

MERN	Quick	Start	Guide

	

	

	

	

	

	

	

	

	

	

Build	web	applications	with	MongoDB,	Express.js,	React,
and	Node

	

	

	

	

	

	

	

	

	

	

Eddy	Wilson	Iriarte	Koroliova

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

MERN	Quick	Start	Guide
Copyright	©	2018	Packt	Publishing	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt
Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly
or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in
this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Ashwin	Nair
Acquisition	Editor:	Nigel	Fernandes
Content	Development	Editor:	Roshan	Kumar
Technical	Editor:	Shweta	Jadhav
Copy	Editor:	Safis	Editing
Project	Coordinator:	Hardik	Bhinde
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Graphics:	Jason	Monteiro
Production	Coordinator:	Shantanu	Zagade	First	published:	May	2018

Production	reference:	1310518

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78728-108-0

www.packtpub.com

	

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000
books	and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your
personal	development	and	advance	your	career.	For	more	information,
please	visit	our	website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical
eBooks	and	Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

	

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,
with	PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version
at	www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a
discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for
more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and
offers	on	Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Eddy	Wilson	Iriarte	Koroliova	has	worked	and	led	the	development	of	a
SaaS	web	application	for	the	financial	sector	in	2012	with	the	LAMP	stack
for	4	years.	Since	2014,	he	has	been	working	as	a	senior	full-stack
developer	and	JavaScript	specialist	with	the	MERN	stack,	for	the
development	of	enterprise	web	applications	for	different	sectors.

Eddy	travels	frequently	and	mostly	works	remotely.	He	speaks	Spanish,
English,	and	Russian,	and	he	is	currently	learning	Chinese,	which	has
allowed	him	to	work	in	different	team	environments	and	communicate
better	with	clients	and	co-workers.

Special	thanks	to	my	partner	in	life,	Huang	Jingxuan,	for	always	being	there	and	for	supporting	me
not	only	while	writing	this	book	but	also	during	the	different	stages	of	my	life	and	development	of
my	career.
A	big	thank	you	to	my	family	for	their	moral	and	financial	support	while	starting	my	career	as	a
developer.

About	the	reviewer
Chance	is	passionate	about	the	intersection	of	technology,	collaboration,
and	education.
He	is	the	founder	of	Chingu,	a	global	collaboration	platform	for	tech-
learners,	which	has	brought	together	thousands	of	developers,	designers,
and	data	scientists	from	140	countries	to	learn	and	build	together.

I'd	like	to	thank	Eddy	Wilson	for	writing	this	book,	Simon	Van	den	Broeck	for	his	edit	contributions,
and	the	Chingu	community!

	

	

	

What	this	book	covers
Chapter	1,	Introduction	to	MERN	Stack,	provides	an	introduction	to	the
MERN	stack	and	the	MVC	architectural	pattern.	It	covers	installation	of
NodeJS	and	MongoDB	as	well	as	installing	NPM	packages	and	an
example	of	usage.	These	constitute	the	base	for	all	the	book's	recipes.

Chapter	2,	Building	a	Web	Server	with	ExpressJS,	covers	core	concepts
about	the	HTTP	protocol,	the	“http”	NodeJS	module,	and	how	it	is	all
connected	with	ExpressJS.	It	explores	all	features	of	ExpressJS	for
building	Web	Server	applications	from	route	handlers	and	middleware	to
secure	a	Web	Server	application	and	debugging.

Chapter	3,	Building	a	RESTful	API,	explains	core	concepts	about	what	is
REST,	URLs,	and	CRUD	operations.	These	concepts	are	the	base	for	the
whole	chapter.	It	also	explores	how	to	make	CRUD	operations	in
ExpressJS	and	with	Mongoose	as	well	as	where	and	how	ExpressJS	and
Mongoose	fit	in	the	MVC	architectural	pattern.	It	covers	the	creation	of
Mongoose	schemas	and	models	as	well	as	different	types	of	Mongoose
middleware	and	validation	of	data.

Chapter	4,		Real-time	Communication	with	Socket.IO	and	ExpressJS,	gives
a	brief	introduction	to	NodeJS	events	and	how	bi-directional
communication	with	WebSockets	works.	It	also	goes	through	using
SocketIO	and	ExpressJS	to	build	Web	Applications	that	deliver	data	in
real	time.

Chapter	5,	Managing	State	with	Redux,	covers	what	Redux	is	and	the	three
core	principles.	It	also	covers	the	very	basic	idea	of	Redux	from	how
Array.prototype.reduce	works,	to	how	reducers	are	defined	and	how	to
write	middleware	functions	as	well	as	advanced	concepts	such	as	writing
store	enhancers,	time	traveling,	and	asynchronous	data	flow.

Chapter	6,	Building	Web	Applications	with	React,	explains	what	React	is,
what	JSX	syntax	is,	and	where	in	the	MVC	architectural	pattern	it	fits.	It
explores	all	core	concepts	of	React	in	the	form	of	easy-to-follow	and	build
recipes.	The	recipes	cover	topics	about	composition,	life	cycle	methods,
controlled	and	uncontrolled	components,	error	boundary	components,	and
others	such	as	type	checking	with	PropTypes	and	Portals.

	

Packt	is	searching	for	authors
like	you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.pac
ktpub.com	and	apply	today.	We	have	worked	with	thousands	of	developers
and	tech	professionals,	just	like	you,	to	help	them	share	their	insight	with
the	global	tech	community.	You	can	make	a	general	application,	apply	for
a	specific	hot	topic	that	we	are	recruiting	an	author	for,	or	submit	your
own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

MERN	Quick	Start	Guide

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

What	this	book	covers

To	get	the	most	out	of	this	book

What	you	need	for	this	book

Download	the	example	code	files

Download	the	color	images

Code	in	Action

Conventions	used

Sections

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

See	also

Get	in	touch

Reviews

1.	 Introduction	to	the	MERN	Stack

Technical	requirements

Introduction

The	MVC	architectural	pattern

Installing	and	configuring	MongoDB

Getting	ready

How	to	do	it...

There's	more...

Installing	Node.js

Getting	ready

How	to	do	it...

Installing	npm	packages

Getting	ready

How	to	do	it...

How	it	works...

2.	 Building	a	Web	server	with	ExpressJS

Technical	requirements

Introduction

Routing	in	ExpressJS

Getting	ready

How	to	do	it...

Route	methods

Route	handlers

Chainable	route	methods

There's	more...

Modular	route	handlers

Getting	ready

How	to	do	it...

Writing	middleware	functions

Getting	ready

How	to	do	it...

How	it	works...

Writing	configurable	middleware	functions

Getting	ready

How	to	do	it...

Let's	test	it...

There's	more...

Writing	router-level	middleware	functions

Getting	ready

How	to	do	it...

There's	more...

How	it	works...

Writing	error-handler	middleware	functions

Getting	ready

How	to	do	it...

Using	ExpressJS'	built-in	middleware	function	for	serving	static	

assets

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Parsing	the	HTTP	request	body

Getting	ready

How	to	do	it...

How	it	works...

Compressing	HTTP	responses

Getting	ready

How	to	do	it...

How	it	works...

Using	an	HTTP	request	logger

Getting	ready

How	to	do	it...

Managing	and	creating	virtual	domains

Getting	ready

How	to	do	it...

There's	more...

Securing	an	ExpressJS	web	application	with	Helmet

Getting	ready

How	to	do	it...

How	it	works...

Using	template	engines

Getting	ready

How	to	do	it...

Debugging	your	ExpressJS	web	application

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

3.	 Building	a	RESTful	API

Technical	requirements

Introduction

CRUD	operations	using	ExpressJS'	route	methods

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

CRUD	operations	with	Mongoose

Getting	ready

How	to	do	it...

See	also

Using	Mongoose	query	builders

Getting	ready

How	to	do	it...

See	also

Defining	document	instance	methods

Getting	ready

How	to	do	it...

There's	more...

See	also

Defining	static	model	methods

Getting	ready

How	to	do	it...

There's	more...

See	also

Writing	middleware	functions	for	Mongoose

Getting	ready

How	to	do	it...

Document	middleware	functions

Query	middleware	functions

Model	middleware	functions

There's	more...

See	also

Writing	custom	validators	for	Mongoose's	schemas

Getting	ready

How	to	do	it...

See	also

Building	a	RESTful	API	to	manage	users	with	ExpressJS	and	Mongoos

e

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

See	also

4.	 Real-Time	Communication	with	Socket.IO	and	ExpressJS

Technical	requirements

Introduction

Understanding	Node.js	events

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Understanding	Socket.IO	events

The	Socket.IO	server	events

Socket.IO	client	events

Getting	ready

How	to	do	it...

How	it	works...

Working	with	Socket.IO	namespaces

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

io.Manager

Defining	and	joining	Socket.IO	rooms

Getting	ready

How	to	do	it...

There's	more...

Writing	middleware	for	Socket.IO

Getting	ready

How	to	do	it...

Let's	test	it...

Integrating	Socket.IO	with	ExpressJS

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Using	ExpressJS	middleware	in	Socket.IO

Getting	ready

How	to	do	it...

How	it	works...

See	also

5.	 Managing	State	with	Redux

Technical	requirements

Introduction

Defining	actions	and	action	creators

Getting	ready

How	to	do	it...

How	it	works...

Defining	reducer	functions

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Creating	a	Redux	store

Getting	ready

How	to	do	it...

Let's	test	it...

There's	more

Binding	action	creators	to	the	dispatch	method

Getting	ready

How	to	do	it...

Let's	test	it...

Splitting	and	combining	reducers

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Writing	Redux	store	enhancers

Getting	ready

How	to	do	it...

How	it	works...

Time	traveling	with	Redux

Getting	ready

How	to	do	it...

Let's	test	it...

There's	more

Understanding	Redux	middleware

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Dealing	with	asynchronous	data	flow

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

6.	 Building	Web	Applications	with	React

Technical	requirements

Introduction

Understanding	React	elements	and	React	components

Getting	ready

How	to	do	it...

Let's	test	it...

Composing	components

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

Stateful	components	and	life	cycle	methods

Getting	ready

How	to	do	it...

Let's	test	it...

Working	with	React.PureComponent

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

React	event	handlers

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

Conditional	rendering	of	components

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Rendering	lists	with	React

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Working	with	forms	and	inputs	in	React

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Understanding	refs	and	how	to	use	them

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Understanding	React	portals

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Catching	errors	with	error	boundary	components

Getting	ready

How	to	do	it...

Let's	test	it...

Type	checking	properties	with	PropTypes

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

	

Preface
The	MERN	stack	can	be	seen	as	a	collection	of	tools	that	share	a	common
denominator	that	is	the	language,	JavaScript.	The	book	explores,	in	the
form	of	recipes,	how	to	build	web	client	and	server	applications	using	the
MERN	stack	following	the	MVC	architectural	pattern.

The	model	and	controller	of	the	MVC	architectural	pattern	are	covered	by
the	chapters	about	building	RESTful	APIs	with	ExpressJS	and	Mongoose.
The	chapters	cover	core	concepts	about	the	HTTP	protocol,	type	of
methods,	status	codes,	URLs,	REST,	and	CRUD	operations.	Afterward,	it
moves	to	topics	specific	to	ExpressJS,	such	as	request	handlers,
middleware,	and	security,	as	well	as	specific	topics	about	Mongoose,	such
as	schemas,	models,	and	custom	validation.

The	view	of	the	MVC	architectural	patterns	is	covered	by	the	chapter
about	ReactJS.	ReactJS	is	a	UI	library	that	is	component-based	with	a
declarative	API.	The	book's	aim	to	provide	the	essential	knowledge	for
building	ReactJS	web	applications	and	components.	Complementary	to
ReactJS,	the	book	contains	an	entire	chapter	about	Redux	that	explains
from	the	very	core	concepts	and	principles	to	advanced	features	such	as
store	enhancers,	time	travelling,	and	asynchronous	data	flow.

Additionally,	this	book	covers	real-time	communication	with	ExpressJS
and	SocketIO	to	deliver	and	exchange	data	in	real	time.

By	the	end	of	the	book,	you	will	know	the	core	concepts	and	essentials	for
building	full-stack	web	applications	with	the	MVC	architectural	pattern.

	

To	get	the	most	out	of	this
book
This	book	is	for	developers	who	are	interested	in	getting	started	with	the
MERN	stack	for	developing	web	applications.	In	order	to	be	able	to
understand	the	chapters,	you	should	have	already	a	general	knowledge	and
understanding	of	the	JavaScript	language.

	

What	you	need	for	this	book	
In	order	to	be	able	to	work	on	the	recipes,	you	need	the	following:

An	IDE	or	code	editor	of	your	preference.	Visual	Studio	Code
(vscode)	was	used	when	writing	the	recipes'	codes,	so	I	suggest
you	to	give	it	a	try

An	Operating	System	(O.S)	that	is	able	to	run	NodeJS	and
MongoDB,	preferably	one	of	the	following:

macOS	X	Yosemite/El	Capitan/Sierra

Linux

Windows	7/8/10	(.NET	framework	4.5	is	required	if
installing	VSCode	in	Windows	7)

Preferably,	at	least	1	GB	RAM	and	1.6	GHz	processor	or	faster

	

	

Download	the	example	code
files
You	can	download	the	example	code	files	for	this	book	from	your	account
at	www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.p
acktpub.com/support	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the

onscreen	instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract
the	folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows

Zipeg/iZip/UnRarX	for	Mac

7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/
PacktPublishing/MERN-Quick-Start-Guide.	In	case	there's	an	update	to	the	code,	it
will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/MERN-Quick-Start-Guide

videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	You	can	download	it	here:	https://
www.packtpub.com/sites/default/files/downloads/MERNQuickStartGuide_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MERNQuickStartGuide_ColorImages.pdf

Code	in	Action
Visit	the	following	link	to	check	out	videos	of	the	code	being	run:
https://goo.gl/ymdYBT

https://goo.gl/ymdYBT

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,
and	Twitter	handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-
10*.dmg	disk	image	file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

{	

								"dependencies":	{	

										"express":	"4.16.3",	

										"node-fetch":	"2.1.1",	

										"uuid":	"3.2.1"	

								}	

						}	

Any	command-line	input	or	output	is	written	as	follows:

npm	install

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see
onscreen.	For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text
like	this.	Here	is	an	example:	"Select	System	info	from	the	Administration
panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting
ready,	How	to	do	it...,	Let's	test	it...,	How	it	works...,	There's	more...,	and
See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	use	these	sections
as	follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe	and	describes	how	to	set
up	any	software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it...
This	section	contains	the	steps	required	to	follow	the	recipe.

Let's	test	it...
This	section	consists	of	detailed	steps	on	how	to	test	the	code	given
in	How	to	do	it...	section.

How	it	works...
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in
the	previous	section.

There's	more...
This	section	consists	of	additional	information	about	the	recipe	in	order	to
make	you	more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the
recipe.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title
in	the	subject	of	your	message.	If	you	have	questions	about	any	aspect	of
this	book,	please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we
would	be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com
/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form
link,	and	entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on
the	internet,	we	would	be	grateful	if	you	would	provide	us	with	the
location	address	or	website	name.	Please	contact	us	at	copyright@packtpub.com
with	a	link	to	the	material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you
have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to
a	book,	please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

	

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not
leave	a	review	on	the	site	that	you	purchased	it	from?	Potential	readers	can
then	see	and	use	your	unbiased	opinion	to	make	purchase	decisions,	we	at
Packt	can	understand	what	you	think	about	our	products,	and	our	authors
can	see	your	feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

https://www.packtpub.com/

Introduction	to	the	MERN	Stack
In	this	chapter,	we	will	cover	the	following	topics:

The	MVC	architectural	pattern

Installing	and	configuring	MongoDB

Installing	Node.js

Installing	NPM	packages

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git	repository
of	this	book.	

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter01

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/1zwc6F

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter01
https://goo.gl/1zwc6F

Introduction
The	MERN	stack	is	a	solution	composed	of	four	main	components:

MongoDB:	A	database	that	uses	a	document-oriented	data	model.

ExpressJS:	A	web	application	framework	for	building	web
applications	and	APIs.

ReactJS:	A	declarative,	component-based,	and	isomorphic
JavaScript	library	for	building	user	interfaces.

Node.js:	A	cross-platform	JavaScript	runtime	environment	built
on	Chrome's	V8	JavaScript	engine	allows	developers	to	build
diverse	tools,	servers,	and	applications.

These	fundamental	components	that	comprise	the	MERN	stack	are	open
source,	and	are	thus	maintained	and	developed	by	a	great	community	of
developers.	What	ties	these	components	together	is	a	common	language,
JavaScript.

The	recipes	in	this	chapter	will	mainly	focus	on	setting	up	a	development
environment	to	work	with	a	MERN	stack.

You	are	free	to	use	the	code	editor	or	IDE	of	your	choice.	However,	I
would	suggest	you	give	Visual	Studio	Code	a	try	if	you	have	trouble
deciding	which	IDE	to	use.

The	MVC	architectural	pattern
Most	modern	web	applications	implement	the	MVC	architectural	pattern.
It	consists	of	three	interconnected	parts	that	separate	the	internal
representation	of	information	in	a	web	application:

Model:	Manages	the	business	logic	of	an	application	that
determines	how	data	should	be	stored,	created,	and	modified

View:	Any	visual	representation	of	the	data	or	information

Controller:	Interprets	user-generated	events	and	transforms	them
into	commands	for	the	model	and	view	to	update	accordingly:

The	Separation	of	Concern	(SoC)	design	pattern	separates	frontend	from
backend	code.	Following	the	MVC	architectural	pattern,	developers	are
able	to	adhere	to	the	SoC	design	pattern,	resulting	in	a	consistent	and
manageable	application	structure.

The	recipes	in	the	following	chapters	implement	this	architectural	pattern
to	separate	the	frontend	and	the	backend.

Installing	and	configuring
MongoDB
The	official	MongoDB	website	provides	up-to-date	packages	containing
binaries	for	installing	MongoDB	on	Linux,	OS	X,	and	Windows.

Getting	ready
Visit	the	official	website	of	MongoDB	at	https://www.mongodb.com/download-
center,	select	Community	Server,	and	then	select	your	preferred	operating
system	version	of	the	software	and	download	it.

Installing	MongoDB	and	configuring	it	may	require	additional	steps.

https://www.mongodb.com/download-center

	

How	to	do	it...
Visit	the	documentation	website	of	MongoDB	at
https://docs.mongodb.com/master/installation/	for	instructions	and	check	the
Tutorials	section	for	your	specific	platform.

After	installation,	an	instance	of	mongod-,	the	daemon	process	for	MongoDB-,
can	be	started	in	a	standalone	fashion:

1.	 Open	a	new	Terminal
2.	 Create	a	new	directory	named	data,	which	will	contain	the	Mongo

database
3.	 Type	mongod	--port	27017	--dbpath	data	to	start	a	new	instance	and

create	a	database
4.	 Open	another	Terminal
5.	 Type	mongo	--port	27017	to	connect	a	Mongo	shell	to	the	instance

	

	

https://docs.mongodb.com/master/installation/

There's	more...
As	an	alternative,	you	can	opt	to	use	a	Database	as	a	service	(DBaaS)
such	as	MongoDB	Atlas,	which,	at	the	time	of	writing,	allows	you	to
create	a	free	cluster	with	512	MB	of	storage.	Another	simple	alternative	is
mLab,	although	there	are	many	other	options.

Installing	Node.js
The	official	Node.js	website	provides	two	packages	containing	LTS	and
Current	(containing	the	latest	features)	binaries	to	install	Node.js	on
Linux,	OS	X,	and	Windows.

Getting	ready
For	the	purpose	of	this	book,	we	will	install	Node.js	v10.1.x.

	

How	to	do	it...
To	download	the	latest	version	of	Node.js:

1.	 Visit	the	official	website	at	https://nodejs.org/en/download/
2.	 Select	Current	|	Latest	Features
3.	 Select	the	binary	for	your	preferred	platform	or	operating	system

(OS)
4.	 Download	and	install

If	you	prefer	to	install	Node.js	via	package	manager,	visit
https://nodejs.org/en/download/package-manager/	and	select	your	preferred
platform	or	OS.

	

https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/

Installing	npm	packages
The	installation	of	Node.js	includes	a	package	manager	called	npm,	which	is
the	default	and	most	widely	used	package	manager	for	installing
JavaScript/Node.js	libraries.

NPM	packages	are	listed	in	the	NPM	registry	at	https://registry.npmjs.org/,
where	you	can	search	for	packages	and	even	publish	your	own.

There	are	other	alternatives	to	NPM	as	well,	such	as	Yarn,	which	is
compatible	with	the	public	NPM	registry.	You	are	free	to	use	the	package
manager	of	your	choice;	however,	for	the	purpose	of	this	book,	the
package	manager	used	in	the	recipes	will	be	NPM.

https://registry.npmjs.org/

{

				"name":	"mern-cookbook",	"version":	"1.0.0",	"description":	"mern	cookbook
recipes",	"main":	"index.js",	"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

				},	"author":	"Eddy	Wilson",	"license":	"MIT"

}

After	this,	you	will	be	able	to	use	NPM	to	install	new	packages	for	your	project.

npm	--save-exact	install	chalk

const	chalk	=	require('chalk')	const	{	red,	blue	}	=	chalk	console.log(red('hello'),
blue('world!'))

	node	index.js

How	it	works...
NPM	will	connect	to	and	look	in	the	NPM	registry	for	the	package	named
react,	and	will	download	it	and	install	it	if	it	exists.

The	following	are	some	useful	flags	that	you	can	use	NPM	with:

--save:	This	will	install	and	add	the	package	name	and	version	in
the	dependencies	section	of	your	package.json	file.	These	dependencies
are	modules	that	your	project	will	use	while	in	production.

--save-dev:	This	works	in	the	same	way	as	the	--save	flag.	It	will
install	and	add	the	package	name	in	the	devDependencies	section	of
the	package.json	file.	These	dependencies	are	modules	that	your
project	will	use	during	development.

--save-exact:	This	keeps	the	original	version	of	the	installed
package.	This	means,	if	you	share	your	project	with	other	people,
they	will	be	able	to	install	the	exact	same	version	of	the	package
that	you	use.

While	this	book	will	provide	you	with	a	step-by-step	guide	to	installing
the	necessary	packages	in	every	recipe,	you	are	encouraged	to	visit	the
NPM	documentation	website	at	https://docs.npmjs.com/getting-started/using-a-
package.json	to	learn	more.

	

https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json

	

Building	a	Web	server	with
ExpressJS
In	this	chapter,	we	will	cover	the	following	recipes:

Routing	in	ExpressJS

Modular	route	handlers

Writing	middleware	functions

Writing	configurable	middleware	functions

Writing	router-level	middleware	functions

Writing	error-handler	middleware	functions

Using	ExpressJS'	built-in	middleware	function	to	serve	static
assets

Parsing	the	HTTP	request	body

Compressing	HTTP	responses

Using	an	HTTP	request	logger

Managing	and	creating	virtual	domains

Securing	an	ExpressJS	web	application	with	helmet

Using	template	engines

Debugging	your	ExpressJS	web	application

	

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git	repository
of	this	book.	

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter02

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/xXhqWK

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter02
https://goo.gl/xXhqWK

Introduction
ExpressJS	is	the	preferred	de	facto	Node.js	web	application	framework	for
building	robust	web	applications	and	APIs.

In	this	chapter,	the	recipes	will	focus	on	building	a	fully	functional	web
server	and	understanding	the	core	fundamentals.

Routing	in	ExpressJS
Routing	refers	to	how	an	application	responds	or	acts	when	a	resource	is
requested	via	an	HTTP	verb	or	HTTP	method.

HTTP	stands	for	Hypertext	Transfer	Protocol	and	it's	the	basis	of	data
communication	for	the	World	Wide	Web	(WWW).	All	documents	and
data	in	the	WWW	are	identified	by	a	Uniform	Resource	Locator	(URL).

HTTP	verbs	or	HTTP	methods	are	a	client-server	model.	Typically,	a	web
browser	serves	as	a	client,	and	in	our	case	ExpressJS	is	the	framework	that
allows	us	to	create	a	server	capable	of	understanding	these	requests.	Every
request	expects	a	response	to	be	sent	to	the	client	to	recognize	the	status	of
the	resource	that	it	is	requesting.

Request	methods	can	be:

Safe:	An	HTTP	verb	that	performs	read-only	operations	on	the
server.	In	other	words,	it	does	not	alter	the	server	state.	For
example:	GET.

Idempotent:	An	HTTP	verb	that	has	the	same	effect	on	the	server
when	identical	requests	are	made.	For	instance,	sending	a	PUT
request	to	modify	a	user's	first	name	should	have	the	same	effect
on	the	server	if	implemented	correctly	when	multiple	identical
requests	are	sent.	All	safe	methods	are	also	idempotent.	For
example,	the	GET,	PUT,	and	DELETE	methods	are	idempotent.

Cacheable:	An	HTTP	response	that	can	be	cached.	Not	all
methods	or	HTTP	verbs	can	be	cached.	A	response	is	cacheable
only	if	the	status	code	of	the	response	and	the	method	used	to

make	the	request	are	both	cacheable.	For	example,	the	GET
method	is	cacheable	and	the	following	status	codes:	200	(Request
succeeded),	204	(No	content),	206	(Partial	content),	301	(Moved
permanently),	404	(Not	found),	405	(Method	not	allowed),	410
(Gone	or	Content	permanently	removed	from	server),	and	414
(URI	too	long).

Getting	ready
Understanding	routing	is	one	of	the	most	important	core	aspects	in
building	robust	RESTful	APIs.

In	this	recipe,	we	will	see	how	ExpressJS	handles	or	interprets	HTTP
requests.	Before	you	start,	create	a	new	package.json	file	with	the	following
content:	{	"dependencies":	{	"express":	"4.16.3"	}	}

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

		

ExpressJS	does	the	whole	job	of	understanding	a	client's	request.	The
request	may	come	from	a	browser,	for	instance.	Once	the	request	has	been
interpreted,	ExpressJS	saves	all	the	information	in	two	objects:

Request:	This	contains	all	the	data	and	information	about	the
client's	request.	For	instance,	ExpressJS	parses	the	URI	and	makes
its	parameters	available	on	request.query.

Response:	This	contains	data	and	information	that	will	be	sent	to
the	client.	The	response's	headers	can	be	modified	as	well	before
sending	the	information	to	the	client.	The	response	object	has
several	methods	available	for	sending	the	status	code	and	data	to
the	client.	For	instance:	response.status(200).send('Some	Data!').

How	to	do	it...
Request	and	Response	objects	are	passed	as	arguments	to	the	route	handlers
defined	inside	a	route	method.

const	express	=	require('express')	const	app	=	express()

app.get('/',	(request,	response,	nextHandler)	=>	{

				response.status(200).send('Hello	from	ExpressJS')	})

app.listen(

				1337,	()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	1-basic-route.js

	http://localhost:1337/

For	more	information	about	which	HTTP	methods	are	supported	by	ExpressJS,
visit	the	official	ExpressJS	website	at
https://expressjs.com/en/guide/routing.html#route-methods.

https://expressjs.com/en/guide/routing.html#route-methods

const	express	=	require('express')	const	app	=	express()

app.get('/one',	(request,	response,	nextHandler)	=>	{

				response.type('text/plain')	response.write('Hello	')	nextHandler()	})

				app.get('/one',	(request,	response,	nextHandler)	=>	{

				response.status(200).end('World!')	})

app.get('/two',

				(request,	response,	nextHandler)	=>	{

				response.type('text/plain')	response.write('Hello	')	nextHandler()	},

				(request,	response,	nextHandler)	=>	{

				response.status(200).end('Moon!')	}

)

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

node	2-route-handlers.js

	http://localhost:1337/one

http://localhost:1337/two

const	express	=	require('express')	const	app	=	express()

app

				.route('/home')

				.get((request,	response,	nextHandler)	=>	{

				response.type('text/html')	response.write('<!DOCTYPE	html>')	nextHandler()

				})

				.get((request,	response,	nextHandler)	=>	{

				response.end(`

				<html	lang="en">	<head>

				<meta	charset="utf-8">	<title>WebApp	powered	by	ExpressJS</title>
</head>

				<body	role="application">	<form	method="post"	action="/home">	<input
type="text"	/>	<button	type="submit">Send</button>	</form>

				</body>

				</html>

				`)

				})

				.post((request,	response,	nextHandler)	=>	{

				response.send('Got	it!')	})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	3-chainable-routes.js

http://localhost:1337/home

There's	more...
Route	paths	can	be	strings	or	regular	expressions.	Route	paths	are
internally	turned	into	regular	expressions	using	the	path-to-regexp	NPM
package	https://www.npmjs.com/package/path-to-regexp.

path-to-regexp,	in	a	way,	helps	you	write	path	regular	expressions	in	a	more
human-readable	way.	For	example,	consider	the	following	code:

app.get(/([a-z]+)-([0-9]+)$/,	(request,	response,	nextHandler)	=>	{	

				response.send(request.params)	

})	

//	Output:	{"0":"abc","1":"12345"}	for	path	/abc-12345	

This	could	be	written	as	follows:

app.get('/:0-:1',	(request,	response,	nextHandler)	=>	{	

				response.send(request.params)	

})	

//	Outputs:	{"0":"abc","1":"12345"}	for	/abc-12345	

Or	better:

app.get('/:id-:tag',	(request,	response,	nextHandler)	=>	{	

				response.send(request.params)	

})	

//	Outputs:	{"id":"abc","tag":"12345"}	for	/abc-12345	

Take	a	look	at	this	expression:	/([a-z]+)-([0-9]+)$/.	The	parentheses	in	the
regular	expression	are	called	capturing	parentheses;	and	when	they	find
a	match,	they	remember	it.	In	the	preceding	example,	for	abc-12345,	two
strings	are	remembered,	{"0":"abc","1":"12345"}.	This	is	the	way	that
ExpressJS	finds	a	match,	remembers	its	value,	and	associates	it	to	a	key:

https://www.npmjs.com/package/path-to-regexp

app.get(':userId:action-:where',	(request,	response,	nextHandler)	=>	{	

				response.send(request.params)	

})	

//	Route	path:	123edit-profile	

//	Outputs:	{"userId":"123","action":"edit","where":"profile"}	

const	router	=	express.Router()	router.get('/',	(request,	response,	next)	=>	{

				response.send('Hello	there!')	})

router.post('/',	(request,	response,	next)	=>	{

				response.send('I	got	your	data!')	})

Getting	ready
In	this	recipe,	we	will	see	how	to	use	a	router	to	make	a	modular
application.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

				npm	install

		

const	express	=	require('express')	const	app	=	express()

const	miniapp	=	express.Router()	miniapp.get('/home',	(request,	response,	next)
=>	{

				const	url	=	request.originalUrl	response

				.status(200)

				.send(`You	are	visiting	/home	from	${url}`)	})

app.use('/first',	miniapp)	app.use('/second',	miniapp)

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	modular-router.js

You	are	visting	home	from	first/home	You	are	visting	home	from	second/home

As	can	be	seen,	a	router	was	mounted	to	two	different	mount	points.	Routers	are
usually	referred	to	as	mini-applications	because	they	can	be	mounted	to	an
ExpressJS	application's	specific	routes	and	not	only	once	but	also	several	times
to	different	mount	points,	paths,	or	URIs.

