

Preface
Python	is	definitely	one	of	the	most	popular	programming	languages.	It	is
open	source,	multiplatform,	and	you	can	use	it	to	develop	any	kind	of
application,	from	websites	and	web	services	to	artificial	intelligence	and
machine	learning	applications.	You	will	always	find	a	framework	or	a	set
of	packages	in	Python	to	make	things	easier	for	you	in	any	domain.	It	is
extremely	easy	to	work	with	Python	and	its	most	popular	web	framework,
Django,	in	the	most	important	and	popular	cloud	computing	providers.
Hence,	Python	is	an	excellent	choice	for	developing	modern	and	scalable
RESTful	Web	Services	that	will	run	on	the	cloud.

REST	(short	for	Representational	State	Transfer)	is	the	architectural	style
that	has	been	driving	modern	and	scalable	web	development	recently.	If
you	want	to	be	part	of	the	world	that	builds	complex	web	applications	and
mobile	apps,	you	will	need	to	develop	and	interact	with	RESTful	Web
Services.	In	many	situations,	you	will	have	to	design	and	develop	a
RESTful	Web	Service	from	scratch	and	maintain	the	API	over	time.	A
deep	knowledge	of	RESTful	Web	Services	is	an	essential	skill	for	any
software	development	job.

This	book	covers	everything	you	need	to	know	to	develop	and	test	a
RESTful	Web	Service	from	scratch	with	the	latest	version	of	Django,
Django	REST	framework,	and	Python.	You	will	work	with	real-life
examples	in	combination	with	Python	packages	that	will	allow	you	to
simplify	tasks.

You	will	learn	to	use	a	huge	set	of	tools	to	test	and	develop	a	uniform,
high-quality,	and	scalable	RESTful	Web	Services.	You	will	use	object-
oriented	programming	and	modern	Python	3.6	code	to	favor	code	reuse
and	simplify	future	maintenance.	You	will	take	advantage	of	automated
testing	to	ensure	that	the	coded	RESTful	Web	Services	run	as	expected.

This	book	will	allow	you	to	create	your	own	RESTful	Web	Services	for
any	domain	with	Django	and	Django	REST	framework	in	Python	3.6	or
greater.	You	will	learn	the	process	for	the	most	popular	Python	platforms:
Linux,	Windows,	and	macOS.

Who	this	book	is	for
This	book	is	for	Python	developers	who	want	to	develop	RESTful	Web
Services,	also	known	as	RESTful	web	APIs,	with	Python	3.6	or	greater,
and	want	to	learn	how	to	do	it	with	the	most	popular	Python	web
framework—Django.

What	this	book	covers
Chapter	1,	Installing	the	Required	Software	and	Tools,	shows	how	to	get
started	in	our	journey	toward	creating	RESTful	Web	Services	with	Python
and	its	most	popular	web	framework—Django.	We	will	install	and
configure	the	environments,	the	software,	and	the	tools	required	to	create
RESTful	Web	Services	with	Django	and	Django	REST	framework.	We
will	learn	the	necessary	steps	in	Linux,	macOS,	and	Windows.	We	will
create	our	first	app	with	Django,	we	will	take	a	first	look	at	the	Django
folders,	files,	and	configurations,	and	we	will	make	the	necessary	changes
to	activate	Django	REST	framework.	In	addition,	we	will	introduce	and
install	command-line	and	GUI	tools	that	we	will	use	to	interact	with	the
RESTful	Web	Services	that	we	will	design,	code,	and	test	in	the
forthcoming	chapters.

Chapter	2,	Working	with	Models,	Migrations,	Serialization,	and
Deserialization,	describes	how	to	design	a	RESTful	Web	Service	to
interact	with	a	simple	SQLite	database	and	perform	CRUD	operations
with	toys.	We	will	define	the	requirements	for	our	web	service,	and	we
will	understand	the	tasks	performed	by	each	HTTP	method	and	the
different	scopes.	We	will	create	a	model	to	represent	and	persist	toys	and
execute	migrations	in	Django	to	create	the	required	tables	in	the	database.
We	will	analyze	the	tables	and	learn	how	to	manage	the	serialization	of	toy
instances	into	JSON	representations	with	Django	REST	framework	and
the	reverse	process.

Chapter	3,	Creating	API	Views,	is	about	executing	the	first	version	of	a
simple	Django	RESTful	Web	Service	that	interacts	with	a	SQLite
database.	We	will	write	API	views	to	process	diverse	HTTP	requests	on	a
collection	of	toys	and	on	a	specific	toy.	We	will	work	with	the	following
HTTP	verbs:	GET,	POST,	and	PUT.	We	will	configure	the	URL	patterns
list	to	route	URLs	to	views.	We	will	start	the	Django	development	server
and	use	command-line	tools	(curl	and	HTTPie)	to	compose	and	send

diverse	HTTP	requests	to	our	RESTful	Web	Service.	We	will	learn	how
HTTP	requests	are	processed	in	Django	and	our	code.	In	addition,	we	will
work	with	Postman,	a	GUI	tool,	to	compose	and	send	other	HTTP	requests
to	our	RESTful	Web	Service.

Chapter	4,	Using	Generalized	Behavior	from	the	APIView	Class,	presents
different	ways	to	improve	our	simple	Django	RESTful	Web	Service.	We
will	take	advantage	of	many	features	included	in	the	Django	REST
framework	to	remove	duplicate	code	and	add	many	features	for	the	web
service.	We	will	use	model	serializers,	understand	the	different	accepted
and	returned	content	types,	and	the	importance	of	providing	accurate
responses	to	the	HTTP	OPTIONS	requests.	We	will	make	the	necessary
changes	to	the	existing	code	to	enable	diverse	parsers	and	renderers.	We
will	learn	how	things	work	under	the	hoods	in	Django	REST	framework.
We	will	work	with	different	content	types	and	note	how	the	RESTful	Web
Service	improves	compared	to	its	previous	versions.

Chapter	5,	Understanding	and	Customizing	the	Browsable	API	Feature,
explains	how	to	use	one	of	the	additional	features	that	Django	REST
framework	adds	to	our	RESTful	Web	Service—the	browsable	API.	We
will	use	a	web	browser	to	work	with	our	first	web	service	built	with
Django.	We	will	learn	to	make	HTTP	GET,	POST,	PUT,	OPTIONS,	and
DELETE	requests	with	the	browsable	API.	We	will	be	able	to	easily	test
CRUD	operations	with	a	web	browser.	The	browsable	API	will	allow	us	to
easily	interact	with	our	RESTful	Web	Service.

Chapter	6,	Working	with	Advanced	Relationships	and	Serialization,	shows
how	to	define	the	requirements	for	a	complex	RESTful	Web	Service	in
which	we	needed	to	work	with	drone	categories,	drones,	pilots,	and
competitions.	We	will	create	a	new	app	with	Django	and	configure	the
new	web	service.	We	will	define	many-to-one	relationships	between	the
models,	and	we	will	configure	Django	to	work	with	a	PostgreSQL
database.	We	will	execute	migrations	to	generate	tables	with	relationships
between	them.	We	will	also	analyze	the	generated	database	and	configure
serialization	and	deserialization	for	the	models.	We	will	define	hyperlinks
and	work	with	class-based	views.	Then,	we	will	take	advantage	of	generic
classes	and	generic	views	that	generalize	and	mix	predefined	behaviors.

We	will	use	routings	and	endpoints	and	prepare	our	RESTful	Web	Service
to	work	with	the	browsable	API.	We	will	make	many	different	HTTP
requests	to	create	and	retrieve	resources	that	have	relationships	between
them.

Chapter	7,	Using	Constraints,	Filtering,	Searching,	Ordering,	and
Pagination,	describes	the	usage	of	the	browsable	API	feature	to	navigate
through	the	API	with	resources	and	relationships.	We	will	add	unique
constraints	to	improve	the	consistency	of	the	models	in	our	RESTful	Web
Service.	We	will	understand	the	importance	of	paginating	results	and
configure	and	test	a	global	limit/offset	pagination	scheme	with	Django
REST	framework.	Then,	we	will	create	our	own	customized	pagination
class	to	ensure	that	requests	won't	be	able	to	require	a	huge	number	of
elements	on	a	single	page.	We	will	configure	filter	backend	classes	and
incorporate	code	into	the	models	to	add	filtering,	searching,	and	ordering
capabilities	to	the	class-based	views.	We	will	create	a	customized	filter
and	make	requests	to	filter,	search,	and	order	results.	Finally,	we	will	use
the	browsable	API	to	test	pagination,	filtering,	and	ordering.

Chapter	8,	Securing	the	API	with	Authentication	and	Permissions,	presents
the	differences	between	authentication	and	permissions	in	Django,	Django
REST	framework,	and	RESTful	Web	Services.	We	will	analyze	the
authentication	classes	included	in	Django	REST	framework	out	of	the	box.
We	will	follow	the	steps	needed	to	provide	security-	and	permissions-
related	data	to	models.

We	will	work	with	object-level	permissions	via	customized	permission
classes	and	save	information	about	users	who	make	requests.	We	will
configure	permission	policies	and	compose	and	send	authenticated
requests	to	understand	how	the	permission	policies	work.	We	will	use
command-line	tools	and	GUI	tools	to	compose	and	send	authenticated
requests.	We	will	browse	the	secure	RESTful	Web	Service	with	the
browsable	API	feature	and	work	with	a	simple	token-based	authentication
provided	by	Django	REST	framework	to	understand	another	way	of
authenticating	requests.

Chapter	9,	Applying	Throttling	Rules	and	Versioning	Management,	focuses

on	the	importance	of	throttling	rules	and	how	we	can	combine	them	with
authentication	and	permissions	in	Django,	Django	REST	framework,	and
RESTful	Web	Services.	We	will	analyze	the	throttling	classes	included	in
Django	REST	framework	out	of	the	box.	We	will	follow	the	necessary
steps	to	configure	many	throttling	policies	in	Django	REST	framework.
We	will	work	with	global	and	scope-related	settings.	Then,	we	will	use
command-line	tools	to	compose	and	send	many	requests	to	test	how	the
throttling	rules	work.	We	will	understand	versioning	classes	and	we	will
configure	a	URL	path	versioning	scheme	to	allow	us	to	work	with	two
versions	of	our	RESTful	Web	Service.	We	will	use	command-line	tools
and	the	Browsable	API	to	understand	the	differences	between	the	two
versions.

Chapter	10,	Automating	Tests,	shows	how	to	automate	tests	for	our	RESTful
Web	Services	developed	with	Django	and	Django	REST	framework.	We
will	use	different	packages,	tools,	and	configurations	to	perform	tests.	We
will	write	the	first	round	of	unit	tests	for	our	RESTful	Web	Service,	run
them,	and	measure	tests	code	coverage.	Then,	we	will	analyze	tests	code
coverage	reports	and	write	new	unit	tests	to	improve	the	test	code
coverage.	We	will	understand	the	new	tests	code	coverage	reports	and
learn	the	benefits	of	a	good	test	code	coverage.

Appendix,	Solutions,	the	right	answers	for	the	Test	Your	Knowledge	sections
of	each	chapter	are	included	in	the	appendix.

To	get	the	most	out	of	this
book
Any	computer	or	device	capable	of	running	Python	3.6.3	or	greater	in
Linux,	macOS,	or	Windows.

Any	computer	or	device	capable	of	running	a	modern	web	browser
compatible	with	HTML	5	and	CSS	3	to	work	with	the	Browsable	API
feature	included	in	Django	REST	framework.

Download	the	example	code
files
You	can	download	the	example	code	files	for	this	book	from	your	account
at	www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.p
acktpub.com/support	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the

onscreen	instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract
the	folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows

Zipeg/iZip/UnRarX	for	Mac

7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/
PacktPublishing/Django-RESTful-Web-Services.	We	also	have	other	code	bundles
from	our	rich	catalog	of	books	and	videos	available	at	https://github.com/Pac
ktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Django-RESTful-Web-Services/
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	You	can	download	it	here:	http://w
ww.packtpub.com/sites/default/files/downloads/DjangoRESTfulWebServices_ColorImages.

pdf.

http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,
and	Twitter	handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-
10*.dmg	disk	image	file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

from	django.shortcuts	import	render	

	

#	Create	your	views	here.

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,
the	relevant	lines	or	items	are	set	in	bold:

from	django.conf.urls	import	url,	include

	

urlpatterns	=	[

				url(r'^',	include('drones.urls')),

				url(r'^api-auth/',	include('rest_framework.urls'))

]

Any	command-line	input	or	output	is	written	as	follows:

			http	:8000/toys/

			curl	-iX	GET	localhost:8000/toys/3

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see
onscreen.	For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text
like	this.	Here	is	an	example:	"Select	System	info	from	the	Administration
panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title
in	the	subject	of	your	message.	If	you	have	questions	about	any	aspect	of
this	book,	please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we
would	be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com
/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form
link,	and	entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on
the	Internet,	we	would	be	grateful	if	you	would	provide	us	with	the
location	address	or	website	name.	Please	contact	us	at	copyright@packtpub.com
with	a	link	to	the	material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you
have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to
a	book,	please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not
leave	a	review	on	the	site	that	you	purchased	it	from?	Potential	readers	can
then	see	and	use	your	unbiased	opinion	to	make	purchase	decisions,	we	at
Packt	can	understand	what	you	think	about	our	products,	and	our	authors
can	see	your	feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	:	packtpub.com.

https://www.packtpub.com/

Installing	the	Required
Software	and	Tools
In	this	chapter,	we	will	start	our	journey	towards	creating	RESTful	Web
Services	with	Python	and	its	most	popular	web	framework:	Django.
Python	is	one	of	the	most	popular	and	versatile	programming	languages.
There	are	thousands	of	Python	packages,	which	allow	you	to	extend
Python	capabilities	to	any	kind	of	domain	you	can	imagine.	You	can	work
with	Django	and	packages	to	easily	build	simple	and	complex	RESTful
Web	Services	with	Python	that	can	run	on	your	favorite	platform.

We	will	leverage	your	existing	knowledge	of	Python	and	all	of	its
packages	to	code	the	different	pieces	of	your	RESTful	Web	Services	and
their	ecosystem.	We	will	use	object-oriented	features	to	create	code	that	is
easier	to	maintain,	understand,	and	reuse.	We	don't	need	to	learn	another
programming	language,	we	can	use	the	one	we	already	know	and	love:
Python.

In	this	chapter,	we	will	install	and	configure	the	environments	and	the
required	software	and	tools	to	create	RESTful	Web	Services	with	Django
and	Django	REST	framework.	We	will	learn	the	necessary	steps	in	Linux,
macOS,	and	Windows.	We	will	gain	an	understanding	of	the	following:

Creating	a	virtual	environment	with	Python	3.x	and	PEP	405

Understanding	the	directory	structure	for	a	virtual	environment

Activating	the	virtual	environment

Deactivating	the	virtual	environment

Installing	Django	and	Django	REST	framework	in	an	isolated

environment

Creating	an	app	with	Django

Understanding	Django	folders,	files,	and	configurations

Installing	Curl

Installing	HTTPie

Installing	the	Postman	REST	client

Installing	Stoplight

Installing	iCurlHTTP

Creating	a	virtual	environment
with	Python	3.x	and	PEP	405
Throughout	this	book,	we	will	be	working	with	different	packages	and
libraries	to	create	RESTful	Web	Services,	and	therefore	it	is	convenient	to
work	with	Python	virtual	environments.	Python	3.3	introduced	lightweight
virtual	environments	and	they	were	improved	in	Python	3.4.	We	will	work
with	these	virtual	environments,	and	therefore	you	will	need	Python	3.4	or
greater.	You	can	read	more	information	about	PEP	405	Python	Virtual
Environment,	that	introduced	the	venv	module,	here:	https://www.python.org/de
v/peps/pep-0405.	All	the	examples	in	this	book	were	tested	on	Python	3.6.2
on	Linux,	macOS,	and	Windows.

In	case	you	decide	to	use	the	popular	virtualenv	(https://pypi.p
ython.org/pypi/virtualenv)	third-party	virtual	environment
builder	or	the	virtual	environment	options	provided	by	your
Python	IDE,	you	just	have	to	make	sure	that	you	activate
your	virtual	environment	with	the	appropriate	mechanism
whenever	it	is	necessary	to	do	so,	instead	of	following	the
step	explained	to	activate	the	virtual	environment	generated
with	the	venv	module	integrated	in	Python.

Each	virtual	environment	we	create	with	venv	is	an	isolated	environment
and	it	will	have	its	own	independent	set	of	installed	Python	packages	in	its
site	directories	(folders).	When	we	create	a	virtual	environment	with	venv
in	Python	3.4	and	greater,	pip	is	included	in	the	new	virtual	environment.
In	Python	3.3,	it	was	necessary	to	manually	install	pip	after	creating	the
virtual	environment.	Note	that	the	instructions	provided	are	compatible
with	Python	3.4	or	greater,	including	Python	3.6.2.

In	order	to	create	a	lightweight	virtual	environment,	the	first	step	is	to
select	the	target	folder	or	directory	for	it.	The	following	is	the	path	we	will

https://www.python.org/dev/peps/pep-0405
https://pypi.python.org/pypi/virtualenv

use	in	the	example	for	Linux	and	macOS.

The	target	folder	for	the	virtual	environment	will	be	the	HillarDjangoREST/01
folder	within	our	home	directory.	For	example,	if	our	home	directory	in
macOS	or	Linux	is	/Users/gaston,	the	virtual	environment	will	be	created
within	/Users/gaston/HillarDjangoREST/01.	You	can	replace	the	specified	path
with	your	desired	path	in	each	command:

				~/HillarDjangoREST/01

The	following	is	the	path	we	will	use	in	the	example	for	Windows.	The
target	folder	for	the	virtual	environment	will	be	the	HillarDjangoREST\01
folder	within	our	user	profile	folder.	For	example,	if	our	user	profile	folder
is	C:\Users\gaston,	the	virtual	environment	will	be	created	within
C:\Users\gaston\HillarDjangoREST\01.	You	can	replace	the	specified	path	with
your	desired	path	in	each	command:

				%USERPROFILE%\HillarDjangoREST\01

In	Windows	PowerShell,	the	previous	path	would	be	as	follows:

				$env:userprofile\HillarDjangoREST\01

Now,	we	will	create	a	new	virtual	environment	with	venv.	In	order	to	do	so,
we	have	to	use	the	-m	option	followed	by	the	venv	module	name	and	the
desired	path	to	make	Python	run	this	module	as	a	script	and	create	a
virtual	environment	in	the	specified	path.	The	instructions	are	different
depending	on	the	platform	in	which	we	are	creating	the	virtual
environment.

Open	Terminal	in	Linux	or	macOS	and	execute	the	following	command	to
create	a	virtual	environment:

				python3	-m	venv	~/HillarDjangoREST/01

In	Windows,	in	Command	Prompt,	execute	the	following	command	to
create	a	virtual	environment:

				python	-m	venv	%USERPROFILE%\HillarDjangoREST\01

If	you	want	to	work	with	Windows	PowerShell,	execute	the	following
command	to	create	a	virtual	environment:

				python	-m	venv	$env:userprofile\HillarDjangoREST\01

None	of	the	previous	commands	produce	any	output.	The	script	created
the	specified	target	folder	and	installed	pip	by	invoking	ensurepip	because
we	didn't	specify	the	--without-pip	option.

Understanding	the	directory
structure	for	a	virtual
environment
The	specified	target	folder	has	a	new	directory	tree	that	contains	Python
executable	files	and	other	files	that	indicate	it	is	a	PEP405	virtual
environment.

In	the	root	directory	for	the	virtual	environment,	the	pyenv.cfg	configuration
file	specifies	different	options	for	the	virtual	environment	and	its	existence
is	an	indicator	that	we	are	in	the	root	folder	for	a	virtual	environment.	In
Linux	and	macOS,	the	folder	will	have	the	following	main	subfolders:	bin,
include,	lib,	lib/python3.6,	and	lib/python3.6/site-packages.	In	Windows,	the
folder	will	have	the	following	main	subfolders:	Include,	Lib,	Lib\site-
packages,	and	Scripts.	The	directory	trees	for	the	virtual	environment	in	each
platform	are	the	same	as	the	layout	of	the	Python	installation	on	these
platforms.

The	following	diagram	shows	the	folders	and	files	in	the	directory	trees
generated	for	the	01	virtual	environments	in	macOS	and	Linux	platforms:

The	following	diagram	shows	the	main	folders	in	the	directory	trees
generated	for	the	virtual	environment	in	Windows:

After	we	activate	the	virtual	environment,	we	will	install
third-party	packages	into	the	virtual	environment	and	the
modules	will	be	located	in	the	lib/python3.6/site-packages	or
Lib\site-packages	folder,	based	on	the	platform.	The
executables	will	be	copied	in	the	bin	or	Scripts	folder,	based
on	the	platform.	The	packages	we	install	won't	make	changes
to	other	virtual	environments	or	our	base	Python
environment.

Activating	the	virtual
environment
Now	that	we	have	created	a	virtual	environment,	we	will	run	a	platform-
specific	script	to	activate	it.	After	we	activate	the	virtual	environment,	we
will	install	packages	that	will	only	be	available	in	this	virtual	environment.
This	way,	we	will	work	with	an	isolated	environment	in	which	all	the
packages	we	install	won't	affect	our	main	Python	environment.

Note	that	the	results	of	this	command	will	be	accurate	if	you	don't	start	a
different	shell	than	the	default	shell	in	the	terminal	session.	If	you	have
doubts,	check	your	terminal	configuration	and	preferences.	Run	the
following	command	in	the	Terminal	in	Linux	or	macOS:

				echo	$SHELL

The	command	will	display	the	name	of	the	shell	you	are	using	in	the
Terminal.	In	macOS,	the	default	is	/bin/bash	and	this	means	you	are
working	with	the	bash	shell.	Depending	on	the	shell,	you	must	run	a
different	command	to	activate	the	virtual	environment	in	Linux	or	macOS.

If	your	Terminal	is	configured	to	use	the	bash	shell	in	Linux	or	macOS,	run
the	following	command	to	activate	the	virtual	environment.	The	command
also	works	for	the	zsh	shell:

				source	~/HillarDjangoREST/01/bin/activate

If	your	Terminal	is	configured	to	use	either	the	csh	or	tcsh	shell,	run	the
following	command	to	activate	the	virtual	environment:

				source	~/HillarDjangoREST/01/bin/activate.csh

If	your	Terminal	is	configured	to	use	the	fish	shell,	run	the	following
command	to	activate	the	virtual	environment:

				source	~/HillarDjangoREST/01/bin/activate.fish

After	you	activate	the	virtual	environment,	Command	Prompt	will	display
the	virtual	environment	root	folder	name	enclosed	in	parentheses	as	a
prefix	of	the	default	prompt	to	remind	us	that	we	are	working	in	the	virtual
environment.	In	this	case,	we	will	see	(01)	as	a	prefix	for	the	Command
Prompt	because	the	root	folder	for	the	activated	virtual	environment	is	01.

The	following	screenshot	shows	the	virtual	environment	activated	in	a
macOS	Sierra	Terminal	with	a	bash	shell,	after	executing	the	previously
shown	commands:

As	we	can	see	from	the	previous	screenshot,	the	prompt	changed	from

Gastons-MacBook-Pro:~	gaston$	to	(01)	Gastons-MacBook-Pro:~	gaston$	after	the
activation	of	the	virtual	environment.

In	Windows,	you	can	run	either	a	batch	file	in	the	Command	Prompt	or	a
Windows	PowerShell	script	to	activate	the	virtual	environment.

If	you	prefer	Command	Prompt,	run	the	following	command	in	the
Windows	command	line	to	activate	the	virtual	environment:

				%USERPROFILE%\HillarDjangoREST\01\Scripts\activate.bat

The	following	screenshot	shows	the	virtual	environment	activated	in
Windows	10	Command	Prompt,	after	executing	the	previously	shown
commands:

As	we	can	see	from	the	previous	screenshot,	the	prompt	changed	from
C:\Users\gaston	to	(01)	C:\Users\gaston	after	the	activation	of	the	virtual
environment.

If	you	prefer	Windows	PowerShell,	launch	it	and	run	the	following
commands	to	activate	the	virtual	environment.	Note	that	you	must	have
scripts	execution	enabled	in	Windows	PowerShell	to	be	able	to	run	the
script:

				cd	$env:USERPROFILE

				HillarDjangoREST\01\Scripts\Activate.ps1

If	you	receive	an	error	similar	to	the	following	lines,	it	means	that	you
don't	have	scripts	execution	enabled:

				C:\Users\gaston\HillarDjangoREST\01\Scripts\Activate.ps1	:	File	C:\Users\gaston\HillarDjangoREST\01\Scripts\Activate.ps1	cannot	be	loaded	because	running	scripts	is	disabled	on	this	system.	For	more	information,	see	about_Execution_Policies	at

				http://go.microsoft.com/fwlink/?LinkID=135170.

				At	line:1	char:1

				+	C:\Users\gaston\HillarDjangoREST\01\Scripts\Activate.ps1

				+	~~

								+	CategoryInfo										:	SecurityError:	(:)	[],	PSSecurityException

								+	FullyQualifiedErrorId	:	UnauthorizedAccess

		

The	Windows	PowerShell	default	execution	policy	is	Restricted.	This
policy	allows	the	execution	of	individual	commands	but	it	doesn't	run
scripts.	Thus,	in	case	you	want	to	work	with	Windows	PowerShell,	you
will	have	to	change	the	policy	to	allow	the	execution	of	scripts.	It	is	very
important	to	make	sure	that	you	understand	the	risks	of	the	Windows
PowerShell	execution	policies	that	allow	you	to	run	unsigned	scripts.	For
more	information	about	the	different	policies,	check	the	following	web
page:	https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core
/about/about_execution_policies?view=powershell-6.

The	following	screenshot	shows	the	virtual	environment	activated	in	a
Windows	10	PowerShell,	after	executing	the	previously	shown
commands:

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-6

Deactivating	the	virtual
environment
It	is	extremely	easy	to	deactivate	a	virtual	environment	generated	by	the
previously	explained	process.	The	deactivation	will	remove	all	the
changes	made	in	the	environment	variables	and	will	change	the	prompt
back	to	its	default	message.	Once	you	deactivate	a	virtual	environment,
you	will	go	back	to	the	default	Python	environment.

In	macOS	or	Linux,	just	type	deactivate	and	press	Enter.

In	a	Windows	Command	Prompt,	you	have	to	run	the	deactivate.bat	batch
file	included	in	the	Scripts	folder.	In	our	example,	the	full	path	for	this	file
is	%USERPROFILE%\HillarDjangoREST\01\Scripts\deactivate.bat.

In	Windows	PowerShell,	you	have	to	run	the	Deactivate.ps1	script	in	the
Scripts	folder.	In	our	example,	the	full	path	for	this	file	is
$env:userprofile\HillarDjangoREST\01\Scripts\Deactivate.ps1.	Remember	that	you
must	have	scripts	execution	enabled	in	Windows	PowerShell	to	be	able	to
run	the	script.

The	instructions	in	the	next	sections	assume	that	the	virtual	environment
we	have	created	is	activated.

Installing	Django	and	Django
REST	frameworks	in	an
isolated	environment
We	have	created	and	activated	a	lightweight	virtual	environment.	It	is	time
to	run	many	commands	that	will	be	the	same	for	either	Linux,	macOS,	or
Windows.

First,	run	the	following	command	to	install	the	Django	web	framework:

pip	install	django==1.11.5

The	last	lines	of	the	output	will	indicate	that	the	django	package	has	been
successfully	installed.	The	process	will	also	install	the	pytz	package	that
provides	world	time	zone	definitions.	Take	into	account	that	you	may	also
see	a	notice	to	upgrade	pip.	The	next	lines	show	a	sample	of	the	four	last
lines	of	the	output	generated	by	a	successful	pip	installation:

Collecting	django

Collecting	pytz	(from	django)

Installing	collected	packages:	pytz,	django

Successfully	installed	django-1.11.5	pytz-2017.2

Now	that	we	have	installed	the	Django	web	framework,	we	can	install
Django	REST	framework.	Django	REST	framework	works	on	top	of
Django	and	provides	us	with	a	powerful	and	flexible	toolkit	to	build
RESTful	Web	Services.	We	just	need	to	run	the	following	command	to
install	this	package:

pip	install	djangorestframework==3.6.4

The	last	lines	for	the	output	will	indicate	that	the	djangorestframework
package	has	been	successfully	installed,	as	shown	here:

Collecting	djangorestframework

Installing	collected	packages:	djangorestframework

Successfully	installed	djangorestframework-3.6.4		

After	following	the	previous	steps,	we	will	have	Django	REST	framework
3.6.4	and	Django	1.11.5	installed	in	our	virtual	environment.	We	will
install	additional	packages	as	we	need	them	in	the	forthcoming	chapters.

Creating	an	app	with	Django
Now,	we	will	create	our	first	app	with	Django	and	we	will	analyze	the
directory	structure	that	Django	creates.	First,	go	to	the	root	folder	for	the
virtual	environment:	01.

In	Linux	or	macOS,	enter	the	following	command:

cd	~/HillarDjangoREST/01

If	you	prefer	Command	Prompt,	run	the	following	command	in	the
Windows	command	line:

cd	/d	%USERPROFILE%\HillarDjangoREST\01

If	you	prefer	Windows	PowerShell,	run	the	following	command	in
Windows	PowerShell:

cd	/d	$env:USERPROFILE\HillarDjangoREST\01		

In	Linux	or	macOS,	run	the	following	command	to	create	a	new	Django
project	named	restful01.	The	command	won't	produce	any	output:

python	bin/django-admin.py	startproject	restful01		

In	Windows,	in	either	Command	Prompt	or	PowerShell,	run	the	following
command	to	create	a	new	Django	project	named	restful01.	The	command
won't	produce	any	output:

python	Scripts\django-admin.py	startproject	restful01		

The	previous	command	creates	a	restful01	folder	with	other	subfolders	and
Python	files.	Now,	go	to	the	recently	created	restful01	folder.	Just	execute
the	following	command	on	any	platform:

cd	restful01

Then,	run	the	following	command	to	create	a	new	Django	app	named	toys
within	the	restful01	Django	project.	The	command	won't	produce	any
output:

python	manage.py	startapp	toys

The	previous	command	creates	a	new	restful01/toys	subfolder,	with	the
following	files:

views.py

tests.py

models.py

apps.py

admin.py

__init__.py

In	addition,	the	restful01/toys	folder	will	have	a	migrations	subfolder	with	an
__init__.py	Python	script.	The	following	diagram	shows	the	folders	and
files	in	the	directory	tree,	starting	at	the	restful01	folder	with	two
subfolders	-	toys	and	restful01:

Understanding	Django	folders,
files,	and	configurations
After	we	create	our	first	Django	project	and	then	a	Django	app,	there	are
many	new	folders	and	files.	First,	use	your	favorite	editor	or	IDE	to	check
the	Python	code	in	the	apps.py	file	within	the	restful01/toys	folder
(restful01\toys	in	Windows).	The	following	lines	show	the	code	for	this
file:

from	django.apps	import	AppConfig	

	

	

class	ToysConfig(AppConfig):	

				name	=	'toys'	

The	code	declares	the	ToysConfig	class	as	a	subclass	of	the
django.apps.AppConfig	class	that	represents	a	Django	application	and	its
configuration.	The	ToysConfig	class	just	defines	the	name	class	attribute	and
sets	its	value	to	'toys'.

Now,	we	have	to	add	toys.apps.ToysConfig	as	one	of	the	installed	apps	in	the
restful01/settings.py	file	that	configures	settings	for	the	restful01	Django
project.	I	built	the	previous	string	by	concatenating	many	values	as
follows:	app	name	+	.apps.	+	class	name,	which	is,	toys	+	.apps.	+	ToysConfig.
In	addition,	we	have	to	add	the	rest_framework	app	to	make	it	possible	for	us
to	use	Django	REST	framework.

The	restful01/settings.py	file	is	a	Python	module	with	module-level
variables	that	define	the	configuration	of	Django	for	the	restful01	project.
We	will	make	some	changes	to	this	Django	settings	file.	Open	the
restful01/settings.py	file	and	locate	the	highlighted	lines	that	specify	the
strings	list	that	declares	the	installed	apps.	The	following	code	shows	the

first	lines	for	the	settings.py	file.	Note	that	the	file	has	more	code:

"""	

Django	settings	for	restful01	project.	

	

Generated	by	'django-admin	startproject'	using	Django	1.11.5.	

	

For	more	information	on	this	file,	see	

https://docs.djangoproject.com/en/1.11/topics/settings/	

	

For	the	full	list	of	settings	and	their	values,	see	

https://docs.djangoproject.com/en/1.11/ref/settings/	

"""	

	

import	os	

	

#	Build	paths	inside	the	project	like	this:	os.path.join(BASE_DIR,	...)	

BASE_DIR	=	os.path.dirname(os.path.dirname(os.path.abspath(__file__)))	

	

	

#	Quick-start	development	settings	-	unsuitable	for	production	

#	See	https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/	

	

#	SECURITY	WARNING:	keep	the	secret	key	used	in	production	secret!	

SECRET_KEY	=	'+uyg(tmn%eo+fpg+fcwmm&x(2x0gml8)=cs@$nijab%)y$a*xe'	

	

#	SECURITY	WARNING:	don't	run	with	debug	turned	on	in	production!	

DEBUG	=	True	

	

ALLOWED_HOSTS	=	[]	

	

	

#	Application	definition	

	

INSTALLED_APPS	=	[

				'django.contrib.admin',	

				'django.contrib.auth',	

				'django.contrib.contenttypes',	

				'django.contrib.sessions',	

				'django.contrib.messages',	

				'django.contrib.staticfiles',	

]	

Add	the	following	two	strings	to	the	INSTALLED_APPS	strings	list	and	save	the
changes	to	the	restful01/settings.py	file:

'rest_framework'

'toys.apps.ToysConfig'

The	following	lines	show	the	new	code	that	declares	the	INSTALLED_APPS
string	list	with	the	added	lines	highlighted	and	with	comments	to
understand	what	each	added	string	means.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_01	folder:

INSTALLED_APPS	=	[

				'django.contrib.admin',	

				'django.contrib.auth',	

				'django.contrib.contenttypes',	

				'django.contrib.sessions',	

				'django.contrib.messages',	

				'django.contrib.staticfiles',	

				#	Django	REST	framework	

				'rest_framework',	

				#	Toys	application	

				'toys.apps.ToysConfig',	

]	

This	way,	we	have	added	Django	REST	framework	and	the	toys
application	to	our	initial	Django	project	named	restful01.

Installing	tools
Now,	we	will	leave	Django	for	a	while	and	we	will	install	many	tools	that
we	will	use	to	interact	with	the	RESTful	Web	Services	that	we	will
develop	throughout	this	book.

We	will	use	the	following	different	kinds	of	tools	to	compose	and	send
HTTP	requests	and	visualize	the	responses	throughout	our	book:

Command-line	tools

GUI	tools

Python	code

Web	browser

JavaScript	code

You	can	use	any	other	application	that	allows	you	to	compose	and	send
HTTP	requests.	There	are	many	apps	that	run	on	tablets	and	smartphones
that	allow	you	to	accomplish	this	task.	However,	we	will	focus	our
attention	on	the	most	useful	tools	when	building	RESTful	Web	Services
with	Django.

Installing	Curl
We	will	start	installing	command-line	tools.	One	of	the	key	advantages	of
command-line	tools	is	that	you	can	easily	run	again	the	HTTP
requests	again	after	we	have	built	them	for	the	first	time,	and	we	don't
need	to	use	the	mouse	or	tap	the	screen	to	run	requests.	We	can	also	easily
build	a	script	with	batch	requests	and	run	them.

As	happens	with	any	command-line	tool,	it	can	take	more	time	to	perform
the	first	requests	compared	with	GUI	tools,	but	it	becomes	easier	once	we
have	performed	many	requests	and	we	can	easily	reuse	the	commands	we
have	written	in	the	past	to	compose	new	requests.

Curl,	also	known	as	cURL,	is	a	very	popular	open	source	command-line
tool	and	library	that	allows	us	to	easily	transfer	data.	We	can	use	the	curl
command-line	tool	to	easily	compose	and	send	HTTP	requests	and	check
their	responses.

In	Linux	or	macOS,	you	can	open	a	Terminal	and	start	using	curl	from	the
command	line.

In	Windows,	you	have	two	options.	You	can	work	with	curl	in	Command
Prompt	or	you	can	decide	to	install	curl	as	part	of	the	Cygwin	package
installation	option	and	execute	it	from	the	Cygwin	terminal.	You	can	read
more	about	the	Cygwin	terminal	and	its	installation	procedure	at:	http://cyg
win.com/install.html.	Windows	Powershell	includes	a	curl	alias	that	calls	the
Invoke-WebRequest	command,	and	therefore,	if	you	want	to	work	with
Windows	Powershell	with	curl,	it	is	necessary	to	remove	the	curl	alias.

If	you	want	to	use	the	curl	command	within	Command	Prompt,	you	just
need	to	download	and	unzip	the	latest	version	of	the	curl	download	page:	h
ttps://curl.haxx.se/download.html.	Make	sure	you	download	the	version	that
includes	SSL	and	SSH.

http://cygwin.com/install.html
https://curl.haxx.se/download.html

The	following	screenshot	shows	the	available	downloads	for	Windows.
The	Win64	-	Generic	section	includes	the	versions	that	we	can	run	in
Command	Prompt	or	Windows	Powershell.

The	Win64	x86_64.7zip	file	provides	the	binary	version	for	curl	version	7.55.1
with	SSL	and	SSH	support:

After	you	unzip	the	.7zip	or	.zip	file	you	have	downloaded,	you	can
include	the	folder	in	which	curl.exe	is	included	in	your	path.	For	example,
if	you	unzip	the	Win64	x86_64.7zip	file,	you	will	find	curl.exe	in	the	bin	folder.
The	following	screenshot	shows	the	results	of	executing	curl	--version	on	
Command	Prompt	in	Windows	10.	The	--version	option	makes	curl	display
its	version	and	all	the	libraries,	protocols,	and	features	it	supports:

Installing	HTTPie
Now,	we	will	install	HTTPie,	a	command-line	HTTP	client	written	in
Python	that	makes	it	easy	to	send	HTTP	requests	and	uses	a	syntax	that	is
easier	than	curl.	By	default,	HTTPie	displays	colorized	output	and	uses
multiple	lines	to	display	the	response	details.	In	some	cases,	HTTPie
makes	it	easier	to	understand	the	responses	than	the	curl	utility.	However,
one	of	the	great	disadvantages	of	HTTPie	as	a	command-line	utility	is	that
it	takes	more	time	to	load	than	curl,	and	therefore,	if	you	want	to	code
scripts	with	too	many	commands,	you	have	to	evaluate	whether	it	makes
sense	to	use	HTTPie.

We	just	need	to	make	sure	we	run	the	following	command	in	the	virtual
environment	we	have	just	created	and	activated.	This	way,	we	will	install
HTTPie	only	for	our	virtual	environment.

Run	the	following	command	in	the	terminal,	Command	Prompt,	or
Windows	PowerShell	to	install	the	httpie	package:

pip	install	--upgrade	httpie

The	last	lines	of	the	output	will	indicate	that	the	httpie	package	has	been
successfully	installed:

				Collecting	httpie

				Collecting	colorama>=0.2.4	(from	httpie)

				Collecting	requests>=2.11.0	(from	httpie)

				Collecting	Pygments>=2.1.3	(from	httpie)

				Collecting	idna<2.7,>=2.5	(from	requests>=2.11.0->httpie)

				Collecting	urllib3<1.23,>=1.21.1	(from	requests>=2.11.0->httpie)

				Collecting	chardet<3.1.0,>=3.0.2	(from	requests>=2.11.0->httpie)

				Collecting	certifi>=2017.4.17	(from	requests>=2.11.0->httpie)

				Installing	collected	packages:	colorama,	idna,	urllib3,	chardet,	certifi,	requests,	Pygments,	httpie

				Successfully	installed	Pygments-2.2.0	certifi-2017.7.27.1	chardet-3.0.4	colorama-0.3.9	httpie-0.9.9	idna-2.6	requests-2.18.4	urllib3-1.22

		

If	you	don't	remember	how	to	activate	the	virtual
environment	that	we	created	for	this	example,	read
the	Activating	the	virtual	environment	section	in	this	chapter.

Now,	we	will	be	able	to	use	the	http	command	to	easily	compose	and	send
HTTP	requests	to	our	future	RESTful	Web	Services	build	with	Django.
The	following	screenshot	shows	the	results	of	executing	http	on	Command
Prompt	in	Windows	10.	HTTPie	displays	the	valid	options	and	indicates
that	a	URL	is	required:

Installing	the	Postman	REST
client
So	far,	we	have	installed	two	terminal-based	or	command-line	tools	to
compose	and	send	HTTP	requests	to	our	Django	development	server:
cURL	and	HTTPie.	Now,	we	will	start	installing	Graphical	User
Interface	(GUI)	tools.

Postman	is	a	very	popular	API	testing	suite	GUI	tool	that	allows	us	to
easily	compose	and	send	HTTP	requests,	among	other	features.	Postman	is
available	as	a	standalone	app	in	Linux,	macOS,	and	Windows.	You	can
download	the	versions	of	the	Postman	app	from	the	following	URL:	https:
//www.getpostman.com.

You	can	download	and	install	Postman	for	free	to	compose
and	send	HTTP	requests	to	the	RESTful	Web	Services	we	will
build	throughout	this	book.	You	just	need	to	sign	up	to
Postman.	We	won't	be	using	any	of	the	paid	features	provided
by	either	Postman	Pro	or	Postman	Enterprise	in	our
examples.	All	the	instructions	work	with	Postman	5.2.1	or
greater.

The	following	screenshot	shows	the	HTTP	GET	request	builder	in
Postman:

https://www.getpostman.com

Installing	Stoplight
Stoplight	is	a	very	useful	GUI	tool	that	focuses	on	helping	architects	and
developers	to	model	complex	APIs.	If	we	need	to	consume	our	RESTful
Web	Service	in	many	different	programming	languages,	we	will	find
Stoplight	extremely	helpful.	Stoplight	provides	an	HTTP	request	maker
that	allows	us	to	compose	and	send	requests	and	generate	the	necessary
code	to	make	them	in	different	programming	languages,	such	as
JavaScript,	Swift,	C#,	PHP,	Node,	and	Go,	among	others.

Stoplight	provides	a	web	version	and	is	also	available	as	a	standalone	app
in	Linux,	macOS,	and	Windows.	You	can	download	the	versions	of
Stoplight	from	the	following	URL:	http://stoplight.io/.

The	following	screenshot	shows	the	HTTP	GET	request	builder	in
Stoplight	with	the	code	generation	at	the	bottom:

http://stoplight.io/

Installing	iCurlHTTP
We	can	also	use	apps	that	can	compose	and	send	HTTP	requests	from
mobile	devices	to	work	with	our	RESTful	Web	Services.	For	example,	we
can	work	with	the	iCurlHTTP	app	on	iOS	devices	such	as	iPad	and
iPhone:	https://itunes.apple.com/us/app/icurlhttp/id611943891.	On	Android
devices,	we	can	work	with	the	HTTP	Request	app:	https://play.google.com/st
ore/apps/details?id=air.http.request&hl=en.

The	following	screenshot	shows	the	UI	for	the	iCurlHTTP	app	running	on
an	iPad	Pro:

https://itunes.apple.com/us/app/icurlhttp/id611943891
https://play.google.com/store/apps/details?id=air.http.request&hl=en

At	the	time	of	writing,	the	mobile	apps	that	allow	you	to	compose	and
send	HTTP	requests	do	not	provide	all	the	features	you	can	find	in
Postman	or	command-line	utilities.

Test	your	knowledge
Let's	see	whether	you	can	answer	the	following	questions	correctly:

1.	 After	we	activate	a	virtual	environment,	all	the	packages	we	install
with	pip	are	available:

1.	 For	all	the	virtual	environments	available	in	the	computer
or	device	that	is	running	Python

2.	 Only	for	the	activated	virtual	environment
3.	 For	all	the	virtual	environments	created	by	the	current

user

2.	 HTTPie	is	a:

1.	 Command-line	HTTP	server	written	in	Python	that	makes
it	easy	to	create	a	RESTful	Web	Server

2.	 Command-line	utility	that	allows	us	to	run	queries	against
an	SQLite	database

3.	 Command-line	HTTP	client	written	in	Python	that	makes
it	easy	to	compose	and	send	HTTP	requests

3.	 Which	of	the	following	commands	creates	a	new	app	named	books
in	Django?

1.	 django	startapp	books

2.	 python	django.py	startapp	books
3.	 python	manage.py	startapp	books

4.	 In	Django,	a	subclass	of	which	of	the	following	classes	represents
a	Django	application	and	its	configuration?

1.	 	django.apps.AppConfig
2.	 django.application.configuration
3.	 django.config.App

5.	 Which	of	the	following	strings	must	be	added	to	the	INSTALLED_APPS
string	list	in	the	settings.py	file	to	enable	Django	REST
framework?

1.	 'rest_framework'
2.	 'django_rest_framework'
3.	 'Django_REST_framework'

The	rights	answers	are	included	in	the	Appendix,	Solutions.

Summary
In	this	chapter,	we	learned	the	advantages	of	working	with	lightweight
virtual	environments	in	Python	and	we	set	up	a	virtual	environment	with
Django	and	Django	REST	framework.	We	created	an	app	with	Django,	we
took	a	first	look	at	the	Django	folders,	files,	and	configurations,	and	we
made	the	necessary	changes	to	activate	Django	REST	framework.

Then,	we	introduced	and	installed	command-line	and	GUI	tools	that	we
will	use	to	interact	with	the	RESTful	Web	Services	that	we	will	design,
code,	test,	and	run	in	the	forthcoming	chapters.

Now	that	we	have	our	environment	ready	to	start	working	with	Django
REST	framework,	we	will	define	the	requirements	for	our	first	RESTful
Web	Service	and	we	will	work	with	models,	migrations,	serialization,	and
deserialization,	which	are	the	topics	that	we	are	going	to	discuss	in	the
next	chapter.

Working	with	Models,
Migrations,	Serialization,	and
Deserialization
In	this	chapter,	we	will	define	the	requirements	for	our	first	RESTful	Web
Service.	We	will	start	working	with	Django,	Django	REST	framework,
Python,	configurations,	models,	migrations,	serialization,	and
deserialization.	We	will	create	a	RESTful	Web	Service	that	performs
CRUD	(short	for	Create,	Read,	Update	and	Delete)	operations	on	a
simple	SQLite	database.	We	will	be:

Defining	the	requirements	for	our	first	RESTful	Web	Service

Creating	our	first	model

Running	our	initial	migration

Understanding	migrations

Analyzing	the	database

Understanding	Django	tables

Controlling,	serialization,	and	deserialization

Working	with	the	Django	shell	and	diving	deeply	into	serialization
and	deserialization

Defining	the	requirements	for
our	first	RESTful	Web	Service
Imagine	a	team	of	developers	working	on	a	mobile	app	for	iOS	and
Android	and	requires	a	RESTful	Web	Service	to	perform	CRUD
operations	with	toys.	We	definitely	don't	want	to	use	a	mock	web	service
and	we	don't	want	to	spend	time	choosing	and	configuring	an	ORM	(short
for	Object-Relational	Mapping).	We	want	to	quickly	build	a	RESTful
Web	Service	and	have	it	ready	as	soon	as	possible	to	start	interacting	with
it	in	the	mobile	app.

We	really	want	the	toys	to	persist	in	a	database	but	we	don't	need	it	to	be
production-ready.	Therefore,	we	can	use	the	simplest	possible	relational
database,	as	long	as	we	don't	have	to	spend	time	performing	complex
installations	or	configurations.

Django	REST	framework,	also	known	as	DRF,	will	allow	us	to	easily
accomplish	this	task	and	start	making	HTTP	requests	to	the	first	version	of
our	RESTful	Web	Service.	In	this	case,	we	will	work	with	a	very	simple
SQLite	database,	the	default	database	for	a	new	Django	REST	framework
project.

First,	we	must	specify	the	requirements	for	our	main	resource:	a	toy.	We
need	the	following	attributes	or	fields	for	a	toy	entity:

An	integer	identifier

A	name

An	optional	description

A	toy	category	description,	such	as	action	figures,	dolls,	or

playsets

A	release	date

A	bool	value	indicating	whether	the	toy	has	been	on	the	online
store's	homepage	at	least	once

In	addition,	we	want	to	have	a	timestamp	with	the	date	and	time	of	the
toy's	addition	to	the	database	table,	which	will	be	generated	to	persist	toys.

In	a	RESTful	Web	Service,	each	resource	has	its	own	unique	URL.	In	our
web	service,	each	toy	will	have	its	own	unique	URL.

The	following	table	shows	the	HTTP	verbs,	the	scope,	and	the	semantics
of	the	methods	that	our	first	version	of	the	web	service	must	support.	Each
method	is	composed	of	an	HTTP	verb	and	a	scope.	All	the	methods	have	a
well-defined	meaning	for	toys	and	collections:

HTTP
verb Scope Semantics

GET Toy Retrieve	a	single	toy

GET Collection
of	toys

Retrieve	all	the	stored	toys	in	the
collection,	sorted	by	their	name	in
ascending	order

POST Collection
of	toys Create	a	new	toy	in	the	collection

PUT Toy Update	an	existing	toy

DELETE Toy Delete	an	existing	toy

	

In	the	previous	table,	the	GET	HTTP	verb	appears	twice	but	with	two
different	scopes:	toys	and	collection	of	toys.	The	first	row	shows	a	GET
HTTP	verb	applied	to	a	toy,	that	is,	to	a	single	resource.	The	second	row
shows	a	GET	HTTP	verb	applied	to	a	collection	of	toys,	that	is,	to	a
collection	of	resources.

We	want	our	web	service	to	be	able	to	differentiate	collections	from	a
single	resource	of	the	collection	in	the	URLs.	When	we	refer	to	a
collection,	we	will	use	a	slash	(/)	as	the	last	character	for	the	URL,	as	in
http://localhost:8000/toys/.	When	we	refer	to	a	single	resource	of	the
collection	we	won't	use	a	slash	(/)	as	the	last	character	for	the	URL,	as	in
http://localhost:8000/toys/5.

Let's	consider	that	http://localhost:8000/toys/	is	the	URL	for	the	collection	of
toys.	If	we	add	a	number	to	the	previous	URL,	we	identify	a	specific	toy
with	an	ID	or	primary	key	equal	to	the	specified	numeric	value.	For
example,	http://localhost:8000/toys/42	identifies	the	toy	with	an	ID	equal	to
42.

We	have	to	compose	and	send	an	HTTP	request	with	the	POST	HTTP	verb
and	http://localhost:8000/toys/	request	URL	to	create	a	new	toy	and	add	it	to
the	toys	collection.	In	this	example,	our	RESTful	Web	Service	will	work
with	JSON	(short	for	JavaScript	Object	Notation),	and	therefore	we
have	to	provide	the	JSON	key-value	pairs	with	the	field	names	and	the
values	to	create	the	new	toy.	As	a	result	of	the	request,	the	server	will
validate	the	provided	values	for	the	fields,	make	sure	that	it	is	a	valid	toy,
and	persist	it	in	the	database.	The	server	will	insert	a	new	row	with	the
new	toy	in	the	appropriate	table	and	it	will	return	a	201	Created	status	code
and	a	JSON	body	with	the	recently	added	toy	serialized	to	JSON,
including	the	assigned	ID	that	was	automatically	generated	by	the
database	and	assigned	to	the	toy	object:

POST	http://localhost:8000/toys/	

We	have	to	compose	and	send	an	HTTP	request	with	the	GET	HTTP	verb
and	http://localhost:8000/toys/{id}	request	URL	to	retrieve	the	toy	whose	ID
matches	the	specified	numeric	value	in	{id}.	For	example,	if	we	use	the
request	URL	http://localhost:8000/toys/25,	the	server	will	retrieve	the	toy
whose	ID	matches	25.	As	a	result	of	the	request,	the	server	will	retrieve	a
toy	with	the	specified	ID	from	the	database	and	create	the	appropriate	toy
object	in	Python.	If	a	toy	is	found,	the	server	will	serialize	the	toy	object
into	JSON,	return	a	200	OK	status	code,	and	return	a	JSON	body	with	the
serialized	toy	object.	If	no	toy	matches	the	specified	ID,	the	server	will
return	only	a	404	Not	Found	status:

GET	http://localhost:8000/toys/{id}	

We	have	to	compose	and	send	an	HTTP	request	with	the	PUT	HTTP	verb
and	request	URL	http://localhost:8000/toys/{id}	to	retrieve	the	toy	whose	ID
matches	the	value	in	{id}	and	replace	it	with	a	toy	created	with	the
provided	data.	In	addition,	we	have	to	provide	the	JSON	key-value	pairs
with	the	field	names	and	the	values	to	create	the	new	toy	that	will	replace
the	existing	one.	As	a	result	of	the	request,	the	server	will	validate	the
provided	values	for	the	fields,	make	sure	that	it	is	a	valid	toy,	and	replace
the	one	that	matches	the	specified	ID	with	the	new	one	in	the	database.
The	ID	for	the	toy	will	be	the	same	after	the	update	operation.	The	server
will	update	the	existing	row	in	the	appropriate	table	and	it	will	return	a	200
OK	status	code	and	a	JSON	body	with	the	recently	updated	toy	serialized	to
JSON.	If	we	don't	provide	all	the	necessary	data	for	the	new	toy,	the	server
will	return	a	400	Bad	Request	status	code.	If	the	server	doesn't	find	a	toy	with
the	specified	ID,	the	server	will	only	return	a	404	Not	Found	status:

PUT	http://localhost:8000/toys/{id}

We	have	to	compose	and	send	an	HTTP	request	with	the	DELETE	HTTP	verb
and	request	URL	http://localhost:8000/toys/{id}	to	remove	the	toy	whose
ID	matches	the	specified	numeric	value	in	{id}.	For	example,	if	we	use	the
request	URL	http://localhost:8000/toys/34,	the	server	will	delete	the	toy
whose	ID	matches	34.	As	a	result	of	the	request,	the	server	will	retrieve	a

toy	with	the	specified	ID	from	the	database	and	create	the	appropriate	toy
object	in	Python.	If	a	toy	is	found,	the	server	will	request	the	ORM	delete
the	toy	row	associated	with	this	toy	object	and	the	server	will	return	a	204
No	Content	status	code.	If	no	toy	matches	the	specified	ID,	the	server	will
return	only	a	404	Not	Found	status:

DELETE	http://localhost:8000/toys/{id}	

Creating	our	first	model
Now,	we	will	create	a	simple	Toy	model	in	Django,	which	we	will	use	to
represent	and	persist	toys.	Open	the	toys/models.py	file.	The	following	lines
show	the	initial	code	for	this	file	with	just	one	import	statement	and	a
comment	that	indicates	we	should	create	the	models:

from	django.db	import	models	

	

#	Create	your	models	here.	

The	following	lines	show	the	new	code	that	creates	a	Toy	class,	specifically,
a	Toy	model	in	the	toys/models.py	file.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_02_01	folder	in	the	restful01/toys/models.py
file:

from	django.db	import	models	

	

	

class	Toy(models.Model):	

				created	=	models.DateTimeField(auto_now_add=True)	

				name	=	models.CharField(max_length=150,	blank=False,	default='')	

				description	=	models.CharField(max_length=250,	blank=True,	default='')	

				toy_category	=	models.CharField(max_length=200,	blank=False,	default='')	

				release_date	=	models.DateTimeField()	

				was_included_in_home	=	models.BooleanField(default=False)	

	

				class	Meta:	

								ordering	=	('name',)

The	Toy	class	is	a	subclass	of	the	django.db.models.Model	class	and	defines	the
following	attributes:	created,	name,	description,	toy_category,	release_date,	and
was_included_in_home.	Each	of	these	attributes	represents	a	database	column
or	field.

Django	automatically	adds	an	auto-increment	integer
primary	key	column	named	id	when	it	creates	the	database
table	related	to	the	model.	It	is	very	important	to	notice	that
the	model	maps	the	underlying	id	column	in	an	attribute
named	pk	for	the	model.

We	specified	the	field	types,	maximum	lengths,	and	defaults	for	many
attributes.	The	class	declares	a	Meta	inner	class	that	declares	an	ordering
attribute	and	sets	its	value	to	a	tuple	of	string	whose	first	value	is	the	'name'
string.	This	way,	the	inner	class	indicates	to	Django	that,	by	default,	we
want	the	results	ordered	by	the	name	attribute	in	ascending	order.

Running	our	initial	migration
Now,	it	is	necessary	to	create	the	initial	migration	for	the	new	Toy	model
we	recently	coded.	We	will	also	synchronize	the	SQLite	database	for	the
first	time.	By	default,	Django	uses	the	popular	self-contained	and
embedded	SQLite	database,	and	therefore	we	don't	need	to	make	changes
in	the	initial	ORM	configuration.	In	this	example,	we	will	be	working	with
this	default	configuration.	Of	course,	we	will	upgrade	to	another	database
after	we	have	a	sample	web	service	built	with	Django.	We	will	only	use
SQLite	for	this	example.

We	just	need	to	run	the	following	Python	script	in	the	virtual	environment
that	we	activated	in	the	previous	chapter.	Make	sure	you	are	in	the	restful01
folder	within	the	main	folder	for	the	virtual	environment	when	you	run	the
following	command:

				python	manage.py	makemigrations	toys		

The	following	lines	show	the	output	generated	after	running	the	previous
command:

				Migrations	for	'toys':

						toys/migrations/0001_initial.py:

								-	Create	model	Toy

The	output	indicates	that	the	restful01/toys/migrations/0001_initial.py	file
includes	the	code	to	create	the	Toy	model.	The	following	lines	show	the
code	for	this	file	that	was	automatically	generated	by	Django.	The	code
file	for	the	sample	is	included	in	the	hillar_django_restful_02_01	folder	in	the
restful01/toys/migrations/0001_initial.py	file:

#	-*-	coding:	utf-8	-*-	

#	Generated	by	Django	1.11.5	on	2017-10-08	05:19	

from	__future__	import	unicode_literals	

	

from	django.db	import	migrations,	models	

	

	

class	Migration(migrations.Migration):	

	

				initial	=	True	

	

				dependencies	=	[

]	

	

				operations	=	[

								migrations.CreateModel(

												name='Toy',	

												fields=[

																('id',	models.AutoField(auto_created=True,	primary_key=True,	serialize=False,	verbose_name='ID')),	

																('created',	models.DateTimeField(auto_now_add=True)),	

																('name',	models.CharField(default='',	max_length=150)),	

																('description',	models.CharField(blank=True,	default='',	max_length=250)),	

																('toy_category',	models.CharField(default='',	max_length=200)),	

																('release_date',	models.DateTimeField()),	

																('was_included_in_home',	models.BooleanField(default=False)),	

],	

												options={	

																'ordering':	('name',),	

												},	

),	

]	

Understanding	migrations
The	automatically	generated	code	defines	a	subclass	of	the
django.db.migrations.Migration	class	named	Migration,	which	defines	an
operation	that	creates	the	Toy	model's	table	and	includes	it	in	the	operations
attribute.	The	call	to	the	migrations.CreateModel	method	specifies	the	model's
name,	the	fields,	and	the	options	to	instruct	the	ORM	to	create	a	table	that
will	allow	the	underlying	database	to	persist	the	model.

The	fields	argument	is	a	list	of	tuples	that	includes	information	about	the
field	name,	the	field	type,	and	additional	attributes	based	on	the	data	we
provided	in	our	model,	that	is,	in	the	Toy	class.

Now,	run	the	following	Python	script	to	apply	all	the	generated
migrations.	Make	sure	you	are	in	the	restful01	folder	within	the	main	folder
for	the	virtual	environment	when	you	run	the	following	command:

				python	manage.py	migrate

The	following	lines	show	the	output	generated	after	running	the	previous
command:

				Operations	to	perform:

						Apply	all	migrations:	admin,	auth,	contenttypes,	sessions,	toys

				Running	migrations:

						Applying	contenttypes.0001_initial...	OK

						Applying	auth.0001_initial...	OK

						Applying	admin.0001_initial...	OK

						Applying	admin.0002_logentry_remove_auto_add...	OK

						Applying	contenttypes.0002_remove_content_type_name...	OK

						Applying	auth.0002_alter_permission_name_max_length...	OK

						Applying	auth.0003_alter_user_email_max_length...	OK

						Applying	auth.0004_alter_user_username_opts...	OK

						Applying	auth.0005_alter_user_last_login_null...	OK

						Applying	auth.0006_require_contenttypes_0002...	OK

						Applying	auth.0007_alter_validators_add_error_messages...	OK

						Applying	auth.0008_alter_user_username_max_length...	OK

						Applying	sessions.0001_initial...	OK

						Applying	toys.0001_initial...	OK

		

After	we	run	the	previous	command,	we	will	notice	that	the	root	folder	for
our	restful01	project	now	has	a	db.sqlite3	file	that	contains	the	SQLite
database.	We	can	use	the	SQLite	command	line	or	any	other	application
that	allows	us	to	easily	check	the	contents	of	the	SQLite	database	to	check
the	tables	that	Django	generated.

The	first	migration	will	generate	many	tables	required	by	Django	and	its
installed	apps	before	running	the	code	that	creates	the	table	for	the	Toys
model.	These	tables	provide	support	for	user	authentication,	permissions,
groups,	logs,	and	migration	management.	We	will	work	with	the	models
related	to	these	tables	after	we	add	more	features	and	security	to	our	web
services.

After	the	migration	process	creates	all	these	Django	tables	in	the
underlying	database,	the	first	migration	runs	the	Python	code	that	creates
the	table	required	to	persist	our	model.	Thus,	the	last	line	of	the	running
migrations	section	displays	Applying	toys.0001_initial.

Analyzing	the	database
In	most	modern	Linux	distributions	and	macOS,	SQLite	is	already
installed,	and	therefore	you	can	run	the	sqlite3	command-line	utility.

In	Windows,	if	you	want	to	work	with	the	sqlite3.exe	command-line	utility,
you	have	to	download	the	bundle	of	command-line	tools	for	managing
SQLite	database	files	from	the	downloads	section	of	the	SQLite	webpage
at	http://www.sqlite.org/download.html.	For	example,	the	ZIP	file	that	includes
the	command-line	tools	for	version	3.20.1	is	sqlite-tools-win32-x8	6-
3200100.zip.	The	name	for	the	file	changes	with	the	SQLite	version.	You
just	need	to	make	sure	that	you	download	the	bundle	of	command-line
tools	and	not	the	ZIP	file	that	provides	the	SQLite	DLLs.	After	you	unzip
the	file,	you	can	include	the	folder	that	includes	the	command-line	tools	in
the	PATH	environment	variable,	or	you	can	access	the	sqlite3.exe
command-line	utility	by	specifying	the	full	path	to	it.

Run	the	following	command	to	list	the	generated	tables.	The	first
argument,	db.sqlite3,	specifies	the	file	that	contains	that	SQLite	database
and	the	second	argument	indicates	the	command	that	we	want	the	sqlite3
command-line	utility	to	run	against	the	specified	database:

				sqlite3	db.sqlite3	".tables"	

The	following	lines	show	the	output	for	the	previous	command	with	the
list	of	tables	that	Django	generated	in	the	SQLite	database:

				auth_group																		django_admin_log

				auth_group_permissions						django_content_type

				auth_permission													django_migrations

				auth_user																			django_session

				auth_user_groups												toys_toy

				auth_user_user_permissions		

http://www.sqlite.org/download.html

The	following	command	will	allow	you	to	check	the	contents	of	the
toys_toy	table	after	we	compose	and	send	HTTP	requests	to	the	RESTful
Web	Service	and	the	web	service	makes	CRUD	operations	to	the	toys_toy
table:

				sqlite3	db.sqlite3	"SELECT	*	FROM	toys_toy	ORDER	BY	name;"	

Instead	of	working	with	the	SQLite	command-line	utility,	you	can	use	a
GUI	tool	to	check	the	contents	of	the	SQLite	database.	DB	Browser	for
SQLite	is	a	useful,	free,	multiplatform	GUI	tool	that	allows	us	to	easily
check	the	database	contents	of	an	SQLite	database	in	Linux,	macOS,	and
Windows.	You	can	read	more	information	about	this	tool	and	download	its
different	versions	from	http://sqlitebrowser.org.	Once	you	have	installed	the
tool,	you	just	need	to	open	the	db.sqlite3	file	and	you	can	check	the
database	structure	and	browse	the	data	for	the	different	tables.	After	we
start	working	with	the	first	version	of	our	web	service,	you	need	to	check
the	contents	of	the	toys_toy	table	with	this	tool.

