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Preface

Nonlinearities are ubiquitous and often incur twofold influence, which could be a
source of troubles bringing uncertainty, inaccuracy, instability or even disaster in
practice, and might also be a superior and beneficial factor for system performance
improvement, energy cost reduction, safety maintenance or health monitoring, etc.
Therefore, analysis and design of nonlinear systems are important and inevitable
issues in both theoretical study and practical applications.

Several methods are available in the literature to this aim including perturbation
method, averaging method and harmonic balance method, etc. Nonlinear analysis
can also be conducted in the frequency domain based on the Volterra series theory.
The latter is a very useful tool with some special and beneficial features to tackle
nonlinear problems. It is known that there is a considerably large class of nonlinear
systems which allow a Volterra series expansion. Based on the Volterra series, the
generalized frequency response function (GFRF) was defined as a multi-variate
Fourier transform of the Volterra kernels in the 1950s. This presents a fundamental
basis and therefore initiates a totally new theory or area for nonlinear analysis and
design in the frequency domain.

The frequency-domain nonlinear analysis theory and methods, based on the
Volterra series approach, are observed with a faster development starting from
the late 1980s or the early 1990s. Recursive algorithms for computation of the
GFRFs for a given parametric nonlinear autoregressive with exogenous input
(NARX) model or a given nonlinear differential equation (NDE) model are devel-
oped, and output frequency response of nonlinear systems and it properties are
investigated accordingly. The area is becoming even more active in recent years.
Much more efforts and progress can be seen in the development of application-
oriented theory and methods based on the GFRF concept. These include the
concepts of nonlinear output spectrum (or output frequency response function)
and nonlinear output frequency response function, parametric characteristic analy-
sis, energy transfer properties and various applications in vibration control by
exploring nonlinear benefits, fault detection, modelling and identification, data
analysis and interpretation, etc.
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viii Preface

This book is a systematic summary of some new advances in this area mainly
done by the authors in the past years starting from when the first author pursued his
Ph.D. degree in the University of Sheffield in 2005. The main results are tried to be
formulated uniformly with a parametric characteristic approach, which provides a
convenient and novel insight into the nonlinear influence on system output response
in terms of characteristic parameters and thus can facilitate nonlinear analysis and
design in the frequency domain. The book starts with a brief introduction to the
background of nonlinear analysis in the frequency domain, followed by the recur-
sive algorithms for computation of GFRFs for different parametric models, and
nonlinear output frequency properties. Thereafter the parametric characteristic
analysis method is introduced, which leads to new understanding and formulation
of the GFRFs, new concepts about nonlinear output spectrum and new methods for
nonlinear analysis and design, etc. Based on the parametric characteristic approach,
nonlinear influence in the frequency domain can be investigated with a novel
insight, i.e. alternating series, which is followed by some application results in
vibration control. Magnitude bounds of frequency response functions of nonlinear
systems can also be studied with a parametric characteristic approach, which results
in novel parametric convergence criteria for any given parametric nonlinear model
whose input—output relationship allows a convergent Volterra series expansion.
Although very important and fundamental, these results are summarized at the end
of this book.

This book targets those readers (especially Ph.D. students and research staff)
who are working in the areas related to nonlinear analysis and design, nonlinear
signal processing, nonlinear system identification, nonlinear vibration control and
so on. It particularly serves as a good reference for those who are studying
frequency-domain methods for nonlinear systems.

Hong Kong, P.R. China Xingjian Jing
June 2014



Acknowledgements

The first author would like to give his thanks to the Department of Mechanical
Engineering, the Hong Kong Polytechnic University, for support in research and to
his Ph.D. students for their dedicated efforts in the research group.

The authors are also indebted to all current and/or previous colleagues, most
importantly to those in the University of Sheffield (UK) for extensive discussions,
invaluable suggestions and generous supports.

The authors wish to acknowledge the support from the Hong Kong GRF project
RGC Ref No. 15206514, the China NSFC project No. 61374041 and the UK
EPSRC project EP/FO17715/1.

Finally, the authors would like to give the greatest gratitude with heart and soul
to their families, respectively, for everlasting and abundant understanding and
support.

XJ Jing
ZQ Lang

ix






Contents

1 Imtroduction........... ... . . . . ... .. . . 1
1.1  Frequency Domain Methods for Nonlinear Systems. . . ... ... 1
1.2 Frequency Domain Analysis Based on Volterra Series
Expansion. . .......... .. 3
1.3 The Advantages of Volterra Series Based Frequency Domain
Methods, and Problems to Be Studied . ... ............... 5
2 The Generalized Frequency Response Functions and Output
Spectrum of Nonlinear Systems . . ... ...................... 9
2.1 Volterra Series Expansion and Frequency Response
Functions. . . ... .. 9
2.1.1 The Probing Method . . ... .......... ... ... ... 10
2.2 The GFRFs for NARX and NDE Models. . ............... 13
2.2.1  Computation of the GFRFs for NARX Models. . . . . . 14
2.2.2  Computation of the GFRFs for NDE Models. . ... ... 15
2.3  The GFRFs for a Single Input Double Output Nonlinear
SYStEIM . o ot e 17
2.4  The Frequency Response Functions for Block-Oriented Nonlinear
SYSIEMS .« v ottt e 23
24.1  Frequency Response Functions of Wiener Systems. . . 23
2.4.2  The GFRFs of Wiener-Hammerstein or Hammerstein
Systems. .. ... 25
2.4.3  Extension to a More General Polynomial Case . . . . . . 27
2.5 ConCluSionS. . . ..ottt e 29
2.6 Proof of Proposition 2.1.......... ... ... .. ... ... . ... 29
3 Output Frequency Characteristics of Nonlinear Systems. . . ... .. 31
3.1 Introduction.............. .. ... ... 31
3.2 Output Frequencies of Nonlinear Systems. . .. ............ 32
3.3  Fundamental Properties of Nonlinear Output Frequencies. . . . . 33
3.4  Nonlinear Effect in Each Frequency Generation Period. . . . ... 38

3.4.1 Nonlinear Effect of Different Input Nonlinearities. . . . 41



Xii

Contents
35 Conclusion. . .........o.i i 49
3.6 Proofs. .. ... 49
Parametric Characteristic Analysis. ........................ 53
4.1  Separable Functions. . ................. .. .. ... .. ... 53
4.2  Coefficient Extractor. . .. ........ ... ... . .. ... 55
4.3  Case Study: Parametric Characteristics of Output
Frequencies. . ... ... ... ... ... 58
44 Conclusions. .. .......iii 62
45 Proofof Property 4.1.. ... ... ... . ... 63
The Parametric Characteristics of the GFRFs and the Parametric
Characteristics Based Analysis. . .. ........................ 65
5.1 The GFRFs and Notations. . .. ........................ 65
5.2 Parametric Characteristics of the GFRFs. ... ............. 67
5.3  Parametric Characteristics Based Analysis. ............... 74
5.3.1 Nonlinear Effect on the GFRFs from Different Nonlinear
Parameters. . .......... ... .. 74
54 Conclusions. . ... ...t 79
5.5 Proofs. ... ... 81
The Parametric Characteristics of Nonlinear Output Spectrum and
Applications. . .. ... ... ... ... 83
6.1 Introduction............. ...ttt 83
6.2  Parametric Characteristics of Nonlinear Output Spectrum. . . . . 83
6.2.1  Parametric Characteristics with Respect to Some Specific
Parameters in Cp, ;. .. ... .o 87
622 AnExample.......... ... ... . .. i 90
6.3  Parametric Characteristic Analysis of Nonlinear Effects on
System Output Frequencies. . .. ....................... 93
6.4  Parametric Characteristics of a Single Input Double Output
Nonlinear System . . .. ...ttt 99
6.4.1  Parametric Characteristic Analysis for
Hy(jor, - jog) . oo 100
6.4.2  Parametric Characteristic Analysis for
HY (o, - joy) . oo 102
6.5 ConClusionS. . ..... ..ottt 108
6.6 Proofs....... ... ... 109
The Parametric Characteristics Based Output Spectrum Analysis. .. 113
7.1 Introduction. . ............o. it 113
7.2 The Parametric Characteristics Based Output Spectrum
AnalysiS. . .. 113
7.2.1 A General Frequency Domain Method . . . .. ....... 114

7.2.2  Determination of Output Spectrum Based on Its
Parametric Characteristics . . . .. ................ 117



Contents Xiii

10

7.3 Simulations. . ... ... ... e 121
7.3.1  Determination of the Parametric Characteristics

of OFRF ... ... ... . . . . . . . . 123

7.3.2  Determination of ®(jw) for the OFRF............. 123

7.4  Conclusions and Discussions. . . ....................... 130

Determination of Nonlinear Output Spectrum Based on Its

Parametric Characteristics: Some Theoretical Issues. . ......... 133
8.1 Introduction. .............. ...t 133
82 TheProblem. ....... ... .. i 134
8.3  Solution Existence Theorem. ... ...................... 137
84 Simulations. .......... ... . 143
8.5 ConcClusions. .. ..... ... 147
8.6 Proofs. ...... ... . ... 148
Nonlinear Characteristic Output Spectrum. . . .. ............. 153
9.1  Introduction. .. ........ ..ot 153
9.2 Nonlinear Characteristic Output Spectrum (nCOS) and the
Problem........ .. .. .. . . . . 154
9.3  Accurate Determination of the nCOS Function. . ........... 156
9.3.1 Computation of the nth-Order Output Spectrum. . . . .. 156
9.3.2  Determination of the nth-Order nCOS Function. . . ... 159
9.4 Example Studies. . ......... ... . 161
9.4.1 Identification of a Polynomial Function. . .......... 161
9.4.2  Analysis of Nonlinear Suspension Systems. ... ... .. 163
9.5 ConclusionsS. . ... ....... . 174
9.6  Proofs. ...... ... .. 174
Using Nonlinearity for Output Vibration Suppression: An
Application Study . . . . ........ .. . 179
10.1 Introduction. ... ......... ... ... 179
10.2 Problem Formulation. ............. ... ... ... ...... 180
10.3 Fundamental Results for the Analysis and Design of the Nonlinear
Feedback Control . . . ... ... ... i 183
10.3.1 Output Frequency Response Function. . . .......... 183
10.3.2 The Structure of the Nonlinear Feedback Controller. .. 188
10.3.3  Stability of the Closed-Loop System. ............. 188
10.3.4 A Numerical Method for the Nonlinear Feedback
Controller Design. .. ........... ... 190
10.4 Simulation Study. . ........ ... ... . . . 192
10.4.1 Determination of the Structure of the Nonlinear
Feedback Controller. . ........................ 192
10.4.2 Derivation of the Stability Region for the
Parameter az. .. ... ... ... .. 194
10.4.3 Derivation of the OFRF and Determination of the
Desired Value of the Nonlinear Parameter as . . ... ... 195

10.4.4 SimulationResults. .............. .. .. ........ 196



Xiv

11

12

13

Contents
10.5 ConclusionsS. . .. ..o vttt 203
10.6 Proofs. .. ... ... 203
Mapping from Parametric Characteristics to the GFRFs and Output
Spectrume. . . ... ... . 207
11.1 Introduction............. ..., 207
11.1.1 Some Notations for This Chapter. . .............. 208
11.2  The nth-Order GFRF and Its Parametric Characteristic. . . . . . . 210
11.3  Mapping from the Parametric Characteristic to the nth-Order
GERF . . . 211
11.4 Some New Properties. . ... ..., 220
11.4.1 Determination of FRFs Based on Parametric
CharacteristiCS . . . . oottt 220
11.4.2 Magnitude of the nth-Order GFRF. . ... .......... 222
11.4.3 Relationship Between H,(jw,, - -,jw,) and H,(jo{). . . 224
11.5 ConcClusions. . . ... ..ottt 232
11.6 Proofs. .. ... ... 232
The Alternating Series Approach to Nonlinear Influence in the
Frequency Domain..................................... 237
12.1 Introduction. ... ........ ... ..ottt 237
12.2  An Outline of Frequency Response Functions of
Nonlinear Systems . . . . . .ottt 238
12.3 Alternating Phenomenon in the Output Spectrum and
ItsInfluence. . ...... ... .. . .. 243
12.4  Alternating Conditions . . . .. ... ...ttt 249
125 Conclusions. . ...ttt 268
Magnitude Bound Characteristics of Nonlinear Frequency Response
Functions. . . ... ... . . ... . . 269
13.1 Introduction. ........... ... ..ottt 269
13.2  The Frequency Response Functions of Nonlinear Systems and the
NARX Model . . ... .. 270
13.3 Bound Characteristics of NARX Model in the Frequency
Domain......... ... . 272
13.3.1 Notations and Operators. . .. .........c..o.von... 272
13.3.2 Bound Characteristics of the GFRFs. ... .......... 274
13.3.3 Bound Characteristics of the Output Spectrum. . . .. .. 279
13.4 A Numerical Example............... .. ............. 285
13.5 Magnitude Bound Characteristics of the SIDO NARX
System. .. ... 289
13.6 Conclusions. . . ...t 295

13.7 Proof of Proposition 13.1........... ... . ... .. ..... 296



Contents

XV

14 Parametric Convergence Bounds of Volterra-Type Nonlinear
SyStems . . . ..o 297
14.1 Introduction. .. .......... ...t 297

14.2 The NARX Model and Its Volterra Series Expansion

Problem. .. ... .. 298
14.3 The Convergence Criteria. . . ... ... 299
144 Examples. ... ..ot 305
145 Conclusions. . . ....... . 316
146 Proofs. .. ... 317
15 Summary and Overview. ... ...... .. ... . ... .. ..., 321
References. . ... ... . . 325



Chapter 1
Introduction

1.1 Frequency Domain Methods for Nonlinear Systems

Nonlinear analysis takes more and more important roles in system analysis and
design in practice from engineering problems to biological systems, and is therefore
a very hot topic in the current literature. Several methods are available to this
aim including perturbation method, averaging method, harmonic balance, and
describing functions etc (Judd 1998; Mees 1981; Gilmore and Steer 1991;
Schoukens et al. 2003; Nuij et al. 2006; Pavlov et al. 2007; Jing et al. 2008a, b, c,
d, e; Rijlaarsdam et al. 2011; Worden and Tomlinson 2001; Rugh 1981; Doyle
et al. 2002).

Nonlinear analysis can also be conducted in the frequency domain. It is known
that the analysis and synthesis of linear systems in the frequency domain have been
well established. There are many methods and techniques that have been developed
to cope with the analysis and design of linear systems in practice such as Bode
diagram, root locus, and Nyquist plot (Ogota 1996). Frequency domain methods
can often provide more intuitive insights into system linear dynamics or dynamic
characteristics and thus have been extensively accepted in engineering practice. For
example, the transfer function of a linear system is always a coordinate-free and
equivalent description whatever the system model is transformed by any linear
transformations; the instability of a linear system is usually associated with at least
one right-half-plane pole of the system transfer function; the peak of system output
frequency response often happens around the natural resonance frequency of the
system, and so on. Therefore, frequency domain analysis and design of engineering
systems are often one of the most favourite methodologies in practices and attract
extensive studies both in theory and application.

However, frequency domain analysis of nonlinear systems is not straight-
forward. Nonlinear systems usually have very complicated output frequency

© Springer International Publishing Switzerland 2015 1
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2 1 Introduction

characteristics and dynamic response such as harmonics, inter-modulation, chaos
and bifurcation, which can transfer system energy between different frequencies to
produce outputs at some frequency components that may be quite different from the
frequency components of the input. These phenomena complicate the analysis and
design of nonlinear systems in the frequency domain, and the frequency domain
theory and methods of linear systems cannot directly be extended to nonlinear
cases. Existing results in the literature related to analysis and understanding of
nonlinear phenomena in the frequency domain are far from full development.

Frequency domain analysis of nonlinear systems has been studied since the
fifties of last century. A traditional method was initiated by investigation of global
stability of the stationary point within the frames of absolute stability theory, and
then frequency domain methods for the analysis of stability of stationary sets and
existence of cycles and homo-clinical orbits, as well as the estimation of dimension
of attractors etc were developed thereafter (Leonov et al. 1996). Practically, the
nonlinear behaviour or characteristics of a specific nonlinear part or nonlinear unit
in a system can usually be analyzed by using describing functions or harmonic
balance in the frequency domain. The describing function method represents a very
powerful mathematical approach for the analysis and design of the behaviour of
nonlinear systems with a single nonlinear component (Atherton 1975). It can be
effectively applied to the analysis of limit cycle and oscillation for nonlinear
systems in which the nonlinearity does not depend on frequency and produces no
sub-harmonics etc. Applications to controller designs based on describing function
analysis have extensively been reported (Gelb and Vander Velde 1968; Taylor and
Strobel 1985). However, limitations of the describing function methods are also
noticeable. For example, Engelberg (2002) provides a set of nonlinear systems for
which the prediction of limit cycle by using describing functions is erroneous.
Simultaneously, some improved methods were developed (Sanders 1993; Elizalde
and Imregun 2006; Nuij et al. 2006). Another elegant method for the frequency
domain analysis of nonlinear systems is referred to as the harmonic balance (see
examples in Solomou et al. 2002; Peyton Jones 2003). This method provides an
approximation of the amplitude of the steady state periodic response of a nonlinear
system under the assumption that a Fourier series can represent the steady state
solution. It can deal with more general problems of nonlinear systems such as the
sub-harmonics and jump behaviour etc for both the time domain and frequency
domain responses. In addition to these well-established and noticeable methods,
there are also some other results for nonlinear system analysis in the frequency
domain reported in literature. For example, based on the frequency domain methods
for linear systems such as Bode diagrams, singular value decomposition, and the
idea of varying eigenvalues or varying natural frequencies, frequency domain
methods for the analysis and synthesis of uncertain systems or time-varying sys-
tems were studied in Orlowski (2007), Glass and Franchek (1999), Shah and
Franchek (1999) and Logemann and Townley (1997); and a frequency response
function for convergent systems subject to harmonic inputs was recently proposed
in Pavlov et al. (2007) etc.



1.2 Frequency Domain Analysis Based on Volterra Series Expansion 3

For a class of nonlinear systems, which have a convergent Volterra series
expansion, frequency domain analysis can also be conducted based on the concept
of generalized frequency response function (George 1959; Schetzen 1980; Rugh
1981). As studied in Boyd and Chua (1985), nonlinear systems, which are time
invariant, causal and have fading memory, can be approximated by a Volterra series
of a sufficiently high order. The results in Sandberg (1982, 1983) show that even
nonlinear time varying systems have such a locally convergent Volterra series
expansion under certain conditions. Therefore, this kind of frequency domain
analysis methods can deal with a considerably large class of nonlinear systems
which can be driven by any input signals and do not necessarily restrict to consider
a specific nonlinear component, and thus is a more general methodology. Although
the study on Volterra systems and corresponding frequency domain methods has
been done for several decades since the middle of last century, many problems still
remain unsolved, related to some theoretical and application issues. The results in
this book focus on these problems, and important theory and methods are thus
presented, targeting at a systematic and practical method for nonlinear analysis and
design in the frequency domain for a wide class of nonlinear systems in engineering
practice.

1.2 Frequency Domain Analysis Based on Volterra Series
Expansion

The input output relationship of nonlinear systems can be approximated by a
Volterra series of a sufficiently high order under certain conditions (Boyd and
Chua 1985; Sandberg 1982, 1983), which can be written as

=3[ haler, -2 [ [ utt — o) (1.1)
-0 =1

n=1 Y=

where N is the maximum order of the series, and 4,,(z1,- - -,7,,) is a scalar real valued
function of zy,- - -,7,, referred to as the nth order Volterra kernel. Generally, y(¢) is a
scalar output and u(¢) is a scalar bounded input in (1.1). The nth order generalized
frequency response function (GFRF) of nonlinear system (1.1) is defined as the
multivariate Fourier transformation of #,(zy,- - -,7,) (George 1959)

Hn(jwls"'sjwn) :J J hn(Tlv"';Tn)eXp(_j(wlT] +"'+wn7n))d7:l"'d7:n

—00 —00

(1.2)

Equation (1.1) can be regarded as a generalization of the traditional convolution
description (e.g., the impulse response) of linear systems. The Volterra series
expansion in (1.1) is very useful and convenient in modelling and analysis of a
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very wide class of nonlinear systems both in deterministic and stochastic (Volterra
1959; Van De Wouw et al. 2002; Rugh 1981). This has been vindicated by a large
number of applications of the Volterra series reported in system modelling or
identification, control and signal processing for different systems and engineering
practices, including electrical systems, biological systems, mechanical systems,
communication systems, nonlinear filters, image processing, materials engineering,
chemical engineering and so on (Fard et al. 2005; Doyle et al. 2002; French 1976;
Boutabba et al. 2003; Friston et al. 2000; Yang and Tan 2006; Raz and Van Veen
1998; Bussgang et al. 1974). Technically, many of these results are related to direct
estimation or identification of the kernel 4,(zy,---,7,) or the GFRF H (i, --,jw,)
from input output data (Brilliant 1958; Kim and Powers 1988; Bendat 1990; Nam
and Powers 1994; Schetzen 1980; Schoukens et al. 2003; Ljung 1999; Pintelon and
Schoukens 2001).

With the existence of Volterra series expansion, the study of nonlinear systems
in the frequency domain was initiated by the introduction of the concept of the
generalized frequency response functions (GFRFs) as defined in (1.2). This pro-
vides a powerful technique for the study of nonlinear systems, which is similar to
those frequency domain methods established on the basis of transfer functions of
linear systems. Thereafter, a fundamental method, referred to as Probing method
(Rugh 1981), greatly promoted the development of this frequency domain theory
for nonlinear systems. By using the probing method, the GFRFs for a nonlinear
system described by nonlinear differential equations (NDE) or nonlinear auto-
regressive model with exogenous input (NARX) can directly be obtained from its
model parameters. These results were further discussed in Peyton Jones and
Billings (1989) and Billings and Peyton-Jones (1990), respectively. With these
techniques, many results have been achieved for frequency domain analysis of
nonlinear systems. For example, Swain and Billings (2001) extended the compu-
tation of GFRFs for SISO models to the case of MIMO nonlinear systems; a
derivation of the GFRFs of nonlinear systems with mean level or DC terms was
discussed in Zhang et al. (1995); system output spectrum and output frequencies
were studied in Lang and Billings (1996, 1997). Moreover, some preliminary
results for the bound characteristics of the frequency response functions were
given in Zhang and Billings (1996) and Billings and Lang (1996). These bound
results were greatly generalized in Jing et al. (2007a, b) where the bound expres-
sions are described into an elegant and compact form which is a polynomial of the
first order GFRF with nonlinear model parameters as coefficients. The energy
transfer characteristics of nonlinear systems were studied in Billings and Lang
(2002) and Lang and Billings (2005) recently, and some diagram based techniques
for understanding of higher order GFRFs were discussed in Peyton Jones and
Billings (1990) and Yue et al. (2005). Furthermore, the concept of Output Fre-
quency Response Functions of nonlinear systems was proposed in Lang et al. (2006,
2007). These results form a fundamental basis for the development of frequency
domain analysis and design methods for nonlinear systems to be presented in
this book.
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1.3 The Advantages of Volterra Series Based Frequency
Domain Methods, and Problems to Be Studied

The frequency domain analysis of nonlinear systems is much more complicated
than that for linear systems, because nonlinear systems usually have very compli-
cated nonlinear behaviours such as super-harmonics, sub-harmonics, inter-
modulation, and even bifurcation and chaos as mentioned before. These phenomena
complicate the study of nonlinear systems in the frequency domain, and the
frequency domain theory for linear systems can not directly be extended to
nonlinear cases. Although some remarkable results have been developed as
discussed above, there is still a great need for further development aiming at a
systematic and practical method for the analysis and design of nonlinear systems in
the frequency domain.

The study in this book focuses on the frequency domain methods for the class of
nonlinear systems which have a convergent Volterra series expansion for its input
output relationship in the time domain as described in (1.1) (Sandberg 1982, 1983;
Boyd and Chua 1985). By default, the nonlinear systems discussed in what follows
belong to this class of nonlinear systems, referred to as Volterra-type nonlinear
systems. The computation of the GFRFs and output spectrum is a key step in the
frequency domain method based on Volterra series theory. To obtain the GFRFs for
Volterra-type nonlinear systems described by NDE or NARX models, the probing
method can be used (Rugh 1981). Once the GRFRs are obtained for a practical system,
the system output spectrum can then be evaluated (Lang and Billings 1996; Jing 2011).
These form a general procedure for this methodology. In practice, the steps in this
procedure could be replaced by numerical methods using experimental data, which
will be discussed later. The advantages of this method, as mentioned, include the
following points:

(a) It is a mathematically elegant method for a considerably large class of
nonlinear systems frequently encountered in practices of different fields, not
restrict to a specific nonlinear unit or single nonlinear component;

(b) It basically holds for any bounded input signals whatever the input is deter-
ministic or stochastic, not restrict to some specific input signals such as
harmonic or triangle or step inputs;

(c) Itprovides very similar techniques to these for linear systems. For example the
GFREFs of nonlinear systems are similar to transfer functions of linear systems,
which are familiar to most engineers;

(d) Most importantly, it can directly relate model parameters (or system charac-
teristic parameters including model parameters and input magnitude) to sys-
tem output frequency response (or nonlinear system output spectrum) since the
GFRFs can be recursively computed in terms of model parameters. This can
greatly facilitate nonlinear system analysis and design in practice.
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(e) The last but not the least, strong nonlinear behaviours such as chaos or
bifurcation actually can also be investigated with the Volterra series based
methods.

All these points above will be systematically demonstrated and/or discussed in
this book. The readers can also refer to other books or publications for harmonic
balance and describing function methods for a comparative study.

From previous research results, it can be seen that, high order GFRFs are a
sequence of multivariable functions defined in a high dimensional frequency space.
The evaluation of the values of the GFRFs higher than the fourth or fifth order can
become rather difficult due to the large amount of algebra or symbolic manipula-
tions involved (Yue et al. 2005). The situation may become even worse in the
computation of system output spectrum of higher orders, since it involves a series of
repetitive computations of the GFRFs from the first to the highest order that are
involved. Moreover, the existing recursive algorithms for the computation of the
GFRFs and output spectrum can not explicitly and simply reveal the analytical
relationship between system time domain model parameters and system frequency
response functions in a clear and straightforward manner. These inhibit practical
application of the existing theoretical results to such an extent that many problems
remain unsolved regarding the nonlinear characteristics of the GFRFs and system
output spectrum. For example, how these frequency response functions are
influenced by the parameters of the underlying system model, how complex
nonlinear behaviours are related to frequency response functions, and so
on. From the viewpoint of practical applications, it can be seen that a straightfor-
ward analytical expression for the relationship between system time-domain model
parameters and system frequency response functions (including the GFRFs and
output spectrum) can considerably facilitate the analysis and design of Volterra-
type nonlinear systems in the frequency domain.

The following main results are presented in this book to address the problems
above:

e Output frequency characteristics of nonlinear systems are investigated, which
reveal some novel properties about output frequency generation, energy trans-
ferring and cancellation etc. nonlinear effects in the system output frequency
response (Chap. 3);

e A parametric characteristic analysis method is proposed, which provides a
powerful insight into nonlinear system analysis and design with the framework
of the Volterra series based frequency domain method (Chap. 4);

¢ The parametric characteristics of the GFRFs and nonlinear output spectrum are
studied, which clearly demonstrate the relationship between the system time-
domain model parameters and frequency response functions (Chap. 5-6);

¢ A systematic nonlinear characteristic output spectrum method is established,
which can greatly facilitate the analysis, design and optimization of nonlinear
output spectrum in terms of characteristic parameters (Chap. 7-9);
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* Understanding of nonlinear influence in the frequency domain is investigated
with a special concept—Alternating series, and applications of the developed
theory and methods in vibration control are presented (Chap. 10-12);

» Magnitude bound characteristics of nonlinear system frequency response func-
tions are studied, which lead to new parametric convergent criteria of Volterra-
type nonlinear systems in terms of system characteristic parameters (Chap. 13-14).

Moreover, it shall be mentioned that Chap. 2 presents some recursive algorithms
for computation of the GFRFs of nonlinear systems. Some special but useful cases
for different nonlinear system models are discussed there. A summary and over-
view section is given thereafter as the conclusion of this book.


http://dx.doi.org/10.1007/978-3-319-12391-2_8
http://dx.doi.org/10.1007/978-3-319-12391-2_9
http://dx.doi.org/10.1007/978-3-319-12391-2_2

Chapter 2

The Generalized Frequency Response
Functions and Output Spectrum of Nonlinear
Systems

2.1 Volterra Series Expansion and Frequency Response
Functions

As discussed in Chap. 1, the input-output relationship for a wide class of nonlinear
systems can be approximated by a Volterra series up to a sufficiently high
order N as

N
Y1) = (0 (2.1a)
n=1
o0 o0 n
v, (1) = J . J a1, 70) | | u(t — 7i)de; (2.1b)
—00 —00 i=1
where h,(z;,---,7,) is a real valued function of 7y, --,7, known as the nth order

Volterra kernel. The nth order generalized frequency response function (GFRF) is
defined as

Hn(ja)l»""ja)n> :J J hn(Tlf";Tn)eXp (_j(wITI +"'+a)nfn))d71"'d7n

—00 —00

(2.2)

which is the multidimensional Fourier transform of 4,(zy,---,7,). By applying the
inverse Fourier transform of the nth order GFRF, (2.1b) can be written as

I > . T e et
yn([) :WJ J H”(la)l’...’an)H U(/w[)e]< 1+t n)fdwl...dwn
00 i=1

—00

© Springer International Publishing Switzerland 2015 9
X. Jing, Z. Lang, Frequency Domain Analysis and Design of Nonlinear Systems

based on Volterra Series Expansion, Understanding Complex Systems,

DOI 10.1007/978-3-319-12391-2_2


http://dx.doi.org/10.1007/978-3-319-12391-2_1

10 2 The Generalized Frequency Response Functions and Output Spectrum of. . .

which can, by denoting w,=®w—w;—- - -—®,_ 1, be further written as
yn(t):_ n—1 Hn(]wl""’]a)nfls](a)_wl_"'_wnfl))
2z —00 (277) —00 —00
—_——

n—1

X Un (ja)l [ 'jwn—l)da)l .. dﬂ)nl] g/WIdw

where U, (jo,,---,jo,_1)=U(jw,)---U(jw,_)U({j(®w—w,—---—o,_1)). Therefore
the Fourier transform of y,(t) is obtained as
1 (o) (o)
Yn(/a)) :ﬁj J Hn(ja)l’...’ja)n_],j(w_a)l_..._a)n_]))
(277.') —00 —00
n—1
X Un (ja)h o ’sjwnfl)dwl' : ’dwnfl (23)

which is referred to as the nth-order output spectrum. The output spectrum of the
nonlinear system in (2.1a,b) can then be computed by

Y (jw) = Z Y (jo) (2.4)

Note that in (2.1a,b, 2.3 and 2.4) the input signal u(t) can be any signal with a
Fourier transform U(jo). The GFRFs and output spectrum of each order defined
above are all referred to as frequency response functions of nonlinear systems in
this book. It can be seen that the nonlinear frequency response functions defined
above and associated analysis and design methods are important extension and/or
natural generalization of existing theory and methods for linear systems to the
nonlinear case. A simple comparison is shown in Table 2.1.

2.1.1 The Probing Method

Obviously, the output spectrum of a nonlinear system involves the computation of
the GFRFs. Given the parametric model of a nonlinear system, the GFRFs can be
derived by using the “harmonic probing” method (Rugh 1981), which can be traced
back to Bedrosian and Rice (1971) or earlier. Examples can be seen in Peyton Jones
and Billings (1989), and Billings and Peyton-Jones (1990) etc. Consider the
excitation of system (2.1a,b) with an input consisting of n complex exponentials
defined as
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u(t) = Z et (2.5)

The output y(t) is given as
N n .
y(t) = Z Z Hn(jwrl [ ,’jwr”)el(ﬂ)rl"r""‘r(l)r-,,)f (26)
n=1ry,r,=1

Then for the nonlinear system, replacing the input and output by (2.5-2.6), the
nth-order GFRF can be obtained by extracting the coefficients of the term

G U example, consider a static polynomial function,
y(t) =fu(®)) = cru(t) + cou(t)* + csu(®) + ... + cau(t)" + ... (2.7)
The nth-order GFRF between the input u(¢) and output y(¢) can be derived as
H,(joi,- -, jo,) = c, (2.8)

To show this, the GFRFs for (2.7) can be obtained by directly applying the probing
method. Note that (2.6) can be expanded as

y(t) = nlH,(jor, - - -, jo,)e@++o) L (n — D)H,_, (joi, - .’ja)n_l)e]'(w|+w+mn—l>t
+ -+ H(jo;)e™" + (the other terms)

(2.9)

Using (2.5) and (2.9) with n=3 in (2.7), it can be obtained that

y(t) = 31H3 (jwy, - - -, jw3 )T+ L O H, (joy, jarn )& @1 ) 4 H (jooy )e™ ' + (the other terms)
= ¢y (eI 4 2! 4 @) 4 ¢y (e 4 2! @) f o3l 4 02t 4 i30)

-‘rCn(Ejm‘I + e/’mzr +ej(l73/)n +...

Extracting the coefficients of the term ¢/’ from the equation above, it can be
obtained that

H(jo1) = c
Extracting the coefficients of el @1+®2)! it can be obtained that
Hy(jo,jwr) = ¢
Similarly, from the coefficients of ¢/(®1+~+®3) it can be obtained that

Hi(jw,, - jos) = c3
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Following this method, the nth-order GFRF can be obtained as

Hn(jwl’ t ’7jwn) =Cp
2.2 The GFRFs for NARX and NDE Models

Nonlinear systems can often be described by different parametric models. To
compute the GFRFs, a parametric model of the nonlinear system under study can
be given. In this book, two parametric models are focused, i.e., the Nonlinear Auto-
Regressive with eXogenous input (NARX) model and Nonlinear Differential Equa-
tion (NDE) model.

The NARX model provides a unified and natural representation for a wide class of
nonlinear systems, including many nonlinear models as special cases (e.g., Wiener
models, Hammerstein models). For this reason, the NARX model has been exten-
sively used in various engineering problems for system identification (Li et al. 2011),
signal processing (McWhorter and Scharf 1995; Kay and Nagesha 1994), and control
(Sheng and Chon 2003) etc. In practice, most systems are inherently nonlinear and
can be identified to obtain a NARX model using several efficient algorithms such as
the OLS method (Chen et al. 1989). The NARX model is given by

)= yult)
m=1

m ptq
ym(t) :Z Zqu kl," p+q H H u(t—k (210)
p=0 klrk[H»q =1 i= i=p+1
ptg=m

K K
where y,,(#) is the mth-order output of the NARX model, Z ()= Z (-)--
Kiy kprg=1 k=1
K
Z ; p+q is referred to as the nonlinear degree of parameter ¢, ,(-), which

p ptq
corresponds to the (p+¢)-degree nonlinear terms Hy(t — k) H u(t—k;), e.g.,
i=1 i=p+1

y(t—1)’u(r—2)? (p orders in terms of the output and ¢ orders in terms of the input),
and k; is the lag of the ith output when i <p or the (i-p)th input when p <i <m with
the maximum lag K; ¢ 1(.) and c; (.) of nonlinear degree 1 are referred to as linear
parameters, and all the other model parameters are referred to as nonlinear param-
eters; the model includes all the possible nonlinear combinations in terms of y(k)
and u(k) with the maximum order M.

The NDE model can be regarded as a continuous-time version of the NARX
model, which is usually obtained by physical modelling and can be given by
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M m K ki pta gk
diy(r) Tp d'u()
ZZ Z Cpg (ki kp+q)H dtki H dtki =0 (211)
m=1 p=0 ky,k,4=0 i=1 i=p+1
d*x(1)

where

T = x(¢), and all other notations take similar forms and definitions to
k=0

those for the NARX model for convenience. But in the NDE model, K is the
maximum order of the derivative, and ¢, ,(-) for p+¢>1 are referred to as nonlinear
parameters corresponding to nonlinear terms in the model of the form
P diy(0) K dvul)

ki ki
i=1 dr i=p+1 dr

, e.g., y@u(t)?.

2.2.1 Computation of the GFRF's for NARX Models

By using the probing method demonstrated above, a recursive algorithm to compute
the nth-order GFRF in terms of model parameters for nonlinear systems described
by the NARX model can be developed, which is given as follows (Peyton Jones and
Billings 1989; Jing and Lang 2009a):

(1 — ch,o(kl)exp(—j(wl +- +a)n)k1)> “Hy(jwn, - ja,)

k=1
K
- Z CO,n(kla'"7kn)exp(_j(wlkl+"'+0)nkn))
kyyk,=1
n—1n—q K
q=1 p=1lki,k,=
n K
+ Zcp,o(kl,---,kp)Hn,p(jwl,---,jwn)
p=2ky,k,=1

(2.12)

n—p+1

H, () = Z Hi(joi,- - joi)Hy—ip-1(joii1, - ',jwn)exp(—j(wl + 4+ wi)kp)
i=1

(2.13)
H, i (jor, - jw,) = Hy(jor, - - jo,)exp(—j(o1 + - - - + w,)k1) (2.14)

Furthermore, define Hy o(-)=1, H, o(-)=0 for n>0, H,, ,(-)=0 for n<p, and let

exp (Ze(p)) _ {(1) Zigﬁ z } (2.15)

i=1
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where &(p) is a function of p, and
K
L@y, ,) = 1= cro(k))exp(—j(@r + - + on)k) (2.16)
k=1

Then (2.12) can be written more concisely as

q
K *jz (a)nfqﬂkpﬂ')
Z kl, ) p+q)" i=1
Skpy

X Hy_gp (jw1,~~-,ja),,_q) (2.17)

n

—q
H,(joy,- - jw,) = L Z;

ki

Thus the recursive algorithm for the computation of GFRFs is (2.12 or 2.17,
2.13-2.16).
Moreover, H, ,(jo1," - -,joy) in (2.13) can also be written as

n—p+1

H"aP(jwl’ o "jwn) = Z HH/,(/wX+1’ ’ij+ri)

iy rp = =1 =l
Zr[ =n
exp(—j(oxs1 + -+ + oxi ki) (2.18)

i—1

where X = Z Ty

x=1

2.2.2 Computation of the GFRFs for NDE Models

Similarly, the computation of the GFRFs for the NDE model can be recursively
conducted in terms of model parameters as follows (Billings and Peyton-
Jones1990; Jing et al. 2008e):

K
Ln(ja)l ++]a)n) 'Hn(ja)l""vjwn Z €o,n k17 ) )(/CU]) (Jw” o
Loka=1
n—1n—q K q
+ZZ Z cpg (ki kpig (H JOn—q1) ) n—qp (01, j@n—q)
g=1 p=lki,kpiq=0 i=1
n K
+ Z CpO(kh Tty ) )1,17(ia)ls"'ajwn)
p=2ki,k,=0

(2.19)
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n—p+1

Hy, () = Z Hi(jwi,- - jo;)H,—ip—1(jwis1, - jon) (jor + -t jwy)' (2.20)
=1

Hn,l (jwl’ c ’7jwn) = Hn(jwl’ o '7jwn>(jwl + - +ja)n)k] (221)
where
Lo(joy + -+ + jw,) = Z c1,0(ky)(jor + - -l-ja)n)k‘ (2.22)
Moreover, H, ,(jo1,- - -,jo,) in (2.20) can also be written as
n—p+1 p ‘
Hoplonjon) = > [[Haloxrjoxe) o+ + oy )"
rl...rp: 1 i=1
Sri=n
(2.23)
where
i—1
X=>"r (2.24)
x=1

Similarly, for convenience in discussion, define

Hoo()=1, Huo(-)=0 forn>0, H,,()=0 forn<p,

q
_J1 g=0,p>1
and H() = {0 G—0p<l (2.25)

Then (2.19) can be written in a more concise form as

n—q

n K
Hn(fwl,~--,jwn) :+ZZ Z Cp,q(klv"'vk[rkq)
n<jzwi>

=0 p=0 ki, kp+4=0

q
X (H JOn—q+i kp“)Hn—q,p (jwl > 'ajwn—q) (2.26)

Therefore, the recursive algorithm for the computation of the GFRFs is (2.19 or
2.26, 2.25, 2.20-2.23).

Note that the GFRFs above both for the NARX and NDE models are assumed to
be asymmetric. Generally, different permutations of the frequency variables
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w1, - -,m, may lead to different values of H,(jw, - -,jo,). The symmetric GFRFs
can be obtained as

—_ . 1 ) .
HY"(jeon, -+ joo) = - > Hyljor,- - jo,) (2.27)
all the permutations
of {1,2,...,n}

But for computation of nonlinear output spectrum in (2.4), asymmetric GFRFs
suffice.

2.3 The GFRFs for a Single Input Double Output
Nonlinear System

In many practical cases, nonlinear system models are usually described by a
nonlinear state equation with a general nonlinear output function of system states.
Sometimes, the output function of interest can also be a nonlinear objective
function to optimize. Therefore, the computation of the GFRFs for nonlinear
systems in this form would be more relevant in practice. The systems can be
classified into several cases: single-input multi-output (SIMO), or multi-input and
multi-output (MIMO) etc. The GFRFs for MIMO systems would be more compli-
cated, which can be referred to Swain and Billings (2001). This section addresses a
much simpler case, i.e., single-input double-output (SIDO), which is actually
frequently encountered in practice. Similar results can be easily extended to the
SIMO case (many multiple-degree-of-freedom mechanical systems would belong
to this case).
Consider the following SIDO NARX system,

My m K m
X(f) = IZ S Gpmplhr, ek )ﬁ (t—k) [J ut—k)  (2:280)
m=1 p=0 ky, k,=0 i=1 i=p+1
M, m K P m
YO =33 Z Cpmp(kiy - k) [ [ (e = ki) T] u(t— k) (2.28b)
m=1 p=0 ky, k= i=1 i=p+1

where M|, M, and K are all positive integers, and x(t), y(t), u(t) € R. Equation
(2.28a) is the system state equation which is still described by a NARX model, and
(2.28b) represents the system output which is a nonlinear function of state x(t) and
input u(t) in a general polynomial form.

Instead of using the probing method for derivation of the GFRFs for (2.28a,b), an
alternative simple method would be adopted here, since the model structure and
nonlinear types are known clearly. Note that the expression of the nth-order GFRF in
(2.12) for the NARX model (2.10) can be divided into three parts. That is, those
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arising from pure input nonlinear terms H,, (-) corresponding to the first part in the
right side of (2.12), those from cross product nonlinear terms H,, (-) corresponding to
the second part in the right side of (2.12), and those from pure output nonlinear terms
H,, (-) corresponding to the last part of (2.12). For clarity, (2.12) can also be written as

Hn(jwh e '7jwn) = (Hnu<') + Hnuy(') + Hny('))/Ln(j(a)l +- wn)) (229>

Equation (2.29) shows clearly that different categories of nonlinearities produce
different contribution to the system GFRFs. Hence, when deriving the GFRFs of a
nonlinear system, what can be done is to combine the different contributions from
different nonlinearities without directly using the probing method. This property
can be used for the derivation of the GFRFs for (2.28a,b).

To this aim, (2.28a,b) can be regarded as a system of one input u(t) and two
outputs x(t) and y(t). Therefore, there are two sets of GFRFs for (2.28a,b)
corresponding to the two input-output relationships between the input u(t) and
two outputs x(t) and y(t) respectively. Considering the GFRFs from input u(t) to
output x(t), there are three categories of nonlinearities as mentioned before. There-
fore, the nth-order GFRF from input u(t) to output x(t) denoted by H, (jwy, - -,jwy)
can be directly determined which is the same as (2.12-2.17), i.e.,

H,, (]a)ls ajwn) +H;:‘14,\ (jwl’ o '3ja)n> +H,)1C‘ (ja)lv' : "jwn)

Lot +on) (2.30)

H,(jwr, - jon) =

K
where, L, (j(w1 + -+ w,)) Z o(k1)exp(—j(w1 + -+ wn)k1)

K
H) (jor,-jon) = > Conlki,- - kn)exp(—j(@iki + - + w,ky)) (2.31a)

ki k=0
n—1n—q K
x ( . _ _
Hnm(fa)lf"’fwn) = E Cp,q(klv"'vkarq)
q=1p=1ki,kpiq=

Xexp(_j(wn—q-&-lkp-&-l +--- +Cl)nkp+q))Hn—q,p (]a)l e "jwn—q)

(2.31b)
n K
H) (joi,- - jo,) = Cpolki, o kp)Hyp(jor, - -, joon) (2.31c)
p=2 ki, k,=0
n—p+1

Hn,p(jwh e 'vjwn) = Z H}x(jwla t .’jwl‘)Hﬂ*i,p*I(‘iwl'JFl? t "jwn)
i=1

xexp(—j(wi + -+ + wi)ky) (2.31d)
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H, 1 (jor, - - -, jon) = Hy (jor, - - -, jo,)exp(—j(or + - - 4 w,)ky) (2.31e)

Similarly, consider the GFRFs from input u(t) to output y(t). There are also three
categories of nonlinearities in terms of input u(t) and output x(t) (similar to those
from input u(t) to output x(t)), and there is one linear output y(t). Note that there are
no nonlinearities in terms of y(t), and all the nonlinearities come from input u(t) and
output x(t). For this reason, the GFRFs from u(t) to y(t) are dependent on the GFRFs
from u(t) to x(t). Therefore, in this case the nth-order GFRF from input u(t) to
output y(t) denoted by K (jw;,- - -,jw,) is,

H,{(jwl, c 'vjwn) - H,),/“ (ja)ls t "jwn) +Hy)1/m, (jwh c 'vjwn)

+H,, (jor, - jon) (2.32)

where the corresponding terms in (2.32) are

K
Hnyu (ja)l, o ';jwn) = Z EO,n(kh o '7kn)exp(_j(wlk1 + -+ wnkn)) (233&)

ki, k,=0
n—1n—q K
Y (7 e g, — -
H;) (jor,-sjon) = Z Cpaq (ks eskpg)
q=1 p=1ki,kp:,=0

><exp(_J'(a)n—q-&-lkp-&-l +- a)nkp+q))Hn—q,p (JCO] 5t ',j(un_q)

(2.33b)
n K
H,z\ (ja)l’ o "jwn) = Z Z Ep,O(kla B kp)Hn,p(jwls o "jwn) (233C)
p=1 ki, k,=0

Note that p is counted from 1 in (2.33c), different from (2.31c) where p is counted
from 2, and H,, ,(jw;,- - -,jw,) in (2.33b, ¢) is the same as that in (2.31b—d) because
the nonlinearities in (2.28b) have no relationship with y(t) but x(t). The results here
are developed in a very straightforward manner and provide a concise analytical
expression for the GFRFs of the system in (2.28a,b).

Similar results can be obtained for the following SIDO NDE system

Ml m K V4 k m k
_ d"ix(t) du(t)
Z Z Cp,m—p(kla ) km)H PTz H a5 =0 (2.34a)

m=1 p=0 k1 kn=0 i1 i=pt1
M, m K )4 k; m ki
~ d"ix(t) d“u(r)
5" 3 st k[T T 240y
m=1 p=0 k1, kn=0 i=1 i=p+1

where x(t), y(t), u(t) € R. System (2.34a,b) has similar notations and structure
as system (2.28a,b). It can be regarded as an NDE model with two outputs x(t) and
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y(t), and one input u(t). Hence, following the same idea, the GFRFs for the
relationship from u(t) to y(t) are given as

H,{(jwh . '9ja)n) - Hy),]“ (ja)ls o '9jwn) +Hy),/m (]CO], 9ja)n)

+H (jor, -, jon) (2.35)

where

K
nl, (ja)l’ ’jwﬂ) = Z EO,n(kl» o n)(ja)]) (]wn) (236&)

kiy ky=0

K
n,,\(jwh o) = Z gp,q(klv""kpw)

X (jwn—q+1)kp+l - (joon) " Ho g (jons s jwn—g) (2.36b)

=
=

H), (jou, -, jon) = Z Cpo(ki, o kp) Hypljor, - -, o) (2.36¢)

n—p+1

H, (") Z H} (jor, - jwi)Hy—ip-1(jwis1, - jwn) (jor + - +Jw,)k’ (2.36d)
i=1

Hy o (jor1, - jo,) = H (jor, - - jon) (jor + - + jo,)" (2.36¢)

where H;(jw,, - -,jw,) is the nth-order GFRF from u(t) to x(t), which is the same as
that given in (2.19 or 2.26, 2.25, 2.20-2.23).

Example 2.1 Consider the following nonlinear system,

mx(t —2) + apx(t — 1) + apx®(t — 1) + a3 (t — 1) + kx(t) = u(z) (2.37)
y(t) = aix(t — 1) + apx®(t — 1) + azx>(t — 1) + kx(2) '
which can be written into the form of model (2.28a,b) with parameters K=2,
51'0(2) = *m/k,El’()(l) = *al/k, 52,0(11) = 702//{,53!0(111) = *ag/k,E()’l(O) = l/k
c10(l) = a1, c2,0(11) = az,¢3,0(111) = a3,¢1,0(0) =k, and all the other para-
meters are zero. The GFRFs can be computed according to (2.12-2.16). For
example,

Hy (jo) = ZCQ] Jexp(—jwiki) = Co,1(0) = 1/k, H{ (jor) =0

Because there are no input nonlinearities and cross nonlinearities, thus
H" (joy, - - -, jw,) = 0 and Hg'u(/'wl, -+, jw,) = 0 for n>1
H, " (jwr, -, jw,) =0 and H) (jor, - -+, jw,) = 0 for all n
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Regarding the output nonlinear terms,

H*\(]wl) = 0
2 2
H (jor,joy) = > Y polki, - ky)Hap(jor, jor)
p=2ki,ky=1

2
Z o(ky, k2)Ho o (jwn, jor)

F

2
= Y Spolki,ko)H{ (jor)Hy i (jon)exp(—joik2)
kis k=1

2

= Y ok, ko)Hi (jo)H; (jon)exp(—jwki Jexp(—jwiks)
kiykp=1

= —ZH{ (jo)H{ (jor)exp(—jwa)exp(—jo: )

2
Hi(ja)l ch 0 k1 Hl 1(/6()1 ZZ] 0 kl)H’f(ja)l)eXp(—ja)lkl)
= alH "(jw)exp(—jor ) —|—kH “(jwr)

2 2
Hj (jou,jwn) = Z Z Cpo (k- kp)Ha p(joor, jn)

p=1ky,ky=

2 ' 2

Z o(k1)Ha,1(joor, jwr) + Z C2,0(k1, k2)Ha 2 (joor, jar)
=0 ks kp=0

2

= ) _crolki)H; (jor, jon)exp(—j(wr + w2)ky)
k1=0
2

+ > Caolki, ko) Hi (joor )Hi (joo )exp(—jaaky Jexp(—jmrkz)

ki k2=0

= kH;(]wl ,j(ﬂz) + alH“z"(ja)l ,ja)z)exp(—j(wl —+ 0)2)/(1)
+ axH{ (jo1 ) Hy (jws)exp(—jw2 )exp(—jw:)

Note that
2
Lo(ilw) + -+ w,)) = Z c10(ki)exp(—j(wi +- -+ w,)ki)
k=1

=1 +—exp(—j(a)1 + 4 wn)) +%exp(—j2(a)1 +-twy))

Hence, by following similar process as above, the GFRFs for x(t) and y(t) can all be
computed recursively up to any high orders. For example,
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HY (o) = Hy (jor) + H{ (jor) + H{ (jor) _ 1/k
! Ly (jwr) 1 + 4@ exp(—jw;) + Zexp(—j2m;)
oo H; (jou, jo2) + Hy, (jor,jw:) + Hj (jor,jor)
Hj(joy, jo,) = . -

Ly(j(@1 + @2))

= —PH; (jo ), (jor2 )exp(—jan)exp(—jon)
1 +%exp(—j(a)1 + @2)) +%CXP(_j2(w1 +2))
H{(jo1) = Hj (jor) +H] (jo1) + H{ (joi) = k + a H{ (jo,)exp(—jo)
H; (joi,joy) = Hy (jor,jwr) +Hy (jor,jwr) +H; (jo,jor)

= a1H; (jw1,joa)exp(—j(w1 + @2)) + axH{ (jor )
xH{ (jar, )exp(—jwa)exp(—jwr)

It can be verified that the first order GFRFs are the frequency response functions in
z-space of the linear parts of model (2.37).

Example 2.2 Consider a nonlinear mechanical system shown in Fig. 2.1.

The output property of the spring satisfies A =kx, the damper F =a,i+a3x%", and
the active unit is described by F :az)'cz. u(t) is the external input force. Therefore,
the system dynamics is

mi = —kx — a\% — apx® — a3 + u(t) (2.38a)

with the transmitted force measured on the base as the output
y(t) = arx + apx? + azi® + kx(r) (2.38b)
It can be seen that the continuous time model (2.38a,b) is similar in structure to the
discrete time model (2.37) in Example 2.1. Therefore, similar results regarding the

frequency response functions as demonstrated in Examples 2.1 for the discrete time
model (2.37) can be obtained readily for system (2.38a,b).
l u(t)

m ‘

A Act'ive B l l X(t)
unit
Fig. 2.1 A mechanical

system
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2.4 The Frequency Response Functions for Block-Oriented
Nonlinear Systems

Block-oriented nonlinear systems such as Hammerstein and Wiener models are
composed by a cascade combination of a linear dynamic model and a static
(memoryless) nonlinear function. Theoretically, any nonlinear systems which
have a Volterra expansion can be represented by a finite sum of Wiener models
with sufficient accuracy (Korenberg 1982; Boyd and Chua 1985). The Wiener
model is shown to be a reasonable model for many chemical and biological
processes (Zhu 1999; Kalafatis et al. 1995; Hunter and Korenberg 1986). The
magneto-rheological (MR) damping systems can also be well approximated by a
Hammerstein model (Huang et al. 1998). Applications of these block-oriented
models can be found in many areas such as mechanical systems (Huang
et al. 1998), control systems (Bloemen et al. 2001), communication systems
(Wang et al. 2010), chemical processes (Kalafatis et al. 1995), and biological
systems (Hunter and Korenberg 1986).

Frequently-used block-oriented nonlinear models include Wiener model, Ham-
merstein model and Wiener-Hammerstein model etc. This section establishes
frequency response functions for these nonlinear models under assumption that
the nonlinear part allows a polynomial approximation as given in (2.7), which is
then extended to a more general case.

2.4.1 Frequency Response Functions of Wiener Systems

The GFRFs and nonlinear output spectrum are developed for Wiener systems
firstly, and then extended to other models. Consider the Wiener model given by

u(r) = g°r(r) and y(r) = f(u(r)) (2.39a,b)
where “°” represents the convolution operator, g(¢) is the impulse response of the
linear part, and f{u(?)) is the static nonlinear part of the system. The linear part is
defined as a stable SISO system, which can be described by parametric FIR/IIR
models or nonparametric models (See Fig. 2.2).

Note that the GFRFs for (2.39b) are given in (2.8). Equation (2.39a) can be

written as
r(t)=>| 2() |=>|”(’) S =" @

Fig. 2.2 The Wiener model, where g(¢f) denotes the linear part and f[] represents the static
nonlinear function, both of which could be parametric or nonparametric (Jing 2011)
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U(jw) = G(jw)R(jw)

where U(jw), G(jw) and R(jw) are the corresponding Fourier transforms of u(?), g(f)
and () respectively. Using (2.3-2.4), the nth-order output spectrum of (2.39a,b)
can be obtained as

. 1 > > . :
Yn(jw) :W CnUn(]wls'"s.]a)nfl)dwl"'dwnfl
- 1 -0
n—
1 (o) loe] n
= — e C‘nH(G(/wi)R(/wi))dwl' dw,_
(27) —x —, =1
—————
n—1
l o0 (o e] n n
== (2 )n—l J . J (CnHG(]a),)> HR(]a),)dwl . ~dw,,,1
4 — < i=1 i=1

_ (2;;n—l rooc . .Jm <:1G(jwi)> lljR(ja)i)dwl. ~dw,_1

(2.40)

where w,=w—w;—- - -—w, _;. Comparing the structure of (2.40) with (2.3) gives
Hn(jwla""jwn) = CHHG(/.a)i) (241)
i=1

With the GFRFs given by (2.41), the output spectrum of Wiener system (2.39a,b)
can therefore be computed under any input signal with spectrum R(jw) based on

(2.3) and (2.41) as,
Cn (o) (o)
Yn / _— - e
Ue) = gy J . J

(hGUwi)RUwi)> Glj(@ = w1 =+ = w,1))

xR(j(a) -y — = wn,l))da)l- . 'da)n,1

Let I(jw,)=G(jw)R(jw;), then Y,(jw;)=c II(jw;), which represents the linear
dynamics of the Wiener system. The equation above can be further written as
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Y, (jo) = @;T\J;.\,_J; (ﬁn(@ﬁ)

n—1

O(j(w—w; — - — wy—1))dw; - - -dw,— (2.42)

It can be seen that the nth-order nonlinear output spectrum of Wiener model (2.39a,
b) is completely dependent on the frequency response of system linear part. Given
the frequency response of the linear part (which can be nonparametric), higher
order output spectra can be computed immediately. On the other hand, given higher
order output spectra, the linear part of the system could also be estimated conse-
quently. These will be discussed later. The overall output spectrum is a combination
of all different order output spectra. Clearly, the nonlinear frequency response
functions obtained above can provide an effective insight into the analytical
analysis and design of Wiener systems in the frequency domain. Note that the
magnitude bound of system output spectrum often provides a useful insight into
system dynamics at different frequencies and also into the relationship between
frequency response functions and model parameters (Jing et al. 2007a, 2008b, d).
With the GFRFs developed above, the bound characteristics of the output spectrum
of Wiener system (2.39a,b) can be investigated readily. It is known that output
frequencies of nonlinear systems are always more complicated than linear systems
including sub- or super-harmonics and inter-modulations (Jing et al. 2010). The
GFRFs and output spectrum above could also shed light on the analysis of output
frequency characteristics of Wiener-type nonlinear systems.

2.4.2 The GFRFs of Wiener-Hammerstein or Hammerstein
Systems

The Wiener-Hammerstein model can be described by
u(t) = g°r(t); x(1) = f(u(r)) and y(t) = p°x(z) (2.43a,b,¢)

where p and g denote the linear parts following and preceding nonlinear function
fC) (See Fig. 2.3).

Consider the subsystem from r(¢) to x(¢), which is the Wiener model in (2.39a,b).
According to (2.40-2.41), the nth-order output spectrum of this subsystem is

OF e0 B sy %[ () ]=>y ®

Fig. 2.3 The Wiener-Hammerstein model, where g(f) and p(¢) denote the linear parts and f{*)
represents the static nonlinear function, g-f is actually a Wiener sub-system and f-p is a Hammer-
stein sub-system (Jing 2011)




26 2 The Generalized Frequency Response Functions and Output Spectrum of. . .

Xn(jw)_(Zﬂ,')rHI Jioc Jioc ( nl];[lG(] 1)>HRO l)d 1 d n—1

n—1
where w,=®—w;—- - - —w, _1. Then the nth-order output spectrum of (2.43a—c) is

Y, (jo) =X, (jo)P(jo)

—00 1 i=1

(275)’[71 —o0, \i=

n—1

where P(jw) is the Fourier transform of p(t). Therefore, the nth-order GFRF for
(2.43a—) is

H,(joi, - jw,) = c,,P(/'a))H G(jw;) (2.45a)
i=1
Noting that w=w;+: - -+, in (2.45a), the equation above can be written as
Hy(jor, - jwn) = caP(jor + - + jo,) | [ Gliwr) (2.45b)
i=1

Using (2.45b) and noting the Hammerstein model is only a special case (g(f)=1) of
the Wiener-Hammerstein model, the GFRFs of Hammerstein systems can be
obtained immediately as

H,(jw1,- - jw,) = c,P(jo; + - + jw,) (2.46)

Note that, the GFRFs and output spectrum of block-oriented nonlinear systems are
derived by employing the structure property of the nonlinear output spectrum
defined in (2.3) and the structure information of block-oriented models. The
resulting frequency response functions are expressed into analytical functions of
model parameters, which are not restricted to a specific input but allow any form of
input signals. However, many existing frequency-domain results for nonlinear
analysis require a specific sinusoidal input signal (Alleyne and Hedrick 1995;
Gelb and Velde 1968; Nuij et al. 2006; Schmidt and Tondl 1986; Huang
et al. 1998; Baumgartner and Rugh 1975; Krzyzak 1996; Crama and Schoukens
2001; Bai 2003). In the GFRFs, the relationships among the output spectrum, the
GFRFs, the system nonlinear parameters, and also the linear dynamics of the
system are demonstrated clearly. With these frequency response functions, bound
characteristics of the output spectrum and output frequency characteristics etc can
all be studied by following the methods in Jing et al. (2006, 2007a, 2008b, d, 2010).
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2.4.3 Extension to a More General Polynomial Case

The static nonlinear function of block-oriented models discussed above is only a
univariate polynomial function. A more general case is studied in this section. Since
both the Wiener and Hammerstein models are special cases, consider the following
Wiener-Hammerstein model,

u(t) = g°r(t); x(¢t) = f(u(t),r(r)) and y(¢) = p°x(t) (2.47a,b,¢)

where the nonlinear function is defined as a more general multivariate polynomial
function as

M m K )4 k,-u m k’}"
) =333 gl k) [[SAO T 10 aa)

m=1 p=0 ki , k=0 i=1 i=p+1

where M is the maximum nonlinear degree of the polynomial, K is the maximum

order of the derivative and ¢, ,,_,(k,---,k,,) is the coefficient of a term
Podbiu(r) 5 dhir(e
(x) (¥ in the polynomial.
L1 g 1 dtki
i=1 i=p+1

Obviously, the univariate polynomial function in (2.7) is only a special case of
the general form (2.47d). That is, if letting ¢, (0, - - -,0) = ¢, for p=1,2,. .. and the
S —

p
other coefficients in (2.47d) are zero, then (2.47d) will become (2.7). Obviously,

(2.47a—d) can represent a wider class of nonlinear systems. For example, if (2.47d)
is of sufficiently high degree and includes all possible linear and nonlinear combi-
nations of input u(¢) and its derivatives of sufficiently high orders, it will be an
equivalent nonlinear IIR model of the Volterra-type nonlinear systems (Kotsios
1997). The following results can be obtained.

Proposition 2.1 The nth-order GFRF of Wiener-Hammerstein system (2.47a—d) is
given by

H11(ia)l, o "ja)n) = P(]U)l + - +jwﬂ)(H”r (iwl’ a ',ja)n)

+H,, (jor, -+, jon) + H,, (jor, - -, jo,)) (2.48)

Similarly, for Wiener systems with a general polynomial function (2.47d) it is given
by

Hn(jwl 5"t '7jwn) :Hn,v(jw] [ '»jwn) +Hn,v,, (jwl [ 'ajwn) +Hnl, (jwl [ '7jw;1) (249)

and for Hammerstein systems with a general polynomial function (2.47d) it is
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Hy(jor, -+ jon) = Pljor + - - + jon)Hy, (jor, - -, jon) (2.50)

where H,, (joi, - -, jo,), Hy, (jo1, -, jo,) and H,, (joi,- - -, jo,) are given by

K

Hy, (jor, - jon) = Y conlkn, - ka)(or) - (o) (2.51a)

ki, k=0

n—1 n—q K

Hn,v,, (ja)l Lo .’jw”) — Z Z Z Cp,q(kh ey kp+q) (ja)}’l—q+l)kﬁ+l .. .(jwn)k/Hq

g=1 p=1 ki, ky14=0

XHy—q.p (jo1, - jon—q) (2.51b)
n K
Hll,,(ja)17"'7jwn) = Z Z cp,0<kla"'7kp)Hn,p(ia)l""’jwn) (251C)
p=1 ki, k,=0

Hyp(-) = Gljw1)Hy 1 p1 (jon, - - joon) (jan )" (2.51d)

. o Gjw) (o) n=1

H, L j0,) = 2.51

1l jeon) {0 else ( ¢)

Proof See Sect. 2.6.

Since (2.39b) is a special case of (2.47d) (¢, 0(0,- - -,0)=c,, and the others zero in
(2.47d)), the nth-order GFRF in (2.41) for Wiener model (2.39a,b) can be shown to
be a special case of (2.51a—e). That is, only the parameter ¢, ¢(0, - --,0) = ¢, is not

e —

zero and the others are zero in (2.51a—¢). Therefore,

Hn(jwl [ 'ajwn) :Hn,. (jwla o '5,1.0)11) +Hnm (iwla o ‘»jwn) +Hn,4 (jwla o ‘»jwn) (2523)

H,, (jor, - -,ja),,) =0, H,, (jwl» <o jo,) =0 (2.52b7 C)

H,, (jou, - - jon) = cn0(0,- -, 0)H, n(jor, - -, jon) (2.524d)
Hy () = Gljw) ) Hy1 1 (jo, - -, jaoy ) (jan )°

= G(jw1)G(jwy) - -G(jwn—1)H1, 1 (jon) (2.52¢)

Hy,1(jo,) = G(jw,) (2.52f)

The nth-order GFRF for (2.39a,b) can now be obtained from (2.52a—f) which is
exactly (2.41).

Although the nonlinear frequency response functions above are all developed for
continuous time system models, it would be easy to extend them to discrete time
systems. In this section, analytical frequency response functions including gener-
alized frequency response functions (GFRFs) and nonlinear output spectrum of
block-oriented nonlinear systems are developed, which can demonstrate clearly the
relationship between frequency response functions and model parameters, and also
the dependence of frequency response functions on the linear part of the model. The
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nonlinear part of these models can be a more general multivariate polynomial
function. These fundamental results provide a significant insight into the analysis
and design of block-oriented nonlinear systems. Effective algorithms can also be
developed for the estimation of nonlinear output spectrum and for parametric or
nonparametric identification of nonlinear systems, which can be referred to
Jing (2011).

2.5 Conclusions

The computation of the GFRFs and/or output spectrum for a given nonlinear system
described by NARX, NDE or Block-oriented models is a fundamental task for
nonlinear analysis in the frequency domain. This chapter summarizes the results for
the computation of the GFRFs and output spectrum for several frequently-used
parametric models, and shows that the GFRFs are the explicit functions of model
parameters (of different nonlinear degrees), which can be regarded as an important
extension of the transfer function concept of linear systems to the nonlinear case.

2.6 Proof of Proposition 2.1

As the Wiener system is a sub-system of the Wiener-Hammerstein system in
(2.47a—d), the GFRFs for the sub-Wiener system can be derived firstly and then it
will be easily extended to the other block-oriented models as demonstrated in
Sect. 2.41-2.42. To derive the GFRFs for Wiener systems with the general poly-
nomial function (2.47d), i.e.,

u(t) =g°r(t) and y(t) =f(u(t),r(1)) (A1, A2)
M m K p dkiu m dkil‘
;p: kl’z:: cpmp(ki, - .,km)j:l dﬂgt)ip+1 d,k(,-t> (A3)

the model can be regarded as a nonlinear differential equation model with two
outputs u(¢) and y(#), and one input (¢). Note that the frequency response function
from the input r(#) to the intermediate output u(¢) is the Fourier transform of the
impulse response function g(t), i.e., G(jw), which is a linear dynamics; while the
frequency responses from the input r(¢f) to the output y(f) involve nonlinear
dynamics. The latter are the GFRFs to be derived. The terms in the polynomial
function f(u(#),r(¢)) can be categorized into three groups, i.e., pure input terms

o drir(t L dhiu(t
CO,m(k1>"'7km)H T() pure output terms CP,O(kb'"»kp)H dﬂi ),

i=1 i=1

and
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) 2o dbiu(n) & dbir(r)
input-output cross terms ¢, ,—p(ki,- -, km)g o ,-:,,111 o

Therefore, by applying the probing method, each group of terms corresponds to a
specific form of contributions to the nth-order GFRF of Wiener system (A1-A3),

which can be written as

(O<p<m).

Hn(ja)ls te "jwn) — Hn,. (ja)h te '»jwn) + Hn,-“ (jwl, o ',jwn)
+H,, (jeor, - - -, jan) (A4)

where H,, (jo1, - - -, jw,) represents the contribution from the pure input terms and
similar notations are used for the other terms. This is a special case of the system
studied in Sect. 2.3 or Jing et al. (2008c¢). Therefore following the method there, the
equations in (2.51a—e) can be obtained.

Similarly, the corresponding GFRFs for the Hammerstein model and Wiener-
Hammerstein model with the general polynomial function defined in (2.47d) can be
derived respectively. Note that only input nonlinearity is involved in the Hammer-
stein model. The extended polynomial function for the Hammerstein model can be
written as

M K m dk,-r(t)
() =f0 @) =" > comlbkr k) [[ =2 (A5)
m=1 ky, k=0 i=1

Following the same line, the nth-order GFRF for the extended Hammerstein model
is given by

H/i(ia)l,"',jwn):P(iw1+"'+jw11) Z CO,n(klv'"akn)(iwl)kl"'(iwn)kn (A6)
kiyk,=0

The nth-order GFRF for the Wiener-Hammerstein model (2.47a—d) can be obtained
as

Hn(jwl’ . "jwn) - P(]wl + - +jwn)(Hn,. (jwl’ t "jwn)

HHy, (jor, s jon) + Hy,(jr, - - jon)) (A7)

where H, (joi,- - jo,), Hy, (joi,- - jo,) and H, (joi,-- - jo,) are given by
(2.51a—e). This completes the proof. m



Chapter 3
Output Frequency Characteristics of
Nonlinear Systems

3.1 Introduction

An important phenomenon for nonlinear systems in the frequency domain is that
there are always very complicated output frequencies, appearing as super-
harmonics, sub-harmonics, inter-modulation, and so on. This usually makes it
rather difficult to analyze and design output frequency response of nonlinear
systems, compared with linear systems. Output frequencies of nonlinear systems
have been studied by several authors (Raz and Van Veen 1998; Lang and Billings
1997, 2000; Bedrosian and Rice 1971; Wu et al. 2007; Wei et al. 2007; Bussgang
etal. 1974; Frank 1996). These results provide different viewpoints for computation
and prediction of output frequencies of nonlinear systems. It is shown that Volterra-
type nonlinear systems can effectively be used to account for super-harmonics and
inter-modulation in nonlinear output spectrum.

In this chapter, some interesting properties of output frequencies of Volterra-
type nonlinear systems are particularly investigated. These results provide a very
novel and useful insight into the super-harmonic and inter-modulation phenomena
in output frequency response of nonlinear systems, with consideration of the effects
incurred by different nonlinear components in the system. The new properties
theoretically demonstrate several fundamental output frequency characteristics
and unveil clearly the mechanism of the interaction (or coupling effects) between
different harmonic behaviors in system output frequency response incurred by
different nonlinear components. These results have significance in the analysis
and design of nonlinear systems and nonlinear filters in order to achieve a specific
output spectrum in a desired frequency band by taking advantage of nonlinearities.
They can provide an important guidance to modeling, identification, control and
signal processing by using the Volterra series theory in practice.
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3.2  Output Frequencies of Nonlinear Systems

As discussed in Chap. 2, the output spectrum of nonlinear system (2.1) subject to a
general input can be computed by (2.3-2.4). For convenience, the output spectrum
of system (2.1) in (2.3-2.4) can also be written as (Lang and Billings 1996)

Y(jw) =Y Ya(jw)
n=1

| n (3.1)
Y, (jw) =—— J H,(jo, -, jo, U(jw;)do,,
(0) = (o +~jon) [ UG
@1+ F o, =0
where J(-)dcw represents the integration on the super plane @ + - - - + 0, = @.

w1+ +w,=0
Y.(jw) is referred to as the nth-order output spectrum. For a specific case, when the
system is subject to a multi-tone input

1) =Y |Fi|cos (wit + £F;) (3.2)

i=1

the system output spectrum is

N
Y(jw) = ZY (jw)

YW%% S Hulo, o )Fo,) - Floy,)

Wpey + -+ Ok, =0

(3.3)

where K(> 0) € Z, F; € C, F(wy,) can be written explicitly as

F(wy) = |Fyle/<Furset &) for k; € {£1,---, £K}, and

1 a>0
sgn 1(a) =<0 a=0 foraeR.
-1 a<0

Nonlinear systems usually have complicated output frequencies, which are quite
different from linear systems having output frequencies completely identical to the
input frequencies. From (3.1) and (3.3), it can be seen that the output frequencies in
the nth-order output spectrum, denoted by W), and simply referred to as the nth-
order output frequencies, are completely determined by
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W=w+w+ -+ W, Or W= Wy, + W, + -+ Wy,
which produce super-harmonics and inter-modulation in system output frequencies.
In this chapter, the input u(¢) in (3.1) is considered to be any continuous and
bounded input function in #>0 with Fourier transform U(jo) whose domain
(input frequency range) is denoted by V, i.e., @ €V, and V can be regarded as any
closed set in the real. The multi-tone function (3.2) is only a special case of this.
Therefore, for the input U( jo) defined in V, the nth-order output frequencies are

Wo={o=0+w+ - +w,o; €V,i=12,...,n} (3.4a)
or for the multi-tone input (3.2),

W, = {a):wk, +a)k2+--~+a)k”|a)ki ev,i=1,2, ,n} (3.4b)

where V = —V U V. This is an analytical expression for the super-harmonics and
inter-modulations in the nth-order output frequencies of nonlinear systems. All the
output frequencies up to order N, denoted by W, can be written as

W:W1UW2U"'UWN (340)

In (3.4a—c), V represents the theoretical input frequency range including both positive
and negative frequencies contributing to high order (larger than 1) output spectra
(involving only positive frequencies), V is the physical input frequency range contrib-
uting to every order output spectrum and W represents the output frequencies incurred
by the linear part of the system. For example, V may be a real set [a, b] U [c,d], thus
V=[-d, —c]U[-b, —a]UJa,b]U[c,d], where d>c>b>a>0. When the
system is subject to the multi-tone input (3.2), then the input frequency range is
V ={+w, £ wy,---, £ wg}, which is obviously a special case of the former one.