Writing	middleware	functions
Middleware	functions	are	mainly	used	to	make	changes	in	the	request	and
response	object.	They	are	executed	in	sequence,	one	after	another,	but	if	a
middleware	functions	does	not	pass	control	to	the	next	one,	the	request	is
left	hanging.

Getting	ready
Middleware	functions	have	the	following	signature:

app.use((request,	response,	next)	=>	{	

				next()	

})	

The	signature	is	very	similar	to	writing	route	handlers.	In	fact,	a
middleware	function	can	be	written	for	a	specific	HTTP	method	and	a
specific	path	route,	and	will	look	like	this,	for	example:	app.get('/',
(request,	response,	next)	=>	{	next()	})

So,	if	you	are	wondering	what	the	difference	is	between	route	handlers,
and	middleware	functions,	the	answer	is	simple:	their	purpose.

If	you	are	writing	route	handlers,	and	the	request	objects	and/or	the	response
object	is	modified,	then	you	are	writing	middleware	functions.

In	this	recipe,	you	will	see	how	to	use	a	middleware	function	to	restrict
access	to	certain	paths	or	routes	that	depend	on	a	certain	condition.	Before
you	start,	create	a	new	package.json	file	with	the	following	content:	{
"dependencies":	{	"express":	"4.16.3"	}	}

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install	

const	express	=	require('express')	const	app	=	express()

app.use((request,	response,	next)	=>	{

				request.allowed	=	Reflect.has(request.query,	'allowme')	next()

				})

app.get('/',	(request,	response,	next)	=>	{

				if	(request.allowed)	{

				response.send('Hello	secret	world!')	}	else	{

				response.send('You	are	not	allowed	to	enter')	}

				})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	middleware-functions.js

	
http://localhost:1337/
	http://localhost:1337/?allowme

	

How	it	works...
Just	like	with	route	handlers,	middleware	functions	need	to	pass	control	to
the	next	handler;	otherwise,	our	application	will	have	been	hanging
because	no	data	was	sent	to	the	client,	and	the	connection	was	not	closed
either.

If	new	properties	are	added	to	the	request	or	response	objects	inside	a
middleware	function,	the	next	handler	will	have	access	to	those	new
properties.	As	in	our	previously	written	code,	the	allowed	property	in	the
request	object	is	available	to	the	next	handler.

	

const	fn	=	(options)	=>	(response,	request,	next)	=>	{

				next()

}

Usually	an	object	is	used	as	an	options	parameters.	However,	there	is	nothing
stopping	you	from	doing	it	in	your	own	way.

Getting	ready
In	this	recipe,	you	will	write	a	configurable	logger	middleware	function.
Before	you	start,	create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

				npm	install

		

const	logger	=	(options)	=>	(request,	response,	next)	=>	{

				if	(typeof	options	===	'object'

				&&	options	!==	null	&&	options.enable)	{

				console.log(

				'Status	Code:',	response.statusCode,	'URL:',	request.originalUrl,)

}

				next()

}

				module.exports	=	logger

3.	 Save	the	file

const	express	=	require('express')	const	loggerMiddleware	=
require('./middleware-logger')	const	app	=	express()

app.use(loggerMiddleware({

				enable:	true,	}))

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	middleware-logger-test.js

	http://localhost:1337hello?world

	Status	Code:	200	URL:	hello?world

There's	more...
If	you	want	to	experiment,	start	your	configurable	middleware	test
application	with	the	enable	property	set	to	false.	No	logs	should	be
displayed.

Usually,	you	would	want	to	disable	logging	in	production,	since	this
operation	could	hit	performance.

An	alternative	to	disabling	all	logging	is	to	use	other	libraries	to	do	this
task	instead	of	using	console.	There	are	libraries	that	allow	you	to	set
different	levels	of	logging	as	well,	for	instance:

Debug	module:	https://www.npmjs.com/package/debug

Winston:	https://www.npmjs.com/package/winston

Logging	is	useful	for	several	reasons.	The	main	reasons	are:

It	checks	whether	your	services	are	running	properly,	for	example,
checking	whether	your	application	is	connected	to	MongoDB.

It	discovers	errors	and	bugs.

It	helps	you	to	understand	better	how	your	application	is	working.
For	instance,	if	you	have	a	modular	application,	you	can	see	how
it	integrates	when	included	in	other	applications.

https://www.npmjs.com/package/debug
https://www.npmjs.com/package/winston

Writing	router-level	middleware
functions
Router-level	middleware	functions	are	only	executed	inside	a	router.	They
are	usually	used	when	applying	a	middleware	to	a	mount	point	only	or	to	a
specific	path.

{

				"dependencies":	{

				"express":	"4.16.3"

}

}

npm	install

const	express	=	require('express')	const	app	=	express()	const	router	=
express.Router()

router.use((request,	response,	next)	=>	{

				console.log('URL:',	request.originalUrl)	next()	})

app.use('/router',	router)

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	router-level.js

http://localhost:1337routerexample

	URL:	routerexample

	http://localhost:1337/example

11.	 No	logs	should	be	displayed	in	terminal

router.use((request,	response,	next)	=>	{

				next('route')	})

const	express	=	require('express')	const	app	=	express()

const	router	=	express.Router()

router.use((request,	response,	next)	=>	{

				if	(!request.query.id)	{

				next('router')	//	Next,	out	of	Router	}	else	{

				next()	//	Next,	in	Router	}

				})

router.get('/',	(request,	response,	next)	=>	{

				const	id	=	request.query.id	response.send(`You	specified	a	user	ID	=>	${id}`)
})

app.get('/',	router,	(request,	response,	next)	=>	{

				response

				.status(400)	.send('A	user	ID	needs	to	be	specified')	})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	router-level-control.js

		http://localhost:1337/

				http://localhost:1337/?id=7331

How	it	works...
When	navigating	to	the	first	URL	(http://localhost:1337/),	the	following
message	is	shown:	A	user	ID	needs	to	be	specified

This	is	because	the	middleware	function	in	the	router	checks	if	the	id	was
provided	in	the	query,	and	because	it	is	not,	it	passes	control	to	the	next
handler	outside	of	the	router	with	next('router').

On	the	other	hand,	when	navigating	to	the	second	URL
(http://localhost:1337/?id=7331),	the	following	message	is	shown:	You
specified	a	user	ID	=>	7331

That	happens	because,	as	an	id	was	provided	in	the	query,	the	middleware
function	in	the	router	will	pass	control	to	the	next	handler	inside	the	router
with	next().

http://localhost:1337/?id=7331

Writing	error-handler
middleware	functions
ExpressJS	already	includes	by	default	a	built-in	error	handler	which	gets
executed	at	the	end	of	all	middleware	and	route	handlers.

There	are	ways	that	the	built-in	error	handler	can	be	triggered.	One	is
implicit	when	an	error	occurs	inside	a	route	handler.	For	example:

app.get('/',	(request,	response,	next)	=>	{	

				throw	new	Error('Oh	no!,	something	went	wrong!')	

})	

And	another	way	of	triggering	the	built-in	error	handler	is	explicit	when
passing	an	error	as	an	argument	to	next(error).	For	instance:

app.get('/',	(request,	response,	next)	=>	{	

				try	{	

								throw	new	Error('Oh	no!,	something	went	wrong!')	

				}	catch	(error)	{	

								next(error)	

				}	

})	

The	stack	trace	is	displayed	on	the	client	side.	If	NODE_ENV	is	set	to	production,	then	the
stack	trace	is	not	included.

A	custom	error	handler	middleware	function	can	be	written	as	well	and	it
looks	pretty	much	the	same	as	route	handlers	do	with	the	exception	that	an
error	handler	function	middleware	expects	to	receive	four	arguments:

app.use((error,	request,	response,	next)	=>	{	

				next(error)	

})	

Take	into	account	that	next(error)is	optional.	That	means,	if	specified,
next(error)	will	pass	control	over	to	the	next	error	handler.	If	no	other	error
handler	was	defined,	then	the	control	will	pass	to	the	built-in	error	handler.

Getting	ready
In	this	recipe,	we	will	see	how	to	create	a	custom	error	handler.	Before
you	start,	create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

				npm	install

const	express	=	require('express')

				const	app	=	express()

app.get('/',	(request,	response,	next)	=>	{

				try	{

				throw	new	Error('Oh	no!,	something	went	wrong!')

				}	catch	(err)	{

				next(err)

}

				})

app.use((error,	request,	response,	next)	=>	{

				response.end(error.message)

				})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),

)

	node	custom-error-handler.js

	http://localhost:1337/

Using	ExpressJS'	built-in
middleware	function	for
serving	static	assets
Prior	to	the	4.x	version	of	ExpressJS,	it	has	depended	on	ConnectJS	which
is	an	HTTP	server	framework	https://github.com/senchalabs/connect.	In	fact,
most	middleware	written	for	ConnectJS	is	also	supported	in	ExpressJS.

As	from	the	4.x	version	of	ExpressJS,	it	no	longer	depends	on	ConnectJS,
and	all	previously	built-in	middleware	functions	were	moved	to	separate
modules	https://expressjs.com/en/resources/middleware.html.

ExpressJS	4.x	and	newer	versions	include	only	two	built-in	middleware
functions.	The	first	one	has	already	been	seen:	the	built-in	error	handler
middleware	function.	The	second	one	is	the	express.static	middleware
function	that	is	responsible	for	serving	static	assets.

The	express.static	middleware	function	is	based	on	serve-static	module
https://expressjs.com/en/resources/middleware/serve-static.html.

The	main	difference	between	express.static	and	serve-static	is	that	the
second	one	can	be	used	outside	of	ExpressJS.

https://github.com/senchalabs/connect
https://expressjs.com/en/resources/middleware.html
https://expressjs.com/en/resources/middleware/serve-static.html

{

				"dependencies":	{

				"express":	"4.16.3"

}

}

npm	install

<!DOCTYPE	html>	<html	lang="en">	<head>

				<meta	charset="utf-8">	<title>Simple	Web	Application</title>	</head>

				<body>

				<section	role="application">	<h1>Welcome	Home!</h1>	</section>	</body>

				</html>

const	express	=	require('express')	const	path	=	require('path')	const	app	=
express()

const	publicDir	=	path.join(__dirname,	'./public')	app.use('/',
express.static(publicDir))

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	serve-static-assets.js

http://localhost:1337/index.html

	

How	it	works...
Our	index.html	file	will	be	shown	because	we	specified	"/"	as	the	root
directory	where	to	look	for	assets.

Try	changing	the	path	from	"/"	to	"/public".	Then,	you	will	be	able	to	see
that	the	index.html	file,	and	other	files	that	you	want	to	include	in	the	/public
directory,	will	be	accessible	under	http://localhost:1337/public/[fileName].

	

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="utf-8">	<title>Simple	Web	Application</title>	</head>

				<body>

				<section	role="application">	<h1>Welcome	Home!</h1>	</section>

				</body>

				</html>

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="utf-8">	<title>Simple	Web	Application</title>	</head>

				<body>

				<section	role="application">	Welcome	to	Second	Page!

				</section>

				</body>

				</html>

const	express	=	require('express')	const	path	=	require('path')	const	app	=
express()

const	staticRouter	=	express.Router()

const	assets	=	{

				first:	path.join(__dirname,	'./public'),	second:	path.join(__dirname,	'./another-
public')	}

				staticRouter

				.use(express.static(assets.first))	.use(express.static(assets.second))

app.use('/',	staticRouter)

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	router-serve-static.js

	
http://localhost:1337/index.html	http://localhost:1337/second.html

11.	 Two	different	files	in	different	locations	were	served	under	one	path

If	two	or	more	files	with	the	same	name	exist	under	different	directories,	only
the	first	one	found	will	be	displayed	on	the	client-side.

	

Parsing	the	HTTP	request	body
body-parser	is	a	middleware	function	that	parses	the	incoming	request	body
and	makes	it	available	in	the	request	object	as
request.body	https://expressjs.com/en/resources/middleware/body-parser.html.

This	module	allows	an	application	to	parse	the	incoming	request	as:

JSON

Text

Raw	(buffer	original	incoming	data)

URL	encoded	form

The	module	supports	automatic	decompression	of	gzip	and	deflates
encodings	when	the	incoming	request	is	compressed.

	

https://expressjs.com/en/resources/middleware/body-parser.html

{

				"dependencies":	{

				"body-parser":	"1.18.2",	"express":	"4.16.3"

}

}

npm	install

const	express	=	require('express')	const	bodyParser	=	require('body-parser')	const
app	=	express()

app.use(bodyParser.urlencoded({	extended:	true	}))	app.use(bodyParser.text())

app.get('/',	(request,	response,	next)	=>	{

				response.send(`

				<!DOCTYPE	html>	<html	lang="en">	<head>

				<meta	charset="utf-8">	<title>WebApp	powered	by	ExpressJS</title>
</head>

				<body>

				<div	role="application">	<form	method="post"	action="/setdata">	<input
name="urlencoded"	type="text"	/>	<button	type="submit">Send</button>
</form>

				<form	method="post"	action="setdata"	
	enctype="text/plain">	<input
name="txtencoded"	type="text"	/>	<button	type="submit">Send</button>
</form>

				</div>

				</body>

				</html>

				`)

				})

app.post('/setdata',	(request,	response,	next)	=>	{

				console.log(request.body)	response.end()

				})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	parse-form.js

	http://localhost:1337/

	http://localhost:1337/

12.	 Fill	the	second	input	box	with	any	data	and	submit	the	form:
13.	 Check	the	output	in	the	terminal

{	'urlencoded':	'Example'	}

txtencoded=Example

Two	parsers	are	used	above:

1.	 The	first	one	bodyParser.urlencoded()	parses	incoming	requests	for
multipart/form-data	encoding	type.	The	result	is	available	as	an	Object
in	request.body

2.	 The	second	one	bodyParser.text()	parses	incoming	requests	for
text/plain	encoding	type.	The	result	is	available	as	a	String	in
request.body

	

Compressing	HTTP	responses
compression	is	a	middleware	function	that	compresses	the	response	body
that	will	be	send	to	the	client.	This	module	uses	the	zlib	module
https://nodejs.org/api/zlib.html	that	supports	the	following	content-encoding
mechanisms:

gzip

deflate

The	Accept-Encoding	HTTP	header	is	used	to	determine	which	content-
encoding	mechanism	is	supported	on	the	client-side	(for	example	web
browser)	while	the	Content-Encoding	HTTP	header	is	used	to	tell	the	client
which	content	encoding	mechanism	was	applied	to	the	response	body.

compression	is	a	configurable	middleware	function.	It	accepts	an	options
object	as	the	first	argument	to	define	a	specific	behavior	for	the
middleware	and	also	to	pass	zlib	options	as	well.

	

https://nodejs.org/api/zlib.html

{

				"dependencies":	{

				"compression":	"1.7.2",	"express":	"4.16.3"

}

}

npm	install

const	express	=	require('express')	const	compression	=	require('compression')
const	app	=	express()

app.use(compression({	level:	9,	threshold:	0	}))

app.get('/',	(request,	response,	next)	=>	{

				response.send(`

				<!DOCTYPE	html>	<html	lang="en">	<head>

				<meta	charset="utf-8">	<title>WebApp	powered	by	ExpressJS</title>
</head>

				<body>

				<section	role="application">	<h1>Hello!	this	page	is	compressed!</h1>
</section>	</body>

				</html>

				`)

				console.log(request.acceptsEncodings())	})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

6.	 Save	the	file
7.	 Open	a	terminal	and	run:

						node	compress-site.js	

8.	 In	your	browser,	navigate	to:

						http://localhost:1337/

How	it	works...
The	output	of	the	Terminal	will	show	the	content	encoding	mechanism
that	the	client	(for	example	web	browser)	supports.	It	may	look	something
like	this:	['gzip',	'deflate',	'sdch',	'br',	'identity']

The	content	encoding	mechanism	sent	by	the	client	is	used	by	compression
internally	to	know	if	compression	is	supported.	If	compression	is	not
supported,	then	the	response	body	is	not	compressed.

If	opening	Chrome	Dev	Tools	or	similar	and	analyzing	the	request	made,
the	Content-Encoding	header	that	was	sent	by	the	server	indicates	the	kind	of
content	encoding	mechanism	used	by	compression.

Chrome	Dev	Tools	|	Network	Tab	displaying	Response	Headers

The	compression	library	sets	the	Content-Encoding	header	to	the	encoding
mechanism	used	for	compressing	the	response	body.

The	threshold	option	is	set	by	default	to	1	KB	which	means	that	if	the	response	size	is
below	the	number	of	bytes	specified,	then	it	is	not	compressed.	Set	it	to	0	or	false	to
compress	the	response	even	when	the	size	is	below	1	KB

Using	an	HTTP	request	logger
As	previously	seen,	writing	a	request	logger	is	simple.	However,	writing
our	own	could	take	precious	time.	Luckily,	there	are	several	other
alternatives	out	there.	For	example,	a	very	popular	HTTP	request	logger
widely	used	is	morgan	https://expressjs.com/en/resources/middleware/morgan.html.

morgan	is	a	configurable	middleware	function	that	takes	two	arguments
format	and	options	which	are	used	to	specify	the	format	in	which	the	logs	are
displayed	and	what	kind	of	information	needs	to	be	displayed.

There	are	several	predefined	formats:

tiny:	Minimal	output

short:	Same	as	tiny,	including	remote	IP	address

common:	Standard	Apache	log	output

combined:	Standard	Apache	combined	log	output

dev:	Displays	the	same	information	as	the	tiny	format	does.
However,	the	response	statuses	are	colored.

	

	

https://expressjs.com/en/resources/middleware/morgan.html

	

Getting	ready
Create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3",	

								"morgan":	"1.9.0"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

const	express	=	require('express')	const	morgan	=	require('morgan')	const	app	=
express()

app.use(morgan('dev'))

app.get('*',	(request,	response,	next)	=>	{

				response.send('Hello	Morgan!')	})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	morgan-logger.js

http://localhost:1337/	http://localhost:1337/example

Managing	and	creating	virtual
domains
Managing	virtual	domains	is	really	easy	with	ExpressJS.	Imagine	that	you
have	two	or	more	subdomains,	and	you	want	to	serve	two	different	web
applications.	However,	you	do	not	want	to	create	a	different	web	server
application	for	each	subdomain.	In	this	kind	of	situation,	ExpressJS	allows
developers	to	manage	virtual	domains	within	a	single	web	server
application	using	vhost
https://expressjs.com/en/resources/middleware/vhost.html.

vhost	is	a	configurable	middleware	function	that	accepts	two	arguments.
The	first	one	is	the	hostname.	The	second	argument	is	the	request	handler
which	will	be	called	when	the	hostname	matches.

The	hostname	follows	the	same	rules	as	route	paths	do.	They	can	be	either	a
string	or	a	regular	expression.

https://expressjs.com/en/resources/middleware/vhost.html

Getting	ready
Create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3",	

								"vhost":	"3.0.2"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

const	express	=	require('express')	const	vhost	=	require('vhost')	const	app	=
express()

const	app1	=	express.Router()	const	app2	=	express.Router()

app1.get('/',	(request,	response,	next)	=>	{

				response.send('This	is	the	main	application.')	})

app2.get('/',	(request,	response,	next)	=>	{

				response.send('This	is	a	second	application.')	})

app.use(vhost('localhost',	app1))	app.use(vhost('second.localhost',	app2))

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

node	virtual-domains.js

http://localhost:1337/	http://second.localhost:1337/

const	express	=	require('express')	const	vhost	=	require('vhost')	const	app	=
express()

const	users	=	express.Router()	users.get('/',	(request,	response,	next)	=>	{

				const	username	=	request	.vhost[0]

				.split('-')	.map(name	=>	(

				name[0].toUpperCase()	+

				name.slice(1)))

				.join('	')	response.send(`Hello,	${username}`)	})

app.use(vhost('*.localhost',	users))

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

node	user-subdomains.js

	http://john-smith.localhost:1337/	http://jx-huang.localhost:1337/	http://batman.localhost:1337/

Securing	an	ExpressJS	web
application	with	Helmet
Helmet	allows	to	protect	web	server	applications	against	common	attacks,
such	as	cross-site	scripting	(XSS),	insecure	requests,	and	clickjacking.

Helmet	is	a	collection	of	12	middleware	functions	that	allow	you	to	set
specific	HTTP	headers:

1.	 Content	Security	Policy	(CSP):	This	is	an	effective	way	to	whitelist
what	kind	of	external	resources	are	allowed	in	your	web
application,	such	as	JavaScript,	CSS,	and	images,	for	instance.

2.	 Certificate	Transparency:	This	is	a	way	of	providing	more
transparency	for	certificates	issued	for	a	specific	domain	or
specific	domains
https://sites.google.com/a/chromium.org/dev/Home/chromium-

security/certificate-transparency.
3.	 DNS	Prefetch	Control:	This	tells	the	browser	if	it	should	perform

domain	name	resolution	(DNS)	on	resources	that	are	not	yet
loaded,	such	as	links.

4.	 Frameguard:	This	helps	to	prevent	clickjacking	by	telling	the
browser	not	to	allow	your	web	application	to	be	put	inside	an
iframe.

5.	 Hide	Powered-By:	This	simply	hides	the	X-Powered-By	header	indicates
not	to	display	what	technology	powers	the	server.	ExpressJS	sets
this	header	to	"Express"	by	default.

6.	 HTTP	Public	Key	Pinning:	This	helps	to	prevent	man-in-the-middle-

https://sites.google.com/a/chromium.org/dev/Home/chromium-security/certificate-transparency

	

attacks	by	pinning	your	web	application's	public	keys	to	the
Public-Key-Pinsheader.

7.	 HTTP	Strict	Transport	Security:	This	tells	the	browser	to	strictly	stick
to	the	HTTPs	version	of	your	web	application.

8.	 IE	No	Open:	This	prevents	Internet	Explorer	from	executing
untrusted	downloads,	or	HTML	files,	on	the	context	of	your	site,
thus	preventing	the	injection	of	malicious	scripts.

9.	 No	Cache:	This	tells	the	browser	to	disable	browser	caching.
10.	 Don't	Sniff	Mimetype:	This	forces	the	browser	to	disable	mime

sniffing	or	guessing	the	content	type	of	a	served	file.

11.	 Referrer	Policy:	The	referrer	headers	provide	the	server	with	data
regarding	where	the	request	was	originated.	It	allows	developers
to	disable	it,	or	set	a	stricter	policy	for	setting	a	referrer	header.

12.	 XSS	Filter:	This	prevents	reflected	cross-site	scripting	(XSS)
attacks	by	setting	the	X-XSS-Protection	header.

	

	

{

				"dependencies":	{

				"body-parser":	"1.18.2",	"express":	"4.16.3",	"helmet":	"3.12.0",	"uuid":
"3.2.1"

}

}

npm	install

const	express	=	require('express')	const	helmet	=	require('helmet')	const
bodyParser	=	require('body-parser')	const	uuid	=	require('uuid/v1')	const	app	=
express()

const	suid	=	uuid()

app.use(bodyParser.json({

				type:	['json',	'application/csp-report'],	}))

app.use(helmet.contentSecurityPolicy({

				directives:	{

				//	By	default	do	not	allow	unless	whitelisted	defaultSrc:	[`'none'`],	//	Only
allow	scripts	with	this	nonce	scriptSrc:	[`'nonce-${suid}'`],	reportUri:	'/csp-
violation',	}

				}))

app.post('/csp-violation',	(request,	response,	next)	=>	{

				const	{	body	}	=	request	if	(body)	{

				console.log('CSP	Report	Violation:')	console.dir(body,	{	colors:	true,	depth:	5
})	}

				response.status(204).send()	})

app.use(helmet.dnsPrefetchControl({	allow:	false	}))

app.use(helmet.frameguard({	action:	'deny'	}))

app.use(helmet.hidePoweredBy({

				setTo:	'Django/1.2.1	SVN-13336',	}))

app.use(helmet.ieNoOpen())

app.use(helmet.noSniff())

app.use(helmet.referrerPolicy({	policy:	'same-origin'	}))

app.use(helmet.xssFilter())

app.get('/',	(request,	response,	next)	=>	{

				response.send(`

				<!DOCTYPE	html>	<html	lang="en">	<head>

				<meta	charset="utf-8">	<title>Web	App</title>	</head>

				<body>

					<img	alt="Evil	Picture"
src="http://evil.com/pic.jpg">	<script>

				alert('This	does	not	get	executed!')	</script>

				<script	src="http://evil.com/evilstuff.js"></script>	<script	nonce="${suid}">
document.getElementById('txtlog')	.innerText	=	'Hello	World!'

				</script>

				</body>

				</html>

				`)

				})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

node	secure-helmet.js

http://localhost:1337/

CSP	Report	Violation:	{

				"csp-report":	{

				"document-uri":	"http://localhost:1337/",	"referrer":	"",

				"violated-directive":	"img-src",	"effective-directive":	"img-src",	"original-
policy":	"default-src	'none';	script-src	
	'[nonce]';	report-uri	/csp-violation",
"disposition":	"enforce",	"blocked-uri":	"http://evil.com/pic.jpg",	"line-number":
9,

				"source-file":	"http://localhost:1337/",	"status-code":	200

}

}

				CSP	Report	Violation:	{

				"csp-report":	{

				"document-uri":	"http://localhost:1337/",	"referrer":	"",

				"violated-directive":	"script-src",	"effective-directive":	"script-src",	"original-
policy":	"default-src	'none';	script-src	
	'[nonce]';	report-uri	/csp-violation",
"disposition":	"enforce",	"blocked-uri":	"inline",	"line-number":	9,

				"status-code":	200

}

}

				CSP	Report	Violation:	{

				"csp-report":	{

				"document-uri":	"http://localhost:1337/",	"referrer":	"",

				"violated-directive":	"script-src",	"effective-directive":	"script-src",	"original-

policy":	"default-src	'none';	script-src	
	'[nonce]';	report-uri	/csp-violation",
"disposition":	"enforce",	"blocked-uri":	"http://evil.com/evilstuff.js",	"status-
code":	200

}

}

	

Using	template	engines
Template	engines	allow	you	to	generate	HTML	code	in	a	more	convenient
way.	Templates	or	views	can	be	written	in	any	format,	interpreted	by	a
template	engine	that	will	replace	variables	with	other	values,	and	finally
transform	to	HTML.

A	big	list	of	template	engines	that	work	out	of	the	box	with	ExpressJS,	is
available	in	the	official	website	at
https://github.com/expressjs/express/wiki#template-engines.

	

https://github.com/expressjs/express/wiki#template-engines

app.engine('...',	(path,	options,	callback)	=>	{	...	});	app.set('views',	'./');
app.set('view	engine',	'...');

{

				"dependencies":	{

				"express":	"4.16.3"

}

}

npm	install

<!DOCTYPE	html>	<html	lang="en">	<head>

				<meta	charset="utf-8">	<title>Using	Template	Engines</title>	</head>

				<body>

				<section	role="application">	<h1>%title%</h1>	<p>%description%</p>
</section>	</body>

				</html>

const	express	=	require('express')	const	fs	=	require('fs')	const	app	=	express()

app.engine('tpl',	(filepath,	options,	callback)	=>	{

				fs.readFile(filepath,	(err,	data)	=>	{

				if	(err)	{

				return	callback(err)	}

				const	content	=	data	.toString()

				.replace(/%[a-z]+%/gi,	(match)	=>	{

				const	variable	=	match.replace(/%/g,	'')	if	(Reflect.has(options,	variable))	{

				return	options[variable]

}

				return	match

				})

				return	callback(null,	content)	})

				})

app.set('views',	'./views')

app.set('view	engine',	'tpl')

app.get('/',	(request,	response,	next)	=>	{

				response.render('home',	{

				title:	'Hello',

				description:	'World!',	})

				})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

node	my-template-engine.js

	http://localhost:1337/

The	template	engine	we	just	have	wrote	doesn't	escape	HTML	characters.	That
means,	you	should	be	careful	if	replacing	those	properties	with	data	gotten	from
the	client	because	it	may	be	vulnerable	to	XSS	attacks.	You	may	want	to	use	a
template	engine	from	the	official	ExpressJS	website	that	is	safer.

Debugging	your	ExpressJS
web	application
Debugging	information	on	ExpressJS	about	all	of	the	cycle	of	a	web
application	is	something	simple.	ExpressJS	uses	the	debug	NPM	module
internally	to	log	information.	Unlike	console.log,	debug	logs	can	easily	be
disabled	on	production	mode.

Getting	ready
In	this	recipe,	you	will	see	how	to	debug	your	ExpressJS	web	application.
Before	you	start,	create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"debug":	"3.1.0",	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

const	express	=	require('express')	const	app	=	express()

app.get('*',	(request,	response,	next)	=>	{

				response.send('Hello	there!')	})

app.listen(

				1337,	()	=>	console.log('Web	Server	running	on	port	1337'),)

	set	DEBUG=express:*	node	debugging.js

8.	 On	Linux	or	MacOS:

						DEBUG=express:*	node	debugging.js	

9.	 In	your	web	browser,	navigate	to:

						http://localhost:1337/

10.	 Observe	your	terminal's	output	for	logs

	

How	it	works...
The	DEBUG	environment	variable	is	used	to	tell	the	debug	module	which
parts	of	the	ExpressJS	application	to	debug.	In	our	previously	written
code,	express:*	tells	the	debug	module	to	log	everything	related	to	the
express	application.

We	could	use	DEBUG=express:router	to	displays	logs	related	to	the	Router	or
routing	of	ExpressJS.