You	can	also	use	the	database	tools	included	with	your
favorite	IDE	to	check	the	contents	of	the	SQLite	database.

The	SQLite	database	engine	and	the	database	file	name	are	specified	in	the
restful01/settings.py	Python	file.	The	following	lines	show	the	declaration
of	the	DATABASES	dictionary,	which	contains	the	settings	for	all	the
databases	that	Django	uses.	The	nested	dictionary	maps	the	database
named	default	with	the	django.db.backends.sqlite3	database	engine	and	the
db.sqlite3	database	file	located	in	the	BASE_DIR	folder	(restful01):

DATABASES	=	{	

				'default':	{	

								'ENGINE':	'django.db.backends.sqlite3',	

								'NAME':	os.path.join(BASE_DIR,	'db.sqlite3'),	

				}	

}	

http://sqlitebrowser.org

After	we	execute	the	migrations,	the	SQLite	database	will	have	the
following	tables.	Django	uses	prefixes	to	identify	the	modules	and
applications	that	each	table	belongs	to.	The	tables	that	start	with	the	auth_
prefix	belong	to	the	Django	authentication	module.	The	table	that	starts
with	the	toys_	prefix	belongs	to	our	toys	application.	If	we	add	more	models
to	our	toys	application,	Django	will	create	new	tables	with	the	toys_	prefix:

auth_group:	Stores	authentication	groups

auth_group_permissions:	Stores	permissions	for	authentication	groups

auth_permission:	Stores	permissions	for	authentication

auth_user:	Stores	authentication	users

auth_user_groups:	Stores	authentication	user	groups

auth_user_groups_permissions:	Stores	permissions	for	authentication
user	groups

django_admin_log:	Stores	the	Django	administrator	log

django_content_type:	Stores	Django	content	types

django_migrations:	Stores	the	scripts	generated	by	Django	migrations
and	the	date	and	time	at	which	they	were	applied

django_session:	Stores	Django	sessions

toys_toy:	Persists	the	Toys	model

sqlite_sequence:	Stores	sequences	for	SQLite	primary	keys	with
autoincrement	fields

Understanding	the	table
generated	by	Django
The	toys_toy	table	persists	in	the	database	the	Toy	class	we	recently	created,
specifically,	the	Toy	model.	Django's	integrated	ORM	generated	the	toys_toy
table	based	on	our	Toy	model.

Run	the	following	command	to	retrieve	the	SQL	used	to	create	the	toys_toy
table:

				sqlite3	db.sqlite3	".schema	toys_toy"

The	following	lines	show	the	output	for	the	previous	command	together
with	the	SQL	that	the	migrations	process	executed,	to	create	the	toys_toy
table	that	persists	the	Toy	model.	The	next	lines	are	formatted	to	make	it
easier	to	understand	the	SQL	code.	Notice	that	the	output	from	the
command	is	formatted	in	a	different	way:

				CREATE	TABLE	IF	NOT	EXISTS	"toys_toy"	

				(

								"id"	integer	NOT	NULL	PRIMARY	KEY	AUTOINCREMENT,

								"created"	datetime	NOT	NULL,	

								"name"	varchar(150)	NOT	NULL,	

								"description"	varchar(250)	NOT	NULL,	

								"toy_category"	varchar(200)	NOT	NULL,	

								"release_date"	datetime	NOT	NULL,	

								"was_included_in_home"	bool	NOT	NULL

);

		

The	toys_toy	table	has	the	following	columns	(also	known	as	fields)	with
their	SQLite	types,	all	of	them	not	nullable:

id:	The	integer	primary	key,	an	autoincrement	row

created:	DateTime

name:	varchar(150)

description:	varchar(250)

toy_category:	varchar(200)

release_date:	DateTime

was_included_in_home:	bool

Controlling,	serialization,	and
deserialization
Our	RESTful	Web	Service	has	to	be	able	to	serialize	and	deserialize	the
Toy	instances	into	JSON	representations.	In	Django	REST	framework,	we
just	need	to	create	a	serializer	class	for	the	Toy	instances	to	manage
serialization	to	JSON	and	deserialization	from	JSON.	Now,	we	will	dive
deep	into	the	serialization	and	deserialization	process	in	Django	REST
framework.	It	is	very	important	to	understand	how	it	works	because	it	is
one	of	the	most	important	components	for	all	the	RESTful	Web	Services
we	will	build.

Django	REST	framework	uses	a	two-phase	process	for	serialization.	The
serializers	are	mediators	between	the	model	instances	and	Python
primitives.	Parser	and	renderers	handle	as	mediators	between	Python
primitives	and	HTTP	requests	and	responses.	We	will	configure	our
mediator	between	the	Toy	model	instances	and	Python	primitives	by
creating	a	subclass	of	the	rest_framework.serializers.Serializer	class	to	declare
the	fields	and	the	necessary	methods	to	manage	serialization	and
deserialization.

We	will	repeat	some	of	the	information	about	the	fields	that	we	have
included	in	the	Toy	model	so	that	we	understand	all	the	things	that	we	can
configure	in	a	subclass	of	the	Serializer	class.	However,	we	will	work	with
shortcuts,	which	will	reduce	boilerplate	code	later	in	the	following
examples.	We	will	write	less	code	in	the	following	examples	by	using	the
ModelSerializer	class.

Now,	go	to	the	restful01/toys	folder	and	create	a	new	Python	code	file
named	serializers.py.	The	following	lines	show	the	code	that	declares	the
new	ToySerializer	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_02_01	folder	in	the	restful01/toys/serializers.py	file:

from	rest_framework	import	serializers	

from	toys.models	import	Toy	

	

	

class	ToySerializer(serializers.Serializer):	

				pk	=	serializers.IntegerField(read_only=True)	

				name	=	serializers.CharField(max_length=150)	

				description	=	serializers.CharField(max_length=250)	

				release_date	=	serializers.DateTimeField()	

				toy_category	=	serializers.CharField(max_length=200)	

				was_included_in_home	=	serializers.BooleanField(required=False)	

	

				def	create(self,	validated_data):	

								return	Toy.objects.create(**validated_data)	

	

				def	update(self,	instance,	validated_data):	

								instance.name	=	validated_data.get('name',	instance.name)									

								instance.description	=	validated_data.get('description',	instance.description)	

								instance.release_date	=	validated_data.get('release_date',	instance.release_date)	

								instance.toy_category	=	validated_data.get('toy_category',	instance.toy_category)	

								instance.was_included_in_home	=	validated_data.get('was_included_in_home',	instance.was_included_in_home)	

								instance.save()	

								return	instance	

The	ToySerializer	class	declares	the	attributes	that	represent	the	fields	that
we	want	to	be	serialized.	Notice	that	we	have	omitted	the	created	attribute
that	was	present	in	the	Toy	model.	When	there	is	a	call	to	the	save	method
that	ToySerializer	inherits	from	the	serializers.Serializer	superclass,	the
overridden	create	and	update	methods	define	how	to	create	a	new	instance
or	update	an	existing	instance.	In	fact,	these	methods	must	be
implemented	in	our	class	because	they	only	raise	a	NotImplementedError
exception	in	their	base	declaration	in	the	serializers.Serializer	superclass.

The	create	method	receives	the	validated	data	in	the	validated_data
argument.	The	code	creates	and	returns	a	new	Toy	instance	based	on	the
received	validated	data.

The	update	method	receives	an	existing	Toy	instance	that	is	being	updated
and	the	new	validated	data	in	the	instance	and	validated_data	arguments.	The
code	updates	the	values	for	the	attributes	of	the	instance	with	the	updated
attribute	values	retrieved	from	the	validated	data.	Finally,	the	code	calls

the	save	method	for	the	updated	Toy	instance	and	returns	the	updated	and
saved	instance.

Working	with	the	Django	shell
and	diving	deeply	into
serialization	and
deserialization
We	can	launch	our	default	Python	interactive	shell	in	our	virtual
environment	and	make	all	the	Django	project	modules	available	before	it
starts.	This	way,	we	can	check	that	the	serializer	works	as	expected.	We
will	do	this	to	understand	how	serialization	works	in	Django.

Run	the	following	command	to	launch	the	interactive	shell.	Make	sure	you
are	within	the	restful01	folder	in	the	terminal,	Command	Prompt,	or
Windows	Powershell:

python	manage.py	shell

You	will	notice	a	line	that	says	(InteractiveConsole)	is	displayed	after	the
usual	lines	that	introduce	your	default	Python	interactive	shell.	The
following	screenshot	shows	the	Django	shell	launched	in	a	Windows
command	prompt:

Enter	the	following	code	in	the	Python	interactive	shell	to	import	all	the
things	we	will	need	to	test	the	Toy	model	and	its	serializer.	The	code	file	for

the	sample	is	included	in	the	hillar_django_restful_02_01	folder,	in	the
restful01/toy_serializers_test_01.py	file:

from	datetime	import	datetime	

from	django.utils	import	timezone	

from	django.utils.six	import	BytesIO	

from	rest_framework.renderers	import	JSONRenderer	

from	rest_framework.parsers	import	JSONParser	

from	toys.models	import	Toy	

from	toys.serializers	import	ToySerializer	

Enter	the	following	code	to	create	two	instances	of	the	Toy	model	and	save
them.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_02_01	folder,	in	the	restful01/toy_serializers_test_01.py
file:

toy_release_date	=	timezone.make_aware(datetime.now(),	timezone.get_current_timezone())	

toy1	=	Toy(name='Snoopy	talking	action	figure',	description='Snoopy	speaks	five	languages',	release_date=toy_release_date,	toy_category='Action	figures',	was_included_in_home=False)	

toy1.save()	

toy2	=	Toy(name='Hawaiian	Barbie',	description='Barbie	loves	Hawaii',	release_date=toy_release_date,	toy_category='Dolls',	was_included_in_home=True)	

toy2.save()	

After	we	execute	the	preceding	code,	we	can	check	the	SQLite	database
with	the	previously	introduced	command-line	or	GUI	tools	to	check	the
contents	of	the	toys_toy	table.	We	will	notice	the	table	has	two	rows	and
columns	with	the	values	we	have	provided	to	the	different	attributes	of	the
Toy	instances.	The	following	screenshot	shows	the	results	of	browsing	the
data	of	the	toys_toy	table	with	the	DB	Browser	for	SQLite	GUI	utility.	We
can	see	that	two	rows	were	inserted.

Enter	the	following	code	in	the	interactive	shell	to	check	the	values	for	the
primary	keys	or	identifiers	for	the	saved	Toy	instances,	and	the	value	of
their	name	and	was_included_in_home_attribute	attributes.	The	code	also	checks
the	value	of	the	created	attribute,	which	includes	the	date	and	time	at	which
Django	saved	each	instance	to	the	database.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_02_01	folder,	in	the
restful01/toy_serializers_test_01.py	file:

print(toy1.pk)	

print(toy1.name)	

print(toy1.created)	

print(toy1.was_included_in_home)	

print(toy2.pk)	

print(toy2.name)	

print(toy2.created)	

print(toy2.was_included_in_home)

The	following	screenshot	shows	sample	results	of	the	previously	shown
code:

Now,	let's	write	the	following	code	to	serialize	the	first	Toy	instance	(toy1).
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_02_01
folder,	in	the	restful01/toy_serializers_test_01.py	file:

serializer_for_toy1	=	ToySerializer(toy1)	

print(serializer_for_toy1.data)	

The	following	lines	show	the	generated	dictionary,	specifically,	a
rest_framework.utils.serializer_helpers.ReturnDict	instance,	stored	in	the
serializer_for_toy1.data	attribute.	The	next	lines	show	the	results	with	easily
understood	formatting:

				{

								'pk':	1,	

								'name':	'Snoopy	talking	action	figure',	

								'description':	'Snoopy	speaks	five	languages',	

								'release_date':	'2017-10-09T12:11:37.090335Z',	

								'toy_category':	'Action	figures',	

								'was_included_in_home':	False

				}

Now,	let's	serialize	the	second	Toy	instance	(toy2).	The	code	file	for	the
sample	is	included	in	the	hillar_django_restful_02_01	folder,	in	the
restful01/toy_serializers_test_01.py	file:

serializer_for_toy2	=	ToySerializer(toy2)	

print(serializer_for_toy2.data)

The	following	lines	show	the	generated	dictionary	stored	in	the
serializer_for_toy2.data	attribute.	The	next	lines	show	the	results	with	easily
understood	formatting:

				{

								'pk':	2,	

								'name':	'Hawaiian	Barbie',	

								'description':	'Barbie	loves	Hawaii',	

								'release_date':	'2017-10-09T12:11:37.090335Z',	

								'toy_category':	'Dolls',	

								'was_included_in_home':	True

				}		

We	can	easily	render	the	dictionaries	held	in	the	data	attribute	into	JSON
with	the	help	of	the	rest_framework.renderers.JSONRenderer	class.	The	following
lines	create	an	instance	of	this	class	and	then	call	the	render	method	to
render	the	dictionaries	held	in	the	data	attribute	into	JSON.	The	code	file
for	the	sample	is	included	in	the	hillar_django_restful_02_01	folder,	in	the
restful01/toy_serializers_test_01.py	file:

json_renderer	=	JSONRenderer()	

toy1_rendered_into_json	=	json_renderer.render(serializer_for_toy1.data)	

toy2_rendered_into_json	=	json_renderer.render(serializer_for_toy2.data)	

print(toy1_rendered_into_json)	

print(toy2_rendered_into_json)	

The	following	lines	show	the	output	generated	from	the	two	calls	to	the
render	method:

				b'{"pk":1,"name":"Snoopy	talking	action	figure","description":"Snoopy	speaks	five	languages","release_date":"2017-10-09T12:11:37.090335Z","toy_category":"Action	figures","was_included_in_home":false}'

				>>>	print(toy2_rendered_into_json)

				b'{"pk":2,"name":"Hawaiian	Barbie","description":"Barbie	loves	Hawaii","release_date":"2017-10-09T12:11:37.090335Z","toy_category":"Dolls","was_included_in_home":true}'

Now,	we	will	work	in	the	opposite	direction:	from	serialized	data	to	the
population	of	a	Toy	instance.	The	following	lines	generate	a	new	Toy
instance	from	a	JSON	string	(serialized	data),	that	is,	the	code	deserializes
and	parses	the	data.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_02_01	folder,	in	the	restful01/toy_serializers_test_01.py
file:

json_string_for_new_toy	=	'{"name":"Clash	Royale	play	set","description":"6	figures	from	Clash	Royale",	"release_date":"2017-10-09T12:10:00.776594Z","toy_category":"Playset","was_included_in_home":false}'	

json_bytes_for_new_toy	=	bytes(json_string_for_new_toy,	encoding="UTF-8")	

stream_for_new_toy	=	BytesIO(json_bytes_for_new_toy)	

parser	=	JSONParser()	

parsed_new_toy	=	parser.parse(stream_for_new_toy)	

print(parsed_new_toy)	

The	first	line	creates	a	new	string	with	the	JSON	that	defines	a	new	toy
(json_string_for_new_toy).	The	next	line	converts	the	string	to	bytes	and	saves
the	results	of	the	conversion	in	the	json_bytes_for_new_toy	variable.	The
django.utils.six.BytesIO	class	provides	a	buffered	I/O	implementation	using
an	in-memory	bytes	buffer.	The	code	uses	this	class	to	create	a	stream
from	the	previously	generated	JSON	bytes	with	the	serialized	data,
json_bytes_for_new_toy,	and	saves	the	generated	stream	instance	in	the
stream_for_new_toy	variable.

We	can	easily	deserialize	and	parse	a	stream	into	a	Python	model	with	the
help	of	the	rest_framework.parsers.JSONParser	class.	The	next	line	creates	an
instance	of	this	class	and	then	calls	the	parse	method	with	stream_for_new_toy
as	an	argument,	parses	the	stream	into	Python	native	datatypes,	and	saves
the	results	in	the	parsed_new_toy	variable.

After	executing	the	previous	lines,	parsed_new_toy	holds	a	Python	dictionary,
parsed	from	the	stream.	The	following	lines	show	the	output	generated
after	executing	the	preceding	code	snippet.	The	next	lines	show	the	results

with	easily	understood	formatting:

							{

				

				

										'name':	'Clash	Royale	play	set',	

				

				

										'description':	'6	figures	from	Clash	Royale',	

				

				

										'release_date':	'2017-10-09T12:10:00.776594Z',	

				

				

										'toy_category':	'Playset',	

				

				

										'was_included_in_home':	False

				

				

						}	

The	following	lines	use	the	ToySerializer	class	to	generate	a	fully	populated
Toy	instance	named	toy3	from	the	Python	dictionary,	parsed	from	the
stream.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_02_01	folder,	in	the	restful01/toy_serializers_test_01.py
file:

new_toy_serializer	=	ToySerializer(data=parsed_new_toy)	

if	new_toy_serializer.is_valid():	

				toy3	=	new_toy_serializer.save()	

				print(toy3.name)

First,	the	code	creates	an	instance	of	the	ToySerializer	class	with	the	Python
dictionary	that	we	previously	parsed	from	the	stream	(parsed_new_toy)	passed
as	the	data	keyword	argument.	Then,	the	code	calls	the	is_valid	method	to
check	whether	the	data	is	valid.

Note	that	we	must	always	call	is_valid	before	we	attempt	to
access	the	serialized	data	representation	when	we	pass	a	data

keyword	argument	in	the	creation	of	a	serializer.

If	the	method	returns	true,	we	can	access	the	serialized	representation	in
the	data	attribute,	and	therefore,	the	code	calls	the	save	method	that	persists
the	new	instance.	In	this	case,	it	is	a	new	Toy	instance,	and	therefore	the
code	to	the	save	method	inserts	the	corresponding	row	in	the	database	and
returns	a	fully	populated	Toy	instance,	saved	in	the	toy3	local	variable.
Then,	the	code	prints	one	of	the	attributes	from	the	fully	populated	Toy
instance.	After	executing	the	previous	code,	we	fully	populated	a	new	Toy
instance:	toy3.

As	we	can	see	from	the	previous	code,	Django	REST
framework	makes	it	easy	to	serialize	from	objects	to	JSON
and	deserialize	from	JSON	to	objects,	which	are	core
requirements	for	our	RESTful	Web	Service	that	has	to
perform	CRUD	operations.

Enter	the	following	command	to	leave	the	Django	shell	with	the	Django
project	modules	that	we	loaded	to	test	serialization	and	deserialization:

quit()	

Test	your	knowledge
1.	 In	Django	REST	framework,	serializers	are:

1.	 Mediators	between	the	view	functions	and	Python
primitives

2.	 Mediators	between	the	URLs	and	view	functions
3.	 Mediators	between	the	model	instances	and	Python

primitives

2.	 If	we	want	to	create	a	simple	Toy	model	that	we	will	use	to
represent	and	persist	toys	in	Django	REST	framework,	we	can
create:

1.	 	A	Toy	class	as	a	subclass	of	the
djangorestframework.models.Model	class

2.	 	A	Toy	class	as	a	subclass	of	the	django.db.models.Model	class
3.	 	A	Toy	function	in	the	restframeworkmodels.py	file

3.	 In	Django	REST	framework,	parsers	and	renderers:

1.	 Handle	as	mediators	between	model	instances	and	Python
primitives

2.	 Handle	as	mediators	between	Python	primitives	and
HTTP	requests	and	responses

3.	 Handle	as	mediators	between	the	view	functions	and

Python	primitives.

4.	 Which	of	the	following	commands	starts	the	Django	shell?

1.	 python	manage.py	shell
2.	 python	django.py	shell
3.	 django	shell

5.	 If	we	have	a	Django	application	named	computers	and	a	model
called	memory,	what	is	the	name	of	the	table	that	Django's	ORM	will
create	to	persist	the	model	in	the	database?

1.	 computers_memories
2.	 memory_computers
3.	 computers_memory

	

The	rights	answers	are	included	in	the	Appendix,	Solutions.

Summary
In	this	chapter,	we	designed	a	RESTful	Web	Service	to	interact	with	a
simple	SQLite	database	and	perform	CRUD	operations	with	toys.	We
defined	the	requirements	for	our	web	service	and	we	understood	the	tasks
performed	by	each	HTTP	method	and	the	different	scopes.

We	created	a	model	to	represent	and	persist	toys,	and	we	executed
migrations	in	Django	to	create	the	required	tables	in	an	SQLite	database.
We	analyzed	the	tables	that	Django	generated.	We	learned	to	manage
serialization	of	toy	instances	into	JSON	representations	with	Django
REST	framework	and	the	reverse	process.

Now	that	we	understand	models,	migrations,	serialization,	and
deserialization	with	Django	and	Django	REST	framework,	we	will	create
Django	views	combined	with	serializer	classes	and	start	making	HTTP
requests	to	our	web	service.	We	will	cover	these	topics	in	Chapter	3,
Creating	API	Views.

Creating	API	Views
In	this	chapter,	we	have	to	run	our	first	version	of	a	RESTful	Web	Service
powered	by	Django.	We	will	write	API	views	to	process	different	HTTP
requests	and	we	will	perform	HTTP	requests	with	command-line	and	GUI
tools.	We	will	analyze	how	Django	and	Django	REST	framework	process
each	HTTP	request.	We	will	gain	an	understanding	of:

Creating	Django	views	combined	with	serializer	classes

CRUD	operations	with	Django	views	and	the	request	methods

Launching	Django's	development	server

Making	HTTP	GET	requests	that	target	a	collection	of	instances
with	command-line	tools

Making	HTTP	GET	requests	that	target	a	single	instance	with
command-line	tools

Making	HTTP	GET	requests	with	command-line	tools

Making	HTTP	POST	requests	with	command-line	tools

Making	HTTP	PUT	requests	with	command-line	tools

Making	HTTP	DELETE	requests	with	command-line	tools

Making	HTTP	GET	requests	with	Postman						

Making	HTTP	POST	requests	with	Postman

Creating	Django	views
combined	with	serializer
classes
We	have	created	the	necessary	model	and	its	serializer.	It	is	time	to	code
the	necessary	elements	to	process	HTTP	requests	and	produce	HTTP
responses.	Now,	we	will	create	Django	views	that	use	the	ToySerializer
class	that	we	created	previously	to	return	JSON	representations	of	the
entities	for	each	HTTP	request	that	our	web	service	will	handle.	Open	the
toys/views.py	file.	The	following	lines	show	the	initial	code	for	this	file	with
just	one	import	statement	and	a	comment	that	indicates	we	should	create
the	views:

from	django.shortcuts	import	render	

	

#	Create	your	views	here.	

We	will	create	our	first	version	of	the	web	service	and	we	will	use
functions	to	keep	the	code	as	simple	as	possible.	We	will	work	with
classes	and	more	complex	code	in	later	examples.	First,	it	is	very
important	to	understand	how	Django	and	Django	REST	framework	work
by	way	of	a	simple	example.

Now,	write	the	following	lines	in	the	restful01/toys/views.py	file	to	create	a
JSONResponse	class	and	declare	two	functions:	toy_list	and	toy_detail.	The
code	file	for	the	sample	is	included	in	the	hillar_django_restful_03_01	folder,
in	the	restful01/toys/views.py	file:

from	django.shortcuts	import	render	

from	django.http	import	HttpResponse	

from	django.views.decorators.csrf	import	csrf_exempt	

from	rest_framework.renderers	import	JSONRenderer	

from	rest_framework.parsers	import	JSONParser	

from	rest_framework	import	status	

from	toys.models	import	Toy	

from	toys.serializers	import	ToySerializer	

	

	

class	JSONResponse(HttpResponse):	

				def	__init__(self,	data,	**kwargs):	

								content	=	JSONRenderer().render(data)	

								kwargs['content_type']	=	'application/json'	

								super(JSONResponse,	self).__init__(content,	**kwargs)	

	

	

@csrf_exempt	

def	toy_list(request):	

				if	request.method	==	'GET':	

								toys	=	Toy.objects.all()	

								toys_serializer	=	ToySerializer(toys,	many=True)	

								return	JSONResponse(toys_serializer.data)	

	

				elif	request.method	==	'POST':	

								toy_data	=	JSONParser().parse(request)	

								toy_serializer	=	ToySerializer(data=toy_data)	

								if	toy_serializer.is_valid():	

												toy_serializer.save()	

												return	JSONResponse(toy_serializer.data,	\

																status=status.HTTP_201_CREATED)	

								return	JSONResponse(toy_serializer.errors,	\

												status=status.HTTP_400_BAD_REQUEST)	

	

	

@csrf_exempt	

def	toy_detail(request,	pk):	

				try:	

								toy	=	Toy.objects.get(pk=pk)	

				except	Toy.DoesNotExist:	

								return	HttpResponse(status=status.HTTP_404_NOT_FOUND)	

	

				if	request.method	==	'GET':	

								toy_serializer	=	ToySerializer(toy)	

								return	JSONResponse(toy_serializer.data)	

	

				elif	request.method	==	'PUT':	

								toy_data	=	JSONParser().parse(request)	

								toy_serializer	=	ToySerializer(toy,	data=toy_data)	

								if	toy_serializer.is_valid():	

												toy_serializer.save()	

												return	JSONResponse(toy_serializer.data)	

								return	JSONResponse(toy_serializer.errors,	\

												status=status.HTTP_400_BAD_REQUEST)	

	

				elif	request.method	==	'DELETE':	

								toy.delete()	

								return	HttpResponse(status=status.HTTP_204_NO_CONTENT)	

The	highlighted	lines	show	the	expressions	that	evaluate	the	value	of	the
request.method	attribute	to	determine	the	actions	to	be	performed	based	on
the	HTTP	verb.	The	JSONResponse	class	is	a	subclass	of	the
django.http.HttpResponse	class.	The	django.http.HttpResponse	superclass
represents	an	HTTP	response	with	string	content.

The	JSONResponse	class	renders	its	content	in	JSON.	The	class	just	declares
the	__init__	method	that	creates	a	rest_framework.renderers.JSONRenderer
instance	and	calls	its	render	method	to	render	the	received	data	in	JSON
and	save	the	returned	byte	string	in	the	content	local	variable.	Then,	the
code	adds	the	'content_type'	key	to	the	response	header	with
'application/json'	as	its	value.	Finally,	the	code	calls	the	initializer	for	the
base	class	with	the	JSON	byte	string	and	the	key-value	pair	added	to	the
header.	This	way,	the	class	represents	a	JSON	response	that	we	use	in	the
two	functions	to	easily	return	a	JSON	response	in	each	HTTP	request	our
web	service	will	process.	Since	Django	1.7,	the	django.http.JsonResponse
class	has	accomplished	the	same	goal.	However,	we	created	our	own	class
for	educational	purposes	in	this	example	as	well	as	to	understand	the
difference	between	an	HttpResponse	and	a	JSONResponse.

The	code	uses	the	@csrf_exempt	decorator	in	the	two	functions	to	ensure	that
the	view	sets	a	CSRF	(short	for	Cross-Site	Request	Forgery)	cookie.	We
do	this	to	make	it	easier	to	test	this	example,	which	doesn't	represent	a
production-ready	web	service.	We	will	add	security	features	to	our
RESTful	Web	Service	later.	Of	course,	it	is	very	important	to	understand
that	we	should	never	put	a	web	service	into	production	before	configuring
security	and	throttling	rules.

Note	that	the	previous	code	has	many	problems	that	we	will
analyze	and	fix	in	the	forthcoming	chapters.	However,	first,
we	need	to	understand	how	some	basic	things	work.

Understanding	CRUD
operations	with	Django	views
and	the	request	methods
When	the	Django	server	receives	an	HTTP	request,	Django	creates	an
HttpRequest	instance,	specifically	a	django.http.HttpRequest	object.	This
instance	contains	metadata	about	the	request,	and	this	metadata	includes
an	HTTP	verb	such	as	GET,	POST,	or	PUT.	The	method	attribute	provides	a
string	representing	the	HTTP	verb	or	method	used	in	the	request.

When	Django	loads	the	appropriate	view	that	will	process	the	request,	it
passes	the	HttpRequest	instance	as	the	first	argument	to	the	view	function.	The
view	function	has	to	return	an	HttpResponse	instance,	specifically	a
django.http.HttpResponse	instance.

The	toy_list	function	lists	all	the	toys	or	creates	a	new	toy.	The	function
receives	an	HttpRequest	instance	in	the	request	argument.	The	function	is
capable	of	processing	two	HTTP	verbs:	GET	and	POST.	The	code	checks	the
value	of	the	request.method	attribute	to	determine	the	code	to	be	executed
based	on	the	HTTP	verb.

If	the	HTTP	verb	is	GET,	the	expression	request.method	==	'GET'	will	evaluate
to	True	and	the	code	has	to	list	all	the	toys.	The	code	will	retrieve	all	the	Toy
objects	from	the	database,	use	the	ToySerializer	to	serialize	all	of	them	and
return	a	JSONResponse	instance	built	with	the	data	generated	by	the
ToySerializer	serializer.	The	code	creates	the	ToySerializer	instance	with	the
many=True	argument	to	specify	that	multiple	instances	have	to	be	serialized
and	not	just	one.	Under	the	hood,	Django	uses	a	ListSerializer	instance
when	the	many	argument	value	is	set	to	True.	This	way,	Django	is	capable	of
serializing	a	list	of	objects.

If	the	HTTP	verb	is	POST,	the	code	has	to	create	a	new	toy	based	on	the
JSON	data	that	is	included	in	the	body	of	the	HTTP	request.	First,	the
code	uses	a	JSONParser	instance	and	calls	its	parse	method	with	the	request
parameter	that	the	toy_list	function	receives	as	an	argument	to	parse	the
toy	data	provided	as	JSON	data	in	the	request	body	and	saves	the	results	in
the	toy_data	local	variable.	Then,	the	code	creates	a	ToySerializer	instance
with	the	previously	retrieved	data	and	calls	the	is_valid	method	to
determine	whether	the	Toy	instance	is	valid	or	not.	If	the	instance	is	valid,
the	code	calls	the	save	method	to	persist	the	instance	in	the	database	and
returns	a	JSONResponse	with	the	saved	data	in	its	body	and	a	status	equal	to
status.HTTP_201_CREATED,	that	is,	201	Created.

Whenever	we	have	to	return	a	specific	status	different	from
the	default	200	OK	status,	it	is	a	good	practice	to	use	the
module	variables	defined	in	the	rest_framework.status	module
and	avoid	using	hard-coded	numeric	values.	If	you	see
status=status.HTTP_201_CREATED,	as	in	the	sample	code,	it	is	easy
to	understand	that	the	status	is	an	HTTP	201	Created	status.	If
you	read	status=201,	you	have	to	remember	what	the	number
201	stands	for	in	the	HTTP	status	codes.

The	toy_detail	function	retrieves,	updates,	or	deletes	an	existing	toy.	The
function	receives	an	HttpRequest	instance	in	the	request	argument	and	the
identifier	for	the	toy	to	be	retrieved,	updated,	or	deleted	in	the	pk	argument.
The	function	is	capable	of	processing	three	HTTP	verbs:	GET,	PUT,	and
DELETE.	The	code	checks	the	value	of	the	request.method	attribute	to	determine
the	code	to	be	executed	based	on	the	HTTP	verb.

No	matter	what	the	HTTP	verb	is,	the	toy_detail	function	calls	the
Toy.objects.get	method	with	the	received	pk	as	the	pk	argument	to	retrieve	a
Toy	instance	from	the	database	based	on	the	specified	identifier,	and	saves
it	in	the	toy	local	variable.	In	case	a	toy	with	the	specified	identifier	doesn't
exist	in	the	database,	the	code	returns	an	HttpResponse	with	its	status	set	to
status.HTTP_404_NOT_FOUND,	that	is,	404	Not	Found.

If	the	HTTP	verb	is	GET,	the	code	creates	a	ToySerializer	instance	with	toy	as
an	argument	and	returns	the	data	for	the	serialized	toy	in	a	JSONResponse	that

will	include	the	default	HTTP	200	OK	status.	The	code	returns	the	retrieved
toy	serialized	as	JSON	in	the	response	body.

If	the	HTTP	verb	is	PUT,	the	code	has	to	create	a	new	toy	based	on	the
JSON	data	that	is	included	in	the	HTTP	request	and	use	it	to	replace	an
existing	toy.	First,	the	code	uses	a	JSONParser	instance	and	calls	its	parse
method	with	request	as	an	argument	to	parse	the	toy	data	provided	as	JSON
data	in	the	request	and	saves	the	results	in	the	toy_data	local	variable.	Then,
the	code	creates	a	ToySerializer	instance	with	the	Toy	instance	previously
retrieved	from	the	database	(toy)	and	the	retrieved	data	that	will	replace	the
existing	data	(toy_data).	Then,	the	code	calls	the	is_valid	method	to
determine	whether	the	Toy	instance	is	valid	or	not.	If	the	instance	is	valid,
the	code	calls	the	save	method	to	persist	the	instance	with	the	replaced
values	in	the	database	and	returns	a	JSONResponse	with	the	saved	data
serialized	as	JSON	in	its	body	and	the	default	HTTP	200	OK	status.	If	the
parsed	data	doesn't	generate	a	valid	Toy	instance,	the	code	returns	a
JSONResponse	with	a	status	equal	to	status.HTTP_400_BAD_REQUEST,	that	is	400	Bad
Request.

If	the	HTTP	verb	is	DELETE,	the	code	calls	the	delete	method	for	the	Toy
instance	previously	retrieved	from	the	database	(toy).	The	call	to	the	delete
method	erases	the	underlying	row	in	the	toys_toy	table	that	we	analyzed	in
the	previous	chapter.	Thus,	the	toy	won't	be	available	anymore.	Then,	the
code	returns	a	JSONResponse	with	a	status	equal	to	status.	HTTP_204_NO_CONTENT
that	is,	204	No	Content.

Routing	URLs	to	Django	views
and	functions
Now,	we	have	to	create	a	new	Python	file	named	urls.py	in	the	toys	folder,
specifically,	the	toys/urls.py	file.	The	following	lines	show	the	code	for	this
file,	which	defines	the	URL	patterns	that	specify	the	regular	expressions
that	have	to	be	matched	in	the	request	to	run	a	specific	function	previously
defined	in	the	views.py	file.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_03_01	folder,	in	the	restful01/toys/urls.py	file:

from	django.conf.urls	import	url	

from	toys	import	views	

	

urlpatterns	=	[

				url(r'^toys/$',	views.toy_list),	

				url(r'^toys/(?P<pk>[0-9]+)$',	views.toy_detail),	

]	

The	urlpatterns	list	makes	it	possible	to	route	URLs	to	views.	The	code
calls	the	django.conf.urls.url	function	with	the	regular	expression	that	has	to
be	matched	and	the	view	function	defined	in	the	views	module	as	arguments
to	create	a	RegexURLPattern	instance	for	each	entry	in	the	urlpatterns	list.

Now,	we	have	to	replace	the	code	in	the	urls.py	file	in	the	restful01	folder,
specifically,	the	restful01/urls.py	file.	The	file	defines	the	root	URL
configurations,	and	therefore	we	must	include	the	URL	patterns	declared
in	the	previously	coded	toys/urls.py	file.	The	following	lines	show	the	new
code	for	the	restful01/urls.py	file.	The	code	file	for	the	sample	is	included
in	the	hillar_django_restful_03_01	folder,	in	the	restful01/urls.py	file:

from	django.conf.urls	import	url,	include	

	

urlpatterns	=	[

				url(r'^',	include('toys.urls')),	

]	

Launching	Django's
development	server
Now,	we	can	launch	Django's	development	server	to	compose	and	send
HTTP	requests	to	our	unsecured	web	service.	Remember	that	we	will	add
security	later.

Execute	the	following	command	in	a	Linux	or	macOS	Terminal,	or	in	the
Windows	Command	Prompt	or	Powershell	that	has	our	previously	created
virtual	environment	activated.	Make	sure	you	are	in	the	restful01	folder
within	the	virtual	environment's	main	folder:

				python	manage.py	runserver

The	following	lines	show	the	output	after	we	execute	the	previous
command.	The	development	server	is	listening	at	port	8000:

				Performing	system	checks...

				

				System	check	identified	no	issues	(0	silenced).

				October	09,	2017	-	18:42:30

				Django	version	1.11.5,	using	settings	'restful01.settings'

				Starting	development	server	at	http://127.0.0.1:8000/

				Quit	the	server	with	CTRL-BREAK.

With	the	previous	command,	we	will	start	the	Django	development	server
and	we	will	only	be	able	to	access	it	on	our	development	computer.	The
previous	command	starts	the	development	server	at	the	default	IP	address,
that	is,	127.0.0.1	(localhost).	It	is	not	possible	to	access	this	IP	address	from
other	computers	or	devices	connected	to	our	LAN.	Thus,	if	we	want	to
make	HTTP	requests	to	our	API	from	other	computers	or	devices

connected	to	our	LAN,	we	should	use	the	development	computer	IP
address,	0.0.0.0	(for	IPv4	configurations)	or	::	(for	IPv6	configurations)	as
the	desired	IP	address	for	our	development	server.

If	we	specify	0.0.0.0	as	the	desired	IP	address	for	IPv4	configurations,	the
development	server	will	listen	on	every	interface	on	port	8000.	When	we
specify	::	for	IPv6	configurations,	it	will	have	the	same	effect.	In	addition,
it	is	necessary	to	open	the	default	port	8000	in	our	firewalls	(software
and/or	hardware)	and	configure	port-forwarding	to	the	computer	that	is
running	the	development	server.	The	following	command	launches
Django's	development	server	in	an	IPv4	configuration	and	allows	requests
to	be	made	from	other	computers	and	devices	connected	to	our	LAN:

				python	manage.py	runserver	0.0.0.0:8000	

If	you	decide	to	compose	and	send	HTTP	requests	from	other	computers
or	devices	connected	to	the	LAN,	remember	that	you	have	to	use	the
development	computer's	assigned	IP	address	instead	of	localhost.	For
example,	if	the	computer's	assigned	IPv4	IP	address	is	192.168.2.103,	instead
of	localhost:8000,	you	should	use	192.168.2.103:8000.	Of	course,	you	can	also
use	the	hostname	instead	of	the	IP	address.

The	previously	explained	configurations	are	very	important
because	mobile	devices	might	be	the	consumers	of	our
RESTful	Web	Services	and	we	will	always	want	to	test	the
apps	that	make	use	of	our	web	services	and	APIs	in	our
development	environments.

Making	HTTP	GET	requests
that	target	a	collection	of
instances
In	Chapter	1,	Installing	the	Required	Software	and	Tools,	we	installed
command-line	and	GUI	tools	that	were	going	to	allow	us	to	compose	and
send	HTTP	requests	to	the	web	services	we	were	going	to	build
throughout	this	book.	Now,	we	will	use	the	curl	utility	to	make	HTTP
GET	requests,	specifically,	HTTP	GET	requests	that	target	a	collection	of
toys.	In	case	curl	is	not	included	in	the	path,	make	sure	you	replace	curl
with	the	full	path	to	this	utility.

Make	sure	you	leave	the	Django	development	server	running.	Don't	close
the	terminal	or	Command	Prompt	that	is	running	this	development	server.
Open	a	new	Terminal	in	Linux	or	macOS,	or	a	Command	Prompt	in
Windows,	and	run	the	following	command.	It	is	very	important	that	you
enter	the	ending	slash	(/)	because	/toys	won't	match	any	of	the	patterns
specified	in	urlpatterns	in	the	toys/urls.py	file.	We	aren't	going	to	use
options	to	follow	redirects.	Thus,	we	must	enter	/toys/,	including	the
ending	slash	(/).

				curl	-X	GET	localhost:8000/toys/

The	previous	command	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/toys/.	The	request	is	the	simplest	case	in
our	RESTful	Web	Service	because	it	will	match	and	run	the	views.toy_list
function,	that	is,	the	toy_list	function	we	coded	within	the	toys/views.py	file.
The	function	just	receives	request	as	a	parameter	because	the	URL	pattern
doesn't	include	any	parameters.	As	the	HTTP	verb	for	the	request	is	GET,
the	request.method	property	is	equal	to	'GET',	and	therefore,	the	function	will

execute	the	code	that	retrieves	all	the	Toy	objects	and	generates	a	JSON
response	with	all	of	these	Toy	objects	serialized.

The	following	lines	show	an	example	response	for	the	HTTP	request,	with
three	Toy	objects	in	the	JSON	response:

				[{"pk":3,"name":"Clash	Royale	play	set","description":"6	figures	from	Clash	Royale","release_date":"2017-10-09T12:10:00.776594Z","toy_category":"Playset","was_included_in_home":false},{"pk":2,"name":"Hawaiian	Barbie","description":"Barbie	loves	Hawaii","release_date":"2017-10-09T12:11:37.090335Z","toy_category":"Dolls","was_included_in_home":true},{"pk":1,"name":"Snoopy	talking	action	figure","description":"Snoopy	speaks	five	languages","release_date":"2017-10-09T12:11:37.090335Z","toy_category":"Action	figures","was_included_in_home":false}]

As	we	might	notice	from	the	previous	response,	the	curl	utility	displays
the	JSON	response	in	a	single	line,	and	therefore,	it	is	a	bit	difficult	to
read.	It	is	possible	to	use	different	tools,	including	some	Python	scripts,	to
provide	a	better	format	to	the	response.	However,	we	will	use	the	HTTPie
command-line	tool	we	installed	in	our	virtual	environment	for	this	purpose
later.

In	this	case,	we	know	that	the	value	of	the	Content-Type	header	key	of	the
response	is	application/json.	However,	in	case	we	want	more	details	about
the	response,	we	can	use	the	-i	option	to	request	curl	to	print	the	HTTP
response	headers	and	their	key-value	pairs.	We	can	combine	the	-i	and	-X
options	by	entering	-iX.

Go	back	to	the	terminal	in	Linux	or	macOS,	or	the	Command	prompt	in
Windows,	and	run	the	following	command:

				curl	-iX	GET	localhost:8000/toys/

The	following	lines	show	an	example	response	for	the	HTTP	request.	The
first	lines	show	the	HTTP	response	headers,	including	the	status	(200	OK)
and	the	Content-Type:	application/json.	After	the	HTTP	response	headers,	we
can	see	the	details	for	the	three	Toy	objects	in	the	JSON	response:

				HTTP/1.0	200	OK

				Date:	Tue,	10	Oct	2017	00:53:41	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Content-Type:	application/json

				X-Frame-Options:	SAMEORIGIN

				Content-Length:	548

				

[{"pk":3,"name":"Clash	Royale	play	set","description":"6	figures	from	Clash	Royale","release_date":"2017-10-09T12:10:00.776594Z","toy_category":"Playset","was_included_in_home":false},{"pk":2,"name":"Hawaiian	Barbie","description":"Barbie	loves	Hawaii","release_date":"2017-10-09T12:11:37.090335Z","toy_category":"Dolls","was_included_in_home":true},{"pk":1,"name":"Snoopy	talking	action	figure","description":"Snoopy	speaks	five	languages","release_date":"2017-10-09T12:11:37.090335Z","toy_category":"Action	figures","was_included_in_home":false}]

After	we	run	the	two	requests,	we	will	see	the	following	lines	in	the
window	running	the	Django	development	server.	The	output	indicates	that
the	server	received	two	HTTP	requests	with	the	GET	verb	and	/toys/	as	the
URI.	The	server	processed	both	HTTP	requests,	returned	a	status	code
equal	to	200,	and	the	response	length	was	equal	to	548	characters.

The	response	length	might	be	different	because	the	value	for	the	primary
key	assigned	to	each	toy	will	have	an	incidence	in	the	response	length.
The	first	number	after	HTTP/1.1."	indicates	the	returned	status	code	(200)	and
the	second	number	the	response	length	(548):

				[09/Oct/2017	22:12:37]	"GET	/toys/	HTTP/1.1"	200	548

				[09/Oct/2017	22:12:40]	"GET	/toys/	HTTP/1.1"	200	548

The	following	image	shows	two	Terminal	windows	side-by-side	on
macOS.	The	Terminal	window	on	the	left-hand	side	is	running	the	Django
development	server	and	displays	the	received	and	processed	HTTP
requests.	The	Terminal	window	on	the	right-hand	side	is	running	curl
commands	to	generate	the	HTTP	requests.	It	is	a	good	idea	to	use	a	similar
configuration	to	check	the	output	while	we	compose	and	send	the	HTTP
requests.	Notice	that	the	JSON	outputs	are	a	bit	difficult	to	read	because
they	don't	use	syntax	highlighting:

Now,	open	a	new	Terminal	in	Linux	or	macOS,	or	a	new	Command
Prompt	in	Windows,	and	activate	the	virtual	environment	we	created.	This
way,	you	will	be	able	to	access	the	HTTPie	utility	we	installed	within	the
virtual	environment.

We	will	use	the	http	command	to	easily	compose	and	send	HTTP	requests
to	localhost:8000	and	test	the	RESTful	Web	Service.	HTTPie	supports	curl-
like	shorthand	for	localhost,	and	therefore	we	can	use	:8000	as	a	shorthand
that	expands	to	http://localhost:8000.	Run	the	following	command	and
remember	to	enter	the	ending	slash	(/):

	http	:8000/toys/

The	previous	command	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/toys/.	The	request	is	the	same	one	we
previously	composed	with	the	curl	command.	However,	in	this	case,	the
HTTPie	utility	will	display	a	colorized	output	and	it	will	use	multiple	lines
to	display	the	JSON	response,	without	any	additional	tweaks.	The
previous	command	is	equivalent	to	the	following	command	that	specifies
the	GET	method	after	http:

http	:8000/toys/

The	following	lines	show	an	example	response	for	the	HTTP	request,	with
the	headers	and	the	three	Toy	objects	in	the	JSON	response.	It	is	indeed
easier	to	understand	the	response	compared	with	the	results	that	were
generated	when	we	composed	the	HTTP	request	with	curl.	HTTPie
automatically	formats	the	JSON	data	received	as	a	response	and	applies
syntax	highlighting,	specifically,	both	colors	and	formatting:

				HTTP/1.0	200	OK

				Content-Length:	548

				Content-Type:	application/json

				Date:	Tue,	10	Oct	2017	01:26:52	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				X-Frame-Options:	SAMEORIGIN

				

				[

								{

												"description":	"6	figures	from	Clash	Royale",

												"name":	"Clash	Royale	play	set",

												"pk":	3,

												"release_date":	"2017-10-09T12:10:00.776594Z",

												"toy_category":	"Playset",

												"was_included_in_home":	false

								},

								{

												"description":	"Barbie	loves	Hawaii",

												"name":	"Hawaiian	Barbie",

												"pk":	2,

												"release_date":	"2017-10-09T12:11:37.090335Z",

												"toy_category":	"Dolls",

												"was_included_in_home":	true

								},

								{

												"description":	"Snoopy	speaks	five	languages",

												"name":	"Snoopy	talking	action	figure",

												"pk":	1,

												"release_date":	"2017-10-09T12:11:37.090335Z",

												"toy_category":	"Action	figures",

												"was_included_in_home":	false

								}

]	

We	can	achieve	the	same	results	by	combining	the	output
generated	with	the	curl	command	with	other	utilities.
However,	HTTPie	provides	us	exactly	what	we	need	for
working	with	RESTful	Web	Services	such	as	the	one	we	are
building	with	Django.	We	will	use	HTTPie	to	compose	and
send	HTTP	requests,	but	we	will	always	provide	the
equivalent	curl	command.	Remember	that	curl	is	faster	when
you	need	to	execute	it	many	times,	such	as	when	you	prepare
automated	scripts.

The	following	image	shows	two	Terminal	windows	side-by-side	on
macOS.	The	Terminal	window	on	the	left-hand	side	is	running	the	Django
development	server	and	displays	the	received	and	processed	HTTP
requests.	The	Terminal	window	on	the	right-hand	side	is	running	HTTPie
commands	to	generate	the	HTTP	requests.	Notice	that	the	JSON	output	is
easier	to	read	compared	to	the	output	generated	by	the	curl	command:

We	can	execute	the	http	command	with	the	-b	option	in	case	we	don't	want
to	include	the	header	in	the	response.	For	example,	the	following	line
performs	the	same	HTTP	request	but	doesn't	display	the	header	in	the
response	output,	and	therefore,	the	output	will	just	display	the	JSON
response:

				http	-b	:8000/toys/

Making	HTTP	GET	requests
that	target	a	single	instance
Now,	we	will	make	HTTP	GET	requests	that	target	a	single	Toy	instance.
We	will	select	one	of	the	toys	from	the	previous	list	and	we	will	compose
an	HTTP	request	to	retrieve	only	the	chosen	toy.	For	example,	in	the
previous	list,	the	first	toy	has	a	pk	value	equal	to	3	because	the	results	are
ordered	by	the	toy's	name	in	ascending	order.	Run	the	following	command
to	retrieve	this	toy.	Use	the	pk	value	you	have	retrieved	in	the	previous
command	for	the	first	toy,	as	the	pk	number	might	be	different	if	you
execute	the	sample	code	or	the	commands	more	than	once	or	you	make
changes	to	the	toys_toy	table.	In	this	case,	you	don't	have	to	enter	an	ending
slash	(/)	because	/toys/3/	won't	match	any	of	the	patterns	specified	in
urlpatterns	in	the	toys/urls.py	file:

				http	:8000/toys/3		

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	localhost:8000/toys/3

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/toys/3/.	The	request	has	a	number	after
/toys/,	and	therefore,	it	will	match	'^toys/(?P<pk>[0-9]+)$'	and	run	the
views.toy_detail	function,	that	is,	the	toy_detail	function	declared	within	the
toys/views.py	file.	The	function	receives	request	and	pk	as	parameters	because
the	URL	pattern	passes	the	number	specified	after	/toys/	in	the	pk
parameter.

As	the	HTTP	verb	for	the	request	is	GET,	the	request.method	property	is	equal

to	'GET',	and	therefore,	the	toy_detail	function	will	execute	the	code	that
retrieves	the	Toy	object	whose	primary	key	matches	the	pk	value	received	as
an	argument	and,	if	found,	generates	a	JSON	response	with	this	Toy	object
serialized.	The	following	lines	show	an	example	response	for	the	HTTP
request,	with	the	Toy	object	that	matches	the	pk	value	in	the	JSON	response:

				HTTP/1.0	200	OK

				Content-Length:	182

				Content-Type:	application/json

				Date:	Tue,	10	Oct	2017	04:24:35	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				X-Frame-Options:	SAMEORIGIN

				

				{

								"description":	"6	figures	from	Clash	Royale",	

								"name":	"Clash	Royale	play	set",	

								"pk":	3,	

								"release_date":	"2017-10-09T12:10:00.776594Z",	

								"toy_category":	"Playset",	

								"was_included_in_home":	false

				}

Now,	we	will	compose	and	send	an	HTTP	request	to	retrieve	a	toy	that
doesn't	exist.	For	example,	in	the	previous	list,	there	is	no	toy	with	a	pk
value	equal	to	17500.	Run	the	following	command	to	try	to	retrieve	this	toy.
Make	sure	you	use	a	pk	value	that	doesn't	exist.	We	must	make	sure	that
the	utilities	display	the	headers	as	part	of	the	response	because	the
response	won't	have	a	body:

				http	:8000/toys/17500		

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	localhost:8000/toys/17500

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/toys/17500.	The	request	is	the	same	as	the

previous	one	we	analyzed,	with	a	different	number	for	the	pk	parameter.
The	server	will	run	the	views.toy_detail	function,	that	is,	the	toy_detail
function	declared	within	the	toys/views.py	file.	The	function	will	execute	the
code	that	retrieves	the	Toy	object	whose	primary	key	matches	the	pk	value
received	as	an	argument	and	a	Toy.DoesNotExist	exception	will	be	thrown	and
captured	because	there	is	no	toy	with	the	specified	pk	value.	Thus,	the	code
will	return	an	HTTP	404	Not	Found	status	code.	The	following	lines	show	an
example	header	response	for	the	HTTP	request:

				HTTP/1.0	404	Not	Found

				Content-Length:	0

				Content-Type:	text/html;	charset=utf-8

				Date:	Tue,	10	Oct	2017	15:54:59	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				X-Frame-Options:	SAMEORIGIN

Making	HTTP	POST	requests
Now,	we	will	compose	and	send	an	HTTP	request	to	create	a	new	toy:

				http	POST	:8000/toys/	name="PvZ	2	puzzle"	description="Plants	vs				

				Zombies	2	puzzle"	toy_category="Puzzle"	was_included_in_home=false	

				release_date="2017-10-08T01:01:00.776594Z"		

The	following	is	the	equivalent	curl	command.	It	is	very	important	to	use
the	-H	"Content-Type:	application/json"	option	to	indicate	to	curl	that	it	should
send	the	data	specified	after	the	-d	option	as	application/json	instead	of	the
default	application/x-www-form-urlencoded:

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"PvZ			

				2	puzzle",	"description":"Plants	vs	Zombies	2	puzzle",				

				"toy_category":"Puzzle",	"was_included_in_home":	"false",	

				"release_date":	"2017-10-08T01:01:00.776594Z"}'	

					localhost:8000/toys/		

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	POST	http://localhost:8000/toys/	with	the	following	JSON	key-value
pairs:

{	

				"name":	"PvZ	2	puzzle",		

				"description":"Plants	vs	Zombies	2	puzzle",	

				"toy_category":"Puzzle",	

				"was_included_in_home":	"false",	

				"release_date":	"2017-10-08T01:01:00.776594Z"	

}	

The	request	specifies	/toys/,	and	therefore,	it	will	match	the	'^toys/$'
regular	expression	and	run	the	views.toy_list	function,	that	is,	the	toy_detail

function	declared	within	the	toys/views.py	file.	The	function	just	receives
request	as	a	parameter	because	the	URL	pattern	doesn't	include	any
parameters.	As	the	HTTP	verb	for	the	request	is	POST,	the	request.method
property	is	equal	to	'POST',	and	therefore,	the	function	will	execute	the	code
that	parses	the	JSON	data	received	in	the	request.	Then,	the	function
creates	a	new	Toy	and,	if	the	data	is	valid,	it	saves	the	new	Toy	to	the	toys_toy
table	in	the	SQLite	database.	If	the	new	Toy	was	successfully	persisted	in
the	database,	the	function	returns	an	HTTP	201	Created	status	code	and	the
recently	persisted	Toy	serialized	to	JSON	in	the	response	body.	The
following	lines	show	an	example	response	for	the	HTTP	request,	with	the
new	Toy	object	in	the	JSON	response:

				HTTP/1.0	201	Created

				Content-Length:	171

				Content-Type:	application/json

				Date:	Tue,	10	Oct	2017	16:27:57	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				X-Frame-Options:	SAMEORIGIN

				

				{

								"description":	"Plants	vs	Zombies	2	puzzle",	

								"name":	"PvZ	2	puzzle",	

								"pk":	4,	

								"release_date":	"2017-10-08T01:01:00.776594Z",	

								"toy_category":	"Puzzle",	

								"was_included_in_home":	false

				}

Making	HTTP	PUT	requests
Now,	we	will	compose	and	send	an	HTTP	request	to	update	an	existing
toy,	specifically,	the	previously	added	toy.	We	have	to	check	the	value
assigned	to	pk	in	the	previous	response	and	replace	4	in	the	command	with
the	returned	value.	For	example,	if	the	value	for	pk	was	4,	you	should	use
:8000/toys/4	instead	of	:8000/toys/4:

http	PUT	:8000/toys/4	name="PvZ	3	puzzle"	description="Plants	vs	Zombies	3	puzzle"	toy_category="Puzzles	&	Games"	was_included_in_home=false	release_date="2017-10-08T01:01:00.776594Z"

The	following	is	the	equivalent	curl	command.	As	with	the	previous	curl
example,	it	is	very	important	to	use	the	-H	"Content-Type:	application/json"
option	to	indicate	curl	to	send	the	data	specified	after	the	-d	option	as
application/json	instead	of	the	default	application/x-www-form-urlencoded:

curl	-iX	PUT	-H	"Content-Type:	application/json"	-d	'{"name":"PvZ	3	puzzle",	"description":"Plants	vs	Zombies	3	puzzle",	"toy_category":"Puzzles	&	Games",	"was_included_in_home":	"false",	"release_date":	"2017-10-08T01:01:00.776594Z"}'	localhost:8000/toys/4

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	PUT	http://localhost:8000/toys/4	with	the	following	JSON	key-value
pairs:

{	

				"name":	"PvZ	3	puzzle",		

				"description":"Plants	vs	Zombies	3	puzzle",	

				"toy_category":"Puzzles	&	Games",	

				"was_included_in_home":	"false",	

				"release_date":	"2017-10-08T01:01:00.776594Z"	

}

The	request	has	a	number	after	/toys/,	and	therefore,	it	will	match	the
'^toys/(?P<pk>[0-9]+)$'	regular	expression	and	run	the	views.toy_detail

function,	that	is,	the	toy_detail	function	declared	within	the	toys/views.py
file.	The	function	receives	request	and	pk	as	parameters	because	the	URL
pattern	passes	the	number	specified	after	/toys/	in	the	pk	parameter.	As	the
HTTP	verb	for	the	request	is	PUT,	the	request.method	property	is	equal	to
'PUT',	and	therefore,	the	function	will	execute	the	code	that	parses	the
JSON	data	received	in	the	request.	Then,	the	function	will	create	a	Toy
instance	from	this	data	and	update	the	existing	toy	in	the	database.	If	the
toy	was	successfully	updated	in	the	database,	the	function	returns	an
HTTP	200	OK	status	code	and	the	recently	updated	Toy	serialized	to	JSON	in
the	response	body.	The	following	lines	show	an	example	response	for	the
HTTP	request,	with	the	updated	Toy	object	in	the	JSON	response:

				HTTP/1.0	200	OK

				Content-Length:	180

				Content-Type:	application/json

				Date:	Tue,	10	Oct	2017	17:06:43	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				X-Frame-Options:	SAMEORIGIN

				

				{

								"description":	"Plants	vs	Zombies	3	puzzle",	

								"name":	"PvZ	3	puzzle",	

								"pk":	4,	

								"release_date":	"2017-10-08T01:01:00.776594Z",	

								"toy_category":	"Puzzles	&	Games",	

								"was_included_in_home":	false

				}

In	order	to	successfully	process	a	PUT	HTTP	request	that	updates	an
existing	toy,	we	must	provide	values	for	all	the	required	fields.	We	will
compose	and	send	an	HTTP	request	to	try	to	update	an	existing	toy,	and
we	will	fail	to	do	so	because	we	will	just	provide	a	value	for	the	name.	As
in	the	previous	request,	we	will	use	the	value	assigned	to	pk	in	the	last	toy
we	added:

				http	PUT	:8000/toys/4	name="PvZ	4	puzzle"

The	following	is	the	equivalent	curl	command:

				curl	-iX	PUT	-H	"Content-Type:	application/json"	-d	'{"name":"PvZ	4			

				puzzle"}'	localhost:8000/toys/4

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	PUT	http://localhost:8000/toys/4	with	the	following	JSON	key-value
pair:

{		

			"name":	"PvZ	4	puzzle",		

}	

The	request	will	execute	the	same	code	we	explained	for	the	previous
request.	As	we	didn't	provide	all	the	required	values	for	a	Toy	instance,	the
toy_serializer.is_valid()	method	will	return	False	and	the	function	will	return
an	HTTP	400	Bad	Request	status	code	and	the	details	generated	in	the
toy_serializer.errors	attribute	serialized	to	JSON	in	the	response	body.	The
following	lines	show	an	example	response	for	the	HTTP	request,	with	the
required	fields	that	our	request	didn't	include	values	in	the	JSON	response
(description,	release_date,	and	toy_category):

				HTTP/1.0	400	Bad	Request

				Content-Length:	129

				Content-Type:	application/json

				Date:	Tue,	10	Oct	2017	17:23:46	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				X-Frame-Options:	SAMEORIGIN

				

				{

								"description":	[

												"This	field	is	required."

],	

								"release_date":	[

												"This	field	is	required."

],	

								"toy_category":	[

												"This	field	is	required."

]

				}

When	we	want	our	API	to	be	able	to	update	a	single	field	for	an	existing
resource,	in	this	case,	an	existing	toy,	we	should	provide	an
implementation	for	the	PATCH	method.	The	PUT	method	is	meant	to
replace	an	entire	resource	and	the	PATCH	method	is	meant	to	apply	a	delta
to	an	existing	resource.	We	can	write	code	in	the	handler	for	the	PUT
method	to	apply	a	delta	to	an	existing	resource,	but	it	is	a	better	practice	to
use	the	PATCH	method	for	this	specific	task.	We	will	work	with	the
PATCH	method	later.

Making	HTTP	DELETE	requests
Now,	we	will	compose	and	send	an	HTTP	request	to	delete	an	existing	toy,
specifically,	the	last	toy	we	added.	As	in	our	last	HTTP	request,	we	have
to	check	the	value	assigned	to	pk	in	the	previous	response	and	replace	4	in
the	command	with	the	returned	value:

				http	DELETE	:8000/toys/4

The	following	is	the	equivalent	curl	command:

				curl	-iX	DELETE	localhost:8000/toys/4

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	DELETE	http://localhost:8000/toys/4.	The	request	has	a	number	after
/toys/,	and	therefore,	it	will	match	the	'^toys/(?P<pk>[0-9]+)$'	regular
expression	and	run	the	views.toy_detail	function,	that	is,	the	toy_detail
function	declared	within	the	toys/views.py	file.	The	function	receives	request
and	pk	as	parameters	because	the	URL	pattern	passes	the	number	specified
after	/toys/	in	the	pk	parameter.	As	the	HTTP	verb	for	the	request	is	DELETE,
the	request.method	property	is	equal	to	'DELETE',	and	therefore,	the	function
will	execute	the	code	that	parses	the	JSON	data	received	in	the	request.
Then,	the	function	creates	a	Toy	instance	from	this	data	and	deletes	the
existing	toy	in	the	database.	If	the	toy	was	successfully	deleted	in	the
database,	the	function	returns	an	HTTP	204	No	Content	status	code.	The
following	lines	show	an	example	response	to	the	HTTP	request	after
successfully	deleting	an	existing	toy:

				HTTP/1.0	204	No	Content

				Content-Length:	0

				Content-Type:	text/html;	charset=utf-8

				Date:	Tue,	10	Oct	2017	17:45:40	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				X-Frame-Options:	SAMEORIGIN	

Making	HTTP	GET	requests
with	Postman
Now,	we	will	use	one	of	the	GUI	tools	we	installed	in	Chapter	1,	Installing
the	Required	Software	and	Tools,	specifically	Postman.	We	will	use	this
GUI	tool	to	compose	and	send	HTTP	requests	to	the	web	service.

The	first	time	you	execute	Postman,	you	will	see	a	modal	that	provides
shortcuts	to	the	most	common	operations.	Make	sure	you	close	this	modal
so	that	we	can	focus	on	the	main	UI	for	Postman.

We	will	use	the	Builder	tab	in	Postman	to	easily	compose	and	send	diverse
HTTP	requests	to	localhost:8000	and	test	the	RESTful	Web	Service	with	this
GUI	tool.	Postman	doesn't	support	curl-like	shorthand	for	localhost,	and
therefore,	we	cannot	use	the	same	shorthand	we	have	been	using	when
composing	requests	with	HTTPie.

Select	GET	in	the	drop-down	menu	on	the	left-hand	side	of	the	Enter
request	URL	textbox,	and	enter	localhost:8000/toys/	in	this	textbox	on	the
right-hand	side	of	the	drop-down	menu.	Then,	click	Send	and	Postman
will	display	the	following	information:

Status:	200	OK.

Time:	The	time	it	took	for	the	request	to	be	processed.

Size:	The	approximate	response	size	(sum	of	body	size	plus
headers	size).

Body:	The	response	body	with	all	the	toys	formatted	as	JSON
with	syntax	highlighting.	The	default	view	for	the	body	is	Pretty

and	it	activates	syntax	highlighting.

