MERN Quick
Start Guide

By Eddy Wilson Iriarte Koroliova

MERN Quick Start Guide

Build web applications with MongoDB, Express.js, React,
and Node

Eddy Wilson Iriarte Koroliova

Packh

BIRMINGHAM - MUMBAI

MERN Quick Start Guide

Copyright © 2018 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in
this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Ashwin Nair

Acquisition Editor: Nigel Fernandes

Content Development Editor: Roshan Kumar

Technical Editor: Shweta Jadhav

Copy Editor: Safis Editing

Project Coordinator: Hardik Bhinde

Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Jason Monteiro

Production Coordinator: Shantanu Zagade First published: May 2018

Production reference: 1310518

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-108-0

www . packtpub.com

http://www.packtpub.com

A Mapt

Mapt is an online digital library that gives you full access to over 5,000
books and videos, as well as industry leading tools to help you plan your
personal development and advance your career. For more information,
please visit our website.

mapt.io

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
¢ Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.PacktPub.con and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at service@packtpub.com for
more details.

At www.Packtpub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Eddy Wilson Iriarte Koroliova has worked and led the development of a
SaaS web application for the financial sector in 2012 with the LAMP stack
for 4 years. Since 2014, he has been working as a senior full-stack
developer and JavaScript specialist with the MERN stack, for the
development of enterprise web applications for different sectors.

Eddy travels frequently and mostly works remotely. He speaks Spanish,
English, and Russian, and he is currently learning Chinese, which has
allowed him to work in different team environments and communicate
better with clients and co-workers.

Special thanks to my partner in life, Huang Jingxuan, for always being there and for supporting me
not only while writing this book but also during the different stages of my life and development of
my career.

A big thank you to my family for their moral and financial support while starting my career as a
developer.

About the reviewer

Chance is passionate about the intersection of technology, collaboration,
and education.

He is the founder of Chingu, a global collaboration platform for tech-
learners, which has brought together thousands of developers, designers,
and data scientists from 140 countries to learn and build together.

I'd like to thank Eddy Wilson for writing this book, Simon Van den Broeck for his edit contributions,
and the Chingu community!

What this book covers

chapter 1, Introduction to MERN Stack, provides an introduction to the
MERN stack and the MVC architectural pattern. It covers installation of
NodeJS and MongoDB as well as installing NPM packages and an
example of usage. These constitute the base for all the book's recipes.

chapter 2, Building a Web Server with ExpressJS, covers core concepts
about the HTTP protocol, the “http” NodeJS module, and how it is all
connected with ExpressJS. It explores all features of ExpressJS for
building Web Server applications from route handlers and middleware to
secure a Web Server application and debugging.

chapter 3, Building a RESTful API, explains core concepts about what is
REST, URLs, and CRUD operations. These concepts are the base for the
whole chapter. It also explores how to make CRUD operations in
ExpressJS and with Mongoose as well as where and how ExpressJS and
Mongoose fit in the MVC architectural pattern. It covers the creation of
Mongoose schemas and models as well as different types of Mongoose
middleware and validation of data.

chapter 4, Real-time Communication with Socket.IO and ExpressJS, gives
a brief introduction to NodeJS events and how bi-directional
communication with WebSockets works. It also goes through using
SocketIO and ExpressJS to build Web Applications that deliver data in
real time.

chapter 5, Managing State with Redux, covers what Redux is and the three
core principles. It also covers the very basic idea of Redux from how
Array.prototype.reduce works, to how reducers are defined and how to
write middleware functions as well as advanced concepts such as writing
store enhancers, time traveling, and asynchronous data flow.

chapter 6, Building Web Applications with React, explains what React is,
what JSX syntax is, and where in the MVC architectural pattern it fits. It
explores all core concepts of React in the form of easy-to-follow and build
recipes. The recipes cover topics about composition, life cycle methods,
controlled and uncontrolled components, error boundary components, and
others such as type checking with PropTypes and Portals.

Packt is searching for authors
like you

If you're interested in becoming an author for Packt, please visit authors.pac
ktpub.com and apply today. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for
a specific hot topic that we are recruiting an author for, or submit your
own idea.

http://authors.packtpub.com

Table of Contents

Title Page

Copyright and Credits

MERN Quick Start Guide

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author
About the reviewer

Packt is searching for authors like you

Preface

What this book covers
To get the most out of this book

What you need for this book

Download the example code files
Download the color images
Code in Action

Conventions used

Sections

Getting ready

How to do it...
Let's test it...
How it works...
There's more...

See also

Get in touch

Reviews

1. Introduction to the MERN Stack

Technical requirements
Introduction
The MVC architectural pattern

Installing and configuring MongoDB

Getting ready
How to do it...

There's more. ..

Installing Node.js

Getting ready

How to do it...

Installing npm packages

Getting ready
How to do it...

How it works...

2. Building a Web server with ExpressJs

Technical requirements
Introduction

Routing in ExpressJs

Getting ready

How to do it...

Route methods

Route handlers
Chainable route methods

There's more. ..

Modular route handlers

Getting ready

How to do it...

Writing middleware functions

Getting ready
How to do it...

How it works...

Writing configurable middleware functions

Getting ready

How to do it...
Let's test it...

There's more...

Writing router-level middleware functions

Getting ready
How to do it...
There's more. ..

How it works...

Writing error-handler middleware functions

Getting ready

How to do it...

Using ExpressJS' built-in middleware function for serving static
assets

Getting ready

How to do it...

How it works...

There's more...

Parsing the HTTP request body

Getting ready
How to do it...

How it works...

Compressing HTTP responses

Getting ready
How to do it...

How it works...

Using an HTTP request logger

Getting ready

How to do it...

Managing and creating virtual domains

Getting ready
How to do it...

There's more...

Securing an ExpressJS web application with Helmet

Getting ready
How to do it...

How it works...

Using template engines

Getting ready

How to do it...

Debugging your ExpressJS web application

Getting ready
How to do it...

How it works...

There's more...

3. Building a RESTful API

Technical requirements
Introduction

CRUD operations using ExpressJS' route methods

Getting ready
How to do it...
Let's test it...

How it works...

CRUD operations with Mongoose

Getting ready
How to do it...

See also

Using Mongoose query builders

Getting ready
How to do it...

See also

Defining document instance methods

Getting ready
How to do it...
There's more...

See also

Defining static model methods

Getting ready
How to do it...
There's more. ..

See also

Writing middleware functions for Mongoose

Getting ready

How to do it...

Document middleware functions
Query middleware functions

Model middleware functions

There's more...

See also

Writing custom validators for Mongoose's schemas

Getting ready
How to do it...

See also

Building a RESTful API to manage users with ExpressJS and Mongoos
e

Getting ready

How to do it...

Let's test it...

How it works...

See also

4. Real-Time Communication with Socket.IO and ExpressJs

Technical requirements
Introduction

Understanding Node.js events

Getting ready
How to do it...
How it works...

There's more. ..

Understanding Socket.IO events

The Socket.IO server events
Socket.IO client events
Getting ready

How to do it...

How it works...

Working with Socket.IO namespaces

Getting ready

How to do it...
Let's test it...
How it works...

There's more. ..

io.Manager

Defining and joining Socket.IO rooms

Getting ready
How to do it...

There's more. ..

Writing middleware for Socket.IO

Getting ready
How to do it...

Let's test it...

Integrating Socket.IO with ExpressJS

Getting ready

How to do it...
How it works...
There's more...

See also

Using ExpressJS middleware in Socket.IO

Getting ready
How to do it...
How it works...

See also

5. Managing State with Redux

Technical requirements
Introduction

Defining actions and action creators

Getting ready
How to do it...

How it works...

Defining reducer functions

Getting ready
How to do it...
Let's test it...

How it works...

Creating a Redux store

Getting ready
How to do it...
Let's test it...

There's more

Binding action creators to the dispatch method

Getting ready
How to do it...

Let's test it...

Splitting and combining reducers

Getting ready

How to do it...
Let's test it...

How it works...

Writing Redux store enhancers

Getting ready
How to do it...

How it works...

Time traveling with Redux

Getting ready
How to do it...
Let's test it...

There's more

Understanding Redux middleware

Getting ready
How to do it...
Let's test it...

How it works...

Dealing with asynchronous data flow

Getting ready
How to do it...
Let's test it...

How it works...

There's more...

6. Building Web Applications with React

Technical requirements
Introduction

Understanding React elements and React components

Getting ready
How to do it...

Let's test it...

Composing components

Getting ready

How to do it...
Let's test it...
How it works...

There's more. ..

Stateful components and life cycle methods

Getting ready
How to do it...

Let's test it...

Working with React.PureComponent

Getting ready
How to do it...

Let's test it...

How it works...

React event handlers

Getting ready

How to do it...
Let's test it...
How it works...

There's more. ..

Conditional rendering of components

Getting ready
How to do it...
Let's test it...

How it works...

Rendering lists with React

Getting ready
How to do it...
Let's test it...

How it works...

wWorking with forms and inputs in React

Getting ready
How to do it...
Let's test it...

How it works...

Understanding refs and how to use them

Getting ready
How to do it...
Let's test it...

How it works...

Understanding React portals

Getting ready
How to do it...
Let's test it...

How it works...

Catching errors with error boundary components

Getting ready
How to do it...

Let's test it...

Type checking properties with PropTypes

Getting ready

How to do it...
Let's test it...
How it works...

There's more. ..

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

The MERN stack can be seen as a collection of tools that share a common
denominator that is the language, JavaScript. The book explores, in the
form of recipes, how to build web client and server applications using the
MERN stack following the MVC architectural pattern.

The model and controller of the MV C architectural pattern are covered by
the chapters about building RESTful APIs with ExpressJS and Mongoose.
The chapters cover core concepts about the HTTP protocol, type of
methods, status codes, URLs, REST, and CRUD operations. Afterward, it
moves to topics specific to ExpressJS, such as request handlers,
middleware, and security, as well as specific topics about Mongoose, such
as schemas, models, and custom validation.

The view of the MV C architectural patterns is covered by the chapter
about ReactJS. React]JS is a Ul library that is component-based with a
declarative API. The book's aim to provide the essential knowledge for
building ReactJS web applications and components. Complementary to
ReactJS, the book contains an entire chapter about Redux that explains
from the very core concepts and principles to advanced features such as
store enhancers, time travelling, and asynchronous data flow.

Additionally, this book covers real-time communication with ExpressJS
and SocketIO to deliver and exchange data in real time.

By the end of the book, you will know the core concepts and essentials for
building full-stack web applications with the MV C architectural pattern.

To get the most out of this
book

This book is for developers who are interested in getting started with the
MERN stack for developing web applications. In order to be able to
understand the chapters, you should have already a general knowledge and
understanding of the JavaScript language.

What you need for this book

In order to be able to work on the recipes, you need the following:

e An IDE or code editor of your preference. Visual Studio Code
(vscode) was used when writing the recipes' codes, so I suggest

you to give it a try

e An Operating System (O.S) that is able to run NodeJS and
MongoDB, preferably one of the following:

e macOS X Yosemite/El Capitan/Sierra
e Linux

e Windows 7/8/10 (.NET framework 4.5 is required if
installing VSCode in Windows 7)

e Preferably, at least 1 GB RAM and 1.6 GHz processor or faster

Download the example code
files

You can download the example code files for this book from your account
at www.packtpub.com. If you purchased this book elsewhere, you can visit www.p
acktpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the

Ao

onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/MERN-Quick-Start-Guide. IN case there's an update to the code, it

will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/MERN-Quick-Start-Guide

videos available at nhttps://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here: nttps://
www . packtpub.com/sites/default/files/downloads/MERNQuickStartGuide_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MERNQuickStartGuide_ColorImages.pdf

Code In Action

Visit the following link to check out videos of the code being run:
https://goo.gl/ymdYBT

https://goo.gl/ymdYBT

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLSs, user input,
and Twitter handles. Here is an example: "Mount the downloaded webstorm-
10*.dmg disk image file as another disk in your system."

A block of code is set as follows:

"dependencies": {
"express": "4.16.3",
"node-fetch": "2.1.1",
"uuid": "3.2.1"

Any command-line input or output is written as follows:

npm install

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "Select System info from the Administration
panel."”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting
ready, How to do it..., Let's test it..., How it works..., There's more..., and
See also).

To give clear instructions on how to complete a recipe, use these sections
as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set
up any software or any preliminary settings required for the recipe.

How to do It...

This section contains the steps required to follow the recipe.

Let's test It...

This section consists of detailed steps on how to test the code given
in How to do it... section.

How it works...

This section usually consists of a detailed explanation of what happened in
the previous section.

There's more...

This section consists of additional information about the recipe in order to
make you more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the
recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title
in the subject of your message. If you have questions about any aspect of
this bOOk, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packtpub.com
/submit-errata, Selecting your book, clicking on the Errata Submission Form
link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at copyright@packtpub.com
with a link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to
d bOOk, please visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Introduction to the MERN Stack

In this chapter, we will cover the following topics:

The MVC architectural pattern

Installing and configuring MongoDB

Installing Node.js

Installing NPM packages

Technical requirements

You will be required to have an IDE, Visual Studio Code, Node.js and
MongoDB. You will also need to install Git, in order use the Git repository
of this book.

The code files of this chapter can be found on GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapterol

Check out the following video to see the code in action:
https://goo.gl/1zwc6F

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter01
https://goo.gl/1zwc6F

Introduction

The MERN stack is a solution composed of four main components:

e MongoDB: A database that uses a document-oriented data model.

e ExpressJS: A web application framework for building web

applications and APIs.

e ReactJS: A declarative, component-based, and isomorphic

JavaScript library for building user interfaces.

e Node.js: A cross-platform JavaScript runtime environment built
on Chrome's V8 JavaScript engine allows developers to build

diverse tools, servers, and applications.

These fundamental components that comprise the MERN stack are open
source, and are thus maintained and developed by a great community of
developers. What ties these components together is a common language,
JavaScript.

The recipes in this chapter will mainly focus on setting up a development
environment to work with a MERN stack.

You are free to use the code editor or IDE of your choice. However, I
would suggest you give Visual Studio Code a try if you have trouble
deciding which IDE to use.

The MVC architectural pattern

Most modern web applications implement the MV C architectural pattern.
It consists of three interconnected parts that separate the internal
representation of information in a web application:

e Model: Manages the business logic of an application that
determines how data should be stored, created, and modified
e View: Any visual representation of the data or information

e Controller: Interprets user-generated events and transforms them

into commands for the model and view to update accordingly:

MODEL (<
UPDATES MANIPULATES
h 4
VIEW CONTROLLER

\ /

%
&
S

The Separation of Concern (SoC) design pattern separates frontend from
backend code. Following the MVC architectural pattern, developers are
able to adhere to the SoC design pattern, resulting in a consistent and
manageable application structure.

The recipes in the following chapters implement this architectural pattern
to separate the frontend and the backend.

Installing and configuring
MongoDB

The official MongoDB website provides up-to-date packages containing
binaries for installing MongoDB on Linux, OS X, and Windows.

Getting ready

Visit the official website of MongoDB at https://www.mongodb . com/download-
center, Select Community Server, and then select your preferred operating
system version of the software and download it.

Installing MongoDB and configuring it may require additional steps.

https://www.mongodb.com/download-center

How to do It...

Visit the documentation website of MongoDB at
https://docs.mongodb.com/master/installation/ for instructions and check the

Tutorials section for your specific platform.

After installation, an instance of mongod-, the daemon process for mongons-,
can be started in a standalone fashion:

1. Open a new Terminal

2. Create a new directory named data, which will contain the Mongo
database

3. Type mongod --port 27017 --dbpath data tO Start a new instance and
create a database

4. Open another Terminal

5. Type mongo --port 27017 to connect a Mongo shell to the instance

https://docs.mongodb.com/master/installation/

There's more...

As an alternative, you can opt to use a Database as a service (DBaaS)
such as MongoDB Atlas, which, at the time of writing, allows you to
create a free cluster with 512 MB of storage. Another simple alternative is
mLab, although there are many other options.

Installing Node.js

The official Node.js website provides two packages containing LTS and
Current (containing the latest features) binaries to install Node.js on

Linux, OS X, and Windows.

Getting ready

For the purpose of this book, we will install Node.js v10.1.x.

How to do It...

To download the latest version of Node.js:

1. Visit the official website at https://nodejs.org/en/download/

2. Select Current | Latest Features

3. Select the binary for your preferred platform or operating system
(0S)

4. Download and install

If you prefer to install Node.js via package manager, visit
https://nodejs.org/en/download/package-manager/ and select your pFEfEITEd
platform or OS.

https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/

Installing npm packages

The installation of Node.js includes a package manager called npm, which is
the default and most widely used package manager for installing
JavaScript/Node.js libraries.

NPM packages are listed in the NPM registry at https://registry.npmjs.org/,
where you can search for packages and even publish your own.

There are other alternatives to NPM as well, such as Yarn, which is
compatible with the public NPM registry. You are free to use the package
manager of your choice; however, for the purpose of this book, the
package manager used in the recipes will be NPM.

https://registry.npmjs.org/

{

n, n n, n

"name": "mern-cookbook", "version": "1.0.0", "description": "mern cookbook

m"mon m, ;s mnmon

recipes”, "main": "index.js", "scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}, "author": "Eddy Wilson", "license": "MIT"

}

After this, you will be able to use NPM to install new packages for your project.

npm --save-exact install chalk

const chalk = require('chalk’) const { red, blue } = chalk console.log(red('hello"),
blue('world!"))

 node index.js

How it works...

NPM will connect to and look in the NPM registry for the package named
react, and will download it and install it if it exists.

The following are some useful flags that you can use NPM with:

e _.save: This will install and add the package name and version in
the dependencies section of YOUr package. json file. These dependencies

are modules that your project will use while in production.

® __save-dev: This works in the same way as the --save flag. It will
install and add the package name in the devbependencies section of
the package.json file. These dependencies are modules that your

project will use during development.

® ..save-exact: This keeps the original version of the installed
package. This means, if you share your project with other people,
they will be able to install the exact same version of the package

that you use.

While this book will provide you with a step-by-step guide to installing
the necessary packages in every recipe, you are encouraged to visit the
NPM documentation website at https://docs.npmjs.com/getting-started/using-a-
package.json t0 learn more.

https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json

Building a Web server with
ExpressJS

In this chapter, we will cover the following recipes:

e Routing in ExpressJS

e Modular route handlers

e Writing middleware functions

e Writing configurable middleware functions
e Writing router-level middleware functions
e Writing error-handler middleware functions

e Using ExpressJS' built-in middleware function to serve static

assets
e Parsing the HTTP request body
e Compressing HTTP responses
e Using an HTTP request logger
e Managing and creating virtual domains
e Securing an ExpressJS web application with helmet
e Using template engines

e Debugging your ExpressJS web application

Technical requirements

You will be required to have an IDE, Visual Studio Code, Node.js and
MongoDB. You will also need to install Git, in order use the Git repository
of this book.

The code files of this chapter can be found on GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chaptero2

Check out the following video to see the code in action:
https://goo.gl/xXhgwK

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter02
https://goo.gl/xXhqWK

Introduction

ExpressJS is the preferred de facto Node.js web application framework for
building robust web applications and APIs.

In this chapter, the recipes will focus on building a fully functional web
server and understanding the core fundamentals.

Routing in ExpressJS

Routing refers to how an application responds or acts when a resource is
requested via an HTTP verb or HTTP method.

HTTP stands for Hypertext Transfer Protocol and it's the basis of data
communication for the World Wide Web (WWW). All documents and
data in the WWW are identified by a Uniform Resource Locator (URL).

HTTP verbs or HTTP methods are a client-server model. Typically, a web
browser serves as a client, and in our case ExpressJS is the framework that
allows us to create a server capable of understanding these requests. Every
request expects a response to be sent to the client to recognize the status of
the resource that it is requesting.

Request methods can be:

e Safe: An HTTP verb that performs read-only operations on the
server. In other words, it does not alter the server state. For

example: cer.

e Idempotent: An HTTP verb that has the same effect on the server
when identical requests are made. For instance, sending a put
request to modify a user's first name should have the same effect
on the server if implemented correctly when multiple identical
requests are sent. All safe methods are also idempotent. For

example, the cet, put, and oeLete methods are idempotent.

e Cacheable: An HTTP response that can be cached. Not all
methods or HTTP verbs can be cached. A response is cacheable

only if the status code of the response and the method used to

make the request are both cacheable. For example, the GET
method is cacheable and the following status codes: 200 (Request
succeeded), 204 (No content), 206 (Partial content), zo1 (Moved
permanently), 404 (Not found), 4es (Method not allowed), 410
(Gone or Content permanently removed from server), and 414
(URI too long).

Getting ready

Understanding routing is one of the most important core aspects in
building robust RESTful APIs.

In this recipe, we will see how ExpressJS handles or interprets HTTP
requests. Before you start, create a new package. json file with the following
content: { "dependencies": { "express": "4.16.3" } }

Then, install the dependencies by opening a Terminal and running;:

npm install

ExpressJS does the whole job of understanding a client's request. The
request may come from a browser, for instance. Once the request has been
interpreted, ExpressJS saves all the information in two objects:

e Request: This contains all the data and information about the
client's request. For instance, ExpressJS parses the URI and makes

its parameters available on request.query.

e Response: This contains data and information that will be sent to
the client. The response's headers can be modified as well before
sending the information to the client. The response object has
several methods available for sending the status code and data to

the client. For instance: response.status(200).send('Some Data!').

How to do It...

request and Rresponse Objects are passed as arguments to the route handlers
defined inside a route method.

const express = require('express') const app = express()
app.get('/', (request, response, nextHandler) => {
response.status(200).send('Hello from ExpressJS') })
app.listen(
1337, () => console.log("Web Server running on port 1337'),)
 node 1-basic-route.js
 http://localhost:1337/

For more information about which HTTP methods are supported by ExpressJS,
visit the official ExpressJS website at
https://expressjs.com/en/guide/routing.html#route-methods.

https://expressjs.com/en/guide/routing.html#route-methods

const express = require('express') const app = express()
app.get('/one', (request, response, nextHandler) => {
response.type(‘text/plain’) response.write('"Hello ') nextHandler() })
app.get('/one', (request, response, nextHandler) => {
response.status(200).end("World!") })
app.get('/two',
(request, response, nextHandler) => {
response.type(‘text/plain’) response.write('Hello ') nextHandler() },
(request, response, nextHandler) => {
response.status(200).end('Moon!") }
)
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)
node 2-route-handlers.js

 http://localhost:1337/one

http://localhost:1337/two

const express = require('express') const app = express()

app
.route('/home")
.get((request, response, nextHandler) => {
response.type(‘text/html") response.write('<!IDOCTYPE html>") nextHandler()
)
.get((request, response, nextHandler) => {
response.end(”
<html lang="en"> <head>

<meta charset="utf-8"> <title>WebApp powered by ExpressJS</title>
</head>

<body role="application"> <form method="post" action="/home"> <input
type="text" /> <button type="submit">Send</button> </form>

</body>
</html>
)
D
.post((request, response, nextHandler) => {
response.send('Got it!") })
app.listen(
1337,

() => console.log("Web Server running on port 1337'),)

 node 3-chainable-routes.js

http://localhost:1337/home

There's more...