	

const	express	=	require('express')	const	app	=	express()

				const	debug	=	require('debug')('myapp')	app.get('*',	(request,	response,	next)
=>	{

				debug('Request:',	request.originalUrl)	response.send('Hello	there!')	})

				app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

set	DEBUG=myapp	node	myapp.js

	DEBUG=myapp	node	myapp.js

Web	Server	running	on	port	1337

				myapp	Request:	/	+0ms

set	DEBUG=myapp,express:*	node	myapp.js

DEBUG=myapp,express:*	node	myapp.js

	

Building	a	RESTful	API
In	this	chapter,	we	will	cover	the	following	recipes:

CRUD	operations	using	ExpressJS'	route	methods

CRUD	operations	with	Mongoose

Using	Mongoose	query	builders

Defining	document	instance	methods

Defining	static	model	methods

Writing	middleware	functions	for	Mongoose

Writing	custom	validators	for	Mongoose's	schemas

Building	a	RESTful	API	to	manage	users	with	ExpressJS	and
Mongoose

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git	repository
of	this	book.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter03

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/73dE6u

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter03
https://goo.gl/73dE6u

Introduction
Representation	State	Transfer	(REST)	is	an	architectural	style	that	the
web	was	built	on.	More	specifically,	the	HTTP	1.1	protocol	standards	were
built	using	the	REST	principles.	REST	provides	a	representation	of	a
resource.	URLs	(Uniform	Resource	Locator)	are	used	to	define	the
location	of	a	resource	and	tell	the	browser	where	it	is	located.

A	RESTful	API	is	a	web	service	API	that	adheres	to	this	architectural
style.

The	most	commonly	used	HTTP	verbs	or	methods	are:	POST,	GET,	PUT,	and
DELETE.	These	methods	are	the	basis	for	persistent	storage	and	are	known	as
CRUD	operations	(Create,	Read,	Update,	and	Delete).

In	this	chapter,	the	recipes	will	be	focused	on	building	a	RESTful	API
using	the	REST	architectural	style	with	ExpressJS	and	Mongoose.

/*	Add	a	new	user	*/

				app.post('/users',	(request,	response,	next)	=>	{	})	/*	Get	user	*/

				app.get('users:id',	(request,	response,	next)	=>	{	})	/*	Update	a	user	*/

				app.put('users:id',	(request,	response,	next)	=>	{	})	/*	Delete	a	user	*/

				app.delete('users:id',	(request,	response,	next)	=>	{	})

It's	good	to	think	of	every	URL	as	a	noun	and	because	of	that	a	verb	can	act	on
it.	In	fact,	HTTP	methods	are	also	known	as	HTTP	verbs.	If	we	think	about	them
as	verbs,	when	a	request	is	made	to	our	RESTful	API,	they	can	be	understood	as:

Post	a	user
Get	a	user
Update	a	user
Delete	a	user.

In	the	MVC	(model-view-controller)	architectural	pattern,	controllers	are	in
charge	of	transforming	input	to	something	a	model	or	view	can	understand.	In
other	words,	they	transform	input	into	actions	or	commands	and	sends	them	to
the	model	or	view	to	update	accordingly.

ExpressJS'	route	methods	usually	act	as	controllers.	They	just	get	input	from	a
client	such	as	a	request	from	the	browser,	and	then	converts	the	input	to	actions.
These	actions	are	then	sent	to	the	model,	which	is	the	business	logic	of	your
application,	such	as	a	mongoose	model,	or	to	a	view	(a	ReactJS	client
application)	to	update.

{

				"dependencies":	{

				"express":	"4.16.3",	"node-fetch":	"2.1.1",	"uuid":	"3.2.1"

}

}

	npm	install

const	express	=	require('express')	const	uuid	=	require('uuid')	const	app	=
express()

let	data	=	[

				{	id:	uuid(),	name:	'Bob'	},	{	id:	uuid(),	name:	'Alice'	},]

const	usr	=	{

				create(name)	{

				const	user	=	{	id:	uuid(),	name	}

				data.push(user)	return	user

				},

				read(id)	{

				if	(id	===	'all')	return	data	return	data.find(user	=>	user.id	===	id)	},

				update(id,	name)	{

				const	user	=	data.find(usr	=>	usr.id	===	id)	if	(!user)	return	{	status:	'User	not
found'	}

				user.name	=	name	return	user

				},

				delete(id)	{

				data	=	data.filter(user	=>	user.id	!==	id)	return	{	status:	'deleted',	id	}

}

}

app.post('users:name',	(req,	res)	=>	{

				res.status(201).json(usr.create(req.params.name))	})

app.get('users:id',	(req,	res)	=>	{

				res.status(200).json(usr.read(req.params.id))	})

app.put('users:id=:name',	(req,	res)	=>	{

				res.status(200).json(usr.update(

				req.params.id,	req.params.name,))

				})

app.delete('users:id',	(req,	res)	=>	{

				res.status(200).json(usr.delete(req.params.id))	})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

	node	restfulapi.js

const	fetch	=	require('node-fetch')	const	r	=	async	(url,	method)	=>	(

				await	fetch(`http://localhost:1337${url}`,	{	method	})	.then(r	=>	r.json())

)

				const	log	=	(...obj)	=>	(

				obj.forEach(o	=>	console.dir(o,	{	colors:	true	})))

				async	function	test()	{

				const	users	=	await	r('usersall',	'get')	const	{	id	}	=	users[0]

				const	getById	=	await	r(`users${id}`,	'get')	const	updateById	=	await
r(`users${id}=John`,	'put')	const	deleteById	=	await	r(`users${id}`,	'delete')
const	addUsr	=	await	r(`usersSmith`,	'post')	const	getAll	=	await	r('usersall',
'get')	log('[GET]	users:',	users)

				log(`[GET]	a	user	with	id="${id}":`,	getById)	log(`[PUT]	a	user	with
id="${id}":`,	updateById)	log(`[POST]	a	new	user:`,	addUsr)	log(`[DELETE]	a
user	with	id="${id}":`,	deleteById)	log(`[GET]	users:`,	getAll)	}

				test()

node	test-restfulapi.js

r(`/users/Smith`,	'post')

CRUD	operations	with
Mongoose
One	of	many	reasons	why	developers	opt	to	use	Mongoose	instead	of	the
official	MongoDB	driver	for	Node.js	is	that	it	allows	you	to	create	data
structures	with	ease	by	using	schemas	and	also	because	of	the	built-in
validation.	MongoDB	is	a	document-oriented	database,	meaning	that	the
structure	of	the	documents	varies.

In	the	MVC	architectural	pattern,	Mongoose	is	often	used	for	creating
models	that	shape	or	define	data	structures.

This	is	how	a	typical	Mongoose	schema	would	be	defined	and	then
compiled	into	a	model:

const	PersonSchema	=	new	Schema({	

										firstName:	String,	

										lastName:	String,	

						})	

						const	Person	=	connection.model('Person',	PersonSchema)	

Model	names	should	be	in	singular	since	Mongoose	will	make	them	plural	and
lowercase	them	when	saving	the	collection	to	the	database.	For	instance,	if	the	model
is	named	"User",	it	will	be	saved	as	a	collection	named	"users"	in	MongoDB.
Mongoose	includes	an	internal	dictionary	to	pluralize	common	names.	That	means	if
your	model's	name	is	a	common	name,	such	as	"Person",	it	will	be	saved	in
MongoDB	as	a	collection	named	"people".

Mongoose	allows	the	following	types	to	define	a	schema's	path	or
document	structure:

String

Number

Boolean

Array

Date

Buffer

Mixed

Objectid

Decimal128

A	schema	type	can	be	declared	by	using	directly	the	global	constructor
function	for	String,	Number,	Boolean,	Buffer,	and	Date:

const	{	Schema}	=	require('mongoose')	

						const	PersonSchema	=	new	Schema({	

										name:	String,	

										age:	Number,	

										isSingle:	Boolean,	

										birthday:	Date,	

										description:	Buffer,	

						})	

These	schema	types	are	also	available	under	an	object	called	SchemaTypes	in
the	exported	mongoose	object:

const	{	Schema,	SchemaTypes	}	=	require('mongoose')	

						const	PersonSchema	=	new	Schema({	

										name:	SchemaTypes.String,	

										age:	SchemaTypes.Number,	

										isSingle:	SchemaTypes.Boolean,	

										birthday:	SchemaTypes.Date,	

										description:	SchemaTypes.Buffer,	

						})	

Schema	types	can	be	declared	using	an	object	as	a	property	that	gives	you
more	control	over	the	specific	schema	type.	Take	the	following	code,	for

example:

const	{	Schema	}	=	require('mongoose')	

						const	PersonSchema	=	new	Schema({	

										name:	{	type:	String,	required:	true,	default:	'Unknown'	},	

										age:	{	type:	Number,	min:	18,	max:	80,	required:	true	},	

										isSingle:	{	type:	Boolean	},	

										birthday:	{	type:	Date,	required:	true	},	

										description:	{	type:	Buffer	},	

						})	

Schema	types	can	also	be	arrays.	For	instance,	if	we	want	a	field	to	define
what	are	the	things	the	user	likes	in	an	array	of	strings,	you	could	use	this
code:

const	PersonSchema	=	new	Schema({	

										name:	String,	

										age:	Number,	

										likes:	[String],	

						})	

To	learn	more	about	schema	types,	visit	the	official	Mongoose
documentation	website:	http://mongoosejs.com/docs/schematypes.html.

http://mongoosejs.com/docs/schematypes.html

{

				"dependencies":	{

				"mongoose":	"5.0.11"

}

}

	npm	install

const	mongoose	=	require('mongoose')	const	{	connection,	Schema	}	=
mongoose	mongoose.connect(

				'mongodb://localhost:27017/test'

).catch(console.error)

const	UserSchema	=	new	Schema({

				firstName:	String,	lastName:	String,	likes:	[String],	})

const	User	=	mongoose.model('User',	UserSchema)

const	addUser	=	(firstName,	lastName)	=>	new	User({

				firstName,

				lastName,

				}).save()

const	getUser	=	(id)	=>	User.findById(id)

const	removeUser	=	(id)	=>	User.remove({	id	})

connection.once('connected',	async	()	=>	{

				try	{

				//	Create

				const	newUser	=	await	addUser('John',	'Smith')	//	Read

				const	user	=	await	getUser(newUser.id)	//	Update

				user.firstName	=	'Jonny'

				user.lastName	=	'Smithy'

				user.likes	=	[

				'cooking',

				'watching	movies',	'ice	cream',

]

				await	user.save()	console.log(JSON.stringify(user,	null,	4))	//	Delete

				await	removeUser(user.id)	}	catch	(error)	{

				console.dir(error.message,	{	colors:	true	})	}	finally	{

				await	connection.close()	}

				})

node	mongoose-models.js

{

				"likes":	[

				"cooking",

				"watching	movies",	"ice	cream"

],

				"_id":	"[some	id]",	"firstName":	"Jonny",	"lastName":	"Smithy",	"__v":	1

}

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing	NPM
Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

const	user	=	await	User.findOne({

				firstName:	'Jonh',	age:	{	$lte:	30	},	},	(error,	document)	=>	{

				if	(error)	return	console.log(error)	console.log(document)	})

const	user	=	User.findOne({

				firstName:	'Jonh',	age:	{	$lte:	30	},	})

				user.exec((error,	document)	=>	{

				if	(error)	return	console.log(error)	console.log(document)	})

try	{

				const	user	=	await	User.findOne({

				firstName:	'Jonh',	age:	{	$lte:	30	},	})

				console.log(user)	}	catch	(error)	{

				console.log(error)	}

try	{

				const	user	=	await	User.findOne()	.where('firstName',	'John')
.where('age').lte(30)	console.log(user)	}	catch	(error)	{

				console.log(error)	}

{

				"dependencies":	{

				"mongoose":	"5.0.11"

}

}

	npm	install

const	mongoose	=	require('mongoose')	const	{	connection,	Schema	}	=
mongoose	mongoose.connect(

				'mongodb://localhost:27017/test'

).catch(console.error)

const	UserSchema	=	new	Schema({

				firstName:	String,	lastName:	String,

				age:	Number,

				})

const	User	=	mongoose.model('User',	UserSchema)

connection.once('connected',	async	()	=>	{

				try	{

				const	user	=	await	new	User({

				firstName:	'John',	lastName:	'Snow',

				age:	30,

				}).save()

				const	findUser	=	await	User.findOne()	.where('firstName').equals('John')
.where('age').lte(30)	.select('lastName	age')	console.log(JSON.stringify(findUser,
null,	4))	await	user.remove()	}	catch	(error)	{

				console.dir(error.message,	{	colors:	true	})	}	finally	{

				await	connection.close()	}

				})

node	chaining-queries.js

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing	NPM
Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

Defining	document	instance
methods
Documents	have	their	own	built-in	instance	methods	such	as	save	and
remove.	However,	we	can	write	our	own	instance	methods	as	well.

Documents	are	instances	of	models.	They	can	be	explicitly	created:	const
instance	=	new	Model()

Or	they	can	be	the	result	of	a	query:

Model.findOne([conditions]).then((instance)	=>	{})	

Document	instance	methods	are	defined	in	the	schema.	All	schemas	have
a	method	called	method	which	allows	you	to	define	custom	instance
methods.

{

				"dependencies":	{

				"mongoose":	"5.0.11"

}

}

npm	install

const	mongooconst	mongoose	=	require('mongoose')	const	{	connection,
Schema	}	=	mongoose	mongoose.connect(

				'mongodb://localhost:27017/test'

).catch(console.error)

const	UserSchema	=	new	Schema({

				firstName:	String,

				lastName:	String,

				likes:	[String],

				})

UserSchema.method('setFullName',	function	setFullName(v)	{

				const	fullName	=	String(v).split('	')	this.lastName	=	fullName[0]	||	''

				this.firstName	=	fullName[1]	||	''

				})

UserSchema.method('getFullName',	function	getFullName()	{

				return	`${this.lastName}	${this.firstName}`

				})

UserSchema.method('loves',	function	loves(stuff)	{

				this.likes.push(stuff)	})

UserSchema.method('dislikes',	function	dislikes(stuff)	{

				this.likes	=	this.likes.filter(str	=>	str	!==	stuff)	})

const	User	=	mongoose.model('User',	UserSchema)

connection.once('connected',	async	()	=>	{

				try	{

				//	Create

				const	user	=	new	User()	user.setFullName('Huang	Jingxuan')
user.loves('kitties')	user.loves('strawberries')	user.loves('snakes')

				await	user.save()

				//	Update

				const	person	=	await	User.findOne()	.where('firstName',	'Jingxuan')
.where('likes').in(['snakes',	'kitties'])	person.dislikes('snakes')	await	person.save()

				//	Display

				console.log(person.getFullName())	console.log(JSON.stringify(person,	null,
4))	//	Remove

				await	user.remove()

				}	catch	(error)	{

				console.dir(error.message,	{	colors:	true	})	}	finally	{

				await	connection.close()	}

				})

node	document-methods.js

There's	more...
Document	instance	methods	can	also	be	defined	using	the	methods,	schema
property.	For	instance:

UserSchema.methods.setFullName	=	function	setFullName(v)	{	

				const	fullName	=	String(v).split('	')	

				this.lastName	=	fullName[0]	||	''	

				this.firstName	=	fullName[1]	||	''	

}	

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing	NPM
Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

	

Defining	static	model	methods
Models	have	built-in	static	methods	such	as	find,	findOne,	and
findOneAndRemove.	Mongoose	allow	us	to	define	custom	static	model	methods
as	well.	Static	model	methods	are	defined	in	the	schema	in	the	same	way
as	document	instance	methods	are.

Schemas	have	a	property	called	statics	which	is	an	object.	All	the	methods
defined	inside	the	statics	object	are	passed	to	the	model.	Static	model
methods	can	also	be	defined	by	calling	the	static	schema	method.

	

{

				"dependencies":	{

				"mongoose":	"5.0.11"

}

}

npm	install

const	mongoose	=	require('mongoose')	const	{	connection,	Schema	}	=
mongoose	mongoose.connect(

				'mongodb://localhost:27017/test'

).catch(console.error)

const	UsrSchm	=	new	Schema({

				firstName:	String,

				lastName:	String,

				likes:	[String],

				})

UsrSchm.static('getByFullName',	function	getByFullName(v)	{

				const	fullName	=	String(v).split('	')	const	lastName	=	fullName[0]	||	''

				const	firstName	=	fullName[1]	||	''

				return	this.findOne()	.where('firstName').equals(firstName)
.where('lastName').equals(lastName)	})

const	User	=	mongoose.model('User',	UsrSchm)

connection.once('connected',	async	()	=>	{

				try	{

				//	Create

				const	user	=	new	User({

				firstName:	'Jingxuan',	lastName:	'Huang',

				likes:	['kitties',	'strawberries'],	})

				await	user.save()

				//	Read

				const	person	=	await	User.getByFullName(

				'Huang	Jingxuan'

)

				console.log(JSON.stringify(person,	null,	4))	await	person.remove()	await
connection.close()	}	catch	(error)	{

				console.log(error.message)	}

				})

node	static-methods.js

There's	more...
Static	model	methods	can	also	be	defined	using	the	statics	schema
property.	For	instance:

UsrSchm.statics.getByFullName	=	function	getByFullName(v)	{	

				const	fullName	=	String(v).split('	')	

				const	lastName	=	fullName[0]	||	''	

				const	firstName	=	fullName[1]	||	''	

				return	this.findOne()	

								.where('firstName').equals(firstName)	

								.where('lastName').equals(lastName)	

}	

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing	NPM
Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

Writing	middleware	functions
for	Mongoose
Middleware	functions	in	Mongoose	are	also	called	hooks.	There	are	two
types	of	hooks	pre	hooks	and	post	hooks.

The	difference,	between	pre	hooks	and	post	hooks,	is	pretty	simple.	pre	hooks
are	called	before	a	method	is	called,	and	post	hooks	are	called	after.	For
example:

const	UserSchema	=	new	Schema({	

										firstName:	String,	

										lastName:	String,	

										fullName:	String,	

						})	

						UserSchema.pre('save',	async	function	preSave()	{	

										this.fullName	=	`${this.lastName}	${this.firstName}`	

						})	

						UserSchema.post('save',	async	function	postSave(doc)	{	

										console.log(`New	user	created:	${doc.fullName}`)	

						})	

						const	User	=	mongoose.model('User',	UserSchema)	

And	later	on,	once	the	connection	is	made	to	the	database,	within	an	async
function:

const	user	=	new	User({	

										firstName:	'John',	

										lastName:	'Smith',	

						})	

						await	user.save()	

Once	the	save	method	is	called,	the	pre	hook	is	executed	first.	After	the
document	is	saved,	the	post	hook	is	then	executed.	In	the	previous	example,
it	will	display	in	the	Terminal	output	the	following	text:

New	user	created:	Smith	John

There	are	four	different	types	of	middleware	functions	in	Mongoose:
document	middleware,	model	middleware,	aggregate	middleware,	and
query	middleware.	All	of	them	are	defined	on	the	schema	level.	The
difference	is,	when	the	hooks	are	executed,	the	context	ofthis	refers	to	the
document,	model,	the	aggregation	object,	or	the	query	object.

All	types	of	middleware	support	pre	and	post	hooks

{

				"dependencies":	{

				"mongoose":	"5.0.11"

}

}

	npm	install

	

How	to	do	it...
In	document	middleware	functions,	the	context	of	this	refers	to	the
document.	A	document	has	the	following	built-in	methods	and	you	can
define	hooks	for	them:

init:	This	is	called	internally,	immediately	after	a	document	is
returned	from	MongoDB.	Mongoose	uses	setters	for	marking	the
document	as	modified	or	which	fields	of	the	document	were
modified.	init	initializes	the	document	without	setters.

validate:	This	executes	built-in	and	custom	set	validation	rules	for
the	document.

save:	This	saves	the	document	in	the	database.

remove:	This	removes	the	document	from	the	database.

const	mongoose	=	require('mongoose')	const	{	connection,	Schema	}	=
mongoose	mongoose.connect(

				'mongodb://localhost:27017/test'

).catch(console.error)

const	UserSchema	=	new	Schema({

				firstName:	{	type:	String,	required:	true	},	lastName:	{	type:	String,	required:
true	},	})

UserSchema.pre('init',	async	function	preInit()	{

				console.log('A	document	is	going	to	be	initialized.')	})

				UserSchema.post('init',	async	function	postInit()	{

				console.log('A	document	was	initialized.')	})

UserSchema.pre('validate',	async	function	preValidate()	{

				console.log('A	document	is	going	to	be	validated.')	})

				UserSchema.post('validate',	async	function	postValidate()	{

				console.log('All	validation	rules	were	executed.')	})

UserSchema.pre('save',	async	function	preSave()	{

				console.log('Preparing	to	save	the	document')	})

				UserSchema.post('save',	async	function	postSave()	{

				console.log(`A	doc	was	saved	id=${this.id}`)	})

UserSchema.pre('remove',	async	function	preRemove()	{

				console.log(`Doc	with	id=${this.id}	will	be	removed`)	})

				UserSchema.post('remove',	async	function	postRemove()	{

				console.log(`Doc	with	id=${this.id}	was	removed`)	})

const	User	=	mongoose.model('User',	UserSchema)

connection.once('connected',	async	()	=>	{

				try	{

				const	user	=	new	User({

				firstName:	'John',

				lastName:	'Smith',

				})

				await	user.save()

				await	User.findById(user.id)	await	user.remove()

				await	connection.close()

				}	catch	(error)	{

				await	connection.close()

				console.dir(error.message,	{	colors:	true	})	}

				})

	node	document-middleware.js

A	document	is	going	to	be	validated.

				All	validation	rules	were	executed.

				Preparing	to	save	the	document	A	doc	was	saved	id=[ID]

				A	document	is	going	to	be	initialized.

				A	document	was	initialized.

				Doc	with	id=[ID]	will	be	removed	Doc	with	id=[ID]	was	removed

UserSchema.pre('save',	async	function	preSave()	{

				this.firstName	=	this.firstName.toUpperCase()	this.lastName	=
this.lastName.toUpperCase()	})

UserSchema.pre('save',	async	function	preSave()	{

				throw	new	Error('Doc	was	prevented	from	being	saved.')	})

Query	middleware	functions	are	defined	exactly	as	document	middleware
functions	are.	However,	the	context	of	this	doesn't	not	refer	to	the	document	but
instead	to	the	query	object.	Query	middleware	functions	are	only	supported	in
the	following	model	and	query	functions:

count:	Counts	the	number	of	document	that	match	a	specific	query
condition
find:	Returns	an	array	of	documents	that	match	a	specific	query	condition
findOne:	Return	a	document	that	matches	a	specific	query	condition
findOneAndRemove:	Similar	to	findOne.	However,	after	a	document	is
found,	it	is	removed
findOneAndUpdate:	Similar	to	findOne	but	once	a	document	matching	a
specific	query	condition	is	found,	the	document	can	also	be	updated
update:	Update	one	or	more	documents	that	match	a	certain	query
condition

const	mongoose	=	require('mongoose')	const	{	connection,	Schema	}	=
mongoose	mongoose.connect(

				'mongodb://localhost:27017/test'

).catch(console.error)

const	UserSchema	=	new	Schema({

				firstName:	{	type:	String,	required:	true	},	lastName:	{	type:	String,	required:
true	},	})

UserSchema.pre('count',	async	function	preCount()	{

				console.log(

				`Preparing	to	count	document	with	this	criteria:
${JSON.stringify(this._conditions)}`

)

				})

				UserSchema.post('count',	async	function	postCount(count)	{

				console.log(`Counted	${count}	documents	that	coincide`)	})

				UserSchema.pre('find',	async	function	preFind()	{

				console.log(

				`Preparing	to	find	all	documents	with	criteria:
${JSON.stringify(this._conditions)}`

)

				})

				UserSchema.post('find',	async	function	postFind(docs)	{

				console.log(`Found	${docs.length}	documents`)	})

				UserSchema.pre('findOne',	async	function	prefOne()	{

				console.log(

				`Preparing	to	find	one	document	with	criteria:
${JSON.stringify(this._conditions)}`

)

				})

				UserSchema.post('findOne',	async	function	postfOne(doc)	{

				console.log(`Found	1	document:`,	JSON.stringify(doc))	})

				UserSchema.pre('update',	async	function	preUpdate()	{

				console.log(

				`Preparing	to	update	all	documents	with	criteria:
${JSON.stringify(this._conditions)}`

)

				})

				UserSchema.post('update',	async	function	postUpdate(r)	{

				console.log(`${r.result.ok}	document(s)	were	updated`)	})

const	User	=	mongoose.model('User',	UserSchema)

connection.once('connected',	async	()	=>	{

				try	{

				const	user	=	new	User({

				firstName:	'John',

				lastName:	'Smith',

				})

				await	user.save()

				await	User

				.where('firstName').equals('John')	.update({	lastName:	'Anderson'	})	await
User

				.findOne()

				.select(['lastName'])

				.where('firstName').equals('John')	await	User

				.find()

				.where('firstName').equals('John')	await	User

				.where('firstName').equals('Neo')	.count()

				await	user.remove()

				}	catch	(error)	{

				console.dir(error,	{	colors:	true	})	}	finally	{

				await	connection.close()	}

				})

	node	query-middleware.js

Preparing	to	update	all	documents	with	criteria:	{"firstName":"John"}

				1	document(s)	were	updated	Preparing	to	find	one	document	with	criteria:
{"firstName":"John"}

				Found	1	document:	{"_id":"[ID]","lastName":"Anderson"}

				Preparing	to	find	all	documents	with	criteria:	{"firstName":"John"}

				Found	1	documents

				Preparing	to	count	document	with	this	criteria:	{"firstName":"Neo"}

				Counted	0	documents	that	coincide

Finally,	there	is	only	one	model	instance	method	that	supports	hooks:

insertMany:	This	validates	an	array	of	documents	and	saves	them	in	the
database	only	if	all	the	documents	in	the	array	passed	validation

As	you	probably	guessed,	a	model	middleware	function	is	also	defined	in	the
same	way	as	query	middleware	methods	and	document	middleware	methods	are.

const	mongoose	=	require('mongoose')	const	{	connection,	Schema	}	=
mongoose	mongoose.connect(

				'mongodb://localhost:27017/test'

).catch(console.error)

const	UserSchema	=	new	Schema({

				firstName:	{	type:	String,	required:	true	},	lastName:	{	type:	String,	required:
true	},	})

UserSchema.pre('insertMany',	async	function	prMany()	{

				console.log('Preparing	docs...')	})

				UserSchema.post('insertMany',	async	function	psMany(docs)	{

				console.log('The	following	docs	were	created:n',	docs)	})

const	User	=	mongoose.model('User',	UserSchema)

connection.once('connected',	async	()	=>	{

				try	{

				await	User.insertMany([

				{	firstName:	'Leo',	lastName:	'Smith'	},	{	firstName:	'Neo',	lastName:
'Jackson'	},])

				}	catch	(error)	{

				console.dir(error,	{	colors:	true	})	}	finally	{

				await	connection.close()	}

				})

	node	query-middleware.js

Preparing	docs...

				The	following	documents	were	created:	[{	firstName:	'Leo',	lastName:
'Smith',	_id:	[id]	},	{	firstName:	'Neo',	lastName:	'Jackson',	_id:	[id]	}]

There's	more...
It's	useful	to	mark	the	fields	as	required	to	avoid	having	"null"	values
being	saved	in	the	database.	An	alternative	is	to	set	default	values	for	the
fields	that	are	not	explicitly	defined	in	the	creation	time	of	the	document.
For	instance:

const	UserSchema	=	new	Schema({	

										name:	{	

														type:	string,	

														required:	true,	

														default:	'unknown',	

										}	

						})	

When	a	new	document	is	created,	if	no	path	or	property	name	is	assigned,
then	it	will	assign	the	default	value	defined	in	the	schema	type	option
default.

The	schema	type	default	option	can	also	be	a	function.	The	value	returned	by	calling
this	function	is	assigned	as	the	default	value.

Sub-documents	or	arrays	can	also	be	created	by	just	adding	brackets	when
defining	the	schema	type.	For	instance:

const	WishBoxSchema	=	new	Schema({	

										wishes:	{	

														type:	[String],	

														required:	true,	

														default:	[

																		'To	be	a	snowman',	

																		'To	be	a	string',	

																		'To	be	an	example',	

],	

										},	

						})	

When	a	new	document	is	created,	it	will	expect	an	array	of	strings	in	the
wishes	property	or	path.	If	no	array	is	provided,	then	the	default	values	will
be	used	to	create	the	document.

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing	NPM
Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

path:	{	type:	String,	required:	true	}

				path:	{	type:	String,	required:	[true,	'Custom	error	message']	}

				path:	{	type:	String,	required:	()	=>	true	}

gender:	{

				type:	SchemaTypes.String,

				enum:	['male',	'female',	'other'],

}

website:	{

				type:	SchemaTypes.String,

				match:	^www,

}

name:	{

				type:	SchemaTypes.String,

				minlength:	5,

				maxlength:	20,

}

age:	{

				type:	String,

				min:	18,

				max:	100,

}

nickname:	{

				type:	String,

				validate:	{

				validator:	function	validator(value)	{

				return	^[a-zA-Z-]$.test(value)

				},

				message:	'{VALUE}	is	not	a	valid	nickname.',

				},

}

{

				"dependencies":	{

				"mongoose":	"5.0.11"

}

}

	npm	install

const	mongoose	=	require('mongoose')	const	{	connection,	Schema	}	=
mongoose	mongoose.connect(

				'mongodb://localhost:27017/test'

).catch(console.error)

const	UserSchema	=	new	Schema({

				username:	{

				type:	String,

				minlength:	6,

				maxlength:	20,

				required:	[true,	'user	is	required'],	validate:	{

				message:	'{VALUE}	is	not	a	valid	username',	validator:	(val)	=>	^[a-zA-
Z]+$.test(val),	},

				},

				})

const	User	=	mongoose.model('User',	UserSchema)

connection.once('connected',	async	()	=>	{

				try	{

				const	user	=	new	User()	let	errors	=	null	//	username	field	is	not	defined	errors
=	user.validateSync()	console.dir(errors.errors['username'].message)	//	username
contains	less	than	6	characters	user.username	=	'Smith'

				errors	=	user.validateSync()	console.dir(errors.errors['username'].message)	//
RegExp	matching	user.username	=	'Smith_9876'

				errors	=	user.validateSync()	console.dir(errors.errors['username'].message)	}

catch	(error)	{

				console.dir(error,	{	colors:	true	})	}	finally	{

				await	connection.close()	}

				})

	node	custom-validation.js

'user	is	required'

				'Path	`username`	(`Smith`)	is	shorter	than	the	minimum	allowed	
	length
(6).'