The	following	screenshot	shows	the	JSON	response	body	in	Postman	for
the	HTTP	GET	request	to	localhost:8000/toys/.

Click	on	the	Headers	tab	on	the	right-hand	side	of	the	Body	and	Cookies
tab	to	read	the	response	headers.	The	following	screenshot	shows	the
layout	for	the	response	headers	that	Postman	displays	for	the	previous
response.	Notice	that	Postman	displays	the	Status	on	the	right-hand	side	of
the	response	and	doesn't	include	it	as	the	first	line	of	the	key-value	pairs
that	compose	the	headers,	as	when	we	worked	with	both	the	curl	and	http
command-line	utilities.

Making	HTTP	POST	requests
with	Postman
Now,	we	will	use	the	Builder	tab	in	Postman	to	compose	and	send	an
HTTP	POST	request	to	create	a	new	toy.	Perform	the	following	steps:

1.	 Click	on	the	plus	(+)	button	on	the	right-hand	side	of	the	tab	that
displayed	the	previous	request.	This	way,	you	will	create	a	new
tab.

2.	 Select	Request	in	the	New	drop-down	menu	located	in	the	upper-
left	corner.

3.	 Select	POST	in	the	drop-down	menu	on	the	left-hand	side	of	the
Enter	request	URL	textbox.

4.	 Enter	localhost:8000/toys/	in	that	textbox	on	the	right-hand	side	of
the	drop-down	menu.

5.	 Click	Body	on	the	right-hand	side	of	Authorization	and	Headers,
within	the	panel	that	composes	the	request.

6.	 Activate	the	raw	radio	button	and	select	JSON	(application/json)
in	the	drop-down	menu	on	the	right-hand	side	of	the	binary	radio
button.	Postman	will	automatically	add	a	Content-type	=
application/json	header,	and	therefore,	you	will	notice	the	Headers
tab	will	be	renamed	to	Headers	(1),	indicating	to	us	that	there	is
one	key-value	pair	specified	for	the	request	headers.

7.	 Enter	the	following	lines	in	the	textbox	below	the	radio	buttons,
within	the	Body	tab:

{	

				"name":	"Wonderboy	puzzle",		

				"description":"The	Dragon's	Trap	puzzle",	

				"toy_category":"Puzzles	&	Games",	

				"was_included_in_home":	"false",	

				"release_date":	"2017-10-03T01:01:00.776594Z"	

}	

The	following	screenshot	shows	the	request	body	in	Postman:

We	followed	the	necessary	steps	to	create	an	HTTP	POST	request	with	a
JSON	body	that	specifies	the	necessary	key-value	pairs	to	create	a	new
toy.	Click	Send	and	Postman	will	display	the	following	information:

Status:	201	Created

Time:	The	time	it	took	for	the	request	to	be	processed

Size:	The	approximate	response	size	(sum	of	body	size	plus
headers	size)

Body:	The	response	body	with	the	recently	added	toy	formatted	as

JSON	with	syntax	highlighting

The	following	screenshot	shows	the	JSON	response	body	in	Postman	for
the	HTTP	POST	request:

If	we	want	to	compose	and	send	an	HTTP	PUT	request	with
Postman,	it	is	necessary	to	follow	the	previously	explained
steps	to	provide	JSON	data	within	the	request	body.

One	of	the	nice	features	included	in	Postman	is	that	we	can	easily	review
and	run	the	HTTP	requests	we	have	made	again	by	browsing	the	saved
History	shown	on	the	left-hand	side	of	the	Postman	window.	The	History
panel	displays	a	list	with	the	HTTP	verb	followed	by	the	URL	for	each
HTTP	request	we	have	composed	and	sent.	We	just	need	to	click	on	the
desired	HTTP	request	and	click	Send	to	run	it	again.	The	following
screenshot	shows	the	many	HTTP	requests	in	the	History	panel	and	the
first	HTTP	GET	request	that	was	executed	selected	so	it	can	be	easily
resent:

Test	your	knowledge
Let's	see	whether	you	can	answer	the	following	questions	correctly:

1.	 The	urlpatterns	list	declared	in	the	urls.py	file	makes	it	possible	to:

1.	 Route	URLs	to	Django	models
2.	 Route	URLs	to	Django	views
3.	 Route	URLs	to	Python	primitives

2.	 When	the	Django	server	receives	an	HTTP	request,	Django
creates	an	instance	of	which	of	the	following	classes?

1.	 django.restframework.HttpRequest
2.	 django.http.HttpRequest
3.	 django.http.Request

3.	 A	view	function	has	to	return	an	instance	of	which	of	the
following	classes?

1.	 django.http.HttpResponse
2.	 django.http.Response
3.	 django.restfremework.HttpResponse

4.	 Whenever	you	have	to	return	a	specific	status	different	from	the
default	200	OK	status,	it	is	a	good	practice	to	use	the	module

variables	defined	in	which	of	the	following	modules?

1.	 rest_framework.HttpStatus
2.	 django.status
3.	 rest_framework.status

5.	 If	you	want	to	retrieve	a	Toy	instance	whose	primary	key	value	is
equal	to	10	and	save	it	in	the	toy	variable,	which	line	of	code
would	you	write?

1.	 toy	=	Toy.get_by(pk=10)
2.	 toy	=	Toy.objects.all(pk=10)
3.	 toy	=	Toy.objects.get(pk=pk)

	

The	rights	answers	are	included	in	the	Appendix,	Solutions.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=44&action=edit#post_454

Summary
In	this	chapter,	we	executed	our	first	version	of	a	simple	Django	RESTful
Web	Service	that	interacts	with	an	SQLite	database.	We	wrote	API	views
to	process	diverse	HTTP	requests	on	a	collection	of	toys	and	on	a	specific
toy.	We	worked	with	the	following	HTTP	verbs:	GET,	POST,	and	PUT.
We	configured	the	URL	patterns	list	to	route	URLs	to	views.

Then,	we	started	the	Django	development	server	and	we	used	command-
line	tools	(curl	and	HTTPie)	to	compose	and	send	diverse	HTTP	requests
to	our	RESTful	Web	Service.	We	learned	how	HTTP	requests	were
processed	in	Django	and	our	code.	Finally,	we	worked	with	Postman,	a
GUI	tool,	to	compose	and	send	other	HTTP	requests	to	our	RESTful	Web
Service.

Now	that	we	understand	the	basics	of	a	RESTful	Web	Service	with
Django	REST	framework	and	a	simple	SQLite	database,	we	will	work
with	a	seriously	powerful	PostgreSQL	database,	use	class-based	views
instead	of	function	views,	and	we	will	take	advantage	of	advanced	features
included	in	Django	REST	framework	to	work	with	different	content	types,
without	writing	a	huge	amount	of	code.	We	will	cover	these	topics	in	the
next	chapter.

Using	Generalized	Behavior
from	the	APIView	Class
In	this	chapter,	we	will	improve	our	simple	RESTful	Web	Service.	We	will
make	it	possible	for	it	to	work	with	diverse	content	types	without	writing	a
huge	amount	of	code.	We	will	take	advantage	of	advanced	features	and
generalized	behaviors	included	in	the	Django	REST	framework	to	enable
multiple	parsers	and	renderers.	We	will	gain	an	understanding	of:

Taking	advantage	of	model	serializers

Understanding	accepted	and	returned	content	types

Making	unsupported	HTTP	OPTIONS	requests	with	command-
line	tools

Understanding	decorators	that	work	as	wrappers

Using	decorators	to	enable	different	parsers	and	renderers

Taking	advantage	of	content	negotiation	classes

Making	supported	HTTP	OPTIONS	requests	with	command-line
tools

Working	with	different	content	types

Sending	HTTP	requests	with	unsupported	HTTP	verbs

Taking	advantage	of	model
serializers
In	Chapter	1,	Installing	the	Required	Software	and	Tools,	we	created	the	toy
model	(the	Toy	class)	and	its	serializer	(the	ToySerializer	class).	When	we
wrote	the	code	for	the	ToySerializer	class,	we	had	to	declare	many	attributes
with	the	same	names	that	we	used	in	the	Toy	class.	The	ToySerializer	class	is
a	subclass	of	the	rest_framework.serializers.Serializer	superclass;	it	declares
attributes	that	we	manually	mapped	to	the	appropriate	types,	and	overrides
the	create	and	update	methods.	However,	we	repeated	a	lot	of	code	and
information	that	was	already	included	in	the	toy	model,	such	as	the	types
and	the	max_length	values	that	specify	the	maximum	length	for	each	string
field.

Now,	we	will	take	advantage	of	model	serializers	to	simplify	code	and	to
avoid	repeating	information	that	is	already	included	in	the	model.	We	will
create	a	new	version	of	the	existing	ToySerializer	class	that	will	inherit	from
the	rest_framework.serializers.ModelSerializer	superclass	instead	of	inheriting
from	the	rest_framework.serializers.ModelSerializer	superclass.

The	ModelSerializer	class	automatically	populates	a	set	of	default	fields	and
default	validators	by	retrieving	metadata	from	the	related	model	class	that
we	must	specify.	In	addition,	the	ModelSerializer	class	provides	default
implementations	for	the	create	and	update	methods.	In	this	case,	we	will
take	advantage	of	these	default	implementations	because	they	will	be
suitable	to	provide	our	necessary	create	and	update	methods.

Go	to	the	restful01/toys	folder	and	open	the	serializers.py	file.	The	code	file
for	the	sample	is	included	in	the	hillar_django_restful_04_01	folder,	in	the
restful01/toys/serializers.py	file.	Replace	the	code	in	this	file	with	the
following	code	that	declares	the	new	version	of	the	ToySerializer	class:

from	rest_framework	import	serializers	

from	toys.models	import	Toy	

	

	

class	ToySerializer(serializers.ModelSerializer):	

				class	Meta:	

								model	=	Toy	

								fields	=	('id',		

																		'name',		

																		'description',	

																		'release_date',	

																		'toy_category',		

																		'was_included_in_home')

The	new	version	of	the	ToySerializer	class	declares	a	Meta	inner	class	that
declares	the	following	two	attributes:

model:	This	attribute	specifies	the	model	related	to	the	serializer,
that	is,	the	Toy	class

fields:	This	attribute	specifies	a	tuple	of	string	whose	values
indicate	the	field	names	that	we	want	to	include	in	the	serialization
from	the	related	model	(the	Toy	class)

The	new	version	of	the	ToySerializer	class	doesn't	need	to	override	either
the	create	or	update	methods	because	the	generic	behavior	provided	by	the
ModelSerializer	class	will	be	enough	in	this	case.	The	ModelSerializer
superclass	provides	implementations	for	both	methods.

With	the	changes	we	have	made,	we	removed	a	nice	amount	of	code	from
the	ToySerializer	class.	In	the	new	version,	we	just	had	to	specify	the	related
model	and	the	desired	set	of	fields	in	a	tuple.	Now,	the	types	and	max_length
values	related	to	the	toy	fields	are	only	included	in	the	Toy	class.

If	you	have	previous	experience	with	the	Django	Web
framework,	you	will	realize	that	the	Serializer	and
ModelSerializer	classes	in	the	Django	REST	framework	are
similar	to	the	Form	and	ModelForm	classes	in	Django.

You	can	press	Ctrl	+	C	to	quit	Django's	development	server	and	execute
the	command	that	we	learned	in	Chapter	3,	Creating	API	Views,	to	run	the
server	to	start	it	again.	In	this	case,	we	just	edited	one	file,	and	in	case	you
didn't	stop	the	development	server,	Django	will	detect	the	changes	when
we	save	the	changes	to	the	file	and	it	will	automatically	restart	the	server.

The	following	lines	show	sample	output	that	you	will	see	after	you	save
the	changes	in	the	edited	Python	file.	The	lines	indicate	that	Django	has
restarted	the	development	server	and	successfully	performed	a	system
check	that	identified	no	issues:

				System	check	identified	no	issues	(0	silenced).

				October	13,	2017	-	04:11:13

				Django	version	1.11.5,	using	settings	'restful01.settings'

				Starting	development	server	at	http://0.0.0.0:8000/

				Quit	the	server	with	CONTROL-C.	

You	can	use	the	command-line	and	GUI	tools	we	used	in	Chapter	3,
Creating	API	Views,	to	test	the	new	version	of	our	RESTful	Web	Service
that	takes	advantage	of	model	serializers.	The	behavior	will	be	the	same	as
in	the	previous	version.	However,	we	definitely	have	less	code	to	maintain
and	we	have	removed	duplicated	data.

Understanding	accepted	and
returned	content	types
So	far,	our	RESTful	Web	Service	has	been	working	with	JSON	for	the
response	body.	The	code	we	wrote	in	the	toys/views.py	file	in	Chapter
3,	Creating	API	Views,	declares	a	JSONResponse	class	and	two	function-based
views.	These	functions	return	a	JSONResponse	when	it	is	necessary	to	return
JSON	data	and	a	django.Http.Response.HttpResponse	instance	when	the	response
is	just	an	HTTP	status	code.	No	matter	the	accepted	content	type	specified
in	the	HTTP	request	header,	the	view	functions	always	provide	the	same
content	in	the	response	body:	JSON.

Run	the	following	command	to	retrieve	all	the	toys	with	the	Accept	request
header	key	set	to	text/html.	Remember	that	the	virtual	environment	we
have	created	in	Chapter	3,	Creating	API	Views,	must	be	activated	in	order	to
run	the	next	http	command:

				http	:8000/toys/	Accept:text/html	

The	following	is	the	equivalent	curl	command:

				curl	-H	"Accept:	text/html"	-iX	GET	localhost:8000/toys/

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/toys/.	These	commands	specify	the
text/html	value	for	the	Accept	key	in	the	request	header.	This	way,	the	HTTP
request	indicates	that	it	accepts	a	response	of	text/html.

The	header	response	for	the	request	will	include	the	following	line:

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=61&action=edit#post_56
https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=61&action=edit#post_56

				Content-Type:	application/json	

Now,	run	the	following	command	to	retrieve	all	the	toys	with	different
values	with	the	Accept	request	header	key	set	to	text/html.

Run	the	following	command	to	retrieve	all	the	toys	with	the	Accept	request
header	key	set	to	application/json:

			http	:8000/toys/	Accept:application/json

The	following	is	the	equivalent	curl	command:

		curl	-H	"Accept:	application/json"	-iX	GET	localhost:8000/toys/

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/toys/.	These	commands	specify	the
application/json	value	for	the	Accept	key	in	the	request	header.	This	way,	the
HTTP	request	indicates	that	it	accepts	a	response	of	application/json.

The	header	response	for	the	request	will	include	the	following	line:

				Content-Type:	application/json

The	first	group	of	commands	defined	the	text/html	value	for	the	Accept
request	header	key.	The	second	group	of	commands	defined	the
application/json	value	for	the	Accept	request	header	key.	However,	both
produced	the	same	results	and	the	responses	were	always	in	the	JSON
format.	The	view	functions	don't	take	into	account	the	value	specified	for
the	Accept	request	header	key	in	the	HTTP	requests.	No	matter	the	value
indicated	for	the	Accept	request	header	key,	the	response	is	always	in	the
JSON	format.

We	want	to	provide	support	for	other	formats.	However,	we	don't	want	to
write	a	huge	amount	of	code	to	do	so.	Thus,	we	will	take	advantage	of
additional	features	included	in	the	Django	REST	framework	that	will
make	it	easy	for	us	to	support	additional	formats	for	our	RESTful	Web
Service.

Making	unsupported	HTTP
OPTIONS	requests	with
command-line	tools
Sometimes,	we	don't	know	which	are	the	HTTP	methods	or	verbs	that	a
resource	or	resource	collection	supports	in	a	RESTful	Web	Service.	In
order	to	provide	a	solution	to	this	problem,	we	can	compose	and	send	an
HTTP	request	with	the	OPTIONS	HTTP	verb	and	the	URL	for	the	resource	or
the	resource	collection.

If	the	RESTful	Web	Service	implements	the	OPTIONS	HTTP	verb	for	a
resource	or	resource	collection,	it	will	build	a	response	with	an	Allow	key	in
the	response	header.	The	value	for	this	key	will	include	a	comma-
separated	list	of	HTTP	verbs	or	methods	that	it	supports.	In	addition,	the
response	header	will	include	additional	information	about	other	supported
options,	such	as	the	content	type	it	is	capable	of	parsing	from	the	request
and	the	content	type	it	is	capable	of	rendering	in	the	response.

For	example,	if	we	want	to	know	which	HTTP	verbs	the	toys	collection
supports,	we	can	run	the	following	command:

				http	OPTIONS	:8000/toys/

Notice	that	the	command	will	generate	an	error	in	the	Django
development	server.

The	following	is	the	equivalent	curl	command:

				curl	-iX	OPTIONS	localhost:8000/toys/

The	previous	command	will	compose	and	send	the	following	HTTP
request:	OPTIONS	http://localhost:8000/toys/.	The	request	specifies	/toys/,	and
therefore,	it	will	match	the	'^toys/$'	regular	expression	and	run	the
views.toy_list	function,	that	is,	the	toy_list	function	declared	within	the
toys/views.py	file.	This	function	only	runs	code	when	the	request.method	is
equal	to	either	'GET'	or	'POST'.	In	this	case,	request.method	is	equal	to	'OPTIONS',
and	therefore,	the	function	won't	run	any	code.	The	function	won't	return
the	expected	HttpResponse	instance.

The	lack	of	the	expected	HttpResponse	instance	generates	an	internal	server
error	in	Django's	development	server.	The	console	output	for	the
development	server	will	display	details	about	the	internal	server	error	and
a	traceback	similar	to	the	one	shown	in	the	next	screenshot.	The	last	lines
indicate	that	there	is	a	ValueError	because	the	toys_list	function	didn't	return
an	HttpResponse	instance	and	returned	None	instead:

The	following	lines	show	the	header	for	the	output	displayed	as	a	result	of
the	HTTP	request.	The	response	also	includes	a	detailed	HTML	document
with	a	huge	amount	of	information	about	the	error	because	the	debug
mode	is	activated	for	Django.	We	receive	an	HTTP	500	Internal	Server	Error
status	code.	Obviously,	we	don't	want	all	this	information	to	be	provided
in	a	production-ready	web	service,	in	which	we	will	deactivate	the	debug
mode:

				HTTP/1.0	500	Internal	Server	Error

				Content-Length:	52222

				Content-Type:	text/html

				Date:	Tue,	10	Oct	2017	17:46:34	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Cookie

				X-Frame-Options:	SAMEORIGIN

We	don't	want	our	web	service	to	provide	a	response	with	an	HTTP	500
Internal	Server	Error	status	code	when	we	receive	a	request	with	the	OPTIONS
verb	to	either	a	valid	resource	or	resource	collection.	Obviously,	we	want
to	provide	a	more	consistent	web	service	and	we	want	to	provide	an
accurate	response	when	we	receive	a	request	with	the	OPTIONS	verbs,	for
either	a	toy	resource	or	the	toys	collection.

If	we	compose	and	send	an	HTTP	request	with	the	OPTIONS	verb	for	an
existing	toy	resource,	we	will	see	the	same	error	in	the	console	output	for
the	development	server	and	a	similar	response	with	the	HTTP	500	Internal
Server	Error	status	code.	The	views.toy_detail	function	only	runs	code	when
the	request.method	is	equal	to	'GET',	'PUT',	or	'DELETE'.	Thus,	as	happened	with
the	previous	case,	the	toys_detail	function	won't	return	an	HttpResponse
instance	and	it	will	return	None	instead.

The	following	commands	will	produce	the	explained	error	when	we	try	to
see	the	options	offered	for	the	toy	resource	whose	id	or	primary	key	is
equal	to	2.	Make	sure	you	replace	2	with	a	primary	key	value	of	an	existing
toy	in	your	configuration:

				http	OPTIONS	:8000/toys/2

The	following	is	the	equivalent	curl	command:

				curl	-iX	OPTIONS	localhost:8000/toys/2

The	following	screenshot	shows	the	details	of	the	internal	server	error	and

a	traceback	displayed	in	the	console	output	for	the	development	server
after	we	run	the	previous	HTTP	request:

Understanding	decorators	that
work	as	wrappers
Now,	we	will	make	a	few	changes	to	the	code	in	the	toys/views.py	file	to
provide	support	for	the	OPTIONS	verb	in	our	RESTful	Web	Service.
Specifically,	we	will	take	advantage	of	a	decorator	provided	by	the	Django
REST	framework.

We	will	use	the	@api_view	decorator	that	is	declared	in	the
rest_framework.decorators	module.	We	will	apply	this	decorator	to	our
function-based	views:	toys_list	and	toys_detail.

The	@api_view	decorator	allows	us	to	specify	which	are	the	HTTP	verbs	that
the	function	to	which	it	is	applied	can	process.	If	the	request	that	has	been
routed	to	the	view	function	has	an	HTTP	verb	that	isn't	included	in	the
string	list	specified	as	the	http_method_names	argument	for	the	@api_view
decorator,	the	default	behavior	returns	a	response	with	an	HTTP	405	Method
Not	Allowed	status	code.

This	way,	we	make	sure	that	whenever	the	RESTful	Web	Service	receives
an	HTTP	verb	that	isn't	considered	within	our	function	views,	we	won't
generate	an	unexpected	and	undesired	error	in	Django.	The	decorator
generates	the	appropriate	response	for	the	unsupported	HTTP	verbs	or
methods.	In	addition,	by	reading	the	declaration	of	our	function	views,	we
can	easily	understand	which	HTTP	verbs	are	handled	by	the	function.

It	is	very	important	to	understand	what	happens	under	the	hood	whenever
we	use	the	@api_view	decorator.	This	decorator	is	a	wrapper	that	converts	a
function-based	view	into	a	subclass	of	the	rest_framework.views.APIView	class.
This	class	is	the	base	class	for	all	the	views	in	the	Django	REST
framework.

We	will	work	with	class-based	views	in	the	forthcoming
examples	and	we	will	have	the	same	benefits	we	have
analyzed	for	the	function-based	views	that	use	the	decorator.

In	addition,	the	decorator	uses	the	string	list	we	specify	with	the	supported
HTTP	verbs	to	build	the	response	for	a	request	with	the	OPTIONS	HTTP	verb.
The	automatically	generated	response	includes	the	supported	method,	and
the	parser	and	the	render	capabilities.	In	other	words,	the	response
includes	the	format	that	the	function	is	capable	of	understanding	and	the
format	that	the	function	can	generate	for	the	response.

As	previously	explained,	the	current	version	of	our	RESTful	Web	Service
is	only	capable	of	rendering	JSON	as	its	output.	The	usage	of	the
decorator	makes	sure	that	we	always	receive	an	instance	of	the
rest_framework.request.Request	class	in	the	request	argument	when	Django	calls
our	view	function.	In	addition,	the	decorator	handles	the	ParserError
exceptions	when	our	function	views	access	the	request.data	attribute	and
there	are	parsing	problems.

Using	decorators	to	enable
different	parsers	and	renderers
We	will	make	changes	to	just	one	file.	After	you	save	the	changes,
Django's	development	server	will	automatically	restart.	However,	you	can
decide	to	stop	Django's	development	server	and	start	it	again	after	you
finish	all	the	necessary	changes.

We	will	make	the	necessary	changes	to	use	the	previously	introduced
@api_view	decorator	to	make	it	possible	for	the	RESTful	Web	Service	to
work	with	different	parsers	and	renderers,	by	taking	advantage	of
generalized	behaviors	provided	by	the	APIView	class.

Now,	go	to	the	restful01/toys	folder	and	open	the	views.py	file.	Replace	the
code	in	this	file	with	the	following	lines.	However,	take	into	account	that
many	lines	have	been	removed,	such	as	the	lines	that	declared	the
JSONResponse	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_04_02	folder,	in	the	restful01/toys/views.py	file:

from	django.shortcuts	import	render	

from	rest_framework	import	status	

from	toys.models	import	Toy	

from	toys.serializers	import	ToySerializer

from	rest_framework.decorators	import	api_view	

from	rest_framework.response	import	Response	

	

	

@api_view(['GET',	'POST'])	

def	toy_list(request):	

				if	request.method	==	'GET':	

								toys	=	Toy.objects.all()	

								toys_serializer	=	ToySerializer(toys,	many=True)	

								return	Response(toys_serializer.data)	

	

				elif	request.method	==	'POST':	

								toy_serializer	=	ToySerializer(data=request.data)	

								if	toy_serializer.is_valid():	

												toy_serializer.save()	

												return	Response(toy_serializer.data,	status=status.HTTP_201_CREATED)	

								return	Response(toy_serializer.errors,	status=status.HTTP_400_BAD_REQUEST)	

	

	

@api_view(['GET',	'PUT',	'DELETE'])	

def	toy_detail(request,	pk):	

				try:	

								toy	=	Toy.objects.get(pk=pk)	

				except	Toy.DoesNotExist:	

								return	Response(status=status.HTTP_404_NOT_FOUND)	

	

				if	request.method	==	'GET':	

								toy_serializer	=	ToySerializer(toy)	

								return	Response(toy_serializer.data)	

	

				elif	request.method	==	'PUT':	

								toy_serializer	=	ToySerializer(toy,	data=request.data)	

								if	toy_serializer.is_valid():	

												toy_serializer.save()	

												return	Response(toy_serializer.data)	

								return	Response(toy_serializer.errors,	status=status.HTTP_400_BAD_REQUEST)	

	

				elif	request.method	==	'DELETE':	

								toy.delete()	

								return	Response(status=status.HTTP_204_NO_CONTENT)	

The	new	code	applies	the	@api_view	decorator	for	the	two	functions:	toy_list
and	toy_detail.	In	addition,	the	new	code	removes	the	JSONResponse	class	and
uses	the	more	generic	rest_framework.response.Response	class.

We	had	to	remove	the	usage	of	the	rest_framework.parsers.JSONParser	class	in
the	functions	to	make	it	possible	to	work	with	different	parsers.	This	way,
we	stopped	working	with	a	parser	that	only	works	with	JSON.	In	the	older
version	of	the	code,	the	toy_list	function	executed	the	following	two	lines
when	the	request.method	attribute	was	equal	to	'POST':

toy_data	=	JSONParser().parse(request)	

toy_serializer	=	ToySerializer(data=toy_data)	

In	the	new	code,	we	removed	the	first	line	that	called	the	JSONParser().parse

method	that	was	only	capable	of	parsing	JSON	content.	The	new	code
replaces	the	two	previous	lines	with	the	following	single	line	that	passes
request.data	as	the	data	argument	to	create	a	new	ToySerializer	instance:

toy_serializer	=	ToySerializer(data=request.data)	

In	the	older	version	of	the	code,	the	toy_detail	function	executed	the
following	two	lines	when	the	request.method	attribute	was	equal	to	'PUT':

toy_data	=	JSONParser().parse(request)	

toy_serializer	=	ToySerializer(toy,	data=toy_data)

We	made	edits	that	are	similar	to	the	changes	done	for	the	code	in	the
toy_list	function.	We	removed	the	first	line	that	called	the	JSONParser().parse
method	that	was	only	capable	of	parsing	JSON	content.	The	new	code
replaces	the	two	previous	lines	with	the	following	single	line	that	passes
toy	as	the	first	argument	and	request.data	as	the	data	argument	to	create	a
new	ToySerializer	instance:

toy_serializer	=	ToySerializer(toy,	data=request.data)	

Taking	advantage	of	content
negotiation	classes
The	APIView	class	defines	default	settings	for	each	view	that	we	can
override	by	specifying	the	desired	values	in	the	settings	module,	that	is,
the	restful01/settings.py	file.	It	is	also	possible	to	override	the	class
attributes	in	subclasses.	In	this	case,	we	won't	make	changes	in	the	settings
module,	but	we	have	to	understand	which	are	the	default	settings	that	the
APIView	class	uses.	We	added	the		@api_view	decorator,	and	it	automatically
makes	the	APIView	use	these	settings.

The	value	for	the	DEFAULT_PARSER_CLASSES	setting	key	specifies	a	tuple	of	string
whose	values	indicate	the	default	classes	that	we	want	to	use	for	parsing
backends.	The	following	lines	show	the	default	values:

(

				'rest_framework.parsers.JSONParser',	

				'rest_framework.parsers.FormParser',	

				'rest_framework.parsers.MultiPartParser'	

)	

When	we	use	the	@api_view	decorator,	the	RESTful	Web	Service	will	be
able	to	handle	any	of	the	following	content	types	through	the	appropriate
parsers.	Thus,	we	will	be	able	to	work	with	the	request.data	attribute	to
retrieve	the	keys	and	values	for	each	of	these	content	types:

application/json:	Parsed	by	the	rest_framework.parsers.JSONParser	class

application/x-www-form-urlencoded:	Parsed	by	the
rest_framework.parsers.FormParser	class

multipart/form-data:	Parsed	by	the	rest_framework.parsers.MultiPartParser

class

When	we	access	the	request.data	attribute	in	the	functions,	the	Django
REST	framework	examines	the	value	for	the	Content-Type	header	in	the
incoming	request	and	determines	the	appropriate	parser	to	parse	the
request	content.	If	we	use	the	previously	explained	default	values,	the
Django	REST	Framework	will	be	able	to	parse	all	of	the	previously	listed
content	types.	Notice	that	the	request	must	specify	the	appropriate	value
for	the	Content-Type	key	in	the	request	header.

The	value	for	the	DEFAULT_RENDERER_CLASSES	setting	key	specifies	a	tuple	of
string	whose	values	indicate	the	default	classes	that	we	want	to	use	for
rendering	backends.	The	following	lines	show	the	default	values:

(

				'rest_framework.renderers.JSONRenderer',	

				'rest_framework.renderers.BrowsableAPIRenderer',	

)	

When	we	use	the	@api_view	decorator,	the	RESTful	Web	Service	will	be
able	to	render	any	of	the	following	content	types	through	the	appropriate
renderers.	We	made	the	necessary	changes	to	work	with	a
rest_framework.response.Response	instance	to	be	able	to	work	with	these
content	types:

application/json:	Rendered	by	the	rest_framework.response.JSONRenderer
class

text/html:	Rendered	by	the	rest_framework.response.BrowsableAPIRenderer
class

So	far,	we	understand	the	default	settings	for	parsers	and	renderers.	There
is	an	additional	part	of	this	puzzle	that	must	select	the	appropriate	renderer
for	the	response	based	on	the	requirements	specified	in	the	incoming

request.

By	default,	the	value	for	the	DEFAULT_CONTENT_NEGOTIATION_CLASS	is	the
rest_framework.negotiation.DefaultContentNegotiation	class.	When	we	use	the
decorator,	the	web	service	will	use	this	content	negotiation	class	to	select
the	appropriate	renderer	for	the	response,	based	on	the	incoming	request.
This	way,	when	a	request	specifies	that	it	will	accept	text/html,	the	content
negotiation	class	selects	the	rest_framework.renderers.BrowsableAPIRenderer	to
render	the	response	and	generate	text/html	instead	of	application/json.

In	the	old	version	of	the	code,	we	used	the	JSONResponse	and	HttpResponse
classes	in	the	functions.	The	new	version	replaced	the	usages	of	both
classes	with	the	rest_framework.response.Response	class.	This	way,	the	code
takes	advantage	of	the	content	negotiation	features.	The	Response	class
renders	the	provided	data	into	the	appropriate	content	type	and	returns	it	to
the	client	that	made	the	request.

Making	supported	HTTP
OPTIONS	requests	with
command-line	tools
Now,	we	will	take	advantage	of	all	the	changes	we've	made	in	the	code
and	we	will	compose	and	send	HTTP	requests	to	make	our	RESTful	Web
Service	work	with	different	content	types.	Make	sure	you've	saved	all	the
changes.	In	case	you	stopped	Django's	development	server,	you	will	have
to	start	it	again	as	we	learned	in	Chapter	3,	Creating	API	Views,	in	the
section	Launching	Django's	development	server,	to	start	running	the
Django	development	server.

We	want	to	know	which	HTTP	verbs	the	toys,	collection	supports,	that	is,
we	want	to	take	advantage	of	the	OPTIONS	verb.	Run	the	following
command.	This	time,	the	command	won't	produce	errors.	Remember	that
the	virtual	environment	we	have	created	in	the	previous	chapters	must	be
activated	in	order	to	run	the	next	http	command:

				http	OPTIONS	:8000/toys/

The	following	is	the	equivalent	curl	command:

				curl	-iX	OPTIONS	localhost:8000/toys/

The	previous	command	will	compose	and	send	the	following	HTTP
request:	OPTIONS	http://localhost:8000/toys/.	The	request	will	end	up	running
the	views.toy_list	function,	that	is,	the	toy_list	function	declared	within	the
toys/views.py	file.	We	added	the	@api_view	decorator	to	this	function,	and
therefore,	the	function	is	capable	of	determining	the	supported	HTTP

verbs,	the	enabled	parsing	and	rendering	options.	The	following	lines
show	the	output:

				HTTP/1.0	200	OK

				Allow:	POST,	OPTIONS,	GET

				Content-Length:	167

				Content-Type:	application/json

				Date:	Mon,	16	Oct	2017	04:28:32	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"description":	"",	

								"name":	"Toy	List",	

								"parses":	[

												"application/json",	

												"application/x-www-form-urlencoded",	

												"multipart/form-data"

],	

								"renders":	[

												"application/json",	

												"text/html"

]

				}

	

The	response	header	includes	an	Allow	key	with	a	comma-separated	list	of
HTTP	verbs	supported	by	the	resource	collection	as	its	value:	POST,	OPTIONS,
GET.	Our	request	didn't	specify	the	allowed	content	type,	and	therefore,	the
function	rendered	the	response	with	the	default	application/json	content
type.

The	response	body	specifies	the	Content-type	that	the	resource	collection	is
capable	of	parsing	in	the	values	for	the	"parses"	key	and	the	Content-type	that
the	resource	collection	is	capable	of	rendering	in	the	values	for	the
"renders"	key.

Run	the	following	command	to	compose	and	send	an	HTTP	request	with
the	OPTIONS	verb	for	a	toy	resource.	Don't	forget	to	replace	2	with	a	primary
key	value	of	an	existing	toy	in	your	configuration:

				http	OPTIONS	:8000/toys/2

The	following	is	the	equivalent	curl	command:

				curl	-iX	OPTIONS	localhost:8000/toys/2

The	previous	command	will	compose	and	send	the	following	HTTP
request:	OPTIONS	http://localhost:8000/toys/2.	The	request	will	end	up	running
the	views.toy_detail	function,	that	is,	the	toy_detail	function	declared	within
the	toys/views.py	file.	We	also	added	the	@api_view	decorator	to	this	function,
and	therefore,	it	is	capable	of	determining	the	supported	HTTP	verbs,	the
enabled	parsing	and	rendering	options.	The	following	lines	show	a	sample
output:

				HTTP/1.0	200	OK

				Allow:	DELETE,	PUT,	OPTIONS,	GET

				Content-Length:	169

				Content-Type:	application/json

				Date:	Mon,	16	Oct	2017	04:30:04	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"description":	"",	

								"name":	"Toy	Detail",	

								"parses":	[

												"application/json",	

												"application/x-www-form-urlencoded",	

												"multipart/form-data"

],	

								"renders":	[

												"application/json",	

												"text/html"

]

				}

		

The	response	header	includes	an	Allow	key	with	a	comma-separated	list	of

HTTP	verbs	supported	by	the	resource	as	its	value:	DELETE,	PUT,	OPTIONS,	GET.
The	response	body	specifies	the	Content-type	that	the	resource	is	capable	of
parsing	in	the	values	for	the	"parses"	key	and	the	Content-type	that	the
resource	collection	is	capable	of	rendering	in	the	values	for	the	"renders"
key.	The	resource	and	the	resource	collection	can	parse	and	render	the
same	content	types	because	everything	is	handled	by	the	decorator	and	the
APIView	class.

Working	with	different	content
types
In	Chapter	3,	Creating	API	Views,	when	we	composed	and	sent	POST	and	PUT
commands,	we	had	to	use	the	use	the	-H	"Content-Type:	application/json"
option	to	indicate	curl	to	send	the	data	specified	after	the	-d	option	as
application/json.	We	had	to	use	this	option	because	the	default	content-type
in	curl	is	application/x-www-form-urlencoded.

Now,	our	RESTful	Web	Service	goes	beyond	JSON	and	it	can	also	parse
application/x-www-form-urlencoded	and	multipart/form-data	data	specified	in	the
POST	and	PUT	requests.	Hence,	we	can	compose	and	send	a	POST	command
that	sends	the	data	as	application/x-www-form-urlencoded.

We	will	compose	and	send	an	HTTP	request	to	create	a	new	toy.	In	this
case,	we	will	use	the	-f	option	for	HTTP.

This	option	serializes	data	items	from	the	command	line	as	form	fields	and
sets	the	Content-Type	header	key	to	the	application/x-www-form-urlencoded	value.
Run	the	next	command:

http	-f	POST	:8000/toys/	name="Ken	in	Rome"	description="Ken	loves	Rome"	toy_category="Dolls"	was_included_in_home=false	release_date="2017-10-09T12:11:37.090335Z"		

The	following	is	the	equivalent	curl	command	that	creates	a	new	toy.
Notice	that	we	don't	use	the	-H	option	and	curl	will	send	the	data	in	the
default	application/x-www-form-urlencoded:

curl	-iX	POST	-d	'{"name":"Ken	in	Rome",	"description":	"Ken	loves	Rome",	"toy_category":"Dolls",	"was_included_in_home":	"false",	"release_date":	"2017-10-09T12:11:37.090335Z"}'	localhost:8000/toys/

The	previous	commands	will	compose	and	send	the	following	HTTP

request:	POST	http://localhost:8000/toys/	with	the	Content-Type	header	key	set	to
the	application/x-www-form-urlencoded	value	and	the	following	data:

name=Ken+in+Rome&description=Ken+loves+Rome&toy_category=Dolls&was_included_in_home=false&release_date=2017-10-09T12%3A11%3A37.090335Z	

The	request	specifies	/toys/,	and	therefore,	it	will	match	the	'^toys/$'
regular	expression	and	Django	will	run	the	views.toy_list	function,	that	is,
the	updated	toy_detail	function	declared	within	the	toys/views.py	file.	The
HTTP	verb	for	the	request	is	POST,	and	therefore,	the	request.method	property
is	equal	to	'POST'.	The	function	will	execute	the	code	that	creates	a
ToySerializer	instance	and	passes	request.data	as	the	data	argument	to	create
the	new	instance.

The	rest_framework.parsers.FormParser	class	will	parse	the	data	received	in	the
request,	the	code	creates	a	new	Toy	and,	if	the	data	is	valid,	it	saves	the	new
Toy.	If	the	new	Toy	instance	was	successfully	persisted	in	the	database,	the
function	returns	an	HTTP	201	Created	status	code	and	the	recently	persisted
Toy	serialized	to	JSON	in	the	response	body.	The	following	lines	show	an
example	response	for	the	HTTP	request,	with	the	new	Toy	object	in	the
JSON	response:

HTTP/1.0	201	Created

Allow:	GET,	OPTIONS,	POST

Content-Length:	157

Content-Type:	application/json

Date:	Mon,	16	Oct	2017	04:40:02	GMT

Server:	WSGIServer/0.2	CPython/3.6.2

Vary:	Accept,	Cookie

X-Frame-Options:	SAMEORIGIN

{

				"description":	"Ken	loves	Rome",

				"id":	6,

				"name":	"Ken	in	Rome",

				"release_date":	"2017-10-09T12:11:37.090335Z",

				"toy_category":	"Dolls",

				"was_included_in_home":	false

}

Sending	HTTP	requests	with
unsupported	HTTP	verbs
Now,	we	will	compose	and	send	HTTP	requests	with	an	HTTP	verb	that
isn't	supported	for	the	toys	resource	collection.	Run	the	following
command:

http	PATCH	:8000/toys/

The	following	is	the	equivalent	curl	command:

curl	-iX	PATCH	localhost:8000/toys/

The	previous	command	will	compose	and	send	the	following	HTTP
request:	PATCH	http://localhost:8000/toys/.	The	request	will	try	to	run	the
views.toy_list	function,	that	is,	the	toy_list	function	declared	within	the
toys/views.py	file.	The	@api_view	decorator	we	added	to	this	function	doesn't
include	'PATCH'	in	the	string	list	with	the	allowed	HTTP	verbs.	The	default
behavior	when	this	happens	in	the	APIView	class	is	to	return	an	HTTP	405
Method	Not	Allowed	status	code.	The	following	lines	show	a	sample	output
with	the	response	from	the	previous	request.	A	JSON	content	provides	a
detail	key	with	a	string	value	that	indicates	the	PATCH	method	is	not	allowed
in	the	response	body:

				HTTP/1.0	405	Method	Not	Allowed

				Allow:	GET,	OPTIONS,	POST

				Content-Length:	42

				Content-Type:	application/json

				Date:	Mon,	16	Oct	2017	04:41:35	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"detail":	"Method	\"PATCH\"	not	allowed."

				}

Test	your	knowledge
Let's	see	whether	you	can	answer	the	following	questions	correctly:

1.	 The	@api_view	decorator	declared	in	the	rest_framework.decorators
module	allows	you	to:

1.	 Specify	which	is	the	model	related	to	the	function	based
view

2.	 Specify	which	are	the	HTTP	verbs	that	the	function	based
view	to	which	it	is	applied	can	process

3.	 Specify	which	is	the	serializer	related	to	the	function
based	view

2.	 The	@api_view	decorator	is	a	wrapper	that	converts	a	function	based
view	into	a	subclass	of	which	of	the	following	classes:

1.	 django.Http.Response.HttpResponse
2.	 rest_framework.views.APIView
3.	 rest_framework.serializers.Serializer

3.	 Which	of	the	following	settings	key	in	the	REST_FRAMEWORK
dictionary	allows	you	to	override	the	global	setting	with	a	tuple	of
string	whose	values	indicate	the	default	classes	that	you	want	to
use	for	parsing	backends:

1.	 'DEFAULT_PARSER_CLASSES'
2.	 'GLOBAL_PARSER_CLASSES'
3.	 'REST_FRAMEWORK_PARSING_CLASSES'

4.	 Which	of	the	following	classes	is	able	to	parse	application/json
content	type	when	we	work	with	the	@api_view	decorator	and	its
default	settings:

1.	 django.parsers.JSONParser
2.	 rest_framework.classes.JSONParser
3.	 rest_framework.parsers.JSONParser

5.	 Which	of	the	following	classes	is	able	to	parse	application/x-
www-form-urlencoded	content	type	when	we	work	with	the
@api_view	decorator	and	its	default	settings:

1.	 django.parsers.XWWWUrlEncodedParser
2.	 rest_framework.classes.XWWWUrlEncodedParser
3.	 rest_framework.parsers.FormParser

	

The	rights	answers	are	included	in	the	Appendix,	Solutions.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=44&action=edit#post_454

Summary
In	this	chapter,	we	improved	our	simple	Django	RESTful	Web	Service.
We	took	advantage	of	many	features	included	in	the	Django	REST
framework	to	remove	duplicate	code	and	to	add	many	features	for	the	web
service.	We	just	needed	to	edit	a	few	lines	of	code	to	enable	an	important
amount	of	features.

First,	we	took	advantage	of	model	serializers.	Then,	we	understood	the
different	accepted	and	returned	content	types	and	the	importance	of
providing	accurate	responses	to	the	HTTP	OPTIONS	requests.

We	incorporated	the	@api_view	decorator	and	made	the	necessary	changes	to
the	existing	code	to	enable	diverse	parsers	and	renderers.	We	understood
how	things	worked	under	the	hood	in	the	Django	REST	framework.	We
worked	with	different	content	types	and	noticed	the	improvement	of	the
RESTful	Web	Service	compared	with	its	previous	versions.

Now	that	we	understand	how	easy	it	is	to	work	with	different	content
types	with	the	Django	REST	framework,	we	will	work	with	one	of	the
most	interesting	and	powerful	features:	the	browsable	API.	We	will	cover
this	topic	in	Chapter	5,	Understanding	and	Customizing	the	Browsable	API
Feature.

Understanding	and
Customizing	the	Browsable
API	Feature
In	this	chapter,	we	will	work	with	one	of	the	most	interesting	and	powerful
features	included	in	the	Django	REST	framework:	the	browsable	API.
This	feature	makes	it	easy	for	us	to	interact	with	our	RESTful	Web
Services	through	any	web	browser.	We	will	gain	an	understanding	of:

Understanding	the	possibility	of	rendering	text/HTML	content

Using	a	web	browser	to	work	with	our	web	service

Making	HTTP	GET	requests	with	the	browsable	API

Making	HTTP	POST	requests	with	the	browsable	API

Making	HTTP	PUT	requests	with	the	browsable	API

Making	HTTP	DELETE	requests	with	the	browsable	API

Making	HTTP	OPTIONS	requests	with	the	browsable	API

Understanding	the	possibility
of	rendering	text/HTML	content
In	Chapter	4,	Using	Generalized	Behavior	from	the	APIView	Class,	we
made	many	changes	to	make	it	possible	for	the	simple	RESTful	Web
Service	to	work	with	a	content	negotiation	class	and	provide	many	content
renderers.	We	used	the	default	configuration	for	the	Django	REST
framework	that	includes	a	renderer	that	produces	text/html	content.

The	rest_framework.response.BrowsableAPIRenderer	class	is	responsible	for
rendering	the	text/html	content.	This	class	makes	it	possible	for	us	to
browse	the	API.	The	Django	REST	framework	includes	a	feature	that
generates	an	interactive	and	human-friendly	HTML	output	for	the
different	resources	when	the	request	specifies	text/html	as	the	value	for	the
Content-Type	key	in	the	request	header.	This	feature	is	known	as	the
browsable	API	because	it	enables	us	to	use	a	web	browser	to	navigate
through	the	API	and	easily	make	different	types	of	HTTP	requests.

The	browsable	API	feature	is	extremely	useful	when	we	have
to	test	the	RESTful	Web	Services	that	perform	CRUD
operations	on	a	database,	such	as	the	one	we	have	been
developing	in	Chapter	4,	Using	Generalized	Behavior	from	the
APIView	Class.

Now,	we	will	compose	and	send	HTTP	requests	that	will	make	the
RESTful	Web	Service	user	the	BrowsableAPIRenderer	class	to	provide	text/html
content	in	the	response.	This	way,	we	will	understand	how	the	browsable
API	works	before	we	jump	into	the	web	browser	and	we	start	using	and
customizing	this	feature.	In	case	you	stopped	Django's	development
server,	you	will	have	to	start	it	again	as	we	learned	in	Chapter	3,	Creating
API	Views,	in	the	section	Launching	Django's	development	server,	to	start
running	the	Django	development	server.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=79&action=edit#post_61

Run	the	following	command	to	retrieve	all	the	toys	with	the	Accept	request
header	key	set	to	text/html.	Remember	that	the	virtual	environment	we
created	in	the	previous	chapters	must	be	activated	in	order	to	run	the	next
http	command:

	http	-v	:8000/toys/	"Accept:text/html"

The	following	is	the	equivalent	curl	command:

	curl	-vH	"Accept:	text/html"	-iX	GET	localhost:8000/toys/

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/toys/.	These	commands	specify	the
text/html	value	for	the	Accept	key	in	the	request	header.	This	way,	the	HTTP
request	indicates	that	it	accepts	a	response	of	text/html.

In	both	cases,	we	specified	the	-v	option	that	provides	a	verbose	output	and
prints	the	details	of	the	request	that	has	been	made.	For	example,	the
following	are	the	first	lines	of	the	output	generated	by	the	http	command:

				GET	/toys/	HTTP/1.1

				Accept:	text/html

				Accept-Encoding:	gzip,	deflate

				Connection:	keep-alive

				Host:	localhost:8000

				User-Agent:	HTTPie/0.9.3

The	second	line	prints	the	value	for	the	Accept	key	included	in	the	request
header,	text/html.	The	header	response	for	the	request	will	include	the
following	line:

				Content-Type:	text/html;	charset=utf-8

The	previous	commands	will	compose	and	send	the	following	HTTP

request:	GET	http://localhost:8000/toys/.	The	request	will	end	up	running	the
views.toy_list	function,	that	is,	the	toy_list	function	declared	within	the
toys/views.py	file.	The	content	negotiation	class	selected	the
BrowsableAPIRenderer	class	to	provide	text/html	content	in	the	response.	The
following	lines	show	the	first	lines	of	the	output	for	the	http	command:

We	can	easily	detect	from	the	previous	output	that	the	Django	REST
framework	provides	an	HTML	web	page	as	a	response	to	our	previous
requests.	If	we	enter	any	URL	for	a	resource	collection	or	resource	in	any
web	browser,	the	browser	will	perform	an	HTTP	GET	request	that	requires
an	HTML	response,	that	is,	the	Accept	request	header	key	will	be	set	to
text/html.	The	web	service	built	with	the	Django	REST	framework	will
provide	an	HTML	response	and	the	browser	will	render	the	web	page.

By	default,	the	BrowsableAPIRenderer	class	uses	the	Bootstrap	popular
frontend	component	library.	You	can	read	more	about	Bootstrap	here:	http:
//getbootstrap.com.	The	web	page	might	include	the	following	elements:

Diverse	buttons	to	perform	other	requests	to	the	resource	or
resource	collection

A	section	that	displays	the	resource	or	resource	collection	content
in	JSON

http://getbootstrap.com

Forms	with	fields	that	allow	us	to	submit	data	for	POST,	PUT,	and
PATCH	requests

The	Django	REST	framework	uses	templates	and	themes	to	render	the
pages	for	the	browsable	API.	It	is	possible	to	customize	many	settings	to
tailor	the	output	to	our	specific	requirements.

Using	a	web	browser	to	work
with	our	web	service
Let's	start	browsing	our	RESTful	Web	Service.	Open	a	web	browser	and
enter	http://localhost:8000/toys/.	The	browser	will	compose	and	send	a	GET
request	to	http://localhost:8000/toys/	with	text/html	as	the	desired	content
type	and	the	returned	HTML	web	page	will	be	rendered.

Under	the	hood,	the	web	service	will	compose	and	send	an	HTTP	GET
request	to	http://localhost:8000/toys/	with	application/json	as	the	content	type
and	the	headers,	and	the	JSON	returned	by	this	request	will	be	rendered	as
part	of	the	content	of	the	web	page.	The	following	screenshot	shows	the
rendered	web	page	with	the	resource	collection	description,	Toy	List:

When	we	work	with	the	browsable	API,	Django	uses	the	information

about	the	allowed	methods	for	a	resource	or	resource	collection	to	render
the	appropriate	buttons	to	allow	us	to	execute	the	related	requests.	In	the
previous	screenshot,	you	will	notice	that	there	are	two	buttons	on	the
right-hand	side	of	the	resource	description	(Toy	List):	OPTIONS	and
GET.	We	will	use	the	different	buttons	to	make	additional	requests	to	the
RESTful	Web	Service.

If	you	decide	to	browse	the	web	service	in	a	web	browser	that	is	being
executed	on	another	computer	or	device	connected	to	the	LAN,	you	will
have	to	use	the	assigned	IP	address	to	the	computer	that	is	running
Django's	development	server	instead	of	localhost.	For	example,	if	Django's
development	server	is	running	on	a	computer	whose	assigned	IPv4	IP
address	is	192.168.2.125,	instead	of	http://localhost:8000/toys/,	you	should	use
http://192.168.2.125:8000/toys/.	You	can	also	use	the	hostname	instead	of	the
IPv4	address	or	an	IPv6	address.

One	of	the	nicest	features	of	the	browsable	API	is	that	it	makes	it
extremely	easy	to	test	a	RESTful	Web	Service	from	a	mobile	device.

As	a	disclaimer,	I	must	say	that	once	you	learn	how	to	take	advantage	of
the	browsable	API,	you	will	never	want	to	work	with	a	framework	that
doesn't	provide	a	feature	like	this	one.

Making	HTTP	GET	requests
with	the	browsable	API
We	just	made	an	HTTP	GET	request	to	retrieve	the	toys	resource
collection	with	the	browsable	API.	Now,	we	will	compose	and	send
another	HTTP	GET	request	for	an	existing	toy	resource	with	the	web
browser.

Enter	the	URL	for	an	existing	toy	resource,	such	as
http://localhost:8000/toys/3.	Make	sure	you	replace	3	with	the	id	or	primary
key	of	an	existing	toy	in	the	previously	rendered	Toy	List.	Django	will
compose	and	send	a	GET	request	to	http://localhost:8000/toys/3	and	the
rendered	web	page	will	display	the	results	of	its	execution,	that	is,	the
headers	and	the	JSON	data	for	the	toy	resource.	The	following	screenshot
shows	the	rendered	web	page	after	entering	the	URL	in	a	web	browser
with	the	resource	description,	Toy	Detail:

At	the	right-hand	side	of	the	resource	description,	the	browsable	API

shows	a	GET	drop-down	button.	This	button	allows	us	to	make	a	GET
request	to	/toys/3	again.	If	we	click	or	tap	the	down	arrow,	we	can	select
the	json	option	and	the	browsable	API	will	display	the	raw	JSON	results
of	a	GET	request	to	/toys/3	without	the	headers.	In	fact,	the	browser	will	go
to	http://localhost:8000/toys/3?format=json	and	the	Django	REST	framework
will	display	the	raw	JSON	results	because	the	value	for	the	format	query
parameter	is	set	to	json.	The	following	screenshot	shows	the	results	of
making	that	request:

Enter	the	URL	for	a	non-existing	toy	resource,	such	as
http://localhost:8000/toys/250.	Make	sure	you	replace	250	with	the	id	or
primary	key	of	the	toy	that	doesn't	exist	in	the	previously	rendered	Toy
List.	Django	will	compose	and	send	a	GET	request	to
http://localhost:8000/toys/250	and	the	rendered	web	page	will	display	the
results	of	its	execution,	that	is,	the	header	with	the	HTTP	404	Not	found	status
code.

The	following	screenshot	shows	the	rendered	web	page	after	entering	the
URL	in	a	web	browser:

Making	HTTP	POST	requests
with	the	browsable	API
Now,	we	want	to	use	the	browsable	API	to	compose	and	send	an	HTTP
POST	request	to	our	RESTful	Web	Service	to	create	a	new	toy.	Go	to	the
following	URL	in	your	web	browser,	http://localhost:8000/toys/.	At	the
bottom	of	the	rendered	web	page,	the	browsable	API	displays	the
following	controls	to	allow	us	to	compose	and	send	a	POST	request	to	/toys/:

Media	type:	This	dropdown	allows	us	to	select	the	desired	parser.
The	list	will	be	generated	based	on	the	configured	supported
parsers	in	the	Django	REST	framework	for	our	web	service.

Content:	This	text	area	allows	us	to	enter	the	text	for	the	body	that
will	be	sent	with	the	POST	request.	The	content	must	be
compatible	with	the	selected	value	for	the	media	type	dropdown.

POST:	This	button	will	use	the	selected	media	type	and	the
entered	content	to	compose	and	send	an	HTTP	POST	request	with
the	appropriate	header	key/value	pairs	and	content.

The	following	screenshot	shows	the	previously	explained	controls	at	the
bottom	of	the	rendered	web	page:

We	enabled	all	the	default	parsers	provided	by	the	Django	REST
framework	for	our	RESTful	Web	Service,	and	therefore,	the	Media	type
drop-down	will	provide	us	with	the	following	options:

application/json

application/x-www-form-urlencoded

multipart/form-data

Select	application/json	in	the	Media	type	dropdown	and	enter	the
following	JSON	content	in	the	Content	text	area:

{	

				"name":	"Surfer	girl",	

				"description":	"Surfer	girl	doll",	

				"toy_category":"Dolls",	

				"was_included_in_home":	"false",	

				"release_date":	"2017-10-29T12:11:25.090335Z"	

}	

Click	or	tap	POST.	The	browsable	API	will	compose	and	send	an	HTTP
POST	request	to	/toys/	with	the	previously	specified	data	as	a	JSON	body,
and	we	will	see	the	results	of	the	call	in	the	web	browser.

The	following	screenshot	shows	a	web	browser	displaying	the	HTTP
status	code	201	Created	in	the	response	and	the	previously	explained
dropdown	and	text	area	with	the	POST	button	to	allow	us	to	continue
composing	and	sending	POST	requests	to	/toys/:

In	this	case,	we	entered	the	JSON	key/value	pairs	as	we	did
when	we	composed	and	sent	HTTP	POST	requests	with
command-line	and	GUI	tools.	However,	we	will	learn	to
configure	the	browsable	API	to	provide	us	with	a	form	with
fields	to	make	it	even	easier	to	perform	operations	on	our
RESTful	Web	Service.

Making	HTTP	PUT	requests
with	the	browsable	API
Now,	we	want	to	use	the	browsable	API	to	compose	and	send	an	HTTP
PUT	request	to	our	RESTful	Web	Service	to	replace	an	existing	toy	with	a
new	one.	First,	go	to	the	URL	for	an	existing	toy	resource,	such	as
http://localhost:8000/toys/7.	Make	sure	you	replace	7	with	the	id	or	primary
key	of	an	existing	toy	in	the	previously	rendered	Toy	List.	The	HTML	web
page	that	displays	the	results	of	an	HTTP	GET	request	to	/toys/7	plus
additional	details	and	controls	will	be	rendered.

At	the	bottom	of	the	rendered	web	page,	the	browsable	API	displays	the
controls	to	compose	and	send	a	POST	request	to	/toys/	followed	by	the
controls	to	compose	and	send	a	PUT	request	to	/toys/7.	The	controls	for	the
PUT	request	are	the	same	that	we	already	analyzed	for	the	POST	request.
The	PUT	button	will	use	the	selected	media	type	and	the	entered	content
to	compose	and	send	an	HTTP	PUT	request	with	the	appropriate	header
key/value	pairs	and	content.

The	following	screenshot	shows	the	controls	to	compose	and	send	an
HTTP	PUT	request	at	the	bottom	of	the	rendered	web	page:

In	this	example,	we	took	advantage	of	the	features	included
in	the	Django	REST	framework	to	build	the	OPTIONS
response	that	indicates	which	HTTP	verbs	are	allowed	for
each	resource	and	resource	collection.	Thus,	the	browsable
API	only	offers	us	the	possibility	to	compose	and	send	a
POST	and	PUT	methods.	The	POST	method	is	applied	to	the
resource	collection	while	the	PUT	method	is	applied	to	a
single	resource.	The	browsable	API	doesn't	provide	the
controls	to	compose	and	send	an	HTTP	PATCH	method	on	a
resource	because	the	code	hasn't	specified	that	this	verb	is
accepted	as	a	resource.

Select	application/json	in	the	Media	type	dropdown	and	enter	the
following	JSON	content	in	the	Content	text	area.	Remember	that	the
HTTP	PUT	method	replaces	an	existing	resource	with	a	new	one,	and

therefore,	we	must	specify	the	values	for	all	the	fields	and	not	just	for	the
fields	that	we	want	to	update:

{	

				"name":	"Surfer	girl",	

				"description":	"Surfer	girl	doll	(includes	pink	surfboard)",	

				"toy_category":"Dolls",	

				"was_included_in_home":	"false",	

				"release_date":	"2017-10-29T12:11:25.090335Z"	

}	

Click	or	tap	PUT.	The	browsable	API	will	compose	and	send	an	HTTP	PUT
request	to	/toys/7	with	the	previously	specified	data	as	a	JSON	body	and
we	will	see	the	results	of	the	call	in	the	web	browser.	The	following
screenshot	shows	a	web	browser	displaying	the	HTTP	status	code	200	OK	in
the	response,	and	the	controls	to	allow	us	to	send	a	new	PUT	request,	if
necessary:

Making	HTTP	OPTIONS
requests	with	the	browsable
API
Now,	we	want	to	use	the	browsable	API	to	compose	and	send	an	HTTP
OPTIONS	request	to	our	RESTful	Web	Service	to	check	the	allowed
HTTP	verbs,	the	available	renderers,	and	parsers	for	a	toy	resource.	First,
go	to	the	URL	for	an	existing	toy	resource,	such	as
http://localhost:8000/toys/7.	Make	sure	you	replace	7	with	the	id	or	primary
key	of	an	existing	toy	in	the	previously	rendered	Toy	List.	The	HTML	web
page	that	displays	the	results	of	an	HTTP	GET	request	to	/toys/7	plus
additional	details	and	controls	will	be	rendered.

At	the	right-hand	side	of	the	Toy	Detail	title,	you	will	see	an	OPTIONS
button.	Click	or	tap	this	button.	The	browsable	API	will	compose	and	send
an	HTTP	OPTIONS	request	to	/toys/7	and	we	will	see	the	results	of	the	call	in
the	web	browser.	The	following	screenshot	shows	a	web	browser
displaying	the	HTTP	status	code	200	OK	in	the	response,	the	allowed	HTTP
verbs,	the	content	types	that	the	toy	resource	is	capable	of	rendering	as
values	for	the	renders	key,	and	the	content	types	that	the	toy	resource	is
capable	of	parsing	as	values	for	the	parses	key:

We	can	also	compose	and	send	an	HTTP	OPTIONS	request	to	our
RESTful	Web	Service	to	check	the	allowed	HTTP	verbs,	the	available
renderers,	and	parsers	for	the	toys	resource	collection.	First,	go	to	the	URL
for	the	toys	resource	collection:	http://localhost:8000/toys/.	The	HTML	web
page	that	displays	the	results	of	an	HTTP	GET	request	to	/toys/,	plus
additional	details	and	controls,	will	be	rendered.

At	the	right-hand	side	of	the	Toy	Detail	title,	you	will	see	an	OPTIONS
button.	Click	or	tap	this	button.	The	browsable	API	will	compose	and	send
an	HTTP	OPTIONS	request	to	/toys/	with	the	previously	specified	data	as	a
JSON	body	and	we	will	see	the	results	of	the	call	in	the	web	browser.	The
following	screenshot	shows	a	web	browser	displaying	the	HTTP	status
code	200	OK	in	the	response,	the	allowed	HTTP	verbs,	the	content	types	that
the	toys	resource	collection	is	capable	of	rendering	as	values	for	the	renders
key,	and	the	content	types	that	the	toys	resource	collection	is	capable	of
parsing	as	values	for	the	parses	key:

It	is	always	a	good	idea	to	check	that	all	the	allowed	verbs	returned	by	an
HTTP	OPTIONS	request	to	a	specific	resource	or	resource	collection	are
coded.	The	browsable	API	makes	it	easy	for	us	to	test	whether	the	requests
for	all	the	supported	verbs	are	working	OK.	Then,	we	can	automate
testing,	which	is	a	topic	we	will	learn	in	the	forthcoming	chapters.

Making	HTTP	DELETE	requests
with	the	browsable	API
Now,	we	want	to	use	the	browsable	API	to	compose	and	send	an	HTTP
DELETE	request	to	our	RESTful	Web	Service	to	delete	an	existing	toy
resource.	First,	go	to	the	URL	for	an	existing	toy	resource,	such	as
http://localhost:8000/toys/7.	Make	sure	you	replace	7	with	the	id	or	primary
key	of	an	existing	toy	in	the	previously	rendered	Toy	List.	The	HTML	web
page	that	displays	the	results	of	an	HTTP	GET	request	to	/toys/7,	plus
additional	details	and	controls,	will	be	rendered.

At	the	right-hand	side	of	the	Toy	Detail	title,	you	will	see	a	DELETE
button.	Click	or	tap	this	button.	The	web	page	will	display	a	modal
requesting	confirmation	to	delete	the	toy	resource.	Click	or	tap	the
DELETE	button	in	this	modal.

The	browsable	API	will	compose	and	send	an	HTTP	DELETE	request	to
/toys/7	and	we	will	see	the	results	of	the	call	in	the	web	browser.	The
following	screenshot	shows	a	web	browser	displaying	the	HTTP	status
code	204	No	Content	in	the	response:

Now,	go	to	the	URL	for	the	toys	resource	collection:
http://localhost:8000/toys/.	The	HTML	web	page	that	displays	the	results	of
an	HTTP	GET	request	to	/toys/	plus	additional	details	and	controls	will	be

rendered.	The	recently	deleted	toy	has	been	removed	from	the	database.
Thus,	the	list	will	not	include	the	deleted	toy.​	The	following	screenshot
shows	a	web	browser	displaying	the	HTTP	status	code	200	OK	in	the
response	and	the	list	of	toys	without	the	recently	deleted	toy:

The	browsable	API	allowed	us	to	compose	and	send	many	HTTP	requests
to	our	web	service	by	clicking	or	tapping	buttons	on	a	web	browser.	We
could	check	that	all	the	operations	are	working	as	expected	in	our
RESTful	Web	Service.	However,	we	had	to	enter	JSON	content	and	we
couldn't	click	on	hyperlinks	to	navigate	through	entities.	For	example,	we
couldn't	click	on	a	toy's	id	to	perform	an	HTTP	GET	request	to	retrieve
this	specific	toy.