3.3 Fundamental Properties of Nonlinear Output
Frequencies

In this section, fundamental properties of the output frequencies of system (2.1)
with assumption that V is any closed set of frequency points in the real are
developed. Importantly, the periodicity of output frequencies is revealed. Although
some results about the computation of system output frequencies for the case with
V=[a,b] has been studied in Raz and Van Veen (1998) and Lang and Billings
(1997), for the multi-tone case in Lang and Billings (2000), Wei et al. (2007) and
Yuan and Opal (2001) and for the multiple narrow-band signals in Bussgang
et al. (1974), and some of the properties discussed in this section can be partly
concluded from these previous results for the case V=[a,b] and multi-tone case
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V= {a)l, wy, -, wE}, all the properties of this section are established in a uniform
manner based on the analytical expressions (3.4a—c) for the input domain V which is
any closed set in the real.

The following Property is straightforward from (3.4a, b).

Property 3.1 Consider the nth-order output frequency W,
(a) Expansion,i.e., W, _,CW,;
(b) Symmetry, ie., VQ€eW,, then —QeW,;
(¢) n-multiple, i.e., max(W,) =n-max(V) and min(W,) = — n - max(V). O

Property 3.1 shows that the output frequency range will expand larger and larger
with the increase of the nonlinear order (Property 3.1a), the expansion is symmetric
around zero point (Property 3.1b) and its rate is n-multiple of the input frequency
range (Property 3.1c). These are some fundamental properties which may be known
in literature for some cases and clearly stated here for Volterra-type nonlinear
systems subject to the mentioned class of input signals. Property 3.1a shows that,
the (n—2)th order output frequencies W,,_, are completely included in the nth-order
output frequencies W,,. This property can be used to facilitate the computation of
output frequencies for nonlinear systems. That is, only the highest order of W,, in
odd number and the highest order in even number, of which the corresponding
GFREFs are not zero, are needed to be considered in (3.4c) (e.g., W=Wy_;UWy).
For example, suppose the system maximum order N=10, then only W1, and Wy are
needed to be computed if H;o(.) and Hy(.) are not zero, and the system output
frequencies are W =Wy U Wy, (in case that Ho(.) is zero, Wy should be replaced by
the output frequencies corresponding to the highest odd order of nonzero GFRFs).
For the case that V=[a,b], Property 3.1a can also be concluded from the results in
Lang and Billings (1997). Here the conclusion is shown to hold for any V.

The following proposition theoretically demonstrates another fundamental and
very useful property for the output frequencies of nonlinear systems, and provides a
novel and interesting insight into system output frequency characteristics.

Proposition 3.1 (Periodicity Property) The frequencies in W,, can be generated
periodically as follows

n+1

W, = ‘Ul IT;(n) (3.5a)
wj € V,
in)=cw=w+wy+ -+ w,|wj <0for1 <j<i-—1, (3.5b)

w; > 0forj>i
or
wk].EV,
i(n) = S @ = wy, +op, + -+, |0, <O0forl <j<i—1, (3.5¢)

a)kj>0forj2i

The process above has the following properties
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max(IT;(n)) = —(i — )min(V) + (n — i + 1)max(V) (3.6a)
and
min(Il;(n)) = —(i — 1)max(V) 4+ (n — i + 1)min(V) (3.6b)
max(IT;_;(n)) — max(I;(n)) = min(IT;_; (n)) — min(IL;(n))
= min(V) 4+ max(V) (3.4¢)
A(n) = max(I1;(n)) — min(IL;(n)) = n - (max(V) — min(V)) (3.6d)

Moreover, when the system is subject to the class of input signals U( jo) defined
in [ab] or specially subject to the multi-tone input (3.2) with
wir1 — w; = const >0 fori=1,...,K—1(K > 1), then

I(n) =;—4(n) =T fori=2,...,n+1 (3.6¢)

where T=min(V)+max(V) is the length of the frequency generation period,
II;,(n) — T is a set whose elements are the elements in I1;(n) minus 7, and A(n) is
referred to as the frequency span in each period.

Proof See Sect. 3.6. O

Note that (3.6e) is a very useful property which can be used to simplify the
computation of the output frequencies in applicable cases, because only one period
of frequencies are needed to be computed and the other frequencies can be simply
obtained by subtracting the length 7. However, this property cannot hold for any
input cases. The following corollary is straightforward.

Corollary 3.1 When the system is subject to the class of input U(jow) which is
specially defined in

I'CN

[a+ (i—1eb+ (i —1)g]

i=1

where b > a, e > (b —a) and Z is a positive integer, then (3.6¢) holds. O

Property 3.2 Consider I1,(n) in W,,, which corresponds to the frequencies in the ith
frequency generation period,

(a) If the system input is the multi-tone function (3.2), then for any two
frequencies Q and Q' in IT;(n) and any two frequencies w and @' in V,
min(Q — Q) = min(w — »").

(b) If A(n)>T, then max(Il;,;(n)) >min(Il,(n)) for i=1,...,n. That is,
there is overlap between the successive periods of frequencies in W,,.

Proof (a) is obvious from the proof for Proposition 3.1. Note that max(Il,, ;(n)) =
max(IT,(n)) — T, thus it can be derived that max(Il;, {(n)) — min(II;,(n)) = max
(IT;(n)) — min(IT,(n)) — T= A(n) — T > 0 Thus (b) is proved. O
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The results above theoretically demonstrate some interesting properties of
nonlinear system output frequencies. The periodicity of such output frequencies
can be used to simplify the computation of the output frequencies for some special
cases as mentioned above (where only one period of output frequencies need to be
computed), and facilitate the computation of the output frequencies in the general
case. Importantly, it theoretically reveals a novel insight into the output frequencies
of nonlinear systems and helps understanding of the nonlinear behaviors in output
frequency response of Volterra-type nonlinear systems. Interesting results based on
this property will be further discussed later.

Example 3.1 Consider a simple nonlinear system as follows
y = —0.01y + au® + bu’ + cu — dy’

The input is a multi-tone function u(t)=sin(6t)+sin(7t)+sin(8t). In order to demon-
strate the properties above clearly, only several simple cases of the system are
considered here. Firstly, consider c=d=0. That is, there are only nonlinear compo-
nents (of nonlinear degrees 2 and 3) related only to the input (in short, input
nonlinearities). Therefore, there will be only finite output frequencies because
only the first, second and third order GFRFs are not zero and all the other orders
are zero. The output spectra are given in Figs. 3.1 and 3.2 under different cases of
input nonlinearities. As mentioned, because there are only input nonlinearities with
order 2 and 3 in the system, the system output frequencies of the system are totally
the same as the second and third order output frequencies. That is, W=W, for a=1
and b=c=d=0; W=W; for a=c=d=0 and b=1; and W =W, U W; for a=1, b=1,
and c=d=0. Specifically, for the case a=c=d=0 and b=1 (Fig. 3.1), noting that V=
{6,7,8}, and according to Proposition 1, there should be four periods in the output
frequencies, two of which are positive, i.e., I[1;(3) = {18, 19,20,21,22,23,24} and
I1,(3)={4,5,6,7,8,9,10} ; the period is T=6+8=14; the frequency span in each
period is A(3) = max(I1;(3)) — min(I1(3)) =3 - (max(V) — min(V)) = 6. Figures 3.1
and 3.2 demonstrate the results in Properties 3.1c-3.2a and Proposition 3.1. It is
also shown that the system output frequencies are simply the accumulation of all the
output frequencies in each order output spectrum when the involved nonlinearities
have no coupling effect and no overlap as stated in Property 3.2b. When and how
there are coupling effects between different nonlinearities will be discussed in the
next section. Note that the output response spectrum shown in the figures is 21Y| not
IYl, because 2IYI represents the physical magnitude of the system output.

When considering more complicated cases that there are different nonlinearities
existing in the input and output of the system, the periodicity of the output
frequencies can still be observed, but the interaction (i.e., the coupling effects) at
some frequencies among different output harmonic responses incurred by different
nonlinearities usually produce very complicated output spectrum. However, proper
design of these different nonlinear terms can result in very special desirable output
behaviour.
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Fig. 3.1 Output Output Spectrum

frequencies when (a) a=1, as
b=c=d=0 and (b)
a=c=d=0,b=1 (Jing 5t i
et al. 2010)
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See Fig. 3.3a—c. The output harmonics incurred by different single cubic
nonlinear term in input or output both demonstrate the periodicity. The output
harmonics incurred by single input nonlinearity are finite (see Fig. 3.3a) while the
ones incurred by output nonlinearity are infinite (Fig. 3.3b). When both the two
cubic nonlinearities work together, the output harmonics are still periodic but
demonstrate coupling effect such that the output magnitude at the frequencies
6, 7, 8 are coincidently 1.
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Fig. 3.2 Output
frequencies when a=1,
b=1,c=d=0 (Jing
et al. 2010)
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3.4 Nonlinear Effect in Each Frequency Generation Period

The periodicity of output frequencies is revealed and demonstrated in the last
section. In this section, the nonlinear harmonic or inter-modulated effect on system
output spectrum in each frequency generation period, are studied. Firstly, a general
property for each period of output frequencies of nonlinear systems is given. Then
the interaction between different output harmonics incurred by different input
nonlinearities is investigated as a case study. It is well known in literature and
also as demonstrated in Example 3.1 that different nonlinearities can usually
interact with each other such that the output harmonics incurred by different non-
linearities have coupling effects and become complicated. However, the mecha-
nism about what the coupling effect is and how the different output harmonics
interact with each other is seldom reported. In this section, after a general property
is discussed, the interaction mechanism between different input nonlinearities is
studied in detail based on the periodicity and under an assumption that the non-
linearities only exist in system input for simplicity in discussion. This does not only
demonstrate the usefulness of the novel perspective revealed by the periodicity
property, but also provide some useful results for the analysis and design of
nonlinear FIR filters, which can be referred to the topic discussed in Billings and
Lang (2002). Moreover, although it is convenient to analyze the input nonlinearities
because the input nonlinearities only bring finite order output spectrum and less
coupling effect when there are no system nonlinearities related to the output. More
complicated results in this topic for the other kind of nonlinearities can be devel-
oped by following the similar method.

Firstly, from (3.1) and (3.3), it can be seen that the operators J(-)dow and

o+ Fo, =0

Z() have an important role in the frequency characteristics of the nth-order

[ +F g, =0
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Fig. 3.3 Output
frequencies when (a) a=0,
c=1,b=0.1,d=0; (b)
a=0,c=1,b=0,d=0.1;
(¢)a=0,c=1,b=0.1,
d=0.1 (Jing et al. 2010)
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output spectrum in each frequency generation period. The following property can
be obtained.

Property 3.3 For welli(n) (1<i<|(n+1)/2]), Zl, reaches its
Ok, + ot g, =w

maximum at the central frequency (max(Il;(n))+ min(I1,(n)))/2 or around the cen-

tral frequency if the central frequency is not in I1(n), and has its minimum value at

frequencies max(Il(n)) and min(Il;(n)), i.e.,

wghi,.?w( 2! ) ) 2 o

Ok, +-Fwp, =0 iy +-Foy, =max(I;(n)) - @k, +wx, =min(T1;(n))

where Cf = %ﬁ"‘kﬂ) (0<k<n) (C)=1). Moreover, for €Il(n)
Q<i<|(n+D)2)),

i >

@py +-F o, =0 Oy +Fwp, =<wo+T>

Especially, for the multi-tone input case with w;,; — ®;=const>0 for
i=1,...,K—1,

doi= PR

@, + @, :max(l'l,-(n))—k,~consf @, +Fwy, :min(H[(n))-&-k/fonst

for 0 <k < A(n)/const. Where, |(n+1)/2] is the largest integer which is not
more than (n+1)/2, <@ +T > is the frequency in I1; _ {(n) which is the nearest to
@ +T. The similar results also hold for the input defined in Corollary 3.1 by

replacing Zl with J ldo,,.

@p, + -+, =0
Ky kn o+ Fo, =0

Proof Note that Zl is equal to the number of all the combinations satisfying
Wpey + O, =0
Wk, + - -+ + wr, = w and with the n frequency variables satisfying the conditions in
I[1;(n), thus the conclusions in this property can be obtained by using the combina-
torics, which are straightforward. When the values of w; and wx are fixed and K is
approaching infinity such that const approaches zero, the multi-tone frequencies
will become a continuous closed set [a)l,wﬂ. The input frequencies defined in
Corollary 3.1 are further extended from these two cases. Hence, the conclusions
holding for the multi-tone case can be easily extended to the input case defined in
Corollary 3.1. This completes the proof. O

Property 3.3 shows that in each frequency generation period, the effect of the

operator J(')dO‘w and Z() on system output spectrum tends naturally to

gyt o, =0
w1+ +o,=o ! "
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be more complicated at the central frequency. That is, there is only one combination

for the frequency variables in the operator Z() at the two boundary frequency
Wy, + At g, =w

of each period, it reaches the maximum at the central frequency of the same period

and tends to be decreasing in different period with the frequency increasing. These

can be regarded as the natural characteristics of the output frequencies that cannot

be designed (This can be seen in the Figures of Examples 3.1-3.2).

3.4.1 Nonlinear Effect of Different Input Nonlinearities

As mentioned, different nonlinearities may have quite different effect on system
output spectrum and there will be many coupling effects at the same frequency from
different nonlinearities. This will make the output spectrum at the frequencies of
interest to be enhanced or suppressed. For example, different nonlinearities (e.g.,
u(t)® and u(t)u(t)2 are both input nonlinearity with nonlinear degree 3) may bring
the same output frequencies according to Jing et al. (2006). However, the effect
from different nonlinearities at the same frequency generation period may coun-
teract with each other such that the output spectrum may be suppressed in some
periods and others enhanced. This property is of great significance in the design of
nonlinear systems for suppressing output vibration (Zhou and Misawa 2005; Jing
et al. 2008a). As discussed, the periodicity property reveals a useful perspective for
understanding of interaction mechanism between different system nonlinearities. In
order to demonstrate this, the nonlinear effect between the harmonics incurred by
different input nonlinearities is studied in this subsection.

Consider Volterra-type nonlinear systems described by the NDE model in
(2.11). For convenience, it is given here as

M m K L ptq d'
D) DI TR | iUy | JEETCERE)

m=1 p=0 Iy, l14=0 i=1 i=p+1

There are three kinds of nonlinearities in (3.7): input nonlinearity with coefficient
Coq(-) (g>1), output nonlinearity with coefficient ¢, o(.) (p>1), and input output
cross nonlinearity with coefficient ¢, 4(.) (p+¢>1 and p>0). Here, consider that
there are only input nonlinearities in the NDE model above, i.e., ¢, ,(.)=0 for all p
+¢>1 and p>0. In this case, the GFRFs can be written as

K

Hn 'w,"".wn - C ﬂla ) () (£
(jor,- -, jon) = L(/w1+ +an;00 Lo ) Gan)" - Gjeon)"

where
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Lo(jon + -+ + ja) = choh )(jor + - -+ + jo,)" (3.9)

From (3.8, 3.9) and (3.3), the nth-order output spectrum under the multi-tone input
(3.2) can be obtained as

Vo) =5 3 (F.(“"")”'F(‘“kﬁ)

O Ao, =0 L”(jwkl +- +kan)

x Z conli -+ In) Gao,)" '(I'a)kn)lﬂ>

Iy l,=1

:#W) Y (Flaw) - Floy)

Wpey + -+ O, =0

X Z con(lty - 1) (jan,)" - (ja, )" (3.10)

ll’ n=
To study the nonlinear effect from input nonlinearity in each frequency generation
period, the following results can be obtained.

Definition 3.1 (Opposite Property) Considering two input nonlinear terms of the
same degree with coefficients cg,(/y,--,[,) and coy,,(lll, cee l;,), if there exist two
nonzero real number ¢, and ¢, satisfying ¢ ({4, - - -, 1,) = c; and co,,l(l'] RN l/n) =05,
such that at a given frequency Q?7>?0,

Z(F(wk1)~--F(wk) (m(]a)k) (joor, )" +C2(j(1)k) (/wk,,) )) 0

g, +- g, =Q

with respect to a multi-tone input (3.2), then the two terms are referred to as being
opposite at frequency Q under cg,(/y,- -+, 1,)=c; and co,n(lj L -,l;,):cz, whose
effects in frequency domain counteract with each other at Q.

The following definition will be used in what follows:
sgn(a + bj) = [sgnl(a) sgnl(b)] fora,beR.

Proposition 3.2 summarized the cancellation property of input nonlinearities.

Proposition 3.2 (Cancellation Effect of Input Nonlinearity) Consider nonlinear
systems with only input nonlinearities subject to multi-tone input, in which there
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are two nonlinear terms with coefficients c¢,(/y, - - -,/,) and co,n(lll, S l/n). If there
exists a non-negative integer m < [(n+1)/2] — 1 such that sgn(F(wy, ) - -F(wy,)) is
constant with respect to all the combinations of wy,,- -, @y, € {j:wl, - wE}

satisfying g, + - - - + @y, € Iy41(n), then the two nonlinear terms can be designed
to be opposite at any frequency in the (m+1)th frequency generation period
I1,,,+ 1(n) with proper parametric values of the two coefficients, if and only if

i [/; and
i=1

is given in Sect. 3.6). O

n
l; are both odd integers or even integers simultaneously (The proof
=1

i=

Note that if two nonlinear terms satisfying the conditions in Proposition 3.2
are opposite in I, , 1(n), this does imply that the effects from these two nonlinear
terms on system output spectrum can be counteracted with each other completely
at any given frequency in I1,, , {(n) but not implies that they can be counteracted
completely at all the other frequencies in II,, . ;(n) at the same time. Examples
for that sgn(F(wy, ) - -F(wy,)) is constant with respect to all the combinations of
Wiys O, € {Fw1, -, T og} satisfying oy, + -+ ay, € I, 1(n), are that
K =1 or F; is a real number in (3.2). Proposition 3.2 shows that what input
nonlinear terms of the same nonlinear degree can be opposite and thus provides
guidance about how to choose from input nonlinear terms to achieve a proper
output spectrum.

Moreover, from (3.10), it can be seen that the magnitude of Y, (jo) is dependent
K

on three terms: L,(jo) and F(wy,)- - -F(wy,) Z con(liy - 1) G )" - -G )"

Iy =1
and the function operator Z() Z (+) represents a natural character-
Wy ot o, = Wy ot o, =
istic of the system which cannot be designed as mentioned. The first term L,(jo)
represents the influence from the linear part of the system and the second term
represents the nonlinear influence from input nonlinearities. These two terms can be
designed purposely in practice. Therefore, the results in Proposition 3.2 provide a
useful insight into the design of input nonlinearities to achieve a specific output
spectrum in practice. The following corollaries are straightforward from Proposi-
tion 3.2.

Corollary 3.2 Suppose the conditions in Proposition 3.2 are satisfied for two

nonlinear terms but they are not opposite at a frequency when cq,(/1,- -+, 1,) =¢;
and c(),n(lll, S 1;1) =c,, then they must be opposite at this frequency when
con(ly, -+, 1,)=cy and co,n(l/l, e 1;1) = —sgnl(cy)cs for a proper value of c3. O

Corollary 3.3 Suppose the conditions in Proposition 3.2 are satisfied for two
nonlinear terms with nonzero coefficients cq,(/y,- -, /,) and c(),,,(lll, e, l;,). For a



44 3 Output Frequency Characteristics of Nonlinear Systems

proper value of ¢ (I, - -, ln)/co,n(l/l, BN l/n) > 0, they are opposite in I1,,, (n) if for
areal Q >0,

|’1’/1+”‘”””; J
sgnl D ()" ()" (*1){ ’
g+t ap, =(n—2m)-Q

wkl’ o 'sa)k,, € {+Q’ - Q}

= —sgnl > (@) ()" (3.11)
g+t ag, = (n—2m) - Q
wkw""wk,, S {+Q9 _Q}

Proof See the proof in Sect. 3.6. |
Note that similar results can be extended for the other kinds of nonlinearities.

Example 3.2 Consider a simple nonlinear system as follows
y = —0.01y + aw’ + bu’ir*

The input is a multi-tone signal u(t)=0.8sin(7t)+0.8sin(8t)+ sin(9t), which can be
written as u(t)=0.8cos(7t—90°)+ 0.8cos(8t—90°)+cos(9t—90°). Therefore, F
(w1 1) =7F0.8j, F(wys)=7F0.8j and F(wi+3) =7Fj. Firstly, it can be verified
that, sgn(F(wy, )- - -F(wy,))) is constant in each period I1,(5) for i=1,..,6. Secondly,
the involved coefficients are c( 5(0,0,0,0,0)=a and c(5(0,0,0,1,1)=b which satisfy

that Z li(=0)and Z I (= 2) are both even integers. Therefore, the two nonlinear
=1 =1

terms au’ and bu’ii® can be opposite in each frequency generation period by
properly designing @ and b. These can be verified by simulations (See Figs. 3.4,
3.5, 3.6, and 3.7). It can be seen that, by choosing carefully the values of a and b, the
effects on output frequency response from the two nonlinear terms can be
counteracted with each other in each frequency period. It shall be noted that
when the output spectrum is suppressed in one period, it may be enhanced in the
other.

For a specific frequency period and under specific values of a and b, Corollary
3.2 and Corollary 3.3 can be used to check whether it is suppressed or not. The
frequencies in the second frequency generation period I1,(5) ={19,20,...,29} is
taken as an example to illustrate this for the case a=1.3, b=0.1. For the nonlinear
term au’, (3.11) can be checked as (for n=>5)
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Fig. 3.4 Output spectrum
when (a) a=1.3,b=0 and
(b) a=0,b=0.1 (Jing

et al. 2010)
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Fig. 3.5 Output spectrum
when a=1.3, b=0.1(Jing
et al. 2010)

Fig. 3.6 Output spectrum
whena=—-1.3,b=0.1
(Jing et al. 2010)
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3.4 Nonlinear Effect in Each Frequency Generation Period

Fig. 3.7 Output spectrum
when a=7,b=0.1 (Jing

et al. 2010)
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—sgal > (@) (o)
Wp, + -+ ag, = (n—2m) - Q
a)kla""wk,, c {+Q’ _Q}

= —sgnl > (on) (o)’
O+t o =(5-2)-Q
gy, s € {HQ, — Q}

= —sgnl Z(a)kla)kz)
Wk, A Ao, = 3Q
gy s € {HQ, — Q}

Note that there are five combinations for W, + -+ o = 3Q,
Wk, Wk € {HQ, —Qhie, —Q,Q,Q,Q,Q,Q,—Q,Q,Q,0Q,Q,Q, —Q,Q,Q;
Q0.0 —Q Q; Q Q Q Q —Q; Therefore

—sgnl Z(a)klwkz) = —sgnl (Q%) = -1
W+ o = 3Q
Oy~ Oks € {+Q’ - Q‘}

Equation (3.11) is satisfied.

From Fig. 3.5 it can be seen that, the counteraction between the effects from the
two input nonlinear terms when a=1.3, b=0.1 results in the suppression of the
output spectrum in the second period, but the enhancement for the first period and
little suppression for the third period, compared with the output spectrum under
single nonlinear term au’. Similar results can be seen in Figs. 3.6 and 3.7 under
different parameter values.

Moreover, it is obvious that given system model and input, the system output
spectrum can be analytically computed from (3.1-3.3). On the other hand, given
system model in the multi-tone input case, the input function can be obtained from
the output spectrum at a specific frequency generation period for example IT;(n).
Because each output frequency in I1;(n) can be explicitly determined, thus a series
of equations can be obtained in terms of F(wy, )- - -F(wy, ), and then F(w,), - - - F(w,,)
can be solved. That is, the original input signal can be recovered from the received
signal in a specific frequency generation period. This is another interesting property
based on the periodicity and is worth further investigating.
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3.5 Conclusion

The super-harmonics and inter-modulations in output frequencies of nonlinear
systems are theoretically studied and demonstrated, and some interesting properties
of system output frequencies are revealed explicitly in a general and analytical
form. These properties provide a useful insight into the nonlinear behavior in the
output spectrum of Volterra-type nonlinear systems such as the periodicity and
opposite property in the frequency domain. Especially, the interaction mechanism
among different output harmonics in system output spectrum incurred by different
input nonlinearities is demonstrated using the new perspective revealed by the
periodicity property. There are few results having been reported in this topic.
These results can be used for the design of nonlinear systems or nonlinear FIR
filters to achieve a special output spectrum by taking advantage of nonlinearities,
and thus provide an important and significant guidance to the analysis and design of
nonlinear systems in the frequency domain. Further study will focus on these
theoretical and practical issues. For example, given a specific frequency interval,
how to achieve a suppressed output spectrum by using the opposite property; how to
extend the current results for only input nonlinearities to more general complicated
cases, and so on.

Moreover, output frequency characteristics can also be studied with a parametric
characteristic analysis, which can indicate how different nonlinear parameters
affect output frequencies to certain extent. This will be studied in the following
chapters.

3.6 Proofs

A. Proof of Proposition 3.1

Consider multi-tone input case only. Then the same results can be extended to the
general input case readily. From (3.4b), it can be seen that the frequencies in W, are
determined by @ = @y, + wy, + - - - + @y, When all the frequency variable oy, € V
(fori=1, ...,n) are positive, i.e., oy, >0 fori=1,...,n, the computed fre-
quencies are obviously those in IT;(n). Then I1,(n) can be computed by setting that
there is only one frequency variable (for example wy,) to be negative and all the
other frequency variables to be positive, i.e.,

L(n) = { & = o, + g, + -« + g, | V% € VP00 < 00 >0,
i=2,3,...,n

Similarly, I13(n) can be computed by setting that there is only two frequency

variables (for example w;, and wy,) are negative and all the other frequency

variables are positive, i.e.,
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IM@{wmda%+m+whmfvwh<m%<a}

Wi, >0,i=2,3,...,n

Proceed with this process until that all the frequency variables are negative. There
are totally n negative frequencies (or frequency variables) in V, thus it is obvious
that the repetitive number of the computation process above is 7.

From (3.5¢), it can be obtained that

max(IT;(n)) = —(i — D)min(V) + (n — i + 1)max(V) and min(IL;(n))
= —(i — 1)max(V) 4+ (n — i + 1)min(V)

Therefore,

max(IT;_;(n)) — max(Il;(n)) = —(i — 2)min(V) + (n — i + 2)max(V)
+( — Dmin(V) — (n — i + 1)max(V)
=min(V) + max(V) =T

and

min(IT;_; (n)) — min(IL;(n)) = — (i — 2)max(V) + (n — i + 2)min(V)
+(i — D)max(V) — (n — i + 1)min(V)
=max(V) +min(V) =T

Moreover, the specific width that the frequencies span in I1i(#n) is

A(n) = max( /(n)) — min(I1;(n))
—(i — D)min(V) + (n — i + 1)max(V)
+(i — )max(V) — (n — i + 1)min(V)
n - (max(V) — min(V))

which is a constant.

Now consider the case that the input is the multi-tone (3.2) with
Wi —w; =const >0 fori=1, ..., K — 1. In this case, it can be shown that
the difference between any two successive frequencies in Il(n) is const. For
example, for any Q eIl (n), let Q = wy, + wy, + - - - + wy,. Without specialty,
suppose min(V) < @y, < max(V), then the smallest frequency that is larger than
Q must be Q' which can be computed as a)lk1 + g, + -+ awy, where

a);{1 = wy, + const. Hence, there exists an integer number 0 < a < A(n)/const such
that Q =min(Il(n))+a-const for VQ €Il (n). Considering VQ €Il (n) with
Q =min(I1;(n)) + aA(n), it can be derived that
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Q+ T =min(IT;(n)) + aA(n) + T = —(i — 1)max(V) + (n — i + 1)min(V)
+aA(n) + max(V) + min(V)
=—(i—2) -max(V)+ (n— i+ 2)min(V) + aA(n)
= min(Il;_1(n)) + aA(n) € I1,_; (n)

Therefore, for VQell;(n) there exists a frequency Q' €Il;_(n) such that
Q' =Q+T and vice versa. This gives (3.6e). When o, =a, wg = b and K — oo

such thatw;y; — w; = const - 0 fori=1,...,K — 1, it will become the case of
a general input U(jo) defined in [a,b]. The proposition is proved. O

B. Proof of Proposition 3.2
When the multi-tone input satisfies that sgn(F(wy,)---F(wg,)) is constant with
respect to all the combinations of wy,,- -, oy, € {:I:a)l, R a)l?} satisfying

@, + -+ ay, € My (n) (for example K =1 or F; is a real number in (3.2)),
then the opposite condition according to Definition 3.1 is that, there exist two
nonzero real number ¢; and ¢, such that at a given frequency Q' €11, (n),

> (Cl (o )"+, )"+ eajo, ) '(iwk»z)/") =0 (BO)

/
@+t wp, =Q

(BO) can also be written as

== Z((w’kl)l;' : '(a)kn)l;) (B1)

Note that given two specific nonlinear parameters cg ,,(/;, - - -, [,) and cos,,(lll, s 1;1)’

it can be seen that (wy,)"---(wy, )" and (wy,)"---(wx, )" are both nonzero for
Wiy oy, € {For, -, L og) satisfying o, + -+ + @i, € ,p4(n), and the
right side of (B1) is real, therefore

n /
> (1-1)
() =t must be nonzero real (B2)
On the other hand, if (B2) holds, whatever the value of

!
i AN .
- E ((wkl) e (a)k)> is, there always exist two real number ¢; and ¢,
W+t wy, =Q
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such that (B1) holds. Hence, the opposite condition above now is equivalent to be

that (B2) holds. That (B2) holds is equivalent to be that Z <ll- — l;) is an even
i=1

n n
integer. This is further equivalent to be that Z l;and Z l; are both odd integers or
i=1 i=1
even integers simultaneously. |

C. Proof of Corollary 3.3

Noting that Z (l,- — l;) is an even integer, then from (3.11), it can be derived that
i=1

sen D (eron)" o))

Dpy ++ O, =Q

= —sen| 3 (eaton) o)) (B3)

Wpy + oy, =Q

where @y, , - -, wy, € {+Q, — Q} and Q' = (n — 2m)Q for any Q > 0. (B3) implies
that there exist two nonzero real number ¢, and ¢, satisfying c¢,/c,>0 such that at a
given frequency Q' €11, (n) = {(n — 2m)Q}, (BO) holds. Note that II,,,, ;(n) =
{(n —2m)Q} is the case that the input is a single tone function i.e., K = 1. Hence,
(3.11) implies that (BO) holds forK = 1. To finish the proof, it needs to prove that, if
(3.11) holds, then (B0) holds for all Q € I1,,; (n)g., (note that when K > 1 there
are more than one elements in I1,,(n)g. ). By using the mathematical induction
and combination theory, it can be proved that

sgn Z (Cl (oo, )"+ '(jwk”)[”)
Wiy + oy, =Q
Qe HmH(”)K:l

= sgn Z (C2(jwk.)l' . .(jwkn)l")
o+ oy, =€
Qe Hm+1(n)k>l

For paper limitation, this is omitted. Therefore, if (3.11) holds, (BO) holds for all
Q/ S H,,,+1(n)E>l. O



Chapter 4
Parametric Characteristic Analysis

4.1 Separable Functions

Definition 4.1 A function A(s; x) is said to be separable with respect to parameter
x if it can be written as A(s; x) = g(x) - f1(s) + fo(s), where f;(.) for i=0,1 are functions
of variable s but independent of the parameter x. O

A function A(s; x) satisfying Definition 4.1 is referred to as x-separable function or
simply separable function, where x is referred to as the parameter of interest which
may be a parameter to be designed for a system, and s represents other parameters
or variables, which may be a reference variable (or independent variable) of a
system such as time or frequency.

Remark 4.1 In the definition of an x-separable function A(s; x), x may be a vector
including all the separable parameters of interest, and s denotes not only the
independent variables of 4(.), but also may include all the other un-separable and
uninterested parameters in /(.). The parameter x and s are real or complex valued,
but the detailed properties of the function /A(.) and its parameters are not necessarily
considered here. Note also that in Definition 4.1, fy(s) and f;(s) are invariant with
respect to x and g(x). Thus /(s; x) can be regarded as a pure function of x for any
specific s. In this case, if g(x) is known, and additionally the values of A(s; x) and g
(x) under some different values of x, for example x; and x,, can be obtained by
certain methods (simulations or experimental tests), then the values of fy(s) and f(s)
can be achieved by the Least Square method, i.e.,
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(s s [0 <[} 8] i) wn

Thus the function A(s; x) at a given s can be obtained which is an analytical function
of the parameter x. This provides a numerical method to determine the relationship
between the parameters of interest and the corresponding function. O

An x-separable function A(s; x) at a given point s is denoted as i(x)ly, or simply as
h(x)s.
Consider a parameterized function series

H(s;x) = g1 (X)f 1(5) + 82(0)f2(s) + - +g,(0)fu(5) =G-F' (4.2)

where n>1, fi(s) and g;(x) for i=1,...,n are all scalar functions, let F =[f(s),
£08), - fu(s)] and G =[g1(x), g2(x),---,g,(x)], x and s are both parameterized
vectors including the interested parameters and other parameters, respectively.
The series is obviously x-separable, thus H(x), is completely determined by the
parameters in x or the values of g{(x), g2(x), - - -, g,(x). Note that at a given point s,
the characteristics of the series H(s; x) is completely determined by G, and how the
parameters in x are included in H(s; x) is completely demonstrated in G, too.
Therefore, the parametric characteristics of the series H(s; x) can be totally revealed
by the function vector G. The vector G is referred to as the parametric characteristic
vector of the series. If the characteristic vector G is determined, then following the
method mentioned in Remark 4.1, the function H(x); which shows the analytical
relationship between the concerned parameter x and the series is achieved, and
consequently the effects on the series from each parameter in x can be studied.
The function H(x), is referred to as parametric characteristic function of the series
H(s; x). Based on the discussions above, the following result can be concluded.

Lemma 4.1 If H(s; x) is a separable function with respect to the parameter x, then
there must exist a parametric characteristic vector G and an appropriate function
vector F, such that H(s; x)=G - F T where the elements of G are functions of x and
independent of s, and the elements of F are functions of s but independent of x. O

According to the definition and discussion above, it will be seen that the nth-
order GFRF of the NDE model in (2.11) and NARX model in (2.10) is separable
with respect to any nonlinear parameters of the corresponding models. As men-
tioned, in order to study the relationship between an interested function H(s; x) and
its separable parameters x, the parametric characteristic vector G should be
obtained. For a simple parameterized function, it may be easy to obtain parameter-
ized vector G. But for a complicated function series with recursive computations,
this is not straightforward. To this aim, and more importantly for the purpose of the
parametric characteristic analysis for the nth-order GFRF and output spectrum of
Volterra-type nonlinear systems described by (2.10) or (2.11), a novel operator is
introduced in the following section for the extraction of any parameters of interest
involved in a separable parameterized polynomial function series.
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4.2 Coefficient Extractor

Let C, be a set of parameters which takes values in C, let P, be a monomial function
set defined in Cy, i.e.,P. = {c'{‘cgz- e € Cyuri € Zo, I = |CS|}, where |C;| is the
number of the parameters in C,, Z, denotes all the positive integers. Let W be
another parameter set similar to C; but WyNCy= ¢, and let Py be a function set
defined in Wy, i.e., Pr = {f(wy, - -, wplw; € W, [ =IW}. Let E denote all the finite
order function series with coefficients in P, timing some functions in P. A series in
E can be written as

HCF:SLf1+S2f2+"'+S,;fJEE (43)

where ;€ P.f; € Py for i=1,..., 6 € Z,, C=[s1,52,. . ., Sol, and F=[ fi, fo,. . . f,]".
Obviously, this series is separable with respect to the parameters in C; and Wi.
Define a Coefficient Extraction operator CE : 2 — P_.°, such that

CE(HCF) = [S17S2) o ';sa} =Ce¢ P(‘” (44)

where P ={[sy,52," -, S,ls1,-,5,€P.}. This operator has the following
properties:

(1) Reduced vectorized sum “®”.

CE(HQFI +HC2F2) = CE<HC]F1) EBCE([—ICEFz) =CieC = [Clac/z}

and  C, =VEC(C,—CinG,), where  Ci={Ci(i)]1<i<|Ci]},
C2 = {C,(i)|1 <i < |Cy|}, VEC(.) is a vector consisting of all the elements
in set (.). CI2 is a vector including all the elements in C, except the same

elements as those in C;.
(2) Reduced Kronecker product “®”.

CE(Hc,r, - Heyry) = CE(Hc,r,) ® CE(Hc,r,)

C3 = [Ci(1)Ca, -+, C1(|C1))Cs]
— A
= C1 ®C2_VEC{C’C _ C3(l),1 S l g |C3|

which implies that there are no repetitive elements in C; ® C,.

(3) Invariant.
(i) CE(a-Hcp)=CE(Hcp),Vag Cy; (i) CE(Hcr, + Her,) = CE(Her,1ry))
=C.

(4) Unitary. (i) If % =0 for VceCy, then CE(Hcp)=1; (ii) if Hop=0 for
V¢ € Cy, then CE(Hcg)=0. When there is a unitary 1 in CE(Hcg), there is a

nonzero constant term in the corresponding series Hcr which has no relation
with the parameters in Cj.
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(5) Inverse. CE~'(C)=Hcr. This implies any a vector C consisting of the elements
in P should correspond to at least one series in E.

(6) CE(Hc,F,) ~ CE(Hc,r, ) if the elements of C; are the same as those of C,, where
“~2” means equivalence. That is, both series are in fact the same result consid-
ering the order of s,f; in the series has no effect on the value of a series Hcp. This
further implies that the CE operator is also commutative and associative, for
instance, CE(HCIFI +Her)=CidCr =~ CE(HC2F2 +Her)=C®Ch.
Hence, the results by the CE operator may be different but all may correspond
to the same function series and are thus equivalent.

(7) Separable with respect to parameters of interest only. A parameter in a series
can only be extracted if the parameter is of interest and the series is separable
with respect to this parameter. Thus the operation result is different for different
purposes.

Note that from the definition of the CE operator above, all the operations are in terms
of the parameters in C,, and the CE operator sets up a mapping from Z to P.°. For
convenience, let ® (-) and @ (-) denote the multiplication and addition by the reduced

(%) (%)

Kronecker product “®” and vectorized sum “@” of the terms in (.) satisfying (*),
k

respectively; and ® C, , =C, ,®---®C,, can be simply written as Cﬁ 4 For
i=1 :

model (2.11), define the (p+¢)th degree nonlinear parameter vector as

Cpq= ["p,q(ov ) 0)"'p,q(0a s 1), "Cp,q(K’ K] (4.5)

ptg=m

which includes all the nonlinear parameters of the form ¢, ,(.) in model (2.11).
A similar definition for model (2.10) as

Cp.g = [cpg(1,-- 1), ¢p (1, ,2), o ¢p g (K, -+, K] (4.6)
p+q=m

Note that C,, can also be regarded as a set of the (p+¢)th degree nonlinear
parameters of the form ¢, ,(.). Moreover, if all the elements of CE(H ) are zero,
i.e., CE(Hcr)=0, then CE(HcF) is also regarded as empty.

The CE operator provides a useful tool for the analysis of the parametric
characteristics of separable functions. It can be shown that the nonlinear parametric
characteristics of the GFRFs for (2.10) or (2.11) can be obtained by directly
substituting the operations “+” and “.” by “®” and “®” in the corresponding
recursive algorithms, respectively, and neglecting the corresponding multiplied
frequency functions. This is demonstrated by the following example.

Example 4.1 Computation of the parametric characteristics of the second order
GFRF of model (2.11). The second order GFRF from (2.19-2.24) is
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K
L(I’l) 'Hn(ja)l’ o "jwn) = Z CO,n(kla o '7kn)(jwl)kl o '(jwn)kn
kel
n—1n—q K ] x .
+ Z Cp.q (kl I ’7kp+q) (jwiz—q+l) e '(iwn) [W/Hn—q,p (jwl st "jwn—q)
q=1p=1ki,kp4=0
n K
+ Z Cp,()(kh’"akp>Hn,p(jwl,"'vjwn)
P=2k(yky=0

(4.7)

K
for n=2, where L(2)==>_cio(ki)(jor +jw2)"', Hy1(jor) =H(jan)(jan )",
k=0

Hao(-) = H (jar )H 1 (jo) ooy ).
Applying the CE operator to (4.7) for nonlinear parameters and using the
notation in (4.5), it can be obtained that

CE(H,(+)) =CE(L(2)-H(-))

2-12—¢q 2
=Co2®| & & Cpg ®CE(Ha—g()) @(@2(:[;,0 ®CE(H2,p(-))>
q=1p= p=

=Coo® <C14,1 ®CE(H1,1('))> ® <C2,0 ®CE(H2,2('))>

Note that H;(.) has no relationship with nonlinear parameters, from the definition of
CE operator, it can be obtained that CE(H;(.))=1. Similarly, it can be obtained that
CE(H,»(.))=1. Therefore, the parametric characteristic vector of the second order
GFREF is

CE(H>(-)) = Co2 @ C1,1 ® Ca0 (4.8)

Equation (4.8) shows clearly that nonlinear parameters in Cy 5, Cy; and C, o have
independent effects on the second order GFRF without interference, and no any
other nonlinear parameters have any influence on the second order GFRF. This
provides an explicit insight into the relationship between the second order GFRF
and nonlinear parameters. For example, if H,(.) is required to have a special
amplitude or phase, only the parameters in Cqy,, Cy; and C,, may need to be
designed purposely. O

Example 4.1 shows that the CE operator is very effective for the derivation of the
parametric characteristic vector of a separable function series about the parameters
of interest. It provides a fundamental technique for the study of parametric effects
on the involved parameter-separable function series for any systems. In the present
study, in most cases, the CE operator will be applied for all the nonlinear param-
eters in model (2.10) or model (2.11). When the CE operator is applied for a specific
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nonlinear parameter c, the parametric characteristic of the nth-order GFRF will be
denoted by CE(H,(.))..

4.3 Case Study: Parametric Characteristics of Output
Frequencies

There are three categories of nonlinearities in model (2.10) or (2.11): input
nonlinearity with coefficient co4(.) (¢>1), output nonlinearity with coefficient
c0p0(.) (p>1), and input output cross nonlinearity with coefficient ¢, 4(.) (p+g>1
and p>0) (where p and ¢ are integers). Different category and degree of
nonlinearity in a system can bring different output frequencies to the system.
How a nonlinear term affects system output frequencies and what the effect is,
are very interesting and important topics. However, few results have been reported
for this. As an example for application of the parametric characteristic analysis
established in this chapter, this section provides some useful results for this topic
based on the output frequency properties developed in Chap. 3.

Consider the NDE system in (2.11). What model parameters contribute to a
specific order GFRF and how model parameters affect the GFRFs can be revealed
by using the parametric characteristic analysis. From (3.1)—(3.3), it can be seen that
the nth-order output frequencies W, are also determined by the nth order GFRF. If
the nth order GFRF is zero, then W,=[]. It is known from Chap. 2 that the nth order
GFRF is dependent on its parametric characteristics, thus the nth-order output
frequencies are also determined by the parametric characteristics of the nth-order
GFRF. Therefore, (3.4a,b) can be written as

W,={w=(o1+w+ +a,) (1-8(CEH,(w1, ,,))))|w; €V,i=12,...,n}
(4.92)

and

W,= {a)z(wk1 +op,+Foy,) (1 —6(CE(H (g, ,---,(uk”)))) ‘a)ki eV,i= 1,2,...,n}
(4.9b)

where 5(x):{(1)z;eo or 1. In (4.9ab), suppose W, is empty when

S(CE(H,()))=1.

Equations (4.9a,b) demonstrate the parametric characteristics of the output
frequencies for Volterra-type nonlinear systems described by (2.10) and (2.11),
by which the effect on the system output frequencies from different nonlinearities
can be studied. Since negative output frequencies are symmetrical with positive
output frequencies with respect to zero (Property 3.1b), thus for convenience only
non-negative output frequencies are considered in what follows.
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Property 4.1 Regarding nonlinearities of odd and even degrees,

(a) when there are no nonlinearities of even degrees, the output frequencies
generated by the nonlinearities with odd degrees happen at central frequencies
(21+1)T1/2 for I=0,1,2,. . . with certain frequency span, where T is the frequency
generation period (Chap. 3);

(b) when there are only input nonlinearities of even degrees, the output frequencies
happen at central frequencies /- T for /=0,1,2,. .. with certain frequency span;

(c) in other cases, the output frequencies happen at central frequencies /-7/2 for
1=0,1,2,. .. with certain frequency span.

The frequency span is A(n) corresponding to the nth order output frequencies if
applicable.

Proof See Sect. 4.5 for the proof. O

Property 4.1 shows that odd degrees of nonlinearities bring quite different output
frequencies to the system from those brought by even degrees of nonlinearities.

Property 4.2 Regarding different categories of nonlinearities,

(a) when there are only input nonlinearities of largest nonlinear degree n, the
non-negative output frequencies are in the closed set [0, n-max(V)];
(b) in other cases, the output frequencies span to infinity.

Proof (a) From the GFRFs in Chap. 2 (and the corresponding parametric charac-
teristics to be further discussed in Chap. 5), only the GFRFs of orders equal to the
nonlinear degrees of the non-zero input nonlinearities are not zero since there are no
other kinds of nonlinearities in the system. Thus the largest order of non-zero
GFREFs is n. The conclusion is therefore straightforward from Property 3.1c. (b) If
there are other kinds of nonlinearities, the largest order of nonzero GFRFs will be
infinite, because for any parameter c¢,4(.) with p>0 and p+¢>1, it can form a
monomial with any high nonlinear degree (cp,q(.)“) and thus contribute to any
high order GFRF (this will be more clear from the parametric characteristics of
the GFRFs in Chap. 5). Thus the output frequencies can span to infinity. This
completes the proof. O

The input nonlinearities of a finite degree can independently produce output
frequencies in a finite frequency band.

Property 4.3 Regarding different categories and degrees of nonlinearities,

(a) when there are only input nonlinearities, a nonlinear term of degree n can only
produce output frequencies W,,, and there are no crossing effect on output
frequencies between different degrees of input nonlinearities;

(b) in other cases, a nonlinear term of degree n contributes to not only output
frequencies W, but also some high order output frequencies W, for m > n due
to crossing effect with other nonlinearities.

Proof (a) Considering a nonlinear coefficient cy ,(.), it can be seen from the GFRFs
in Chap. 2 that, only CE(H,,(.)) is not empty, if all the other degree and type of
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nonlinear parameters are zero. That is, ¢y ,(.) only contributes to H,(.) in this case.
If there are other input nonlinearities, it can be known from Proposition 3.1 in
Chap. 3 that only nonlinear parameters from input nonlinearities cannot form an
effective monomial which is an element of any order GFRF. That is there are no
crossing effects between different degrees of input nonlinearities. (b) When there
are output or input-output cross nonlinearities, it can be seen from the GFRFs in
Chap. 2 (and the corresponding parametric characteristics to be further discussed in
Chap. 5) that there are crossing effects between different nonlinearities, and the
nonlinear degree of any effective monomial (e.g. ¢y 4(.)co ()" (g>1)) formed by the
coefficients from the crossing nonlinearities can be infinity. Thus a nonlinear
parameter of degree n, for example ¢ ,(.), has contribution not only to H,(.), but
also to some higher order GFRFs, for example ¢ ,(.)coq()” is an element of CE
(Hi(.)) where m=z-n+n+1—z. This completes the proof. O

From Property 4.3, the crossing effect usually happens easily between the output
nonlinearities and the input-output cross nonlinearities.

Properties 4.1-4.3 provide some novel and interesting results about the output
frequencies for nonlinear systems when the effects from different nonlinearities are
considered, based on the GFRFs in Chap. 2 (and the corresponding parametric
characteristics to be further discussed in Chap. 5). Property 4.1 shows that odd
degrees of nonlinearities have quite different effect on system output frequencies
from even degrees of nonlinearities. Especially, it is shown from the properties
above that input nonlinearities have special effect on system output frequencies
compared with the other categories of nonlinearities. That is, input nonlinearities
can move the input frequencies to higher frequency bands without interference
between different frequency generation periods. These properties may have signif-
icance in design of nonlinear systems for some special purposes in practices. For
example, some proper input nonlinearities can be used to design a nonlinear filter
such that input frequencies are moved to a place of higher frequency or lower
frequency as discussed in Billings and Lang (2002). The results in this section have
also significance in modelling and identification of nonlinear systems. For example,
if a nonlinear system has only output frequencies which are odd multiples of the
input frequency when subjected to a sinusoidal input, the system may have only
nonlinearities of odd degree according to Property 4.1. Obviously, the results in this
section provide a useful guidance to the structure determination and parameter
selection for the design of novel nonlinear filters and also for system modelling or
identification.

Example 4.2 Consider a simple nonlinear system as follows
y = —0.01y + au® — by’ — cy?

The input is a multi-tone function u(t)=sin(6t)+sin(7t)+sin(8t). The output spectra
under different parameter values are given in Figs. 4.1, 4.2, and 4.3, which
demonstrate the results in Properties 4.1-4.3. For the input nonlinearity, the readers
can also refer to Figs. 3.1-3.7.
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Fig. 4.2 Output frequencies when a =0.1, b=5, c=0

When there are only odd nonlinearities, the output frequencies happen at around
central frequencies 7*(2k+1). When there are even nonlinearities, the output fre-
quencies appear at around central frequencies 7*k. The input nonlinearities only
produce independently the output frequencies within a finite frequency band. The
periodicity of the output frequencies can also be seen clearly from these figures.

Especially, it is worthy pointing out from Figs. 3.1, 3.2 and 4.1 that there can be
no coupling effects between proper chosen input nonlinearities as mentioned
before, which cannot be realized by the other categories of nonlinearities.
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Thus the input frequencies can be moved to higher frequency periodically without
interference between different periods and then decoded by using some methods.
This property may have significance when a system is designed to achieve a special
output spectrum at a desired frequency band in practices by using nonlinearities.

4.4 Conclusions

The parametric characteristic analysis given in this chapter is to reveal how the
parameters of interest in a separable parameterized function series or polynomial
affect the function series or polynomial and what the possible effects are. This can
provide a novel and convenient approach to investigate nonlinear effects incurred
by different type and degree of nonlinearities in the frequency response functions of
nonlinear systems. Using this method, the GFRF and nonlinear output spectrum can
all be studied in a parametric way and eventually formulated into a more practical
form for nonlinear system analysis, design and optimization in the frequency
domain.

Importantly, the CE operator provides an important and fundamental technique
for this parametric characteristic analysis method. As shown in Sect. 4.3, the
parametric characteristic analysis based on the CE operator can allow a convenient
way to analyze the output frequency characteristics in terms of different nonlinear
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terms. More interesting and useful results will be developed and demonstrated in
the following chapters for the parametric characteristics of the GFRFs using this
novel CE operator.

4.5 Proof of Property 4.1

The proof needs the parametric characteristic result in Chap. 5, which are directly
cited here.

(a)

(b)

(©)

According to the GFRFs in Chap. 2 (and the corresponding parametric char-
acteristics to be further discussed in Chap. 5), the elements of CE(H,,(.)) must
be monomial functions of the coefficients of the nonlinear terms, i.e., ¢p, 4, ()
-+Cp,.q,(-) for some L>1. Note that there are only nonlinearities of odd
degrees, i.e., 2k+1 (k=0,1,2,...), thus the nonlinear degree of any monomial

L
in this case is (Proposition 5.1 in Chap. 5) n= Z (pi+q)—L+1=
. . i=1
Z 2ki+1)—L+1= ZZ k; + 1. Clearly, n is still an odd number. That
i=1 i=1
is the nonlinearities in the system of this case can only contribute to odd order
GFRFs. Thus all the even order GFRFs are zero, i.e., CE(H,(.))=0 for n is even.
Therefore, W, may not be empty only when n is odd, otherwise it is empty.
Suppose n is an odd integer and CE(H(.))#0 and 1. That is, there are
nonzero elements in CE(H,(.)) and all the elements in CE(H,(.)) consist of the
coefficients of some nonlinear terms of the studied case. According to Prop-
osition 3.1, the first period in W, must be I1;(n) C [n-min(V), n - max(V)],
whose central point is obviously #-T/2 and of which the frequency span is
A(n). Also from Proposition 7.1, the kth period in W, must be IT;(n) C [n# - min
V) —(k— 1)T,n-max(V) — (k— 1)T], whose central point is obviously n-T/
2—(k—1)T=(n—2(k—1))T/2 and of which the frequency span is still A(n).
Note that n—2(k—1) is an odd integer for k=1,2,.... The first point of the
property is proved.
Consider the case that there are only input nonlinearities of even degrees. In
this case, it can be verified from the parametric characteristics in Chap. 5 that
only the GFRFs of orders equal to the nonlinear degrees of the non-zero input
nonlinearities are not zero. That is, only some GFRFs of even orders are not
zero. Suppose n is an even integer and CE(H,(.))#0 and 1. According to
Proposition 3.1, the kth period in W, must be I1;(n) C [n - min(V) — (k — 1)T,
n-max(V) — (k— 1)T], whose central point is obviously n-T/2—(k—1)T=(n—2
(k—1))T/2 and of which the frequency span is A(n). Note that n—2(k—1) is an
even integer for k=1,2,. . .. This second point of the property is proved.
The conclusion is straightforward since there are non-zero GFRFs of even and
odd orders. This completes the proof. O
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Chapter 5

The Parametric Characteristics of the GFRFs
and the Parametric Characteristics Based
Analysis

5.1 The GFRFs and Notations

The concept of the GFRFs provides a basis for the study of nonlinear systems in the
frequency domain. For a specific parametric model of nonlinear systems such as
NARX, NDE, Block-oriented models, the GFRFs can be derived with the probing
methods as discussed in Chap. 2. For convenience of discussions, the computation
of the nth-order GFRF for the NDE model (2.11) is given here:

K

Ln(jwl + - +jw11) . Hn(jwls o 'sjwn) = Z CO,n(kla o '7kn)(jw1)kl' . '(ja)n)kn
kiyk,=1
n—1n—q K q1 s
+ Z Cpog Kty kpig) (H(jw"—q+i) [)+I>H"‘q,ﬂ (o1, - jwn—g)
q=1p=1ki,ky44=0 i=1
n K
+ Z Cp,O(kly'"7kp)Hn,p(jwly""jwn>
P=2k15 k=0

(5.1)

Hyp(-) = Z Hi(jo, - jwi)Hp—i p—1 (joiy1, - - -, jo,)(jor + - +jw)" (5.2)
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Hn,l(jwlv o 'sjwn) = Hn(ja)l’ o "jwn)(ja)l + - +jwn)kl (53)

where
La(jor + -+ ja,) = chokl (or + -+ jao)" (5.4)

Moreover, H, ,(jo1, - - -, jo,) in (3.2) can also be written as

n—p+1
Hyplor,--jon) = Y [[HnGoxr - jox) joxea + -+ jox.,)"
rpser, =171
Zr,« =n
(5.5)

where

i—1
X=>Y"r (5.6)
x=1

Furthermore, if defining the following notations,

Hoo(:) =1,
H,o(-)=0 forn>0,
H,,()=0 for n<p,

and
ﬁ q=0,p>1 (5.10)
- 0 gq=0,p<1 '
then (5.1) can be written in a more concise form as

K
Hn(jwl""’jwn):fz Z Cp,q(kla"'7kp+q)
L {igm)

i=1

q
(H Ja)" q+i H’)an,p(jwls e "jwnfq) (511)
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Therefore, the recursive algorithm for the computation of the GFRFs is (5.8 or 5.11,
5.10, 5.2-5.5).

Importantly, comparing the nth-order GFRF in (5.11) for the NDE model and
that for the NARX model in (2.17), i.e.,

q
1 n n—q K ’fz(wn7q+ikp+i)
D X nalbikpg)e Higp (jon- jon-g)

(5.12)

Hn(jwl,""jwn):m
n n

both (5.11) and (5.12) have the same structure and notations. Therefore, the
parametric characteristics of the GFRFs for the NDE model are the same as for
the NARX model.

From the recursive algorithm for the computation of the GFRFs in (5.8 or 5.11,
5.10, 5.2-5.5), it can be seen that the nth-order GFRF is a parameter-separable
polynomial function with respect to the nonlinear parameters in model (2.10 or
2.11). For convenience, let

p=0-m pt+qg=m,
C(n,K) = | cpglkis kpiq) 2<m<n (5.13)
ki=0--K, i=1-p+q

which includes all the nonlinear parameters from nonlinear degree 2 to n. Obvi-
ously, C(M,K) includes all the nonlinear parameters involved in model (2.10 or
2.11). In the following sections, the CE operator will be applied to all the nonlinear
parameters in C(n, K). Note also the notations defined in (4.5) and (4.6), which will
be used frequently throughout this book without further explanation.

5.2 Parametric Characteristics of the GFRF's

A fundamental result can be obtained firstly for the parametric characteristic of the
nth-order GFRF in (5.11) or (5.12), which provides an important basis for the
parametric characteristic analysis of the frequency response functions in the fol-
lowing studies.

Proposition 5.1 Consider the GFRFs in (5.1). There exists a complex valued
function vector with appropriate dimension f,(joy, - - -, jo,) which is a function of
jo1, - - -, jo, and the linear parameters of the NDE model (2.11), such that

H,(joi, -, jo,) = CE(H,(jo1,- -, jo,)) - f,(jo1, -, jo,) (5.14)

where CE(H,(jo1, - - -, jo,)) is the parametric characteristic vector of the nth-order
GFREF, and its elements include and only include all the nonlinear parameters in
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Co,, and all the parameter monomials in Cp, 4 ® Cp, 4, @ Cp, 4, @ -+ Q@ Cp, 4, for
0 <k <n—2, whose subscripts satisfy

k
P+a+Y (pi+a)=n+k 2<p+q¢<n—k 2<p+gq
i=1

<n—kand 1<p<n-—k (5.15)

Proof Equation (5.14) is directly followed from Lemma 4.1 and the corresponding
discussions in Chap. 4. It can be derived by applying the CE operator to Egs. (5.1)—
(5.4) that

. . n—1 n—q
CE(H,(jwi, - - -, jw,)) = Con & ( & & Cpg® CE(HM,,,<.))>
q=1 p=

® (pé_;z Cpo® CE(H,,,,,(~))> (5.16a)

CE(H,p()) =" & CE(Hi()) ® CE(H,ip1()) or CE(H, ("))

i=1

- "y ] & CE(H,() (5.16b)
rye- .rp — =
ZI‘,‘ =n
CE(H,1(-)) = CE(H,(")) (5.16¢)

Obviously, Cy, is the first term in Eq. (5.16a). For clarity, consider a
simpler case that there is only output nonlinearities in (5.16a), then (5.16a)
18 reduced to the last term of Eq. (5.16a), i.e.,

n n n—p+1 p
® Cpo @ CE(Hpp(-)) = @ Cpo® & ® CE(H,,(")).
p=2 p=2 e .rp =1 i=1
Sri=n
n—p+1 P . . .

Note that 2> ® CE(H,,(-)) includes all the combinations of (ry,75,.. .,;,)
rl...rp — 1 i=1
SMri=n

P

satisfying Z ri=n, 1<r;,<n—p+1, and 2 <p <n. Moreover, CE(H,(-))=1
i=1

since there are no nonlinear parameters in it, and any repetitive combinations

n—p+1 P
have no contribution. Hence, 2> ® CE(H,,(-)) must include all the
riece rp =1 i=1
Sri=n
possible non-repetitive combinations of (ri,ra,- - 1e) satisfying

k
Zr,- =n—p+k 2<r;i<n—p+1and 1 <k<p. So does CE(H,(jo, -, jo,)).
i=1
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Each of the subscript combinations corresponds to a monomial of the involved
nonlinear parameters. Thus, by including the term C,,y and considering the range
of each variable (i.e., r;, p, and k), CE(H,(jo,,- - -, jw,)) must include all the
possible non-repetitive monomial functions of the nonlinear parameters of the

k
form Cpy ® Cr 0 @ Cryo ® -+ @ Cpo satisfying p + Zri =n—+k 2<r,<n-—k,
i=1

0<k<n—-2and2<p<n—k.

When the other types of nonlinearities are considered, by extending the
results above to a more general case such that the nonlinear parameters appear
in the form C,;®Cpq ®Cpy, ®-+-®Cpy  and the subscripts satisfy
k

p—&—q—i—Z(pi—i—qi) =n+k 2<pi+q;<n—k, 0<k<n—2,2<p+q<n—k
i=1

and 1 <p <n—k, the same conclusion can be reached. Hence, the proposition is

proved. O
Remark 5.1 In Proposition 5.1, f,(jwi,---,jo,) is not a function of
CEH,(joi,---,jw,)) and is invariant at a specific point (@1,- - -, ®,) if the

linear parameters of model (1.5) are fixed. Proposition 5.1 provides for the
first time an explicit analytical expression for the nth-order GFRF which
reveals a straightforward relationship between the nonlinear parameters of
model (1.5) and the system GFRFs, and is an explicit function of the nonlinear
parameters at any specific frequency point (wi,---,®,). Equation (5.14) is
referred to as the parametric characteristic function of the nth-order GFRF,
which is denoted by H,(C(n,K)) m|

W1, w,)"
Remark 5.2 As mentioned in Chap. 4, the CE operator sets up a mapping from =
to P.° (see the definitions in Sect. 4.2). When applying the CE operator to the
GFRFs of the NDE model (2.11),
Cs =C(M,K),
Ws={wi1, -, on}U{c10(ki),co,1(k1)|0 < ki <K},
P.={c\' e c}|c; € C(M,K),ri € 0.1 = |C(M,K)|}

and
E={H,()|1 <n <N}

The condition described by (5.15) in Proposition 5.1 provides a sufficient and
necessary condition on what nonlinear parameters of model (2.11) can appear in
the nth-order GFRF, and also how the GFRF is determined by these parameters. O

For a better understanding of the parametric characteristic CE(H,(jo, - - -, j®,)),
the following properties of CE(H ,(jo1, - - -, jw,)) for the NDE model (2.11) can be
obtained, based on Proposition 5.1.
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k

Definition 5.1 If a nonlinear parameter monomial H s (1) k>0, j;>0) is an
i=1

element of CE(H,(jwi,:--,j»,)), then it has an independent contribution to

H,(jo,,- - -, jw,), and is referred to as a complete monomial of order n (simply as
n-order complete); otherwise, if it is part of an n-order complete monomial, then it
is referred to as n-order incomplete.

Obviously, all the elements in CE(H,(jo,, - - -, jo,)) are n-order complete.

Property 5.1 The largest nonlinear degree of the nonlinear parameters appearing
in CE(H,(jw,," -, jw,)) is n corresponding to nonlinear parameters ¢, ,(.) with
p+g=n, and the n-degree nonlinear parameters of form ¢, (.) (p+q=n) are all
n-order complete.

k
Proof In (5.15) when p+q=n, theanqurZ pi+4q;) Z pi+q;)=n+k,
i=1

which further yields Z (p; +q;) = k. Note that 2<p;+¢;<n—k and 0<k<n-—2,
i=1
thus k=p,=q;=0. Therefore, the property is proved. O

Property 5.2 ¢, ,(.) is j-order incomplete for j>p+g. That is, for a nonlinear
parameter ¢, 4(.), it will appear in all the GFRFs of order larger than p+gq.

Proof This property can be seen from the recursive Eqs. (5.16a—c) and can also be
proved from Proposition 5.1. Suppose ¢, ,(.) does not appear in H,(joy, - - -, jo,),
where n>p+q. Consider a monomial ¢, ,(. )c’ﬁ 0() with k=n-p-q. It can be verified
from Proposition 5.1 that ¢, (. )520‘" (.) is n-order complete. This results in a
contradiction. |

Properties 5.1-5.2 show that only the nonlinear parameters of degree from 2 to
n have contribution to CE(H,(jw, - - -, jw,)), and the n-degree nonlinear parameters
contribute to all the GFRFs of order > n.

Property 5.3 If 2 <p;+gq;, | <k and there is at least one p; satisfying 1 < p; except

for k=1, then  cp g (-)Cpyg, () " Cpq(-) is Z-order complete, where
c k

Z= Z (p; + q;) — k+ 1. Moreover, Hcpiq,-(') are j-order incomplete for j>Z,
' i=1

and have no effect on the GFRFs of order less than Z. O

The proof of Property 5.3 is given in Sect. 5.5. Given any monomial

Cpay ()Cpygy ()7 *Cpug, (+), it can be easily determined from Property 5.3 that, to

which order GFRF the monomial contributes independently. For instance, consider
a nonlinear parameter c3»(.), which corresponds to the nonlinear term

3k 5 gk
dy(t d“u(t
g d)t)"(f )il_! dl:Ii ) It follows from Property 5.3 that Z=(3+2)—1+1=5. Thus
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this nonlinear term has an independent contribution to the fifth order GFRF Hs(.)
and affects all the GFRFs of order larger than 5. Moreover, it has no effect on the
GFRFs less than the fifth order.

k
Property 5.4 If 1 <r;and 1 <k, then the elements of CE <H H, ()) are all Z-order
i=1
k
complete, where Z = Zr,- —k+1, and are all j-order incomplete for j>Z, and have
i=1
ki

no effect on the GFRFs of order less than Z. Similarly, the elements of H"p,qi ()®

i=1

ks i ks
CE <HH,.,. (-))are all Z-order complete, whereZ = Z (pi+aq;)+ Zri —ky—ky+1,
i=1

i=1 i=1
and are all j-order incomplete for j>Z, and have no effect on the GFRFs of order
less than Z. O

The proof of Property 5.4 is given in Sect. 5.5. Obviously, this property is an
extension of Property 5.3, which shows that some computation by “®” between
some parameters and the parametric characteristics of some different order GFRFs
may result in the same parametric characteristic.

Property 5.5 CE(H,,(-))=CEH, _,.1(-)). O

The proof of Property 5.5 is given in Sect. 5.5. This property, together with
Property 5.4, provides a simplified approach to the recursive computation of the
parametric characteristic of the nth-order GFRF in Eqs. (5.16a—c), which is sum-
marized in Corollary 5.1 as follows.

Corollary 5.1 The parametric characteristic of the nth-order GFRF for model
(2.11) can be recursively determined as

CE(H,(jw," -, jw,))
n—1 n—q—1 n—g

@{cn,o ® Ce_alz Cro @ e (n.p,0, "5 )> } (5.17)

CE(H”*P*K{Jrl(')) PR
CO,n7p7q+1 p> R’

where | - | is to take the integer part, y(n,p,q, R) = {
and N is a positive integer.

Proof Using Property 5.5, (5.16a) can be written as (n>1)
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. . n—1 n—q
CE(H,(jo1, - - jw,)) = Co.n ® ( & @ Cpy® CE(H,,q,,H(-)))

g=1 p=1

@ (} HZC,,,O ® CE(H,I,,+1(~))) (5.18)

Note from Property 5.4 that some computations in the second and third parts of the
last equation are repetitive. For example, the monomials in C, _,; ® CE(H, _,
+2-1+1()=C,_21®CE(H,(-)) (n>2) are included in C,; ®CEMH,_(-))U
C0®CE(H, _(-)), except the monomials in C,, _, ;- Cy». For this reason, (5.18)
can be further written as

CEH,(jo,-,jwon))

n—1 "—CI/z
=Con® 691 {C"M ® < EB] CPsq ®CE (anquﬂ ()))
q= p=

n—q—1
® & Cpg®@Con—gpt1)
p= \_”—q/zj +1

I_”+1/2J n—1
BCro® &) C[),()®CE(H}17[)+1(')) D ©® Cp0®Co,n—p+1
p=2 p=|"+102] 11

This produces Eq. (5.17). The proof is completed. O

Remark 5.3 Corollary 5.1 provides an alternative recursive way to determine the
parametric characteristic of the nth-order GFRF. If there are only some nonlinear
parameters in (5.13) of interest, then Eq. (5.17) and all the results above can still be
used by taking other parameters as 1 if they are nonzero, or as zero if they are zero.
Therefore, whatever nonlinear parameters (for instance x) are concerned, the
parametric  characteristic ~ function with respect to x denoted by
H,,(x)( C(nk)\x) and the parametric characteristic CE(H,(joy, - - -, jw,)) can

all be derived by following the same method established above. |

W1,

The parametric characteristic analysis of this section can be used to demonstrate
how the parameters of interest affect the GFRFs and consequently provide useful
information for both the GFRF evaluation and system analysis. The following
example provides an illustration for this.

Example 5.1 Consider the parametric characteristics of the following two cases:

Case 1: Suppose there is only one input nonlinear term Cy 3 # 0, and all the other
nonlinear parameters are zero in model (2.11). Then the parametric characteristics
of the nth-order GFRF can be computed as

If n<3, it follows from Property 5.1 that CE(H ,(jo, - - -, jo,)) = 0.

If n=3, it also follows from Property 5.1 that the parameters in Cy3 are all
3-order complete. Thus CE(H;(jw, - - -, jw3)) = Co 3.
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If n>3, it follows from Property 5.2, Cy 3 should be n-order incomplete in this
case. However, from the Definition 5.1, a complete monomial should have at least
one p > 1. Since there are no other nonzero nonlinear parameters, CE(H,(joy, - - -,
Jjm,)) =0 for this case.

Therefore, CE(H,(joy, - - -, jw,)) =0 forn# 1 and n# 3 in Case 1. That is, only
H,(jo) and H3(jw1, - - -, jw3) are nonzero in this case. Obviously, the computation of
the parametric characteristics can provide guidance to the computation and analysis
of the GFRFs from this case study.

Case 2: Suppose only Cy3# 0 and C, o #0, and all the other nonlinear param-
eters are zero. Then the parametric characteristics of the GFRFs can be simply
determined as

CE(H\(jo1)) = 1, CE(Hs(jo.j2)) = Ca0, CE(H;(jor, -+, jws)) = C3 & Co,3
CE(Hu(jwi,- -, jos)) = C3 o ® Co;3 ® Cao, CE(Hs(jwy,- -, jws))
=C3®Co3®C3
CE(Hs(jor, -+, jws)) = €30 @ Co3 @ C3 4@ Cg 3 ® Cayg

Especially, if only Cy3 is of interest for analysis, then C, can be regarded as
constant 1. In this case, the parametric characteristics of the GFRFs can be obtained
as

CE(HI(]G)l)) = CE(HQ(]Q)],]CUQ)) = 1, CE(H3(j(U],' . ,Ja)g)) = C0’3
CE(Hu(jo1, - - -, jws)) = Co.3, CE(Hs(jow1,- -, jws))
= Co3, CE(Hg(jw1,+,jws)) = Co;3 ® Cj 5

Note that different parametric characteristics of the GFRFs correspond to different
polynomial functions with respect to the parameters of interest, which can demon-
strate how the parameters of interest affect the GFRFs and thus provide some useful
information for the system analysis. For example, from the parametric characteristics
in Case 2, it can be seen that the sensitivity of the GFRFs for n<6 with respect to Cy 3
is a constant when C, o and the linear parameters are constant. This may imply that in
order to make the system less sensitive to the input nonlinear term with coefficient
Co 3, it needs only to adjust the parameters in C; o and the linear parameters of model
(2.11) to reduce the corresponding constants in Case 2 under certain conditions. O

The parametric characteristic and its properties developed in this section for the
nth-order GFRF demonstrate what the parametric characteristics of the GFRFs are,
and how the nonlinear parameters in C(n,K) make contributions to the nth-order
GFRF. As demonstrated in Example 5.1, these fundamental results can be used to
reveal how the nonlinear parameters affect the GFRFs and how the frequency
response functions of model (2.11) are constructed and thus dominated by the
model parameters which define system nonlinearities. Based on these results, useful
results can be developed and will be discussed in more details in the following
sections and chapters.
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5.3 Parametric Characteristics Based Analysis

Based on the parametric characteristics of the GFRFs established in the last section,
many significant results can be obtained. The parametric characteristic analysis can
provide an important insight into at least the following aspects:

(a) System nonlinear effects on frequency response functions (including the
GFRFs and output spectrum)—mainly discussed in this section, Chaps. 6-10
and 12;

(b) The detailed polynomial structure of frequency response functions—mainly
discussed in this section and Chaps. 6—10;

(c) Computations of the GFRFs and output spectrum—mainly discussed in
Chap. 11;

(d) Understanding of nonlinear behaviour in the frequency domain—mainly
discussed in Chaps. 4-6 and 12;

(e) Analysis and design of system output behaviour by using nonlinearities—
mainly discussed in Chaps. 9 and 10.