Route paths can be strings or regular expressions. Route paths are
internally turned into regular expressions using the path-to-regexp NPM
package https://www.npmjs.com/package/path-to-regexp.

path-to-regexp, iN @ way, helps you write path regular expressions in a more
human-readable way. For example, consider the following code:

app.get(/([a-z]+)-([0-9]+)%/, (request, response, nextHandler) => {
response.send(request.params)

1)
// Output: {"@":"abc",6"1":"12345"} for path /abc-12345

This could be written as follows:

app.get('/:0-:1', (request, response, nextHandler) => {
response.send(request.params)

1)
// Outputs: {"@":"abc",6"1":"12345"} for /abc-12345

Or better:

app.get('/:id-:tag', (request, response, nextHandler) => {
response.send(request.params)

1)
// Outputs: {"id":"abc","tag":"12345"} for /abc-12345

Take a look at this expression: /([a-z]+)-([0-9]+)$/. The parentheses in the
regular expression are called capturing parentheses; and when they find
a match, they remember it. In the preceding example, for abc-12345, two
strings are remembered, {"o":"abc", "1":"12345"3. This is the way that
ExpressJS finds a match, remembers its value, and associates it to a key:

https://www.npmjs.com/package/path-to-regexp

app.get(':userId:action-:where', (request, response, nextHandler) => {
response.send(request.params)

1)

// Route path: 123edit-profile

// Outputs: {"userId":"123","action":"edit", "where":"profile"}

const router = express.Router() router.get('/', (request, response, next) => {
response.send('Hello there!") })
router.post('/', (request, response, next) => {

response.send('I got your data!’) })

Getting ready

In this recipe, we will see how to use a router to make a modular
application. Before you start, create a new package. json file with the
following content:

"dependencies": {
"express": "4.16.3"

3

Then, install the dependencies by opening a terminal and running:

npm install

const express = require('express') const app = express()

const miniapp = express.Router() miniapp.get('/home’, (request, response, next)
=> {

const url = request.originalUrl response
.status(200)
.send("You are visiting /home from ${url}") })
app.use('/first’, miniapp) app.use('/second’, miniapp)
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)
 node modular-router.js
You are visting home from first/home You are visting home from second/home

As can be seen, a router was mounted to two different mount points. Routers are
usually referred to as mini-applications because they can be mounted to an
ExpressJS application's specific routes and not only once but also several times
to different mount points, paths, or URIs.

Writing middleware functions

Middleware functions are mainly used to make changes in the request and
response Object. They are executed in sequence, one after another, but if a
middleware functions does not pass control to the next one, the request is
left hanging.

Getting ready

Middleware functions have the following signature:

app.use((request, response, next) => {
next()
1)

The signature is very similar to writing route handlers. In fact, a
middleware function can be written for a specific HTTP method and a
specific path route, and will look like this, for example: app.get('/',
(request, response, next) => { next() })

So, if you are wondering what the difference is between route handlers,
and middleware functions, the answer is simple: their purpose.

If you are writing route handlers, and the request objects and/or the response
object is modified, then you are writing middleware functions.

In this recipe, you will see how to use a middleware function to restrict
access to certain paths or routes that depend on a certain condition. Before
you start, create a new package. json file with the following content: {

"dependencies": { "express": "4.16.3" } }

Then, install the dependencies by opening a terminal and running:

npm install

const express = require('express') const app = express()
app.use((request, response, next) => {
request.allowed = Reflect.has(request.query, 'allowme") next()
)
app.get('/', (request, response, next) => {
if (request.allowed) {
response.send('Hello secret world!") } else {
response.send("You are not allowed to enter’) }
)
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)
 node middleware-functions.js

http://localhost:1337/
 http://localhost:1337/?allowme

How it works...

Just like with route handlers, middleware functions need to pass control to
the next handler; otherwise, our application will have been hanging
because no data was sent to the client, and the connection was not closed
either.

If new properties are added to the request Or response Objects inside a
middleware function, the next handler will have access to those new
properties. As in our previously written code, the al1owed property in the
request Object is available to the next handler.

const fn = (options) => (response, request, next) => {
next()

}

Usually an object is used as an options parameters. However, there is nothing
stopping you from doing it in your own way.

Getting ready

In this recipe, you will write a configurable logger middleware function.
Before you start, create a new package. json file with the following content:

"dependencies": {
"express": "4.16.3"

3

Then, install the dependencies by opening a terminal and running:

npm install

const logger = (options) => (request, response, next) => {
if (typeof options === "object’
&& options !== null && options.enable) {
console.log(
'Status Code:', response.statusCode, 'URL:', request.originalUrl,)

}

next()

module.exports = logger

3. Save the file

const express = require('express') const loggerMiddleware =
require('./middleware-logger') const app = express()

app.use(loggerMiddleware({

enable: true, }))
app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
 node middleware-logger-test.js

 http://localhost:1337hello ?world

 Status Code: 200 URL: hello ?world

There's more...

If you want to experiment, start your configurable middleware test
application with the enabie property set to faise. No logs should be
displayed.

Usually, you would want to disable logging in production, since this
operation could hit performance.

An alternative to disabling all logging is to use other libraries to do this
task instead of using conso1e. There are libraries that allow you to set
different levels of logging as well, for instance:

® DEbllg module: https://www.npmjs.com/package/debug

e Winston: https://www.npmjs.com/package/winston

Logging is useful for several reasons. The main reasons are:
e It checks whether your services are running properly, for example,
checking whether your application is connected to MongoDB.
e It discovers errors and bugs.

e It helps you to understand better how your application is working.
For instance, if you have a modular application, you can see how

it integrates when included in other applications.

https://www.npmjs.com/package/debug
https://www.npmjs.com/package/winston

Writing router-level middleware
functions

Router-level middleware functions are only executed inside a router. They
are usually used when applying a middleware to a mount point only or to a
specific path.

"dependencies": {

"express": "4.16.3"

npm install

const express = require('express') const app = express() const router =
express.Router()

router.use((request, response, next) => {
console.log('URL:', request.originalUrl) next() })
app.use('/router’, router)
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)
 node router-level.js

http://localhost:1337routerexample

 URL: routerexample

 http://localhost:1337/example

11. No logs should be displayed in terminal

router.use((request, response, next) => {
next('route") })
const express = require('express') const app = express()
const router = express.Router()
router.use((request, response, next) => {
if ('request.query.id) {
next('router’) // Next, out of Router } else {
next() // Next, in Router }
)
router.get('/', (request, response, next) => {

const id = request.query.id response.send(" You specified a user ID => ${id}")

)
app.get('/, router, (request, response, next) => {
response
.status(400) .send('A user ID needs to be specified') })
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)
 node router-level-control.js
 http://localhost:1337/

http://localhost:1337/?id=7331

How it works...

When navigating to the first URL (http://1ocalhost:1337/), the following
message is shown: A user ID needs to be specified

This is because the middleware function in the router checks if the id was
provided in the query, and because it is not, it passes control to the next
handler outside of the router with next('router").

On the other hand, when navigating to the second URL
(http://localhost:1337/2id=7331), the following message is shown: You
specified a user ID => 7331

That happens because, as an id was provided in the query, the middleware
function in the router will pass control to the next handler inside the router
with next().

http://localhost:1337/?id=7331

Writing error-handler
middleware functions

ExpressJS already includes by default a built-in error handler which gets
executed at the end of all middleware and route handlers.

There are ways that the built-in error handler can be triggered. One is
implicit when an error occurs inside a route handler. For example:

app.get('/', (request, response, next) => {
throw new Error('Oh no!, something went wrong!")

3)

And another way of triggering the built-in error handler is explicit when
passing an error @s an argument to next(error). For instance:

app.get('/', (request, response, next) => {
try {
throw new Error('Oh no!, something went wrong!'")
} catch (error) {
next(error)
3
1)

The stack trace is displayed on the client side. If nooe_env is set to production, then the
stack trace is not included.

A custom error handler middleware function can be written as well and it
looks pretty much the same as route handlers do with the exception that an
error handler function middleware expects to receive four arguments:

app.use((error, request, response, next) => {
next(error)

3)

Take into account that next (error)is optional. That means, if specified,
next (error) Will pass control over to the next error handler. If no other error
handler was defined, then the control will pass to the built-in error handler.

Getting ready

In this recipe, we will see how to create a custom error handler. Before
you start, create a new package. json file with the following content:

"dependencies": {
"express": "4.16.3"

3

Then, install the dependencies by opening a terminal and running:

npm install

const express = require('express')
const app = express()
app.get('/', (request, response, next) => {
try {
throw new Error('Oh no!, something went wrong!")
} catch (err) {

next(err)

)

app.use((error, request, response, next) => {
response.end(error.message)
)

app.listen(
1337,
() => console.log("Web Server running on port 1337'),
)

 node custom-error-handler.js

 http://localhost:1337/

Using ExpressJS' built-in
middleware function for
serving static assets

Prior to the 4.x version of ExpressJS, it has depended on ConnectJS which
is an HTTP server framework https://github.com/senchalabs/connect. In fact,
most middleware written for ConnectJS is also supported in ExpressJS.

As from the 4.x version of ExpressJS, it no longer depends on ConnectJS,
and all previously built-in middleware functions were moved to separate
modules https://expressjs.com/en/resources/middleware.html.

ExpressJS 4.x and newer versions include only two built-in middleware
functions. The first one has already been seen: the built-in error handler
middleware function. The second one is the express.static middleware
function that is responsible for serving static assets.

The express.static middleware function is based on serve-static module

https://expressjs.com/en/resources/middleware/serve-static.html.

The main difference between express.static and serve-static is that the
second one can be used outside of ExpressJS.

https://github.com/senchalabs/connect
https://expressjs.com/en/resources/middleware.html
https://expressjs.com/en/resources/middleware/serve-static.html

"dependencies": {

"express": "4.16.3"

npm install

<IDOCTYPE html> <html lang="en"> <head>
<meta charset="utf-8"> <title>Simple Web Application</title> </head>
<body>
<section role="application"> <h1>Welcome Home!</h1> </section> </body>
</html>

const express = require('express’) const path = require('path’) const app =
express()

const publicDir = path.join(__dirname, './public") app.use('/,
express.static(publicDir))

app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
 node serve-static-assets.js

http://localhost:1337/index.html

How it works...

Our index.htm1 file will be shown because we specified "/ as the root
directory where to look for assets.

Try changing the path from "/" to "/pubiic". Then, you will be able to see
that the index.ntm1 file, and other files that you want to include in the /pubiic
directory, will be accessible under nttp://10calhost:1337/public/[fileName].

<IDOCTYPE html>
<html lang="en"> <head>
<meta charset="utf-8"> <title>Simple Web Application</title> </head>
<body>
<section role="application"> <h1>Welcome Home!</h1> </section>
</body>
</html>
<IDOCTYPE html>
<html lang="en"> <head>
<meta charset="utf-8"> <title>Simple Web Application</title> </head>
<body>
<section role="application"> Welcome to Second Page!
</section>
</body>
</html>

const express = require('express’) const path = require('path’) const app =
express()

const staticRouter = express.Router()
const assets = {

first: path.join(__dirname, './public'), second: path.join(__dirname, './another-
public’) }

staticRouter

.use(express.static(assets.first)) .use(express.static(assets.second))
app.use('/', staticRouter)
app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
 node router-serve-static.js

http://localhost:1337/index.html http://localhost:1337/second.html

11. Two different files in different locations were served under one path

If two or more files with the same name exist under different directories, only
the first one found will be displayed on the client-side.

Parsing the HTTP request body

body-parser iS @ middleware function that parses the incoming request body
and makes it available in the request object as

request.body https://expressjs.com/en/resources/middleware/body-parser.html.

This module allows an application to parse the incoming request as:

JSON

Text

Raw (buffer original incoming data)

URL encoded form

The module supports automatic decompression of gzip and deflates
encodings when the incoming request is compressed.

https://expressjs.com/en/resources/middleware/body-parser.html

"dependencies": {

"body-parser": "1.18.2", "express": "4.16.3"
}
}

npm install

const express = require('express’) const bodyParser = require('body-parser') const
app = express()

app.use(bodyParser.urlencoded({ extended: true })) app.use(bodyParser.text())
app.get('/', (request, response, next) => {

response.send(’

<IDOCTYPE html> <html lang="en"> <head>

<meta charset="utf-8"> <title>WebApp powered by ExpressJS</title>
</head>

<body>

<div role="application"> <form method="post" action="/setdata"> <input
name="urlencoded" type="text" /> <button type="submit">Send</button>
</form>

<form method="post" action="setdata"
 enctype="text/plain"> <input
name="txtencoded" type="text" /> <button type="submit">Send</button>
</form>

</div>
</body>
</html>
)
D
app.post('/setdata’, (request, response, next) => {
console.log(request.body) response.end()

)

app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
 node parse-form.js

 http://localhost:1337/

 http://localhost:1337/

12. Fill the second input box with any data and submit the form:
13. Check the output in the terminal

{ 'urlencoded': 'Example’ }
txtencoded=Example

Two parsers are used above:

1. The first one bodyParser.urlencoded() parses incoming requests for
multipart/form-data encoding type. The result is available as an Object
in request.body

2. The second one bodyParser.text() parses incoming requests for

text/plain encoding type. The result is available as a String in
request.body

Compressing HTTP responses

compression is a middleware function that compresses the response body
that will be send to the client. This module uses the z1ib module
https://nodejs.org/api/zlib.html that supports the fOHOWiI’lg COHtEHt-EDCOdng
mechanisms:

o gzip

o deflate

The Accept-encoding HTTP header is used to determine which content-
encoding mechanism is supported on the client-side (for example web
browser) while the content-encoding HTTP header is used to tell the client
which content encoding mechanism was applied to the response body.

compression is a configurable middleware function. It accepts an options
object as the first argument to define a specific behavior for the
middleware and also to pass z1ib options as well.

https://nodejs.org/api/zlib.html

"dependencies": {

"compression": "1.7.2", "express": "4.16.3"
}
}

npm install

const express = require('express') const compression = require('compression")
const app = express()

app.use(compression({ level: 9, threshold: 0 }))
app.get('/', (request, response, next) => {
response.send(’
<IDOCTYPE html> <html lang="en"> <head>

<meta charset="utf-8"> <title>WebApp powered by ExpressJS</title>
</head>

<body>

<section role="application"> <h1>Hello! this page is compressed!</h1>
</section> </body>

</html>
)
console.log(request.acceptsEncodings()) })
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)

6. Save the file
7. Open a terminal and run:

node compress-site.js

8. In your browser, navigate to:

http://localhost:1337/

How it works...

The output of the Terminal will show the content encoding mechanism
that the client (for example web browser) supports. It may look something
like this: ['gzip’, 'deflate’, 'sdch’, 'br’, 'identity’]

The content encoding mechanism sent by the client is used by compression
internally to know if compression is supported. If compression is not
supported, then the response body is not compressed.

If opening Chrome Dev Tools or similar and analyzing the request made,
the content-Encoding header that was sent by the server indicates the kind of

content encoding mechanism used by compression.

Response Headers

Connection: keef

Content-Encoding: gzip

Content-Type: text/html; charset=ut

Chrome Dev Tools | Network Tab displaying Response Headers

The compression library sets the content-Encoding header to the EDCOdng
mechanism used for compressing the response body.

The thresho1d option is set by default to 1 KB which means that if the response size is
below the number of bytes specified, then it is not compressed. Set it to 0 or ralse to
compress the response even when the size is below 1 KB

Using an HTTP request logger

As previously seen, writing a request logger is simple. However, writing
our own could take precious time. Luckily, there are several other
alternatives out there. For example, a very popular HTTP request logger
WldEly used is morgan https://expressjs.com/en/resources/middleware/morgan.html.

morgan is a configurable middleware function that takes two arguments
format and options wWhich are used to specify the format in which the logs are
displayed and what kind of information needs to be displayed.

There are several predefined formats:

e tiny: Minimal output

® short: Same as tiny, including remote IP address
e common: Standard Apache log output

e combined: Standard Apache combined log output

e dev: Displays the same information as the tiny format does.

However, the response statuses are colored.

https://expressjs.com/en/resources/middleware/morgan.html

Getting ready

Create a new package. json file with the following content:

{

"dependencies": {
"express": "4.16.3",
"morgan": "1.9.0"

3

3

Then, install the dependencies by opening a terminal and running:

npm install

const express = require('express') const morgan = require('morgan') const app =
express()

app.use(morgan('dev'))
app.get("*', (request, response, next) => {
response.send('Hello Morgan!") })
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)
 node morgan-logger.js

http://localhost:1337/ http://localhost:1337/example

Managing and creating virtual
domains

Managing virtual domains is really easy with ExpressJS. Imagine that you
have two or more subdomains, and you want to serve two different web
applications. However, you do not want to create a different web server
application for each subdomain. In this kind of situation, ExpressJS allows
developers to manage virtual domains within a single web server
application using vhost

https://expressjs.com/en/resources/middleware/vhost.html.

vhost is a configurable middleware function that accepts two arguments.
The first one is the hostname. The second argument is the request handler
which will be called when the hostname matches.

The hostname follows the same rules as route paths do. They can be either a
string or a regular expression.

https://expressjs.com/en/resources/middleware/vhost.html

Getting ready

Create a new package. json file with the following content:

{

"dependencies": {
"express": "4.16.3",
"vhost": "3.0.2"

3

3

Then, install the dependencies by opening a terminal and running:

npm install

const express = require('express’) const vhost = require('vhost') const app =
express()

const app1 = express.Router() const app2 = express.Router()
appl.get('/', (request, response, next) => {

response.send('This is the main application.") })
app2.get('/', (request, response, next) => {

response.send('This is a second application.") })
app.use(vhost('localhost', app1)) app.use(vhost('second.localhost’, app2))
app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
node virtual-domains.js

http://localhost:1337/ http://second.localhost:1337/

const express = require('express’) const vhost = require('vhost') const app =
express()

const users = express.Router() users.get('/', (request, response, next) => {

const username = request .vhost[0]

.split(*-") .map(name => (

name[0].toUpperCase() +

name.slice(1)))

join(' ") response.send(Hello, ${username}") })
app.use(vhost("*.localhost', users))
app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
node user-subdomains.js

 http://john-smith.localhost:1337/ http://jx-huang.localhost:1337/ http://batman.localhost:1337/

Securing an ExpressJS web
application with Helmet

Helmet allows to protect web server applications against common attacks,
such as cross-site scripting (XSS), insecure requests, and clickjacking.

Helmet is a collection of 12 middleware functions that allow you to set
specific HTTP headers:

1. content Security Policy (CSP). This is an effective way to whitelist
what kind of external resources are allowed in your web
application, such as JavaScript, CSS, and images, for instance.

2. certificate Transparency. This is a way of pl‘OVidng more
transparency for certificates issued for a specific domain or
specific domains
https://sites.google.com/a/chromium.org/dev/Home/chromium-
security/certificate-transparency.

3. ons prefetch control: This tells the browser if it should perform
domain name resolution (DNS) on resources that are not yet
loaded, such as links.

4. rrameguard: This helps to prevent clickjacking by telling the
browser not to allow your web application to be put inside an
iframe.

5. Hide Powered-By: This snnply hides the x-powered-sy header indicates
not to display what technology powers the server. ExpressJS sets
this header to "express" by default.

6. HTTP Public key Pinning: This helps to prevent man-in-the-middle-

https://sites.google.com/a/chromium.org/dev/Home/chromium-security/certificate-transparency

10.

11.

12.

attacks by pinning your web application's public keys to the
Public-key-pinsheader.

HTTP Strict Transport security: This tells the browser to strictly stick
to the HTTPs version of your web application.

1E No open: This prevents Internet Explorer from executing
untrusted downloads, or HTML files, on the context of your site,
thus preventing the injection of malicious scripts.

No cache: This tells the browser to disable browser caching.

pon't sniff Mimetype: This forces the browser to disable mime

sniffing or guessing the content type of a served file.

referrer Policy: The referrer headers provide the server with data
regarding where the request was originated. It allows developers
to disable it, or set a stricter policy for setting a referrer header.
xss Filter: This prevents reflected cross-site scripting (XSS)

attacks by setting the x-xss-protection header.

"dependencies": {

"body-parser": "1.18.2", "express": "4.16.3", "helmet": "3.12.0", "uuid":
"3.2.1"

npm install

const express = require('express’) const helmet = require("helmet’) const
bodyParser = require('body-parser') const uuid = require('uuid/v1") const app =
express()
const suid = uuid()
app.use(bodyParser.json({

type: ['json’, 'application/csp-report'], }))
app.use(helmet.contentSecurityPolicy({

directives: {

// By default do not allow unless whitelisted defaultSrc: ['none"], // Only
allow scripts with this nonce scriptSrc: ['nonce-${suid}"], reportUri: '/csp-
violation', }

N)
app.post('/csp-violation', (request, response, next) => {
const { body } = request if (body) {

console.log('CSP Report Violation:") console.dir(body, { colors: true, depth: 5
N

response.status(204).send() })
app.use(helmet.dnsPrefetchControl({ allow: false }))
app.use(helmet.frameguard({ action: 'deny' }))
app.use(helmet.hidePoweredBy/({

setTo: 'Django/1.2.1 SVN-13336/, }))
app.use(helmet.ieNoOpen())

app.use(helmet.noSniff())

app.use(helmet.referrerPolicy({ policy: 'same-origin' }))
app.use(helmet.xssFilter())
app.get('/', (request, response, next) => {
response.send(’
<IDOCTYPE html> <html lang="en"> <head>
<meta charset="utf-8"> <title>Web App</title> </head>
<body>

 <img alt="Evil Picture"
src="http://evil.com/pic.jpg"> <script>

alert("This does not get executed!") </script>

<script src="http://evil.com/evilstuff.js"></script> <script nonce="${suid}">
document.getElementByld('txtlog') .innerText = 'Hello World!'

</script>

</body>

</html>

)

)
app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
node secure-helmet.js

http://localhost: 1337/

CSP Report Violation: {

"csp-report™: {

", mmn

"document-uri": "http://localhost:1337/", "referrer":

mw, s mwon mnw, s mwon

"violated-directive": "img-src", "effective-directive": "img-src", "original-
policy": "default-src 'none'; script-src
 '[nonce]'’; report-uri /Csp—Violation",
"disposition": "enforce", "blocked-uri": "http://evil.com/pic.jpg", "line-number":
9,

"source-file": "http://localhost:1337/", "status-code": 200

}
}

CSP Report Violation: {

"csp-report™: {

", mmn

"document-uri": "http://localhost:1337/", "referrer":

mnw, n m"won mnmw, n m"won

"violated-directive": "script-src", "effective-directive": "script-src", "original-
policy": "default-src 'none'; script-src
 '[nonce]'’; report-uri /Csp Vlolation",
"disposition": "enforce", "blocked-uri": "inline", "line-number":

s, n

"status-code": 200

CSP Report Violation: {

"csp-report™: {

", mmn

"document-uri": "http://localhost:1337/", "referrer":

mnw, n m"won mnmw, n m"won

"violated-directive": "script-src", "effective-directive": "script-src", "original-

policy": "default-src 'none'; script-src
 '[nonce]'’; report-uri /csp-violation",

mnw, n m"mon

"disposition": "enforce", "blocked-uri": "http://evil.com/evilstuff.js", "status-
code": 200

Using template engines

Template engines allow you to generate HTML code in a more convenient
way. Templates or views can be written in any format, interpreted by a
template engine that will replace variables with other values, and finally
transform to HTML.

A big list of template engines that work out of the box with ExpressJS, is
available in the official website at

https://github.com/expressjs/express/wiki#template-engines.

https://github.com/expressjs/express/wiki#template-engines

app.engine('..., (path, options, callback) => {
app.set('view engine', '...");

{
"dependencies": {
"express": "4.16.3"
}
}

npm install

... }); app.set('views', "./");

<IDOCTYPE html> <html lang="en"> <head>
<meta charset="utf-8"> <title>Using Template Engines</title> </head>
<body>

<section role="application"> <h1>%title%</h1> <p>%description%</p>
</section> </body>

</html>
const express = require('express’) const fs = require('fs') const app = express()
app.engine('tpl', (filepath, options, callback) => {

fs.readFile(filepath, (err, data) => {

if (err) {

return callback(err) }

const content = data .toString()

.replace(/%l[a-z]+%/gi, (match) => {

const variable = match.replace(/%/g, ") if (Reflect.has(options, variable)) {

return options[variable]

return match

)

return callback(null, content) })

)

app.set('views', "./views")

app.set('view engine', 'tpl’)
app.get('/', (request, response, next) => {
response.render('home’, {
title: 'Hello',
description: 'World!', })
)
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)
node my-template-engine.js

 http://localhost:1337/

The template engine we just have wrote doesn't escape HTML characters. That
means, you should be careful if replacing those properties with data gotten from
the client because it may be vulnerable to XSS attacks. You may want to use a
template engine from the official ExpressJS website that is safer.