We	will	definitely	improve	this	situation	and	we	will	take	full	advantage

of	many	additional	features	included	in	the	browsable	API	as	we	create
additional	RESTful	Web	Services.	We	will	do	this	in	the	forthcoming
chapters.	We	have	just	started	working	with	the	browsable	API.

Test	your	knowledge
Let's	see	whether	you	can	answer	the	following	questions	correctly:

1.	 Which	of	the	following	classes	is	responsible	for	rendering	the
text/html	content:

1.	 The	rest_framework.response.HtmlRenderer	class
2.	 The	rest_framework.response.TextHtmlAPIRenderer	class
3.	 The	rest_framework.response.BrowsableAPIRenderer	class

2.	 By	default,	the	browsable	API	uses	the	following	web	component
library:

1.	 Bootstrap
2.	 ReactJS
3.	 AngularJS

3.	 When	we	enter	the	URL	of	an	existing	resource	in	a	web	browser,
the	browsable	API:

1.	 Returns	a	web	page	with	just	the	JSON	response	for	an
HTTP	GET	request	to	the	resource

2.	 Returns	a	web	page	with	a	section	that	displays	the	JSON
response	for	an	HTTP	GET	request	to	the	resource	and
diverse	buttons	to	perform	other	requests	to	the	resource

3.	 Returns	a	web	page	with	a	section	that	displays	the	JSON
response	for	an	HTTP	OPTIONS	request	to	the	resource
and	diverse	buttons	to	perform	other	requests	to	the
resource

4.	 When	we	enter	the	URL	of	a	non-existing	resource	in	a	web
browser,	the	browsable	API:

1.	 Renders	a	web	page	that	displays	an	HTTP	404	not	found
header

2.	 Displays	a	plain	text	message	with	an	HTTP	404	not	found
error

3.	 Renders	a	web	page	with	the	last	toy	resource	that	was
available

5.	 If	we	enter	the	following	URL,	http://localhost:8000/toys/10?
format=json,	and	there	is	a	toy	resource	whose	id	is	equal	to	10,	the
browsable	API	will	display:

1.	 The	raw	JSON	results	of	an	HTTP	GET	request	to
http://localhost:8000/toys/

2.	 The	raw	JSON	results	of	an	HTTP	GET	request	to
http://localhost:8000/toys/10

3.	 The	same	web	page	that	would	be	rendered	if	we	entered
http://localhost:8000/toys/10

	

The	rights	answers	are	included	in	the	Appendix,	Solutions.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=44&action=edit#post_454

Summary
In	this	chapter,	we	understood	some	of	the	additional	features	that	the
Django	REST	framework	adds	to	our	RESTful	Web	Service,	the
browsable	API.	We	used	a	web	browser	to	work	with	our	first	web	service
built	with	Django.

We	learned	to	make	HTTP	GET,	POST,	PUT,	OPTIONS,	and	DELETE
requests	with	the	browsable	API.	We	were	able	to	easily	test	CRUD
operations	with	a	web	browser.	The	browsable	API	allowed	us	to	easily
interact	with	our	RESTful	Web	Service.	We	will	take	advantage	of
additional	features	in	the	forthcoming	chapters.

Now	that	we	understand	how	easy	it	is	to	take	advantage	of	the	browsable
API	with	the	Django	REST	framework,	we	will	move	on	to	more
advanced	scenarios	and	we	will	start	a	new	RESTful	Web	Service.	We	will
work	with	advanced	relationships	and	serialization.	We	will	cover	these
topics	in	Chapter	6,	Working	with	Advanced	Relationships	and	Serialization.

Working	with	Advanced
Relationships	and	Serialization
In	this	chapter,	we	will	create	a	complex	RESTful	Web	Service	that	will
persist	data	in	a	PostgreSQL	database.	We	will	work	with	different	types
of	relationships	between	the	resources	and	we	will	take	advantage	of
generic	classes	and	generic	views	provided	by	the	Django	REST
framework	to	reduce	the	amount	of	boilerplate	code.	We	will	gain	an
understanding	of:

Defining	the	requirements	for	a	complex	RESTful	Web	Service

Creating	a	new	app	with	Django

Configuring	a	new	web	service

Defining	many-to-one	relationships	with	models.ForeignKey

Installing	PostgreSQL

Running	migrations	that	generate	relationships

Analyzing	the	database

Configuring	serialization	and	deserialization	with	relationships

Defining	hyperlinks	with	serializers.HyperlinkedModelSerializer

Working	with	class-based	views

Taking	advantage	of	generic	classes	and	generic	views

Generalizing	and	mixing	behavior

Working	with	routing	and	endpoints

Making	requests	that	interact	with	resources	that	have
relationships

Defining	the	requirements	for	a
complex	RESTful	Web	Service
So	far,	our	RESTful	Web	Service	performed	CRUD	operations	on	a	single
database	table.	Now,	we	want	to	create	a	more	complex	RESTful	Web
Service	with	the	Django	REST	framework	to	interact	with	a	complex
database	model.

A	drone	is	an	IoT	(short	for	Internet	of	Things)	device	that	interacts	with
many	sensors	and	actuators,	including	digital	electronic	speed	controllers
linked	to	engines,	propellers,	and	sensors.	A	drone	is	also	known	as	an
Unnamed	Aerial	Vehicle	(UAV).	We	will	code	a	RESTful	Web	Service
that	will	allow	us	to	register	competitions	for	drones	that	are	grouped	into
drone	categories.	In	our	previous	RESTful	Web	Service,	we	had	toys
grouped	in	toy	categories	and	we	used	a	string	field	to	specify	the	toy
category	for	a	toy.	In	this	case,	we	want	to	be	able	to	easily	retrieve	all	the
drones	that	belong	to	a	specific	drone	category.	Thus,	we	will	have	a
relationship	between	a	drone	and	a	drone	category.

We	must	be	able	to	perform	CRUD	operations	on	diverse	resources	and
resource	collections.	Many	resources	have	relationships	with	other
resources,	and	therefore,	we	won't	work	with	simple	models.	We	will	learn
how	to	establish	different	kinds	of	relationships	between	the	models.

The	following	list	enumerates	the	resources	and	the	model	name	we	will
use	to	represent	them	in	a	Django	REST	framework:

Drone	categories	(DroneCategory	model)

Drones	(Drone	model)

Pilots	(Pilot	model)

Competitions	(Competition	model)

The	drone	category	(DroneCategory	model)	just	requires	a	name.

We	need	the	following	data	for	a	drone	(Drone	model):

A	foreign	key	to	a	drone	category	(DroneCategory	model)

A	name

A	manufacturing	date

A	bool	value	indicating	whether	the	drone	participated	in	at	least
one	competition	or	not

A	timestamp	with	the	date	and	time	in	which	the	drone	was
inserted	in	the	database

We	need	the	following	data	for	a	pilot	(Pilot	model):

A	name

A	gender	value

An	integer	value	with	the	number	of	races	in	which	the	pilot
participated

A	timestamp	with	the	date	and	time	in	which	the	pilot	was	inserted
in	the	database

We	need	the	following	data	for	the	competition	(Competition	model):

A	foreign	key	to	a	pilot	(Pilot	model)

A	foreign	key	to	a	drone	(Drone	model)

A	distance	value	(measured	in	feet)

A	date	in	which	the	drone	controlled	by	the	pilot	reached	the
specified	distance	value

We	will	use	diverse	options	that	the	Django	REST	framework	provides	us
to	materialize	the	relationship	between	resources.	This	way,	we	will	be
able	to	analyze	different	configurations	that	will	make	it	possible	for	us	to
know	which	is	the	best	option	based	on	the	specific	requirements	of	new
web	services	that	we	will	develop	in	the	future.

The	following	table	shows	the	HTTP	verbs,	the	scope	and	the	semantics
for	the	methods	that	our	new	RESTful	Web	Service	must	support.	Each
method	is	composed	by	an	HTTP	verb	and	a	scope.	All	the	methods	have
well-defined	meanings	for	all	the	resources	and	resource	collections.	In
this	case,	we	will	implement	the	PATCH	HTTP	verb	for	all	the	resources:

HTTP
verb Scope Semantics

GET Drone
category

Retrieve	a	single	drone	category.
The	drone	category	must	include	a
list	of	URLs	for	each	drone
resource	that	belongs	to	the	drone
category.

GET
Collection
of	drone
categories

Retrieve	all	the	stored	drone
categories	in	the	collection,	sorted
by	their	name	in	ascending	order.
Each	drone	category	must	include	a
list	of	URLs	for	each	drone
resource	that	belongs	to	the	drone

category.

POST
Collection
of	drone
categories

Create	a	new	drone	category	in	the
collection.

PUT Drone
category Update	an	existing	drone	category.

PATCH Drone
category

Update	one	or	more	fields	of	an
existing	drone	category.

DELETE Drone
category Delete	an	existing	drone	category.

GET Drone
Retrieve	a	single	drone.	The	drone
must	include	its	drone	category
description.

GET Collection
of	drones

Retrieve	all	the	stored	drones	in	the
collection,	sorted	by	their	name	in
ascending	order.	Each	drone	must
include	its	drone	category
description.

POST Collection
of	drones

Create	a	new	drone	in	the
collection.

PUT Drone Update	an	existing	drone.

PATCH Drone Update	one	or	more	fields	of	an
existing	drone.

DELETE Drone Delete	an	existing	drone.

GET Pilot

Retrieve	a	single	pilot.	The	pilot
must	include	a	list	of	the	registered
competitions,	sorted	by	distance	in
descending	order.	The	list	must
include	all	the	details	for	the
competition	in	which	the	pilots	and
his	related	drone	participated.

GET Collection
of	pilots

Retrieve	all	the	stored	pilots	in	the
collection,	sorted	by	their	name	in
ascending	order.	Each	pilot	must
include	a	list	of	the	registered
competitions,	sorted	by	distance	in
descending	order.	The	list	must
include	all	the	details	for	the
competition	in	which	the	pilot	and
his	related	drone	participated.

POST Collection
of	pilots Create	a	new	pilot	in	the	collection.

PUT Pilot Update	an	existing	pilot.

PATCH Pilot Update	one	or	more	fields	of	an
existing	pilot.

DELETE Pilot Delete	an	existing	pilot.

GET Competition

Retrieve	a	single	competition.	The
competition	must	include	the	pilot's
name	that	made	the	drone	reach	a
specific	distance	and	the	drone's
name.

GET
Collection
of
competitions

Retrieve	all	the	stored	competitions
in	the	collection,	sorted	by	distance
in	descending	order.	Each
competition	must	include	the	pilot's
name	that	made	the	drone	reach	a
specific	distance	and	the	drone's
name.

POST
Collection
of
competitions

Create	a	new	competition	in	the
collection.	The	competition	must	be
related	to	an	existing	pilot	and	an
existing	drone.

PUT Competition Update	an	existing	competition.

PATCH Competition Update	one	or	more	fields	of	an
existing	competition.

DELETE Competition Delete	an	existing	competition.

	

In	the	previous	table,	we	have	a	huge	number	of	methods	and	scopes.	The
following	table	enumerates	the	URIs	for	each	scope	mentioned	in	the
previous	table,	where	{id}	has	to	be	replaced	with	the	numeric	id	or
primary	key	of	the	resource:

Scope URI

Collection	of	drone	categories /drone-categories/

Drone	category /drone-category/{id}

Collection	of	drones /drones/

Drone /drone/{id}

Collection	of	pilots /pilots/

Pilot /pilot/{id}

Collection	of	competitions /competitions/

Competition /competition/{id}

	

Let's	consider	that	http://localhost:8000/	is	the	URL	for	the	RESTful	Web
Service	running	on	Django's	development	server.	We	have	to	compose	and
send	an	HTTP	request	with	the	following	HTTP	verb	(GET)	and	request
URL	(http://localhost:8000/competitions/)	to	retrieve	all	the	stored
competitions	in	the	collection.

GET	http://localhost:8000/competitions/	

Our	RESTful	Web	Service	must	be	able	to	update	a	single	field	for	an
existing	resource.	In	order	to	make	this	possible,	we	will	implement	the
PATCH	method.	Remember	that	the	PUT	method	is	meant	to	replace	an	entire
resource	and	the	PATCH	method	is	meant	to	apply	a	delta	to	an	existing
resource,	that	is,	to	update	one	or	more	fields	for	an	existing	resource.

We	definitely	want	our	RESTful	Web	Serice	to	support	the	OPTIONS	method
for	all	the	resources	and	collections	of	resources.	This	way,	we	will
provide	a	consistent	web	service.

We	will	use	the	ORM	(short	for	Object-Relational	Mapping)	included	in
Django.	In	addition,	we	will	take	advantage	of	many	features	and	reusable
elements	included	in	the	latest	version	of	the	Django	REST	framework	to
make	it	easy	to	build	our	web	service	without	writing	a	huge	amount	of

code.

In	this	case,	we	will	work	with	a	PostgreSQL	database.	However,	in	case
you	don't	want	to	spend	time	installing	PostgreSQL,	you	can	skip	the
changes	we	make	in	the	Django	REST	framework	ORM	configuration	and
continue	working	with	the	default	SQLite	database,	as	we	did	with	our
first	RESTful	Web	Service.

Creating	a	new	app	with
Django
Now,	we	will	create	a	new	app	with	Django.	We	will	follow	the	same
steps	we	learned	in	Chapter	1,	Installing	the	Required	Software	and	Tools,	in
the	Creating	an	app	with	Django	section.	However,	in	order	to	avoid
repeating	many	steps,	we	will	use	the	same	restful01	project	we	had
created	in	that	chapter.	Hence,	we	will	just	add	a	new	app	to	an	existing
project.

Make	sure	you	quit	Django's	development	server.	Remember	that	you	just
need	to	press	Ctrl	+	C	in	the	terminal	or	command-prompt	window	in
which	it	is	running.	In	case	you	weren't	running	Django's	development
server,	make	sure	the	virtual	environment	in	which	we	have	been	working
in	the	previous	chapter	is	activated.	Then,	go	to	the	restful01	folder	within
the	01	folder	(the	root	folder	for	our	virtual	environment).	The	following
commands	use	the	default	paths	to	go	to	this	folder.	In	case	you	have	used
a	different	path	for	your	virtual	environment,	make	sure	you	replace	the
base	path	with	the	appropriate	one.

In	Linux	or	macOS,	enter	the	following	command:

cd	~/HillarDjangoREST/01/restful01

If	you	prefer	the	Command	Prompt,	run	the	following	command	in	the
Windows	command	line:

cd	/d	%USERPROFILE%\HillarDjangoREST\01\restful01

If	you	prefer	Windows	PowerShell,	run	the	following	command	in

Windows	PowerShell:

cd	/d	$env:USERPROFILE\HillarDjangoREST\01\restful01

		

Then,	run	the	following	command	to	create	a	new	Django	app	named
drones	within	the	restful01	Django	project.	The	command	won't	produce	any
output:

				python	manage.py	startapp	drones

The	previous	command	creates	a	new	restful01/drones	sub-folder,	with	the
following	files:

views.py

tests.py

models.py

apps.py

admin.py

__init__.py

In	addition,	the	restful01/drones	folder	will	have	a	migrations	sub-folder	with
an	__init__.py	Python	script.	The	structure	is	the	same	as	the	one	we
analyzed	in	Chapter	1,	Installing	the	Required	Software	and	Tools,	in	the
Understanding	Django	folders,	files	and	configurations	section.

Configuring	a	new	web	service
We	added	a	new	Django	app	to	our	existing	Django	project.	Use	your
favorite	editor	or	IDE	to	check	the	Python	code	in	the	apps.py	file	within
the	restful01/drones	folder	(restful01\drones	in	Windows).	The	following	lines
show	the	code	for	this	file:

from	django.apps	import	AppConfig	

	

	

class	DronesConfig(AppConfig):	

				name	=	'drones'

The	code	declares	the	DronesConfig	class	as	a	subclass	of	the
django.apps.AppConfig	class	that	represents	a	Django	application	and	its
configuration.	The	DronesConfig	class	just	defines	the	name	class	attribute	and
sets	its	value	to	'drones'.

Now,	we	have	to	add	drones.apps.DronesConfig	as	one	of	the	installed	apps	in
the	restful01/settings.py	file	that	configures	settings	for	the	restful01	Django
project.	I	built	the	previous	string	by	concatenating	many	values	as
follows:	app	name	+	.apps.	+	class	name,	which	is,	drones	+	.apps.	+
DronesConfig.

We	already	added	the	rest_framework	app	to	make	it	possible
for	us	to	use	the	Django	REST	framework	in	the
restful01/settings.py	file.	However,	in	case	you	decided	to
create	a	new	Django	project	from	scratch	by	following	all
the	steps	we	learned	in	Chapter	1,	Installing	the	Required
Software	and	Tools,	make	sure	you	don't	forget	to	add	the
rest_framework	app.

Open	the	restful01/settings.py	file	that	declares	module-level	variables	that

define	the	configuration	of	Django	for	the	restful01	project.	We	will	make
some	changes	to	this	Django	settings	file.	Locate	the	lines	that	assign	a
strings	list	to	INSTALLED_APPS	to	declare	the	installed	apps.

Remove	the	following	line	from	the	INSTALLED_APPS	strings	list.	This	way,
Django	won't	consider	this	app	anymore:

'toys.apps.ToysConfig',	

Add	the	following	string	to	the	INSTALLED_APPS	strings	list	and	save	the
changes	to	the	restful01/settings.py	file:

'drones.apps.DronesConfig',

The	following	lines	show	the	new	code	that	declares	the	INSTALLED_APPS
strings	list	with	the	added	line	highlighted	and	with	comments	to
understand	what	each	added	string	means.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_06_01	folder,	in	the	restful01/settings.py
file:

INSTALLED_APPS	=	[

				'django.contrib.admin',	

				'django.contrib.auth',	

				'django.contrib.contenttypes',	

				'django.contrib.sessions',	

				'django.contrib.messages',	

				'django.contrib.staticfiles',	

				#	Django	REST	framework	

				'rest_framework',	

				#	Drones	application	

				'drones.apps.DronesConfig',	

]	

This	way,	we	have	added	the	drones	application	to	our	initial	Django
project	named	restful01.

Defining	many-to-one
relationships	with
models.ForeignKey
Now,	we	will	create	the	models	that	we	will	use	to	represent	and	persist
the	drone	categories,	drones,	pilots,	and	competitions,	and	their
relationships.	Open	the	drones/models.py	file	and	replace	its	contents	with	the
following	code.	The	lines	that	declare	fields	related	to	other	models	are
highlighted	in	the	code	listing.	The	code	file	for	the	sample	is	included	in
the	hillar_django_restful_06_01	folder,	in	the	restful01/drones/models.py	file.

from	django.db	import	models	

	

	

class	DroneCategory(models.Model):	

				name	=	models.CharField(max_length=250)	

	

				class	Meta:	

								ordering	=	('name',)	

	

				def	__str__(self):	

								return	self.name	

	

	

class	Drone(models.Model):	

				name	=	models.CharField(max_length=250)	

				drone_category	=	models.ForeignKey(

								DroneCategory,	

								related_name='drones',	

								on_delete=models.CASCADE)	

				manufacturing_date	=	models.DateTimeField()	

				has_it_competed	=	models.BooleanField(default=False)	

				inserted_timestamp	=	models.DateTimeField(auto_now_add=True)	

	

				class	Meta:	

								ordering	=	('name',)	

	

				def	__str__(self):	

								return	self.name	

	

	

class	Pilot(models.Model):	

				MALE	=	'M'	

				FEMALE	=	'F'	

				GENDER_CHOICES	=	(

								(MALE,	'Male'),	

								(FEMALE,	'Female'),	

)	

				name	=	models.CharField(max_length=150,	blank=False,	default='')	

				gender	=	models.CharField(

								max_length=2,	

								choices=GENDER_CHOICES,	

								default=MALE,	

)	

				races_count	=	models.IntegerField()	

				inserted_timestamp	=	models.DateTimeField(auto_now_add=True)	

	

				class	Meta:	

								ordering	=	('name',)	

	

				def	__str__(self):	

								return	self.name	

	

	

class	Competition(models.Model):	

				pilot	=	models.ForeignKey(

								Pilot,	

								related_name='competitions',	

								on_delete=models.CASCADE)	

				drone	=	models.ForeignKey(

								Drone,	

								on_delete=models.CASCADE)	

				distance_in_feet	=	models.IntegerField()	

				distance_achievement_date	=	models.DateTimeField()	

	

				class	Meta:	

								#	Order	by	distance	in	descending	order	

								ordering	=	('-distance_in_feet',)

The	code	declares	the	following	four	models,	specifically,	four	classes	that
are	subclasses	of	the	django.db.models.Model	class:

DroneCategory

Drone

Pilot

Competition

Django	automatically	adds	an	auto-increment	integer	primary	key	column
named	id	when	it	creates	the	database	table	related	to	each	model.	We
specify	the	field	types,	maximum	lengths,	and	defaults	for	many	attributes.

Each	class	declares	a	Meta	inner	class	that	declares	an	ordering	attribute.
The	Meta	inner	class	declared	within	the	Competition	class	specifies	'-
distance_in_feet'	as	the	value	of	the	ordering	tuple,	with	a	dash	as	a	prefix	of
the	field	name	to	order	by	distance_in_feet	in	descending	order,	instead	of
the	default	ascending	order.

The	DroneCategory,	Drone,	and	Pilot	classes	declare	a	__str__	method	that
returns	the	contents	of	the	name	attribute	that	provides	the	name	or	title	for
each	of	these	models.	This	way,	whenever	Django	needs	to	provide	a
human	readable	representation	for	the	model,	it	will	call	this	method	and
return	its	result.

The	Drone	model	declares	the	drone_category	field	with	the	following	line:

drone_category	=	models.ForeignKey(

				DroneCategory,		

				related_name='drones',		

				on_delete=models.CASCADE)	

The	previous	line	uses	the	django.db.models.ForeignKey	class	to	provide	a
many-to-one	relationship	to	the	DroneCategory	model.	The	'drones'	value
specified	for	the	related_name	argument	creates	a	backwards	relation	from
the	DroneCategory	model	to	the	Drone	model.	This	value	indicates	the	name	to
use	for	the	relation	from	the	related	DroneCategory	object	back	to	a	Drone
object.

This	way,	we	will	be	able	to	easily	access	all	the	drones	that	belong	to	a
specific	drone	category.	Whenever	we	delete	a	drone	category,	we	want	all
the	drones	that	belong	to	this	category	to	be	deleted,	too,	and	therefore,	we
specified	the	models.CASCADE	value	for	the	on_delete	argument.

The	Competition	model	declares	the	pilot	field	with	the	following	line:

pilot	=	models.ForeignKey(

				Pilot,		

				related_name='competitions',		

				on_delete=models.CASCADE)	

The	previous	line	uses	the	django.db.models.ForeignKey	class	to	provide	a
many-to-one	relationship	to	the	Pilot	model.	The	'competitions'	value
specified	for	the	related_name	argument	creates	a	backwards	relation	from
the	Pilot	model	to	the	Competition	model.	This	value	indicates	the	name	to
use	for	the	relation	from	the	related	Pilot	object	back	to	a	Competition
object.

This	way,	we	will	be	able	to	easily	access	all	the	competitions	in	which	a
specific	pilot	participated	with	his	drone.	Whenever	we	delete	a	pilot,	we
want	all	the	competitions	in	which	this	pilot	participated	to	be	deleted,	too,
and	therefore,	we	specified	the	models.CASCADE	value	for	the	on_delete
argument.

The	Competition	model	declares	the	drone	field	with	the	following	line:

drone	=	models.ForeignKey(

				Drone,		

				on_delete=models.CASCADE)	

The	previous	line	uses	the	django.db.models.ForeignKey	class	to	provide	a
many-to-one	relationship	to	the	Drone	model.	In	this	case,	we	don't	create	a
backwards	relation	because	we	don't	need	it.	Thus,	we	don't	specify	a
value	for	the	related_name	argument.	Whenever	we	delete	a	drone,	we	want
all	the	competitions	in	which	the	drone	participated	to	be	deleted	too,	and

therefore,	we	specified	the	models.CASCADE	value	for	the	on_delete	argument.

Installing	PostgreSQL
In	order	to	work	with	this	example,	you	have	to	download	and	install
PostgreSQL,	in	case	you	aren't	already	running	it	in	your	development
computer	or	in	a	development	server.	PostgreSQL	is	available	on	multiple
platforms	and	offers	versions	for	Linux,	macOS	and	Windows,	among
other	operating	systems.	You	can	download	and	install	this	relational
database	management	system	from	the	Download	section	of	its	web	page:	
http://www.postgresql.org.

The	next	samples	that	work	with	a	PostgreSQL	database	have	been	tested
in	PostgreSQL	versions	9.6.x	and	PostgreSQL	10.x.	Make	sure	you	work
with	any	of	these	versions.

There	are	interactive	installers	built	by	EnterpriseDB	and	BigSQL	for
macOS	and	Windows.	In	case	you	are	working	with	macOS,	Postgres.app
provides	a	really	easy	way	to	install	and	use	PostgreSQL	on	this	operating
system.	You	can	read	more	about	Postgres.app	and	download	it	from	its
web	page:	http://postgresapp.com.

After	you	finish	the	installation	process,	you	have	to	make	sure	that	the
PostgreSQL	bin	folder	is	included	in	the	PATH	environmental	variable.
You	should	be	able	to	execute	the	psql	command-line	utility	from	your
current	Linux	or	macOS	terminal,	the	Windows	command	prompt,	or
Windows	PowerShell.

In	case	the	bin	folder	isn't	included	in	the	PATH,	you	will
receive	an	error	indicating	that	the	pg_config	file	cannot	be
found	when	trying	to	install	the	psycopg2	Python	package.	In
addition,	you	will	have	to	use	the	full	path	to	each	of	the
PostgreSQL	command-line	tools	that	we	will	use	in	the	next
steps.

http://www.postgresql.org
http://postgresapp.com

Running	migrations	that
generate	relationships
We	must	create	the	initial	migration	for	the	new	models	we	recently
coded.	We	just	need	to	run	the	following	Python	scripts	and	we	will	also
synchronize	the	database	for	the	first	time.	As	we	learned	from	our
previous	RESTful	Web	Service	sample,	by	default,	Django	uses	an	SQLite
database.

In	this	new	example,	we	will	be	working	with	a	PostgreSQL	database.
However,	in	case	you	want	to	use	an	SQLite,	you	can	skip	all	the	next
steps	related	to	PostgreSQL,	its	configuration	in	Django,	and	jump	to	the
migrations	generation	command.	You	will	also	have	to	use	the	SQLite
utilities	instead	of	the	PostgreSQL	tools	to	analyze	the	database.

We	will	use	the	PostgreSQL	command-line	tools	to	create	a	new	database
named	toys.	In	case	you	already	have	a	PostgreSQL	database	with	this
name,	make	sure	that	you	use	another	name	in	all	the	commands	and
configurations.	You	can	perform	the	same	tasks	with	any	PostgreSQL	GUI
tool	or	any	database	administration	tool	that	supports	PostgreSQL.

In	case	you	are	developing	in	Linux,	it	is	necessary	to	run	the	commands
as	the	postgres	user.	Run	the	following	command	in	Windows	or	macOS	to
create	a	new	database	named	drones.	Notice	that	the	command	won't
produce	any	output	and	that	you	must	have	the	bin	folder	for	PostgreSQL
command-line	tools	in	your	path:

createdb	drones

In	Linux,	run	the	following	command	to	use	the	postgres	user:

sudo	-u	postgres	createdb	drones		

Now,	we	will	use	the	psql	command-line	tool	to	run	some	SQL	statements
to	create	a	specific	user	that	we	will	use	in	Django	and	assign	the
necessary	roles	for	it.	In	Windows	or	macOS,	run	the	following	command
to	launch	the	psql	tool:

psql		

In	macOS,	you	might	need	to	run	the	following	command	to	launch	psql
with	the	postgres	user	in	case	the	previous	command	doesn't	work,	as	it	will
depend	on	the	way	in	which	you	installed	and	configured	PostgreSQL:

sudo	-u	postgres	psql		

In	Linux,	run	the	following	command	to	start	psql	with	the	postgres	user:

sudo	-u	psql	

Then,	run	the	following	SQL	statements	and	finally	enter	\q	to	exit	the	psql
command-line	tool.

Replace	the	username	with	your	desired	username	to	use	in	the	new
database,	and	password	with	your	chosen	password.	We	will	specify	the
selected	username	and	password	in	the	Django	settings	for	our	web
service.

You	don't	need	to	run	the	steps	in	case	you	are	already	working	with	a
specific	user	in	PostgreSQL	and	you	have	already	granted	privileges	to	the
database	for	the	user:

CREATE	ROLE	username	WITH	LOGIN	PASSWORD	'password';

GRANT	ALL	PRIVILEGES	ON	DATABASE	drones	TO	username;

ALTER	USER	username	CREATEDB;

\q		

You	will	see	the	following	output	for	the	previous	commands:

CREATE	ROLE

GRANT

ALTER	ROLE		

The	default	SQLite	database	engine	and	the	database	file	name	are
specified	in	the	restful01/settings.py	Python	file.	The	following	lines	show
the	default	lines	that	configure	the	database:

DATABASES	=	{	

				'default':	{	

								'ENGINE':	'django.db.backends.sqlite3',	

								'NAME':	os.path.join(BASE_DIR,	'db.sqlite3'),	

				}	

}	

We	will	work	with	PostgreSQL	instead	of	SQLite	for	this	example,	and
therefore,	we	must	replace	the	declaration	of	the	DATABASES	dictionary	with
the	following	lines.	The	nested	dictionary	maps	the	database	named	default
with	the	django.db.backends.postgresql	database	engine,	the	desired	database
name	and	its	settings.	In	this	case,	we	will	create	a	database	named	drones.
Make	sure	you	specify	the	desired	database	name	in	the	value	for	the	'NAME'
key	and	that	you	configure	the	user,	password,	host,	and	port	based	on
your	PostgreSQL	configuration.	In	case	you	followed	the	previously
explained	steps	to	configure	the	PostgreSQL	database,	use	the	settings
specified	in	these	steps.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_06_01	folder,	in	the	restful01/settings.py	file:

DATABASES	=	{	

				'default':	{	

								'ENGINE':	'django.db.backends.postgresql',	

								#	Replace	drones	with	your	desired	database	name	

								'NAME':	'drones',	

								#	Replace	username	with	your	desired	user	name	

								'USER':	'username',	

								#	Replace	password	with	your	desired	password	

								'PASSWORD':	'password',	

								#	Replace	127.0.0.1	with	the	PostgreSQL	host	

								'HOST':	'127.0.0.1',	

								#	Replace	5432	with	the	PostgreSQL	configured	port	

								#	in	case	you	aren't	using	the	default	port	

								'PORT':	'5432',	

				}	

}

In	case	you	decided	to	continue	working	with	SQLite,	you
don't	need	to	make	the	previous	changes	and	you	can
continue	using	the	default	configuration.

We	don't	want	the	migrations	process	to	take	into	account	our	models
related	to	toys	from	the	previous	web	service,	and	therefore,	we	will	make
changes	to	the	code	in	the	urls.py	file	in	the	restful01	folder,	specifically,
the	restful01/urls.py	file.	The	file	defines	the	root	URL	configurations,	and
therefore,	we	must	remove	the	URL	patterns	declared	in	the	toys/urls.py
file.	The	following	lines	show	the	new	code	for	the	restful01/urls.py	file.
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_06_01
folder,	in	the	restful01/urls.py	file:

from	django.conf.urls	import	url,	include	

	

urlpatterns	=	[

]	

In	order	to	use	PostgreSQL,	it	is	necessary	to	install	a	Python-PostgreSQL
Database	Adapter	that	Django	will	use	to	interact	with	a	PostgreSQL
database:	the	Psycopg2	package	(psycopg2).

In	macOS,	we	have	to	make	sure	that	the	PostgreSQL	bin	folder	is
included	in	the	PATH	environmental	variable.	For	example,	in	case	the	path
to	the	bin	folder	is	/Applications/Postgres.app/Contents/Versions/latest/bin,	we
must	execute	the	following	command	to	add	this	folder	to	the	PATH
environmental	variable:

export	PATH=$PATH:/Applications/Postgres.app/Contents/Versions/latest/bin		

Once	we	make	sure	that	the	PostgreSQL	bin	folder	is	included	in	the	PATH
environmental	variable,	we	just	need	to	run	the	following	command	to
install	this	package.	Make	sure	the	virtual	environment	is	activated	before
running	the	command:

pip	install	psycopg2		

The	last	lines	for	the	output	will	indicate	that	the	psycopg2	package	has
been	successfully	installed:

Collecting	psycopg2

Installing	collected	packages:	psycopg2

Successfully	installed	psycopg2-2.7.3.2		

Now,	run	the	following	Python	script	to	generate	the	migrations	that	will
allow	us	to	synchronize	the	PostgreSQL	database	for	the	first	time.	We
will	run	the	migrations	for	the	drones	application:

python	manage.py	makemigrations	drones		

The	following	lines	show	the	output	generated	after	running	the	previous
command:

Migrations	for	'drones':

drones/migrations/0001_initial.py

-	Create	model	Competition

-	Create	model	Drone

-	Create	model	DroneCategory

-	Create	model	Pilot

-	Add	field	drone_category	to	drone

-	Add	field	drone	to	competition

-	Add	field	pilot	to	competition

The	output	indicates	that	the	restful01/drones/migrations/0001_initial.py	file
includes	the	code	to	create	the	Competition,	Drone,	DroneCategory,	and	Pilot
models.	The	following	lines	show	the	code	for	this	file	that	was
automatically	generated	by	Django.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_06_01	folder,	in	the
restful01/drones/migrations/0001_initial.py	file:

#	-*-	coding:	utf-8	-*-	

#	Generated	by	Django	1.11.5	on	2017-11-02	02:55	

from	__future__	import	unicode_literals	

	

from	django.db	import	migrations,	models	

import	django.db.models.deletion	

	

	

class	Migration(migrations.Migration):	

	

				initial	=	True	

	

				dependencies	=	[

]	

	

				operations	=	[

								migrations.CreateModel(

												name='Competition',	

												fields=[

																('id',	models.AutoField(auto_created=True,	primary_key=True,	serialize=False,	verbose_name='ID')),	

																('distance_in_feet',	models.IntegerField()),	

																('distance_achievement_date',	models.DateTimeField()),	

],	

												options={	

																'ordering':	('-distance_in_feet',),	

												},	

),	

								migrations.CreateModel(

												name='Drone',	

												fields=[

																('id',	models.AutoField(auto_created=True,	primary_key=True,	serialize=False,	verbose_name='ID')),	

																('name',	models.CharField(max_length=250)),	

																('manufacturing_date',	models.DateTimeField()),	

																('has_it_competed',	models.BooleanField(default=False)),	

																('inserted_timestamp',	models.DateTimeField(auto_now_add=True)),	

],	

												options={	

																'ordering':	('name',),	

												},	

),	

								migrations.CreateModel(

												name='DroneCategory',	

												fields=[

																('id',	models.AutoField(auto_created=True,	primary_key=True,	serialize=False,	verbose_name='ID')),	

																('name',	models.CharField(max_length=250)),	

],	

												options={	

																'ordering':	('name',),	

												},	

),	

								migrations.CreateModel(

												name='Pilot',	

												fields=[

																('id',	models.AutoField(auto_created=True,	primary_key=True,	serialize=False,	verbose_name='ID')),	

																('name',	models.CharField(default='',	max_length=50)),	

																('gender',	models.CharField(choices=[('M',	'Male'),	('F',	'Female')],	default='M',	max_length=2)),	

																('races_count',	models.IntegerField()),	

																('inserted_timestamp',	models.DateTimeField(auto_now_add=True)),	

],	

												options={	

																'ordering':	('name',),	

												},	

),	

								migrations.AddField(

												model_name='drone',	

												name='drone_category',	

												field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE,	related_name='drones',	to='drones.DroneCategory'),	

),	

								migrations.AddField(

												model_name='competition',	

												name='drone',	

												field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE,	to='drones.Drone'),	

),	

								migrations.AddField(

												model_name='competition',	

												name='pilot',	

												field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE,	related_name='competitions',	to='drones.Pilot'),	

),	

]	

The	code	defines	a	subclass	of	the	django.db.migrations.Migration	class	named
Migration	that	defines	an	operations	list	with	many	calls	to
migrations.CreateModel.	Each	migrations.CreateModel	call	will	create	the	table	for
each	of	the	related	models.

Notice	that	Django	has	automatically	added	an	id	field	for	each	of	the
models.	The	operations	are	executed	in	the	same	order	in	which	they	are
displayed	in	the	list.	The	code	creates	Competition,	Drone,	DroneCategory,	Pilot
and	finally	adds	the	following	fields	with	foreign	keys:

The	drone_category	field	to	the	Drone	model	with	the	foreign	key	to
the	DroneCategory	model

The	drone	field	to	the	Competition	model	with	the	foreign	key	to	the
Drone	model

The	pilot	field	to	the	Competition	model	with	the	foreign	key	to	the
Pilot	model

Now,	run	the	following	python	script	to	apply	all	the	generated	migrations:

python	manage.py	migrate

The	following	lines	show	the	output	generated	after	running	the	previous
command:

Operations	to	perform:

Apply	all	migrations:	admin,	auth,	contenttypes,	drones,	sessions

				Running	migrations:

						Applying	contenttypes.0001_initial...	OK

						Applying	auth.0001_initial...	OK

						Applying	admin.0001_initial...	OK

						Applying	admin.0002_logentry_remove_auto_add...	OK

						Applying	contenttypes.0002_remove_content_type_name...	OK

						Applying	auth.0002_alter_permission_name_max_length...	OK

						Applying	auth.0003_alter_user_email_max_length...	OK

						Applying	auth.0004_alter_user_username_opts...	OK

						Applying	auth.0005_alter_user_last_login_null...	OK

						Applying	auth.0006_require_contenttypes_0002...	OK

						Applying	auth.0007_alter_validators_add_error_messages...	OK

						Applying	auth.0008_alter_user_username_max_length...	OK

						Applying	drones.0001_initial...	OK

						Applying	sessions.0001_initial...	OK

		

Analyzing	the	database
After	we	have	run	the	previous	command,	we	can	use	the	PostgreSQL
command-line	tools	or	any	other	application	that	allows	us	to	easily	check
the	contents	of	a	PostreSQL	database,	to	check	the	tables	that	Django
generated.	If	you	decided	to	continue	working	with	SQLite,	we	already
learned	how	to	check	the	tables	in	the	previous	chapters.

Run	the	following	command	to	list	the	generated	tables:

psql	--username=username	--dbname=drones	--command="\dt"

The	following	lines	show	the	output	with	all	the	generated	table	names:

																							List	of	relations

					Schema	|												Name												|	Type		|		Owner			

				--------+----------------------------+-------+----------

					public	|	auth_group																	|	table	|	username

					public	|	auth_group_permissions					|	table	|	username

					public	|	auth_permission												|	table	|	username

					public	|	auth_user																		|	table	|	username

					public	|	auth_user_groups											|	table	|	username

					public	|	auth_user_user_permissions	|	table	|	username

					public	|	django_admin_log											|	table	|	username

					public	|	django_content_type								|	table	|	username

					public	|	django_migrations										|	table	|	username

					public	|	django_session													|	table	|	username

					public	|	drones_competition									|	table	|	username

					public	|	drones_drone															|	table	|	username

					public	|	drones_dronecategory							|	table	|	username

					public	|	drones_pilot															|	table	|	username

				(14	rows)

		

In	our	previous	example,	Django	used	the	toys_	prefix	for	the	table	related

to	the	toys	application	we	had	created.	In	this	case,	the	application	name	is
drones,	and	therefore,	Django	uses	the	drones_	prefix	for	the	following	four
tables	that	are	related	to	the	application:

drones_drone:	This	table	persists	the	Drone	model

drones_dronecategory:	This	table	persists	the	DroneCategory	model

drones_pilot:	This	table	persists	the	Pilot	model

drones_competition:	This	table	persists	the	Competition	model

Django's	integrated	ORM	generated	these	tables	and	the	foreign	keys
based	on	the	information	included	in	our	models	and	the	code	generated
during	the	migrations	process.

The	following	commands	will	allow	you	to	check	the	contents	of	the	four
tables	after	we	compose	and	send	different	HTTP	requests	to	the	RESTful
Web	Service,	and	these	calls	end	up	making	CRUD	operations	to	the	four
tables.	The	commands	assume	that	you	are	running	PostgreSQL	on	the
same	computer	in	which	you	are	running	the	command:

				psql	--username=username	--dbname=drones	--command="SELECT	*	FROM	drones_dronecategory;"

				psql	--username=username	--dbname=drones	--command="SELECT	*	FROM	drones_drone;"

				psql	--username=username	--dbname=drones	--command="SELECT	*	FROM	drones_pilot;"

				psql	--username=username	--dbname=drones	--command="SELECT	*	FROM	drones_competition;"

Instead	of	working	with	the	PostgreSQL	command-line
utility,	you	can	use	a	GUI	tool	to	check	the	contents	of	the
PostgreSQL	database.	You	can	use	also	the	database	tools
included	in	your	favorite	IDE	to	check	the	contents	for	the
SQLite	database.

As	happened	in	our	previous	example,	Django	generated	additional	tables
that	it	requires	to	support	the	web	framework	and	the	authentication
features	that	we	will	use	later.

Configuring	serialization	and
deserialization	with
relationships
The	new	RESTful	Web	Service	must	be	able	to	serialize	the	DroneCategory,
Drone,	Pilot,	and	Competition	instances	into	JSON	representations	and	vice
versa.	In	this	case,	we	must	pay	special	attention	to	the	relationships
between	the	different	models	when	we	create	the	serializer	classes	to
manage	serialization	to	JSON	and	deserialization	from	JSON.

In	our	last	version	of	the	previous	RESTful	Web	Service,	we	created	a
subclass	of	the	rest_framework.serializers.ModelSerializer	class	to	make	it
easier	to	generate	a	serializer	and	reduce	boilerplate	code.	In	this	case,	we
will	also	declare	one	class	that	inherits	from	ModelSerializer.	The	other	three
classes	will	inherit	from	the
rest_framework.serializers.HyperlinkedModelSerializer	class.

The	HyperlinkedModelSerializer	is	a	type	of	ModelSerializer	that	uses
hyperlinked	relationships	instead	of	primary	key	relationships,	and
therefore,	it	represents	the	relationships	to	other	model	instances	with
hyperlinks	instead	of	primary	key	values.	In	addition,	the
HyperlinkedModelSerializer	generates	a	field	named	url	with	the	URL	for	the
resource	as	its	value.	As	happens	with	ModelSerializer,	the
HyperlinkedModelSerializer	class	provides	default	implementations	for	the
create	and	update	methods.

Now,	go	to	the	restful01/drones	folder	and	create	a	new	Python	code	file
named	serializers.py.	The	following	lines	show	the	code	that	declares	the
new	DroneCategorySerializer	class.	Notice	that	we	will	add	more	classes	to
this	file	later.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_06_01	folder	in	the	restful01/drones/serializers.py	file:

from	rest_framework	import	serializers	

from	drones.models	import	DroneCategory	

from	drones.models	import	Drone	

from	drones.models	import	Pilot	

from	drones.models	import	Competition	

import	drones.views	

	

	

class	DroneCategorySerializer(serializers.HyperlinkedModelSerializer):	

				drones	=	serializers.HyperlinkedRelatedField(

								many=True,	

								read_only=True,	

								view_name='drone-detail')	

	

				class	Meta:	

								model	=	DroneCategory	

								fields	=	(

												'url',	

												'pk',	

												'name',	

												'drones')	

The	DroneCategorySerializer	class	is	a	subclass	of	the	HyperlinkedModelSerializer
class.	The	DroneCategorySerializer	class	declares	a	drones	attribute	that	holds
an	instance	of	serializers.HyperlinkedRelatedField	with	many	and	read_only	equal
to	True.	This	way,	the	code	defines	a	one-to-many	relationship	that	is	read-
only.

The	code	uses	the	drones	name	that	we	specified	as	the	related_name	string
value	when	we	created	the	drone_category	field	as	a	models.ForeignKey	instance
in	the	Drone	model.	This	way,	the	drones	field	will	provide	us	with	an	array
of	hyperlinks	to	each	drone	that	belongs	to	the	drone	category.

The	view_name	value	is	'drone-detail'	to	indicate	the	browsable
API	feature	to	use	the	drone	detail	view	to	render	the
hyperlink	when	the	user	clicks	or	taps	on	it.	This	way,	we
make	it	possible	for	the	browsable	API	to	allow	us	to	browse
between	related	models.

The	DroneCategorySerializer	class	declares	a	Meta	inner	class	that	declares	the
following	two	attributes:

model:	This	attribute	specifies	the	model	related	to	the	serializer,
that	is,	the	DroneCategory	class.

fields:	This	attribute	specifies	a	tuple	of	string	whose	values
indicate	the	field	names	that	we	want	to	include	in	the	serialization
from	the	model	related	to	the	serializer,	that	is,	the	DroneCategory
class.	We	want	to	include	both	the	primary	key	and	the	URL,	and
therefore,	the	code	specified	both	'pk'	and	'url'	as	members	of	the
tuple.	In	addition,	we	want	to	include	the	name	and	the	field	that
provides	hyperlinks	to	each	drone	that	belongs	to	the	drone
category.	Thus,	the	code	also	specifies	'name'	and	'drones'	as
members	of	the	tuple.

There	is	no	need	to	override	either	the	create	or	update	methods	because	the
generic	behavior	will	be	enough	in	this	case.	The	HyperlinkedModelSerializer
superclass	provides	implementations	for	both	methods.

Defining	hyperlinks	with
serializers.HyperlinkedModelSe
rializer
Now,	add	the	following	code	to	the	serializers.py	file	to	declare	the
DroneSerializer	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_06_01	folder	in	the	restful01/drones/serializers.py	file:

class	DroneSerializer(serializers.HyperlinkedModelSerializer):	

				#	Display	the	category	name	

				drone_category	=	serializers.SlugRelatedField(queryset=DroneCategory.objects.all(),	slug_field='name')	

	

				class	Meta:	

								model	=	Drone	

								fields	=	(

												'url',	

												'name',	

												'drone_category',	

												'manufacturing_date',	

												'has_it_competed',	

												'inserted_timestamp')	

The	DroneSerializer	class	is	a	subclass	of	the	HyperlinkedModelSerializer	class.
The	DroneSerializer	class	declares	a	drone_category	attribute	that	holds	an
instance	of	serializers.SlugRelatedField	with	its	queryset	argument	set	to
DroneCategory.objects.all()	and	its	slug_field	argument	set	to	'name'.

A	SlugRelatedField	is	a	read-write	field	that	represents	the	target	of	the
relationship	by	a	unique	slug	attribute,	that	is,	the	description.	In	the
Drone	model,	we	created	the	drone_category	field	as	a	models.ForeignKey
instance.

We	want	to	display	the	drone	category	name	as	the	description	(slug	field)

for	the	related	DroneCategory,	and	therefore,	we	specified	'name'	as	the	value
for	the	slug_field	argument.	The	browsable	API	has	to	display	the	possible
options	for	the	related	drone	category	in	a	dropdown	field	in	a	form,	and
Django	will	use	the	expression	specified	in	the	queryset	argument	to
retrieve	all	the	possible	instances	and	display	their	specified	slug	field.

The	DroneSerializer	class	declares	a	Meta	inner	class	that	declares	two
attributes:

model:	The	Drone	class.

fields.	In	this	case,	we	don't	want	to	include	the	primary	key,	and
therefore,	the	tuple	doesn't	include	the	'pk'	string.	The
drone_category	field	will	render	the	name	field	for	the	related
DroneCategory.

Now,	add	the	following	code	to	the	serializers.py	file	to	declare	the
CompetitionSerializer	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_06_01	folder	in	the	restful01/drones/serializers.py	file.

class	CompetitionSerializer(serializers.HyperlinkedModelSerializer):

				#	Display	all	the	details	for	the	related	drone

				drone	=	DroneSerializer()

				class	Meta:

								model	=	Competition

								fields	=	(

												'url',

												'pk',

												'distance_in_feet',

												'distance_achievement_date',

												'drone')

The	CompetitionSerializer	class	is	a	subclass	of	the	HyperlinkedModelSerializer
class.	We	will	use	the	CompetitionSerializer	class	to	serialize	Competition
instances	related	to	a	Pilot,	that	is,	to	display	all	the	competitions	in	which
a	specific	Pilot	has	participated	when	we	serialize	a	Pilot.	We	want	to
display	all	the	details	for	the	related	Drone,	but	we	don't	include	the	related

Pilot	because	the	Pilot	will	use	this	CompetitionSerializer	serializer.

The	CompetitionSerializer	class	declares	a	drone	attribute	that	holds	an
instance	of	the	previously	coded	DroneSerializer	class.	We	created	the	drone
field	as	a	models.ForeignKey	instance	in	the	Competition	model	and	we	want	to
serialize	the	same	data	for	the	drone	that	we	coded	in	the	DroneSerializer
class.

The	CompetitionSerializer	class	declares	a	Meta	inner	class	that	declares	two
attributes:	model	and	fields.	The	model	attribute	specifies	the	model	related	to
the	serializer,	that	is,	the	Competition	class.	As	previously	explained,	we
don't	include	the	'Pilot'	field	name	in	the	fields	tuple	of	string	to	avoid
serializing	the	Pilot	again.	We	will	use	a	PilotSerializer	as	a	master	and	the
CompetitionSerializer	as	the	detail.

Now,	add	the	following	code	to	the	serializers.py	file	to	declare	the
PilotSerializer	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_06_01	folder	in	the	restful01/drones/serializers.py	file:

class	PilotSerializer(serializers.HyperlinkedModelSerializer):	

				competitions	=	CompetitionSerializer(many=True,	read_only=True)	

				gender	=	serializers.ChoiceField(

								choices=Pilot.GENDER_CHOICES)	

				gender_description	=	serializers.CharField(

								source='get_gender_display',		

								read_only=True)	

	

				class	Meta:	

								model	=	Pilot	

								fields	=	(

												'url',	

												'name',	

												'gender',	

												'gender_description',	

												'races_count',	

												'inserted_timestamp',	

												'competitions')	

The	PilotSerializer	class	is	a	subclass	of	the	HyperlinkedModelSerializer	class.
We	will	use	the	PilotSerializer	class	to	serialize	Pilot	instances	and	we	will

use	the	perviously	coded	CompetitionSerializer	class	to	serialize	all	the
Competition	instances	related	to	the	Pilot.

The	PilotSerializer	class	declares	a	competitions	attribute	that	holds	and
instance	of	the	previously	coded	CompetitionSerializer	class.	The	many
argument	is	set	to	True	because	it	is	a	one-to-many	relationship	(one	Pilot
has	many	related	Competition	instances).

We	use	the	competitions	name	that	we	specified	as	the	related_name	string
value	when	we	created	the	Pilot	field	as	a	models.ForeignKey	instance	in	the
Competition	model.	This	way,	the	competitions	field	will	render	each
Competition	that	belongs	to	the	Pilot	by	using	the	previously	declared
CompetitionSerializer.

The	Pilot	model	declared	gender	as	an	instance	of	models.CharField	with	the
choices	attribute	set	to	the	Pilot.GENDER_CHOICES	string	tuple.	The	PilotSerializer
class	declares	a	gender	attribute	that	holds	an	instance	of
serializers.ChoiceField	with	the	choices	argument	set	to	the	Pilot.GENDER_CHOICES
string	tuple.

In	addition,	the	class	declares	a	gender_description	attribute	with	read_only	set
to	True	and	the	source	argument	set	to	'get_gender_display'.	The	source	string	is
built	with	the	get_	prefix	followed	by	the	field	name,	gender,	and	the	_display
suffix.	This	way,	the	read-only	gender_description	attribute	will	render	the
description	for	the	gender	choices	instead	of	the	single	char	stored	values.

The	PilotSerializer	class	declares	a	Meta	inner	class	that	declares	two
attributes:	model	and	fields.	The	model	attribute	specifies	the	model	related	to
the	serializer,	that	is,	the	Pilot	class.	We	will	use	the	PilotSerializer	class	as
a	master	and	the	CompetitionSerializer	class	as	the	detail.	As	happened	with
the	previous	serializers,	the	fields	attribute	specifies	a	tuple	of	string
whose	values	indicate	the	field	names	that	we	want	to	include	in	the
serialization	from	the	related	model.

Finally,	add	the	following	code	to	the	serializers.py	file	to	declare	the
PilotCompetitionSerializer	class.	The	code	file	for	the	sample	is	included	in
the	hillar_django_restful_06_01	folder	in	the	restful01/drones/serializers.py	file:

class	PilotCompetitionSerializer(serializers.ModelSerializer):	

				#	Display	the	pilot's	name	

				pilot	=	serializers.SlugRelatedField(queryset=Pilot.objects.all(),	slug_field='name')	

				#	Display	the	drone's	name	

				drone	=	serializers.SlugRelatedField(queryset=Drone.objects.all(),	slug_field='name')	

	

				class	Meta:	

								model	=	Competition	

								fields	=	(

												'url',	

												'pk',	

												'distance_in_feet',	

												'distance_achievement_date',	

												'pilot',	

												'drone')	

The	PilotCompetitionSerializer	class	is	a	subclass	of	the	ModelSerializer	class.
We	will	use	the	CompetitionSerializer	class	to	serialize	Competition	instances.
Previously,	we	created	the	CompetitionSerializer	class	to	serialize	Competition
instances	as	the	detail	of	a	Pilot.	We	will	use	the	new
PilotCompetitionSerializer	class	whenever	we	want	to	display	the	related	Pilot
name	and	the	related	Drone	name.

In	the	other	serializer	class,	the	CompetitionSerializer	class,	we	didn't	include
any	information	related	to	the	Pilot	and	we	included	all	the	details	for	the
drone.	This	new	class	is	an	example	of	the	flexibility	that	we	have	when
we	declare	more	than	one	serializer	for	the	same	model.

The	PilotCompetitionSerializer	class	declares	a	pilot	attribute	that	holds	an
instance	of	serializers.SlugRelatedField	with	its	queryset	argument	set	to
Pilot.objects.all()	and	its	slug_field	argument	set	to	'name'.	We	created	the
pilot	field	as	a	models.ForeignKey	instance	in	the	Competition	model	and	we
want	to	display	the	Pilot's	name	as	the	description	(slug	field)	for	the
related	Pilot.	Thus,	we	specified	'name'	as	the	slug_field.	When	the
browsable	API	has	to	display	the	possible	options	for	the	related	pilot	in	a
dropdown	in	a	form,	Django	will	use	the	expression	specified	in	the
queryset	argument	to	retrieve	all	the	possible	pilots	and	display	their
specified	slug	field.

The	PilotCompetitionSerializer	class	declares	a	drone	attribute	that	holds	an
instance	of	serializers.SlugRelatedField	with	its	queryset	argument	set	to
Drone.objects.all()	and	its	slug_field	argument	set	to	'name'.	We	created	the
drone	field	as	a	models.ForeignKey	instance	in	the	Competition	model	and	we
want	to	display	the	drone's	name	as	the	description	(slug	field)	for	the
related	Drone.

We	have	coded	all	the	necessary	serializers	for	our	new	RESTful	Web
Service.	The	following	table	summarizes	the	serializers	we	have.	Notice
that	we	have	two	different	serializers	for	the	Competition	model:

Serializer	class	name Superclass Related	model
DroneCategorySerializer HyperlinkedModelSerializer DroneCategory

DroneSerializer HyperlinkedModelSerializer Drone

CompetitionSerializer HyperlinkedModelSerializer Competition

PilotSerializer HyperlinkedModelSerializer Pilot

PilotCompetitionSerializer ModelSerializer Competition

Working	with	class-based
views
We	will	write	our	RESTful	Web	Service	by	coding	class-based	views.	We
will	take	advantage	of	a	set	of	generic	views	that	we	can	use	as	our	base
classes	for	our	class-based	views	to	reduce	the	required	code	to	the
minimum	and	reuse	the	behavior	that	has	been	generalized	in	the	Django
REST	framework.

We	will	create	subclasses	of	the	two	following	generic	class	views
declared	in	the	rest_framework.generics	module:

ListCreateAPIView:	This	class	view	implements	the	get	method	that
retrieves	a	listing	of	a	queryset	and	the	post	method	that	creates	a
model	instance

RetrieveUpdateDestroyAPIView:	This	class	view	implements	the	get,
delete,	put,	and	patch	methods	to	retrieve,	delete,	completely	update,
or	partially	update	a	model	instance

Those	two	generic	views	are	composed	by	combining	reusable	bits	of
behavior	in	the	Django	REST	framework	implemented	as	mixin	classes
declared	in	the	rest_framework.mixins	module.	We	can	create	a	class	that	uses
multiple	inheritance	and	combine	the	features	provided	by	many	of	these
mixin	classes.

The	following	line	shows	the	declaration	of	the	ListCreateAPIView	class	as
the	composition	of	ListModelMixin,	CreateModelMixin,	and
rest_framework.generics.GenericAPIView:

class	ListCreateAPIView(mixins.ListModelMixin,	

																								mixins.CreateModelMixin,	

																								GenericAPIView):	

The	following	line	shows	the	declaration	of	the	RetrieveUpdateDestroyAPIView
class	as	the	composition	of	RetrieveModelMixin,	UpdateModelMixin,
DestroyModelMixin,	and	rest_framework.generics.GenericAPIView:

class	RetrieveUpdateDestroyAPIView(mixins.RetrieveModelMixin,	

																																			mixins.UpdateModelMixin,	

																																			mixins.DestroyModelMixin,	

																																			GenericAPIView):	

Taking	advantage	of	generic
classes	and	viewsets
Now,	we	will	create	many	Django	class-based	views	that	will	use	the
previously	explained	generic	classes	combined	with	the	serializer	classes
to	return	JSON	representations	for	each	HTTP	request	that	our	RESTful
Web	Service	will	handle.

We	will	just	have	to	specify	a	queryset	that	retrieves	all	the	objects	in	the
queryset	attribute	and	the	serializer	class	in	the	serializer_class	attribute	for
each	subclass	that	we	declare.	The	behavior	coded	in	the	generic	classes
will	do	the	rest	for	us.	In	addition,	we	will	declare	a	name	attribute	with	the
string	name	we	will	use	to	identify	the	view.

Go	to	the	restful01/drones	folder	and	open	the	views.py	file.	Replace	the	code
in	this	file	with	the	following	code	that	declares	the	required	imports	and
the	class-based	views	for	our	web	service.	We	will	add	more	classes	to	this
file	later.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_06_01	folder	in	the	restful01/drones/views.py	file:

from	django.shortcuts	import	render	

from	rest_framework	import	generics	

from	rest_framework.response	import	Response	

from	rest_framework.reverse	import	reverse	

from	drones.models	import	DroneCategory	

from	drones.models	import	Drone	

from	drones.models	import	Pilot	

from	drones.models	import	Competition	

from	drones.serializers	import	DroneCategorySerializer	

from	drones.serializers	import	DroneSerializer	

from	drones.serializers	import	PilotSerializer	

from	drones.serializers	import	PilotCompetitionSerializer	

	

	

class	DroneCategoryList(generics.ListCreateAPIView):	

				queryset	=	DroneCategory.objects.all()	

				serializer_class	=	DroneCategorySerializer	

				name	=	'dronecategory-list'	

	

	

class	DroneCategoryDetail(generics.RetrieveUpdateDestroyAPIView):	

				queryset	=	DroneCategory.objects.all()	

				serializer_class	=	DroneCategorySerializer	

				name	=	'dronecategory-detail'	

	

	

class	DroneList(generics.ListCreateAPIView):	

				queryset	=	Drone.objects.all()	

				serializer_class	=	DroneSerializer	

				name	=	'drone-list'	

	

	

class	DroneDetail(generics.RetrieveUpdateDestroyAPIView):	

				queryset	=	Drone.objects.all()	

				serializer_class	=	DroneSerializer	

				name	=	'drone-detail'	

	

	

class	PilotList(generics.ListCreateAPIView):	

				queryset	=	Pilot.objects.all()	

				serializer_class	=	PilotSerializer	

				name	=	'pilot-list'	

	

	

class	PilotDetail(generics.RetrieveUpdateDestroyAPIView):	

				queryset	=	Pilot.objects.all()	

				serializer_class	=	PilotSerializer	

				name	=	'pilot-detail'	

	

	

class	CompetitionList(generics.ListCreateAPIView):	

				queryset	=	Competition.objects.all()	

				serializer_class	=	PilotCompetitionSerializer	

				name	=	'competition-list'	

	

	

class	CompetitionDetail(generics.RetrieveUpdateDestroyAPIView):	

				queryset	=	Competition.objects.all()	

				serializer_class	=	PilotCompetitionSerializer	

				name	=	'competition-detail'	

Generalizing	and	mixing
behavior
The	previous	classes	took	advantage	of	generalized	behavior.	Each	of	the
superclasses	for	the	classes	mixed	different	generalized	behaviors.	The
following	table	summarizes	the	HTTP	verbs	that	each	class-based	view	is
going	to	process	and	the	scope	to	which	it	applies.	Notice	that	we	can
execute	the	OPTIONS	HTTP	verb	on	any	of	the	scopes:

Scope Class-based
view	name

HTTP	verbs	that	it
will	process

Collection	of	drone
categories:	/drone-
categories/

DroneCategoryList
GET,	POST,	and
OPTIONS

Drone	category:
/drone-category/{id}

DroneCategoryDetail

GET,	PUT,	PATCH,
DELETE,	and
OPTIONS

Collection	of	drones:
/drones/

DroneList
GET,	POST,	and
OPTIONS

Drone:	/drone/{id} DroneDetail

GET,	PUT,	PATCH,
DELETE,	and
OPTIONS

Collection	of	Pilots:
/pilots/

PilotList
GET,	POST	and
OPTIONS

GET,	PUT,	PATCH,

Pilot:	/Pilot/{id} PilotDetail DELETE	and
OPTIONS

Collection	of
competitions:
/competitions/

CompetitionList
GET,	POST	and
OPTIONS

Score:	/competition/{id} CompetitionDetail

GET,	PUT,	PATCH,
DELETE	and
OPTIONS

Working	with	routing	and
endpoints
We	want	to	create	an	endpoint	for	the	root	of	our	web	service	to	make	it
easy	to	browse	the	resource	collections	and	resources	provided	by	our	web
service	with	the	browsable	API	feature	and	understand	how	everything
works.	Add	the	following	code	to	the	views.py	file	in	the	restful01/drones
folder	to	declare	the	ApiRoot	class	as	a	subclass	of	the	generics.GenericAPIView
class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_06_01	folder	in	the	restful01/drones/views.py	file:

class	ApiRoot(generics.GenericAPIView):	

				name	=	'api-root'	

				def	get(self,	request,	*args,	**kwargs):	

								return	Response({	

												'drone-categories':	reverse(DroneCategoryList.name,	request=request),	

												'drones':	reverse(DroneList.name,	request=request),	

												'pilots':	reverse(PilotList.name,	request=request),	

												'competitions':	reverse(CompetitionList.name,	request=request)	

												})	

The	ApiRoot	class	is	a	subclass	of	the	rest_framework.generics.GenericAPIView
class	and	declares	the	get	method.	The	GenericAPIView	class	is	the	base	class
for	all	the	other	generic	views	we	have	previousy	analyzed.

The	ApiRoot	class	defines	the	get	method	that	returns	a	Response	object	with
key/value	pairs	of	strings	that	provide	a	descriptive	name	for	the	view	and
its	URL,	generated	with	the	rest_framework.reverse.reverse	function.	This
URL	resolver	function	returns	a	fully	qualified	URL	for	the	view.