In this section, some of these results are given, and more detailed results will be
discussed later in the following chapters.

5.3.1 Nonlinear Effect on the GFRF's from Different
Nonlinear Parameters

As mentioned before, the nonlinearities in model (2.10) or model (2.11) can be
classified into three categories as follows:

(a) Pure input nonlinearities. This refers to the nonlinear parameters cg ,(.), which
are the first term in the parametric characteristics in Eq. (5.17) or (5.18);

(b) Pure output nonlinearities. This refers to the nonlinear parameters c,q(.),
which are the last term in Eq. (5.17) or (5.18);

(c) Input-output cross nonlinearities, This refers to the nonlinear parameters
Cp,q(+), which are the second term in (5.17) or (5.18).

It is known that different nonlinearity has a different effect on system dynamics.
Different nonlinear parameters correspond to different degree and category of
nonlinearities. Hence, the frequency characteristics of frequency response functions
and the effects of different nonlinear parameters on system output behaviour can be
revealed by the parametric characteristic analysis of the corresponding frequency
response functions. Since the GFRFs represent system frequency characteristics,
the study on the nonlinear effect on the GFRFs from different categories of non-
linearities can provide an important insight into the relationship between the system
frequency characteristics and physical model parameters. In this section, the para-
metric characteristics based analysis is investigated and discussed for the GFRFs in
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order to reveal how different model parameters have their effect on the frequency
response functions for model (2.11), and therefore affect the system frequency
characteristics. In what follows, the k+1 in monomial Cp; @ Cp 4, @ Cp,y, @ - -
®Cp,q, 1s referred to as the power of the monomial.

A. Pure Input Nonlinearities

As mentioned, this category of nonlinearities correspond to the nonlinear parame-
ters of the form ¢ q(.) with ¢>1. If n=g, then from Property 5.1 the parametric
characteristic of the nth-order GFRF with respect to the parameters in Co , is

CE(H,(jor. - jon))e, = Co.q (5.19a)

0,9
and if n<q,

CE(H,(jo. ~jon)),, = 1 (5.19b)

For n>g, since there is at least one parameter cp4(.) with p>0 for any complete
monomials (except con(.) in CE(H,(jo1,- - -, ja)n))co 0 from Proposition 5.1, thus

Co,4(.)’ for any p > 0 cannot be an independent entry in CE(H,(jw.- - -.jwn))

CU,q(‘) :

The largest power p can only appear in the monomial ¢ ,(.)"c,y (), wherec,; /(.)

is nonzero, satisfies p’ > 1 and p’ +¢’ > 2 and has the smallest p’ +¢. In this case,
p can be computed from Property 5.3 as

_n-p-4q
p(n,0,q) = -1
For example, if p’ +¢' =2, then
qu] 1J if 2=1 is not an integer
p(n,0,q) =
1 else
Therefore, for n>gq,
CE(H,(jor.- - - jon))c, , = [1 Coy Cogt -+ Co"09] (5.19¢)

In particular, when all the other nonlinear parameters are zero except for Cg 4, then
(n>1)

. . C ifq=n
CE(H,(jwy, - ~,jwn))co,q = {Oo,q elsZ:1

(5.194)
It can further be verified that the parametric characteristic CE(H, (jo1,- - -.jon))¢, ,

is the same as (5.19d) even when only all the other categories of nonlinear
parameters are zero except for the input nonlinearity.
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From the parametric characteristic analysis of the nth-order GFRF for the input
nonlinearity, it can be concluded that,

(A1) The parametric characteristic function with respect to the input nonlinearity
for the nth-order GFRF is a polynomial of the largest degree p(#,0, ¢), i.e.,

Hi’l (CO,LI) (jwl’""jwrz§c(’7aK)\C0,q) - [ 1 CO,q Co’qz T Cosqp(n.o’q) :|
Sulj@r, - jon; C(n, K)\Co,q)

where f,(joy, - - -, jo,; C(n, K)\Cy ,) is an appropriate function vector.

(A2) The largest power for the input nonlinearity of an independent contribution in
CEH, (jo, - - -, jw,)) is 1, which corresponds to the nonlinear parameters in
C(),n.

(A3) For comparison with the other categories of nonlinearities, considering the
individual effect of pure input nonlinearity when there are no other categories
of nonlinearities, i.e., output nonlinearity and input-output cross nonlinearity,
it can be seen from (5.19d) that the input nonlinearities have no auto-crossing
effects on system dynamics. That is, each degree of the input nonlinearities
has an independent contribution to the corresponding order GFRF and the
largest power of a complete monomial from input nonlinearities is 1, i.e., the
nth-order GFRF is simply H,(jwy, - - -, jo,) = Co 4 - fu(jw1, - - -, jw,) from Prop-
osition 5.1. Obviously, if C¢,=0, there will be no contribution from the input
nonlinearities in the nth-order GFRF. It will be seen that these demonstrate a
quite different property for the input nonlinearity from other categories of
nonlinearities.

It is known that a difficulty in the analysis of Volterra systems is that the Volterra
kernels in the time domain usually interact with each order due to the crossing
nonlinear effects from different nonlinearities, and so are the GFRFs in the fre-
quency domain. From the discussions above, this difficulty does not hold for
the case that there are only input nonlinearities, e.g., for the class of Volterra
systems studied in Kotsios (1997). The parametric characteristic analysis for the
input nonlinearities can also make light on the selection of different parameters for
the energy transfer filter design in Billings and Lang (2002).

B. Pure Output Nonlinearities
This category of nonlinearities correspond to the nonlinear parameters of the form
cpo(.) with p>1. If n=p, then from Property 5.1

CE(Hn(jwla' : '»jwn))cp’o =Cpo (5.2021)

If n<p, also from Property 5.1
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CE(H,(jor. - .jon))c

P50

(5.20b)

These are similar to the input nonlinearity. If n>>p, then from Properties 5.1-5.3 C,, o
will contribute to all the GFRFs of order lager than p. From Property 5, ¢, o(.)” for
p >0 is a complete monomial for the Zth-order GFRFs where Z=(p — 1)p + 1. For
the nth-order GFRF with n>p, the largest power p can be computed from Property
5.3 as

0= =1

Thus, for n>p,

CE(H,(jor.- - .jon))c,

P50

=[1 Cho Cpo* - Cpo"r0] (5.20c)

Consider the particular case where all nonlinear parameters are zero except the
parameters in Cp o, then for n>1

0 ifp>nor 2—11 is not an integer

CE(H,(jw1, - jwn))c = = (5.20d)
Cro Cpo’ (120) else

However, when all other nonlinear parameters are zero except output nonlinear
parameters, the parametric characteristic CE(H,(jwy,- -, jw"))c,,o for n>p is the

same as (5.20c).
From the parametric characteristic analysis of the nth-order GFRF for the pure
output nonlinearity, it can be concluded that,

(B1) The parametric characteristic function with respect to the output nonlinearity
for the nth-order GFRF is a polynomial of the largest degree p(n,p,0), i.e.,

Hn (CP’O) (jwl,-~,jw,1;C(n,K)\C,,,0) = [1 Cp,O Cp,02 ce Cp’(]p(n'p’o)]

'fn (jw17 o 'aja)ll; C(naK)\Cp,O)

where f,(joi, - -, jon; C(n, KNC, o) is an appropriate function vector. Note
that p(n, p, 0) >p(n, 0, g), which may imply that for the same nonlinear degree,
output nonlinearity has a larger effect on the system than input nonlinearity.
(B2) The largest power for the output nonlinear parameter C, of an independent
contribution in CE(H,(jw, - - -, jm,)) is p(n,p,0), which corresponds to the
n-order complete monomial C,, o""”*. However, the largest power for the
output nonlinearity of a complete monomial in CE(H,(jw1, - - -,jw,)) is k,
corresponding to the monomial Cpo®Cp0®---®Cp 0, where
k=pi+---+pr+1—n. This is quite different from the input nonlinearity.
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(B3) Considering the individual effect of pure output nonlinearity when there are
no other categories of nonlinearities, i.e., input nonlinearity and input-output
cross nonlinearity, it can be seen from (5.20c) that the output nonlinearities
have auto-crossing nonlinear effects on system dynamics. That is, different
degree of output nonlinearities can form a complete monomial in the
nth-order GFRF and the largest power of this kind of complete monomials
from output nonlinearities is k as mentioned in (B2). Obviously, if the degree-
n nonlinear parameter C, (=0, there are still contributions from the output
nonlinearities in the nth-order GFRF if there are other nonzero output
nonlinear parameters of degree less than n. These may imply that output
nonlinearity has more complicated and larger effect on the system than input
nonlinearity of the same order, which shows a property different from that of
the input nonlinearity as mentioned in (A3).

(B4) It can be seen from (5.20c, d) that C,,y will contribute independently to the
GFRFs whose orders are (p—1)i+1 for i=1,2,3,.... It is known that for a
Volterra system, the system nonlinear dynamics is usually dominated by the
first several order GFRFs (Taylor 1999; Boyd and Chua 1985). This implies
that the nonlinear terms with coefficient C, o of smaller nonlinear degree, e.g.,
2 and 3, take much greater roles in the GFRFs than other pure output non-
linearities. This property is significant for the design of nonlinear feedback
controller design, where a desired degree of nonlinearity should be deter-
mined for control objectives (Jing et al.2006; Van Moer et al. 2001). This will
be further discussed in Chap. 9.

C. Input-Output Cross Nonlinearities

This category of nonlinearities corresponds to the nonlinear parameters of the form
Cpq() with p > 1 and g > 1. It can be verified that the parametric characteristics of
the GFRFs with respect to such nonlinearities are very similar to those for the pure
output nonlinearities as shown in B, and the conclusions held for the output
nonlinearity still hold for the input-output cross nonlinearity. Thus the detailed
discussions are omitted here. For a summary, the following parametric characteri-
stics hold for both of these two categories of nonlinearities

CE(H,(jo1.- - -.jon))

Psq

1 ifn<p+gq
[ 1 Coy Cpi® -+ Cﬂ,qp(n"p’Q) ] else
(5.21)

where, n>1, p(n,p,q) = L"*‘ J,pz land p+g>2.

ptq-1
A difference between the input-output cross nonlinearity and the pure output
nonlinearity may be that the output nonlinearity can be relatively easily realized by
a nonlinear state or output feedback control in practice. A simple comparison is
summarized in Table 5.1.
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Remark 5.4 Based on the parametric characteristic of the nth-order GFRF with
respect to nonlinear parameters in Cp 4, the sensitivity of the GFRFs with respect to
these nonlinear parameters can also be studied. From Proposition 5.1, the sensitivity
of H,(jw,, - - -, jw,) with respect to a specific nonlinear parameter ¢ can be computed
as

aHVl(C)(wl,~~~,(u,,;C(M7K,n)\C) . aHn(jwl, o "jwn)
Jc Jc

_ 6CE(Hn(icgé, ) FoGor, - jon)  (5.22)

Thus, the sensitivity of the nth-order GFRF with respect to any nonlinear parameter
c=cp4(.) with p>1 and p +¢ > 2 can be obtained from (5.21) as:

aHn(C)(wl,---,wn:C(Kﬂ)\C)

oD [0 e s plapg)etea!]
foGoy, -, jw,; C(K,n)\c) (5.23)
where f,(jo, -, jo,; C(K,n)\c) is an appropriate function vector defined

in Proposition 5.1. Obviously, the sensitivity to a specific parameter is still an
analytical polynomial function of the nonlinear parameter. From the parametric
characteristics in (5.19a-5.21), it can be concluded that the sensitivity of the nth-
order GFRF with respect to an input nonlinear parameter must be zero or constant
when there are no other category of nonlinearities. However, this can only happen
to the output nonlinear parameters and input-output cross nonlinear parameters if
the nonlinear degree of the parameter of interest is n. Otherwise, the sensitivity
function with respect to an output or an input-output cross nonlinear parameter is
still an analytical polynomial function of the parameter of interest and some other
nonzero parameters.

5.4 Conclusions

The parametric characteristic analysis discussed in Chap. 4 is used in this
Chapter for the study of the parametric characteristics of the GFRFs of Volterra-
type nonlinear systems described by the NDE model (2.11) or NARX model (2.10).
Fundamental and significant results have been established for the parametric
characteristics of the GFRFs of the nonlinear systems. The method has been
shown to be of great significance in understanding the system’s frequency response
functions and the nonlinear influence incurred by different nonlinear terms. As
mentioned in Sect. 5.3, the significance has at least five aspects, some of which have
been demonstrated in this chapter and more will be discussed and investigated later.

From the results of this Chapter, it can be seen that, the parametric characteris-
tics of the GFRFs can explicitly reveal the relationship between the time domain
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model parameters and the GFRFs and therefore provide a useful insight into the
analysis and design of nonlinear systems in the frequency domain. By using the
parametric characteristic analysis, system nonlinear frequency domain characteris-
tics can be studied in terms of the time domain model parameters which define
system nonlinearities, and the dependence of the frequency response functions of
nonlinear systems on model parameters can be revealed. As it will be shown further
in the following chapters, the analytical relationship between system output spec-
trum and model parameters can also be determined explicitly, and the nonlinear
effect on the system output frequency response from different nonlinearities can be
unveiled. This will facilitate the study of nonlinear behaviours in the frequency
domain and unveil the effects of different categories of system nonlinearities on the
output frequency response. All these results provide a novel insight to the frequency
domain analysis of nonlinear systems, which may be difficult to address with other
existing methods in the literature.

5.5 Proofs

Proof of Property 5.3 From Proposition 5.1, CE(H(+)) includes all non-repetitive
monomial functions of the nonlinear parameters in model (2.11) of the form
Crg ®Cpgy @Cpry, @+ @ Cpg,» where the subscripts satisfy

k
PHa+> (pi+aq)=Z+K. 2<p+q;<Z—K, 0<K <Z—2,2<p+q<Z—¥,
i=1

k
and noting 1 <p<Z-—Fk, thus ® Cp.q, 1s included in CE(H(-)). Moreover, substi-
i=1
k+x
tute k by k+x, where x>0 is an integer, then Z = Z (p; +¢;) —k—x+ 1, which
=1

X
further  yields 7 -7= Z (pi+¢q;) —x. Note that 2<p;+¢q; thus
i=1

/ ~ k
Z —7Z> 22 —x = x. Therefore, ® C,,, must appear in CE(H(jw,, - -, jw;)) for
i=1 i=1
Jj>Z and but must not appear in the GFRFs of order less than j. This completes the
proof. m|

Proof of Property 5.4 From  Proposition 5.1, any element
Cpi.q, <')sz,flz(')' “Cpy s, () in CE(HH()) with r;>1 SatiSfy
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ko,
:Z(Pi+61i)_kr', +1
i=1

Note that if r;=1, then CE(H,,(-))=1. In this case, suppose (p;+¢;) =1 for consis-
tence. Therefore,

k k i k
S ri—k+1= (ZZ P+ 4;) Zk,.,+k> —k+1

i=1 i=1 j=1 i=1

ri
i

k k
S 3 ETIED SRR
i=1

i=1 j=1

This proves the first part of this property. The second part follows from the first part
and Property 5.3. |

Proof of Property 5.5 A different proof was given in Proposition 3 of Jing
et al. (2006), but here presents a more concise proof based on the properties
developed in Sect. 5.2. Applying the CE operator to Eq. (5.5), it can be obtained that

CEtGon-wion) = "B CEl()
Zrl—n
=CE(H,—p1()) & "ép 1®CE( ()
rye- =11
Zr,—n

From Property 5.4, it follows that all the elements in ‘S ® CE(H,,(+))
ryser, =11

dori=n

P
should be Z-order complete, where Z = Zr,» —p+1=n—p+1. This completes
i=1
the proof. O



Chapter 6
The Parametric Characteristics of Nonlinear
Output Spectrum and Applications

6.1 Introduction

The parametric characteristics of system output spectrum are studied, especially
with respect to specific nonlinear parameters of interest. The results are developed
based on the GFRFs of the NDE model (2.11) but would be the same for the NARX
model (2.10). These results establish the foundation for nonlinear analysis in the
frequency domain based on nonlinear output spectrum. Some potential applications
of these results are partially demonstrated in this chapter, and more will be
developed in the following chapters including nonlinear output spectrum based
analysis, nonlinear characteristic output spectrum and so on.

6.2 Parametric Characteristics of Nonlinear Output
Spectrum

The nonlinear output spectrum has been discussed in Chaps. 2 and 3. For conve-
nience, it is rewritten here as

N
Y(jw) =¥, (jw) (6.1)
n=1
when subject to a general input u(¢), in (6.1)
1 n
Y, jwo) = ——— H,(jo;, -, jo, U(jw;)do,, 6.2
(o) =~z | tuion [ Vmpde (62

w1+t =0
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When the input is a specific multi-tone function, i.e.,

K
u(t) = |Fi|cos (wit + £F))
i=1

in (6.1)
. 1
Yn(]ﬂ)) = ? ZH (Ja)/q’ . "]Co]w) (a)kl). . 'F(Cl)k”) (63)
Wpy ++F Ok, =0
where
)LFL -sgnl(k;) —
Flay,) = [Fy,|é =1 for k; € {£1,---, £K}, and sgnl(a)
1 a>0
=40 a=0 foraeR (6.4)
-1 a<0

Definition 6.1 A function y(/;s) is homogeneous of degree d with respect to % if
y(ch;s):cdy(h;s), where c is a constant, s denotes the independent variables of y(.),
and & may be a parameter or a function of certain variables and parameters.

The detailed properties of the functions and variables in Definition 6.1 are not
necessarily considered here. The definition of a homogeneous function can also be
referred to Rugh (1981). From Definition 6.1, it can be verified that (6.2) and (6.3)
are both 1-degree homogeneous with respect to the nth-order GFRF H,(-). From
this definition, the following lemma is obvious.

Lemma 6.1 If y(h;s;) is a homogeneous function of degree d, and h(.) is a
separable function with respect to parameter x whose parametric characteristic
function can be written as h(x)=g(x)f(s,), then y(h;s;) is a separable function with
respect to x and its parametric characteristic function can be written as y(x), =
gx) )[ dl fy(f(s2);51), where s, denotes the un-separable or un-interested parameters or
variables in A(.), s, denotes some variables in y(.), f,(f(s,);s;) is an appropriate
function vector, and g(x)// is the d times reduced kronecker product of g(x).

From Proposition 5.1, Lemma 6.1 and (6.1)—(6.2), the following result can be
obtained for a homogeneous function Y(H,(.); s) of degree d, where H,,(.) is the nth-
order GFRF.

Proposition 6.1 Y,(H,(jo,,...,jo,); »,- -, ®»,) is a homogeneous function of
degree d with respect to the nth-order GFRF H,(jw,...,jw,). Then
Y.(H,(jo,...,jo,); o, -, o,)is a separable function with respect to the nonlinear

parameters in (5.13), whose parametric characteristic function can be described by
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Yn(C(MaK))m],..,’w" - CE(HH(/a)h e ,ja)n)))[d]?n(fn(i(I)], o ',ja)n); @1, a)n)

(6.5)

The sensitivity of the homogeneous function with respect to a specific parameter
cis

oY, (C(M, K))w|,~~,m,, B OCE(H,(jo,,- - ',].wn))[d]
Oc B Oc
'Yﬂ(fn(jwl"”’jwn);a)h""wn) (66)

where Y,(f,(jo1, - - -, jw,); @1, - -, ®,) is an appropriate function vector, and when
d=1

?n(fn(jwl’ o '7ja)l‘1); w15 o '$wﬂ) = Y’l(fn(jw17 o ’7ja)n); a)l’ o "a)n) (67)
Proof The results are straightforward from Proposition 5.1, Lemma 6.1 and (6.1)-
(6.2).

The following result can be concluded directly from Proposition 6.1 for the
output spectrum of system (2.1) described by the NDE or NARX model (2.10) and
(2.11).

Corollary 6.1 The output frequency response function Y(jw) in (6.1) is separable
with respect to the nonlinear parameters in (5.13), whose parametric characteristic
function can be described by

N
Y(C(M,K)), =Y CE(H,(-)) - Ya(f,(-);jo) (6.8a)

n=1

and whose parametric characteristic is
N
CE(Y(jw)) = © CE(H,(") (6.8b)

The sensitivity of the output frequency response with respect to a specific parameter
cis

aYa(iw) -y % Yo (f, () j) (6.9)
n=1

where, if the input is a general function, then w =w; + - - - + w,,
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Yﬂ(fn()vjw) = Yn(fn(iw]’ o ,]Cl)n),](l))

1 n
e — L1, -, jo, U(jw;)do,, 6.10
yoEm j o jon [ Gon) (6.10)

w1+ F 0 =0
if the input is the multi-tone function given in (3.2), then ® = wy, + -+ - + @y,

Yolf ()sjw) = Ya(fy(jon, - - jo, ) jo)

=5 X Ao )F@n) Fy) (611)

wp, +-Fwp, =0

O

From these results, it is noted that the system output spectrum can also be
expressed by a polynomial function of the nonlinear parameters in C(M,K) based
on the parametric characteristics of the GFRFs, and the detailed structure of this
polynomial function with respect to any parameters of interest is completely
determined by its parametric characteristics. Therefore, how the nonlinear param-
eters affect the system output spectrum can be studied through the parametric
characteristic analysis as discussed in Chap. 5.

Remark 6.1 Note that CE(H,(-)) can be derived from the system model parameters
according to the results developed in Chap. 5. Given a specific system described by
model (2.10) or model (2.11), Y(C(M, K),, can be obtained by the FFT of the time
domain output data from simulations or experiments at frequency w. Therefore,
Y,(f,.(-);jo) for n=1,...,N can be obtained by the Least Square method as men-
tioned in Remark 4.1. Then Y,,(C(n,K)) .y, 1.0, = CE(H,(:)) - Yu(f,,(+);jw) for
n=1,...,N and the sensitivity (6.6) and (6.8a,b) can all be obtained. This provides a
numerical method to compute the output spectrum and its each order component
which are now determined as analytical polynomial functions of any interested
nonlinear parameters. Thus the analysis and design of the output performance of
nonlinear systems can now be conducted in terms of these model parameters.
Compared with the direct computation by using (2.12)—-(2.16) or (2.19)—(2.24)
and (3.1)—(3.3) or (2.3)—(2.4), the computational complexity is reduced. Compared
with the results in Lang et al. (2007), the parametric characteristic analysis of this
study provides an explicit analytical expression for the relationship between system
output spectrum and model parameters with detailed polynomial structure up to any
order and each order output spectrum component can also be determined. More-
over, let
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Gn(C(M,K, I’l) — CE(Hn()) 'Yn(fn(');jw) (612)

0=+ -+, n
| Tl
N J 1 U(le)do'w

=
o+t =0

This is the parametric characteristic function of the nth-order nonlinear output
frequency response function defined in Lang and Billings (2005), which can be
used for the fault diagnosis of engineering systems and structures. O

6.2.1 Parametric Characteristics with Respect to Some
Specific Parameters in C, 4

As discussed before, the parametric characteristic vector CE(H,(-)) for all the
model parameters of nonlinear degree >1 (referred to as nonlinear parameters)
can be obtained according to Proposition 5.1 or (5.17)—(5.18) in Corollary 5.1, and
if there are only some parameters of interest, the computation can be conducted by
only replacing the other nonzero parameters with 1. In many cases, only several
specific model parameters, for example parameters in C,, ;, are of interest for the
analysis of a specific nonlinear system. Thus, the computation of the parametric
characteristic vector in (5.17) and (6.8a,b) can be simplified greatly. This section
provides some useful results for the computation of parametric characteristics with
respect to one or more specific parameters in Cy, 4, which can effectively facilitate
the determination of the OFRF and the analysis based on the OFRF that will be
discussed later.
Let

1 ifp=0 f1 ifx>0
5(p) = {0 else , and pos(x) = {0 else (6.13)

Proposition 6.2 Consider only the nonlinear parameter C,, ,~c. The parametric
characteristic vector of the nth-order GFRF with respect to the parameter c is

CE(HyGor,jon) = [1 ¢ @ .. 0] (614)

where | - | is to get the integer part of (.). O

The Proof of Proposition 6.2 is given in Sect. 6.6. Note that here ¢ may be one
parameter or a vector of some parameters of the same nonlinear degree and type in

Cpg- Also note that ¢" =c®---c®c and ® is the reduced Kronecker product
—_——

n
defined in Chap. 4, when c is a vector. Proposition 6.2 establishes a very useful
result to study the effects on the output frequency response from a specific
nonlinear degree and type of nonlinear parameters. Note also that if some other
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nonlinear parameters in model (2.10) or (2.11) are zero, only several terms in (6.14)
take effect. The detailed form of CE(H,(jw, - - -,j®,)) can be derived from Prop-
osition 5.1 or (5.17) in Corollary 5.1. However, a direct use of (6.14) does not affect
the final result.

Corollary 6.2 If all the other nonlinear parameters are zero except C,, ,~c. Then
the parametric characteristic vector of the nth-order GFRF with respect to the

L _ . .. n71 .
parameter c is: if (n>p+q and p>0), or (n=p+q), and if additionally s is an
integer, then

CE(H,(jw," - jw,)) = T
else
CE(H,(jwy, - jw,)) =0
which can be summarized as
u=1 n—1 n—1
CE(H,(jw,, -, jw,)) = 7T -8 _
Haljton, - jeon)) = 7 <P+61—1 Lﬂi— ID
- (1 =é8(p)pos(n — q)) (6.15)

Proof The results can be directly achieved from Propositions 5.1 and 6.2. O

Corollary 6.2 provides a more special case of Volterra-type nonlinear systems
described by (2.10) or (2.11). There are only several nonlinear parameters of the
same nonlinear type and degree in the considered system. This result will be
demonstrated in the simulation studies in the next chapter. The following results
can be obtained for the output frequency response.

Proposition 6.3 Consider only the nonlinear parameter C, ,=c. The parametric
characteristic vector of the output spectrum in (6.1) with respect to the parameter ¢
can be written as

CE(Y (jw)) = n%l CE(H,(-))

1 ¢ 02 ce CL:T*I!J ,5@)?05(1\/,[1),5(’&1‘,L,LLJ) (616)

—

Then there exists a complex valued function vector F(jwy, - - -, jo,; C(M, K)\c) with
appropriate dimension such that

Y(©)wcwipe = CEY (j@)) - Fjor, - - -, jon; C(M, K)\c) (6.17)
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If all the other nonlinear parameters are zero except that C,, ,=c #0 (p+q > 1).
Then the parametric characteristic vector of the output spectrum in (6.1) with
respect to the parameter c is: if p=0

CE(Y(jw)) = 1 ® CE(H,()) - (1 - pos(qg = N))

=[1 ¢-(1—pos(g—N))] (6.18)
else
LN71/1)+4171J
CE(Y(w) = & CE(Hiprypin ()
= |:1 c 2 ... CLN_I/IWHJ} (6'19)
O

The proof of Proposition 6.3 is given in Sect. 6.6. From Corollary 6.2 and
Proposition 6.3, it can be seen that different nonlinearities will result in a quite
different polynomial structure for the output spectrum, and thus affect the system
output frequency response in a different way. By using the results established
above, the effect from different nonlinearities on system output frequency charac-
teristics can now be studied. This will be further studied in the following sections.

Moreover, the results above involve the computation of ¢". If ¢ is an I-dimension
vector, there will be many repetitive terms involved in ¢". To simplify the compu-
tation, the following lemma can be used.

Lemma 6.2 Let be c=[c;,cs,...,c1] which can also be denoted by c[1:I], and
"=c®c--Qc, “®” is the reduced Kronecker product defined in Chap. 4,
|

n

n>1and /> 1. Then
=" e T (L), = s(), + Les(1),] e s(1), ] o]

!
where s(i), = Z 5(j),_1»s()1=1, and 1 <i <[I. Moreover, DIM(c") = s(1),,, 1, and
J=i

the location of ¢;" in ¢" is s(1)p1—51) e +1. O

The Proof of Lemma 6.2 is given in Sect. 6.6.
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6.2.2 An Example

To illustrate the results above and to introduce the basic idea of the parametric
characteristics based output spectrum analysis that will be discussed further, an
example is given in this section. Consider a nonlinear system,

a1X = —arxX — azx — 1 X0 — cX2x — 3 + bu(r) (6.20)

which is a simple case of model (2.11) with M=3, K=2, ¢,¢(2) =ay, ci0o(1) =as,
Cl()(o) =dy, C30(1 1 1) =Cy, C30(1 10) =Cy, C30(000) =3, COI(O) = — b, all other
parameters are zero. The GFRFs for system (6.20) can be computed according to
(2.19)—(2.24). In the following, the parametric characteristics of the GFRFs for
system (4.20) are discussed firstly. As will be seen, the parametric characteristics of
the GFRFs provide a useful guidance to the analysis and computation of system
frequency response functions.

When all the other nonlinear parameters are zero except Cj, 4, it can be obtained
from Corollary 6.2 that the parametric characteristic of the nth-order GFRF with
respect to Cp 4 is

cettton o) =6 o )
- (1= é8(p)pos(n — q)) (6.21)

For system (6.20), note that a;, a,, a3 and b are all linear parameters, and the nonzero
nonlinear parameters are

C30 = [630(000) C30(110) C30(111) } = [63 Cy (1 }

Hence,
CE(H,(jwy, - jo,)) =Cs0 =[c3 ¢ ¢] forn=2i+1,i=1,2.3,...,

else
CE(H,(jw:," -, jw,)) = 0. (6.22)

It is easy to compute from (6.22) as follows:
For n=3, CE(H3(jw1, - ,jw3)) =[c3 ¢2 1 ];
For n=5, CE(Hs(jw,---,jws)) =[c3 ¢ ¢ }2 =[cz ¢ a1]|®[c3 2 c1]

2 2 0]
= [c3%, e300, ¢301, 027, cacr 01

For n=7,
CE(H7(jw1,--,jw7))=[c3 2 ci ]3:[c'3 c c]®[cz 2 a1]®[cz ¢ 1]

3 2 L2 L2 L2 3 2 2 3
= [e3%,c5%ca,c3’cr,e302% cseacr,caer”, 00’ e ot er
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From Proposition 5.1, there must exist a complex valued function vector
f,, (joi, - - -, jw,) with appropriate dimension, such that for n=2i+1, i=1,2,3,.. .,

Hn(cl7C2g CS)(wl’...,wn) = [CS ¢ ]i 'fn(jwl’ o '3jwl‘l) (623)

else

Hn(cl’ Cco, C3)(w1,“'~,w”) = O

When there is only one parameter for example c¢; is of interest for analysis, the
parametric characteristic can be obtained by simply letting C3 g=c; in (6.22), i.e.,
the parametric characteristic vector is: for n=2i+1 and i=1,2,3,. ..

CE(H,(jor, - jo,) =[1 ¢ c? - ] (6.24)
else
CE(H,(joy," -, jw,)) =0 (6.25)

Thus the parametric characteristic function with respect to the parameter c; is: for
n=2i+1 and i=1,2,3,. ..

Hy(€1) (g imscnncs) = (1o o - a'] fuljor,-joerncs)  (6.26)
else

Hy(€1) () icnes) = 0 (6.27)

Where,j_”" (jo1, - - -, jon; 2, c3) is a complex valued function vector with appropriate

dimension. The sensitivity of the nth-order GFRFs for n=2i+1 and i=1,2,3,. .. with
respect to the parameter c¢; can also be obtained as

aH,, (C] )((1)1 ’.“‘(,)”;(275‘3)
acl

Z[O 1 2¢ --- ic"*l]-fn(jwl,---,ja)n;cz,Q) (6.28)

Consider the output spectrum of system (6.20). From Proposition 6.3,

LNfl/ZJ LN71/2J

CE(X(jw)) =~ & CE(Han() = & Cso’ (6.29)

Suppose the output function of interest is
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y = arx + azx — c15° — cp8%x — c3x° (6.30)

It will be shown in Sect. 6.4 that
CE(Y(jw)) = CE(X(jw)) (6.31)
Then from Proposition 6.3, the parametric characteristic function for the output
frequency response Y(jw) of system (6.20) with respect to nonlinear parameters cy,

¢, and c3 is

[v=1/.]
Ycl,Lz 63 Z C30 Y(fz )

A ) .
e e '[Yo(fo(‘);jw) O’y (Feg )|

(6.32)

T

For convenience, consider a much simpler case. Let c¢,=c3=0, then
C30=c30(111) = c;. Therefore the parametric characteristic function in this simple
case is

Fey = Yalfolio) + - Vi (sio) ey (1 o)
=1 el ] froomior oy (0]
(6.33)
As mentioned in Remark 4.1 and Remark 6.1,
Valfo(ido) NGAOd0) e Yy (fvl/zﬂ-);jw)r can b com-

puted by a numerical method for a specific input u(t) and at a specific frequency .

The idea is to obtain {N—l/ ZJ + 1 system output frequency responses from LN—I / ZJ

+1 simulations or experimental tests on the system (6.20) under {Nfl / 2J + 1different

values of the nonlinear parameter ¢, and the same input u(t), then yielding

Y(/:(D)O 1 e (O) o (0) \_N—]/ZJ YO( 0()7](1))
Y(]Ea))1 _ i Clgl) Clgl) ' Yl(flg )sjw) (6.34)
Y (jw) |v-1/,] 1 er(v=11]) - ex([v=17]) |v-1/,] LV 1/,] <f{,v 1/,] (‘)%jm)

Hence,
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Yo(fo()sjo) -1/, - Y(jw)
VilF, (o) } gig?g C'(OC)IL(I) : _ Y(j_w)?
| , :
1

Y[”*‘/;J <fLN,1/ZJ (‘):,jw>

Then (6.33) is determined explicitly, which is an analytical function of the
nonlinear parameter c¢;. The system output frequency response can therefore be
analyzed and optimized in terms of the nonlinear parameters. And also from (6.33),
the sensitivity of the system output frequency response with respect to the nonlinear
parameter, and the nonlinear output frequency response function defined in (6.12)
can both be studied. For more complicated cases, a similar process can be followed
to conduct a required analysis and design in terms of multiple nonlinear parameters
for model (2.11). Compared with the results in Lang et al. (2007), since the detailed
polynomial structure for the output spectrum up to any order can be explicitly
determined, this can greatly reduce the simulation amount needed in the numerical
method when multiple parameters are considered.

(6.35)

YA R VA S B R B

6.3 Parametric Characteristic Analysis of Nonlinear
Effects on System Output Frequencies

As discussed in Sect. 4.3, different nonlinearities may result in different output
spectrum characteristics for a system. It is known that nonlinear systems have more
abundant output frequencies than the driving frequencies, which demonstrates an
energy transferring phenomenon and usually is difficult to predict when and where
an output will happen. In order to achieve a desired output spectrum at certain given
frequencies, the system should be properly designed to include or exclude some
appropriate nonlinearity. In this subsection, how the different nonlinear parameters
affect the system output frequencies when subject to a harmonic input is studied to
further demonstrate the usefulness of the parametric characteristic analysis method.
Consider the NDE model (2.11) subject to a harmonic input

u(t) = Fsin (Qr) (6.36)
In this case, F(wy,) in the nth-order output spectrum (3.2) is
F(wk,) = _jled» for k[ = :l:l, W, = k]Q, and [ = 1, e, n (637)

Thus (3.3) can be written as
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. 1 . . n N
Yn(]w) - ? ZHiz(]a)kl" : 'ka,,) 'Fd . (kl . 'kn) : (7])

Wpey + 0k, =0

=S o o) (6.39)

g o, =0

where
Crn) = Fj - (ky---ka) - (=)" (6.39)

From (6.38), it can be seen that the output frequency range for the nth-order output
spectrum in this case is completely determined by wy, + - - - + @y, = w and the nth-
order GFRF. Note that oy, = £Q for /=1, - - -, n. Thus the output frequency range
for the nth-order output spectrum can only possibly be {kQ|k=0,1,2,...}, which
can be written as

W,={wlo= (0 + - +ap,) (1 =86H,())), o, =£Q, 1 <I1<n} (6.40)
Therefore the output frequency range for the system output spectrum is

Wo = U W, (6.41)

1<n<N

Obviously, when certain orders of the GFRFs are zero, it will lead to no output
spectrum at certain frequencies. From Proposition 5.1, (6.40) can also be written as

W, = {olo= (0 + - +or,) (1—8CEH,())), wr,=+Q, 1<1<n}
(6.42)

This demonstrates the effects of nonlinear parameters on the system output fre-
quency characteristics. From (6.42), the following lemma is straightforward.
In what follows, @ =2IQ for /=0,1,2,... are called even frequencies, and w =
21+ 1)Q for [=0,1,2,. .. are called odd frequencies.

Lemma 6.3 Consider the output frequencies of model (2.11) when subject to a
harmonic input (6.36). W, can only include even frequencies, when 7 is an even
number, and W,, only includes odd frequencies, when # is an odd number. O

Consider the effects of different nonlinear parameters in the following cases.

(A) Pure Input Nonlinearities
When there are only input nonlinearity in model (2.11) and supposing Cy, # 0, then
from Sect. 5.3.1A, CE(H,(-)) = Cy,. Equation (6.42) can be written as
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W, ={wlw = (o, +- -+ o) - (1 =6(Co.,)), o, =£Q, 1<1<n} (6.43)
which further yields

W= {2IQ- (1 =6(Co,n)) 0<I<n/2,n>2} if n is an even integer
TT{RI+1)Q-(1-68(Cop)) 0<I<(n—1)/2,n >3} if n is an odd integer

(6.44)

Obviously W, = {Q}, which represents the linear output frequency. Equation (6.44)
shows that for any a pure input nonlinear term of nonlinear degree n, it will
introduce a finite output frequency range from 0 to n€Q. If the nonlinear degree
n is an even integer, the introduced output spectrum will appear at even frequencies,
and if the nonlinear degree n is an odd integer, it will appear at odd frequencies.

Example 6.1 To verify the result above, a simulation result is provided for system
(6.20) with a;=1, a,=1, a3=0.5, ¢,=cr=c3=0, b=u(t)* or u(t)’. See Fig. 6.1.

(B) Output Nonlinearity and Input—-Output Cross Nonlinearity

When all the other nonlinear parameters are zero except for Cj, 4, then from (5.20d)
and Sect. 5.3.1C, the parametric characteristic of the nth-order GFRF can be
summarized as for n>1

CEH,(jo,.-- 'an))c,,,,, = Cp,g 77 - step(n —p — q)

S anl) 69

where

1 ifx>0
step(x) = {O else (6.46)

Equation (6.45) demonstrates the independent contribution from parameters in C, o
to the nth-order GFRF. Only when -~=L is an integer and n>p+gq, then

p+q-1

CE(H,(j1.- - -.jon))c, , is nonzero. In this case, it can be obtained from (6.42) that

for n=1,

W, = {Q} (6.47)

for n>1, and if ;%15 is an integer and n > p +g,

W, ={o|lo= (o + - +a) (1-8(Cpg™), o, =%Q, 1<1<n}
(6.48)

else
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Fig. 6.1 Output spectrum of a nonlinear system with only one input nonlinear term having
coefficient ¢ 5(.) (@) or co6(.) (b), subject to the input u(r) = 10 sin(¢) (Jing et al. 2009a)
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W, = {} (6.49)
From (6.48), the nonlinear terms with coefficients C, 4 will bring output

spectrum at some frequencies only when 2¢-1; is an integer and n > p +¢q. Let
p=_""1 (6.50)

p+q—1

which is a positive integer and can go to infinity when n goes to infinity.
If p+g=2Ifor I=1,2,3,. . ., i.e., the nonlinear degree is an even integer, then from
(6.50)

n=@2—1)p+1 (6.51)

In this case, (6.51) can not only give an even number but also an odd number. That
is, for a nonlinear parameter with even nonlinear degree, it can make an indepen-
dent contribution to both even and odd order of GFRFs. Therefore, from Lemma
1 an even degree nonlinear parameter will drive the system to have output spectrum
at all the even and odd frequencies. Similarly, if p+¢=2/+1 for I=1,2,3,. .., then
from (6.50)

n=2p+1 (6.52)

In this case, (6.52) must give an odd integer.
The following conclusion is straightforward from the discussions above.

Proposition 6.4 Consider the output frequencies of model (2.11) when subject to a
harmonic input (6.36). For any nonlinear term with coefficient ¢}, 4(.), where p+¢>1
and p>O0, if the nonlinear degree p+q is an odd integer, it will bring super-
harmonics to the system output spectrum only at these frequencies which are odd
integer multiples of the input frequency; if p+¢ is an even integer, it will introduce
super-harmonics at all frequencies which are nonnegative integer multiples of the
input frequency. O

These results can be verified by a simple example in simulation below.

Example 6.2 Consider system (6.20) subject to the harmonic input u(f) =5 sin(¢)
with a;=1, a,=1, a3=0.5, ¢3=0, b=1 and two cases: c;=c3 o(111), c,=0 and c;=0,
C2=C6,0(000111) x4, See Fig. 6.2, where the output frequency responses of the two
cases are given. It can be seen that the harmonics happen only at odd frequencies
when subject to the third degree nonlinearity; however, there are harmonics at all
the integer frequencies when subject to the sixth degree nonlinearity.
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6.4 Parametric Characteristics of a Single Input Double
Output Nonlinear System

Consider the SIDO nonlinear system in (2.28) or (2.34), which has a general
nonlinear output, and can be frequently encountered in practice as mentioned
before. The parametric characteristics of this kind of nonlinear systems are studied
in this section. For convenience, the SIDO NARX system is written as follows,

m

My m K P
M=% D Guplhry k) [ [ st = k) T ult—k)  (6.53)

m=1 p=0 ky, k=0 i i=p+1

m K m

y(t) = 22: Z Z ’Ep,mfp(kla . '7km)HX(t - k;) H M(f — k,) (653b)
i=1

m=1 p=0 ky, k=0 i=p+1

The notations and corresponding definitions can be referred to Sect. 2.3. The
GFRFs of this system are given in (2.30)—(2.33). From the GFRFs of model
(6.53a,b), the output frequency response of (6.53a,b) can also be derived readily
by extending the results in (3.1) and (3.3). Regard x(t) and y(t) as two outputs
actuated by the same input u(t), then

N n
XW):Z% J HyGor, - jon) [ ] U)o, (6.54)

D1+ Fop=w

N n
Y(ja))zz_;m J H,f(ja)l,---,ja)n)l:[lU(jwi)daw (6.54b)

o1+ o=

When the system input is a multi-tone signal (3.2), then the system output fre-
quency response can be similarly derived as:

X(o) =Y 0 S Hilon, - jon)F(o)Flo)  (655)

n=1 Wpy +F 0k, =0

N
Vo)=Y g S0 Hilox.jou)Flon) Flor)  (6.55b)

Wpy + 0+ O, =0

where F(w) = { [File/“"" if @ € {op.k = £1,---, £K}
0 else

It can be seen from the results above that the frequency response functions for

nonlinear systems are quite different from those for linear systems. It is known that

in a linear system, frequency response functions of different parts can be combined

together via addition or multiplication. This is not the case for nonlinear systems.

, W4 — :i:wk.
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For instance, if x(t) is only regarded as an input in (6.53b) independent of (6.53a),
then the GFRFs H) (jwy, - - -, jw,) and therefore the output spectrum Y(jw) will all
be changed completely for n>1, since in this case there are only input nonlinearities
in (6.53b) and no output nonlinearities. Even so, it can also be seen from (6.54a,b)
and (6.55a,b) that the output frequency ranges for both x(t) and y(t) are the same
one, i.e.,

N
Ul {wlw=w)+ -+ o, ER,} (6.56)
n=

where R, represents the input frequency range, for example R, = {wy, k==£1,- -,
+ K} for the multi-tone signal (3.2).

As discussed before, the parametric characteristic analysis presented in
Chaps. 4 and 5 can be used to reveal which model parameters contribute to
and how these parameters affect system frequency response functions, and thus
the explicit relationship between system frequency response and system time
domain model parameters can be unveiled. In this section, the parameter char-
acteristics of the output frequency response function related to the output y(t) of
model (6.53a,b) with respect to nonlinear parameters are studied, and the
nonlinear parameters in (6.53a) are focused since nonlinear parameters in
(6.53b) has no effect on system dynamics. In what follows, let
C(n) = {Cpqlki-kpsg)|l <p+q<n0<k <K, 1<i<p+gq} denotes all
the nonlinear parameters in (6.53a) with degree from 2 to n, and similarly
denote all the parameters in (6.53b) with degree from 2 to n as:

C(n) = {Tpq(ki-kprg) 1 <p+q<n0<k <K<1<i<p+gq}. Al the
(p+q)th degree nonlinear parameters in (6.53a,b) of form ¢, 4(.) construct a
vector denoted by

C = |c 07"‘,0,6' 0,"'71,"',C K,...’K
p-9q I’JI( ) f7>f7( ) p-9q

ptq

In what follows, CE(Hr)9 means to only extract the parameters in the set  from
Hr, and without specialty CE(H ) means to extract all the nonlinear parameters
(i.e., its nonlinearity degree >1) appearing in Hr.

6.4.1 Parametric Characteristic Analysis for H) (jo,, - - -, jo,)

Application of the CE operator to a complicated series for its parametric charac-
teristics can be performed by directly replacing the addition and multiplication in
the series by “®” and “®” respectively.
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The parametric characteristic of the nth-order GFRF H}(jw,, -, jw,) with
respect to nonlinear parameters C(n) is

) H” (joy, - jo,)+H' (joi,---jo,)+H' (jo,, - jo,
CE(H};(/wh“',jwn)):CE "”(]1 jon) "““(/1 jon) ”‘(/l / ))

L,(j(w1+-+m,))
:CE(H,*,'” (/'wl,~~-,jwn)> @CE(H;'M (jeor - ~,ja),,)) EBCE(H;;; (joor - -,jm,,))
n—1

_ n—q __ n__
=Con@® ( eal eal C,,,,,®CE(H,,_[,,,7(~))> ® ( @ZC,?,0®CE(H,1,,,(~)))
p= =

q=

(6.57)
where
CE(H,,,,,(,)) _ n:é:g;] CE(HIV()) ®CE(H”,,~’[,71(.)) or CE(H,[’,,(.))
T 1 CE(H;()) (6.58)
CE(Hn1()) = CE(H, (1)) (6.59)

Note that in (6.57), E(1/L,(j(w,+---+®,)))=1 since there are no nonlinear
parameters (in the set C(n)) in 1/L,(j(w; + - - - + ®,)). It is shown in Chap. 5 that

CE(Hyp() = CE(H}_,1()) (6.60)
and thus (6.57) is simplified as

CE(H;j(jorr, . jon))

_ —1 n—qg —
=Co,, @ (n@ @ Cpq® CE(H,)[,“,H(-)))

g=1 p=1 (6.61)

ST v
el Cuo® ,,632 C,,,0®CE(H;H)H(.))

From (6.61), CE(H;(jw;, - - -, jw,)) has no relationship with C (n). With the para-
metric characteristics (6.61), it can be concluded (referring to Chap. 5) that there
must exist a complex valued function vector f,(jw,,---,jw,) with appropriate
dimension, such that

H)(joi,- - -, jo,) = CE(H;f(ja)l, X ~,ja),,)) foGor, -, jo,) (6.62)

Equation (6.62) provides an explicit expression for the relationship between
nonlinear parameters C(n) and the nth-order GFRF from u(t) to x(t). For any
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parameter of interest, how its effect is on the GFRFs can be revealed by checking
CEH,(joy, - - -, jw,)). From (6.62), H;(jo,, - - -, jw,) is in fact a polynomial function
of parameters in C(n) which define system nonlinearities, thus some qualitative
properties of H,(jw,, - - -, jo,) can also be indicated by CE(H,(jw,, - - -, jw,,)). More-
over, using (6.62), (6.54a) can be written as

N
X(jw) =Y CE(H,(jwr, - -»jon)) - Faljo) (6.63)
n=1
where F,(jw) = W J Fo(or, - jwy,) - H U(jw;)do,. This is the

w1+ t+w, =0 =l

parametric characteristic function expression for the output X(jw). By using this
expression, X(jw) can be obtained by following a numerical method without
complicated computation involved in (2.30)—(2.33).

6.4.2 Parametric Characteristic Analysis for H) (jo,, - - -, jo,)

To study the parametric characteristic of the nth-order GFRF I’ (jwy, - - -, jw,) with
respect to only model nonlinear parameters in C(n), the parametric characteristic
with respect to model parameters in C(n) and C(n) are derived first and then the case

with respect only to nonlinear parameters in C(n) is discussed.
Applying the CE operator to (2.32) yields,

CE(H (jor,++-sjon)) =CE (H, (or,-++jon) ) ©CE (H, (o -+ jeon) ) ©CE (H, G-+ joo))
n—1n

= 60,11 D ( D ;{i 6/),(] ®CE (Hn—q,p (](01 [ ‘>jwn—q))>

q=1p:

5] ( @?p,O@CE(Hn,p(]'CUI="'sjwn)))
p=

using (6.60), which further gives

CE(H](jo, -, jwy))
n—1 n—

~ q ~ . . .
= C(),n (&5) ((1@1 1 Cp,q 2y CE(HI:querl (]0)1, o .’anq))> (664)

@< B Cpo® CE<H,§_,,+1(/Q,1, . .,jwn))>
Z

Thus the parametric characteristic of i) (jw;, - - -, jw,) with respect to both nonlinear
parameters in C(n) and C(n) is obtained.
Especially, if C(n) is independent of C(n), the parametric characteristic of H)

(jowy, - - -, jo,) with respect to nonlinear parameters in E’(n) can be written as
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~ n—1 n—q ~ n o~
CE(H}(jon. - jon))~ =Con® | & @& Cpg)@ | & Cpo (6.65)
C(n) q=1 p=1 p=2
Therefore, in this case H) (jw,, - - -, jw,) can be expressed as a polynomial function
of C(n) as
f (ja)l, . -,ja)n;E(n)) (6.66)
where f, (/’wl, e, JO; C(n)) is a complex valued function vector with an appropri-

ate dimension, which is also a function of the parameters in C(n) in this case. From

(6.65), it can be seen that CE (H}) (joy.- - -, ja)n))fcv . is a vector which is composed of

all the elements in C (n). That is, the nth-order GFRF is a polynomial function of all
the parameters in C(n) if C(n) is independent of C(n). This conclusion is

straightforward. The case where C(n) is dependent on C(n) will be discussed in
the following section.

6.4.2.1 Parametric Characteristics of H) (jo1, - - -,jo,) with Respect to
C(n)

What is of more interest is the parametric characteristic of H(jwy, - - -, jw,) with
respect to nonlinear parameters in C(n) which define system nonlinear dynamics.
Consider two cases as follows.

(1) C(n) has no relationship with C(n)

In this case, it can be derived from (6.64) that

n—1 n—gq

CE(H] (jw). - -,jwn))an) = (@ D <1 - 5(@%6{)) ) CE<H?;7q—p+l (jeor, - "jw”*‘f)>>

g=1 p=1
o221 (Cue)) -ce(t 1t son)

(6.67)

where 6<Cp"1):{(1) gZZig From (6.67) it can be seen that

CE(H,{(ja)l,- .. jw"))an) is the summation by “@” of parametric characteristics
of some GFRFs for x(t) from the 1st order to the nth order. From the definition of
operation “@”, the repetitive terms should not be counted. Therefore, (6.67) is
simplified as
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CE(H%(]&)] : "ja)n))f(n) = p@ll(nap)

CE(H) i (o, jwn))anipﬂ) (6.68)
where
x(np)=1-35 (1-6(Cr)) (6.69)
0<g<n-1,1<p <n—gq
pP+q=p

Equation (6.69) means that if there is at least one nonzero Ep/, , then the
corresponding CE(H';;?qf s 10O jwn — ) will be counted in (6.68).
According to Proposition 5.1 in Chap. 5, it follows from (6.68) that the nth-order

GFREF for y(t) has relationship with all the nonlinear parameters in C(n) of degree
from 2 to »’ in this case, where n’ <n.

(2) C(n) has linear relationship with C(n) by <, 4(-) = @ + BT, 4(-) for some real
number a and
Note that applying the CE operator to ¢, ,(-) = a + ﬁEp,q() for the nonlinear

parameter G, ,(-) gives CE(Cp () = CE(& —&—EE,,,q(-)) =0Cpq(), e,
CE (6,,,q> = E,,,q. Hence, in this case (6.64) should be

CE(H} (jor, - jo))
— n—1 n—q — X . .
=Co,n ® (q@l pejl Cpq® CE(H;l_q_,,H (Jw1, .. .,jwnq))> (6.70)

® D ( @1 EP,O ® CE(H}:—p+1 (joor, - ~,jw,,)))
=

Equation (6.70) can be further written as

CE(H,f(ia)l,"',jwn))
_ n—1 n—q — X . .
=Con® (q@l p@jl Cpyg® CE(H,HH,H (jorr, - - .,Jw,lq))>
®® (pe_afp,o @ CE(H_. o, ~,jwn>)>
® @C1,0 @ CE(H; (jor, ';',ja)n))
= CE(H,f(iwl, = ',jwn)) ®Cio® CE(H;wal, i ',ja)n))

(6.71)
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In the derivation of (6.71), (6.57) and (6.60) are used. Equation (6.71) can reveal
that how the model parameters in (6.53a) affect system output frequency response.
When only nonlinear parameters are considered under the assumption that linear
parameters are fixed in the model, then (6.71) is simplified as

CE(H;)(jor. - .jon)) g,y = CE(H, (jor.- - jon)) &, (6.72)

Equation (6.72) indicates that the parametric characteristics of the GFRFs for y(t)
and x(t) are the same with respect to model nonlinear parameters in C(n). Note that
(6.72) has a relationship with all the parameters in C(n) from degree 2 to n, which is
different from (6.68). In this case both X(jw) and Y(jw) can be expressed as a
polynomial function of model nonlinear parameters in C(n) with the same polyno-
mial structure.

6.4.2.2 Some Further Results and Discussions

The following results can be summarized based on Sect. 6.4.2.1.

Proposition 6.5 Considering system (6.53a,b), there exists a complex valued

function vector ]7" (joi,- - -, jw,) with appropriate dimension which is a function
of linear parameters, such that

H, (jwy, - - -, jo,) = CE(H} (jo.- - "jw"))f(n) 'fn(fwls “r jon) (6.73)

and the output spectrum of system (6.53a,b) can be written as

N
Y (jo; C(N)) = ZCE(H;’(]'@)I,- ' "j“)n))E(;1) Fy(jo) (6.74)
n=1
. . n
where F,(jo) = W J FaGor, - jwy,) - H U(jw;)do,. If the input of
i=1
o+t =0

system (6.53a,b) is the multi-tone signal (3.2), then the output spectrum of system
(6.53a,b) can be expressed as

N ~

Y(jo; C(N)) = > CE(H] jon, - jon,) )z Fali0) (6.75)

n=1

where Fuljo) =4 > filjon. jor,) - Flog,) - Flo,), and

W)+ Fwp, =0

CE(H,{' (jor,- - ~,ja1n))5 is given in (6.68) or (6.72).

(n)
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Proof The results are straightforward from the discussions above and the results in
Chaps. 4 and 5. O

Proposition 6.6 Under the same assumption as Proposition 6.5 for system (6.53a,
b). If C(n) has either no relationship or linear relationship with C(n), then CE

(H Y(joor,- - -, jw"))E(n) is given in (6.68) or (6.72), and the parametric characteristic
vector for Y(jw) can both be written as

. N X/ .
CE(Y (jo))g () = o CE(H; (jwy.- - -, ]a)n))an) (6.76)

That is, there exists a complex valued function vector F (jwi, - -+, jw,) with

appropriate dimension, which is a function of nonlinear parameters in C (N), linear
parameters and the input, such that

Vor€) = ( 5 CE(Gon o)z, ) £ G (677

Proof See the proof in Sect. 6.6. O

From Proposition 6.6, both of the two mentioned cases have the same parametric
characteristics for the output spectrum Y(jo). If C (n) has no relationship with C(n),
(6.76) may be conservative since some terms in (6.76) have no contribution.
However, this does not affect the result of (6.77) because the corresponding terms
in the complex valued vector will actually be zero after numerical identification.
Once the parametric characteristics CE (H Y(jwy,- - jwn))an) are derived, the
polynomial structure of the parametric characteristic expression for Y(jw) is deter-
mined, and then as mentioned above, (6.74) and (6.75) can be determined by using a
numerical method. Therefore, analysis, design and optimization of system output
frequency response can be conducted based on this explicit polynomial expression

in terms of nonlinear parameters in C(N).

Example 6.3 Consider nonlinear system (2.37) again. Note that there are only two
nonlinear parameters in C(n), i.e., ¢2.0(11) = —ay/k,¢3,0(111) = —as3/k, and the
nonlinear parameters in 5(11) are linear functions of the corresponding parameters
in C(n). Let Cy.0 = —ay/k,C3,0 = —a3/k. The GFRFs up to the fifth orders are
computed according to (6.72) as follows,

CE(H{(jo1)) =1 (6.78)
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241/,

CE(H3 orjon) gy = CE(H (o jon))gg) = Co0® 2, Cpo® CE(H ()
= 620 D0 = 62,0 = —az/k
(6.79)

B 341/,| '
CE(H3 (jo .- - ',.iw3))a3) = CE(H;3 (jo.- - ',jw3))6<3) =GC09 pejz Cro® CE(H§,,,+1(-)>
— — . — — 2 as a
=C3,0® Cr0 ®CE(H5(")) = C3,0 ®Cay” = R
(6.80)

. . . . — ]
CE(HZI(IU)IV ' 'Jw4))6(4) = CE(HZI(/“)I" : '»Jw4))6(4) =Cao® 176:92 Cro® CE(Hi—pH('))

=0®Ca0® CE(H3()) = Cao @ (Ca0® Co”)

adas a%

— — — 3
=Cro®C30DCrp = [7 *P}

(6.81)

! - P“/Z _
CE(H o -jo))zg = CEMH3 o -jas) ) = Co® - 6 Cro® CE(HL,.,()
=0® Cy,0 ® CE(H;(-)) ® C3,0 ® CE(H5 ("))

2 42
— 2 — — 4 — 2 asas a, a
=C20 ®C30PCr0 ©C30 = {]2(7371?2;7](%]

(6.82)

The parametric characteristic of the output spectrum up to the fifth order can be
obtained as

. 5 . .
CE(Y (j0))gs) = © CE(H, (.- jon)),

1 as as a% ardas a% a%ag a‘z‘ a%
- b _—7 - b 9 b b b 9
Kok B TR

(6.83)

Then according to Proposition 6.6, there exists a complex valued function vector
F (joi, - - -, jws) such that

. aj as a% aras ag a%a3 a‘z‘ a%
Y(jo;az,as) = l,, - - S =3 53 i 3
k k' k' k kok Ok k

F (jwy,- - -, jws) (6.84)

It should be noted that the system output spectrum in (6.84) is only approximated up
to the fifth order. In order to have a higher accuracy, higher order approximation
might be needed in practice. To obtain the explicit relationship between system
output spectrum and the nonlinear parameters a, and a; at a specific frequency of
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interest, F (jwi, - - -, jws) in (6.84) can be determined by using a numerical method
as mentioned before. The idea is to obtain Z system output frequency responses
from Z simulations or experimental tests on the system (2.37) under Z different
values of the nonlinear parameters (a,az) and the same input u(t), then yielding

Y, = [Y(jw;az,a3), Y(jw;ar,a3), --- Y(iw;az,a3)z}T
= F(joi, - jos) (6.85)
where
[ _a) a(l) a3 (1) ax(l)as(1)  a3(1) a3(D)as(1) a5(1) a3(1) ]
b k b k t k2 9’ k2 b k3 b k3 b k4 b kz
@) a(2) a(2) a2(2)a3(2)  @(2) a3(2)a3(2) a5(2) a3(2)
@: b k b k 9’ k2 9’ k2 ' 9 k3 b k3 9’ k4 b k2
1 _w(2)  a(2) a(2) w(Z)as(2) &(2) &3(Z)a3(2) a5(Z) a5(Z)
L b k 9 k b k2 9 k2 b k3 b k3 9’ k4 t k2 1
(6.86)
Then
E(jar,- - jos) = (') 0Ty, (6.87)

Therefore, (6.84) can be determined, which is an explicitly analytical function of
the nonlinear parameters a, and a3. By using this method, the system output
frequency response can thus be analyzed and designed in terms of model nonlinear
parameters of interest.

6.5 Conclusions

The parametric characteristic analysis is performed for nonlinear output spectrum
of Volterra-type nonlinear systems described by NDE models or NARX models in
this Chapter and some fundamental results for the parametric characteristics of
nonlinear output spectrum are established and demonstrated, including parametric
characteristics based analysis, parametric characteristic analysis of nonlinear
effects on system output frequency, and parametric characteristics of SIDO
nonlinear systems etc.

Based on these results, the parametric characteristics based output spectrum
analysis for nonlinear systems will be further shown in the following two chapters,
and the nonlinear characteristic output spectrum is thereafter developed in Chap. 9.
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6.6 Proofs

Proof of Proposition 6.2

Regard all other nonlinear parameters as constants or 1. From Proposition 5.1 and
Properties 5.1-5.5, if p+g>n then the parameter has no contribution to CE(H,(.)),
in this case CE(H,(.))=1 with respect to this parameter. Similarly, if p+g=n then
the parameter is an independent contribution in CE(H,(.)), thus CE(H,(.))=[1 c]
with respect to this parameter in this case. If p+q<n and p>0, then the independent

contribution in CE(H,,(.)) for this parameter should be cbﬁj , and the monomials

cfor0<x< L)ELJ are all not independent contributions in CE(H,(.)). Hence
CEH,(-)) = [1 c 2 ... ol } for this case. The similar result is held for

the case p+q<n and p=0. However, since there should be at least one p>0 in a
complete monomial, thus in this latter case ¢* for any x are not complete, which

follows CE(H,(")) = [ 1 ¢ &2 ... ol } The parametric characteristic

vector for the nonlinear parameter c for all the cases above can be summarized into

CEH() = [1 ¢ @ ... clhl-somsoma

This completes the proof. O

Proof of Proposition 6.3

Equation (6.16) is summarized from (5.19)—(5.21), and when all the other param-
eters are Zero except ¢=c, 4(.), the following equation can also be summarized from
(5.19)-(5.21)

CE(H,(jeor, -+ jon)) = 777 - 5<p j—;i 1 \_pz;i 1J>
(1 = &(p)pos(n — q))

Therefore, it can be shown that

N71/17+q—l
CE(Y(/C'))):L lﬂjo JCE(H(p+q71)i+1('))
LN_1/1)+q*1J .
= ET sl ) (- splpos((p + g~ i+ 1 —q)
LN71/1)+q*1J

= & " (1=dppos((p+q—1)i+1-q))

If p=0, 1 —é(p)pos((p+q — 1)i+1 —q)=1—pos((qg — 1)i+ 1 — gq), which yields,
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CE(Y(jw)) = [1 c- (1 —pos(g—N))]
else, 1 —6(p)pos((p+¢q — 1)i+1 —g) =1, which yields

LN,1/1]+q71J N
CE(Y(w) = &' CE(Hpgin() =1 ¢ @ - e[l ]

This completes the proof. O

Proof of Lemma 6.2
The lemma is summarized by the following observation. For clarity, let I=3.

"=c®c - ®c
—_——

n

I
s(i), = X:S(/'),P1 for i=1,2,3
=i

n=1 [c ¢, c3 1 11
n=2 [c; c2 3] ®[c1 ¢ c3] 3 21
= [Cl2 C1C2 Ci1C3 Cz2 C2C3 032}
n=3 [c/? cicz cic3 ¢ cac3 32 ® ey ¢ cs) 6 3 1
=lci? cier ci’es cier? creacs ciea’ 6’ e’y cacs? 3’
n=4 [c® c1%cs ci’cs c16? creacs c1cs? € s cacs? ¢*l ® e o ¢ 10 4 1
= [014 crler crdes ci?ea? crfeaes cr’es? cier® cica’es creacs? cies’
et ez cr’es? cpcs? 034}
n=>5 [014 ci’cr ci’cs c12cr? cieacs c12c3? cicr’ cica’es cicacs? cies’ 15 5 1
c* co’es cr?es? cpcs? C34] ® [c1 ¢ ¢
= [015 014C2 014C3 C13022 013CZC3 C13C32 012023 C12C2203 C1202C32 C12033

ciea? cre’cs cie?es? creacs® crest @ ofes e’es? c?es’ cocst 035]

To complete the proof, the complete mathematical induction can be adopted. An
outline for this proof is given here. Note that
=" e s(1), = s(D), + 1 s(1),] e s(D),] ol

includes all the non-repetitive terms of form ¢i'cs---ci' with ky +ky+---+k;=n
and 0 <ky,ky, - - -, k; <n. These terms can be separated into / parts, the ith part of
which, i.e., " [s(1), — s(0), + 1: s(1),] - ¢;, includes all the non-repetitive terms of
degree n which are obtained by the parameter c; timing the components of degree
n—1in " ! from s(1),, — s(i),, + 1 to s(1),,. Assume that the lemma holds for step .
Then for the step n+1, the ith part of the components in ™! must be ¢"[s(1),11 — (s
Dt +5sD)+1is(1)ys1l-¢; which is ¢"[s(1)ps1—5@Dpr1+ 11515411 cin
This completes the proof of Lemma 6.2.

Proof of Proposition 6.6
From (6.74) and (6.75), the parametric characteristic vector for Y(jw) is
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CE(Y(/W))E(N) = (A1)

To=

1 CE(HI{(JG)I’ o .’jw"))f(n)
If C (n) has a linear relationship with C(n), then CE (H (jo,. - - ~,ja),,))an) is given by
(6.72). In this case, (6.76) is straightforward by substituting (6.72) into (Al). If
C(n) has no relationship with C(n), then substituting (6.68) into (A1) yields

CE(Y (jo))g) = ,ﬁg ( & y(n.p) - CE (H,f_,,+1 (jar. - -,jwn)an>)> (A2)

r=1

By the definition of operation “@®”, repetitive terms should be removed. Therefore,
(A2) further gives

N
CE(Y (), = &1 (N.p) - CE(Hyy i (jor. - jon)g)  (A3)

N
Note that, all the elements in vector @ y(N,p)-CE (H;§7p+10w1,- . "ij)E(N))
p=1

N
must be elements in vector & CE (Hj,‘ (jor,- -, jw,,)an)). Hence, the parametric

n=1
characteristics in (A3) are all included in (6.76). Equation (6.77) is straightforward
from Proposition 6.5. O



Chapter 7
The Parametric Characteristics Based
Output Spectrum Analysis

7.1 Introduction

The parametric characteristic analysis provides a powerful tool for nonlinear
analysis in the frequency domain, which can be used for many important issues
related to analysis, design and understanding of nonlinear dynamics and influence,
from the viewpoints of output frequency response of nonlinear systems and/or the
GFRFs. In this chapter, the output frequency response or output spectrum based
analysis method is demonstrated, which actually has already been discussed in
remarks and examples in the previous chapters. The parametric characteristic
analysis can provide obvious benefits for example in determination of the paramet-
ric structure and in reduction of computation cost, which will be theoretically
addressed in the chapter thereafter. Based on these results, the nonlinear character-
istic output spectrum based analysis is established in Chap. 9, which is a much
improved version of the output frequency response function based analysis method
in this chapter. Following these, the GFRFs based analysis with the parametric
characteristic approach will be investigated more, including understanding of
nonlinear influence in the frequency domain, and bound evaluation of output
response of nonlinear systems etc.

7.2 The Parametric Characteristics Based Output
Spectrum Analysis

Using the parametric characteristic result in Corollary 6.1, the output spectrum
(6.8a) can be simply rewritten as
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. . N\T
Y(joo) = v - B(jo) (7.1)

Where v/=ng§1CE(Hn(-)), ®(jw) = [¢1 (o) $r(j@) - ¢y(jw)]. Note

that ¢,(jo)=H,(jw) is the first order GFRF, which represents the linear part of
model (2.10) or (2.11), and ¢,,(jo) =Y ,,(f,.(-); jo). The function in (7.1) is referred to
here as output frequency response function (OFRF) or nonlinear output spectrum
with parametric characteristics.

As discussed before, (6.8) or (7.1) provide a more straightforward analytical
expression for the relationship between system time-domain model parameters and
system output frequency response. By using this explicit relationship, system
output frequency response can therefore be analyzed in terms of any model
parameters of interest. Hence, it can considerably facilitate the analysis and design
of output frequency response characteristics of nonlinear systems in the frequency
domain. As demonstrated in Sect. 6.2.2, the main idea for the parametric charac-
teristics based output spectrum analysis in this Chapter is that, given the model of a
nonlinear system in the form of model (2.10) or (2.11), CE(H ,(-)) can be computed
according to Proposition 5.1 or Corollary 5.1, and ¢,,(jw) can be obtained according
to a numerical method which is mentioned before and will be discussed in more
details later. Thus the output spectrum of the nonlinear system subject to any
specific input can be obtained, which is an analytical function of nonlinear param-
eters of the system model, and finally frequency domain analysis for the nonlinear
system can be conducted in terms of specific model parameters of interest.

The parametric characteristics based output spectrum analysis for system (2.10)
or (2.11) is discussed in Sect. 7.2.1. In order to conduct the parametric character-
istics based output spectrum analysis, a general procedure is provided in Sect. 7.2.2,
where several basic algorithms and related results are discussed.

7.2.1 A General Frequency Domain Method

The parametric characteristics based output spectrum analysis for nonlinear sys-
tems described by (2.10) or (2.11) is totally a new frequency domain method for
nonlinear analysis. The most noticeable advantage of this method is that any system
model parameters of interest can be directly related to the interested engineering
analysis and design objective which is dependent on system output frequency
response, and thus the system output frequency response can be analysed in terms
of some model parameters of interest in an easily-manipulated manner. This
method does not restrict to a specific input signal and can be used for a considerable
larger class of nonlinear systems. These are the main differences of this method
from the other existing methods such as Popov-theory based analysis, describing
functions and harmonic balance methods as discussed in Chap. 1.

One important step of this method is to determine the output spectrum with
parametric characteristics for the system under study. This will be discussed in
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more detailed in the following section. Once the system output spectrum is
obtained, based on the result in Proposition 6.3 and (7.1), the output frequency
response function with respect to a specific parameter ¢ can be written as

Y (jo) = @y(jo) + @y (jo) + Py (jo) + - - + ' Gy(jo) + - - (7.2a)
Since Y(jw) is also a function of c, therefore, (7.2a) is rewritten more clearly as
Y (jw; ) = o(jo) + @y (jo) + P (jo) + - - + @y(jw) + -+ (7.2b)

Y(jw;c) is in fact a series of an infinite order, ¢ is a positive integer which can be
determined by Proposition 6.3, ;(jw) is the complex valued function corresponding
to the coefficient ¢ in (7.2b). If all the other degree and type of nonlinear parameters
are zero except that C,, ,=c # 0 (p+q> 1), then@, | (jo) = ¢,(jo) (¢ (jw) is defined
in (6.8), (6.10), (6.11), or (7.1). Based on (7.2a,b), the following analysis can be
conducted.

» Sensitivity of the output frequency response to nonlinear parameters
Based on (7.2a,b), this can be obtained easily as

aY%f—; ) 5, (j0) + 27,0i0) + - + (' ) + - (7.3)

Similarly, the sensitivity of the magnitude of the output frequency response with
respect to the nonlinear parameters can also be derived. Note that

Yo )* = Y (jas )Y (—jw; ) = (@olj) + 1 (jo) + Py (j) + - --)

X (@o(—jw) + cp) (—jw) + 7Py (—jw) + - - )

oo J4
=P Do+ Y <JZ¢,- : (pzi> :
(=1 i=0
=potep+Eprt o+ Pyt (7.4)

It is obvious that the spectral density of the output frequency response is still a
polynomial function of the parameter c. Equation (7.4) can also be directly
derived by following Process C that will be discussed later (Sect. 7.2.2.2).
Thus, the sensitivity of the magnitude of the output spectrum to the parameter
¢ can be obtained as
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o(wse)| _ 1 d¥(jmsc)
oc 2|Y(ja)' )| Oc

2|Y jw; ) |Z (&f IZ% [ ) (7.5a)

Given (7.3), (7.5a) can also be computed as

oY (jw;c)| 1 OIY (ja; )
dc 2 (jwic)]  dc
- 2|Y (jw; )| ( dc Y(—jow;c) + Y (jw;c) T)
_ o [OY(jw;c) Y(—jw;c)
- m( oc  |Y(jo; c)|> (7.5b)

The sensitivity function for system output spectrum with respect to a nonlinear
parameter provides a useful insight into the effect on system output performance
of specific model parameters. This will be illustrated in Sect. 7.3. Another
possible application of the sensitivity function is vibration suppression. In
many engineering practice, the effect of vibrations should be considerably
suppressed. From (7.5a,b), it can be seen that if Y(jw,c) represents the spectrum
of a vibration, in order to suppress the vibration, it should be ensured that 22X am"" al
< 0 for some c¢. Consider (7.4), the following conclusion is obvious.

n
() w < 0 for some ¢ = Jsome n >0, Zsign(c”_l)a,- ‘@ ;<0

i=0
(b) p; =Re(py(jo) - @, (—jw)) < 0 = there exists >0 such that B‘Y(’w‘ﬂ <0
>
for 0<c<e or —e<c<0. Where sign(x) = { 1_1 e)isg O, Re(-) is to get

the real part of (). If a nonlinear parameter c¢ satisfies
1 = Re(@y(jw) - ¢, (—jw)) < 0, then it can be utilized for the vibration
suppression objective.

