealized, reliable view of a flash chip by mapping physical erase blocks
(PEB) to logical erase blocks (LEB). Bad blocks are not mapped to LEBs and so are never
used. If a block cannot be erased, it is marked as bad and dropped from the mapping. UBI
keeps a count of the number of times each PEB has been erased in the header of the LEB and
changes the mapping to ensure that each PEB is erased the same number of times.

UBI accesses the flash memory through the MTD layer. As an extra feature, it can divide an
MTD partition into a number of UBI volumes, which improves wear leveling in the
following way: Imagine that you have two filesystems, one containing fairly static data, for
example a root filesystem, and the other containing data that is constantly changing.

[196]

Creating a Storage Strategy

If they are stored in separate MTD partitions, the wear leveling only has an effect on the
second one, whereas if you choose to store them in two UBI volumes in a single MTD
partition, the wear leveling takes place over both areas of the storage, and the lifetime of the
flash memory is increased. The following diagram illustrates this situation:

LEB
vol_1

vol_2

UBI
volumes

)
G als auau

In this way, UBI fulfills two of the requirements of a flash translation layer: wear leveling
and bad-block handling.

To prepare an MTD partition for UBL you don't use f1ash_erase as with JFFS2 and
YAFFS2. Instead, you use the ubiformat utility, which preserves the erase counts that are
stored in the PEB headers. ubiformat needs to know the minimum unit of I/O, which for
most NAND flash chips is the page size, but some chips allow reading and writing in sub
pages that are a half or a quarter of the page size. Consult the chip data sheet for details
and, if in doubt, use the page size. This example prepares mt d6 using a page size of 2048
bytes:

ubiformat /dev/mtdé -s 2048

ubiformat: mtdO (nand), size 134217728 bytes (128.0 MiB),
1024 eraseblocks of 131072 bytes (128.0 KiB),

min. I/0 size 2048 bytes

Then you can use the ubiattach command to load the UBI driver on an MTD partition
that has been prepared in this way:

ubiattach -p /dev/mtdé -O 2048

UBI device number 0, total 1024 LEBs (130023424 bytes, 124.0 MiB),
available 998 LEBs (126722048 bytes, 120.9 MiB),

LEB size 126976 bytes (124.0 KiB)

[197]

Creating a Storage Strategy

This creates the device node /dev/ubi0 through which you can access the UBI volumes.
You can use ubiattach on several MTD partitions, in which case they can be accessed
through /dev/ubil, /dev/ubi2, and so on. Note that since each LEB has a header
containing the meta information used by UBI, the LEB is smaller than the PEB by two
pages. For example, a chip with a PEB size of 128 KiB and 2 KiB pages would have an LEB
of 124 KiB. This is important information that you will need when creating a UBIFS image.

The PEB-to-LEB mapping is loaded into memory during the attach phase, a process that
takes time proportional to the number of PEBs, typically a few seconds. A new feature was
added in Linux 3.7 called the UBI fastmap, which checkpoints the mapping to flash from
time to time and so reduces the attach time. The kernel configuration option is
CONFIG_MTD_UBI_FASTMAP.

The first time you attach to an MTD partition after a ubiformat, there will be no volumes.
You can create volumes using ubimkvol. For example, suppose you have a 128 MiB MTD

partition and you want to split it into two volumes; the first is to be 32 MiB in size and the

second will take up the remaining space:

ubimkvol /dev/ubi0 -N vol_1 -s 32MiB

Volume ID 0, size 265 LEBs (33648640 bytes, 32.1 MiB),

LEB size 126976 bytes (124.0 KiB), dynamic, name "vol_1", alignment 1
ubimkvol /dev/ubi0 -N vol_2 -m

Volume ID 1, size 733 LEBs (93073408 bytes, 88.8 MiB),

LEB size 126976 bytes (124.0 KiB), dynamic, name "vol_2", alignment 1

Now, you have a device with the nodes /dev/ubi0_0 and /dev/ubi0_1. You can confirm
the situation using ubinfo:

ubinfo -a /dev/ubiO

ubi0

Volumes count: 2

Logical eraseblock size: 126976 bytes, 124.0 KiB
Total amount of logical eraseblocks: 1024 (130023424 bytes, 124.0 MiB)
Amount of available logical eraseblocks: 0 (0 bytes)
Maximum count of volumes 128