Debugging your ExpressJS
web application

Debugging information on ExpressJS about all of the cycle of a web
application is something simple. ExpressJS uses the debug NPM module
internally to log information. Unlike console.10g, debug logs can easily be
disabled on production mode.

Getting ready

In this recipe, you will see how to debug your ExpressJS web application.
Before you start, create a new package. json file with the following content:

{

"dependencies": {
"debug": "3.1.0",
"express": "4.16.3"

3

3

Then, install the dependencies by opening a terminal and running:

npm install

const express = require('express') const app = express()
app.get("*', (request, response, next) => {

response.send('Hello there!") })
app.listen(

1337, () => console.log("Web Server running on port 1337'),)
 set DEBUG=express:* node debugging.js

8. On Linux or MacOS:

DEBUG=express:* node debugging.js

9. In your web browser, navigate to:

http://localhost:1337/

10. Observe your terminal's output for logs

How it works...

The pesus environment variable is used to tell the debug module which
parts of the ExpressJS application to debug. In our previously written
code, express:* tells the debug module to log everything related to the

express application.

We could use pesuc=express:router to displays logs related to the Router or
routing of ExpressJS.

const express = require('express') const app = express()

const debug = require('debug')('myapp’) app.get("*', (request, response, next)
=> {

debug('Request:', request.originalUrl) response.send('Hello there!") })
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)
set DEBUG=myapp node myapp.js
 DEBUG=myapp node myapp.js
Web Server running on port 1337
myapp Request: / +0ms
set DEBUG=myapp,express:* node myapp.js

DEBUG=myapp,express:* node myapp.js

Building a RESTful API

In this chapter, we will cover the following recipes:

e CRUD operations using ExpressJS' route methods
e CRUD operations with Mongoose

e Using Mongoose query builders

¢ Defining document instance methods

e Defining static model methods

¢ Writing middleware functions for Mongoose

e Writing custom validators for Mongoose's schemas

e Building a RESTful API to manage users with ExpressJS and

Mongoose

Technical requirements

You will be required to have an IDE, Visual Studio Code, Node.js and
MongoDB. You will also need to install Git, in order use the Git repository
of this book.

The code files of this chapter can be found on GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chaptero3

Check out the following video to see the code in action:
https://goo.gl/73dE6u

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter03
https://goo.gl/73dE6u

Introduction

Representation State Transfer (REST) is an architectural style that the
web was built on. More specifically, the HTTP 1.1 protocol standards were
built using the REST principles. REST provides a representation of a
resource. URLSs (Uniform Resource Locator) are used to define the
location of a resource and tell the browser where it is located.

A RESTful API is a web service API that adheres to this architectural
style.

The most commonly used HTTP verbs or methods are: post, cer, put, and
pecete. These methods are the basis for persistent storage and are known as
CRUD operations (Create, Read, Update, and Delete).

In this chapter, the recipes will be focused on building a RESTful API
using the REST architectural style with ExpressJS and Mongoose.

/* Add a new user */
app.post('/users', (request, response, next) => { }) /* Get user */
app.get('users:id', (request, response, next) => { }) /* Update a user */
app.put('users:id', (request, response, next) => { }) /* Delete a user */
app.delete('users:id', (request, response, next) => { })

It's good to think of every URL as a noun and because of that a verb can act on
it. In fact, HTTP methods are also known as HTTP verbs. If we think about them
as verbs, when a request is made to our RESTful API, they can be understood as:

e Post a user
e Get a user
e Update a user
e Delete a user.

In the MVC (model-view-controller) architectural pattern, controllers are in
charge of transforming input to something a model or view can understand. In
other words, they transform input into actions or commands and sends them to
the model or view to update accordingly.

ExpressJS' route methods usually act as controllers. They just get input from a
client such as a request from the browser, and then converts the input to actions.
These actions are then sent to the model, which is the business logic of your
application, such as a mongoose model, or to a view (a ReactJS client
application) to update.

"dependencies": {

"express': "4.16.3", "node-fetch": "2.1.1", "uuid": "3.2.1"
}
}

 npm install

const express = require('express’) const uuid = require('uuid') const app =
express()

let data = [
{ id: uuid(), name: 'Bob’ }, { id: uuid(), name: 'Alice' },]
const usr = {
create(name) {
const user = { id: uuid(), name }
data.push(user) return user
}s
read(id) {
if (id === "all') return data return data.find(user => user.id === id) },
update(id, name) {

const user = data.find(usr => usr.id === id) if (luser) return { status: 'User not
found' }

user.name = name return user

}s

delete(id) {

data = data.filter(user => user.id !== id) return { status: 'deleted’, id }
}
}

app.post('users:name’, (req, res) => {

res.status(201).json(usr.create(req.params.name)) })
app.get('users:id', (req, res) => {

res.status(200).json(usr.read(req.params.id)) })
app.put('users:id=:name’, (req, res) => {

res.status(200).json(usr.update(

reg.params.id, req.params.name,))

)
app.delete('users:id', (req, res) => {

res.status(200).json(usr.delete(req.params.id)) })
app.listen(

1337,

() => console.log("Web Server running on port 1337'),)

 node restfulapi.js

const fetch = require('node-fetch") const r = async (url, method) => (

await fetch(Chttp://localhost:1337${url}", { method }) .then(r => r.json())

)

const log = (...obj) => (

obj.forEach(o => console.dir(o, { colors: true })))

async function test() {

const users = await r('usersall’, 'get') const { id } = users[0]

const getById = await r(users${id}", 'get') const updateByld = await
r(Cusers${id}=John", 'put’) const deleteByld = await r("users${id} ", 'delete")
const addUsr = await r("usersSmith’, 'post’) const getAll = await r('usersall’,
'get") log('[GET] users:', users)

log("[GET] a user with id="${id}":", getByld) log(‘'[PUT] a user with
id="${id}":", updateByld) log('[POST] a new user:", addUsr) log('[DELETE] a
user with id="${id}":", deleteById) log(‘'[GET] users:", getAll) }

test()

node test-restfulapi.js

r1(/users/Smith’, 'post’)

CRUD operations with
Mongoose

One of many reasons why developers opt to use Mongoose instead of the
official MongoDB driver for Node.js is that it allows you to create data
structures with ease by using schemas and also because of the built-in
validation. MongoDB is a document-oriented database, meaning that the
structure of the documents varies.

In the MVC architectural pattern, Mongoose is often used for creating
models that shape or define data structures.

This is how a typical Mongoose schema would be defined and then
compiled into a model:

const PersonSchema = new Schema({
firstName: String,
lastName: String,

1)

const Person = connection.model('Person', PersonSchema)

Model names should be in singular since Mongoose will make them plural and
lowercase them when saving the collection to the database. For instance, if the model
is named "User", it will be saved as a collection named "users" in MongoDB.
Mongoose includes an internal dictionary to pluralize common names. That means if
your model's name is a common name, such as "Person", it will be saved in
MongoDB as a collection named "people”.

Mongoose allows the following types to define a schema's path or
document structure:

e String

e Number

e Boolean
e Array

e Date

e Buffer
e Mixed
e Objectid

e Decimall28

A schema type can be declared by using directly the global constructor
function for String, Number, Boolean, Buffer, and pate:

const { Schema} = require('mongoose')
const PersonSchema = new Schema({
name: String,
age: Number,
isSingle: Boolean,
birthday: Date,
description: Buffer,

1)

These schema types are also available under an object called schematypes in
the exported mongoose Object:

const { Schema, SchemaTypes } = require('mongoose')
const PersonSchema = new Schema({
name: SchemaTypes.String,
age: SchemaTypes.Number,
isSingle: SchemaTypes.Boolean,
birthday: SchemaTypes.Date,
description: SchemaTypes.Buffer,

1)

Schema types can be declared using an object as a property that gives you
more control over the specific schema type. Take the following code, for

example:

const { Schema } = require('mongoose')

const PersonSchema = new Schema({
name: { type: String, required: true, default: 'Unknown' },
age: { type: Number, min: 18, max: 80, required: true },
isSingle: { type: Boolean },
birthday: { type: Date, required: true },
description: { type: Buffer },

1)

Schema types can also be arrays. For instance, if we want a field to define
what are the things the user likes in an array of strings, you could use this

code:

const PersonSchema = new Schema({
name: String,
age: Number,
likes: [String],

1)

To learn more about schema types, visit the official Mongoose
documentation website: http://mongoosejs.com/docs/schematypes.html.

http://mongoosejs.com/docs/schematypes.html

"dependencies": {

"mongoose": "5.0.11"

 npm install

const mongoose = require('mongoose’) const { connection, Schema } =
mongoose mongoose.connect(

'mongodb://localhost:27017/test’
).catch(console.error)
const UserSchema = new Schema({
firstName: String, lastName: String, likes: [String], })
const User = mongoose.model('User’, UserSchema)
const addUser = (firstName, lastName) => new User({
firstName,
lastName,
}).save()
const getUser = (id) => User.findBylId(id)
const removeUser = (id) => User.remove({ id })
connection.once('connected’, async () => {
try {
/I Create
const newUser = await addUser('John', 'Smith") // Read
const user = await getUser(newUser.id) // Update
user.firstName = 'Jonny'
user.lastName = 'Smithy’

user.likes = [

'cooking’,
'watching movies', 'ice cream’,

]
await user.save() console.log(JSON.stringify(user, null, 4)) // Delete
await removeUser(user.id) } catch (error) {
console.dir(error.message, { colors: true }) } finally {

await connection.close() }

)
node mongoose-models.js
{
"likes": [
"cooking",

"watching movies", "ice cream"

])

"_id": "[some id]", "firstName": "Jonny", "lastName": "Smithy", "_ v": 1

}

See also

® chapter 1, Introduction to the MERN Stack, section Installing NPM
Packages

® chapter 1, Introduction to the MERN Stack, section Installing
MongoDB

const user = await User.findOne({

firstName: 'Jonh', age: { $lte: 30 }, }, (error, document) => {

if (error) return console.log(error) console.log(document) })
const user = User.findOne({

firstName: 'Jonh', age: { $lte: 30 }, })

user.exec((error, document) => {

if (error) return console.log(error) console.log(document) })
try {

const user = await User.findOne({

firstName: 'Jonh', age: { $lte: 30 }, })

console.log(user) } catch (error) {

console.log(error) }
try {

const user = await User.findOne() .where('firstName', 'John')
.where('age").lte(30) console.log(user) } catch (error) {

console.log(error) }

"dependencies": {

"mongoose": "5.0.11"

 npm install

const mongoose = require('mongoose’) const { connection, Schema } =
mongoose mongoose.connect(

'mongodb://localhost:27017/test’
).catch(console.error)
const UserSchema = new Schema({
firstName: String, lastName: String,
age: Number,
)
const User = mongoose.model('User’, UserSchema)
connection.once('connected’, async () => {
try {
const user = await new User({
firstName: 'John', lastName: 'Snow’,
age: 30,
}).save()

const findUser = await User.findOne() .where('firstName').equals('John")
.where('age").lte(30) .select('lastName age') console.log(JSON.stringify(findUser,
null, 4)) await user.remove() } catch (error) {

console.dir(error.message, { colors: true }) } finally {
await connection.close() }

)

node chaining-queries.js

See also

® chapter 1, Introduction to the MERN Stack, section Installing NPM
Packages

® chapter 1, Introduction to the MERN Stack, section Installing
MongoDB

Defining document instance
methods

Documents have their own built-in instance methods such as save and
remove. HOwever, we can write our own instance methods as well.

Documents are instances of models. They can be explicitly created: const
instance = new Model()

Or they can be the result of a query:

Model.findOne([conditions]).then((instance) => {})

Document instance methods are defined in the schema. All schemas have
a method called method which allows you to define custom instance
methods.

"dependencies": {

"mongoose": "5.0.11"

npm install

const mongooconst mongoose = require('mongoose’) const { connection,
Schema } = mongoose mongoose.connect(

'mongodb://localhost:27017/test’
).catch(console.error)

const UserSchema = new Schema({
firstName: String,
lastName: String,
likes: [String],
D

UserSchema.method('setFullName', function setFullName(v) {
const fullName = String(v).split(' ") this.lastName = fullName[0] || "
this.firstName = fullName[1] || "
D

UserSchema.method('getFullName', function getFullName() {
return “${this.lastName} ${this.firstName}"
D

UserSchema.method('loves', function loves(stuff) {
this.likes.push(stuff) })

UserSchema.method('dislikes’, function dislikes(stuff) {
this.likes = this.likes.filter(str => str == stuff) })

const User = mongoose.model('User’, UserSchema)

connection.once('connected’, async () => {
try {
// Create

const user = new User() user.setFullName('Huang Jingxuan")
user.loves('kitties') user.loves('strawberries') user.loves('snakes')

await user.save()

// Update

const person = await User.findOne() .where('firstName', 'Jingxuan')
.where('likes").in(['snakes', 'kitties']) person.dislikes('snakes') await person.save()

// Display

console.log(person.getFullName()) console.log(JSON.stringify(person, null,
4)) // Remove

await user.remove()

} catch (error) {

console.dir(error.message, { colors: true }) } finally {
await connection.close() }

)

node document-methods.js

There's more...

Document instance methods can also be defined using the methods, schema
property. For instance:

UserSchema.methods.setFullName = function setFullName(v) {
const fullName = String(v).split(' ')
this.lastName = fullName[0] || "'
this.firstName = fullName[1] || "'

See also

® chapter 1, Introduction to the MERN Stack, section Installing NPM
Packages

® chapter 1, Introduction to the MERN Stack, section Installing
MongoDB

Defining static model methods

Models have built-in static methods such as find, findone, and
findoneandremove. Mongoose allow us to define custom static model methods
as well. Static model methods are defined in the schema in the same way
as document instance methods are.

Schemas have a property called statics which is an object. All the methods
defined inside the statics object are passed to the model. Static model
methods can also be defined by calling the static schema method.

"dependencies": {

"mongoose": "5.0.11"

npm install

const mongoose = require('mongoose’) const { connection, Schema } =
mongoose mongoose.connect(

'mongodb://localhost:27017/test’
).catch(console.error)
const UsrSchm = new Schema({
firstName: String,
lastName: String,
likes: [String],
D
UsrSchm.static('getByFullName', function getByFullName(v) {
const fullName = String(v).split(') const lastName = fullName[0] || "
const firstName = fullName[1] || "

return this.findOne() .where('firstName').equals(firstName)
.where('lastName').equals(lastName) })

const User = mongoose.model("User', UsrSchm)
connection.once('connected’, async () => {

try {

/I Create

const user = new User({

firstName: 'Jingxuan', lastName: 'Huang',

likes: ['kitties', 'strawberries'], })

await user.save()

// Read

const person = await User.getByFullName(
'Huang Jingxuan'

)

console.log(JSON.stringify(person, null, 4)) await person.remove() await
connection.close() } catch (error) {

console.log(error.message) }

)

node static-methods.js

There's more...

Static model methods can also be defined using the statics schema
property. For instance:

UsrSchm.statics.getByFullName = function getByFullName(v) {
const fullName = String(v).split(' ')
const lastName = fullName[O] || "'
const firstName = fullName[1] || ''
return this.findOne()
.where('firstName').equals(firstName)
.where('lastName').equals(lastName)

See also

® chapter 1, Introduction to the MERN Stack, section Installing NPM
Packages

® chapter 1, Introduction to the MERN Stack, section Installing
MongoDB

Writing middleware functions
for Mongoose

Middleware functions in Mongoose are also called hooks. There are two
types of hooks pre hooks and post hooks.

The difference, between pre hooks and post hooks, is pretty simple. pre hooks
are called before a method is called, and post hooks are called after. For
example:

const UserSchema = new Schema({

firstName: String,
lastName: String,
fullName: String,

1)

UserSchema.pre('save', async function preSave() {
this.fullName = “${this.lastName} ${this.firstName}"

1)

UserSchema.post('save', async function postSave(doc) {
console.log(New user created: ${doc.fullName})

1)

const User = mongoose.model('User', UserSchema)

And later on, once the connection is made to the database, within an async
function:

const user = new User({
firstName: 'John',
lastName: 'Smith',

1)

await user.save()

Once the save method is called, the pre hook is executed first. After the
document is saved, the post hook is then executed. In the previous example,
it will display in the Terminal output the following text:

New user created: Smith John

There are four different types of middleware functions in Mongoose:
document middleware, model middleware, aggregate middleware, and
query middleware. All of them are defined on the schema level. The
difference is, when the hooks are executed, the context oftnis refers to the
document, model, the aggregation object, or the query object.

All types of middleware support pre and post hooks

"dependencies": {

"mongoose": "5.0.11"

 npm install

How to do It...

In document middleware functions, the context of tnis refers to the
document. A document has the following built-in methods and you can
define nhooks for them:

e init: This is called internally, immediately after a document is
returned from MongoDB. Mongoose uses setters for marking the
document as modified or which fields of the document were

modified. init initializes the document without setters.

® validate: This executes built-in and custom set validation rules for

the document.
e save: This saves the document in the database.

® remove: This removes the document from the database.

const mongoose = require('mongoose’) const { connection, Schema } =
mongoose mongoose.connect(

'mongodb://localhost:27017/test’
).catch(console.error)
const UserSchema = new Schema({

firstName: { type: String, required: true }, lastName: { type: String, required:
true }, })

UserSchema.pre('init', async function prelnit() {
console.log('A document is going to be initialized.") })
UserSchema.post('init’, async function postInit() {
console.log('A document was initialized.") })

UserSchema.pre('validate', async function preValidate() {
console.log('A document is going to be validated.") })
UserSchema.post('validate’, async function postValidate() {
console.log('All validation rules were executed.") })

UserSchema.pre('save', async function preSave() {
console.log('Preparing to save the document') })
UserSchema.post('save', async function postSave() {
console.log("A doc was saved id=${this.id}") })

UserSchema.pre('remove', async function preRemove() {

console.log("Doc with id=${this.id} will be removed") })

UserSchema.post('remove', async function postRemove() {

console.log("Doc with id=${this.id} was removed") })
const User = mongoose.model('User’, UserSchema)
connection.once('connected’, async () => {

try {

const user = new User({

firstName: 'John',

lastName: 'Smith',

)

await user.save()

await User.findBylId(user.id) await user.remove()

await connection.close()

} catch (error) {

await connection.close()

console.dir(error.message, { colors: true }) }

)
 node document-middleware.js
A document is going to be validated.

All validation rules were executed.

Preparing to save the document A doc was saved id=[ID]

A document is going to be initialized.

A document was initialized.
Doc with id=[ID] will be removed Doc with id=[ID] was removed
UserSchema.pre('save', async function preSave() {

this.firstName = this.firstName.toUpperCase() this.lastName =
this.lastName.toUpperCase() })

UserSchema.pre('save', async function preSave() {
throw new Error('Doc was prevented from being saved.") })

Query middleware functions are defined exactly as document middleware
functions are. However, the context of this doesn't not refer to the document but
instead to the query object. Query middleware functions are only supported in
the following model and query functions:

e count: Counts the number of document that match a specific query
condition

e find: Returns an array of documents that match a specific query condition

e findone: Return a document that matches a specific query condition

e findOoneAndRemove: Similar to findone. However, after a document is
found, it is removed

e findOneAndUpdate: Similar to findone but once a document matching a
specific query condition is found, the document can also be updated

e update: Update one or more documents that match a certain query
condition

const mongoose = require('mongoose’) const { connection, Schema } =
mongoose mongoose.connect(

'mongodb://localhost:27017/test’
).catch(console.error)
const UserSchema = new Schema({

firstName: { type: String, required: true }, lastName: { type: String, required:
true }, })

UserSchema.pre('count’, async function preCount() {
console.log(

"Preparing to count document with this criteria:
${JSON.stringify(this._conditions)}"

)

)

UserSchema.post('count’, async function postCount(count) {
console.log("Counted ${count} documents that coincide’) })
UserSchema.pre('find', async function preFind() {
console.log(

"Preparing to find all documents with criteria:
${JSON:.stringify(this._conditions)}"

)
1))

UserSchema.post('find’, async function postFind(docs) {

console.log("Found ${docs.length} documents~) })
UserSchema.pre('findOne', async function prefOne() {
console.log(

"Preparing to find one document with criteria:
${JSON:.stringify(this._conditions)}"

)

)

UserSchema.post('findOne’, async function postfOne(doc) {
console.log("Found 1 document:", JSON.stringify(doc)) })
UserSchema.pre('update’, async function preUpdate() {
console.log(

"Preparing to update all documents with criteria:
${JSON:.stringify(this._conditions)}"

)

)

UserSchema.post(‘'update’, async function postUpdate(r) {

console.log("${r.result.ok} document(s) were updated’) })
const User = mongoose.model('User’, UserSchema)
connection.once('connected’, async () => {

try {

const user = new User({

firstName: 'John',

lastName: 'Smith’,
)

await user.save()
await User

.where('firstName').equals('John') .update({ lastName: 'Anderson’' }) await
User

.findOne()
.select(['lastName'])
.where('firstName').equals('John") await User
find()
.where('firstName').equals('John") await User
.where('firstName").equals('Neo") .count()
await user.remove()
} catch (error) {
console.dir(error, { colors: true }) } finally {
await connection.close() }
)
 node query-middleware.js
Preparing to update all documents with criteria: {"firstName":"John"}

1 document(s) were updated Preparing to find one document with criteria:
{"firstName":"John"}

Found 1 document: {"_id":"[ID]","lastName":"Anderson"}

Preparing to find all documents with criteria: {"firstName":"John"}
Found 1 documents
Preparing to count document with this criteria: {"firstName":"Neo"}
Counted 0 documents that coincide

Finally, there is only one model instance method that supports hooks:

e insertMany: This validates an array of documents and saves them in the
database only if all the documents in the array passed validation

As you probably guessed, a model middleware function is also defined in the
same way as query middleware methods and document middleware methods are.

const mongoose = require('mongoose’) const { connection, Schema } =
mongoose mongoose.connect(

'mongodb://localhost:27017/test’
).catch(console.error)
const UserSchema = new Schema({

firstName: { type: String, required: true }, lastName: { type: String, required:
true }, })

UserSchema.pre('insertMany', async function prMany() {
console.log('Preparing docs...") })
UserSchema.post(‘insertMany', async function psMany(docs) {
console.log('The following docs were created:n', docs) })

const User = mongoose.model('User’, UserSchema)

connection.once('connected’, async () => {
try {
await User.insertMany([

{ firstName: 'Leo’, lastName: 'Smith' }, { firstName: 'Neo', lastName:
'Jackson' },])

} catch (error) {
console.dir(error, { colors: true }) } finally {
await connection.close() }

)

 node query-middleware.js

Preparing docs...

The following documents were created: [{ firstName: 'Leo’, lastName:
'Smith', _id: [id] }, { firstName: 'Neo', lastName: 'Jackson', _id: [id] }]

There's more...

It's useful to mark the fields as required to avoid having "null" values
being saved in the database. An alternative is to set default values for the
fields that are not explicitly defined in the creation time of the document.
For instance:

const UserSchema = new Schema({
name: {
type: string,
required: true,
default: 'unknown',

1)

When a new document is created, if no path or property name is assigned,
then it will assign the default value defined in the schema type option
default.

The schema type defauit option can also be a function. The value returned by calling
this function is assigned as the default value.

Sub-documents or arrays can also be created by just adding brackets when
defining the schema type. For instance:

const WishBoxSchema = new Schema({
wishes: {
type: [String],
required: true,
default: [
'To be a snowman',
'To be a string',
'To be an example',
1
3
1)

When a new document is created, it will expect an array of strings in the
wishes property or path. If no array is provided, then the default values will
be used to create the document.