« Evaluation of the radius of convergence for the output frequency response
with respect to nonlinear parameters
It is followed from (7.2a,b) that the radius of convergence is given by

R = lim

{—00

)
i o



7.2 The Parametric Characteristics Based Output Spectrum Analysis 117

Obviously, if |¢| <R, then the series is convergent. Define a Ratio Function

alfl (]a))c

k&) =1, ).

(7.7)

which is a function of ¢ and also varies with different nonlinear parameters. It
can be seen that, if
AR([, Cl) > AR(& Cz)
Al Al

(7.8)

then the output spectrum has a larger radius of convergence with respect to ¢,
than that with respect to c,. Equation (7.7) and inequality (7.8) can be used as an
evaluation of the effect on the convergence of the Volterra series expansion for
the nonlinear system under study from a model parameter and the comparative
advantage between different parameters. Note that divergence of the Volterra
series expansion can sometimes imply the instability of the system under study
or the nonexistence of a Volterra series expansion. Thus this analysis can
provide some useful information for the design of system output frequency
response in terms of different model parameters.

* Optimization of the output frequency response in terms of nonlinear
parameters
Importantly, given a desired magnitude of the output frequency response Y*, an
optimal ¢* in 0S. can be found such that

min ([Y(jw; c)| = Y7) (7.9)

A systematic method for this purpose is yet to be developed, which will be
discussed in the future study.

7.2.2 Determination of Output Spectrum Based
on Its Parametric Characteristics

As mentioned before, an important step for output spectrum analysis based on the
parametric characteristics is to obtain the parametric characteristic function of
system output spectrum in (7.1) (i.e., the OFRF). In this section, a general procedure
for the determination of the OFRF for a given model (2.10) or (2.11) is provided,
and useful algorithms and techniques are discussed.
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7.2.2.1 Computation of Parametric Characteristics

N
This step is to derive y = EBI CE(H,()) in (7.1).

Determination of the largest orderNV

To derive the parametric characteristics of OFRF, the first task is to compute the
largest order, i.e., N, of the Volterra series expansion for the nonlinear system,
which is basically determined by the significance of the truncation error in the
Volterra series expansion of finite order. This can alternatively be done by
evaluating the magnitude of the nth-order output frequency response Y,(j@).
For example, the magnitude bound of ¥,,(jw) for the NARX model (2.10) can be
evaluated by (Jing et al. 2007a, b), which will be discussed in Chap. 13,

Y, (jo)| < ay - by - hHT (7.10)

where a,,%, are complex valued functions, and b,, is a function vector of the
system model parameters. For the detailed definitions for a,,,b,,%, refer to Jing
et al. 2007a, b. If the magnitude bound of a certain order of Y ,(jw) is less than a
predefined value (for instance 10_8), then the largest order N is obtained. It
should be noted that the magnitude bound is a function of the model nonlinear
parameters. Therefore, the largest range of interest for each nonlinear parameter
should be considered in the evaluation of 1Y,,(jw)I. The truncation order selection
issue will be further discussed in Chap. 9, where it is well addressed from a
different point of view.

Determination of the parametric characteristics

Once the largest order N is determined, the next step is to derive the
parametric characteristics of GFRFs for the nonlinear system, i.e., CE
(H,(-)) from n=2 to N, which will be used in the computation of

N
w = & CE(H,(-)). Note that CE(H,(-)) is computed in terms of the param-
n=1

eter vectors Cp g = [cp,4(0,---,0),¢p (0, -+, 1), -, ¢p 4(K,---,K)] for some
p+q
p,q in (5.17).

Basically, for some specific parameters to be analysed for a system, CE(H,,(+))
can be recursively computed by (5.17) with respect to these parameters of
interest with other nonzero nonlinear parameters being 1. Alternatively, CE
(H,(-)) can also be determined directly without recursive computations by
using the results in Proposition 5.1. Based on Proposition 5.1, the parametric
characteristic CE(H,(-)) can be obtained as follows, which is referred to as
Process A: for 0<k<n-—2,

k
(A1) Generate all the combinations (rg, 1y, I5. . ., Iy) satisfying ro + Z ri=n
i=1

~+k and 2 <r;<n—k with respect to a specific value of k;
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(A2) Generate all the possible combinations (p;,q;) with respect to each r;
satisfying p;+q;=r;, and note that when it is for ro, 1 <pg<n—k;

(A3) All the possible combinations can now be generated based on Step
(A1) and (A2), then remove all the repetitive terms;

(A4) CE(H,(")) is obtained in terms of the parameter vectors C,, , for some p,q,
which can be stored for any future usage. For a specific nonlinear system,
CE(H,(-)) can be obtained only by replacing the corresponding parameter
vector C), ; of interest with respect to the specific nonlinear system, and the
other parameters in CE(H,(-)) are set to be zero if it is zero or set to be 1 if
it is not of interest;

(AS) Achieve the final result by manipulating CE(H,,(-)) according to the oper-
ation rules of “@” and “®” (See Chap. 4), and removing the repetitive
terms.

By this process, the parametric characteristic CE(H,(-)) can be obtained
without recursive computations. For a summary, the parametric characteristic

N
vector w = @& CE(H,(-)) can be computed by following the process below,
n=1

which is referred to as Process B:

(B1) Determine the set of the nonlinear parameters of interest, denoted by Sc;

(B2) Determine the largest possible ranges for the nonlinear parameters of
interest, denoted by 0S¢;

(B3) Determine the largest order N of the Volterra series expansion according to
(7.10) and the discussions there.

(B4) Computation of CE(H,(-)) with respect to the parameters Sc of interest
following Process A or (5.17) from n=2 to N.

(B5) Combine the final parametric characteristic vector y = IEVBI CE(H,(-)).

n=

Therefore, based on Process A and Process B, the parametric characteristics of
the output frequency response with respect to any specific model parameters of
interest, which are the coefficients of the polynomial function (7.1), can be deter-
mined. Thus the structure of the polynomial (7.1) is explicitly determined at this
stage. Note that, the parametric characteristic vector CE(H,,(-)) for all the model
nonlinear parameters in (5.13) can be obtained according to (5.17) or Process A,
and if there are only some parameters of interest, the computation can be conducted
by only replacing other nonzero parameters with 1 as mentioned above.

7.2.2.2 A Numerical Method

This is to determine ®(jw) = [¢p,(jo) ¢,(jw) -+ ¢y(jw)] in (7.1), then the
OFRF in (7.1) is obtained consequently. Since the system model is supposed to be

N
known, the parametric characteristic vector w = @& CE(H,(+)) is achieved, and
n=1
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N
note that ®(jw) is invariant with respect to w = @& CE(H,(+)), thus ®(jw) can be
n=1

derived with respect to any a specific input by following a numerical method as
follows, which is referred to as Process C:

(C1) Choose a series of different values of the nonlinear parameters of interest,
which are properly distributed in 0S¢, to form a series of vectors w1 - - -y v,
where p(N)=|y/| denotes the dimension of vector y, such that

T "
Y= [1//1 W) } is non-singular (7.11)

(C2) Given a frequency @ where the output frequency response of the nonlinear
system is to be analysed or designed. Excite the system using the same input
under different values of the nonlinear parameters - - -y, collect the
time domain output y(#) for each case, and evaluate the output frequency
response Y(jw); - - - Y(jow), at the frequency w by FFT technique.

(C3) Step 2 yields

41 (Pl(/:w) Y(’:w)l
Y. d(jo) = '/’2 : ("’2(51(”) - Y(/Ew)z = YY(jw) (7.12)
Yoy Pp(N) (jo) Y(ja))p(N)
Hence,
(o) = [p1j0) da0) - pylo)] 713)
= [pi(o) @(j0) - @mlo)] =¥ YY (o) '

In Step C1, p(N) different values of the parameter vector ¥ in the parameter
space 0S¢, such that det(¥)#0 can be obtained by choosing a grid of parameter
values of the nonlinear parameters of interest properly spanned in 0S¢, or using a
stochastic-based searching method or other optimization search methods such as
GA to generate a non-singular matrix . In practices, it is not difficult to find such a
matrix with a proper inverse, which will be illustrated in Sect. 7.3. In Step C2, given
the largest order N of the system output spectrum, it can be seen that this algorithm
needs p(NV) simulations to obtain p(N) output frequency responses under different

N
parameter values. Note from Step C1 that p(N) = |y| = 691 CE(H,(-))|, which is

not only a function of the largest order N but also dependent on the number of
parameters of interest. This implies the simulation burden will become heavier if
the number of the parameters of interest and the largest order N are becoming
larger. In Step C3, since det(¥)+£0, the complex valued function vector ®(jw) in
(7.13) is unique, which implies the result in (7.13) can sufficiently approximate
their real values if the truncation error incurred by the largest order N of the Volterra
series is sufficiently small.
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Therefore, by following Process C, the complex valued function vector ®(jw)
can accurately be obtained for the specific input function used in Step C2 and at the
given frequency w. Consequently, the OFRF (7.1) subject to the specific input
function is now explicitly determined by following the method discussed above for
the nonlinear system of interest. Although the function vector ®(jw) is obtained by
using the numerical method above and consequently the obtained OFRF is not an
analytical function of the frequencies and the input, the achieved relationship
between the output spectrum and model nonlinear parameters is analytical and
explicit for the specific input function at the given frequency w. Moreover, note that
since CE(H,(+)) is known, and ®(jw) = [¢,(jo) @,(jo) --- @y(jo)]is deter-
mined, then Y, (jw)=CE(H,(-))-@,(jw)" is also determined, which represents the
analytical function for the nth-order output frequency response of nonlinear
systems.

It should also be noted that, the proposed method above as demonstrated in
this section enable the OFRF to be obtained directly in a concise polynomial
form as (7.1) without the complex integration in the high-dimensional super-plane
w=w+---+w, especially when the nonlinearity order » is high. By using the
proposed method above, the OFRF can be determined up to a very high order with
respect to any specific model parameters of interest and any specific input signal at any
given frequency. The cost may lie in that the new method needs p(/V) simulations.

Once the OFRF is obtained, the analysis and design of nonlinear systems
described by model (2.10) or (2.11) can be carried out in terms of the model
parameters of interest which define system nonlinearities and may represent some
structural and controllable factors of a practical engineering system. For example,
the sensitivity of system output frequency response with respect to a nonlinear
parameter can be studied based on the analytical expression (7.1). By using the link
between the nonlinear terms of interest and the components of a practical engi-
neering system and structure, the OFRF may provide a useful insight into the design
of nonlinear components in the system to achieve a desired output performance.
Therefore, the OFRF based analysis method provides a novel approach to the
analysis and synthesis of a large class of nonlinear systems subject to any input
signal in the frequency domain.

7.3 Simulations

To demonstrate the application of the new frequency domain analysis method
discussed in this Chapter, a nonlinear spring-damping system is studied as shown
in Fig. 7.1. The system has two nonlinear passive components and one nonlinear
active unit. The active unit is described by F=cx%x+c,xx%, the output property of
the spring satisfies F' = K x 4 ¢3x°, and the damper F=Bx+c,%°. u(f) is the external
input force. The system dynamics can be described by
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Fig. 7.1 A mechanical
system u(®
M
Active i
K unit B x(t)
M3 = —K x — Bx — ¢13%x — c20%x% — c3x° — 41> + u(t) (7.14a)
Let the output be
y=Kx (7.14b)

This may represent a vibration isolator system with nonlinear spring and damping
characteristics. The task for this case study is to investigate how the nonlinear terms
included both in passive and active unites affect the output and what the effect
might be, and thus to provide a useful insight into the design of corresponding
nonlinear parameters to achieve a desired output frequency response.

For clarity in discussion, let M = 240, K =16,000, and B=296, then (7.14a,b)
can be rewritten as

2405 = —16,000x — 2961 — c13%x — cpix® — c3x° — ¢4 + u(t) (7.15a)
y = 16,000x (7.15b)

Equation (7.15a) is a simple case of the NDE model (2.11) with M = 3, K = 2,
c10(2)=240, c19(1)=296, ¢10(0)=16000, c30(111)=cy, c30(110)=cy, c30(100)=
¢2, €30(000)=c3, cp1(0)=—1, and all the other parameters are zero. Therefore,
what is of interest for this study is to analyse the effect of the nonlinear terms with
coefficients ¢y, c;, c3 and c4 on the system output frequency response. To achieve
this objective, the procedure proposed in Sect. 7.2.2 are adopted to derive the
OFRF of system (7.15a,b), and the results in Sect. 6.1 will be used for the
computation of the parametric characteristic of the OFRF with respect to the
nonlinear parameters c, c,, c3 and c4. Moreover, though the method proposed in
this paper is suitable for a general input function u(t), for convenience in discus-
sion, the input of system (7.15a,b) is considered to be a sinusoidal function u(f)=
100sin(8.17). To illustrate the new results more clearly, first only the effect of
parameter c, is considered and it is assumed that ¢c;=c3=c4=0. Then compli-
cated cases where the effect of more than one nonlinear parameters is involved
will also be investigated.
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7.3.1 Determination of the Parametric Characteristics
of OFRF

Note that all the parameters of interest belong to Csp, and the other degrees of
nonlinear parameters are all zero. Thus Corollary 6.2 and Proposition 6.3 can be
utilised directly. Therefore,

CE(H,(jo1,- -+ jwn)) :c%é("gl— V; ID - (1= 8(3)pos(n)) :C"Tj_(;(n; 1 V; ID

Nil//H»(/fl N
w:aE(Yow)):L ) JCE(ILIWH,-H(-)):[1 R
:[1 c 2 .- (,-LN_I/ZJ] (7.16)

where c=c,. To derive the detailed form for y, the largest order N should be
determined first according to Process B in Sect. 6.2.2. In order to have a larger range
in which the parameters can vary, in this case let ¢, € (0, 10*). The magnitude bound
of Y,(jo) can then be evaluated as mentioned in Process B. However, for paper
limitation, the detailed computation is omitted in this case. It can be verified that
N=23 is enough for use in this case. Therefore,

v=11 ¢ & - cLB_l/ZJ} =1, ¢, &% &, ot e’ '] (7.17)
7.3.2 Determination of @(jo) for the OFRF

Following Process C, the matrix W= [\plT- . -\IJ/,T]T should be constructed first. In
this case, for any 12 different values of ¢, the matrix ¥ is a Vandermonde matrix
and thus non-singular. Note that in many cases, the parameters may be set to be
some large values and cover a large range. This will make the element values in the
matrix ¥ extraordinarily large. Then when the inverse of matrix ¥ is computed,
there may be some computation error involved in Matlab. To overcome this
problem, ¥ can be written as

N71/1>+qfl N
w:L & JkCE(H<p+q4>f+1(-))/k:[1 ko) (e/ip - kUl el aas)

i=0

Then (7.1) can be written as


http://dx.doi.org/10.1007/978-3-319-12391-2_6#Sec4
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Y(jsc) =y - (jor)”

=[1 (/) (/) - (/i) ][@(o) kpp(o) --- Keo)]
(7.19)

where ¢ = |N — %2]. Moreover, the range for each parameter can be divided into
several sub-range, and the final result is the combination of these results obtained
for each sub-range. In this study, let k= 10° , then ¢, = <2/, € [0,1000]. Choose ¢,
to be the following values to construct ‘P:[WIT'w//,,T]T, ie., 0.1,1,50,65,80,
100,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950,980,
1,000. The output frequency response

YY(jo) = [Y(o), Y(o), - Y(w),] (7.20)

of system (7.15a,b) at @=38.1 rad/s corresponding to different values of ¢, can be
obtained through FFT of the time-domain output response. Then using (7.19), it can
be derived from (7.13) that

(o) = [p,(j0) kpy(jo) - KeGo)]"
— (¥79) Y YY (jo) (7.21)

Therefore, the output frequency response function of system (7.15a,b) with respect
to nonlinear parameter ¢, in the case of ¢;=c3=c,=0 is obtained as

Y(jw;cy) = (2.060893505718041e + 002 — 2.402014548824790e + 002i)
+ k' —5.14248529981906 + 5.35676372314361i) ¢,
+k2(0.08589533966805 — 0.08827649204263i) c,?
+k3(—8.068953639113292¢ — 004 + 8.248154776018186¢ — 004i) c,°
+k4(4.598423724418538¢ — 006 — 4.686570228695798¢ — 006i) c,*
+ k7 (—1.679591261850433¢ — 008 + 1.708497491564935¢ — 008i) c,°
4k 6(4.056287337706451e — 011 — 4.120496550333245¢ — 011i) c,°
+k7(—6.544911009113156e — 014 + 6.641760366680977¢ — 014i) c,”
+k8(6.976300614229155¢ — 017 — 7.073928662624432¢ — 017i) c,®
+k(—4.713366512185836e — 020 + 4.776287453573993¢ — 020i) c,°
+k10(1.827866445826756¢ — 023 — 1.851299290299388e — 023i) ¢, '°
+ k7 11(=3.098310700824303¢ — 027 + 3.136656793561425¢ — 027i) c,'!

(7.22)

Based on this function, (7.4) can be further computed as
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Fig. 7.2 Output frequency response functions with respect to c¢; to c4 respectively (Jing
et al. 2008d)

¥ (jes ) =po+epy + €y o+ Py oo
= (1.001695593467675¢ +005) + k' (—4.693027791051078e + 003 )c,
+k2(1.329525858242289 + 002)c,> + k3 (—2.55801250200731)c,>
+k7*0.03645314106899¢,* 4 k> (—3.968756773045435¢ — 004 )c,’
+k00.01517275811829¢,° + ...

(7.23)

Note that this is an alternating series and it holds that |p;| > |p;+1| and |p;| — 0. Hence
the series may keep decreasing when ¢ is going larger and within its radius of
convergence. By following the similar method demonstrated above, the output
frequency response functions of system (7.15a,b) with respect to nonlinear param-
eters ¢y, Cy, c3 and ¢, of different cases can all be obtained, for instance Y(jw;c;), Y
(jo;c3), and Y(jw;c4) (The other nonlinear parameters are zero if not appearing in
the function). The results are shown in Figs. 7.2, 7.3, and 7.4.

Figure 7.2 shows that the variation of the magnitude of the output frequency
response functions with respect to each nonlinear parameter. It can be seen that
there is a good matching between the theoretical computation results and the
simulation results to which they have been fitted, and there is also a good match
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Sensitivity of OFRF to nonlinear parameters
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Fig. 7.3 Sensitivity function of the OFRFs with respect to c; to c3 respectively (Jing et al. 2008d)

between the theoretical computation results and the simulation tests (for parameter
c3) which are independent of the fitted simulation results. From both Figs. 7.2 and
7.3 it can also be seen that the system output frequency response is much more
sensitive to the variation of the nonlinear parameters when they are small. Once the
value of a nonlinear parameter is sufficient large, then the sensitivity will tend to be
zero. From the comparison of these four nonlinear terms, it can be concluded that
the system output frequency response is more sensitive to the variation of the
nonlinear parameter c, when the values are small; however when the values of
each nonlinear parameters are sufficient large, the system output spectrum is more
sensitive to the nonlinear parameter c,. From Fig. 7.4 it can be seen that the
convergence of the output frequency response functions are all very fast.. It is
noted that the ratio functions of ¢, and c; go up much faster than that of c,
especially c,. This implies that the radius of convergence of the output spectrum
corresponding to ¢, should be larger. Simulation tests verify that the system is still
stable when c,=10"" where the magnitude of the output spectrum is 0.0216, while
the system may tend to be unstable when c; tends to be larger than 10°,
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Fig. 7.4 Ratio functions with respect to c; to c4 respectively (Jing et al. 2008d)

3’

From the analysis above for the four nonlinear parameters of nonlinear degree
respectively, it can be seen that

The computed system output spectrum has a larger radius of convergence with
respect to c,, c3 and c4.

The system output spectrum is more sensitive to ¢4 and less sensitive to c3;

If the output spectrum with respect to a nonlinear parameter is an alternating
series satisfying |p;| > |p;+ 1| and |p;| — 0, then the system output spectrum may be
reduced to zero if additionally the radius of convergence for this parameter is
sufficiently large.

The magnitude of output spectrum decreases with the increase of the values of
the nonlinear parameters. Thus an introduction of some simple nonlinear terms
into a linear system may greatly improve the performance of output frequency
response, and the stability of a nonlinear system is not necessarily deteriorated
with increasing the values of nonlinear parameters; This also shows that a larger
value of the parameter for a nonlinear term may not lead to a bad performance of
a system.
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Fig. 7.5 A series of 55 points ¢ =[c1,¢5,c3] by random generation in {[0,1], [0,6], [0,5]} where the
y-axis is the value of different parameters and the x-axis is the number of different point in the
series (Jing et al. 2008d)

e For system (7.15a,b), the nonlinear parameters c; and c, can be designed to be
large enough to achieve a sufficiently small transmitted force since they corre-
spond to passive elements, and several nonlinear terms in the active part can
work together to achieve a better performance.

To demonstrate further the advantage of the OFRF based analysis and to show
more clearly the effect on the system output spectrum from several nonlinear
parameters, the OFRF with respect to ¢y, ¢, and c3, i.e., Y(jw;cy,c5,¢3) is derived.
Let ¢, €]0, 105],c26 [0,6- 105],C3 €[0,5- 105],04 = —500, and the largest order N of
the output spectrum is determined to be 11, then the parametric characteristic can be
obtained as (c=[cy,¢2,¢3])

n_ 2 2 2

v=11 ¢ % ... CL 1/z” = [1,01,02,03501 ,€1€2,€1C3,C27,C2C3,C37,
3.2 2 2 3.2 2 .3 .4 .3 3 2.2
€17,€17C2,€17C3,C1C27, €1C2C3,C27, C27C3,C2C37,C37,€C1 7, €1 7C2,C17C3,C17Co7,

2 2.2 3 2 2 3 .4 .3 2.2 3 .4 .5
€17C2€C3,€17C37,C1€27, €1€C27C3,C1C2C37,C1C37,C2 7, €27C3,C27C37,C2C37,C37,C1 7,

4 4 3.2 .3 3.2 2.3 2.2 2 2 . 2.3 4
C1°C2,C17°C3,C17C27,€17C2C3,C17C37,€17C27,C€17C27C3,C17C2C37,C17C37,C1C2 7,

3 2,2 3 4 5 4 3..2 2.3 4 5
€1€27€3,€1€27C37,C1C2C37,C1C3 7, €27, €2 °C3,€27C37, C27C37,€2€3 7, C3 ]

(7.24)

In order to construct the non-singular matrix ¥, the series of p(N)=55 different
points c=[c,ca,¢3] in 0Sc={c=[c;,c2,c3llc; €[0,1],¢,€[0,6],c3€[0,5]} can be
obtained by using a simple stochastic-based searching method. In simulations, it is
noticed that is easy to find such a series of points that det(¥)#0. For example, a
series of points c=[cy,c,,c3] are illustrated in Fig. 7.5, and it can be obtained in this
case that det(¥)=0.08608811188201. It can be seen from simulations that it is easy
to find a non-singular matrix ¥ with a proper inverse.
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Fig. 7.6 Output spectrum with respect to ¢y, ¢, and c3 (Jing et al. 2008d)

Then following the same procedure as demonstrated above, the OFRF Y(jw; ¢y,
¢3,c3) in this case can be obtained. The results are shown in Figs. 7.6 and 7.7, and
the following points can be summarized.

* By using the OFRF, the output spectrum can be plotted and analyzed under
different combinations of the nonlinear parameters cy, ¢, and cs. This provides a
straightforward understanding of the relationship between system output spec-
trum and model parameters which define nonlinearities.

¢ The OFREF varies with different values of c, ¢, and c5. The effect on the output
spectrum from any two nonlinear terms is not necessarily the simple combina-
tion of the contributions from each term respectively. Thus the parameters can
be analyzed in order to obtain the best output frequency response performance.
The OFRF provides a useful basis for this kind of analysis and optimization.

From the discussions above, it can be concluded that the OFRF based analysis
provides a novel, effective and useful approach to the analysis and design of
nonlinear systems in the frequency domain.
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Fig.7.7 Output spectrum with respect to any two combinations of ¢y, ¢, and c3 (Jing et al. 2008d)

7.4 Conclusions and Discussions

The OFRF based analysis for nonlinear Volterra systems is discussed and demon-
strated in this chapter. The OFRF based analysis provides a novel and effective
approach to the analysis and design of nonlinear systems in the frequency domain
by using the explicit relationship between the system output frequency response
and model parameters. The OFRF is characterized by its parametric characteristics
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multiplied with an associated complex valued frequency dependent function vector.
Thus instead of the direct analytical computation of the OFRF, the proposed
method simplifies the computation of the OFRF by splitting the computation
procedure into two parts— the one is the computation of the parametric character-
istics of the OFRF, which is analytical in the determination of the relationship
between the output spectrum and model parameters, and simpler to be carried out,
and the other is the determination of the complex valued frequency dependent
function vectors, which are obtained by using the Least square method. Some
fundamental results, techniques, and a general procedure for the determination of
the OFRF for a given NDE or NARX model subjected to any specific input signal
are provided. Although the proposed method needs p(V) simulation data for the
numerical method of Process C, and the OFRF obtained by the proposed method is
not analytical with respect to the input signal and frequency variants at present, the
case study for a simple mechanical system shows that the OFRF based analysis is a
useful approach to the analysis and design of nonlinear systems in the frequency
domain.



Chapter 8

Determination of Nonlinear Output
Spectrum Based on Its Parametric
Characteristics: Some Theoretical Issues

8.1 Introduction

Volterra-type nonlinear systems represent a considerably large class of nonlinear
systems, and have been extensively applied in various engineering practice. As an
important extension of traditional transfer function theory of linear systems, an
important concept, referred to as the GFREF, initiates the frequency domain analysis
and design of nonlinear systems. The GFRFs for a parametric nonlinear system
described by a NDE or NARX model are given in Chap. 2, and nonlinear output
frequency response are discussed in Chaps. 3, 6 and 7.

The output frequency response function (OFRF) of nonlinear systems is shown
to be a polynomial function of model parameters (Chaps. 6 and 7). This reveals an
explicit relationship between system output spectrum and model parameters, and
consequently the system output frequency response can be studied in terms of any
model parameters of interest subject to any input signals. This can greatly facilitate
the analysis and design of nonlinear output response (or behavior) of nonlinear
systems in the frequency domain. In order to perform an OFRF-based analysis for a
nonlinear system, the OFRF can be analytically determined. Usually, this can be
done by using the recursive algorithm in Chap. 2 to compute the GFRFs, then using
the result in Chap. 6 (and also Chap. 11) to analytically obtain the output spectrum,
and finally expressing the output spectrum to a polynomial form in terms of model
parameters of concern. However, it can be seen that, the process above is very
computationally intensive especially when the involved Volterra order is larger
than 5.

To solve this problem, the detailed polynomial structure of the OFRF for up to
any order in terms of any model parameters can be obtained by using the results in
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Chaps. 6 and 7. Then if a series simulation or experimental data are collected, a
numerical method may be adopted to determine the OFRF as discussed before. This
can reduce the computational complexity as mentioned. However, the problem is,
whether the analytical parametric relationship of the OFRF with respect to any
model parameters can always be explicitly determined by using this numerical
method with a possible specially-designed simulation or experimental data. To this
aim, this study showed that, based on the parametric characteristics of the OFRF,
the analytical parametric relationship of the OFRF up to any order and every
specific order of the OFRF can all be determined accurately by using a simple
Least Square method (when there is no data noise and measurement error). Practical
methods to generate a special series of values for the parametric characteristic
vector are discussed such that a unique solution can be obtained. This Chapter not
only solves a fundamental problem for the OFRF-based method for nonlinear
systems, but also provides a theoretical basis for the determination of the analytical
parametric relationship of polynomial structures in dynamic systems. Theoretical
analysis and simulations demonstrate the results.

8.2 The Problem

The input—output relationship of nonlinear systems can be approximated by a
Volterra series up to a sufficiently high order N. Consider Volterra-type nonlinear
systems described by the NDE model (2.11), i.e.,

by K dul)

M m K
SN S b k) - 11 5 =0 (8.1)

m=1 p=0 ki, k,4,=0 i=1 i=p+1

where the notations can be referred to Chap. 2.
The OFRF of system (8.1) can be expressed into a polynomial function of model
parameters as studied in Chap. 6 (and will be discussed more in Chap. 11),

mw

Hio) =353 1, @ 00) A0 (2

¥j,.j. (@; U(w)) are complex valued functions and Cél () &% (.) is a monomial
s .

function of model parameters, which also represents a combination among all the
possible combinations consisting of model parameters from degree 0 to m; + my.
Note that (8.2) includes many unnecessary terms ci‘, () v (.) which do actually
not appear in the OFRF. For this reason, the detailed parametric structure of this
polynomial function can be revealed by using the method in Chaps. 4—6 as
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Y(jw) =Y, (jo) (8.3)
n=1
Y, (jw) = CE(Hu(jor, - - ja)) - F uljo; U(j)) (8.4)

where F ,(jo; U(jw)) is a complex valued function vector and has the same
dimension with CE(H,(jw;, - - -, jo,)). Note that F 2(jo; U(jw)) is dependent on
the system linear parameters and input U(jw), which is thereafter denoted by F,
(jw) for convenience. CE(H,(jwy, - - -, jw,)) is referred to as the parametric charac-
teristic of the nth-order GFRF for system (8.1), which is a vector whose elements
are functions of model parameters, and can be recursively determined by

. . n—1 n—q
CE(H,(jor, - jon)) = Con & ( 5 '3 Cpy® CE(an,,+1(-)))
q=1 p=
& (& Cros CB(H,p()) (5.5)

with terminating condition CE(H,(jw;)) =1 or 0. Note that CE is a new operator
with two operations “®” and “®” defined in Chap. 4, and C,, , represents the p + gth
degree nonlinear parameter vector, i.e.,

Cpg = [cp.q(0,--,0),¢p 40, 1), ¢p g (K, - -+ K)]

——
prgq=m
For convenience, (8.3 and 8.4) can be written as
Y(jw) =y - ®(jo)" (8.6a)
where
N . .
W= EBI CE(H,(jo1, -+, jo,)) (8.6b)
n=
®(jw) = [Fi(jw) Fr(jw) - Fy(o)] (8.6¢)

At this stage, in order to obtain the analytical parametric relationship of the OFRF
described by (8.6a—c) with the known polynomial structure in terms of any model
parameters for system (8.1) under any specific input, the complex-valued frequency
function ®(jw) should be determined. As mentioned, the analytical computation of
@(jw) can be conducted by using the results in Chap. 3—-6, Jing et al. (2008e) and
Jing and Lang (2009a), but it is very computationally intensive. However, this can
alternatively be achieved by using the following method as discussed in Chap. 7,
referred to here as Algorithm A:
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(A1) Choose p series of different values of the model parameters to form a series of
VeCtors yy - - - Yy}

(A2) At a given frequency w, actuate the system using the same input under the
different values of the nonlinear parameters y, - - -y, then collect the time
domain output y(¢) for each case. Finally, obtain a series of output frequency
response Y(jw); - - - Y(jw), at the frequency w by the FFT.

(A3) It follows from Step (A2)

Vi Y(/:w)l
Y. d(jw) = "’2 - D(jw) = Y(’f“)z =:YY(jw)
Wp Y(jw)ﬂ
Hence,
®(jo) = (¥7%) " - YY(jo) (8.7)

From the algorithm above, it can be seen that p should at least be equal to the
dimension of y; and ¥ = [y, - - -, I/IZ;]T should be non-singular in order to achieve a
unique and accurate evaluation for ®(jw). When all the possible combinations of
parametric monomials involved in (8.2) are considered, it is solvable for this
problem by the algorithm above for any series of different parameter values (See
the detailed in Chap. 7). However, the true polynomial coefficients of the OFRF are

N
determined by the parametric characteristics & CE(H,(-)), which is only a part of
n=1

the monomials appearing in (8.2) in terms of the model parameters. Hence, the
existence of the solution is not necessarily possible and how to generate a series of
different parameter values is also yet to be solved.

For example, considering a polynomial Y =y + ¢ ¢,y + i3y, (c;’s are param-
eters and y;’s are yet to be determined), it needs at least two different values of (cy,
¢, ¢3) to obtain y; and y», i.e.,

] =Tt aaen] ]

If let (cy, ¢3, c3) =(0,1,2) and (0,2,1), then the coefficient matrix is {8 ;] . In this

case, the solution is not unique for y; and y,.

This problem may be solved if the number p [in Step (A1)] of different values of
(c1, ¢a, c3) is increased. However, this does not guarantee the existence of the
solution and will increase the simulation or experimental burden in Step (A2).
Therefore, the problems are, given the detailed polynomial structure in terms of any
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model parameters, whether the polynomial (8.6a—c) can be solved by the algorithm
above when p equals the dimension of y;, and whether the complex valued function
vectors F 2(jo) for n=1 to N can accurately be obtained and every specific
component of the OFRF, i.e., Y, (jo) for n=1 to N, can also be determined from
these complex valued function vectors. These are motivations of this study.

It shall be noted that the accurate determination of the polynomial structure of
the OFRF in terms of any model parameters can effectively reduce the computation
and simulation (experimental) burden in the determination process for the OFRF.
This will be further discussed in the following section. Regarding the parametric
characteristics of the OFRF, consider a special but frequently encountered case in
practice for system (8.1) as follows, which can further simplify the determination of
the OFRF structure.

Proposition 8.1 Consider the input function for system (8.1) to be u(f) =F;sin
(Qf). The parametric characteristics of the system OFRF at the driving frequency Q
is

N-172) ,
& CE(Y21 (/)

CE(Y2r11(Q)) = CE(Ha11(:)) (8.8)

CE(Y(jQ)) =

where | - | is to take the integer part.
Proof See the proof in Sect. 8.6A. O

In the practical analysis of a nonlinear system, a harmonic excitation like u(¢) =
F,sin(Qr) is often adopted. In these cases, Proposition 8.1 provides a useful
guidance for the accurate computation of the OFRF structure.

8.3 Solution Existence Theorem

In order to solve the problems mentioned above, some preliminary results are
discussed first, which are summarized in Lemmas 8.1-8.5 below and demonstrate
some important properties for the parametric characteristics of the OFRF and
Algorithm A. The following Lemma 8.1 is an important result about the parametric
characteristics of the GFRFs, which is Proposition 5.1 in Chap. 5.

Lemma 8.1 The elements of CE(H,(jw,, - - -, j®,)) include and only include the
nonlinear parameters in C, and all the nonlinear parameter monomials in C, ,
®Cp,qy @ Cp,y gy @+ @ Cp, q, for 0<k<n—2, where the subscripts satisfy
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k
P+‘I+Z(Pi+51i):n+k (8.9)
i=1
1<p<n—k 2<p+q<n—k 2<p;+q;<n—k

According to Lemma 8.1, for example, a parameter monomial like (c‘1,1(~))2c2,0(-)
co2(-) must appear in the zth-order GFRF, where Z=2-(1+1)+2+2-3=5.CE
(H,(jo1, - - -, jw,)) can be obtained directly from model parameters according to the
Lemma 8.1 without recursive computation. This can be carried out by counting
k from 0 to n—2, then write out all the monomials satisfying the corresponding
conditions in Lemma 8.1 and remove all the repetitive terms (see Definition 8.1
below). Based on these results, the following results can be obtained.

Lemma 8.2 (1) CE(H,(jw,, - - -,jw,)) includes and only includes all the nonlinear
parameters of degree from 2 to n. (2) If p>0, (c,,,q(-))k+1 is an element of CE

(Hy(joor, - jo,) with k = 7224,

Proof See the proof in Sect. 8.6B. O

Lemma 8.2 shows which degree of nonlinear parameters have contribution to
H,(joi,- -, jo,). From Lemma 8.2, it can also be seen that for the case that only
one parameter cpq(.) 7 0 and all the other nonlinear parameters are zero
for model (8.1), the parametric characteristic of the nth-order GFRF is

_n—1_
CE(H,(jwy," - jw,)) = (cp,q(-))”*"*' if (n>p+q and p>0 and (n—1)/(p+g—1)
is an integer) or (n =p +q), else CE(H,(jw;, - - -, jw,)) =0. This will be used later.
For convenience, let

int(ay, by, ay, by, - ag, by) = a;10%* + b 10%*7! + 4,10%*72 + b,10%*3
o @107 + by (8.10)

where ay, by, a;,b; - - - a;, by are some non-negative integer numbers.

Definition 8.1 Consider monomials ¢, g, (ki “kp,1q,) * Cpygy (K1** Kpyg, ) * *Cpyan
(kl- . 'kpqu) and  cqy.p, (ki kaytb,) @ Caypy (k1++ Kayiby) * Cap by (K1++ Kapin, ). I
there exists a permutation for the subscripts of ¢,, 4, (-) ® ¢p,.4,() - Cp,.q, (), i.€.,
(P1241)(P2:q2) +~ (Ppqp). such that
int(p1q1p2da° - Pdi) _ 1 and int (kl' Kord K kg ke 'kplqlk) 1
int(a1b1a2b2~ . -akbk) int(kl- . 'ka1+h1k1' . 'kaz+bz' k- 'kakerk)

then the two monomials are repetitive, otherwise non-repetitive.

Remark 8.1 According to Definition 8.1, ¢y (1,1)-c0(1,1) and cp0(1,1)
c11(1,1) are repetitive, but c;(1,1)-c20(1,1) and cz,o(l,l)cl!l(l,l)2 are
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non-repetitive. By the definition of the CE operator, there are no repetitive terms in
the parametric characteristic CE(H,,(jw, - - -, j®,)).

Lemma 8.3 There are no repetitive elements between the parametric characteris-
tics of any two different order GFRFs when all the nonlinear parameters are
considered. This is denoted by

CEH,(joi,- -+, jon) NCEH,(jor, - - -, jo,)) =0 for m#n.

Proof See the proof in Sect. 8.6C. O

Remark 8.2 Although there are always no repetitive terms in the parametric
characteristics of the same order OFRF, there may be repetitive terms between
the parametric characteristics of different order GFRFs in practices when there are
only part of the model parameters are interested for an OFRF analysis. Lemma 8.3
shows that when all the nonlinear parameters are interested, then there must be no
repetitive elements between the parametric characteristics of different order
GFRFs. When there are no repetitive terms between different order GFRFs, (8.4)
can be used to determine every specific component of the OFRF, i.e., Y,(jw) for
n=1,...n.

The following lemma is a fundamental result for the proof of Theorem 8.1
below.

Lemma 8.4 Consider equation ey={- @', where ¢ €R" whose elements are
monomials of parameters ci,c,,...,c, taking values in a parameter space Sc
which is a subspace of R, ¢ is a nonzero complex-valued vector in C" and is
also independent of {. If there exist n points (c{(1),co(1),....cm(D]... (c1(n),
co(n),. . .,cm(n)) in S such that

Eltcricalimentiny - @7 = O fori=1ton

and

€|(c|(i),cg(i),,“,cm(i)) for i=1 to n is a base of R”"

then (pl) ¢ =0;

(p2) ¢ - ¢" =0 for any ¢ € R";

(p3) ¢ - @ =0 for any point in the parameter space Sc.

Proof See the proof in Sect. 8.6D. O

All the nonlinear parameters from degree 2 to N of the model (8.1) form a
parameter vector C infR?', where ¢ denotes the dimension of C which is a function
of N. Let Sc denote a subspace of R”' around the zero point and be the definition
domain of C. Recalling (8.6b), it is from Lemma 8.2 that elements of y are
monomial functions of elements of C. Let ¢, denotes the dimension of y. It should
be noted from Remark 8.1 and Lemma 8.3 that there are no repetitive elements in y.
That is, each element in y is a non-repetitive monomial function of some nonlinear
parameters in C. The following lemma can be obtained, which is an important result
for the accurate and unique determination of the OFRF by using Algorithm A and
shows that there exists a series points in the parameter space Sc for the parametric
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characteristic vector of the OFRF such that a non-singular matrix ¥ = [l[/{, e y/;]T
required in Algorithm A can be generated.

Lemma 8.5 There exist o, points C(1). . .C(o,) in S, such that ylc;) fori =1to o,
form a basis of R,

Proof See the proof in Sect. 8.6E. O

Now consider (8.6a—c) and Algorithm A. Note from Jing et al. (2008e) and Jing
and Lang (2009a) that for n =1, F | (jo) in (8.6¢) represents the frequency response
of the linear part of the system, i.e., F | (jw) = H,(jo)U(jw) or LaH | (jwy) for the
general input or multi-tone input respectively. Based on Lemmas 8.1-8.5, the
following theorem can address the solution existence problem of Algorithm A.

Theorem 8.1 Consider Volterra systems described by NDE model (8.1) which has
a parameter space Sc and subject to a specific input function u(t). The maximum
order of the Volterra series is N, and the truncation error is denoted by o(N + 1).
Suppose o(N + 1) =0, then there exist a series of points in S¢, i.e., C(1),C(2)...
C(02), such that the analytically parametric relationship for the system OFRF can be
determined as

V(o) = - &(jo)" (8.11a)

with zero error in S¢, and in case that S¢ includes all the nonlinear parameters of
model (8.1)

V. (jo) = CE(H,(-)) - Fo )" (8.11b)

with zero error in S, where

®(jo) = [Fi(jw) Fa(jw) --- F*N(jw)]T;@(iw)T
= [vlew) wlew) - wlewn"] [YG®)|eq)
Y(jo)|ce)y - Y (jo) o] (8.11c)

Y(jw)lc(y is the output frequency response obtained by a simulation or experiment
when the model parameter vector is C(i) and actuated by the specific input u(¢).
Considering the truncation error o(N + 1) #0, then

e(&)(ja)) — d>(ja))> = H‘T)(IW)T - q)(/a))TH

= |¥"|c(1mm) - ON 1|10 | (8.11d)
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e(Y(jw) = Y(jw)) = |[¥ () - ¥ (jo) |

= Hl// gt |C(14“62) “ ON+1 |C(1--»a2) —o(N+ I)H (8.11e)

where, ¥|c(1..o) = [Wle wlee” - wlew']
onsilcoo = [ON + Dlcay oN +Dleey - oN+1Dewn ]
Proof See the proof in Sect. 8.6F. O

From Theorem 8.1, it can be seen that, det(¥|c(....,)) is larger, the error of the
algorithm will be smaller. Theorem 8.1 provides a fundamental result for the
accurate numerical determination of the analytically parametric relationship for
the OFRF and its every specific component. Given the model of a nonlinear system,
to determine the analytically parametric relationship of the system OFRF based on
Theorem 8.1, the following procedure can be followed (Algorithm B):

(B1) Determine the largest nonlinearity order N. Given the system model, the
variation domain S- of the model parameters of interest, the largest
nonlinearity order N needed for an accurate Volterra series approximation
can be obtained by evaluating the truncation error of the series. This can be
done by following the bound evaluation method in Jing et al. (2007a).

(B2) Compute the parametric characteristics of the GFRFs CE(H,(joy, - - -, j®,))

N
from 2 to N according to (8.5) or Lemma 8.1 to obtain y = & CE(H,(-)).
n=1

(B3) Choose a series of points in S¢ for the parameter vector C which consists of all
the parameters of interest, such that ylc, for i =1 to o, is a base of R,

(B4) Using a specific input, actuate the system in simulations under different model
parameters C(i) to obtain Y(jw)lc;) for i =1 to o,.

(B5) Then the analytical parametric relationship for the OFRF and its different
components can all be determined according to (8.11a—e) with respect to the
specific input.

Remark 8.3 After the simulation (or experimental) data are collected according to
the procedure above, the computation burden are only those in (8.11c). Compared
with the analytical determination of the OFRF structure by using the recursive
algorithm in Jing et al. (2008e) or Chap. 11, the parametric characteristic analysis
facilitates the determination of the parametric relationship for the OFRF. Moreover,
it can be seen that there are only o, simulations needed for the collection of Y(jw)l(;) in
this algorithm. Thus the simulation (or experimental) burden is also greatly reduced.
For example, suppose the largest nonlinearity order N=3 and only ¢, ,(1---1) is
nonzero in C,, ,, then according to Lemma 8.1 or (8.5), it can be obtained that


http://dx.doi.org/10.1007/978-3-319-12391-2_11

142 8 Determination of Nonlinear Output Spectrum Based on Its Parametric. . .

CE(H\(jo)) = 1, CE(H(jw1, joz)) = Co2 ® C1,1 © Ca o
CE(H3(jowr, - -+, jo3))
=Co3BC1,1 ®Cop®C1” ®Cri ®Cro®Cry®
Ci,2® Ca0® Cop ® Ca0” & Ca 0
=Co3®C11-Con®Ci P ®Cr1 Cao®Ca®
Ci12® Ca0- Cop @ Ca” ® Ca0

N
Therefore, o, = DIM(y) = DIM( &> CE(H,1(~))> = 13, that is, only 13 simula-
n=1

tions are needed. According to the method in Jing et al. (2008e) or Chap. 11, all the
parameters from power 0 to 2 should be counted. Note that there are seven different
parameters, thus there are totally 3 cases, which means that there should be 3’
simulations needed. Especially, based on the parametric characteristics, every
specific component of the OFRF can be determined readily after the OFRF is
obtained, while this cannot be obtained by analytical computation. Therefore, the
results developed in this paper facilitate the application of the OFRF based method
for the frequency domain analysis of nonlinear systems.

Remark 8.4 To conduct the procedure in Algorithm B in order to determine the
OFRF, a problem may be: how to find a proper series of the parameter vector in S,
ie., C(1),C(2)...Clo»), such that [w|co)! wlee)! - Wwlew)'] is
non-singular. An improper series may result in the matrix to be ill-conditioned or
even singular. To solve this problem, a simple stochastic searching method as given
in the following or other searching methods such as GA can be used since the series
of different values of the parameter vector exists from Lemma 8.5. For example
(Algorithm C),

(C1) C(1),C(2)...C(c,) can be generated randomly in S¢ or a smaller subspace S¢
(where S¢ C S¢) according to a distribution function, or each parameter in
C can be generated randomly in its own variation domain (or a sub-domain)
according to a distribution function;

(C2) After a series of points are obtained, the determinate of the matrix

[U/‘C(l)T W\C(z)T l//!C(UZ)T] can then be computed;
(C3) Repeat this process until find a series such that the determinate of
[l//|c(1)T l//‘c(z)T l//’C(GZ)T] is a satisfactory value.

This will be demonstrated in the next section.
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8.4 Simulations

In this section, an example is provided to demonstrate the theoretical results above.
Consider a nonlinear system (Fig. 8.1)

240% = —16,000x — f(x, %)% + u(r) (8.12a)
where u(r) = 100sin(8.1¢), and f(x, x) = 296 + ¢ ;x> + coxx. The output is
y = 16,000x + f (x, x)x (8.12b)

Equation (8.12a) represents the transmitted force from u(t) to the ground, and is a
simple case of system (8.1) with M =3, K =2, ¢1¢(2) =240, c19(1) =296 Co(0) =
16,000 c3o(111) =y, c30(110) =5, c01(0) = — 1, and all the other parameters are
zero. This is a model of the following spring-damping system with nonlinear
damping f(x,X) =296 +c¢ X2+ eoix.

In system (8.12a,b), only nonlinear parameters in C3q are not zero, i.e.,

C3Q = [6'30(110) 6‘30(111)] = [02 Cl]

In this case, it can be shown from (8.5) that
CEHxu(jor, - - -, jo,) =0 and CE(Hoy 1 1(jor, - - -, jo,)) = Ch), for k=12, 3,...
This can also directly be obtained from Lemma 8.2. From Proposition 8.1,

"1/

CE(X(jo)) = & " CE(Hau(jor.-- jo,)

1/,

N_
=1@C30@C§O@C§O@--~@C£ (8.13a)

That is

u(?) l

m=240 ‘

L £ i
Fig. 8.1 A spring-damping

l x(1)

system with nonlinear
damping
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Ny
X(jw) = (1 @C30@C§0@C§o@'”@c3t( /ZJ)

.[fl(iw)T Fa(jo)” - fN(jw)T}T (8.13b)

CE(X(jw))can readily be computed according to (8.13a). For example, for N=5

N_q
CE(X(jw)) = 1 @Cso@C§o@C§o@--~@C£ 8

2 2 .3 .2 2 3 .4 .3 2.2
= [1,C2701,Cz ,C2€1,€17,C27,C27C,C2C1 ,C17,C2, C27C,C2Cp,
3 .4 .5 4 3.2 2.3 4 s
ccr”, 1%, ¢, ea'er, e’cr, e, e, ¢ (8.13c)

Therefore an explicit analytical expression for the OFRF X(jw) for up to the fifth
order in terms of the system nonlinear parameters c¢; and c, are obtained as given by
(8.13b,c). It can be shown that CE(Y(jw)) = CEX(jw))CE(Y(jw)) = CEX(jw))
(Chap. 6). Therefore

CE(Y(jw)) = ® CE(H,(jr. -+, jon))

n=1

N1
:1@C30@C§0@C§0@-~-@C3L0 /2] =y (8.14a)

and
Vo) =y [Fie)! FaGo)) - FeGo)] — (8140)

To find a proper series of the points CE(Y(jw)) in S¢, for example 0 < ¢y, ¢, < 5, the
Algorithm C mentioned in Remark 8.4 can be used. In simulations, it is easy to find
a proper series. This verifies the result of Theorem 8.1. Locations of a series of the
points C[i] = (cq[i],c»[i]) from i=1 to 21 is demonstrated in Fig. 8.2, which are
generated according to a uniform distribution. In this case, the determinate of the
matrix [y]co)” wlee” - wlean”] = 0.9321875125788.

For clarity of illustration, consider a much simpler case of ¢, =0, i.e., C3g=c¢;
(More complicated cases can be referred to Chap. 7). When N =21, it can be
obtained from (8.14a,b) that CE(Y(jw))=[1 ¢ c% c? e C{O], and
consequently
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* %
*

Fig. 8.2 A series of points (c;[i],c»[i]) from i =1 to 21 (Jing et al. 2009d)

Y(jw)=[1 e ¢ ¢ - Cio}'[fl(ja)) Fy(jo) - fll(iw)r

Choose 11 different values of ¢y, 1?,- (jo) can be obtained according to Theorem 8.1
as

Loa) - ep(h) Y60
o= 68 2 R
1 (1) elo(11) Y(jo)|e, 1)

It can be seen that the parameter matrix is a Vandermonde matrix. Thus if ¢;(i) #

c1(j) for i #J, it is non-singular. In order to determine F;(jw) in the above equation,
simulation studies are carried out for 11 different values of ¢; as ¢; = 0.5, 50, 100,
500, 800, 1,200, 1,800, 2,600, 3,500, 4,500, 5,000, to produce 11 corresponding
output responses. The FFT results of these responses at the system driving fre-
quency wo = 8.1 rad/s were obtained as
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Yy = [(3.3553872296853956 +002) — 9.144123368552089¢ + 000i,
(3.311400634432650e + 002) — 8.791324203084603¢ + 000i,
(3.270304131496312¢ + 002) — 8.453482697096458¢ + 000i,
(3.020996757260479¢ + 002) — 6.232073185455284¢ + 0004i,
(2.889224705331136¢ + 002) — 4.937579404570077¢ + 000i,
(2.753247618357106¢ + 002) — 3.513785421406298¢ + 000i,
(2.599814606290563¢ + 002) — 1.799344961942028¢ + 000i,
(2.449407272303421e + 002) — 7.146831574203648e — 0031,
(2.322782654921158e + 002) + 1.587748875652816e + 000i,
(2.213884644417550e + 002) + 3.022652971105967¢ + 000i,
(2.168038059608033¢ + 002) + 3.644341792781596¢ + OOOi]

—

Then from (8.15), I?(jwo) was determined as

F(jowo) = [3.3558500619997656 + 002 4 9.147787717329777e + 000i,
—0.09260545518186 — 0.00733079515829i
7.802545290190465¢ — 005 + 4.196941358069068e — 0061
—8.171412395831490e — 008 — 3.472552369765044e — 0091
7.983194136013857e — 011 + 2.975659825236403e — 012i
—6.014819558373321e — 014 — 2.095287675780629¢ — 0151
3.139462445085954e — 017 + 1.055716258995395¢ — 018i
—1.065920417366710e — 020 — 3.515136904764629¢ — 0221
2.214834610655676e — 024 + 7.220197982843919¢ — 0261
—2.536564081104798e — 028 — 8.209302192093296e — 0301
1.219975622824295e — 032 + 3.929425356306088e — 034i] .

Consequently, the parametric relationship for the OFRF of system (8.12a,b)
subject to the input u(r) = 100 sin(8.1¢) at frequency wo= 8.1 was obtained as

Y(jwo)) = [l 1 ¢ ¢ - ¢
[FiGoo) Foliwn) - FuGion)] (8.16)

For each order component of the OFREF, it can be obtained from Theorem 8.1 and
Proposition 8.1 that for n=1,2,3,. ..

Y2n_1(ja)0) = CY . ﬁn(j(i)()) and an(/a)o) = 0Oand (817)

From (8.16), the effect of the nonlinear parameter ¢; on the system output fre-
quency response at frequency @, can readily be analysed. Figure 8.3 shows a
comparison of the magnitudes of the output spectrum evaluated by (8.16) and
their real values under different values of the nonlinear parameter ¢;. Note that
the error between the computed values and the real values is very small. Further-
more, the frequency domain analysis and design of system (8.12a,b) to achieve a
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4 *  Real magnitude of the output spectrum
Magnitude valued by equation (16)
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Fig. 8.3 Relationship between the output spectrum and nonlinear parameter ¢; (Jing et al. 2009d)

desired output response y(¢) can now be conducted from (8.16). Given a desired
output spectrum Y at frequency wy, the nonlinear parameter ¢, can be optimized
using (8.16) such that the difference 1Y(jwo) — Y"l can be made as small as possible.

8.5 Conclusions

This chapter shows that, the analytical parametric relationship described by the
OFREF with a polynomial structure in terms of any model parameters of interest for
Volterra systems given by a NDE model can be determined explicitly up to any high
order by using a simple Least Square method with some simulation or experimental
data, and every specific component of the OFRF can also be determined effectively.
Moreover, it should be noted that the main result established in Theorem 8.1 is not
only applicable for the OFRF based method, but also has significance for the
determination of any analytical parametric relationship for this kind of system
polynomial functions by using numerical methods.

To fully understand the results of this chapter, the readers can refer to Jing
et al. (2008e, 2009d), Jing and Lang (2009a), Chen et al. (2013), and also other
corresponding chapters.
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8.6 Proofs

A. Proof of Proposition 8.1
When the input function is u(f) = F;sin(€¢), it can be obtained from (3.3) in Chap. 3
that

D, = k[Q., k/:i 1 and F(a)k,) = —jk1Fd, for [ = 1,--,n

From the results in Sect. 3.3 of Jing et al. (20006), it can be obtained in this case

FGQ) =3 3 flionsjon) Flow) - F(o)

Oy + oty =Q

Note that when i =2n+ 1, the condition wy, + - - - + wy,,,, = 2 means that there are
n frequencies wy, = —wand n+ 1 frequencies w;, = w. Thus, wheni=2n,w;, + - -
+wy,, # Q for any cases. This shows that f,,(joy,, - - -, jor,, ) =0, which further

yields that 1?2,, (jQ) =0 for n=1,2,3,. . .. Therefore, the parametric characteristics of
the OFRF in this case can be written as (8.7). This completes the proof. |

B. Proof of Lemma 8.2

(1) Consider a parameter ¢, ,(-). If p+q=n, it is from Lemma 8.1 that ¢, ,(-) is an
element of CE(H,(jw, - - -,jw,)). If p+q > n, this parameter cannot appear in
H,(jwy,---,jw,), since the conditions in Lemma 8.1, e.g,

p+q+ zk: (p; +¢;) =n+k, cannot be satisfied. If p+q<n, then there
i=1 )
must exist a k > 0 such that p +¢ + Z (pi + ¢;) = n+k. That is, ¢, ,(-)
must appear in a monomial which is an ellzinent of CE(H,(jwy, - -, jw,)).
(2) For (c,,(-))**", it is from Lemma 8.1 that p + ¢ + Xk: (p + q) = n + k, which
i=1

yields k= ;;Z —1. This completes the proof. O

C. Proof of Lemma 8.3
This can be proved by contradiction. Suppose there is a parameter monomial ¢, 4
()¢proar ()Cprgy () - “Cpp.q, (-) Which is not only an element of CE(H,,(jwy, - - -, jw,))

but also an element of CE(H,,,(jwy, - - -, jw,,)), where m # n. Then from Lemma 8.1,
k

it can be derived that p+q+ Z (pi+4q)=n+k and
i=1

k
p+q+ Z (pi +¢;) =m+1+k Thus n+k=m+k, i.e., n=m. This is a con-
i=1
tradiction. The Lemma is proved. O
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D. Proof of Lemma 8.4
Since C| (e1(i),e2(i), (i) fOT i =1 to n is a base of ", then for any ¢ € R" there exist
a series of real numbers a; - - - a,,, such that

&= a8, (hes(t)smen()) T+ F (e 1), er00)s ()
which yields
C 9" = aillic e @+ F Wl o) @ =0

(p2) is proved. (pl) is equivalent to (p2). For any point in the parameter space Sc,
there is a corresponding vector { € R", thus it follows from (p2) that ¢ - o' =0.
(p3) is proved. This completes the proof. O

E. Proof of Lemma 8.5
To proceed with the proof of this lemma, two special cases are studied first.

Case 1. Consider two different monomials ¢'¢%’- - -/ and ‘1 L2 --c;n, where ¢y,
Co, . . ., Cy are parameters in C, and ry,15,. . .,Im, [1,05,. . . l are non-negative integers.
There exists at least one 1 <i <m for the two monomials satisfying r; # /;. Without
speciality, suppose | # /1. Then suppose for any points (cy, Cy, - . ., Cp,) satisfying
¢;#0, there is a nonzero constant f, such that ¢{! "¢} .. .cln="n = B. Letting ¢,

:"1// gives cll‘ e 122712“_

¢; #0. This further yields (I} — ry)lgc; + (I, — r2)lger + -+ + (by — rm)lgen, =0
for any points (cy, C», . . ., Cy) satisfying ¢; # 0. This shows that r; = [;, which results

ci;;_r'" =1 for any points (cy, Ca, ..., Cy) satisfying

in a contradiction. Therefore, ¢}/ "' ¢ ~"*- - -cln="» cannot be a nonzero constant. For
any two points (c(1), co(1), ..., cyy(1)) and (c1(2), c2(2), ..., cu(2)) such that

AT G-y (1) # @G TR) @)

it can be obtained by equivalent row transforms that

[c?u)c;(l»- (1) ()51 iz(l)} N [1 (e ’_2(1)-~~c£:"’"(1)]
G p) k) h@)] T 1 TG )
;5[1 | "—"<1> B (1) cly (1) }

0 i @)k @) cly e (2) — el (D (1) (1)

3

It is obvious that the matrix is non-singular.

Case 2. Consider the same two different monomials ¢}' ¢y« - -c/» and ¢}l ¢ - -chn

as Case 1. Leta = ¢}'c}---c'n +a;,and b = ¢/l ¢} ¢l + by, where a; and b, are
two constant real numbers, and suppose a; # 0 w1th0ut speciality. Suppose for any

points (cy, o, - . ., Cry), there is a nonzero constant 3, such thatb/a = B, which gives
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Iy 1 I Iy T
cleg-ep+ by = pelley o + pay

If by =pfay, then it is the case 1. Consider the case b; # fla;. There must be some

J1 T2 1,,, _h ﬂal

points (cy, Cz, ..., Cy) such that c¢}'cy-- ¢}

611‘ clz2 . cin = 0. This results in a contradiction with ¢/’ ng S = ”“Tﬁ”‘ Therefore,

Thus for these points,

b/a cannot be a nonzero constant. For any two points (¢,(1), cx(1), ..., cu(1)) and
(c1(2), ¢2(2), ..., cm(2)) such that

P fa(1) £ 2@ fa(2)

it can be obtained by equivalent row transformation that

[6'1(1)62 (1)) +ay 10’22(1)---c~§;;(1)+b1] N [1 b(l)/a(l)]
A\ (2)c3(2) -y (2) + ar [f (2)e5 (2)- - cpn(2) + by )
N [ 1 b(1)/a(1) }

0 b(2)/a(2) = b(1)/a(1)
It is obvious that the matrix is non-singular.

Now consider the proof of the lemma. As mentioned, it is from Remark 8.1 and
Lemma 8.3 that there are no repetitive elements in . That is, each element in y is a
non-repetitive monomial of some nonlinear parameters in C. Choose different
points C(7) in S¢ for i =1 to o5, then produce a matrix row by row. For the first
two rows, it is Case 1 if only considering the first two columns. Thus by equivalent
row transformation, the first two rows can be transformed into an upper triangle
form as Case 1, i.e., the entries in the first two columns and below the diagonal line
are zero, while the diagonal entries in the first two rows are nonzero. For the next
two rows, it is Case 2 if only considering the next two columns. Then by equivalent
row transformation, the next two rows can also be transformed into an upper
triangle form as Case 2, i.e., the entries in the first four columns and below the
diagonal line are zero, while the diagonal entries in the first four rows are nonzero.
Proceed this process forward until the last two or one rows. Therefore, the matrix
can be equivalently transformed into an upper triangle form with nonzero diagonal
entries, which is obviously non-singular. This shows that, there exist a series of
points C(i) in S¢ for i=1 to o, such that each rows of the generated matrix as
mentioned above, i.e., ylc; ) for i =t to o, are independent. This completes the
proof. O

F. Proof of Theorem 8.1
When there is no truncation error, from Lemma 8.5, there exist a series of C(1),
C(2)...C(0>) such that

Wlc for i =1 to o, is a base of R

and additionally from (8.6a) and (8.11a), it can be obtained that for each i,
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vlew - (8(w) — @) =0

Then from Lemma 8.4, for all the points in S¢

~ T ~
w- (d)(jw) - (I)(jw)) — 0 and ®(jo) = D(jw).
In case that S¢ includes all the nonlinear parameters of NDE model (8.1), from
Lemma 8.3, CE(H,(jwy, - - -, jw,)) N CEH,(jw, - -, jw,,)) =0 for m# n, then

Y,(jw) = CE(H,(-)) - F,(jo)"
Consider the truncation error o(N + 1) # 0. In this case,
Y(joo) =y - ®(je) +o(N + 1)

Therefore,

@ (jeo)" = [wle)” wlew” - wlewn™]

[ (o) —o(N+1)) ety (Y(jeo) —o(N+1))|e) -+ (¥ (jo) —o(N+1))|c(on)]”
:‘;If_lyc(lm,,z)'(Y—0N+1)|C(1m”2):q]—l‘C(l.“az)'Y’Cmm”z)—\P_l‘C(l.“ﬂz)'0N+1|C(14.A”2)
:(D(ja))T_lP_]‘C(lmaz)'0N+1|C(l~~~02)

. . . T .
where Y|c(1..0,) = [Y(j®)|ct) Y(jo)|c@) -+ Y(jo)|c(oy)] - This leads to (8.11d).
Note that ¥ (jo) =y - ®(jw)" . Therefore,

(o) ~ (o) = v (®() ~ @) — 0N +1)

This, together with (8.11d), leads to (8.11e). The proof is completed. O



Chapter 9
Nonlinear Characteristic Output Spectrum

9.1 Introduction

Nonlinear analysis takes an important role in system analysis and design in practice.
Several methods are available in the literature to this aim including perturbation
method, averaging method and harmonic balance method etc (Judd 1998; Mees
1981; Gilmore and Steer 1991). As shown in the previous chapters, nonlinear
analysis can be conducted in the frequency domain systematically based on the
Volterra series theory.

However, the nonlinear analysis based on the GFRFs usually involves compli-
cated computation cost especially for the orders higher than 3. Importantly, the
traditional recursive algorithms for the GFRFs are easy to implement but actually
complicate the relationship between the GFRFs and model parameters. In Chaps. 4—
6, it is shown that both the GFRF and the output spectrum can be formulated into a
polynomial in terms of nonlinear parameters of system model. Especially, through a
parametric characteristic analysis and a mapping function (see Jing et al. 2008b or
Chap. 11), the GFRFs and output spectrum can all be expressed into a straightforward
polynomial function with respect to any nonlinear parameters of interest. Thus, for a
nonlinear system described by a NDE or NARX model, these results could provide a
significant insight or powerful approach into the nonlinear influence on system output
frequency response (which will be discussed further in Chaps. 11 and 12). However,
quantitative analysis of the nonlinear dynamics and its effect on system dynamic
response still encounters problems due to computation complexity. Although a
numerical method could be adopted for an estimation of the output frequency
response function (OFRF) (Chaps. 6-8), biased or even wrong estimates may happen
since the truncation order of the underlying Volterra series expansion for the
nonlinear system under study is difficult to know in advance (it may also be varying
with different input magnitudes). This may affect the effectiveness and reliability of
the OFRF-based analysis.
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In this chapter, a systematic frequency domain method for nonlinear analysis,
design and estimation of nonlinear systems is established based on the discussions
in the previous chapters. This method allows accurate determination of the linear
and nonlinear components in system output spectrum of a given nonlinear system
described by NDE, NARX or NBO (nonlinear block-oriented) models, with some
simulation or experiment data. These output spectrum components can then be used
for system identification or nonlinear analysis for different purposes such as fault
detection etc. Noticeably, the OFRF in Chaps. 7 and 8 is expressed into a much
improved polynomial function, referred to here as nonlinear characteristic output
spectrum (nCOS) function, which is an explicit expression for the relationship
between nonlinear output spectrum and system characteristic parameters of interest
including nonlinear parameters, frequency variable, and input excitation magnitude
(not just nonlinear parameters as that in Chaps. 7 and 8) with a more generic
parametric structure. With the accurate determination of system output spectrum
components in the previous step, the nCOS function can therefore be accurately
determined up to any high orders, with less simulation trials and computation cost
compared with a pure simulation based study or traditional theoretical computation
(Yue et al. 2005; Jing et al. 2008e). These results can provide a significant approach
for qualitative and quantitative analysis and design of nonlinear dynamics in the
frequency domain. The study on a nonlinear vehicle suspension system is given to
illustrate the results.

9.2 Nonlinear Characteristic Output Spectrum (nCOS)
and the Problem

Nonlinear systems can usually be identified or modeled into a parametric model
such as NDE, NARX or NBO models in practice. The nonlinear output spectrum of
those nonlinear systems is not only a complex-valued function of frequency vari-
ables but also a function of model parameters and input magnitude of interest
(which are all referred to as characteristic parameters in this study). An explicit
relationship between system output spectrum and characteristic parameters would
be of great significance for system analysis and design. Consider the NDE system
(2.11) again. It is shown in Chap. 6 (and also Chap. 11) that nonlinear output
spectrum of NDE models can be written into an explicit polynomial function of
system characteristic parameters as

N

where y, denotes the nth-order characteristic parameter vector composed of
nonlinear parameters and @,(jw) its correlative complex-valued function of the
nth-order output spectrum, both of which can be (analytically) determined with the
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method in Chaps. 5, 6 and 11. Any nonlinear parameters of interest in analysis and
design will be included in y,, given by

n—2 k
Xn = Cn,O S¥ S <® C I,,ql) (92)
k=0 =0

k
Z(pi+qi) =n+k
=0

i=
l<py<n—k2<pi+q<n—k

where Cp, ,=[cp4(0,---,0),¢p 4(0,--+,1),-+,¢p.4(K,--,K)], & and & are two opera
ptq=m

tors defined for symbolic manipulation (see the details in Chap. 4). For example, for
two vectors C; and C, consisting of some symbolic variables, C; B, is a vector
including all the elements in C; and C, without repetition, and C; & C, is a vector
including all the elements produced by the Kronecker product without repetition. If
some model parameters will not be considered in the analysis and design, they can
be set to 1 by default in (9.2). If there is an element 1 in y,, it means that there will
be a pure frequency-dependent term in the polynomial (9.1). Similar results hold for
the NARX model.

Obviously, (9.1) is an analytical and straightforward function of system charac-
teristic parameters, which could considerably facilitate the analysis and design of
nonlinear systems in the frequency domain. To emphasize the parametric relation-
ship between the nonlinear output spectrum (nOS) and the characteristic parameters
(including nonlinear parameters, excitation magnitude and frequency), (9.1) is
referred to here as nonlinear characteristic output spectrum (nCOS) function and
the nth-order component as the nth-order nCOS. In order to conduct a nonlinear
analysis based on the nCOS function in (9.1), both y,, and ¢,(jw) must be deter-
mined up to a sufficiently high order. Since nonlinear systems can always be
identified into a NARX, NDE or NBO model with experiment data in practice
(Worden and Tomlinson 2001; Jing 2011; Ahn and Anh 2010; Wei and Billings
2008), this chapter suppose that a nonlinear model of the system of interest is
already known. Therefore y,, is known from (9.2) with the nonlinear model, and
thus only ¢,(jw) is yet to be determined. Although ¢,(jw) can be computed
analytically with the method in Chap. 11, the computation cost is usually high
and it is even worse for high orders (>5). Therefore, the objective is to develop an
effective method such that ¢,(jw) can be determined accurately and directly with
only some simulation data.

From (9.1), a simple least square algorithm could be applied in order to compute
@.(jo) under different parameter excitations as discussed in Chaps. 6 and 7.
However, the difficulty is that the maximum truncation order N is not known and
it is also varying with different input magnitudes. A larger input magnitude or a
larger range of a specific model parameter of interest would result in a larger
truncation order N (for an accurate Volterra series expansion). An inappropriate
guessed truncation order N will lead to large error in the computation of ¢, (jw). A
sufficiently larger N could be attempted to avoid this problem (if realistic), but will
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easily result in singularity of the matrix inverse in the least square (LS) algorithm. If
@,(jo) is not computed correctly, the simple least square algorithm can only
guarantee accurate fitting at the training points, and the generalization of (9.1)
could be very worse.

To solve the problems mentioned above, new algorithms will be developed so
that ¢,(jw) can be determined accurately with only some simulation data and
without knowing the best truncation order N,

9.3 Accurate Determination of the nCOS Function

For determination of the nCOS function (9.1), the first step of the proposed method
is to compute the nth-order output spectrum (for any n) based on numerical or
experimental data, and then to determine the nth-order nCOS function.

9.3.1 Computation of the nth-Order Output Spectrum

The nonlinear output spectrum (nOS) in (2.4) can be rewritten by considering the
truncation error o(y;(jo) and input function pR(jo) as

Y(jo), = 30V, (ja) = p¥1(jo) + pYaljo) + pYs(ja) + -

N
= Z:p”Y,, (jo) + o ) (jo) (9.3)

where oy ,)(jw) represents the truncation error, including all the remaining higher
order output spectrum components in Volterra series expansion; p is a constant
which is used to represent different magnitude of the input.

To determine Y, (jo) for ne R={1,2,3,...N}, a multi-level excitation method can
be adopted as shown in Chap. 7. The system can be excited by the same input R (jw) of
different magnitudes po, p1, p2,- - -» Pn—1, and there will be a series of output obtained
accordingly, which are denoted by Y(jw)0, Y(j@)p1, Y(j@)p2,. - ., Y(jw)on—1. Through a
LS method, it gives

Y i (jo) po oy ][ YUe),
T I Y(o), (9.4)

Y n(jo) Pn-1 PNt PN Y(jw),,
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The square matrix above is nonsingular if po#p;#...7#pn_1- Note that the
computation of Y, (jw) for ne X={1,2,3,...N} is basically accurate if the trunca-
tion error oy, (jw) is trivial. Otherwise, the computation for Y,(jw) could be
significantly biased, and the LS in (9.4) only results in a good fitting at the training
points. To overcome this problem, an alternative method can be employed by
choosing the excitation magnitudes pg, py,. .., pn_1 SO that the accurate computa-
tion through (9.4) can be achieved for any given N. The following results are
derived for this purpose.

Proposition 9.1 o
AY(jw) = (=)™ popy--py_i 'Z(PO +p1+ e+ on )Y v () (9.52)

k=0
AYy(jw) = Z(PO +or 4+ ov ) v (jo) (9.5b)
=1

where for N(>1) nonzero distinct real numbers and for any non-negative integer r,

1] Ll li
(x1+x2—|—---—|—xN)H = E X[ X3 - XN (9.5¢)
hi+l++Iy=r
11,12,...,1N6{0,1,2,...,r}

Proof See the proof in Sect. 9.6A.