Count of bad physical eraseblocks: 0

Count of reserved physical eraseblocks: 20

Current maximum erase counter value: 1

Minimum input/output unit size: 2048 bytes
Character device major/minor: 250:0

Present volumes: 0, 1

Volume ID: 0 (on ubiO)

Type: dynamic

Alignment: 1

Size: 265 LEBs (33648640 bytes, 32.1 MiB)

[198]

Creating a Storage Strategy

State: OK
Name: vol_1
Character device major/minor: 250:1

Volume ID: 1 (on ubiO)

Type: dynamic

Alignment: 1

Size: 733 LEBs (93073408 bytes, 88.8 MiB)
State: OK

Name: vol_2

Character device major/minor: 250:2

At this point, you have a 128 MiB MTD partition containing two UBI volumes of sizes 32
MiB and 88.8 MiB. The total storage available is 32 MiB plus 88.8 MiB, which equals 120.8
MiB. The remaining space, 7.2 MiB, is taken up by the UBI headers at the start of each PEB
and space reserved for mapping out blocks that go bad during the lifetime of the chip.

UBIFS

UBIFS uses a UBI volume to create a robust filesystem. It adds sub-allocation and garbage
collection to create a complete flash translation layer. Unlike JFFS2 and YAFFS?2, it stores
index information on-chip, and so mounting is fast, although don't forget that attaching the
UBI volume beforehand may take a significant amount of time. It also allows write-back
caching as in a normal disk filesystem, which means that writes are much faster, but with
the usual problem of potential loss of data that has not been flushed from the cache to flash
memory in the event of power down. You can resolve the problem by making careful use of
the £sync (2) and fdatasync (2) functions to force a flush of file data at crucial points.

UBIFS has a journal for fast recovery in the event of power down. The minimum size of the
journal is 4 MiB, so UBIES is not suitable for very small flash devices.

Once you have created the UBI volumes, you can mount them using the device node for the
volume, such as /dev/ubi0_0, or by using the device node for the whole partition plus the
volume name, as shown here:

mount -t ubifs ubil:vol_1 /mnt

Creating a filesystem image for UBIFS is a two-stage process: first you create a UBIFS image
using mkfs.ubifs, and then embed it into a UBI volume using ubinize.

[199]

Creating a Storage Strategy

For the first stage, mkfs.ubifs needs to be informed of the page size with —m, the size of
the UBI LEB with -e, and the maximum number of erase blocks in the volume with -c. If
the first volume is 32 MiB and an erase block is 128 KiB, then the number of erase blocks is
256. So, to take the contents of the directory rootfs and create a UBIFS image named
rootfs.ubi, you would type the following;:

$ mkfs.ubifs —-r rootfs —-m 2048 -—-e 124KiB -c 256 -o rootfs.ubi

The second stage requires you to create a configuration file for ubinize, which describes
the characteristics of each volume in the image. The help page (ubinize -h) gives details
of the format. This example creates two volumes, vol_1 and vol_2:

[ubifsi_vol_ 1]
mode=ubi
image=rootfs.ubi
vol_1d=0

vol _name=vol_1
vol_size=32MiB
vol_type=dynamic

[ubifsi_vol_ 2]
mode=ubi
image=data.ubi
vol_id=1
vol_name=vol_2
vol_type=dynamic
vol_flags=autoresize

The second volume has an auto-resize flag and so will expand to fill the remaining space
on the MTD partition. Only one volume can have this flag. From this information, ubinize
will create an image file named by the —o parameter, with the PEB size —p, the page size -m,
and the sub-page size -s:

$ ubinize -o ~/ubi.img -p 128KiB -m 2048 -s 512 ubinize.cfg
To install this image on the target, you would enter these commands on the target:

ubiformat /dev/mtdé -s 2048
nandwrite /dev/mtdé /ubi.img
ubiattach -p /dev/mtdé -O 2048

If you want to boot with a UBIFS root filesystem, you would provide these kernel
command-line parameters:

ubi.mtd=6 root=ubiO:vol_1 rootfstype=ubifs

[200]

Creating a Storage Strategy

Filesystems for managed flash

As the trend towards managed flash technologies continues, particularly eMMC, we need
to consider how to use it effectively. While they appear to have the same characteristics as
hard disk drives, the underlying NAND flash chips have the limitations of large erase
blocks with limited erase cycles and bad block handling. And, of course, we need
robustness in the event of losing power.

It is possible to use any of the normal disk filesystems, but we should try to choose one that
reduces disk writes and has a fast restart after an unscheduled shutdown.