See also

® chapter 1, Introduction to the MERN Stack, section Installing NPM
Packages

® chapter 1, Introduction to the MERN Stack, section Installing
MongoDB

path: { type: String, required: true }
path: { type: String, required: [true, 'Custom error message'] }
path: { type: String, required: () => true }

gender: {
type: SchemaTypes.String,

enum: ['male’, 'female', 'other'],

website: {
type: SchemaTypes.String,

match: ‘www,

name: {
type: SchemaTypes.String,
minlength: 5,

maxlength: 20,

age: {
type: String,
min: 18,

max: 100,

nickname: {
type: String,
validate: {
validator: function validator(value) {
return A a-zA-Z-]$.test(value)
}s
message: '{ VALUE} is not a valid nickname.',

}’

"dependencies": {

"mongoose": "5.0.11"

 npm install

const mongoose = require('mongoose’) const { connection, Schema } =
mongoose mongoose.connect(

'mongodb://localhost:27017/test’
).catch(console.error)
const UserSchema = new Schema({
username: {
type: String,
minlength: 6,
maxlength: 20,
required: [true, 'user is required'], validate: {

message: '{ VALUE} is not a valid username’, validator: (val) => A[a-zA-
Z]+$.test(val), },

}s

)
const User = mongoose.model('User’, UserSchema)
connection.once('connected’, async () => {

try {

const user = new User() let errors = null // username field is not defined errors
= user.validateSync() console.dir(errors.errors['username'].message) // username
contains less than 6 characters user.username = 'Smith'

errors = user.validateSync() console.dir(errors.errors['username'].message) //
RegExp matching user.username = 'Smith_9876'

errors = user.validateSync() console.dir(errors.errors['username'].message) }

catch (error) {
console.dir(error, { colors: true }) } finally {
await connection.close() }
)
 node custom-validation.js
'user is required’

'Path "username” ("Smith") is shorter than the minimum allowed
 length

(6).'

'Smith 9876 is not a valid username'

See also

® chapter 1, Introduction to the MERN Stack, section Installing NPM
Packages

® chapter 1, Introduction to the MERN Stack, section Installing
MongoDB

Building a RESTful API to
manage users with ExpressJS
and Mongoose

In this recipe, you will build a RESTful API that will allow the creation of
new users, log in, display user information, and delete a user's profile.
Furthermore, you will learn how to build a NodeJS REPL with a client
API that you can use to interact with your server's RESTful API.

A REPL (Read-Eval-Print Loop) is like an interactive shell where you
can execute commands one after another. For instance, the Node.js REPL
can be opened by running this command in your terminal: node -i

Here, the -i flag stands for interactive. Now, you can execute the
JavaScript code that gets evaluated piece by piece in a new context.

"dependencies": {

"body-parser": "1.18.2", "connect-mongo": "2.0.1", "express": "4.16.3",
"express-session": "1.15.6", "mongoose": "5.0.11", "node-fetch": "2.1.2"

}
}

npm install

const mongoose = require('mongoose') const express = require('express') const
session = require('express-session') const bodyParser = require('body-parser')
const MongoStore = require('connect-mongo')(session) const api =
require('./api/controller’) const app = express()

const db = mongoose.connect(

'mongodb://localhost:27017/test’

).then(conn => conn).catch(console.error)

app.use(bodyParser.json())

app.use((request, response, next) => {
 Promise.resolve(db).then(

(connection, err) => (
 typeof connection !=="undefined'
 ? next()

: next(new Error(‘MongoError"))
)
)
 })

app.use(session({
secret: 'MERN Cookbook Secrets', resave: false,
saveUninitialized: true, store: new MongoStore({
collection: 'sessions', mongooseConnection: mongoose.connection, }),
N)
app.use('/users', api)
app.listen(
1337,
() => console.log("Web Server running on port 1337'),)

const { connection, Schema } = require('mongoose’) const crypto =
require('crypto")

const UserSchema = new Schema({

username: {
type: String,
minlength: 4,
maxlength: 20,
required: [true, 'username field is required.'], validate: {
validator: function (value) {
return /Aa-zA-Z]+$/ test(value) },
message: '{ VALUE} is not a valid username., },
}s
password: String,
)
UserSchema.static('login’, async function(usr, pwd) {
const hash = crypto.createHash('sha256'") .update(String(pwd))

const user = await this.findOne() .where(‘username').equals(usr)
.where('password').equals(hash.digest('hex")) if ('user) throw new
Error('Incorrect credentials.") delete user.password

return user
)
UserSchema.static('signup’, async function(usr, pwd) {
if (pwd.length < 6) {
throw new Error('Pwd must have more than 6 chars') }

const hash = crypto.createHash('sha256").update(pwd) const exist = await

this.findOne() .where('username")
.equals(usr)

if (exist) throw new Error('Username already exists.") const user =
this.create({

username: usr,
password: hash.digest('hex"), })
return user
D
UserSchema.method('changePass', async function(pwd) {
if (pwd.length < 6) {
throw new Error('Pwd must have more than 6 chars') }

const hash = crypto.createHash('sha256").update(pwd) this.password =
hash.digest('hex") return this.save()

1))
module.exports = connection.model('User’, UserSchema)

const express = require('express’) const User = require('./model") const api =
express.Router()

const isLogged = ({ session }, res, next) => {
if (!session.user) res.status(403).json({
status: "You are not logged in!’, })

else next()

const isNotLogged = ({ session }, res, next) => {
if (session.user) res.status(403).json({
status: "You are logged in already!’, })
else next()
}
api.post('/login’, isNotLogged, async (req, res) => {
try {

const { session, body } = req const { username, password } = body const user
= await User.login(username, password) session.user = {

id: user.id,
username: user.username, }
session.save(() => {
res.status(200).json({ status: "Welcome!'}) })
} catch (error) {
res.status(403).json({ error: error.message }) }
)
api.post('/logout’, isLogged, (req, res) => {
req.session.destroy()
res.status(200).send({ status: 'Bye bye!' }) })
api.post('/signup’, async (req, res) => {

try {

const { session, body } = req const { username, password } = body const user
= await User.signup(username, password) res.status(201).json({ status:
'Created!'}) } catch (error) {

res.status(403).json({ error: error.message }) }

D
api.get('/profile’, isLogged, (req, res) => {

const { user } = req.session res.status(200).json({ user }) })
api.put(‘'/changepass', isLogged, async (req, res) => {

try {

const { session, body } = req const { password } = body const { _id } =
session.user const user = await User.findOne({ _id }) if (user) {

await user.changePass(password) res.status(200).json({ status: 'Pwd changed'

}) } else {
res.status(403).json({ status: user }) }
} catch (error) {
res.status(403).json({ error: error.message }) }
D

api.delete('/delete’, isLogged, async (req, res) => {
try {

const { _id } = req.session.user const user = await User.findOne({ _id }) await
user.remove()

req.session.destroy((err) => {

if (err) throw new Error(err) res.status(200).json({ status: 'Deleted!'}) })

} catch (error) {
res.status(403).json({ error: error.message }) }
)

module.exports = api

11. Save the file

const repl = require('repl’) const util = require('util’) const vm = require('vm')
const fetch = require('node-fetch") const { Headers } = fetch

let cookie = null

const query = (path, ops) => {
return fetch("http://localhost:1337/users/${path}", {
method: ops.method, body: ops.body,

credentials: 'include’, body: JSON.stringify(ops.body), headers: new
Headers({

...(ops.headers || {}), cookie,

Accept: 'application/json’, 'Content-Type': 'application/json’, }),
}).then(async (r) => {

cookie = r.headers.get('set-cookie') || cookie return {

data: await r.json(), status: r.status,

}).catch(error => error) }

const signup = (username, password) => query('/signup’, {
method: 'POST',
body: { username, password }, })

const login = (username, password) => query('/login’, {
method: 'POST',

body: { username, password }, })

const logout = () => query('/logout’, {
method: 'POST',
)
const getProfile = () => query('/profile’, {
method: 'GET',
)
const changePassword = (password) => query('/changepass’, {
method: 'PUT",
body: { password }, })
const deleteProfile = () => query('/delete’, {
method: 'DELETE,
)
const replServer = repl.start({
prompt: >,
ignoreUndefined: true, async eval(cmd, context, filename, callback) {

const script = new vm.Script(cmd) const is_raw = process.stdin.isRaw
process.stdin.setRawMode(false) try {

const res = await Promise.resolve(
script.runlnContext(context, {

displayErrors: false, breakOnSigint: true, })
)

callback(null, res) } catch (error) {

callback(error)

} finally {

process.stdin.setRawMode(is_raw) }

}s

writer(output) {

return util.inspect(output, {

breakLength: process.stdout.columns, colors: true,

compact: false,

)

)
replServer.context.api = {

signup,

login,

logout,

getProfile,

changePassword,

deleteProfile,

node server.js

node client-repl.js
api.signup('John', 'zxcvbnm') api.login('John', 'zxcvbnm') api.getProfile()
api.changePassword('newPwd") api.logout()

api.login('John', 'incorrectPwd")

How it works...

Your RESTful API server will accept requests for the following paths:

® posT/users/login: If @ username does not exist in the users collection
in MongoDB, an error message is sent to the client. Otherwise, it

returns a welcome message.
® posT/users/logout: This destroys the session ID.

® posT/users/signup: This creates a new username with the defined
password. However, an error will be sent to the client if the
username or password does not pass the validation. It will also
send an error message to the client when the username already

exists.

e cet/users/profile: If the user is logged in, the user information is

sent to the client. Otherwise, an error message is sent to the client.

® puT/users/changepass/: This will change the current logged—in user's
password. However, if the user is not logged-in, an error message

is sent to the client.

® pELETE/users/delete: This will remove a logged-in user's profile from
the collection users in MongoDB. The session will be destroyed
and a confirmation message is sent to the client. If the user is not

logged-in, an error message is sent to the client

See also

® chapter 1, Introduction to MERN Stack, section Installing NPM
Packages

® chapter 1, Introduction to MERN Stack, section Installing
MongoDB

Real-Time Communication with
Socket.lO and ExpressJS

In this chapter, we will cover the following recipes:

e Understanding NodelJS events

e Understanding Socket.IO events

e Working with Socket.IO namespaces

¢ Defining and joining to Socket.IO rooms
e Writing middleware for Socket.IO

e Integrating Socket.IO with ExpressJS

e Using ExpressJS middleware in Socket.IO

Technical requirements

You will be required to have an IDE, Visual Studio Code, Node.js and
MongoDB. You will also need to install Git, in order use the Git repository
of this book.

The code files of this chapter can be found on GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chaptero4

Check out the following video to see the code in action:
https://goo.gl/xfyDBn

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter04
https://goo.gl/xfyDBn

Introduction

Modern web applications usually require real-time communication where
data is continuously flowing from client to server and vice versa with
(almost) no delay.

The HTML5 WebSocket Protocol was created to fulfill this requirement.
WebSocket uses a single TCP connection that is kept open even when the
server or client is not sending any data. That means, while a connection
between the client and the server exists, data can be sent at any time
without having to open a new connection to the server.

Real-time communication has several applications from building chat
applications to multi-user games, where the response time is really
important.

In this chapter, we will focus on learning how to build a real-time web
application using Socket.IO (https://socket.io) and understanding the
Node.js event-driven architecture.

Socket.IO is one of the most used libraries for implementing real-time
communication. Socket.IO uses WebSocket whenever possible but falls-
back to other methods when WebSocket is not supported on a specific web
browser. Because you probably want to make your application accessible
from any web browser, having to work directly with WebSocket may not
seem like a good idea.

https://socket.io

Understanding Node.|s events

Node.js has an event-driven architecture. Most of Node.js' core API is
built around eventemitter. This is a Node.js module that allows 1isteners to
subscribe to certain named events that can be triggered later by an
emitter.

You can define your own event emitter easily by just including the events
Node.js module and creating a new instance of eventemitter:

const EventEmitter = require('events')

const emitter = new EventEmitter()

emitter.on('welcome', () => {
console.log('Welcome!")

})

Then, you can trigger the welcome event by using the enit method:

emitter.emit('welcome')

It is actually, pretty simple. One of the advantages is that you can
subscribe multiple listeners to the same event, and they will get triggered
when the emit method is used:

emitter.on('welcome', () => {
console.log('Welcome')

1)

emitter.on('welcome', () => {
console.log('There!")

})

emitter.emit('welcome')

The eventemitter API provides several helpful methods that give you more
control to handle events. Check the official Node.js documentation to see

all information about the API: https://nodejs.org/api/events.html.

https://nodejs.org/api/events.html

Getting ready

In this recipe, you will create a class that will extend eventenitter, and
which will contain its own instance methods to trigger listeners attached to
a specific event. First, create a new project by opening a Terminal and
running the following line:

npm init

const EventEmitter = require('events')
const NS_PER_SEC = 1e9
const NS_PER_MS = 1e6
class Timer extends EventEmitter {
start() {
this.startTime = process.hrtime()

this.emit('start")

stop() {

const diff = process.hrtime(this.startTime)
this.emit(

'stop’,

(diff[0] * NS_PER_SEC + diff[1]) / NS_PER_MS,

)

const tasks = new Timer()
tasks.on('start’, () => {
letres = 1

for (leti=1;i < 100000; i++) {

res *=1i

tasks.stop()
)
tasks.on('stop’, (time) => {
console.log("Task completed in ${time}ms")
)
tasks.start()

 node timer.js

How it works...

When the start method is executed, it keeps the starting time using
process.hrtime, Which returns the current high-resolution real time in an
array of two items, where the first item is a number that represents seconds
while the second item is another number that represents nanoseconds.
Then, it triggers all event listeners attached to the start event.

On the other side, when the stop method is executed, it uses the result of
previously calling process.hrtime as an argument to the same function,
which returns the difference in time. This is useful to measure the time
from when the start method was called until the time when the stop method
was called.

There's more...

A common mistake is to assume that events are called asynchronously. It
is true that defined events can be called at any time. However, they are still
executed synchronously. Take the following example:

const EventEmitter = require('events')
const events = new EventEmitter()
events.on('print', () => console.log('1'))
events.on('print', () => console.log('2'))
events.on('print', () => console.log('3'))
events.emit('print")

The outputs for the preceding code will be shown as follows:

If you have a loop running inside one of your events, the next event won't
get called until the previous one finishes executing.

Events can be made asynchronous by simply adding an async function as
an event listener. By doing so, every function will still be called in order
from the first 1istener defined to the last. However, the emitter won't wait
for the first 1istener to finish its execution to call the next listener. That
means you cannot guarantee that the output will always be in the same
order, for instance:

events.on('print', () => console.log('1'))

events.on('print', async () => console.log(
await Promise.resolve('2'"))

)

events.on('print', () => console.log('3"))

events.emit('print')

The outputs for the preceding code will be shown as follows:

Asynchronous functions allow us to write non-blocking applications. If
implemented correctly, you won't run into problems like this above.

EventEmitter iNstances have a method called 1isteners which when executed,
providing an event name as an argument, returns an array of the attached
listeners for that specific event. We can use this method in a way to allow
async functions to be executed in the order they were attached, for instance:

const EventEmitter = require('events')
class MyEvents extends EventEmitter {
start() {
return this.listeners('logme').reduce(
(promise, nextEvt) => promise.then(nextEvt),
Promise.resolve(),

}

const event = new MyEvents()

event.on('logme', () => console.log(1))

event.on('logme', async () => console.log(
await Promise.resolve(2)

))

event.on('logme', () => console.log(3))

event.start()

This will execute and display output in the order they were attached:

Understanding Socket.lIO
events

Socket.IO is an event-driven module or library, and, as you probably
guessed, is based on eventemitter. Everything in Socket.IO works with
events. An event is triggered when a new connection is made to the
Socket.IO server and an event can be emitted to send data to the client.

The Socket.IO server API differs from the Socket.IO client API. However,
both work with events to send data from client to server and vice versa.

io.on('connection’, (socket) => {

console.log('A new client is connected') })

// Which is the same as:
 io.of('/").on('connection’, (socket) => {

console.log('A new client is connected') })
socket.on('disconnecting', (reason) => {

console.log('Disconnecting because', reason) })
socket.on('disconnect’, (reason) => {

console.log('Disconnected because', reason) })
socket.on('error’, (error) => {

console.log('Oh no!", error.message) })

e [eventName]: A user-defined event that will get fired when the client emits
an event with the same name. The client can emit an event providing data in
the arguments. On the server, the event will be fired and it will receive the
data sent by the client

clientSocket.on('connect’, () => {
console.log('Successfully connected to server') })
clientSocket.on('connect_error', (error) => {
console.log('Connection error:', error) })
clientSocket.on('connect_timeout', (timeout) => {
console.log('Connect attempt timed out after', timeout) })
clientSocket.on('disconnect’, (reason) => {
console.log('Disconnected because', reason) })
clientSocket.on('reconnect’, (n) => {
console.log('Reconnected after’, n, 'attempt(s)') })
clientSocket.on('reconnect_attempt’, (n) => {
console.log("Trying to reconnect again', n, 'time(s)") })
clientSocket.on('reconnect_error', (error) => {
console.log('Oh no, couldn't reconnect!’, error) })
clientSocket.on('reconnect_failed’, (n) => {
console.log('Couldn'nt reconnected after', n, 'times’) })
clientSocket.on('ping’, () => {
console.log('Checking if server is alive') })
clientSocket.on('pong', (latency) => {

console.log('Server responded after', latency, 'ms') })

clientSocket.on('error’, (error) => {
console.log('Oh no!', error.message)

1y

e [eventName]: A user-defined event that gets fired when the event is emitted
in the server. The arguments provided by the server will be received by the
client.

"dependencies": {

"socket.io"; "2.1.0"

npm install

const io = require('socket.io")()

io.path('/socket.io")

const root = io.of('/")

root.on('connection’, socket => {
let counter = 0
socket.on('time’, () => {
const currentTime = new Date().toTimeString() counter += 1
socket.emit('got time?', currentTime, counter) })
)

io.listen(1337)

const io = require('socket.io-client')

const clientSocket = io('http://localhost:1337', {
path: '/socket.io', })

clientSocket.on('connect’, () => {
for (leti=1;i<=5;i++) {
clientSocket.emit(‘time") }
)

clientSocket.on('got time?', (time, counter) => {
console.log(counter, time) })

node simple-io-server.js

node simple-io-client.js

How it works...

Everything works with events. Socket.IO allows events to be defined in
the server side that the client can emit. On the other side, it also allows to
define events in the client side that the server can emit.

When a user-defined event is emitted by the server side, the data is sent to
the client. The Socket.IO client checks whether there is a listener for that
event first. Then, if there is a listener, it will get triggered. The same thing
happens the other way around when a user-defined event is emitted by the
client side:

1. An event listener time was added in our Socket.IO server's socket
object which can be emitted by the client side
2. An event listener "got time?" was added in our Socket.IO Client

which can be emitted by the server side

3. On connection, the client emits the time event first

4. Afterwards, the time event is fired on the server side which will
emit the "got time?" event providing two arguments, the current
server's time and a counter that specifies how many times a request
was made

5. Then, the "got time>" event is fired on the client side receiving two

arguments that were provided by the server, the time and a counter

Working with Socket.lIO
namespaces

Namespaces are a way of separating the business logic of your application
while reusing the same TCP connection or minimizing the need for
creating new TCP connections for to implement real-time communication
between the server and the client.

Namespaces look pretty similar to ExpressJS' route paths:

home
users
usersprofile

However, as mentioned in previous recipes, these are not related to URLs.

By default, a single TCP connection is created at this URL
http[s]://host:port/socket.io

Reusing the same event names is a good practice when using namespaces.
For example, let's suppose that we have a Socket.IO server that we use to
emit a setwelcomemsg event when the client emits a getwelcomemsg event:
io.of('en’).on('connection’, (socket) => { socket.on('getWelcomeMsg', ()
=> { socket.emit('setWelcomeMsg', 'Hello World!") }) })
io.of('es").on('connection’, (socket) => { socket.on('getWelcomeMsg', () =>
{ socket.emit('setWelcomeMsg', 'Hola Mundo!") }) })

As you can see, we defined a listener for the event getwelcomemsg in two
different namespaces:

e If the client is connected to the English or /en namespace, when

the setwelcomemsg event is fired, the client will receive "ve11o world:"

¢ On the other hand, if the client is connected to the Spanish or /es
namespace, when the setweicomemsg event is fired, the client will

receive "Hola Mundo!™

"dependencies": {

"socket.io"; "2.1.0"

npm install

const http = require('http") const fs = require('fs') const path = require('path’)
const io = require('socket.io")()

const app = http.createServer((req, res) => {
if (req.url ==="") {
fs.readFile(
path.resolve(__dirname, 'nsp-client.html"), (err, data) => {
if (err) {
res.writeHead(500) return void res.end() }

res.writeHead(200) res.end(data)

}
)
} else {
res.writeHead(403) res.end()

}

)
io.path('/socket.io")
io.of('/en").on('connection’, (socket) => {
socket.on('getData’, () => {
socket.emit('data’, {

title: 'English Page’, msg: 'Welcome to my Website', })

D

)
io.of('/es").on('connection’, (socket) => {
socket.on('getData’, () => {
socket.emit('data’, {
title: 'Pagina en Espafiol', msg: 'Bienvenido a mi sitio Web', })
)
)
io.attach(app.listen(1337, () => {
console.log(

'HTTP Server and Socket.IO running on port 1337

)
D)

<IDOCTYPE html> <html lang="en"> <head>
<meta charset="UTF-8"> <title>Socket.IO Client</title> </head>
<body>
<!-- code here --> </body>
</html>

<h1 id="title"></h1> <section id="msg"></section> <button
id="toggleLang">Get Content in Spanish</button> <script
src="http://localhost:1337/socket.io/socket.io.js">
 </script> <script
src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>

<script type="text/babel"> // code here!

</script>

const title = document.getElementByld('title") const msg =
document.getElementByld('msg') const btn =
document.getElementByld(‘toggleLang")

const manager = new io.Manager(
'http://localhost:1337", { path: '/socket.io' },)
const socket = manager.socket('/en")
manager.socket('/en") manager.socket('/es")
socket.on('connect’, () => {
socket.emit('getData’) })
socket.on('data’, (data) => {
title.textContent = data.title msg.textContent = data.msg })

btn.addEventListener('click’, (event) => {

socket.nsp = socket.nsp === "/en’
?'/es'

:'/en'

btn.textContent = socket.nsp === "/en’

? 'Get Content in Spanish’
: 'Get Content in English'
socket.close()

socket.open()

)

 node nsp-server.js

 http://localhost:1337/

Let's test It...

To see your previous work in action, follow these steps:

1. Once you navigate to http://localhost:1337/ in your web browser,
click on the et content in spanish" button to switch to the Spanish
namespace

2. Click on the "cet content in English" button to switch back to the

English namespace

How it works...

This is what happens on the server side:

1. We defined two namespaces, "/en" and "/es", then added a new
event listener, getpata, to the socket object.

2. When the getpata event is fired in any of the two defined
namespaces, it will emit a data event and send an object, that

contains a title and a message property, to the client

On the client side, inside the script tag in our HTML document:

1. Initially, a new socket is created for the namespace "/en":
const socket = manager.socket('/en')

2. At the same time, we created two new sockets for the namespaces

n/en" and "/es". They will act as reserved connections:

manager .socket('/en')
manager .socket('/es')

3. After, an event listener connect was added that sends a request to
the server on connection
4. Then, another event listener data was added that is fired when data

is received from the server

5. Inside the event listener that handles onclick events for our button,
we change the nsp property to switch to a different namespace.
However, for this to happen, we had to disconnect the socket first,
and call the open method to make a new connection again using

the new namespace

Let's see one of the confusing parts about reserved connections. When you
create one or more sockets in the same namespace, the first connection is
reused, for example:

const first = manager.socket('/home")
const second = manager.socket('/home') // <- reuses first connection

On the client side, if there were no reserved connections, then switching to
a namespace that was not used before would result in a new connection
being created.