Proposition 9.1 provides a straightforward insight into the computation error
incurred by excitation magnitudes and truncation order. Given a truncation order N,
different values of the excitation magnitudes could bring very different computa-
tion error. Proposition 9.1 demonstrates an effective method for designing pop; - - -
pn_1 so that the computation errors (i.e., AY(jw), AYn(jw)) can be mitigated for
any N.

In (9.5a,b), the computation of (pg+p1+---+py_1)
gives a recursive method for this.

(¥ is involved. Lemma 9.1

Lemma 9.1
N—1

(po+pi+ oy ) = ZPr(Pr +o oy )Y
r=0

Proof By a mathematical induction, it is easy to have this conclusion.

Based on Proposition 9.1, different excitation methods can be used to minimize
the computation error. The following results can be obtained by applying
Proposition 9.1.
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Corollary 9.1 Case 1: N=3,p1=—p,pr=—pla,po=—p1—p2, 0<p<1,a>1.

a 2 a
aio0) =" {1io) + = el + o) 050

. @ +a+1 , a+1 .
AY3(jw) = TPZYS(IW) v )
o +20° + 3% +2a+ 1
= Y7 (jo)- - (9.6b)

Case 2: N=5,p0=p.p1=—p,p2=—plp.p3=—pfa.pa=—p2—p3,0<p<l, f>1, a>1

¥ o) =~ (545 ) [Fatio

af\a
1 1 1 . 1 /1 1 .
+<1+¥+?+@)p2Yg(/a))+E(a+ﬁ)p3Y9(lw)+-~-}
(9.6¢)
AYso) = (11242 D) vsgo) + 2 (24 D) pvggo) +-- (9.60)
5U0) = 2 B aﬂp7 aﬂaﬂﬂs :

Proof See the proof in Sect. 9.6B.

Corollary 9.1 indicates that properly choosing the excitation magnitudes as
specified would produce accurate computation of Y;(jw) and Y;(jw) or Ys(jw),
respectively, although the truncation order is chosen as N=3 or 5. The result in
Proposition 9.1 actually provides many choices for this purpose. For example, in
Case 2 of Corollary 9.1, if p=0.001, f=2, and a=10, then (9.6c,d) can be written
as

AY| (jw) =—0.03-0.001°{ ¥4 (jw)+1.31-0.001°Y 5 (jow) +0.03-0.001° Yo (jw) + -+ }
AYs5(jo) = 1.31-0.001%Y7(jw) + 0.03 - 0.001°Yg (jo) +

From the equations above it can be seen that higher order output spectra (>5) would
have very limited effect on the determination of lower order output spectra. The
computation error in Ys(jw) incurred by Y;(jw) would be 1.31 ~0.0012Y7(ja)). Only
when the magnitude of Y-(jw) is larger than 10°, the influence could be significant.
Similar conclusions hold for the other higher orders. Moreover, it can be checked
by a mathematical induction that the other orders of output spectra between 1 and
5 can also be computed accurately if Ys(jw) can be computed sufficiently accu-
rately. For different order N, similar results can be obtained.

Corollary 9.1 leads to the following estimation algorithm for the nth-order
output spectrum (referred to as nth-order Output Spectrum Estimation (nth-OSE)
algorithm).
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Step 1. Choose N=3 or 5 etc, and properly set p, a and S, satisfying 0<p <1, f>1,
a>1,e.g., p=0.001, a=10 and f=2.
Step 2. Use (9.4) to find the estimates for Y, (jw), i.e.,?,,(jw), forn=1,2,...,N. Note
that the computation error for n=1 or N is given by (9.6a,b) or (9.6¢c,d).
Step 3. Note that (9.3) can be written as
Y(jo),lp—Y (jo)=pY(jo)+p°Y3(jw)+- - - Therefore, replacing Y(jw), by
Y(ja))/,’_/p,- — Y, (jo) in (9.4) and re-applying (9.4) with a larger p (usually
5-10 times than the previous one) lead to the estimation of ¥, (jw), i.e., Yn(ja))
for n=2,...,N+1. The estimation error is still given by (9.6a—d) accordingly
by replacing Y,;(jw) with Y, (jw).
Step 4. Similarly, (9.3) can be written as
(Y(jw),—pY 1(jo) — p*Yojw))lp* =pY3(jw) +p*Ya(jw) +: - Therefore,
replacing Y (jw), by (Y(jw),—pYi(jw)—p°Ya(jw))lp” in (9.4) and re-applying
(9.4) with a larger p (usually 5-10 times than the previous one) leads to the
estimation of Y,,(jw), i.e.,Y,(jw) for n=3,.. . N+2.
Step 5. Follow a similar process as Step 3 and Step 4 until a sufficiently high
order N". The truncation order N* is not known but can be determined
by evaluating the magnitude of Yy (jw) according to a predefined threshold

(e.g., ?N*(jw)’ < e).

With the nth-OSE algorithm, the nth-order output spectrum can be determined
accurately (by properly choosing p (discussed later)) into a nonparametric form and
an appropriate truncation order N* can also be obtained. This estimation process
does not necessarily need a system model but input—output data only from simula-
tions or experiments.

9.3.2 Determination of the nth-Order nCOS Function

From (9.1), the nth-order nCOS function can be written as

Yu(jo) = 1, ¢u(j0)" 9.7)

where y, is the nth-order characteristic parameter vector given by (9.2). If the
system model under study is not known, several methods as mentioned before can
be employed to identify a NDE, NARX or NBO model from experimental data.
Here supposes that the NDE model of the system is known and similar results hold
for other models. With the NDE model, y,, is known explicitly for any characteristic
parameters (Chaps. 5 and 6).

At any frequency o, an identification method can be used to determine @,,(j@).
Let 7 denote the dimension of y,,, and suppose there are m characteristic parameters
in y,, i.e., ¢1,Ca,. . .,Cy. Denote ¢ = (cy,¢a,...,Cn). Then,
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Step I: Compute the nth-order characteristic vector y, using (9.2) with respect to c.
If y,,=1 implying that this order output spectrum has no relationship with ¢, then
let n—n+1 and repeat Step 1; otherwise, go to Step 2-5;

Step 2: Randomly generate 7 distinct points ¢ = (cy,¢,...,Cn) SO that
Hl )(n\a}; [1 Z”Fz} HAIR [1 Xﬂl%” is nonsingular.
Step 3: At each point ¢ = (c1, ¢y, ..., Cn), the system can be simulated subject to a

specific input and applying the nth-OSE algorithm leads to determination of the

nth-order output spectrum denoted by Y , (jo).-, i.e.,

e
Yn(f‘”)p = ?n(/w)\zzo +Xnje b, (o)

Step 4: 1t can be obtained that
Voljo) zonlir)| 1 1 1 B
@)= @ U®)| = X, |5 |1 Xnjgy |55 | L Xne
rodulio)] = {[1e ] [V s--os [ Lo
S T (9.8)
.[Y,,(]w)‘a,Y,,(]w)lzz, ...,Yn(/a))‘gm}

Step 5: Thus, the nth-order nCOS function (9.7) is achieved, and finally the
nCOS function can be obtained as

N

)(11‘2:1 ){n‘f 1

V(o) =pt o)+ D pVate) + Y o (Vo) b aGe0))
n=2,3,... n=2,3,...

I

The method above is referred to as nth-order nCOS estimation (nth-COSE)
algorithm. Because the elements in y, is symbolically independent, there must
exist 7 distinct points c=(c1,¢2,...,Cm) such that the matrix

o, ;XnEZ;'”;){n|Zm:| is nonsingular (Chap. 8). If the estimation of ?,l(ja))‘a is
unbiased, the determination of ¢, (jw) in (9.8) will be unbiased. Compared with the
result in Chap. 7, (a) the nCOS function here is determined as not only a polynomial
function of model parameters but also an explicit function of the input magnitude p;
(b) The best truncation order N* is not necessarily known in advance (this must be
given in the previous result); (c) With the help of the nth-OSE algorithm, the
complex-valued polynomial coefficients can be determined accurately, while the
previous algorithm may result in biased (if not wrong) estimation; (d) The

parameter-independent terms such as Y, (iw)\;:o are explicitly considered in the

nCOS function, which are incurred by those which have no relationship with model
parameter ¢; Thus the characteristic parametric structure of the nCOS function is
more generic.
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9.4 Example Studies

Applications of the results can be found in different areas. The nth-OSE algorithm
can be used for estimation of nonlinear polynomial like (9.3). The accurate deter-
mination of each order of nonlinear output spectrum components can be used for
nonlinear detection in non-destructive evaluation (Jing 2011; Chatterjee 2010;
Lang and Peng 2008). The method can also be used to accurately estimate the
linear part of a nonlinear system where the nonlinearity could be complicated.
Importantly, the accurate determination of the nCOS function can be used for
nonlinear analysis and design. These will be demonstrated with a nonlinear vehicle
suspension system.

9.4.1 Identification of a Polynomial Function

Given a polynomial function
f(x) = 10x — 20x* + 300x> — 40x* + 500x°> — 600x® + 700x” — 800x* + 900x°

For convenience in understanding, the equation above can be regarded as a poly-
nomial in (9.3) with p=x, Y(jw),=f(x) and Y,(jw)=10,—-20,... fori=1,2,.... The
coefficients can be estimated accurately with any guessed truncation order N (the
real one is N=9) using the nth-OSE algorithm. For example, by Corollary 9.1,
taking N=5, p=0.001, =10 and =2, the coefficients of the first 5 orders are
given in Fig. 9.1a by applying Steps 1-2 of the nth-OSE algorithm. By applying
Step 3 with p=0.01, the estimation for the coefficients from the second to the sixth
orders is shown in Fig. 9.1b. Both clearly show that the estimated coefficients
accurately match the real values.

One issue with the nth-OSE algorithm is how to choose the excitation magnitude
p for both o and f are given heuristically satisfying > 1 and > 1. From Table 9.1,
it can be seen that given a=10 and =2, different values for p result in a little
difference in the estimation of lower order coefficients (especially for order 1), but
could lead to very different estimates for higher order coefficients such as the
coefficient of order 5. Table 9.1 shows that there is a large range for p to choose
(e.g., 0<p<0.1) to have an accurate estimation for each coefficient especially for
lower order coefficients. It also clearly indicates that the estimation could be greatly
biased without a proper value for p (e.g., p=0.5).

To find the best excitation magnitude p, define the following excitation sensi-
tivity function

oY
S — |
(p) P

Yp - Yp+A
A

where Y, denotes the variable to be estimated under the excitation magnitude p, and
A is a small positive number. By the definition, for each order of the coefficients
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there will be a V-shape or U-shape curve given by the sensitivity function (Fig. 9.2),
and the best excitation magnitude should locate around the bottom of the curve
which corresponds to the slightest estimation error for the corresponding order
coefficient. In Fig. 9.2a, the effective excitation range for the orders 4 and 5 in Table
9.1 are highlighted, which are clearly around the bottom or turning corner of the
V-shape sensitivity function; for the first 3 orders the effective excitation ranges
cover the whole testing excitation range, having very small sensitivity values
(below 1). Similar cases hold for different other values of a and S, for example
a=>5, =5 in Fig. 9.2b, indicating that p is actually the sensitive parameter to tune
in the nth-OSE algorithm.
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Table 9.1 Estimation with different excitation magnitude (the bold and italic numbers indicate
the relatively accurate estimation)

Real
p 10 -20 30 —40 500
0.00001 10.000 —20.000 300.0000 | —36.0000 —1,048,576.0000
0.00005 10.000 —20.000 300.0000 | —40.0156 512.0000
0.0001 10.000 —20.000 300.0000 | —40.0156 512.0000
0.0005 10.000 —20.000 300.0000 | —40.0002 500.0625
0.001 10.000 —20.000 300.0000 | —40.0008 500.0000
0.005 10.000 —20.000 300.0000 | —40.0192 500.0224
0.01 10.000 —20.000 300.0000 | —40.0767 500.0894
0.05 10.000 —19.999 299.9977 | —41.9218 502.2419
0.1 10.000 —19.983 299.9720 | —47.7635 509.0534
0.5 10.3669 —5.6135 281.7501 —297.5458 798.3785
The effective |0<p<0.1 |0<p<0.1 |0<p<0.1 |0.00005<p<0.01 [0.0005<p<0.01
range for p

From the discussions above, considering Table 9.1 and Fig. 9.2 and based on

some other testing results, it can be concluded for the nth-OSE algorithm that

(a)
(b)

(©)

(d

The parameters a and f can be chosen heuristically satisfying a>1 and > 1.
The excitation magnitude p is the key factor to be tuned properly.

Testing can be done to generate plots of the excitation sensitivity function, in
which the best excitation magnitude locates around the bottom or turning
corner of the V-shape curve, corresponding to the estimation with smallest
error (e.g., the orders 4-5 in Fig. 9.2).

If the V-shape curve is very flat or very low in values at all testing range, this
indicates that all the testing magnitudes are effective for the estimation of the
corresponding order (e.g., the orders 1-3 in Fig. 9.2). Moreover, a flat curve
around the bottom of the V-shape curve implies the estimation with the
corresponding excitation magnitudes is consistently accurate.

The best p* obtained in this method implies that the obtained lower order
polynomial estimated by the nth-OSE algorithm will be applicable to the
excitation input pR(jo) of magnitude p € [0, p|, where p = p* when N=35
and p = lfT“p* when N=3 by Corollary 9.1.

This could be used as a useful guidance in selection of the excitation magnitude

p in the nth-OSE algorithm (referred to as the p-selection method). The value of p in
step 1 and 3 of the nth-OSE algorithm can both be obtained with this method.

9.4.2 Analysis of Nonlinear Suspension Systems

Consider the analysis of a nonlinear vehicle suspension system (Fig. 9.3) in this
example. It is known that vehicle suspension systems usually have inherent
nonlinearity, which brings difficulties in active or semi- active control. To certain
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extent, accurate identification of the linear part and each nonlinear component
would be very helpful in the analysis and design of a desired suspension system
in practice. The nth-OSE algorithm could be very helpful to this objective. This will
be demonstrated in Case I of this example. On the other hand, it is more and more
noticed that nonlinear damping characteristics could produce superior performance
in vibration suppression compared with linear damping (Chap. 12). To achieve
adjustable damping characteristics, MR dampers are often used as an ideal shock
absorber (Case et al. 2012; Zapateiro et al. 2012). However, the question is how to
design a desired nonlinear damping characteristic for a given vehicle suspension
system. The nonlinear COS function above can provide an alternative approach to
this problem for the nonlinear analysis and design. This will be demonstrated in
Case II of this example.
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Fig. 9.3 A nonlinear X
vehicle suspension system ’ | Sprung
(Jing 2014 © IEEE) mass

m,
k, % J%’ )
X

HT_ Unsprung
mass

The one quarter vehicle suspension model is given as

myis = —f, — b(1) (iy — %) (9.9a)
muxy, = f, + b(t) (% — xy,) — ke(x, — x0) (9.9b)

where the spring force is a nonlinear function given by
fs - ksl (xs - Xu) + k.\‘Z(xs - xu)z + ks3 (Xs - Xu)3 (99C)

and b(t) denotes the nonlinear damping coefficient to be designed, which can
generally be any nonlinear function. In this study, it is as an example written as

b(t) = by + b2 (9.9d)

where z=x;—x,. Previous results have studied the cubic nonlinear damping
blz'z(Chap. 7, Jing et al. 2011). For the model parameters above, a model in
Dixit and Buckner (2011) is adopted here as: my=240 kg, ks =12,394 N/m,
ko =—73,696 N/m?, ki=3,170,400 N/m®, m,=25 kg, k,=160,000 N/m, and
bp=1,385.4 Ns/m.

Case I: The estimation of the linear part and the nonlinear output spectrum
without knowing the truncation order N and system model. In this part, it is
supposed that the system model is not known and b;=10° in (9.9d). It can be
seen that the suspension system has strong nonlinearity both in stiffness and
damping elements. The nth-OSE algorithm can be used to estimate the linear part
of the system and therefore to estimate how the nonlinearity takes a role in the
dynamic response using the method discussed in Jing (2011). To this aim, the input
excitation is considered as a multi-tone function given by

10
u(t) =pY _sin((5i)) (9.10)
i=1
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Fig. 9.4 The estimated output spectra up to order 3: (a) the estimated results, (b) the zoomed
results of (a) (Jing 2014 © IEEE)

Note that the multi-tone signal above can actually include more frequency points
and thus provide a sufficient excitation to the system at different frequencies of
interest. The parameter p is to be determined in the estimation.

Usually the nonlinear output spectrum of system (9.9a—d) would have an infinite
order of output spectrum components but could be truncated at an appropriate order
N to approximate the original nonlinear dynamic response in practice. With the
nth-OSE algorithm, the nth-order output spectrum of any given nonlinear systems
could be estimated in a non-parametric form up to any high order without knowing
the truncation order and system model. If only the estimation of the linear part of
the system is interested, it would be much easier to choose a proper excitation
magnitude p. To estimate accurately all the output spectrum components simulta-
neously, p must be chosen using the p-selection method above. For example, if
taking N=3, the corresponding parameters can be chosen as p=0.0005 and a=10
based on the p-selection method, and the estimated results for the nth-order output
spectrum up to order 3 are given in Figs. 9.4 and 9.5.

In Fig. 9.4, it can be seen that the output frequencies in the first order are exactly
the same as the input frequencies, those in the second order are doubled and in the
third order tripled. This is completely consistent with the known results in Chap. 3
that is, the output frequencies in the nth-order output spectrum can only appear in
the range [0, nb] given that the input frequencies are in [a, b]. To further validate the
estimation results in Fig. 9.4, the real output spectrum of the linear part is given in
Fig. 9.5. It is clearly shown that the estimated values of the first order output
spectrum exactly match the real ones with overall root-mean-square error
8.5068e-004.
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Similarly, if taking N=35 and the other parameters by Corollary 9.1 and the p—
selection method as p=0.001, =10 and f=2, the estimation results of the output
spectrum up to order 5 are shown in Fig. 9.6. Comparisons indicate that the
estimated first three orders of output spectrum are exactly the same in Figs. 9.4
and 9.6, implying the consistence and validation of the nth-OSE algorithm in
estimation of the nth-order output spectrum for the system. Figures 9.4 and 9.6
both show that the magnitude of the higher order output spectrum is becoming
larger with the increase of order n. Recalling (9.3), this implies that when the input
magnitude is becoming larger, the nonlinearity will take more dominant roles in
system dynamic response and the vibration performance could become worse (see
Fig. 9.7). Figure 9.7 clearly confirms that when the input magnitude is increased to
p =0.1, the nonlinear response is dominant and vibration transmissibility becomes
obviously worse. Therefore, a proper design of the linear or nonlinear damping
coefficient would be very crucial in vibration control. This consequently incurs a
need for a systematic method for the nonlinear analysis and design, which would be
focused in the following section.

It should be noted that if the excitation magnitude p,, p,, p3 are not properly
chosen according to Corollary 9.1, the estimation results would be greatly biased
(for paper length this is not illustrated here). With the accurately estimated first
order output spectrum, many methods are available to estimate a linear parametric
model (Levi 1959; Young 1985; Ibrahim 2008). This is not demonstrated here
either. Moreover, it is interesting to mention that the nth-OSE algorithm developed
here provides an effective tool to accurately estimate the linear and nonlinear
components in the dynamical response of a system. This would also be of signif-
icance to non-destructive evaluation and similar topics can be referred to (Jing
2011; Chatterjee 2010; Lang and Peng 2008). It is noted that in application of the
method to experimental data, noise corruption can never be avoided. Preliminary
results indicate that the additive noise can basically have little effects on the
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estimation with the nth-OSE algorithm after using some noise processing methods.
This will be further investigated in future studies.

Case II: The estimation of the nCOS function with respect to the nonlinear
damping. To explore the nonlinear benefit in vibration control, the nonlinear
damping characteristic can be analyzed by regarding X; as the system output, i.e.,



9.4 Example Studies 169

Y = X (f=}TT90d833a; }s (9.11)

and deriving the nonlinear COS function in (5) in terms of the nonlinear parameter
b,. To this aim, consider the input as

u(t) = psin (Qr) (9.12)

where Q could be any frequency of interest. Since only a cubic order nonlinear term
b,z*Z would be considered, it can be obtained using the parametric characteristic
analysis (Chaps. 5 and 6) that

2= 1 05 =bi; g = bis x5 = [br, bi]ixs = [br, bi;
17 = b1 B, BY)s g = b1, BT, b5

Then in this case the nonlinear COS function can be written as

Y(jo) =Y (jw) + Y2(jo) + Y3(jo),,
+ b1 - @3(b; jo) + Ya(jo), o + b1 - @4(by; jo) (9.13)
+Y5(jo) o + b1 - @s(bi; jo) + by - s (bsjo) + - -

Note that Y (jw) and Y,(jw) are the first and second order output spectrum,
Y3(jw)p,—g» Ya(j®)py,—o» and Ys(jo), _, are all incurred by the second and third
order nonlinearity in the stiffness, which have no relationship with the nonlinear
damping term. By the parametric characteristic analysis, there will be a term in y5
given by the multiplication between b; and the coefficient of the third order
nonlinearity in the stiffness. While the latter is a constant, it thus yields the term
by in y5. This results in the term by@5(by;jo) in (9.13). By applying the nth-COSE
algorithm, the estimation of (9.13) can be obtained as

Y (j0) = p¥ ,(j0) + p2Y 5 (j00) + p* [V3(j0) o + b1 - 93(by:jo)]

Y3y by)
+p* [Ya(jo)y,—g + b1 - @a(bi;jo)]
Y, oy by)
+ 07 [Ys5(jo) g + b1 - @5(bijw) + b7 - ps(b1;jo)] (9.14)
yg(/4,1,1»1)+-»-

Note that the nCOS function in (9.14) is an explicit function of the frequency w,
nonlinear parameter b; and excitation magnitude p. In (9.12), consider Q=18 rad/s
as the input frequency, which is around the resonant frequency of the system and
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also a sensitive frequency to human body. If in (9.14), take =, the even order
output spectrum at this frequency must be zero (Jing et al. 2006, 2010). Thus, (9.14)
can be written as

7 () = 7 () + 97 [F5(2), o+ b1 - 3(b1:/9)]

?3(]9,/)])

- el o (9.15)
+p° [Ys(IQ)\blzo + by - @s5(b13/Q) + b7 - @ (b?;/ﬂ)} 4o

Y5(jQ, br)

By the nth-COSE algorithm, to estimate (9.15), the following steps can be used
(referred to as the nCOSE-procedure):

(a) Setting b;=10° (or any other value), apply the nth-OSE algorithm to estimate
Y,(jo) forn=1,2,3,....5. . ;

(b) Take the estimated values of the output spectrum Y,(jo) at the frequency £,
denoted by I?IQQ), ?309) and ?5(/'9) (fz(/'Q) and ?4(1'9) must be zero);

(c) Take b= 10° (or any other value) and b; =0 (preferable), and repeat (a-b);

(d) Equation (9.15) can therefore be estimated using a least square method for
each component.

Based on Steps (a—c), Table 9.2 can be obtained with the parameter setting in the
nth-OSE algorithm as p=0.001, a=10 and =2 as suggested in the previous case
study.

In Table 9.2, the estimates for Y;(j€2) under each parameter value are consistent
since Y (jQ) is the dynamic response of the linear part of the system, independent of
system nonlinearity. This confirms again the effectiveness and reliability of the
nth-OSE algorithm.

For the estimation of Y3(jQ,b,) in (9.15), Table 9.2 yields

Y 3(jQ);,_o = 5-3988e + 002 + 1.2252¢ + 004i

Therefore,

4 3(b1;JQ) = Y 3(Q,b1) = Y 3(jQ) o) /by
_ J (2.8583e +003 — 1.2300e + 002i)1073
(2.8583¢ + 004 — 1.2310e + 003i)10~6
for b;=10° and 10°, respectively, which are almost the same. The averaged value
can be used
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Table 9.2 The estimated output spectrum at € rad/s for different values of b,

b, Y13/ Y3(/Q) Ys(/Q)

0 1.0876e+002+7.2310e 5.3988e+002+1.2252¢ 1.8958e+005+2.5757e
+001i +004i +0061

10° 1.0876e+002+7.2310e 3.3982e+003+1.2129%¢ 4.3776e+005+2.4906e
+001i +004i +006i

10° 1.0876e+002+7.2310e 2.9123e+004+1.1021e 1.5670e+006+1.7068e
+001i +004i +006i

Fig. 9.8 The estimated
nCOS function and its
validation for p€[0,0.001]
(Jing 2014 © IEEE)

[Y(18)]

% 5(b1:jQ) = (2.8583¢ + 003 — 1.2305¢ + 002i)10~7

Similarly, it can be obtained that

[ﬂﬁs(hd@] _
s

105 1010 -1 YAs(JQ, 105) — YAj(jQ)‘blzo
(b7:2)

100 10" ] V532, 10°) — ¥ 5(jQ), o
N 2.6045 — 0.8490i
~ | —1.2271e-007 — 1.9889%¢ — 009i

Therefore, the nCOS function (up to the fifth order) of the system with respect to
input (9.12) and nonlinear damping parameter b, is obtained. To verify the nCOS
function in output prediction, different excitation magnitudes and different
nonlinear damping coefficient b; can be used for a validation, which is shown in
Fig. 9.8 and Table 9.3, indicating clearly the exact prediction by using the estimated
nCOS function (9.15) in the excitation range p €[0,0.001].

Importantly, it can also be checked that the prediction of the estimated nCOS
(up to the fifth order) is still reliable even when the excitation magnitude is larger
for example up to 0.05 (see Fig. 9.9 and Table 9.3), which is much larger than the
excitation range [0, 0.001] used in the estimation. Similar conclusion can be drawn
for a larger parameter value b,. This demonstrates clearly the reliability and
advantage using the nCOS function in system analysis. Moreover, comparing
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Table 9.3 Prediction of the

p b, Real magnitude | Prediction by (19)

estimated nCOS function with

(9.15) (Jing 2014 © IEEE) O 0 0 0
05%107° |5%10° 0.0653 0.0653
0.5%107°  |2.5%10° | 0.0653 0.0653
0.5%107°  |7.5%10° | 0.0653 0.0653
0.25%107% |5*10° 0.0327 0.0327
0.75%107° | 5*10° 0.098 0.098
1073 108 0.1306 0.1306
0.01 2%10° 1.3181 1.3181
0.01 6%10° 1.3274 1.3274
0.03 6*10° 4.5275 4.5504
0.05 6*10° 9.5741 9.9726
0.05 10° 10.655 11.3523

Fig. 9.9 The estimated
nCOS function and its
validation for p€[0,0.05]
(Jing 2014 © IEEE)

[YGw)l

Fig. 9.9 with Fig. 9.8, it can also be seen that the nonlinear dynamics become more
obviously when the input magnitude becomes larger. Using the nth-COSE algo-
rithm, it is easy to estimate the nCOS function up to any high order. This therefore
provides a useful tool for the analysis and design of nonlinear damping in vehicle
suspension systems, and the parameter optimization would also be possible in terms
of any nonlinear parameters of interest to achieve a desired output spectrum in
vibration suppression. The advantages of the nCOS function based method pro-
posed in this study for nonlinear analysis and design could be that it provides an
explicit expression for the relationship between nonlinear output spectrum and
system parameters of interest (including frequency, nonlinear parameters and
excitation magnitude), and this relationship can be accurately determined with
less simulation trials and computation cost compared with a pure simulation
based study or traditional theoretical computations. Regarding the last point, for
example, to obtain the nCOS in (9.15), the nCOSE-procedure above involves at
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most 15 simulation trials and 15 runs of the FFT algorithms. However, only to
generate Fig. 9.9, there are totally 11*101 grid points for (p,b;) (ie., p=
0:0.005:0.05 and b, :0:10000:106), and thus it involves 1,111 times of simulation
trials and 1,111 FFTs. If there are more nonlinear parameters involved, the nCOS
based method would be more efficient and effective in practice.

Moreover, to further illustrate the nonlinear damping given in (9.9d), compari-
sons between the nonlinear damping (b;) and linear damping (by) are conducted for
the peak suppression of the vehicle suspension system. For the same input (9.12)
with excitation magnitude p=0.05 and Q=18 rad/s, the linear damping is used with
bo€[0, 1385.4*100] and b; =0 firstly, and the nonlinear damping is then used with
bo=1,385.4 and b, €[0, 1385.4*100] secondly. The output magnitudes at Q for
both cases are shown in Fig. 9.10.

The results for the nonlinear damping can directly be obtained by using the
nCOS function (9.15) developed above. When the nonlinear damping coefficient is
increased, the vibration magnitude is slightly increased starting from 7.9 (which is
the output magnitude when there is no nonlinear damping but only linear damping
by=1,385.4); while the vibration magnitude is greatly increased with the increase
of by when there is no nonlinear damping. This implies an alternative approach to
vibration control in practice since introducing nonlinear damping brings little effect
on the damping performance of the original systems at the resonance frequency but
could bring vibration suppression over a broad band of frequencies. For example,
Fig. 9.10 implies that a small linear damping could be better in vibration control at
steady state. But too small damping would definitely bring strong vibration con-
sidering the transient response. A proper nonlinear damping could be introduced,
together with a small linear damping, to the system, which could suppress transient
vibrations quickly and simultaneously keep a small linear damping performance in
vibration transmissibility. This is confirmed by Fig. 9.11, where a small linear
damping with by=1,385.4*0.0005 results in a very slow suppression speed in
vibration control, while together with a nonlinear damping b;=10,000 could it
bring a much faster convergence speed and thus lead to better vibration
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suppression. More discussions about nonlinear damping could be referred to Jing
and Lang (2009b), Xiao, et al (2013b), Chapters 10 and 12.

9.5 Conclusions

A systematic frequency domain method for nonlinear analysis, design and estima-
tion of nonlinear systems is discussed in this chapter using the concept of nonlinear
characteristic output spectrum (nCOS) function, which is referred to here as the
nCOS based method. This method allows accurate determination of the linear and
nonlinear components in the nonlinear output spectrum of a given nonlinear system
described by NDE, NARX or NBO models, provided with some simulation or
experiment output data. These output spectrum components can then be used for
system identification or nonlinear analysis for different purposes such as signal
processing, vibration control and fault detection etc. Importantly, the nCOS func-
tion can therefore be developed, which is an explicit expression for the relationship
between nonlinear output spectrum and system characteristic parameters of interest
(including nonlinear parameters, frequency, and excitation magnitude). This rela-
tionship can be accurately obtained with less simulation trials and computation cost
compared with a pure simulation based study or traditional theoretical computation,
and could provide a significant and straightforward method for nonlinear analysis
and design. The nCOS function can be regarded as a greatly-improved version of
the OFRF function established in Chaps. 6-8.

9.6 Proofs

A. Proof of Proposition 9.1
The proof needs three more lemmas. An outline of the proof is given here and the
detailed proof for Lemmas 9.2-9.4 can be referred to Jing (2012). The inverse
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matrix in (9.4) is denoted by A whose element is denoted by A;,. An explicit
expression for A;, is given in Lemma 9.2. Lemma 9.3 provide an analytical
computation of the estimation error in terms of the truncation order N and the
excitation magnitudes py, py, p3... based on Lemma 9.2 and using (9.3), while
Lemma 9.4 provides a method for the simplification of the estimation error
in Lemma 9.3 for different excitation magnitudes py, ps, p3.... With Lemma 9.3
and Lemma 9.4, the result of this proposition can be established.

v
(=™ > b P,

m=N—ij;#-#J,,€Ro\ {r—1} with no repetition

H (Pr—1 = P ’

kerop\ {1‘71}

Lemma 9.2

Ai,r -

where 1 <i, r<N, N():{O,l,2,---,N—1},pj0 =1.

Lemma 9.3 Given the truncation order N, the estimation error with (8) for the
nth-order output spectrum, i.e., AY,(jo), is

N
AY,(jw) = / IAM' 'p,/'[!lE[N,pH](iw) =
=
(_1)N_"Z m:an; pjlpjz'“pjm
- h# - F e €8N 1) N
Z H ( B ) 'pjfla[N,ﬂjil](')
j=1 kero\ {j—1} Pi-1 — Pk
(_l)NiiZ m= N _ 17 Pi1Piy " Py,
where A;; = N F e(fo\{/fj)_ 1} , No={0,1,2,--,\N—1}
—1 7Pk
HkENo\{j—l} i
and P, = 1;

o) (j©) = Yni1(jo) + pYnia(jo) + p*Yny3(jw) + - - -, and opy ) (jo)

= pN+16[N,/J] (]CU)

Lemma 9.4 For V xy, x5, ..., xy€ R\O satisfying x;#£x,#...# xy and N> 1, it
holds that

PR —{<X1+Xz+~--+xw>[m—“” m >N

N
: o 0 0<m <N-1
=l Hk:l,k;ﬁi(xl )

The following proof is given. From (9.3),
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pi‘v:ll(_)-[N-p/'—I] (j) =Py Y1 (j) + 9, Vv (j) +p) 7 Yvees (o) + (A1)
Using Lemmas 9.3 and 9.4 and (A1),

pNil EN/) l](jw)

AENO\{: 1} 0

YN 1 ](1) [)l YN 2 i
= )" i z 10 z Tviale) .
erNn\{r er

1y (P worfr1} Pr=1 = Pk)

AYi(jo) = (—=1)" " popy- - py_ 121—[

N——————

N-1 (po+p1+ + oy ) Y s (jo)
=(=0""poprpva | +Hpo +~~-+pN_12“]YN+z(iw) (A2)
+po+p1+ +PN—1)[ ]YN+3(/w)' o

This gives (9.5a). Similarly, (9.5b) can be obtained.

B. Proof of Corollary 9.1
Considering N=3 firstly, the output spectrum is truncated at N=3, which can be
written as

Y(jo) =Y (jo) + Y2(jo) + Y3(jo) + o (jo)

where o31(jo) =Y4(jw)+Ys5(jw)+Ye(jw)+- - - is the truncation error. Using (9.4) to
estimate the different orders of output spectra, the estimation errors are given by
Proposition 1

e8]
AYy(jw) = _pOPIPZZ(pO +p1+02) Vi3 (jo)
k=0
AY3(jw) = Z po + o1+ p2) Y i (o)
k=1

If choosing pg+p1+p>=0, p1=—p, p»=—pla, and using Lemma 9.1, computation
of (po+p1+p2)™ can be obtained as

W= py+p1+p=0

(Po +p1+p2)
(Po + 1+ 2) = polpo + p1 + )" + 1 (py + o)

2
a+a+1
03 = (pr + ) —pipy = —Qa
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3 a + l
(po +p1+p2)F = popipy = o }
(Po + p1 + P = popoprpa + Pt 4 Pips + P03 + p1p3 + ph

& +20° + 32 +2a+1 4

Therefore, (9.6a,b) can be obtained. Following a similar process, (9.6¢,d) can be
derived.



Chapter 10
Using Nonlinearity for Output Vibration
Suppression: An Application Study

10.1 Introduction

Suppression of periodic disturbances covers a wide range of engineering practices,
involved in active control and isolation of vibrations in mechanical, vehicle and
aerospace systems. Traditionally, an increase in damping can reduce the response at
the resonance. However, this is often at the expense of degradation of isolation at
high frequencies (Graham and McRuer 1961). Many methods have been proposed
to deal with this problem, such as optimal control, H-infinity control, “skyhook”
damper, repetitive learning control, and optimization etc (Graham and McRuer
1961; Housner et al. 1997; Karmnopp 1995; Lee and Smith 2000). A much more
comprehensive and up-to-date survey can refer to Hrovat (1997). Nonlinear feed-
back is an approach that has been noted recently by some researchers (Alleyne and
Hedrick 1995; Chantranuwathanal and Peng 1999; Zhu et al. 2001). It is shown in
Lee and Smith (2000) that, although it is not possible to use linear time-invariant
controllers to robustly stabilize a controlled plant and to achieve asymptotic
rejection of a periodic disturbance, the problem is solvable by using a nonlinear
controller for a linear plant subjected to a triangular wave disturbance. Based on the
Hamiltonian system theory, an optimal nonlinear feedback control strategy is
proposed in Zhu et al. (2001) for randomly excited structural systems. It has also
been reported many times that existing nonlinearities or deliberately introduced
nonlinearities may bring benefits to control system design (Graham and McRuer
1961). Hence, the design of a nonlinear feedback controller to suppress periodic
disturbances has great potential to achieve a considerably improved control perfor-
mance. However, it should be noted that most of these existing methods mentioned
above are based on state space and in the time domain, and some of those usually
involve a complicated design procedure.

Based on the results discussed previous Chapters, the OFRF (output frequency
response function) for nonlinear systems can be obtained explicitly, which reveals
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an analytical relationship between system output spectrum and system model
parameters for a wide class of nonlinear systems and provides an important basis
for the analysis and design of output response behaviour of nonlinear systems in the
frequency domain. For a linear controlled plant subject to periodic disturbances, if a
nonlinear feedback is introduced to produce a nonlinear closed loop system, the
relationship between the disturbance and the system output is nonlinear and can,
under certain conditions, be described in the frequency domain by using the OFRF
to explicitly relate the controller parameters to the system output frequency
response. Therefore, by properly designing the controller parameters based on
this explicit relationship, the effect of the periodic disturbance on the system output
frequency response could be significantly suppressed. Motivated by this idea, a
frequency domain approach to the analysis and design of nonlinear feedback for the
exploitation of the potential advantage of nonlinearities is proposed in this study to
suppress sinusoidal exogenous disturbances for a linear controlled plant.

This chapter is organized as follows. The problem formulation is given in Sect.
10.2, which is divided into several basic problems that can be addressed separately.
Section 10.3 is concerned with some fundamental issues of the analysis and design
of nonlinear feedback corresponding to different basic problems. Some theoretical
results and techniques needed to solve these basic problems are established. Section
10.4 illustrates the implementation of the new approach by tackling a simple
vibration system. Some proofs for the theoretical results are provided in Sect.
10.6 and a conclusion is given in Sect. 10.5.

10.2 Problem Formulation

Consider an SISO linear system described by the following differential equation:

L
Y C()D'x+b-u+e-n=0 (10.1)
=0

~

y=Y C,()D'x+d u (10.2)
i

I
=)

where, x, y, u, neRl represent the system state, output, control input, and an
exogenous disturbance input respectively; n stands for a known, external, bounded
and periodical vibration, which can be described by a summation of multiple

sinusoidal functions; L is a positive integer; D' is an operator defined by Dlx:dlx/
df'. The model of system (10.1)—(10.2) can also be written in a state-space form:

X = AX + Bu + Eg (10.3)
y=CX+du (10.4)
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where, X=[x, D, ..., DL_Ix]TEERL is the system state variable, A and C are
matrixes with appropriate dimensions, B=[0; 1), b]T, E=[0/xz-1) e]. The
problem to be addressed as case study of the theory and methods discussed in
previous chapters is:

Given a frequency interval I(w) and a desired magnitude level of the output
frequency response Y over this frequency interval, find a nonlinear feedback
control law

u= —(p(x, D'x, ..., DLilx) (10.3)
such that
ma}x) Y(jo)Y(—jw)) <Y* (10.6a)
wel (o
where the feedback control law —@(x, D'x, ..., D*"'x) is generally a nonlinear
function of x, D'x, ..., D"7'x, with the linear stateloutput feedback as a special

case; Y(jo) is the spectrum of the system output.
For the purpose of implementation, the control objective (10.6a) is transformed
to be

max (Y (jay)Y (—jwy)) < Y* 10.6b
wkel(é))(l_ )Y (—jor)) < (10.6b)

k=1,2,...,k

That is, evaluate the output spectrum at a series frequency point such that the
maximum value is suppressed to a desired level. The control law (10.5) should
therefore achieve the control objective defined by (10.6b). In the following, assume
I(w) =y, that is only the output response at a specific frequency is considered. Let
Y =Y (jo)Y(—j@)|(p.) then Yo = Y (j@)Y (—jo)],, o shows the magnitude of the
system output frequency response at frequency @, under zero control input.
Obviously,

wo,u)

Y(jo)Y(=jo)|(p <Y <Yo=Y(jo)Y(—jo)|,.0 (10.7)
To obtain a nonlinear feedback controller, ¢(x, D'x, ..., DLf]x) is written in a
polynomial form in terms of x, D', ...,D" 'xas
M L-1 p
p(x, D'x, ..., D" =" > Cpolh, - 0) [[Px (10.8)
p=11,--1,=0 i=1

where M is a positive integer representing the maximum degree of nonlinearity in
_ -1 -1 L-1

terms of D'x(t) (i=0...L—1); Z ()= Z -++Y (-). The nonlinear function in
1y-+1,=0 n=0  1[,=0
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(10.8) includes a general class of possible linear and nonlinear functions of Dix (i=
0...L—1). Since D'x=e(i+1)"X, where e(i+1) is an L-dimensional column vector
whose (i+1)th element is 1 with all other terms zero, ¢(x, Dlx, o DLflx) can also
be written as a function of X, i.e., ¢(X). As mentioned before, for the parameters
Cpo(.) (p=1,...,M), when p=1 the parameters will be referred to as the linear

parameters corresponding to the linear terms in (10.8), e.g., Ci0(2) d,§> All

other parameters in (10. 8) will be referred to as nonlinear parameters corresponding

to the nonlinear terms HD x(t). p is the nonlinear degree of nonlinear parameter
i=1
pO(')' Let

p
C(MaL) = C[JO(lla" 71) li
i

1---M
0---L— (10.9)
l--p

which includes all the parameters in (10.8). Substituting (10.8) into (10.1) and
(10.2) yields the closed loop system as

M L
S>> 6,,0(11,---,1p)ﬁ0"x+e-;7:0 (10.10a)

M - p
> Cpo(ly 1) [ D"x =y (10.10b)

where,

Cio(l) = Co(ly) = bCro(ly), Cro(ly) = Cy(1h) — dCro(ly)
6])()(117 o ‘;lp) = _bcp()(lla o ';lﬁ)’ 6[70(117' : l ) = _dcp()(lla l )

for p=2---M, [;=0---L,and i=1---p. Equation (10.10a,b) is a nonlinear differ-
ential equation model, whose generalized frequency response function can be
obtained by using the results in Chap. 2. According to the results in Chen and
Billings (1989), the model can represent a wide class of nonlinear systems. This
implies that the nonlinear control law (10.8) can be used for many control purposes
of interests. The task for the nonlinear feedback controller design is to determine
M and a range for the controller parameters in (10.9) to make the closed loop system
(10.10a,b) bounded stable around its zero equilibrium, and then to determine the
specific values for the controller parameters from the OFRF which defines the
relationship between the closed loop system output spectrum and controller param-
eters to achieve the required steady state performance (10.7).

There are generally four fundamental issues to be addressed for the nonlinear
feedback design problem as follows:
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(a) Determination of the analytical relationship between the system output spec-
trum and the nonlinear controller parameters.

(b) Determination of an appropriate structure for the nonlinear feedback control-
ler. Only nonlinear terms which are useful for the control purpose are needed
in the controller to achieve the design objective.

(c) Derivation of a range for the values of the control parameters over which the
stability of the closed loop nonlinear system is guaranteed.

(d) Development of an effective numerical method for the practical implementa-
tion of the feedback controller design.

Section 10.3 is to investigate these fundamental issues. A simulation study will
be presented thereafter to illustrate these results.

10.3 Fundamental Results for the Analysis and Design
of the Nonlinear Feedback Control

10.3.1 Output Frequency Response Function

In this section, the output frequency response of the closed loop nonlinear system
(10.10a,b) is derived. The relationship between the system output spectrum and the
controller parameters are investigated to produce some useful results for the
nonlinear feedback analysis and design.

A. Output Spectrum of the Closed Loop System

As discussed before, any time invariant, causal, nonlinear system with fading
memory can be approximated by a finite Volterra series. With the BIBO stability
condition for the controller parameters which will be studied in Sect. 10.3.3, the
relationship between the output y(t) and the input 7(¢) of system (10.10a,b) can be
approximated by a Volterra functional series up to a finite order N as described by
(2.1), i.e.,

N 00 00 n
y(t) :Zyn(t)’ yn:J J hn(717'"aTn)H”(t_Ti)dTi (1011)

o0 J-o0 i=1

where h,(7y,---,7,) is the nth order Volterra kernel of system (10.10a,b)
corresponding to the input—output relationship from #(¢) to y(t). When the input
in (10.11) is a multi-tone function in (3.2), i.e.,

n(r) = i IFi| cos (wit + 2F) (10.12)
i=1

=

the system output spectrum can be obtained as given in (3.3), i.e.,
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Y(jw) = Z S Hy(jox,. - jor, )F(wr,) - Flay,) (10.13)

Wpey +F Ok, =0
where,

F(w) = { |Fi|ei41’i if we {wp,k==+1,---, £K}

0 else (10.14)

Hn(jwk],"',jwk,,) — J J hn(Tla"'7Tn)e_j(wlfl+'”+w”7”)d‘[1---drn (1015)

—00 —00

Equation (10.15) is the nth-order generalised frequency response function (GFRF)
of system (10.10a,b) for the relationship between 7(¢) and y(t), which can be
obtained by directly following the results in Sect. 2.3.

Proposition 10.1 The GFRFs H,(jwy,, - - -, jwy,) from the disturbance () to the
output y(t) of nonlinear system (10.10a,b) can be determined as

n L—-1

Hy(jo, - jon,) =Y Cpo(Ii- -1y H) (joor, -+, jeo,) (10.16a)
p=11,--1,=0

n—p+1 .

Hyy(jor,-jon) = D H (o, jo)H, (@i, jon) (o + -+ jo;) "

i=1

(10.16b)
H (jor, - jwn) = HL(jar, - - jo,) (jor + - - + jo,)", H(ja)

— e/z Cro(ly) (jor,)" (10.16¢)
5L=0

n L-1

. . Lo, . .
H;(/a)l,m,Ja),,):—EH}(]a)l+~--+_/(un (Z Z w0 (L--+1p) Hy, (joor - ,]a),,)—eé(n—l))

=2 ly-1y=0

(10.16d)

and 6(n) = {1 n=0 O

0 otherwise’

From Proposition 10.1, the GFRFs can be computed recursively from the time
domain model (10.10a,b), and the output spectrum of system (10.10a,b) can be
obtained analytically from (10.13) and (10.16a—d), which are an explicit function of
the parameters in the control law (10.8). Therefore, the design of controller (10.8)
can be studied in the frequency domain. In order to obtain an analytical relationship
between the system output spectrum and model parameters from these recursive
computations the OFRF of system (10.10a,b) is expressed as a polynomial function
of the nonlinear controller parameters in (10.9) according to Chaps. 6 and 7, i.e.,
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Y(jw) = Po(jw) + a1 P1(jo) + axPs(jo) + - - - (10.17a)

where Py(jw) is the linear part of the system output frequency response, P;(jw) (i>1)
represents the effects of higher order nonlinearities, and a; (i=1,2,- - -) are functions of
the nonlinear controller parameters which can be determined by following Chaps. 5 and
6. Moreover, for a nonlinear controller parameter ¢ in (10.9), there exists a series of
functions of frequency @ {P;(jw), i=0,1,2,3, ...} such that

Y(jo) = Po(jo) + cPi(jw) + *Ps(jo) + - -- (10.17b)

Equation (10.17b) explicitly shows the relationship between the system output
spectrum and the nonlinear controller parameters, and therefore enables the
OFRF to be determined by using a simple numerical method which will be
discussed in Sect. 10.3.4. Obviously, this considerably facilitates the analysis and
design of the nonlinear feedback controller in the frequency domain. In order to
reveal the contribution of the nonlinear controller parameters of different degrees to
the output spectrum more clearly and thus shed light on the issue of the structure
determination for the control law (10.8), some useful results regarding the para-
metric characteristic of the OFRF are discussed in the following section.

B. Parametric Characteristic Analysis of the Output Spectrum
The parametric characteristic analysis of the system output spectrum is to investi-
gate the polynomial structure of OFRF (10.17a), and to reveal how the frequency
response functions in (10.13) and (10.16a—d) depend on the nonlinear controller
parameters (i.e., Cno(.) for p>1) in (10.9).

Following the results in Sect. 6.4, the parametric characteristics of the GFRF H}
(joy,- - -,jo,) from u(t) to y(t) can be obtained as for n> 1

CE(Hi(jwl, e '7.jw’l)) = gBZ<CP,0 ® CE(Hlll,p(jwl’ o ~,ja),1)>)
p=

= 3(C,0®CE (H;_I,H (jwr, - -,ja),,)))
&

417
=Cwe e, (c,,o ® CE (H}H’+l (.))> (10.18)

Forn=1, CE(H } (jop))=1. Here, [n/2] means to take the integer part of [.]. From
the invariant property of the CE operator, it follows for the nonlinear controller
parameters in (10.9) that
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CEGoo(h,+ ) = Cpolhs++++lpva)s CE(Cpo(t,++8) ) = Cpo(hr, -+, 1)

Applying CE operator to (10.16a) for the nonlinear parameters in (10.9),

L
CE(Hn(jwls o "ja)n)) =CE (ch,o(ll)Hi,l(jml /wn + Z Z CpO H,,[,(]wl ./wll)>

1,=0 p=21-

L n L
=CE (Z(c},(/l) = Cro()HY, (jor, - jon) + Y > (=d)Cpo(h-+ 1) H), (jeor . - ja),,))
=0 p=211--1,=0

! n=1
- {pg"a2<cl,0 ® CE(H}IP(/Q)], . -,jw,,)>) 2> 1
(10.19)

Therefore, with respect to the nonlinear parameters in (10.9), the parametric
characteristics of the GFRFs H,(jo,,- - -,jmo,) from 7(f) to y(t) is the same as those
of the GFRFs H!(jw,,- - -,jo,) from u(t) to y(t), i.e.,

CE(H,(-)) = CE(H)(-)) forn>0 (10.20)

That is, the effect of the nonlinear parameters in (10.9) on the GFRFs H,,(jw,- - -,
Jjm,) is the same as that on the GFRFs H,ll(/'a)l,- -+, jw,). Equations (10.18)—(10.20)
reveal how the GFRFs depend on the nonlinear controller parameters in (10.9).
Based on these results, the parametric characteristic of the OFRF can be obtained as

=17 o+ Fop, =0

N N
=CE (Z > Hijox,- ijkﬂ) =CE <ZH,21(/wkw : ij/a))
n=1

_ CE(H3()) & CE(H3()) & - & CE(H3,()) = CE(H1()) & CE(HA()) & - & CE(H}()
(10.21a)

E(Y(jo)) CE<Z > Hi(jow,, - jox,)F(wx,)- - Fog,)

Therefore, according to the results in Chap. 6, there exist a complex valued function
vector F,(jw) with appropriate dimension such that

Y (jw) = (néval CE(H,',(/'a)l,-~~,ja)n)))  Fo(jo) (10.21b)

This is the detailed polynomial function of (10.17a). Equation (10.21b) provides an
analytical and straightforward expression for the relationship between system
output spectrum and the controller parameters. Now the coefficients of the polyno-
mial function (10.17a) can be determined as


http://dx.doi.org/10.1007/978-3-319-12391-2_6

10.3 Fundamental Results for the Analysis and Design of the Nonlinear Feedback. . . 187

[ay a» a3 - ax] =CE(Y(jw))
=CE(H|(-)) ® CE(H,(-)) ® -+ - ®CE(Hy(-)) (10.21c)

where K is the dimension of the vector CE(H](-))®CEHA(")) B - - & CE(H ().
In order to better understand these parametric characteristics, the following
results are given, which is a special case of Proposition 5.1.

Proposition 10.2 The elements in CE(H,'I(/'a)l,- -+, jw,)) include and only include

all the parameter monomials (consisting of the nonlinear parameters in (10.9)) in
k

Coo®Co®Co® - ®C,p for 0<k<n—2, satisfying p + Zr,- =n+k 2<
i=1

ri<n—1,and 2<p<n. O

Proposition 10.2 shows whether and how a nonlinear parameter in (10.9) is
included in CE(H,IL(/'a)l,- -+, jw,)). Different parameters may form one monomial
acting as an element in CE(H,ll(jwl,~ -+,j®,)), and thus have a coupled effect on H;
(jw1,- - -,jw,). If a nonlinear parameter appears in CE(H. (joy,- - -,jw,)), this implies
that it has an effect on H ,1, (joy,- - +,jo,) and thus on Y(jw). If this nonlinear parameter
is an independent element in CE(H ,'1 (jw1,- - -,jw,)), then it has an independent effect
on Y(jow). Furthermore, if a parameter frequently appears in CE(H) (jw,,- - -,jo,,))
with different monomial degrees, this may implies that this parameter has more
strong effect on H}l(ja),,- --,jo,) and thus Y(jw). For this reason, the parametric
characteristic analysis of H(jo,- - ,jw,) can shed light on the effect of different
nonlinear parameters on H,lz(jwl,- -+, jw,) and thus Y(jw).

From Proposition 10.2 (also referring to Property 5.3 for the general case), the
term (C,)’ should be included in the GERF H,,(.), where m is computed as m+k=m
+i—1=ni. Hence, m= ni—i+1=14+(n—1)i. It can be seen that, when » is smaller, C,, o
will contribute independently to more GFRFs whose orders are (n—1)i+1 for
i=1,2,3,...; and if n is larger, C, o can only affect the GFRFs of orders higher
than 7. It is known that for a Volterra system, the system nonlinear dynamics could
be dominated by low order GFRFs (Boyd and Chua 1985). This implies that the
nonlinear terms with coefficient C, ¢ of smaller nonlinear degree, e.g., 2 and 3, may
play greater roles than other pure output nonlinear terms. This property is signifi-
cant for the selection of possible nonlinear terms in the feedback design. Moreover,
it can be verified from Proposition 10.2 that, If the second and third degree
nonlinear control parameters are all zero, i.e., C,0=0 and C3¢=0, then H,(.)=0,
and H5(.)=0. However, even if C,=0 (for n>3), the nth order GFRF H,,(.) is not
zero, providing there are nonzero terms in Cyy or C3¢. This further demonstrates
that the nonlinear controller parameters in C,, and C;y have a more important role
in the determination of the GFRFs than other nonlinear parameters, and thus has a
more important effect on the output spectrum. These imply that a lower degree
nonlinear feedback may be sufficient for some control problems. These provide a
guidance for the selection of the candidate terms in (10.9).



188 10 Using Nonlinearity for Output Vibration Suppression: An Application Study
10.3.2 The Structure of the Nonlinear Feedback Controller

The determination of the structure for the nonlinear feedback controller (10.8) is an
important task to be tackled. Firstly, as discussed in Sect. 10.3.1(B), the structure
parameter M in (10.8) should be chosen as small as possible since lower degree of
nonlinear terms have greater contributions to the output spectrum. It can be
increased gradually until the control objective is achieved. Secondly, after M is
determined, whether a term in C,, is effective or not should be checked. An
effective controller must satisfy the inequality (10.7). Thus for the effectiveness
of a specific nonlinear controller parameter c, this requirement can be written as

w < 0 for some ¢ (10.22)
c

Consider the specific nonlinear controller parameter ¢ in C,o and let all the other
nonlinear controller parameters be zero or assumed to be a constant. Then only the
nonlinear coefficient ¢’ appears in CE(H } 1) ;(.)) according to Proposition 10.2.

Therefore, only the GFRFs for the orders 1+(p—1)i (for i=1,2,3,...) need to be
computed to obtain the system output spectrum in (10.13). According to (10.21a—c),
the output spectrum can be written as

Y(jw; c) = Po(jo) + cPy(jo) + ¢*Ps(jw) + - -- (10.23)

It can easily be shown that if Re(Po(jo) - Pi(—jw)) < 0 then there must exist &>

0 such that w < 0for 0<c<eor —e<c<0, where Re(-) is to take the real part
of (.). This can be used to find the nonlinear terms which are effective. Only the
effective nonlinear terms in C(M) is considered. By this way, the structure of the
nonlinear function (10.8) can be determined. It should be noted that, in this process
the output spectrum needs to be analytically computed up to at most the third order
by using (10.12)—(10.16a—d). The structure of the control law (10.8) can also be
determined by simply including all the possible nonlinear terms of degree up to M.
Once the output spectrum is determined by the numerical method in Sect. 10.3.4,
the values of the coefficients of these nonlinear terms can be optimized for the
control objective (10.7) in the stability region developed in the following section. If
the objective (10.7) cannot be achieved after M is enough large, this may implies
that the objective (10.7) cannot be achieved by the controller (10.8) and a better
possible solution can be used for this case.

10.3.3 Stability of the Closed-Loop System

As mentioned above, the stability of a nonlinear system should be guaranteed such
that the nonlinear system can be approximated by a locally convergent Volterra
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series. Therefore, a range for the nonlinear controller parameters which can ensure
the stability of the closed loop system (10.10a,b) can be determined. For simplicity,
(10.10a,b) can also be written in a state space form as

X = AX — Bo(X) + En :=f(X) + Ey (10.24a)
y = CX — Dg(X) := h(X) (10.24b)

A, B, C, D, E are appropriate matrices which are the same as the matrices in (10.3)
and (10.4). Note that the exogenous disturbance in (10.24a,b) is a periodic bounded
signal, and the objective in a vibration control is often to suppress the output
vibration below a desired level, a concept of asymptotic stability to a ball is adopted
in this section. This concept implies that the magnitude of the output for a system is
asymptotically controlled to a satisfactory predefined level. Based on this concept, a
general result is then derived to ensure the stability of the closed loop nonlinear
system (10.24a,b), which can be regarded as an application of some existing
theories in Isidori (1999).

A Ball B,(X) is defined as: B,(X)={XIl||X]||<p, p>0}. A K-function y(s) is an
increasing function of s, and a KL-function f(s,t) is an increasing function of s, but a
decreasing function of ¢. For detailed definitions of K/KL-functions can refer to
Isidori (1999).

Asymptotic Stability to a Ball Given an initial state Xo€" and disturbance
input 5 of a nonlinear system, if there exists a KL-function f such that the solution X
(#,Xo,n) (for t>0) of the system satisfies ||X(z,Xo.17)|| <p(|Xol|,5)+p, V>0, then
the system is said to be asymptotically stable to a ball B,(X), where p is an upper
bound function of #, i.e., there exist a K-function y such that p=y(||7|0)-

Assumption 10.1 There exists a K-function o such that the output function 4(X) of
the nonlinear system (10.24a,b) satisfies ||2(X)|| <o(||X]]).

Proposition 10.3 If assumption 10.1 holds, then the following statements are

equivalent:

(a) There exist a smooth function V:RE — R0 and K-functions f,p, and K-
functions a, y such that

0
P ) + )

< —a(|IX)) +7(llnll) (10.25)

A UIX]) < V(X) < B([IX]]) and

(b) System (10.24a,b) is asymptotically stable to the ball B,(X) with
p:/)’l(2~/32‘1-ail-y(||17||oc)), and the output of system (10.24a,b) is
asymptotically stable to the ball B, (y). O

Proof See the proof in Sect. 10.6. O
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Note that Proposition 10.3 can guarantee the asymptotical stability to a ball of
system (10.24a,b) when subject to bounded disturbance, and asymptotical stability
to zero when the disturbance tends to zero. This is just the property of fading
memory which is required for the existence of a convergent Volterra series approx-
imation for the system input—output relationship (Boyd and Chua 1985). Although
it is not easy to derive a general stability condition for the general controller (10.5),
there are always various methods (Ogota 1996) to choose a proper Lyapunov
function based on Proposition 10.3 to derive a stability condition for a specific
controller.

10.3.4 A Numerical Method for the Nonlinear Feedback
Controller Design

The nonlinear controller parameters can be determined by solving (10.17b) to
satisfy the performance (10.6b) or (10.7) under the stability condition. However,
it can be seen that the analytical derivation of the output spectrum of system
(10.10a,b) involves complicated symbolic computation for orders higher than
5. To circumvent this problem, as discussed in Sect. 10.3.1(A), the numerical
method discussed in Chaps. 7 and 8 can be used since the detailed polynomial
structure of the OFRF can be determined by using the method in Sect. 10.3.1, which
is summarized as follows:

(1) The system output frequency response function can be expressed as Y (jw)Y
(—jo) = |Y(jw)|* = C- P (jw) according to (10.21a—c) with a finite polynomial

degree, where ﬁ(}m) is a complex valued function vector,
C=[1 ¢ ¢ ¢35 -+~ cxi]=(CE(H{(-)) ®CE(Hj(-)) ®--- ®CE(Hy(-)))
®(CE(H|(-)) ® CE(H,()) &+ & CE(Hy(")))

(2) Collect the system time domain steady output y;(t) under different values of the
controller parameters C,=[1 cy;,¢2;,...C(xy)] for i=1,2,3,.. Nj;

(3) Evaluate the FFT for y;(t) to obtain Y,(jw), then obtain the magnitude IY,-Q'coO)I2

at frequency @, and finally form a vector YY = [|Y|(jwo)|*- - - Y, (jax) ]2]T

(4) Obtain the following equation,

I, cu, ci2,0cik Eo ’Yl(iwo)‘z
I, ¢, cn, 0k Py ]Yz(iwo)‘z . =~ .

’ N = | ie. -P(jwg) =YY
S N : » W - P(jao)
Lienasena, o eng i Pk Y, (joo)|?

(5) Evaluate the function 15(/@0) by using Least Squares,

Bljwo) = (we" -we) wel Yy


http://dx.doi.org/10.1007/978-3-319-12391-2_7
http://dx.doi.org/10.1007/978-3-319-12391-2_8
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(6) Finally, the nonlinear controller parameters C* for given Y~ at a specific
frequency w can be determined according to

Y == C* - P(jowo)

The numerical method above is very effective for the implementation of the
design of the proposed nonlinear controller parameters, which will be verified by a
simulation study in Sect. 10.5.

Although there are some time domain methods which can address the nonlinear
control problems based on Lyapunov stability theory such as the back-stepping
technique and feedback linearization (Isidori 1999) etc, few results are available for
the design and analysis of a nonlinear feedback controller in the frequency domain
to achieve a desired frequency domain performance. Based on the analytical
relationship between system output spectrum and controller parameters defined
by the OFRF, the analysis and design of a nonlinear feedback controller can be
conducted in the frequency domain. For a summary, a general procedure for this
new method is given as follows.

(A) Derivation of the output spectrum for the closed loop system given M and L.

Given M and L in (10.8), the general output spectrum with respect to the
control law (10.8) for the closed loop system (10.10a,b) can be obtained
according to (10.13) and (10.16a—d). This will be used for the validation of
the effectiveness of nonlinear terms in the next step. L is the maximum
derivative order which is dependent of the system model, and M is the
maximum nonlinearity order which can be given as 2 or 3 at this stage.

(B) Determination of the structure of the nonlinear feedback function in (10.8).

This is to determine the value of M and choose the effective nonlinear
controller parameters C,o(.) (p=2,3,...,M). Based on the analysis of the
parametric characteristics in Sect. 10.3.1B, the nonlinear controller parameters
included in C,g and C;, take a dominant role in the determination of GFRFs
and output spectrum. Hence, M can be chosen as 2 or 3 at the beginning, and
increased later if needed. The effectiveness of each nonlinear parameter can be
checked by R(Py(jw) - Pi(—jw)) < 0, where Pi(—jw) can be computed from
Step(A) by letting the other nonlinear parameters to be zero and Py(jw) is the
linear part of the output spectrum in this case. If the parameter is not effective,
it can be discarded.

(C) Derivation of the region for the nonlinear feedback parameters in C,(.) for
p=23,....M.

This is to ensure the stability of the nonlinear closed loop system (10.10a,b),
which can be conducted by applying Proposition 10.3 to derive a stability
condition for the closed loop system in terms of the nonlinear controller
parameters. Although how to develop a systematic method for this purpose
for a general nonlinear system is still an open problem, this can be easily done
for some special or simple cases.
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(D) Determination of the OFRF by using the numerical method and the optimal
values for the nonlinear parameters
This is to derive a detailed polynomial expression for the output spectrum
according to (10.21a—c) for the maximum nonlinearity order M larger than
3, and use the numerical method provided above to determine the desired value
for each nonlinear controller parameter within the stability region to achieve
the control objective (10.6b) or (10.7).

10.4 Simulation Study

Consider a simple case of the model in (10.1) and (10.2), which can be written as

Mi = —Kx — a1x + (5 +u)
y=Kx+ax —u

This is the model of a vibration isolation system studied in Daley et al. (2006)
(Fig. 10.1), where y(¢) is the force transmitted from the disturbance 7(f) to the
ground, K and a; are the spring and a damping characteristic parameters
respectively.

Following the procedure in Sect. 10.3, a nonlinear feedback active controller u(¢)
is designed and analysed for the suppression of the force transmitted to the ground.
It will be shown that a simple nonlinear feedback can bring much better improve-
ment for the system performance, compared with a linear feedback control.
According to the general procedure above, the output spectrum under control law
(10.8) for the closed loop system should first symbolically be determined. But for
this simple example, it can be left to the next step.

10.4.1 Determination of the Structure of the Nonlinear
Feedback Controller

Considering the nonlinear feedback in (10.8), for this simple system, M is directly
chosen to be 3, and all the other nonlinear controller parameters are chosen to be

ln(r)

v |

Active l

K unit u(t) a1 l x(t)
Fig. 10.1 A vibration

isolation system
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zero except Czo(111)=a3 which represents a nonlinear damping and will be shown
to be effective in the later analysis. If C3o(111)=a5 is not effective, more other
nonlinear terms can be chosen.

The nonlinear feedback control law now is

u= —a3)'c3

and the closed loop system is therefore

{Mjé— —Kx—aix —asi® +1n  (a) (10.26)

y = Kx + a1 + a3i (b)

Note that system (10.26) is a very simple case of system (10.10a,b), that is, L=2,
Cl()(z) = M, C]()(l) =dai, Cl()(O) = K, C3()(111) =das, C()](O) =—1 and
610(1) =aq, (~,’10(O) =K, 530(111) = as; All other parameters in model (10.10a,
b) are zero. Moreover, assume the disturbance input is () =F;sin(8.17) (8.1 is the
concerned working frequency of the system), which is a single tone function and a
simple case of (10.12). Now the task for the nonlinear feedback controller design is
to determine a; such that system (10.26) satisfies the control objective (10.7).

To verify the effectiveness of this nonlinear control, the output spectrum should
be computed up to the third order as discussed in Step(B). Note that only C3o(111)=
a3 and other nonlinear parameters C,, for p>2 are all zero. According to (10.18)—
(10.20), the following parametric characteristics of the GFRFs can be obtained

[+1/,]
CE(H}()) =C® Y. Cpo&CE(H) () =Ca =0, CE(H}(")
p=2
[+1/,]
=C350® Z Cpo ® CE(H;_[}_H(.)) =Csy=a3
p=2
[+1/.]
CE(H,(-) =Ca0® Y Cpo ®CE<H}¢_,,+1(~)> — 0, CE(H(")
p=2
[+1/,]

=Cs® Y. Cp®CE (H;_p+1 (.)) = Cy @ CE(H!()) = &,
p=2

It is easy to check from Propositions 10.2 that

CE(H},,,(-)) =a} forn > 0andall other CE(H/(-)) =0 (10.27)
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This shows that only H}, . ,(-) for >0 are nonzero and all others are zero. There-
fore, the output spectrum can be computed from (10.13) and (10.16a—d) with only
odd order GFRFs as

N
. 1 . .
Y(jw) = 2122n+1 Z H%n+l (jwkl [ "]wk2n+l)F(wk1 ) ! 'F(wk2n+1)

o+t 0k, =0
= SH0F) T L Y Gl o jon ) Flow F(ou)F(or,)
Wy Op =0
2
+§ Z G2 (jwr,, - - -»joors ) F(wp,)- - -Flang) + -+

Wpy + o=

:=Py(jw) + a3P) (jo) + a3P1(jw) + (10.28a)

where

Pofjo) = (o) = = SOV i) Satse 1 oo 11} o)

2 2M(jw)* + 2a, (jo)' + 2K
Py (jw) = 73—MF5 Sliot} (o) [ [joH} (o)) (o) - (3ot (30) — 3o} (—jo) + 6ot (o)),

(10.28b)

Note that carrying out the computation above, the analytical relationship between
the output spectrum and nonlinear parameter a; can be obtained explicitly for up to
any high orders. It can be checked that Re (Pq(jwy) - P1(—jay)) = 0.5 (Po(jowo)P;
(—jwo) + Po(—jwo)P;(jwo)) = —31.132 < 0 when a3>0,wy=38.1 rad/s and other
system parameters as given in the simulation studies. Hence, the nonlinear control
parameter a; is effective. If there are other nonlinear controller parameters, the
same method can be used to check the effectiveness as discussed in Step(B). Only
the effective nonlinear terms are used in the controller.

10.4.2 Derivation of the Stability Region for the Parameter as

According to Proposition 10.3, the following result can be obtained.

Proposition 10.4 Consider the closed loop system (10.26), and assume the exog-
enous disturbance input satisfies ||#(r)|| <F4. The system is asymptotically stable

to a ball BF T (X), if a3>0 and additionally there exist P=P">0, >0 and
d min €

£>0 such that
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Q- {—ATP —PA — ¢ 'PEE"P —pATC" + PB — PEE’C’ -0

* +2pCB — ¢! f*CEE’C”

Moreover, the closed loop system (10.26) without a disturbance input is global
asymptotically stable if the above inequality holds with E=0. Here,
A= |:_O ! :|’ B= [07 I/M]T’ C:[O,l], E = [07 I/M]T‘

K/M —
Proof See the proof in Sect. 10.6. O

It is noted that the inequality in Proposition 10.4 has no relation with a3 and is
determined by the linear part of system (10.26) which can be checked by using the
LMI technique by Boyd et al. (1994). This implies that the value of a3 has no effect
on the stability of the system if the inequality is satisfied. Hence, the nonlinear
controller parameter a3 is now only restricted to the region [0, co), provided that the
linear system satisfies the inequality condition.

10.4.3 Derivation of the OFRF and Determination
of the Desired Value of the Nonlinear Parameter az

By using (10.27), the parametric characteristics of the output spectrum of nonlinear
system (10.26) can be obtained as

CE(Y(jw)) = CE(H|()) ® CE(H,(-)) ®--- @ CE(Hy(-))

where Z = |*"'/,|. Therefore, the system output spectrum can be written as a
polynomial expression as

Y(jw) = Po(jo) + asP(jo) + a3P(jw) + - - - + af P (jw)
Hence,
Y(jo)Y(—jw) = |Y (jw)|* ypo(;w) * + a3 (Po(j) P\ (—jw) + Po(—jw)P1 (jo))
+a3 ([P (o) + Polj)Pa(—jwo) + Po(—je)Pa(je) ) +
(10.28¢)

Clearly, |Y(jao)|2 is also a polynomial function of a;. Given the magnitude of a
desired output frequency response Y at any frequency wy, a3 can be solved from
(10.28¢) provided that |Y(jw)| can be approximated by a polynomial expression of a
finite order. In order to determine a desired value for a; to achieve the control
objective (10.7), the numerical method proposed in Sect. 10.3.4 is used. Since
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(10.28c) is a polynomial function of as, |Y(/'cu)|2 can be directly approximated by a
polynomial function of a; as follows:

Y(jo)Y (—jw) = |Y (j)
~ agzﬁzz +- ~a§’ﬁn +ag’1ﬁn,1 4+ FasP + ’I_-’o(ja))‘z (10.29a)
where |Y(jw)|* can be obtained via evaluating the FFT of the system output
response from the system simulations or experimental data. Given 2Z different

values of a3, i.e., asy, asp, ..., azaz, (10.29a) can be further written as (for each
values of as)

N2 = = g S B 2
[Y(jo),|" ~ a3/Pay+ - afPy+dy 'Puy + -+ azPy + [Po(jo)|
fori=1,2,...,27, i.e.,

2 3 27

~ D2 s e a2
S TR] [ Gen] - [Pote)
ap @y @ A | Pyl _ |Y(]a))2|2 - ’Fo(j(u)‘z
> i 2 = .2
a7 @y, @, o diy Pz ¥ o)z|” — ’POOw)‘
Then FI,FZ, . -,ﬁzz are obtained as
2 3 .. 0z _
B, as 4z ay az) ‘Y(ja))l‘z—|Po(jw)|2
> 2 3 2z N2 s e 2
f:z _ | a2 a3n apn az; i |Y(/a))2| — |Po(jo)| (10.29b)
> o i 2 = .2
P2z a3nz @3y @3y, - A3y ‘Y(/w)zz‘ _’POU“’”

Consequently, (10.29a) is obtained. By using this method, a polynomial expression
of |Y(ja))|2 in any order can be achieved. Given a desired output frequency response
Y at a frequency wy, a3 can be solved from (10.29a) to implement the design. Note
that roots of (10.29a) are multiple. According to Proposition 10.4, the solution a;
should be a nonnegative real number.