Go	to	the	restful01/drones	folder	and	create	a	new	file	named	urls.py.	Write
the	following	code	in	this	new	file.	The	following	lines	show	the	code	for
this	file	that	defines	the	URL	patterns	that	specifies	the	regular	expressions

that	have	to	be	matched	in	the	request	to	run	a	specific	method	for	a	class-
based	view	defined	in	the	views.py	file.

In	the	previous	example,	we	specified	a	function	that	represented	a	view.
In	this	case,	we	call	the	as_view	method	for	each	appropriate	class-based
view.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_06_01	folder	in	the	restful01/drones/urls.py	file:

from	django.conf.urls	import	url	

from	drones	import	views	

	

	

urlpatterns	=	[

				url(r'^drone-categories/$',		

								views.DroneCategoryList.as_view(),		

								name=views.DroneCategoryList.name),	

				url(r'^drone-categories/(?P<pk>[0-9]+)$',		

								views.DroneCategoryDetail.as_view(),	

								name=views.DroneCategoryDetail.name),	

				url(r'^drones/$',		

								views.DroneList.as_view(),	

								name=views.DroneList.name),	

				url(r'^drones/(?P<pk>[0-9]+)$',		

								views.DroneDetail.as_view(),	

								name=views.DroneDetail.name),	

				url(r'^pilots/$',		

								views.PilotList.as_view(),	

								name=views.PilotList.name),	

				url(r'^pilots/(?P<pk>[0-9]+)$',		

								views.PilotDetail.as_view(),	

								name=views.PilotDetail.name),	

				url(r'^competitions/$',		

								views.CompetitionList.as_view(),	

								name=views.CompetitionList.name),	

				url(r'^competitions/(?P<pk>[0-9]+)$',		

								views.CompetitionDetail.as_view(),	

								name=views.CompetitionDetail.name),	

				url(r'^$',	

								views.ApiRoot.as_view(),	

								name=views.ApiRoot.name),	

]

Now,	we	have	to	replace	the	code	in	the	urls.py	file	in	the	restful01	folder,
specifically,	the	restful01/urls.py	file.	The	file	defines	the	root	URL

configurations,	and	therefore,	we	must	include	the	URL	patterns	declared
in	the	previously	coded	drones/urls.py	file.	The	following	lines	show	the
new	code	for	the	restful01/urls.py	file.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_06_01	folder,	in	the	restful01/urls.py	file:

from	django.conf.urls	import	url,	include

	

urlpatterns	=	[

				url(r'^',	include('drones.urls')),

]

Making	requests	that	interact
with	resources	that	have
relationships
Now,	we	will	use	the	HTTP	command	or	its	curl	equivalents	to	compose
and	send	HTTP	requests	to	the	recently	coded	RESTful	Web	Service	that
allows	us	to	work	with	drone	categories,	drones,	pilots,	and	competitions.
We	will	use	JSON	for	the	requests	that	require	additional	data.	Remember
that	you	can	perform	the	same	tasks	with	your	favorite	GUI-	based	tool	or
with	the	browsable	API.

Launch	Django's	development	server	to	compose	and	send	HTTP	requests
to	our	new	unsecure	Web	service.	We	will	definitely	add	security	later.	In
case	you	don't	remember	how	to	start	Django's	development	server,	check
the	instructions	in	Chapter	3,	Creating	API	Views,	in	the	Launching
Django's	development	server	section.

First,	we	will	compose	and	send	an	HTTP	POST	request	to	create	a	new
drone	category:

http	POST	:8000/drone-categories/	name="Quadcopter"

The	following	is	the	equivalent	curl	command:

curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Quadcopter"}'	localhost:8000/drone-categories/

The	previous	command	will	compose	and	send	a	POST	HTTP	request	with
the	specified	JSON	key/value	pair.	The	request	specifies	/drone-categories/,
and	therefore,	it	will	match	the	'^drone-categories/$'	regular	expression	and

run	the	post	method	for	the	views.DroneCategoryList	class	based	view.
Remember	that	the	method	is	defined	in	the	ListCreateAPIView	superclass	and
it	ends	up	calling	the	create	method	defined	in	mixins.CreateModelMixin.

If	the	new	DroneCategory	instance	was	successfully	persisted	in	the	database,
the	call	to	the	method	will	return	an	HTTP	201	Created	status	code	and	the
recently	persisted	DroneCategory	serialized	to	JSON	in	the	response	body.
The	following	line	shows	a	sample	response	for	the	HTTP	request	with	the
new	DroneCategory	object	in	the	JSON	response.	Notice	that	the	response
body	includes	both	the	primary	key,	pk,	and	the	URL,	url,	for	the	created
category.	The	drones	array	is	empty	because	there	aren't	drones	related	to
the	recently	created	drone	category	yet.	The	response	doesn't	include	the
header	to	focus	on	the	body:

{

					"drones":	[],	

					"name":	"Quadcopter",	

					"pk":	1,	

					"url":	"http://localhost:8000/drone-categories/1"

}

Now,	we	will	compose	and	send	HTTP	requests	to	create	two	drones	that
belong	to	the	drone	category	we	recently	created:	Quadcopter.	We	specify	the
drone_category	value	with	the	name	of	the	desired	drone	category.	The
database	table	that	persists	the	Drone	model	(the	drones_drone	table)	will	save
the	value	of	the	primary	key	of	the	related	DroneCategory	whose	name	value
matches	the	one	we	provide:

				http	POST	:8000/drones/	name="WonderDrone"	drone_category="Quadcopter"	manufacturing_date="2017-07-20T02:02:00.716312Z"	has_it_competed=false	

				http	POST	:8000/drones/	name="Atom"	drone_category="Quadcopter"	manufacturing_date="2017-08-18T02:02:00.716312Z"	has_it_competed=false

		

The	following	are	the	equivalent	curl	commands:

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"WonderDrone",	"drone_category":"Quadcopter",	"manufacturing_date":	"2017-07-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Atom",	"drone_category":"Quadcopter",	"manufacturing_date":	"2017-08-18T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

		

The	previous	commands	will	compose	and	send	two	POST	HTTP	requests
with	the	specified	JSON	key/value	pairs.	The	request	specifies	/toys/,	and
therefore,	it	will	match	the	'^toys/$'	regular	expression	and	run	the	post
method	for	the	views.DroneList	class	based	view.

The	following	lines	show	sample	responses	for	the	two	HTTP	requests
with	the	new	Drone	objects	in	the	JSON	responses.	Notice	that	the	response
includes	only	the	URL,	url,	for	the	created	drones	and	doesn't	include	the
primary	key.	The	value	for	drone_category	is	the	name	for	the	related
DroneCategory:

				{

								"drone_category":	"Quadcopter",	

								"has_it_competed":	false,	

								"inserted_timestamp":	"2017-11-03T01:58:49.135737Z",	

								"manufacturing_date":	"2017-07-20T02:02:00.716312Z",	

								"name":	"WonderDrone",	

								"url":	"http://localhost:8000/drones/1"

				}

				{

								"drone_category":	"Quadcopter",	

								"has_it_competed":	false,	

								"inserted_timestamp":	"2017-11-03T01:59:31.108031Z",	

								"manufacturing_date":	"2017-08-18T02:02:00.716312Z",	

								"name":	"Atom",	

								"url":	"http://localhost:8000/drones/2"

				}		

We	can	run	the	commands	explained	in	the	Analyzing	the	database	section
to	check	the	rows	that	were	inserted	in	the	tables	that	Django	created	in
the	PostgreSQL	database	to	persist	the	models.	The	drone_category_id
column	for	the	drones_drone	table	saves	the	value	of	the	primary	key	of	the
related	row	in	the	drones_drone_category	table.	The	DroneSerializer	class	uses
the	SlugRelatedField	to	display	the	name	value	for	the	related	DroneCategory.	The
following	screenshot	uses	the	psql	command-line	utility	to	query	the
contents	for	the	drones_drone_category	and	the	drones_drone	table	in	a

PostgreSQL	database	after	running	the	HTTP	requests:

Now,	we	will	compose	and	send	an	HTTP	request	to	retrieve	the	drone
category	that	contains	the	two	drones	we	created.	Don't	forget	to	replace	1
with	the	primary	key	value	of	the	drone	category	whose	name	is	equal	to
'Quadcopter'	in	your	configuration:

http	:8000/drone-categories/1

The	following	is	the	equivalent	curl	command:

curl	-iX	GET	localhost:8000/drone-categories/1		

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/drone-categories/1.	The	request	has	a	number
after	/drone-categories/,	and	therefore,	it	will	match	the	'^drone-categories/(?
P<pk>[0-9]+)$'	regular	expression	and	run	the	get	method	for	the
views.DroneCategoryDetail	class-based	view.

Remember	that	the	method	is	defined	in	the	RetrieveUpdateDestroyAPIView
superclass	and	it	ends	up	calling	the	retrieve	method	defined	in
mixins.RetrieveModelMixin.	The	following	lines	show	a	sample	response	for
the	HTTP	request,	with	the	DroneCategory	object	and	the	hyperlinks	of	the
related	drones	in	the	JSON	response:

				HTTP/1.0	200	OK

				Allow:	GET,	PUT,	PATCH,	DELETE,	HEAD,	OPTIONS

				Content-Length:	154

				Content-Type:	application/json

				Date:	Fri,	03	Nov	2017	02:58:33	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"drones":	[

												"http://localhost:8000/drones/2",	

												"http://localhost:8000/drones/1"

],	

								"name":	"Quadcopter",	

								"pk":	1,	

								"url":	"http://localhost:8000/drone-categories/1"

				}		

The	DroneCategorySerializer	class	defined	the	drones	attribute	as	a
HyperlinkedRelatedField,	and	therefore,	the	serializer	renders	the	URL	for
each	related	Drone	instance	in	the	value	for	the	drones	array.	Later,	we	will
display	the	results	in	a	web	browser	through	the	browsable	API	and	we
will	be	able	to	click	or	tap	on	the	hyperlink	to	see	the	details	for	each
drone.

Now,	we	will	compose	and	send	an	HTTP	POST	request	to	create	a	drone
related	to	a	drone	category	name	that	doesn't	exist:	'Octocopter':

				http	POST	:8000/drones/	name="Noisy	Drone"	drone_category="Octocopter"	manufacturing_date="2017-10-23T02:03:00.716312Z"	has_it_competed=false	

The	following	is	the	equivalent	curl	command:

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Noisy	Drone",	"drone_category":"Octocopter",	"manufacturing_date":	"2017-10-23T02:03:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

Django	won't	be	able	to	retrieve	a	DroneCategory	instance	whose	name	is	equal
to	the	specified	value:	Octocopter.	Hence,	as	a	result	of	the	previous	request,
we	will	receive	a	400	Bad	Request	status	code	in	the	response	header	and	a
message	related	to	the	value	specified	for	the	drone_category	key	in	the
JSON	body.	The	following	lines	show	a	sample	response:

				HTTP/1.0	400	Bad	Request

				Allow:	GET,	POST,	HEAD,	OPTIONS

				Content-Length:	66

				Content-Type:	application/json

				Date:	Fri,	03	Nov	2017	03:15:07	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"drone_category":	[

												"Object	with	name=Octocopter	does	not	exist."

]

				}

Now,	we	will	compose	and	send	HTTP	requests	to	create	two	pilots:

http	POST	:8000/pilots/	name="Penelope	Pitstop"	gender="F"	races_count=0

http	POST	:8000/pilots/	name="Peter	Perfect"	gender="M"	races_count=0	

The	following	are	the	equivalent	curl	commands:

curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Penelope	Pitstop",	"gender":"F",	"races_count":	0}'	localhost:8000/pilots/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Peter	Perfect",	"gender":"M",	"races_count":	0}'	localhost:8000/pilots/

The	previous	commands	will	compose	and	send	two	HTTP	POST	requests
with	the	specified	JSON	key/value	pairs.	The	request	specifies	/pilots/,
and	therefore,	it	will	match	the	'^Pilots/$'	regular	expression	and	run	the
post	method	for	the	views.PilotList	class-based	view.

The	following	lines	show	sample	responses	for	the	two	HTTP	requests
with	the	new	Pilot	objects	in	the	JSON	responses.	Notice	that	the	response
includes	only	the	url,	url,	for	the	created	pilots	and	doesn't	include	the
primary	key.	The	value	for	gender_description	is	the	choice	description	for
the	gender	char.	The	competitions	array	is	empty	because	there	aren't
competitions	related	to	each	new	Pilot	yet.	The	responses	don't	include	the
headers:

				{

								"url":	"http://localhost:8000/pilots/1",

								"name":	"Penelope	Pitstop",

								"gender":	"F",

								"gender_description":	"Female",

								"races_count":	0,

								"inserted_timestamp":"2017-11-03T03:22:36.399433Z",	

								"competitions":[]

				}

				{

								"url":	"http://localhost:8000/pilots/2",

								"name":	"Peter	Perfect",

								"gender":	"M",

								"gender_description":	"Male",

								"races_count":	0,

								"inserted_timestamp":	"2017-11-03T03:23:02.276186Z",

								"competitions":	[]

				}

Now,	we	will	compose	and	send	many	HTTP	POST	requests	to	create	three
competitions:

				http	POST	:8000/competitions/	distance_in_feet=800	distance_achievement_date="2017-10-20T05:03:20.776594Z"	pilot="Penelope	Pitstop"	drone="Atom"

				http	POST	:8000/competitions/	distance_in_feet=2800	distance_achievement_date="2017-10-21T06:02:23.776594Z"	pilot="Penelope	Pitstop"	drone="WonderDrone"

				http	POST	:8000/competitions/	distance_in_feet=790	distance_achievement_date="2017-10-20T05:43:20.776594Z"	pilot="Peter	Perfect"	drone="Atom"

The	following	are	the	equivalent	curl	commands:

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"distance_in_feet":"800",	"distance_achievement_date":"2017-10-20T05:03:20.776594Z",	"pilot":"Penelope	Pitstop",	"drone":"Atom"}'	localhost:8000/competitions/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"distance_in_feet":"2800",	"distance_achievement_date":"2017-10-21T06:02:23.776594Z",	"pilot":"Penelope	Pitstop",	"drone":"WonderDrone"}'	localhost:8000/competitions/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"distance_in_feet":"790",	"distance_achievement_date":"2017-10-20T05:43:20.776594Z",	"pilot":"Peter	Perfect",	"drone":"Atom"}'	localhost:8000/competitions/

The	previous	commands	will	compose	and	send	three	HTTP	POST	requests
with	the	specified	JSON	key/value	pairs.	The	request	specifies
/competitions/,	and	therefore,	it	will	match	the	'^competitions/$'	regular
expression	and	run	the	post	method	for	the	views.CompetitionList	class	based
view.

The	following	lines	show	sample	responses	for	the	three	HTTP	requests

with	the	new	Competition	objects	in	the	JSON	responses.	Django	REST
framework	uses	the	PilotCompetitionSerializer	class	to	generate	the	JSON
response.	Hence,	the	value	for	drone	is	the	name	for	the	related	Drone
instance	and	the	value	for	Pilot	is	the	name	for	the	related	Pilot	instance.
The	PilotCompetitionSerializer	class	used	SlugRelatedField	for	both	fields,	and
therefore,	we	can	specify	the	names	as	the	values	for	both	the	drone	and
pilot	keys.	The	responses	don't	include	the	headers:

				{

								"distance_achievement_date":	"2017-10-20T05:03:20.776594Z",	

								"distance_in_feet":	800,	

								"drone":	"Atom",	

								"pilot":	"Penelope	Pitstop",	

								"pk":	1,	

								"url":	"http://localhost:8000/competitions/1"

				}

				{

								"distance_achievement_date":	"2017-10-21T06:02:23.776594Z",	

								"distance_in_feet":	2800,	

								"drone":	"WonderDrone",	

								"pilot":	"Penelope	Pitstop",	

								"pk":	2,	

								"url":	"http://localhost:8000/competitions/2"

				}

				{

								"distance_achievement_date":	"2017-10-20T05:43:20.776594Z",	

								"distance_in_feet":	790,	

								"drone":	"Atom",	

								"pilot":	"Peter	Perfect",	

								"pk":	3,	

								"url":	"http://localhost:8000/competitions/3"

				}

We	can	run	the	commands	explained	in	the	Analyzing	the	database	section
to	check	the	rows	that	were	inserted	in	the	tables	that	Django	created	in
the	PostgreSQL	database	to	persist	the	models.	The	drone_id	column	for	the
drones_competition	table	saves	the	value	of	the	primary	key	of	the	related	row
in	the	drones_drone	table.	In	addition,	the	pilot_id	column	for	the
drones_competition	table	saves	the	value	of	the	primary	key	of	the	related	row
in	the	drones_pilot	table.	The	following	screenshot	uses	the	psql	command-
line	utility	to	query	the	contents	for	the	drones_drone_category,	drones_drone,
drones_pilot,	and	drones_competition	tables	in	a	PostgreSQL	database	after

running	the	HTTP	requests:

Now,	we	will	compose	and	send	an	HTTP	GET	request	to	retrieve	a	specific
pilot	that	participated	in	two	competitions,	that	is,	the	pilot	resource	whose
id	or	primary	key	is	equal	to	1.	Don't	forget	to	replace	1	with	the	primary
key	value	of	the	Pilot	whose	name	is	equal	to	'Penelope	Pitstop'	in	your
configuration:

				http	:8000/pilots/1

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	localhost:8000/Pilots/1

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/Pilots/1.	The	request	has	a	number	after
/pilots/,	and	therefore,	it	will	match	the	'^Pilots/(?P<pk>[0-9]+)$'	regular
expression	and	run	the	get	method	for	the	views.PilotDetail	class-based
view.

Remember	that	the	get	method	is	defined	in	the	RetrieveUpdateDestroyAPIView

superclass	and	it	ends	up	calling	the	retrieve	method	defined	in
mixins.RetrieveModelMixin.	The	following	lines	show	a	sample	response	for
the	HTTP	request,	with	the	Pilot	object,	the	related	Competition	objects	and
the	Drone	object	related	to	each	Competition	object	in	the	JSON	response:

				HTTP/1.0	200	OK

				Allow:	GET,	PUT,	PATCH,	DELETE,	HEAD,	OPTIONS

				Content-Length:	909

				Content-Type:	application/json

				Date:	Fri,	03	Nov	2017	04:40:43	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"competitions":	[

												{

																"distance_achievement_date":	"2017-10-

																	21T06:02:23.776594Z",	

																"distance_in_feet":	2800,	

																"drone":	{

																				"drone_category":	"Quadcopter",	

																				"has_it_competed":	false,	

																				"inserted_timestamp":	"2017-11-

																					03T01:58:49.135737Z",	

																				"manufacturing_date":	"2017-07-

																					20T02:02:00.716312Z",	

																				"name":	"WonderDrone",	

																				"url":	"http://localhost:8000/drones/1"

																},	

																"pk":	2,	

																"url":	"http://localhost:8000/competitions/2"

												},	

												{

																"distance_achievement_date":	"2017-10-

																		20T05:03:20.776594Z",	

																"distance_in_feet":	800,	

																"drone":	{

																				"drone_category":	"Quadcopter",	

																				"has_it_competed":	false,	

																				"inserted_timestamp":	"2017-11-

																						03T01:59:31.108031Z",	

																				"manufacturing_date":	"2017-08-

																					18T02:02:00.716312Z",	

																				"name":	"Atom",	

																				"url":	"http://localhost:8000/drones/2"

																},	

																"pk":	1,	

																"url":	"http://localhost:8000/competitions/1"

												}

],	

								"gender":	"F",	

								"gender_description":	"Female",	

								"inserted_timestamp":	"2017-11-03T03:22:36.399433Z",	

								"name":	"Penelope	Pitstop",	

								"races_count":	0,	

								"url":	"http://localhost:8000/pilots/1"

				}

The	PilotSerializer	class	defined	the	competitions	attribute	as	a
CompetitionSerializer	instance	with	the	many	argument	equal	to	True.	Hence,
this	serializer	renders	each	Competition	related	to	the	Pilot.	The
CompetitionSerializer	class	defined	the	drone	attribute	as	a	DroneSerializer,	and
therefore,	this	serializer	renders	each	drone	related	to	the	competition.

Later,	we	will	render	the	results	in	a	web	browser	through	the	browsable
API	and	we	will	be	able	to	click	or	tap	on	the	hyperlink	of	each	of	the
related	resources.	However,	in	this	case,	we	also	see	all	their	details
without	having	to	follow	the	hyperlink	in	the	JSON	response	body.

Test	your	knowledge
Let's	see	whether	you	can	answer	the	following	questions	correctly.

1.	 The	related_name	argument	for	the	django.db.models.ForeignKey	class
initializer	specifies:

1.	 The	name	to	use	for	the	relation	from	the	related	object
back	to	this	object

2.	 The	related	model	class	name
3.	 The	related	model	primary	key	attribute	name

2.	 If	we	use	the	following	line	to	declare	the	pilot	field	in	the
Competition	model:	pilot	=	models.ForeignKey(Pilot,
related_name='competitions',	on_delete=models.CASCADE).	What	will
Django's	ORM	do	whenever	we	delete	a	specific	Pilot?

1.	 All	the	related	competitions	in	which	this	Pilot
participated	will	remain	without	changes	in	the	database

2.	 All	the	related	competitions	in	which	this	Pilot
participated	will	be	deleted	too

3.	 All	the	related	pilots	that	are	related	to	the	Competition
will	be	deleted	too

3.	 The	rest_framework.serializers.HyperlinkedModelSerializer	class	is	a	type
of	ModelSerializer	that	represents	the	relationships	to	other	model

instances	with:

1.	 Primary	key	values
2.	 Foreign	key	values
3.	 Hyperlinks

4.	 Which	of	the	following	attributes	defined	in	the	Meta	inner	class
for	a	class	that	inherits	from	ModelSerializer	specifies	the	model
related	to	the	serializer	that	is	being	declared:

1.	 related-model
2.	 model
3.	 main-model

5.	 Which	of	the	following	attributes	defined	in	the	Meta	inner	class
for	a	class	that	inherits	from	ModelSerializer	specifies	the	tuple	of
string	whose	values	indicate	the	field	names	that	we	want	to
include	in	the	serialization	from	the	model	related	to	the	serializer:

1.	 included-fields
2.	 fields
3.	 serialized-fields

The	rights	answers	are	included	in	the	Appendix,	Solutions.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=44&action=edit#post_454

Summary
In	this	chapter,	we	defined	the	requirements	for	a	complex	RESTful	Web
Service	in	which	we	needed	to	work	with	drone	categories,	drones,	pilots,
and	competitions.	We	created	a	new	app	with	Django	and	configured	the
new	web	service.

We	defined	many-to-one	relationships	between	the	models	with
models.ForeignKey.	We	configured	Django	to	work	with	a	PostgreSQL
database.	We	executed	migrations	that	generated	tables	with	relationships
between	them.	We	analyzed	the	generated	database	and	we	configured
serialization	and	deserialization	for	the	models.	We	declared	two
serializers	for	a	single	model	to	understand	the	flexibility	we	have	with
Django	and	the	Django	REST	framework.

We	defined	hyperlinks	with	the	help	of	the	HyperlinkedModelSerializer	class
and	we	worked	with	class-based	views.	In	this	case,	we	took	advantage	of
generic	classes	and	generic	views	that	generalize	and	mix	predefined
behaviors.	We	worked	with	routings	and	endpoints	and	we	prepared	our
RESTful	Web	Service	to	work	with	the	browsable	API.	We	made	many
different	HTTP	requests	to	create	and	retrieve	resources	that	have
relationships	between	them.	We	did	everything	without	writing	a	huge
amount	of	code.

Now	that	we	understand	how	to	work	with	class-based	views,	and	to	take
advantage	of	generalized	behaviors	and	materialize	complex	relationships,
we	will	add	constraints,	filtering,	searching,	ordering,	and	pagination
features	to	our	RESTful	Web	Service.	We	will	cover	these	topics	in	the
next	chapter.

Using	Constraints,	Filtering,
Searching,	Ordering,	and
Pagination
In	this	chapter,	we	will	take	advantage	of	many	features	included	in	the
Django	REST	framework	to	add	constraints,	pagination,	filtering,
searching,	and	ordering	features	to	our	RESTful	Web	Service.	We	will	add
a	huge	amount	of	features	with	a	few	lines	of	code.	We	will	gain	an
understanding	of:

Browsing	the	API	with	resources	and	relationships

Defining	unique	constraints

Working	with	unique	constraints

Understanding	pagination

Configuring	pagination	classes

Making	requests	that	paginate	results

Working	with	customized	pagination	classes

Making	requests	that	use	customized	paginated	results

Configuring	filter	backend	classes

Adding	filtering,	searching,	and	ordering

Working	with	different	types	of	Django	filters

Making	requests	that	filter	results

Composing	requests	that	filter	and	order	results

Making	requests	that	perform	starts	with	searches

Using	the	browsable	API	to	test	pagination,	filtering,	searching,
and	ordering

Browsing	the	API	with
resources	and	relationships
We	will	take	advantage	of	the	browsable	API	feature	that	we	introduced	in
Chapter	5,	Understanding	and	Customizing	the	Browsable	API	Feature,
with	our	new	web	service.	Let's	start	browsing	our	new	RESTful	Web
Service.	Open	a	web	browser	and	enter	http://localhost:8000.	The	browser
will	compose	and	send	a	GET	request	to	/	with	text/html	as	the	desired
content	type,	and	the	returned	HTML	web	page	will	be	rendered.

The	request	will	end	up	executing	the	GET	method	defined	in	the	ApiRoot
class	within	the	views.py	file.	The	following	screenshot	shows	the	rendered
web	page	with	the	resource	description	Api	Root:

The	Api	Root	renders	the	following	hyperlinks:

http://localhost:8000/drone-categories/:	The	collection	of	drone
categories

http://localhost:8000/drones/:	The	collection	of	drones

http://localhost:8000/pilots/:	The	collection	of	pilots

http://localhost:8000/competitions/:	The	collection	of	competitions

We	can	easily	access	each	resource	collection	by	clicking	or	tapping	on
the	appropriate	hyperlink.	Once	we	access	each	resource	collection,	we
can	perform	operations	on	the	different	resources	throughout	the
browsable	API.	Whenever	we	visit	any	of	the	resource	collections,	we	can
use	the	breadcrumb	to	go	back	to	the	Api	Root	that	lists	all	the	hyperlinks.

Our	new	RESTful	Web	Service	takes	advantage	of	many
generic	views.	These	views	provide	many	features	for	the
browsable	API	that	weren't	included	when	we	worked	with
function-based	views,	and	we	will	be	able	to	use	forms	to
easily	compose	and	send	HTTP	POST	requests.

Click	or	tap	on	the	URL	at	the	right-hand	side	of	drone-categories	and	the
web	browser	will	go	to	http://localhost:8000/drone-categories/.	As	a	result,
Django	will	render	the	web	page	for	the	Drone	Category	List.	At	the
bottom	of	the	web	page,	there	are	two	tabs	to	make	an	HTTP	POST
request:	Raw	data	and	HTML	form.	By	default,	the	HTML	form	tab	is
activated	and	displays	an	automatically	generated	form	with	a	textbox	to
enter	the	value	for	the	Name	field	to	create	a	new	drone	category.	We	can
use	this	form	to	easily	compose	and	send	an	HTTP	POST	request	without
having	to	deal	with	the	raw	JSON	data	as	we	did	when	working	with	the
browsable	API	and	our	previous	web	service.	The	following	screenshot
shows	the	HTML	form	to	create	a	new	drone	category:

HTML	forms	make	it	really	easy	to	generate	requests	to	test
our	RESTful	web	service	with	the	browsable	API.

Enter	the	following	value	in	the	Name	textbox:	Octocopter.	Then,	click	or
tap	POST	to	create	a	new	drone	category.	The	browsable	API	will
compose	and	send	an	HTTP	POST	request	to	/drone-categories/	with	the
specified	data.	Then,	we	will	see	the	results	of	this	request	in	the	web
browser.	The	following	screenshot	shows	the	rendered	web	page	with	the
results	of	the	previous	operation,	with	an	HTTP	status	code	of	201	Created
in	the	response	and	the	previously	explained	HTML	form	with	the	POST
button	that	allows	us	to	continue	composing	and	sending	HTTP	POST
requests	to	/drone-categories/:

Now,	you	can	go	back	to	the	Api	Root	by	clicking	on	the	link	on	the
breadcrumb	and	use	the	HTML	forms	to	create	drones,	pilots,	and	finally,
competitions.	For	example,	go	to	the	Api	Root	and	click	or	tap	on	the
URL	at	the	right-hand	side	of	drones	and	the	web	browser	will	go	to
http://localhost:8000/drones/.	As	a	result,	Django	will	render	the	web	page
for	the	Drone	List.	At	the	bottom	of	the	web	page,	there	are	two	tabs	to
make	an	HTTP	POST	request:	Raw	data	and	HTML	form.	By	default,	the
HTML	form	tab	is	activated	and	displays	an	automatically	generated	form
with	the	appropriate	controls	for	the	following	fields:

Name

Drone	category

Manufacturing	date

Has	it	competed

The	Drone	category	field	provides	a	drop-down	with	all	the	existing	drone
categories	so	that	we	can	select	one	of	them	for	our	new	drone.	The	Has	it
competed	field	provides	a	checkbox	because	the	underlying	field	is

Boolean.

We	can	use	this	form	to	easily	compose	and	send	an	HTTP	POST	request
without	having	to	deal	with	the	raw	JSON	data	as	we	did	when	working
with	the	browsable	API	and	our	previous	web	service.	The	following
screenshot	shows	the	HTML	form	to	create	a	new	drone:

Defining	unique	constraints
The	RESTful	Web	Service	doesn't	use	any	constraints,	and	therefore,	it	is
possible	to	create	many	drone	categories	with	the	same	name.	We	don't
want	to	have	many	drone	categories	with	the	same	name.	Each	drone
category	name	must	be	unique	in	the	database	table	that	persists	drone
categories	(the	drones_dronecategory	table).	We	also	want	drones	and	pilots	to
have	unique	names.	Hence,	we	will	make	the	necessary	changes	to	add
unique	constraints	to	each	of	the	following	fields:

The	name	field	of	the	DroneCategory	model

The	name	field	of	the	Drone	model

The	name	field	of	the	Pilot	model

We	will	learn	the	necessary	steps	to	edit	existing	models	and	add
constraints	to	fields	that	are	already	persisted	in	tables	and	to	propagate
the	changes	in	the	underlying	database	by	running	the	already	analyzed
migrations	process.

Make	sure	you	quit	Django's	development	server.	Remember	that	you	just
need	to	press	Ctrl	+	C	in	the	terminal	or	Command	Prompt	window	in
which	it	is	running.	We	have	to	edit	the	models	and	then	execute
migrations	before	starting	Django's	development	server	again.

Now,	we	will	edit	the	existing	code	that	declares	the	models	to	add	unique
constraints	to	the	name	field	for	the	models	that	we	use	to	represent	and
persist	the	drone	categories,	drones,	and	pilots.	Open	the	drones/models.py
file	and	replace	the	code	that	declares	the	DroneCategory,	Drone,	and	Pilot
classes	with	the	following	code.	The	lines	that	were	edited	are	highlighted
in	the	code	listing.	The	code	for	the	Competition	class	remains	without

changes.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_07_01	folder,	in	the	restful01/drones/models.py	file:

		class	DroneCategory(models.Model):	

					name	=	models.CharField(max_length=250,	unique=True)	

	

					class	Meta:	

								ordering	=	('name',)	

	

					def	__str__(self):	

									return	self.name	

	

	

		class	Drone(models.Model):	

					name	=	models.CharField(max_length=250,	unique=True)	

					drone_category	=	models.ForeignKey(

									DroneCategory,		

									related_name='drones',		

									on_delete=models.CASCADE)	

						manufacturing_date	=	models.DateTimeField()	

						has_it_competed	=	models.BooleanField(default=False)	

						inserted_timestamp	=	models.DateTimeField(auto_now_add=True)	

	

				class	Meta:	

								ordering	=	('name',)	

	

				def	__str__(self):	

								return	self.name	

	

	

		class	Pilot(models.Model):	

				MALE	=	'M'	

				FEMALE	=	'F'	

				GENDER_CHOICES	=	(

								(MALE,	'Male'),	

								(FEMALE,	'Female'),	

)	

				name	=	models.CharField(max_length=150,	blank=False,	unique=True)	

				gender	=	models.CharField(

								max_length=2,	

								choices=GENDER_CHOICES,	

								default=MALE,	

)	

				races_count	=	models.IntegerField()	

				inserted_timestamp	=	models.DateTimeField(auto_now_add=True)	

	

				class	Meta:	

								ordering	=	('name',)	

	

				def	__str__(self):	

								return	self.name	

We	added	unique=True	as	one	of	the	named	arguments	for	each	call	to	the
models.CharField	initializer.	This	way,	we	specify	that	the	fields	must	be
unique,	and	Django's	ORM	will	translate	this	into	a	requirement	for	the
creation	of	the	necessary	unique	constraints	for	the	fields	in	the	underlying
database	tables.

Now,	it	is	necessary	to	execute	the	migrations	that	will	generate	the	unique
constraints	we	added	for	the	fields	in	the	models	in	the	database.	This
time,	the	migrations	process	will	synchronize	the	database	with	the
changes	we	made	in	the	models,	and	therefore,	the	process	will	apply	a
delta.	Run	the	following	Python	script:

				python	manage.py	makemigrations	drones

The	following	lines	show	the	output	generated	after	running	the	previous
command:

Migrations	for	'drones':

drones/migrations/0002_auto_20171104_0246.py

-	Alter	field	name	on	drone

-	Alter	field	name	on	dronecategory

-	Alter	field	name	on	pilot		

The	lines	in	the	output	indicate	that	the
drones/migrations/0002_auto_20171104_0246.py	file	includes	the	code	to	alter	the
fields	called	name	on	drone,	dronecategory,	and	pilot.	It	is	important	to	take	into
account	that	the	Python	filename	generated	by	the	migrations	process
encodes	the	date	and	time,	and	therefore,	the	name	will	be	different	when
you	run	the	code	in	your	development	computer.

The	following	lines	show	the	code	for	the	file	that	was	automatically
generated	by	Django.	The	code	file	for	the	sample	is	included	in	the

hillar_django_restful_07_01	folder,	in	the
restful01/drones/migrations/0002_auto_20171104_0246.py	file:

#	-*-	coding:	utf-8	-*-	

#	Generated	by	Django	1.11.5	on	2017-11-04	02:46	

from	__future__	import	unicode_literals	

	

from	django.db	import	migrations,	models	

	

	

class	Migration(migrations.Migration):	

	

				dependencies	=	[

								('drones',	'0001_initial'),	

]	

	

				operations	=	[

								migrations.AlterField(

												model_name='drone',	

												name='name',	

												field=models.CharField(max_length=250,	unique=True),	

),	

								migrations.AlterField(

												model_name='dronecategory',	

												name='name',	

												field=models.CharField(max_length=250,	unique=True),	

),	

								migrations.AlterField(

												model_name='pilot',	

												name='name',	

												field=models.CharField(max_length=50,	unique=True),	

),	

]	

The	code	defines	a	subclass	of	the	django.db.migrations.Migration	class	called
Migration,	which	defines	an	operations	list	with	many	migrations.AlterField
instances.	Each	migrations.AlterField	instance	will	alter	the	field	in	the	table
for	each	of	the	related	models:	drone,	dronecategory,	and	pilot.

Now,	run	the	following	Python	script	to	execute	all	the	generated
migrations	and	apply	the	changes	in	the	underlying	database	tables:

				python	manage.py	migrate

The	following	lines	show	the	output	generated	after	running	the	previous
command.	Notice	that	the	order	in	which	the	migrations	are	executed	can
differ	in	your	development	computer:

				Operations	to	perform:

						Apply	all	migrations:	admin,	auth,	contenttypes,	drones,	sessions

				Running	migrations:

						Applying	drones.0002_auto_20171104_0246...	OK

		

After	we	run	the	previous	command,	we	will	have	unique	indexes	on	the
name	fields	for	the	following	tables	in	the	PostgreSQL	database:

drones_drone

drones_dronecategory

drones_pilot

We	can	use	the	PostgreSQL	command-line	tools	or	any	other	application
that	allows	us	to	easily	check	the	contents	of	the	PostgreSQL	database	to
check	the	tables	that	Django	updated.	If	you	are	working	with	an	SQLite
or	any	other	database	with	this	example,	make	sure	you	use	the	commands
or	tools	related	to	the	database	you	are	using.

The	following	screenshot	shows	a	list	of	the	indexes	for	each	of	the
previously	enumerated	tables	in	the	SQLPro	for	Postgres	GUI	tool.	Each
table	has	a	new	unique	index	for	the	name	field:

The	following	are	the	names	generated	for	the	new	unique	indexes	in	the
sample	database:

The	drones_drone_name_85faecee_uniq	index	for	the	drones_drone	table

The	drones_drone_dronecategory_name_dedead86_uniq	index	for	the
drones_dronecategory	table

The	drones_pilot_name_3b56f2a1_uniq	index	for	the	drones_pilot	table

Working	with	unique
constraints
Now,	we	can	launch	Django's	development	server	to	compose	and	send
HTTP	requests	to	understand	how	unique	constraints	work	when	applied
to	our	models.	Execute	any	of	the	following	two	commands,	based	on
your	needs,	to	access	the	API	in	other	devices	or	computers	connected	to
your	LAN.	Remember	that	we	analyzed	the	difference	between	them	in	Cha
pter	3,	Creating	API	Views,	in	the	Launching	Django's	development	server
section:

				python	manage.py	runserver

				python	manage.py	runserver	0.0.0.0:8000	

After	we	run	any	of	the	previous	commands,	the	development	server	will
start	listening	at	port	8000.

Now,	we	will	compose	and	send	an	HTTP	request	to	create	a	drone
category	with	a	name	that	already	exists:	'Quadcopter',	as	shown	below:

				http	POST	:8000/drone-categories/	name="Quadcopter"

The	following	is	the	equivalent	curl	command:

	curl	-iX	POST	-H	"Content-Type:	application/json"	-d		'{"name":"Quadcopter"}'	localhost:8000/drone-categories/

Django	won't	be	able	to	persist	a	DroneCategory	instance	whose	name	is	equal
to	the	specified	value	because	it	violates	the	unique	constraint	we	just
added	to	the	name	field	for	the	DroneCategory	model.	As	a	result	of	the	request,

we	will	receive	a	400	Bad	Request	status	code	in	the	response	header	and	a
message	related	to	the	value	specified	for	the	name	field	in	the	JSON	body:
"drone	category	with	this	name	already	exists."	The	following	lines	show	the
detailed	response:

				HTTP/1.0	400	Bad	Request

				Allow:	GET,	POST,	HEAD,	OPTIONS

				Content-Length:	58

				Content-Type:	application/json

				Date:	Sun,	05	Nov	2017	04:00:42	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"name":	[

												"drone	category	with	this	name	already	exists."

]

				}

We	made	the	necessary	changes	to	avoid	duplicate	values	for
the	name	field	in	drone	categories,	drones,	or	pilots.	Whenever
we	specify	the	name	for	any	of	these	resources,	we	will	be
referencing	the	same	unique	resource,	because	duplicates
aren't	possible.

Now,	we	will	compose	and	send	an	HTTP	request	to	create	a	pilot	with	a
name	that	already	exists:	'Penelope	Pitstop',	as	shown	below:

				http	POST	:8000/pilots/	name="Penelope	Pitstop"	gender="F"	

				races_count=0

The	following	is	the	equivalent	curl	command:

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d				

				'{"name":"Penelope	Pitstop",	"gender":"F",	"races_count":	0}'			

				localhost:8000/pilots/

The	previous	command	will	compose	and	send	an	HTTP	POST	request	with
the	specified	JSON	key-value	pairs.	The	request	specifies	/pilots/,	and
therefore,	it	will	match	the	'^pilots/$'	regular	expression	and	will	run	the
post	method	for	the	views.PilotList	class-based	view.	Django	won't	be	able
to	persist	a	Pilot	instance	whose	name	is	equal	to	the	specified	value	because
it	violates	the	unique	constraint	we	just	added	to	the	name	field	for	the	Pilot
model.	As	a	result	of	the	request,	we	will	receive	a	400	Bad	Request	status
code	in	the	response	header	and	a	message	related	to	the	value	specified
for	the	name	field	in	the	JSON	body:	"pilot	with	this	name	already	exists."	The
following	lines	show	the	detailed	response:

				HTTP/1.0	400	Bad	Request

				Allow:	GET,	POST,	HEAD,	OPTIONS

				Content-Length:	49

				Content-Type:	application/json

				Date:	Sun,	05	Nov	2017	04:13:37	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"name":	[

												"pilot	with	this	name	already	exists."

]

				}

If	we	generate	the	HTTP	POST	request	with	the	help	of	the	HTML	form	in
the	browsable	API,	we	will	see	the	error	message	displayed	below	the
Name	field	in	the	form,	as	shown	in	the	next	screenshot:

Understanding	pagination
So	far,	we	have	been	working	with	a	database	that	has	just	a	few	rows,	and
therefore,	the	HTTP	GET	requests	to	the	different	resource	collections	for
our	RESTful	Web	Service	don't	have	problems	with	the	amount	of	data	in
the	JSON	body	of	the	responses.	However,	this	situation	changes	as	the
number	of	rows	in	the	database	tables	increases.

Let's	imagine	we	have	300	rows	in	the	drones_pilots	table	that	persists
pilots.	We	don't	want	to	retrieve	the	data	for	300	pilots	whenever	we	make
an	HTTP	GET	request	to	localhost:8000/pilots/.	Instead,	we	just	take
advantage	of	the	pagination	features	available	in	the	Django	REST
framework	to	make	it	easy	to	specify	how	we	want	the	large	result	sets	to
be	split	into	individual	pages	of	data.	This	way,	each	request	will	retrieve
only	one	page	of	data,	instead	of	the	entire	result	set.	For	example,	we	can
make	the	necessary	configurations	to	retrieve	only	the	data	for	a	page	of	a
maximum	of	four	pilots.

Whenever	we	enable	a	pagination	scheme,	the	HTTP	GET	requests	must
specify	the	pieces	of	data	that	they	want	to	retrieve,	that	is,	the	details	for
the	specific	pages,	based	on	predefined	pagination	schemes.	In	addition,	it
is	extremely	useful	to	have	data	about	the	total	number	of	resources,	the
next	page,	and	the	previous	one,	in	the	response	body.	This	way,	the	user
or	the	application	that	is	consuming	the	RESTful	Web	Service	knows	the
additional	requests	that	need	to	be	made	to	retrieve	the	required	pages.

We	can	work	with	page	numbers	and	the	client	can	request	a	specific	page
number	in	the	HTTP	GET	request.	Each	page	will	include	a	maximum
amount	of	resources.	For	example,	if	we	request	the	first	page	for	the	300
pilots,	the	web	service	will	return	the	first	four	pilots	in	the	response	body.
The	second	page	will	return	the	pilots	from	the	fifth	to	the	eighth	position
in	the	response	body.

Another	option	is	to	specify	an	offset	combined	with	a	limit.	For	example,
if	we	request	a	page	with	an	offset	equal	to	0	and	a	limit	of	4,	the	web
service	will	return	the	first	four	pilots	in	the	response	body.	A	second
request	with	an	offset	equal	to	4	and	a	limit	of	4	will	return	the	pilots	from
the	fifth	to	the	eighth	position	in	the	response	body.

Right	now,	each	of	the	database	tables	that	persist	the	models	we	have
defined	has	a	few	rows.	However,	after	we	start	working	with	our	web
service	in	a	real-life	production	environment,	we	will	have	hundreds	of
competitions,	pilots,	drones,	and	drone	categories.	Hence,	we	will
definitely	have	to	deal	with	large	result	sets.	We	will	usually	have	the
same	situation	in	most	RESTful	Web	Services,	and	therefore,	it	is	very
important	to	work	with	pagination	mechanisms.

Configuring	pagination	classes
The	Django	REST	framework	provides	many	options	to	enable
pagination.	First,	we	will	set	up	one	of	the	customizable	pagination	styles
included	in	the	Django	REST	framework	to	include	a	maximum	of	four
resources	in	each	individual	page	of	data.

Our	RESTful	Web	Service	uses	the	generic	views	that	work	with	mixin
classes.	These	classes	are	prepared	to	build	paginated	responses	based	on
specific	settings	in	the	Django	REST	framework	configuration.	Hence,	our
RESTful	Web	Service	will	automatically	take	into	account	the	pagination
settings	we	configured,	without	requiring	additional	changes	in	the	code.

Open	the	restful01/restful01/settings.py	file	that	declares	module-level
variables	that	define	the	configuration	of	Django	for	the	restful01	project.
We	will	make	some	changes	to	this	Django	settings	file.	The	code	file	for
the	sample	is	included	in	the	hillar_django_restful_07_01	folder,	in	the
restful01/restful01/settings.py	file.	Add	the	following	lines	that	declare	a
dictionary	named	REST_FRAMEWORK	with	key-value	pairs	that	configure	the
global	pagination	settings:

	REST_FRAMEWORK	=	{

				'DEFAULT_PAGINATION_CLASS':

				'rest_framework.pagination.LimitOffsetPagination',

				'PAGE_SIZE':	4

	}

Save	the	changes	and	Django's	development	server	will	recognize	the	edits
and	start	again	with	the	new	pagination	settings	enabled.	The	new
dictionary	has	two	string	keys:	'DEFAULT_PAGINATION_CLASS'	and	'PAGE_SIZE'.	The
value	for	the	'DEFAULT_PAGINATION_CLASS'	key	specifies	a	global	setting	with	the
default	pagination	class	that	the	generic	views	will	use	to	provide
paginated	responses.	In	this	case,	we	will	use	the

rest_framework.pagination.LimitOffsetPagination	class	that	provides	a
limit/offset-based	style.

This	pagination	style	works	with	a	limit	parameter	that	indicates	the
maximum	number	of	items	to	return	and	an	offset	that	specifies	the
starting	position	of	the	query.	The	value	for	the	PAGE_SIZE	settings	key
specifies	a	global	setting	with	the	default	value	for	the	limit,	also	known	as
the	page	size.	In	this	case,	the	value	is	set	to	4,	and	therefore,	the
maximum	number	of	resources	returned	in	a	single	request	will	be	four.
We	can	specify	a	different	limit	when	we	perform	the	HTTP	request	by
specifying	the	desired	value	in	the	limit	query	parameter.	We	can	configure
the	class	to	have	a	maximum	limit	value	in	order	to	avoid	undesired	huge
result	sets.	This	way,	we	can	make	sure	that	the	user	won't	be	able	to
specify	a	large	number	for	the	limit	value.	However,	we	will	make	this
specific	configuration	later.

Now,	we	will	compose	and	send	many	HTTP	POST	requests	to	create	nine
additional	drones	related	to	the	two	drone	categories	we	created:	Quadcopter
and	Octocopter.	This	way,	we	will	have	a	total	of	11	drones	(two	existing
drones,	plus	nine	additional	drones)	to	test	the	limit/offset	pagination
mechanism	we	have	enabled:

				http	POST	:8000/drones/	name="Need	for	Speed"	drone_category="Quadcopter"	manufacturing_date="2017-01-20T02:02:00.716312Z"	has_it_competed=false	

				http	POST	:8000/drones/	name="Eclipse"	drone_category="Octocopter"	manufacturing_date="2017-02-18T02:02:00.716312Z"	has_it_competed=false

				http	POST	:8000/drones/	name="Gossamer	Albatross"	drone_category="Quadcopter"	manufacturing_date="2017-03-20T02:02:00.716312Z"	has_it_competed=false	

				http	POST	:8000/drones/	name="Dassault	Falcon	7X"	drone_category="Octocopter"	manufacturing_date="2017-04-18T02:02:00.716312Z"	has_it_competed=false

				http	POST	:8000/drones/	name="Gulfstream	I"	drone_category="Quadcopter"	manufacturing_date="2017-05-20T02:02:00.716312Z"	has_it_competed=false	

				http	POST	:8000/drones/	name="RV-3"	drone_category="Octocopter"	manufacturing_date="2017-06-18T02:02:00.716312Z"	has_it_competed=false

				http	POST	:8000/drones/	name="Dusty"	drone_category="Quadcopter"	manufacturing_date="2017-07-20T02:02:00.716312Z"	has_it_competed=false	

				http	POST	:8000/drones/	name="Ripslinger"	drone_category="Octocopter"	manufacturing_date="2017-08-18T02:02:00.716312Z"	has_it_competed=false

				http	POST	:8000/drones/	name="Skipper"	drone_category="Quadcopter"	manufacturing_date="2017-09-20T02:02:00.716312Z"	has_it_competed=false

The	following	are	the	equivalent	curl	commands:

	curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Need	for	Speed",	"drone_category":"Quadcopter",	"manufacturing_date":	"2017-01-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Eclipse",	"drone_category":"Octocopter",	"manufacturing_date":	"2017-02-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Gossamer	Albatross",	"drone_category":"Quadcopter",	"manufacturing_date":	"2017-03-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Dassault	Falcon	7X",	"drone_category":"Octocopter",	"manufacturing_date":	"2017-04-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Gulfstream	I",	"drone_category":"Quadcopter",	"manufacturing_date":	"2017-05-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"RV-3",	"drone_category":"Octocopter",	"manufacturing_date":	"2017-06-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Dusty",	"drone_category":"Quadcopter",	"manufacturing_date":	"2017-07-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Ripslinger",	"drone_category":"Octocopter",	"manufacturing_date":	"2017-08-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d	'{"name":"Skipper",	"drone_category":"Quadcopter",	"manufacturing_date":	"2017-09-20T02:02:00.716312Z",	"has_it_competed":	"false"}'	localhost:8000/drones/

The	previous	commands	will	compose	and	send	nine	HTTP	POST	requests
with	the	specified	JSON	key-value	pairs.	The	requests	specify	/drones/,	and
therefore,	they	will	match	the	'^drones/$'	regular	expression	and	run	the
post	method	for	the	views.DroneList	class-based	view.

Making	requests	that	paginate
results
Now,	we	will	compose	and	send	an	HTTP	GET	request	to	retrieve	all	the
drones.	The	new	pagination	settings	will	take	effect	and	we	will	only
retrieve	the	first	page	for	the	drones	resource	collection:

				http	GET	:8000/drones/		

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	localhost:8000/drones/

The	previous	commands	will	compose	and	send	an	HTTP	GET	request.	The
request	specifies	/drones/,	and	therefore,	it	will	match	the	'^drones/$'	regular
expression	and	run	the	get	method	for	the	views.DroneList	class-based	view.
The	method	executed	in	the	generic	view	will	use	the	new	settings	we
added	to	enable	the	offset/limit	pagination,	and	the	result	will	provide	us
with	the	first	four	drone	resources.	However,	the	response	body	looks
different	than	in	the	previous	HTTP	GET	requests	we	made	to	any	resource
collection.	The	following	lines	show	the	sample	response	that	we	will
analyze	in	detail.	Don't	forget	that	the	drones	are	being	sorted	by	the	name
field,	in	ascending	order:

				HTTP/1.0	200	OK

				Allow:	GET,	POST,	HEAD,	OPTIONS

				Content-Length:	958

				Content-Type:	application/json

				Date:	Mon,	06	Nov	2017	23:08:36	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"count":	11,	

								"next":	"http://localhost:8000/drones/?limit=4&offset=4",	

								"previous":	null,	

								"results":	[

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-03T01:59:31.108031Z",	

																"manufacturing_date":	"2017-08-18T02:02:00.716312Z",	

																"name":	"Atom",	

																"url":	"http://localhost:8000/drones/2"

												},	

												{

																"drone_category":	"Octocopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:30.357127Z",	

																"manufacturing_date":	"2017-04-18T02:02:00.716312Z",	

																"name":	"Dassault	Falcon	7X",	

																"url":	"http://localhost:8000/drones/6"

												},	

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:31.049833Z",	

																"manufacturing_date":	"2017-07-20T02:02:00.716312Z",	

																"name":	"Dusty",	

																"url":	"http://localhost:8000/drones/9"

												},	

												{

																"drone_category":	"Octocopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:29.909965Z",	

																"manufacturing_date":	"2017-02-18T02:02:00.716312Z",	

																"name":	"Eclipse",	

																"url":	"http://localhost:8000/drones/4"

												}

]

				}

The	response	has	a	200	OK	status	code	in	the	header	and	the	following	keys
in	the	response	body:

count:	The	value	indicates	the	total	number	of	drones	for	the	query.

next:	The	value	provides	a	link	to	the	next	page.

previous:	The	value	provides	a	link	to	the	previous	page.	In	this
case,	the	response	includes	the	first	page	of	the	result	set,	and
therefore,	the	link	to	the	previous	page	is	null.

results:	The	value	provides	an	array	of	JSON	representations	of
Drone	instances	that	compose	the	requested	page.	In	this	case,	the
four	drones	belong	to	the	first	page	of	the	result	set.

In	the	previous	HTTP	GET	request,	we	didn't	specify	any	values	for	either
the	limit	or	offset	parameters.	We	specified	4	as	the	default	value	for	the
limit	parameter	in	the	global	settings	and	the	generic	views	use	this
configuration	value	and	provide	us	with	the	first	page.	Whenever	we	don't
specify	any	offset	value,	the	default	offset	is	equal	to	0	and	the	get	method
will	return	the	first	page.

The	previous	request	is	equivalent	to	the	following	HTTP	GET	request	that
specifies	0	for	the	offset	value.	The	result	of	the	next	command	will	be	the
same	as	the	previous	one:

				http	GET	":8000/drones/?offset=0"

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	"localhost:8000/drones/?offset=0"

The	previous	requests	are	equivalent	to	the	following	HTTP	GET	request
that	specifies	0	for	the	offset	value	and	4	for	the	limit	value.	The	result	of
the	next	command	will	be	the	same	as	the	previous	two	commands:

				http	GET	":8000/drones/?limit=4&offset=0"

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	"localhost:8000/drones/?limit=4&offset=0"

		

Now,	we	will	compose	and	send	an	HTTP	request	to	retrieve	the	next
page,	that	is,	the	second	page	for	the	drones.	We	will	use	the	value	for	the
next	key	provided	in	the	JSON	body	of	the	response	from	the	previous
requests.	This	value	gives	us	the	URL	for	the	next	page:
http://localhost:8000/drones/?limit=4&offset=4.	Thus,	we	will	compose	and
send	an	HTTP	GET	method	to	/drones/	with	the	limit	value	set	to	4	and	the
offset	value	set	to	4	:

				http	GET	":8000/drones/?limit=4&offset=4"

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	"localhost:8000/drones/?limit=4&offset=4"

The	result	will	provide	us	the	second	page	of	four	drone	resources	as	the
value	for	the	results	key	in	the	response	body.	In	addition,	we	will	see	the
values	for	the	count,	previous,	and	next	keys	that	we	analyzed	in	the	previous
requests.	The	following	lines	show	the	sample	response:

HTTP/1.0	200	OK

Allow:	GET,	POST,	HEAD,	OPTIONS

Content-Length:	1007

Content-Type:	application/json

Date:	Mon,	06	Nov	2017	23:31:34	GMT

Server:	WSGIServer/0.2	CPython/3.6.2

Vary:	Accept,	Cookie

X-Frame-Options:	SAMEORIGIN

{

				"count":	11,

				"next":	"http://localhost:8000/drones/?limit=4&offset=8",

				"previous":	"http://localhost:8000/drones/?limit=4",

				"results":	[

								{

												"drone_category":	"Quadcopter",

												"has_it_competed":	false,

												"inserted_timestamp":	"2017-11-06T20:25:30.127661Z",

												"manufacturing_date":	"2017-03-20T02:02:00.716312Z",

												"name":	"Gossamer	Albatross",

												"url":	"http://localhost:8000/drones/5"

								},

								{

												"drone_category":	"Quadcopter",

												"has_it_competed":	false,

												"inserted_timestamp":	"2017-11-06T20:25:30.584031Z",

												"manufacturing_date":	"2017-05-20T02:02:00.716312Z",

												"name":	"Gulfstream	I",

												"url":	"http://localhost:8000/drones/7"

								},

								{

												"drone_category":	"Quadcopter",

												"has_it_competed":	false,

												"inserted_timestamp":	"2017-11-06T20:25:29.636153Z",

												"manufacturing_date":	"2017-01-20T02:02:00.716312Z",

												"name":	"Need	for	Speed",

												"url":	"http://localhost:8000/drones/3"

								},

								{

												"drone_category":	"Octocopter",

												"has_it_competed":	false,

												"inserted_timestamp":	"2017-11-06T20:25:30.819695Z",

												"manufacturing_date":	"2017-06-18T02:02:00.716312Z",

												"name":	"RV-3",

												"url":	"http://localhost:8000/drones/8"

								}

]

}

In	this	case,	the	result	set	is	the	second	page,	and	therefore,	we	have	a
value	for	the	previous	key:	http://localhost:8000/drones/?limit=4.

In	the	previous	HTTP	request,	we	specified	values	for	both	the	limit	and
offset	parameters.	However,	as	we	set	the	default	value	of	limit	to	4	in	the
global	settings,	the	following	request	will	produce	the	same	results	as	the
previous	request:

				http	GET	":8000/drones/?offset=4"

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	"localhost:8000/drones/?offset=4"

Now,	we	will	compose	and	send	an	HTTP	request	to	retrieve	the	next
page,	that	is,	the	third	and	last	page	for	the	drones.	We	will	use	the	value
for	the	next	key	provided	in	the	JSON	body	of	the	response	from	the
previous	requests.	This	value	gives	us	the	URL	for	the	next	page
as	http://localhost:8000/drones/?limit=4&offset=8.	Thus,	we	will	compose	and
send	an	HTTP	GET	method	to	/drones/	with	the	limit	value	set	to	4	and	the
offset	value	set	to	8	:

				http	GET	":8000/drones/?limit=4&offset=8"

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	"localhost:8000/drones/?limit=4&offset=8"

The	result	will	provide	us	with	the	third	and	last	page	of	three	drone
resources	as	the	value	for	the	results	key	in	the	response	body.	In	addition,
we	will	see	the	values	for	the	count,	previous,	and	next	keys	that	we	analyzed
in	the	previous	requests.	The	following	lines	show	the	sample	response:

				HTTP/1.0	200	OK

				Allow:	GET,	POST,	HEAD,	OPTIONS

				Content-Length:	747

				Content-Type:	application/json

				Date:	Tue,	07	Nov	2017	02:59:42	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"count":	11,	

								"next":	null,	

								"previous":	"http://localhost:8000/drones/?limit=4&offset=4",	

								"results":	[

												{

																"drone_category":	"Octocopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:31.279172Z",	

																"manufacturing_date":	"2017-08-18T02:02:00.716312Z",	

																"name":	"Ripslinger",	

																"url":	"http://localhost:8000/drones/10"

												},	

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:31.511881Z",	

																"manufacturing_date":	"2017-09-20T02:02:00.716312Z",	

																"name":	"Skipper",	

																"url":	"http://localhost:8000/drones/11"

												},	

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-03T01:58:49.135737Z",	

																"manufacturing_date":	"2017-07-20T02:02:00.716312Z",	

																"name":	"WonderDrone",	

																"url":	"http://localhost:8000/drones/1"

												}

]

				}		

In	this	case,	the	result	set	is	the	last	page,	and	therefore,	we	have	null	as
the	value	for	the	next	key.

Working	with	customized
pagination	classes
We	enabled	pagination	to	limit	the	size	for	the	result	sets.	However,	any
client	or	user	is	able	to	specify	a	large	number	for	the	limit	value,	such	as
10000,	and	generate	a	huge	result	set.	In	order	to	specify	the	maximum
number	that	is	accepted	for	the	limit	query	parameter,	it	is	necessary	to
create	a	customized	version	of	the	limit/offset	pagination	scheme	that	the
Django	REST	framework	provides	us.

We	made	changes	to	the	global	configuration	to	use	the
rest_framework.pagination.LimitOffsetPagination	class	to	handle	paginated
responses.	This	class	declares	a	max_limit	class	attribute	whose	default
value	is	equal	to	None,	which	means	there	is	no	upper	bound	for	the	limit
value.	We	will	indicate	the	upper	bound	value	for	the	limit	query
parameter	in	the	max_limit	class	attribute.

Make	sure	you	quit	Django's	development	server.	Remember	that	you	just
need	to	press	Ctrl	+	C	in	the	terminal	or	Command	Prompt	in	which	it	is
running.

Go	to	the	restful01/drones	folder	and	create	a	new	file	named
custompagination.py.	Write	the	following	code	in	this	new	file.	The	following
lines	show	the	code	for	this	file	that	declares	the	new
LimitOffsetPaginationWithUpperBound	class.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_07_02	folder	in	the
restful01/drones/custompagination.py	file:

from	rest_framework.pagination	import	LimitOffsetPagination	

class	LimitOffsetPaginationWithUpperBound(LimitOffsetPagination):

				#	Set	the	maximum	limit	value	to	8	

							max_limit	=	8

The	previous	lines	declare	the	LimitOffsetPaginationWithUpperBound	class	as	a
subclass	of		rest_framework.pagination.LimitOffsetPagination.	This	new	class
overrides	the	value	assigned	to	the	max_limit	class	attribute	with	8.

Open	the	restful01/restful01/settings.py	file	and	replace	the	line	that
specifies	the	value	for	the	DEFAULT_PAGINATION_CLASS	key	in	the	REST_FRAMEWORK
dictionary	with	the	highlighted	line.	The	following	lines	show	the	new
declaration	of	the	REST_FRAMEWORK	dictionary.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_07_02	folder	in	the
restful01/restful01/settings.py	file:

	REST_FRAMEWORK	=	{	

				'DEFAULT_PAGINATION_CLASS':	

				'drones.custompagination.LimitOffsetPaginationWithUpperBound',	

				'PAGE_SIZE':	4	

	}	

This	way,	all	the	generic	views	will	use	the	recently	declared
drones.custompagination.LimitOffsetPaginationWithUpperBound	class	that	provides
the	limit/offset	pagination	scheme	we	have	analyzed	with	an	upper	bound
for	the	limit	value	equal	to	8.

If	any	request	specifies	a	value	higher	than	8	for	the	limit,	the	class	will
use	the	maximum	limit	value,	that	is,	8,	and	the	RESTful	Web	Service	will
never	return	more	than	eight	resources	in	a	paginated	response.

It	is	a	good	practice	to	configure	a	maximum	limit	to	avoid
generating	responses	with	huge	amounts	of	data	that	might
generate	important	loads	to	the	server	running	the	RESTful
Web	Service.	Note	that	we	will	learn	to	limit	the	usage	of	the
resources	of	our	RESTful	Web	Service	in	the	forthcoming
chapters.	Pagination	is	just	the	beginning	of	a	long	story.

Making	requests	that	use
customized	paginated	results
Launch	Django's	development	server.	If	you	don't	remember	how	to	start
Django's	development	server,	check	the	instructions	in	Chapter	3,	Creating
API	Views,	in	the	Launching	Django's	development	server	section.

Now,	we	will	compose	and	send	an	HTTP	GET	request	to	retrieve	the	first
page	for	the	drones	with	the	value	for	the	limit	query	parameter	set	to	500.
This	value	is	higher	than	the	maximum	limit	we	established:

				http	GET	":8000/drones/?limit=500"		

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	"localhost:8000/drones/?limit=500"

The	code	in	the	get	method	for	the	views.DroneList	class-based	view	will	use
the	new	settings	we	added	to	enable	the	customized	offset/limit
pagination,	and	the	result	will	provide	us	with	the	first	eight	drone
resources	because	the	maximum	value	for	the	limit	query	is	set	to	8.	The
value	specified	for	the	limit	query	parameter	is	greater	than	8,	and
therefore,	the	maximum	value	of	8	is	used,	instead	of	the	value	indicated	in
the	request.

The	key	advantage	of	working	with	generic	views	is	that	we
can	easily	customize	the	behavior	for	the	methods	defined	in
the	mixins	that	compose	these	views	with	just	a	few	lines	of
code.	In	this	case,	we	took	advantage	of	the	pagination
features	available	in	the	Django	REST	framework	to	specify

how	we	wanted	large	results	sets	to	be	split	into	individual
pages	of	data.	Then,	we	customized	paginated	results	with
just	a	few	lines	of	code	to	make	the	limit/offset	pagination
scheme	match	our	specific	requirements.