				'Smith_9876	is	not	a	valid	username'

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing	NPM
Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

Building	a	RESTful	API	to
manage	users	with	ExpressJS
and	Mongoose
In	this	recipe,	you	will	build	a	RESTful	API	that	will	allow	the	creation	of
new	users,	log	in,	display	user	information,	and	delete	a	user's	profile.
Furthermore,	you	will	learn	how	to	build	a	NodeJS	REPL	with	a	client
API	that	you	can	use	to	interact	with	your	server's	RESTful	API.

A	REPL	(Read-Eval-Print	Loop)	is	like	an	interactive	shell	where	you
can	execute	commands	one	after	another.	For	instance,	the	Node.js	REPL
can	be	opened	by	running	this	command	in	your	terminal:	node	-i

Here,	the	-i	flag	stands	for	interactive.	Now,	you	can	execute	the
JavaScript	code	that	gets	evaluated	piece	by	piece	in	a	new	context.

{

				"dependencies":	{

				"body-parser":	"1.18.2",	"connect-mongo":	"2.0.1",	"express":	"4.16.3",
"express-session":	"1.15.6",	"mongoose":	"5.0.11",	"node-fetch":	"2.1.2"

}

}

npm	install

const	mongoose	=	require('mongoose')	const	express	=	require('express')	const
session	=	require('express-session')	const	bodyParser	=	require('body-parser')
const	MongoStore	=	require('connect-mongo')(session)	const	api	=
require('./api/controller')	const	app	=	express()

				const	db	=	mongoose.connect(

				'mongodb://localhost:27017/test'

).then(conn	=>	conn).catch(console.error)

app.use(bodyParser.json())

app.use((request,	response,	next)	=>	{
	Promise.resolve(db).then(

(connection,	err)	=>	(
	typeof	connection	!==	'undefined'
	?	next()

:	next(new	Error('MongoError'))
)
)
	})

app.use(session({

				secret:	'MERN	Cookbook	Secrets',	resave:	false,

				saveUninitialized:	true,	store:	new	MongoStore({

				collection:	'sessions',	mongooseConnection:	mongoose.connection,	}),

				}))

app.use('/users',	api)

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

const	{	connection,	Schema	}	=	require('mongoose')	const	crypto	=
require('crypto')

const	UserSchema	=	new	Schema({

				username:	{

				type:	String,

				minlength:	4,

				maxlength:	20,

				required:	[true,	'username	field	is	required.'],	validate:	{

				validator:	function	(value)	{

				return	/^[a-zA-Z]+$/.test(value)	},

				message:	'{VALUE}	is	not	a	valid	username.',	},

				},

				password:	String,

				})

UserSchema.static('login',	async	function(usr,	pwd)	{

				const	hash	=	crypto.createHash('sha256')	.update(String(pwd))

				const	user	=	await	this.findOne()	.where('username').equals(usr)
.where('password').equals(hash.digest('hex'))	if	(!user)	throw	new
Error('Incorrect	credentials.')	delete	user.password

				return	user

				})

UserSchema.static('signup',	async	function(usr,	pwd)	{

				if	(pwd.length	<	6)	{

				throw	new	Error('Pwd	must	have	more	than	6	chars')	}

				const	hash	=	crypto.createHash('sha256').update(pwd)	const	exist	=	await

this.findOne()	.where('username')

				.equals(usr)

				if	(exist)	throw	new	Error('Username	already	exists.')	const	user	=
this.create({

				username:	usr,

				password:	hash.digest('hex'),	})

				return	user

				})

UserSchema.method('changePass',	async	function(pwd)	{

				if	(pwd.length	<	6)	{

				throw	new	Error('Pwd	must	have	more	than	6	chars')	}

				const	hash	=	crypto.createHash('sha256').update(pwd)	this.password	=
hash.digest('hex')	return	this.save()

				})

module.exports	=	connection.model('User',	UserSchema)

const	express	=	require('express')	const	User	=	require('./model')	const	api	=
express.Router()

const	isLogged	=	({	session	},	res,	next)	=>	{

				if	(!session.user)	res.status(403).json({

				status:	'You	are	not	logged	in!',	})

				else	next()

}

				const	isNotLogged	=	({	session	},	res,	next)	=>	{

				if	(session.user)	res.status(403).json({

				status:	'You	are	logged	in	already!',	})

				else	next()

}

api.post('/login',	isNotLogged,	async	(req,	res)	=>	{

				try	{

				const	{	session,	body	}	=	req	const	{	username,	password	}	=	body	const	user
=	await	User.login(username,	password)	session.user	=	{

				id:	user.id,

				username:	user.username,	}

				session.save(()	=>	{

				res.status(200).json({	status:	'Welcome!'})	})

				}	catch	(error)	{

				res.status(403).json({	error:	error.message	})	}

				})

api.post('/logout',	isLogged,	(req,	res)	=>	{

				req.session.destroy()

				res.status(200).send({	status:	'Bye	bye!'	})	})

api.post('/signup',	async	(req,	res)	=>	{

				try	{

				const	{	session,	body	}	=	req	const	{	username,	password	}	=	body	const	user
=	await	User.signup(username,	password)	res.status(201).json({	status:
'Created!'})	}	catch	(error)	{

				res.status(403).json({	error:	error.message	})	}

				})

api.get('/profile',	isLogged,	(req,	res)	=>	{

				const	{	user	}	=	req.session	res.status(200).json({	user	})	})

api.put('/changepass',	isLogged,	async	(req,	res)	=>	{

				try	{

				const	{	session,	body	}	=	req	const	{	password	}	=	body	const	{	_id	}	=
session.user	const	user	=	await	User.findOne({	_id	})	if	(user)	{

				await	user.changePass(password)	res.status(200).json({	status:	'Pwd	changed'
})	}	else	{

				res.status(403).json({	status:	user	})	}

				}	catch	(error)	{

				res.status(403).json({	error:	error.message	})	}

				})

api.delete('/delete',	isLogged,	async	(req,	res)	=>	{

				try	{

				const	{	_id	}	=	req.session.user	const	user	=	await	User.findOne({	_id	})	await
user.remove()

				req.session.destroy((err)	=>	{

				if	(err)	throw	new	Error(err)	res.status(200).json({	status:	'Deleted!'})	})

				}	catch	(error)	{

				res.status(403).json({	error:	error.message	})	}

				})

module.exports	=	api

11.	 Save	the	file

const	repl	=	require('repl')	const	util	=	require('util')	const	vm	=	require('vm')
const	fetch	=	require('node-fetch')	const	{	Headers	}	=	fetch

let	cookie	=	null

const	query	=	(path,	ops)	=>	{

				return	fetch(`http://localhost:1337/users/${path}`,	{

				method:	ops.method,	body:	ops.body,

				credentials:	'include',	body:	JSON.stringify(ops.body),	headers:	new
Headers({

				...(ops.headers	||	{}),	cookie,

				Accept:	'application/json',	'Content-Type':	'application/json',	}),

				}).then(async	(r)	=>	{

				cookie	=	r.headers.get('set-cookie')	||	cookie	return	{

				data:	await	r.json(),	status:	r.status,

}

				}).catch(error	=>	error)	}

const	signup	=	(username,	password)	=>	query('/signup',	{

				method:	'POST',

				body:	{	username,	password	},	})

const	login	=	(username,	password)	=>	query('/login',	{

				method:	'POST',

				body:	{	username,	password	},	})

const	logout	=	()	=>	query('/logout',	{

				method:	'POST',

				})

const	getProfile	=	()	=>	query('/profile',	{

				method:	'GET',

				})

const	changePassword	=	(password)	=>	query('/changepass',	{

				method:	'PUT',

				body:	{	password	},	})

const	deleteProfile	=	()	=>	query('/delete',	{

				method:	'DELETE',

				})

const	replServer	=	repl.start({

				prompt:	'>	',

				ignoreUndefined:	true,	async	eval(cmd,	context,	filename,	callback)	{

				const	script	=	new	vm.Script(cmd)	const	is_raw	=	process.stdin.isRaw
process.stdin.setRawMode(false)	try	{

				const	res	=	await	Promise.resolve(

				script.runInContext(context,	{

				displayErrors:	false,	breakOnSigint:	true,	})

)

				callback(null,	res)	}	catch	(error)	{

				callback(error)

				}	finally	{

				process.stdin.setRawMode(is_raw)	}

				},

				writer(output)	{

				return	util.inspect(output,	{

				breakLength:	process.stdout.columns,	colors:	true,

				compact:	false,

				})

}

				})

replServer.context.api	=	{

				signup,

				login,

				logout,

				getProfile,

				changePassword,

				deleteProfile,

}

node	server.js

node	client-repl.js

api.signup('John',	'zxcvbnm')	api.login('John',	'zxcvbnm')	api.getProfile()

				api.changePassword('newPwd')	api.logout()

				api.login('John',	'incorrectPwd')

How	it	works...
Your	RESTful	API	server	will	accept	requests	for	the	following	paths:

POST/users/login:	If	a	username	does	not	exist	in	the	users	collection
in	MongoDB,	an	error	message	is	sent	to	the	client.	Otherwise,	it
returns	a	welcome	message.

POST/users/logout:	This	destroys	the	session	ID.

POST/users/signup:	This	creates	a	new	username	with	the	defined
password.	However,	an	error	will	be	sent	to	the	client	if	the
username	or	password	does	not	pass	the	validation.	It	will	also
send	an	error	message	to	the	client	when	the	username	already
exists.

GET/users/profile:	If	the	user	is	logged	in,	the	user	information	is
sent	to	the	client.	Otherwise,	an	error	message	is	sent	to	the	client.

PUT/users/changepass/:	This	will	change	the	current	logged-in	user's
password.	However,	if	the	user	is	not	logged-in,	an	error	message
is	sent	to	the	client.

DELETE/users/delete:	This	will	remove	a	logged-in	user's	profile	from
the	collection	users	in	MongoDB.	The	session	will	be	destroyed
and	a	confirmation	message	is	sent	to	the	client.	If	the	user	is	not
logged-in,	an	error	message	is	sent	to	the	client

	

See	also
Chapter	1,	Introduction	to	MERN	Stack,	section	Installing	NPM
Packages

Chapter	1,	Introduction	to	MERN	Stack,	section	Installing
MongoDB

Real-Time	Communication	with
Socket.IO	and	ExpressJS
In	this	chapter,	we	will	cover	the	following	recipes:

Understanding	NodeJS	events

Understanding	Socket.IO	events

Working	with	Socket.IO	namespaces

Defining	and	joining	to	Socket.IO	rooms

Writing	middleware	for	Socket.IO

Integrating	Socket.IO	with	ExpressJS

Using	ExpressJS	middleware	in	Socket.IO

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git	repository
of	this	book.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter04

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/xfyDBn

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter04
https://goo.gl/xfyDBn

Introduction
Modern	web	applications	usually	require	real-time	communication	where
data	is	continuously	flowing	from	client	to	server	and	vice	versa	with
(almost)	no	delay.

The	HTML5	WebSocket	Protocol	was	created	to	fulfill	this	requirement.
WebSocket	uses	a	single	TCP	connection	that	is	kept	open	even	when	the
server	or	client	is	not	sending	any	data.	That	means,	while	a	connection
between	the	client	and	the	server	exists,	data	can	be	sent	at	any	time
without	having	to	open	a	new	connection	to	the	server.

Real-time	communication	has	several	applications	from	building	chat
applications	to	multi-user	games,	where	the	response	time	is	really
important.

In	this	chapter,	we	will	focus	on	learning	how	to	build	a	real-time	web
application	using	Socket.IO	(https://socket.io)	and	understanding	the
Node.js	event-driven	architecture.

Socket.IO	is	one	of	the	most	used	libraries	for	implementing	real-time
communication.	Socket.IO	uses	WebSocket	whenever	possible	but	falls-
back	to	other	methods	when	WebSocket	is	not	supported	on	a	specific	web
browser.	Because	you	probably	want	to	make	your	application	accessible
from	any	web	browser,	having	to	work	directly	with	WebSocket	may	not
seem	like	a	good	idea.

https://socket.io

Understanding	Node.js	events
Node.js	has	an	event-driven	architecture.	Most	of	Node.js'	core	API	is
built	around	EventEmitter.	This	is	a	Node.js	module	that	allows	listeners	to
subscribe	to	certain	named	events	that	can	be	triggered	later	by	an
emitter.

You	can	define	your	own	event	emitter	easily	by	just	including	the	events
Node.js	module	and	creating	a	new	instance	of	EventEmitter:

const	EventEmitter	=	require('events')	

const	emitter	=	new	EventEmitter()	

emitter.on('welcome',	()	=>	{	

				console.log('Welcome!')	

})	

Then,	you	can	trigger	the	welcome	event	by	using	the	emit	method:

emitter.emit('welcome')	

It	is	actually,	pretty	simple.	One	of	the	advantages	is	that	you	can
subscribe	multiple	listeners	to	the	same	event,	and	they	will	get	triggered
when	the	emit	method	is	used:

emitter.on('welcome',	()	=>	{	

				console.log('Welcome')	

})	

emitter.on('welcome',	()	=>	{	

				console.log('There!')	

})	

emitter.emit('welcome')	

The	EventEmitter	API	provides	several	helpful	methods	that	give	you	more
control	to	handle	events.	Check	the	official	Node.js	documentation	to	see

all	information	about	the	API:	https://nodejs.org/api/events.html.

https://nodejs.org/api/events.html

Getting	ready
In	this	recipe,	you	will	create	a	class	that	will	extend	EventEmitter,	and
which	will	contain	its	own	instance	methods	to	trigger	listeners	attached	to
a	specific	event.	First,	create	a	new	project	by	opening	a	Terminal	and
running	the	following	line:

npm	init

const	EventEmitter	=	require('events')

const	NS_PER_SEC	=	1e9

				const	NS_PER_MS	=	1e6

class	Timer	extends	EventEmitter	{

				start()	{

				this.startTime	=	process.hrtime()

				this.emit('start')

}

				stop()	{

				const	diff	=	process.hrtime(this.startTime)

				this.emit(

				'stop',

				(diff[0]	*	NS_PER_SEC	+	diff[1])	/	NS_PER_MS,

)

}

}

const	tasks	=	new	Timer()

tasks.on('start',	()	=>	{

				let	res	=	1

				for	(let	i	=	1;	i	<	100000;	i++)	{

				res	*=	i

}

				tasks.stop()

				})

tasks.on('stop',	(time)	=>	{

				console.log(`Task	completed	in	${time}ms`)

				})

tasks.start()

	node	timer.js

	

How	it	works...
When	the	start	method	is	executed,	it	keeps	the	starting	time	using
process.hrtime,	which	returns	the	current	high-resolution	real	time	in	an
array	of	two	items,	where	the	first	item	is	a	number	that	represents	seconds
while	the	second	item	is	another	number	that	represents	nanoseconds.
Then,	it	triggers	all	event	listeners	attached	to	the	start	event.

On	the	other	side,	when	the	stop	method	is	executed,	it	uses	the	result	of
previously	calling	process.hrtime	as	an	argument	to	the	same	function,
which	returns	the	difference	in	time.	This	is	useful	to	measure	the	time
from	when	the	start	method	was	called	until	the	time	when	the	stop	method
was	called.

	

There's	more...
A	common	mistake	is	to	assume	that	events	are	called	asynchronously.	It
is	true	that	defined	events	can	be	called	at	any	time.	However,	they	are	still
executed	synchronously.	Take	the	following	example:

const	EventEmitter	=	require('events')	

const	events	=	new	EventEmitter()	

events.on('print',	()	=>	console.log('1'))	

events.on('print',	()	=>	console.log('2'))	

events.on('print',	()	=>	console.log('3'))	

events.emit('print')	

The	outputs	for	the	preceding	code	will	be	shown	as	follows:

1	

2	

3	

If	you	have	a	loop	running	inside	one	of	your	events,	the	next	event	won't
get	called	until	the	previous	one	finishes	executing.

Events	can	be	made	asynchronous	by	simply	adding	an	async	function	as
an	event	listener.	By	doing	so,	every	function	will	still	be	called	in	order
from	the	first	listener	defined	to	the	last.	However,	the	emitter	won't	wait
for	the	first	listener	to	finish	its	execution	to	call	the	next	listener.	That
means	you	cannot	guarantee	that	the	output	will	always	be	in	the	same
order,	for	instance:

events.on('print',	()	=>	console.log('1'))	

events.on('print',	async	()	=>	console.log(

				await	Promise.resolve('2'))	

)	

events.on('print',	()	=>	console.log('3'))	

events.emit('print')		

The	outputs	for	the	preceding	code	will	be	shown	as	follows:

1	

3	

2	

Asynchronous	functions	allow	us	to	write	non-blocking	applications.	If
implemented	correctly,	you	won't	run	into	problems	like	this	above.

EventEmitter	instances	have	a	method	called	listeners	which	when	executed,
providing	an	event	name	as	an	argument,	returns	an	array	of	the	attached
listeners	for	that	specific	event.	We	can	use	this	method	in	a	way	to	allow
async	functions	to	be	executed	in	the	order	they	were	attached,	for	instance:

const	EventEmitter	=	require('events')	

class	MyEvents	extends	EventEmitter	{	

				start()	{	

								return	this.listeners('logme').reduce(

												(promise,	nextEvt)	=>	promise.then(nextEvt),	

												Promise.resolve(),	

)	

				}	

}	

const	event	=	new	MyEvents()	

event.on('logme',	()	=>	console.log(1))	

event.on('logme',	async	()	=>	console.log(

				await	Promise.resolve(2)	

))	

event.on('logme',	()	=>	console.log(3))	

event.start()	

This	will	execute	and	display	output	in	the	order	they	were	attached:

1	

2	

3	

	

Understanding	Socket.IO
events
Socket.IO	is	an	event-driven	module	or	library,	and,	as	you	probably
guessed,	is	based	on	EventEmitter.	Everything	in	Socket.IO	works	with
events.	An	event	is	triggered	when	a	new	connection	is	made	to	the
Socket.IO	server	and	an	event	can	be	emitted	to	send	data	to	the	client.

The	Socket.IO	server	API	differs	from	the	Socket.IO	client	API.	However,
both	work	with	events	to	send	data	from	client	to	server	and	vice	versa.

	

io.on('connection',	(socket)	=>	{

				console.log('A	new	client	is	connected')	})

				//	Which	is	the	same	as:
	io.of('/').on('connection',	(socket)	=>	{

				console.log('A	new	client	is	connected')	})

socket.on('disconnecting',	(reason)	=>	{

				console.log('Disconnecting	because',	reason)	})

socket.on('disconnect',	(reason)	=>	{

				console.log('Disconnected	because',	reason)	})

socket.on('error',	(error)	=>	{

				console.log('Oh	no!',	error.message)	})

[eventName]:	A	user-defined	event	that	will	get	fired	when	the	client	emits
an	event	with	the	same	name.	The	client	can	emit	an	event	providing	data	in
the	arguments.	On	the	server,	the	event	will	be	fired	and	it	will	receive	the
data	sent	by	the	client

clientSocket.on('connect',	()	=>	{

				console.log('Successfully	connected	to	server')	})

clientSocket.on('connect_error',	(error)	=>	{

				console.log('Connection	error:',	error)	})

clientSocket.on('connect_timeout',	(timeout)	=>	{

				console.log('Connect	attempt	timed	out	after',	timeout)	})

clientSocket.on('disconnect',	(reason)	=>	{

				console.log('Disconnected	because',	reason)	})

clientSocket.on('reconnect',	(n)	=>	{

				console.log('Reconnected	after',	n,	'attempt(s)')	})

clientSocket.on('reconnect_attempt',	(n)	=>	{

				console.log('Trying	to	reconnect	again',	n,	'time(s)')	})

clientSocket.on('reconnect_error',	(error)	=>	{

				console.log('Oh	no,	couldn't	reconnect!',	error)	})

clientSocket.on('reconnect_failed',	(n)	=>	{

				console.log('Couldn'nt	reconnected	after',	n,	'times')	})

clientSocket.on('ping',	()	=>	{

				console.log('Checking	if	server	is	alive')	})

clientSocket.on('pong',	(latency)	=>	{

				console.log('Server	responded	after',	latency,	'ms')	})

clientSocket.on('error',	(error)	=>	{

				console.log('Oh	no!',	error.message)

				})

[eventName]:	A	user-defined	event	that	gets	fired	when	the	event	is	emitted
in	the	server.	The	arguments	provided	by	the	server	will	be	received	by	the
client.

{

				"dependencies":	{

				"socket.io":	"2.1.0"

}

}

npm	install

const	io	=	require('socket.io')()

io.path('/socket.io')

const	root	=	io.of('/')

root.on('connection',	socket	=>	{

				let	counter	=	0

				socket.on('time',	()	=>	{

				const	currentTime	=	new	Date().toTimeString()	counter	+=	1

				socket.emit('got	time?',	currentTime,	counter)	})

				})

io.listen(1337)

const	io	=	require('socket.io-client')

const	clientSocket	=	io('http://localhost:1337',	{

				path:	'/socket.io',	})

clientSocket.on('connect',	()	=>	{

				for	(let	i	=	1;	i	<=	5;	i++)	{

				clientSocket.emit('time')	}

				})

clientSocket.on('got	time?',	(time,	counter)	=>	{

				console.log(counter,	time)	})

node	simple-io-server.js

node	simple-io-client.js

How	it	works...
Everything	works	with	events.	Socket.IO	allows	events	to	be	defined	in
the	server	side	that	the	client	can	emit.	On	the	other	side,	it	also	allows	to
define	events	in	the	client	side	that	the	server	can	emit.

When	a	user-defined	event	is	emitted	by	the	server	side,	the	data	is	sent	to
the	client.	The	Socket.IO	client	checks	whether	there	is	a	listener	for	that
event	first.	Then,	if	there	is	a	listener,	it	will	get	triggered.	The	same	thing
happens	the	other	way	around	when	a	user-defined	event	is	emitted	by	the
client	side:

1.	 An	event	listener	time	was	added	in	our	Socket.IO	server's	socket
object	which	can	be	emitted	by	the	client	side

2.	 An	event	listener	"got	time?"	was	added	in	our	Socket.IO	Client
which	can	be	emitted	by	the	server	side

3.	 On	connection,	the	client	emits	the	time	event	first
4.	 Afterwards,	the	time	event	is	fired	on	the	server	side	which	will

emit	the	"got	time?"	event	providing	two	arguments,	the	current
server's	time	and	a	counter	that	specifies	how	many	times	a	request
was	made

5.	 Then,	the	"got	time?"	event	is	fired	on	the	client	side	receiving	two
arguments	that	were	provided	by	the	server,	the	time	and	a	counter

	

	

	

Working	with	Socket.IO
namespaces
Namespaces	are	a	way	of	separating	the	business	logic	of	your	application
while	reusing	the	same	TCP	connection	or	minimizing	the	need	for
creating	new	TCP	connections	for	to	implement	real-time	communication
between	the	server	and	the	client.

Namespaces	look	pretty	similar	to	ExpressJS'	route	paths:

home	

users	

usersprofile	

However,	as	mentioned	in	previous	recipes,	these	are	not	related	to	URLs.
By	default,	a	single	TCP	connection	is	created	at	this	URL
http[s]://host:port/socket.io

Reusing	the	same	event	names	is	a	good	practice	when	using	namespaces.
For	example,	let's	suppose	that	we	have	a	Socket.IO	server	that	we	use	to
emit	a	setWelcomeMsg	event	when	the	client	emits	a	getWelcomeMsg	event:
io.of('en').on('connection',	(socket)	=>	{	socket.on('getWelcomeMsg',	()
=>	{	socket.emit('setWelcomeMsg',	'Hello	World!')	})	})
io.of('es').on('connection',	(socket)	=>	{	socket.on('getWelcomeMsg',	()	=>
{	socket.emit('setWelcomeMsg',	'Hola	Mundo!')	})	})

As	you	can	see,	we	defined	a	listener	for	the	event	getWelcomeMsg	in	two
different	namespaces:

If	the	client	is	connected	to	the	English	or	/en	namespace,	when
the	setWelcomeMsg	event	is	fired,	the	client	will	receive	"Hello	World!"

On	the	other	hand,	if	the	client	is	connected	to	the	Spanish	or	/es
namespace,	when	the	setWelcomeMsg	event	is	fired,	the	client	will
receive	"Hola	Mundo!"

{

				"dependencies":	{

				"socket.io":	"2.1.0"

}

}

npm	install

const	http	=	require('http')	const	fs	=	require('fs')	const	path	=	require('path')
const	io	=	require('socket.io')()

const	app	=	http.createServer((req,	res)	=>	{

				if	(req.url	===	'/')	{

				fs.readFile(

				path.resolve(__dirname,	'nsp-client.html'),	(err,	data)	=>	{

				if	(err)	{

				res.writeHead(500)	return	void	res.end()	}

				res.writeHead(200)	res.end(data)

}

)

				}	else	{

				res.writeHead(403)	res.end()

}

				})

io.path('/socket.io')

io.of('/en').on('connection',	(socket)	=>	{

				socket.on('getData',	()	=>	{

				socket.emit('data',	{

				title:	'English	Page',	msg:	'Welcome	to	my	Website',	})

				})

				})

io.of('/es').on('connection',	(socket)	=>	{

				socket.on('getData',	()	=>	{

				socket.emit('data',	{

				title:	'Página	en	Español',	msg:	'Bienvenido	a	mi	sitio	Web',	})

				})

				})

io.attach(app.listen(1337,	()	=>	{

				console.log(

				'HTTP	Server	and	Socket.IO	running	on	port	1337'

)

				}))

<!DOCTYPE	html>	<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Socket.IO	Client</title>	</head>

				<body>

				<!--	code	here	-->	</body>

				</html>

<h1	id="title"></h1>	<section	id="msg"></section>	<button
id="toggleLang">Get	Content	in	Spanish</button>	<script
src="http://localhost:1337/socket.io/socket.io.js">	
	</script>	<script
src="https://unpkg.com/@babel/standalone/babel.min.js">
	</script>

<script	type="text/babel">	//	code	here!

				</script>

const	title	=	document.getElementById('title')	const	msg	=
document.getElementById('msg')	const	btn	=
document.getElementById('toggleLang')

const	manager	=	new	io.Manager(

				'http://localhost:1337',	{	path:	'/socket.io'	},)

const	socket	=	manager.socket('/en')

manager.socket('/en')	manager.socket('/es')

socket.on('connect',	()	=>	{

				socket.emit('getData')	})

socket.on('data',	(data)	=>	{

				title.textContent	=	data.title	msg.textContent	=	data.msg	})

btn.addEventListener('click',	(event)	=>	{

				socket.nsp	=	socket.nsp	===	'/en'

				?	'/es'

				:	'/en'

				btn.textContent	=	socket.nsp	===	'/en'

				?	'Get	Content	in	Spanish'

				:	'Get	Content	in	English'

				socket.close()

				socket.open()

				})

	node	nsp-server.js

	http://localhost:1337/

	

Let's	test	it...
To	see	your	previous	work	in	action,	follow	these	steps:

1.	 Once	you	navigate	to	http://localhost:1337/	in	your	web	browser,
click	on	the	"Get	Content	in	Spanish"	button	to	switch	to	the	Spanish
namespace

2.	 Click	on	the	"Get	Content	in	English"	button	to	switch	back	to	the
English	namespace

How	it	works...
This	is	what	happens	on	the	server	side:

1.	 We	defined	two	namespaces,	"/en"	and	"/es",	then	added	a	new
event	listener,	getData,	to	the	socket	object.

2.	 When	the	getData	event	is	fired	in	any	of	the	two	defined
namespaces,	it	will	emit	a	data	event	and	send	an	object,	that
contains	a	title	and	a	message	property,	to	the	client

On	the	client	side,	inside	the	script	tag	in	our	HTML	document:

1.	 Initially,	a	new	socket	is	created	for	the	namespace	"/en":

const	socket	=	manager.socket('/en')

2.	 At	the	same	time,	we	created	two	new	sockets	for	the	namespaces
"/en"	and	"/es".	They	will	act	as	reserved	connections:

manager.socket('/en')

						manager.socket('/es')

3.	 After,	an	event	listener	connect	was	added	that	sends	a	request	to
the	server	on	connection

4.	 Then,	another	event	listener	data	was	added	that	is	fired	when	data
is	received	from	the	server

5.	 Inside	the	event	listener	that	handles	onclick	events	for	our	button,
we	change	the	nsp	property	to	switch	to	a	different	namespace.
However,	for	this	to	happen,	we	had	to	disconnect	the	socket	first,
and	call	the	open	method	to	make	a	new	connection	again	using
the	new	namespace

Let's	see	one	of	the	confusing	parts	about	reserved	connections.	When	you
create	one	or	more	sockets	in	the	same	namespace,	the	first	connection	is
reused,	for	example:

const	first	=	manager.socket('/home')

const	second	=	manager.socket('/home')	//	<-	reuses	first	connection

On	the	client	side,	if	there	were	no	reserved	connections,	then	switching	to
a	namespace	that	was	not	used	before	would	result	in	a	new	connection
being	created.
If	you	are	curious,	remove	these	two	lines	from	the	nsp-client.html	file:

manager.socket('/en')

manager.socket('/es')

Afterwards,	restart	or	run	the	Socket.IO	server	again.	You	will	notice	that
there	is	a	slow	response	when	switching	to	a	different	namespace	because
a	new	connection	is	created	instead	of	being	reused.

There	is	an	alternative	way	of	achieving	the	same	goal.	We	could	have
created	two	sockets	that	point	to	two	different	namespaces,	"/en"	and	"/es".
Then,	we	could	have	added	two	event	listeners	connect	and	data	to	each
socket.	However,	because	the	first	and	second	socket	would	contain	the
same	event	names	and	receive	data	in	the	same	format	from	the	server,	we
would	have	gotten	repeated	code.	Imagine	the	case	if	we	had	to	do	the
same	for	five	different	namespaces	that	have	the	same	event	names	and
receive	data	in	the	same	format,	there	would	be	too	many	repeated	lines	of
code.	This	is	where	switching	namespaces	and	reusing	the	same	socket
object	is	helpful.	However,	there	may	be	cases	were	two	or	more	different

namespaces	have	different	event	names	for	different	kinds	of	event,	in	that
case,	it	is	better	to	add	event	listeners	for	each	of	the	namespaces
separately.	For	example:

const	englishNamespace	=	manager.socket('/en')

const	spanishNamespace	=	manager.socket('/es')

//	They	listen	to	different	events

englishNamespace.on('showMessage',	(data)	=>	{})

spanishNamespace.on('mostrarMensaje',	(data)	=>	{})

There's	more...
On	the	client	side,	you	have	probably	noticed	one	thing	that	we	didn't	use
before,	io.Manager.

io.Manager
This	allows	us	predefine	or	configure	how	new	connections	will	be
created.	The	options	defined	in	a	Manager,	as	the	URL,	will	be	passed	to	the
socket	on	initiation.