Flashbench

To make optimum use of the underlying flash memory, you need to know the erase block
size and page size. Manufacturers do not publish these numbers as a rule, but it is possible
to deduce them by observing the behavior of the chip or card.

Flashbench is one such tool. It was initially written by Arnd Bergman, as described in the
LWN article available at http://lwn.net/Articles/428584. You can get the code from htt
ps://github.com/bradfa/flashbench.

Here is a typical run on a SanDisk 4GB SDHC card:

$ sudo ./flashbench -a /dev/mmcblk0 —--blocksize=1024

align 536870912 pre 4.38ms on 4.48ms post 3.92ms diff 332ps
align 268435456 pre 4.86ms on 4.9ms post 4.48ms diff 227ps
align 134217728 pre 4.57ms on 5.99ms post 5.12ms diff 1.15ms
align 67108864 pre 4.95ms on 5.03ms post 4.54ms diff 292ps
align 33554432 pre 5.46ms on 5.48ms post 4.58ms diff 462ps
align 16777216 pre 3.l6ms on 3.28ms post 2.52ms diff 446ps
align 8388608 pre 3.89ms on 4.lms post 3.07ms diff 622ps
align 4194304 pre 4.0lms on 4.8%ms post 3.9ms diff 940ps
align 2097152 pre 3.55ms on 4.42ms post 3.46ms diff 917ps
align 1048576 pre 4.19ms on 5.02ms post 4.09ms diff 876us
align 524288 pre 3.83ms on 4.55ms post 3.65ms diff 805us
align 262144 pre 3.95ms on 4.25ms post 3.57ms diff 485ps
align 131072 pre 4.2ms on 4.25ms post 3.58ms diff 362ps
align 65536 pre 3.89ms on 4.24ms post 3.57ms diff 511lups
align 32768 pre 3.94ms on 4.28ms post 3.6ms diff 502us
align 16384 pre 4.82ms on 4.86ms post 4.17ms diff 372ps
align 8192 pre 4.81lms on 4.83ms post 4.16ms diff 349ps
align 4096 pre 4.16ms on 4.21lms post 4.16ms diff 52.4us
align 2048 pre 4.16ms on 4.l6ms post 4.17ms diff 9ns

[201]

http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
http://lwn.net/Articles/428584
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench
https://github.com/bradfa/flashbench

Creating a Storage Strategy

The flashbench reads blocks of, in this case, 1,024 bytes just before and just after various
power-of-two boundaries. As you cross a page or erase block boundary, the reads after the
boundary take longer. The rightmost column shows the difference and is the one that is
most interesting. Reading from the bottom, there is a big jump at 4 KiB, which is the most
likely size of a page. There is a second jump from 52.4pus to 349us at 8 KiB. This is fairly
common and indicates that the card can use multi-plane accesses to read two 4 KiB pages at
the same time. Beyond that, the differences are less well marked, but there is a clear jump
from 485pus to 805us at 512 KiB, which is probably the erase block size. Given that the card
being tested is quite old, these are the sort of numbers you would expect.

Discard and TRIM

Usually, when you delete a file, only the modified directory node is written to storage,
while the sectors containing the file's contents remain unchanged. When the flash
translation layer is in the disk controller, as with managed flash, it does not know that this
group of disk sectors no longer contains useful data and so it ends up copying stale data.

In the last few years, the addition of transactions that pass information about deleted sectors
down to the disk controller has improved the situation. The SCSI and SATA specifications
have a TRIM command and MMC has a similar command named ERASE. In Linux, this
feature is known as discard.

To make use of discard, you need a storage device that supports it—most current eMMC
chips do—and a Linux device driver to match. You can check by looking at the block
system queue parameters in /sys/block/<block device>/queue/.

The ones of interest are as follows:

e discard_granularity: The size of the internal allocation unit of the device

e discard_max_bytes: The maximum number of bytes that can be discarded in
one go
e discard_zeroes_data:If 1, discarded data will be set to 0

If the device or the device driver do not support discard, these values are all set to 0. As an
example, these are the parameters you will see from the 2 GiB eMMC chip on my
BeagleBone Black:

grep -s "" /sys/block/mmcblk0/queue/discard_*
/sys/block/mmcblk0/queue/discard_granularity:2097152
/sys/block/mmcblk0/queue/discard_max_bytes:2199023255040
/sys/bloc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>