Configuring	filter	backend
classes
So	far,	we	have	been	working	with	the	entire	queryset	as	the	result	set.	For
example,	whenever	we	requested	the	drones	resource	collection,	the
RESTful	Web	Service	worked	with	the	entire	resource	collection	and	used
the	default	sorting	we	had	configured	in	the	model.	Now,	we	want	our
RESTful	Web	Service	to	be	able	to	provide	filtering,	searching,	and
sorting	features.

It	is	very	important	to	understand	that	we	have	to	be	careful	with	the	fields
we	configure	to	be	available	in	the	filtering,	searching,	and	ordering
features.	The	configuration	will	have	an	impact	on	the	queries	executed	on
the	database,	and	therefore,	we	must	make	sure	that	we	have	the
appropriate	database	optimizations,	considering	the	queries	that	will	be
executed.	Specific	database	optimizations	are	outside	of	the	scope	of	this
book,	but	you	definitely	must	take	them	into	account	when	you	configure
these	features.

Make	sure	you	quit	Django's	development	server.	Remember	that	you	just
need	to	press	Ctrl	+	C	in	the	terminal	or	Command	Prompt	window	in
which	it	is	running.

Run	the	following	command	to	install	the	django-filter	package	in	our
virtual	environment.	This	package	will	enable	us	to	use	many	field
filtering	features	that	we	can	easily	customize	in	the	Django	REST
framework.	Make	sure	the	virtual	environment	is	activated,	and	run	the
following	command:

				pip	install	django-filter

The	last	lines	of	the	output	will	indicate	that	the	django-filter	package	has
been	successfully	installed:

					Collecting	django-filter

					Downloading	django_filter-1.1.0-py2.py3-none-any.whl

					Installing	collected	packages:	django-filter

					Successfully	installed	django-filter-1.1.0

We	will	work	with	the	following	three	classes:

rest_framework.filters.OrderingFilter:	This	class	allows	the	client	to
control	how	the	results	are	ordered	with	a	single	query	parameter.
We	can	specify	which	fields	may	be	ordered	against.

django_filters.rest_framework.DjangoFilterBackend:	This	class	provides
field	filtering	capabilities.	We	can	specify	the	set	of	fields	we	want
to	be	able	to	filter	against,	and	the	filter	backend	defined	in	the
django-filter	package	will	create	a	new
django_filters.rest_framework.FilterSet	class	and	associate	it	to	the
class-based	view.	It	is	also	possible	to	create	our	own
rest_framework.filters.FilterSet	class,	with	more	customized	settings,
and	write	our	own	code	to	associate	it	with	the	class-based	view.

rest_framework.filters.SearchFilter:	This	class	provides	single	query
parameter-based	searching	capabilities,	and	its	behavior	is	based
on	the	Django	admin's	search	function.	We	can	specify	the	set	of
fields	we	want	to	include	for	the	search	feature	and	the	client	will
be	able	to	filter	items	by	making	queries	that	search	on	these	fields
with	a	single	query.	It	is	useful	when	we	want	to	make	it	possible
for	a	request	to	search	on	multiple	fields	with	a	single	query.

It	is	possible	to	configure	the	filter	backends	by	including	any	of	the

previously	enumerated	classes	in	a	tuple	and	assigning	it	to	the
filter_backends	class	attribute	for	the	generic	view	classes.	In	our	RESTful
Web	Service,	we	want	all	our	class-based	views	to	use	the	same	filter
backends,	and	therefore,	we	will	make	changes	in	the	global
configuration.

Open	the	restful01/restful01/settings.py	file	that	declares	module-level
variables	that	define	the	configuration	of	Django	for	the	restful01	project.
We	will	make	some	changes	to	this	Django	settings	file.	Add	the
highlighted	lines	that	declare	the	'DEFAULT_FILTER_BACKENDS'	key	and	assign	a
tuple	of	strings	as	its	value	with	the	three	classes	we	have	analyzed.	The
following	lines	show	the	new	declaration	of	the	REST_FRAMEWORK	dictionary.
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_07_03
folder	in	the	restful01/restful01/settings.py	file:

		REST_FRAMEWORK	=	{	

				'DEFAULT_PAGINATION_CLASS':	

				'drones.custompagination.LimitOffsetPaginationWithUpperBound',	

				'PAGE_SIZE':	4,	

				'DEFAULT_FILTER_BACKENDS':	(

								'django_filters.rest_framework.DjangoFilterBackend',	

								'rest_framework.filters.OrderingFilter',	

								'rest_framework.filters.SearchFilter',	

),	

		}	

Locate	the	lines	that	assign	a	string	list	to	INSTALLED_APPS	to	declare	the
installed	apps.	Add	the	following	string	to	the	INSTALLED_APPS	string	list	and
save	the	changes	to	the	settings.py	file:

		'django_filters',

The	following	lines	show	the	new	code	that	declares	the	INSTALLED_APPS
string	list	with	the	added	line	highlighted	and	with	comments	to
understand	what	each	added	string	means.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_07_03	folder	in	the
restful01/restful01/settings.py	file:

		INSTALLED_APPS	=	[

					'django.contrib.admin',	

					'django.contrib.auth',	

					'django.contrib.contenttypes',	

					'django.contrib.sessions',	

					'django.contrib.messages',	

					'django.contrib.staticfiles',	

					#	Django	REST	Framework	

					'rest_framework',	

					#	Drones	application	

					'drones.apps.DronesConfig',	

					#	Django	Filters,	

					'django_filters',	

]

This	way,	we	have	added	the	django_filters	application	to	our	Django
project	named	restful01.

The	default	query	parameter	names	are	search	for	the	search	feature	and
ordering	for	the	ordering	feature.	We	can	specify	other	names	by	setting	the
desired	strings	in	the	SEARCH_PARAM	and	the	ORDERING_PARAM	settings.	In	this	case,
we	will	work	with	the	default	values.

Adding	filtering,	searching,	and
ordering
Now,	we	will	add	the	necessary	code	to	configure	the	fields	that	we	want
to	be	included	in	the	filtering,	searching,	and	ordering	features	for	each	of
the	class-based	views	that	retrieve	the	contents	of	each	resource	collection.
Hence,	we	will	make	changes	to	all	the	classes	with	the	List	suffix	in	the
views.py	file:	DroneCategoryList,	DroneList,	PilotList,	and	CompetitionList.

We	will	declare	the	following	three	class	attributes	in	each	of	those
classes:

filter_fields:	This	attribute	specifies	a	tuple	of	strings	whose
values	indicate	the	field	names	that	we	want	to	be	able	to	filter
against.	Under	the	hood,	the	Django	REST	framework	will
automatically	create	a	rest_framework.filters.FilterSet	class	and
associate	it	to	the	class-based	view	in	which	we	are	declaring	the
attribute.	We	will	be	able	to	filter	against	the	field	names	included
in	the	tuple	of	strings.

search_fields:	This	attribute	specifies	a	tuple	of	strings	whose
values	indicate	the	text	type	field	names	that	we	want	to	include	in
the	search	feature.	In	all	the	usages,	we	will	want	to	perform	a
starts-with	match.	In	order	to	do	this,	we	will	include	'^'	as	a
prefix	of	the	field	name	to	indicate	that	we	want	to	restrict	the
search	behavior	to	a	starts-with	match.

ordering_fields:	This	attribute	specifies	a	tuple	of	strings	whose
values	indicate	the	field	names	that	the	HTTP	request	can	specify

to	sort	the	results.	If	the	request	doesn't	specify	a	field	for
ordering,	the	response	will	use	the	default	ordering	fields	specified
in	the	model	that	is	related	to	the	class-based	view.

Open	the	restful01/drones/views.py	file.	Add	the	following	code	after	the	last
line	that	declares	the	imports,	before	the	declaration	of	the	DroneCategoryList
class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_07_03	folder	in	the	restful01/drones/views.py	file:

from	rest_framework	import	filters	

from	django_filters	import	AllValuesFilter,	DateTimeFilter,	NumberFilter	

Add	the	following	highlighted	lines	to	the	DroneList	class	declared	in	the
views.py	file.	The	next	lines	show	the	new	code	that	defines	the	class.	The
code	file	for	the	sample	is	included	in	the	hillar_django_restful_07_03	folder
in	the	restful01/drones/views.py	file:

class	DroneCategoryList(generics.ListCreateAPIView):	

				queryset	=	DroneCategory.objects.all()	

				serializer_class	=	DroneCategorySerializer	

				name	=	'dronecategory-list'	

				filter_fields	=	(

								'name',	

)	

				search_fields	=	(

								'^name',	

)	

				ordering_fields	=	(

								'name',	

)	

The	changes	in	the	DroneList	class	are	easy	to	understand.	We	will	be	able
to	filter,	search,	and	order	by	the	name	field.

Add	the	following	highlighted	lines	to	the	DroneList	class	declared	in	the
views.py	file.	The	next	lines	show	the	new	code	that	defines	the	class.	The

code	file	for	the	sample	is	included	in	the	hillar_django_restful_07_03	folder
in	the	restful01/drones/views.py	file:

class	DroneList(generics.ListCreateAPIView):	

				queryset	=	Drone.objects.all()	

				serializer_class	=	DroneSerializer	

				name	=	'drone-list'	

				filter_fields	=	(

								'name',		

								'drone_category',		

								'manufacturing_date',		

								'has_it_competed',		

)	

				search_fields	=	(

								'^name',	

)	

				ordering_fields	=	(

								'name',	

								'manufacturing_date',	

)	

In	the	DroneList	class,	we	specified	many	field	names	in	the	filter_fields
attribute.	We	included	'drone_category'	in	the	string	tuple,	and	therefore,	we
will	be	able	to	include	the	ID	values	for	this	field	in	the	filter.

We	will	take	advantage	of	other	options	for	related	models
that	will	allow	us	to	filter	by	fields	of	the	related	model	later.
This	way,	we	will	understand	the	different	customizations
available.

The	ordering_fields	attribute	specifies	two	field	names	for	the	tuple	of
strings,	and	therefore,	we	will	be	able	to	order	the	results	by	either	name	or
manufacturing_date.	Don't	forget	that	we	must	take	into	account	database
optimizations	when	enabling	fields	to	order	by.

Add	the	following	highlighted	lines	to	the	PilotList	class	declared	in	the
views.py	file.	The	next	lines	show	the	new	code	that	defines	the	class.	The
code	file	for	the	sample	is	included	in	the	hillar_django_restful_07_03	folder
in	the	restful01/drones/views.py	file:

class	PilotList(generics.ListCreateAPIView):	

				queryset	=	Pilot.objects.all()	

				serializer_class	=	PilotSerializer	

				name	=	'pilot-list'	

				filter_fields	=	(

								'name',		

								'gender',	

								'races_count',	

)	

				search_fields	=	(

								'^name',	

)	

				ordering_fields	=	(

								'name',	

								'races_count'	

)

The	ordering_fields	attribute	specifies	two	field	names	for	the	tuple	of
strings,	and	therefore,	we	will	be	able	to	order	the	results	by	either	name	or
races_count.

Working	with	different	types	of
Django	filters
Now,	we	will	create	a	customized	filter	that	we	will	apply	to	the	Competition
model.	We	will	code	the	new	CompetitionFilter	class,	specifically,	a	subclass
of	the	rest_framework.filters.FilterSet	class.

Open	the	restful01/drones/views.py	file.	Add	the	following	code	before	the
declaration	of	the	CompetitionList	class.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_07_03	folder	in	the
restful01/drones/views.py	file:

class	CompetitionFilter(filters.FilterSet):	

				from_achievement_date	=	DateTimeFilter(

								name='distance_achievement_date',	lookup_expr='gte')	

				to_achievement_date	=	DateTimeFilter(

								name='distance_achievement_date',	lookup_expr='lte')	

				min_distance_in_feet	=	NumberFilter(

								name='distance_in_feet',	lookup_expr='gte')	

				max_distance_in_feet	=	NumberFilter(

								name='distance_in_feet',	lookup_expr='lte')	

				drone_name	=	AllValuesFilter(

								name='drone__name')	

				pilot_name	=	AllValuesFilter(

								name='pilot__name')	

	

				class	Meta:	

								model	=	Competition	

								fields	=	(

												'distance_in_feet',	

												'from_achievement_date',	

												'to_achievement_date',	

												'min_distance_in_feet',	

												'max_distance_in_feet',	

												#	drone__name	will	be	accessed	as	drone_name	

												'drone_name',	

												#	pilot__name	will	be	accessed	as	pilot_name	

												'pilot_name',	

)

The	CompetitionFilter	class	declares	the	following	class	attributes:

from_achievement_date:	This	attribute	is	a	django_filters.DateTimeFilter
instance	that	allows	the	request	to	filter	the	competitions	whose
achievement_date	DateTime	value	is	greater	than	or	equal	to	the
specified	DateTime	value.	The	value	specified	in	the	name
argument	indicates	the	field	to	which	the	DateTime	filter	is
applied,	'distance_achievement_date',	and	the	value	for	the	lookup_expr
argument	indicates	the	lookup	expression,	'gte',	which	means
greater	than	or	equal	to.

to_achievement_date:	This	attribute	is	a	django_filters.DateTimeFilter
instance	that	allows	the	request	to	filter	the	competitions	whose
achievement_date	DateTime	value	is	less	than	or	equal	to	the
specified	DateTime	value.	The	value	specified	in	the	name
argument	indicates	the	field	to	which	the	DateTime	filter	is
applied,	'distance_achivement_date',	and	the	value	for	the	lookup_expr
argument	indicates	the	lookup	expression,	'lte',	which	means	less
than	or	equal	to.

min_distance_in_feet:	This	attribute	is	a	django_filters.NumberFilter
instance	that	allows	the	request	to	filter	the	competitions	whose
distance_in_feet	numeric	value	is	greater	than	or	equal	to	the
specified	number.	The	value	for	the	name	argument	indicates	the
field	to	which	the	numeric	filter	is	applied,	'distance_in_feet',	and
the	value	for	the	lookup_expr	argument	indicates	the	lookup
expression,	'gte',	which	means	greater	than	or	equal	to.

max_distance_in_feet:	This	attribute	is	a	django_filters.NumberFilter

instance	that	allows	the	request	to	filter	the	competitions	whose
distance_in_feet	numeric	value	is	less	than	or	equal	to	the	specified
number.	The	value	for	the	name	argument	indicates	the	field	to
which	the	numeric	filter	is	applied,	'distance_in_feet',	and	the	value
for	the	lookup_expr	argument	indicates	the	lookup	expression,	'lte',
which	means	less	than	or	equal	to.

drone_name:	This	attribute	is	a	django_filters.AllValuesFilter	instance
that	allows	the	request	to	filter	the	competitions	whose	drones'
names	match	the	specified	string	value.	The	value	for	the	name
argument	indicates	the	field	to	which	the	filter	is	applied,
'drone__name'.	Notice	that	there	is	a	double	underscore	(__)	between
drone	and	name,	and	you	can	read	it	as	the	name	field	for	the	drone
model	or	simply	replace	the	double	underscore	with	a	dot	and	read
drone.name.	The	name	uses	Django's	double	underscore	syntax.
However,	we	don't	want	the	request	to	use	drone__name	to	specify	the
filter	for	the	drone's	name.	Hence,	the	instance	is	stored	in	the
class	attribute	named	drone_name,	with	just	a	single	underscore
between	player	and	name,	to	make	it	more	user-friendly.	We	will
make	configurations	to	make	the	browsable	API	display	a	drop-
down	with	all	the	possible	values	for	the	drone's	name	to	use	as	a
filter.	The	drop-down	will	only	include	the	drones'	names	that
have	registered	competitions.

pilot_name:	This	attribute	is	a	django_filters.AllValuesFilter	instance
that	allows	the	request	to	filter	the	competitions	whose	pilots'
names	match	the	specified	string	value.	The	value	for	the	name
argument	indicates	the	field	to	which	the	filter	is	applied,
'pilot__name'.	The	name	uses	Django's	double	underscore	syntax.
As	happened	with	drone_name,	we	don't	want	the	request	to	use
pilot__name	to	specify	the	filter	for	the	pilot's	name,	and	therefore,

we	stored	the	instance	in	the	class	attribute	named	pilot_name,	with
just	a	single	underscore	between	pilot	and	name.	The	browsable	API
will	display	a	drop-down	with	all	the	possible	values	for	the	pilot's
name	to	use	as	a	filter.	The	drop-down	will	only	include	the	pilots'
names	that	have	registered	competitions	because	we	used	the
AllValuesFilter	class.

The	CompetitionFilter	class	defines	a	Meta	inner	class	that	declares	the
following	two	attributes:

model:	This	attribute	specifies	the	model	related	to	the	filter	set,	that
is,	the	Competition	class.

fields:	This	attribute	specifies	a	tuple	of	strings	whose	values
indicate	the	field	names	and	filter	names	that	we	want	to	include
in	the	filters	for	the	related	model.	We	included	'distance_in_feet'
and	the	names	for	all	the	previously	explained	filters.	The	string
'distance_in_feet'	refers	to	the	field	with	this	name.	We	want	to
apply	the	default	numeric	filter	that	will	be	built	under	the	hood	to
allow	the	request	to	filter	by	an	exact	match	on	the	distance_in_feet
field.	This	way,	the	request	will	have	plenty	of	options	to	filter
competitions.

Now,	add	the	following	highlighted	lines	to	the	CompetitionList	class
declared	in	the	views.py	file.	The	next	lines	show	the	new	code	that	defines
the	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_07_03	folder	in	the	restful01/drones/views.py	file:

		class	CompetitionList(generics.ListCreateAPIView):	

				queryset	=	Competition.objects.all()	

				serializer_class	=	PilotCompetitionSerializer	

				name	=	'competition-list'	

				filter_class	=	CompetitionFilter	

				ordering_fields	=	(

								'distance_in_feet',	

								'distance_achievement_date',	

)	

The	filter_class	attribute	specifies	CompetitionFilter	as	its	value,	that	is,	the
FilterSet	subclass	that	declares	the	customized	filters	that	we	want	to	use
for	this	class-based	view.	In	this	case,	the	code	didn't	specify	a	tuple	of
strings	for	the	filter_class	attribute	because	we	have	defined	our	own
FilterSet	subclass.

The	ordering_fields	tuple	of	strings	specifies	the	two	field	names	that	the
request	will	be	able	to	use	for	ordering	the	competitions.

Making	requests	that	filter
results
Now	we	can	launch	Django's	development	server	to	compose	and	send
HTTP	requests	to	understand	how	to	use	the	previously	coded	filters.
Execute	any	of	the	following	two	commands,	based	on	your	needs,	to
access	the	API	in	other	devices	or	computers	connected	to	your	LAN.
Remember	that	we	analyzed	the	difference	between	them	in	Chapter
3,	Creating	API	Views,	in	the	Launching	Django's	development	server
section:

				python	manage.py	runserver

				python	manage.py	runserver	0.0.0.0:8000

After	we	run	any	of	the	previous	commands,	the	development	server	will
start	listening	at	port	8000.

Now,	we	will	compose	and	send	an	HTTP	request	to	retrieve	all	the	drone
categories	whose	name	is	equal	to	Quadcopter,	as	shown	below:

				http	":8000/drone-categories/?name=Quadcopter"		

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	"localhost:8000/drone-categories/?name=Quadcopter"		

The	following	lines	show	a	sample	response	with	the	single	drone
category	whose	name	matches	the	specified	name	string	in	the	filter	and	the
list	of	hyperlinks	for	the	drones	that	belong	to	the	category.	The	following

lines	show	the	JSON	response	body	without	the	headers.	Notice	that	the
results	are	paginated:

				{

								"count":	1,	

								"next":	null,	

								"previous":	null,	

								"results":	[

												{

																"drones":	[

																				"http://localhost:8000/drones/2",	

																				"http://localhost:8000/drones/9",	

																				"http://localhost:8000/drones/5",	

																				"http://localhost:8000/drones/7",	

																				"http://localhost:8000/drones/3",	

																				"http://localhost:8000/drones/11",	

																				"http://localhost:8000/drones/1"

],	

																"name":	"Quadcopter",	

																"pk":	1,	

																"url":	"http://localhost:8000/drone-categories/1"

												}

]

				}		

Composing	requests	that	filter
and	order	results
We	will	compose	and	send	an	HTTP	request	to	retrieve	all	the	drones
whose	related	drone	category	ID	is	equal	to	1	and	whose	value	for	the
has_it_competed	field	is	equal	to	False.	The	results	must	be	sorted	by	name	in
descending	order,	and	therefore,	we	specify	-name	as	the	value	for	the
ordering	query	parameter.

The	hyphen	(-)	before	the	field	name	indicates	that	the
ordering	feature	must	use	descending	order	instead	of	the
default	ascending	order.

Make	sure	you	replace	1	with	the	pk	value	of	the	previously	retrieved	drone
category	named	Quadcopter.	The	has_it_competed	field	is	a	bool	field,	and
therefore,	we	have	to	use	Python	valid	bool	values	(True	and	False)	when
specifying	the	desired	values	for	the	bool	field	in	the	filter:

				http	":8000/drones/?

				drone_category=1&has_it_competed=False&ordering=-name"

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	"localhost:8000/drones/?

				drone_category=1&has_it_competed=False&ordering=-name"	

The	following	lines	show	a	sample	response	with	the	first	four	out	of
seven	drones	that	match	the	specified	criteria	in	the	filter,	sorted	by	name
in	descending	order.	Notice	that	the	filters	and	the	ordering	have	been
combined	with	the	previously	configured	pagination.	The	following	lines
show	only	the	JSON	response	body,	without	the	headers:

				{

								"count":	7,	

								"next":	"http://localhost:8000/drones/?	

									

					drone_category=1&has_it_competed=False&limit=4&offset=4&ordering=-

					name",	

								"previous":	null,	

								"results":	[

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-03T01:58:49.135737Z",	

																"manufacturing_date":	"2017-07-20T02:02:00.716312Z",	

																"name":	"WonderDrone",	

																"url":	"http://localhost:8000/drones/1"

												},	

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:31.511881Z",	

																"manufacturing_date":	"2017-09-20T02:02:00.716312Z",	

																"name":	"Skipper",	

																"url":	"http://localhost:8000/drones/11"

												},	

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:29.636153Z",	

																"manufacturing_date":	"2017-01-20T02:02:00.716312Z",	

																"name":	"Need	for	Speed",	

																"url":	"http://localhost:8000/drones/3"

												},	

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:30.584031Z",	

																"manufacturing_date":	"2017-05-20T02:02:00.716312Z",	

																"name":	"Gulfstream	I",	

																"url":	"http://localhost:8000/drones/7"

												}

]

				}

Notice	that	the	response	provides	the	value	for	the	next	key,
http://localhost:8000/drones/?

drone_category=1&has_it_competed=False&limit=4&offset=4&ordering=-

name.	This	URL	includes	the	combination	of	pagination,

filtering,	and	ordering	query	parameters.

In	the	DroneList	class,	we	included	'drone_category'	as	one	of	the	strings	in
the	filter_fields	tuple	of	strings.	Hence,	we	had	to	use	the	drone	category
ID	in	the	filter.

Now,	we	will	use	a	filter	on	the	drone's	name	related	to	a	competition.	As
previously	explained,	our	CompetitionFilter	class	provides	us	a	filter	to	the
name	of	the	related	drone	in	the	drone_name	query	parameter.

We	will	combine	the	filter	with	another	filter	on	the	pilot's	name	related	to
a	competition.	Remember	that	the	class	also	provides	us	a	filter	to	the
name	of	the	related	pilot	in	the	pilot_name	query	parameter.	We	will	specify
two	conditions	in	the	criteria,	and	the	filters	are	combined	with	the	AND
operator.	Hence,	both	conditions	must	be	met.	The	pilot's	name	must	be
equal	to	'Penelope	Pitstop'	and	the	drone's	name	must	be	equal	to
'WonderDrone'.	The	following	command	generates	a	request	with	the
explained	filter:

		http	":8000/competitions/?			

		pilot_name=Penelope+Pitstop&drone_name=WonderDrone"

The	following	is	the	equivalent	curl	command:

		curl	-iX	GET	"localhost:8000/competitions/?		

		pilot_name=Penelope+Pitstop&drone_name=WonderDrone"

		

The	following	lines	show	a	sample	response	with	the	competition	that
matches	the	specified	criteria	in	the	filters.	The	following	lines	show	only
the	JSON	response	body,	without	the	headers:

	{	

				"count":	1,		

				"next":	null,		

				"previous":	null,		

				"results":	[

								{	

												"distance_achievement_date":	"2017-10-21T06:02:23.776594Z",		

												"distance_in_feet":	2800,		

												"drone":	"WonderDrone",		

												"pilot":	"Penelope	Pitstop",		

												"pk":	2,		

												"url":	"http://localhost:8000/competitions/2"	

								}	

]	

	}	

Now,	we	will	compose	and	send	an	HTTP	request	to	retrieve	all	the
competitions	that	match	the	following	criteria.	In	addition,	we	want	the
results	ordered	by	distance_achievement_date,	in	descending	order:

1.	 The	distance_achievement_date	is	between	2017-10-18	and	2017-10-21
2.	 The	distance_in_feet	value	is	between	700	and	900

The	following	command	will	do	the	job:

http	":8000/competitions/?		min_distance_in_feet=700&max_distance_in_feet=9000&from_achievement_date=2017-10-18&to_achievement_date=2017-10-22&ordering=-achievement_date"

The	following	is	the	equivalent	curl	command:

curl	-iX	GET	"localhost:8000/competitions/?min_distance_in_feet=700&max_distance_in_feet=9000&from_achievement_date=2017-10-18&to_achievement_date=2017-10-22&ordering=-achievement_date"

The	previously	analyzed	CompetitionFilter	class	allowed	us	to	create	a
request	like	the	previous	one,	in	which	we	take	advantage	of	the
customized	filters.	The	following	lines	show	a	sample	response	with	the
two	competitions	that	match	the	specified	criteria	in	the	filters.	We
overrode	the	default	ordering	specified	in	the	model	with	the	ordering	field
indicated	in	the	request.	The	following	lines	show	only	the	JSON	body
response,	without	the	headers:

				{

								"count":	2,	

								"next":	null,	

								"previous":	null,	

								"results":	[

												{

													"distance_achievement_date":

													"2017-10-20T05:03:20.776594Z",	

																"distance_in_feet":	800,	

																"drone":	"Atom",	

																"pilot":	"Penelope	Pitstop",	

																"pk":	1,	

																"url":	"http://localhost:8000/competitions/1"

												},	

												{

																"distance_achievement_date":

																"2017-10-20T05:43:20.776594Z",	

																"distance_in_feet":	790,	

																"drone":	"Atom",	

																"pilot":	"Peter	Perfect",	

																"pk":	3,	

																"url":	"http://localhost:8000/competitions/3"

												}

]

				}

Making	requests	that	perform
starts	with	searches
Now,	we	will	take	advantage	of	searches	that	are	configured	to	check
whether	a	value	starts	with	the	specified	characters.	We	will	compose	and
send	an	HTTP	request	to	retrieve	all	the	pilots	whose	name	starts	with	'G'.

The	next	request	uses	the	search	feature	that	we	configured	to	restrict	the
search	behavior	to	a	starts-with	match	on	the	name	field	for	the	Drone	model:

				http	":8000/drones/?search=G"

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	"localhost:8000/drones/?search=G"

The	following	lines	show	a	sample	response	with	the	two	drones	that
match	the	specified	search	criteria,	that	is,	those	drones	whose	name	starts
with	'G'.	The	following	lines	show	only	the	JSON	response	body,	without
the	headers:

				{

								"count":	2,	

								"next":	null,	

								"previous":	null,	

								"results":	[

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:30.127661Z",	

																"manufacturing_date":	"2017-03-20T02:02:00.716312Z",	

																"name":	"Gossamer	Albatross",	

																"url":	"http://localhost:8000/drones/5"

												},	

												{

																"drone_category":	"Quadcopter",	

																"has_it_competed":	false,	

																"inserted_timestamp":	"2017-11-06T20:25:30.584031Z",	

																"manufacturing_date":	"2017-05-20T02:02:00.716312Z",	

																"name":	"Gulfstream	I",	

																"url":	"http://localhost:8000/drones/7"

												}

]

				}

Using	the	browsable	API	to	test
pagination,	filtering,	searching,
and	ordering
We	enabled	pagination	and	we	added	filtering,	searching,	and	ordering
features	to	our	RESTful	Web	Service.	All	of	these	new	features	have	an
impact	on	how	each	web	page	is	rendered	when	working	with	the
browsable	API.

We	can	work	with	a	web	browser	to	easily	test	pagination,	filtering,
searching,	and	ordering	with	a	few	clicks	or	taps.

Open	a	web	browser	and	go	to	http://localhost:8000/drones/.	Replace
localhost	with	the	IP	of	the	computer	that	is	running	Django's	development
server	if	you	use	another	computer	or	device	to	run	the	browser.	The
browsable	API	will	compose	and	send	a	GET	request	to	/drones/	and	will
display	the	results	of	its	execution,	that	is,	the	headers	and	the	JSON
drones	list.

We	have	configured	pagination,	and	therefore,	the	rendered	web	page	will
include	the	default	pagination	template	associated	with	the	base	pagination
class	we	are	using	and	will	display	the	available	page	numbers	in	the
upper-right	corner	of	the	web	page.	The	following	screenshot	shows	the
rendered	web	page	after	entering	the	URL	in	a	web	browser	with	the
resource	description,	Drone	List,	and	the	three	pages	generated	with	the
limit/offset	pagination	scheme:

Now,	go	to	http://localhost:8000/competitions/.	The	browsable	API	will
compose	and	send	a	GET	request	to	/competitions/	and	will	display	the	results
of	its	execution,	that	is,	the	headers	and	the	JSON	competitions	list.	The
web	page	will	include	a	Filters	button	at	the	right-hand	side	of	the
resource	description,	Competition	List,	and	at	the	left-hand	side	of	the
OPTIONS	button.

Click	or	tap	on	Filters,	and	the	browsable	API	will	render	the	Filter	model
with	the	appropriate	controls	for	each	filter	that	you	can	apply	below	Field
Filters.	In	addition,	the	model	will	render	the	different	ordering	options
below	Ordering.	The	following	screenshot	shows	the	Filters	model	for	the
competitions:

The	Drone	name	and	Pilot	name	drop-downs	only	provide	the	related
drones'	names	and	pilots'	names	that	have	participated	in	competitions
because	we	used	the	AllValuesFilter	class	for	both	filters.	We	can	easily
enter	all	the	values	for	each	desired	filter	that	we	want	to	apply	and	click
or	tap	Submit.	Then,	click	on	Filters	again,	select	the	ordering	option,	and
click	Submit.	The	browsable	API	will	compose	and	send	the	necessary
HTTP	request	to	apply	the	filters	and	ordering	we	have	specified	and	it
will	render	a	web	page	with	the	first	page	of	the	results	of	the	execution	of
the	request.

The	next	screenshot	shows	the	results	of	executing	a	request	whose	filters
were	composed	with	the	previously	explained	model:

The	following	are	the	parameters	for	the	HTTP	GET	request.	Notice	that	the
browsable	API	generates	the	query	parameters	but	doesn't	specify	values
for	the	filters	that	were	left	without	values	in	the	previous	modal.	When
the	query	parameters	don't	specify	values,	they	are	ignored:

http://localhost:8000/competitions/?distance_in_feet=&drone_name=Atom&format=json&from_achievement_date=&max_distance_in_feet=&min_distance_in_feet=85&pilot_name=Penelope+Pitstop&to_achievement_date=	

As	happens	whenever	we	have	to	test	the	different	features	included	in	our
RESTful	Web	Service,	the	browsable	API	is	also	extremely	helpful
whenever	we	need	to	check	filters	and	ordering.

Test	your	knowledge
Let's	see	whether	you	can	answer	the	following	questions	correctly:

1.	 The	django_filters.rest_framework.DjangoFilterBackend	class	provides:

1.	 Control	on	how	the	results	are	ordered	with	a	single	query
parameter

2.	 Single	query	parameter-based	searching	capabilities,
based	on	the	Django	admin's	search	function

3.	 Field	filtering	capabilities

2.	 The	rest_framework.filters.SearchFilter	class	provides:

1.	 Control	on	how	the	results	are	ordered	with	a	single	query
parameter

2.	 Single	query	parameter-based	searching	capabilities,
based	on	the	Django	admin's	search	function

3.	 Field	filtering	capabilities

3.	 If	we	want	to	create	a	unique	constraint,	what	must	be	added	to	a
models.CharField	initializer	as	one	of	the	named	arguments?

1.	 unique=True
2.	 unique_constraint=True
3.	 force_unique=True

4.	 Which	of	the	following	class	attributes	specifies	a	tuple	of	strings
whose	values	indicate	the	field	names	that	we	want	to	be	able	to
filter	against	in	a	class-based	view	that	inherits	from
generics.ListCreateAPIView:

1.	 filters
2.	 filtering_fields
3.	 filter_fields

5.	 Which	of	the	following	class	attributes	specifies	a	tuple	of	strings
whose	values	indicate	the	field	names	that	the	HTTP	request	can
specify	to	sort	the	results	in	a	class-based	view	that	inherits	from
generics.ListCreateAPIView:

1.	 order_by
2.	 ordering_fields
3.	 order_fields

	

The	rights	answers	are	included	in	the	Appendix,	Solutions.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=44&action=edit#post_454

Summary
In	this	chapter,	we	used	the	browsable	API	feature	to	navigate	through	the
API	with	resources	and	relationships.	We	added	unique	constraints	to
improve	consistency	for	the	models	in	our	RESTful	Web	Service.

We	understood	the	importance	of	paginating	results	and	we	configured
and	tested	a	global	limit/offset	pagination	scheme	with	the	Django	REST
framework.	Then,	we	created	our	own	customized	pagination	class	to
make	sure	that	requests	weren't	able	to	acquire	a	huge	amount	of	elements
in	a	single	page.

We	configured	filter	backend	classes	and	we	added	code	to	the	models	to
add	filtering,	searching,	and	ordering	capabilities	to	the	class-based	views.
We	created	a	customized	filter	and	we	made	requests	to	filter,	search,	and
order	results,	and	we	understood	how	everything	worked	under	the	hood.
Finally,	we	used	the	browsable	API	to	test	pagination,	filtering,	and
ordering.

Now	that	we	improved	our	RESTful	Web	Service	with	unique	constraints,
paginated	results,	fitering,	searching,	and	ordering	features,	we	will	secure
the	API	with	authentication	and	permissions.	We	will	cover	these	topics	in
the	next	chapter.

Securing	the	API	with
Authentication	and
Permissions
In	this	chapter,	we	will	understand	the	difference	between	authentication
and	permissions	in	the	Django	REST	framework.	We	will	start	securing
our	RESTful	Web	Service	by	adding	requirements	for	authentication
schemes	and	specifying	permission	policies.	We	will	gain	an
understanding	of:

Understanding	authentication	and	permissions	in	Django,	the
Django	REST	framework,	and	RESTful	Web	Services

Authentication	classes

Security	and	permissions-related	data	to	models

Working	with	object-level	permissions	via	customized	permission
classes

Saving	information	about	users	that	make	requests

Setting	permissions	policies

Creating	the	superuser	for	Django

Creating	a	user	for	Django

Making	authenticated	requests

Browsing	the	secured	API	with	the	required	authentication

Working	with	token-based	authentication

Generating	and	using	tokens

Understanding	authentication
and	permissions	in	Django,	the
Django	REST	framework,	and
RESTful	Web	Services
Right	now,	our	sample	RESTful	Web	Service	processes	all	the	incoming
requests	without	requiring	any	kind	of	authentication,	that	is,	any	user	can
perform	requests.	The	Django	REST	framework	allows	us	to	easily	use
diverse	authentication	schemes	to	identify	a	user	that	originated	the
request	or	a	token	that	signed	the	request.	Then,	we	can	use	these
credentials	to	apply	permission	and	throttling	policies	that	will	determine
whether	the	request	must	be	permitted	or	not.

We	already	know	how	configurations	work	with	the	Django	REST
framework.	We	can	apply	a	global	setting	and	override	it	if	necessary	in
the	appropriate	class-based	views.	Hence,	we	can	set	the	default
authentication	schemes	in	the	global	settings	and	override	them	whenever
required	for	specific	scenarios.

The	settings	allow	us	to	declare	a	list	of	classes	that	specify	the
authentication	schemes	to	be	used	for	all	the	incoming	HTTP	requests.
The	Django	REST	framework	will	use	all	the	specified	classes	in	the	list
to	authenticate	a	request,	before	running	the	appropriate	method	for	the
class-based	view	based	on	the	request.

We	can	specify	just	one	class.	However,	it	is	very	important	to	understand
the	behavior	in	case	we	have	to	use	more	than	one	class.	The	first	class	in
the	list	that	generates	a	successful	authentication	will	be	responsible	for
setting	the	values	for	the	following	two	attributes	for	the	request	object:

user:	This	attribute	represents	the	user	model	instance.	In	our
examples,	we	will	work	with	an	instance	of	the	Django	User	class,
specifically,	the	django.contrib.auth.User	class.

auth:	This	attribute	provides	additional	authentication	data	required
by	the	authentication	scheme,	such	as	an	authentication	token.

After	a	successful	authentication,	we	will	be	able	to	use	the	request.user
attribute	within	the	different	methods	in	our	class-based	views	that	receive
the	request	parameter.	This	way,	we	will	be	able	to	retrieve	additional
information	about	the	user	that	generated	the	request.

Learning	about	the
authentication	classes
The	Django	REST	framework	provides	the	following	three	authentication
classes	in	the	rest_framework.authentication	module.	All	of	them	are
subclasses	of	the	BaseAuthentication	class:

BasicAuthentication:	This	class	provides	an	HTTP	basic
authentication	against	a	username	and	a	password.

SessionAuthentication:	This	class	works	with	Django's	session
framework	for	authentication.

TokenAuthentication:	This	class	provides	a	simple	token-based
authentication.	The	request	must	include	the	token	generated	for	a
user	as	the	value	for	the	Authorization	HTTP	header	key	with	the
'Token	'	string	as	a	prefix	for	the	token.

Of	course,	in	a	production	environment,	we	must	make	sure
that	the	RESTful	Web	Service	is	only	available	over	HTTPS,
with	the	usage	of	the	latest	TLS	versions.	We	shouldn't	use	an
HTTP	basic	authentication	or	a	simple	token-based
authentication	over	plain	HTTP	in	a	production	environment.

The	previous	classes	are	included	in	the	Django	REST	framework	out	of
the	box.	There	are	many	additional	authentication	classes	provided	by
many	third-party	libraries.	We	will	work	with	some	of	these	libraries	later
in	this	chapter.

Make	sure	you	quit	Django's	development	server.	Remember	that	you	just
need	to	press	Ctrl	+	C	in	the	terminal	or	go	to	the	Command	Prompt

window	in	which	it	is	running.	We	have	to	edit	the	models	and	then
execute	migrations	before	starting	Django's	development	server	again.

We	will	make	the	necessary	changes	to	combine	HTTP	basic
authentication	against	a	username	and	a	password	with	Django's	session
framework	for	authentication.	Hence,	we	will	add	the	BasicAuthentication
and	SessionAuthentication	classes	in	the	global	authentication	classes	list.

Open	the	restful01/restful01/settings.py	file	that	declares	the	module-level
variables	that	define	the	configuration	of	Django	for	the	restful01	project.
We	will	make	some	changes	to	this	Django	settings	file.	Add	the
highlighted	lines	to	the	REST_FRAMEWORK	dictionary.	The	following	lines	show
the	new	declaration	of	the	REST_FRAMEWORK	dictionary.	The	code	file	for	the
sample	is	included	in	the	hillar_django_restful_08_01	folder	in	the
restful01/restful01/settings.py	file:

REST_FRAMEWORK	=	{	

				'DEFAULT_PAGINATION_CLASS':	

				'drones.custompagination.LimitOffsetPaginationWithUpperBound',	

				'PAGE_SIZE':	4,	

				'DEFAULT_FILTER_BACKENDS':	(

								'django_filters.rest_framework.DjangoFilterBackend',	

								'rest_framework.filters.OrderingFilter',	

								'rest_framework.filters.SearchFilter',	

),	

				'DEFAULT_AUTHENTICATION_CLASSES':	(

								'rest_framework.authentication.BasicAuthentication',	

								'rest_framework.authentication.SessionAuthentication',	

)

}	

We	added	the	DEFAULT_AUTHENTICATION_CLASSES	settings	key	to	the	REST_FRAMEWORK
dictionary.	This	new	key	specifies	a	global	setting	with	a	tuple	of	string
whose	values	indicate	the	classes	that	we	want	to	use	for	authentication:
BasicAuthentication	and	SessionAuthentication.

Including	security	and
permissions-related	data	to
models
We	want	each	drone	to	have	an	owner.	Only	an	authenticated	user	will	be
able	to	create	a	drone	and	it	will	automatically	become	the	owner	of	this
new	drone.	We	want	only	the	owner	of	a	drone	to	be	able	to	update	or
delete	the	drone.	Hence,	an	authenticated	user	that	is	also	the	owner	of	the
drone	will	be	able	to	execute	PATCH,	PUT,	and	DELETE	methods	on	the	drone
resource	that	he	owns.

Any	authenticated	user	that	isn't	the	owner	of	a	specific	drone	resource
will	have	read-only	access	to	this	drone.	In	addition,	unauthenticated
requests	will	also	have	read-only	access	to	drones.

We	will	combine	authentication	with	specific	permissions.	Permissions
use	the	authentication	information	included	in	the	request.user	and
request.auth	attributes	to	determine	whether	the	request	should	be	granted
or	denied	access.	Permissions	allow	us	to	control	which	types	of	users	will
be	granted	or	denied	access	to	the	different	features,	methods,	resources,
or	resource	collections	of	our	RESTful	Web	Service.

We	will	use	the	permissions	features	in	the	Django	REST	framework	to
allow	only	authenticated	users	to	create	new	drones	and	automatically
become	their	owners.	We	will	make	the	necessary	changes	in	the	models
to	make	a	drone	have	a	user	as	its	owner.	We	will	take	advantage	of	the
out-of-the-box	permission	classes	included	in	the	framework	combined
with	a	customized	permission	class,	to	define	the	previously	explained
permission	policies	for	the	drones	and	their	related	HTTP	verbs	supported
in	our	web	service.

In	this	case,	we	will	stay	focused	on	security	and	permissions	and	we	will
leave	throttling	rules	for	the	next	chapters.	Bear	in	mind	that	throttling
rules	also	determine	whether	a	specific	request	must	be	authorized	or	not.
However,	we	will	work	on	throttling	rules	later	and	we	will	combine	them
with	authentication	and	permissions.

Open	the	restful01/drones/models.py	file	and	replace	the	code	that	declares	the
Drone	class	with	the	following	code.	The	new	lines	are	highlighted	in	the
code	listing.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_08_01	folder,	in	the	restful01/drones/models.py	file:

class	Drone(models.Model):	

				name	=	models.CharField(max_length=250,	unique=True)	

				drone_category	=	models.ForeignKey(

								DroneCategory,		

								related_name='drones',		

								on_delete=models.CASCADE)	

				manufacturing_date	=	models.DateTimeField()	

				has_it_competed	=	models.BooleanField(default=False)	

				inserted_timestamp	=	models.DateTimeField(auto_now_add=True)	

				owner	=	models.ForeignKey(

								'auth.User',		

								related_name='drones',	

								on_delete=models.CASCADE)	

	

				class	Meta:	

								ordering	=	('name',)	

	

				def	__str__(self):	

								return	self.name

The	highlighted	lines	declare	a	new	owner	field	for	the	Drone	model.	The
new	field	uses	the	django.db.models.ForeignKey	class	to	provide	a	many-to-one
relationship	to	the	django.contrib.auth.User	model.

This	User	model	persists	the	users	for	the	Django	authentication	system.
Now,	we	are	using	this	authentication	system	for	our	RESTful	Web
Service.	The	'drones'	value	specified	for	the	related_name	argument	creates	a
backward	relation	from	the	User	to	the	Drone	model.	Remember	that	this
value	indicates	the	name	to	use	for	the	relation	from	the	related	User	object

back	to	a	Drone	object.	This	way,	we	will	be	able	to	access	all	the	drones
owned	by	a	specific	user.

Whenever	we	delete	a	User,	we	want	all	drones	owned	by	this	user	to	be
deleted	too,	and	therefore,	we	specified	the	models.CASCADE	value	for	the
on_delete	argument.

Open	the	restful01/drones/serializers.py	file	and	add	the	following	code	after
the	last	line	that	declares	the	imports,	before	the	declaration	of	the
DroneCategorySerializer	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_08_01	folder,	in	the	restful01/drones/serializers.py	file:

from	django.contrib.auth.models	import	User	

	

	

class	UserDroneSerializer(serializers.HyperlinkedModelSerializer):	

				class	Meta:	

								model	=	Drone	

								fields	=	(

												'url',	

												'name')	

	

	

class	UserSerializer(serializers.HyperlinkedModelSerializer):	

				drones	=	UserDroneSerializer(

								many=True,		

								read_only=True)	

	

				class	Meta:	

								model	=	User	

								fields	=	(

												'url',		

												'pk',	

												'username',	

												'drone')

We	don't	want	to	use	the	DroneSerializer	serializer	class	for	the	drones
related	to	a	user	because	we	want	to	serialize	fewer	fields,	and	therefore,
we	created	the	UserDroneSerializer	class.	This	class	is	a	subclass	of	the
HyperlinkedModelSerializer	class.	This	new	serializer	allows	us	to	serialize	the
drones	related	to	a	User.	The	UserDroneSerializer	class	defines	a	Meta	inner

class	that	declares	the	following	two	attributes:

model:	This	attribute	specifies	the	model	related	to	the	serializer,
that	is,	the	Drone	class.

fields:	This	attribute	specifies	a	tuple	of	string	whose	values
indicate	the	field	names	that	we	want	to	include	in	the	serialization
from	the	related	model.	We	just	want	to	include	the	URL	and	the
drone's	name,	and	therefore,	the	code	includes	'url'	and	'name'	as
members	of	the	tuple.

The	UserSerializer	is	a	subclass	of	the	HyperlinkedModelSerializer	class.	This
new	serializer	class	declares	a	drones	attribute	as	an	instance	of	the
previously	explained	UserDroneSerializer	class,	with	the	many	and	read_only
arguments	equal	to	True	because	it	is	a	one-to-many	relationship	and	it	is
read-only.	The	code	specifies	the	drones	name	that	we	specified	as	the
string	value	for	the	related_name	argument	when	we	added	the	owner	field	as	a
models.ForeignKey	instance	in	the	Drone	model.	This	way,	the	drones	field	will
provide	us	with	an	array	of	URLs	and	names	for	each	drone	that	belongs
to	the	user.

Now,	we	will	add	an	owner	field	to	the	existing	DroneSerializer	class.	Open
the	restful01/drones/serializers.py	file	and	replace	the	code	that	declares	the
DroneSerializer	class	with	the	following	code.	The	new	lines	are	highlighted
in	the	code	listing.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_08_01	folder,	in	the	restful01/drones/serializers.py	file.

class	DroneSerializer(serializers.HyperlinkedModelSerializer):	

				#	Display	the	category	name	

				drone_category	=	serializers.SlugRelatedField(queryset=DroneCategory.objects.all(),	slug_field='name')	

				#	Display	the	owner's	username	(read-only)	

				owner	=	serializers.ReadOnlyField(source='owner.username')

	

				class	Meta:	

								model	=	Drone	

								fields	=	(

												'url',	

												'name',	

												'drone_category',	

												'owner',

												'manufacturing_date',	

												'has_it_competed',	

												'inserted_timestamp',)	

The	new	version	of	the	DroneSerializer	class	declares	an	owner	attribute	as	an
instance	of	serializers.ReadOnlyField	with	the	source	argument	equal	to
'owner.username'.	This	way,	the	serializer	will	serialize	the	value	for	the
username	field	of	the	related	django.contrib.auth.User	instance	stored	in	the
owner	field.

The	code	uses	the	ReadOnlyField	class	because	the	owner	is	automatically
populated	when	an	authenticated	user	creates	a	new	drone.	It	will	be
impossible	to	change	the	owner	after	a	drone	has	been	created	with	an
HTTP	POST	method	call.	This	way,	the	owner	field	will	render	the	username
that	created	the	related	drone.	In	addition,	we	added	'owner'	to	the	fields
string	tuple	within	the	Meta	inner	class.

We	made	the	necessary	changes	to	the	Drone	model	and	its	serializer	(the
DroneSerializer	class)	to	make	drones	have	owners.

Working	with	object-level
permissions	via	customized
permission	classes
The	rest_framework.permissions.BasePermission	class	is	the	base	class	from
which	all	customized	permission	classes	should	inherit	to	work	with	the
Django	REST	framework.	We	want	to	make	sure	that	only	a	drone	owner
can	update	or	delete	an	existing	drone.

Go	to	the	restful01/drones	folder	and	create	a	new	file	named
custompermission.py.	Write	the	following	code	in	this	new	file.	The	following
lines	show	the	code	for	this	file	that	declares	the	new
IsCurrentUserOwnerOrReadOnly	class	declared	as	a	subclass	of	the	BasePermission
class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_08_01	folder	in	the	restful01/drones/custompermission.py	file:

from	rest_framework	import	permissions	

	

	

class	IsCurrentUserOwnerOrReadOnly(permissions.BasePermission):	

				def	has_object_permission(self,	request,	view,	obj):	

								if	request.method	in	permissions.SAFE_METHODS:	

												#	The	method	is	a	safe	method	

												return	True	

								else:	

												#	The	method	isn't	a	safe	method	

												#	Only	owners	are	granted	permissions	for	unsafe	methods	

												return	obj.owner	==	request.user	

The	previous	lines	declare	the	IsCurrentUserOwnerOrReadOnly	class	and	override
the	has_object_permission	method	defined	in	the	BasePermission	superclass	that
returns	a	bool	value	indicating	whether	the	permission	should	be	granted	or
not.

The	permissions.SAFE_METHODS	tuple	of	string	includes	the	three	HTTP	methods
or	verbs	that	are	considered	safe	because	they	are	read-only	and	they	don't
produce	changes	to	the	related	resource	or	resource	collection:	'GET',	'HEAD',
and	'OPTIONS'.	The	code	in	the	has_object_permission	method	checks	whether
the	HTTP	verb	specified	in	the	request.method	attribute	is	any	of	the	three
safe	methods	specified	in	permission.SAFE_METHODS.	If	this	expression
evaluates	to	True,	the	has_object_permission	method	returns	True	and	grants
permission	to	the	request.

If	the	HTTP	verb	specified	in	the	request.method	attribute	is	not	any	of	the
three	safe	methods,	the	code	returns	True	and	grants	permission	only	when
the	owner	attribute	of	the	received	obj	object	(obj.owner)	matches	the	user	that
originated	the	request	(request.user).	The	user	that	originated	the	request
will	always	be	the	authenticated	user.	This	way,	only	the	owner	of	the
related	resource	will	be	granted	permission	for	those	requests	that	include
HTTP	verbs	that	aren't	safe.

We	will	use	the	new	IsCurrentUserOwnerOrReadOnly	customized	permission
class	to	make	sure	that	only	the	drone	owners	can	make	changes	to	an
existing	drone.	We	will	combine	this	permission	class	with	the
rest_framework.permissions.IsAuthenticatedOrReadOnly	one	that	only	allows	read-
only	access	to	resources	when	the	request	doesn't	belong	to	an
authenticated	user.	This	way,	whenever	an	anonymous	user	performs	a
request,	he	will	only	have	read-only	access	to	the	resources.

Saving	information	about	users
that	make	requests
Whenever	a	user	performs	an	HTTP	POST	request	to	the	drone	resource
collection	to	create	a	new	drone	resource,	we	want	to	make	the
authenticated	user	that	makes	the	request	the	owner	of	the	new	drone.	In
order	to	make	this	happen,	we	will	override	the	perform_create	method	in	the
DroneList	class	declared	in	the	views.py	file.

Open	the	restful01/drones/views.py	file	and	replace	the	code	that	declares	the
DroneList	class	with	the	following	code.	The	new	lines	are	highlighted	in
the	code	listing.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_08_01	folder,	in	the	restful01/drones/views.py	file:

class	DroneList(generics.ListCreateAPIView):	

				queryset	=	Drone.objects.all()	

				serializer_class	=	DroneSerializer	

				name	=	'drone-list'	

				filter_fields	=	(

								'name',		

								'drone_category',		

								'manufacturing_date',		

								'has_it_competed',		

)	

				search_fields	=	(

								'^name',	

)	

				ordering_fields	=	(

								'name',	

								'manufacturing_date',	

)	

	

				def	perform_create(self,	serializer):	

								serializer.save(owner=self.request.user)	

The	generics.ListCreateAPIView	class	inherits	from	the	CreateModelMixin	class

and	other	classes.	The	DroneList	class	inherits	the	perform_create	method	from
the	rest_framework.mixins.CreateModelMixin	class.

The	code	that	overrides	the	perform_create	method	provides	an	additional
owner	field	to	the	create	method	by	setting	a	value	for	the	owner	argument	in
the	call	to	the	serializer.save	method.	The	code	sets	the	owner	argument	to
the	value	of	self.request.user,	that	is,	to	the	authenticated	user	that	is
making	the	request.	This	way,	whenever	a	new	Drone	is	created	and
persisted,	it	will	save	the	User	associated	to	the	request	as	its	owner.

Setting	permission	policies
We	will	configure	permission	policies	for	the	class-based	views	that	work
with	the	Drone	model.	We	will	override	the	value	for	the	permission_classes
class	attribute	for	the	DroneDetail	and	DroneList	classes.

We	will	add	the	same	lines	of	code	in	the	two	classes.	We	will	include	the
IsAuthenticatedOrReadOnly	class	and	our	recently	declared
IsCurrentUserOwnerOrReadOnly	permission	class	in	the	permission_classes	tuple.

Open	the	restful01/drones/views.py	file	and	add	the	following	lines	after	the
last	line	that	declares	the	imports,	before	the	declaration	of	the
DroneCategorySerializer	class:

from	rest_framework	import	permissions	

from	drones	import	custompermission	

Replace	the	code	that	declares	the	DroneDetail	class	with	the	following	code
in	the	same	views.py	file.	The	new	lines	are	highlighted	in	the	code	listing.
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_08_01
folder,	in	the	restful01/drones/views.py	file:

class	DroneDetail(generics.RetrieveUpdateDestroyAPIView):	

				queryset	=	Drone.objects.all()	

				serializer_class	=	DroneSerializer	

				name	=	'drone-detail'	

				permission_classes	=	(

								permissions.IsAuthenticatedOrReadOnly,	

								custompermission.IsCurrentUserOwnerOrReadOnly,	

)

Replace	the	code	that	declares	the	DroneList	class	with	the	following	code
in	the	same	views.py	file.	The	new	lines	are	highlighted	in	the	code	listing.

The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_08_01
folder,	in	the	restful01/drones/views.py	file:

class	DroneList(generics.ListCreateAPIView):	

				queryset	=	Drone.objects.all()	

				serializer_class	=	DroneSerializer	

				name	=	'drone-list'	

				filter_fields	=	(

								'name',		

								'drone_category',		

								'manufacturing_date',		

								'has_it_competed',		

)	

				search_fields	=	(

								'^name',	

)	

				ordering_fields	=	(

								'name',	

								'manufacturing_date',	

)	

				permission_classes	=	(

								permissions.IsAuthenticatedOrReadOnly,	

								custompermission.IsCurrentUserOwnerOrReadOnly,	

)

	

				def	perform_create(self,	serializer):	

								serializer.save(owner=self.request.user)	

Creating	the	superuser	for
Django
Now,	we	will	run	the	necessary	command	to	create	the	superuser	for	Django
that	will	allow	us	to	authenticate	our	requests.	We	will	create	other	users
later.

Make	sure	you	are	in	the	restful01	folder	that	includes	the	manage.py	file	in
the	activated	virtual	environment.	Execute	the	following	command	that
executes	the	createsuperuser	subcommand	for	the	manage.py	script	to	allow	us
to	create	the	superuser:

				python	manage.py	createsuperuser

The	command	will	ask	you	for	the	username	you	want	to	use	for	the
superuser.	Enter	the	desired	username	and	press	Enter.	We	will	use
djangosuper	as	the	username	for	this	example.	You	will	see	a	line	similar	to
the	following	one:

				Username	(leave	blank	to	use	'gaston'):

Then,	the	command	will	ask	you	for	the	email	address.	Enter	an	email
address	and	press	Enter.	You	can	enter	djangosuper@example.com:

				Email	address:

Finally,	the	command	will	ask	you	for	the	password	for	the	new	superuser.
Enter	your	desired	password	and	press	Enter.	We	will	use	passwordforsuper
as	an	example	in	our	tests.	Of	course,	this	password	is	not	the	best

example	of	a	strong	password.	However,	the	password	is	easy	to	type	and
read	in	our	tests:

				Password:

The	command	will	ask	you	to	enter	the	password	again.	Enter	it	and	press
Enter.	If	both	entered	passwords	match,	the	superuser	will	be	created:

				Password	(again):	

				Superuser	created	successfully.

Our	database	has	many	rows	in	the	drones_drone	table.	We	added	a	new	owner
field	for	the	Drone	model	and	this	required	field	will	be	added	to	the
drones_drone	table	after	we	execute	migrations.	We	have	to	assign	a	default
owner	for	all	the	existing	drones	to	make	it	possible	to	add	this	new
required	field	without	having	to	delete	all	these	drones.	We	will	use	one	of
the	features	included	in	Django	to	solve	the	issue.

First,	we	have	to	know	the	id	value	for	the	superuser	we	have	created	to
use	it	as	the	default	owner	for	the	existing	drones.	Then,	we	will	use	this
value	to	let	Django	know	which	is	the	default	owner	for	the	existing
drones.

We	created	the	first	user,	and	therefore,	the	id	will	be	equal	to	1.	However,
we	will	check	the	procedure	to	determine	the	id	value	in	case	you	create
other	users	and	you	want	to	assign	any	other	user	as	the	default	owner.

You	can	check	the	row	in	the	auth_user	table	whose	username	field	matches
'djangosuper'	in	any	tool	that	works	with	PostgreSQL.	Another	option	is	to
run	the	following	commands	to	retrieve	the	ID	from	the	auth_user	table
for	the	row	whose	username	is	equal	to	'djangosuper'.	In	case	you	specified
a	different	name,	make	sure	you	use	the	appropriate	one.	In	addition,
replace	the	username	in	the	command	with	the	username	you	used	to
create	the	PostgreSQL	database	and	password	with	your	chosen	password
for	this	database	user.	You	specified	this	information	when	you	executed

the	steps	explained	in	Chapter	6,	Working	with	Advanced	Relationships	and
Serialization,	in	the	Running	migrations	that	generate	relationships
section.

The	command	assumes	that	you	are	running	PostgreSQL	on	the	same
computer	in	which	you	are	executing	the	command:

				psql	--username=username	--dbname=drones	--command="SELECT	id	FROM	

				auth_user	WHERE	username	=	'djangosuper';"

		

The	following	lines	show	the	output	with	the	value	for	the	id	field:	1:

				id	

						1

				(1	row)

Now,	run	the	following	Python	script	to	generate	the	migrations	that	will
allow	us	to	synchronize	the	database	with	the	new	field	we	added	to	the
Drone	model:

				python	manage.py	makemigrations	drones

Django	will	explain	to	us	that	we	cannot	add	a	non-nullable	field	without	a
default	and	will	ask	us	to	select	an	option	with	the	following	message:

	You	are	trying	to	add	a	non-nullable	field	'owner'	to	drone	without	a			

		default;	we	can't	do	that	(the	database	needs	something	to	populate	

			existing	rows).

				Please	select	a	fix:

					1)	Provide	a	one-off	default	now	(will	be	set	on	all	existing	rows	

					with	a	null	value	for	this	column)

					2)	Quit,	and	let	me	add	a	default	in	models.py

							Select	an	option:

Enter	1	and	press	Enter.	This	way,	we	will	select	the	first	option	to	provide
the	one-off	default	that	will	be	set	on	all	the	existing	drones_drone	rows.

Django	will	ask	us	to	provide	the	default	value	we	want	to	set	for	the	owner
field	of	the	drones_drone	table:

				Please	enter	the	default	value	now,	as	valid	Python

				The	datetime	and	django.utils.timezone	modules	are	available,	so	

					you	can	do	e.g.	timezone.now

				Type	'exit'	to	exit	this	prompt

				>>>

Enter	the	value	for	the	previously	retrieved	id:	1.	Then,	press	Enter.	The
following	lines	show	the	output	generated	after	running	the	previous
command:

				Migrations	for	'drones':

						drones/migrations/0003_drone_owner.py

								-	Add	field	owner	to	drone

The	output	indicates	that	the	restful01/drones/migrations/0003_drone_owner.py
file	includes	the	code	to	add	the	field	named	owner	to	the	drone	table.	The
following	lines	show	the	code	for	this	file	that	was	automatically
generated	by	Django.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_08_01	folder,	in	the
restful01/drones/migrations/0003_drone_owner.py	file:

#	-*-	coding:	utf-8	-*-

#	Generated	by	Django	1.11.5	on	2017-11-09	22:04

from	__future__	import	unicode_literals

from	django.conf	import	settings

from	django.db	import	migrations,	models

import	django.db.models.deletion

class	Migration(migrations.Migration):

				dependencies	=	[

								migrations.swappable_dependency(settings.AUTH_USER_MODEL),

								('drones',	'0002_auto_20171104_0246'),

]

				operations	=	[

								migrations.AddField(

												model_name='drone',

												name='owner',

												field=models.ForeignKey(default=1,	on_delete=django.db.models.deletion.CASCADE,	related_name='drones',	to=settings.AUTH_USER_MODEL),

												preserve_default=False,

),

]

The	code	declares	the	Migration	class	as	a	subclass	of	the
django.db.migrations.Migration	class.	The	Migration	class	defines	an	operations
list	with	a	migrations.AddField	instance	that	will	add	the	owner	field	to	the
table	related	to	the	drone	model.

Now,	run	the	following	Python	script	to	apply	all	the	generated	migrations
and	execute	the	changes	in	the	database	tables:

				python	manage.py	migrate

The	following	lines	show	the	output	generated	after	running	the	previous
command:

Operations	to	perform:

Apply	all	migrations:	admin,	auth,	contenttypes,	drones,	sessions

Running	migrations:

Applying	drones.0003_drone_owner...	OK

After	we	run	the	previous	command,	we	will	have	a	new	owner_id	field	in
the	drones_drone	table	in	the	PostgreSQL	database.	The	existing	rows	in	the
drones_drone	table	will	use	the	default	value	we	instructed	Django	to	use	for
the	new	owner_id	field:	1.	This	way,	the	superuser	named	'djangosuper'	will	be
the	owner	for	all	the	existing	drones.

We	can	use	the	PostgreSQL	command	line	or	any	other	application	that

allows	us	to	easily	check	the	contents	of	the	PostreSQL	database	to	browse
the	drones_drone	table	that	Django	updated.

The	following	screenshot	shows	the	new	structure	for	the	drones_drone	table
at	the	left-hand	side	and	all	its	rows	at	the	right-hand	side:

Creating	a	user	for	Django
Now,	we	will	use	Django's	interactive	shell	to	create	a	new	user	for
Django.	Run	the	following	command	to	launch	Django's	interactive	shell.
Make	sure	you	are	within	the	restful01	folder	in	the	terminal,	Command
Prompt,	or	Windows	Powershell	window	in	which	you	have	the	virtual
environment	activated:

				python	manage.py	shell

You	will	notice	that	a	line	that	says	(InteractiveConsole)	is	displayed	after
the	usual	lines	that	introduce	your	default	Python	interactive	shell.	Enter
the	following	code	in	the	shell	to	create	another	user	that	is	not	a
superuser.	We	will	use	this	user	and	the	superuser	to	test	our	changes	in
the	permissions	policies.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_08_01	folder,	in	the	scripts/create_user.py	file.	You	can
replace	user01	with	your	desired	username,	user01@example.com	with	the	email
and	user01password	with	the	password	you	want	to	use	for	this	user.	Notice
that	we	will	be	using	these	credentials	in	the	following	sections.	Make
sure	you	always	replace	the	credentials	with	your	own	credentials:

from	django.contrib.auth.models	import	User

user	=	User.objects.create_user('user01',	'user01@example.com',	'user01password')

user.save()

Finally,	enter	the	following	command	to	quit	the	interactive	console:

quit()

You	can	achieve	the	same	goal	by	pressing	Ctrl	+	D.	Now,	we	have	a	new
user	for	Django	named	user01.