In	our	HTML	file,	inside	a	script	tag,	we	created	a	new	instance	of
io.Manager	and	passed	two	arguments;	the	server	URL	and	an	options	object
including	a	path	property	which	indicates	where	new	connections	will	be
made:	const	manager	=	new	io.Manager('http://localhost:1337',	{	path:
'/socket.io'	},)

To	find	out	more	about	the	io.Manager	API	visit	the	official	documentation
Website	offer	for	Socket.IO	https://socket.io/docs/client-api/#manager.

Later,	we	used	the	socket	method	to	initialize	and	create	a	new	Socket	for
the	provided	namespace:

const	socket	=	manager.socket('/en')	

This	way,	it	is	easier	to	work	with	several	namespaces	at	the	same	time
without	having	to	configure	each	one	of	them	with	the	same	options.

https://socket.io/docs/client-api/#manager

Defining	and	joining	Socket.IO
rooms
Within	namespaces,	you	can	define	rooms	or	channels	that	a	socket	can
join	and	leave.

By	default,	a	room	is	created	with	a	random	un-guessable	ID	for	the
connected	socket:	io.on('connection',	(socket)	=>	{	console.log(socket.id)
//	Outputs	socket	ID	})

On	connection,	when	emitting	an	event,	for	example:

io.on('connection',	(socket)	=>	{	

				socket.emit('say',	'hello')	

})	

What	happens	underneath	is	similar	to	this:

io.on('connection',	(socket)	=>	{	

				socket.join(socket.id,	(err)	=>	{	

								if	(err)	{	

												return	socket.emit('error',	err)	

								}	

								io.to(socket.id).emit('say',	'hello')	

				})	

})	

The	join	method	was	used	to	include	the	socket	inside	a	room.	In	this	case,
the	socket	ID	is	the	joint	room,	and	the	only	client	connected	to	that	room
is	the	socket	itself.

Because	a	socket	ID	represents	a	unique	connection	with	a	client	and,	by
default,	a	room	with	the	same	ID	is	created;	all	data	sent	by	the	server	to

that	room	will	be	received	only	by	that	client.	However,	if	several	clients
or	socket	IDs	join	a	room	with	the	same	name	and	the	server	sends	data;
all	clients	could	be	able	to	receive	it.

{

				"dependencies":	{

				"socket.io":	"2.1.0"

}

}

npm	install

const	http	=	require('http')	const	fs	=	require('fs')	const	path	=	require('path')
const	io	=	require('socket.io')()	const	app	=	http.createServer((req,	res)	=>	{

				if	(req.url	===	'/')	{

				fs.readFile(

				path.resolve(__dirname,	'rooms-client.html'),	(err,	data)	=>	{

				if	(err)	{

				res.writeHead(500)	return	void	res.end()	}

				res.writeHead(200)	res.end(data)

}

)

				}	else	{

				res.writeHead(403)	res.end()

}

				})

io.path('/socket.io')

const	root	=	io.of('/')

const	notifyClients	=	()	=>	{

				root.clients((error,	clients)	=>	{

				if	(error)	throw	error	root.to('commonRoom').emit(

				'updateClientCount',	clients.length,

)

				})

}

root.on('connection',	socket	=>	{

				socket.join('commonRoom')	socket.emit('welcome',	`Welcome	client:
${socket.id}`)	socket.on('disconnect',	notifyClients)	notifyClients()

				})

io.attach(app.listen(1337,	()	=>	{

				console.log(

				'HTTP	Server	and	Socket.IO	running	on	port	1337'

)

				}))

<!DOCTYPE	html>	<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Socket.IO	Client</title>	</head>

				<body>

				<h1	id="title">	Connected	clients:		</h1>

				<p	id="welcome"></p>	<script
src="http://localhost:1337/socket.io/socket.io.js">
	</script>	<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">
	</script>
<script	type="text/babel">	//	Code	here

				</script>

				</body>

				</html>

const	welcome	=	document.getElementById('welcome')	const	n	=

document.getElementById('n')

const	manager	=	new	io.Manager(

				'http://localhost:1337',	{	path:	'/socket.io'
},)

const	socket	=	manager.socket('/')

socket.on('welcome',	msg	=>	{

				welcome.textContent	=	msg	})

socket.on('updateClientCount',	clientsCount	=>	{

				n.textContent	=	clientsCount	})

	node	rooms-server.js

	http://localhost:1337/

	http://localhost:1337/

13.	 The	number	of	connected	clients	in	both	tabs	or	windows	should	have
increased	to	2

There's	more...
Sending	the	same	message	or	data,	to	more	than	one	client,	is	called
broadcasting.	The	method	we	have	seen	broadcasts	a	message	to	all
clients,	including	the	client	that	generated	the	request.

There	are	other	several	methods	to	broadcast	a	message.	For	instance:
socket.to('commonRoom').emit('updateClientCount',	data)

Which	will	emit	an	updateClientCount	event	to	all	clients	in	commonRoom	expect
to	the	sender	or	the	socket	that	originated	the	request.

For	a	complete	list	check	the	official	documentation	of	Socket.IO	emit
cheatsheet:	https://socket.io/docs/emit-cheatsheet/

https://socket.io/docs/emit-cheatsheet/

namespace.use((socket,	next)	=>	{	...	})

socket.use((packet,	next)	=>	{	...	})

It	works	similarly	to	how	ExpressJS	middleware	functions	do.	We	can	add	new
properties	to	the	socket	or	packet	objects.	Then,	we	can	call	next	to	pass	the
control	to	the	next	middleware	in	the	chain.	If	next	is	not	called,	then	the	socket
won't	be	connected,	or	the	packet	received.

{

				"dependencies":	{

				"socket.io":	"2.1.0"

}

}

npm	install

const	http	=	require('http')	const	fs	=	require('fs')	const	path	=	require('path')
const	io	=	require('socket.io')()	const	app	=	http.createServer((req,	res)	=>	{

				if	(req.url	===	'/')	{

				fs.readFile(

				path.resolve(__dirname,	'middleware-cli.html'),	(err,	data)	=>	{

				if	(err)	{

				res.writeHead(500)

				return	void	res.end()	}

				res.writeHead(200)

				res.end(data)

}

)

				}	else	{

				res.writeHead(403)

				res.end()

}

				})

io.path('/socket.io')

const	users	=	[

				{	username:	'huangjx',	password:	'cfgybhji'	},	{	username:	'johnstm',
password:	'mkonjiuh'	},	{	username:	'jackson',	password:	'qscwdvb'	},]

const	userMatch	=	(username,	password)	=>	(

				users.find(user	=>	(

				user.username	===	username	&&	user.password	===	password))

)

const	isUserLoggedIn	=	(socket,	next)	=>	{

				const	{	session	}	=	socket.request	if	(session	&&	session.isLogged)	{

				next()

}

}

const	namespace	=	{

				home:	io.of('/home').use(isUserLoggedIn),	login:	io.of('/login'),	}

namespace.login.on('connection',	socket	=>	{

				socket.use((packet,	next)	=>	{

				const	[evtName,	data]	=	packet	const	user	=	data

				if	(evtName	===	'tryLogin'

				&&	user.username	===	'johnstm')	{

				socket.emit('loginError',	{

				message:	'Banned	user!',	})

				}	else	{

				next()

}

				})

				socket.on('tryLogin',	userData	=>	{

				const	{	username,	password	}	=	userData	const	request	=	socket.request	if
(userMatch(username,	password))	{

				request.session	=	{

				isLogged:	true,

				username,

}

				socket.emit('loginSuccess')	}	else	{

				socket.emit('loginError',	{

				message:	'invalid	credentials',	})

}

				})

				})

io.attach(app.listen(1337,	()	=>	{

				console.log(

				'HTTP	Server	and	Socket.IO	running	on	port	1337'

)

				}))

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Socket.IO	Client</title>	<script
src="http://localhost:1337/socket.io/socket.io.js">
	</script>	<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">
	</script>
</head>

				<body>

				<h1	id="title"></h1>	<form	id="loginFrm"	disabled>	<input	type="text"
name="username"	placeholder="username"/>	<input	type="password"
name="password"	
	placeholder="password"	/>	<input	type="submit"
value="LogIn"	/>	<output	name="logs"></output>	</form>

				<script	type="text/babel">	//	Code	here

				</script>

				</body>

				</html>

const	title	=	document.getElementById('home')	const	error	=
document.getElementsByName('logErrors')[0]

				const	loginForm	=	document.getElementById('loginForm')

const	manager	=	new	io.Manager(

				'http://localhost:1337',	{	path:	'/socket.io'	},)

const	namespace	=	{

				home:	manager.socket('/home'),	login:	manager.socket('/login'),	}

namespace.home.on('connect',	()	=>	{

				title.textContent	=	'Great!	you	are	connected	to	/home'

				error.textContent	=	''

				})

namespace.login.on('loginSuccess',	()	=>	{

				namespace.home.connect()	})

namespace.login.on('loginError',	(err)	=>	{

				logs.textContent	=	err.message	})

form.addEventListener('submit',	(event)	=>	{

				const	body	=	new	FormData(form)	namespace.login.emit('tryLogin',	{

				username:	body.get('username'),	password:	body.get('password'),	})

				event.preventDefault()	})

11.	 Save	the	file

	node	middleware-server.js

	http://localhost:1337

invalid	credentials

Banned	user!

Connected	to	/home

Integrating	Socket.IO	with
ExpressJS
Socket.IO	works	well	with	ExpressJS.	In	fact,	it's	possible	to	run	an
ExpressJS	application	and	a	Socket.IO	server	using	the	same	port	or	HTTP
server.

{

				"dependencies":	{

				"express":	"4.16.3",	"socket.io":	"2.1.0"

}

}

npm	install

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Socket.IO	Client</title>	<script
src="http://localhost:1337/socket.io/socket.io.js">
	</script>	<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">
	</script>
</head>

				<body>

				<h1	id="welcome"></h1>	<script	type="text/babel">	const	welcome	=
document.getElementById('welcome')	const	manager	=	new	io.Manager(

				'http://localhost:1337',	{	path:	'/socket.io'	},)

				const	root	=	manager.socket('/')	root.on('welcome',	(msg)	=>	{

				welcome.textContent	=	msg	})

				</script>

				</body>

				</html>

const	path	=	require('path')	const	express	=	require('express')	const	io	=
require('socket.io')()	const	app	=	express()

io.path('/socket.io')

app.get('/',	(req,	res)	=>	{

				res.sendFile(path.resolve(

				__dirname,

				'io-express-view.html',))

				})

io.of('/').on('connection',	(socket)	=>	{

				socket.emit('welcome',	'Hello	from	Server!')	})

io.attach(app.listen(1337,	()	=>	{

				console.log(

				'HTTP	Server	and	Socket.IO	running	on	port	1337'

)

				}))

	node	io-express-server.js

	http://localhost:1337/

	

How	it	works...
Socket.IO's	attach	method	expects	to	receive	a	HTTP	server	as	a	parameter
in	order	to	attach	the	Socket.IO	server	application	to	it.	The	reason	why
we	can	attach	Socket.IO	to	an	ExpressJS	server	application	is	because	the
listen	method	returns	the	underlying	HTTP	server	to	which	ExpressJS	is
connected.

To	sum	up,	the	listen	method	returns	the	underlying	HTTP	server.	Then,	it
is	passed	as	a	parameter	to	the	attach	method.	This	way,	we	can	share	the
same	connection	with	ExpressJS.

	

There's	more...
So	far,	we	have	seen	that	we	can	share	the	same	underlying	HTTP	server
between	ExpressJS	and	Socket.IO.	However,	that	is	not	all.

The	reason	why	we	define	a	Socket.IO	path	is	actually	useful	when
working	with	ExpressJS.	Take	the	following	example:

const	express	=	require('express')	

const	io	=	require('socket.io')()	

const	app	=	express()	

io.path('/socket.io')

	app.get('/socket.io',	(req,	res)	=>	{	

				res.status(200).send('Hey	there!')	

})	

io.of('/').on('connection',	socket	=>	{	

				socket.emit('someEvent',	'Data	from	Server!')	

})	

io.attach(app.listen(1337))	

As	you	can	see,	we	are	using	the	same	URL	path	for	Socket.IO	and
ExpressJS.	We	accept	new	connections	to	the	Socket.IO	server	on	the
/socket.io	path,	but	we	also	send	content	for	/socket.io	using	the	GET	route
method.

Even	though	this	preceding	example	won't	actually	break	your	application,
make	sure	to	never	use	the	same	URL	path	to	serve	content	from
ExpressJS	and	accept	new	connections	for	Socket.IO	at	the	same	time.	For
instance,	changing	the	previous	code	to	this:

io.path('/socket.io')

	app.get('socket.io:msg',	(req,	res)	=>	{	

				res.status(200).send(req.params.msg)	

})	

While	you	may	expect	your	browser,	when	visiting
http://localhost:1337socket.iomessage,	to	display	message,	that	won't	be	the	case
and	you	will	see	the	following	instead:

{"code":0,"message":"Transport	unknown"}	

That	is	because	Socket.IO	will	interpret	the	incoming	data	first	and	it
won't	understand	the	data	you	just	sent.	In	addition,	your	route	handler
will	never	be	executed.

Besides	that,	the	Socket.IO	server	also	serves,	by	default,	its	own
Socket.IO	Client	under	the	defined	URL	path.	For	example,	try	visiting
http://localhost:1337socket.iosocket.io.js	and	you	will	be	able	to	see	the
minimized	JavaScript	code	of	the	Socket.IO	client.

If	you	wish	to	server	your	own	version	of	Socket.IO	client	or	if	it	is
included	in	the	bundle	of	your	application,	you	can	disable	the	default
behavior	in	your	Socket.IO	server	application	with	the	serveClient	method:

io.serveClient(false)	

http://localhost:1337<i>socket.io</i>socket.io.js

See	also
Chapter	2,	Building	a	Web	server	with	ExpressJS,	section	Using
Express.js'	built-in	middleware	function	for	serving	static	assets

namespace.use((socket,	next)	=>	{

				const	req	=	socket.request	const	res	=	socket.request.res	next()	})

const	expressMiddleware	=	(request,	response,	next)	=>	{

				next()	}

root.use((socket,	next)	=>	{

				const	req	=	socket.request	const	res	=	socket.request.res
expressMiddleware(req,	res,	next)	})

However,	that	doesn't	mean	that	all	ExpressJS	middleware	functions	will	work
out	of	the	box.	For	example,	if	an	ExpressJS	middleware	function	uses	methods
only	available	within	ExpressJS,	it	may	fail	or	have	an	unexpected	behavior.

{

				"dependencies":	{

				"express":	"4.16.3",	"express-session":	"1.15.6",	"socket.io":	"2.1.0"

}

}

npm	install

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Socket.IO	Client</title>	<script
src="http://localhost:1337/socket.io/socket.io.js">	
	</script>	<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">
	</script>
</head>

				<body>

				<h1	id="title"></h1>	<form	id="loginForm">	<input	type="text"
name="username"	placeholder="username"/>	<input	type="password"
name="password"	
	placeholder="password"	/>	<input	type="submit"
value="LogIn"	/>	<output	name="logErrors"></output>	</form>

				<script	type="text/babel">	//	Code	here

				</script>

				</body>

				</html>

const	title	=	document.getElementById('title')	const	error	=
document.getElementsByName('logErrors')[0]

				const	loginForm	=	document.getElementById('loginForm')

const	manager	=	new	io.Manager(

				'http://localhost:1337',	{	path:	'/socket.io'	},)

const	namespace	=	{

				home:	manager.socket('/home'),	login:	manager.socket('/login'),	}

namespace.home.on('welcome',	(msg)	=>	{

				title.textContent	=	msg	error.textContent	=	''

				})

namespace.login.on('loginSuccess',	()	=>	{

				namespace.home.connect()	})

namespace.login.on('loginError',	err	=>	{

				error.textContent	=	err.message	})

loginForm.addEventListener('submit',	event	=>	{

				const	body	=	new	FormData(loginForm)	namespace.login.emit('enter',	{

				username:	body.get('username'),	password:	body.get('password'),	})

				event.preventDefault()	})

const	path	=	require('path')	const	express	=	require('express')	const	io	=
require('socket.io')()	const	expressSession	=	require('express-session')	const	app
=	express()

io.path('/socket.io')

const	session	=	expressSession({

				secret:	'MERN	Cookbook	Secret',	resave:	true,

				saveUninitialized:	true,	})

const	ioSession	=	(socket,	next)	=>	{

				const	req	=	socket.request	const	res	=	socket.request.res	session(req,	res,	(err)
=>	{

				next(err)

				req.session.save()

				})

}

const	home	=	io.of('/home')	const	login	=	io.of('/login')

const	users	=	[

				{	username:	'huangjx',	password:	'cfgybhji'	},	{	username:	'johnstm',
password:	'mkonjiuh'	},	{	username:	'jackson',	password:	'qscwdvb'	},]

app.use(session)

app.get('/home',	(req,	res)	=>	{

				res.sendFile(path.resolve(

				__dirname,

				'io-express-cli.html',))

				})

home.use(ioSession)

				home.use((socket,	next)	=>	{

				const	{	session	}	=	socket.request	if	(session.isLogged)	{

				next()

}

				})

home.on('connection',	(socket)	=>	{

				const	{	username	}	=	socket.request.session	socket.emit(

				'welcome',

				`Welcome	${username}!,	you	are	logged	in!`,)

				})

login.use(ioSession)

				login.on('connection',	(socket)	=>	{

				socket.on('enter',	(data)	=>	{

				const	{	username,	password	}	=	data	const	{	session	}	=	socket.request	const
found	=	users.find((user)	=>	(

				user.username	===	username	&&	user.password	===	password))

				if	(found)	{

				session.isLogged	=	true	session.username	=	username
socket.emit('loginSuccess')	}	else	{

				socket.emit('loginError',	{

				message:	'Invalid	Credentials',	})

}

				})

				})

io.attach(app.listen(1337,	()	=>	{

				console.log(

				'HTTP	Server	and	Socket.IO	running	on	port	1337'

)

				}))

	node	io-express-srv.js

	

http://localhost:1337/home

Username:	johntm
	Password:	mkonjiuh

18.	 If	you	logged	in	successfully,	after	refreshing	the	page,	your	Socket.IO
client	application	will	still	be	able	to	connect	to	/home	and	you	will	see	a
welcome	message	every	time

	

How	it	works...
When	the	session	middleware	is	used	inside	ExpressJS,	after	modifying
the	session	object,	the	save	method	is	automatically	called	at	the	end	of	the
response.	However,	that	is	not	the	case	when	using	the	session	middleware
in	Socket.IO	namespaces,	that	is	why	we	call	the	save	method	manually	to
save	the	session	back	to	the	store.	In	our	case,	the	store	is	the	memory
where	the	sessions	are	kept	until	the	server	stops.

Forbidding	access	to	certain	namespaces	based	on	specific	conditions	is
possible	thanks	to	Socket.IO	namespace	middleware.	If	the	control	is	not
passed	to	the	next	handler,	then	the	connection	is	not	made.	That's	why
after	the	login	is	successful,	we	ask	the	/home	namespace	to	attempt	to
connect	again.

	

See	also
Chapter	2,	Building	a	Web	server	with	ExpressJS,	section	Writing
middleware	functions

	

Managing	State	with	Redux
In	this	chapter,	we	will	cover	the	following	recipes:

Defining	actions	and	action	creators

Defining	reducer	functions

Creating	a	Redux	store

Binding	action	creators	to	the	dispatch	method

Splitting	and	combining	reducers

Writing	Redux	store	enhancers

Time	traveling	with	Redux

Understanding	Redux	middleware

Dealing	with	asynchronous	data	flow

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git	repository
of	this	book.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter05

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/mU9AjR

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter05
https://goo.gl/mU9AjR

Introduction
Redux	is	a	predictable	state	container	for	JavaScript	applications.	It	allows
developers	to	manage	the	state	of	their	applications	with	ease.	With
Redux,	the	state	is	immutable.	Thus,	it	is	possible	to	go	back	and	forth	to
the	next	or	previous	state	of	your	application.	Redux	is	bound	to	three	core
principles:

Single	source	of	truth:	All	the	state	of	your	application	must	be
stored	in	a	single	object	tree	within	one	single	store

State	is	read-only:	You	must	not	mutate	the	state	tree.	Only	by
dispatching	an	action	can	the	state	tree	change

Changes	are	made	with	pure	functions:	These	are	called
reducers,	which	are	functions	that	accept	the	previous	state	and	an
action	and	compute	a	new	state.	Reducers	must	never	mutate	the
previous	state	but	rather	always	return	a	new	one

Reducers	work	in	a	very	similar	way	to	how	the	Array.prototype.reduce
function	does.	The	reduce	method	executes	a	function	for	every	item	in	an
array	against	an	accumulator	to	reduce	it	to	a	single	value.	For	example:

const	a	=	5	

const	b	=	10	

const	c	=	[a,	b].reduce((accumulator,	value)	=>	{	

				return	accumulator	+	value	

},	0)	

The	resulting	value	in	variable	c	while	reducing	a	and	b	against	the
accumulator,	is	15	and	the	initial	value	is	0.	The	reducer	function	here	is:

(accumulator,	value)	=>	{	

				return	accumulator	+	value	

}	

Redux	reducers	are	written	in	a	similar	way	and	they	are	the	most
important	concept	of	Redux.	For	example:

const	reducer	=	(prevState,	action)	=>	newState	

In	this	chapter,	we	will	focus	on	learning	how	to	manage	simple	and
complex	state	trees	with	Redux.	You	will	learn	as	well	how	to	deal	with
asynchronous	data	flows.

Defining	actions	and	action
creators
Reducers	accept	an	action	object	that	describes	the	action	that	is	going	to
be	performed	and	decides	how	to	transform	the	state	based	on	this	action
object.

Actions	are	just	plain	objects	and	they	have	only	one	required	property
that	needs	to	be	present,	the	action-type.	For	instance:	const	action	=	{
type:	'INCREMENT_COUNTER',	}

We	can	also	provide	additional	properties	as	well.	For	instance:

const	action	=	{	

				type:	'INCREMENT_COUNTER',	

				incrementBy:	2,	

}	

Actions	creators	are	just	functions	that	return	actions,	for	instance:

const	increment	=	(incrementBy)	=>	({	

				type:	'INCREMENT_COUNTER',	

				incrementBy,	

})	

Getting	ready
In	this	recipe,	you	will	see	how	these	simple	Redux	concepts	can	be
applied	with	Array.prototype.reduce	to	decide	how	data	should	be
accumulated	or	reduced.

We	won't	need	the	Redux	library	yet	for	this	purpose.

const	INCREMENT_COUNTER	=	'INCREMENT_COUNTER'

				const	DECREMENT_COUNTER	=	'DECREMENT_COUNTER'

const	increment	=	(by)	=>	({

				type:	INCREMENT_COUNTER,	by,

				})

				const	decrement	=	(by)	=>	({

				type:	DECREMENT_COUNTER,	by,

				})

const	reduced	=	[

				increment(10),	decrement(5),	increment(3),].reduce((accumulator,	action)	=>
{

				switch	(action.type)	{

				case	INCREMENT_COUNTER:	return	accumulator	+	action.by	case
DECREMENT_COUNTER:	return	accumulator	-	action.by	default:

				return	accumulator	}

				},	0)

console.log(reduced)

node	counter.js

7.	 Outputs:	8

	

How	it	works...
1.	 The	first	action	type	that	the	reducer	encounters	is	increment(10)

which	will	increment	the	accumulator	by	10.	Because	the	initial
value	of	the	accumulator	is	0,	the	next	current	value	will	be	10

2.	 The	second	action	type	tells	the	reducer	function	to	decrement	the
accumulator	by	5.	Thus,	the	accumulator's	value	will	be	5.

3.	 The	last	action	type	tells	the	reducer	function	to	increment	the
accumulator	by	3.	As	a	result,	the	accumulator's	value	will	be	8.

Defining	reducer	functions
Redux	reducers	are	pure	functions.	That	means,	they	have	no	side-effects.
Given	the	same	arguments,	the	reducer	must	always	generate	the	same
shape	of	state.	Take	for	example	the	following	reducer	function:

const	reducer	=	(prevState,	action)	=>	{	

				if	(action.type	===	'INC')	{	

								return	{	counter:	prevState.counter	+	1	}	

				}	

				return	prevState	

}	

If	we	execute	this	function	providing	the	same	arguments,	the	result	will
always	be	the	same:

const	a	=	reducer(

			{	counter:	0	},	

			{	type:	'INC'	},	

)	//	Value	is	{	counter:	1	}		

const	b	=	reducer(

			{	counter:	0	},	

			{	type:	'INC'	},	

)	//	Value	is	{	counter:	1	}	

However,	take	into	account	that	even	though	the	returned	values	have	the	same	shape,
these	are	two	different	objects.	For	instance,	comparing	the	above:
console.log(a	===	b)	returns	false.

Impure	reducer	functions	prevent	your	application	state	from	being
predictable	and	make	difficult	to	reproduce	the	same	state.	For	instance:

const	impureReducer	=	(prevState	=	{},	action)	=>	{	

				if	(action.type	===	'SET_TIME')	{	

								return	{	time:	new	Date().toString()	}	

				}	

				return	prevState	

}	

If	we	execute	this	function:

const	a	=	impureReducer({},	{	type:	'SET_TIME'	})	

setTimeout(()	=>	{	

				const	b	=	impureReducer({},	{	type:	'SET_TIME'	})	

				console.log(

								a,	//	Output	may	be:	{time:	"22:10:15	GMT+0000"}	

								b,	//	Output	may	be:	{time:	"22:10:17	GMT+0000"}	

)	

},	2000)	

As	you	can	see,	after	executing	the	function	for	a	second	time	after	2
seconds,	we	get	a	different	result.	To	make	it	pure,	you	can	consider	re-
writing	the	previously	impure	reducer	as:

const	timeReducer	=	(prevState	=	{},	action)	=>	{	

				if	(action.type	===	'SET_TIME')	{	

								return	{	time:	action.time	}	

				}	

				return	prevState	

}	

Then,	you	can	safely	pass	a	time	property	inside	your	action	to	set	the
time:

const	currentTime	=	new	Date().toTimeString()	

const	a	=	timeReducer(

			{	time:	null	},	

			{	type:	'SET_TIME',	time:	currentTime	},	

)	

const	b	=	timeReducer(

			{	time:	null	},	

			{	type:	'SET_TIME',	time:	currentTime	},	

)	

console.log(a.time	===	b.time)	//	true	

This	approach	makes	your	state	predictable	and	the	state	is	easy	to
reproduce.	For	instance,	you	could	re-create	a	scenario	of	how	your
application	will	act	if	you	pass	the	time	property	for	any	time	in	morning	or
afternoon.

Getting	ready
Now	that	you	understand	the	concept	of	how	reducers	work,	in	this	recipe,
you	will	build	a	small	application	that	will	act	differently	according	to	the
state	change.

For	this	purpose,	you	won't	need	to	install	or	use	the	Redux	library	yet.

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Breakfast	Time</title>	<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">	
	</script>
</head>

				<body>

				<h1>What	you	need	to	do:</h1>	<p>

				Current	time:		</p>

				<p	id="display-meal"></p>	<button	id="emulate-night">	Let's	pretend	is
00:00:00

				</button>

				<button	id="emulate-noon">	Let's	pretend	is	12:00:00

				</button>

				<script	type="text/babel">	//	Add	JavaScript	code	here	</script>

				</body>

				</html>

let	state	=	{

				kindOfMeal:	null,

				time:	null,

}

const	meal	=	document.getElementById('display-meal')	const	time	=
document.getElementById('display-time')	const	btnNight	=
document.getElementById('emulate-night')	const	btnNoon	=

document.getElementById('emulate-noon')

const	SET_MEAL	=	'SET_MEAL'

				const	SET_TIME	=	'SET_TIME'

const	setMeal	=	(kindOfMeal)	=>	({

				type:	SET_MEAL,

				kindOfMeal,

				})

const	setTime	=	(time)	=>	({

				type:	SET_TIME,

				time,

				})

const	reducer	=	(prevState	=	state,	action)	=>	{

				switch	(action.type)	{

				case	SET_MEAL:

				return	Object.assign({},	prevState,	{

				kindOfMeal:	action.kindOfMeal,	})

				case	SET_TIME:

				return	Object.assign({},	prevState,	{

				time:	action.time,

				})

				default:

				return	prevState

}

}

const	onStateChange	=	(nextState)	=>	{

				const	comparison	=	[

				{	time:	'23:00:00',	info:	'Too	late	for	dinner!'	},	{	time:	'18:00:00',	info:	'Dinner
time!'	},	{	time:	'16:00:00',	info:	'Snacks	time!'	},	{	time:	'12:00:00',	info:	'Lunch
time!'	},	{	time:	'10:00:00',	info:	'Branch	time!'	},	{	time:	'05:00:00',	info:
'Breakfast	time!'	},	{	time:	'00:00:00',	info:	'Too	early	for	breakfast!'	},]

				time.textContent	=	nextState.time	meal.textContent	=
comparison.find((condition)	=>	(

				nextState.time	>=	condition.time)).info

}

const	dispatch	=	(action)	=>	{

				state	=	reducer(state,	action)	onStateChange(state)	}

btnNight.addEventListener('click',	()	=>	{

				const	time	=	new	Date('1/1/1	00:00:00')
dispatch(setTime(time.toTimeString()))	})

btnNoon.addEventListener('click',	()	=>	{

				const	time	=	new	Date('1/1/1	12:00:00')
dispatch(setTime(time.toTimeString()))	})

dispatch(setTime(new	Date().toTimeString()))

15.	 Save	the	file.

	

Let's	test	it...
To	see	your	previous	work	in	action:

1.	 Open	the	meal-time.html	file	in	your	web	browser.	You	can	do	so	by
double-clicking	on	the	file,	or	right-clicking	on	the	file	and
choosing	Open	with....