10.4.4 Simulation Results

In the simulation study, the parameters of system (10.26) are: K=16,000 N/m,
a;=296 N S/m, M=240 kg. The resonant frequency of the system is wy=38.1 rad/s.
In order to show the effectiveness and advantage of the nonlinear feedback con-
troller u= —a3x'3, a linear controller #= — a,x will be used for a comparison.



10.4 Simulation Study 197

Table 10.1 Comparison between simulation and theoretical results (Jing et al. 2008a)

Simulation results from (10.29a,b) Theoretical results from (10.28a—c)

|Fo(iw) ‘2 1.1270e+05 |1_’0(jw)|2 1.1257e+05

P, —58.9652 TJO_(/@)TJ] (:jw) —62.2641
+Py(—jw)P) (jo)

P, 0.0423 P, (/w)|2 + Po(jo)Py(—jo) 0.0615
+Po(—jw)P(jo)

Ps —2.3762¢—005 _

P, 10.1382¢—009 _ _

Ps —2.3593e—012 _ _

Firstly, let F3=100 N. We need to obtain the polynomial function (10.29a). In
order to have a larger working region of a3, let Z=6 in (10.29a), and a3=>500,
1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 12,000, 14,000, 16,000, 18,000, 20,000.
Under these different values of a3, the output frequency response of the system was
obtained and the corresponding output spectrum was determined via FFT opera-
tions. Then P, (jw) for n=1...12 were obtained according to (10.29b), which are
summarized partly in Table 10.1. For comparisons, the corresponding theoretical
results were also computed from (10.28a—c) and are given partly in Table 10.1.
From Table 10.1, it can be seen that there is a good match between the numerical
analysis results and the theoretical computations although there are some errors.
This result shows that the theoretical computation results are basically consistent
with the results from the simulation analyses. It can also be seen from the numerical
analysis results in Table 10.1 that (10.29a) is in fact an alternative series in this case.

Figure 10.2 shows the results of the system output spectrum under different
values of the nonlinear control parameter a3 and provides a comparison between
theoretical computations using polynomial expression (10.28c) up to the 3rd order
and the numerical results using the polynomial expression (10.29a) up to the 12th
order. This result demonstrates the analytical relationship between the nonlinear
control parameter and the system output spectrum, and shows that the theoretical
results have a good match with the numerical results when a5 is small since only up
to the third order GFRF are used in the theoretical computations. Hence, with an
increase of a3, the numerical method has to be used in order to give correct results.
Moreover, it should be noted that the magnitude of the system output spectrum
decreases with the increase of a;. This verifies that the nonlinear control parameter
as is effective for the control problem.

Without a control input, the system output frequency spectrum is as shown in
Fig. 10.3b, where Y(jw)|, = 335.71. Note that the output response spectrum
shown in the figures is 2IY| not |Yl, which is also applied on the plot of the output
spectrum using the theoretical computation. This is because 2|Y| represents the
physical magnitude of the system output at the frequency wy. If the desired output
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Fig. 10.2 Analytical relationship between the system output spectrum and the control parameter
as; (Jing et al. 2008a)
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Fig. 10.3 Output spectrum (a) without a feedback control, (b) with the designed nonlinear
feedback (Jing et al. 2008a)

frequency spectrum is set to be Y =180, then the calculation according to (10.29a,
b) and Proposition 10.4 yields a;=118,610. The output frequency spectrum under
the nonlinear feedback control is shown in Fig. 10.3a, where Y (jo)|,, = 180.08,
and hence the result matches the desired result quite well. The system outputs in the
time domain without and under the nonlinear feedback control are given in Fig.
10.4. It can be seen that the system steady state performance is considerably
improved when the nonlinear controller is used.

In order to further demonstrate the advantage of the nonlinear feedback control,
consider a linear controller u=—275x. Under this linear control, the system output
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Fig. 10.4 System output in time domain: before and after control (Jing et al. 2008a)
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Fig. 10.5 Output spectrum with the linear feedback control (Jing et al. 2008a)

frequency response as shown in Fig. 10.5 is similar to that achieved under the
nonlinear controller. However, when F4 is increased to 200 N, the output frequency
response is quite different under the two controllers. The nonlinear feedback
controller results in a much smaller magnitude of output frequency response at
frequency wy, referring to Fig. 10.6. Figure 10.7 shows the results of the system
outputs in the time domain under the two different control inputs, indicating the
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Fig. 10.6 Output spectrum (a) with the linear feedback control and (b) with the designed

nonlinear feedback control, when F4 is increased to Fq=200 (a,

et al. 2008a)
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Fig. 10.7 The system outputs in time domain under different control inputs (Fq=200) (Jing

et al. 2008a)

nonlinear controller has a much better result than the linear controller. When the
input frequency @y is increased to be 15 rad/s, the same conclusions can be reached
for the two controllers, referring to Fig. 10.8. When the input frequency is
decreased to be 5 rad/s, the output spectrums under the two controllers are similar

(see Fig. 10.9). On the other hand, although increase of the liner damping can also
achieve better output performance at the driving frequency, this will degrade the
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Fig. 10.8 Output spectrum (a) with the linear feedback control and (b) with the designed
nonlinear feedback control, when wy=15 rad/s, Fq=100, a,=275, a;=11,869 (Jing et al. 2008a)
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Fig. 10.9 Output spectrum (a) with the linear feedback control and (b) with the designed
nonlinear feedback control when wg=>5 rad/s, Fq=100, a,=275, a3;=11,869 (Jing et al. 2008a)

output performance at high frequencies as known in literature (Fig. 10.10). How-
ever, the nonlinear damping has no obviously such a limitation (Fig. 10.11).

The results demonstrate that a cubic nonlinear damping as introduced by a
simple nonlinear feedback control can achieve better performance than a linear
damping control for vibration suppression both in low and high frequencies. The
frequency domain method proposed in this study provides an effective approach to
the analysis and design of the nonlinear feedback control. Although only a simple
case with only one nonlinear term is studied in this simulation, much more
complicated cases with multiple nonlinear parameters can also be analysed and
designed by following a similar method. It should be noted that there may be some
other methods in the literature which can be used to realize the same control
purpose of this study, however, the advantage of this method is that it can directly
relate the nonlinear controller parameters to system output frequency response and
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Fig. 10.10 Output spectrum with the linear feedback control when (a) a,=275 and (b) a,=2,750
(wo=15 rad/s, F3=200) (Jing et al. 2008a)
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Fig. 10.11 Output spectrum with the nonlinear feedback control when (a) a3=11,869 and (b)
az=118,690 (wo=15 rad/s, F34=200) (Here, a3 is just arbitrarily increased to see the control
effect) (Jing et al. 2008a)

therefore the nonlinear controller or structural parameters can be analysed and
designed in the frequency domain, which is a more understandable way in engi-
neering practice. Furthermore, the designed controller, for instance the nonlinear
damping designed in the example study above, may also be realized by a passive
unite, and the analysis by using this method can be performed directly for a physical
characteristics of a structural unite in a system. This will have great significance in
practical applications.
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10.5 Conclusions

A frequency domain approach to the analysis and design of nonlinear feedback
controller for suppressing periodic disturbances is studied and some preliminary
results in this subject are provided. Although there are already some time-domain
methods, which can address nonlinear control problems based on Lyapunov stabil-
ity theory, few results are available for analysis and design of a nonlinear feedback
controller in the frequency domain to achieve a desired frequency domain perfor-
mance. Based on the analytical relationship between system output spectrum and
controller parameters defined by the OFREF, this chapter demonstrates a systematic
frequency domain approach to exploiting the potential advantage of nonlinearities
to achieve a desired output frequency domain performance for the analysis and
design of vibration systems. Compared with other existing methods for the same
purposes, the method in this chapter can directly relate the nonlinear parameters of
interest to the system output frequency response and the designed controller may
also be realized by a passive unite in practice. Although the results in this paper are
developed for the problem of periodic disturbance suppression for SISO linear
plants, the idea can be extended to a more general case (i.e., nonlinear controlled
plants) and to address more complicated control problems.

Exploring nonlinear benefits for vibration control is an interesting and hot
topic in the literature. More results in this topic can also be referred to Xiao
et al. (2013a), Jing et al. (2009¢c, 2010, 2011), Jing and Lang (2009b) and Liu
et al. (2015).

10.6 Proofs

A. Proof of Proposition 10.3
To prove Proposition 10.3, the following Lemmas are needed.

Lemma 10.3 Consider two positive, scalar and continuous process in time #, x(f)
and y(¢) satisfying y(f) <a(x(¢)) (for t>0), where a is a K-function. If x(¢) is
asymptotically stable to a ball B,(x), then y(¢) is asymptotically stable to a ball
B(I(Z/))(y)-

Proof There exists a KL-function f, such that function x(t) (for #>0) satisfies x
() <px(0),6)+p, Yt >0. Therefore,

(1) < alx(r)) = a(f(x(0),7) + p) < a(max(25(x(0),1),2p))
= max(a(26(x(0), 1)), a(2p)) < a(25(x(0),1)) + a(2p)

Note that a(2£(x(0),#)) is still a KL-function of x(0) and ¢, thus the lemma is
concluded. O
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From Lemma 10.3, if there exists a K-function o such that the output function A
(X) of a nonlinear system satisfies ||A(X)||<o(||X]||), then the system output is
asymptotically stable to a ball if the system is asymptotically stable to a ball.

Lemma 10.4 Consider a scalar differential inequality 1(f) <—a(y(f))+y, where a
is a K-function and y is a constant and y(¢) satisfies Lipschitz condition. Then there
exists KL-function f such that

y(0) < B(|y(to) —a™' (7)],1) +a (7).

Proof Consider the differential equation y(f)=—a(y(¢)). From Lemma 10.1.2 in
Isidori (1999) it is known that, there is a KL-function f such that y(r) =p((ty),?).
Similarly, considering the differential equation () =—a(y(¢))+y, then y(f) =sign(y
(to)—a ') -ply(te) —a '), ) +a (y). Thus from the comparison principle and
the differential inequality y(1) < —a(y(?))+y, the lemma follows. O

Then to prove Proposition 10.3, it follows from (10.25) that

VX(1)) < —a(lX]]) +7(lInll.) (A1)

Noting V(X) <f,(||X]|), we have || X|| > ;" (V(X)). Substituting this inequality into
(A1), we have

VX(1) < —a(p,' (V(X))) +7(lInll)
From lemma 10.4, it follows that, there exist a KL-function S, such that

VX(0) < pVo,0) + 55" - a - r(llnll) (A2)

where, Vo= |V(X(t0))— ;" ~a_1-y(||11|\oo)|. From (A2), V(X(¢)) is asymptotically
stable to the ball Bﬂ;l'a,lAy(H”HM)(V). Noting (]| X]) <V(X), we have ||X]|| <p(V
(X)). From lemma 10.3, X(7) is asymptotically stable to the ball B,(X). Further-
more, since assumption 10.1 holds, from lemma 10.3, y(¢) is asymptotically stable
to the ball B, (y). This completes the proof of sufficiency. The proof of the
necessity of the proposition can follow a similar method as demonstrated in the
appendix of Hu et al. (2005). The proof completes. O

B. Proof of Proposition 10.4
The state-space equation of system (10.26a) can be written as X=AX —B¢g+Ey,
where, X = [x,x']T, gb:a3a3, o=CX. Choose a Lyapunov candidate as:

V=X"PX + 50" (A3)

where, a>0. Equation (A3) further gives
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V =X"PX + X' PX +2a0°CX = X" (AP + PA)X — 2X"PB¢ + 2X"PEy + 22C(AX — B + Er))

=X"(ATP+PA)X — 2X"PBg + 2 pCAX — 2 $CB) + 2X"PEy + 2“4 CEy (A4)
3 3 3

X

LetZ = [(/J

PE
,T=| « ,and f= then (A4) gi
] l 2 CE] and f=a/a; then (A4) gives

ATP+PA pATCT —PB

ATP+PA pATCT —PB
—25CB *

— 1 TppT T
_25CB Z+e ' Z'TT Z+en'n

V:ZT[ }ZJrZTTnSZT

g7 ( {ATPH)A BATC" —PB

— 1T 2_ _gT 2
. —24CB }Jre TT >Z+sn =—72"QZ+en

Note that, in the inequality above, the following inequality is used
22" Tn<e 'Z'TT"Z+eny, for any £>0.

If Q=Q">0, then Z'"QZ>1,i,(Q)||X||* is a K-function of IIXIl. Hence,
according to Proposition 10.3, the system is asymptotically stable to a ball B,(X)

with p = \/ﬂmm(Q)lesup(HnHz) = Fqy\/Amin(Q) ™~ 'e. Additionally, when there is

no exogenous disturbance input, and if Q:QT>O holds with E=0, then it is obvious
that the system without a disturbance input is globally asymptotically stable. This
completes the proof. O




Chapter 11
Mapping from Parametric Characteristics to
the GFRF's and Output Spectrum

11.1 Introduction

Frequency domain methods for nonlinear systems have been studied for many years
(Taylor 1999; Solomou et al. 2002; Pavlov et al. 2007). The frequency domain
theory for Volterra systems was initiated by the concept of the GFRF (George
1959). Thereafter, many significant results relating to the estimation and computa-
tion of the GFRFs and analysis of output frequency response for practical nonlinear
systems have been developed (Bendat 1990; Billings and Lang 1996; Chua and Ng
1979; and also see Chaps. 2—10).

To compute the GFRFs of nonlinear systems, Bedrosian and Rice (1971)
introduced the “harmonic probing” method. By applying the probing method
(Rugh 1981), algorithms to compute the GFRFs for nonlinear Volterra systems
described by the NDE, NARX and NBO models were derived, which enable the
nth-order GFRF to be recursively obtained in terms of the coefficients of the
governing nonlinear model (Chap. 2). Based on the GFRFs, frequency response
characteristics of nonlinear systems can then be investigated as shown before.
These results are important extensions of well known frequency domain methods
of linear systems such as transfer function or Bode diagram, and provide a system-
atic and effective method for analysis of nonlinear systems in the frequency
domain.

However, it can be seen that existing recursive algorithms for computations of
the GFRFs and system output spectrum can not explicitly and simply reveal the
analytical relationship between system time domain model parameters and system
frequency response functions in a clear and straightforward way. Therefore, many
problems remain unsolved, related to how the frequency response functions are
influenced by the parameters of the underlying system, and how they are connected
to complex non-linear behaviours, etc. In order to solve these problems, the
parametric characteristics of the GFRFs were studied in Chaps. 4-5, which
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effectively build up a mapping from the GFREF to its parametric characteristic and
provide an explicit expression for the analytical relationship between the GFRFs
and system time-domain model parameters. The significance of the parametric
characteristic analysis of the GFRFs is that it can reveal what model parameters
contribute to and how these parameters affect system frequency response functions
including the GFRFs and output frequency response function (see the detailed
results and discussions in the previous chapters). This provides an effective
approach to the analysis of the frequency domain characteristics of nonlinear
systems in terms of system time domain model parameters.

The study in this chapter is based on the results in Chap. 5. It is shown in
Chaps. 5-6 that the nth-order GFRF and output spectrum of a nonlinear Volterra
system can both be written as an explicit and straightforward polynomial function
in terms of nonlinear model parameters, and this polynomial function is character-
ized by its parametric characteristics with its coefficients being complex valued
functions of frequencies and dependent on the system linear dynamics and input.
Note that, the parametric characteristics can be analytically determined by the
results in Chap. 5. The objective of this chapter is to analytically determine the
complex valued functions related to the parametric characteristics. An inverse
mapping function from the parametric characteristics of the GFRFs to the GFRFs
is therefore studied. By using this new mapping function, the nth-order GFRF can
directly be recovered from its parametric characteristic as an n-degree polynomial
function of the first order GFRF, revealing an explicit analytical relationship
between higher order GFRFs and system linear frequency response function.
Compared with the existing recursive algorithm for the computation of the
GFRFs, the new mapping function enables the nth-order GFRF to be explicitly
expressed in a more straightforward and meaningful way. Note from previous
results that higher order GFRFs are recursively dependent on lower order GFRFs.
This recursive relationship often complicates the qualitative analysis and under-
standing of system frequency characteristics. The new results can effectively
overcome this problem, and unveil the system’s linear and nonlinear factors
included in the nth-order GFRF more clearly. This provides a useful insight into
the frequency domain analysis and design of nonlinear systems based on the
GFREFs, and can be regarded as an important application of the parametric charac-
teristic theory established in the previous chapters.

11.1.1 Some Notations for This Chapter

Some notations are listed here especially for readers’ convenience in understanding
the discussions of this Chapter, although some of these notations have already
appeared in previous chapters and will also be used in the following chapters.
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A model parameter in the NDE model, k; is
the order of the derivative, p represents the
order of the involved output nonlinearity,
q is the order of the involved input
nonlinearity, and p+gq is the nonlinear
degree of the parameter.

The nth-order GFRF

A parameter vector consisting of all the
nonlinear parameters of the form

cp,q(klv o '»kp+q)

The coefficient extraction operator

(Chap. 4)

The parametric characteristics of the
nth-order GFRF

The correlative function of CE(H ,(jw,,- - -,
Jwn))

The reduced Kronecker product defined in
the CE operator

The reduced vectorized summation defined
in the CE operator

A monomial consisting of nonlinear
parameters

A p-partition of a monomial

Cporo ()Cp1.1 ()~ Cprg, ()

A monomial of x; parameters of

{c‘po,qo(~), e "pk,qk(')} of the involved
monomial, 0<x;<k, and so=1

A new mapping function from the
parametric characteristics to the correlative
functions, S-(n) is the set of all the
monomials in the parametric
characteristics and S¢(n) is the set of all the
involved correlative functions in the nth
order GFRF.

The order of the GFRF where the
monomial s,(5) is generated

The maximum eigenvalue of the frequency
characteristic matrix ®,, of the nth-order
GFRF
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11.2 The nth-Order GFRF and Its Parametric
Characteristic

In this chapter, consider Volterra-type nonlinear systems described by the NDE
model in (2.11). Similar results can be extended to the NARX model (2.10). For
convenience, some basic results are restated in this section as follows.

Using the definitions in (2.25), i.e.,

q
Hoo(-) =1, Hyo(-) =0 forn>0, H,,(-)=0 for n<p, and [] (")
i=1

_J1 g=0,p>1
{0 o (11.1)

The nth-order GFRF for (2.11) can be written as (2.26), i.e.,

K
Hn(jwls"'sja)n) :7nz Z Cp,q(k17"'akp+q)
)

9 -
X (H (jwn—q+i)kp+l>Hn—q,p (jwh o ',jwn_q) (112)
i=1

The parametric characteristic of the nth-order GFRF can be simply computed as
(See Corollary 5.1 for details)

A ) n—1 n—q
CE(H,(jor,- -+ jon)) = Con @ ( @1 @1 Cpg @ CE(H”4P+1('))>
g=1 p=

@(@ZC,,,0®CE(H,1_,,+I(-))> (11.3)
p=
Moreover, CE(H,(jow,,- - -,jw,)) can also be determined by following the results in

Proposition 5.1, which allows the direct determination of the parameter character-
istic vector of the nth-order GFRF without recursive computations and provides a
sufficient and necessary condition for which nonlinear parameters and how these
parameters are included in CE(H,(jw, - -,jw,)).

Based on the parametric characteristic analysis in Chaps. 4-5, the nth-order
GFREF can be expressed as

Hl‘l(iwl’ o ',jwn) - CE(H}’[(]w17 o '5ja)n)) 'f‘n(jwl’ o "jwn) (114)

where f,(joi,- - -,jo,) is a complex valued function vector with an appropriate
dimension, which is referred to as the correlative function of the parametric
characteristic CE(H ,(jo,,- - -,j®,)) in this study.
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Equation (11.4) provides an explicit expression for the analytical relationship
between the GFRFs and system time-domain model parameters. Based on these
results, system nonlinear characteristics can be studied in the frequency domain
from novel perspectives including frequency characteristics of system output
frequency response, nonlinear effect from specific nonlinear parameters, and para-
metric sensitivity analysis etc as demonstrated in the previous chapters. In this
chapter, an algorithm is provided to explicitly determine the correlative function
fu(wy,- - -, jw,) in (11.4) directly in terms of the first order GFRF H,(jw,) based on
the parametric characteristic vector CE(H,,(jo, - -,j®,)). To achieve this objective,
a mapping from CE(H,(jw.,- - -,jw,)) to H,(jo.,- - -,jw,) is established such that the
nth-order GFRF can directly be written into the parametric characteristic function
(11.4) in an analytical form by using this mapping function, and some new
properties of the GFRFs are developed. These results allow higher order GFRFs
and consequently the OFRF to be analytically expressed as a functional of the
system linear FRF (i.e., the first order GFRF), and thus provide a novel qualitative
and quantitative approach to understanding of nonlinear dynamics in the frequency
domain (see more discussions in Chap. 12).

11.3 Mapping from the Parametric Characteristic
to the nth-Order GFRF

The parametric characteristic vector CE(H,(jwi,---,jw,)) of the nth-order
GFREF can be recursively determined by (11.3), which has elements of the form
Cpg®Cpig Cp, g, @ QCp 4 (n—22>k>0), and each element of which has
a corresponding complex valued correlative function in vector f,(jo,,- - -,jo,).

For example, cg ,(kq,- - -,k,) corresponds to the complex valued function (/‘a)l)k‘
-+ (jwy)"" in the nth-order GFRF.
From Proposition 5.1, an element in CE(H,(jo,,- - -,jo,)) is either a single

parameter coming from pure input nonlinearity such as cg,(.), or a nonlinear
parameter monomial function of the form C,,®Cp 4 ®Cp, 4, @ - R Cp, 4
satisfying (5.15), and the first parameter of C, , ® Cp, 4, ® Cp, 4, @ -+ R Cp, 4,
must come from pure output nonlinearity or input—output cross nonlinearity, i.e.,
Cpq(-) with p>1 and p+¢> 1. For this reason, the following definition is given.

Definition 11.1 A parameter monomial of the form C, , ® Cp 4, ® Cp, 4, ® -+~
®Cp,.q, With k>0 and p+g>1 is said to be effective or an effective combination of
the involved nonlinear parameters for CE(H ,(jw1,- - -,jw,)) if p+g=n(>1) for k=0,
or (5.15) is satisfied for £>0. O

From Definition 11.1, it is obvious that all the monomials in CE(H,,(jw1,- - -,j®,,))
are effective combinations. The following lemma shows further that what an
effective monomial should be in certain order GFRF and how it is generated in
this order GFRF.
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Lemma 11.1 For a monomial ¢, 4, (-)Cp,.q, () = *Cp,.q, (+) With k>0, the following
statements hold:
(1) it is effective for the Z™-order GFRF if and only if there is at least one
k
parameter Cp; 4i(.) with p; >0, where Z = Z (p; +q;) — k.
=0
(2) if there are / different parameters with p;>0, then there are / different
cases in which this monomial is produced by the recursive computation of
the Z"-order GFRF.

Proof (1) This is directly from Definition 11.1. Z can be computed according to

k
Proposition 5.1, i.e., Do+ qo + Z (pi+¢q;)) =Z+k, which yields
i=1

k
Z= Z (p; + ¢;) — k. (2) From the second and third terms in the recursive algo-

p
rithm of (2.19) or (5.1), i.e.,

K q
Z c,, q kl, o kpig <H o q+, >H,,q’,, (jwl, .. 'ajwnfq)

i=1
K
+ Z Cp,0 klv : p) n,p(jwls"'sja)n)
(11.5)

it can be seen that all the nonlinear parameters with p >0 and p+¢g <n are involved
in the nth-order GFRF, and each of these parameters must correspond to the initial
parameter in an effective monomial of CE(H,(jw,,- - -,jo,)). Hence, if there are
[ different parameters with p; >0 in the monomial ¢, 4 (-)¢p,.q, () *Cp,.q,(+), then
there will be / different cases in which this monomial is produced in the Zth order
GFRF. This completes the proof. O

Definition 11.2 A (p,g)-partition of H,(jw, - -,jw,) is a combination H,, (w, )H,,

P
(Wy,)- - H,, (wy,) satisfying Y " r; =n — g, where 1<r;<n—p—gq+1, and w,, is a
P

set  consisting of r; different frequency variables such  that

U wy, = {1, 2, -, @,} and w,, Nw, = ¢ for i#]. ]

i1
For example, H(w)H (w2)H3(w3- - -ws) and H (0w )Hy(w2,03)Hy(w4,05) are

two (3,0)-partitions of Hs(jw,,- - -,jws).

Definition 11.3 A p-partition of an effective monomial ¢, 4 (-)---¢p, q(-) is a

combination sy Sy, -Sy,, Where s, is a monomial of x; parameters in

{prn (), "Cm,(n(‘)}’ 0<x;<k, sp=1, and each non-unitarys,, is an effective

monomial satisfying E X; =k and 5,8y, Sy, = Cpy.g, (1) Cpg, () O
i=1
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The sub-monomial s, in a p-partition of an effective monomial ¢, g (-)
Cpoq () is denoted by s (cp.q, () Cpoq(-)). Suppose that a

p-partition  for 1 is  still 1, i.e., 1-1.--1 =1. Obviously
——
p

Cpia () ’ .CPLaCh(') = Sy 88y, (Cplaéh () " Cproay ()) = Sk (CPI!QI () " Cpsdr ()) For
example,  s1(c11())s2(c2,1()c30())  and  so(cp1()ez1())si(c3p(+))  are  two
2-partitions of ¢y 1(-)c2,1(-)c30(-). Moreover, note that when s, appear in a
p-partition of a monomial, it means that there is a H;(.) which appears in
the corresponding (p,q)-partition for H,(.).

For an effective monomial ¢, 4(-)¢p,.q,(-) - Cpq,(-) in CEH,(jwy,- - -,jw,)),
without speciality, suppose the first parameter ¢, ,(-) is directly generated in the
recursive computation of H,(jwy,- - -,j®,), then the other parameters must be gen-
erated from the lower order GFRFs that are involved in the recursive computation
of H,(joi,- - -,jw,). From (2.19)-(2.23) or (5.1)—(5.5) it can be seen that each
parameter in a monomial corresponds to a certain order GFRF from which it is
generated. The following lemma shows how a monomial is generated in H,(jo,, - - -,
Jjm,) by using the new concepts defined above. This provides an important insight
into the mapping from a monomial to its correlative function.

Lemma 11.2 If a monomial ¢, 4(-)¢p,.q, (+)- - -Cp,.q,(+) is effective, and ¢, 4(-) is the
initial parameter directly generated in the xth-order GFRF and p >0, then

(1) ¢p,.q,(-) " Cpq.(-) comes from (p,q)-partitions of the xth-order GFRF,
k

where x=p+ g+ (pi+q;) —k
i=1

(2) if additionally sq is supposed to be generated from H,(.), then each p-parti-
tion of ¢, 4, (-)- - Cp.q. () corresponds to a (p,q)-partition of the xth-order
GFRF, and each (p,q)-partition of the xth-order GFRF produces at least one
p-partition for ¢, 4, (*)- - Cp,.q,(+)s

(3) the correlative function of ¢, 4 (-):- ¢y q,() is the summation of the
correlative functions from all the (p,q)-partitions of the xth-order
GFRF which produces cp, 4, () -Cp,.q,(-), and therefore is the summation
of the correlative functions corresponding to all the p-partition of
Cprogi () Cpge (-

Proof See Sect. 11.6 for the proof. O

Remark 11.1 From Lemma 11.2, it can be seen that all the (p,g)-partitions of the
xth-order GFRF which produce c¢,, 4, (-): ¢y q,(-) are all the (p,q)-partitions
corresponding to all the p-partitions for ¢, 4, () -Cp,.q,(-). Therefore, to obtain
all the (p,q)-partitions of interest, all the p-partitions for cp, 4 (-):--Cp,.q,(-) is
needed to be determined. O

Based on the results above, in order to determine the mapping between a
parameter monomial ¢, 4(-)¢p,.q,(*)- - -Cp,.q, () and its correlative function in f,(jew;,
---,jw,), the following operator is defined.



214 11 Mapping from Parametric Characteristics to the GFRFs and Output Spectrum

Definition 11.4 Let Sc(n) be a set composed of all the elements in CE(H,,(jo, - - -,
Jw,)), and let S{n) be a set of the complex-valued functions of the frequency
variables jwi,- - -,jw,. Then define a mapping

@, : Sc(n) — S¢(n) (11.6a)

such that in wy,- - -,w,

s ) 1 . . . )
HY" (jeou, -+, jeon) = Z CE(Hy(jor, -+, jon)) ¢, (CE(Hy(jo1, -, jon)))
all the permutations
of {1,2,...,n}

(11.6b)

O

That is, by using the mapping function above, an asymmetric GFRF can be
obtained as

H,(jo,-- 'sja’n) = CE(Hn(jwlv e -,ja),,)) : (p"(CE(H,,(ja)l, s stn)))

The existence of this mapping function is obvious. For example,

@, (conlky, - kn)) = (jo )" -(jw,)*. The task is to determine the complex

valued correlative function @, (¢p,q(-)cp,.q,(-)* - Cp,.q, (-)) for any nonlinear param-

eter monomial ¢, 4(-)¢p,.q,(*)- - Cp.q, (1) (0<k<n—2) in CE(H,(jo, - -,jw,)).
Based on Lemma 11.1-11.2, the following result can be obtained.

Proposition 11.1 For an effective nonlinear parameter —monomial

CPUa‘Io(.)CPu(h () ’ 'CPLJIA(')’ let §= CPU!LZO(.)CPI"II () ’ 'Cﬁkv%(')’
X

Z p; +¢q;) —x+ 1, where x is the number of the parameters in s,,

i=1
X

Z (p; + ¢,) is the summation of the subscripts of all the parameters in s, Z ()
i=1 i=1
=0ifx<1and n(1)=1. Then for 0 < k < n(s) — 2
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Dus) (00,00 (Vs () g, (s @101 - Orus)))
= > {f1 (€p.q (). nB)s @11y - - @iagsy) ) -

all the 2 — partitions
for s satisfying for 5/cpq(")
51(8) = ¢pq(-) and p >0

S w55, (5700 ())s 00 0105 )
all the different
permutations
of {sy, -8}

H¢ (s, (5/cpna) (S)_fi(g/cl’wl('));wl()_((i)ﬂ)"'wl(i(i)wLn(s;i(E/('m(-))))):|}
(11.7a)

all the p — partitions

or simplified as

2a5) (0 (Vproa, () Cprgy (s @101) 01005

= > {f1(cp.q()sn(3); 0101y - - 01a(5))
all the 2 — partitions

for 5 satisfying
51(5) = ¢pg(-) and p >0

> o (5083, (5/p.g () 0000) 01005 -g)
all the p — partitions
for 5/cp 4(*)

1000 00 (55 /0 )s 000007 0 sy, 50001 }
(11.7b)

the terminating condition is k=0 and ¢(1; w;)=H,(jw;), where,

q n(s)
F1(pa)sn ) 01y -or) = ([ G0105)-10) " / Lugs (JZ wl(z‘))

i=1
(11.8b)
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Faa(55, 5%, (5/Cpg ()i 0101) @1 n(s)—))

P .
1:[ (]a)l ' +ja)l()_((i)+n(s}i (E/c-,,[,(.))))> (11.8¢)

fan (SXI‘ "8, (S/CP a( ) w1y 'wl("(ﬁ)*q))

n . , ki
= 2 H (J“’“X(")“) IO (s, (E/c,u,<->))))
K all the different =1
permutations
of {ki, -k}

(11.8d)

Moreover, {sx,, - - -sx, } is a permutation of {s.,, - - -s,, },@j(1)" - -@j(s(5)) represents the

frequency variables involved in the corresponding functions, /i) fori = 1...n(s) is
a positive integer representing the index of the frequency variables, n; = #,'n,,
ni+...+n.=p, c is the number of distinct differentials k; appearing in the combi-
nation, ; is the number of repetitions of the ith distinct differential k;, and a similar

definition holds for n}. O
Proof See Sect. 11.6 for the proof. O

Remark 11.2 Equations (11.7a,b) are recursive. The terminating condition is k=0,
which is also included in (11.7a,b). For k=0, it can be derived from (11.7b) that

bus) (g ()s0101) - O1105))) = B (Cpg (Vs 100) D119
=f1(cpg ()P +G30111) W) p
: Fap (-8, (1)s0101)* @pipg—a) ) Hlﬁn(% m) (Sx, (1);w[(X(i)Jrl)'"w[(x(,')Jr”(S\’ (1))))
all the p — partitions =
for 1

——

P
=f1(epg )P+ @@y @1p1g)) fp (11 Loy 'w/(p)> Tl (500)
i

i1 ah
Lyig

q P
AT Hja)l(p+r A” Hjm/ HHI (Iwm
<J w/(z)> =
i=1

(11.9)

Note that in this case, p+q=n(5) from (5.15), and S=c, 4(-) corresponding to a
specific recursive terminal. Hence, (11.9) can be written as
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CE(H,(jo,, . jo,))=lc, , (e, ()ec, () -]
. PrOpOSitiOn 51 4 ........................ l |
e, (O For 0SK S0 -2 g £ () = @ ()

1

1
all the (po,qo)-partitions of H, (jw,,---, jo,) !
which generate monomial . (... Ol
Pidy P9 1

1

1

1

1

¢

all the po-partitions of €,, 4, ()¢, 4, ©) |

_____________________________ ! v i
O =9,0) = :

i
SO 1,000,000k

| Lemmall.l Lemmall.2

Fig. 11.1 An illustration of the relationships in Proposition 11.1 (Jing et al. 2008e)

q
Puts) (Cpa()s @101) - Oua))) :n—s) (IT Vo)

n(s) szl( -

)4 k )4

T o)™ - [T 1 Geory) (11.10)
i=1

i=1

In order to verify this result, let n = n(s) = p + q, it can be obtained from (11.2)
that for a parameter ¢, ,(-), its correlative function is

q
J‘U/H-l pp(/wl""’jwﬁ)
1

nE ]Za}t a

p p

From (5.5), Hp,p (ja)l, . -,jw,,) = H (jwi)ki . HHl(jw,-). This is consistent with
i=1 i=1

(11.10). To further understand the results in Proposition 11.1, the following figure

can be referred, which demonstrates the recursive process in the new mapping

function and the structure of the theoretical results above (See Fig. 11.1). O

To further demonstrate the results, the following example is given.

Example 11.1 Consider the fourth-order GFRF. The parametric characteristic of
the fourth-order GFRF can be obtained from Proposition 5.1 that
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CE(H4(jor,- - jws)) = Coa®C13PC31PCr2PCuo®Ci1 ®Co3&Cy
RC20C 1 ®C 1 DCLIRC30DC20CooDCp2
®Cro@Cro®Cosz Cro®Cy1 ®Cro®C39 ®Coy
® Co @ C3,0® Con ®Cy1 ®Coo® ®Cp 1> ®Con®Ciy
® Cpa®Cao ®C1° ®C112®Cao®Cry ®Ca> @ Cap
® Co,2> ® Ca,0> ® Co 2 ® Cay0°

By using Proposition 11.1, the correlative function of each term in CE(H4(jw;,- - -,
Jjws)) can all be obtained. For example, for the term c; 1(.)co2(.)ca0(.), it can be
derived that

Pn(s) (01,1 (‘)Co,z(')cz.o(');wl(l)' : '(‘)1(17(3))) = ¢4(C‘1,1(')00,2(')02,0(')%601' “y)
=fi(c11().4;@1---w4)

| [th(SZ(CO,Z(A)CZ'O(‘));Q)IA4-wS) n(sz(@na)e2000) (Sz(co-z(')clo('))?a’x(l)+| - 'WX(1)+H(S2(Co,z(‘)f'z,u(-))))]
+f1(52,0('),4;a)1. . '(1)4)
Nfap(sos2(cr.1(-)co.2()); @1+ a) “Poso(er (eoa())) (SO(C“(')COJ('));wxu)“» ' _wX(l)ﬂ(m(m(.)(‘MO)))
RECICERRER)) (SZ (cr1()eo2())iox)s1 '(l)x(2)+n(xz(<-1,|(-)t'o,z(’))))
Fha(sisi(eni()co2())i @104 -9, (e, 00)) <S1(61,1(~));mx(1)+1. . '("X(1>+n(i.(q,,(.))))
'q)"(ﬂ (c020))) <Sl (('.0'2(.));wx(2)+1 o 'wX(Z)Jrn(Sl (c02()))
=/ (Cl,l('),4;a)1. . '(1)4)
| @"217(6072(')(‘2’0();0)1. o) (pn(vn’z<')('2*"(')) (CO‘Z(')CZO(');(‘]OH' : 'w0+l7(£‘0,2(-)('z,n(.)))]
+f1(c20(), 4001 w4)
FFap(s0s2(c11(-)co2(-)); 01 -@4) - @01y (L 001+ 'wn(1))(pn(q,‘(,)m‘z(_)) (cm ()c0,2(-); @uqry 1+ ‘w'l(])+"(('\vl(')/-'(y,z(')))
Hap(s151(c11(-)co2(-)); 01 -@4) - @, (Cl,l (D0x0) 41 Oy 1) (s (m(‘)))>
” <CO’2('):'CUX(2’“ O @) (51 (c02()))
=fi(c,1(-).4;01--04) - [f(co2(-)c2,0(); @1 - @3) - p3(co2(-)e2,0(-); 01+ - -@3)]

H1(e2,0(),4; @1 -@4) - [fo(s052(c1,1(-)c0.2(-)); @1 - @4) -y (L 01) 3 (c1.1 () co,2(-); @2 - -004)
+faw(s151(c1,1(:)co,2())); @1+ @4) - o (c1,1(-); @1,@2) Py (co,2(-); 03, @4)]

(11.11)

To proceed with the recursive computation, it can be derived that

| 4 4
filer1(0), 401 --w4) = H (iw3+i)kl+’/L4 (jz wi) = (fw4)k2/L4 (JZ wi)
i—1 i1 =1

(11.12a)

4
Frca0() 401 - wy) = 1/L4 (,Z a)i> (11.12b)
=1

Fan(sa (c2,0(-)c02()); @1 @3) = (jor + - - + jo3)" (11.12¢)
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2 k;
Fa(sosa(cr1(Deoa () --ws) = Y H(wa Jr1 Oy s, (&/w(-))))
all the different =1

permutations
of {ki, -k}

= (jo1)" (jwn + - +jws)* + (joo + - -+ + jws)" (1) (11.12d)

#3(coa(-)c0(); @1 - -w3)
=5 (C2 0(1): 3101 @3) - f2 (85,5, (c0,2(") ) 01+ @3)

H¢ vx v/(,,q er Co, 2 X(i)+1" " COX( )+n(v ’.(cg,z())))

=f (6‘2,0('), 3w fap (S8, (0,2(+)); @1+ - -@3) @y (15 01) s (co,2(-); @2, @3)

w;3)
e (6o -+ G 3G
Ly

(11.12¢)

@3(c1,1())co2(); 02 - @4)
=1 (€110, 3505 08) Fapl50 (€021 02,05) 0, () (50202, 9)

=f1(c1.1(:),3;02--@4) - f25(c0.2("); 02,03) - P (co.2(+); 02, @3)

— ()" (jawn + jws )" R (j2)" (jeo3)"
L3 (jwy + -+ -+ joos) Ly (jw, + jws)

(11.12f)
Using (11.12a—f) in (11.11) yields

Palc11(cop(e2o(-)iw1-aa)
=f1(ci1()s4011) [fop(co2()e20(); o1 @3)  @3(co2()eao(-); 1 @3)]
1 (c20(). 401 @4) - [£25(s052(c1,1()co2 () )17 -@a) - @y (L;01)p3 (c1,1(-)co2 ()02 - 4)
+fap(s181(c1,1(-)co.2());01@4) - @a(c1,1(-);01,02) @5 (co2(-); @3,04)]
(ja) (joor + -+ jooy) ((./wl)k‘ (Jor +jars)* + (jars +jon)" (./wl)kz> (jan)" (jos)*

= - - - - - - - -Hi(jw
Ly(jor + -+ jws) L3 (jo +jwr +jos ) Lo (jwr +jws) Ge)

<(/“)1)kl(jwz+"'+jw4)kz+(jwz+'“+jw4) (jan )" )(1(04) (jan +jas)" (jwr)" (jar)*

- - H\(jo
N La(jor + - +jwa)Ls (jor + -+ jws) Lo jwr +ja3) 1(jwr)
(o +jen) ooy + oa)* + (oo + jon) " Gon o)) Geoa) o) o) o)
f - - - - - - Hy(jor)
Ly(jwr -+ jws) Lo ( jos +jws) Lo ( jor +jwr)
(11.13)

Therefore, the correlative function of the parameter monomial ¢ ;(-)co2(-)ca0(:) 1S
obtained. It can be verified that the same result can be obtained by using the
recursive algorithm in (11.2), (5.2)—(5.3), (11.1). For the sake of brevity, this is
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omitted. By following the same method, the whole correlative function vector
@4(CE(Hy(jw,,---,jows))) can be determined. Thus the fourth-order GFRF
Hy(jo,,---,jos) can directly be written into a parametric characteristic form which
can provide a straightforward and meaningful insight into the relationship between
H(jw,,---,jws) and nonlinear parameters, and also between Hy(jwi,---,jw,) and
H(jo). ]

Remark 11.3 From Example 11.1, it can be seen that Proposition 11.1 provides an
effective method to determine the correlative function for an effective monomial
Cporao ()Cpyagy (1) - Cp,.q, (+), and the computation process should be able to be carried
out automatically without manual intervention. Therefore, Proposition 11.1 pro-
vides a simplified method to determine the nth-order GFRF directly into a more
meaningful form as (11.4) which can demonstrate the parametric characteristic
clearly and describe the nth-order GFRF in terms of the first order GFRF H (jw) and
nonlinear parameters. This reveals a more straightforward insight into the relation-
ships between H ,(jw;,- - -,jw,) and nonlinear parameters, and between H,(jw,- - -,
jm,) and H,(jw). Note that the high order GFRFs can represent system nonlinear
frequency response characteristics (Billings and Peyton-Jones1990; Yue
et al. 2005) and H,(jw) represents the linear part of the system model. Hence, the
results in Proposition 11.1 not only facilitate the analysis of the connection between
system frequency response characteristics and model linear and nonlinear param-
eters, but also provide a new perspective on the understanding of the GFRFs and on
the analysis of nonlinear systems based on the GFRFs. O

11.4 Some New Properties

Based on the mapping function ¢, established in the last section, some new
properties of the nth-order GFRF are discussed in this section.

11.4.1 Determination of FRFs Based on Parametric
Characteristics

There are several relationships involved in this paper. H,(jo,, - - -,j®,) is determined
from the NDE model in terms of the model parameters. The CE operator is a
mapping from H,(jo,,- - -,jw,) to its parametric characteristic, which can also be
regarded as a mapping from the nonlinear parameters of the NDE model to the
parametric characteristics of H,(jwi,- - -,jw,). Thus there is a bijective mapping
between H,,(jw;,- - -,jw,) and the NDE model. The function ¢,, can be regarded as an
inverse mapping of the CE operator such that the nth-order GFRF can be
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The NDE model
CE H,(jo,. . jo,) .

€ poan (‘)cmm ) €ra, O B 0,y (C g, O 0, Oy (00 @)
P,

Fig. 11.2 Relationship between ¢, and CE (Jing et al. 2008e)

reconstructed from its parametric characteristic, which can also be regarded as a
mapping from the nonlinear parameters of the NDE model to H,,(jw, - - -,j@,). This
can refer to Fig. 11.2, where “*” represents the point multiplication between the
parametric monomial and its correlative function.

It can be seen from Fig. 11.2 that
Hy(jo, - jon) = CE(H, () - ¢,(CE(H(:))) (11.14)

From (11.14), the inverse of the operator CE can simply be written as (x=CFE

(H())
CE™ (x) =x ¢, (x)

which constructs a mapping directly from the parametric characteristic of the nth-
order GFRF to the nth-order GFRF itself. Note that CE(H,(-)) includes all the
nonlinear parameters of degree from 2 to n of the nonlinear system of interest, and
@.(CE(H,(-))) is a complex valued function vector including the effect of the
complicated nonlinear characteristics and also the effect of the linear part of the
nonlinear system. Hence, (11.14) reveals a new perspective on the computation and
understanding of the GFRFs as discussed in Sect. 11.3, and also provides a new
insight into the frequency domain analysis of nonlinear systems based on the
GFRFs.

From the results in Chaps. 5-6, the output spectrum of model (2.11) can now be
determined as

Y(jw) =Y CE(H,(jo, - -.jon)) - F (jo) (11.15a)

n=1

when the input is a general input U(jw),
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Falio) =—— s [ aCEHGon, o) - [ UG,

Vi(2r)

o1+ o=

(11.15b)

K
when the input is a multi-tone function u(f) = Z |Fi| cos (w;t + £F;),
=1

1

Fajo) =0 S0 ou(CE(H, o, jon,))) - Flan, )+ Flay,) (1115¢)

Wy ot o, =

It is obvious that (11.15a) is an explicit analytical polynomial functions with
coefficients in Sc(1)U---USc(NV) and the corresponding correlative functions in
S(1)U---USHN). This demonstrates a direct analytical relationship between sys-
tem output spectrum and system time-domain model parameters. The effects on
system output spectrum from the linear parameters are included in S(1)U---U
S¢(N), and the effects from the nonlinear parameters are included in Sc(1)U---U
Sc(N) and also embodied in Sy(1)U- - -USHN). This will facilitate the analysis of
output frequency response characteristics of nonlinear systems. For example, for
any parameters of model (2.11) of interest, which may represent some specific
physical characteristics, the output spectrum can therefore directly be written as a
polynomial in terms of these parameters. Then how these parameters affect the
system output spectrum needs only to be investigated by studying the frequency
characteristics of the new mapping functions involved in the polynomial and
simultaneously optimizing the values of these nonlinear parameters. Further study
in this topic will be introduced in the next chapter.

11.4.2 Magnitude of the nth-Order GFRF

Based on (11.14), the magnitude of the nth-order GFRF can be expressed in terms
of its parametric characteristic.

Corollary 11.1 Let CE,=CEH,()), ©,=¢,(CEH,(-))-9.(CEH,()))*, ¢,=
@n(CE(H,())), and A, =CE(H,())' CE(H,(")), then

\H,(jo1,- - - jo,)|* = CE,®,CE" (11.16a)
Ha(jor. - -.jon)|* = @A, (11.16b)

Proof 1t can be derived from (11.14) that
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|H,,(ja)1,- : "jwrl)|2 = H,,(ja)1, e "ja)n) 'H;(ia)l’ e -,ja),,)
= CE(Hu(-)) - 9,(CE(H,())) - (CE(HA()) - 9,(CE(H,())))"
= CE(Hn()) : ((pn(CE(Hn())) qon(CE(Hn()))*) -CE Hn(')) = CEn®nCE1{

The result in (11.16b) can also be achieved by following the same method. This
completes the proof. |

From Corollary 11.1, the square of the magnitude of the nth-order GFRF is
proportional to a quadratic function of the parametric characteristic and also
proportional to a quadratic function of the corresponding correlative function.
Corollary 11.1 provides a new property of the nth-order GFRF, which reveals the
relationship between the magnitude of H,(jw,- - -,jo,) and its nonlinear parametric
characteristic, and also the relationship between the magnitude of H,(jw,- - -,jw,,)
and the correlative functions which involve both the system linear and nonlinear
characteristics. Given a requirement on | H,(jo,,- - -,jw,) |, the condition on model
parameters can be derived by using (11.16a,b). This may provide a new technique
for the analysis and design of nonlinear systems based on the nth-order GFRF in the
frequency domain.

Moreover, it can be seen that the frequency characteristic matrix ®, is a
Hermitian matrix, whose eigenvalues are the positive real valued functions of the
system linear parameters but invariant to the values of the system nonlinear
parameters in CE(H,(-)). Thus different nonlinearities may result in different
frequency characteristic matrix ®,, but the same nonlinearities will have an invari-
ant matrix ®,,. This property of the nth-order GFRF provides a new insight into the
nonlinear effect on the high order GFRFs from different nonlinearities. For this
purpose, define a new function

ﬂn(wla"ﬁa)n) :ﬂmax(Qn) (1117)

which is the maximum eigenvalue of the frequency characteristic matrix ©,. As
mentioned, the frequency spectrum of this function can act as a novel insight into
the nonlinear effect on the GFRFs from different nonlinearities, since this function
is only dependent on different nonlinearities but independent of their values.
However, the frequency response spectrum of the GFRFs will change greatly
with the values of the involved nonlinear parameters, which cannot provide a
clear insight into the nonlinear effects between different nonlinearities.

Moreover, the following results can be obtained for the bound evaluation for the
nth-order GFRF based on the results above.
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Proposition 11.2 ~ ~
Sup |Hn(ja)l"",ja)n)| S J J |hn(71,'"7T”)|d71"'d7n

W1y ty Wp —0o0 —00

< \/ U (Amax (@) - | CEy | (11.18a)
W1y ey Wy
{o.¢] {o.¢]
sup |H,(jwr,- - jw,)| < J J |ha(T1, -y 1) |dey - - -d,

@]y y Wy —00 —00

< VAmax(An) - sup ([, ]]) (11.18b)
W]y 9 Wp

Proof See Sect. 11.6 for the proof. O

From (11.18a,b), it can be seen that the magnitude of the nth-order GFRF is
proportional to a quadratic function of the parametric characteristics and also
proportional to a quadratic function of the corresponding correlative function.
These results demonstrate a new property of the nth-order GFRF, which reveals
the relationship between the magnitude of H,(jw,---,jo,) and its nonlinear
parametric characteristics, and also the relationship between the magnitude of
H,(jwy,- - -,jo,) and the correlative functions which include the linear
(the first order GFRF) and nonlinear characteristics. Given a requirement on
| H,(jw,- - -,jw,) |, the condition on model parameters or the first order GFRF can
be derived by using these results. Proposition 11.2 also shows that the absolute
integration of the nth-order Volterra kernel function in the time domain is bounded
by a quadratic function of the parametric characteristics. This reveals the relation-
ship between the model parameters and the stability of Volterra series. Obviously,
these may provide a new insight into the analysis and design of nonlinear systems
based on the nth-order GFRF in the frequency domain.

11.4.3 Relationship Between H,(jo,,- - -, jo,) and H;(jo;)

As illustrated in Example 11.1, H,(jw1,- - -,jw,) can directly be determined in terms
of the first order GFRF H,(jw) based on the novel mapping function ¢, according to
its parametric characteristic. The following results can be concluded.

Corollary 11.2 For an effective parametric monomial ¢, 4 (-)¢p,.q, (1) “Cp.q, ()5
its correlative function is a p-degree function of H(jw(;)) which can be written as a
symmetric form
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Pn(s) (Cp()’q(}(')cpl’% () Cprg ()i wrry - ~w1(,,(§)))

_ (n(5)=p)'p! ) PP )ﬁH (w )
n(3)! Hi\@(1) I(n(5)) L. 1D
all the combinations of p integers {r1,r2,+++,r, } =1
taken from{1,2,--+,n(5) } without repetition
Jj is for different combination

k k
where p=n(5) — Zqi = Zp,- —k, = [rl T2, -,r,,] ,and y; (w1(1)~ . ~w,(,,(g))) can be
i=0 i=0

determined by (11.7a—11.8d). Therefore, the nth-order GFRF can be regarded as an
n-degree polynomial function of H(jwy(1)). O

Proof See Sect. 11.6 for the proof. O

Corollary 11.2 demonstrates the relationship between H,(jw,---,jw,) and
H(jw), and reveals how the first order GFRF, which represents the linear part of
system model, affects the higher order GFRFs, together with the nonlinear dynam-
ics. Note that for any specific parameters of interest, the polynomial structure of the
FRFs is explicitly determined in terms of these parameters, thus the property of this
polynomial function is greatly dependent on the “coefficients” of these parameter
monomials in the polynomial, which correspond to the correlative functions of the
parametric characteristics of the polynomial and are determined by the new map-
ping function. Hence, Corollary 11.2 is important for the qualitative analysis of the
connection between H,(jw;,---,jw,) and H,(jw), and also between nonlinear
parameters and high order GFRFs.

Example 11.2 To demonstrate the theoretical results above, consider a simple
mechanical system shown in Fig. 11.3.

The output property of the spring satisfies F=Ky+c;y’, and the damper F =By +
c»y°. u(t) is the external input force. The system dynamics can be described by

my = —Ky — By — c1y° — c29° + u(t) (11.19)

which can be written into the form of NDE model (2.11) with M =3, K=2, ¢; o(2)=
m, Cl‘o(l):B, Cl’o(O)ZK, C3’0(000):C1, C3’0(l 1 1):C2, CO,I(O): -1, and all the
other parameters are zero.

There are two nonlinear terms c3 ((000)=c; and c3 o(111)=c; in model (11.19),
which are all pure output nonlinearity and can be written as C;o=[cy,c;]. The
parametric characteristics of the GFRFs of model (11.19) with respect to nonlinear
parameter Cs o can be obtained according to (11.3) or Proposition 5.1 as

CE(H2i+1(.)):C3,Oi for i=0,1,2,...,, otherwise CE(H»;(.))=0 for i=1,2,3,. ..

Therefore,
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Fig. 11.3 A mechanical u(t)
system l

" |

2 L e
\Tl

CEH, () =1

CEH3(.))=Cso= [c1 ¢

CE(Hs() =C3,0®Cs0= [c/? cicr &2];

CE(H7() =C3,0®C30®Cs0=[ci® ci%ca cic® ] ...

1 3 3
3(c3,0(000); w1, w2, w3) = 3 : H (joi)° HH1 (jw:)

Ls ]Z wi) i=1 i=1

i=1

1 3

= 3 . HHl(]a),)

Ly (JZ w) -

i=1

1 3 3
@3(c3,0(111); w1, 02, w3) = 3 1 Gen) - T] HiGeor)

L (]Z Cl)l‘) i=1 i=1

i=1

@5(¢3,0(000)c3,0(000); @y, - -, w5)

=f1(c3,0(000),5; @1, -, @s) - > ST [Faulsn s, (€3.0(000)); 01 -5)
all the 3 — partitions all the different
for ¢3,0(000) permutations of {0,0,1}

3
: [l:[l%(sﬂ G/n)) (SX, (€3,0(000)); 0 (x(3)41) @3y s, (s/f,,,q(.)))))]

24(505051(¢3,0(000)); 01+ ws) gy (1; @1 )y (1;02)p3(€3,0(000); 3 - ws)
=f1(¢3,0(000),5; @1, -, @5)- | +£2,(505150(c3,0(000)); 01 -5) @y (1501 )p3(c3,0(000); 02+ - -4 )p (15 05)
+£24(515050(¢3,0(000) ); 1+ -@5) 3 (€3,0(000); 01 -3 )0y (1504 )p, (15 @5)



11.4 Some New Properties 227

5 5
H, (wl)Hl(wz)HHl (jwr) /L3 (ij,)
i=3 i=3

4 4

| (an)HHl (ji)H1 (w5)/Ls (ij:-)
Ls (jzwz)

+HH 1(jooi;)Hy (w4)H  (05) /L3 (JZ@)

i=1

1 1 1 1 3 ,
ey iy | Tom

:Ls (;iw) L3<j;a),~> L (JZ:“)> Ly (jEw) i1

@s(czo0(11)czo(111);01,- -, @s)

=f1(c3.0(111),5; w1, -, @s) - Z Z [fzu(AM -5, (c3.0(111)); 0 ~a)5)
all the 3 — partitions all the different
for ¢3(111) permutations of {0,0,1}

H(/)n & s/(, g (S*r ((>3v0(1 1 1));w1(§(i)+1) . '(UI(X(I’H»n(x(, (E/(',,,(,(J))))}
2a(S08081(€3,0(111)); l)” ‘@5)p1 (L;01) @y (1;02)3(c3,0(111); 03+ - -5) )
1

=f1(c30(111),5; 01, -, 05)- (Jrfzu(snslso((%o( 11));01-@s) @1 (1;01)p3(c3,0(111);02- - -@4)p (15 05)
+f 24 (515080 (c30(111) ); 01+ - -@5)p3(c30(111); 01 - - -@3) @ (1;004) @, (1; 05)

(.izj: a») f[ (jeor) (1243 an) 11 G (&1 wf) ﬁ (jeor)

i=1 =2 i=1
= +

)] ) el

5
'HHl (jar)

#5(c3,0(000)c3 0(111); 01, -+ @5)
=/1(c3,0(000),5; 01, -, s)

Z [fza(S;l"'SXF(C&()(III));Q)]“'CUS)
all the 3 — partitions all the different
for ¢3,0(111) permutations of {0,0,1}
3
' H%(;ﬁ (5/p))) (Sz- (€3,0(L1) i@ (%) 1) @K iy (s, (s/cp,l,p)))))}

+f1(cso0(111),5;w1, - @5)
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D 2 Faulonrss(eso(000))ion--ws)
all the 3 — partitions all the different
for ¢3,0(000) permutations of {0,0,1}

3

: Hfﬂn(x@ (5/na))) (S* (€3,0(000));@y(%1 1)@ (R(iy n(ss, (5/ea()))) )}

i=1
:fl(C3,()(000),5;w1,...’ws)

24805081 (c3,0(111)); 01+ -5) @ (1;01) 1 (1;02) @3 (c3,0(111);03- - -05)
| 2 (sos150(c3,0(111));01- - -@s) gy (1;01)3(c3,0(111); 02 - -w4) oy (1; 5)
+f24(s15050(c3,0(111)); @1+ @5)p3(c3,0(111); 01 -@3) 1 (1;04) 1 (1; 05)

+f1(c30(111),5;01,- -+, 05)

24(505051(¢3,0(000)); @1 - -@5) @y (1;@1) 1 (1;02) 3 (c3,0(000); 03 - -5)
| Hf24(505150(¢3,0(000)); 01+ - 5)py (1501 )p3(c3,0(000); 02 - -4 )y (15 5)
+24(515050(€3,0(000) ); 1 - - -5) 93(c3,0(000); @1 - - -@3) @ (1;04) 1 (1; 05)
1

—
Ls <j2w,->
i=1
5 5 4 5 3 5
1+ (jza)i> H(jwi) I+ (jzwi> H(iwi) 1+ (jZ@') H(jwi)
i=3 i=1 + i=2 i=1 + i=1 i=1
5 4 3
Ly (jZa») Ly (ij,) Ly (jZa»)
i=3 i=2 i=1

5
1 Geoi)
i=1

Hence, it can be obtained that
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1

+

: s
L (;zah) L (;zw,) L (;zw,-)
=3 i=2 i=1
5 5 4 5
1 + (ij,) H(/w,) 1 + (]Zw,)H(]a),) 1 + (jZa)i
i=3 i=1 =2 i=1

3

i=1

)

[I

i
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+

5
Ls <ijl~>
Sl:3 5 4
(j wi) [ TG (jzwi>
=3 i=1 i=2

5

[0

i=1

+

L

5

3
D o
=1 =1

] (jooi)
Ly (ij)

[ G

5 +t—
L; (jzwi>
P

5
: HHI (jwi)

i

By using (11.14), the GFRFs for n=3 and 5 of system (11.19) can be obtained.
Proceeding with the computation process above, any higher order GFRFs of system
(11.19) can be derived and written in a much more meaningful form. It can be seen
that, the correlative function of a monomial in the parametric characteristic of the
nth-order GFRF is an n-degree polynomial of the first order GFRF as stated in
Corollary 11.2, and so the nth-order GFRF is. Based on (11.14), the first order
parametric sensitivity of the GFRFs with respect to any nonlinear parameter can be

studied as

aH,,(jah, “e, @) _ aCE(Hn('» .

Oc oc

For example,

aCl o 561

= HHl (jwi)/Ls (jz: 601‘)

Similarly,

8H5(ja)1, N ~,ja)5) o aCE(HS())
acl o 8c1

@, (CE(H,(-)))

~93(CE(H3(+))) = [1,0] - 93(CE(H;3(:)))

~@s(CE(Hs(+))) = [2¢1,¢2,0] - o5 (CE(Hs (+)))-
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Similar results can also be obtained for parameter c,. It can be seen that the
sensitivity of the third order GFRF with respect to the nonlinear spring ¢, and
nonlinear damping c, is constant which is dependent on linear parameters, but the
sensitivity of the higher order GFRFs will be a function of these nonlinearities and
the linear parameters. Note that for a Volterra system, the system output is usually
dominated by its several low order GFRFs (Boyd and Chua 1985). Hence, in order
to make the system less sensitive to these nonlinearities, the linear parameters
should properly be designed.

Moreover, the magnitude of H,(jw,---,jo,) can also be evaluated readily
according to Corollary 11.1. For example, for n=3

|H3(ja)1,- . ~,ja)3)|2 = CE;@3CE3T

i=1

As mentioned above, instead of studying the Bode diagram of H3(jw,- - -,jws3), the
frequency response spectrum of the maximum eigenvalue of the third order fre-
quency characteristic matrix defined in Corollary 11.1 can be investigated. See Fig.
11.4. Different values of the linear parameters will result in a different view. An
increase of the linear damping enables the magnitude to increase for higher w;+w-
+ w3 along the line w;+w;=0. Note that the system output spectrum (11.15a—c)
involves the computation of the GFRFs along a super-planew;+- - -+@,=®. The
frequency response spectra of the maximum eigenvalue on the plane w+---
+w;=w with different output frequency w are given in Fig. 11.5. The peak and
valley in the figures can represent special properties of the system. Understanding
of these diagrams can follow the method in Yue et al. (2005), and further results are
under study.

The system output spectrum can also be studied. For example, suppose the
system is subject to a harmonic input u(f)=Fsin(wot) (F,>0), then the magni-
tude of the third order output spectrum can be evaluated as (Jing et al. 2007a)

. 1 . )
YsGo) <55 Do Halon. - jor) P ) F(ox,)
[ +--~+wk3 =w
Fg
S? Z ‘H3(/wk1""’ka3)|

Wpy + -ty =0

From corollary 11.1, |H3(joy, - - -, jw3)| < /A3(jor, - - -,ja),,)HCE3TH. Therefore,
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Fig. 11.4 Frequency response spectrum of the maximum eigenvalue when m=24, B=2.96 (left)
or 29.6 (right), K=160 (Jing et al. 2008e)

x 10"

@

@

Maximum ebgenvalue
L -

Maximum eigenvalue

o
2

w3 Wl

Fig. 11.5 Frequency response spectrum of the maximum eigenvalue when m=2.4, B=2.96,
K= 1.6 and w;+w,+w3=0.8 (left) or 1.5 (right) (Jing et al. 2008e)

F3
|Y3(iw)|§2—§1 > V(o jon)||CE] |

O+ F W =0

F3 ; .
:Tg\/m > A3 (jeor, -, joon)

W)+t =0

For w=0.8 and m=2.4, B=29.6, K=1.6, it can be obtained that /A3 (jw, - - -, jo,)
<0.006055896. Hence, in this case

Y3 (j)| < 0.00227096F>1/c3 + ¢3

Obviously, given a requirement on the bound of IY3(jw)l, the design restriction on
the nonlinear parameters ¢, and ¢, can be further derived. O
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11.5 Conclusions

A mapping function from the parametric characteristics to the GFRFs is established.
The nth-order GFRF can directly be written into a more straightforward and
meaningful form in terms of the first order GFRF and model parameters based on
the parametric characteristic, which explicitly unveils the linear and nonlinear
factors included in the GFRFs and can be regarded as an n-degree polynomial
function of the first order GFRF. These results demonstrate some new properties
of the GFRFs, which can reveal clearly the relationship between the nth-order GFRF
and its parametric characteristic, and also the relationship between the higher order
GFREF and the first order GFRF. These provide a novel and useful insight into the
frequency domain analysis and design of nonlinear systems based on the GFRFs.
Note that the results of this study are established for nonlinear systems described by
the NDE model, similar results can be extended to discrete time nonlinear systems
described by NARX model (Jing and Lang 2009a). As shown, the results provide a
useful tool for investigation of nonlinear dynamics in the frequency domain and thus
a useful insight into frequency domain analysis and design of nonlinear systems
based on the GFRFs. With the mapping function established, nonlinear influence on
system output spectrum can be studied, which is discussed in the next chapter.

11.6 Proofs

A. Proof of Lemma 11.2
(1) From Proposition 5.1, it can be computed that ¢, (-)cp,q, (*)- - -Cpq (-) comes

k
from the xth-order GFRF, where x =p + ¢ + Z (p; +q;) — k. It is obvious
i=1
that ¢, 4, (-)- - -Cp,q, () comes from the correlative function of the parameter
Cpg() in (5.1) or (11.2) for the xth-order GFRF, i.e.,

q
<H (ja)x_ﬁ,-)k””)HX_q,,, (ja)l, . -,ja)x_q), that is, it comes from H,_,
i=1
pjor,- -, jo,_g). From (5.5), it follows that
x—p—q+1
foq,p (ja)l’ o ',ijfq) =
ryerp =1
Z ri=XxXx—¢g
p

ki
HHI‘,' <jwrx4rls o "jwl'x+7-,> (jwl‘x+l + o +ja)7'X-r[) (Bl)
i=1

P
Obviously, [ ] #,, (jcu,.w - ,w) is a (p,q)-partition for the xth-order GFRF
=1

=
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(2) Supposing that s comes from H(.), each monomial s,, in a p-partition for ¢, 4,

(+): - “Cpyq, (+) comes from the (Z (pj + qj) — X+ 1) th-order GFRF if x;>0,

=1

therefore, each p-partition forc, 4 (-)- - ¢p,q, () corresponds to a combination of

H,,(wr,)H,,(wy,)- - -H, (w; ) which must included in (B1) since (B1) includes
Xi

all the possible (p,q)-partitions, where r; = Z (pj + qj) — x; + 1. That is, each
=1

p-partition for ¢, 4 (-) - -Cpq,(-) corresponds to a (p,q)-partition for the xth-

order GFRF. On the other hand, each (p,q)-partition in (B1) which produces

Cpigy () Cpq () must correspond to at least one p-partition for

Cpig () ’ 'CP/;‘IA'(.)'

(3) Equation (B1) includes all the (p,q)-partitions for the xth-order GFRF which
produce ¢, 4, (-)- - Cp,q, (+), thus the correlative function of ¢, 4 (-)- - Cp,q, (+) are
the summation of all the correlative functions of each (p,q)-partition. Note that
each (p,g)-partition may produce more than one p-partition for
Cpq; (-) €, (). This implies there are more than one cases in the same (p,
@)-partition to produce ¢y, ¢, (-) - -Cpq, (). Therefore, the correlative function of
Cpg, (1) *Cpq,(-) should be the summation of the correlative functions
corresponding to all the cases where ¢, ¢, (+)- - -Cpq, () are produced.

This completes the proof. O

B. Proof of Proposition 11.1

Considering the recursive equation (11.2), the recursive structure in (11.7a) is
directly followed from Lemma 11.1 (2) and Lemma 11.2 (3). That is, the correlative
function of ¢4, (-) - -Cp,q, (-) are the summation of the correlative functions with
respect to all the cases by which this monomial is produced in the same n(5)th-order
GFREF, in each case it should include all the correlative functions corresponding to
all the p-partition forc, 4, () - ¢p,q, (+), and for each p-partition of ¢, ¢, () - -Cpq, (),
the correlative function should include all the permutations of x;x,. . .xp, since the
correlative function f,, (s)—(l- “e8%, (E/ c,,q(-)); (1) - -a)l(,,(g)_q)) is different with each
different permutation which can be seen from (5.5). £, (¢p,¢(+), n(3); @y1)- - *@in()))
is a part of the correlative function for c, ki, --,k,+,) except for
Hy5)—q.p (ja)1 A, ja),,(;),q), which directly follows from (11.2).
Faa(sz, 85, (5/¢pg () @41y - *@in(5)—g)) is @ part of the correlative function with
respect to a permutation of a p-partition sy, - - -8y, (5/pg(+)) of the monomial 5/cpq ()
which corresponds to a (p,g)-partition for the n(5)th-order GFRF, and it is followed
from (5.5). Equation (11.7b) has a similar structure with (11.7a), and is an
optimised one which simplifies the computation of (11.7a) for the reason that

p
H Pu(s; (5/c0a())) (sx,. (E/CM(.)); DK 1) Pr(x (1) (s, (E/c',,[,())))) is identical to

each other under each permutation of a p-partition for the monomial 5/cp,(-), and
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therefore the contribution from each permutation is included in
Fap (sxi+ 8%, (5/¢pg () @41y + *@i(n(5)—g)) Which can be obtained from (5.5) and is
also given in Peyton Jones (2007). This completes the proof. O

C. Proof of Proposition 11.2
From (2.2), it can be obtained that

IHn(jwl,~~~,jwn)|§J J a1, 20 )exp(—j(@171 + -+ onz))|der- -dey

—00 —00

which further gives

sup |Hy(jowr, - jwo,)| < J . J | (21, 7)) |dy - - -dy

Wy ty Wy —00
Suppose at point (@7,- - -,@}), it holds that

sup |Hn(ja)ls o 'sjwn)| = |Hn (ij, o ,]0):)|

@1y Wp

= J J (21, -, 70)|dey - - -dry

From (11.16a), it can be obtained that
|H”(jw1" : "jwﬂ)|2 S ﬂmax(Gn) . CEnCEnT
Thus it holds that

’Hn (ij, : ,]w:) ’2 g ﬂmax (®n (wT; T w:)) : CEnCEnT

o]

N
Hence, J J (o1, el ey, < [P (@) - [CE.

—00 —

Following a similar process, (11.18b) can be obtained. This completes the proof. O

D. Proof of Corollary 11.2
From (11.10), for a parameter corresponding to a pure input nonlinear term cg q(.), it
can be derived that

1 . ki
Pn(s) (COq('); @p(1)" - 'wz(n@)) = T(H (sz(i))
. i=1
Ly (]Z wzu))
i=1

There is no H,(jw,1,) appearing in the correlative function. That is, the degree
of H,(jw,)) in the correlative function of this kind of nonlinear parameters is
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zero. For a parameter corresponding to a pure output nonlinear term cpf.),
it can be derived that Pn(s) (Cpo(-)' 1(1)- Oy (—>>) = @) (Cn(})()
n(s)

I’l
(+); 011y Oy(n(s))) :+H JOI) HH1 jwz
Ly |/ (i)

i=1

The degree of H,(jw,)) in the correlative function of this kind of nonlinear
parameters is n(5). For a parameter corresponding to a pure input—output
nonlinear term ¢ 4(.), it can be seen from (11.10) that the degree of H(jw,,) in
the correlative function of this kind of nonlinear parameters is n(s) —gq.
Hence, after recursive computation, for a monomial cp g, (-)Cpq, () Cpog, (+)s
the degree of H(joy1)) in the correlative function is

k
Z% Z P +4q;) Zq, Zp,« — k. It is also noted that the
i=0

i=0
largest order is n(s) when all ¢;= O corresponding to the parametric monomial
whose parameters are all from pure output nonlinearity, and the smallest order is

k

zero when n(s Z g; corresponding to the parametric monomial whose param-
i=0

eters are all from pure input nonlinearity. Therefore, H,(jow,,- - -,j®,) can be

regarded as an n-degree polynomial function of H,(jw,). This completes the
proof. O



Chapter 12

The Alternating Series Approach to
Nonlinear Influence in the Frequency
Domain

12.1 Introduction

It is known that the transfer function of a linear system provides a coordinate-free
and equivalent description for system dynamics, which greatly facilitates the
analysis and design of system output response. Although the frequency-domain
theory for linear systems is well established in the literature, the corresponding
methods for linear systems cannot directly be used for frequency domain analysis of
nonlinear systems. Nonlinear systems usually have very complicated output fre-
quency characteristics such as harmonics and inter-modulation. Investigation of
these nonlinear phenomena in the frequency domain is far from full development.

In this study, understanding of nonlinear effect in the frequency domain is
investigated from a novel viewpoint for the Volterra class of nonlinear systems.
The system output spectrum is shown to be an alternating series with respect to
some model parameters that define system nonlinearities. The output spectrum can
therefore be suppressed by exploiting the alternating properties to design
corresponding parameters. The concept of alternating series provides a novel
insight into the nonlinear influence on system output response in the frequency
domain. The sufficient (and necessary) conditions in which the output spectrum can
be transformed into an alternating series are studied. To illustrate the new results,
several examples are given, which investigated a single degree of freedom (SDOF)
mass-spring-damper system with a cubic nonlinear damper. All these results dem-
onstrate a novel insight into the analysis and design of nonlinearities in the
frequency domain.