Making	authenticated	requests
Now,	we	can	launch	Django's	development	server	to	compose	and	send
authenticated	HTTP	requests	to	understand	how	the	configured
authentication	classes,	combined	with	the	permission	policies,	work.
Execute	any	of	the	following	two	commands	based	on	your	needs	to
access	the	API	in	other	devices	or	computers	connected	to	your	LAN.
Remember	that	we	analyzed	the	difference	between	them	in	Chapter
3,	Creating	API	Views,	in	the	Launching	Django's	development	server
section:

				python	manage.py	runserver

				python	manage.py	runserver	0.0.0.0:8000

After	we	run	any	of	the	previous	commands,	the	development	server	will
start	listening	at	port	8000.

We	will	compose	and	send	an	HTTP	POST	request	without	authentication
credentials	to	try	to	create	a	new	drone:

http	POST	:8000/drones/	name="Python	Drone"	drone_category="Quadcopter"	manufacturing_date="2017-07-16T02:03:00.716312Z"	has_it_competed=false

The	following	is	the	equivalent	curl	command:

				curl	-iX	POST	-H	"Content-Type:	application/json"	-d			

			'{"name":"Python	Drone",	"drone_category":"Quadcopter",	

				"manufacturing_date":	"2017-07-16T02:03:00.716312Z",		

				"has_it_competed":	"false"}'	localhost:8000/drones/

We	will	receive	an	HTTP	401	Unauthorized	status	code	in	the	response	header

and	a	detail	message	indicating	that	we	didn't	provide	authentication
credentials	in	the	JSON	body.	The	following	lines	show	a	sample
response:

HTTP/1.0	401	Unauthorized

Allow:	GET,	POST,	HEAD,	OPTIONS

Content-Length:	58

Content-Type:	application/json

Date:	Tue,	19	Dec	2017	19:52:44	GMT

Server:	WSGIServer/0.2	CPython/3.6.2

Vary:	Accept,	Cookie

WWW-Authenticate:	Basic	realm="api"

X-Frame-Options:	SAMEORIGIN

{

				"detail":	"Authentication	credentials	were	not	provided."

}

After	the	changes	we	made,	if	we	want	to	create	a	new	drone,	that	is,	to
make	an	HTTP	POST	request	to	/drones/,	we	need	to	provide	authentication
credentials	by	using	HTTP	authentication.	Now,	we	will	compose	and
send	an	HTTP	request	to	create	a	new	drone	with	authentication
credentials,	that	is,	with	the	superuser	name	and	his	password.	Remember
to	replace	djangosuper	with	the	name	you	used	for	the	superuser	and
passwordforsuper	with	the	password	you	configured	for	this	user:

http	-a	"djangosuper":"passwordforsuper"	POST	:8000/drones/	name="Python	Drone"	drone_category="Quadcopter"	manufacturing_date="2017-07-16T02:03:00.716312Z"	has_it_competed=false

The	following	is	the	equivalent	curl	command:

				curl	--user	"djangosuper":"passwordforsuper"	-iX	POST	-H	"Content-

				Type:	application/json"	-d	'{"name":"Python	Drone",	

				"drone_category":"Quadcopter",	"manufacturing_date":	"2017-07-

					16T02:03:00.716312Z",	"has_it_competed":	"false"}'	

					localhost:8000/drones/

The	new	Drone	with	the	superuser	named	djangosuper	as	its	owner	has	been
successfully	created	and	persisted	in	the	database	because	the	request	was

authenticated.	As	a	result	of	the	request,	we	will	receive	an	HTTP	201	Created
status	code	in	the	response	header	and	the	recently	persisted	Drone
serialized	to	JSON	in	the	response	body.	The	following	lines	show	an
example	response	for	the	HTTP	request,	with	the	new	Drone	object	in	the
JSON	response	body.	Notice	that	the	JSON	response	body	includes	the
owner	key	and	the	username	that	created	the	drone	as	its	value:	djangosuper:

HTTP/1.0	201	Created

Allow:	GET,	POST,	HEAD,	OPTIONS

Content-Length:	219

Content-Type:	application/json

Date:	Fri,	10	Nov	2017	02:55:07	GMT

Location:	http://localhost:8000/drones/12

Server:	WSGIServer/0.2	CPython/3.6.2

Vary:	Accept,	Cookie

X-Frame-Options:	SAMEORIGIN

{

				"drone_category":	"Quadcopter",

				"has_it_competed":	false,

				"inserted_timestamp":	"2017-11-10T02:55:07.361574Z",

				"manufacturing_date":	"2017-07-16T02:03:00.716312Z",

				"name":	"Python	Drone",

				"owner":	"djangosuper",

				"url":	"http://localhost:8000/drones/12"

}

Now,	we	will	try	to	update	the	has_it_competed	field	value	for	the	previously
created	drone	with	an	HTTP	PATCH	request.	However,	we	will	use	the	other
user	we	created	in	Django	to	authenticate	this	HTTP	PATCH	request.	This
user	isn't	the	owner	of	the	drone,	and	therefore,	the	request	shouldn't
succeed.

Replace	user01	and	user01password	in	the	next	command	with	the	name	and
password	you	configured	for	this	user.	In	addition,	replace	12	with	the	ID
generated	for	the	previously	created	drone	in	your	configuration:

http	-a	"user01":"user01password"	PATCH	:8000/drones/12	has_it_competed=true

The	following	is	the	equivalent	curl	command:

curl	--user	"user01":"user01password"	-iX	PATCH	-H	"Content-Type:	application/json"	-d	'{"has_it_competed":	"true"}'	localhost:8000/drones/12

We	will	receive	an	HTTP	403	Forbidden	status	code	in	the	response	header	and
a	detail	message	indicating	that	we	do	not	have	permission	to	perform	the
action	in	the	JSON	body.	The	owner	for	the	drone	we	want	to	update	is
djangosuper	and	the	authentication	credentials	for	this	request	use	a	different
user:	user01.	Hence,	the	operation	is	rejected	by	the	has_object_permission
method	in	the	IsCurrentUserOwnerOrReadOnly	customized	permission	class	we
created.	The	following	lines	show	a	sample	response:

				HTTP/1.0	403	Forbidden

				Allow:	GET,	PUT,	PATCH,	DELETE,	HEAD,	OPTIONS

				Content-Length:	63

				Content-Type:	application/json

				Date:	Fri,	10	Nov	2017	03:34:43	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"detail":	"You	do	not	have	permission	to	perform	this	action."

				}

		

The	user	that	isn't	the	drone's	owner	cannot	make	changes	to	the	drone.
However,	he	must	be	able	to	have	read-only	access	to	the	drone.	Hence,
we	must	be	able	to	compose	and	retrieve	the	previous	drone	details	with
an	HTTP	GET	request	with	the	same	authentication	credentials.	It	will	work
because	GET	is	one	of	the	safe	methods	and	a	user	that	is	not	the	owner	is
allowed	to	read	the	resource.	Replace	user01	and	user01password	in	the	next
command	with	the	name	and	password	you	configured	for	this	user.	In
addition,	replace	12	with	the	ID	generated	for	the	previously	created	drone
in	your	configuration:

				http	-a	"user01":"user01password"	GET	:8000/drones/12

The	following	is	the	equivalent	curl	command:

				curl	--user	"user01":"user01password"	-iX	GET	

				localhost:8000/drones/12

The	response	will	return	an	HTTP	200	OK	status	code	in	the	header	and	the
requested	Drone	serialized	to	JSON	in	the	response	body.

Making	authenticated	HTTP
PATCH	requests	with	Postman
Now,	we	will	use	one	of	the	GUI	tools	we	installed	in	Chapter
1,	Installing	the	Required	Software	and	Tools,	specifically,	Postman.	We
will	use	this	GUI	tool	to	compose	and	send	an	HTTP	PATCH	request	with	the
appropriate	authentication	credentials	to	the	web	service.	In	the	previous
chapters,	whenever	we	worked	with	Postman,	we	didn't	specify
authentication	credentials.

We	will	use	the	Builder	tab	in	Postman	to	compose	and	send	an	HTTP
PATCH	request	to	update	the	has_it_competed	field	for	the	previously	created
drone.	Follow	these	steps:

1.	 In	case	you	made	previous	requests	with	Postman,	click	on	the
plus	(+)	button	at	the	right-hand	side	of	the	tab	that	displayed	the
previous	request.	This	way,	you	will	create	a	new	tab.

2.	 Select	PATCH	in	the	drop-down	menu	at	the	left-hand	side	of	the
Enter	request	URL	textbox.

3.	 Enter	http://localhost:8000/drones/12	in	that	textbox	at	the	right-hand
side	of	the	drop-down.	Replace	12	with	the	ID	generated	for	the
previously	created	drone	in	your	configuration.

4.	 Click	the	Authorization	tab	below	the	textbox.
5.	 Select	Basic	Auth	in	the	TYPE	drop-down.
6.	 Enter	the	name	you	used	to	create	djangosuper	in	the	Username

textbox.
7.	 Enter	the	password	you	used	instead	of	passwordforsuper	for	this	user

in	the	Password	textbox.	The	following	screenshot	shows	the

basic	authentication	configured	in	Postman	for	the	HTTP	PATCH
request:

8.	 Click	Body	at	the	right-hand	side	of	the	Authorization	and
Headers	tabs,	within	the	panel	that	composes	the	request.

9.	 Activate	the	raw	radio	button	and	select	JSON	(application/json)
in	the	drop-down	at	the	right-hand	side	of	the	binary	radio	button.
Postman	will	automatically	add	a	Content-type	=	application/json
header,	and	therefore,	you	will	notice	the	Headers	tab	will	be
renamed	to	Headers	(1),	indicating	to	us	that	there	is	one
key/value	pair	specified	for	the	request	headers.

10.	 Enter	the	following	lines	in	the	textbox	below	the	radio	buttons,
within	the	Body	tab:

			{	

							"has_it_competed":	"true"	

			}

The	following	screenshot	shows	the	request	body	in	Postman:

We	followed	the	necessary	steps	to	create	an	HTTP	PATCH	request	with	a
JSON	body	that	specifies	the	necessary	key/value	pairs	to	update	the	value
for	the	was_included_in_home	field	of	an	existing	drone,	with	the	necessary
HTTP	authentication	credentials.	Click	Send	and	Postman	will	display	the
following	information:

Status:	200	OK

Time:	The	time	it	took	for	the	request	to	be	processed

Size:	The	approximate	response	size	(sum	of	body	size	plus
headers	size)

Body:	The	response	body	with	the	recently	updated	drone
formatted	as	JSON	with	syntax	highlighting

The	following	screenshot	shows	the	JSON	response	body	in	Postman	for
the	HTTP	PATCH	request.	In	this	case,	the	request	updated	the	existing	drone
because	we	authenticated	the	request	with	the	user	that	is	the	drone's
owner:

Browsing	the	secured	API	with
the	required	authentication
We	want	the	browsable	API	to	display	the	log	in	and	log	out	views.	In
order	to	make	this	possible,	we	have	to	add	a	line	in	the	urls.py	file	in	the
restful01/restful01	folder,	specifically,	in	the	restful01/restful01/urls.py	file.
The	file	defines	the	root	URL	configurations	and	we	want	to	include	the
URL	patterns	provided	by	the	Django	REST	framework	that	provide	the
log	in	and	log	out	views.

The	following	lines	show	the	new	code	for	the	restful01/restful01/urls.py
file.	The	new	line	is	highlighted.	The	code	file	for	the	sample	is	included
in	the	hillar_django_restful_08_01	folder,	in	the	restful01/restful01/urls.py	file:

from	django.conf.urls	import	url,	include

	

urlpatterns	=	[

				url(r'^',	include('drones.urls')),

				url(r'^api-auth/',	include('rest_framework.urls'))

]

Open	a	web	browser	and	go	to	http://localhost:8000/.	Replace	localhost	by
the	IP	of	the	computer	that	is	running	Django's	development	server	in	case
you	use	another	computer	or	device	to	run	the	browser.	The	browsable
API	will	compose	and	send	a	GET	request	to	/	and	will	display	the	results	of
its	execution,	that	is,	the	Api	Root.	You	will	notice	there	is	a	Log	in
hyperlink	at	the	upper-right	corner.

Click	or	tap	Log	in	and	the	browser	will	display	the	Django	REST
framework	login	page.	Enter	the	name	you	used	to	create	djangosuper	in	the
Username	textbox	and	the	password	you	used	instead	of	passwordforsuper	for
this	user	in	the	Password	textbox.	Then,	click	Log	in.

Now,	you	will	be	logged	in	as	djangosuper	and	all	the	requests	you	compose
and	send	through	the	browsable	API	will	use	this	user.	You	will	be
redirected	again	to	the	Api	Root	and	you	will	notice	the	Log	in	hyperlink
is	replaced	with	the	username	(djangosuper)	and	a	drop-down	menu	that
allows	you	to	log	out.	The	following	screenshot	shows	the	Api	Root	after
we	are	logged	in	as	djangosuper:

Click	or	tap	on	the	username	that	is	logged	in	(djangosuper)	and	select
Log	Out	from	the	drop-down	menu.	We	will	log	in	as	a	different	user.

Click	or	tap	Log	in	and	the	browser	will	display	the	Django	REST
framework	login	page.	Enter	the	name	you	used	to	create	user01	in	the
Username	textbox	and	the	password	you	used	instead	of	user01password	for
this	user	in	the	Password	textbox.	Then,	click	Log	in.

Now,	you	will	be	logged	in	as	user01	and	all	the	requests	you	compose	and
send	through	the	browsable	API	will	use	this	user.	You	will	be	redirected
again	to	the	Api	Root	and	you	will	notice	the	Log	in	hyperlink	is	replaced
with	the	username	(user01).

Go	to	http://localhost:8000/drones/12.	Replace	12	with	the	ID	generated	for
the	previously	created	drone	in	your	configuration.	The	browsable	API
will	render	the	web	page	with	the	results	for	the	GET	request	to
localhost:8000/drones/12.

Click	or	tap	the	OPTIONS	button	and	the	browsable	API	will	render	the
results	of	the	HTTP	OPTIONS	request	to	http://localhost:8000/drones/12	and	will
include	the	DELETE	button	at	the	right-hand	side	of	the	Drone	Detail
title.

Click	or	tap	DELETE.	The	web	browser	will	display	a	confirmation
modal.	Click	or	tap	the	DELETE	button	in	the	modal.	As	a	result	of	the
HTTP	DELETE	request,	the	web	browser	will	display	an	HTTP	403	Forbidden
status	code	in	the	response	header	and	a	detail	message	indicating	that	we
do	not	have	permission	to	perform	the	action	in	the	JSON	body.	The
owner	for	the	drone	we	want	to	delete	is	djangosuper	and	the	authentication
credentials	for	this	request	use	a	different	user,	specifically,	user01.	Hence,
the	operation	is	rejected	by	the	has_object_permission	method	in	the
IsCurrentUserOwnerOrReadOnly	class.	The	following	screenshot	shows	a	sample
response	for	the	HTTP	DELETE	request:

The	browsable	API	makes	it	easy	to	compose	and	send
authenticated	requests	to	our	RESTful	Web	Service.

Working	with	token-based
authentication
Now,	we	will	make	changes	to	use	token-based	authentication	to	retrieve,
update,	or	delete	pilots.	Only	those	users	that	have	a	token	will	be	able	to
make	these	operations	with	pilots.	Hence,	we	will	setup	a	specific
authentication	for	pilots.	It	will	still	be	possible	to	see	the	pilot's	name
rendered	in	unauthenticated	requests.

The	token-based	authentication	requires	a	new	model	named	Token.	Make
sure	you	quit	the	Django's	development	server.	Remember	that	you	just
need	to	press	Ctrl	+	C	in	the	terminal	or	command	prompt	window	in
which	it	is	running.

Of	course,	in	a	production	environment,	we	must	make	sure
that	the	RESTful	Web	Service	is	only	available	over	HTTPS,
with	the	usage	of	the	latest	TLS	versions.	We	shouldn't	use	a
token-based	authentication	over	plain	HTTP	in	a	production
environment.

Open	the	restful01/restful01/settings.py	file	that	declares	module-level
variables	that	define	the	configuration	of	Django	for	the	restful01	project.
Locate	the	lines	that	assign	a	strings	list	to	INSTALLED_APPS	to	declare	the
installed	apps.	Add	the	following	string	to	the	INSTALLED_APPS	strings	list	and
save	the	changes	to	the	settings.py	file:

'rest_framework.authtoken'	

The	following	lines	show	the	new	code	that	declares	the	INSTALLED_APPS
strings	list	with	the	added	line	highlighted	and	with	comments	to
understand	what	each	added	string	means.	The	code	file	for	the	sample	is

included	in	the	hillar_django_restful_08_02	folder	in	the
restful01/restful01/settings.py	file:

INSTALLED_APPS	=	[

				'django.contrib.admin',	

				'django.contrib.auth',	

				'django.contrib.contenttypes',	

				'django.contrib.sessions',	

				'django.contrib.messages',	

				'django.contrib.staticfiles',	

				#	Django	REST	framework	

				'rest_framework',	

				#	Drones	application	

				'drones.apps.DronesConfig',	

				#	Django	Filters,	

				'django_filters',	

				#	Token	authentication	

				'rest_framework.authtoken',

]

This	way,	we	have	added	the	rest_framework.authtoken	application	to	our
Django	project	named	restful01.

Now,	run	the	following	Python	script	to	execute	all	migrations	required	for
the	recently	added	authtoken	application	and	apply	the	changes	in	the
underlying	database	tables.	This	way,	we	will	install	the	app:

				python	manage.py	migrate

The	following	lines	show	the	output	generated	after	running	the	previous
command.	Notice	that	the	order	in	which	the	migrations	are	executed	can
differ	in	your	development	computer:

				Operations	to	perform:

						Apply	all	migrations:	admin,	auth,	authtoken,	contenttypes,	

						drones,	sessions

						Running	migrations:

						Applying	authtoken.0001_initial...	OK

						Applying	authtoken.0002_auto_20160226_1747...	OK

After	we	run	the	previous	command,	we	will	have	a	new	authtoken_token
table	in	the	PostgreSQL	database.	This	table	will	persist	the	generated
tokens	and	has	a	foreign	key	to	the	auth_user	table.

We	will	configure	authentication	and	permission	policies	for	the	class-
based	views	that	work	with	the	Pilot	model.	We	will	override	the	values
for	the	authentication_classes	and	permission_classes	class	attributes	for	the
PilotDetail	and	PilotList	classes.

We	will	add	the	same	lines	of	code	in	the	two	classes.	We	will	include	the
TokenAuthentication	authentication	class	in	the	authentication_classes	tuple,	and
the	IsAuthenticated	permission	class	in	the	permission_classes	tuple.

Open	the	restful01/drones/views.py	file	and	add	the	following	lines	after	the
last	line	that	declares	the	imports,	before	the	declaration	of	the
DroneCategorySerializer	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_08_02	folder,	in	the	restful01/drones/views.py	file:

from	rest_framework.permissions	import	IsAuthenticated	

from	rest_framework.authentication	import	TokenAuthentication

Replace	the	code	that	declares	the	PilotDetail	class	with	the	following	code
in	the	same	views.py	file.	The	new	lines	are	highlighted	in	the	code	listing.
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_08_02
folder,	in	the	restful01/drones/views.py	file:

class	PilotDetail(generics.RetrieveUpdateDestroyAPIView):	

				queryset	=	Pilot.objects.all()	

				serializer_class	=	PilotSerializer	

				name	=	'pilot-detail'	

				authentication_classes	=	(

								TokenAuthentication,

)

				permission_classes	=	(

								IsAuthenticated,

)

Replace	the	code	that	declares	the	PilotList	class	with	the	following	code
in	the	same	views.py	file.	The	new	lines	are	highlighted	in	the	code	listing.
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_08_02
folder,	in	the	restful01/drones/views.py	file:

class	PilotList(generics.ListCreateAPIView):	

				queryset	=	Pilot.objects.all()	

				serializer_class	=	PilotSerializer	

				name	=	'pilot-list'	

				filter_fields	=	(

								'name',		

								'gender',	

								'races_count',	

)	

				search_fields	=	(

								'^name',	

)	

				ordering_fields	=	(

								'name',	

								'races_count'	

)	

				authentication_classes	=	(

								TokenAuthentication,

)

				permission_classes	=	(

								IsAuthenticated,

)

Generating	and	using	tokens
Now,	we	will	launch	our	default	Python	interactive	shell	in	our	virtual
environment	and	make	all	the	Django	project	modules	available	to	write
code	that	will	generate	a	token	for	an	existing	user.	We	will	do	this	to
understand	how	the	token	generation	works.

Run	the	following	command	to	launch	the	interactive	shell.	Make	sure	you
are	within	the	restful01	folder	in	the	terminal,	Command	Prompt,	or
Windows	Powershell:

			python	manage.py	shell

You	will	notice	that	a	line	that	says	(InteractiveConsole)	is	displayed	after
the	usual	lines	that	introduce	your	default	Python	interactive	shell.	Enter
the	following	code	in	the	Python	interactive	shell	to	import	all	the	things
we	will	need	to	retrieve	a	User	instance	and	generate	a	new	token.	The	code
file	for	the	sample	is	included	in	the	hillar_django_restful_08_02	folder,	in	the
restful01/tokens_test_01.py	file.

from	rest_framework.authtoken.models	import	Token	

from	django.contrib.auth.models	import	User	

Enter	the	following	code	to	retrieve	an	instance	of	the	User	model	whose
username	matches	"user01"	and	create	a	new	Token	instance	related	to	this
user.	The	last	line	prints	the	value	for	the	key	attribute	for	the	generated
Token	instance	saved	in	the	token	variable.	Replace	user01	in	the	next	lines
with	the	name	you	configured	for	this	user.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_08_02	folder,	in	the
restful01/tokens_test_01.py	file:

#	Replace	user01	with	the	name	you	configured	for	this	user	

user	=	User.objects.get(username="user01")	

token	=	Token.objects.create(user=user)	

print(token.key)	

The	following	line	shows	a	sample	output	from	the	previous	code	with	the
string	value	for	token.key.	Copy	the	output	generated	when	running	the
code	because	we	will	use	this	token	to	authenticate	requests.	Notice	that
the	token	generated	in	your	system	will	be	different:

				ebebe08f5d7fe5997f9ed1761923ec5d3e461dc3

Finally,	enter	the	following	command	to	quit	the	interactive	console:

				quit()

Now,	we	have	a	token	for	the	Django	user	named	user01.

Now,	we	can	launch	Django's	development	server	to	compose	and	send
HTTP	requests	to	retrieve	pilots	to	understand	how	the	configured	token
authentication	class	combined	with	the	permission	policies	work.	Execute
any	of	the	following	two	commands	based	on	your	needs	to	access	the
API	in	other	devices	or	computers	connected	to	your	LAN.	Remember
that	we	analyzed	the	difference	between	them	in	Chapter	3,	Creating	API
Views,	in	the	Launching	Django's	development	server	section:

				python	manage.py	runserver

				python	manage.py	runserver	0.0.0.0:8000

After	we	run	any	of	the	previous	commands,	the	development	server	will
start	listening	at	port	8000.

We	will	compose	and	send	an	HTTP	GET	request	without	authentication
credentials	to	try	to	retrieve	the	first	page	of	the	pilots	collection:

				http	:8000/pilots/

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	localhost:8000/pilots/

We	will	receive	an	HTTP	401	Unauthorized	status	code	in	the	response	header
and	a	detail	message	indicating	that	we	didn't	provide	authentication
credentials	in	the	JSON	body.	In	addition,	the	value	for	the	WWW-Authenticate
header	specifies	the	authentication	method	that	must	be	applied	to	access
the	resource	collection:	Token.	The	following	lines	show	a	sample	response:

HTTP/1.0	401	Unauthorized

Allow:	GET,	POST,	HEAD,	OPTIONS

Content-Length:	58

Content-Type:	application/json

Date:	Sat,	18	Nov	2017	02:28:31	GMT

Server:	WSGIServer/0.2	CPython/3.6.2

Vary:	Accept

WWW-Authenticate:	Token

X-Frame-Options:	SAMEORIGIN

{

				"detail":	"Authentication	credentials	were	not	provided."

}

After	the	changes	we	made,	if	we	want	to	retrieve	the	collection	of	pilots,
that	is,	to	make	an	HTTP	GET	request	to	/pilots/,	we	need	to	provide
authentication	credentials	by	using	the	token-based	authentication.	Now,
we	will	compose	and	send	an	HTTP	request	to	retrieve	the	collection	of
pilots	with	authentication	credentials,	that	is,	with	the	token.	Remember	to
replace	PASTE-TOKEN-HERE	with	the	previously	generated	token:

				http	:8000/pilots/	"Authorization:	Token	PASTE-TOKEN-HERE"

The	following	is	the	equivalent	curl	command:

		curl	-iX	GET	http://localhost:8000/pilots/	-H	"Authorization:	Token	

		PASTE-TOKEN-HERE"

As	a	result	of	the	request,	we	will	receive	an	HTTP	200	OK	status	code	in	the
response	header	and	the	first	page	of	the	pilots	collection	serialized	to
JSON	in	the	response	body.	The	following	screenshot	shows	the	first	lines
of	a	sample	response	for	the	request	with	the	appropriate	token:

The	token-based	authentication	provided	with	the	Django	REST
framework	is	very	simple	and	it	requires	customization	to	make	it
production	ready.	Tokens	never	expire	and	there	is	no	setting	to	specify	the
default	expiration	time	for	a	token.

Test	your	knowledge
Let's	see	whether	you	can	answer	the	following	questions	correctly.

1.	 The	permissions.SAFE_METHODS	tuple	of	string	includes	the	following
HTTP	methods	or	verbs	that	are	considered	safe:

1.	 'GET',	'HEAD',	and	'OPTIONS'
2.	 'POST',	'PATCH',	and	'OPTIONS'
3.	 'GET',	'PUT',	and	'OPTIONS'

2.	 Which	of	the	following	settings	key	in	the	REST_FRAMEWORK	dictionary
specifies	the	global	setting	with	a	tuple	of	string	whose	values
indicate	the	classes	that	we	want	to	use	for	authentication?

1.	 'GLOBAL_AUTHENTICATION_CLASSES'
2.	 'DEFAULT_AUTHENTICATION_CLASSES'
3.	 'REST_FRAMEWORK_AUTHENTICATION_CLASSES'

3.	 Which	of	the	following	is	the	model	that	persists	a	Django	user?

1.	 Django.contrib.auth.DjangoUser
2.	 Django.contrib.auth.User
3.	 Django.rest-framework.User

4.	 Which	of	the	following	classes	is	the	base	class	from	which	all

customized	permission	classes	should	inherit	to	work	with	the
Django	REST	framework?

1.	 Django.contrib.auth.MainPermission
2.	 rest_framework.permissions.MainPermission
3.	 rest_framework.permissions.BasePermission

5.	 In	order	to	configure	permission	policies	for	a	class-based	view,
which	of	the	following	class	attributes	do	we	have	to	override?

1.	 permission_classes
2.	 permission_policies_classes
3.	 rest_framework_permission_classes

	

The	rights	answers	are	included	in	the	Appendix,	Solutions.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=44&action=edit#post_454

Summary
In	this	chapter,	we	learned	the	differences	between	authentication	and
permissions	in	Django,	the	Django	REST	framework,	and	RESTful	Web
Services.	We	analyzed	the	authentication	classes	included	in	the	Django
REST	framework	out	of	the	box.

We	followed	the	necessary	steps	to	include	security	and	permissions-
related	data	to	models.	We	worked	with	object-level	permissions	via
customized	permission	classes	and	we	saved	information	about	users	that
make	requests.	We	understood	that	there	are	three	HTTP	methods	or	verbs
that	are	considered	safe.

We	configured	permission	policies	for	the	class-based	views	that	worked
with	the	Drone	model.	Then,	we	created	a	superuser	and	another	user	for
Django	to	compose	and	send	authenticated	requests	and	to	understand	how
the	permission	policies	we	configured	were	working.

We	used	command-line	tools	and	GUI	tools	to	compose	and	send
authenticated	requests.	Then,	we	browsed	the	secured	RESTful	Web
Service	with	the	browsable	API	feature.	Finally,	we	worked	with	a	simple
token-based	authentication	provided	by	the	Django	REST	framework	to
understand	another	way	of	authenticating	requests.

Now	that	we	have	improved	our	RESTful	Web	Service	with	authentication
and	permission	policies,	it	is	time	to	combine	these	policies	with	throttling
rules	and	versioning.	We	will	cover	these	topics	in	the	next	chapter.

Applying	Throttling	Rules	and
Versioning	Management
In	this	chapter,	we	will	work	with	throttling	rules	to	limit	the	usage	of	our
RESTful	Web	Service.	We	don't	want	to	process	requests	until	our
RESTful	Web	Service	runs	out	of	resources,	and	therefore,	we	will
analyze	the	importance	of	throttling	rules.	We	will	take	advantage	of	the
features	included	in	the	Django	REST	framework	to	manage	different
versions	of	our	web	service.	We	will	gain	an	understanding	of:

Understanding	the	importance	of	throttling	rules

Learning	the	purpose	of	the	different	throttling	classes	in	the
Django	REST	framework

Configuring	throttling	policies	in	the	Django	REST	framework

Running	tests	to	check	that	throttling	policies	work	as	expected

Understanding	versioning	classes

Configuring	the	versioning	scheme

Running	tests	to	check	that	versioning	works	as	expected

Understanding	the	importance
of	throttling	rules
In	Chapter	8,	Securing	the	API	with	Authentication	and	Permissions,	we
made	sure	that	some	requests	were	authenticated	before	processing	them.
We	took	advantage	of	many	authentication	schemes	to	identify	the	user
that	originated	the	request.	Throttling	rules	also	determine	whether	the
request	must	be	authorized	or	not.	We	will	work	with	them	in	combination
with	authentication.

So	far,	we	haven't	established	any	limits	on	the	usage	of	our	RESTful	Web
Service.	As	a	result	of	this	configuration,	both	unauthenticated	and
authenticated	users	can	compose	and	send	as	many	requests	as	they	want
to.	The	only	thing	we	have	limited	is	the	resultset	size	throughout	the
configuration	of	the	pagination	features	available	in	the	Django	REST
framework.	Hence,	large	results	sets	are	split	into	individual	pages	of	data.
However,	a	user	might	compose	and	send	thousands	of	requests	to	be
processed	with	any	kind	of	limitation.	Of	course,	the	servers	or	virtual
machines	that	run	our	RESTful	Web	Services	or	the	underlying	database
can	be	overloaded	by	the	huge	amount	of	requests	because	we	don't	have
limits.

Throttles	control	the	rate	of	requests	that	users	can	make	to	our	RESTful
Web	Service.	The	Django	REST	framework	makes	it	easy	to	configure
throttling	rules.	We	will	use	throttling	rules	to	configure	the	following
limitations	to	the	usage	of	our	RESTful	Web	Service:

A	maximum	of	3	requests	per	hour	for	unauthenticated	users

A	maximum	of	10	requests	per	hour	for	authenticated	users

A	maximum	of	20	requests	per	hour	for	the	drones	related	views

A	maximum	of	15	requests	per	hour	for	the	pilots	related	views

Learning	the	purpose	of	the
different	throttling	classes	in
the	Django	REST	framework
The	Django	REST	framework	provides	three	throttling	classes	in	the
rest_framework.throttling	module.	All	of	them	are	subclasses	of	the
SimpleRateThrottle	class	which	inherits	from	the	BaseThrottle	class.

The	three	classes	allow	us	to	specify	throttling	rules	that	indicate	the
maximum	number	of	requests	in	a	specific	period	of	time	and	within	a
determined	scope.	Each	class	is	responsible	for	computing	and	validating
the	maximum	number	of	requests	per	period.	The	classes	provide	different
mechanisms	to	determine	the	previous	request	information	to	specify	the
scope	by	comparing	it	with	the	new	request.	The	Django	REST	framework
stores	the	required	data	to	analyze	each	throttling	rule	in	the	cache.	Thus,
the	classes	override	the	inherited	get_cache_key	method	that	determines	the
scope	that	will	be	used	for	computing	and	validating.

The	following	are	the	three	throttling	classes:

AnonRateThrottle:	This	class	limits	the	rate	of	requests	that	an
anonymous	user	can	make,	and	therefore,	its	rules	apply	to
unauthenticated	users.	The	unique	cache	key	is	the	IP	address	of
the	incoming	request.	Hence,	all	the	requests	originated	in	the
same	IP	address	will	accumulate	the	total	number	of	requests	for
this	IP.

UserRateThrottle:	This	class	limits	the	rate	of	requests	that	a	specific
user	can	make	and	applies	to	both	authenticated	and	non-

authenticated	users.	Obviously,	when	the	requests	are
authenticated,	the	authenticated	user	ID	is	the	unique	cache	key.
When	the	requests	are	unauthenticated	and	come	from	anonymous
users,	the	unique	cache	key	is	the	IP	address	of	the	incoming
request.

ScopedRateThrottle:	This	class	is	useful	whenever	we	have	to	restrict
access	to	specific	features	of	our	RESTful	Web	Service	with
different	rates.	The	class	uses	the	value	assigned	to	the
throttle_scope	attribute	to	limit	requests	to	the	parts	that	are
identified	with	the	same	value.

The	previous	classes	are	included	in	the	Django	REST	framework	out	of
the	box.	There	are	many	additional	throttling	classes	provided	by	many
third-party	libraries.

Make	sure	you	quit	the	Django's	development	server.	Remember	that	you
just	need	to	press	Ctrl	+	C	in	the	terminal	or	Command	Prompt	window	in
which	it	is	running.	We	will	make	the	necessary	changes	to	combine	the
different	authentication	mechanisms	we	set	up	in	the	previous	chapter	with
the	application	of	throttling	rules.	Hence,	we	will	add	the	AnonRateThrottle
and	UserRateThrottle	classes	in	the	global	throttling	classes	list.

The	value	for	the	DEFAULT_THROTTLE_CLASSES	settings	key	specifies	a	global
setting	with	a	tuple	of	string	whose	values	indicate	the	default	classes	that
we	want	to	use	for	throttling	rules.	We	will	specify	the	AnonRateThrottle	and
UserRateThrottle	classes.

The	DEFAULT_THROTTLE_RATES	settings	key	specifies	a	dictionary	with	the	default
throttle	rates.	The	next	list	specifies	the	keys,	the	values	that	we	will
assign	and	their	meaning:

'anon':	We	will	specify	'3/hour'	as	the	value	for	this	key,	which

means	we	want	a	maximum	of	3	requests	per	hour	for	anonymous
users.	The	AnonRateThrottle	class	will	apply	this	throttling	rule.

'user':	We	will	specify	'10/hour'	as	the	value	for	this	key,	which
means	we	want	a	maximum	of	10	requests	per	hour	for
authenticated	users.	The	UserRateThrottle	class	will	apply	this
throttling	rule.

'drones':	We	will	specify	'20/hour'	as	the	value	for	this	key,	which
means	we	want	a	maximum	of	20	requests	per	hour	for	the
drones-related	views.	The	ScopedRateThrottle	class	will	apply	this
throttling	rule.

'pilots':	We	will	specify	'15/hour'	as	the	value	for	this	key,	which
means	we	want	a	maximum	of	15	requests	per	hour	for	the
drones-related	views.	The	ScopedRateThrottle	class	will	apply	this
throttling	rule.

The	maximum	rate	value	for	each	key	is	a	string	that	specifies	the	number
of	requests	per	period	with	the	following	format:	'number_of_requests/period',
where	period	can	be	any	of	the	following:

d:	day

day:	day

h:	hour

hour:	hour

m:	minute

min:	minute

s:	second

sec:	second

In	this	case,	we	will	always	work	with	a	maximum	number	of
requests	per	hour,	and	therefore,	the	values	will	use	/hour
after	the	maximum	number	of	requests.

Open	the	restful01/restful01/settings.py	file	that	declares	module-level
variables	that	define	the	configuration	of	Django	for	the	restful01	project.
We	will	make	some	changes	to	this	Django	settings	file.	Add	the
highlighted	lines	to	the	REST_FRAMEWORK	dictionary.	The	following	lines	show
the	new	declaration	of	the	REST_FRAMEWORK	dictionary.	The	code	file	for	the
sample	is	included	in	the	hillar_django_restful_09_01	folder	in	the
restful01/restful01/settings.py	file:

REST_FRAMEWORK	=	{	

				'DEFAULT_PAGINATION_CLASS':	

				'drones.custompagination.LimitOffsetPaginationWithUpperBound',	

				'PAGE_SIZE':	4,	

				'DEFAULT_FILTER_BACKENDS':	(

								'django_filters.rest_framework.DjangoFilterBackend',	

								'rest_framework.filters.OrderingFilter',	

								'rest_framework.filters.SearchFilter',	

),	

				'DEFAULT_AUTHENTICATION_CLASSES':	(

								'rest_framework.authentication.BasicAuthentication',	

								'rest_framework.authentication.SessionAuthentication',	

),	

				'DEFAULT_THROTTLE_CLASSES':	(

								'rest_framework.throttling.AnonRateThrottle',	

								'rest_framework.throttling.UserRateThrottle',	

),	

				'DEFAULT_THROTTLE_RATES':	{	

								'anon':	'3/hour',	

								'user':	'10/hour',	

								'drones':	'20/hour',	

								'pilots':	'15/hour',	

				}	

}	

We	added	values	for	the	DEFAULT_THROTTLE_CLASSES	and	the	DEFAULT_THROTTLE_RATES
settings	keys	to	configure	the	default	throttling	classes	and	the	desired

rates.

Configuring	throttling	policies
in	the	Django	REST	framework
Now,	we	will	configure	throttling	policies	for	the	class-based	views	related
to	drones:	DroneList	and	DroneDetail.	We	will	override	the	values	for	the
following	class	attributes	for	the	class-based	views:

throttle_classes:	This	class	attribute	specifies	a	tuple	with	the
names	of	the	classes	that	will	manage	throttling	rules	for	the	class.
In	this	case,	we	will	specify	the	ScopedRateThrottle	class	as	the	only
member	of	the	tuple.

throttle_scope:	This	class	attribute	specifies	the	throttle	scope	name
that	the	ScopedRateThrottle	class	will	use	to	accumulate	the	number
of	requests	and	limit	the	rate	of	requests.

This	way,	we	will	make	these	class-based	views	work	with	the
ScopedRateThrottle	class	and	we	will	configure	the	throttle	scope	that	this
class	will	consider	for	each	of	the	class	based	views	related	to	drones.

Open	the	restful01/drones/views.py	file	and	add	the	following	lines	after	the
last	line	that	declares	the	imports,	before	the	declaration	of	the
DroneCategoryList	class:

from	rest_framework.throttling	import	ScopedRateThrottle		

Replace	the	code	that	declares	the	DroneDetail	class	with	the	following	code
in	the	same	views.py	file.	The	new	lines	are	highlighted	in	the	code	listing.
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_09_01

folder,	in	the	restful01/drones/views.py	file:

class	DroneDetail(generics.RetrieveUpdateDestroyAPIView):	

				throttle_scope	=	'drones'	

				throttle_classes	=	(ScopedRateThrottle,)	

				queryset	=	Drone.objects.all()	

				serializer_class	=	DroneSerializer	

				name	=	'drone-detail'	

				permission_classes	=	(

								permissions.IsAuthenticatedOrReadOnly,	

								custompermission.IsCurrentUserOwnerOrReadOnly,	

)

Replace	the	code	that	declares	the	DroneList	class	with	the	following	code
in	the	same	views.py	file.	The	new	lines	are	highlighted	in	the	code	listing.
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_09_01
folder,	in	the	restful01/drones/views.py	file:

class	DroneList(generics.ListCreateAPIView):	

				throttle_scope	=	'drones'	

				throttle_classes	=	(ScopedRateThrottle,)	

				queryset	=	Drone.objects.all()	

				serializer_class	=	DroneSerializer	

				name	=	'drone-list'	

				filter_fields	=	(

								'name',		

								'drone_category',		

								'manufacturing_date',		

								'has_it_competed',		

)	

				search_fields	=	(

								'^name',	

)	

				ordering_fields	=	(

								'name',	

								'manufacturing_date',	

)	

				permission_classes	=	(

								permissions.IsAuthenticatedOrReadOnly,	

								custompermission.IsCurrentUserOwnerOrReadOnly,	

)	

	

				def	perform_create(self,	serializer):	

								serializer.save(owner=self.request.user)	

We	added	the	same	lines	in	the	two	classes.	We	assigned	'drones'	to	the
throttle_scope	class	attribute	and	we	included	ScopedRateThrottle	in	the	tuple
that	defines	the	value	for	throttle_classes.	This	way,	the	two	class-based
views	will	use	the	settings	specified	for	the	'drones'	scope	and	the
ScopeRateThrottle	class	for	throttling.	We	added	the	'drones'	key	to	the
DEFAULT_THROTTLE_RATES	key	in	the	REST_FRAMEWORK	dictionary,	and	therefore,	the
'drones'	scope	is	configured	to	serve	a	maximum	of	20	requests	per	hour.

Now,	we	will	configure	throttling	policies	for	the	class-based	views	related
to	pilots:	PilotList	and	PilotDetail.	We	will	also	override	the	values	for	the
throttle_scope	and	throttle_classes	class	attributes.

Replace	the	code	that	declares	the	PilotDetail	class	with	the	following	code
in	the	same	views.py	file.	The	new	lines	are	highlighted	in	the	code	listing.
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_09_01
folder,	in	the	restful01/drones/views.py	file:

class	PilotDetail(generics.RetrieveUpdateDestroyAPIView):	

				throttle_scope	=	'pilots'	

				throttle_classes	=	(ScopedRateThrottle,)	

				queryset	=	Pilot.objects.all()	

				serializer_class	=	PilotSerializer	

				name	=	'pilot-detail'	

				authentication_classes	=	(

								TokenAuthentication,	

)	

				permission_classes	=	(

								IsAuthenticated,	

)	

Replace	the	code	that	declares	the	PilotList	class	with	the	following	code
in	the	same	views.py	file.	The	new	lines	are	highlighted	in	the	code	listing.
The	code	file	for	the	sample	is	included	in	the	hillar_django_restful_09_01
folder,	in	the	restful01/drones/views.py	file:

class	PilotList(generics.ListCreateAPIView):	

				throttle_scope	=	'pilots'	

				throttle_classes	=	(ScopedRateThrottle,)	

				queryset	=	Pilot.objects.all()	

				serializer_class	=	PilotSerializer	

				name	=	'pilot-list'	

				filter_fields	=	(

								'name',		

								'gender',	

								'races_count',	

)	

				search_fields	=	(

								'^name',	

)	

				ordering_fields	=	(

								'name',	

								'races_count'	

)	

				authentication_classes	=	(

								TokenAuthentication,	

)	

				permission_classes	=	(

								IsAuthenticated,	

)	

We	added	the	same	lines	in	the	two	classes.	We	assigned	'pilots'	to	the
throttle_scope	class	attribute	and	we	included	ScopedRateThrottle	in	the	tuple
that	defines	the	value	for	throttle_classes.	This	way,	the	two	class-based
views	will	use	the	settings	specified	for	the	'pilots'	scope	and	the
ScopeRateThrottle	class	for	throttling.	We	added	the	'pilots'	key	to	the
DEFAULT_THROTTLE_RATES	key	in	the	REST_FRAMEWORK	dictionary,	and	therefore,	the
'drones'	scope	is	configured	to	serve	a	maximum	of	15	requests	per	hour.

All	the	class-based	views	we	have	edited	won't	take	into
account	the	global	settings	that	applied	the	default	classes
that	we	use	for	throttling:	AnonRateThrottle	and	UserRateThrottle.
These	class-based	views	will	use	the	configuration	we	have
specified	for	them.

Running	tests	to	check	that
throttling	policies	work	as
expected
Before	Django	runs	the	main	body	of	a	class-based	view,	it	performs	the
checks	for	each	throttle	class	specified	in	the	throttle	classes	settings.	In
the	drones	and	pilots-related	views,	we	wrote	code	that	overrides	the
default	settings.

If	a	single	throttle	check	fails,	the	code	will	raise	a	Throttled	exception	and
Django	won't	execute	the	main	body	of	the	view.	The	cache	is	responsible
for	storing	previous	request	information	for	throttling	checking.

Now,	we	can	launch	Django's	development	server	to	compose	and	send
HTTP	requests	to	understand	how	the	configured	throttling	rules,
combined	with	all	the	previous	configurations,	work.	Execute	any	of	the
following	two	commands	based	on	your	needs	to	access	the	API	in	other
devices	or	computers	connected	to	your	LAN.	Remember	that	we
analyzed	the	difference	between	them	in	Chapter	3,	Creating	API	Views,	in
the	Launching	Django's	development	server	section.

				python	manage.py	runserver

				python	manage.py	runserver	0.0.0.0:8000

After	we	run	any	of	the	previous	commands,	the	development	server	will
start	listening	at	port	8000.

Now,	we	will	compose	and	send	the	following	HTTP	GET	request	without
authentication	credentials	to	retrieve	the	first	page	of	the	competitions	four
times:

				http	:8000/competitions/

We	can	also	use	the	features	of	the	shell	in	macOS	or	Linux	to	run	the
previous	command	four	times	with	just	a	single	line	with	a	bash	shell.	The
command	is	compatible	with	a	Cygwin	terminal	in	Windows.	We	must
take	into	account	that	we	will	see	all	the	results	one	after	the	other	and	we
will	have	to	scroll	to	understand	what	happened	with	each	execution:

				for	i	in	{1..4};	do	http	:8000/competitions/;	done;

The	following	line	allows	you	to	run	the	command	four	times	with	a
single	line	in	Windows	PowerShell:

				1..4	|	foreach	{	http	:8000/competitions/	}

The	following	is	the	equivalent	curl	command	that	we	must	execute	four
times:

				curl	-iX	GET	localhost:8000/competitions/

The	following	is	the	equivalent	curl	command	that	is	executed	four	times
with	a	single	line	in	a	bash	shell	in	a	macOS	or	Linux,	or	a	Cygwin
terminal	in	Windows:

				for	i	in	{1..4};	do	curl	-iX	GET	localhost:8000/competitions/;	done;

The	following	is	the	equivalent	curl	command	that	is	executed	four	times
with	a	single	line	in	Windows	PowerShell:

				1..4	|	foreach	{	curl	-iX	GET	localhost:8000/competitions/	}

The	Django	REST	framework	won't	process	the	request	number	4.	The
AnonRateThrottle	class	is	configured	as	one	of	the	default	throttle	classes	and
its	throttle	settings	specify	a	maximum	of	3	requests	per	hour.	Hence,	we
will	receive	an	HTTP	429	Too	many	requests	status	code	in	the	response
header	and	a	message	indicating	that	the	request	was	throttled	and	the	time
in	which	the	server	will	be	able	to	process	an	additional	request.	The	value
for	the	Retry-After	key	in	the	response	header	provides	the	number	of
seconds	that	we	must	wait	until	the	next	request:	2347.	The	following	lines
show	a	sample	response.	Notice	that	the	number	of	seconds	might	be
different	in	your	configuration:

				HTTP/1.0	429	Too	Many	Requests

				Allow:	GET,	POST,	HEAD,	OPTIONS

				Content-Length:	71

				Content-Type:	application/json

				Date:	Thu,	30	Nov	2017	03:07:28	GMT

				Retry-After:	2347

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"detail":	"Request	was	throttled.	Expected	available	in	2347	seconds."

				}

Now,	we	will	compose	and	send	the	following	HTTP	GET	request	with
authentication	credentials	to	retrieve	the	first	page	of	the	competitions	four
times.	We	will	use	the	superuser	we	created	in	the	previous	chapter.
Remember	to	replace	djangosuper	with	the	name	you	used	for	the	superuser
and	passwordforsuper	with	the	password	you	configured	for	this	user	as
shown	here:

				http	-a	"djangosuper":"passwordforsuper"	:8000/competitions/

In	a	Linux,	macOS	or	a	Cygwin	terminal,	we	can	run	the	previous
command	four	times	with	the	following	single	line:

				for	i	in	{1..4};	do	http	-a	"djangosuper":"passwordforsuper"	:8000/competitions/;	done;

The	following	line	allows	you	to	run	the	command	four	times	with	a
single	line	in	Windows	PowerShell.

				1..4	|	foreach	{	http	-a	"djangosuper":"passwordforsuper"	:8000/competitions/	}

		

The	following	is	the	equivalent	curl	command	that	we	must	execute	four
times:

				curl	--user	'djangosuper':'passwordforsuper'	-iX	GET	localhost:8000/competitions/

		

The	following	is	the	equivalent	curl	command	that	we	can	execute	four
times	in	a	Linux,	macOS	or	a	Cygwin	terminal	with	a	single	line:

				for	i	in	{1..4};	do	curl	--user	"djangosuper":"passwordforsuper"	-iX	GET	localhost:8000/competitions/;	done;

		

The	following	is	the	equivalent	curl	command	that	is	executed	four	times
with	a	single	line	in	Windows	PowerShell:

				1..4	|	foreach	{	curl	--user	"djangosuper":"passwordforsuper"	-iX	GET	localhost:8000/competitions/	}

		

In	this	case,	Django	will	process	the	request	number	4	because	we	have
composed	and	sent	4	authenticated	requests	with	the	same	user.	The
UserRateThrottle	class	is	configured	as	one	of	the	default	throttle	classes	and
its	throttle	settings	specify	10	requests	per	hour.	We	still	have	6	requests
before	we	accumulate	the	maximum	number	of	requests	per	hour.

If	we	compose	and	send	the	same	request	7	times	more,	we	will
accumulate	11	requests	and	we	will	will	receive	an	HTTP	429	Too	many
requests	status	code	in	the	response	header,	a	message	indicating	that	the
request	was	throttled	and	the	time	in	which	the	server	will	be	able	to
process	an	additional	request	after	the	last	execution.

Now,	we	will	compose	and	send	the	following	HTTP	GET	request	without
authentication	credentials	to	retrieve	the	first	page	of	the	drones	collection
20	times:

				http	:8000/drones/

We	can	use	the	features	of	the	shell	in	macOS	or	Linux	to	run	the	previous
command	20	times	with	just	a	single	line	with	a	bash	shell.	The	command
is	compatible	with	a	Cygwin	terminal	in	Windows:

				for	i	in	{1..20};	do	http	:8000/drones/;	done;

The	following	line	allows	you	to	run	the	command	20	times	with	a	single
line	in	Windows	PowerShell:

				1..21	|	foreach	{	http	:8000/drones/	}

		

The	following	is	the	equivalent	curl	command	that	we	must	execute	20
times:

				curl	-iX	GET	localhost:8000/drones/

The	following	is	the	equivalent	curl	command	that	is	executed	20	times
with	a	single	line	in	a	bash	shell	in	macOS	or	Linux,	or	a	Cygwin	terminal
in	Windows:

				for	i	in	{1..21};	do	curl	-iX	GET	localhost:8000/drones/;	done;

The	following	is	the	equivalent	curl	command	that	is	executed	20	times
with	a	single	line	in	Windows	PowerShell:

				1..20	|	foreach	{	curl	-iX	GET	localhost:8000/drones/	}

The	Django	REST	framework	will	process	the	20	requests.	The	DroneList
class	has	its	throttle_scope	class	attribute	set	to	'drones'	and	uses	the
ScopedRateThrottle	class	to	accumulate	the	requests	in	the	specified	scope.
The	'drones'	scope	is	configured	to	accept	a	maximum	of	20	requests	per
hour,	and	therefore,	if	we	make	another	request	with	the	same	non-
authenticated	user	and	this	request	accumulates	in	the	same	scope,	the
request	will	be	throttled.

Now,	we	will	compose	and	send	an	HTTP	GET	request	to	retrieve	the	details
for	a	drone.	Make	sure	you	replace	1	for	any	existing	drone	ID	value	that
was	listed	in	the	results	for	the	previous	requests:

				http	:8000/drones/1

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	localhost:8000/drones/1

The	Django	REST	framework	won't	process	this	request.	The	request	ends
up	routed	to	the	DroneDetail	class.	The	DroneDetail	class	has	its	throttle_scope
class	attribute	set	to	'drones'	and	uses	the	ScopedRateThrottle	class	to
accumulate	the	requests	in	the	specified	scope.	Thus,	both	the	DroneList	and
the	DroneDetail	class	accumulate	in	the	same	scope.	The	new	request	from
the	same	non-authenticated	user	becomes	the	request	number	21	for	the
'drones'	scope	that	is	configured	to	accept	a	maximum	of	20	requests	per

hour,	and	therefore,	we	will	receive	an	HTTP	429	Too	many	requests	status
code	in	the	response	header	and	a	message	indicating	that	the	request	was
throttled	and	the	time	in	which	the	server	will	be	able	to	process	an
additional	request.	The	value	for	the	Retry-After	key	in	the	response	header
provides	the	number	of	seconds	that	we	must	wait	until	the	next	request:
3138.	The	following	lines	show	a	sample	response.	Notice	that	the	number
of	seconds	might	be	different	in	your	configuration:

				HTTP/1.0	429	Too	Many	Requests

				Allow:	GET,	PUT,	PATCH,	DELETE,	HEAD,	OPTIONS

				Content-Length:	71

				Content-Type:	application/json

				Date:	Mon,	04	Dec	2017	03:55:14	GMT

				Retry-After:	3138

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"detail":	"Request	was	throttled.	Expected	available	in	3138	seconds."

				}

Throttling	rules	are	extremely	important	to	make	sure	that
users	don't	abuse	our	RESTful	Web	Service	and	that	we	keep
control	of	the	resources	that	are	being	used	to	process
incoming	requests.	We	should	never	put	a	RESTful	Web
Service	in	production	without	a	clear	configuration	for
throttling	rules.

Understanding	versioning
classes
Sometimes,	we	have	to	keep	many	different	versions	of	a	RESTful	Web
Service	alive	at	the	same	time.	For	example,	we	might	need	to	have
version	1	and	version	2	of	our	RESTful	Web	Service	accepting	and
processing	requests.	There	are	many	versioning	schemes	that	make	it
possible	to	serve	many	versions	of	a	web	service.

The	Django	REST	framework	provides	five	classes	in	the
rest_framework.versioning	module.	All	of	them	are	subclasses	of	the
BaseVersioning	class.	The	five	classes	allow	us	to	work	with	a	specific
versioning	scheme.

We	can	use	one	of	these	classes	in	combination	with	changes	in	the	URL
configurations	and	other	pieces	of	code	to	support	the	selected	versioning
scheme.	Each	class	is	responsible	for	determining	the	version	based	on	the
implemented	schema	and	to	make	sure	that	the	specified	version	number
is	a	valid	one	based	on	the	allowed	version	settings.	The	classes	provide
different	mechanisms	to	determine	the	version	number.	The	following	are
the	five	versioning	classes:

AcceptHeaderVersioning:	This	class	configures	a	versioning	scheme
that	requires	each	request	to	specify	the	desired	version	as	an
additional	value	of	the	media	type	specified	as	a	value	for	the
Accept	key	in	the	header.	For	example,	if	a	request	specifies
'application/json;	version=1.2'	as	the	value	for	the	Accept	key	in	the
header,	the	AcceptHeaderVersioning	class	will	set	the	request.version
attribute	to	'1.2'.	This	scheme	is	known	as	media	type	versioning,
content	negotiation	versioning	or	accept	header	versioning.

HostNameVersioning:	This	class	configures	a	versioning	scheme	that
requires	each	request	to	specify	the	desired	version	as	a	value
included	in	the	hostname	in	the	URL.	For	example,	if	a	request
specifies	v2.myrestfulservice.com/drones/	as	the	URL,	it	means	that
the	request	wants	to	work	with	version	number	2	of	the	RESTful
Web	Service.	This	scheme	is	known	as	hostname	versioning	or
domain	versioning.

URLPathVersioning:	This	class	configures	a	versioning	scheme	that
requires	each	request	to	specify	the	desired	version	as	a	value
included	in	the	URL	path.	For	example,	if	a	request	specifies
v2/myrestfulservice.com/drones/	as	the	URL,	it	means	that	the	request
wants	to	work	with	version	number	2	of	the	RESTful	Web
Service.	The	class	requires	us	to	work	with	a	version	URL	keyword
argument.	This	scheme	is	known	as	URI	versioning	or	URL	path
versioning.

NamespaceVersioning:	This	class	configures	the	versioning	scheme
explained	for	the	URLPathVersioning	class.	The	only	difference
compared	with	this	other	class	is	that	the	configuration	in	the
Django	REST	framework	application	is	different.	In	this	case,	it	is
necessary	to	use	URL	namespacing.

QueryParameterVersioning:	This	class	configures	a	versioning	scheme
that	requires	each	request	to	specify	the	desired	version	as	a	query
parameter.	For	example,	if	a	request	specifies	myrestfulservice.com/?
version=1.2,	the	QueryParameterVersioning	class	will	set	the
request.version	attribute	to	'1.2'.	This	scheme	is	known	as	query
parameter	versioning	or	request	parameter	versioning.

The	previous	classes	are	included	in	the	Django	REST	framework	out	of

the	box.	It	is	also	possible	to	code	our	own	customized	versioning	scheme.
Each	versioning	scheme	has	its	advantages	and	trade-offs.	In	this	case,	we
will	work	with	the	NamespaceVersioning	class	to	provide	a	new	version	of	the
RESTful	Web	Service	with	a	minor	change	compared	to	the	first	version.
However,	it	is	necessary	to	analyze	carefully	whether	you	really	need	to
use	any	versioning	scheme.	Then,	you	need	to	figure	out	which	is	the	most
appropriate	one	based	on	your	specific	needs.	Of	course,	if	possible,	we
should	always	avoid	any	versioning	scheme	because	they	add	complexity
to	our	RESTful	Web	Service.

Configuring	a	versioning
scheme
Let's	imagine	we	have	to	serve	the	following	two	versions	of	our	RESTful
Web	Service:

Version	1:	The	version	we	have	developed	so	far.	However,	we
want	to	make	sure	that	the	clients	understand	that	they	are
working	with	version	1,	and	therefore,	we	want	to	include	a
reference	to	the	version	number	in	the	URL	for	each	HTTP
request.

Version	2:	This	version	has	to	allow	clients	to	reference	the
drones	resource	collection	with	the	vehicles	name	instead	of	drones.
In	addition,	the	drone	categories	resource	collection	must	be
accessed	with	the	vehicle-categories	name	instead	of	drone-categories.
We	also	want	to	make	sure	that	the	clients	understand	that	they	are
working	with	version	2,	and	therefore,	we	want	to	include	a
reference	to	the	version	number	in	the	URL	for	each	HTTP
request.

The	difference	between	the	second	and	the	first	version	will	be	minimal
because	we	want	to	keep	the	example	simple.	In	this	case,	we	will	take
advantage	of	the	previously	explained	NamespaceVersioning	class	to	configure
a	URL	path	versioning	scheme.

Make	sure	you	quit	the	Django's	development	server.	Remember	that	you
just	need	to	press	Ctrl	+	C	in	the	terminal	or	command	prompt	window	in

which	it	is	running.

We	will	make	the	necessary	changes	to	configure	the	usage	of	the
NameSpaceVersioning	class	as	the	default	versioning	class	for	our	RESTful
Web	Service.	Open	the	restful01/restful01/settings.py	file	that	declares
module-level	variables	that	define	the	configuration	of	Django	for	the
restful01	project.	We	will	make	some	changes	to	this	Django	settings	file.
Add	the	highlighted	lines	to	the	REST_FRAMEWORK	dictionary.	The	following
lines	show	the	new	declaration	of	the	REST_FRAMEWORK	dictionary.	The	code
file	for	the	sample	is	included	in	the	hillar_django_restful_09_02	folder	in	the
restful01/restful01/settings.py	file:

REST_FRAMEWORK	=	{	

				'DEFAULT_PAGINATION_CLASS':	

				'drones.custompagination.LimitOffsetPaginationWithUpperBound',	

				'PAGE_SIZE':	4,	

				'DEFAULT_FILTER_BACKENDS':	(

								'django_filters.rest_framework.DjangoFilterBackend',	

								'rest_framework.filters.OrderingFilter',	

								'rest_framework.filters.SearchFilter',	

),	

				'DEFAULT_AUTHENTICATION_CLASSES':	(

								'rest_framework.authentication.BasicAuthentication',	

								'rest_framework.authentication.SessionAuthentication',	

),	

				'DEFAULT_THROTTLE_CLASSES':	(

								'rest_framework.throttling.AnonRateThrottle',	

								'rest_framework.throttling.UserRateThrottle',	

),	

				'DEFAULT_THROTTLE_RATES':	{	

								'anon':	'3/hour',	

								'user':	'10/hour',	

								'drones':	'20/hour',	

								'pilots':	'15/hour',	

				}	

				'DEFAULT_VERSIONING_CLASS':		

								'rest_framework.versioning.NamespaceVersioning',	

}	

We	added	a	value	for	the	DEFAULT_VERSIONING_CLASS	settings	key	to	configure
the	default	versioning	class	that	we	want	to	use.	As	happened	whenever
we	added	values	for	settings	keys,	the	new	configuration	will	be	applied	to

all	the	views	as	a	global	setting	that	we	are	able	to	override	if	necessary	in
specific	classes.

Create	a	new	sub-folder	named	v2	within	the	restful01/drones	folder
(restful01\drones	in	Windows).	This	new	folder	will	be	the	baseline	for	the
specific	code	required	for	version	2	of	our	RESTful	Web	Service.

Go	to	the	recently	created	restful01/drones/v2	folder	and	create	a	new	file
named	views.py.	Write	the	following	code	in	this	new	file.	The	following
lines	show	the	code	for	this	file	that	creates	the	new	ApiRootVersion2	class
declared	as	a	subclass	of	the	generics.GenericAPIView	class.	The	code	file	for
the	sample	is	included	in	the	hillar_django_restful_09_02	folder	in	the
restful01/drones/v2/views.py	file.

from	rest_framework	import	generics	

from	rest_framework.response	import	Response	

from	rest_framework.reverse	import	reverse	

from	drones	import	views	

	

	

class	ApiRootVersion2(generics.GenericAPIView):	

				name	=	'api-root'	

				def	get(self,	request,	*args,	**kwargs):	

								return	Response({	

												'vehicle-categories':	reverse(views.DroneCategoryList.name,	request=request),	

												'vehicles':	reverse(views.DroneList.name,	request=request),	

												'pilots':	reverse(views.PilotList.name,	request=request),	

												'competitions':	reverse(views.CompetitionList.name,	request=request)	

												})	

The	ApiRootVersion2	class	is	a	subclass	of	the
rest_framework.generics.GenericAPIView	class	and	declares	the	get	method.	As
we	learned	in	Chapter	6,	Working	with	Advanced	Relationships	and
Serialization,	the	GenericAPIView	class	is	the	base	class	for	all	the	generic
views	we	have	been	working	with.	We	will	make	the	Django	REST
framework	use	this	class	instead	of	the	ApiRoot	class	when	the	requests
work	with	version	2.

The	ApiRootVersion2	class	defines	the	get	method	that	returns	a	Response	object

with	key/value	pairs	of	strings	that	provide	a	descriptive	name	for	the	view
and	its	URL,	generated	with	the	rest_framework.reverse.reverse	function.	This
URL	resolver	function	returns	a	fully	qualified	URL	for	the	view.
Whenever	we	call	the	reverse	function,	we	include	the	request	value	for	the
request	argument.	It	is	very	important	to	do	this	in	order	to	make	sure	that
the	NameSpaceVersioning	class	can	work	as	expected	to	configure	the
versioning	scheme.

In	this	case,	the	response	defines	keys	named	'vehicle-categories'	and
'vehicles'	instead	of	the	'drone-cagories'	and	'drones'	keys	that	are	included
in	the	views.py	file,	in	the	ApiRoot	class	that	will	be	used	for	version	1.