If you are curious, remove these two lines from the nsp-ciient.ntm1 file:

manager .socket('/en')
manager .socket('/es')

Afterwards, restart or run the Socket.IO server again. You will notice that
there is a slow response when switching to a different namespace because
a new connection is created instead of being reused.

There is an alternative way of achieving the same goal. We could have
created two sockets that point to two different namespaces, "/en" and "/es".
Then, we could have added two event listeners connect and data to each
socket. However, because the first and second socket would contain the
same event names and receive data in the same format from the server, we
would have gotten repeated code. Imagine the case if we had to do the
same for five different namespaces that have the same event names and
receive data in the same format, there would be too many repeated lines of
code. This is where switching namespaces and reusing the same socket
object is helpful. However, there may be cases were two or more different

namespaces have different event names for different kinds of event, in that
case, it is better to add event listeners for each of the namespaces
separately. For example:

const englishNamespace = manager.socket('/en')
const spanishNamespace = manager.socket('/es')

// They listen to different events
englishNamespace.on('showMessage', (data) => {})
spanishNamespace.on('mostrarMensaje', (data) => {})

There's more...

On the client side, you have probably noticed one thing that we didn't use
before, io.Manager.

l0.Manager

This allows us predefine or configure how new connections will be
created. The options defined in a manager, as the URL, will be passed to the
socket on initiation.

In our HTML file, inside a script tag, we created a new instance of
io.manager and passed two arguments; the server URL and an options object
including a path property which indicates where new connections will be
made: const manager = new io.Manager('http://localhost:1337', { path:
'/socket.io’ },)

To find out more about the io.manager API visit the official documentation
Website offer for Socket.IO https://socket.io/docs/client-api/#manager.

Later, we used the socket method to initialize and create a new Socket for
the provided namespace:

const socket = manager.socket('/en')

This way, it is easier to work with several namespaces at the same time
without having to configure each one of them with the same options.

https://socket.io/docs/client-api/#manager

Defining and joining Socket.lIO
rooms

Within namespaces, you can define rooms or channels that a socket can
join and leave.

By default, a room is created with a random un-guessable ID for the
connected socket: io.on('connection’, (socket) => { console.log(socket.id)
// Outputs socket ID })

On connection, when emitting an event, for example:

io.on('connection', (socket) => {
socket.emit('say', 'hello')

3)

What happens underneath is similar to this:

io.on('connection', (socket) => {
socket.join(socket.id, (err) => {
if (err) {
return socket.emit('error', err)
}
io.to(socket.id).emit('say', 'hello')
1)
1)

The join method was used to include the socket inside a room. In this case,
the socket ID is the joint room, and the only client connected to that room
is the socket itself.

Because a socket ID represents a unique connection with a client and, by
default, a room with the same ID is created; all data sent by the server to

that room will be received only by that client. However, if several clients
or socket IDs join a room with the same name and the server sends data;
all clients could be able to receive it.

"dependencies": {

"socket.io"; "2.1.0"

npm install

const http = require('http") const fs = require('fs') const path = require('path’)
const io = require('socket.io")() const app = http.createServer((req, res) => {

if (req.url ==="") {

fs.readFile(

path.resolve(__dirname, 'rooms-client.html"), (err, data) => {
if (err) {

res.writeHead(500) return void res.end() }

res.writeHead(200) res.end(data)

}
)
} else {
res.writeHead(403) res.end()

}

1)
io.path('/socket.io")
const root = io.of('/")
const notifyClients = () => {
root.clients((error, clients) => {
if (error) throw error root.to('commonRoom").emit(

'updateClientCount', clients.length,

)

)

root.on('connection’, socket => {

socket.join('commonRoom") socket.emit('welcome’, "Welcome client:
${socket.id}") socket.on('disconnect’, notifyClients) notifyClients()

1))
io.attach(app.listen(1337, () => {
console.log(

'HTTP Server and Socket.IO running on port 1337

)
D)

<IDOCTYPE html> <html lang="en"> <head>

<meta charset="UTF-8"> <title>Socket.IO Client</title> </head>

<body>

<h1 id="title"> Connected clients: </h1>

<p id="welcome"></p> <script
src="http://localhost:1337/socket.io/socket.io.js">
 </script> <script

src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>
<script type="text/babel"> // Code here

</script>
</body>
</html>

const welcome = document.getElementByld('welcome') const n =

document.getElementByld('n’)
const manager = new io.Manager(

'http://localhost:1337', { path: /socket.io’
1)

const socket = manager.socket('/")

socket.on('welcome’, msg => {
welcome.textContent = msg })

socket.on('updateClientCount', clientsCount => {
n.textContent = clientsCount })

 node rooms-server.js

 http://localhost:1337/

 http://localhost:1337/

13. The number of connected clients in both tabs or windows should have
increased to 2

There's more...

Sending the same message or data, to more than one client, is called
broadcasting. The method we have seen broadcasts a message to all
clients, including the client that generated the request.

There are other several methods to broadcast a message. For instance:
socket.to('commonRoom").emit(‘'updateClientCount', data)

Which will emit an updateciientcount event to all clients in commonroom expect
to the sender or the socket that originated the request.

For a complete list check the official documentation of Socket.IO emit
cheatsheet: https://socket.io/docs/emit-cheatsheet/

https://socket.io/docs/emit-cheatsheet/

namespace.use((socket, next) => { ... })
socket.use((packet, next) => { ... })

It works similarly to how ExpressJS middleware functions do. We can add new
properties to the socket or packet objects. Then, we can call next to pass the
control to the next middleware in the chain. If next is not called, then the socket
won't be connected, or the packet received.

"dependencies": {

"socket.io"; "2.1.0"

npm install

const http = require('http") const fs = require('fs') const path = require('path’)
const io = require('socket.io")() const app = http.createServer((req, res) => {

if (req.url ==="") {

fs.readFile(

path.resolve(__dirname, 'middleware-cli.html"), (err, data) => {
if (err) {

res.writeHead(500)

return void res.end() }

res.writeHead(200)

res.end(data)

}
)
} else {
res.writeHead(403)
res.end()

}
)

io.path('/socket.io")
const users = [

{ username: 'huangjx’, password: 'cfgybhji' }, { username: 'johnstm’,
password: 'mkonjiuh' }, { username: 'jackson’, password: 'qgscwdvb' },]

const userMatch = (username, password) => (
users.find(user => (
user.username === username && user.password === password))
)
const isUserLoggedIn = (socket, next) => {
const { session } = socket.request if (session && session.isLogged) {

next()

const namespace = {

home: io.of('/home").use(isUserLoggedIn), login: io.of('/login’), }
namespace.login.on('connection’, socket => {

socket.use((packet, next) => {

const [evtName, data] = packet const user = data

if (evtName === "tryLogin'

&& user.username === "johnstm') {

socket.emit('loginError’, {

message: 'Banned user!', })

} else {

next()

D
socket.on('tryLogin', userData => {

const { username, password } = userData const request = socket.request if
(userMatch(username, password)) {

request.session = {
isLogged: true,

username,

socket.emit('loginSuccess') } else {
socket.emit('loginError’, {

message: 'invalid credentials’, })

)
)

io.attach(app.listen(1337, () => {
console.log(

'HTTP Server and Socket.IO running on port 1337

)

D)
<IDOCTYPE html>

<html lang="en"> <head>

<meta charset="UTF-8"> <title>Socket.IO Client</title> <script
src="http://localhost:1337/socket.io/socket.io.js">
 </script> <script

src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>
</head>

<body>

<h1 id="title"></h1> <form id="loginFrm" disabled> <input type="text"
name="username" placeholder="username"/> <input type="password"
name="password"
 placeholder="password" /> <input type="submit"
value="LogIn" /> <output name="logs"></output> </form>

<script type="text/babel"> // Code here
</script>

</body>

</html>

const title = document.getElementByld('home") const error =
document.getElementsByName('logErrors')[0]

const loginForm = document.getElementByld('loginForm")
const manager = new io.Manager(

'http://localhost:1337", { path: '/socket.io' },)
const namespace = {

home: manager.socket('/home"), login: manager.socket('/login"), }
namespace.home.on('connect’, () => {

title.textContent = 'Great! you are connected to /home'

error.textContent ="

1

namespace.login.on('loginSuccess', () => {
namespace.home.connect() })

namespace.login.on('loginError’, (err) => {
logs.textContent = err.message })

form.addEventListener('submit’, (event) => {
const body = new FormData(form) namespace.login.emit('tryLogin’, {
username: body.get('username'), password: body.get('password'), })
event.preventDefault() })

11. Save the file

 node middleware-server.js

 http://localhost:1337

invalid credentials
Banned user!

Connected to /home

Integrating Socket.lO with
ExpressJS

Socket.IO works well with ExpressJS. In fact, it's possible to run an
ExpressJS application and a Socket.IO server using the same port or HTTP

server.

"dependencies": {

"express': "4.16.3", "socket.io": "2.1.0"
}
}

npm install

<IDOCTYPE html>
<html lang="en"> <head>

<meta charset="UTF-8"> <title>Socket.IO Client</title> <script
src="http://localhost:1337/socket.io/socket.io.js">
 </script> <script

src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>
</head>

<body>

<h1 id="welcome"></h1> <script type="text/babel"> const welcome =
document.getElementByld('welcome') const manager = new io.Manager(

'http://localhost:1337', { path: '/socket.io' },)

const root = manager.socket('/") root.on('welcome’, (msg) => {
welcome.textContent = msg })

</script>

</body>

</html>

const path = require('path') const express = require('express') const io =
require('socket.io")() const app = express()

io.path('/socket.io")

app.get('/, (req, res) => {
res.sendFile(path.resolve(
__dirname,
'io-express-view.html',))

)

io.of('/").on('connection’, (socket) => {
socket.emit('welcome', 'Hello from Server!') })
io.attach(app.listen(1337, () => {
console.log(

'HTTP Server and Socket.IO running on port 1337

)
D)

 node io-express-server.js

 http://localhost:1337/

How it works...

Socket.IO's attach method expects to receive a HTTP server as a parameter
in order to attach the Socket.IO server application to it. The reason why
we can attach Socket.IO to an ExpressJS server application is because the
1isten method returns the underlying HTTP server to which ExpressJS is
connected.

To sum up, the 1isten method returns the underlying HTTP server. Then, it
is passed as a parameter to the attach method. This way, we can share the
same connection with ExpressJS.

There's more...

So far, we have seen that we can share the same underlying HTTP server
between ExpressJS and Socket.IO. However, that is not all.

The reason why we define a Socket.IO path is actually useful when
working with ExpressJS. Take the following example:

const express = require('express')
const io = require('socket.io"')()
const app = express()
io.path('/socket.io'")
app.get('/socket.io', (req, res) => {
res.status(200).send('Hey there!")

i3]

io.of('/').on('connection', socket => {
socket.emit('someEvent', 'Data from Server!')

i3]

io.attach(app.listen(1337))

As you can see, we are using the same URL path for Socket.IO and
ExpressJS. We accept new connections to the Socket.IO server on the
/socket.io path, but we also send content for /socket.io using the GET route
method.

Even though this preceding example won't actually break your application,
make sure to never use the same URL path to serve content from
ExpressJS and accept new connections for Socket.IO at the same time. For
instance, changing the previous code to this:

io.path('/socket.io'")
app.get('socket.io:msg', (req, res) => {
res.status(200).send(req.params.msg)

3)

While you may expect your browser, when visiting
http://localhost:1337socket.iomessage, (O dlsplay message, that won't be the case
and you will see the following instead:

{"code":0, "message":"Transport unknown"}

That is because Socket.IO will interpret the incoming data first and it
won't understand the data you just sent. In addition, your route handler
will never be executed.

Besides that, the Socket.IO server also serves, by default, its own
Socket.IO Client under the defined URL path. For example, try visiting
http://localhost:1337socket.iosocket.io.js and you will be able to see the
minimized JavaScript code of the Socket.IO client.

If you wish to server your own version of Socket.IO client or if it is

included in the bundle of your application, you can disable the default
behavior in your Socket.IO server application with the serveciient method:

io.serveClient(false)

http://localhost:1337<i>socket.io</i>socket.io.js

See also

® chapter 2, Building a Web server with ExpressJS, section Using

Express.js' built-in middleware function for serving static assets

namespace.use((socket, next) => {

const req = socket.request const res = socket.request.res next() })
const expressMiddleware = (request, response, next) => {

next() }
root.use((socket, next) => {

const req = socket.request const res = socket.request.res
expressMiddleware(req, res, next) })

However, that doesn't mean that all ExpressJS middleware functions will work
out of the box. For example, if an ExpressJS middleware function uses methods
only available within ExpressJS, it may fail or have an unexpected behavior.

"dependencies": {

"express": "4.16.3", "express-session": "1.15.6", "socket.io": "2.1.0"
}
}

npm install

<IDOCTYPE html>
<html lang="en"> <head>

<meta charset="UTF-8"> <title>Socket.IO Client</title> <script
src="http://localhost:1337/socket.io/socket.io.js">
 </script> <script

src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>
</head>

<body>
<h1 id="title"></h1> <form id="loginForm"> <input type="text"
name="username" placeholder="username"/> <input type="password"

name="password"
 placeholder="password" /> <input type="submit"
value="LogIn" /> <output name="logErrors"></output> </form>

<script type="text/babel"> // Code here
</script>

</body>

</html>

const title = document.getElementByld('title") const error =
document.getElementsByName('logErrors')[0]

const loginForm = document.getElementByld('loginForm")
const manager = new io.Manager(

'http://localhost:1337", { path: '/socket.io' },)
const namespace = {

home: manager.socket('/home"), login: manager.socket('/login"), }
namespace.home.on('welcome’, (msg) => {

title.textContent = msg error.textContent ="

)
namespace.login.on('loginSuccess', () => {
namespace.home.connect() })
namespace.login.on('loginError, err => {
error.textContent = err.message })
loginForm.addEventListener('submit’, event => {
const body = new FormData(loginForm) namespace.login.emit('enter’, {
username: body.get('username'), password: body.get('password'), })
event.preventDefault() })
const path = require('path') const express = require('express') const io =
require('socket.io")() const expressSession = require('express-session') const app
= express()
io.path('/socket.io")
const session = expressSession({
secret: 'MERN Cookbook Secret', resave: true,
saveUninitialized: true, })

const ioSession = (socket, next) => {

const req = socket.request const res = socket.request.res session(req, res, (err)
=> {

next(err)

reqg.session.save()

)

}
const home = io.of('/home") const login = io.of('/login’)
const users = [

{ username: 'huangjx’, password: 'cfgybhji' }, { username: 'johnstm’,
password: 'mkonjiuh' }, { username: 'jackson’, password: 'qgscwdvb' },]

app.use(session)
app.get('/home’, (req, res) => {
res.sendFile(path.resolve(
__dirname,
'io-express-cli.html',))
D
home.use(ioSession)
home.use((socket, next) => {
const { session } = socket.request if (session.isLogged) {

next()

1}

home.on('connection’, (socket) => {
const { username } = socket.request.session socket.emit(
'welcome',

“Welcome ${username}!, you are logged in!",)

)

login.use(ioSession)
login.on('connection’, (socket) => {
socket.on('enter’, (data) => {

const { username, password } = data const { session } = socket.request const
found = users.find((user) => (

user.username === username && user.password === password))
if (found) {

session.isLogged = true session.username = username
socket.emit('loginSuccess') } else {

socket.emit('loginError’, {

message: 'Invalid Credentials', })

)
)

io.attach(app.listen(1337, () => {
console.log(

'HTTP Server and Socket.IO running on port 1337

)
D)

 node io-express-srv.js

http://localhost:1337/home
Username: johntm
 Password: mkonjiuh

18. If you logged in successfully, after refreshing the page, your Socket.1IO
client application will still be able to connect to /home and you will see a
welcome message every time

How it works...

When the session middleware is used inside ExpressJS, after modifying
the session object, the save method is automatically called at the end of the
response. However, that is not the case when using the session middleware
in Socket.IO namespaces, that is why we call the save method manually to
save the session back to the store. In our case, the store is the memory
where the sessions are kept until the server stops.

Forbidding access to certain namespaces based on specific conditions is
possible thanks to Socket.IO namespace middleware. If the control is not
passed to the next handler, then the connection is not made. That's why
after the login is successful, we ask the /home namespace to attempt to
connect again.

See also

® chapter 2, Building a Web server with ExpressJS, section Writing

middleware functions

Managing State with Redux

In this chapter, we will cover the following recipes:

e Defining actions and action creators

e Defining reducer functions

e Creating a Redux store

e Binding action creators to the dispatch method
e Splitting and combining reducers

e Writing Redux store enhancers

e Time traveling with Redux

e Understanding Redux middleware

e Dealing with asynchronous data flow

Technical requirements

You will be required to have an IDE, Visual Studio Code, Node.js and
MongoDB. You will also need to install Git, in order use the Git repository
of this book.

The code files of this chapter can be found on GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chaptero5

Check out the following video to see the code in action:
https://goo.gl/mU9AjR

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter05
https://goo.gl/mU9AjR

Introduction

Redux is a predictable state container for JavaScript applications. It allows
developers to manage the state of their applications with ease. With
Redux, the state is immutable. Thus, it is possible to go back and forth to
the next or previous state of your application. Redux is bound to three core
principles:

¢ Single source of truth: All the state of your application must be

stored in a single object tree within one single store

¢ State is read-only: You must not mutate the state tree. Only by

dispatching an action can the state tree change

e Changes are made with pure functions: These are called
reducers, which are functions that accept the previous state and an
action and compute a new state. Reducers must never mutate the

previous state but rather always return a new one

Reducers work in a very similar way to how the array.prototype.reduce
function does. The reduce method executes a function for every item in an
array against an accumulator to reduce it to a single value. For example:

5

10

[a, b].reduce((accumulator, value) => {
return accumulator + value

1 0)

const a

const b

const c

The resulting value in variable ¢ while reducing a and v against the
accumulator, iS 15 and the initial value is o. The reducer function here is:

(accumulator, value) => {
return accumulator + value

}

Redux reducers are written in a similar way and they are the most
important concept of Redux. For example:

const reducer = (prevState, action) => newState

In this chapter, we will focus on learning how to manage simple and
complex state trees with Redux. You will learn as well how to deal with
asynchronous data flows.

Defining actions and action
creators

Reducers accept an action object that describes the action that is going to
be performed and decides how to transform the state based on this action

object.

Actions are just plain objects and they have only one required property
that needs to be present, the action-type. For instance: const action = {
type: INCREMENT_COUNTER!, }

We can also provide additional properties as well. For instance:

const action = {
type: 'INCREMENT_COUNTER',
incrementBy: 2,

Actions creators are just functions that return actions, for instance:

const increment = (incrementBy) => ({
type: 'INCREMENT_COUNTER',
incrementBy,

3)

Getting ready

In this recipe, you will see how these simple Redux concepts can be
apphed with Array.prototype.reduce tO decide how data should be
accumulated or reduced.

We won't need the Redux library yet for this purpose.

const INCREMENT_COUNTER ="'INCREMENT_COUNTER'
const DECREMENT_COUNTER = 'DECREMENT_COUNTER'
const increment = (by) => ({
type: INCREMENT_COUNTER, by,
)
const decrement = (by) => ({
type: DECREMENT_COUNTER, by,
)
const reduced = [

increment(10), decrement(5), increment(3),].reduce((accumulator, action) =>

{

switch (action.type) {

case INCREMENT_COUNTER: return accumulator + action.by case
DECREMENT_COUNTER: return accumulator - action.by default:

return accumulator }

1, 0)
console.log(reduced)
node counter.js

7. Outputs: 8

How it works...

1. The first action type that the reducer encounters is increment(10)
which will increment the accumulator by 1e. Because the initial
value of the accumulator is e, the next current value will be 10

2. The second action type tells the reducer function to decrement the
accumulator by s. Thus, the accumulator's value will be s.

3. The last action type tells the reducer function to increment the

accumulator by s. As a result, the accumulator's value will be s.

Defining reducer functions

Redux reducers are pure functions. That means, they have no side-effects.
Given the same arguments, the reducer must always generate the same
shape of state. Take for example the following reducer function:

const reducer = (prevState, action) => {
if (action.type === '"INC') {
return { counter: prevState.counter + 1 }

}

return prevState

If we execute this function providing the same arguments, the result will
always be the same:

const a = reducer(
{ counter: 0 },
{ type: "INC' },
) // Value is { counter: 1 }
const b = reducer(
{ counter: 0 },
{ type: "INC' },
) // Value is { counter: 1 }

However, take into account that even though the returned values have the same shape,
these are two different objects. For instance, comparing the above:
console.log(a === b) returns false.

Impure reducer functions prevent your application state from being
predictable and make difficult to reproduce the same state. For instance:

const impureReducer = (prevState = {}, action) => {
if (action.type === 'SET_TIME') {
return { time: new Date().toString() }

}

return prevState

If we execute this function:

const a = impureReducer({}, { type: 'SET_TIME' })
setTimeout(() => {
const b = impureReducer({}, { type: 'SET_TIME' })
console.log(
a, // Output may be: {time: "22:10:15 GMT+0000"}
b, // Output may be: {time: "22:10:17 GMT+0000"}

)
}, 2000)

As you can see, after executing the function for a second time after 2
seconds, we get a different result. To make it pure, you can consider re-
writing the previously impure reducer as:

const timeReducer = (prevState = {}, action) => {
if (action.type === 'SET_TIME') {
return { time: action.time }

3

return prevState

Then, you can safely pass a time property inside your action to set the
time:

const currentTime = new Date().toTimeString()
const a = timeReducer(
{ time: null },
{ type: 'SET_TIME', time: currentTime },
)
const b = timeReducer(
{ time: null },
{ type: 'SET_TIME', time: currentTime },
)

console.log(a.time === b.time) // true

This approach makes your state predictable and the state is easy to
reproduce. For instance, you could re-create a scenario of how your
application will act if you pass the time property for any time in morning or
afternoon.

Getting ready

Now that you understand the concept of how reducers work, in this recipe,
you will build a small application that will act differently according to the

state change.

For this purpose, you won't need to install or use the Redux library yet.

<IDOCTYPE html>
<html lang="en"> <head>

<meta charset="UTF-8"> <title>Breakfast Time</title> <script

src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>
</head>

<body>
<h1>What you need to do:</h1> <p>
Current time: </p>

<p id="display-meal"></p> <button id="emulate-night"> Let's pretend is
00:00:00

</button>
<button id="emulate-noon"> Let's pretend is 12:00:00
</button>
<script type="text/babel"> // Add JavaScript code here </script>
</body>
</html>
let state = {
kindOfMeal: null,
time: null,

}

const meal = document.getElementByld('display-meal’) const time =
document.getElementByld('display-time') const btnNight =
document.getElementByld('emulate-night") const btnNoon =

document.getElementByld('emulate-noon')
const SET_MEAL ="'SET_MEAL'
const SET_TIME ='SET_TIME'
const setMeal = (kindOfMeal) => ({
type: SET_MEAL,
kindOfMeal,
)
const setTime = (time) => ({
type: SET_TIME,
time,
)
const reducer = (prevState = state, action) => {
switch (action.type) {
case SET MEAL.:
return Object.assign({}, prevState, {
kindOfMeal: action.kindOfMeal, })
case SET TIME:
return Object.assign({}, prevState, {
time: action.time,
)

default:

return prevState

const onStateChange = (nextState) => {

const comparison = [

{ time: '23:00:00', info: 'Too late for dinner!" }, { time: '18:00:00', info: 'Dinner
time!' }, { time: '16:00:00', info: 'Snacks time!" }, { time: '12:00:00', info: 'Lunch
time!' }, { time: '10:00:00', info: 'Branch time!' }, { time: '05:00:00', info:
'‘Breakfast time!" }, { time: '00:00:00', info: "Too early for breakfast!" },]

time.textContent = nextState.time meal.textContent =
comparison.find((condition) => (

nextState.time >= condition.time)).info
}
const dispatch = (action) => {
state = reducer(state, action) onStateChange(state) }
btnNight.addEventListener('click’, () => {

const time = new Date('1/1/1 00:00:00")
dispatch(setTime(time.toTimeString())) })

btnNoon.addEventListener('click’, () => {

const time = new Date('1/1/1 12:00:00")
dispatch(setTime(time.toTimeString())) })

dispatch(setTime(new Date().toTimeString()))

15. Save the file.

Let's test It...