The content of this chapter is organised as follows. Section 12.2 provides a
simple explanation for the background of this study. The novel nonlinear charac-
teristic and its influence are discussed in Sect. 12.3. Section 12.4 gives a sufficient
and necessary condition under which system output spectrum can be transformed
into an alternating series. A conclusion is given in Sect. 12.5.
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12.2 An Outline of Frequency Response Functions
of Nonlinear Systems

For convenience, an outline is given in this section for some results discussed in the
previous chapters relating to frequency response functions that form the basis of
this study. As mentioned, a wide class of nonlinear systems can be approximated by
the Volterra series up to a maximum order N around the zero equilibrium (Boyd and
Chua 1985) described by (2.1a,b). In this Chapter, consider nonlinear systems
described by the NDE model (2.11). The computation of the nth-order generalized
frequency response function (GFRF) for the NDE model (2.11) can be conducted
by following (2.19-2.26). The output spectrum of model (2.11) can be evaluated by
3.1), ie.,

N n
1
Y(jo)=> ———— J Hy(jor, - - jon)[ [ Uljwi)de, — (12.1)
n=1 \/E(Zﬂ") i=1
W+t =0
where,
o.¢) {o¢]

H,(jw, - jw,) = J J ha(z1, - m)exp(—j(w17) + - - - + w,ty) )dzy - - -dry
(12.2)
is known as the nth-order GFRF defined in George (1959). When the system input is

a multi-tone function described by (3.2), the system output frequency response can
be described as:

Y(jw) = Z > Haljor,. - - jor, )F(or,)- - -F(ox,) (12.3)

Wpy + o, =0

where F(wy,) can be explicitly written as

Flwg,) = |Fy |17 for & € {+1,---, £ K} (12.4)
>
where sgn(a) = { 1_1 aa_<00’ and wy, € {w1,---, T wg}.

In order to reveal the relationship between the system frequency response
functions and model parameters, the parametric characteristics of the GFRFs and
output spectrum are studied in Chaps. 5 and 6. The results show that the nth-order
GFRF can be expressed as a more straightforward polynomial function of the
system nonlinear parameters, i.e.,
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H,(jor, -, jwn) = CEHp(jor, - -, jon)) - f(jor - - jon) (12.5)

where, CE(H,(jo1, - - -, jw,)) is referred to as the parametric characteristic of the
nth-order GFRF H,(jo,, - - -, jo,), which can recursively be determined by (5.17) or
(5.18), e.g.,

) . n—1 n—q
CE(HII(/a)l’ o "an)) = Cosﬂ D ( EB] 691 Cl’sf{ ® CE(H’14P+1('))>
q9=1 p=

@ (p%z Cpo® CE(Hn—p-H ()))

Note that CE is a new operator with two operations “®” and “@®” defined in Chap. 4,
and C, , is a vector consisting of all the (p+¢g)th degree nonlinear parameters, i.e.,

Cp.qg = [cp,g(0,-++,0),¢p,g(0, -, 1), -, ¢p 4(K, - -, K)]

ptq=m

In (12.5), f,(jwr, - - -, jw,) is a complex valued vector with the same dimension as
CEH, (joy,- - -, jo,)). In Chap. 11, a mapping ¢,(CE(H,(-)); @1, - - -, ®,) from the
parametric characteristic CE(H,(jw,---,jm,)) to its corresponding correlative
function f,,(jo,, - - -, jw,) is established as

) (CPO% (e () Cpeg (+); w1y 'wl(ﬂ@))
= > {1 (cp.q()sn(3);010) - @1(u(s))

all the 2 — partitions
for 5 satisfying
51(8) =cpq(*) and p>0

> Yo aalsm s, 5/ () om0y - @105)-9)

all the p — partitions  all the different
for 5/cpq(+) permutations
of {85, 8¢, }

T o) (55 6Fem )i R00) R0y 1))}
(12.6a)

where the terminating condition is k=0 and ¢(1; ®;)=H,(jw;) (which is the first
order GFRF, i.e., transfer function when all nonlinear parameters are zero),
{55, -5, } is a permutation of {sy,,-- sy, }, @y(1)- - -y(n(s)) represents the frequency
variables involved in the corresponding functions, /i) for i=1...n(5) is a
positive integer representing the index of the frequency variables,

X
5= Cpygy ()Cprg, (1) Cpig, () n(sx(5)) :Z(Pi‘HIi) —x+1, x is the number of
p


http://dx.doi.org/10.1007/978-3-319-12391-2_4
http://dx.doi.org/10.1007/978-3-319-12391-2_11

240 12 The Alternating Series Approach to Nonlinear Influence in the Frequency Domain

X

the parameters in s,, Z(p, +g;) is the summation of the subscripts of all the
i=1

parameters in s,. Moreover,

i—1

X(i) = > n(s5,(5/cp ()

=1
K
L,(jo; + -+ jw,) = an o(r))(jor + -+ + jw,)",
r1=0
q » n(s)
fl(cp,q(')’”(§)§wl(l)' H JOi(n(5)—q-+i) p+I/Ln(§) jzwl(i)
i=1 i=1

(12.6b)
Faa(s5,- =55, (5/¢pg (1)) 0101) - @t(n(5)—g))

H (]CUZ : +jw1(?(i)+n(s;’,(E/cpq(-)))))ri (12.6¢)

i=1

The mapping function ¢,(CE(H,(-)); w1, - - -, ®,) enables the complex valued func-
tion f,(jw, - - -, jw,) to be analytically and directly determined in terms of the first
order GFRF and model nonlinear parameters. Therefore, the nth-order GFRF can
directly be written into a more straightforward and meaningful polynomial function
in terms of the first order GFRF and model parameters by using the mapping
function ¢,(CE(H,(")); w1, - - -, ®,) as

H,(joi,- -, jw,) = CE(H,(jo1, - -, jo,)) - 9,(CE(H,(*)); 01, -,0,)  (12.7)

Note that although the recursive expression of ¢,(CE(H,(-)); ®y,- -+, ®»,) seems
complicated, both CE(H,,(jw,, - - -, jw,)) and ¢,(CE(H,(-)); w1, - -, ®,) can be com-
puted through the symbolic manipulation using some available computer software
such as Matlab. Therefore, given any nonlinear model as (2.11), a clear polynomial
expression as (12.7) can be obtained readily.

Using (12.7), (12.1) can be written as

N
Y(jw) = CE(Hu(jwr. - -»jon)) - Fy(jo) (12.8a)

where F,(jo) = W J @u(CEH,(); 01, @) - H Uljw;)do,.
o1+, =0 -
Similarly, (12.3) can be written as
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Y(jw) = CE(Hy(jo,.- . jor,)) - Fa(w) (12.8b)
n=1

where F,(jo) = 3 Z @ (CEH,(-)); 0k, - ) - F(og, ) - -F(ay,).
Wpy + -+, =0

Note that (12.8a) or (12.8b) is also a polynomial function of model parameters
whose structure is determined by the parametric characteristics CE(H,(jo, - - -,
jm,)) and truncated at the largest order N. The significance of the expressions in
(12.7, 12.8a,b) is that, the explicit relationship between any model parameters and
the frequency response functions can be demonstrated and thus it is convenient to
be used for system analysis and design. For example, if one wants to know how a
parameter c is related to the GFRFs and output spectrum, one can directly find the
polynomial expansions of the GFRFs and output spectrum in terms of the parameter
¢ using the method above. Usually, in this polynomial expansion, the first several
orders take a dominant part in the overall effect of parameter c. Then for an analysis
and design purpose, one needs only to study the first several coefficients of the
polynomial which are determined by ¢, (CE(H,(-)); @1, - -, ®,).

Example 12.1 Consider a simple example to demonstrate the results above.
Suppose all the other nonlinear parameters in (2.11) are zero except ¢ 1(1,1),
coa(1,1), c0(1,1). For convenience, c¢;;(1,1) is written as c¢;; and so
on. Consider the parametric characteristic of H3(.), which can be derived from (5.8),

CE(H3(ja)],m,jw3))
=Co3®Cy, ®Co,z@Ci1 DCLIRCr @B Cr1 BC1 2P Cr0RCo @C;O@C&O
:C1,1 ®C0,2@Ci1 EBC],I ®C2,0@C2,0®C0,2@C%’0

Note that C1,1:C1,1’ C0?2:C0’2, C2’0:C2,0. ThllS,
CE(HA(iw1.---.j — 2 2
(Hs3(joor, - -+, jw3)) = [€1,1€0,2, €] 1> C1,1€2,0, €2,0€0,25 €2,0C1,15 C3.

Using (12.6a—c), the correlative functions of each term in CE(H;(jwy, - - -, jw3)) can
all be obtained. For example, for the term c; jco, it can be derived directly from
(12.6a—c) that

%(5)(011()002() (1) Di(n(5)) ) @3(cr1(-)con(-); @1 --@3)
=f1(c1,1(),3;01--@3) - f ( 1(cr1(eo2()/er1());01,02) - @y (s1(co2()); @1,02)
=fileri(). 301 w3) - f ( 20);01,02) - o(con ()i, 02)
Jos oy +jaon) 22 Jenj@ajos o tjes)
"L (jor + -+ jws) Ly(jo1 +jwr)  Li(joy +-- - +jw3)La (joi +joo)

@3

Proceed with the process above, the whole correlative function of CE(H3(jwq,- -+,
Jj®s3)) can be obtained, and then (12.7, 12.8a,b) can be determined. The process
above demonstrates a new way to analytically compute the high order GFRFs, and
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the final results can directly be written into a polynomial form as (12.7, 12.8a,b), for
example

H3(/0)1,"',j0)3) = [Cl,lCo,z,Cil,Cl,lczo,C2,0€0,2,C2,0C1,1,C%,0]
@3 (CE(H3(jor, - -+, jw3) ) o1, -+, @3)
= ¢1,1C0,2 - @3(C1,1€0,2; @1, +, @3) + C%,l '403(6%,1;601, . ~,w3)
+... +c§’0 . ¢3(c%,0;w],-~~,w3)

Compared with the recursive computation of the GFRFs in Appendix E, the
expression above demonstrates the polynomial relationship between model param-
eters and the GFRFs in a more straightforward manner.

As discussed in Chap. 11, it can be seen from (12.7, 12.8a,b) and Example 12.1
that the mapping function ¢,(CE(H,(-)); ®1,---,®,) can facilitate the frequency
domain analysis of nonlinear systems such that the relationship between the
frequency response functions and model parameters, and the relationship between
the frequency response functions and H,(jw,,) can be demonstrated explicitly, and
some new properties of the GFRFs and output spectrum can be revealed. As
revealed in those previous studies, the output spectrum of a nonlinear system can
be expanded as a power series with respect to a specific model parameter (e.g., ¢) of
interest by using (12.8a,b) for N—oo. The nonlinear effect on system output
spectrum incurred by this model parameter ¢, which may represent the physical
characteristic of a structural unit in the system, can then be analysed and designed
by studying the resulting power series in the frequency domain. Note that the
fundamental properties of this power series (e.g. convergence) are to a large extent
dominated by the properties of its coefficients, which are explicitly determined by
the mapping function ¢,(CE(H,(-)); w1, -+, w,). Thus studying the properties of
this power series is now equivalent to studying the properties of the mapping
function @, (CE(H,(-)); @1,---,@,). Therefore, the mapping function ¢,(CE
(H,(")); w1, - - -, w,) introduced above provides an important and significant tech-
nique for this frequency domain analysis to study the nonlinear influence on system
output spectrum.

In this Chapter, a novel property of the nonlinear influence on system output
spectrum is revealed by exploring the new mapping function ¢, (CE
(H,(")); @1, - - -, w,) and frequency response functions defined in (12.7, 12.8a,b). It
will be shown that the nonlinear terms in a system can drive the system output
spectrum to be an alternating series under certain conditions when the system is
subjected to a sinusoidal input, and the system output spectrum will be shown to
have some interesting properties when it can be expanded into an alternating series
with respect to a specific model parameter of interest. This provides a novel insight
into the nonlinear effect on the system output spectrum incurred by corresponding
nonlinear terms in a nonlinear system.
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It should be noted that the alternating series is an important concept adopted in
this study, which might not be something surprising in practice. It can be seen that a
stable root of a linear system is an alternating series in Taylor series expansion (for
example the Taylor series expansion of s%z)' Therefore, the alternating series might
be a natural characteristic related to system dynamics and a potentially promising
way to understand nonlinear behaviours in the frequency domain. However, all
these are yet to be developed and this is the first study in this direction.

12.3 Alternating Phenomenon in the Output Spectrum
and Its Influence

The alternating phenomena and its influence are firstly discussed in this section to
point out the significance of this novel property, and then the conditions under
which system output spectrum can be expressed into an alternating series are
studied in the following section.

For any specific nonlinear parameter ¢ in model (2.11), the output spectrum
(12.8a,b) can be expanded with respect to this parameter into a power series as

Y(jw) = Fo(jo) + cF\(jo) + *Fa(jo) + - - + F,(jo) + - -- (12.9)

Note that when c represents a pure input nonlinearity, (12.9) may be a finite series;
in other cases, it is definitely an infinite series, and if only the first p terms in the
series (12.9) are considered, there is a truncation error denoted by o(p). F(jw) for
i=0,1,2,. . . can be obtained from F;(jw) or F;(jw) in (12.8a,b) by using the mapping
@ (CEH,(")); w1, - -, w,). Clearly, F(jw) dominate the property of this power
series. Thus the property of this power series can be revealed by studying the
property of ¢, (CEH,(-)); w1, - -, ®,). This will be discussed in detail in the next
section. In this section, the alternating phenomenon of this power series and its
influence are discussed.
For any v € C, define an operator as

sen,(v) = [sen, (Re(v)) sgn, (Im(v))] (12.10)
+1 x>0

where sgn,.(x) =< 0 x=0 forxeR.
-1 x<0

Definition 12.1 (Alternating Series) Consider a power series of form (12.9) with
c>0. If sgn.(Fi(jw)) = — sgn.(F;,1(jw)) for i=0,1,2,3,..., then the series is an
alternating series.
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The series (12.9) can be written into two series as

Y(jo) = Re(Y(jw)) + j(Im(Y (jo)))
= Re(Fo(jo)) + cRe(F) (jw)) + ’Re(Fa(jo)) + - - - + ’Re(F,(jo)) +
+ j(Im(Fo(0)) + cIm(Fy (j)) + CIm(Fa(j0)) + - - + Im(F, (jo)) + )
(12.11)
From Definition 12.1, if Y(jw) is an alternating series, then Re(Y(jw)) and Im(Y(jw))

are both alternating. When (12.9) is an alternating series, there are some interesting
properties summarized in Proposition 12.1. Denote

Y(jw),_,, = Fo(jo) + cFi(jo) + Fa(jo) + - - + F,(jo) (12.12)

Proposition 12.1 Suppose (12.9) is an alternating series for ¢>0, then:
(1) if there exist 7>0 and R>0 such that for i>T

[ Re(Fi(jw))  Im(Fi(jo))
mm{ Re(Fiy1 (jw))’ Im(Fi+1(iw))} R

then (12.9) has a radius of convergence R, the truncation error for a finite
order p > T is lo(p)l <’ lIFp+ 1(w)l, and for all n>0,

Y (jo)| € 0, = |

. )1~>T+2nH and Hn+1 C Hn;

) IY(/'a))I2 =Y(jw)Y(—jw) is also an alternating series with respect to parameter c;
Furthermore, [Y(jw)> =Y(jo)Y(—jw) is alternating only if Re(Y(jw)) is
alternating;

(3) there exists a ¢ > 0 such that am’“’)

‘<0f0r0<c<c
Proof

(1) Y(jw) is convergent if and only if Re(Y(jw)) and Im(Y(jw)) are both convergent.
Since Y(jw) is an alternating series, Re(Y(jw)) and Im(Y(jw)) are both alternat-
ing from Definition 12.1. Then according to Bromwich (1991), Re(Y(jw)) is
convergent if IRe(c 'F ; (jw))l > IRe(c'*'F ;, 1(jo))| and lim, ., |Re(c'F;(jw))|
= 0. Therefore, if there exists 7>0 such that [Re(c'F,(jw))| > Re(c"* 'F; . 1(jw))|
for i>T and lim; ., [Re(c'F;(jw))| = 0, the alternating series Re(Y(jw)) is also

convergent. Now since there exist 7>>0 and R>0 such that — % > R for

i>T and note c<R, it can be obtained that for i>T
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@

_Re(ciHF,»H(ja))) B Re(cFi+1(ja))) _

Re(c’Fi(jw)) ~ Re(Fi(jo)) <!

Re(cFiH(ja)))‘ <
Re(F;(jw)) R

ie., IRe(ciF,-(ja)))I > [Re(c'* 1F,-+ 1(jw))! for i>T and c<R. Moreover, it can also
be obtained that for n>0
. 1 .
[Re(Fr-a(jo))| < lRe(Fr(jo))]
It further yields that

Re (™" Fr(jo)| < (R) T [Re(Fr(jow))]

That is, lim [Re(c" ™" Fr,,(jw))| = 0. Therefore, Re(Y(jw)) is convergent.
n—oo

Similarly, it can be proved that Im(Y(jw)) is convergent. This proves that
Y(jow) is convergent. The truncation errors for the real convergent alternating
series Re(Y(jw)) and Im(Y(jw)) are

0r(p)] < 1 [Re(F i1 ()| and [os(p)] < ! [Im(F 1 (j)|

Therefore, the truncation error for the series Y(jw) is

l0(p)] = \/or(p)? + 01(p) < T |F i1 (jo)|
It can be shown that for Re(Y(jw)) and Im(Y(jw)), for n>0

Re (Y (j),_r1)| < - < [Re(¥ (jo) 1HT+2n+1)| < [Re(Y (jo))|
< ‘Re(y(lw)Hﬂan < ‘Re(ygw)HT”
‘Im(Y(jw)lﬂTﬂ)’ << |Im(Y 1~>T+2n+1)| < [Im(Y (jo))|
< [m(Y(jo), 1:0,)| < -+ < [Im(¥(jo), )]
Therefore, Y(jo); 11l <--- <IY(jo)1 - 14204+ 1l <IY(jo)l <IY(j); — 7424l
< <Y (o) o,

Y (jo)* = Y (jo)Y (—jo)
(Fo(jo) + cF(jo) + *Fa(jo) + - -) (Fo(—jw) + cFi(—jw), +*Fa(—jo) + -+

> c"i:Fi (jo)Foi(—jo)

n=0,1,2,... =0

It can be verified that the (2k)th terms in the series are positive and the (2k+1)
th terms are negative. Moreover, it needs only the real parts of the terms in
Y(jw) to be alternating for 1Y (jw)I* = Y(jw)Y(—jw) to be alternating.
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8|Y(]a))| 1 oY ()

Q) ——+

1 . .
2|Y(jw)|{Re(F()(](U)Fl (—jw))+c

ncﬂlz(;p,(;w)pn,-(jw)}

5|Y(/w

n=1,2,...

Since Re(Fy(jw)F(—jw)) < 0, there must exist¢ > 0 such that =—="—= Il < 0 for
0 < ¢ < c. This completes the proof. |

Proposition 12.1 shows that if the system output spectrum can be expressed as
an alternating series with respect to a specific parameter c, it is always easier to
find a ¢ such that the output spectrum is convergent and its magnitude can always
be suppressed by a properly designed c. Moreover, it is also shown that the low
limit of the magnitude of the output spectrum that can be reached is larger than
IY(jw), . r+2! and the truncation error can also be easily evaluated, if the output
spectrum can be expressed into an alternating series.

An example is given to illustrate these results.

Example 12.2 Consider a SDOF spring-damping system with a cubic nonlinear
damping which can be described by the following differential equation,

my = —koy — By — ¢y’ + u(r) (12.13)

Note that &, represents the spring characteristic, B the damping characteristic and
c is the cubic nonlinear damping characteristic. This system is a simple case of NDE
model (2.11) and can be written into the form of NDE model with M=3, K=2,
C10(2) =m, 610(1) =B, C]()(O) = ko, C30(1 1 1) =, COI(O) =—1 and all the other
parameters are zero.

Note that there is only one output nonlinear term in this case, the nth-order GFRF
for system (12.13) can be derived according to the algorithm in (2.19-2.26), which
can recursively be given as

C3,0(17 17 I)Hn,?)(jwl’ o "ja)'l>
Ln(jwl + - +]a)n)

Hn(jwl, o "j(l)n) =

ZH (i, jo))Hy_i 2 (joipr, - - - jon) (jor + - - + jo;)
n,l(]a)ls c 's]wn) = Hn(la)l’ o "jwn)(jwl +--- +./wn)

Proceeding with the recursive computation above, it can be seen that H,(jo, - - -,
Jjw,,) is a polynomial of c3¢(111), and substituting these equations above into (12.8a,
b) gives another polynomial for the output spectrum. By using the relationship
(12.7) and the mapping function ¢, (CE(H,(-)); @, -, ®,), these results can be
obtained directly as follows.
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For simplicity, let u(f) = F;sin(Qf)  (F,;> 0). Then F(wy,) = —jkiFy, for k; = £1,
Wy, =k, and /[=1,---,n in (12.8b). By using (5.15) or Property 5.3, it can be
obtained that for n=0,1,2,3,. ..

CE(Hani1 (jan, -+, jor,,.,)) = (c3,0(1,1,1))" and CE(Hau(jox,, - -, jan,,)) = 0
(12.14)

Therefore, for n=0,1,2,3,. ..

H2n+1 (jwkl P 'sja)kz,,H) =c"- Popt1 (CE(H2n+1(')); WDy oy a)anAl) and
Hoy(jax,, -+ jar,,) =0 (12.15)

Then the output spectrum at frequency Q can be computed as

[Y=1/2]
Y(Q) = Y " Fun(Q) (12.16)
n=0

where F 2n+1(jQ) can be computed as

~ 1
Fan(®) =gz > 0 (CEHua())ion. o)

O+ F Oy, =Q
()™ Rk
1
= ST Z Pos1 (CE(Hany1 () 01,5+ 01,
O+ F Wy, =Q
. (_1)n+1j(Fd)2n+1 . (_l)n
Fd 2n+1
- _J<—) Z ¢2n+1(CE(H2n+1('));wk1"‘ '7w/<2u+1)

2
O+ F gy, =Q

(12.17)

and Pon+1 (CE(HZH-H ())7 Wy wkz:m) = P11 ((;30(17 L l)n; WOy * 0 wk2n+1) can
be obtained according to (12.6a—c). For example,
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1
@3 (c30(111); s oy, 01,) = 3 H(/wk/ HH (joor,)
L szk,)
1T Vo)
i=1 HH] (]Cl)k
Ls J wk,)

¢s (C3,0(1 11)e3,0(11 1)§wk1s""wk5>

=f1 (63,0(111),5;(1)/(],--~,wk5>

> > [fz(z(le'“Sxp (%,0(111))§wk1=”"wk5>

all the 3 — partitions  all the different

for ¢3,0(111) permutations of {0,0,1}

3
1, (55, 5/ena0) (Y_ (5ot T+ (%0 (5, (et >))))}
=1 (03,0(1 11),5;0,,+ "wk5>
f2a (SoS()Sl (Cs,o(lll));wk1 . "“’ks)‘/’l (l;wkl )rl)l (1;(»1(2)1/13 (63,0(1 1), '“’ks)
24 (Somo (6‘3,0(11 1)) FOf, s vwks)tﬁ] (1;wk, >¢3 (6‘3,0(1 1);wy, - 'wk4>¢l (11wk5)
24 (315050(630(111));0%l o ',wk5>¢3 (630(111);(% - 'wk3>¢1 (1;wk4)¢1 (1§wk5>
1

(i)

i=1

5 5 4 5 3 5
(JZ wk,> H (jeor,) (]Z wk,.) H (jeor,) (/Z a)k,) H (jeor;)
i=3 : i=1 + i=2 : i=1 + i=1 : i=1
Ls (JZ Wy, L (JZ wk,) L3 <]Z wk,)
=3 i= i=1

where oy, € {Q, — Q}, and so on. Substituting these results into (12.16), the output
spectrum is clearly a power series with respect to the parameter c. When there are
more nonlinear terms, it is obvious that the computation process above can directly
result in a straightforward multivariate power series with respect to these nonlinear
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parameters. To check the alternating phenomenon of the output spectrum, consider
the following values for each linear parameter: m=240, ky=16,000, B=296,
F4=100, and Q =8.165. Then it is obtained that

Y(jQ) = F1(Q) + cF3(Q) + ?F5(Q) + - -- i
(Fa . w3 2 H (/Q)°H, (jQ)
= (=L )H,(jQ) + 3 (&
’(2) 109 300 )
F3(E)° Q’|H,(jQ)|*H, (jQ) ( Jj6Q Q=3 )+
: Li(jQ) Li(jQ) ~ Li(j3Q)  Li(—jQ)
= (—0.02068817126756 + 0.00000114704116i)
+ (5.982851578532449¢-006 — 12.634300276113922¢-010i)c
+ (—5.192417616715994e-009 + 3.323565122085705¢-011i)c2 + ...

(12.18a)

The series is alternating. In order to check the series further, computation of ¢,,
(63,0(1, L, 1D)" g, -,a)kzw) can be carried out for higher orders. It can also be

verified that the magnitude square of the output spectrum (12.18a) is still an
alternating series, i.e.,

Y (jQ)* = (4.280004317115985¢-004) — (2.475485177721052¢-007)c
+ (2.506378395908398e-010)c? — . ..

(12.18b)

As pointed in Proposition 12.1, it is easy to find a ¢ such that (12.8a,b) are
convergent and their limits are decreased. From (12.18b) and according to Propo-
sition 12.1, it can be computed that 0.01671739<1Y(jQ)I<0.0192276<0.0206882
for c=600. This can be verified by Fig. 12.1. Figure 12.1 is a result from simulation
tests, and shows that the magnitude of the output spectrum decreases when
¢ increases. This property is of great significance in practical engineering systems
for output suppression through structural characteristic design or feedback control.

12.4 Alternating Conditions

In this section, the conditions under which the output spectrum described by (12.9)
can be expressed as an alternating series with respect to a specific nonlinear
parameter are studied. Suppose the system is subjected to a harmonic input u
(6)=F4sin(Qt) (F;>0) (The results for this case can be extended to the general
input) and only the output nonlinearities (i.e., ¢, o(.) with p>2) are considered. For
convenience, assume that there is only one nonlinear parameter cpo(.) in model
(2.11) and all the other nonlinear parameters are zero.

Under the assumptions above, it can be obtained from the parametric character-
istic analysis in Chaps. 5 and 6 as demonstrated in Example 12.2 and (12.8b) that
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Fig. 12.1 Magnitude of output spectrum (Jing et al. 2011)

Y(Q) =Y1(Q) +Y,(jQ) + - + Y 1)ar1 Q) + -+
= F1(Q) + cpo()Fp(Q) + -+ Cp,o(')nﬁ(pﬂ)nﬂ(g) +--
=F1(Q) + cpo()Fp(Q) + -+ + Cp,O(')nﬁ(pﬂ)nH(Q) +-
(12.19a)

where @y, € {£Q}, F (p—1)n+1(/Q) can be computed from (12.8b), and 7 is a positive
integer. Noting that F(wy,) = —jkiFy, ki = £1, o, =kQ, and I=1,---,n in
(12.8b),

_ , 1
F o 1)ns1 () = o0t > (p(j)fl)nJrl(CP,O(')n;wkw'"awk(,,q)wl)

@y, +“‘+a)k(p71)n+l =Q

(=F) T Kk ki
(12.19b)

If p is an odd integer, then (p—1)n+1 is also an odd integer. Thus there should be
(p—1)n/2 frequency variables being — Q and (p—1)n/2+1 frequency variables being
Q such that @y, + -+ + @y = Q. In this case,

p—1)n+1

. —1n . . n—1)n/2 —1n
(—Fa) P Kk Koy = (1)) - (P72 (Fg) ot
. (71)(17*1)"/2

— _j(Fd)(pfl)}’H»l
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If p is an even integer, then (p—1)n+1 is an odd integer for n=2k (k=1,2,3,...) and
an even integer for n=2k—1 (k=1,2,3,...). When n is an odd integer, w;, + - --

i, ., 7 Q for wy, € {£Q}. This gives that I?(],_U,H_IUQ) = 0. When n is an
even integer, (p—1)n+1 is an odd integer. In this case, it is similar to that p is an odd
integer. Therefore, for n>0

Flp—1)ns109) =

(Fa (p—1)n+1 . n. if p is odd or n is even
‘-’(T) > P(p—1)n+1 ep.0C) g SOk

Oyt Ok, g, =

0 else

(12.19¢)

From (12.19a—c) it is obvious that the property of the new mapping
P(p—1)nt1 ("17.0(')"?“%1"""”k(,,fl),,ﬂ) plays a key role in the series. To develop the

alternating conditions for series (12.19a), the following results can be obtained.

Lemma 12.1 Thate, ), (cp,o(')"; Op,s wk(pflml) is symmetric or asymmet-

ric has no influence on ﬁ(p—l)rH—l Q).

This lemma is obvious since Z (+) includes all the possible

@y, +~<+mk(p71)”+1 =Q

permutations of (a)kl RN a)kZIH). Although there are many choices to obtain the
asymmetric @, 1), (cp,o(-)"; Wpys s wk(lﬂ)l,_l) which may be different at differ-
ent permutation (a)kl R wk(pfl)nﬂ) , they have no different effect on the analysis of
F (1)1 (/).

Lemma 12.2 Consider parameter cp (I1,12,. . - ,Ipiq)-

(al) If p>2 and g=0, then
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‘/'n(s)(Cp.o('>"%w1(1)‘“ﬂ’z@(s))) b 1)n+1(170() 01O (p— ln+1))
(- (pill_)[nHH' (j”ﬁ(i))
i=1

Lip—1)n+1 (f“’l(1) T +jwl((p71)n+1)>

P, -
> {ll_ll¢(p—1)xi+1 <"P,0<‘) SOX() 1) '“’I(Y(i)+<p—1)z,-+1)>

all the different combinations
of {Kl Ro... ,ip} satisfying

X{+--4+Xp=n—-10<X<n-1

ne* (Xq, -, X P "
e (51 %). > H(fw oty }

r (rlv ’TP) all the different =1

permutations of

{klv“'wkv}

where,

¢/(p—1>n+1<"1%0(‘>";w1( 1) PU(p—1)n+1)
-1

Lip—1)n+1 <f‘"1(1)+ “HIO1(p—1)n+1 )

I X
> [H¢ (p—1)x;+1 ('P»O('V';“’z()_((i)ﬂ)'"wz()_(<i)+(p71)x,-+1)>

all the different combinations =1
of {il,iz, e ,ip} satisfying
i1+-~+ip:nfl, Ogiignfl

* e
r (rl’ ,rp) all the different '

—

1

(jwl(?_f(i)ﬂ)+ O R )+ (- l)v,+1)> }

permutations of

)

the termination is (p'l(l;m,-):l. n (11 ;p) #,'n, ni+.. +n.=p, e is the
number of distinct differentials r; appearing in the combination, n; is the
number of repetitions of r;, and a similar definition holds for »} (31 . ~,x,,).
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(a2) If p>2,q=0 and r;=r,=. . .=r1,=T, then

Pp—1)n+1 (Cp,O(')"; w1y 'a)l((p—l)fH—l))
(p—1)n+1

0" T [Geonn) Hi (o))

i=1

Lip— 11 (ouy + -+ -+ joyp-1yns1))

all the different combinations
of {il,ig, e ,ip} satisfying
X4 +%=n—-1,0<%<n-—1

P _
: H(p(p—l),?[+l (Cp,O(')q? Di(X(i)y+1) 'a’l(i(f)+(p—1)§,+1))
i=1

where,

if =004 15 (CP,0<')Xi;wl()_((i)+l)' ' ""z(?(i)+(pf1>;,-+1)) =1,
otherwise,

Pp-1)7+1 (CP,O(')M3 Di(x(i)+1)" "‘)1(?(5)+(p—1)},+1))
(j“’l(?‘f<i>+1) T +f‘"l()‘f<i>+<p—1>x-+1)>

L (o100) 7))

1y (Xl» .. .’Xp)
all the different combinations
of {xl,xz, . ,xp} satisfying
X1+"'+Xp:f[—1, OSXJ §X,~—1

p

0o (C”’O(')ﬁ; “I® o) ’“’z(i’o)+<p—1>xj+1)>

The recursive terminal of 4”,(/1771).?#1 (Cp,O(')Xi; Dy(%() 1) 'wl(Y(i)+(p—1)§,-+1))

isx,‘ =1.
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Proo{
Pn(3) "p,0<'>"%“1(1)'"wz<n<§>)> = P(p—1)n+1 <fp,0(')”pv0<'>“'va0<'>?”’1(1)'"W(1<p71>n+1>)
= > {fl ("pv0<'>’°" ~hnt 19“’!(1)“""1<<p—1>n+1>>
all the 2 — partitions
for s satisfying

515) =¢p0()

z Sl (0 oy o)

all the p — partitions all the different

for 5/c30() permutations

of {Sx,w-mxp}

ljl( (o)) ( (20" Y9y 10, (cp,o<->"*')))) } }

1

L(p*l)I’H»l (/'wl(l) + 'H+jw[((p71)n+l)>

7
4 !
Z Z |: (j{u — . +eotjo . )
all the p — partitions all the different i=1 I(X(I)Jrl) Z(X(l)+n (s‘;i (Cp_o(') l)))
for E/L'pvo(') permutations

of {sx]7-~usxp}

. ¥ s= | ¢ =16 R ):|
ll;‘[lq)n(s;i (c,,,o(-)"il)) (Ax’ < p,O( ) >’ l()?(i)ﬂ) l()?(i)+n(s;i ((',LO(')’I?I)))

1

Lp-1nt1 (f'wm) e ”"’Z<<p—1>n+1>>

[ i ( >I’
Z Z H Jjo +otjo _

Pl I\ X(i)+1 HX(D)+(p—-1)x+1
all the different combinations all the different i=1 ( ® ) ( @+-1)x )

of {;1 ,iz, .. ‘Yp} satisfying permutations of

X{+:-+Xp=n—1, 0<X; <n-l each combination

p -

. — . AR

ll;[lw(p—l)x&l(épo() ,wl@(i)ﬂ) w/()_((i)+(pfl)}i+l)>
Note that different permutations in each combination have no difference to

p - n,
il;[1¢(p,1)x,»+1("po<-> I;wl(i(i)ﬂ)mwz(i(i)ﬂpfl)x,-ﬂ))’ thus ¢, 1)0+1(p.0() 50100 1yn+1)

can be written as
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P(p—1)n+1 (Cp,o(')"%ﬂn‘ : 'w(p—l)n+1>
|

Lip—1)n+1 (j“’l(l) o +«iwl((pfl)n+l)>
P _
> [Topvm 01 (cn0C 505000 O1g0s o1
L1?(p-Dx+1\‘p. IX()+1) " 1K () +(p-1)%+1)
all the different combinations =1
of {il,iz, . ,Xp} satisfying
Xj 4+ +X3=n—1,0<X<n—1

>

all the different !

—

<"‘”1(i(z‘>+1) o ”“’1(}?<z‘>+<p—1>z+1)>

permutations of
each combination

1

L(pfl)n+l <j(ul(1> 4. +jw[((p71)n+l)>

<

> Pp-1)x+1 <Cp,o<'>x’ X (@)+1) 'ml(Y(i)Jr(p—l)}le))

all the different combinations =1

of {il X2, ,ip} satisfying

X+ +Xp=n—-1,0<% <n-—1

=

M 3

I
~p) (-’“’z(mm)*"'”“’I(Xu)wfl)ml))
e\, Tp all the different '

—

1

permutations of

(1)

n¥(%y,--% ) and n*(@ry,---,1,) are the numbers of the corresponding combinations
x \ M P T p

involved, which can be obtained from the combination theory and can also be
referred to Peyton Jones (2007). From an inspection of the recursive relationship in
the equation above, it can be seen that there are (p—1)n+1 H,(jw;) with different
frequency variable at the end of the recursive relationship. Thus they can be brought
out as a common factor. This gives

Pp-1)n+1 (Cp,O('>n§ (1) - '60/<(p71)n+1))
(p—1)n+1
= (=1 H Hi (jor) - 0 1y0s1 (€05 @11y 0y p-1ynrny) - (12.20a)
i=1

where,
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-1

P11 (cp.0C)" 011y~ 1oty = ) )
Lip—1)n+1 (/wl(l) +oe +-1wl((p71)n+l)>

> H¢(ﬂ—1)¥i+l (CPO(')E* (X @i)+1)" 'a’l(Y(i)prl)EH))

all the different combinations =1

of {il,iz,...,ip} satisfying
Xp+-+Xp=n-10<x<n-1

P i
> H(jwl()_((i)+l) +'“+'/w1()_((i)+(pfl)z_q+1))
all the different =1
permutations of

{1}

(12.20b)

T
the termination is (p'](l;wi)= 1. Note that when x; = 0, there is a term (jwl(Y(i)Jrl))
(= - P ri
: n (Kiy %) i i
appearing from o e > IT (/ 1(®)+1) T +jw](X(i>+(1)71>}i+l)> .
all the different =1
permutations of

)

It can be verified that in each recursion of q/(p et 1(c,,,o(-)”; ®[1y - @i Dn+1))» there

may be some frequency variables appearing individually in the form of (jw[()? i+ 1)> f,

and these variables will not appear individually in the same form in the subsequent
recursion. At the end of the recursion, all the frequency variables should have
appeared in this form. Thus these terms can also be brought out as common factors
if ri=rp=...=rp. In the case of r\=r=.. =ry=r,

nx*(ila"'aip) Z ﬁ( . Ti
) JOxGi)+1) T FIOUR (4171 )
() drerent 1 (X0+1) (x6 )
permutations of
{ri o}
)4 ri
e _ . .
=n" (X1, %) - H(le(i(i)ﬂ) t-- +le(f(i)+(p71)f,‘+l))
i=1

Therefore (12.20a,b) can be written, if r;=r,=...=rp, as
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Pp— 1n+1(Cp of- )",wz COy((p— 1)n+1))
p 1)n+l
(o) Hi (o) ] - #1001 (€0.00)"s @100) @15 13011)
i=1
(12.21a)

"’Icr»—1>n+1(“p.0<'>"%“’1<> (- 1s1))
-1

Lo?fl)nﬂ(/“’l(l) oy (p—)n +1>)

p X
> H¢ (p—1)%i+1 ( ‘p, 0('>X';“’1()?(i)+1) N ""1()?(i)+(p71)z,r+1))

all the different combinations i=
of {i] X0, ,ip} satisfying
X+ +Xp=n—1,0<%<n-1

%=
- Ny (xl, ,xp)

ri(1-6(%))
(’“’I(MH)+ I R )+ (- 1>x,+1)>

E'u

i=1

(12.21b)

(12.21b) can be further written as

!

¢([J71)n+1 (cp,0(~)"; @y(1)"* '60/(<pf1)n+1>)
-1
Lip— 11 (jory + -+ - + jop-1yns1))

Z nx*(ila"'aip)

all the different combinations

of {X1,%,...,Xp} satisfying
X+ +X=n—-1,0<x<n-1

p )
’ Hd)(ﬂ—l))?ﬁl (CP’O(')"5 Di(X(i)+1)" 'wl()?(i)Jr(pfl)}ﬁl)) (12.22a)
i1

where, if X; = 0,

"

Pp-1)z+1 (CpsO(')X‘ PO(R(+1) 'wz()?<i)+<p—1>x,»+1)) =1

otherwise,
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"

P17 +1 (Cp,o(')xiJ w/(}(i)ﬂ)' : 'wl(i(i)+(p71).¥,v+1))
= (ja)z(m)ﬂ) T +jwz(§(;)+(p—1>.xi+1))
¢ ) Xi,
Pp-1)7+1 (‘p,O(') POy +1)" 'w/(i(m(pﬂ)xiﬂ))

(fa’z(i(i)ﬂ) +- +ja’/(§(f)+(p—1>x,+1))

—Lp-1)z+1 (j“)/(i(i)ﬂ) te +jwl()_((i)+(pfl),¥,+l))

nx* (X] [N xp)
all the different combinations
of {xl7 X2,y xp} satisfying
Xp+-+x=%—-1,0<x <5 —1

Ly ) ri(1=58(xi))
1l (j i) T +J“’,()—(’(,-)+(p1)x,+1))

=1

Plp-1)r+1 (C”’O(')"; DR 1) 'wz(i'(i)+<p—1>x,-+l)>
(jwl(}_((i)+1) t-- +j0)](}_((i)+(pfl)§f+l)>
—Lp-1z+1 (iwl(i(i)ﬂ) t+-- +jwl(f(i)+(p71)};+l))
> m (1, %)
all the different combinations

of {xl,xz,...,xp} satisfying
Xpi+-+x=%—-1,0<x <% —1

P
. g%q)x,ﬂ (c,;,o(.)“'; O 1) ) (x’(f)+(p_1>x,-+1)> (12.22b)

The recursive terminal of (12.22b) isX; = 1. Substituting (12.20b) into (12.20a) and
substituting (12.22a,b) into (12.21a), the lemma can be obtained. This completes
the proof. O

For convenience, define an operator “*” for sgn.(.) satisfying
sgn (v1) * sgn.(v2) = [sgn,(Re(v1v2))  sgn, (Im(v10,))]

for any vy, v, € C. It is obvious sgn.(v1) * sgn.(v,) = sgn.(0105).
The following lemma is straightforward.
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Lemma 12.3 For vy, v,,v € C, suppose sgn.(v;) = — sgn.(v,). If Re()Im(v) =0,
then sgn.(v;v) = —sgn.(vov). If Re(v)Im(v)=0 and v+#0, then sgn.(v,/v)=—
sgn.(vy/v). O

Proposition 12.2 The output spectrum in (12.19a) is an alternating series with
respect to any specific parameter cp, o(ri,r2,. . .,I;p) satisfying ¢, o(.)>0 and p = 27
+1forr=1,2,3, ...

(al) if and only if

(-1 (o0 ) | = const. |
sgn, - Pp—1)n+1\Cp,0L") 5 Dp(1) *Di((p—1)n+1) = const, 1.6.,
Oy oy, =0
H,(jQ) Z Z |:1ﬂ.[ / %
I E——r— Pp—1)x+1 ()@, X()+1)" " Po(X(i)+(p—1)7+1
L1y (2) o +ofor, 0 =2 ]l the different combinations i=1 ( ¢ ) ( ! ))

of {il,iz ,,,,, ip} satisfying
X+ +X=n-1,0<%<n-1

n (X1, %p) oy .
T () H(}wl(Y[Hfl) +44'+Iw1()_((1)+(pflﬁ,+l))
T all the different =!
permutations of
{ri- o}
= const

(12.23)
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S 51 %)
o totor, =L all the different combinations
of {i] (X2, ,ip} satisfying

sgn, i+ +%=n—1,0<%<n-1 = const (12.24)

4 —
et 1 (600 OyF(iy1) ‘“’1(7<i;+<p71>?,+1))]
i=1

where const is a two-dimensional constant vector whose elements are +1, O or
—1.

Proof

(al) From Lemma 12.1, any asymmetric ¢, ), (c,,,o(~)"; Opys - "kanm) is

sufficient for the computation of F (p—1)n+1 (). It can be obtained that

B Fy (p—1)n+1
sgn, (F (p—1)n+1 (/'Q)) =sgn. | —J (7)

*ksgn Z Pp—1)n+1 (Cp,o(')n;wklv""a’k(p—wnH)

i+t ok, =R

From Lemma 12.3, sgn, (—j (%) @ _I)HI) has no effect on the alternating nature of

the sequence f(p,mﬂ (jQ) for n=1,2,3,.... Hence, (12.19a) is an alternating
series with respect to c¢po() if and only if the sequence
Z P (p—1)nt1 (cp,o(-)";wkl ""’wk(pq),m) for n=1,2,3,... is alter-

Wry +---+wk(p 1

il

nating. This is equivalent to

sgn, Z(ﬂ)"flql(pq)nﬂ (Cp,o(')"; (1) 'w/((pfl)n+1)) = const

Ok Oy, =Q
. : n,
In the equation above, replacing @, 1), (Cp,o(') 7wk1"",wk(,,4)n+1) by

using the result in Lemma 12.2 and noting (p—1)n+1 is an odd integer, it
can be obtained that
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(—1)nt1
H,y (o)

i=1

oLttt oy + -+ +jogp-vnsn)

P _
{H¢(p—1)},+1 (%0(‘)‘\' FOY(R(i)+1)" ‘“’1(?(i)+(1:71)x,+1))
i=1

R

all the different combinations
of {X1,%2,..., X} satisfying
X+ +X=n—-1,0<%<n-1
n*(Xy, -, Xp) b . i
'7”*(“ T ) : Z H(]wl(}@“) + - +_1w;(i(1)+(p71);,+1)>
! P all the different =1

permutations of

{rh.u_rp}

sgn,

(p—1)n/2 ,
H(GQ) ] HiG)
i=1
Lip-1)n+1(Q)
p -
{ Dp—tyw+1 (f17,0(')x'?w1(2(,‘)+1)' : ""1(}?(i)+(,;71);,+1))
o ot ), =2 )] the different combinations  Li=!
= sgn, of {Xi,Xa,...,Xp} satisfying
X+ +%=n—-1,0<%<n-1
n(Xp, -+, Xp) Py, . i
m Z H(J“’/(Y(fm) + ”'+</wl(Y(l)+(pfl)I,+l)>
(T Tp e i1
all the different
permutations of

{ri-mp}

(p—Dn/2
Note that H |H,(jQ)|* has no effect on the equality above from using
i=1
Lemma 12.3, then the equation above is equivalent to (12.23).
(a2) If additionally, rj=r,=...=r,=r in ¢ o(.), then using the result in Lemma
12.2, (12.23) can be written as

iQ) " H, (jQ
i IS 5 s
(p=D)n+1 o+t =@ gl the different combinations
of {Xl,i27 e jp} satisfying

. Xi+-+X=n—-1,0<x<n-1 = const

"

. X,
Pp—1)7+1 (%0(') FOIX(i)+1) '“’1()?(1)+(,>71);,+1))}

:ﬁ

i=1

From Lemma 12.3, (JQ)" has no effect on this equation. Then the equation
above is equivalent to

= const
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LHI% S e (R %)
(-ta1 U )"'h+ For, 1, =2 all the different combinations
of {fljb .. ip} satisfying
sgn, X+ - +Xp_n_1 0<Xi<n-1 = const

P -

’ H‘/’(rf—l)i,ﬂ (cp.0()"s Dy(X(@+1) 'wl(i(i)Jr(P—l)}Hrl))]

i=1

H,(jQ) H,(Q) H,(Q)
If Re (LUH)”+1 (/'Q)> Im (LUH)”+1 (1'9)> =0, then m has no effect, either.

This gives (12.24). The proof is completed. O

Proposition 12.2 provides a sufficient and necessary condition for the output
spectrum series (12.19a) to be an alternating series with respect to a specific
nonlinear parameter ¢, o(r,I2,. . .,I;p) satisfying ¢, o(.)>0 and p = 27 + 1 for 7 = 1,
2,3, ....Similar results can also be established for any other nonlinear parameters.
Regarding nonlinear parameter cp, o(T1,52,. . ..Ip) satisfying ¢, o(.)>0 and p = 27 for
7=1,2,3, ..., it can be obtained from (12.19a) that

Y(jQ) = ﬁl(g) + cp,O(')zﬁZ(pfl)Jrl(Q) + 4+ C’p,o(')znﬁz(pq)nﬂ(g) + -

F 2p—1)nt1 (Q) forn=1,2,3,. .. should be alternating so that Y(jQ) is alternating. This
yields

Oyt Oy =R

sgn, ( > Po(p-1)nt1 (C‘p,O(-)zn HOI ‘a’l<2<p1>n+1>>)

= sen, Z P2p-1)(n+1)+1 (Cp,o(~)2<”“>;wz<l>“‘ww1><n+1>+1>)>
=Q

Dy T F Oy

Clearly, this is completely different from the conditions in Proposition 12.2. It may
be more difficult for the output spectrum to be alternating with respect to c¢p o(.)>
0 with p =27 than ¢ o(.)>0 with p=27+1.

Note that (12.19a) is based on the assumption that there is only nonlinear
parameter ¢, o(.) and all the other nonlinear parameters are zero. If the effects
from the other nonlinear parameters are considered, (12.19a) can be written as

Y(jQ) = F\(Q) + ¢p0()F,(Q) + -+ ¢po(-)'F(y_1yea (Q) 4+ (12.25)

where
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~

F iy (R) = ﬁ(pfl)nJrl(Q) + -1yt (9; Cp’,q'\cp,o(-)) (12.25b)

C, , includes all the nonlinear parameters in the system. Based on the parametric

characteristic analysis in Chap. 5 and the new mapping function ¢,(CE
(H,(-)); w1, - -, w,) defined in Chap. 11, (12.25b) can be determined consequently.

For example, suppose p is an odd integer larger than 1, then F (p—1)nt+1(jQ) is given

in (12.19¢), and &, 1)+ (Q; Cpr,q/\cp,o(.)) can be computed as

En(ep0”s()
S(p—1ynt1 (Qi C,/,q'\fp,n(-)) = Z [—i(&) (r0"s())
all the monomails consisting of the parameters in C,; q/\c,,_o(»)

satisfying np + Z (p; + qi) is odd and less than N

Z Qfllw.’m,ns(‘)) (Cp,o"s(c,,’,(,’W/LO(')) OO ) )]

@)+t oy =

"<',;,n"‘( ))

where s(Cp/ q'\Cp,o(')) denotes a monomial consisting of some parameters in

Cp/’q/\cp,o(-).

It is obvious that if (12.19a) is an alternating series, then (12.25a) can still be
alternating under a proper design of the other nonlinear parameters (For example,
these parameters are sufficiently small). Moreover, from the discussions above, it
can be seen that whether the system output spectrum is an alternating series or not
with respect to a specific nonlinear parameter is greatly dependent on the system
linear parameters.

Example 12.3 To demonstrate the theoretical results above, consider again the
model (12.13) in Example 12.2. Let u(f) = F,sin(Q¢) (F,;>0). The output spec-
trum at frequency Q is given in (12.16) and (12.17). From Lemma 12.2, it can be
derived for this case that

2n+-1

(="' 1] [Geon) Hi (jon)]
i=1
Loy (10’1(1> + - +jwz(2n+1))

3
Z " (X1, %2, X3) - Hﬁ”ﬁ,ﬂ (03.0(')X'?“’1(Y(:’)+1)' : '“’/(X(imx,ﬂ))
all the different combinations i=1
of {X,X2, X3} satisfying
X1 +X+X3=n—1,0<x<n-1

n

Pont1 (6'3,0(') s O)1)° - 'w1(2n+l)) =

(12.26a)

where, if X; = 0,9, 1z, (c,,,o(~)x";a)[()—((i)+l)- . -wl(§<[)+@71>jl+l)) = 1, otherwise,


http://dx.doi.org/10.1007/978-3-319-12391-2_5
http://dx.doi.org/10.1007/978-3-319-12391-2_11
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P11 (53.0(')'“ YO)(R()1)" 'w1(7<(1)+2},+1))
(ja’z()?([)+1) o +j“’1(}?(f)+z},+1))

—Lov 41 (jw1()?(i)+1) +o +jw1(§(i)+2},-+1) )

3
an*(xl7x27x3) : H(pz,v,+l <c3v°(')"/;w1(i'(/)+1) O (/')+2x/+1)> (12.26b)
all the different combinations =1

of {x1,X2,x3} satisfying

X1 +Xo +X3=X; — I,OSXJ' <x-—1

Note that the terminal condition for (12.26a,b) is

"

Pz 41 (53,0(')Xi? Di(X()+1) " 'wl(i(i)+27q+1)) %=1

I

y (joyay + - - - + joy))
= ea(es0l)i oy o) = —Ls (jayry + -+ + joyz))

(12.26¢)

Therefore, from (12.26a—) it can be shown that @5, 4 ((c30(-)"; @1 - - - @2, +1) can be
written as

2n+1

(=1 ] LjwiH: (jeos)
i=1

Lopii(jor + - - + jornt1)

Pon+1 (6'3,0(')’1; w1 'w2n+l):

n—1 . .
]‘[ Joyy + -t jo
2 AR § (1'21) +.,.+['(c:1) )
all the combination (x1,X2, ..., Xn—1) i1 L @iy Joi)

satisfying x; € {2/ + 1|1 <j<n—1}
X1 > X2 > .. > Xp_1, and
” = " happens only if X; + x;11 <2n—2

(12.27)

where ry(X1, Xy, ..., X, 1) 1S a positive integer which can be explicitly determined
by (12.26a,b) and represents the number of all the involved combinations which
n—1

w1y + - Jw
have the same H / 1.<1) / l.(' )
it —Ly oy + - - + jou,))
12.2, it can be seen from (12.27) that the output spectrum (12.16) is an alternating
series only if the following two conditions hold:

(b1) . .
ke (LZL?(%))M (Lff(%)) B

. Therefore, according to Proposition

(b2)
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n—1

sgn, Z Z ,,X(xl,x2,4..,x“,])H[WL—ﬂ% =const
@k + ok, =2 a]l the combination (X,X2,.. ., Xp—1) =1 (jw'(l) +m+]w'("))
satisfyingx; € {2j+1|1 <j<n—1}
X1 > X > .. > Xp-1,and
= "happensonlyif X; +-x;1; <2n—2

Suppose Q= \/k;" which is a natural resonance frequency of model (12.13).
It can be derived that

K
Lot () = =Y c1o(m)(Q)" = = (m(2)° + BUR) + ko) = —jBO
k1=0

-1 1
H(jQ)=—==—
U =) ~ e
It is obvious that condition (b1) is satisfied if Q = \/% Considering condition (b2),
it can be derived that

Joun +- Aoy je()Q
—Ly, (joun) + - +joiy)  —Ly(e(x)Q)

(12.28a)

where e(x;) € {£(2j+ DI0<j<[n+1]}, and [n+1] denotes the odd integer not
larger than n+1. Especially, when e(x;) = % 1, it yields that

joy + Aoy HQ HQ 1 (12.28b)
—Ly (jouy) + -+ +jony) - —Ly(HQ) £BQ B
when le(x;)l > 1,
Jouay + -+ jor) _ Je(x)Q _ Je(x;)Q
—Ly, (joy) + - o)) Lo (e(i)Q)  m(je(x)Q)* + B(je(x:)Q) + ko
B Je(xi)Q _ !
= 2 . -
(1 —e(x;) )kO + je(x;)QB B +j(€(xi) - 8(;.)) kom
(12.28¢)

If B << v/kom, then it gives
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Joiy + - Fjogy 1

—L,, (ja),(l) 4+ ... +j601(x,-)) j(g(xi) — ﬁ) Vkom

(12.28d)

Note that in all the combinations involved in the summation operator in (12.27) or
condition (b2), i.e.,

> ()
o1 Hton, =2 a]] the combination (X1, Xz, ..., Xq—1)
satisfying x; € {2j+ 1|1 <j<n—1}
X] > X2 2 .. 2 Xp—1, and
= " happens only if X; + x;11 <21 —2

There always exists a combination such that

n—

l—i ja)l(l) + - +jw[(.x;) _ 1
i1 _L,ri(ja)/(l) +"'+ja’l</vf)> B"!

(12.29)

Note that (12.28b) holds both for £(x;) = = 1, thus there is no combination such that

n—1

H Jou) -sz( ) 1

Lx, ]Cl)[ : +./a)l(x,-)) B!

i=1
Noting that B << 1/kom, these show that

jw1(1) + - +ja)/(xi)
1 L (o) + -+ o)

1
:Bn—l

Because there are n+1 frequency variables to be + Q and n frequency variables to
be —Q such that w;+---+wy,,1 =8 in (12.16) and (12.17), there are more

combinations where £(x;) > 0 that is (e(x,-) — ﬁ) vVkom > 0 in (12.28c,d). Thus

max
all the involved
combinations

which happens in the combination where (12.29) holds.

.iw/(1)+"'+iw,(xi)

7L~‘i (jw1(1)+"'+ja7,<x’>)
(12.28b) and (12.28d), it can be shown under the condition that B << +/kom,

there are more combinations where Im is negative. Using



12.4  Alternating Conditions 267

Im ﬁ ja)/(l) + - +jwl(x,)
ke —L, (ja)l(l) + - +jwl(x;))

1
W 7B

max
all the involved
combinations

1
B2 (g(xi) _ E&_,)) Vkom

This  happens in the combinations where the argument of
o)+ oy

i1 —L, (ja),(l) + - +ja)l(x,-))
cases in which the arguments are —90°. If the argument is —180°, the absolute value
of the corresponding imaginary part will be not more than

Im ﬁ Jo) + -+ joi)
it —Ly oy + -+ + jo,)

1
2.73B" 4\ ko

is either —90° or +90°. Note that there are more

max
the combination
whose argument is
—180°
1

~ 3
B (e(xi) - ﬁ) N/

e(x;)=3 =

I .
which is much less than 5—z=—— N

Therefore, if B is sufficiently smaller than /kgm, the following two inequalities
can hold for n>1

n—1 . .
Re Z (X1, %, .. »Xn—l)H ijl-(l) + +jw1.(x,>) >0
all the combination (x,X2,...,X—1) =1 (jwl(l) T +jwl<x’>)
satisfyingx; € {2j+ 1|1 <j<n—1}
X1 > Xp > .. > Xy 1, and
” = "happens only if X; +x;4; <2n—2
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n—1 . .
Im Z rX(Xl7X27---7Xn—l)H ijl-m + +jw1.(x,) <0
all the combination (Xy,Xa, . ..,Xn—1) =1 (/w'(l) o +jwl(""))
satisfyingx; € {2j+ 1|1 <j<n—1}
X] > X2 > .. 2> X1, and
” = "happens only if X; +x;+1 <2n—2

That is, condition (b2) holds for n>1 under B << +/kom and Q= \/% Hence,

(12.16) is an alternating series if the following two conditions hold:

(cl) B is sufficiently smaller than +/kom,
(c2) The input frequency is Q = \/I;nl

Note that in example 12.1, Q = \/% =~ 8.165,B = 296 < Vkom = 1,959.592.

These are consistent with the theoretical results. Therefore the conclusions are
verified.

12.5 Conclusions

Nonlinear influence on system output spectrum is investigated in this Chapter from
a novel perspective—alternating series. For the Volterra class of system nonline-
arities, it is shown for the first time that system output spectrum can be expanded
into an alternating series with respect to (nonlinear) model parameters under certain
conditions and this alternating series has some interesting and favourable properties
for engineering practices. Although there may be several existing methods such as
perturbation analysis that could achieve similar objectives for some cases in
practice, this study proposes a novel and alternative viewpoint on the nonlinear
effect (i.e., alternating series) and on the analysis of nonlinear effect (i.e., the
GFRFs-based) in the frequency domain. As some important properties of a linear
system (e.g. stability) are determined by the positions of the poles of its transfer
function, the concept of alternating series could be a crucial characteristic of
nonlinear behaviours in the frequency domain. Some fundamental results are
therefore developed for characterizing and understanding of nonlinear effects
from this novel viewpoint. Further study will be focused on more detailed design
and analysis methods based on these results for practical systems.



Chapter 13
Magnitude Bound Characteristics of
Nonlinear Frequency Response Functions

13.1 Introduction

In many cases, the magnitude of a frequency response function such as GFRFs can
reveal important information about the system, and consequently takes a great role
in the analysis of the convergence or stability of the system and the truncation error
of the corresponding Volterra series. It can be used to evaluate the significant orders
of nonlinearities or the significant nonlinear terms for the magnitude bound,
indicate the stability of a system and provide a basis for analysis of system output
frequency response. Several efforts to derive the magnitudes of the GFRFs and
output frequency response have been attempted. A very simple algorithm to
evaluate the magnitude bounds of the GFRFs was provided in Zhang and Billings
(1996). Billings and Lang (1996) proposed a more detailed recursive algorithm to
compute the gain bounds of the GFRFs and output frequency response. Notice that
in these results, the relationship between the magnitude of the system frequency
response functions and the system time domain model parameters is not revealed
explicitly.

New bound characteristics of both the generalized frequency response functions
(GFRFs) and output frequency response for the NARX model are presented in this
chapter. It is shown that the magnitudes of the GFRFs and the system output
spectrum can all be bounded by a polynomial function of the magnitude bound of
the first order GFRF, and the coefficients of the polynomial are functions of the
NARX model parameters. These new bound characteristics of the NARX model
provide an important insight into the relationship between the model parameters
and the magnitudes of the system frequency response functions, reveal the effect of
the model parameters on the stability of the NARX model to a certain extent, and
provide a useful technique for the magnitude based analysis of nonlinear systems in
the frequency domain. Based on these results, truncation error and the highest order
associated with Volterra series expression of nonlinear systems can be studied.
Sufficient conditions for the BIBO stability of the NARX model can also be
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270 13 Magnitude Bound Characteristics of Nonlinear Frequency Response Functions

established. A numerical example is given to demonstrate the effectiveness of the
theoretical results. An important application of these results will be discussed in
the next chapter to address an important convergence issue of Volterra series
expansion.

The bound characteristics of this chapter can be further developed with less
conservatism, which can be referred to Jing et al. (2008b, 2009b).

13.2 The Frequency Response Functions of Nonlinear
Systems and the NARX Model

For convenience, the technical background of this study is simply given in this
section. The details can be referred to Chaps. 2 and 3. Nonlinear systems with stable
zero equilibrium point can be approximated in the neighbourhood of the equilib-
rium by the Volterra series

=3[ [ mt [Tt e (13.1)
i=1

n=1 J— —00

where h,(7q,- - -,7,) is called the nth order Volterra kernel, which is a real valued
function of 7y, --,7,, N is the maximum order of the system nonlinearity, which
may need to be large enough to guarantee required accuracy of approximation. The
output frequency response of the system can be described as

Hio) =Y~ [ oo [0l (0532)

n=1 w1+t =w
where ¢, denotes a small unite in the n dimensional hyperplane o, +- - - +w,=w,
and

Hn(jw1,--~,jwn)=J J hy (T, 70) exp (—j(@171 + - - + @uTy) )d7y - - -d)

—00 —00

(13.3)

is the nth order GFRF of system (13.1). When the system is subjected to a multi-
tone input described by

u(t) = XK: IFi| cos (it + £F;) (13.4)
i=1


http://dx.doi.org/10.1007/978-3-319-12391-2_2
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the system output spectrum can be written as

N
1 ) .
:Zz—n Z H”(-]wkls"'7]a)k,1)F(a)k1)"'F<wk”) (135)

Opy + -+, =0
where,

Ani2Fi s —
F(w):{|F,|e’ if ¢ {opnk==+1,---, £K} (13.6)

0 else

The NARX model of nonlinear systems is given by

=3 0,0 (13.72)
m=1

m K p pt+q
Ym(t) = o gk, ko) [ [y —k) ] ute—k)  (13.7b)
p=0 ki, kyi =1 i=1 i=p+1

where y,,(t) is the mth- order output of the system, and p+g=m, k=1,..., K,

K K

g = E E . A recursive algorithm can be used to compute
kl7kp+q*1 k=1 kpiq=1
as follows:

Ln(w 'Hr1(jwl PR ’»jwn)
K

= Z CO,n(kl»"'7kn)exp(_j(wlkl+"'+wnkn))
& ,Arl
n—1n—

+ZZ Z Cpg klv' p+q)eXp( (a),, qrikpei+ +w,,k,,+q))H,,,q,,,(ja)1,~~~,jw,1,q)

q=1p= lkl, prq=1
+Z Z Cp,()(kl7'"7kp)Hn,p(iw1""’jwn)
p=2ki,k,=1
(13.8)

n—p+1

H,,()= Z H;(jwr, - joi)Hu—i p—1(joit1, - - ',ja)n)exp(—j(wl 4+ 4 a)i)kp)
=1

(13.9)
H,1(jor, - jw,) = Hy(jwr, - -, jo)exp(—j(wr + - + wn)k1) (13.10)

where L,(w)=1-— Z c1,0(ki)exp(—jwk;) and w=w;+---+w,. Moreover,
=1
H, (joi,---,jw,) in (13.9) can also be written as
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n—p+1 P
H'I,ﬁ(iwl P ‘v.iwli) = Z HHI’, <jw"x+| st "./'wl‘x-y,)
rieery =1 =]

Sri=n
i—1
xexp(fj(w,-xq + - Jrjcu,m,’)k,-), where X = er (13.11)
x=1

Based on (13.8)—(13.11), the GFRFs of the NARX model (13.7a,b) of any order can
be obtained. The objective of this chapter is to investigate the bound characteristics
of the GFRFs and the output spectrum of nonlinear systems described by the NARX
model to provide an important insight into the effects of the model parameters on
these system frequency response functions. Note that the bounded-input bounded-
output (BIBO) stability can be guaranteed by the frequency domain property of
bounded-input and bounded-output spectrum. The bound characteristics of the
NARX model are also significant for the system BIBO stability. Sufficient bounded
stability criteria of the NARX model can be derived from the bound characteristics
of system output spectrum.

13.3 Bound Characteristics of NARX Model
in the Frequency Domain

In this section, some notations and useful operators are introduced first. Then bound
characteristics of the GFRFs of the NARX model are derived using these notations
and operators. Finally, the bound characteristics of system output spectrum are
developed.

13.3.1 Notations and Operators

Let L= $1€1f{|Ln(w)

}, where [, is the non-negative frequency region of the

outputspectrum of a NARX model. In what follows, let
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K

Z ’Cp,q(kla"'akpw)}’ 1<g<n-1,1<p<n-—gq
Ky kprg=1
11(

on(ki, - kn)l, =np=
- | 30 uth kil g=np =

K

Z |cp,0(k|,~~~,k,,) s q=02<p<n
ks kp=1
0, else

(13.12)

Obviously, C(p,q) is a nonnegative function of the coefficients c,,(.) defined on all
0<p,q<n. Moreover, let

wp = sup_ (|Hup(-)]), Hool) =1

10, eR,
0(-)=0 for n>0
»()=0for n<p
n sup (|Hn()|)

w;--wyeR,,

(13.13)

T o

SR

where R, is the input frequency range of a NARX model.

In order to develop the bound characteristics of the GFRFs of the NARX model,
define two operators as follows. Consider two polynomials of degree n and
m respectively,

fu=ao+aih+---+a,h"=a-h', and f,=bo+b\h+- - -+b,h" =b-h!

n’

where the coefficients ay, ay, .. ., a,; by, by,. . ., b,, are all real numbers, / stands
for a real or complex valued function, a=[ ao, ay, . .., a,l, b=[ by, by.. .., b,], and
hi=[1,h,...,h'].

Define a multiplication operator “®” as
a®b=rc,
where ¢ is an n+m+ 1-dimension vector,

c(k) = > abjfor 0<k<m+n.
i+j=k
0<i<nO0<j<n

Denote (a ® b)(k) = Z aibj.
i+j=k
0<i<n0<j<m
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From this operator it follows that, for example, f,-f,=a®b-h!
define an addition operator “®” as

Similarly,

n+m*

adb=c,

where ¢ is an x-dimension vector,
x=max{m,n}, c(k)=alk)+bk) for 0<k<ux.
If k>n or m, then a(k)=0 or b(k)=0, accordingly.
From the operator “@” it follows that, for example, f,+f,=a®b-h’

max(n,m)"
Moreover, let ®(-) and @(-) denote the multiplication and addition in terms of
() ()

the operator “®” and “@®” for the series (.) satisfying (*), respectively.
Note that the operators “®” and “@®” are different from those defined in Chap. 4.
Here they are used for bound computation with a special physical meaning.

13.3.2 Bound Characteristics of the GFRFs

The bound characteristics of the GFRFs are derived in this section. A fundamental
result is given in Lemma 13.1, which shows that the magnitude bound of the nth
order GFRF can be recursively determined from the magnitude bounds of the lower
order GFRFs. Then based on Lemma 13.1, Theorem 13.1 is established which
describes the magnitude bound of the GFRFs as a polynomial function of the
magnitude bound of the first order GFRF H,(jw).

Lemma 13.1
n = _Z Z C(P q n—q,p
—m 2ptqg=m
0<p,g<m

- n— q p+1 n—q—p+1 P
Hy—q,p < sup H ‘H (/w:XH ,,/'wrxﬂ.,)‘ = Z HHn

r- Ip:1’ rper, =1 =1

Sri=n—gq Sri=n—gq

i—1 m

where, n>1, X = er, Z (1) or Z (-) denotes the sum of the

x=1 ptqg=m pq=0
0<pg<m ptg=m
corresponding terms with respect to all the combinations of (p,q) satisfying
p+g=m and 0<p,g<m. O

Note that 0<p,qg <m denotes that 0<p<mand 0<g<m, and r;- - -r,=1 means
that ry=1,---,r,=1.
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Proof of Lemma I From (13.8), (13.12), (13.13), and noting L is the lower bound
ofL,(w), it follows

K
|Hn(jwls"'sja)n < l Z ‘COn kb ) n>||H0,0(jw1»"'»jwn)|

1 n—1n—q K . .
+Z Z ‘Cp q kla B kp+q) | |Hn—q,p (lev o "Ja)n—q) ’
L =1 p=1k, k,=1
1 n K
+—= Z |Cp0 ky, -, )Han(]wl’ an)|
é17 2k, kpy=
1 n 1 n—
ZC(OHHOO+_ZZC<P‘] Hy_qp+— ZC(pO n,p
= —qg=1p=
1 vy
=L :Oz:: H, y, (13.14)
n n—q
It can be easily seen that Z ZC(p,q)ﬁn,q,p includes all the permutations of
g=0 p=0

(p,q)satistying p+g=m, 0<p,g<m, and m=2,...n. Hence, it follows

n n—q n

NN Co g =Y. S COOHu gy

q=0 p=0 m=2p+qg=m
0<pg=m

From (13.11), it can be derived that

n—p+1 )4

H"y (jw"x+| [ -,jwrx_,’)exp(—j(w,-m +oeet w"x+y,)ki)

H,, = sup|H,,(jor, -, jo,)| = sup

rperp = 1i=l1

Sri=n
n—p+l1 p n—p+l p
< sup Z H‘H (](U7x+| j“’r'x+y,)‘ = Z HHH
iy = 17=1 ey = 17=1
Yri=n Sri=n
n—q—p+1  p n—q—p+1  p
Therefore H,_,, < sup g H |H,.,. (jw,.xﬂ, e jor, )| = g HH,,,.
rpeerp =10 0=l rpeeerp =10 0=l
S Srifn-g

This completes the proof.
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Although Lemma 13.1 shows essentially the same result as those obtained in
Zhang and Billings (1996) and Billings and Lang (1996), Lemma 13.1 provides a
general expression for the magnitude bound of the nth-order GFRF in terms of the
model parameters and H,---H,_;, and compared with the result in Billings and
Lang (1996), it is much simpler in form and derived in a more systematic approach.
Based on Lemma 13.1 and by using the new operators defined in Sect. 13.3.1, a
more comprehensive result about the bound of the GFRFs of the NARX model can
be obtained.

Theorem 13.1 Consider the nth-order GFRF for the NARX model (13.7a,b).
There exists a series of scalar positive real numbers b,,,b,,1, - -,b,,,, such that

|Hn(ja)la o 'aja)n)| S bn() + bnlﬁl + bn21712 + -+ bnnﬁln (131521)

where the coefficients b,,,b,1,. . .,b,,, can be recursively determined as follows
(denote b, = [byo by -+ bu)):

bu=-C LI g
nk — — (k7n7k)+_ D S C(]?,C])’ D '® br[ (k)
L L m=2ptqg=m Z,.’.:n,q i=1
0sp.gsm 1<rirp<n—m+1
for 0<k <n (13.15b)
1 1 1
= = |—= 2),—C(1,1),-C(2 13.1
by = [bao, b1, by LC(Q )’QC( , )’QC( 70)] (13.15¢)
by = [bro,bu] = [0, 1] (13.15d)

Moreover, ® b, =0if p<l, and & (1) =0if n<2.
i=1

m=2

Proof Use the induction method. For the second and third order GFRFs, it is easy
to obtain from Lemma 13.1 that

o 1< _
Hajorjo)l <25 Y Clp,@)Ha-g,

7m:2p+q:m
0<p.g<m

1 — —
= 7(C(0,2) + C(1, NHy,1 + C(2,0)Hz,2)

=+(C0,2) + C(1L, 1), +C,0) = by - h]

1~
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3
o 1 _
|H3(jor, jewn, jo3)| < . > > Cp9Hs gy

=m=2ptq=m
0<p.g<m
<C(0,3) +%C(1, 1)C(0,2)> + <C(1,2) +%c(17 1)2 +%C(2,0)C(0, 2)>ﬁ1+
1 L L L
L 1 2 o 2 2 214 3
C(2,1) +7C(1,)C(2,0) + FC(2,0)C(1,1) |Hy” + | €(3,0) +7C(2,0)* | Hy
=b3-hi

Hence, the theorem holds for n=2 and 3. Consider the nth order GFRF under the
assumption that the theorem holds for all the GFRFs of orders less than n. From
Lemma 13.1,

n

Haon ol <73 Y Coase| Y T[]

—m=2p+qg=m 1<r-rp,<n—m+1i=1
0<p,g<m Sri=n—gq

(13.16)

Note 1<n—m+1<n—1 and 0<Yr,=n—g<n, each |H,(.)| is bounded by a

P
polynomial of the form of (13.15a) with degree ri(<n—1), and H |H,, ()] is
i=1

i=

therefore bounded by a polynomial of the form (13.15a) with degree n—qg(<n). It
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follows from inequality (13.16) that |H,(joi,- - -,jo,)| must be bounded by a
polynomial of the form (13.15a) with degree n.