2.	 You	should	be	able	to	see	your	current	local	time	and	a	message
stating	what	kind	of	meal	you	should	have.	For	instance,	if	your
local	time	is	20:42:35	GMT+0800	(CST),	you	should	see	Dinner	time!

3.	 Click	on	the	button	"Let's	pretend	is	00:00:00"	to	see	what	your
application	would	display	if	the	time	was	00:00a.m.

4.	 The	same	way,	click	on	the	button	"Let's	pretend	is	12:00:00"	to	see
what	your	application	would	display	if	the	time	was	12:00p.m.

How	it	works...
We	can	summarize	our	application	like	the	following	to	understand	how	it
works:

1.	 Action	types	SET_MEAL	and	SET_TIME	were	defined.
2.	 Two	action	creators	were	defined:

1.	 setMeal	which	generates	an	action	with	the	SET_MEAL	action
type	and	a	kindOfMeal	property	with	the	provided	argument

2.	 setTime	which	generates	an	action	with	the	SET_TIME	action
type	and	a	time	property	with	the	provided	argument

3.	 A	reducer	function	was	defined:

1.	 For	the	action	type	SET_MEAL,	computes	a	new	state	with	a
new	kindOfMeal	property

2.	 For	the	action	type	SET_TIME,	computes	a	new	state	with	a
new	time	property

4.	 We	defined	a	function	that	will	get	called	when	the	state	tree
changes.	Inside	the	function,	we	updated	the	view	according	to	the
new	state.

5.	 A	dispatch	function	was	defined	that	calls	the	reducer	function
providing	the	previous	state	and	an	action	object	to	generate	a	new
state.

	

	

	

createStore(reducer,	preloadedState,	enhancer)

const	TYPE	=	{

				INC_COUNTER:	'INC_COUNTER',	DEC_COUNTER:	'DEC_COUNTER',
}

const	initialState	=	{

				counter:	0,	}

const	reducer	=	(state	=	initialState,	action)	=>	{

				switch	(action.type)	{

				case	TYPE.INC_COUNTER:	return	{	counter:	state.counter	+	1	}

				case	TYPE.DEC_COUNTER:	return	{	counter:	state.counter	-	1	}

				default:

				return	state	}

}

const	store	=	createStore(reducer)

Calling	createStore	will	expose	four	methods:

store.dispatch(action):	Where	action	is	an	object	that	contains	at	least
one	property	named	type	that	specifies	the	action	type
store.getState():	Returns	the	whole	state	tree
store.subscribe(listener):	Where	listener	is	a	callback	function	that
will	get	triggered	whenever	the	state	tree	changes.	Several	listeners	can	be
subscribed
store.replaceReducer(reducer):	Replaces	the	current	Reducer	function
with	a	new	one

{

				"dependencies":	{

				"express":	"4.16.3",	"redux":	"4.0.0"

}

}

npm	install

const	express	=	require('express')	const	path	=	require('path')	const	app	=
express()

app.use('/lib',	express.static(

				path.join(__dirname,	'node_modules',	'redux',	'dist')))

app.get('/',	(req,	res)	=>	{

				res.sendFile(path.join(

				__dirname,

				'meal-time-client.html',))

				})

app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Meal	Time	with	Redux</title>	<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">
	</script>
<script	src="libredux.js"></script>	</head>

				<body>

				<h1>What	you	need	to	do:</h1>	<p>

				Current	time:		</p>

				<p	id="display-meal"></p>	<button	id="emulate-night">	Let's	pretend	is
00:00:00

				</button>

				<button	id="emulate-noon">	Let's	pretend	is	12:00:00

				</button>

				<script	type="text/babel">	//	Add	JavaScript	code	here	</script>

				</body>

				</html>

const	{	createStore	}	=	Redux

const	initialState	=	{

				kindOfMeal:	null,

				time:	null,

}

const	meal	=	document.getElementById('display-meal')	const	time	=
document.getElementById('display-time')	const	btnNight	=
document.getElementById('emulate-night')	const	btnNoon	=
document.getElementById('emulate-noon')

const	SET_MEAL	=	'SET_MEAL'

				const	SET_TIME	=	'SET_TIME'

const	setMeal	=	(kindOfMeal)	=>	({

				type:	SET_MEAL,

				kindOfMeal,

				})

				const	setTime	=	(time)	=>	({

				type:	SET_TIME,

				time,

				})

const	reducer	=	(prevState	=	initialState,	action)	=>	{

				switch	(action.type)	{

				case	SET_MEAL:

				return	{...prevState,	kindOfMeal:	action.kindOfMeal,	}

				case	SET_TIME:

				return	{...prevState,	time:	action.time,

}

				default:

				return	prevState

}

}

const	store	=	createStore(reducer)

store.subscribe(()	=>	{

				const	nextState	=	store.getState()	const	comparison	=	[

				{	time:	'23:00:00',	info:	'Too	late	for	dinner!'	},	{	time:	'18:00:00',	info:	'Dinner
time!'	},	{	time:	'16:00:00',	info:	'Snacks	time!'	},	{	time:	'12:00:00',	info:	'Lunch
time!'	},	{	time:	'10:00:00',	info:	'Brunch	time!'	},	{	time:	'05:00:00',	info:
'Breakfast	time!'	},	{	time:	'00:00:00',	info:	'Too	early	for	breakfast!'	},]

				time.textContent	=	nextState.time	meal.textContent	=
comparison.find((condition)	=>	(

				nextState.time	>=	condition.time)).info

				})

btnNight.addEventListener('click',	()	=>	{

				const	time	=	new	Date('1/1/1	00:00:00')
store.dispatch(setTime(time.toTimeString()))	})

btnNoon.addEventListener('click',	()	=>	{

				const	time	=	new	Date('1/1/1	12:00:00')
store.dispatch(setTime(time.toTimeString()))	})

store.dispatch(setTime(new	Date().toTimeString()))

15.	 Save	the	file

	node	meal-time-server.js

http://localhost:1337/

3.	 You	should	be	able	to	see	your	current	local	time	and	a	message	stating
what	kind	of	meal	you	should	have.	For	instance,	if	your	local	time	is
20:42:35	GMT+0800	(CST),	you	should	see	Dinner	time!

4.	 Click	on	the	button	"Let's	pretend	is	00:00:00"	to	see	what	your
application	would	display	if	the	time	was	00:00a.m.

5.	 The	same	way,	click	on	the	"Let's	pretend	is	12:00:00"	button	to	see
what	your	application	would	display	if	the	time	was	12:00p.m.

const	reducer	=	(prevState	=	initialState,	action)	=>	{

				switch	(action.type)	{

				case	SET_MEAL:	return	Object.assign({},	prevState,	{

				kindOfMeal:	action.kindOfMeal,	})

				case	SET_TIME:	return	Object.assign({},	prevState,	{

				time:	action.time,	})

				default:	return	prevState	}

}

const	reducer	=	(prevState	=	initialState,	action)	=>	{

				switch	(action.type)	{

				case	SET_MEAL:	return	{...prevState,	kindOfMeal:	action.kindOfMeal,	}

				case	SET_TIME:	return	{...prevState,	time:	action.time,	}

				default:	return	prevState	}

}

This	could	make	the	code	more	readable.

Binding	action	creators	to	the
dispatch	method
Actions	creators	are	just	functions	that	generate	action	objects	which	can
later	be	used	to	dispatch	actions	using	the	dispatch	method.	Take	for
example	the	following	code:

const	TYPES	=	{	

				ADD_ITEM:	'ADD_ITEM',	

				REMOVE_ITEM:	'REMOVE_ITEM',	

}	

const	actions	=	{	

				addItem:	(name,	description)	=>	({	

								type:	TYPES.ADD_ITEM,	

								payload:	{	name,	description	},	

				}),	

				removeItem:	(id)	=>	({	

								type:	TYPES.REMOVE_ITEM,	

								payload:	{	id	},	

				})	

}	

module.exports	=	actions	

Later,	somewhere	in	your	application,	you	can	dispatch	these	actions	using
the	dispatch	method:

dispatch(actions.addItem('Little	Box',	'Cats'))	

dispatch(actions.removeItem(123))	

However,	as	you	can	see,	calling	the	dispatch	method	every	time	seems	like
a	repeated	and	unnecessary	step.	You	could	simply	wrap	the	action
creators	around	the	dispatch	function	itself	like	this:

const	actions	=	{	

				addItem:	(name,	description)	=>	dispatch({	

								type:	TYPES.ADD_ITEM,	

								payload:	{	name,	description	},	

				}),	

				removeItem:	(id)	=>	dispatch({	

								type:	TYPES.REMOVE_ITEM,	

								payload:	{	id	},	

				})	

}	

module.exports	=	actions	

Even	though	this	seems	like	a	good	solution,	there	is	a	problem.	It	means,
you	would	need	to	create	the	store	first,	then	define	your	action	creators
binding	them	to	the	dispatch	method.	In	addition,	it	would	be	difficult	to
maintain	the	action	creators	in	a	separate	file	since	they	depend	on	the
dispatch	method	to	be	present.	There	is	a	solution	provided	by	the	Redux
module,	a	helper	method	called	bindActionCreators	which	accepts	two
arguments.	The	first	argument	is	an	object	with	keys,	which	represent	the
name	of	an	action	creator,	and	values,	which	represent	a	function	that
returns	an	action.	The	second	argument	is	expected	to	be	the	dispatch
function:

bindActionCreators(actionCreators,	dispatchMethod)	

This	helper	method	will	map	all	the	action	creators	to	the	dispatch	method.
For	instance,	we	could	re-write	the	previous	example	as	the	following:

const	store	=	createStore(reducer)	

const	originalActions	=	require('./actions')	

const	actions	=	bindActionCreators(

				originalActions,	

				store.dispatch,	

)	

Then,	later	somewhere	in	your	application,	you	can	call	these	methods
without	wrapping	them	around	the	dispatch	method:

actions.addItem('Little	Box',	'Cats')	

actions.removeItem(123)	

As	you	can	see,	our	bound	action	creators	look	more	like	regular	functions
now.	In	fact,	by	destructuring	the	actions	object,	you	can	use	only	the
methods	you	need.	For	instance:

const	{	

				addItem,	

				removeItem,	

}	=	bindActionCreators(

				originalActions,		

				store.dispatch,	

)	

Then,	you	can	call	them	like	this:

addItem('Little	Box',	'Cats')	

removeItem(123)	

{

				"dependencies":	{

				"express":	"4.16.3",	"redux":	"4.0.0"

}

}

npm	install

const	express	=	require('express')	const	path	=	require('path')	const	app	=
express()	app.use('/lib',	express.static(

				path.join(__dirname,	'node_modules',	'redux',	'dist')))

				app.get('/',	(req,	res)	=>	{

				res.sendFile(path.join(

				__dirname,

				'bind-index.html',

))

				})

				app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Binding	action	creators</title>	<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">
	</script>
<script	src="libredux.js"></script>	</head>

				<body>

				<h1>List:</h1>	<form	id="item-form">	<input	id="item-input"	name="item"
/>	</form>

				<ul	id="list">	<script	type="text/babel">	//	Add	code	here

				</script>

				</body>

				</html>

const	form	=	document.querySelector('#item-form')	const	input	=
document.querySelector('#item-input')	const	list	=
document.querySelector('#list')

const	initialState	=	{

				items:	[],

}

const	TYPE	=	{

				ADD_ITEM:	'ADD_ITEM',	}

const	actions	=	{

				addItem:	(text)	=>	({

				type:	TYPE.ADD_ITEM,	text,

				})

}

const	reducer	=	(state	=	initialState,	action)	=>	{

				switch	(action.type)	{

				case	TYPE.ADD_ITEM:	return	{

				items:	[...state.items,	action.text].splice(-5)	}

				default:	return	state	}

}

const	{	createStore,	bindActionCreators	}	=	Redux	const	store	=

createStore(reducer)	const	{	addItem	}	=	bindActionCreators(

				actions,

				store.dispatch,

)

store.subscribe(()	=>	{

				const	{	items	}	=	store.getState()	items.forEach((itemText,	index)	=>	{

				const	li	=	(

				list.children.item(index)	||

				document.createElement('li'))

				li.textContent	=	itemText	list.insertBefore(li,	list.children.item(0))	})

				})

form.addEventListener('submit',	(event)	=>	{

				event.preventDefault()	addItem(input.value)	})

12.	 Save	the	file.

	node	bind-server.js

http://localhost:1337/

3.	 Type	something	in	the	input	box	and	press	Enter.	A	new	item	should	appear
in	the	list.

4.	 Try	to	add	more	than	five	items	to	the	list.	The	last	one	displayed	will	be
removed	and	only	five	items	are	kept	on	the	view.

const	initialState	=	{

				todoList:	[],

				chatMsg:	[],

}

const	reducer	=	(state	=	initialState,	action)	=>	{

				switch	(action.type)	{

				case	'ADD_TODO':	return	{

				...state,

				todoList:	[

				...state.todoList,

{

				title:	action.title,

				completed:	action.completed,

				},

],

}

				case	'ADD_CHAT_MSG':	return	{

				...state,

				chatMsg:	[

				...state.chatMsg,

{

				from:	action.id,

				message:	action.message,

				},

],

}

				default:

				return	state

}

}

const	initialState	=	{

				todoList:	[],

				chatMsg:	[],

}

const	todoListReducer	=	(state	=	initialState.todoList,	action)	=>	{

				switch	(action.type)	{

				case	'ADD_TODO':	return	state.concat([

{

				title:	action.title,

				completed:	action.completed,

				},

])

				default:	return	state

}

}

const	chatMsgReducer	=	(state	=	initialState.chatMsg,	action)	=>	{

				switch	(action.type)	{

				case	'ADD_CHAT_MSG':	return	state.concat([

{

				from:	action.id,

				message:	action.message,

				},

])

				default:	return	state

}

}

const	reducer	=	(state	=	initialState,	action)	=>	{

				return	{

				todoList:	todoListReducer(state.todoList,	action),

				chatMsg:	chatMsgReducer(state.chatMsg,	action),

}

}

const	reducer	=	combineReducers({

				todoList:	todoListReducer,

				chatMsg:	chatMsgReducer,

})

console.log(JSON.stringify(

				reducer(initialState,	{	type:	null	}),

				null,	2,

))

{

				"todoList":	[],

				"chatMsg":	[],

}

console.log(JSON.stringify(

				reducer(

				initialState,

{

				type:	'ADD_TODO',

				title:	'This	is	an	example',

				completed:	false,

				},

),

				null,	2,

))

{

				"todoList":	[

{

				"title":	"This	is	an	example",

				"completed":	false,

				},

],

				"chatMsg":	[],

}

This	shows	that	each	reducer	is	managing	only	the	slice	of	the	state	assigned	to
them.

{

				"dependencies":	{

				"express":	"4.16.3",	"redux":	"4.0.0"

}

}

npm	install

const	express	=	require('express')	const	path	=	require('path')	const	app	=
express()

				app.use('/lib',	express.static(

				path.join(__dirname,	'node_modules',	'redux',	'dist')))

				app.get('/',	(req,	res)	=>	{

				res.sendFile(path.join(

				__dirname,

				'todo-time.html',

))

				})

				app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

<!DOCTYPE	html>

				<html	lang="en">

				<head>

				<meta	charset="UTF-8">	<title>Lucky	Todo</title>	<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">
	</script>
<script	src="libredux.js"></script>	</head>

				<body>

				<h1>List:</h1>	<form	id="item-form">	<input	id="item-input"	name="item"
/>	</form>

				<ul	id="list">	<script	type="text/babel">	//	Add	code	here

				</script>

				</body>

				</html>

const	timeElem	=	document.querySelector('#current-time')	const	formElem	=
document.querySelector('#todo-form')	const	listElem	=
document.querySelector('#todo-list')	const	inputElem	=
document.querySelector('#todo-input')	const	luckyElem	=
document.querySelector('#lucky-number')

const	{

				createStore,

				combineReducers,

				bindActionCreators,

				}	=	Redux

const	TYPE	=	{

				SET_TIME:	'SET_TIME',

				SET_LUCKY_NUMBER:	'SET_LUCKY_NUMBER',	ADD_TODO:
'ADD_TODO',

				REMOVE_TODO:	'REMOVE_TODO',	TOGGLE_COMPLETED_TODO:
'TOGGLE_COMPLETED_TODO',	}

const	actions	=	{

				setTime:	(time)	=>	({

				type:	TYPE.SET_TIME,

				time,

				}),

				setLuckyNumber:	(number)	=>	({

				type:	TYPE.SET_LUCKY_NUMBER,	number,

				}),

				addTodo:	(id,	title)	=>	({

				type:	TYPE.ADD_TODO,

				title,

				id,

				}),

				removeTodo:	(id)	=>	({

				type:	TYPE.REMOVE_TODO,	id,

				}),

				toggleTodo:	(id)	=>	({

				type:	TYPE.TOGGLE_COMPLETED_TODO,	id,

				}),

}

const	currentTime	=	(state	=	null,	action)	=>	{

				switch	(action.type)	{

				case	TYPE.SET_TIME:	return	action.time	default:	return	state

}

}

const	luckyNumber	=	(state	=	null,	action)	=>	{

				switch	(action.type)	{

				case	TYPE.SET_LUCKY_NUMBER:	return	action.number	default:	return
state

}

}

const	todoList	=	(state	=	[],	action)	=>	{

				switch	(action.type)	{

				case	TYPE.ADD_TODO:	return	state.concat([

{

				id:	String(action.id),

				title:	action.title,

				completed:	false,

}

])

				case	TYPE.REMOVE_TODO:	return	state.filter(

				todo	=>	todo.id	!==	action.id)

				case	TYPE.TOGGLE_COMPLETED_TODO:	return	state.map(

				todo	=>	(

				todo.id	===	action.id

?	{

				...todo,

				completed:	!todo.completed,	}

				:	todo

)

)

				default:	return	state

}

}

const	reducer	=	combineReducers({

				currentTime,

				luckyNumber,

				todoList,

				})

const	store	=	createStore(reducer)

const	{

				setTime,

				setLuckyNumber,

				addTodo,

				removeTodo,

				toggleTodo,

				}	=	bindActionCreators(actions,	store.dispatch)

store.subscribe(()	=>	{

				const	{	currentTime	}	=	store.getState()	timeElem.textContent	=	currentTime
})

store.subscribe(()	=>	{

				const	{	luckyNumber	}	=	store.getState()	luckyElem.textContent	=	`Your
lucky	number	is:	${luckyNumber}`

				})

store.subscribe(()	=>	{

				const	{	todoList	}	=	store.getState()	listElem.innerHTML	=	''

				todoList.forEach(todo	=>	{

				const	li	=	document.createElement('li')	li.textContent	=	todo.title	li.dataset.id	=
todo.id	li.setAttribute('draggable',	true)	if	(todo.completed)	{

				li.style	=	'text-decoration:	line-through'

}

				listElem.appendChild(li)	})

				})

listElem.addEventListener('click',	(event)	=>	{

					toggleTodo(event.target.dataset.id)	})

listElem.addEventListener('drag',	(event)	=>	{

				removeTodo(event.target.dataset.id)	})

let	id	=	0

				formElem.addEventListener('submit',	(event)	=>	{

				event.preventDefault()

				addTodo(++id,	inputElem.value)	inputElem.value	=	''

				})

setLuckyNumber(Math.ceil(Math.random()	*	1024))	setInterval(()	=>	{

				setTime(new	Date().toTimeString())	},	1000)

21.	 Save	the	file

	node	todo-time.js

http://localhost:1337/

3.	 Introduce	something	in	the	input	box	and	press	enter.	A	new	item	should
appear	in	the	list.

4.	 Click	on	one	of	the	items	that	you	have	added	to	mark	it	as	completed.
5.	 Click	once	again	on	one	of	the	items	marked	as	completed	to	mark	it	as	not

completed.
6.	 Click	and	drag	one	of	the	items	outside	of	the	list	to	remove	it	from	the	To-

do	list.

{

				currentTime:	String,

				luckyNumber:	Number,

				todoList:	Array.of({

				id:	Number,

				title:	String,

				completed:	Boolean,

				}),

}

2.	 We	used	the	combineReducers	helper	method	from	the	Redux	library	to
combine	those	three	reducers	into	a	single	one

3.	 Then,	a	store	was	created	providing	the	combined	reducer	function
4.	 For	convenience,	we	subscribed	three	listener	functions	that	get	triggered

whenever	the	state	changes	to	update	the	HTML	elements	used	to	display
the	data	from	the	state

5.	 We	also	defined	three	event	listeners:	one	to	detect	when	a	user	submits	a
form	that	contains	an	input	HTML	element	to	add	a	new	To-do	item,
another	to	detect	when	the	user	clicks	on	a	To-do	item	displayed	on	the
screen	to	toggle	its	state	from	not	completed	to	completed	or	vice	versa,	and
finally	one	event	listener	to	detect	when	the	user	drags	an	element	from	the
list	to	dispatch	an	action	to	remove	it	from	the	list	of	To-do	items

createStore	=	(reducer,	preloadedState,	enhancer)	=>	Store

enhancer	=	(...optionalArguments)	=>	(

createStore	=>	(reducer,	preloadedState,	enhancer)	=>	Store)

It	may	look	a	bit	difficult	to	understand	now,	but	you	don't	really	have	to	worry
if	you	don't	get	it	at	first	because	you	will	probably	never	need	to	write	a	store
enhancer.	The	purpose	of	this	recipe	was	simply	to	help	you	to	understand	their
purpose	in	a	very	simple	way.

{

				"dependencies":	{

				"redux":	"4.0.0"

}

}

	npm	install

const	{

				createStore,

				combineReducers,	bindActionCreators,	}	=	require('redux')

const	acceptMap	=	()	=>	createStore	=>	(

				(reducerMap,	...rest)	=>	{

				const	reducerList	=	{}

				for	(const	[key,	val]	of	reducerMap)	{

				reducerList[key]	=	val	}

				return	createStore(

				combineReducers(reducerList),	...rest,

)

}

)

const	TYPE	=	{

				INC_COUNTER:	'INC_COUNTER',	DEC_COUNTER:	'DEC_COUNTER',
SET_TIME:	'SET_TIME',	}

const	actions	=	{

				incrementCounter:	(incBy)	=>	({

				type:	TYPE.INC_COUNTER,	incBy,

				}),

				decrementCounter:	(decBy)	=>	({

				type:	TYPE.DEC_COUNTER,	decBy,

				}),

				setTime:	(time)	=>	({

				type:	TYPE.SET_TIME,	time,

				}),

}

const	map	=	new	Map()

map.set('counter',	(state	=	0,	action)	=>	{

				switch	(action.type)	{

				case	TYPE.INC_COUNTER:	return	state	+	action.incBy	case
TYPE.DEC_COUNTER:	return	state	-	action.decBy	default:	return	state	}

				})

map.set('time',	(state	=	null,	action)	=>	{

				switch	(action.type)	{

				case	TYPE.SET_TIME:	return	action.time	default:	return	state	}

				})

const	store	=	createStore(map,	acceptMap())

const	{

				incrementCounter,	decrementCounter,	setTime,

				}	=	bindActionCreators(actions,	store.dispatch)

setInterval(function()	{

				setTime(new	Date().toTimeString())	if	(this.shouldIncrement)	{

				incrementCounter((Math.random()	*	5)	+	1	|	0)	}	else	{

				decrementCounter((Math.random()	*	5)	+	1	|	0)	}

				console.dir(

				store.getState(),	{	colors:	true,	compact:	false	},)

				this.shouldIncrement	=	!this.shouldIncrement	}.bind({	shouldIncrement:	false
}),	1000)

	node	map-store.js

{

				"counter":	Number,	"time":	String,

}

How	it	works...
The	enhancer	composes	the	store	creator	into	a	new	one.	For	instance,	the
following	line:

const	store	=	createStore(map,	acceptMap())	

Could	be	written	as:

const	store	=	acceptMap()(createStore)(map)	

Which	actually,	in	a	way,	wraps	the	original	createStore	method	into
another	createStore	method.

Composition	can	be	explained	as	a	set	of	functions	that	are	called
accepting	the	result	argument	of	the	previous	function.	For	instance:

const	c	=	(...args)	=>	f(g(h(...args)))	

This	composes	functions	f,	g,	and	h	from	right	to	left	into	a	single	function
c.	That	means,	we	could	write	the	previous	line	of	code	also	like	this:

const	createStore	=	acceptMap()(createStore)	

const	store	=	createStore(map)	

Here	_createStore	is	the	result	of	composing	createStore	and	your	store
enhancer	function.

	

Time	traveling	with	Redux
Even	though,	you	may	probably	never	need	to	write	store	enhancers,	there
is	one	special	that	you	may	find	very	useful	for	debugging	your	Redux
powered	applications	to	time	travel	through	the	state	of	your	application.
You	can	enable	time	traveling	on	your	application	by	simple	installing
Redux	DevTools	Extension	(for	Chrome	and	Firefox):
https://github.com/zalmoxisus/redux-devtools-extension.

	

https://github.com/zalmoxisus/redux-devtools-extension

{

				"dependencies":	{

				"express":	"4.16.3",	"redux":	"4.0.0"

}

}

npm	install

Make	sure	to	have	installed	the	Redux	DevTools	Extension	in	your	web	browser.

const	express	=	require('express')	const	path	=	require('path')	const	app	=
express()	app.use('/lib',	express.static(

				path.join(__dirname,	'node_modules',	'redux',	'dist')))

				app.get('/',	(req,	res)	=>	{

				res.sendFile(path.join(

				__dirname,

				'time-travel.html',))

				})

				app.listen(

				1337,

				()	=>	console.log('Web	Server	running	on	port	1337'),)

<!DOCTYPE	html>	<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Time	travel</title>	<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">
	</script>
<script	src="libredux.js"></script>	</head>

				<body>

				<h1>Counter:	</h1>	<script	type="text/babel">
//	Add	JavaScript	Code	here	</script>

				</body>

				</html>

const	counterElem	=	document.querySelector('#counter')

const	{

				createStore,

				bindActionCreators,	}	=	Redux

const	TYPE	=	{

				INC_COUNTER:	'INC_COUNTER',	DEC_COUNTER:	'DEC_COUNTER',
}

const	actions	=	{

				incCounter:	(by)	=>	({	type:	TYPE.INC_COUNTER,	by	}),	decCounter:	(by)
=>	({	type:	TYPE.DEC_COUNTER,	by	}),	}

const	reducer	=	(state	=	{	value:	5	},	action)	=>	{

				switch	(action.type)	{

				case	TYPE.INC_COUNTER:	return	{	value:	state.value	+	action.by	}

				case	TYPE.DEC_COUNTER:	return	{	value:	state.value	-	action.by	}

				default:

				return	state

}

}

const	store	=	createStore(

				reducer,

(

				window.__REDUX_DEVTOOLS_EXTENSION__	&&
window.__REDUX_DEVTOOLS_EXTENSION__()),

)

const	{

				incCounter,

				decCounter,

				}	=	bindActionCreators(actions,	store.dispatch)

store.subscribe(()	=>	{

				const	state	=	store.getState()	counterElem.textContent	=	state.value	})

for	(let	i	=	0;	i	<	10;	i++)	{

				const	incORdec	=	(Math.random()	*	10)	>	5

				if	(incORdec)	incCounter(2)	else	decCounter(1)	}

13.	 Save	the	file

Let's	test	it...
To	see	the	previous	work	in	action:

1.	 Open	a	new	Terminal	and	run:

						node	todo-time.js

2.	 In	your	Browser,	visit:

http://localhost:1337/

3.	 Open	Developer	Tools	of	your	Browser	and	look	for	the	Redux
tab.	You	should	see	a	tab	like	this:

Redux	DevTools	–	Tab	Window

4.	 The	slider	allows	you	to	move	from	the	last	state	to	the	very	first
state	of	your	application.	Try	moving	the	slider	to	a	different
position:

Redux	DevTools	–	Moving	Slider

5.	 While	moving	the	slider,	you	would	be	able	to	see	in	your	browser
the	counters	initial	value	and	how	it	changed	those	ten	times	in	the
for	loop

There's	more
Redux	DevTools	has	some	features	that	you	will	probably	find	amazing
and	helpful	for	debugging	and	managing	the	state	of	your	application.	In
fact,	if	you	followed	the	previous	recipes,	I	suggest	you	go	back	to	the
projects	we	wrote	and	enable	this	enhancer	and	try	to	experiment	with
Redux	DevTools.

One	of	many	features	of	Redux	DevTools	is	the	Log	monitor,	which
displays	in	chronological	order	which	action	was	dispatched	and	the
resulting	value	of	transforming	the	state:

Redux	DevTools	–	Log	Monitor

middleware	=	API	=>	next	=>	action	=>	next(action)

middleware	=	({

				getState,

				dispatch,

})	=>	next	=>	action	=>	next(action)

applyMiddleware(middleware1,	middleware2)

middlewares.map((middleware)	=>	middleware(API))

dispatch	=	(action)	=>	(

				(action)	=>	(

				(action)	=>	store.dispatch(action))(action)

)(action)

4.	 Which	means	that	a	middleware	function	can	interrupt	the	chain	and
prevent	a	certain	action	from	being	dispatched	if	the	next(action)	method
is	not	called

5.	 The	dispatch	method	from	the	middleware	API	object,	allows	you	to	call	the
dispatch	method	of	the	store	with	the	previously	applied	middleware.	That
means,	if	you	are	not	careful	while	using	this	method,	you	may	create	an
infinite	loop

Understanding	how	it	works	internally	may	not	be	so	simple	at	first,	but	I	assure
you	that	you	will	get	it	soon.