Now,	go	to	the	recently	created	restful01/drones/v2	folder	and	create	a	new
file	named	urls.py.	Write	the	following	code	in	this	new	file.	The	following
lines	show	the	code	for	this	file	that	declares	the	urlpatterns	array.	The	lines
that	are	different	compared	to	the	first	version	are	highlighted.	The	code
file	for	the	sample	is	included	in	the	hillar_django_restful_09_02	folder	in	the
restful01/drones/v2/urls.py	file.

from	django.conf.urls	import	url	

from	drones	import	views	

from	drones.v2	import	views	as	views_v2	

	

	

urlpatterns	=	[

				url(r'^vehicle-categories/$',		

								views.DroneCategoryList.as_view(),		

								name=views.DroneCategoryList.name),	

				url(r'^vehicle-categories/(?P<pk>[0-9]+)$',		

								views.DroneCategoryDetail.as_view(),	

								name=views.DroneCategoryDetail.name),	

				url(r'^vehicles/$',		

								views.DroneList.as_view(),	

								name=views.DroneList.name),	

				url(r'^vehicles/(?P<pk>[0-9]+)$',		

								views.DroneDetail.as_view(),	

								name=views.DroneDetail.name),	

				url(r'^pilots/$',		

								views.PilotList.as_view(),	

								name=views.PilotList.name),	

				url(r'^pilots/(?P<pk>[0-9]+)$',		

								views.PilotDetail.as_view(),	

								name=views.PilotDetail.name),	

				url(r'^competitions/$',		

								views.CompetitionList.as_view(),	

								name=views.CompetitionList.name),	

				url(r'^competitions/(?P<pk>[0-9]+)$',		

								views.CompetitionDetail.as_view(),	

								name=views.CompetitionDetail.name),	

				url(r'^$',	

								views_v2.ApiRootVersion2.as_view(),	

								name=views_v2.ApiRootVersion2.name),	

]	

The	previous	code	defines	the	URL	patterns	that	specify	the	regular
expressions	that	have	to	be	matched	in	the	request	to	run	a	specific	method
for	a	class-based	view	defined	in	the	original	version	of	the	views.py	file.
We	want	version	2	to	use	vehicle-categories	and	vehicles	instead	of	drone-
categories	and	drones.	However,	we	won't	make	changes	in	the	serializer,
and	therefore,	we	will	only	change	the	URL	that	the	clients	must	use	to
make	requests	related	to	drone	categories	and	drones.

Now,	we	have	to	replace	the	code	in	the	urls.py	file	in	the	restful01/restful01
folder,	specifically,	the	restful01/restful01/urls.py	file.	The	file	defines	the
root	URL	configurations,	and	therefore,	we	must	include	the	URL	patterns
for	the	two	versions	declared	in	the	restful01/drones/urls.py	and	in	the
restful01/drones/v2/urls.py.	The	following	lines	show	the	new	code	for	the
restful01/restful01/urls.py	file.	The	code	file	for	the	sample	is	included	in
the	hillar_django_restful_09_02	folder,	in	the	restful01/restful01/urls.py	file.

from	django.conf.urls	import	url,	include	

	

urlpatterns	=	[

				url(r'^v1/',	include('drones.urls',	namespace='v1')),	

				url(r'^v1/api-auth/',	include('rest_framework.urls',	namespace='rest_framework_v1')),	

				url(r'^v2/',	include('drones.v2.urls',	namespace='v2')),	

				url(r'^v2/api-auth/',	include('rest_framework.urls',	namespace='rest_framework_v2')),	

]	

Whenever	a	URL	starts	with	v1/,	the	url	patterns	defined	for	the	previous
version	will	be	used	and	the	namespace	will	be	set	to	'v1'.	Whenever	a	URL

starts	with	v2/,	the	url	patterns	defined	for	version	2	will	be	used	and	the
namespace	will	be	set	to	'v2'.	We	want	the	browsable	API	to	display	the
log	in	and	log	out	views	for	the	two	versions,	and	therefore,	we	included
the	necessary	code	to	include	the	definitions	included	in	rest_framework.urls
for	each	of	the	versions,	with	different	namespaces.	This	way,	we	will	be
able	to	easily	test	the	two	versions	with	the	browsable	API	and	the
configured	authentication.

Running	tests	to	check	that
versioning	works	as	expected
Now,	we	can	launch	Django's	development	server	to	compose	and	send
HTTP	requests	to	understand	how	the	configured	versioning	scheme
works.	Execute	any	of	the	following	two	commands	based	on	your	needs
to	access	the	API	in	other	devices	or	computers	connected	to	your	LAN.
Remember	that	we	analyzed	the	difference	between	them	in	Chapter
3,	Creating	API	Views,	in	the	Launching	Django's	development	server
section.

				python	manage.py	runserver

				python	manage.py	runserver	0.0.0.0:8000

After	we	run	any	of	the	previous	commands,	the	development	server	will
start	listening	at	port	8000.

Now,	we	will	compose	and	send	an	HTTP	GET	request	to	retrieve	the	first
page	of	the	drone	categories	by	working	with	the	first	version	of	our
RESTful	Web	Service:

				http	:8000/v1/drone-categories/

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	localhost:8000/v1/drone-categories/

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/v1/drone-categories/.	The	request	URL	starts

with	v1/	after	the	domain	and	the	port	number	(http://localhost:8000/),	and
therefore,	it	will	match	the	'^v1/'	regular	expression	and	will	test	the
regular	expressions	defined	in	the	restful01/drones/urls.py	file	and	will	work
with	a	namespace	equal	to	'v1'.	Then,	the	URL	without	the	version	prefix
('v1/')	will	match	the	'drone-categories/$'regular	expression	and	run	the	get
method	for	the	views.DroneCategoryList	class-based	view.

The	NamespaceVersioning	class	makes	sure	that	the	rendered	URLs	include	the
appropriate	version	prefix	in	the	response.	The	following	lines	show	a
sample	response	for	the	HTTP	request,	with	the	first	and	only	page	of
drone	categories.	Notice	that	the	URLs	for	the	drones	list	for	each
category	include	the	version	prefix.	In	addition,	the	value	of	the	url	key	for
each	drone	category	includes	the	version	prefix.

				HTTP/1.0	200	OK

				Allow:	GET,	POST,	HEAD,	OPTIONS

				Content-Length:	670

				Content-Type:	application/json

				Date:	Sun,	03	Dec	2017	19:34:13	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"count":	2,	

								"next":	null,	

								"previous":	null,	

								"results":	[

												{

																"drones":	[

																				"http://localhost:8000/v1/drones/6",	

																				"http://localhost:8000/v1/drones/4",	

																				"http://localhost:8000/v1/drones/8",	

																				"http://localhost:8000/v1/drones/10"

],	

																"name":	"Octocopter",	

																"pk":	2,	

																"url":	"http://localhost:8000/v1/drone-categories/2"

												},	

												{

																"drones":	[

																				"http://localhost:8000/v1/drones/2",	

																				"http://localhost:8000/v1/drones/9",	

																				"http://localhost:8000/v1/drones/5",	

																				"http://localhost:8000/v1/drones/7",	

																				"http://localhost:8000/v1/drones/3",	

																				"http://localhost:8000/v1/drones/12",	

																				"http://localhost:8000/v1/drones/11",	

																				"http://localhost:8000/v1/drones/1"

],	

																"name":	"Quadcopter",	

																"pk":	1,	

																"url":	"http://localhost:8000/v1/drone-categories/1"

												}

]

				}		

Now,	we	will	compose	and	send	an	HTTP	GET	request	to	retrieve	the	first
page	of	the	vehicle	categories	by	working	with	the	second	version	of	our
RESTful	Web	Service:

				http	:8000/v2/vehicle-categories/

The	following	is	the	equivalent	curl	command:

				curl	-iX	GET	localhost:8000/v2/vehicle-categories/

The	previous	commands	will	compose	and	send	the	following	HTTP
request:	GET	http://localhost:8000/v2/vehicle-categories/.	The	request	URL
starts	with	v2/	after	the	domain	and	the	port	number	(http://localhost:8000/),
and	therefore,	it	will	match	the	'^v2/'	regular	expression	and	will	test	the
regular	expressions	defined	in	the	restful01/drones/v2/urls.py	file	and	will
work	with	a	namespace	equal	to	'v2'.	Then,	the	URL	without	the	version
prefix	('v2/')	will	match	the	'vehicle-categories/$'regular	expression	and	run
the	get	method	for	the	views.DroneCategoryList	class-based	view.

As	happened	with	the	previous	request,	the	NamespaceVersioning	class	makes
sure	that	the	rendered	URLs	include	the	appropriate	version	prefix	in	the
response.	The	following	lines	show	a	sample	response	for	the	HTTP
request,	with	the	first	and	only	page	of	vehicle	categories.	We	haven't
made	changes	to	the	serializer	in	the	new	version,	and	therefore,	each

category	will	render	a	list	named	drones.	However,	the	URLs	for	the	drones
list	for	each	category	include	the	version	prefix	and	they	use	the
appropriate	URL	with	a	vehicle	in	the	URL	instead	of	a	drone.	In	addition,
the	value	of	the	url	key	for	each	vehicle	category	includes	the	version
prefix.

				HTTP/1.0	200	OK

				Allow:	GET,	POST,	HEAD,	OPTIONS

				Content-Length:	698

				Content-Type:	application/json

				Date:	Sun,	03	Dec	2017	19:34:29	GMT

				Server:	WSGIServer/0.2	CPython/3.6.2

				Vary:	Accept,	Cookie

				X-Frame-Options:	SAMEORIGIN

				

				{

								"count":	2,	

								"next":	null,	

								"previous":	null,	

								"results":	[

												{

																"drones":	[

																				"http://localhost:8000/v2/vehicles/6",	

																				"http://localhost:8000/v2/vehicles/4",	

																				"http://localhost:8000/v2/vehicles/8",	

																				"http://localhost:8000/v2/vehicles/10"

],	

																"name":	"Octocopter",	

																"pk":	2,	

																"url":	"http://localhost:8000/v2/vehicle-categories/2"

												},	

												{

																"drones":	[

																				"http://localhost:8000/v2/vehicles/2",	

																				"http://localhost:8000/v2/vehicles/9",	

																				"http://localhost:8000/v2/vehicles/5",	

																				"http://localhost:8000/v2/vehicles/7",	

																				"http://localhost:8000/v2/vehicles/3",	

																				"http://localhost:8000/v2/vehicles/12",	

																				"http://localhost:8000/v2/vehicles/11",	

																				"http://localhost:8000/v2/vehicles/1"

],	

																"name":	"Quadcopter",	

																"pk":	1,	

																"url":	"http://localhost:8000/v2/vehicle-categories/1"

												}

]

				}

Open	a	web	browser	and	enter	http://localhost:8000/v1.	The	browser	will
compose	and	send	a	GET	request	to	/v1	with	text/html	as	the	desired	content
type	and	the	returned	HTML	web	page	will	be	rendered.	The	request	will
end	up	executing	the	get	method	defined	in	the	ApiRoot	class	within	the
restful01/drones/views.py	file.	The	following	screenshot	shows	the	rendered
web	page	with	the	resource	description:	Api	Root.	The	Api	Root	for	the
first	version	uses	the	appropriate	URLs	for	version	1,	and	therefore,	all	the
URLs	start	with	http://localhost:8000/v1/.

Now,	go	to	http://localhost:8000/v2.	The	browser	will	compose	and	send	a
GET	request	to	/v2	with	text/html	as	the	desired	content	type	and	the	returned
HTML	web	page	will	be	rendered.	The	request	will	end	up	executing	the
get	method	defined	in	the	ApiRootVersion2	class	within	the
restful01/drones/v2/views.py	file.	The	following	screenshot	shows	the
rendered	web	page	with	the	resource	description:	Api	Root	Version2.	The
Api	Root	for	the	first	version	uses	the	appropriate	URLs	for	version	2,	and
therefore,	all	the	URLs	start	with	http://localhost:8000/v2/.	You	can	check
the	differences	with	the	Api	Root	rendered	for	version	1.

This	new	version	of	the	Api	Root	renders	the	following	hyperlinks:

http://localhost:8000/v2/vehicle-categories/:	The	collection	of	vehicle
categories

http://localhost:8000/v2/vehicles/:	The	collection	of	vehicles

http://localhost:8000/v2/pilots/:	The	collection	of	pilots

http://localhost:8000/v2/competitions/:	The	collection	of	competitions

We	can	use	all	the	features	provided	by	the	browsable	API	with	the	two
versions	we	have	configured.

Developing	and	maintaining	multiple	versions	of	a	RESTful
Web	Service	is	an	extremely	complex	task	that	requires	a	lot
of	planning.	We	must	take	into	account	the	different
versioning	schemes	that	the	Django	REST	framework
provides	out	of	the	box	to	make	our	job	simpler.	However,	it
is	always	very	important	to	avoid	making	things	more
complex	than	necessary.	We	should	keep	any	versioning

scheme	as	simple	as	possible	and	we	must	make	sure	that	we
continue	to	provide	RESTful	Web	Services	with	easily
identifiable	resources	and	resource	collections	in	the	URLs.

Test	your	knowledge
Let's	see	whether	you	can	answer	the	following	questions	correctly:

1.	 The	rest_framework.throttling.UserRateThrottle	class:

1.	 Limits	the	rate	of	requests	that	a	specific	user	can	make
and	applies	to	both	authenticated	and	non-authenticated
users

2.	 Limits	the	rate	of	requests	that	a	specific	user	can	make
and	applies	only	to	authenticated	users

3.	 Limits	the	rate	of	requests	that	a	specific	user	can	make
and	applies	only	to	non-authenticated	users

2.	 Which	of	the	following	settings	key	in	the	REST_FRAMEWORK	dictionary
specifies	the	global	setting	with	a	tuple	of	string	whose	values
indicate	the	classes	that	we	want	to	use	for	throttling	rules:

1.	 'DEFAULT_THROTTLE_CLASSES'
2.	 'GLOBAL_THROTTLE_CLASSES'
3.	 'REST_FRAMEWORK_THROTTLE_CLASSES'

3.	 Which	of	the	following	settings	key	in	the	REST_FRAMEWORK	dictionary
specifies	a	dictionary	with	the	default	throttle	rates:

1.	 'GLOBAL_THROTTLE_RATES'

2.	 'DEFAULT_THROTTLE_RATES'
3.	 'REST_FRAMEWORK_THROTTLE_RATES'

4.	 The	rest_framework.throttling.ScopedRateThrottle	class:

1.	 Limits	the	rate	of	requests	that	an	anonymous	user	can
make

2.	 Limits	the	rate	of	requests	that	a	specific	user	can	make
3.	 Limits	the	rate	of	requests	for	specific	parts	of	the

RESTful	Web	Service	identified	with	the	value	assigned
to	the	throttle_scope	property

5.	 The	rest_framework.versioning.NamespaceVersioning	class	configures	a
versioning	scheme	known	as:

1.	 Query	parameter	versioning	or	request	parameter
versioning

2.	 Media	type	versioning,	content	negotiation	versioning	or
accept	header	versioning

3.	 URI	versioning	or	URL	path	versioning

	

The	rights	answers	are	included	in	the	Appendix,	Solutions.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=44&action=edit#post_454

Summary
In	this	chapter,	we	understood	the	importance	of	throttling	rules	and	how
we	can	combine	them	with	authentication	and	permissions	in	Django,	the
Django	REST	framework	and	RESTful	Web	Services.	We	analyzed	the
throttling	classes	included	in	the	Django	REST	framework	out	of	the	box.

We	followed	the	necessary	steps	to	configure	many	throttling	policies	in
the	Django	REST	framework.	We	worked	with	global	and	scope-related
settings.	Then,	we	used	command-line	tools	to	compose	and	send	many
requests	to	test	how	the	throttling	rules	worked.

We	understood	versioning	classes	and	we	configured	a	URL	path
versioning	scheme	to	allow	us	to	work	with	two	versions	of	our	RESTful
Web	Service.	We	used	command-line	tools	and	the	browsable	API	to
understand	the	differences	between	the	two	versions.

Now	that	we	can	combine	throttling	rules,	authentication	and	permission
policies	with	versioning	schemes,	it	is	time	to	explore	other	features
offered	by	the	Django	REST	framework	and	third-party	packages	to
improve	our	RESTful	Web	Service	and	automate	tests.	We	will	cover
these	topics	in	the	next	chapter.

Automating	Tests
In	this	chapter,	we	will	add	some	automated	testing	to	our	RESTful	Web
Services	and	we	will	execute	the	tests	within	a	test	database.	We	won't
cover	all	the	tests	that	we	should	write	for	our	complex	RESTful	Web
Service.	However,	we	will	follow	the	first	steps	and	we	will	gain	an
understanding	of:

Getting	ready	for	unit	testing	with	pytest

Writing	unit	tests	for	a	RESTful	Web	Service

Discovering	and	running	unit	tests	with	pytest

Writing	new	unit	tests	to	improve	tests'	code	coverage

Running	new	unit	tests

Getting	ready	for	unit	testing
with	pytest
So	far,	we	have	been	writing	code	to	add	features	to	our	RESTful	Web
Service	and	configuring	many	settings	for	the	Django	REST	framework.
We	used	command-line	and	GUI	tools	to	understand	how	all	the	pieces
worked	together	and	to	check	the	results	of	diverse	HTTP	requests.	Now,
we	will	write	unit	tests	that	will	allow	us	to	make	sure	that	our	RESTful
Web	Service	will	work	as	expected.	Before	we	can	start	writing	unit	tests,
it	is	necessary	to	install	many	additional	packages	in	our	virtual
environment.	Make	sure	you	quit	Django's	development	server.	Remember
that	you	just	need	to	press	Ctrl	+	C	in	the	terminal	or	go	to	the	Command
Prompt	window	in	which	it	is	running.	First,	we	will	make	some	changes
to	work	with	a	single	version	of	our	RESTful	Web	Service.

This	way,	it	will	be	easier	to	focus	on	tests	for	a	single	version	in	our
examples.	Replace	the	code	in	the	urls.py	file	in	the	restful01/restful01
folder,	specifically,	the	restful01/restful01/urls.py	file.	The	file	defines	the
root	URL	configurations,	and	therefore,	we	want	to	include	only	the	URL
patterns	for	the	first	version	of	our	web	service.	The	code	file	for	the
sample	is	included	in	the	hillar_django_restful_10_01	folder,	in	the
restful01/restful01/urls.py	file:

from	django.conf.urls	import	url,	include	

	

urlpatterns	=	[

				url(r'^',	include('drones.urls')),	

				url(r'^api-auth/',	include('rest_framework.urls'))	

]

We	will	install	the	following	Python	packages	in	our	virtual	environment:

pytest:	This	is	a	very	popular	Python	unit	test	framework	that
makes	testing	easy	and	reduces	boilerplate	code

pytest-django:	This	pytest	plugin	allows	us	to	easily	use	and
configure	the	features	provided	by	pytest	in	our	Django	tests

Notice	that	we	won't	be	working	with	Django's	manage.pytest
command.	We	will	work	with	pytest	instead.	However,	in	case
you	don't	want	to	work	with	pytest,	most	of	the	things	you	will
learn	can	be	easily	adapted	to	any	other	test	framework.	In
fact,	the	code	is	compatible	with	nose	in	case	you	decide	to
use	the	most	common,	yet	a	bit	outdated,	configuration	for
testing	with	the	Django	REST	framework.	Nowadays,	pytest
is	the	preferred	unit	test	framework	for	Python.

Run	the	following	command	to	install	the	pytest	package:

pip	install	pytest

The	last	lines	for	the	output	will	indicate	that	the	pytest	package	and	its
required	packages	have	been	successfully	installed:

Installing	collected	packages:	attrs,	pluggy,	six,	py,	pytest		Running	setup.py	install	for	pluggy	...	done

We	just	need	to	run	the	following	command	to	install	the	pytest-django
package:

pip	install	pytest-django

The	last	lines	for	the	output	will	indicate	that	the	pytest-django	package	has
been	successfully	installed:

Installing	collected	packages:	pytest-django

Successfully	installed	pytest-django-3.1.2

Now,	go	to	the	restful01	folder	that	contains	the	manage.py	file	and	create	a
new	file	named	pytest.ini.	Write	the	following	code	in	this	new	file.	The
following	lines	show	the	code	for	this	file	that	specifies	the	Django
settings	module	(restful01.settings)	and	the	pattern	that	pytest	will	use	to
locate	the	Python	files,	the	declare	tests.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_10_01	folder	in	the	restful01/pytest.ini
file:

[pytest]	

DJANGO_SETTINGS_MODULE	=	restful01.settings	

python_files	=	tests.py	test_*.py	*_tests.py	

Whenever	we	execute	pytest	to	run	tests,	the	test	runner	will	check	the
following	to	find	test	definitions:

Python	files	named	tests.py

Python	files	whose	name	starts	with	the	test_	prefix

Python	files	whose	name	ends	with	the	_tests	suffix

In	Chapter	9,	Applying	Throttling	Rules	and	Versioning	Management,	we
configured	throttling	rules	for	our	RESTful	Web	Service.	We	want	to	run
our	tests	considering	the	throttling	rules.	In	fact,	we	should	write	tests	to
make	sure	that	the	throttling	rules	are	working	OK.	We	will	be	running
requests	many	times,	and	therefore,	the	low	values	we	used	for	the
throttling	rules	might	complicate	running	all	the	requests	required	by	our
tests.	Hence,	we	will	increase	the	values	for	the	throttling	rules	to	simplify
our	testing	samples.	Open	the	restful01/restful01/settings.py	file	that
declares	module-level	variables	that	define	the	configuration	of	Django	for
the	restful01	project.	We	will	make	some	changes	to	this	Django	settings
file.	Replace	the	code	for	the	highlighted	lines	included	in	the	REST_FRAMEWORK

dictionary.	The	following	lines	show	the	new	declaration	of	the
REST_FRAMEWORK	dictionary.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_10_01	folder	in	the	restful01/restful01/settings.py	file:

REST_FRAMEWORK	=	{	

				'DEFAULT_PAGINATION_CLASS':	

				'drones.custompagination.LimitOffsetPaginationWithUpperBound',	

				'PAGE_SIZE':	4,	

				'DEFAULT_FILTER_BACKENDS':	(

								'django_filters.rest_framework.DjangoFilterBackend',	

								'rest_framework.filters.OrderingFilter',	

								'rest_framework.filters.SearchFilter',	

),	

				'DEFAULT_AUTHENTICATION_CLASSES':	(

								'rest_framework.authentication.BasicAuthentication',	

								'rest_framework.authentication.SessionAuthentication',	

),	

				'DEFAULT_THROTTLE_CLASSES':	(

								'rest_framework.throttling.AnonRateThrottle',	

								'rest_framework.throttling.UserRateThrottle',	

),	

				'DEFAULT_THROTTLE_RATES':	{	

								'anon':	'300/hour',	

								'user':	'100/hour',	

								'drones':	'200/hour',	

								'pilots':	'150/hour',	

				}	

}	

We	increased	the	number	of	requests	per	hour	that	we	can	execute	in	each
of	the	throttling	rates	configurations.	This	way,	we	will	be	able	to	run	our
tests	without	issues.

In	this	case,	we	are	using	the	same	settings	file	for	our	tests
in	order	to	avoid	running	additional	steps	and	repeating	test
settings.	However,	in	most	cases,	we	would	create	a	specific
Django	configuration	file	for	testing.

Writing	unit	tests	for	a	RESTful
Web	Service
Now,	we	will	write	our	first	round	of	unit	tests	related	to	the	drone
category	class	based	views:	DroneCategoryList	and	DroneCategoryDetail.	Open
the	existing	restful01/drones/tests.py	file	and	replace	the	existing	code	with
the	following	lines	that	declare	many	import	statements	and	the
DroneCategoryTests	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_10_01	folder	in	the	restful01/drones/tests.py	file:

from	django.utils.http	import	urlencode	

from	django.core.urlresolvers	import	reverse	

from	rest_framework	import	status	

from	rest_framework.test	import	APITestCase	

from	drones.models	import	DroneCategory	

from	drones	import	views	

	

	

class	DroneCategoryTests(APITestCase):	

				def	post_drone_category(self,	name):	

								url	=	reverse(views.DroneCategoryList.name)	

								data	=	{'name':	name}	

								response	=	self.client.post(url,	data,	format='json')	

								return	response	

	

				def	test_post_and_get_drone_category(self):	

								"""	

								Ensure	we	can	create	a	new	DroneCategory	and	then	retrieve	it	

								"""	

								new_drone_category_name	=	'Hexacopter'	

								response	=	self.post_drone_category(new_drone_category_name)	

								print("PK	{0}".format(DroneCategory.objects.get().pk))	

								assert	response.status_code	==	status.HTTP_201_CREATED	

								assert	DroneCategory.objects.count()	==	1	

								assert	DroneCategory.objects.get().name	==	new_drone_category_name	

The	DroneCategoryTests	class	is	a	subclass	of	the	rest_framework.test.APITestCase

superclass	and	declares	the	post_drone_category	method	that	receives	the
desired	name	for	the	new	drone	category	as	an	argument.

This	method	builds	the	URL	and	the	data	dictionary	to	compose	and	send
an	HTTP	POST	request	to	the	view	associated	with	the
views.DroneCategoryList.name	name	(dronecategory-list)	and	returns	the	response
generated	by	this	request.

The	code	uses	the	self.client	attribute	to	access	the	APIClient
instance	that	allows	us	to	easily	compose	and	send	HTTP
requests	for	testing	our	RESTful	Web	Service	that	uses	the
Django	REST	framework.	For	this	test,	the	code	calls	the	post
method	with	the	built	url,	the	data	dictionary,	and	the	desired
format	for	the	data:	'json'.

Many	test	methods	will	call	the	post_drone_category	method	to	create	a	new
drone	category	and	then	compose	and	send	other	HTTP	requests	to	the
RESTful	Web	Service.	For	example,	we	will	need	a	drone	category	to	post
a	new	drone.

The	test_post_and_get_drone_category	method	tests	whether	we	can	create	a
new	DroneCategory	and	then	retrieve	it.	The	method	calls	the
post_drone_category	method	and	then	calls	assert	many	times	to	check	for	the
following	expected	results:

1.	 The	status_code	attribute	for	the	response	is	equal	to	HTTP	201
Created	(status.HTTP_201_CREATED)

2.	 The	total	number	of	DroneCategory	objects	retrieved	from	the
database	is	1

3.	 The	value	of	the	name	attribute	for	the	retrieved	DroneCategory	object
is	equal	to	the	new_drone_category_name	variable	passed	as	a	parameter
to	the	post_drone_category	method

The	previously	coded	tests	make	sure	that	we	can	create	a	new	drone
category	with	the	RESTful	Web	Service,	it	is	persisted	in	the	database,	and

the	serializer	does	its	job	as	expected.	The	drone	category	is	a	very	simple
entity	because	it	just	has	a	primary	key	and	a	name.	Now,	we	will	add
more	test	methods	that	will	allow	us	to	cover	more	scenarios	related	to
drone	categories.

Add	the	test_post_existing_drone_category_name	method	to	the	recently	created
DroneCategoryTests	class	in	the	restful01/drones/tests.py	file.	The	code	file	for
the	sample	is	included	in	the	hillar_django_restful_10_01	folder	in	the
restful01/drones/tests.py	file:

				def	test_post_existing_drone_category_name(self):	

								"""	

								Ensure	we	cannot	create	a	DroneCategory	with	an	existing	name	

								"""	

								url	=	reverse(views.DroneCategoryList.name)	

								new_drone_category_name	=	'Duplicated	Copter'	

								data	=	{'name':	new_drone_category_name}	

								response1	=	self.post_drone_category(new_drone_category_name)	

								assert	response1.status_code	==	status.HTTP_201_CREATED	

								response2	=	self.post_drone_category(new_drone_category_name)	

								print(response2)	

								assert	response2.status_code	==	status.HTTP_400_BAD_REQUEST	

The	new	method	tests	whether	the	unique	constraint	for	the	drone	category
name	works	as	expected	and	doesn't	make	it	possible	for	us	to	create	two
drone	categories	with	the	same	name.	The	second	time	we	compose	and
send	an	HTTP	POST	request	with	a	duplicate	drone	name,	we	must	receive
an	HTTP	400	Bad	Request	status	code	(status.HTTP_400_BAD_REQUEST).

Add	the	test_filter_drone_category_by_name	method	to	the	DroneCategoryTests
class	in	the	restful01/drones/tests.py	file.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_10_01	folder	in	the
restful01/drones/tests.py	file:

				def	test_filter_drone_category_by_name(self):	

								"""	

								Ensure	we	can	filter	a	drone	category	by	name	

								"""	

								drone_category_name1	=	'Hexacopter'	

								self.post_drone_category(drone_category_name1)	

								drone_caregory_name2	=	'Octocopter'	

								self.post_drone_category(drone_caregory_name2)	

								filter_by_name	=	{	'name'	:	drone_category_name1	}	

								url	=	'{0}?{1}'.format(

												reverse(views.DroneCategoryList.name),	

												urlencode(filter_by_name))	

								print(url)	

								response	=	self.client.get(url,	format='json')	

								print(response)	

								assert	response.status_code	==	status.HTTP_200_OK	

								#	Make	sure	we	receive	only	one	element	in	the	response	

								assert	response.data['count']	==	1	

								assert	response.data['results'][0]['name']	==	

								drone_category_name1	

The	new	method	tests	whether	we	can	filter	a	drone	category	by	name,	and
therefore,	checks	the	usage	of	the	filter	field	we	have	configured	for	the
DroneCategoryList	class-based	view.	The	code	creates	two	drone	categories
and	then	calls	the	django.utils.http.urlencode	function	to	build	an	encoded
URL	from	the	filter_by_name	dictionary.	This	dictionary	includes	the	field
name	as	a	key	and	the	desired	string	for	the	field	as	a	value.	In	this	case,
drone_category_name1	is	equal	to	'Hexacopter',	and	therefore,	the	encoded	URL
saved	in	the	url	variable	will	be	'name=Hexacopter'.

After	the	call	to	self.client.get	with	the	built	URL	to	retrieve	the	filtered
list	of	drone	categories,	the	method	verifies	the	data	included	in	the
response	JSON	body	by	inspecting	the	data	attribute	for	the	response.	The
second	line	that	calls	assert	checks	whether	the	value	for	count	is	equal	to	1
and	the	next	lines	verify	whether	the	name	key	for	the	first	element	in	the
results	array	is	equal	to	the	value	hold	in	the	drone_category_name1	variable.
The	code	is	easy	to	read	and	understand.

Add	the	test_get_drone_categories_collection	method	to	the	DroneCategoryTests
class	in	the	restful01/drones/tests.py	file.	The	code	file	for	the	sample	is
included	in	the	hillar_django_restful_10_01	folder	in	the
restful01/drones/tests.py	file:

				def	test_get_drone_categories_collection(self):	

								"""	

								Ensure	we	can	retrieve	the	drone	categories	collection	

								"""	

								new_drone_category_name	=	'Super	Copter'	

								self.post_drone_category(new_drone_category_name)	

								url	=	reverse(views.DroneCategoryList.name)	

								response	=	self.client.get(url,	format='json')	

								assert	response.status_code	==	status.HTTP_200_OK	

								#	Make	sure	we	receive	only	one	element	in	the	response	

								assert	response.data['count']	==	1	

								assert	response.data['results'][0]['name']	==	

								new_drone_category_name	

The	method	tests	whether	we	can	retrieve	the	drone	categories	collection.
First,	the	code	creates	a	new	drone	category	and	then	makes	an	HTTP	GET
request	to	retrieve	the	drones	collection.	The	lines	that	call	assert	check
that	the	results	include	the	only	created	and	persisted	drone	and	that	its
name	is	equal	to	the	name	used	for	the	call	to	the	POST	method	to	create	the
new	drone	category.

Add	the	test_update_drone_category	method	to	the	DroneCategoryTests	class	in	the
restful01/drones/tests.py	file.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_10_01	folder	in	the	restful01/drones/tests.py	file:

				def	test_update_drone_category(self):	

								"""	

								Ensure	we	can	update	a	single	field	for	a	drone	category	

								"""	

								drone_category_name	=	'Category	Initial	Name'	

								response	=	self.post_drone_category(drone_category_name)	

								url	=	reverse(

												views.DroneCategoryDetail.name,		

												None,		

												{response.data['pk']})	

								updated_drone_category_name	=	'Updated	Name'	

								data	=	{'name':	updated_drone_category_name}	

								patch_response	=	self.client.patch(url,	data,	format='json')	

								assert	patch_response.status_code	==	status.HTTP_200_OK	

								assert	patch_response.data['name']	==	

								updated_drone_category_name

The	new	method	tests	whether	we	can	update	a	single	field	for	a	drone

category.	First,	the	code	creates	a	new	drone	category	and	then	makes	an
HTTP	PATCH	request	to	update	the	name	field	for	the	previously	persisted
drone	category.	The	lines	that	call	assert	check	that	the	returned	status	code
is	HTTP	200	OK	and	that	the	value	of	the	name	key	in	the	response	body	is	equal
to	the	new	name	that	we	specified	in	the	HTTP	PATCH	request.

Add	the	test_get_drone_category	method	to	the	DroneCategoryTests	class	in	the
restful01/drones/tests.py	file.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_10_01	folder	in	the	restful01/drones/tests.py	file:

				def	test_get_drone_category(self):	

								"""	

								Ensure	we	can	get	a	single	drone	category	by	id	

								"""	

								drone_category_name	=	'Easy	to	retrieve'	

								response	=	self.post_drone_category(drone_category_name)	

								url	=	reverse(

												views.DroneCategoryDetail.name,		

												None,		

												{response.data['pk']})	

								get_response	=	self.client.get(url,	format='json')	

								assert	get_response.status_code	==	status.HTTP_200_OK	

								assert	get_response.data['name']	==	drone_category_name	

The	new	method	tests	whether	we	can	retrieve	a	single	category	with	an
HTTP	GET	request.	First,	the	code	creates	a	new	drone	category	and	then
makes	an	HTTP	GET	request	to	retrieve	the	previously	persisted	drone
category.	The	lines	that	call	assert	check	that	the	returned	status	code	is
HTTP	200	OK	and	that	the	value	of	the	name	key	in	the	response	body	is	equal
to	the	name	that	we	specified	in	the	HTTP	POST	request	that	created	the
drone	category.

Each	test	method	that	requires	a	specific	condition	in	the	database	must
execute	all	the	necessary	code	to	generate	the	required	data.	For	example,
in	order	to	update	the	name	for	an	existing	drone	category,	it	was
necessary	to	create	a	new	drone	category	before	making	the	HTTP	PATCH
request	to	update	it.	Pytest	and	the	Django	REST	framework	will	execute
each	test	method	without	data	from	the	previously	executed	test	methods
in	the	database,	that	is,	each	test	will	run	with	a	database	cleansed	of	data

from	the	previous	tests.

Discovering	and	running	unit
tests	with	pytest
Now,	go	to	the	restful01	folder	that	contains	the	manage.py	file,	with	the
virtual	environment	activated,	and	run	the	following	command:

pytest

The	pytest	command	and	the	Django	REST	framework	will	perform	the
following	actions:

1.	 Create	a	clean	test	database	name	test_drones.
2.	 Run	all	the	migrations	required	for	the	database.
3.	 Discover	the	tests	that	have	to	be	executed	based	on	the	settings

specified	in	the	pytest.ini	file.
4.	 Run	all	the	methods	whose	name	starts	with	the	test_	prefix	in	the

DroneCategoryTests	class	and	display	the	results.	We	declared	this
class	in	the	tests.py	file	and	it	matches	the	pattern	specified	for	the
python_files	setting	in	the	pytest.ini	file.

5.	 Drop	the	test	database	named	test_drones.

It	is	very	important	to	know	that	the	tests	won't	make
changes	to	the	database	we	have	been	using	when	working
with	our	RESTful	Web	Service.	Notice	that	the	test	database
name	is	test_drones	and	the	database	name	that	we	have	been
using	with	Django's	development	server	is	drones.

The	following	screenshot	shows	a	sample	output	generated	by	the	pytest

command:

The	output	indicated	that	the	test	runner	collected	and	executed	six	tests
and	all	of	them	passed.	However,	the	output	didn't	show	the	names	of	the
tests	that	passed.	Hence,	we	will	run	pytest	again	with	the	-v	option	to
increase	verbosity.	Run	the	following	command:

pytest	-v

The	following	screenshot	shows	a	sample	output	generated	by	the	pytest
command	with	the	increased	verbosity:

We	enabled	verbose	mode,	and	therefore,	the	new	output	displayed	the	full
test	names.	Pytest	displays	the	following	information	for	each	discovered
and	executed	test:	the	Python	file	that	defines	it,	the	class	name,	and	the
method,	such	as	the	following	line:

drones/tests.py::DroneCategoryTests::test_filter_drone_category_by_name	PASSED	[16%]

The	line	indicates	that	the	test_filter_drone_category_by_name	test	method
declared	in	the	DroneCategoryTests	class,	within	the	drones/tests.py	module	has
been	executed,	passed,	and	its	execution	represents	16%	of	the	discovered
tests.

The	verbose	mode	makes	it	possible	to	know	the	specific	tests
that	have	been	executed.

Some	of	the	test	methods	include	calls	to	the	print	function.	By	default,
pytest	captures	both	the	stdout	and	stderr	and	only	shows	the	captured
content	for	the	tests	that	fail.	Sometimes,	it	is	useful	for	us	to	see	the
results	of	calls	to	the	print	function	while	pytest	runs	the	tests.	We	will	run
pytest	again	with	-s	option	combined	with	the	-v	option	to	disable	capturing
and	increase	verbosity.	Notice	that	the	-s	option	is	a	shortcut	that	is
equivalent	to	the	-capture=no	option.	Run	the	following	command:

pytest	-vs

The	following	screenshot	shows	a	sample	output	for	the	previous
command:

The	new	output	displayed	the	results	of	each	call	to	the	print	function.	In
addition,	we	will	notice	that	there	are	two	messages	displayed	that	are
printed	by	Django,	one	line	before	the	first	test	runs	and	another	line	after
the	last	test	finishes	its	execution:

Creating	test	database	for	alias	'default'...Destroying	test	database	for	alias	'default'...

These	messages	indicate	that	Django	created	the	test	database	before
running	the	first	test	and	drops	the	database	after	all	the	tests	have	been
executed.

The	test_filter_drone_category_by_name	test	method	declared	in	the
DroneCategoryTests	class	has	the	following	two	calls	to	the	print	function:

url	=	'{0}?{1}'.format(

				reverse(views.DroneCategoryList.name),	

				urlencode(filter_by_name))	

print(url)	

response	=	self.client.get(url,	format='json')	

print(response)	

The	previous	output	shows	the	results	of	the	two	calls	to	the	print	function.
First,	the	tests	output	display	the	value	of	the	url	variable	with	the
composed	URL	and	then	the	output	shows	the	response	of	the	call	to
self.client.get	as	a	string:

drones/tests.py::DroneCategoryTests::test_filter_drone_category_by_name	Creating	test	database	for	alias	'default'...

In	this	case,	the	output	is	clear.	However,	as	you	might	notice	in	the
previous	screenshot,	the	output	generated	by	the	other	print	statements	is
shown	at	the	right-hand	side	of	the	test	method	name	that	was	executed
and	it	is	not	so	clear.	Hence,	whenever	we	want	to	provide	helpful	output
for	tests,	it	is	always	a	good	idea	to	make	sure	we	start	with	a	new	line
('n')	and	provide	some	context	for	the	output	we	are	displaying.

Now,	we	will	replace	the	line	that	calls	the	print	function	in	the
test_post_and_get_drone_category	method	for	the	DroneCategoryTests	class	in	the
restful01/drones/tests.py	file.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_10_02	folder	in	the	restful01/drones/tests.py	file.	The
replaced	line	is	highlighted:

				def	test_post_and_get_drone_category(self):	

								"""	

								Ensure	we	can	create	a	new	DroneCategory	and	then	retrieve	it	

								"""	

								new_drone_category_name	=	'Hexacopter'	

								response	=	self.post_drone_category(new_drone_category_name)	

								print("nPK	{0}n".format(DroneCategory.objects.get().pk))	

								assert	response.status_code	==	status.HTTP_201_CREATED	

								assert	DroneCategory.objects.count()	==	1	

								assert	DroneCategory.objects.get().name	==	

								new_drone_category_name	

Run	the	following	command	to	execute	pytest	again	with	the	-s	and	-v
options	combined:

pytest	-vs

The	following	screenshot	shows	a	sample	output	for	the	previous
command:

The	edits	made	in	the	call	to	the	print	statement	that	added	a	new	line
before	and	after	the	output	made	it	easier	to	read	the	output.	The	generated
output	is	highlighted	in	the	previous	screenshot.	It	is	very	important	to
take	this	formatting	into	account	when	working	with	pytest.

Writing	new	unit	tests	to
improve	the	tests'	code
coverage
Our	first	round	of	unit	tests	was	related	to	the	drone	category	class-based
views:	DroneCategoryList	and	DroneCategoryDetail.	Now,	we	will	write	a	second
round	of	unit	tests	related	to	the	pilot	class-based	views:	PilotList	and
PilotDetail.	The	new	tests	will	be	a	bit	more	complex	because	we	will	have
to	work	with	authenticated	requests.

In	Chapter	8,	Securing	the	API	with	Authentication	and	Permissions,	we
configured	authentication	and	permission	policies	for	the	class-based
views	that	work	with	the	Pilot	model.	We	overrode	the	values	for	the
authentication_classes	and	permission_classes	class	attributes	for	the	PilotDetail
and	PilotList	classes.	In	order	to	create,	read,	update,	or	delete	pilots,	we
have	to	provide	an	authentication	token.	Hence,	we	will	write	tests	to
make	sure	that	an	unauthenticated	request	cannot	perform	operations
related	to	pilots.	In	addition,	we	want	to	make	sure	that	an	authenticated
request	with	a	token	can	create	a	new	pilot	and	then	retrieve	it.

Open	the	restful01/drones/tests.py	file	and	add	the	following	lines	after	the
last	line	that	declares	the	imports,	before	the	declaration	of	the
DroneCategoryTests	class:

from	drones.models	import	Pilot	

from	rest_framework.authtoken.models	import	Token	

from	django.contrib.auth.models	import	User	

Add	the	following	code	to	the	existing	restful01/drones/tests.py	file	to	create
the	new	PilotTests	class.	The	code	file	for	the	sample	is	included	in	the
hillar_django_restful_10_02	folder	in	the	restful01/drones/tests.py	file:

class	PilotTests(APITestCase):				

				def	post_pilot(self,	name,	gender,	races_count):	

								url	=	reverse(views.PilotList.name)	

								print(url)	

								data	=	{	

												'name':	name,	

												'gender':	gender,	

												'races_count':	races_count,	

												}	

								response	=	self.client.post(url,	data,	format='json')	

								return	response	

	

				def	create_user_and_set_token_credentials(self):	

								user	=	User.objects.create_user(

												'user01',	'user01@example.com',	'user01P4ssw0rD')	

								token	=	Token.objects.create(user=user)	

								self.client.credentials(

												HTTP_AUTHORIZATION='Token	{0}'.format(token.key))	

	

				def	test_post_and_get_pilot(self):	

								"""	

								Ensure	we	can	create	a	new	Pilot	and	then	retrieve	it	

								Ensure	we	cannot	retrieve	the	persisted	pilot	without	a	token	

								"""	

								self.create_user_and_set_token_credentials()	

								new_pilot_name	=	'Gaston'	

								new_pilot_gender	=	Pilot.MALE	

								new_pilot_races_count	=	5	

								response	=	self.post_pilot(

												new_pilot_name,	

												new_pilot_gender,	

												new_pilot_races_count)	

								print("nPK	{0}n".format(Pilot.objects.get().pk))	

								assert	response.status_code	==	status.HTTP_201_CREATED	

								assert	Pilot.objects.count()	==	1	

								saved_pilot	=	Pilot.objects.get()	

								assert	saved_pilot.name	==	new_pilot_name	

								assert	saved_pilot.gender	==	new_pilot_gender	

								assert	saved_pilot.races_count	==	new_pilot_races_count	

								url	=	reverse(

												views.PilotDetail.name,		

												None,	

												{saved_pilot.pk})	

								authorized_get_response	=	self.client.get(url,	format='json')	

								assert	authorized_get_response.status_code	==	

								status.HTTP_200_OK	

								assert	authorized_get_response.data['name']	==	new_pilot_name	

								#	Clean	up	credentials	

								self.client.credentials()	

								unauthorized_get_response	=	self.client.get(url,	format='json')	

								assert	unauthorized_get_response.status_code	==	

								status.HTTP_401_UNAUTHORIZED	

The	PilotTests	class	is	a	subclass	of	the	rest_framework.test.APITestCase
superclass	and	declares	the	post_pilot	method	that	receives	the	desired	name
and	gender	for	the	new	pilot	as	arguments.

This	method	builds	the	URL	and	the	data	dictionary	to	compose	and	send
an	HTTP	POST	request	to	the	view	associated	with	the	views.PilotList.name
name	(pilot-list)	and	returns	the	response	generated	by	this	request.

Many	test	methods	will	call	the	post_pilot	method	to	create	a	new	pilot	and
then	compose	and	send	other	HTTP	requests	to	the	RESTful	Web	Service.
Notice	that	the	post_pilot	method	doesn't	configure	authentication
credentials,	and	therefore,	we	will	be	able	to	call	this	method	for
unauthenticated	or	authenticated	users.	We	already	know	that
unauthenticated	users	shouldn't	be	able	to	post	a	pilot,	and	a	test	will	call
this	method	without	a	token	and	make	sure	no	pilot	is	persisted	in	the
database.

The	create_user_and_set_token_credentials	method	executes	the	following
actions:

Creates	a	Django	user	with	a	call	to	the	User.objects.create_user
method.

Creates	a	token	for	the	previously	created	Django	user	with	a	call
to	the	Token.objects.create	method.

Includes	the	token	generated	for	the	Django	user	as	the	value	for
the	Authorization	HTTP	header	key	with	the	'Token	'	string	as	a
prefix	for	the	token.	The	last	line	calls	the	self.client.credentials
method	to	set	the	generated	HTTP	header	as	the	value	for	the
HTTP_AUTHORIZATION	named	argument.

Remember	that	the	self.client	attribute	allows	us	to	access
the	APIClient	instance.

Whenever	a	test	wants	to	perform	an	HTTP	request	with	a	token,	the	code
will	call	the	create_user_and_set_token_credentials	method.	In	order	to	clean	up
the	credentials	configured	for	the	APIClient	instance	saved	in	self.client,	it
is	necessary	to	call	the	self.client.credentials()	method	without	arguments.

The	test_post_and_get_pilot	method	tests	the	following	path:

1.	 We	can	create	a	new	Pilot	with	an	HTTP	POST	request	that	has	an
appropriate	authentication	token

2.	 We	can	retrieve	the	recently	created	Pilot	with	an	HTTP	GET
request	that	has	an	appropriate	authentication	token

3.	 We	cannot	retrieve	the	recently	created	Pilot	with	an
unauthenticated	HTTP	GET	request

The	code	calls	the	create_user_and_set_token_credentials	method	and	then	calls
the	post_pilot	method.	Then,	the	code	calls	assert	many	times	to	check	for
the	following	expected	results:

1.	 The	status_code	attribute	for	the	response	is	equal	to	HTTP	201
Created	(status.HTTP_201_CREATED)

2.	 The	total	number	of	Pilot	objects	retrieved	from	the	database	is	1

3.	 The	value	of	the	name,	gender,	and	races_count	attributes	for	the
retrieved	Pilot	object	is	equal	to	the	values	passed	as	parameters	to
the	post_pilot	method

Then,	the	code	calls	the	self.client.get	with	the	built	URL	to	retrieve	the
previously	persisted	pilot.	This	request	will	use	the	same	credentials

applied	to	the	HTTP	POST	request,	and	therefore,	the	new	request	is
authenticated	by	a	valid	token.	The	method	verifies	the	data	included	in
the	response	JSON	body	by	inspecting	the	data	attribute	for	the	response.
The	code	calls	assert	twice	to	check	for	the	following	expected	results:

1.	 The	status_code	attribute	for	the	response	is	equal	to	HTTP	201
Created	(status.HTTP_201_CREATED)

2.	 The	value	of	the	name	key	in	the	response	body	is	equal	to	the	name
that	we	specified	in	the	HTTP	POST	request

Then,	the	code	calls	the	self.client.credentials	method	without	arguments	to
clean	up	the	credentials	and	calls	the	self.client.get	method	again	with	the
same	built	URL,	this	time,	without	a	token.	Finally,	the	code	calls	assert	to
check	that	the	status_code	attribute	for	the	response	is	equal	to	HTTP	401
Unauthorized	(status.HTTP_401_UNAUTHORIZED).

The	previously	coded	test	makes	sure	that	we	can	create	a	new	pilot	with
the	RESTful	Web	Service	and	the	appropriate	authentication	requirement
we	configured,	the	pilot	is	persisted	in	the	database,	and	the	serializer	does
its	job	as	expected.	In	addition,	unauthenticated	users	aren't	able	to	access
a	pilot.

Add	the	test_try_to_post_pilot_without_token	method	to	the	recently	created
DroneCategoryTests	class	in	the	restful01/drones/tests.py	file.	The	code	file	for
the	sample	is	included	in	the	hillar_django_restful_10_02	folder	in	the
restful01/drones/tests.py	file:

				def	test_try_to_post_pilot_without_token(self):	

								"""	

								Ensure	we	cannot	create	a	pilot	without	a	token	

								"""	

								new_pilot_name	=	'Unauthorized	Pilot'	

								new_pilot_gender	=	Pilot.MALE	

								new_pilot_races_count	=	5	

								response	=	self.post_pilot(

												new_pilot_name,	

												new_pilot_gender,	

												new_pilot_races_count)	

								print(response)	

								print(Pilot.objects.count())	

								assert	response.status_code	==	status.HTTP_401_UNAUTHORIZED	

								assert	Pilot.objects.count()	==	0

The	new	method	tests	that	the	combination	of	permission	and
authentication	classes	configured	for	the	PilotList	class	doesn't	make	it
possible	for	an	unauthenticated	HTTP	POST	request	to	create	a	pilot.	The
code	calls	the	post_pilot	method	without	configuring	any	credentials,	and
therefore	the	request	runs	without	authentication.	Then,	the	code	calls
assert	twice	to	check	for	the	following	expected	results:

1.	 The	status_code	attribute	for	the	response	is	equal	to	HTTP	401
Unauthorized	(status.HTTP_401_UNAUTHORIZED)

2.	 The	total	number	of	Pilot	objects	retrieved	from	the	database	is	0
because	the	received	data	to	create	a	new	pilot	wasn't	processed

We	have	increased	the	scenarios	covered	by	our	tests.	We	should	write
more	tests	related	to	pilots.	However,	with	all	the	examples	provided,	you
will	have	the	necessary	information	to	write	all	the	tests	required	to	make
sure	that	each	new	version	of	a	RESTful	Web	Service	developed	with
Django	and	the	Django	REST	framework	works	as	expected.

Running	unit	tests	again	with
pytest
Now,	go	to	the	restful01	folder	that	contains	the	manage.py	file,	with	the
virtual	environment	activated,	and	run	the	following	command	to	execute
pytest	again	with	the	-v	option	to	increase	verbosity:

pytest	-v

In	this	case,	pytest	will	run	all	the	methods	whose	name	starts	with	the
test_	prefix	in	both	the	DroneCategoryTests	and	PilotTests	classes	and	display
the	results.

The	following	screenshot	shows	a	sample	output	generated	for	the	new
execution	of	the	pytest	command	with	the	increased	verbosity:

We	enabled	verbose	mode	again,	and	therefore,	the	output	displayed	the
full	test	names	that	the	test_post_and_get_pilot	and
test_try_to_post_pilot_without_token	test	methods	passed.

We	should	continue	writing	tests	related	to	pilots,	drone	categories,
drones,	and	competitions.	It	is	extremely	important	that	we	cover	all	the
scenarios	for	our	RESTful	Web	Service.	Automated	tests	will	make	it
possible	for	us	to	make	sure	that	each	new	version	of	our	RESTful	Web
Service	will	work	as	expected	after	it	is	deployed	to	production.

We	built	RESTful	Web	Services	with	Django,	the	Django	REST
framework,	and	Python	3.6.	We	learned	to	design	a	RESTful	Web	Service
from	scratch,	starting	with	the	requirements,	and	to	run	some	of	the
necessary	tests	to	make	sure	our	web	service	runs	as	expected.	We	learned
to	work	with	different	command-line	and	GUI	tools	to	make	our
development	tests	easy.	We	understood	many	features	included	in	the
Django	REST	framework	and	how	to	configure	them.

Now,	we	are	ready	to	create	RESTful	Web	Services	with	Django	and	the
Django	REST	framework.	We	will	definitely	need	to	dive	deep	into
additional	features,	packages,	and	configurations.	We	definitely	have	a
great	baseline	to	develop	our	next	RESTful	Web	Service	with	the	most
versatile	programming	language:	Python.

Test	your	knowledge
Let's	see	whether	you	can	answer	the	following	questions	correctly.

1.	 In	a	subclass	of	APITestCase,	self.client	is:

1.	 The	APITestCase	instance	that	allows	us	to	easily	compose
and	send	HTTP	requests	for	testing

2.	 The	APITestClient	instance	that	allows	us	to	easily	compose
and	send	HTTP	requests	for	testing

3.	 The	APIClient	instance	that	allows	us	to	easily	compose	and
send	HTTP	requests	for	testing

2.	 Which	of	the	following	lines	clean	up	the	credentials	of	a	method
within	a	subclass	of	APITestCase?

1.	 self.client.credentials()
2.	 self.client.clean_credentials()
3.	 self.client.credentials	=	{}

3.	 Which	of	the	following	methods	for	self.client	in	a	method	within
a	subclass	of	APITestCase	allows	us	to	make	an	HTTP	POST
request?

1.	 http_post
2.	 make_http_post_request

3.	 post

4.	 Which	of	the	following	methods	for	self.client	in	a	method	within
a	subclass	of	APITestCase	allows	us	to	make	an	HTTP	GET	request?

1.	 http_get
2.	 make_http_get_request
3.	 get

5.	 Which	of	the	following	methods	for	self.client	in	a	method	within
a	subclass	of	APITestCase	allows	us	to	make	an	HTTP	PATCH
request?

1.	 http_patch
2.	 make_http_patch_request
3.	 patch

	

The	rights	answers	are	included	in	the	Appendix,	Solutions.

https://cdp.packtpub.com/django_restful_web_services__/wp-admin/post.php?post=44&action=edit#post_454

Summary
In	this	chapter,	we	learned	to	write	unit	tests	for	our	RESTful	Web
Service.	We	installed	the	necessary	packages	and	made	the	appropriate
configurations	to	work	with	the	modern	and	popular	pytest	unit	test
framework.	Then,	we	wrote	our	first	round	of	unit	tests	for	the	RESTful
Web	Service	related	to	different	scenarios	with	drone	categories.

We	worked	with	the	different	options	for	the	pytest	command	to	discover
and	run	unit	tests	in	the	default	mode,	the	increase	verbosity	mode,	and	the
disable	capture	mode.	We	understood	how	to	combine	pytest	with	the
testing	classed	provided	by	the	Django	REST	framework.

Finally,	we	wrote	additional	unit	tests	for	the	RESTful	Web	Service	related
to	different	scenarios	with	pilots	and	the	token	authentication	requirements
for	specific	requests.	We	are	able	to	continue	adding	tests	for	our	RESTful
Web	Service	with	all	the	things	we	have	learned.

Now,	it	is	your	turn.	You	can	start	developing	RESTful	Web	Services	with
Django,		Django	REST	framework,	and	Python	3.6.

Solutions

Chapter	1:	Installing	the
Required	Software	and	Tools
Questions Answers

Q1 2

Q2 3

Q3 3

Q4 1

Q5 1

Chapter	2:	Working	with
Models,	Migrations,
Serialization,	and
Deserialization
Questions Answers

Q1 3

Q2 2

Q3 2

Q4 1

Q5 3

Chapter	3:	Creating	API	Views
Questions Answers

Q1 2

Q2 2

Q3 1

Q4 3

Q5 3

Chapter	4:	Using	Generalized
Behavior	from	the	APIView
Class
Questions Answers

Q1 2

Q2 2

Q3 1

Q4 3

Q5 3

Chapter	5:	Understanding	and
Customizing	the	Browsable
API	Feature
Questions Answers

Q1 3

Q2 1

Q3 2

Q4 1

Q5 2

Chapter	6:	Working	with
Advanced	Relationships	and
Serialization
Questions Answers

Q1 1

Q2 2

Q3 3

Q4 2

Q5 2

Chapter	7:	Using	Constraints,
Filtering,	Searching,	Ordering,
and	Pagination
Questions Answers

Q1 3

Q2 2

Q3 1

Q4 3

Q5 2

Chapter	8:	Securing	the	API
with	Authentication	and
Permissions
Questions Answers

Q1 1

Q2 2

Q3 2

Q4 3

Q5 1

Chapter	9:	Applying	Throttling
Rules	and	Versioning
Management
Questions Answers

Q1 1

Q2 1

Q3 2

Q4 3

Q5 3

Chapter	10:	Automating	Tests
Questions Answers

Q1 3

Q2 1

Q3 3

Q4 3

Q5 3

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by
Packt:

Flask:	Building	Python	Web	Services
Gareth	Dwyer,	Shalabh	Aggarwal,	Jack	Stouffer

ISBN:	978-1-78728-822-5

Build	three	web	applications	from	the	ground	up	using	the
powerful	Python	micro	framework,	Flask.

Extend	your	applications	to	build	advanced	functionality,	such	as
a	user	account

control	system	using	Flask-Login

Learn	about	web	application	security	and	defend	against	common
attacks,	such	as	SQL	injection	and	XSS

Integrate	with	technologies	like	Redis,	Sentry,	MongoDB	and	so
on

Build	applications	with	integrations	to	most	of	the	login

https://www.packtpub.com/web-development/flask-building-python-web-services

mechanisms	availableDon't	just	stop	at	development.	Learn	about
deployment	and	post-deployment

Use	SQLAlchemy	to	programmatically	query	a	database

Develop	a	custom	Flask	extension

Building	RESTful	Python	Web	Services
Gastón	C.	Hillar

ISBN:	978-1-78862-015-4

Develop	RESTful	APIs	from	scratch	with	Python	with	and
without	data	sources

Add	authentication	and	permissions	to	a	RESTful	API	built	in
Django	framework

Map	URL	patterns	to	request	handlers	and	check	how	the	API
works

https://www.packtpub.com/application-development/building-restful-python-web-services

Leave	a	review	-	let	other
readers	know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on
the	site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,
please	leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital
so	that	other	potential	readers	can	see	and	use	your	unbiased	opinion	to
make	purchasing	decisions,	we	can	understand	what	our	customers	think
about	our	products,	and	our	authors	can	see	your	feedback	on	the	title	that
they	have	worked	with	Packt	to	create.	It	will	only	take	a	few	minutes	of
your	time,	but	is	valuable	to	other	potential	customers,	our	authors,	and
Packt.	Thank	you!

	Django RESTful Web Services
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Reviews
	Installing the Required Software and Tools
	Creating a virtual environment with Python 3.x and PEP 405
	Understanding the directory structure for a virtual environment
	Activating the virtual environment
	Deactivating the virtual environment
	Installing Django and Django REST frameworks in an isolated environment
	Creating an app with Django
	Understanding Django folders, files, and configurations
	Installing tools
	Installing Curl
	Installing HTTPie
	Installing the Postman REST client
	Installing Stoplight
	Installing iCurlHTTP
	Test your knowledge
	Summary
	Working with Models, Migrations, Serialization, and Deserialization
	Defining the requirements for our first RESTful Web Service
	Creating our first model
	Running our initial migration
	Understanding migrations
	Analyzing the database
	Understanding the table generated by Django
	Controlling, serialization, and deserialization
	Working with the Django shell and diving deeply into serialization and deserialization
	Test your knowledge
	Summary
	Creating API Views
	Creating Django views combined with serializer classes
	Understanding CRUD operations with Django views and the request methods
	Routing URLs to Django views and functions
	Launching Django's development server
	Making HTTP GET requests that target a collection of instances
	Making HTTP GET requests that target a single instance
	Making HTTP POST requests
	Making HTTP PUT requests
	Making HTTP DELETE requests
	Making HTTP GET requests with Postman
	Making HTTP POST requests with Postman
	Test your knowledge
	Summary
	Using Generalized Behavior from the APIView Class
	Taking advantage of model serializers
	Understanding accepted and returned content types
	Making unsupported HTTP OPTIONS requests with command-line tools
	Understanding decorators that work as wrappers
	Using decorators to enable different parsers and renderers
	Taking advantage of content negotiation classes
	Making supported HTTP OPTIONS requests with command-line tools
	Working with different content types
	Sending HTTP requests with unsupported HTTP verbs
	Test your knowledge
	Summary
	Understanding and Customizing the Browsable API Feature
	Understanding the possibility of rendering text/HTML content
	Using a web browser to work with our web service
	Making HTTP GET requests with the browsable API
	Making HTTP POST requests with the browsable API
	Making HTTP PUT requests with the browsable API
	Making HTTP OPTIONS requests with the browsable API
	Making HTTP DELETE requests with the browsable API
	Test your knowledge
	Summary
	Working with Advanced Relationships and Serialization
	Defining the requirements for a complex RESTful Web Service
	Creating a new app with Django
	Configuring a new web service
	Defining many-to-one relationships with models.ForeignKey
	Installing PostgreSQL
	Running migrations that generate relationships
	Analyzing the database
	Configuring serialization and deserialization with relationships
	Defining hyperlinks with serializers.HyperlinkedModelSerializer
	Working with class-based views
	Taking advantage of generic classes and viewsets
	Generalizing and mixing behavior
	Working with routing and endpoints
	Making requests that interact with resources that have relationships
	Test your knowledge
	Summary
	Using Constraints, Filtering, Searching, Ordering, and Pagination
	Browsing the API with resources and relationships
	Defining unique constraints
	Working with unique constraints
	Understanding pagination
	Configuring pagination classes
	Making requests that paginate results
	Working with customized pagination classes
	Making requests that use customized paginated results
	Configuring filter backend classes
	Adding filtering, searching, and ordering
	Working with different types of Django filters
	Making requests that filter results
	Composing requests that filter and order results
	Making requests that perform starts with searches
	Using the browsable API to test pagination, filtering, searching, and ordering
	Test your knowledge
	Summary
	Securing the API with Authentication and Permissions
	Understanding authentication and permissions in Django, the Django REST framework, and RESTful Web Services
	Learning about the authentication classes
	Including security and permissions-related data to models
	Working with object-level permissions via customized permission classes
	Saving information about users that make requests
	Setting permission policies
	Creating the superuser for Django
	Creating a user for Django
	Making authenticated requests
	Making authenticated HTTP PATCH requests with Postman
	Browsing the secured API with the required authentication
	Working with token-based authentication
	Generating and using tokens
	Test your knowledge
	Summary
	Applying Throttling Rules and Versioning Management
	Understanding the importance of throttling rules
	Learning the purpose of the different throttling classes in the Django REST framework
	Configuring throttling policies in the Django REST framework
	Running tests to check that throttling policies work as expected
	Understanding versioning classes
	Configuring a versioning scheme
	Running tests to check that versioning works as expected
	Test your knowledge
	Summary
	Automating Tests
	Getting ready for unit testing with pytest
	Writing unit tests for a RESTful Web Service
	Discovering and running unit tests with pytest
	Writing new unit tests to improve the tests' code coverage
	Running unit tests again with pytest
	Test your knowledge
	Summary
	Solutions
	Chapter 1: Installing the Required Software and Tools
	Chapter 2: Working with Models, Migrations, Serialization, and Deserialization
	Chapter 3: Creating API Views
	Chapter 4: Using Generalized Behavior from the APIView Class
	Chapter 5: Understanding and Customizing the Browsable API Feature
	Chapter 6: Working with Advanced Relationships and Serialization
	Chapter 7: Using Constraints, Filtering, Searching, Ordering, and Pagination
	Chapter 8: Securing the API with Authentication and Permissions
	Chapter 9: Applying Throttling Rules and Versioning Management
	Chapter 10: Automating Tests
	Other Books You May Enjoy
	Leave a review - let other readers know what you think