To see your previous work in action:

1. Open the meal-time.htm file in your web browser. You can do so by
double-clicking on the file, or right-clicking on the file and
choosing Open with....

2. You should be able to see your current local time and a message
stating what kind of meal you should have. For instance, if your
local time is 20:42:35 eMT+e800 (csT), you should see pinner time!

3. Click on the button "Let's pretend is 00:00:00" t0o See what your
application would display if the time was ee:00a.m.

4. The same way, click on the button "Let's pretend is 12:00:00" tO See

what your application would display if the time was 12:00p.m.

How it works...

We can summarize our application like the following to understand how it
works:

1. Action types ser_meaL and set_tive were defined.

2. Two action creators were defined:

1. setmeal which generates an action with the ser_veaL action
type and a kindofmeal property with the provided argument
2. settime Which generates an action with the ser_tme action

type and a time property with the provided argument

3. A reducer function was defined:

1. For the action type set_veaL, computes a new state with a
New kindofMeal Property
2. For the action type ser_tive, computes a new state with a

New time property

4. We defined a function that will get called when the state tree
changes. Inside the function, we updated the view according to the
new state.

5. A dispatch function was defined that calls the reducer function
providing the previous state and an action object to generate a new

state.

createStore(reducer, preloadedState, enhancer)
const TYPE = {

INC_COUNTER: 'INC_COUNTER', DEC_COUNTER: 'DEC_COUNTER,
}

const initialState = {
counter: 0, }

const reducer = (state = initialState, action) => {
switch (action.type) {
case TYPE.INC_COUNTER: return { counter: state.counter + 1 }
case TYPE.DEC_COUNTER: return { counter: state.counter - 1 }
default:

return state }

const store = createStore(reducer)
Calling createstore will expose four methods:

e store.dispatch(action): Where action is an object that contains at least
one property named type that specifies the action type

e store.getState(): Returns the whole state tree

e store.subscribe(listener): Where listener is a callback function that
will get triggered whenever the state tree changes. Several listeners can be
subscribed

e store.replaceReducer (reducer): Replaces the current Reducer function
with a new one

"dependencies": {

"express': "4.16.3", "redux": "4.0.0"

npm install

const express = require('express’) const path = require('path’) const app =
express()

app.use('/lib', express.static(

path.join(__dirname, 'node_modules', 'redux’, 'dist")))
app.get('/, (req, res) => {

res.sendFile(path.join(

__dirname,

'meal-time-client.html’,))

D
app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
<IDOCTYPE html>

<html lang="en"> <head>

<meta charset="UTF-8"> <title>Meal Time with Redux</title> <script

src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>
<script src="libredux.js"></script> </head>

<body>
<h1>What you need to do:</h1> <p>
Current time: </p>

<p id="display-meal"></p> <button id="emulate-night"> Let's pretend is
00:00:00

</button>
<button id="emulate-noon"> Let's pretend is 12:00:00
</button>
<script type="text/babel"> // Add JavaScript code here </script>
</body>
</html>
const { createStore } = Redux
const initialState = {
kindOfMeal: null,
time: null,

}

const meal = document.getElementByld('display-meal’) const time =
document.getElementByld('display-time') const btnNight =
document.getElementByld('emulate-night’) const btnNoon =
document.getElementByld('emulate-noon')

const SET_MEAL ="'SET_MEAL'
const SET_TIME ='SET_TIME'
const setMeal = (kindOfMeal) => ({
type: SET_MEAL,
kindOfMeal,
)

const setTime = (time) => ({

type: SET_TIME,
time,
)
const reducer = (prevState = initialState, action) => {
switch (action.type) {
case SET MEAL.:
return {...prevState, kindOfMeal: action.kindOfMeal, }
case SET TIME:

return {...prevState, time: action.time,

}
default:
return prevState
}
}

const store = createStore(reducer)
store.subscribe(() => {

const nextState = store.getState() const comparison = [

{ time: '23:00:00', info: 'Too late for dinner!" }, { time: '18:00:00', info: 'Dinner
time!' }, { time: '16:00:00', info: 'Snacks time!" }, { time: '12:00:00', info: 'Lunch
time!' }, { time: '10:00:00', info: 'Brunch time!' }, { time: '05:00:00', info:
'‘Breakfast time!" }, { time: '00:00:00', info: "Too early for breakfast!" },]

time.textContent = nextState.time meal.textContent =
comparison.find((condition) => (

nextState.time >= condition.time)).info
)
btnNight.addEventListener('click’, () => {

const time = new Date('1/1/1 00:00:00")
store.dispatch(setTime(time.toTimeString())) })

btnNoon.addEventListener('click’, () => {

const time = new Date('1/1/1 12:00:00")
store.dispatch(setTime(time.toTimeString())) })

store.dispatch(setTime(new Date().toTimeString()))

15. Save the file

 node meal-time-server.js
http://localhost: 1337/

3. You should be able to see your current local time and a message stating
what kind of meal you should have. For instance, if your local time is
20:42:35 GMT+0800 (CST), you should see Dinner time!

4. Click on the button "Let's pretend is 00:00:00" to see what your
application would display if the time was 00:00a.m.

5. The same way, click on the "Let's pretend is 12:00:00" button to see
what your application would display if the time was 12:00p.m.

const reducer = (prevState = initialState, action) => {
switch (action.type) {
case SET_MEAL: return Object.assign({}, prevState, {
kindOfMeal: action.kindOfMeal, })
case SET_TIME: return Object.assign({}, prevState, {
time: action.time, })
default: return prevState }
}
const reducer = (prevState = initialState, action) => {
switch (action.type) {
case SET_MEAL: return {...prevState, kindOfMeal: action.kindOfMeal, }
case SET_TIME: return {...prevState, time: action.time, }
default: return prevState }
}

This could make the code more readable.

Binding action creators to the
dispatch method

Actions creators are just functions that generate action objects which can
later be used to dispatch actions using the dispatch method. Take for
example the following code:

const TYPES = {
ADD_ITEM: 'ADD_ITEM',
REMOVE_ITEM: 'REMOVE_ITEM',
b
const actions = {
addItem: (name, description) => ({
type: TYPES.ADD_ITEM,
payload: { name, description },
1)
removeItem: (id) => ({
type: TYPES.REMOVE_ITEM,
payload: { id },
1)
b

module.exports = actions

Later, somewhere in your application, you can dispatch these actions using
the dispatch method:

dispatch(actions.addItem('Little Box', 'Cats'))
dispatch(actions.removeItem(123))

However, as you can see, calling the dispatch method every time seems like
a repeated and unnecessary step. You could simply wrap the action
creators around the dispatch function itself like this:

const actions = {
addItem: (name, description) => dispatch({

type: TYPES.ADD_ITEM,
payload: { name, description },

ik

removeItem: (id) => dispatch({
type: TYPES.REMOVE_ITEM,
payload: { id },

1)

b

module.exports = actions

Even though this seems like a good solution, there is a problem. It means,
you would need to create the store first, then define your action creators
binding them to the dispatch method. In addition, it would be difficult to
maintain the action creators in a separate file since they depend on the
dispatch method to be present. There is a solution provided by the Redux
module, a helper method called bindactioncreators which accepts two
arguments. The first argument is an object with keys, which represent the
name of an action creator, and values, which represent a function that
returns an action. The second argument is expected to be the dispatch
function:

bindActionCreators(actionCreators, dispatchMethod)

This helper method will map all the action creators to the dispatch method.
For instance, we could re-write the previous example as the following:

const store = createStore(reducer)
const originalActions = require('./actions')
const actions = bindActionCreators(
originalActions,
store.dispatch,

Then, later somewhere in your application, you can call these methods
without wrapping them around the dispatch method:

actions.addItem('Little Box', 'Cats')
actions.removeItem(123)

As you can see, our bound action creators look more like regular functions
now. In fact, by destructuring the actions object, you can use only the
methods you need. For instance:

const {
addItem,
removeltem,

} = bindActionCreators(
originalActions,

store.dispatch,

Then, you can call them like this:

addItem('Little Box', 'Cats')
removeItem(123)

"dependencies": {

"express': "4.16.3", "redux": "4.0.0"

npm install

const express = require('express’) const path = require('path’) const app =
express() app.use('/lib', express.static(

path.join(__dirname, 'node_modules', 'redux’, 'dist")))
app.get('/, (req, res) => {

res.sendFile(path.join(

__dirname,

'bind-index.html’,

)

D

app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
<IDOCTYPE html>

<html lang="en"> <head>

<meta charset="UTF-8"> <title>Binding action creators</title> <script

src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>
<script src="libredux.js"></script> </head>

<body>

<h1>List:</h1> <form id="item-form"> <input id="item-input" name="item"
/> </form>

<ul id="list"> <script type="text/babel"> // Add code here

</script>

</body>
</html]>

const form = document.querySelector(‘#item-form') const input =
document.querySelector('#item-input') const list =
document.querySelector('#list")

const initialState = {

items: [],

const TYPE = {
ADD_ITEM: 'ADD_ITEM, }
const actions = {
addItem: (text) => ({
type: TYPE.ADD_ITEM, text,
)
}
const reducer = (state = initialState, action) => {
switch (action.type) {
case TYPE.ADD ITEM: return {
items: [...state.items, action.text].splice(-5) }
default: return state }

}

const { createStore, bindActionCreators } = Redux const store =

createStore(reducer) const { addItem } = bindActionCreators(
actions,
store.dispatch,
)
store.subscribe(() => {
const { items } = store.getState() items.forEach((itemText, index) => {
const li = (
list.children.item(index) ||
document.createElement('li"))
li.textContent = itemText list.insertBefore(li, list.children.item(0)) })
)
form.addEventListener('submit’, (event) => {
event.preventDefault() addItem(input.value) })

12. Save the file.

 node bind-server.js
http://localhost: 1337/

3. Type something in the input box and press Enter. A new item should appear
in the list.

4. Try to add more than five items to the list. The last one displayed will be
removed and only five items are kept on the view.

const initialState = {
todoList: [],
chatMsg: [],
}
const reducer = (state = initialState, action) => {
switch (action.type) {

case 'ADD_TODO': return {

...state,
todoList: [
...state.todoList,
{
title: action.title,
completed: action.completed,
}s
1,
}

case 'ADD_CHAT_ MSG": return {
...state,
chatMsg: [

...state.chatMsg,

from: action.id,

message: action.message,

}s
I,
}
default:
return state
}
}
const initialState = {
todoList: [],
chatMsg: [],
}

const todoListReducer = (state = initialState.todoList, action) => {
switch (action.type) {
case '"ADD_TODQ": return state.concat([
{
title: action.title,

completed: action.completed,

}’

D

default: return state

const chatMsgReducer = (state = initialState.chatMsg, action) => {
switch (action.type) {

case 'ADD_CHAT_MSG': return state.concat([

{
from: action.id,
message: action.message,
|2
D
default: return state
}
}

const reducer = (state = initialState, action) => {
return {
todoList: todoListReducer(state.todoList, action),
chatMsg: chatMsgReducer(state.chatMsg, action),
}
}

const reducer = combineReducers({
todoList: todoListReducer,
chatMsg: chatMsgReducer,

)

console.log(JSON.stringify(
reducer(initialState, { type: null }),

null, 2,

)

"todoList": [],

"chatMsg": [,

console.log(JSON.stringify(
reducer(

initialState,

type: 'ADD_TODO!,
title: "This is an example',

completed: false,
}s
)s

null, 2,

)

{
"todoList": [

{
"title": "This is an example",
"completed": false,
}s
I,
"chatMsg": [,

}

This shows that each reducer is managing only the slice of the state assigned to
them.

"dependencies": {

"express': "4.16.3", "redux": "4.0.0"

npm install

const express = require('express’) const path = require('path’) const app =
express()

app.use('/lib', express.static(

path.join(__dirname, 'node_modules', 'redux’, 'dist")))
app.get('/', (req, res) => {

res.sendFile(path.join(

__dirname,

'todo-time.html',

)

D

app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
<IDOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8"> <title>Lucky Todo</title> <script

src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>
<script src="libredux.js"></script> </head>

<body>

<h1>List:</h1> <form id="item-form"> <input id="item-input" name="item"
/> </form>

<ul id="list"> <script type="text/babel"> // Add code here
</script>

</body>

</html>

const timeElem = document.querySelector(‘#current-time") const formElem =
document.querySelector('#todo-form') const listElem =
document.querySelector('#todo-list") const inputElem =
document.querySelector('#todo-input') const luckyElem =
document.querySelector('#lucky-number")

const {
createStore,
combineReducers,
bindActionCreators,
} = Redux

const TYPE = {
SET_TIME: 'SET_TIME',

SET_LUCKY_NUMBER: 'SET_LUCKY_NUMBER', ADD_TODO:
'ADD_TODO/,

REMOVE_TODO: 'REMOVE_TODO', TOGGLE_COMPLETED_TODO:
'"TOGGLE_COMPLETED_TODO!, }

const actions = {
setTime: (time) => ({
type: TYPE.SET_TIME,

time,

1,

setLuckyNumber: (number) => ({
type: TYPE.SET_LUCKY_NUMBER, number,
D,
addTodo: (id, title) => ({
type: TYPE.ADD_TODO,
title,
id,
D,
removeTodo: (id) => ({
type: TYPE.REMOVE_TODO, id,
D,
toggleTodo: (id) => ({
type: TYPE.TOGGLE_COMPLETED_TODO, id,
D,
}
const currentTime = (state = null, action) => {
switch (action.type) {

case TYPE.SET TIME: return action.time default: return state

const luckyNumber = (state = null, action) => {
switch (action.type) {

case TYPE.SET LUCKY_NUMBER: return action.number default: return
state

const todoList = (state = [], action) => {
switch (action.type) {

case TYPE.ADD_TODO: return state.concat([

{
id: String(action.id),
title: action.title,
completed: false,

}

D

case TYPE.REMOVE_TODOQO: return state.filter(

todo => todo.id !== action.id)

case TYPE.TOGGLE_COMPLETED_TODO: return state.map(
todo => (

todo.id === action.id

?{

...todo,

completed: !todo.completed, }

: todo

)

)

default: return state
}
}

const reducer = combineReducers({
currentTime,
luckyNumber,
todoList,
)
const store = createStore(reducer)
const {
setTime,
setLuckyNumber,
addTodo,
removeTodo,
toggleTodo,

} = bindActionCreators(actions, store.dispatch)

store.subscribe(() => {

const { currentTime } = store.getState() timeElem.textContent = currentTime

}
store.subscribe(() => {

const { luckyNumber } = store.getState() luckyElem.textContent = “Your
lucky number is: ${luckyNumber}"

)

store.subscribe(() => {
const { todoList } = store.getState() listElem.innerHTML ="
todoList.forEach(todo => {

const li = document.createElement('li") li.textContent = todo.title li.dataset.id =
todo.id li.setAttribute('draggable’, true) if (todo.completed) {

li.style = 'text-decoration: line-through'
}
listElem.appendChild(li) })
)
listElem.addEventListener('click’, (event) => {
 toggleTodo(event.target.dataset.id) })
listElem.addEventListener('drag’, (event) => {
removeTodo(event.target.dataset.id) })
letid=0

formElem.addEventListener('submit’, (event) => {

event.preventDefault()
addTodo(++id, inputElem.value) inputElem.value ="
)
setLuckyNumber(Math.ceil(Math.random() * 1024)) setInterval(() => {
setTime(new Date().toTimeString()) }, 1000)

21. Save the file

 node todo-time.js
http://localhost: 1337/

3. Introduce something in the input box and press enter. A new item should
appear in the list.

4. Click on one of the items that you have added to mark it as completed.

Click once again on one of the items marked as completed to mark it as not

completed.

6. Click and drag one of the items outside of the list to remove it from the To-
do list.

o1

currentTime: String,

luckyNumber: Number,

todoList: Array.of({

id: Number,

title: String,

completed: Boolean,

1,

W

}

We used the combineReducers helper method from the Redux library to
combine those three reducers into a single one

Then, a store was created providing the combined reducer function

For convenience, we subscribed three listener functions that get triggered
whenever the state changes to update the HTML elements used to display
the data from the state

We also defined three event listeners: one to detect when a user submits a
form that contains an input HTML element to add a new To-do item,
another to detect when the user clicks on a To-do item displayed on the
screen to toggle its state from not completed to completed or vice versa, and
finally one event listener to detect when the user drags an element from the
list to dispatch an action to remove it from the list of To-do items

createStore = (reducer, preloadedState, enhancer) => Store
enhancer = (...optional Arguments) => (
createStore => (reducer, preloadedState, enhancer) => Store)

It may look a bit difficult to understand now, but you don't really have to worry
if you don't get it at first because you will probably never need to write a store
enhancer. The purpose of this recipe was simply to help you to understand their
purpose in a very simple way.

"dependencies": {

"redux": "4.0.0"

 npm install

const {

createStore,

combineReducers, bindActionCreators, } = require('redux’)
const acceptMap = () => createStore => (

(reducerMap, ...rest) => {

const reducerList = {}

for (const [key, val] of reducerMap) {

reducerList[key] = val }

return createStore(

combineReducers(reducerList), ...rest,

)

)

const TYPE = {

INC_COUNTER: 'INC_COUNTER', DEC_COUNTER: 'DEC_COUNTER,
SET_TIME: 'SET_TIME', }

const actions = {
incrementCounter: (incBy) => ({
type: TYPE.INC_COUNTER, incBy,

1,

decrementCounter: (decBy) => ({

type: TYPE.DEC_COUNTER, decBy,
D,

setTime: (time) => ({

type: TYPE.SET_TIME, time,

1,

const map = new Map()
map.set('counter’, (state = 0, action) => {
switch (action.type) {

case TYPE.INC_COUNTER: return state + action.incBy case
TYPE.DEC_COUNTER: return state - action.decBy default: return state }

1))
map.set('time’, (state = null, action) => {
switch (action.type) {
case TYPE.SET TIME: return action.time default: return state }
1))
const store = createStore(map, acceptMap())
const {
incrementCounter, decrementCounter, setTime,
} = bindActionCreators(actions, store.dispatch)

setInterval(function() {

setTime(new Date().toTimeString()) if (this.shouldIncrement) {
incrementCounter((Math.random() * 5) + 1 | 0) } else {
decrementCounter((Math.random() * 5) + 1| 0) }

console.dir(

store.getState(), { colors: true, compact: false },)

this.shouldIncrement = !this.shouldIncrement }.bind({ shouldIncrement: false
}), 1000)

 node map-store.js

"counter": Number, "time": String,

How it works...

The enhancer composes the store creator into a new one. For instance, the
following line:

const store = createStore(map, acceptMap())

Could be written as:

const store = acceptMap()(createStore)(map)

Which actually, in a way, wraps the original createstore method into
another createstore method.

Composition can be explained as a set of functions that are called
accepting the result argument of the previous function. For instance:

const ¢ = (...args) => f(g(h(...args)))

This composes functions f, g, and nh from right to left into a single function
c. That means, we could write the previous line of code also like this:

const createStore = acceptMap()(createStore)
const store = createStore(map)

Here _createstore is the result of composing createstore and your store
enhancer function.

Time traveling with Redux

Even though, you may probably never need to write store enhancers, there
is one special that you may find very useful for debugging your Redux
powered applications to time travel through the state of your application.
You can enable time traveling on your application by simple installing
Redux DevTools Extension (for Chrome and Firefox):

https://github.com/zalmoxisus/redux-devtools-extension.

https://github.com/zalmoxisus/redux-devtools-extension

"dependencies": {

"express': "4.16.3", "redux": "4.0.0"

npm install

Make sure to have installed the Redux DevTools Extension in your web browser.

const express = require('express’) const path = require('path’) const app =
express() app.use('/lib', express.static(

path.join(__dirname, 'node_modules', 'redux’, 'dist")))

app.get('/, (req, res) => {

res.sendFile(path.join(

__dirname,

'time-travel.html',))

D

app.listen(

1337,

() => console.log("Web Server running on port 1337'),)
<IDOCTYPE html> <html lang="en"> <head>

<meta charset="UTF-8"> <title>Time travel</title> <script

src="https://unpkg.com/@babel/standalone/babel.min.js">
 </script>
<script src="libredux.js"></script> </head>

<body>

<h1>Counter: </h1> <script type="text/babel">
// Add JavaScript Code here </script>

</body>
</html>
const counterElem = document.querySelector(‘#counter")

const {

createStore,
bindActionCreators, } = Redux
const TYPE = {

INC_COUNTER: 'INC_COUNTER', DEC_COUNTER: 'DEC_COUNTER,
}

const actions = {

incCounter: (by) => ({ type: TYPE.INC_COUNTER, by }), decCounter: (by)
=> ({ type: TYPE.DEC_COUNTER, by }), }

const reducer = (state = { value: 5 }, action) => {
switch (action.type) {
case TYPE.INC_COUNTER: return { value: state.value + action.by }
case TYPE.DEC_COUNTER: return { value: state.value - action.by }
default:

return state

}
}
const store = createStore(
reducer,
(

window._ REDUX_DEVTOOLS_EXTENSION__ &&
window._ REDUX_DEVTOOLS_EXTENSION_ ()),

)

const {

incCounter,

decCounter,

} = bindActionCreators(actions, store.dispatch)
store.subscribe(() => {

const state = store.getState() counterElem.textContent = state.value })
for (leti=0;i<10;i++) {

const incORdec = (Math.random() * 10) > 5

if (incORdec) incCounter(2) else decCounter(1) }

13. Save the file

Let's test It...

To see the previous work in action:

1. Open a new Terminal and run:
| node todo-time.js
2. In your Browser, visit:

http://localhost:1337/

3. Open Developer Tools of your Browser and look for the Redux
tab. You should see a tab like this:

Elements Console Redux »

Chart Time Travel

state @ @ value

DEC_COUNTER

Redux DevTools — Tab Window

4. The slider allows you to move from the last state to the very first
state of your application. Try moving the slider to a different

position:

Autoselect instances

DEC_COUNTER

Redux DevTools — Moving Slider

5. While moving the slider, you would be able to see in your browser
the counters initial value and how it changed those ten times in the

for loop

There's more

Redux DevTools has some features that you will probably find amazing
and helpful for debugging and managing the state of your application. In
fact, if you followed the previous recipes, I suggest you go back to the
projects we wrote and enable this enhancer and try to experiment with
Redux DevTools.

One of many features of Redux DevTools is the Log monitor, which
displays in chronological order which action was dispatched and the
resulting value of transforming the state:

Autoselect instances
Log monitor
Commit

Inspector

Chart

Redux DevTools — Log Monitor

middleware = API => next => action => next(action)
middleware = ({

getState,

dispatch,
}) => next => action => next(action)
applyMiddleware(middlewarel, middleware2)
middlewares.map((middleware) => middleware(API))
dispatch = (action) => (

(action) => (

(action) => store.dispatch(action))(action)

)(action)

4. Which means that a middleware function can interrupt the chain and
prevent a certain action from being dispatched if the next (action) method
is not called

5. The dispatch method from the middleware API object, allows you to call the
dispatch method of the store with the previously applied middleware. That
means, if you are not careful while using this method, you may create an
infinite loop

Understanding how it works internally may not be so simple at first, but I assure
you that you will get it soon.