{

				"dependencies":	{

				"redux":	"4.0.0"

}

}

npm	install

const	{

				createStore,	applyMiddleware,	}	=	require('redux')

const	TYPE	=	{

				INCREMENT:	'INCREMENT',	DECREMENT:	'DECREMENT',
SET_TIME:	'SET_TIME',	}

const	reducer	=	(

				state	=	null,	action,

)	=>	state

const	typeCheckMiddleware	=	api	=>	next	=>	action	=>	{

				if	(Reflect.has(TYPE,	action.type))	{

				next(action)	}	else	{

				const	err	=	new	Error(

				`Type	"${action.type}"	is	not	a	valid`	+

				`action	type.	`	+

				`did	you	mean	to	use	one	of	the	following`	+

				`valid	types?	`	+

				`"${Reflect.ownKeys(TYPE).join('"|"')}"n`,)

				throw	err

}

}

const	store	=	createStore(

				reducer,

				applyMiddleware(typeCheckMiddleware),)

store.dispatch({	type:	'INCREMENT'	})	store.dispatch({	type:	'MISTAKE'	})

8.	 Save	the	file.

node	type-check-redux.js	

/type-check-redux.js:25

				throw	err	^

Error:	Type	"MISTAKE"	is	not	a	valid	action	type.	did	you	mean	to	use	one	of
the	following	valid	types?	"INCREMENT"|"DECREMENT"|"SET_TIME"

				at	Object.action	[as	dispatch]	(/type-check-redux.js:18:15)	at	Object.
<anonymous>	(/type-check-redux.js:33:7)

In	this	example,	the	stack	trace	tells	us	that	the	error	happened	on	line	18,	which
points	to	our	middleware	function.	However,	the	next	one	points	to	line	33,
store.dispatch({	type:	'MISTAKE'	}),	which	is	a	good	thing	because	it	can
help	you	track	exactly	where	certain	actions	are	dispatched	that	were	never
defined.

	

How	it	works...
It's	pretty	simple,	the	middleware	function	checks	the	action	type,	of	the
action	being	dispatched,	to	see	if	it	exists	as	a	property	of	the	TYPE	object
constant.	If	it	exists,	then	the	middleware	passes	control	to	the	next
middleware	in	the	chain.	However,	in	our	case,	there	is	no	next
middleware,	so	the	control	is	passed	to	the	original	dispatch	method	of	the
store	that	will	apply	the	reducer	and	transform	the	state.	On	the	other	side,
if	the	action	type	was	not	defined,	the	middleware	function	interrupts	the
middleware	chain	by	not	calling	the	next	function	and	by	throwing	an
error.

	

	

Dealing	with	asynchronous
data	flow
By	default,	Redux	doesn't	handle	asynchronous	data	flow.	There	are
several	libraries	out	there	that	can	help	you	with	these	tasks.	However,	for
the	purpose	of	this	chapter,	we	will	build	our	own	implementation	using
middleware	functions	to	give	the	dispatch	method	the	ability	to	dispatch
and	handle	asynchronous	data	flow.

	

{

				"dependencies":	{

				"express":	"4.16.3",	"node-fetch":	"2.1.2",	"redux":	"4.0.0"

}

}

npm	install

const	express	=	require('express')	const	app	=	express()

app.get('/time',	(req,	res)	=>	{

				setTimeout(()	=>	{

				res.send(new	Date().toTimeString())	},	2000)

				})

app.get('/date',	(req,	res)	=>	{

				setTimeout(()	=>	{

				res.destroy(new	Error('Internal	Server	Error'))	},	2000)

				})

app.listen(

				1337,

				()	=>	console.log('API	server	running	on	port	1337'),)

const	fetch	=	require('node-fetch')	const	{

				createStore,	applyMiddleware,	combineReducers,	bindActionCreators,	}	=
require('redux')

const	STATUS	=	{

				PENDING:	'PENDING',	RESOLVED:	'RESOLVED',	REJECTED:
'REJECTED',	}

const	TYPE	=	{

				FETCH_TIME:	'FETCH_TIME',	FETCH_DATE:	'FETCH_DATE',	}

const	actions	=	{

				fetchTime:	()	=>	({

				type:	TYPE.FETCH_TIME,	value:	async	()	=>	{

				const	time	=	await	fetch(

				'http://localhost:1337/time'

).then((res)	=>	res.text())	return	time

}

				}),

				fetchDate:	()	=>	({

				type:	TYPE.FETCH_DATE,	value:	async	()	=>	{

				const	date	=	await	fetch(

				'http://localhost:1337/date'

).then((res)	=>	res.text())	return	date

}

				}),

				setTime:	(time)	=>	({

				type:	TYPE.FETCH_TIME,	value:	time,	})

}

const	setValue	=	(prevState,	action)	=>	({

				...prevState,	value:	action.value	||	null,	error:	action.error	||	null,	status:
action.status	||	STATUS.RESOLVED,	})

const	iniState	=	{

				time:	{

				value:	null,	error:	null,	status:	STATUS.RESOLVED,	},

				date:	{

				value:	null,	error:	null,	status:	STATUS.RESOLVED,	}

}

const	timeReducer	=	(state	=	iniState,	action)	=>	{

				switch	(action.type)	{

				case	TYPE.FETCH_TIME:	return	{

				...state,

				time:	setValue(state.time,	action)	}

				case	TYPE.FETCH_DATE:	return	{

				...state,

				date:	setValue(state.date,	action)	}

				default:	return	state	}

}

const	allowAsync	=	({	dispatch	})	=>	next	=>	action	=>	{

				if	(typeof	action.value	===	'function')	{

				dispatch({

				type:	action.type,	status:	STATUS.PENDING,	})

				const	promise	=	Promise	.resolve(action.value())	.then((value)	=>	dispatch({

				type:	action.type,	status:	STATUS.RESOLVED,	value,

				}))

				.catch((error)	=>	dispatch({

				type:	action.type,	status:	STATUS.REJECTED,	error:	error.message,	}))

				return	promise	}

				return	next(action)	}

const	store	=	createStore(

				timeReducer,	applyMiddleware(

				allowAsync,

),

)

const	{

				setTime,

				fetchTime,

				fetchDate,

				}	=	bindActionCreators(actions,	store.dispatch)

store.subscribe(()	=>	{

				console.log('x1b[1;34m%sx1b[0m',	'State	has	changed')	console.dir(

				store.getState(),	{	colors:	true,	compact:	false	},)

				})

setTime(new	Date().toTimeString())

fetchTime()

fetchDate()

16.	 Save	the	file.

Let's	test	it...
To	see	your	previous	work	in	action:

1.	 Open	a	new	terminal	and	run:

						node	api-server.js

2.	 Without	closing	the	previously	running	NodeJS	process,	open
another	Terminal	and	run:

						node	async-redux.js

time:	{

				value:	"01:02:03	GMT+0000",

				error:	null,

				status:	"RESOLVED"

}

time:	{

				value:	null,

				error:	null,

				status:	"PENDING"

}

				//	Later,	once	the	operation	is	fulfilled:

				time:	{

				value:	"01:02:03	GMT+0000",

				error:	null,

				status:	"RESOLVED"

}

date:	{

				value:	null,

				error:	null,

				status:	"PENDING"

}

				//	Later,	once	the	operation	is	fulfilled:

				date:	{

				value:	null,

				error:	"request	to	http://localhost:1337/date	failed,	reason:	
	socket	hang
up",

				status:	"REJECTED"

}

5.	 Take	into	account	that	because	the	operations	are	asynchronous,	the	output
displayed	in	the	terminal	may	not	always	be	in	the	same	order

6.	 Notice	that	the	first	async	operation	is	fulfilled	and	the	status	marked	as
RESOLVED	while	the	second	async	operation	is	fulfilled	and	its	status	marked
as	REJECTED

7.	 The	statuses	PENDING,	RESOLVED,	and	REJECTED	reflect	the	three	statuses
that	a	JavaScript	Promise	can	be,	and	they	are	not	obligatory	names,	simply
easy	to	remember

	

There's	more...
If	you	don't	want	to	write	your	own	middleware	functions	or	store
enhancers	to	deal	with	asynchronous	operations,	you	can	opt	to	use	one	of
the	many	libraries	for	Redux	that	exist	out	there.	Two	of	the	most	use	or
popular	ones	are	these:

Redux	Thunk—https://github.com/gaearon/redux-thunk

Redux	Saga—https://github.com/redux-saga/redux-saga

https://github.com/gaearon/redux-thunk
https://github.com/redux-saga/redux-saga

	

Building	Web	Applications	with
React
In	this	chapter,	we	will	cover	the	following	recipes:

Understanding	React	elements	and	React	components

Composing	components

Stateful	components	and	life	cycle	methods

Working	with	React.PureComponent

React	event	handlers

Conditional	rendering	of	components

Rendering	lists	with	React

Working	with	forms	and	inputs	in	React

Understanding	refs	and	how	to	use	them

Understanding	React	portals

Catching	errors	with	error	boundary	components

Type	checking	properties	with	PropTypes

Technical	requirements
You	will	be	required	to	know	Go	programming	language,	also	basics	of
web	application	framework.	You	will	also	need	to	install	Git,	in	order	use
the	Git	repository	of	this	book.	And	finally,	ability	to	develop	with	an	IDE
on	the	command	line.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter06

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/J7d7Ag

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter06
https://goo.gl/J7d7Ag

Introduction
React	is	a	JavaScript	library	for	building	user	interfaces	(UI).	React	is
component-based,	which	means	that	each	component	can	live	separately
from	others	and	manage	its	own	state.	Complex	UIs	can	be	created	by
composing	components.

Components	are	usually	created	using	JSX	syntax,	which	has	an	XML-
like	syntax,	or	using	the	React.createElement	method.	However,	JSX	is	what
makes	React	special	for	building	web	applications	in	a	declarative	way.

In	the	MVC	pattern,	React	is	usually	associated	with	the	View.

Understanding	React	elements
and	React	components
React	elements	can	be	created	using	JSX	syntax:

const	element	=	<h1>Example</h1>	

This	is	transformed	to:

const	element	=	React.createElement('h1',	null,	'Example')	

JSX	is	a	language	extension	on	top	of	JavaScript	that	allows	you	to	create
complex	UIs	with	ease.	For	example,	consider	the	following:

const	element	=	(

				<details>	

								<summary>React	Elements</summary>	

								<p>JSX	is	cool</p>	

				</details>	

)	

The	previous	example	could	be	written	without	JSX	syntax	as:

const	element	=	React.createElement(

				'details',	

				null,	

				React.createElement('summary',	null,	'React	Elements'),	

				React.createElement('p',	null,	'JSX	is	cool'),	

)	

React	elements	can	be	any	HTML5	tag	and	any	JSX	tag	can	be	self-
closed.	For	instance,	the	following	will	create	a	paragraph	React	element
with	an	empty	content	within:

const	element	=	<p	/>	

The	same	way	as	you	would	do	with	HTML5,	you	can	provide	attributes
to	React	elements,	called	properties	or	props	in	React:

const	element	=	(

				<input	type="text"	value="Example"	readOnly	/>	

)	

React	components	allow	you	to	isolate	parts	of	your	web	application	as
re-usable	pieces	of	code	or	components.	They	can	be	defined	in	several
ways.	For	instance:

Functional	components:	These	are	plain	JavaScript	functions	that
accept	properties	as	the	first	argument	and	return	React	elements:

const	InputText	=	({	name,	children	})	=>	(

										<input	

														type="text"	

														name={name}	

														value={children}	

														readOnly	

										/>	

)	

Class	components:	Using	ES6	classes	allows	you	to	define	life
cycle	methods	and	create	stateful	components.	They	render	React
elements	from	the	render	method:

	class	InputText	extends	React.Component	{	render()	{	

														const	{	name,	children	}	=	this.props	

														return	(

																		<input	

																						type="text"	

																						name={name}	

																						value={children}	

																						readOnly	

																		/>	

)	

										}	

						}	

Expressions:	These	keep	a	reference	to	an	instance	of	a	React
element	or	component:

	const	InstanceInputText	=	(

										<InputText	name="username">	

														Huang	Jx	

										</InputText>	

)	

There	are	a	few	properties	that	are	unique	and	are	only	part	of	React.	For
instance,	the	children	property	refers	to	the	elements	contained	within	the
tag:

<MyComponent>	

				Example	

</MyComponent>	

The	children	property	received	in	MyComponent,	in	the	previous	example,	will
be	an	instance	of	a	span	React	element.	If	multiple	React	elements	or
components	are	passed	as	children,	the	children	property	will	be	an	array.
However,	if	no	children	are	passed,	the	children	property	will	be	null.	The
children	property	doesn't	necessarily	need	to	be	a	React	element	or
component;	it	can	also	be	a	JavaScript	function,	or	a	JavaScript	primitive:

<MyComponent>	

				{()	=>	{	

								console.log('Example!')	

								return	null

				}}	

</MyComponent>	

React	also	considers	functional	components	and	class	components	that

return	or	render	a	string,	a	valid	React	component.	For	instance:

const	SayHi	=	({	to	})	=>	(

				`Hello	${to}`	

)	

const	element	=	(

				<h1>	

								<SayHi	to="John"	>,	how	are	you?	

				<h1>	

)	

React	components'	names	must	start	with	an	uppercase	letter.	Otherwise,	React	will
treat	lowercased	JSX	tags	as	React	elements

Rendering	components	to	the	DOM	in	React	is	not	a	complicated	task.
React	provides	several	methods	for	rendering	a	React	component	to	the
DOM	using	the	ReactDOM	library.	React	uses	JSX	or	React.createElement	to
create	a	tree	or	a	representation	of	the	DOM	tree.	It	does	so	by	using	a
virtual	DOM,	which	allows	React	to	transform	React	elements	to	DOM
nodes	and	update	only	the	nodes	that	have	changed.

This	is	how	you	usually	render	your	application	using	the	render	method
from	the	ReactDOM	library:

import	*	as	ReactDOM	from	'react-dom'	

import	App	from	'./App'	

ReactDOM.render(

			<App	/>,	

			document.querySelector('[role="main"]'),	

)	

The	first	argument	provided	to	the	render	method	is	a	React	component	or	a
React	element.	The	second	argument	tells	you	where	in	the	DOM	to
render	the	application.	In	the	previous	example,	we	use	the	querySelector
method	from	the	document	object	to	look	for	a	DOM	node	with	an
attribute	of	role	set	to	"main".

React	also	allows	you	to	render	React	components	as	an	HTML	string,
which	is	useful	for	generating	content	on	the	server	side	and	sending	the
content	directly	to	the	browser	as	an	HTML	file:

import	*	as	React	from	'react'	

import	*	as	ReactDOMServer	from	'react-dom/server'	

const	OrderedList	=	({	children	})	=>	(

				

						{children.map((item,	indx)	=>	(

									<li	key={indx}>{item}	

))}	

				

)	

console.log(

			ReactDOMServer.renderToStaticMarkup(

						<OrderedList>	

									{['One',	'Two',	'Three']}	

						</OrderedList>	

)	

)	

It	will	output	the	following	in	the	console:

	

			One	

			Two	

			Three	

	

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

npm	install

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

const	RedText	=	({	text	})	=>	(

				

				{text}

				

)

const	Welcome	=	({	to	})	=>	(

				<h1>Hello,	<RedText	text={to}/></h1>

)

const	TodoList	=	(

				

				Lunch	at	14:00	with	Jenny

				Shower

				

)

class	Footer	extends	React.Component	{

				render()	{

				return	(

				<footer>

				{new	Date().toDateString()}

				</footer>

)

}

}

ReactDOM.render(

				<div>

				<Welcome	to="John"	/>

				{TodoList}

				<Footer	/>

				</div>,

				document.querySelector('[role="main"]'),

)

<!DOCTYPE	html>

				<html	lang="en">

				<head>

				<meta	charset="UTF-8">

				<title>MyApp</title>

				</head>

				<body>

				<div	role="main"></div>

				<script	src="./basics.js"></script>

				</body>

				</html>

3.	 Save	the	file

	npm	start

http://localhost:1337/

3.	 You	should	be	able	to	see	the	React	application	rendered	to	the	DOM

Composing	components
In	React,	all	components	can	be	isolated	and	complex	UIs	can	be	built	by
composing	components	which	enables	their	re-usability.

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

npm	install

import	*	as	React	from	'react'

	import	*	as	ReactDOM	from	'react-dom'

				export	default	({	title	})	=>	(

				<h1>{title}</h1>)

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

				export	default	({	date	})	=>	(

				<footer>{date}</footer>)

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

				export	default	()	=>	(

				<p>This	is	a	cool	website	designed	with	ReactJS</p>)

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

import	Header	from	'./component/Header'

				import	Footer	from	'./component/Footer'

				import	Description	from	'./component/Description'

const	App	=	()	=>	(

				<React.Fragment>	<Header	title="Simple	React	App"	/>	<Description	/>

				<Footer	date={new	Date().toDateString()}	/>	</React.Fragment>)

ReactDOM.render(

				<App	/>,

				document.querySelector('[role="main"]'),)

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Composing	Components</title>	</head>

				<body>

				<div	role="main"></div>	<script	src="./composing-react.js"></script>
</body>

				</html>

3.	 Save	the	file

	npm	start

http://localhost:1337/

<div	role="app">	<h1>React	App</h1>	<p>This	is	a	cool	website	designed	with
ReactJS</p>	<footer>Tue	May	22	2018</footer>	</div>

	

How	it	works...
Each	React	component	is	written	in	a	separate	file.	Then,	we	import	the
components	in	the	main	application	file,	composing-react.js,	and	use
composition	to	generate	a	virtual	DOM	tree.	Each	component	is	re-usable
because	it	can	be	used	again	in	other	parts	of	your	application	or	in	other
components	by	just	importing	the	files.	Then,	the	render	method	from	the
ReactDOM	library	is	used	to	generate	a	DOM	representation	of	the	virtual
DOM	tree.

	

const	Example	=	()	=>	(

				One	Two)	//	<	will	trow	an	error

const	Example	=	()	=>	(

				<React.Fragment>	One	Two
</React.Fragment>)

Stateful	components	and	life
cycle	methods
React	components	can	manage	their	own	state	and	update	only	when	the
state	has	changed.	Stateful	React	components	are	written	using	ES6
classes:

class	Example	extends	React.Component	{	

			render()	{	

						This	is	an	example	

			}	

}	

React	class	components	have	a	state	instance	property	to	access	their
internal	state	and	a	props	property	to	access	properties	passed	to	the
component:

class	Example	extends	React.Component	{		

				state	=	{	title:	null	}	

				render()	{	

								return	(

												<React.Fragment>		

																{this.props.title}		

																{this.state.title}		

												</React.Fragment>		

)	

				}	

}	

And	their	state	can	be	mutated	by	using	the	setState	instance	method:

class	Example	extends	React.Component	{	

				state	=	{	

								title:	"Example",	

								date:	null,	

				}	

				componentDidMount()	{	

								this.setState((prevState)	=>	({	

												date:	new	Date().toDateString(),	

								}))	

				}	

				render()	{	

								return	(

												<React.Fragment>		

																{this.state.title}		

																{this.state.date}		

												</React.Fragment>		

)	

				}	

}	

The	state	is	initialized	once.	Then,	when	the	component	is	mounted,	the
state	should	only	be	mutated	using	the	setState	method.	This	way,	React	is
able	to	detect	changes	in	the	state	and	update	the	component.

The	setState	method	accepts	a	callback	function	as	the	first	argument
which	will	be	executed	passing	the	current	state	(prevState	for	convention)
as	the	first	argument	to	the	callback	function	and	the	current	props	as	the
second	argument.	This	is	so	because	setState	works	asynchronously	and
the	state	could	be	mutated	while	you	are	performing	other	actions	in
different	parts	of	your	component.

If	you	don't	need	access	to	the	current	state	while	updating	the	state,	you
can	directly	pass	an	object	as	the	first	argument.	For	instance,	the	previous
example	could	have	been	written	as:

componentDidMount()	{	

			this.setState({	

						date:	new	Date().toDateString(),	

			})	

}	

setState	also	accepts	an	optional	callback	function	as	a	second	argument
that	gets	called	once	the	state	has	been	updated.	Because	setState	is
asynchronous,	you	may	want	to	use	the	second	callback	to	perform	an
action	only	once	the	state	has	been	updated:

componentDidMount()	{	

			this.setState({	

						date:	new	Date().toDateString(),	

			},	()	=>	{	

						console.log('date	has	been	updated!')	

			})	

			console.log(this.state.date)	//	null	

}	

Once	the	component	is	mounted,	the	console	will	first	output	null	even
though	we	used	setState	before	it;	that's	because	the	state	is	set
asynchronously.	However,	once	the	state	is	updated,	the	console	will
display	"date	has	been	updated".

When	using	the	setState	method,	React	merges	the	previous	state	with	the	current
given	state.	Internally,	it's	similar	to	doing:

currentState	=	Object.assign({},	currentState,	nextState)	

Every	class	component	has	life	cycle	methods	that	give	you	control	over
the	life	of	your	component	since	its	creation	until	it's	destroyed,	as	well	as
giving	you	control	over	other	properties,	such	as	knowing	when	the
component	has	received	new	properties	and	if	the	component	should	be
updated	or	not.	These	are	the	life	cycle	methods	present	in	all	class
components:

constructor(props):	This	is	invoked	when	initializing	a	new	instance
of	the	component,	before	the	component	is	mounted.	props	must	be
passed	to	the	super	class	using	super(props)	to	let	React	set	the	props
correctly.	The	constructor	method	is	useful	as	well	to	initialize	the
initial	state	of	the	component.

static	getDerivedStateFromProps(nextProps,	nextState):	This	is	invoked
when	the	component	has	been	instantiated	and	when	the
component	will	receive	new	props.	This	method	is	useful	when	the
state	or	part	of	it	depends	on	values	received	from	the	props	passed
to	the	component.	It	must	return	an	object	which	will	be	merged

with	the	current	state	or	null	if	the	state	doesn't	need	to	be	updated
after	receiving	new	props.

componentDidMount():	This	is	invoked	after	the	component	has	been
mounted	and	after	the	first	render	call.	It's	useful	for	integrating
with	third-party	libraries,	accessing	the	DOM,	or	making	HTTP
requests	to	an	endpoint.

shouldComponentUpdate(nextProps,	nextState):	This	is	invoked	when	the
component	has	updated	the	state	or	new	props	have	been	received.
This	method	allows	React	to	know	if	it	should	update	the
component	or	not.	If	you	don't	implement	this	method	in	your
component,	it	defaults	to	returning	true,	which	means	the
component	should	be	updated	every	time	the	state	has	changed	or
new	props	have	been	received.	If	implementing	this	method	and
returning	false,	it	will	tell	React	not	to	update	the	component.

componentDidUpdate(prevProps,	prevState,	snapshot):	This	is	invoked	after
the	render	method	or	when	an	update	occurs,	except	for	the	first
rendering.

getSnapshotBeforeUpdate(prevProps,	prevState):	This	is	invoked	after	the
render	method	or	when	an	update	occurs	but	before	the
componentDidUpdate	life	cycle	method.	The	returned	value	of	this
method	is	passed	as	the	third	argument	of	componentDidUpdate.

componentWillUnmount():	This	is	invoked	before	a	component	is
unmounted	and	its	instance	destroyed.	If	using	third-party
libraries,	this	method	is	helpful	for	cleaning	up.	For	instance,
clearing	timers	or	cancelling	network	requests.

componentDidCatch(error,	info)	:	This	is	a	new	feature	of	React	v16	for
error	handling.	We	will	look	at	this	in	more	detail	in	the	following

recipes.

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

npm	install

<!DOCTYPE	html>

				<html	lang="en">

				<head>

				<meta	charset="UTF-8">

				<title>Life	cycle	methods</title>

				</head>

				<body>

				<div	role="main"></div>

				<script	src="./stateful-react.js"></script>

				</body>

				</html>

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

class	LifeCycleTime	extends	React.Component	{

				constructor(props)	{

				super(props)

				this.state	=	{

				time:	new	Date().toTimeString(),

				color:	null,

				dontUpdate:	false,

}

}

				static	getDerivedStateFromProps(nextProps,	prevState)	{

				return	nextProps

}

				componentDidMount()	{

				this.intervalId	=	setInterval(()	=>	{

				this.setState({

				time:	new	Date().toTimeString(),

				})

				},	100)

}

				componentWillUnmount()	{

				clearInterval(this.intervalId)

}

				shouldComponentUpdate(nextProps,	nextState)	{

				if	(nextState.dontUpdate)	{

				return	false

}

				return	true

}

				getSnapshotBeforeUpdate(prevProps,	prevState)	{

				return	'snapshot	before	update'

}

				componentDidUpdate(prevProps,	prevState,	snapshot)	{

				console.log(

				'Component	did	update	and	received	snapshot:',

				snapshot,

)

}

				render()	{

				return	(

				

				{this.state.time}

				

)

}

}

class	App	extends	React.Component	{

				constructor(props)	{

				super(props)

				this.state	=	{

				color:	'red',

				dontUpdate:	false,

				unmount:	false,

}

				this.toggleColor	=	this.toggleColor.bind(this)

				this.toggleUpdate	=	this.toggleUpdate.bind(this)

				this.toggleUnmount	=	this.toggleUnmount.bind(this)

}

				toggleColor()	{

				this.setState((prevState)	=>	({

				color:	prevState.color	===	'red'

				?	'blue'

				:	'red',

				}))

}

				toggleUpdate()	{

				this.setState((prevState)	=>	({

				dontUpdate:	!prevState.dontUpdate,

				}))

}

				toggleUnmount()	{

				this.setState((prevState)	=>	({

				unmount:	!prevState.unmount,

				}))

}

				render()	{

				const	{

				color,

				dontUpdate,

				unmount,

				}	=	this.state

				return	(

				<React.Fragment>

				{unmount	===	false	&&	<LifeCycleTime

				color={color}

				dontUpdate={dontUpdate}

				/>}

				<button	onClick={this.toggleColor}>

				Toggle	color

				{JSON.stringify({	color	})}

				</button>

				<button	onClick={this.toggleUpdate}>

				Should	update?

				{JSON.stringify({	dontUpdate	})}

				</button>

				<button	onClick={this.toggleUnmount}>

				Should	unmount?

				{JSON.stringify({	unmount	})}

				</button>

				</React.Fragment>

)

}

}

ReactDOM.render(

				<App	/>,

				document.querySelector('[role="main"]'),

)

6.	 Save	the	file.

	npm	start

	http://localhost:1337/

3.	 Use	the	buttons	to	toggle	the	state	of	the	component	and	understand	how
the	life	cycle	methods	affect	the	component's	functionality.

Working	with
React.PureComponent
React.PureComponent	is	similar	to	React.Component.	The	difference	is	that
React.Component	implements	the	shouldComponentUpdate	life	cycle	method
internally	to	make	a	shallow	comparison	of	the	state	and	props	to	decide	if
the	component	should	update	or	not.

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

npm	install

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>React.PureComponent</title>	</head>

				<body>

				<div	role="main"></div>	<script	src="./pure-component.js"></script>
</body>

				</html>

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

class	Button	extends	React.PureComponent	{

				componentDidUpdate()	{

				console.log('Button	Component	did	update!')	}

				render()	{

				return	(

				<button>{this.props.children}</button>)

}

}

class	Text	extends	React.Component	{

				componentDidUpdate()	{

				console.log('Text	Component	did	update!')	}

				render()	{

				return	this.props.children	}

}

class	App	extends	React.Component	{

				state	=	{

				counter:	0,

}

				componentDidMount()	{

				this.intervalId	=	setInterval(()	=>	{

				this.setState(({	counter	})	=>	({

				counter:	counter	+	1,	}))

				},	1000)

}

				componentWillUnmount()	{

				clearInterval(this.intervalId)	}

				render()	{

				const	{	counter	}	=	this.state	return	(

				<React.Fragment>	<h1>Counter:	{counter}</h1>	<Text>I'm	just	a
text</Text>	<Button>I'm	a	button</Button>	</React.Fragment>)

}

}

ReactDOM.render(

				<App	/>,

				document.querySelector('[role="main"]'),)

7.	 Save	the	file.

	npm	start

		http://localhost:1337/

[N]	Text	Component	did	update!

	

How	it	works...
Because	React.PureComponent	implements	the	shouldComponentUpdatelife	cycle
method	internally,	it	doesn't	update	the	Button	component	because	its	state
or	props	have	not	changed.	It	does,	however,	update	the	Text	component
because	shouldComponentUpdate	returns	true	by	default,	telling	React	to	update
the	component,	even	though	its	props	or	state	have	not	changed.

	

	

React	event	handlers
React's	event	system	uses	internally	a	wrapper,	called	SyntheticEvent,	around
the	native	HTML	DOM	events	for	cross-browser	support.	React	events
follow	the	W3C	spec,	which	can	be	found	at	https://www.w3.org/TR/DOM-Level-
3-Events/.

React	event	names	are	camel-cased	as	opposed	to	HTML	DOM	events,
which	are	lowercased.	For	instance,	the	HTML	DOM	event	onclick	would
be	called	onClick	in	React.	For	a	complete	list	of	supported	events,	visit	the
React	official	documentation	about	events:	https://reactjs.org/docs/events.htm
l

	

https://www.w3.org/TR/DOM-Level-3-Events/
https://reactjs.org/docs/events.html

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

npm	install

<!DOCTYPE	html>

				<html	lang="en">

				<head>

				<meta	charset="UTF-8">

				<title>React	Events	Handlers</title>

				</head>

				<body>

				<div	role="main"></div>

				<script	src="./events.js"></script>

				</body>

				</html>

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

class	App	extends	React.Component	{

				constructor(props)	{

				super(props)

				this.state	=	{

				title:	'Untitled',

}

				this.onBtnClick	=	this.onBtnClick.bind(this)

}

				onBtnClick()	{

				this.setState({

				title:	'Hello	there!',

				})

}

				render()	{

				return	(

				<section>

				<h1>{this.state.title}</h1>

				<button	onClick={this.onBtnClick}>

				Click	me	to	change	the	title

				</button>

				</section>

)

}

}

ReactDOM.render(

				<App	/>,

				document.querySelector('[role="main"]'),

)

5.	 Save	the	file.

Let's	test	it...
To	see	the	application	working,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

							npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 Click	on	the	button	to	change	the	title.

How	it	works...
React	events	are	passed	to	React	elements	as	props.	For	instance,	we	passed
the	onClick	prop	to	the	button	React	element	and	a	reference	to	a	callback
function	that	we	expect	to	be	called	when	the	user	clicks	on	the	button.

class	Example	{

				fn()	{	return	this	}

}

const	examp	=	new	Example()	const	props	=	examp.fn	const	bound	=
examp.fn.bind(examp)	console.log('1:',	typeof	examp.fn())	console.log('2:',
typeof	props())	console.log('3:',	typeof	bound())

1:	object

2:	undefined

3:	object

Even	though	the	constant	props	has	a	reference	to	the	fn	method	of	the	examp
instance	of	the	Example	class,	it	loses	the	context	of	this.	That's	why	binding
allows	you	to	keep	the	original	context.	In	React,	we	bind	a	method	to	the
original	context	of	this	to	be	able	to	use	our	own	instance	methods,	such	as
setState,	when	passing	the	function	down	to	child	components.	Otherwise,	the
context	of	this	will	be	undefined	and	the	function	will	fail.

