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Preface

Nonlinearities are ubiquitous and often incur twofold influence, which could be a

source of troubles bringing uncertainty, inaccuracy, instability or even disaster in

practice, and might also be a superior and beneficial factor for system performance

improvement, energy cost reduction, safety maintenance or health monitoring, etc.

Therefore, analysis and design of nonlinear systems are important and inevitable

issues in both theoretical study and practical applications.

Several methods are available in the literature to this aim including perturbation

method, averaging method and harmonic balance method, etc. Nonlinear analysis

can also be conducted in the frequency domain based on the Volterra series theory.

The latter is a very useful tool with some special and beneficial features to tackle

nonlinear problems. It is known that there is a considerably large class of nonlinear

systems which allow a Volterra series expansion. Based on the Volterra series, the

generalized frequency response function (GFRF) was defined as a multi-variate

Fourier transform of the Volterra kernels in the 1950s. This presents a fundamental

basis and therefore initiates a totally new theory or area for nonlinear analysis and

design in the frequency domain.

The frequency-domain nonlinear analysis theory and methods, based on the

Volterra series approach, are observed with a faster development starting from

the late 1980s or the early 1990s. Recursive algorithms for computation of the

GFRFs for a given parametric nonlinear autoregressive with exogenous input

(NARX) model or a given nonlinear differential equation (NDE) model are devel-

oped, and output frequency response of nonlinear systems and it properties are

investigated accordingly. The area is becoming even more active in recent years.

Much more efforts and progress can be seen in the development of application-

oriented theory and methods based on the GFRF concept. These include the

concepts of nonlinear output spectrum (or output frequency response function)

and nonlinear output frequency response function, parametric characteristic analy-

sis, energy transfer properties and various applications in vibration control by

exploring nonlinear benefits, fault detection, modelling and identification, data

analysis and interpretation, etc.
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This book is a systematic summary of some new advances in this area mainly

done by the authors in the past years starting from when the first author pursued his

Ph.D. degree in the University of Sheffield in 2005. The main results are tried to be

formulated uniformly with a parametric characteristic approach, which provides a

convenient and novel insight into the nonlinear influence on system output response

in terms of characteristic parameters and thus can facilitate nonlinear analysis and

design in the frequency domain. The book starts with a brief introduction to the

background of nonlinear analysis in the frequency domain, followed by the recur-

sive algorithms for computation of GFRFs for different parametric models, and

nonlinear output frequency properties. Thereafter the parametric characteristic

analysis method is introduced, which leads to new understanding and formulation

of the GFRFs, new concepts about nonlinear output spectrum and new methods for

nonlinear analysis and design, etc. Based on the parametric characteristic approach,

nonlinear influence in the frequency domain can be investigated with a novel

insight, i.e. alternating series, which is followed by some application results in

vibration control. Magnitude bounds of frequency response functions of nonlinear

systems can also be studied with a parametric characteristic approach, which results

in novel parametric convergence criteria for any given parametric nonlinear model

whose input–output relationship allows a convergent Volterra series expansion.

Although very important and fundamental, these results are summarized at the end

of this book.

This book targets those readers (especially Ph.D. students and research staff)

who are working in the areas related to nonlinear analysis and design, nonlinear

signal processing, nonlinear system identification, nonlinear vibration control and

so on. It particularly serves as a good reference for those who are studying

frequency-domain methods for nonlinear systems.

Hong Kong, P.R. China Xingjian Jing

June 2014
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Chapter 1

Introduction

1.1 Frequency Domain Methods for Nonlinear Systems

Nonlinear analysis takes more and more important roles in system analysis and

design in practice from engineering problems to biological systems, and is therefore

a very hot topic in the current literature. Several methods are available to this

aim including perturbation method, averaging method, harmonic balance, and

describing functions etc (Judd 1998; Mees 1981; Gilmore and Steer 1991;

Schoukens et al. 2003; Nuij et al. 2006; Pavlov et al. 2007; Jing et al. 2008a, b, c,

d, e; Rijlaarsdam et al. 2011; Worden and Tomlinson 2001; Rugh 1981; Doyle

et al. 2002).

Nonlinear analysis can also be conducted in the frequency domain. It is known

that the analysis and synthesis of linear systems in the frequency domain have been

well established. There are many methods and techniques that have been developed

to cope with the analysis and design of linear systems in practice such as Bode

diagram, root locus, and Nyquist plot (Ogota 1996). Frequency domain methods

can often provide more intuitive insights into system linear dynamics or dynamic

characteristics and thus have been extensively accepted in engineering practice. For

example, the transfer function of a linear system is always a coordinate-free and

equivalent description whatever the system model is transformed by any linear

transformations; the instability of a linear system is usually associated with at least

one right-half-plane pole of the system transfer function; the peak of system output

frequency response often happens around the natural resonance frequency of the

system, and so on. Therefore, frequency domain analysis and design of engineering

systems are often one of the most favourite methodologies in practices and attract

extensive studies both in theory and application.