The explicit expression for the coefficients in (13.15a) is derived as follows. It
follows from (13.16) that

. , 1
Mo jodl < 1 3 Cog) s 3 H|H
—p+tqg=n 1<rpr <1i=l
0<p,g<n Sri=n—gq

22 > Clp.g)| sup Z H\H

g=m 1<r-rp,<n—m+1i=
p.g<m Er[:n—

Il‘\'—k
\/\+

% (C(0,n) + C(1,n— 1)H; + -+ + C(n,0)H,")

+— supz Z C(p,q) Z ﬁ'Hri(')'

=  m=lptg=m 1<rrp<n—m+1i=l
0<pg<m Sri=n—gq
(13.17)
Because
’HV', (jwrxu’ o "jwl'x“ri>‘ < br,,O + br,,lﬁl +---+ br,,rlﬁlr’ = b,-, . hZ for 1 < ri <n—m+ 1
where b,, = [br,-,o b1 b,A,.,,}v] and h,, = [1 H - le"}, it can be

derived by using the operators “®” and “®” that

)Y

1<ri-rp,<n—m+1=!

Zri:n—q

p

r <]mz'x+1 5 ',](‘)7'x+z,> ’

P P
= Z '®l br, . hn—q = (&) <® b/‘,) : hn—q

1<n rp, <n m+1 1<, <n—m+1
2ri=n—gq

Therefore,
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n—1 p
E E C(P, q) E H ‘Hl‘[ (le'x+1 >t "le"x+r~i) ‘
m=2p+qg=m 1<ri-rp,<n—m+1i=l
0<p,g<m Sri=n—gq
n—1 )4
m=2 p+q=m Zr;:n—q i=1
0<p,g<m 1<rprp,<n—-m+1

and (13.17) can be written as

. . 1 _ .,
[Ha(jeor, - jon)| < 7 (C(0,n) + C(1n = DHy + -+ + C(n, 0)H)")

11| n—1 p
+7| @ @ Clp,q) - @ <® b,.,.> "
| "2 ptqg=m Zri:n_q i=1
OSP,QSm 1§7’1'~'I‘p§nfm+1

This proves (13.15b). Equation (13.15c) follows from the first two steps of the
recursive computation. The proof of Theorem 13.1 is thus completed. O

Theorem 13.1 throws that the magnitude of the nth-order GFRF can be bounded
by a polynomial function of the magnitude bound of the first order GFRF H,(jw,) of
degree n, and the coefficients of the polynomial are the functions of the model
parameters. This reveals an explicit relationship between the NARX model param-
eters and the magnitude bound of the nth-order GFRF, and is therefore important
for the system analysis. From Theorem 13.1, the magnitude bounds of any order
GFREFs for the NARX model can readily be computed from the model parameters
and the first order GFRF.

13.3.3 Bound Characteristics of the Output Spectrum

Based on Theorem 13.1, a bound function in polynomial form can be derived for the
system output spectrum in terms of the magnitude bound of H,(jw,), and a
sufficient condition for the convergence of the bound function can be obtained in
terms of the system model parameters which can guarantee the BIBO stability of
the NARX model. The results for the boundedness of the output spectrum of the
NARX model (13.7a,b) when subjected to a general input are given in the following
theorem.
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Theorem 13.2 Assume the input of the NARX model (13.7a,b) is a general input

with spectrum U(jw) defined by U(jw) = {U(/a)) @ <€ R“’. Then the output

0 otherwise
spectrum of the NARX model is bounded by

_ N1 T ) N T
Y (jo)| < @IW'[’"%” AU * - % |U(jo)| = & aby | - hy (13.18a)
n= T n=

and the series on the right side of (13.18a) is convergent if the model parameters
satisfy

N 1
lim /(& anb,,) k)< = 13.18b
N — oo ("1 ® H, ( )
k — o0
I (13.18aD) w=[1H, 1], bu=[bs0 bt ++ bun),
an:(Zﬂ)17"|U|*"‘*‘U(jw”’and|U|*"'*|U(ia))|:ﬁ J H|U(ja),-)|dawn.
R —_— iy
n n m|+~~+a),1:w1_
Proof 1t can be derived from (13.2) that
N Hn .]w*’v.]w: <
Y (jo)| < Z’ i . ) J Uljow;)do,
n=1 Vn(2x) i=1

w1+t =0

SZyHn(,w,-~,jw:)| J H\U(,-w,nda,,m

i=
D1+ F o=

1 - - .
= 2 gayrilta it jan) | U ¢ -« [UG) (13.19)

n

where (jo},---,jw}) is a point on the hyper-plane w;+---+®,=w satisfying the
mean value principle. According to Theorem 13.1,

|Hn()| S bn hnT :bnO +br11171 4’])1121712 + - +bnn171n

Thus using the operator “®”, inequality (13.19) yields

) N1 T . N T
Vo)l < & by k0 0G0 = (B aiby) 4]
n=1 (2]7:) n=1

which can be rewritten as
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¥ (jo)| < V= (%1 anbn) (0) + (% anbn) (1)171+<ﬁ91 anbn> ()8,

n=1

IS (@ (lnbn> (KH| + - (13.20)

n=1

The bound of the output spectrum is in general an infinite series as given by
(13.20). The convergence of the series guarantees the stability of the NARX
model. According to Cauchy’s criterion (Weisstein 1999) for convergence, a
sufficient condition for the convergence of the series in (13.20) is

lim 1/ EB ab ,, H H, hm Z‘% anbn> (k)< 1. This completes the
N — 00 n=1 n=1

proof. O

Note that in Theorem 13.2,b, = [b,9 b1 -+ by, | can be determined accord-

ing to Theorem 13.1, and |U| * - - - * |U(jw)| = L J H |U(jw;)|d6 o can be
—,_/

w1+ +w,= co’

calculated by an algorithm given in Bllhngs and Lang (1996). Similarly, the following
result can be obtained for the output spectrum of the NARX model (13.7a,b) when the
input is a multi-tone signal.

Theorem 13.3 Assume the input of the NARX model (13.7a,b) is the multi-tone
signal (13.4). Then the output spectrum of the NARX model is bounded by

N
Y(o)l < & |27 byhy - Y |Flon) - Flay,)l
n=1

wk1+"'+w1«n:w
N T

= (@ ﬁnbn) “hy (13.21a)
n=1

and the series on the right side of (13.21a) is convergent if the system model
parameters satisfy

N 1
lim /(@ nbn) k)< = 13.21b
N — (”lﬁ ( ) H, ( )
k — o0
In(1321a0) hy = [1 Fy - H"|. bi=[b bu -+ by which can

bedetermined according to Theorem 13.1, g, = 27" Z |F(wg,) - F(wg,)]|-

O+ Fwp, =0

Proof From (13.5), it follows that



282 13 Magnitude Bound Characteristics of Nonlinear Frequency Response Functions

V) <30 S Haln, o )[For ) Flon,)
n=1

Opy +-F oy, =0

N
<>|7 S R Flay,)

Wpy + O, =0

According to Theorem 13.1, and following a similar process as the proof of
Theorem 13.2, the conclusion of the theorem can be reached. O

In order to illustrate the results above, consider a specific but frequently encoun-
tered case of the NARX model (13.7a,b). When there are only pure output non-
linearities in (13.7a,b), the NARX model is

y(f) = Z ( Z Cp,0 kl,.. 1, Hy l‘* 5("’!* I)Zco,l(kl)u(tkl))
k=1

m=p=1 \ ki, k,=1 i=1

(13.22)

1, m=0
where 6(m) = {07 else
regarded as a general linear/nonlinear state feedback system, and consequently
hassignificance in the analysis and synthesis of feedback control systems in
practical applications (see Chap. 10). When the input is only a sinusoidal signal
u(t)=Fysin(wot) (F;>0), then F(wy,) = —jkiFy for k; = £1, oy, = kiwy, and
[=1,---,nin (13.5). In this case, the following result can be achieved.

. For many engineering systems, this model can be

Corollary 13.1 Assume the nonlinear system described by NARX model (13.22)
is subjected to the input signal u(t) =F sin(wot) (F;>0). The nth-order GFRF for
this nonlinear system is bounded by

‘Hn(jwl""ajwn” S brmﬁln (1323&)
and the output spectrum of the NARX model is bounded by

L] F ! 241
Y (jo)| < Z C2n+1< ) bani1,2ni1H) (13.23b)

which is convergent if the system model parameters satisfy
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o n+1 n 2
nli»rrolc 2 /C2n+lb2’1+1,2”+1 < Fdﬁl (1323C)

n—1 m
1 1 .
where b, = ;C(n, 0) +;z:2 C(m,0) . Z Hb,.,.,.,. , | -] is to take
1 Sl’l;fl-r,, <n—-m+1
the integer part of (.).
Proof According to (13.15b) in Theorem 13.1,
n—1 m
buk _! @ C(m,0) P <® br,-) (k) for 0 <k <n (13.24a)
L m=2 Sri=n i=1
1<rprp,<n—-m+1
b = <C(1,0)4~| " C(m, 0) @ © b, ) |(n)  (13.24b)
" I: 7 I: m=2 7 ri=n i=1 " '
1<rpr,<n—m+1

Note by=[0,1] and b = [0, O,%C(AO)}. It is easy to show that by =0 for

0<k<n in (13.24a). Hence (13.24b) can be written as

S
|
—_

1
bnn = ZC(I’I, O) +

C(m,0) > ﬁb,.,,,, (13.24¢)
Sri=n i=1

1<rp-r,<n—-m+1

[~ =

3
||
)

Hence, from Theorem 13.1 |H,(jw:,:--,jo,)| < b,H,". From (13.21a), it
followsthat

N
N 7 N
Y (j)| < (@lﬂnbn) sy =Y BbunH (13.25)
= n=1

Note that, when the input is a single tone function,
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B=2" Y [|F(ox) - Flon,)

Fq n

(2) Z l’we{wkl—k---—kwk”

wy, = kjwo, k; = £1, }

= O, +-Fon, = 1<I<n
else
(13.26a)
Consider the frequency of interest is @ =ay. It is easy to verify that
”7'/2 = —
1=16, n=2k+1,k=0,1,2... (13.26b)
— 0 else
Wy Fop, =wo

where, C!" = "'("V;'](;:‘l(;fig“) = m!(n"im)!. Note that 3, is zero if n is an even number,

it is derived from (13.24c¢) and (13.25) that

/] F\ > 5 2n+1
Y(jo) < > Chi (2> bani1,2n41H)
n=0

From Cauchy’s criterion, if (13.23c) holds, the bound of [Y(jw)! is convergent. This
completes the proof. O

Corollary 13.1 gives a very clear and simple expression for the boundedness of
the frequency response of the NARX model (13.22) in terms of the model param-
eters and the bound of the first order GFRF. The effect of the system model
parameters on the boundedness of the system output spectrum and consequently
the BIBO stability of the NARX model can be analysed through checking the
inequality (13.23c). This simple analytical bound expression for the output fre-
quency response function also provides a very useful and simple method to evaluate
the truncation error associated with the Volterra series expression of nonlinear
systems and the highest order N needed in the Volterra series’ approximation.
Although the check of the stability for a nonlinear system theoretically involves
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the computation of a limitation as given in (13.18b) or (13.21b) or (13.23c), the
result obtained for a sufficiently large N and K or n should be sufficient to provide a
significant indication of the system stability.

13.4 A Numerical Example

Consider a nonlinear system

() =0.15y(r —2) + 0.1u(t — 1) — 0.05y(t — 1)y(t — 2)
—0.02y(r — 1)* = 0.01y(r — 1)° (13.27)

which can be written into the form (13.22) with ¢ (2)=0.15,c0,(1)=0.1,
c20(1,2)=—0.05,c20(1,1)=—=0.02,c30(1,1,1)=—0.01 else ¢, ()=0, and
K=2, M=3. There are only pure output nonlinear terms in this model.

Compute the magnitude bound of the GFRFs up to fifth order for system (13.27)
according to Corollary 13.1. From (13.8), it can be obtained

0.lexp™/® _ 01
L

H 1 = || =
Hije)] ‘1—0.156xp‘12‘”

where L = |1 — 0.15exp 7| = \/(1 —0.15cos 2w)* + (0.15sin 2w)°. It is easy to
have L = 0.7225 and thus H; = 0.1384. According to Corollary 13.1, only b, is

needed for evaluating the magnitude bounds of the GFRFs:
For n=1 and 2, b, 1=1, by, = % C(2,0) =0.07/L = 0.09689, and thus

0.07—
\Ha (jwy,jwn)| < by~ h) = Tle — 0.001856

For n=3,
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001 1 2 0.01 0.07
=<+ [;C(Z, 0) > 116 = -t T(%llbzz) = 0.03261

i=1 -

|
Il
w

1<rpr, <2-2+42

thus |H3(jw1, - -, jws3)| < b3 hgT = 0.032611713 = 0.0000864609
For n=4,

m=2 Sri=4 i=1
1<ri--rp,<d4-m+1

2 3
= % C(2,0) > Hh +C(3,0) > Hh
- ZI‘,':4 i=1 Zr,-:4 i=1

1<rrp<4-2+1 1<rirp<4-3+1

= %(0.07 (2b33 + b3,) +0.01(3b2)) = 0.01125

thus

Hy(jw, - - jws)| < by - hI = 0.01125H," = 0.0000041289

For n=5,
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1 1 4 m
bss = ;C(S. 0) + ZZ C(m,0) 3 Hb
=m=2 Z =5 i=1

1<rprp,<S—m+1

2 3 4
€(2,0) > b +cG.0) S T +c4,0) > 1o
>ri=5 i=1 >ri=5 i=1 >ri=5 i=1

1<rprp<5-2+1 1<rprmp <5-3+1 1<rp-rp <5-4+1

It~ =

1

= [ (0.07(2bybss + 2bas) +0.01-3(bss + b3,)) = 0.004537

thus
|Hs(jo, - -, jws)| < bs hST = 0.004537ﬁ15 < 0.00000023036

Carrying on with the above recursive calculation process, the magnitude bound of
the GFRFs of any order can be obtained according to Corollary 13.1. It should be
noted from the above computation that, with the order n going larger, b,, is
becoming smaller, and so is the magnitude bound of the nth order GFRF. These
information can be used to determine the truncation error of the Volterra series
expression of system (13.27) and to determine the largest order N in the Volterra
series approximation (Billings and Lang 1997).

To demonstrate the bound characteristics of the system output spectrum of
the NARX model, consider system (13.27) is subjected to input u(f)=10sin
(wot) (F4>0). Then, according to Corollary 13.1,

n+1

) @

2n+1
. —2
Y (jao)| < Conii | = bon1,2041H1
T\ 2
n=0

F,— 3F _ 5F° _ 35F7 _
— g 2 d0.03262H," +2—40.004537H," + ———20.00086719H," -+ - - -
2 8 16 128
4 2n+1 — 2t
+C3i (7> bopt1,2n+1H 1

To check the convergence of this series in the bound expression, the condition

2
lim *%/C} b < —
2n+1Y2n+1,2n+1 —
n—o0 nt FdHl

should be analysed. Note that if
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2 >2"+‘ 1 14451

Fdﬁl n

lim b2n+1,2n+l < ( Ch
e 2n+1 2041

then the convergent condition must hold. Let b(n)=bs,4+100+1 and
bb(n) = L44S" ' which can be easily computed for any n by a computer program.

C2nn+l
Obviously, if b(n)<bb(n), then the bound series is convergent. The result is
shown in Fig. 13.1, which indicates the convergence of the bound series where
b(n)=bs,+1.24+1 1s computed up to the 41st order. Figure 13.1 indicates a very
quick convergent rate of the bound series in this specific case.

Moreover, it shall be noted that through symbolic manipulations, an analytical
expression for the bound expressions of both the GFRFs and the output spectrum of
system (13.27) can be obtained in terms of model parameters c, ,(-). Thus the
magnitude of the GFRFs and output spectrum can be optimized and analysed
with respect to considered model parameters. This issue will be discussed in later

publications.

15 ‘
bb(n)
s b(n)

_ |
c [
5 \
Qa
° \
=
il \
= \\
- N
: \
05! \ . .
| \\ \\\x .
\\ P S
\ 11 12 13 14 15 16 17 18 19
\\\ \
0 ~ ] \77\774]':*::7,—47 | | Il Il

Fig. 13.1 Boundedness of the output spectrum (Jing et al. 2007a)
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13.5 Magnitude Bound Characteristics of the SIDO NARX
System

To apply the parametric boundedness approach above, this section provides an
evaluation of the magnitude bound of Y(jw) for the SIDO NARX system in (2.28),
which is significant in many cases where only the magnitude of Y(jw) is needed to
obtain some information of a system without computing the complicated analytical
functions in (2.30-2.33) in multi-dimensional complex space.

It can be derived from (6.54) that

N n
‘Y(]O))l = Z+ J Hs(lla)l, e "jwil)HU(iwi)dalu

w1+t =w

_ |y bt o) | v,
i=1

1

N Y(i* - i n
SZVJH(J@I’ ,jwn” J H|U(ia)i)|daw
i—1

i=
D1+t o=

N
1 _— - ,
= Z(zﬂ)n*I{H’z (joi,- - -,ja)n)| |U|* - % |U(jo)| (13.28a)
= N— —————
Denote Y,(jw) = W J H (joy, - -,ja),,)H U(jw;)do,, representing
i=1

|+ tw,=w
the nth-order output frequency response. Then

) 1 e o )
Y, (jo) §W|Hg(jwl,-~,jwn)‘\U|*~--*|U(]a))| (13.28Db)

n

Note that |U| * - - - % |U(jw)| can be computed by an algorithm in Billings and Lang
—_———

(1996). Thus from (13.28a,b), it can be seen that |H) (jw,," - -,jw,)| should be
evaluated first in order to obtain the magnitude bound for Y(jw). For this purpose,
the following notations are introduced.
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K
Z ’Ep,q(kly"'ykarq)‘» 1<g<n-1,1<p<n-—gq
kyy kp+g=0
K
Clp.q) = > Conlks, k)l g=np=0
klakn:()
K
> fepolki, k)|, g=01<p<n
kiy kp=0
0, else
(13.29)
C(p, q) has the similar definition as (13.29), except C(1,0) = 0. Let
L= inf L, 13.30
L= _inf (L)} (1330)
Moreover, let
]T]n,p = SUPR (|H11,p(') )a HO,O(') =1
w10, ER,,
H,o(:)=0 for n>0
Hyp(-) =0 for n<p (13:31)
H, = sup (|H;()])
w0, €ER,
where R,, is the input frequency range. Furthermore, two operations “s”” and “o” are

needed in the evaluation of magnitude bound, which are “®” and “@” defined
above respectively.

Proposition 13.1 Considering system (2.28), for w,+---+w;#0 (i=1,2,...,n),
the magnitude of I (jw,,- - -,jw,) for system (2.28) is bounded by

» . = = P
|H (jeor, - jw,) | < C(0,n) + 20,2 CPa)- Z"t:"*oq (be") “hy (13.32)
1<rirp<n—p—q+1
where
hy = {1 @) - (ﬁ'l")"] and by, = [bo bya -+ by, ] (1333)

b for 0<k<n can be recursively computed as follows,
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_z e o lepa. o 4
bnk—;C(k,nfk)wL; e C(p,q) Sre (i:lb,.) (k) (13.34)
0<p,g<m 1< rp<n—m+1
1— 1— _
by = |byy, ba1, byn| = |-C(0,2),— — 13.35
2 = [b2o, a1, b2 LC( ; )’QC( )é (2, )} ( )
by = [b1o,b11] = [0, 1] (13.36)

<

Moreover, . b, =0 if p<1, and o2 (1) =0if n<2.

Proof See the proof in Sect. 13.7. O

The bound in (13.32) provides another explicit analytical expression for the
relationship between system GFRFs and model parameters. The magnitude bound
of the nth-order GFRF can directly be described by an n-degree polynomial
function of H,. Different order of the GFRFs has a different degree polynomial

of Hy, and has no crossing effect with each other. Using (13.28a,b) and (13.32), it
can be derived that

N
n—1 n—q ~
<24 n1|U| AU Gw)] - ( 0.n)0"3" "' C (p.q)
— —/_’ q=0 p=0
- n
e ()
Zri:iz—q i=1
1<rirp,<n—-p—q+1
N 1 . = n—1 n—q ~
{8 U] 5% |U(jw)| - [ C(0,n)0 5" "" C(p,q)-
2 Gl s 0] (C0n)e 5 5 )

) Zr,-:n_oq (Elb") i - (;El(a"'Bn)) “hy

1<rprp,<n—p—q+1

|Y,(jw)| < ay- By - hy (13.38)

where
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1

|
= n—1 n—q ~ ) P
B, = C(O’")°q20 piOC(p,q) Zr,-:nfq (i.l b;—,) (13.40)

1<ri--r,<n—p—-q+1

Similarly, when the input of (2.28) is a multi-tone signal (3.2), then the output
spectrum of system (2.28) is bounded by

Y (joo)| < (n[gl (B -Bn)> ~hy (13.41)

Y, (j@)| < B, By - (13.42)

Bo=wn Y. Flo) - Flw,) (13.43)

Wpy +F o, =0

The magnitude of a frequency response function for a system usually reveals some
important information about the system, and consequently takes a great role in the
convergence or stability analysis of the system and the truncation error of the
corresponding series. Therefore, the magnitude bound results developed in this
section can be used to measure the significant orders of nonlinearities or to find the
significant nonlinear terms, indicating the stability of a system and providing a basis
for the analysis and optimization of system output frequency response.

Example 13.1 Consider the following system, i.e.,

mx(t —2) + apx(t — 1) + asx(t — 1) + kx(t) = u(t)
3 (13.44)
y(t) =ax(t — 1) +azx’(t — 1) + kx(r)
and let u=Asin(€2f). Assume that m, a,, as, and k are all positive. There are only
two nonlinear parameters, i.e., ¢3,0(111) = —a3/k and ¢3,0(111) = a3. Before the
magnitude bound of the output spectrum is evaluated, the parametric characteristics
of the GFRFs for y(¢) are checked first. In this case, the parametric characteristics
for the GFRFs can be computed according to (6.72). It is noted from (6.78-6.82)
that

CE(H3,(-)) =0 for i>1 (13.45)
thus
H3,(-) =0 for i > 1 (13.46)

according to Proposition 6.5. Hence, only IH5; ()| for i>1 are needed to be
evaluated for the magnitude of Y(jw). Since the input is a sinusoidal signal, the
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magnitude of Y(jw) can be evaluated by (13.41)—(13.43), which can be written in

this case as

. LN+1/2J
Y (jw)| < ( 2 (Baii 'B2il)> 'hLNH/ZJ

and
[Y2i1(jo)| < oy - Bai1 - hai

Note that u=Asin(Q¢) is a single tone signal, then

(13.47)

(13.48)

Bo=2" Y. |F(ox) - Flay,)|
Wpy + -+, =0
) L oy = ki k= £1,
else
(13.49)
From (13.34)—(13.36) it can be obtained that
by =0fori=1,2,3, ... (13.50)
and for n=2i—1, i=1,2,3,...
by =0 for 0<k<n (13.51)
1—
b =1,b33 ZZC(3,0),
1_ 3
Bun = ZC(3,0) > Hb forn > 3 (13.52)
ri=n =
1<r--r;<n—-3+1
Therefore,
= (C)) 15(1 o C . p - = C . = I
e (0. - (#,0.)) =€0.0)-b1 = (Frot1)
1<rrnp<2-p—gq
+[¢1,0(0)| - by = [0, a1 + 4] (13.53)

and for n=2i—1, i=2,3...



13 Magnitude Bound Characteristics of Nonlinear Frequency Response Functions

294
n—1 n—q = 14 P ~
B = fliO pio Zl‘i =n —O q (C(p,q) . (i:I hr’)) - (C(LO) -b,,>O(C(3,0)~
1<ri-rp,<n—p—-q+1
° . b)) = ((a1 +k)-by)o| as- ° (‘l h,.) (13.54)
Z",:n (iZI 1<§,:-].-’-jn<nfz o

1<r-r3<n-2

According to (13.54) and (13.51), (13.52), B,, can be computed up to any high

orders. For example,
° <:] ) = ((a1 + k) -b3)o(as - by e by eb)

1<r;--r3<3-2
a(@ *")m} (13.55)

,Bnn]. Hence, using (13.52) and (13.54),
(13.56)

Let Bn:[BHO’Bnl" ..
By =0for 0<k<n

Z Hb,~,,-, e Zr,-:n
ceer3<n—2

S ri=n
(13.57)

1—
(a1 +K) -+ C(3,0)

L
1<ri--r3<n—-3+1

B =

forn=2i—1,1i=1,2,3...

Since only the last element in B,, is nonzero, (13.47)—(13.48) can be rewritten as
|~N+1/ J —x\ 2i—1
Y (jw)| < i:olz (ﬂziq “Boi 1201+ (HY) ) (13.58)

(13.59)

and
. —xy\ 2i—1
[Y2i1(jw)| < Boi—y - Bai-r,2i-1 - (Hy)

Note from (13.30)—(13.31) that
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L= inf’l —i—%exp( —2(w1 + -+ @) —l—ﬂexp( —jl@1 4+ -+ w,)| (13.60)

k
1
k + mexp(—j2w;) + ajexp(—jw:)

H{ = sup

(13.61)

Based on (13.58)—(13.61), the magnitude bound of the output spectrum of system
(13.44) can be evaluated readily. For instance,

. —X Ala +k —x

[Y1(Q)| < By -Bi1-H, Z%Hl
. w3 3Aas(ay +k+kL) 3
9| < - By - () = 2l

This process can be conducted for up to any higher orders, which can be used to
evaluate some properties of the nonlinear system, such as the truncation error of
Volterra series and system stability etc (Sect. 13.3). O

13.6 Conclusions

The bound characteristics of the frequency response functions of the NARX model
including the GFRFs and the output spectrum are developed in this chapter. The
magnitude bounds of the GFRFs and system output spectrum can all be expressed
as a polynomial function of the magnitude bound of the first order frequency
response function, and the coefficients of the polynomial are the functions of the
system model parameters. These bound characteristics reveal an important rela-
tionship between model parameters and the boundedness of system frequency
response functions, and provide a significant insight into magnitude based analysis
of nonlinear systems in the frequency domain. Sufficient conditions for the BIBO
stability of the NARX model can also be derived from these results. Note that the
boundedness results derived in this chapter are based on the use of the triangular
inequality. This may introduce conservatism to a certain extent. Further studies will
focus on practical applications of the established theoretical results, and develop-
ment of methods to reduce possible conservatism associated with these bounded-
ness results. Some results can be referred to the next chapter and Jing et al. (2008b,
2009b).
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13.7 Proof of Proposition 13.1

It is derived from (2.32) that

K

|H (joor, -+ jaon )| < Z Con(ki,=kn)|[Hoo (o, jon )|
n—1n—q K
+ Z (Cp.q (ks pg) | | Humgp (@01, jeon—g |+Z Z [Cpo (ki) [[Hop (jeor, - jeon)|
q=1 p=1k,k,=1 p=lki,ky=
n—1n—q n n—q
C 0,n H00+ZZC(]J q n— qp+ZC(PO np*ZZC(Pq n—q.,p
g=1p=1 p=1 q=0 p=0
(D1)
From Lemma 1 and Theorem 1 in Jing et al. (2007a),
N ngptt
Hy 4p < Z HH]”,i for p 20,9 #n (D2)
rpeerp =1 i=l1
Sri=n—q
and
]TI,)i = bl‘i,() + br,,lﬁix +---+ br,-,ri (ﬁf)rl = bl‘i : hII’- (D3)
where b, = [b, o b1 -+ by, | which can be determined by (13.33)-
(13.36), and h,, = {1 H - (ﬁi‘)r’l. Then it can be derived from (D2),
(D3) that

- n—p—q+1 » »
Hygp< Y (f.lb,.,>-hn,‘,: ° (,’ b) - (D4)

rierp=1 ri=n—q
Yri=n—q 1<rp-rp,<n—p—q+1
Substituting (D4) into (D1) yields
. n—1 n—q __ »
|H§(iw1,~--,jw,,)|SC(O,H)+ZZC(,U,¢]) © (:1}7”) 'hnfq
q=0 p=0 ri=n—q =

1<rirp,<n—p—q+1

This completes the proof.



Chapter 14
Parametric Convergence Bounds of Volterra-
Type Nonlinear Systems

14.1 Introduction

Volterra series theory has been extensively used in many different areas, for
example, behavior modeling of radio frequency amplifier, telecommunication
channel modeling and channel equalization, nonlinear adaptive filter design, system
identification, acoustic echo cancellation, active noise control, vibration control,
and even applications in biomedical engineering (Crespo-Cadenas et al. 2010;
Hermann 1990; Krall et al. 2008; Batista et al. 2010; Kuech and Kellermann
2005; Li and Jean 2001; Mileounis and Kalouptsidis 2009; Jing et al. 2012) etc.
To conduct nonlinear analysis and design with Volterra series theory for a given
nonlinear system described by a NARX model, a fundamental issue is to ensure that
the excitation magnitude and/or model parameters should be in appropriate ranges
such that the NARX system has a convergent Volterra series expansion. Several
attempts in the literature have been done to derive such a convergence criterion for
guiding practical applications. In Boyd and Chua (1985) and Sandberg (1983),
convergence criteria for fading memory systems or nonlinear operators are theo-
retically given but may be too general to implement in practice. Similarly in Bullo
(2002), a convergence criterion for analytic systems in L”-spaces is established. For
a specific nonlinear system, such as Duffing oscillators, convergence criteria in the
frequency domain are discussed in Tomlinson et al. (1996), Peng and Lang (2007)
and Li and Billings (2011). But all those results are either very conservative or
obviously overestimated. Recently, computation of the convergence bound for a
class of input-analytic nonlinear systems is presented in Helie and Laroche (2011).
However, the result is also conservative, and the systems considered are only a
special case of the NARX system.

In this chapter, based on the bound characteristics of frequency response func-
tions, evaluation of the convergence bound in the frequency domain for Volterra
series expansion of nonlinear systems described by NARX models is studied. This
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provides new convergence criteria under which the nonlinear system of interest has
a convergent Volterra series expansion, and the new criteria are expressed explicitly
in terms of the input magnitude, model parameters, and frequency variable. The
new convergence criteria are firstly developed for harmonic inputs, which are
frequency-dependent, and then extended to multi-tone and general input cases,
which are frequency-independent. Based on the theoretical analysis, a general
procedure for calculating the convergence bound is provided. The results provide
a fundamental basis for nonlinear signal processing using the Volterra series theory.
More discussions can also be referred to Xiao et al. (2013a, b).

14.2 The NARX Model and Its Volterra Series Expansion
Problem

Consider the NARX model in (2.10), and suppose that the NARX system is of zero
initial conditions. The input-output relationship of the NARX model can be
approximated by the Volterra series with a maximum truncation order N as in
(2.1). The multi-variate Fourier transform of the nth order Volterra kernel is defined
as the nth order GFRF. The GFRFs for the NARX model can be computed with a
recursive algorithm as given in Chap. 2. With the GFRFs, nonlinear output spec-
trum can therefore be evaluated (See Chaps. 2 and 3). This represents a natural and
formal frequency domain solution of nonlinear systems given a specific excitation
input.

It is known that, whether the input-output relationship of the system in (2.10) has
a convergent Volterra series expansion is greatly dependent on the model param-
eters, input magnitude, and excitation frequency (i.e., characteristic parameters).
Although several results have been developed to evaluate the convergence bound in
the literature, most of the existing criteria focus more on the evaluation of the input
bound under which a convergent series exists and usually have more or less
drawbacks as mentioned before. This study aims at developing new convergent
criteria, which are expressed explicitly in terms of all the characteristic parameters,
for a more general nonlinear system described by the NARX model above using a
frequency domain boundedness approach.

Technically, the nth order GFREF is a function of the characteristic parameters;
thus the boundedness of the GFRFs and nonlinear output spectrum, given in Lemma
14.1, Lemma 14.2, and Lemma 14.3, provides a parametric insight into the output
response of the system (2.10) under any given input signal (based on the results in
Chap. 13); The bound of the output response is expressed into a simple infinite
series form in terms of the nth order GFRF and input U, which greatly facilitates the
investigation of the convergence of underlying Volterra series expansion. Based on
these boundedness results, the frequency dependent convergence criteria are
derived in Proposition 14.1 and Corollary 14.1 for harmonic inputs, which are
then extended to the cases for any input signals in Proposition 14.3.


http://dx.doi.org/10.1007/978-3-319-12391-2_2
http://dx.doi.org/10.1007/978-3-319-12391-2_2
http://dx.doi.org/10.1007/978-3-319-12391-2_3
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Consider the NARX system subjected to a harmonic input

A . A* .
u(t) = |A]cos (ar + £4) = Set + S (14.1)

The output is generally given by (3.3), i.e.,

“+o00 n

Y(jm) = zi,, S Hyor 0] [ Alw) (142)

—1 o+t w,=o =1

where w; € {w, — o}, A(w)e{A,A*}, Al is the magnitude of A(w;) which is
denoted by U in what follows.
The following definitions are needed.

L(w) = inf Ao, -+ jeon) |} (14.3)

weW,

where Wo = UWyi = U {@|® = w1+ + o we{w, — o}} represents the
k=1 k=1

output frequency range when the NARX model is excited by (14.1) (Chap. 3),
and the operator ||-|| means the absolute value for scalars and Euclidian norm ||+ ||,
for vectors.

Clp,q) = Z ||Cl)>fi(kla"'7km)” (14.4)

(ktyeekm)

From (14.4), C(p,q) is a nonnegative function of the parameters cp 4(+) which are the
coefficients of the NARX model in (2.10). Moreover, let

H,(jo1) = [Hi (o) || (14.5)

N denotes the nonnegative integer set, and N* denotes positive integer set.

A. Boundedness of the GFRF and Nonlinear Output Spectrum
Lemma 14.1 For the upper bound of the nth order GFREF, it can be obtained as

sup{||H,(jo1, - - -, jon)|| V@1, - - -, 0, € {@, —@}} < 17,,(]'{1)1, e jwy)

n—m+1

Hn(jwlv"'vjwn) L( 0 n +ch(p q Z HH wX+17"'an+r,)

—= m=2p=1 E :
p= riy e rp=1l, Fi=n— ‘1

(14.6)

The proof can be referred to Chap. 13.
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Lemma 14.2 The upper bound of the output spectrum at @ = kw, k € N is given
by

v 2, Cliagnet . B
|Y(JQ)| <Yo-rw(U) = E ﬁl‘[prz(n 1)(}(1)1 _}wk+2(,,,1))Uk+2(" D keNt (14.7a)
n=1

o0

|Y(‘]Q)} S YQ:/{(H(U) = Z an

32 Hoy (jor, - - -, jes, ) U k=0 (14.7b)
where CZ;;(H_l ) means the number of n — 1 combinations in a given k +2(n — 1)

elements.
Proof: Following (14.1) and (14.2), for k € N*,

oo k+2(n—1)

2
Yo—ta(U) < ZWZ Heopny(jor o) [T 1A(@)]]

n=1 w=kw i=1

Cl i) . . ) .
< szﬂ nnl Hy o) (jo1, s j@pa(u1)) U0

For k = 0, (14.7b) is straightforward. O
See also Chap. 13 for a more general case. Here the output response bound is
only for a single tone input (14.1).

Lemma 14.3 The upper bound of the output magnitude which involves all the
frequencies in the output frequency range W, can be given by,

Y(U)w = Zya):km(U) = Z m Z Z Y,, (]E)
k=0 weW =1 ||wew,
= iﬁ (j@r, - jo,)U" (14.8)

Proof
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oo n
> vg)| < 3|5 vam)| < Z LSS HaGer o) JIA@)]
DEW o n=1 ||weW, n=1" weW, o;++w,=o i=1
S 5l 2U+1
< VA i1, @ U+
< ;(; o JHoi i1 (joor 2%+1)
o] k Ck+f C
2o Dot it | i, ) U
=1\l .
= ZH2k+1 (jor, - -+ 0o ) U+ ZHZk(jwls o) U
k=0 k=1
+oc_
= H, (jwb o -,ja),,)U"
n=1
This completes the proof. O

Remark 14.1 Equation (14.7a,b) is the upper bound of the output spectrum of
nonlinear system (2.10) subjected to a harmonic excitation, which can be seen as a
power series with nonnegative coefficients; and (14.8) is the sum of the power
series presented in (14.7a,b). If (14.8) is convergent, then Vk € N, (14.7a,b) is
convergent, that is, the upper bound of the output spectrum is convergent. The
bound expression of the output response in (14.8) takes a simple infinite series form.
Obviously, the convergence of this series indicates the convergent of the Volterra
series expansion.

B. Frequency Dependent Convergence Criteria

With the bound results of the nonlinear output spectrum obtained above, the bound
of the output spectrum in (14.8) and the input magnitude U are shown to satisfy an
equation Y(U),, = U®(Y(U),, U), which gives a closed-form expression for the
bound of the output frequency response, where @(*,*) is a function to be defined,
then the Analytic Inversion Lemma (Flajolet and Sedgewick 2009) is used to
develop the frequency dependent convergence criterion.

’

Definition 14.1 For the case thatg € N, where ¢ is the nonlinear degree in terms of
system input in the NARX model (2.10), a formal function @(x,U) is defined as,

+00
H,(jw) +ﬁ Z_ZC(O,m)Umﬂ
D(x,U) = — (14.9)
Z ZC(p gyt

m=2 p=
where U is the input amplitude in (14.1) and x is the upper bound of the output
magnitude in (14.8).

For the NARX model with only pure input nonlinearity, the whole input part
which includes both the linear and nonlinear terms in terms of input can be
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equivalent to a new input, and then the new NARX model can be seen as a linear
system. Therefore, this case is not focused on in this study. The following result
presents a convergence criterion for the NARX model with output nonlinear degree
larger than or equal to 1.

Proposition 14.1 Except the case that the NARX model has only nonlinearity with
index p=1 or together with pure input nonlinearity, the convergence bound for the
Volterra series expansion of the NARX model can be obtained by solving the
following equations to find U,

o(x(w, V), U) = x(w, ) 22 Y) (14.10)

{x(a), U)=Ud(x(w,U), Ug
Ox

For the case that the NARX model has only nonlinearity with index p=1 or
together with pure input nonlinearity, the bound of the infinite series in (14.8) is
given by,

+00
H, (jo)U + g%Z C(0,m)U™
x= m=2 (14.11a)

+00
1 —@ZC(l,q)Uq
g=1

=

Then the convergence bound can be obtained by solving,
1 +00
—>» C(1,q)U7 < 1 14.11b
Fay 2 (LU < (14.11b)

Proof An outline of the poof is given here. Firstly, it is shown that the bound of
(14.8) and the input magnitude U satisfy the equationx(w, U) = U®(x(w, U), U) by
deriving a closed form expression for the output spectrum bound (see (Al) in the
proof). Then it is shown that the divergence condition of the bound of output
spectrum x(w,U) (i.e., the divergence condition of an infinite power series) is
equivalent to the closest point to the expanded centre where the infinite power
series becomes singular. Finally, according to the Analytic Inversion Lemma
(Flajolet and Sedgewick 2009), the singular condition of the bound of output
spectrum x(w,U) can be obtained, that is, ‘(’1—5(/ = 0, which further leads to the
conclusion. See the details in Sect. 14.6A. O

Definition 14.2 When the index ¢ in the NARX model takes only O or 1, the formal
function &(x) can also be defined as
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+00
H(jo) + > Clm =1, 12"
D(x) = =2 (14.12)

+00
1 - @Z; C(m,0)x"!

Corollary 14.1 When @(x) is given in (14.12), except the case that the NARX

model has only nonlinear terms like Z cr1(ky ko) y(t — ky)u(t — ky), (14.10) still
(k1 k2)

holds for the convergence bound. For the case that the NARX model only possesses

nonlinearity with p=1, (14.11a) and (14.11b) hold for the bound of output spectrum

and the convergence bound, respectively.

Proof See Sect. 14.6B. O
To compute the convergence bound, the following procedure can be used.

Algorithm 1

Step 1. Calculate L(w) according to (14.3), calculate the bound H; () of the first
order GFRF, and calculate C(p,q) from (14.4).

Step 2. For the corresponding cases, solve (14.10) or (14.11b) to obtain the
convergence bound respectively.

Moreover, using the results in Proposition 14.1 and Corollary 14.1, a bound for
the truncation error of the Volterra series expansion can be assessed in the fre-
quency domain as follows.

Proposition 14.2 Denote

Y(U)y= > 7, Z H,(joi,- - jw,)U" (14.13)
n=N+1 n=N+1

where N is the maximum truncation order. The truncation error bound can be
obtained as

<Y(U))

w

(14.14)

> (),

n=N+1

When 7(w,p(w)) exists, the following result holds

Y()! < f<w,p<w>>(ﬂ%)w /- (14.15)

Proof According to the Cauchy estimates (Stewart and Tall 1983),
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— . 1d"Y(U),, (w, p(@
Bt jon) = VL] _rl0.0@)
ntdU" p(w)]
then
Y(U)(i\;] = Z Hn(jwh o 'yja)n)Un
n=N+1
(@ p(@) N+ U
< Y 1Py o () 10
,1:%;1 p(@)] (’J< >) (@)
This completes the proof. |

Remark 14.2 When the solution of the NARX model (2.10) has unique steady
state, which is related to the fading memory property (Boyd and Chua 1985), the
solution of the NARX model can be approximated by a convergent Volterra series.
Then, the proposed criterion can give a very good estimation of the true bound
under which the solution of the NARX model can be well approximated by a
convergent Volterra series. When the solution of the NARX model has more than
one unique steady state with the given input amplitude, the proposed criteria in
Proposition 14.1 and Corollary 14.1 may lead to over estimation of the true
convergence bound. However, for a given specific NARX model, the Harmonic
Balance method can be used to check whether the solution of the model possesses a
unique steady state or not. A further study will focus on this problem.

C. Frequency Independent Convergence Criteria

As discussed in Remark 14.2, to overcome the over estimation problem of the
frequency dependent convergence criteria above, frequency independent ones can
be derived. Comparing with the frequency dependent results, the frequency
independent ones are more conservative. Simultaneously, the results will be
generalized to more general cases for multi-tone or any input signals. Denote
L, = inf{||L,(jw1, -, jo,)|||Vo: € 6, }, L =inf{L,|n € N*}, and
H, = sup{||H,(jo1, - - -, jo,)|||Vo: € 6, }, where o,, represents the whole nonneg-
ative frequency range.

Proposition 14.3

(1) When the NARX model is subjected to a multi-tone input given by
Nll
u(t) = |Ai| cos (wit + 2A)) (14.16)
=1

where N, is the number of input frequency, the frequency independent conver-
gence bound can be obtained by solving,
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© = pP(z,p)
¢(T7p) — Tadsg,;,U)‘ (1417)
x=1,U=p
where U = sup{|A;[|i = 1,2, -,N, }.
(2) When the NARX model is subjected to a general input given by
1 o0
u(t) = —J 2{U(jo)| cos [t + 2U (jo)]de
2w 0
17 A 1 A (14.18)
= 7J U(jw)e™ dw = —J U(jw)e'™ dw
2” —0o0 2” (DEO'(,)

where U(jw) represents the input spectrum, the frequency independent conver-
gence bound of the Volterra series expansion of the NARX model with the
general input (14.18) can be obtained by solving,

{T = p®(t,p)

(r,p) = 75

x=t,U=p

where U = sup{|U(jo)||® € 6, }.
Proof See Sect. 14.6C. O

Remark 14.3 Let N, in (14.16) equals to 1, then the frequency independent
convergence criterion for the NARX model with single tone input can also be
obtained via (14.17). It should be noted that the results in Proposition 14.3 will
become the result in Helie and Laroche (2011) when the nonlinear system is
restricted to be input-affine, i.e., the maximum nonlinearity degree for the input
not larger than 1 and the difference order of the input limited to 1 in the NARX
model. It will be shown that our results are more general, and less conservative
(even for the latter case).

14.4 Examples

To demonstrate the theoretical results, four NARX models are discussed here with
different input and output nonlinearities. The systems considered in these examples
can be given in the following general form with zero initial conditions,
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y(k) = cq,0()y(k — 1) +c1,02)y(k —2) +e3.0(1, 1, 1)y> (k — 1) + 2,1 (1,1, 1)y? (k — Du(k — 1)
+era(L, 1, Dy(k = Du?(k = 1) +c.3(1, 1, D (k — 1) 4 co 1 (Du(k — 1)
(14.19)

Equation (14.19) can be obtained by using the backward difference method to
discretize the nonlinear differential equation

m(1) + ¢y (6) + kyy(e) + ksoy* (1) + kary (0u() + kiay(0)u? (1) + kosae’ (1) = u(r)

with zero initial condition, where
m = 1,(,‘ = 0.0la)o,kl = a)(z),k30 = 0.010)8,/(21 = 1.2306 * 107,k12 = 615289,
kos = 0.9229,w¢ = 20z, u(t) = U cos (wt). In (14.19), set Ty = 1/2000s, then u(k)

= Ucos (2k) = Ucos (oT k) and ¢1,(1) =2 — L — % =1.9987, c10(2) =L

m

—1=—0.9997,c01(1) =5 = 25510 Tes o(1,1,1) = — 25 — 1538223, ¢,
(1,1,1) = =21 = 30764, ¢,,(1,1,1) = — 25 = —1.538210 4, co.5(1,1,1)

— Wl _53073% 1077

Firstly, the NARX model in (14.19) with only pure output nonlinearity is
discussed in case A, which is obtained by setting ¢, 1(1,1,1) = ¢1,2(1,1,1) = ¢o 3
(1,1,1) = 0, corresponding to the discretized model of the continuous time Duffing
equation. The comparison between the proposed criteria for the mentioned NARX
model and other existing criteria focusing on the Duffing equation is presented.
Then the NARX model with pure output nonlinearity and input-output cross
nonlinearity with ¢g=1 is given in case B, which is obtained by setting ¢1 (1, 1,1)
= ¢o,3(1,1,1) = 0in (14.19). Similarly, the comparisons between the convergence
bounds obtained with the proposed results in Proposition 14.1, Corollary 14.1, and
Proposition 14.3, and with the other existing results are presented. Then the NARX
model with input-output nonlinearity with ¢g=2 is given in case C, which is
obtained by setting ¢31(1,1,1) =¢p,3(1,1,1) =0 in (14.19). In this case, the
proposed criteria in this study such as Proposition 14.1 and Proposition 14.3 can
effectively provide a convergence bound, but no existing results are available.
Finally, the NARX model with pure output nonlinearity and pure input nonlinearity
is given in case D, which is obtained by setting ¢;,1(1,1,1) = ¢;2(1,1,1) =0 in
(14.19). In this case, similarly to case C, the proposed criteria in this study such as
Proposition 14.1 and Proposition 14.3 can effectively provide a convergence bound,
but no existing results are available. Moreover, it can be clearly seen how the pure
input nonlinearity affects the convergence bound when compared with case A.

In these examples, the output frequency response up to the Nth order is com-
puted by using (14.1) and (14.2), and then the output frequency response is
transformed into time domain, which is referred to as the synthesized output. The
time domain output response obtained directly from simulation of the model with a
Runge-Kutta method is referred to as the real output. The normalized root mean
square error (NRMSE) is used to measure the difference between the synthesized
output and the real output, which is defined as
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Z (ysynthesized (k) = Yreal (k)> ’
Z (yrea/(k))z

where Ygynesizea(k) is the synthesized output, and y,,.(k) is the real output. By
comparisons between the synthesized output and the real output, the validation of
the proposed criteria is shown. In the discussions below, the true convergence
bound of input magnitudes is obtained by numerical simulations.

A. A NARX Model with Pure Output Nonlinearity
The NARX model in (14.19) with only pure output nonlinearity is studied here. The
NARX model is given by

NRMSE =

(14.20)

y(k) = cro(1)y(k = 1) +c1,0(2)y(k = 2) +c3,0(1, 1, 1)y (k= 1) +co1 (Du(k — 1) (14.21)

Firstly, calculate the upper bound of the linear order GFRF, that is,
H(w) =H;(jw), and the lower bound of L,(jw), that is, L(w). In this case, L(®)
= inf{||L(@)|], |ILB3®)||, |IL(5®)],- -} (Chaps. 3, 5 and 6). Although the output
frequencies happen at all odd multiples of the input frequencies (Chaps. 3, 5 and
6), the first several orders would take dominant roles and thus L(w) could be
evaluated simply by L(w) = inf{||L(w)||, ||IL(3@)]], [|L(5@)||, |L(7®)||}. In (14.21),
@(x) in (14.12) is the same as that in (14.9). Thus

D(x )/{1 = [CB3,0)/L(w)]*}
Then solving the equationxdq(ﬁ"') = @(x), the solution isx(w) = \/L(w)/[3C(3,0)].
Then according to the first equation of (14.10), the convergence bound can be
obtained,

@) = 2\/L(@)/[3/3C6.0 ()]

which is presented in Fig. 14.1.

The existing criteria developed for the continuous time model of (14.21), i.e., the
Duffing equation, are also presented in Fig. 14.1 for comparisons. Most existing
criteria such as those mentioned before are obviously over-estimated. The proposed
criteria in this study provide much more reliable and close estimation of the
convergence bound especially for the frequency range below the resonant fre-
quency (it can be verified for the Duffing equation that the system has unique
steady state (relating to the fading memory property (Boyd and Chua 1985)) in this
frequency range). The frequency independent convergence bound obtained by
Proposition 3 is 0.0038. Although the frequency-independent bound is quite con-
servative at the other frequency (accurate at the resonance frequency), it is
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55
1 4 Bound by Tomlinson
50 — — Bound by Peng
45 ] o Bound by Li
] —<— Bound by Helie
40 - Bound by Proposition 1
1 *  The true convergence bound
35 —*— Bound by Proposotion 3 4

The convergence bound p(®)
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Fig. 14.1 Frequency domain convergence bound of model (14.21); in the figure, Propositions 1
and 3 refer to Propositions 14.1 and 14.3 respectively. (Xiao et al. 2013b © IEEE)

obviously less conservative than the result in Helie and Laroche (2011) (a recently
developed one), while the latter provides a convergence bound as 5.3895 % 107,

In Fig. 14.1, at the resonant frequency the convergence bound is 0.0038 and at
the other frequency for example w=0.8, it is 0.8322. In Figs. 14.2 and 14.3, the
comparisons between the synthesized output and the real output are presented.
When the input amplitude is taken less than or equal to the computed convergence
bound value, the synthesized output and the simulated real output has a good
agreement. That is, a very small NRMSE can be seen in this case. With a little
larger value of the input amplitude, the synthesized output becomes slowly diver-
gent, with the NRMSE becoming larger and larger.

B. A NARX Model with Pure Output Nonlinearity and Input-Output
Nonlinearity with q=1

In this case, the NARX model contains both pure output nonlinear term and cross
nonlinear term with g=1 is given by

y(k) = cro(D)y(k — 1) +c10(2)y(k = 2) +e3,0(1, 1, Dy (k — 1)
+ o1 (1,1, 1)y*(k = Du(k — 1) + co. (Du(k — 1) (14.22)

To compute the convergence bound, @(x,U) can be obtained from (14.9), that is,



14.4 Examples 309

70 —&— Up to 1st Order Synthesis
—+—Up to 3rd Order Synthesis
—¥— Up to 5th Order Synthesis
—®—Up to 7th Order Synthesis

50

40

30

20 +

10

Normalised Root Mean Square Error (%)

04— e e
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Input Magnitude U

Fig. 14.2 Comparison between the synthesized output and the real output under the cosinusoidal
input at w=1 (Xiao et al. 2013b)

N
[3,]
|

—@— Up to 1st Order Synthesis
—+— Up to 3rd Order Synthesis
—#— Up to 5th Order Synthesis
—=&— Up to 7th Order Synthesis

N
o
|

15

10 4

Normalised Root Mean Square Error (%)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Input Magnitude U

Fig. 14.3 Comparison between the synthesized output and the real output under the cosinusoidal
input at @=0.8 (Xiao et al. 2013b)
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Fig. 14.4 Frequency domain convergence bound of model (14.22); in the figure, Proposition 1,
Proposition 3 and Corollary 1 refer to Proposition 14.1, Proposition 14.3 and Corollary 14.1,
respectively. (Xiao et al. 2013b © IEEE)

cen .
Lw) U L)

®(x,U) = Hy (o) / {1 -

As a comparison, @(x) can also be constructed from (14.11a,b), i.e.,

o) -5

L()
Solving (14.10), the convergence bounds can be obtained, which are presented in
Fig. 14.4.

In Fig. 14.4, the convergence bound obtained by using Corollary 14.1 superim-
poses on that obtained by using Proposition 14.1, both of which provide very good
estimation on the convergence bound except for the frequencies larger than 1.8,
where it can be verified that the system dynamic response possesses more than one
steady states. To overcome the over-estimation problem at some frequencies, the
convergence bound can also be given by Proposition 14.3, which is a frequency
independent bound (i.e., 0.0031). Although this frequency independent bound is
conservative but much better than the bound estimated by the method in Helie and
Laroche (2011), which gives the bound to be 5.3718 % 107°. It should be noted that
few existing methods could be applicable to this example in the literature. More-
over, the convergence bound obtained with Proposition 14.3 is exactly the conver-
gence bound obtained by using Proposition 14.1 or Corollary 14.1 at the resonant
frequency.
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In Figs. 14.5 and 14.6, when the input amplitude takes a value equal to or smaller
than the computed convergence bound, that is, at =1 in (14.1) it is given as
0.0031 and at the other frequencies for example w=0.8 it is given as 0.1960, the
synthesized output has a very good match with the real output up to the seventh
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order. When a little larger input amplitude is used, the synthesized output becomes
slowly divergent with an observed increasing NRMSE.

C. A NARX Model with Pure Output Nonlinearity and Input-Output
Nonlinearity with q>2
The NARX model in this case is given as

y(k) = cro()y(k — 1) + c1,0(2)y(k —2) + c3,0(1, 1, 1)y* (k — 1)
+era(1, 1, D)y(k = D (k= 1) + co.1 (Du(k = 1). (14.23)

No existing results are available to compute the convergence bound for
(14.23). With our results in Proposition 14.1 or Proposition 14.3, the
convergence bound can be computed as follows. From (14.9),

&(x,U) (w)/{1—[C(1,2)/L(0)]U* — [C(3,0)/L(w)]x*}. Solving (14.10),
the convergence bound in the frequency domain can be obtained, which is
presented in Fig. 14.7. With Proposition 14.3, the frequency independent conver-
gence bound can be obtained, which is 0.0038 after calculation.

The bound results are shown in Fig. 14.7, which indicate clearly that the new
convergence bound can provide a reliable estimation on the convergence condition
for the Volterra series expansion at all frequency band, and the proposed one
matches well the true one obtained by the numerical simulation.

In Figs. 14.8 and 14.9, when the input amplitude takes a value equal to or smaller
than the computed convergence bound value, for example, it is 0.0038 for =1,

4.0
| Bound by Proposition 1
3.6 - % Bound by Proposition 3 %
0.06 *  The true convergence bound
3.2

N
a
1

-
o
|

The convergence bound p(®)
" 5
Il Il

00 r \JI/ r \i/ r N r N T r N r N r r r
00 02 04 06 08 10 12 14 16 18 20
Normalized frequency w/o

-+
-«

Fig. 14.7 Frequency domain convergence bound of model (14.23); in the figure, Propositions 1
and 3 refer to Propositions 14.1 and 14.3 respectively. (Xiao et al. 2013b © IEEE)
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Fig. 14.9 Comparison between the synthesized output and the real output under the cosinusoidal
input at w=0.8 (Xiao et al. 2013b)

and 0.6283 for @=0.8, the synthesized output up to the seventh order has a very
small NRMSE compared with the real output; when larger input amplitude is used,

the synthesized output becomes slowly divergent with an obvious increasing
NRMSE.



314 14 Parametric Convergence Bounds of Volterra-Type Nonlinear Systems

Bound by Proposition 1
—%*— Bound by Proposition 3
*  The true convergence bound| *

N
©
]

INg
>
1

g
=)
]

The convergence bound p(®)
5 B
Il Il

0.0

-«

N 2 N N N 2 N
f T T T T T T f T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Normalized frequency /o,

Fig. 14.10 Frequency domain convergence bound of model (14.24); in the figure, Propositions 1
and 3 refer to Propositions 14.1 and 14.3 respectively. (Xiao et al. 2013b © IEEE)

D. A NARX Model with Pure Output Nonlinearity and Pure Input
Nonlinearity with q>2
The NARX model in this example is given as

y(k) = cro(y(k — 1) 4+ c1,0(2)y(k — 2) + ¢3,0(1, 1, 1)y’ (k — 1)
+co3(L, 1, 1) (k= 1) + co,1 (Lu(k — 1) (14.24)

Similar to Example C, no existing results are available to compute the
convergence bound. From (14.9), @(x,U) = {H(w) + [C(0,3)/L(w)]U*}/
{1-1C(3,0)/L(»)]x*}. According to (14.10) the convergence bound can be
obtained, which is presented in Fig. 14.10. The frequency independent bound can
be obtained according to Proposition 14.3, which is 0.0038.

From Fig. 14.10, it can be seen that the proposed criterion still has good
estimation of the true convergent bound. Moreover, it shall be noted that, when
the NARX model with not only pure input nonlinearity but also other nonlinearity
in the output, the pure input nonlinearity can significantly affects the convergence
bound of the NARX model, which can be seen clearly by comparing example D
with example A. Example D is obtained from example A by introducing pure input
nonlinearity with nonlinear order ¢g=3, and the estimated convergence bound in
example D is totally different from that in example A.
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at =1 (Xiao et al. 2013b)
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Fig. 14.12 Comparison of the synthesized output and the real output under the cosinusoidal input
at =0.8 (Xiao et al. 2013b)

In Figs. 14.11 and 14.12, when the input amplitude takes equal to or lower than
the computed convergence bound, for example, 0.0038 at w=1 and 0.6162 at =
0.8, the synthesized output up to the seventh order has very good approximation to
the real output; when a little larger input amplitude is used, the synthesized output
becomes slowly divergent with increasing NRMSE.
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14.5 Conclusions

Volterra series has been extensively used in various areas including filter design,
signal processing, system identification, and control etc. The NARX model is
known as a general model for nonlinear systems, which also has been frequently
used in practice for system identification, signal processing, and control etc. Based
on the Volterra series theory, the associated frequency domain theory and methods
for the NARX model developed in the past decade can greatly facilitate the
nonlinear analysis and design. Applications of these results can be found in
different engineering practices such as signal processing, filter design, vibration
control, fault detection, and neuronal systems. The results of this study solve an
important issue related to the application of the Volterra series based theory and
methods mentioned above. From a very engineering point of view, the new results
attempt to systematically answer a long-existing problem, that is, under what
parametric conditions a given nonlinear system (described by the NARX model)
could have a convergent Volterra series expansion for a given testing input signal.
Obviously, these results could provide a significant guidance for nonlinear analysis
and design in nonlinear signal processing and control with the Volterra series based
theory and methods. To demonstrate the results, several examples are given and
discussed. It is shown that, the new convergence criteria can provide a better
evaluation on the convergent region in which the targeted nonlinear system dynam-
ics can be well approximated by a convergent Volterra series expansion in most
frequency range. Given a nonlinear system, if the nonlinearity is examined to be a
non-Volterra-type with the developed results, many methods can be used (for
example, introduction of feedback control or decrease of input magnitude etc) to
ensure the system to be a Volterra type (that is, allowing a convergent Volterra
series expansion). Note that a Volterra-type nonlinearity is well-defined and mild
nonlinear phenomenon, which is much easier for analysis, design and control with
many developed theory and methods both in time and frequency domain, compared
with other complicated nonlinear behaviors such as chaos and bifurcation etc
(Nayfeh and Mook 2008; Sanders and Verhulst 1985; Buonomo and Lo Schiavo
2005).

The parametric convergence bound presented in this Chapter can also be used to
indicate to what extent a given nonlinear system has a convergence Volterra series
expansion in terms of any characteristic parameter. This leads to a new concept—
convergence margin defined in Xiao et al. (2014). More effective parametric
convergence bound can also be developed by considering the frequency and wave
form of multi-tone inputs, which will be reported in Jing and Xiao (2014).
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14.6 Proofs

A. Proof of Proposition 14.1
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ZZU‘IC p.q)(Y(U),) ++— C(0,m)U" =Y(U), — H\(jo)U (A1)
2 L(w) 5=,
== =\ g=m=
From  (Al), Y(U),=U®(Y(U),.U) holds, and  denote

400
x(@,U)=Y(U), = Zﬁ,,(ja)l, -+, jw,)U", then the equation can be rewritten as

x=Ud(x,U) (A2)

Note that here (A2) gives a closed-form expression for the magnitude bound of
output frequency response compared with the power series form in (14.8). From the
above, x = Y(U),, is an infinite power series of U expanded at 0. The infinite power
series is analytic in the convergence region, which means that in the convergence
region there does not exist any singularity. Thus the closest point to the expanded
center which makes the bound of output spectrum x = Y (U),, singular can be seen
as the convergence bound of the infinite power series.

In Flajolet and Sedgewick (2009), the Analytic Inversion Lemma is stated as: An
analytic function locally admits an analytic inverse near any point where its first
derivative is non-zero. However, a function cannot be analytically inverted in a
neighborhood of a point where its first derivative vanishes.

According to the Analytic Inversion Lemma, the singular condition of the bound
of output spectrum x = Y(U),, can be obtained as 4 = 0.

Denote r(w) as the convergence radius of @(x, U )

For the case that the NARX model does not only possess nonlinearity with index

p=1 or together with pure input nonlinearity, w exists and w # 0if U # 0.
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Because x%/@(}(, U)is0at x=0, lim x%/(b(x, U) — oo and x

x—r(w)
%/@(x, U) is an increasing function of x for 0 < x < r(w), so there exists a

unique solution 0 < 7(w, p(w)) < r(w) makes x%/@(x, U) = 1, that is,

xafb(x, U)

&(x,U) = P

(A3)

where x = 7(w, p(®)), U = p(w).
From (A2), 1 = &(x,U) + U228 4y @2U) dU 16145, Substituting (A2)

and (A3) into the equation, then ( xU)+U a(p(A U)> 4V = 0 holds with x =7

(w,p(w)) and U = p(w). Because &(x,U), oo ‘U), and U are all positive, then

‘25 =t p(@) — 0 holds. Thus (A3) indicates that the singular condition of the

infinite power series holds, which means that the bound of nonlinear output
spectrum x is singular at U = p(w).

From the analysis above, the convergence bound can be obtained via solving
(14.10).

For the case that the NARX model only has nonlinear terms with index p=1 or
together with pure input nonlinearity, from (A2), (14.11a) can be obtained directly,
and then the bound results in (14.11b) is straightforward. This completes the
proof. O

B. Proof of Corollary 14.1

400 1
L(lw)ZZUqC m—q.q)(Y(U),)""
- - 2q +oo 1 n—m+1 m_
Z ZZC m-—dq,q Z HH’,’ (iwl, .. ',jCl)r,.)Un
= m 2¢=0 r=1, i=1
Z ri=n—gq
= ZHH(]a)l, - jw,)U"
then,
1 400 1
MZZUQC m—q, q)(Y( ZH (jwr, - ja,)U"
- m=2 q=0

=Y(U), — H\(jo)U (B1)

From (B1), (A2) still holds, and similar to the proof of Proposition 14.1, Corollary

14.1 holds except that when only nonlinear term Z cr1(ky ko) y(t — ky)u(t — ky)
(k1 ,k2)
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is contained in the NARX model, in this case, (14.11a,b) is the direct consequence
of (A2). This completes the proof. O

C. Proof of Proposition 14.3
For the multi-tone input case, denote

6w ={w1, -, 0n,}, ay = sup {25 Z I}Vwi € o, U —6,,]}, and

OEW, w1+t =

a= sup{a,,|n =1,2,-- }

From Chap. 3, Y(j@) =) Y, (j@) =

n

Z Z H,(jor,-- -,ja)n)HA(a),-), VYo; € 64, U —0,,.

o+, =0 i=1

Then YaG@)| <5 D HaGor, - jw)l|

o+t =0

[T1A(@)) < H,U" (% > 1) < aH,U"Nw e W, and

i=1 o1+t 0, =0
o0

|Y (j@)]| Z ZaH U", V& € W Denote

n=1 n=1
Y=ay HU" (C1)
n=1

Equation (C1) is frequency independent, and it can be revised in the following brief
form

— Y &=
Y :_ZE H,U" C2
’ a n=1 ( )

Because a is a nonnegative bounded constant, (C2) has the same convergence
bound with that of (C1). By replacing L(w) with L and H,(jo) with H;, H, can
be recursively computed with lower order bound according to (14.6). Then similar
to the proof of Proposition 14.1, the result holds.

For the general input case, denote

@y = SUPgeyy, W J 1doz|Vw,; € 6, U —0, 7, and

01+ F o, =0
a= sup{a,,!n = 1,2,---}. dog denotes the area of a minute element on the
n-dimensional hyper plane ® = w; + - - - + ®,,.
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From Chap. 3, it can be obtained that

Y(jo) = Z] Y,(jo) = ZI —(271)’1_1 J H,(jo,- - ~,]w,,)H U(jw;)doz Nw; € 6, U —04.
n= n= _ i=
o1+t =0

Then
_ 1/\/n , . - : _
1Ya(i@)]| < —— J [Hu(jwr, - - jon) I [ 1UGeo:)ldow
(2x) _ i=1
w1+ tw, =0
— 1 —
< H,U" /\/i J ldow < aH,U" N@w € W,,.
(2n)"
0+t =0
and

n

IYGa) < 3 Vm) = > all, U, ¥ € Wa,
n=1

n=1

Thus (C1) and (C2) still hold for the NARX model with general input. Then
following the method similar to the multi-tone input case, the result holds. This
completes the proof.4
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Chapter 15
Summary and Overview

Frequency domain methods can often provide very intuitive insights into underly-
ing mechanism of a dynamic system under study in a coordinate-free and equivalent
manner, compared with corresponding time domain methods. Therefore, they are
preferable to engineers, widely adopted in engineering practice, and also exten-
sively studied in the literature. Due to complicated output frequency characteristics
and dynamic behaviour of nonlinear systems, a systematic and effective frequency
domain theory or method for the analysis and design of nonlinear systems has been
a focused topic in the past several decades.

Nowadays, several methods are available in the literature for nonlinear analysis
and design as discussed in Chap. 1, including traditional harmonic balance methods,
describing function methods, absolute stability based theory and methods and so on.
Among the progress, active research activities can be seen in development of more
efficient describing functions such as the so-called higher order sinusoidal input
describing function and sinusoidal input describing function (Rijlaarsdam et al.
2011; Pavlov et al. 2007), and more active methodology would be the Volterra series
based approach. The obvious advantages of the Volterra series based frequency
domain theory or method can be seen in that, it is a generic method and applicable
to a considerably large class of nonlinearities but not limited to any specific nonlinear
units or components; it is not restricted to any specific input signals but permissible
to any input excitation; it can directly relate any system characteristic parameters to
nonlinear output frequency response in an analytical and polynomial form; and it
allows symbolic and parametric computations using computer programmes.

In this book, some new advances in the Volterra series based frequency domain
theory or method developed in the past 10 years are summarized from a novel
parametric characteristic approach. These results, including both theoretical inves-
tigation and practical application algorithms, can hopefully present a solid and
important basis for further development of frequency domain theories and methods
for nonlinear analysis and design to solve critical and challenging engineering
issues in the literature and various engineering practices.
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The main results included in this book are:

(a) A parametric characteristic analysis method is established for parameterized
polynomial systems with separable property, which is to reveal what model
parameters affect system frequency response functions and what the influence
could be. Based on this technique, it is shown for the first time that, the
analytical relationship between high order frequency response functions of
Volterra systems and system time-domain model parameters, and also pro-
vides a novel method for understanding of the higher order GFRFs of Volterra
systems. Refer to Chaps. 4-6.

(b) By using the parametric characteristic analysis, system output spectrum up to
any orders can be explicitly expressed as a polynomial function of model
parameters of interest, which can directly relate any characteristic parameters
to system output frequency response such that nonlinear output spectrum can
be analyzed, designed and optimized via these parameters. This provides a
significant basis for nonlinear analysis and design in the frequency domain.
Refer to Chaps. 7-10.

(c) A novel mapping function from the parametric characteristics of the GFRF to
itself is established. This result enables the nth-order GFRF and output spec-
trum to be directly written as a polynomial forms in terms of the first order
GFRF, model parameters and input, which is shown to be a new approach to
understanding of higher order GFRFs. It is theoretically shown for the first
time that system output spectrum can be expressed into an alternating series
with respect to model parameters under certain conditions. The result reveals a
significant nonlinear effect on system output dynamic behaviours in the
frequency domain. Refer to Chaps. 11 and 12.

(d) The nonlinear effects on system output spectrum from different nonlinearities
are also studied. This provides some novel insights into the nonlinear effect on
system output spectrum in the frequency domain, such as the counteraction
between different nonlinearities at some specific frequencies, periodicity
property of output frequencies and so on. These results can facilitate the
structure selection and parameter determination for system modelling, identi-
fication, filtering and controller design. Mainly refer to Chap. 3.

(e) New methods for analysis and design of nonlinear vibration control systems
by employing potential nonlinear benefits are developed. It is a systematic
frequency domain approach for exploiting nonlinearities to achieve a desired
output frequency domain performance for vibration control or suppression.
Refer to Chaps. 10 and 12.

(f) New parametric convergence bound criteria for Volterra series expansion of
nonlinear systems described by the NARX model are developed, based on the
parametric bound characteristics of frequency response functions of the
Volterra class of nonlinear systems. The results solve an important issue
related to the application of Volterra series based theory and methods, that
is, under what parametric conditions a given nonlinear system (described by
the NARX model) could have a convergent Volterra series expansion for a
given testing input signal. Refer to Chaps. 13 and 14.
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Although interesting and significant results have been achieved as discussed in
previous chapters, there are still many tasks yet to be done for a full development of
a systematic frequency domain method for nonlinear system analysis and design.
The following topics would be reasonable to investigate based on those
achievements.

o Exploring nonlinear benefits in vibration control. This is to develop theory and
methods for analysis and design of nonlinear vibration control systems in active,
semi-active or passive control by employing advantageous nonlinear benefits for
much better vibration control/suppression/isolation performance. Nonlinear
energy transfer or cancellation properties as shown in Chap. 3 could be used
for this purpose, and similar topics can also be referred to Chaps. 7,9, 10 and 12.
The parametric characteristics approach provides a convenient tool for the
corresponding nonlinear analysis and design aiming at a desired output fre-
quency spectrum. The developed frequency domain method (see Chap 9) can
provide a straightforward expression for the relationship between the nonlinear
output spectrum and system characteristic parameters including those which
define nonlinearities. An extension will be done such that this relationship can
also be expressed as a straightforward function of model parameters which
define linear dynamics of the underlying system.

e Characterizing and understanding nonlinearity in the frequency domain. How to
characterize nonlinear dynamics and what the true feature is for a nonlinear
behaviour of interest in the frequency domain are intriguing topics to study,
since straightforward understanding of linear dynamics in the frequency domain
is very well developed and preferable in practice. This topic is greatly related to
fault/crack detection in non-destructive evaluation and structure health monitor-
ing etc, feature or pattern recognition or detection in biological data or dynamic
response signals from various disciplines, signal processing, nonlinear system
identification and feedback design in control, and so on. Similar topics can be
referred to Chaps. 3, 7 and 12.

* Nonlinear system identification in the frequency domain. With known output
frequency characteristics and parametric characteristics of frequency response
functions as demonstrated in Chaps. 3—12, nonlinear system identification would
be much more convenient to conduct with only input-output experiment data.
Obviously, this topic is far from development.

e Parametric convergence bounds of Volterra series expansion and its applica-
tions. As shown in Chaps. 13 and 14, a parametric boundedness approach to the
frequency response functions provides a powerful tool for the analysis and
evaluation of convergent bound of Volterra series expansion of a given para-
metric nonlinear model such as NARX or NDE. Given a nonlinear system, a
parametric convergence bound can be used readily for evaluation of the
nonlinear dynamics about whether it is a Volterra-type or not, and about how
to design nonlinear feedback or model parameters so as to create a Volterra-type
nonlinear system, and consequently the system can be easily analyzed and
controlled with the established frequency domain methods.
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e Extension to describe complex nonlinear behaviours. Besides designing a non-
Volterra-type system to be Volterra-type as mentioned above, some theory and
methods can also be developed technically to allow complex nonlinear behav-
iours such as Chaos and Bifurcation and/or those described by neural networks
to be analyzed in the context of Volterra series expansion and in the frequency
domain. Preliminary research studies already show that the Volterra series based
approach can also be used to interpret some complex nonlinear behaviours
(Boaghe and Billings 2003).

“The fear of the LORD is the beginning of wisdom. ..”
—Proverbs 9:10 King James Bible
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