Conditional	rendering	of
components
Usually	when	building	complex	UIs,	you	would	need	to	render	a
component	or	a	React	element	according	to	the	state	or	props	received.

React	components	allow	JavaScript	to	be	executed	within	curly	brackets
and	it	can	be	used	with	the	conditional	ternary	operator	to	decide	which
component	or	React	element	to	render.	For	instance:	const	Meal	=	({
timeOfDay	})	=>	({timeOfDay	===	'noon'	?	'Pizza'	:	'Sandwich'	}
)

This	also	could	have	been	written	as:

const	Meal	=	({	timeOfDay	})	=>	(

				<span	children={timeOfDay	===	'noon'	

								?	'Pizza'	

								:	'Sandwich'	

				}	/>		

)	

If	passing	"noon"	as	the	timeOfDay	property	value,	it	will	generate	the
following	HTML	content:

Pizza	

Or	the	following	when	the	timeOfDay	property	is	not	set	to	"noon":

Sandwich	

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

npm	install

<!DOCTYPE	html>

				<html	lang="en">

				<head>

				<meta	charset="UTF-8">

				<title>Conditional	Rendering</title>

				</head>

				<body>

				<div	role="main"></div>

				<script	src="./conditions.js"></script>

				</body>

				</html>

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

const	Toggle	=	({	condition,	children	})	=>	(

				condition

				?	children[0]

				:	children[1]

)

class	App	extends	React.Component	{

				constructor(props)	{

				super(props)

				this.state	=	{

				color:	'blue',

}

				this.onClick	=	this.onClick.bind(this)

}

				onClick()	{

				this.setState(({	color	})	=>	({

				color:	(color	===	'blue')	?	'lime'	:	'blue'

				}))

}

				render()	{

				const	{	color	}	=	this.state

				return	(

				<React.Fragment>

				<Toggle	condition={color	===	'blue'}>

				<p	style={{	color	}}>Blue!</p>

				<p	style={{	color	}}>Lime!</p>

				</Toggle>

				<button	onClick={this.onClick}>

				Toggle	Colors

				</button>

				</React.Fragment>

)

}

}

ReactDOM.render(

				<App	/>,

				document.querySelector('[role="main"]'),

)

6.	 Save	the	file.

	npm	start

http://localhost:1337/

3.	 Click	on	the	button	to	toggle	which	React	element	is	displayed

	

How	it	works...
Because	the	children	property	can	be	an	array	of	React	elements,	we	can
access	each	individual	React	element	and	decide	which	one	to	render.	We
used	the	condition	property	to	evaluate	if	the	given	condition	is	truthy	to
render	the	first	React	element.	Otherwise,	if	the	value	is	falsy,	then	the
second	React	element	is	rendered.

	

{[

				<li	key={0}>One,

				<li	key={1}>Two,

]}

				

Collections	of	React	elements	or	components	must	be	given	a	special	props
property	named	key.	This	property	lets	React	know	which	of	the	elements	in	the
collection	have	changed,	moved,	or	been	removed	in/from	the	array	when	an
update	occurs.

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

	npm	install

<!DOCTYPE	html>

				<html	lang="en">

				<head>

				<meta	charset="UTF-8">

				<title>Rendering	Lists</title>

				</head>

				<body>

				<div	role="main"></div>

				<script	src="./lists.js"></script>

				</body>

				</html>

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

const	MapArray	=	({

				from,

				mapToProps,

				children:	Child,

				})	=>	(

				<React.Fragment>

				{from.map((item)	=>	(

				<Child	{...mapToProps(item)}	/>

))}

				</React.Fragment>

)

const	TodoItem	=	({	done,	label	})	=>	(

				

				<input	type="checkbox"	checked={done}	readOnly	/>

				<label>{label}</label>

				

)

const	list	=	[

				{	id:	1,	done:	true,	title:	'Study	for	Chinese	exam'	},

				{	id:	2,	done:	false,	title:	'Take	a	shower'	},

				{	id:	3,	done:	false,	title:	'Finish	chapter	6'	},

]

const	mapToProps	=	({	id:	key,	done,	title:	label	})	=>	({

				key,

				done,

				label,

				})

const	TodoListApp	=	({	items	})	=>	(

				

				<MapArray	from={list}	mapToProps={mapToProps}>

				{TodoItem}

				</MapArray>

				

)

ReactDOM.render(

				<TodoListApp	items={list}	/>,

				document.querySelector('[role="main"]'),

)

9.	 Save	the	file.

	npm	start

http://localhost:1337/

3.	 A	list	of	to-do	items	should	be	displayed:

List	of	to-do	items

				<MapArray	from={list}	mapToProps={mapToProps}>

				{TodoItem}

				</MapArray>

				<React.Fragment>

				{from.map((item)	=>	(

				<TodoItem	{...mapToProps(item)	}	/>

))}

				</React.Fragment>

However,	MapArray	acts	as	a	helper	component	to	do	the	same	job	while	keeping
the	code	more	readable.

Have	you	noticed	that	the	TodoItem	component	expects	only	two	properties?
However,	we're	also	passing	the	id	of	the	items	as	key.	If	the	key	property	is	not
passed,	then	while	rendering	the	components,	a	warning	will	be	displayed.

Working	with	forms	and	inputs
in	React
Form-associated	elements,	such	as	<input>	and	<textarea>,	usually	maintain
their	own	internal	state	and	update	it	according	to	the	user	input.	In	React,
when	the	input	of	a	form-associated	element	is	managed	using	the	React
state,	it's	called	a	controlled	component.

By	default,	in	React,	if	the	value	property	of	an	input	is	not	set,	then	the
input	internal	state	can	be	mutated	by	the	user	input.	However,	if	the	value
property	is	set,	then	the	input	is	read-only	and	it	expects	React	to	manage
the	user	input	by	using	the	onChange	React	event	and	manage	the	input's
state	using	the	React	state	to	update	it	if	necessary.	For	example,	this	input
React	element	will	be	rendered	as	read-only:	<input	type="text"
value="Ms.Huang	Jx"	/>

However,	because	React	expects	to	find	an	onChange	event	handler,	the
previous	code	will	output	a	warning	message	on	the	console.	To	fix	this,
we	can	provide	to	the	onChange	property	a	callback	function	to	handle	the
user	input:

<input	type="text"	value="Ms.Huang	Jx"	onChange={event	=>	null}	/>	

Because	the	user	input	is	handled	by	React	and,	in	the	previous	example,
we	don't	update	the	input's	value,	then	the	input	will	appear	to	be	read-
only.	The	previous	code	is	similar	to	just	setting	a	readOnly	property	instead
of	providing	a	useless	onChange	property.

React	also	allows	you	to	define	uncontrolled	components,	which
basically	keep	out	of	React's	control	what	or	input	how	the	input	is
updated.	For	instance,	when	a	third-party	library	is	used	instead	to	act	over
the	input,	uncontrolled	components	have	a	property	called	defaultValue,

which	is	similar	to	the	value	property.	However,	it	lets	the	input	control	its
internal	state	by	the	user	input	and	not	by	React.	That	means	a	form-
associated	element	with	a	defaultValue	property	allows	its	state	to	be
mutated	by	the	user	input:	<input	type="text"	defaultValue="Ms.Huang
Jx"	/>

As	opposed	to	using	the	value	property,	you	can	now	type	in	the	input	box
to	change	its	value	because	the	internal	state	of	the	input	is	mutable.

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

	npm	install

<!DOCTYPE	html>

				<html	lang="en">

				<head>

				<meta	charset="UTF-8">

				<title>Forms	and	Inputs</title>

				</head>

				<body>

				<div	role="main"></div>

				<script	src="./forms.js"></script>

				</body>

				</html>

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

class	LoginForm	extends	React.Component	{

				constructor(props)	{

				super(props)

				this.state	=	{

				username:	'',

				password:	'',

}

				this.onChange	=	this.onChange.bind(this)

}

				onChange(event)	{

				const	{	name,	value	}	=	event.target

				this.setState({

				[name]:	name	===	'username'

				?	value.replace(/d/gi,	'')

				:	value

				})

}

				render()	{

				return	(

				<form>

				<input

				type="text"

				name="username"

				placeholder="Username"

				value={this.state.username}

				onChange={this.onChange}

				/>

				<input

				type="password"

				name="password"

				placeholder="Password"

				value={this.state.password}

				onChange={this.onChange}

				/>

				<pre>

				{JSON.stringify(this.state,	null,	2)}

				</pre>

				</form>

)

}

}

ReactDOM.render(

				<LoginForm	/>,

				document.querySelector('[role="main"]'),

)

5.	 Save	the	file.

	npm	start

	http://localhost:1337/

3.	 Try	to	introduce	a	number	in	the	username	input	to	see	how	the	validation
against	numbers	is	working

	

How	it	works...
We	define	an	onChange	event	handler	used	in	both	input	elements.	However,
we	check	if	the	input's	name	is	username	to	decide	if	the	validation	should	be
applied.	RegExp	is	used	to	test	for	numbers	in	the	input	and	replace	them
with	an	empty	string.	That's	why	numbers	are	not	displayed	while	typing
on	the	username	input.

	

Understanding	refs	and	how	to
use	them
In	the	usual	workflow,	React	components	communicate	with	their	children
by	passing	props.	However,	there	are	a	few	cases	where	it's	needed	to
access	the	instance	of	a	child	to	communicate	or	modify	its	behavior.
React	uses	refs	to	allow	us	to	access	the	instance	of	a	child.

It's	important	to	understand	that	React	components'	instances	give	you
access	to	their	instance	methods	and	properties.	However,	an	instance	of	a
React	element	is	an	instance	of	an	HTML	DOM	element.	Refs	are
accessed	by	giving	a	ref	attribute	to	the	React	component	or	React
element.	It	expects	the	value	to	be	a	callback	function	that	will	be	invoked
once	the	instance	is	created,	providing	a	reference	to	the	instance	in	the
first	argument	passed	to	the	callback	function.

React	provides	a	helper	function	named	createRef	to	define	function
callbacks	for	setting	refs	correctly.	Take,	for	example,	the	following	code,
which	obtains	a	reference	of	a	React	component	and	a	React	element:

class	Span	extends	React.Component	{	

				render()	{	

								return	{this.props.children}	

				}	

}	

class	App	extends	React.Component	{	

				rf1	=	React.createRef()	

				rf2	=	React.createRef()	

				componentDidMount()	{	

								const	{	rf1,	rf2	}	=	this	

								console.log(rf1.current	instanceof	HTMLSpanElement)	

								console.log(rf2.current	instanceof	Span)	

				}	

				render()	{	

								return	(

												<React.Fragment>	

																	

																	

												</React.Fragment>	

)	

				}	

}	

In	this	example,	the	console	will	output	true	twice:

true	//	rf1.current	instanceof	HTMLSpanElement	

true	//	rf2.current	instanceof	Span	

This	proves	what	we	have	just	learned.

Functional	components	do	not	have	refs.	Thus,	giving	a	ref	property	to	a	functional
component	will	display	a	warning	in	the	console	and	fail.

Refs	are	especially	useful	for	working	with	uncontrolled	components	in
the	following	cases:

Integration	with	third-party	libraries

Accessing	an	HTML	DOM	element's	native	methods	that	are
otherwise	inaccessible	from	React,	such	as	the	HTMLElement.focus()
method

Using	certain	web	APIs,	such	as	the	Selection	Web	API,	the	Web
Animations	API,	and	media	playback	methods

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

	npm	install

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Refs</title>	</head>

				<body>

				<div	role="main"></div>	<script	src="./refs.js"></script>	</body>

				</html>

import	*	as	React	from	'react'

import	*	as	ReactDOM	from	'react-dom'

class	LoginForm	extends	React.Component	{

				refForm	=	React.createRef()	constructor(props)	{

				super(props)

				this.state	=	{}

				this.onSubmit	=	this.onSubmit.bind(this)	this.onClick	=
this.onClick.bind(this)	}

				onSubmit(event)	{

				const	form	=	this.refForm.current	const	data	=	new	FormData(form)
this.setState({

				user:	data.get('user'),	pass:	data.get('pass'),	})

				event.preventDefault()	}

				onClick(event)	{

				const	form	=	this.refForm.current	form.dispatchEvent(new	Event('submit'))	}

				render()	{

				const	{	onSubmit,	onClick,	refForm,	state	}	=	this	return	(

				<React.Fragment>	<form	onSubmit={onSubmit}	ref={refForm}>	<input
type="text"	name="user"	/>	<input	type="text"	name="pass"	/>	</form>

				<button	onClick={onClick}>LogIn</button>	<pre>{JSON.stringify(state,
null,	2)}</pre>	</React.Fragment>)

}

}

ReactDOM.render(

				<LoginForm	/>,	document.querySelector('[role="main"]'),)

5.	 Save	the	file.

Let's	test	it...
To	run	and	test	the	application,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

	

How	it	works...
1.	 Click	on	the	LogIn	button	to	test	that	the	form	onSubmit	events	gets

triggered.
2.	 First,	a	reference	to	the	instance	of	the	form	DOM	element	is	kept

in	an	instance	property	called	reform.
3.	 Then,	once	the	button	is	submitted,	we	use	the	EventTarget	web	API

dispatchEvent	method	to	dispatch	a	custom	event	submit	on	the	form
DOM	element.

4.	 Then,	the	dispatched	submit	method	is	caught	by	the	React
SyntheticEvent.

5.	 Finally,	React	triggers	the	callback	method	passed	to	the	form's
onSubmit	property.

ReactDOM.createPortal(

				ReactComponent,

				DOMNode,

)

<article>

				{ReactDOM.createPortal(

				<h1>Example</h1>,

				document.querySelector('[id="heading"]'),

)}

</article>

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

	npm	install

<!DOCTYPE	html>	<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Portals</title>	</head>

				<body>

				<header	id="heading"></header>	<div	role="main"></div>	<script
src="./portals.js"></script>	</body>

				</html>

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

const	Header	=	()	=>	ReactDOM.createPortal(

				<h1>React	Portals</h1>,	document.querySelector('[id="heading"]'),)

const	App	=	()	=>	(

				<React.Fragment>	<p>Hello	World!</p>	<Header	/>

				</React.Fragment>)

ReactDOM.render(

				<App	/>,

				document.querySelector('[role="main"]'),)

6.	 Save	the	file.

	npm	start

	http://localhost:1337/

<header	id="heading">	<h1>React	Portals</h1>	</header>

				<section	role="main">	<p>Hello	World!</p>	</section>

	

How	it	works...
Even	though	in	the	React	tree	the	Header	component	appears	to	be	rendered
after	the	paragraph	p	HTML	tag,	the	rendered	Header	component	renders
before	it.	That's	because	the	Header	component	is	actually	rendered	on	a
header	HTML	tag	that	appears	before	the	section	HTML	tag	where	the	main
application	is	rendered.

	

	

Catching	errors	with	error
boundary	components
Error	boundary	components	are	just	React	components	that	implement
the	componentDidCatch	life	cycle	method	to	catch	errors	in	their	children.
They	catch	errors	in	constructor	methods	when	a	class	component	is
initialized	but	fails,	in	life	cycle	methods,	and	while	rendering.	Errors	that
cannot	be	caught	are	from	asynchronous	code,	event	handlers,	and	errors
in	the	error	component	boundary	itself.

The	componentDidCatch	life	cycle	method	receives	two	arguments:	the	first
one	is	an	error	object	while	the	second	received	argument	is	an	object
containing	a	componentStack	property	with	a	friendly	stack	trace	that
describes	where	in	the	React	tree	a	component	failed.

	

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-plugin-transform-class-properties":	"6.24.1",	"babel-preset-env":
"1.6.1",	"babel-preset-react":	"6.24.1",	"babel-core":	"6.26.3",	"parcel-bundler":
"1.8.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

	npm	install

<!DOCTYPE	html>

				<html	lang="en">

				<head>

				<meta	charset="UTF-8">

				<title>Catching	Errors</title>

				</head>

				<body>

				<div	role="main"></div>

				<script	src="./error-boundary.js"></script>

				</body>

				</html>

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

class	ErrorBoundary	extends	React.Component	{

				constructor(props)	{

				super(props)

				this.state	=	{

				hasError:	false,

				message:	null,

				where:	null,

}

}

				componentDidCatch(error,	info)	{

				this.setState({

				hasError:	true,

				message:	error.message,

				where:	info.componentStack,

				})

}

				render()	{

				const	{	hasError,	message,	where	}	=	this.state

				return	(hasError

				?	<details	style={{	whiteSpace:	'pre-wrap'	}}>

				<summary>{message}</summary>

				<p>{where}</p>

				</details>

				:	this.props.children

)

}

}

class	App	extends	React.Component	{

				constructor(props)	{

				super(props)

				this.onClick	=	this.onClick.bind(this)

}

				onClick()	{

				this.setState(()	=>	{

				throw	new	Error('Error	while	setting	state.')

				})

}

				render()	{

				return	(

				<button	onClick={this.onClick}>

				Buggy	button!

				</button>

)

}

}

ReactDOM.render(

				<ErrorBoundary>

				<App	/>

				</ErrorBoundary>,

				document.querySelector('[role="main"]'),

)

6.	 Save	the	file.

	npm	start

http://localhost:1337/

Error	while	setting	state.

				in	App

				in	ErrorBoundary

Type	checking	properties	with
PropTypes
React	allows	you	to	implement	runtime	type	checking	of	components'
properties.	It's	useful	to	catch	bugs	and	make	sure	that	your	components
are	receiving	props	correctly.	This	can	be	easily	done	by	just	setting	a	static
propType	property	on	your	components.	For	instance:

class	MyComponent	extends	React.Component	{	

			static	propTypes	=	{	

						children:	propTypes.string.isRequired,	

			}	

			render()	{	

						return{this.props.children}	

			}	

}	

The	previous	code	will	require	MyComponent's	children	property	to	be	a	string.
Otherwise,	if	a	different	property	type	is	given,	React	will	display	a
warning	in	the	console.

propTypes'	methods	are	functions	that	get	triggered	when	the	component's
instance	is	created	to	check	if	the	given	props	match	the	propTypes	schema.

propTypes	have	an	extensive	list	of	methods	that	can	be	used	for	the
validation	of	properties.	You	can	find	the	complete	list	in	the	React	official
documentation:	https://reactjs.org/docs/typechecking-with-proptypes.html.

https://reactjs.org/docs/typechecking-with-proptypes.html

{

				"scripts":	{

				"start":	"parcel	serve	-p	1337	index.html"

				},

				"devDependencies":	{

				"babel-core":	"6.26.3",	"babel-plugin-transform-class-properties":	"6.24.1",
"babel-preset-env":	"1.6.1",	"babel-preset-react":	"6.24.1",	"parcel-bundler":
"1.8.1",	"prop-types":	"15.6.1",	"react":	"16.3.2",

				"react-dom":	"16.3.2"

}

}

{

				"presets":	["env","react"],	"plugins":	["transform-class-properties"]

}

npm	install

<!DOCTYPE	html>

				<html	lang="en">	<head>

				<meta	charset="UTF-8">	<title>Type	Checking</title>	</head>

				<body>

				<div	role="main"></div>	<script	src="./type-checking.js"></script>	</body>

				</html>

import	*	as	React	from	'react'

				import	*	as	ReactDOM	from	'react-dom'

				import	*	as	propTypes	from	'prop-types'

class	Toggle	extends	React.Component	{

				static	propTypes	=	{

				condition:	propTypes.any.isRequired,	children:	(props,	propName,
componentName)	=>	{

				const	customPropTypes	=	{

				children:	propTypes	.arrayOf(propTypes.element)	.isRequired

}

				const	isArrayOfElements	=	propTypes	.checkPropTypes(

				customPropTypes,

				props,

				propName,

				componentName,

)

				const	children	=	props[propName]

				const	count	=	React.Children.count(children)	if	(isArrayOfElements
instanceof	Error)	{

				return	isArrayOfElements	}	else	if	(count	!==	2)	{

				return	new	Error(

				`"${componentName}"`	+

				`	expected	${propName}`	+

				`	to	contain	exactly	2	React	elements`

)

}

}

}

				render()	{

				const	{	condition,	children	}	=	this.props	return	condition	?	children[0]	:
children[1]

}

}

class	App	extends	React.Component	{

				constructor(props)	{

				super(props)

				this.state	=	{	value:	false	}

				this.onClick	=	this.onClick.bind(this)	}

				onClick()	{

				this.setState(({	value	})	=>	({

				value:	!value,

				}))

}

				render()	{

				const	{	value	}	=	this.state	return	(

				<React.Fragment>	<Toggle	condition={value}>	<p	style={{	color:	'blue'
}}>Blue!</p>	<p	style={{	color:	'lime'	}}>Lime!</p>	<p	style={{	color:	'pink'
}}>Pink!</p>	</Toggle>

				<button	onClick={this.onClick}>	Toggle	Colors

				</button>

				</React.Fragment>)

}

}

ReactDOM.render(

				<App	/>,

				document.querySelector('[role="main"]'),)

6.	 Save	the	file.

	npm	start

http://localhost:1337/

Warning:	Failed	prop	type:	"Toggle"	expected	children	to	contain
exactly	2	React	elements	in	Toggle	(created	by	App)	in	App

4.	 Clicking	the	button	will	toggle	between	the	first	two	React	elements	while
the	third	React	element	will	be	ignored

	

How	it	works...
We	define	a	custom	function	validator	for	the	children	property.	Inside	the
function,	we	first	use	the	built-in	propTypes	functions	to	check	if	children	is
an	array	of	React	elements.	If	the	result	of	the	validation	is	not	an	instance
of	Error,	then	we	use	the	React	Children's	count	utility	method	to	know	how
many	React	elements	were	given	and	we	return	an	error	if	the	number	of
React	elements	in	children	is	not	2.

	

There's	more...
Did	you	notice	that	we	used	the	propTypes.checkPropTypes	method?	It's	a	utility
function	that	allows	us	to	check	for	propTypes	even	outside	React.	For
instance:

const	pTypes	=	{	

			name:	propTypes.string.isRequired,	

			age:	propTypes.number.isRequired,	

}	

const	props	=	{	

			name:	'Huang	Jx',	

			age:	20,	

}	

propTypes.checkPropTypes(pTypes,	props,	'property',	'props')	

The	pTypes	object	works	as	a	schema	providing	validation	functions	from
propTypes.	The	props	constant	is	just	a	plain	object	containing	properties
defined	in	pTypes.

Running	the	previous	example	won't	output	any	warning	in	the	console
since	all	properties	in	props	are	valid.	However,	change	the	props	object	to:

const	props	=	{	

			name:	20,	

			age:	'Huang	Jx',	

}	

Then	we	will	see	the	following	warning	in	the	console	output:

Warning:	Failed	property	type:	Invalid	property	`name`	of	type	`number`	

supplied	to	`props`,	expected	`string`.	

Warning:	Failed	property	type:	Invalid	property	`age`	of	type	`string`	

supplied	to	`props`,	expected	`number`.	

The	checkPropTypes	utility	method	has	the	following	signature:

checkPropTypes(typeSpecs,	values,	location,	componentName,	getStack)	

Here,	typeSpecs	refers	to	an	object	containing	propTypes	function	validators.
The	values	argument	expects	to	receive	an	object	whose	values	need	to	be
validated	against	typeSpecs.	componentName	refers	to	the	source's	name,	which
usually	is	a	component's	name	that	is	used	in	the	warning	message	to
display	where	the	Error	was	originated.	The	last	argument,	getStack,	is
optional	and	it's	expected	to	be	a	callback	function	that	should	return	a
Stack	Trace	that	is	added	at	the	end	of	the	warning	message	to	better
describe	where	exactly	the	error	was	originated.

propTypes	are	used	only	in	development	and	for	using	the	production	build
of	React,	you	must	set	up	the	bundler	to	replace	process.env.NODE_ENV	with
"production".	This	way,	propTypes	are	removed	in	the	production	build	of	your
application.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by

Packt:	

Full-Stack	React	Projects
Shama	Hoque

ISBN:	978-1-78883-553-4

Set	up	your	development	environment	and	develop	a	MERN
application

Implement	user	authentication	and	authorization	using	JSON	Web
Tokens

Build	a	social	media	application	by	extending	the	basic	MERN
application

Create	an	online	marketplace	application	with	shopping	cart	and
Stripe	payments

Develop	a	media	streaming	application	using	MongoDB	GridFS

Implement	server-side	rendering	with	data	to	improve	SEO

Set	up	and	use	React	360	to	develop	user	interfaces	with	VR

https://www.packtpub.com/web-development/full-stack-react-projects

capabilities

Learn	industry	best	practices	to	make	MERN	stack	applications
reliable	and	scalable

React	16	Essentials	-	Second	Edition
Artemij	Fedosejev,	Adam	Boduch

ISBN:	978-1-78712-604-6

Learn	to	code	React	16	with	hands-on	examples	and	clear	tutorials

Install	powerful	React	16	tools	to	make	development	much	more
efficient

Understand	the	impact	of	React	Fiber	today	and	the	future	of	your
web	development

Utilize	the	Redux	application	architecture	with	your	React
components

Create	React	16	elements	with	properties	and	children

Get	started	with	stateless	and	stateful	React	components

Use	JSX	to	speed	up	your	React	16	development	process

Add	reactivity	to	your	React	16	components	with	lifecycle

https://www.packtpub.com/web-development/react-16-essentials-second-edition

methods

Test	your	React	16	components	with	the	Jest	test	framework

	

Leave	a	review	-	let	other
readers	know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on
the	site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,
please	leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital
so	that	other	potential	readers	can	see	and	use	your	unbiased	opinion	to
make	purchasing	decisions,	we	can	understand	what	our	customers	think
about	our	products,	and	our	authors	can	see	your	feedback	on	the	title	that
they	have	worked	with	Packt	to	create.	It	will	only	take	a	few	minutes	of
your	time,	but	is	valuable	to	other	potential	customers,	our	authors,	and
Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	MERN Quick Start Guide

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	What this book covers
	To get the most out of this book
	What you need for this book
	Download the example code files
	Download the color images
	Code in Action
	Conventions used

	Sections
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...
	See also

	Get in touch
	Reviews

	Introduction to the MERN Stack
	Technical requirements
	Introduction
	The MVC architectural pattern
	Installing and configuring MongoDB
	Getting ready
	How to do it...
	There's more...

	Installing Node.js
	Getting ready
	How to do it...

	Installing npm packages
	Getting ready
	How to do it...
	How it works...

	Building a Web server with ExpressJS
	Technical requirements
	Introduction
	Routing in ExpressJS
	Getting ready
	How to do it...
	Route methods
	Route handlers
	Chainable route methods
	There's more...

	Modular route handlers
	Getting ready
	How to do it...

	Writing middleware functions
	Getting ready
	How to do it...
	How it works...

	Writing configurable middleware functions
	Getting ready
	How to do it...
	Let's test it...
	There's more...

	Writing router-level middleware functions
	Getting ready
	How to do it...
	There's more...
	How it works...

	Writing error-handler middleware functions
	Getting ready
	How to do it...

	Using ExpressJS' built-in middleware function for serving static assets
	Getting ready
	How to do it...
	How it works...
	There's more...

	Parsing the HTTP request body
	Getting ready
	How to do it...
	How it works...

	Compressing HTTP responses
	Getting ready
	How to do it...
	How it works...

	Using an HTTP request logger
	Getting ready
	How to do it...

	Managing and creating virtual domains
	Getting ready
	How to do it...
	There's more...

	Securing an ExpressJS web application with Helmet
	Getting ready
	How to do it...
	How it works...

	Using template engines
	Getting ready
	How to do it...

	Debugging your ExpressJS web application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building a RESTful API
	Technical requirements
	Introduction
	CRUD operations using ExpressJS' route methods
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	CRUD operations with Mongoose
	Getting ready
	How to do it...
	See also

	Using Mongoose query builders
	Getting ready
	How to do it...
	See also

	Defining document instance methods
	Getting ready
	How to do it...
	There's more...
	See also

	Defining static model methods
	Getting ready
	How to do it...
	There's more...
	See also

	Writing middleware functions for Mongoose
	Getting ready
	How to do it...
	Document middleware functions
	Query middleware functions
	Model middleware functions

	There's more...
	See also

	Writing custom validators for Mongoose's schemas
	Getting ready
	How to do it...
	See also

	Building a RESTful API to manage users with ExpressJS and Mongoose
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	See also

	Real-Time Communication with Socket.IO and ExpressJS
	Technical requirements
	Introduction
	Understanding Node.js events
	Getting ready
	How to do it...
	How it works...
	There's more...

	Understanding Socket.IO events
	The Socket.IO server events
	Socket.IO client events
	Getting ready
	How to do it...
	How it works...

	Working with Socket.IO namespaces
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...
	io.Manager

	Defining and joining Socket.IO rooms
	Getting ready
	How to do it...
	There's more...

	Writing middleware for Socket.IO
	Getting ready
	How to do it...
	Let's test it...

	Integrating Socket.IO with ExpressJS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using ExpressJS middleware in Socket.IO
	Getting ready
	How to do it...
	How it works...
	See also

	Managing State with Redux
	Technical requirements
	Introduction
	Defining actions and action creators
	Getting ready
	How to do it...
	How it works...

	Defining reducer functions
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Creating a Redux store
	Getting ready
	How to do it...
	Let's test it...
	There's more

	Binding action creators to the dispatch method
	Getting ready
	How to do it...
	Let's test it...

	Splitting and combining reducers
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Writing Redux store enhancers
	Getting ready
	How to do it...
	How it works...

	Time traveling with Redux
	Getting ready
	How to do it...
	Let's test it...
	There's more

	Understanding Redux middleware
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Dealing with asynchronous data flow
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Building Web Applications with React
	Technical requirements
	Introduction
	Understanding React elements and React components
	Getting ready
	How to do it...
	Let's test it...

	Composing components
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Stateful components and life cycle methods
	Getting ready
	How to do it...
	Let's test it...

	Working with React.PureComponent
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	React event handlers
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Conditional rendering of components
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Rendering lists with React
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Working with forms and inputs in React
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Understanding refs and how to use them
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Understanding React portals
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Catching errors with error boundary components
	Getting ready
	How to do it...
	Let's test it...

	Type checking properties with PropTypes
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