"dependencies": {

"redux": "4.0.0"

npm install

const {
createStore, applyMiddleware, } = require('redux’)
const TYPE = {

INCREMENT: INCREMENT', DECREMENT: 'DECREMENT,
SET_TIME: 'SET_TIME', }

const reducer = (
state = null, action,
) => state

const typeCheckMiddleware = api => next => action => {
if (Reflect.has(TYPE, action.type)) {
next(action) } else {
const err = new Error(
“Type "${action.type}" is not a valid™ +
“action type. ~ +
“did you mean to use one of the following™ +
“valid types? ~ +
“"${Reflect.ownKeys(TYPE).join(""|"")}"n",)

throw err

const store = createStore(

reducer,
applyMiddleware(typeCheckMiddleware),)
store.dispatch({ type: INCREMENT" }) store.dispatch({ type: MISTAKE' })

8. Save the file.

node type-check-redux.js
/type-check-redux.js:25
throw err A

Error: Type "MISTAKE" is not a valid action type. did you mean to use one of
the following valid types? "INCREMENT"|"DECREMENT"|"SET_TIME"

at Object.action [as dispatch] (/type-check-redux.js:18:15) at Object.
<anonymous> (/type-check-redux.js:33:7)

In this example, the stack trace tells us that the error happened on line 18, which
points to our middleware function. However, the next one points to line 33,
store.dispatch({ type: 'MISTAKE' }), which is a good thing because it can
help you track exactly where certain actions are dispatched that were never
defined.

How it works...

It's pretty simple, the middleware function checks the action type, of the
action being dispatched, to see if it exists as a property of the tvre object
constant. If it exists, then the middleware passes control to the next
middleware in the chain. However, in our case, there is no next
middleware, so the control is passed to the original dispatch method of the
store that will apply the reducer and transform the state. On the other side,
if the action type was not defined, the middleware function interrupts the
middleware chain by not calling the next function and by throwing an
error.

Dealing with asynchronous
data flow

By default, Redux doesn't handle asynchronous data flow. There are
several libraries out there that can help you with these tasks. However, for
the purpose of this chapter, we will build our own implementation using
middleware functions to give the dispatch method the ability to dispatch
and handle asynchronous data flow.

"dependencies": {

"express": "4.16.3", "node-fetch": "2.1.2", "redux": "4.0.0"
}
}

npm install

const express = require('express') const app = express()
app.get('/time’, (req, res) => {
setTimeout(() => {
res.send(new Date().toTimeString()) }, 2000)
D
app.get('/date’, (req, res) => {
setTimeout(() => {
res.destroy(new Error('Internal Server Error')) }, 2000)
D
app.listen(
1337,
() => console.log('API server running on port 1337"),)
const fetch = require('node-fetch") const {

createStore, applyMiddleware, combineReducers, bindActionCreators, } =
require('redux’)

const STATUS = {

PENDING: 'PENDING', RESOLVED: 'RESOLVED', REJECTED:
'REJECTED/, }

const TYPE = {
FETCH_TIME: 'FETCH_TIME', FETCH_DATE: 'FETCH_DATE', }

const actions = {

fetchTime: () => ({

type: TYPE.FETCH_TIME, value: async () => {
const time = await fetch(
'http://1ocalhost:1337/time’

).then((res) => res.text()) return time

D,

fetchDate: () => ({

type: TYPE.FETCH_DATE, value: async () => {
const date = await fetch(
'http://localhost:1337/date’

).then((res) => res.text()) return date

D,
setTime: (time) => ({
type: TYPE.FETCH_TIME, value: time, })
}
const setValue = (prevState, action) => ({

...prevState, value: action.value || null, error: action.error || null, status:
action.status || STATUS.RESOLVED, })

const iniState = {

time: {

value: null, error: null, status: STATUS.RESOLVED, },

date: {

value: null, error: null, status: STATUS.RESOLVED, }
}

const timeReducer = (state = iniState, action) => {

switch (action.type) {

case TYPE.FETCH_TIME: return {

...state,

time: setValue(state.time, action) }

case TYPE.FETCH_DATE: return {

...state,

date: setValue(state.date, action) }

default: return state }
}

const allowAsync = ({ dispatch }) => next => action => {

if (typeof action.value === "function’) {

dispatch({

type: action.type, status: STATUS.PENDING, })

const promise = Promise .resolve(action.value()) .then((value) => dispatch({

type: action.type, status: STATUS.RESOLVED, value,

D)

.catch((error) => dispatch({
type: action.type, status: STATUS.REJECTED, error: error.message, }))
return promise }
return next(action) }
const store = createStore(
timeReducer, applyMiddleware(

allowAsync,

),
)

const {
setTime,
fetchTime,
fetchDate,
} = bindActionCreators(actions, store.dispatch)
store.subscribe(() => {
console.log('x1b[1;34m%sx1b[0m’, 'State has changed") console.dir(
store.getState(), { colors: true, compact: false },)
)
setTime(new Date().toTimeString())

fetchTime()

fetchDate()

16. Save the file.

Let's test It...

To see your previous work in action:

1. Open a new terminal and run:

| node api-server.js

2. Without closing the previously running NodeJS process, open
another Terminal and run:

| node async-redux.js

time: {
value: "01:02:03 GMT+0000",
error: null,

status: "RESOLVED"

}
time: {
value: null,
error: null,
status: "PENDING"
}

// Later, once the operation is fulfilled:
time: {

value: "01:02:03 GMT+0000",

error: null,

status: "RESOLVED"

date: {
value: null,
error: null,

status: "PENDING"

}

// Later, once the operation is fulfilled:
date: {
value: null,

error: "request to http://localhost:1337/date failed, reason:
 socket hang

"

up ,

status: "REJECTED"

}

5. Take into account that because the operations are asynchronous, the output
displayed in the terminal may not always be in the same order

6. Notice that the first async operation is fulfilled and the status marked as
RESOLVED while the second async operation is fulfilled and its status marked
as REJECTED

7. The statuses PENDING, RESOLVED, and REJECTED reflect the three statuses
that a JavaScript Promise can be, and they are not obligatory names, simply
easy to remember

There's more...

If you don't want to write your own middleware functions or store
enhancers to deal with asynchronous operations, you can opt to use one of
the many libraries for Redux that exist out there. Two of the most use or
popular ones are these:

e Redux Thunk—https ://github.com/gaearon/redux-thunk

e Redux Saga—https ://github.com/redux-saga/redux-saga

https://github.com/gaearon/redux-thunk
https://github.com/redux-saga/redux-saga

Building Web Applications with
React

In this chapter, we will cover the following recipes:

e Understanding React elements and React components
e Composing components

e Stateful components and life cycle methods

e Working with React.PureComponent

e React event handlers

e Conditional rendering of components

e Rendering lists with React

e Working with forms and inputs in React

e Understanding refs and how to use them

e Understanding React portals

e Catching errors with error boundary components

e Type checking properties with PropTypes

Technical requirements

You will be required to know Go programming language, also basics of
web application framework. You will also need to install Git, in order use
the Git repository of this book. And finally, ability to develop with an IDE
on the command line.

The code files of this chapter can be found on GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chaptero6

Check out the following video to see the code in action:
https://goo.gl/J37d7Ag

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter06
https://goo.gl/J7d7Ag

Introduction

React is a JavaScript library for building user interfaces (UI). React is
component-based, which means that each component can live separately
from others and manage its own state. Complex Uls can be created by
composing components.

Components are usually created using JSX syntax, which has an XML-
like syntax, or using the react.createelement method. However, JSX is what
makes React special for building web applications in a declarative way.

In the MVC pattern, React is usually associated with the View.

Understanding React elements
and React components

React elements can be created using JSX syntax:

const element = <hl>Example</h1>

This is transformed to:

const element = React.createElement('h1', null, 'Example')

JSX is a language extension on top of JavaScript that allows you to create
complex Uls with ease. For example, consider the following:

const element = (
<details>
<summary>React Elements</summary>
<p>JSX is cool</p>
</details>

The previous example could be written without JSX syntax as:

const element = React.createElement(
'details’,
null,
React.createElement('summary', null, 'React Elements'),
React.createElement('p', null, 'JSX is cool'),

)

React elements can be any HTMLS5 tag and any JSX tag can be self-
closed. For instance, the following will create a paragraph React element
with an empty content within:

const element = <p />

The same way as you would do with HTMLS5, you can provide attributes
to React elements, called properties or props in React:

const element = (
<input type="text" value="Example" readOnly />

React components allow you to isolate parts of your web application as
re-usable pieces of code or components. They can be defined in several
ways. For instance:

¢ Functional components: These are plain JavaScript functions that

accept properties as the first argument and return React elements:

const InputText = ({ name, children }) => (
<input
type="text"
name={name}
value={children}
readonly
/>

e Class components: Using ES6 classes allows you to define life
cycle methods and create stateful components. They render React

elements from the render method:

class InputText extends React.Component { render() {
const { name, children } = this.props
return (
<input
type="text"
name={name}
value={children}

readonly
/>

o Expressions: These keep a reference to an instance of a React

element or component:

const InstanceInputText = (
<InputText name="username">
Huang Jx
</InputText>

There are a few properties that are unique and are only part of React. For
instance, the cniidren property refers to the elements contained within the
tag:

<MyComponent>
Example
</MyComponent>

The children property received in mycomponent, in the previous example, will
be an instance of a span React element. If multiple React elements or
components are passed as children, the chiidren property will be an array.
However, if no children are passed, the chiidren property will be nu11. The
children property doesn't necessarily need to be a React element or
component; it can also be a JavaScript function, or a JavaScript primitive:

<MyComponent>
{O) =>{
console.log('Example!')
return null

1}
</MyComponent>

React also considers functional components and class components that

return or render a string, a valid React component. For instance:

const SayHi = ({ to }) => (
"Hello ${to}"
)
const element = (
<h1>
<SayHi to="John" >, how are you?
<h1>

React components' names must start with an uppercase letter. Otherwise, React will
treat lowercased JSX tags as React elements

Rendering components to the DOM in React is not a complicated task.
React provides several methods for rendering a React component to the
DOM using the reactoom library. React uses JSX or react.createelement tO
create a tree or a representation of the DOM tree. It does so by using a
virtual DOM, which allows React to transform React elements to DOM
nodes and update only the nodes that have changed.

This is how you usually render your application using the render method
from the reactoom library:

import * as ReactDOM from 'react-dom'
import App from './App'
ReactDOM. render (
<App />,
document.querySelector('[role="main"]"),

The first argument provided to the render method is a React component or a

React element. The second argument tells you where in the DOM to
render the application. In the previous example, we use the queryselector
method from the document object to look for a DOM node with an
attribute of ro1e set to "main".

React also allows you to render React components as an HTML string,
which is useful for generating content on the server side and sending the
content directly to the browser as an HTML file:

import * as React from 'react'
import * as ReactDOMServer from 'react-dom/server'
const OrderedList = ({ children }) => (

{children.map((item, indx) => (
<1li key={indx}>{item}</1i>
)3}
</0l>
)
console.log(
ReactDOMServer.renderToStaticMarkup(
<OrderedList>
{['One', 'Two', 'Three']l}
</0OrderedList>

It will output the following in the console:

One</1i>
<1li>Two</1i>
Three</1i>
</0l1>

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

npm install

import * as React from 'react’
import * as ReactDOM from 'react-dom'
const RedText = ({ text }) => (

{text}

)
const Welcome = ({ to }) => (
<h1>Hello, <RedText text={to}/></h1>
)
const TodoList = (

Lunch at 14:00 with Jenny
Shower
</ful>
)
class Footer extends React.Component {
render() {
return (

<footer>

{new Date().toDateString() }

</footer>
)
}
}
ReactDOM.render(
<div>

<Welcome to="John" />
{TodoList}
<Footer />
</div>,
document.querySelector('[role="main"]'),
)

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>MyApp</title>
</head>
<body>

<div role="main"></div>

<script src="./basics.js"></script>
</body>
</html>

3. Save the file

 npm start
http://localhost: 1337/

3. You should be able to see the React application rendered to the DOM

Composing components

In React, all components can be isolated and complex Uls can be built by
composing components which enables their re-usability.

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

npm install

import * as React from 'react’
 import * as ReactDOM from 'react-dom'
export default ({ title }) => (
<h1>{title}</h1>)
import * as React from 'react’
import * as ReactDOM from 'react-dom'
export default ({ date }) => (
<footer>{date }</footer>)
import * as React from 'react’
import * as ReactDOM from 'react-dom'
export default () => (
<p>This is a cool website designed with ReactJS</p>)
import * as React from 'react’
import * as ReactDOM from 'react-dom'
import Header from './component/Header'
import Footer from './component/Footer'
import Description from './component/Description’
const App = () => (
<React.Fragment> <Header title="Simple React App" /> <Description />

<Footer date={new Date().toDateString()} /> </React.Fragment>)

ReactDOM.render(
<App />,
document.querySelector('[role="main"]"),)
<IDOCTYPE html>
<html lang="en"> <head>
<meta charset="UTF-8"> <title>Composing Components</title> </head>
<body>

<div role="main"></div> <script src="./composing-react.js"></script>
</body>

</html>

3. Save the file

 npm start

http://localhost: 1337/

<div role="app"> <h1>React App</h1> <p>This is a cool website designed with
ReactJS</p> <footer>Tue May 22 2018</footer> </div>

How it works...

Each React component is written in a separate file. Then, we import the
components in the main application file, composing-react.js, and use
composition to generate a virtual DOM tree. Each component is re-usable
because it can be used again in other parts of your application or in other
components by just importing the files. Then, the render method from the
reactbom library is used to generate a DOM representation of the virtual
DOM tree.

const Example = () => (
One Two) // < will trow an error
const Example = () => (

<React.Fragment> One Two
</React.Fragment>)

Stateful components and life
cycle methods

React components can manage their own state and update only when the
state has changed. Stateful React components are written using ES6
classes:

class Example extends React.Component {
render () {
This is an example

}

React class components have a state instance property to access their
internal state and a props property to access properties passed to the
component:

class Example extends React.Component {
state = { title: null }
render () {
return (
<React.Fragment>
{this.props.title}
{this.state.title}
</React.Fragment>

And their state can be mutated by using the setstate instance method:

class Example extends React.Component {
state = {
title: "Example",
date: null,

3

componentDidMount() {
this.setState((prevState) => ({
date: new Date().toDateString(),

1))

3
render () {
return (
<React.Fragment>
{this.state.title}
{this.state.date}
</React.Fragment>
)
3

The state is initialized once. Then, when the component is mounted, the
state should only be mutated using the setstate method. This way, React is
able to detect changes in the state and update the component.

The setstate method accepts a callback function as the first argument
which will be executed passing the current state (prevstate for convention)
as the first argument to the callback function and the current props as the
second argument. This is so because setstate works asynchronously and
the state could be mutated while you are performing other actions in
different parts of your component.

If you don't need access to the current state while updating the state, you
can directly pass an object as the first argument. For instance, the previous
example could have been written as:

componentDidMount () {
this.setState({
date: new Date().toDateString(),

})

setstate also accepts an optional callback function as a second argument
that gets called once the state has been updated. Because setstate is
asynchronous, you may want to use the second callback to perform an
action only once the state has been updated:

componentDidMount () {
this.setState({
date: new Date().toDateString(),
3o O = A
console.log('date has been updated!"')

1)
console.log(this.state.date) // null

Once the component is mounted, the console will first output nu11 even
though we used setstate before it; that's because the state is set
asynchronously. However, once the state is updated, the console will
display "date has been updated".

When using the setstate method, React merges the previous state with the current
given state. Internally, it's similar to doing:

currentState = Object.assign({}, currentState, nextState)

Every class component has life cycle methods that give you control over
the life of your component since its creation until it's destroyed, as well as
giving you control over other properties, such as knowing when the
component has received new properties and if the component should be
updated or not. These are the life cycle methods present in all class
components:

® constructor(props): This is invoked when initializing a new instance
of the component, before the component is mounted. props must be
passed to the super class using super(props) to let React set the props
correctly. The constructor method is useful as well to initialize the

initial state of the component.

® static getDerivedStateFromProps(nextProps, nextState)ZﬁrhijS invoked
when the component has been instantiated and when the
component will receive new props. This method is useful when the
state or part of it depends on values received from the props passed

to the component. It must return an object which will be merged

with the current state or nu11 if the state doesn't need to be updated

after receiving new props.

componentpidmount (): This is invoked after the component has been
mounted and after the first render call. It's useful for integrating
with third-party libraries, accessing the DOM, or making HTTP

requests to an endpoint.

shouldComponentUpdate (nextProps, nextstate): 1hiS is invoked when the
component has updated the state or new props have been received.
This method allows React to know if it should update the
component or not. If you don't implement this method in your
component, it defaults to returning true, which means the
component should be updated every time the state has changed or
new props have been received. If implementing this method and

returning faise, it will tell React not to update the component.

componentDidUpdate(prevProps, prevState, snapshot): This is invoked after
the render method or when an update occurs, except for the first

rendering.

getSnapshotBeforeUpdate(prevProps, prevState): This is invoked after the
render method or when an update occurs but before the
componentpidupdate life cycle method. The returned value of this

method is passed as the third argument of componentpidupdate.

componentwillunmount (): This is invoked before a component is
unmounted and its instance destroyed. If using third-party
libraries, this method is helpful for cleaning up. For instance,

clearing timers or cancelling network requests.

componentDidCatch(error, info) . This is a new feature of React v16 for

error handling. We will look at this in more detail in the following

recipes.

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

npm install

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Life cycle methods</title>
</head>
<body>
<div role="main"></div>
<script src="./stateful-react.js"></script>
</body>
</html>
import * as React from 'react’
import * as ReactDOM from 'react-dom'
class LifeCycleTime extends React.Component {
constructor(props) {
super(props)
this.state = {
time: new Date().toTimeString(),
color: null,

dontUpdate: false,

static getDerivedStateFromProps(nextProps, prevState) {

return nextProps

componentDidMount() {
this.intervalld = setInterval(() => {
this.setState({

time: new Date().toTimeString(),
)

}, 100)

componentWillUnmount() {
clearInterval(this.intervalld)

}
shouldComponentUpdate(nextProps, nextState) {
if (nextState.dontUpdate) {

return false

return true

getSnapshotBeforeUpdate(prevProps, prevState) {
return 'snapshot before update'

}
componentDidUpdate(prevProps, prevState, snapshot) {
console.log(

'Component did update and received snapshot:’,

snapshot,

)

render() {

return (

{this.state.time}

)

class App extends React.Component {
constructor(props) {

super(props)

this.state = {

color: red',
dontUpdate: false,
unmount: false,

}
this.toggleColor = this.toggleColor.bind(this)
this.toggleUpdate = this.toggleUpdate.bind(this)
this.toggleUnmount = this.toggleUnmount.bind(this)

}
toggleColor() {
this.setState((prevState) => ({
color: prevState.color === red'

? 'blue’
: 'red’,

D)

toggleUpdate() {
this.setState((prevState) => ({

dontUpdate: !prevState.dontUpdate,

D)

toggleUnmount() {

this.setState((prevState) => ({

unmount: !preVState.unmount,

D)

render() {

const {

color,

dontUpdate,

unmount,

} = this.state

return (

<React.Fragment>

{unmount === false && <LifeCycleTime
color={color}
dontUpdate={dontUpdate}

/>}

<button onClick={this.toggleColor}>
Toggle color

{JSON:.stringify({ color })}
</button>

<button onClick={this.toggleUpdate } >

Should update?

{JSON.stringify({ dontUpdate })}
</button>

<button onClick={this.toggleUnmount }>
Should unmount?

{JSON:.stringify({ unmount })}
</button>

</React.Fragment>

)
}
}
ReactDOM.render(
<App />,

document.querySelector('[role="main"]'),

)

6. Save the file.

 npm start
 http://localhost:1337/

3. Use the buttons to toggle the state of the component and understand how
the life cycle methods affect the component's functionality.

Working with
React.PureComponent

React.PureComponent is similar to React.Component. The difference is that
React.Component implements the shouldcomponentupdate life cycle method
internally to make a shallow comparison of the state and props to decide if
the component should update or not.

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

npm install

<IDOCTYPE html>
<html lang="en"> <head>
<meta charset="UTF-8"> <title>React.PureComponent</title> </head>
<body>

<div role="main"></div> <script src="./pure-component.js"></script>
</body>

</html>
import * as React from 'react’
import * as ReactDOM from 'react-dom'
class Button extends React.PureComponent {
componentDidUpdate() {
console.log('Button Component did update!’) }
render() {
return (
<button>{this.props.children} </button>)
}
}
class Text extends React.Component {
componentDidUpdate() {
console.log('Text Component did update!") }

render() {

return this.props.children }

class App extends React.Component {
state = {

counter: 0,

componentDidMount() {
this.intervalld = setInterval(() => {
this.setState(({ counter }) => ({
counter: counter + 1, }))

}, 1000)

componentWillUnmount() {
clearInterval(this.intervalld) }
render() {

const { counter } = this.state return (

<React.Fragment> <h1>Counter: {counter}</h1> <Text>I'm just a
text</Text> <Button>I'm a button</Button> </React.Fragment>)

}
}

ReactDOM.render(

<App />,
document.querySelector('[role="main"]'),)

7. Save the file.

 npm start
 http://localhost:1337/

[N] Text Component did update!

How it works...

Because React.PureComponent implements the shouldComponentUpdatelife CYC]E
method internally, it doesn't update the sutton component because its state
or props have not changed. It does, however, update the text component
because shouldComponentUpdate I'€tUINIS true by default, telling React to update
the component, even though its props or state have not changed.

React event handlers

React's event system uses internally a wrapper, called syntheticevent, around
the native HTML DOM events for cross-browser support. React events
follow the W3C spec, which can be found at https://www.w3.0rg/TR/DOM-Level-

3-Events/.

React event names are camel-cased as opposed to HTML DOM events,
which are lowercased. For instance, the HTML DOM event onc1ick would
be called onc1ick in React. For a complete list of supported events, visit the

React official documentation about events: https://reactjs.org/docs/events.htm
1

https://www.w3.org/TR/DOM-Level-3-Events/
https://reactjs.org/docs/events.html

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

npm install

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>React Events Handlers</title>
</head>
<body>
<div role="main"></div>
<script src="./events.js"></script>
</body>
</html>
import * as React from 'react’
import * as ReactDOM from 'react-dom'
class App extends React.Component {
constructor(props) {
super(props)
this.state = {
title: 'Untitled',
}

this.onBtnClick = this.onBtnClick.bind(this)

onBtnClick() {
this.setState({

title: 'Hello there!’,

1y

render() {

return (

<section>
<h1>{this.state.title}</h1>

<button onClick={this.onBtnClick }>

Click me to change the title

</button>
</section>
)
}
}
ReactDOM.render(
<App />,

document.querySelector('[role="main"]'),

)

5. Save the file.

Let's test It...

To see the application working, perform the following steps:

1. Open a Terminal at the root of your project directory and run:
| npm start

2. Then, open a new tab in your web browser and go to:

| http://localhost:1337/

3. Click on the button to change the title.

How it works...

React events are passed to React elements as props. For instance, we passed
the onclick prop to the button React element and a reference to a callback
function that we expect to be called when the user clicks on the button.

class Example {

fn() { return this }

}

const examp = new Example() const props = examp.fn const bound =
examp.fn.bind(examp) console.log('1:', typeof examp.fn()) console.log('2:',
typeof props()) console.log('3:', typeof bound())

1: object

2: undefined

3: object

Even though the constant props has a reference to the fn method of the examp
instance of the Example class, it loses the context of this. That's why binding
allows you to keep the original context. In React, we bind a method to the
original context of this to be able to use our own instance methods, such as
setState, when passing the function down to child components. Otherwise, the
context of this will be undefined and the function will fail.

Conditional rendering of
components

Usually when building complex Uls, you would need to render a
component or a React element according to the state or props received.

React components allow JavaScript to be executed within curly brackets
and it can be used with the conditional ternary operator to decide which
component or React element to render. For instance: const Meal = ({
timeOfDay }) => ({timeOfDay === 'noon' ? 'Pizza' : 'Sandwich' }
)

This also could have been written as:

const Meal = ({ timeOfDay }) => (
<span children={timeOfDay === 'noon'
? 'Pizza'
¢ 'Sandwich'
} />

If passing "noon" as the timeofpay property value, it will generate the
following HTML content:

Pizza

Or the following when the timeofpay property is not set to "noon":

Sandwich

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

npm install

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Conditional Rendering</title>
</head>
<body>
<div role="main"></div>
<script src="./conditions.js"></script>
</body>
</html>
import * as React from 'react’
import * as ReactDOM from 'react-dom'
const Toggle = ({ condition, children }) => (
condition
? children[0]
: children[1]
)
class App extends React.Component {

constructor(props) {

super(props)
this.state = {

color: 'blue’,

}
this.onClick = this.onClick.bind(this)
}
onClick() {
this.setState(({ color }) => ({
color: (color === "blue") ? 'lime" : 'blue’
)
}
render() {
const { color } = this.state
return (
<React.Fragment>
<Toggle condition={color === 'blue'}>

<p style={{ color } }>Blue!</p>
<p style={{ color } }>Lime!</p>
</Toggle>

<button onClick={this.onClick}>

Toggle Colors

</button>

</React.Fragment>

)
}
}
ReactDOM.render(
<App />,

document.querySelector('[role="main"]'),

)

6. Save the file.

 npm start
http://localhost: 1337/

3. Click on the button to toggle which React element is displayed

How it works...

Because the children property can be an array of React elements, we can
access each individual React element and decide which one to render. We
used the condition property to evaluate if the given condition is truthy to
render the first React element. Otherwise, if the value is falsy, then the
second React element is rendered.

{[
<li key={0}>One</1i>,
<li key={1}>Two,
I}
</ful>

Collections of React elements or components must be given a special props
property named key. This property lets React know which of the elements in the
collection have changed, moved, or been removed in/from the array when an
update occurs.

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

 npm install

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Rendering Lists</title>
</head>
<body>
<div role="main"></div>
<script src="./lists.js"></script>
</body>
</html>
import * as React from 'react’
import * as ReactDOM from 'react-dom'
const MapArray = ({
from,
mapToProps,
children: Child,
N=>(
<React.Fragment>

{from.map((item) => (

<Child {...mapToProps(item)} />

)}

</React.Fragment>

)
const Todoltem = ({ done, label }) => (

<input type="checkbox" checked={done} readOnly />
<label>{label } </label>

)
const list = [
{ id: 1, done: true, title: 'Study for Chinese exam' },
{id: 2, done: false, title: "Take a shower" },

{ id: 3, done: false, title: 'Finish chapter €' },

]
const mapToProps = ({ id: key, done, title: label }) => ({
key,
done,
label,
1))

const TodoListApp = ({ items }) => (

<MapArray from={list} mapToProps={mapToProps}>
{Todoltem}
</MapArray>

)
ReactDOM.render(
<TodoListApp items={list} />,
document.querySelector('[role="main"]"),

)

9. Save the file.

 npm start
http://localhost: 1337/

3. Alist of to-do items should be displayed:

1. @ Study for Chinese exam
2. [| Take a shower
3. [' Finish chapter 6

List of to-do items

<MapArray from={list} mapToProps={mapToProps}>
{Todoltem}
</MapArray>

<React.Fragment>
{from.map((item) => (
<Todoltem {...mapToProps(item) } />
)}
</React.Fragment>

However, MapArray acts as a helper component to do the same job while keeping
the code more readable.

Have you noticed that the TodoItem component expects only two properties?
However, we're also passing the id of the items as key. If the key property is not
passed, then while rendering the components, a warning will be displayed.

Working with forms and inputs
In React

Form-associated elements, such as <input> and <textarea>, usually maintain
their own internal state and update it according to the user input. In React,

when the input of a form-associated element is managed using the React

state, it's called a controlled component.

By default, in React, if the vaiue property of an input is not set, then the
input internal state can be mutated by the user input. However, if the vaiue
property is set, then the input is read-only and it expects React to manage
the user input by using the onchange React event and manage the input's
state using the React state to update it if necessary. For example, this input
React element will be rendered as read-only: <input type="text"
value="Ms.Huang Jx" />

However, because React expects to find an onchange event handler, the
previous code will output a warning message on the console. To fix this,
we can provide to the onchange property a callback function to handle the
user input:

<input type="text" value="Ms.Huang Jx" onChange={event => null} />

Because the user input is handled by React and, in the previous example,
we don't update the input's value, then the input will appear to be read-
only. The previous code is similar to just setting a readonly property instead
of providing a useless onchange property.

React also allows you to define uncontrolled components, which
basically keep out of React's control what or input how the input is
updated. For instance, when a third-party library is used instead to act over
the input, uncontrolled components have a property called defaultvalue,

which is similar to the vaiue property. However, it lets the input control its
internal state by the user input and not by React. That means a form-
associated element with a defauitvalue property allows its state to be
mutated by the user input: <input type="text" defaultValue="Ms.Huang
Jx" />

As opposed to using the value property, you can now type in the input box
to change its value because the internal state of the input is mutable.

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

 npm install

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Forms and Inputs</title>
</head>
<body>
<div role="main"></div>
<script src="./forms.js"></script>
</body>
</html>
import * as React from 'react’
import * as ReactDOM from 'react-dom'
class LoginForm extends React.Component {
constructor(props) {
super(props)
this.state = {
username: ",

password: ",

this.onChange = this.onChange.bind(this)
}

onChange(event) {

const { name, value } = event.target

this.setState({

[name]: name === 'username'

? value.replace(/d/gi, ")

: value

)

render() {

return (

<form>

<input

type="text"
name="username"
placeholder="Username"
value={this.state.username}
onChange={this.onChange}
/>

<input

type="password"
name="password"
placeholder="Password"
value={this.state.password }
onChange={this.onChange}
/>

<pre>

{JSON:.stringify(this.state, null, 2)}

</pre>
</form>
)
}
}
ReactDOM.render(

<LoginForm />,
document.querySelector('[role="main"]'),

)

5. Save the file.

 npm start
 http://localhost:1337/

3. Try to introduce a number in the username input to see how the validation
against numbers is working

How it works...

We define an onchange event handler used in both input elements. However,
we check if the input's name is username to decide if the validation should be
applied. regexp is used to test for numbers in the input and replace them
with an empty string. That's why numbers are not displayed while typing
on the username input.

Understanding refs and how to
use them

In the usual workflow, React components communicate with their children
by passing props. However, there are a few cases where it's needed to
access the instance of a child to communicate or modify its behavior.
React uses refs to allow us to access the instance of a child.

It's important to understand that React components' instances give you
access to their instance methods and properties. However, an instance of a
React element is an instance of an HTML DOM element. Refs are
accessed by giving a rer attribute to the React component or React
element. It expects the value to be a callback function that will be invoked
once the instance is created, providing a reference to the instance in the
first argument passed to the callback function.

React provides a helper function named createref to define function
callbacks for setting refs correctly. Take, for example, the following code,
which obtains a reference of a React component and a React element:

class Span extends React.Component {
render () {
return {this.props.children}
3
b

class App extends React.Component {
rfl = React.createRef()
rf2 = React.createRef()
componentDidMount() {
const { rfi, rf2 } = this
console.log(rfl.current instanceof HTMLSpanElement)
console.log(rf2.current instanceof Span)
3
render() {
return (
<React.Fragment>

</React.Fragment>

In this example, the console will output true twice:

true // rfl.current instanceof HTMLSpanElement
true // rf2.current instanceof Span

This proves what we have just learned.

Functional components do not have rers. Thus, giving a rer property to a functional
component will display a warning in the console and fail.

Refs are especially useful for working with uncontrolled components in

the following cases:

e Integration with third-party libraries

e Accessing an HTML DOM element's native methods that are
otherwise inaccessible from React, such as the HTMLELement . focus()
method

e Using certain web APIs, such as the Selection Web API, the Web
Animations API, and media playback methods

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

 npm install

<IDOCTYPE html>
<html lang="en"> <head>
<meta charset="UTF-8"> <title>Refs</title> </head>
<body>
<div role="main"></div> <script src="./refs.js"></script> </body>
</html>

import * as React from 'react’

import * as ReactDOM from 'react-dom'

class LoginForm extends React.Component {
refForm = React.createRef() constructor(props) {
super(props)
this.state = {}

this.onSubmit = this.onSubmit.bind(this) this.onClick =
this.onClick.bind(this) }

onSubmit(event) {

const form = this.refForm.current const data = new FormData(form)
this.setState({

user: data.get('user"), pass: data.get('pass’), })
event.preventDefault() }
onClick(event) {

const form = this.refForm.current form.dispatchEvent(new Event('submit’)) }

render() {
const { onSubmit, onClick, refForm, state } = this return (

<React.Fragment> <form onSubmit={onSubmit} ref={refForm}> <input
type="text" name="user" /> <input type="text" name="pass" /> </form>

<button onClick={onClick}>LogIn</button> <pre>{JSON.stringify(state,
null, 2)}</pre> </React.Fragment>)

ReactDOM.render(
<LoginForm />, document.querySelector('[role="main"]'),)

5. Save the file.

Let's test It...

To run and test the application, perform the following steps:

1. Open a Terminal at the root of your project directory and run:
| npm start

2. Then, open a new tab in your web browser and go to:

| http://localhost:1337/

How it works...

1. Click on the rogzn button to test that the form onsubmit events gets
triggered.

2. First, a reference to the instance of the form DOM element is kept
in an instance property called reform.

3. Then, once the button is submitted, we use the eventtarget web API
dispatchevent method to dispatch a custom event submit on the form
DOM element.

4. Then, the dispatched submit method is caught by the React
SyntheticEvent.

5. Finally, React triggers the callback method passed to the form's

onSubmit property.

ReactDOM.createPortal(
ReactComponent,
DOMNode,

)

<article>
{ReactDOM.createPortal(
<h1>Example</h1>,
document.querySelector('[id="heading"]"),

)}

</article>

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

 npm install

<IDOCTYPE html> <html lang="en"> <head>
<meta charset="UTF-8"> <title>Portals</title> </head>
<body>

<header id="heading"></header> <div role="main"></div> <script
src="./portals.js"></script> </body>

</html>
import * as React from 'react’
import * as ReactDOM from 'react-dom'
const Header = () => ReactDOM.createPortal(
<h1>React Portals</h1>, document.querySelector('[id="heading"]'),)
const App = () => (
<React.Fragment> <p>Hello World!</p> <Header />
</React.Fragment>)
ReactDOM.render(
<App />,
document.querySelector('[role="main"]"),)

6. Save the file.

 npm start
 http://localhost:1337/
<header id="heading"> <h1>React Portals</h1> </header>

<section role="main"> <p>Hello World!</p> </section>

How it works...

Even though in the React tree the neader component appears to be rendered
after the paragraph p HTML tag, the rendered Header component renders
before it. That's because the Header component is actually rendered on a
header HTML tag that appears before the section HTML tag where the main
application is rendered.

Catching errors with error
boundary components

Error boundary components are just React components that implement
the componentpidcatch life cycle method to catch errors in their children.
They catch errors in constructor methods when a class component is
initialized but fails, in life cycle methods, and while rendering. Errors that
cannot be caught are from asynchronous code, event handlers, and errors
in the error component boundary itself.

The componentpidcatch life cycle method receives two arguments: the first
one is an error object while the second received argument is an object
containing a componentstack property with a friendly stack trace that
describes where in the React tree a component failed.

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-plugin-transform-class-properties": "6.24.1", "babel-preset-env":
"1.6.1", "babel-preset-react": "6.24.1", "babel-core": "6.26.3", "parcel-bundler":
"1.8.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

 npm install

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Catching Errors</title>
</head>
<body>
<div role="main"></div>
<script src="./error-boundary.js"></script>
</body>
</html>
import * as React from 'react’
import * as ReactDOM from 'react-dom'
class ErrorBoundary extends React.Component {
constructor(props) {
super(props)
this.state = {
hasError: false,
message: null,

where: null,

componentDidCatch(error, info) {
this.setState({

hasError: true,

message: error.message,

where: info.componentStack,

)

render() {

const { hasError, message, where } = this.state
return (hasError

? <details style={{ whiteSpace: 'pre-wrap' }}>

<summary>{message } </summary>

<p>{where}</p>

</details>

: this.props.children

)
}
}

class App extends React.Component {

constructor(props) {

super(props)

this.onClick = this.onClick.bind(this)
}

onClick() {

this.setState(() => {

throw new Error('Error while setting state.")

)

render() {

return (

<button onClick={this.onClick}>
Buggy button!

</button>

)

ReactDOM.render(
<ErrorBoundary>
<App />

</ErrorBoundary>,

document.querySelector('[role="main"]'),

)

6. Save the file.

 npm start

http://localhost: 1337/

Error while setting state.
in App

in ErrorBoundary

Type checking properties with
PropTypes

React allows you to implement runtime type checking of components'
properties. It's useful to catch bugs and make sure that your components
are receiving props correctly. This can be easily done by just setting a static
propType Property on your components. For instance:

class MyComponent extends React.Component {
static propTypes = {
children: propTypes.string.isRequired,
3
render() {
return{this.props.children}

}

The previous code will require mycomponent's children property to be a string.
Otherwise, if a different property type is given, React will display a
warning in the console.

propTypes' methods are functions that get triggered when the component's
instance is created to check if the given props match the proptypes schema.

propTypes have an extensive list of methods that can be used for the
validation of properties. You can find the complete list in the React official
d()ClU]lEIltatiOIllhttps://reactjs.org/docs/typechecking-with-proptypes.html.

https://reactjs.org/docs/typechecking-with-proptypes.html

"scripts": {

n, n

"start": "parcel serve -p 1337 index.html"
}s
"devDependencies": {

"babel-core": "6.26.3", "babel-plugin-transform-class-properties": "6.24.1",
"babel-preset-env": "1.6.1", "babel-preset-react": "6.24.1", "parcel-bundler":
"1.8.1", "prop-types": "15.6.1", "react": "16.3.2",

"react-dom'": "16.3.2"

mwon

"presets": ["env","react"], "plugins": ["transform-class-properties”]

}

npm install

<IDOCTYPE html>
<html lang="en"> <head>
<meta charset="UTF-8"> <title>Type Checking</title> </head>
<body>
<div role="main"></div> <script src="./type-checking.js"></script> </body>
</html>
import * as React from 'react’
import * as ReactDOM from 'react-dom'
import * as propTypes from 'prop-types'
class Toggle extends React.Component {
static propTypes = {

condition: propTypes.any.isRequired, children: (props, propName,
componentName) => {

const customPropTypes = {

children: propTypes .arrayOf(propTypes.element) .isRequired
}

const isArrayOfElements = propTypes .checkPropTypes(

customPropTypes,

props,

propName,

componentName,

)

const children = props[propName]

const count = React.Children.count(children) if (isArrayOfElements
instanceof Error) {

return isArrayOfElements } else if (count !==2) {
return new Error(

""${componentName}"" +

" expected ${propName}" +

" to contain exactly 2 React elements’

)
}
}
}
render() {

const { condition, children } = this.props return condition ? children[0] :
children[1]

class App extends React.Component {
constructor(props) {

super(props)

this.state = { value: false }

this.onClick = this.onClick.bind(this) }
onClick() {
this.setState(({ value }) => ({

value: !value,

D)

render() {

const { value } = this.state return (

<React.Fragment> <Toggle condition={value}> <p style={{ color: 'blue'
} }>Blue!</p> <p style={{ color: 'lime' } }>Lime!</p> <p style={{ color: 'pink’
} }>Pink!</p> </Toggle>

<button onClick={this.onClick}> Toggle Colors

</button>

</React.Fragment>)

ReactDOM.render(
<App />,
document.querySelector('[role="main"]'),)

6. Save the file.

 npm start
http://localhost: 1337/

Warning: Failed prop type: "Toggle" expected children to contain
exactly 2 React elements in Toggle (created by App) in App

4. Clicking the button will toggle between the first two React elements while
the third React element will be ignored

How it works...

We define a custom function validator for the chiidren property. Inside the
function, we first use the built-in proptypes functions to check if chiidren is
an array of React elements. If the result of the validation is not an instance
of error, then we use the React chiidren's count utility method to know how
many React elements were given and we return an error if the number of
React elements in children is not 2.

There's more...

Did you notice that we used the proptypes.checkproptypes method? It's a utility
function that allows us to check for proptypes even outside React. For
instance:

const pTypes = {
name: propTypes.string.isRequired,
age: propTypes.number.isRequired,
}
const props = {
name: 'Huang Jx',
age: 20,
}
propTypes.checkPropTypes(pTypes, props, 'property', 'props')

The prypes object works as a schema providing validation functions from
propTypes. The props constant is just a plain object containing properties
defined in pTypes.

Running the previous example won't output any warning in the console
since all properties in props are valid. However, change the props object to:

const props = {
name: 20,
age: 'Huang Jx',

Then we will see the following warning in the console output:

Warning: Failed property type: Invalid property “name” of type “number’
supplied to “props’, expected “string’.

Warning: Failed property type: Invalid property "age” of type “string’
supplied to “props’, expected number’.

The checkpropTypes utility method has the following signature:

checkPropTypes(typeSpecs, values, location, componentName, getStack)

Here, typespecs refers to an object containing proptypes function validators.
The values argument expects to receive an object whose values need to be
validated against typespecs. componentname refers to the source's name, which
usually is a component's name that is used in the warning message to
display where the error was originated. The last argument, getstack, is
optional and it's expected to be a callback function that should return a
stack Trace that is added at the end of the warning message to better
describe where exactly the error was originated.

propTypes are used only in development and for using the production build
of React, you must set up the bundler to replace process.env.nobe_env with
"production". This Wwady, propTypes dIe removed in the pFOdUCtiOIl build of your
application.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by

Full-Stack
React

Modern web development using React 16 Node, Express. and Mongot

Packt: I

Full-Stack React Projects
Shama Hoque

ISBN: 978-1-78883-553-4
e Set up your development environment and develop a MERN
application

e Implement user authentication and authorization using JSON Web

Tokens

e Build a social media application by extending the basic MERN

application

¢ Create an online marketplace application with shopping cart and

Stripe payments
e Develop a media streaming application using MongoDB GridFS
e Implement server-side rendering with data to improve SEO

e Set up and use React 360 to develop user interfaces with VR

https://www.packtpub.com/web-development/full-stack-react-projects

capabilities

e Learn industry best practices to make MERN stack applications

reliable and scalable

Artemij Fedosejev. Adam Boduch

React 16 Essentials

React 16 Essentials - Second Edition
Artemij Fedosejev, Adam Boduch

ISBN: 978-1-78712-604-6

e Learn to code React 16 with hands-on examples and clear tutorials

e Install powerful React 16 tools to make development much more

efficient

e Understand the impact of React Fiber today and the future of your

web development

e Utilize the Redux application architecture with your React

components
e Create React 16 elements with properties and children
e Get started with stateless and stateful React components
e Use JSX to speed up your React 16 development process

e Add reactivity to your React 16 components with lifecycle

https://www.packtpub.com/web-development/react-16-essentials-second-edition

methods

e Test your React 16 components with the Jest test framework

Leave a review - let other
readers know what you think

Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

	Title Page
	Copyright and Credits
	MERN Quick Start Guide

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	What this book covers
	To get the most out of this book
	What you need for this book
	Download the example code files
	Download the color images
	Code in Action
	Conventions used

	Sections
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...
	See also

	Get in touch
	Reviews

	Introduction to the MERN Stack
	Technical requirements
	Introduction
	The MVC architectural pattern
	Installing and configuring MongoDB
	Getting ready
	How to do it...
	There's more...

	Installing Node.js
	Getting ready
	How to do it...

	Installing npm packages
	Getting ready
	How to do it...
	How it works...

	Building a Web server with ExpressJS
	Technical requirements
	Introduction
	Routing in ExpressJS
	Getting ready
	How to do it...
	Route methods
	Route handlers
	Chainable route methods
	There's more...

	Modular route handlers
	Getting ready
	How to do it...

	Writing middleware functions
	Getting ready
	How to do it...
	How it works...

	Writing configurable middleware functions
	Getting ready
	How to do it...
	Let's test it...
	There's more...

	Writing router-level middleware functions
	Getting ready
	How to do it...
	There's more...
	How it works...

	Writing error-handler middleware functions
	Getting ready
	How to do it...

	Using ExpressJS' built-in middleware function for serving static assets
	Getting ready
	How to do it...
	How it works...
	There's more...

	Parsing the HTTP request body
	Getting ready
	How to do it...
	How it works...

	Compressing HTTP responses
	Getting ready
	How to do it...
	How it works...

	Using an HTTP request logger
	Getting ready
	How to do it...

	Managing and creating virtual domains
	Getting ready
	How to do it...
	There's more...

	Securing an ExpressJS web application with Helmet
	Getting ready
	How to do it...
	How it works...

	Using template engines
	Getting ready
	How to do it...

	Debugging your ExpressJS web application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building a RESTful API
	Technical requirements
	Introduction
	CRUD operations using ExpressJS' route methods
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	CRUD operations with Mongoose
	Getting ready
	How to do it...
	See also

	Using Mongoose query builders
	Getting ready
	How to do it...
	See also

	Defining document instance methods
	Getting ready
	How to do it...
	There's more...
	See also

	Defining static model methods
	Getting ready
	How to do it...
	There's more...
	See also

	Writing middleware functions for Mongoose
	Getting ready
	How to do it...
	Document middleware functions
	Query middleware functions
	Model middleware functions

	There's more...
	See also

	Writing custom validators for Mongoose's schemas
	Getting ready
	How to do it...
	See also

	Building a RESTful API to manage users with ExpressJS and Mongoose
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	See also

	Real-Time Communication with Socket.IO and ExpressJS
	Technical requirements
	Introduction
	Understanding Node.js events
	Getting ready
	How to do it...
	How it works...
	There's more...

	Understanding Socket.IO events
	The Socket.IO server events
	Socket.IO client events
	Getting ready
	How to do it...
	How it works...

	Working with Socket.IO namespaces
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...
	io.Manager

	Defining and joining Socket.IO rooms
	Getting ready
	How to do it...
	There's more...

	Writing middleware for Socket.IO
	Getting ready
	How to do it...
	Let's test it...

	Integrating Socket.IO with ExpressJS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using ExpressJS middleware in Socket.IO
	Getting ready
	How to do it...
	How it works...
	See also

	Managing State with Redux
	Technical requirements
	Introduction
	Defining actions and action creators
	Getting ready
	How to do it...
	How it works...

	Defining reducer functions
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Creating a Redux store
	Getting ready
	How to do it...
	Let's test it...
	There's more

	Binding action creators to the dispatch method
	Getting ready
	How to do it...
	Let's test it...

	Splitting and combining reducers
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Writing Redux store enhancers
	Getting ready
	How to do it...
	How it works...

	Time traveling with Redux
	Getting ready
	How to do it...
	Let's test it...
	There's more

	Understanding Redux middleware
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Dealing with asynchronous data flow
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Building Web Applications with React
	Technical requirements
	Introduction
	Understanding React elements and React components
	Getting ready
	How to do it...
	Let's test it...

	Composing components
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Stateful components and life cycle methods
	Getting ready
	How to do it...
	Let's test it...

	Working with React.PureComponent
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	React event handlers
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Conditional rendering of components
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Rendering lists with React
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Working with forms and inputs in React
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Understanding refs and how to use them
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Understanding React portals
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Catching errors with error boundary components
	Getting ready
	How to do it...
	Let's test it...

	Type checking properties with PropTypes
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