However, frequency domain analysis of nonlinear systems is not straight-

forward. Nonlinear systems usually have very complicated output frequency

© Springer International Publishing Switzerland 2015
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characteristics and dynamic response such as harmonics, inter-modulation, chaos

and bifurcation, which can transfer system energy between different frequencies to

produce outputs at some frequency components that may be quite different from the

frequency components of the input. These phenomena complicate the analysis and

design of nonlinear systems in the frequency domain, and the frequency domain

theory and methods of linear systems cannot directly be extended to nonlinear

cases. Existing results in the literature related to analysis and understanding of

nonlinear phenomena in the frequency domain are far from full development.

Frequency domain analysis of nonlinear systems has been studied since the

fifties of last century. A traditional method was initiated by investigation of global

stability of the stationary point within the frames of absolute stability theory, and

then frequency domain methods for the analysis of stability of stationary sets and

existence of cycles and homo-clinical orbits, as well as the estimation of dimension

of attractors etc were developed thereafter (Leonov et al. 1996). Practically, the

nonlinear behaviour or characteristics of a specific nonlinear part or nonlinear unit

in a system can usually be analyzed by using describing functions or harmonic

balance in the frequency domain. The describing function method represents a very

powerful mathematical approach for the analysis and design of the behaviour of

nonlinear systems with a single nonlinear component (Atherton 1975). It can be

effectively applied to the analysis of limit cycle and oscillation for nonlinear

systems in which the nonlinearity does not depend on frequency and produces no

sub-harmonics etc. Applications to controller designs based on describing function

analysis have extensively been reported (Gelb and Vander Velde 1968; Taylor and

Strobel 1985). However, limitations of the describing function methods are also

noticeable. For example, Engelberg (2002) provides a set of nonlinear systems for

which the prediction of limit cycle by using describing functions is erroneous.

Simultaneously, some improved methods were developed (Sanders 1993; Elizalde

and Imregun 2006; Nuij et al. 2006). Another elegant method for the frequency

domain analysis of nonlinear systems is referred to as the harmonic balance (see

examples in Solomou et al. 2002; Peyton Jones 2003). This method provides an

approximation of the amplitude of the steady state periodic response of a nonlinear

system under the assumption that a Fourier series can represent the steady state

solution. It can deal with more general problems of nonlinear systems such as the

sub-harmonics and jump behaviour etc for both the time domain and frequency

domain responses. In addition to these well-established and noticeable methods,

there are also some other results for nonlinear system analysis in the frequency

domain reported in literature. For example, based on the frequency domain methods

for linear systems such as Bode diagrams, singular value decomposition, and the

idea of varying eigenvalues or varying natural frequencies, frequency domain

methods for the analysis and synthesis of uncertain systems or time-varying sys-

tems were studied in Orlowski (2007), Glass and Franchek (1999), Shah and

Franchek (1999) and Logemann and Townley (1997); and a frequency response

function for convergent systems subject to harmonic inputs was recently proposed

in Pavlov et al. (2007) etc.
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For a class of nonlinear systems, which have a convergent Volterra series

expansion, frequency domain analysis can also be conducted based on the concept

of generalized frequency response function (George 1959; Schetzen 1980; Rugh

1981). As studied in Boyd and Chua (1985), nonlinear systems, which are time

invariant, causal and have fading memory, can be approximated by a Volterra series

of a sufficiently high order. The results in Sandberg (1982, 1983) show that even

nonlinear time varying systems have such a locally convergent Volterra series

expansion under certain conditions. Therefore, this kind of frequency domain

analysis methods can deal with a considerably large class of nonlinear systems

which can be driven by any input signals and do not necessarily restrict to consider

a specific nonlinear component, and thus is a more general methodology. Although

the study on Volterra systems and corresponding frequency domain methods has

been done for several decades since the middle of last century, many problems still

remain unsolved, related to some theoretical and application issues. The results in

this book focus on these problems, and important theory and methods are thus

presented, targeting at a systematic and practical method for nonlinear analysis and

design in the frequency domain for a wide class of nonlinear systems in engineering

practice.

1.2 Frequency Domain Analysis Based on Volterra Series

Expansion

The input output relationship of nonlinear systems can be approximated by a

Volterra series of a sufficiently high order under certain conditions (Boyd and

Chua 1985; Sandberg 1982, 1983), which can be written as

y tð Þ ¼
XN

n¼1

ð1

�1
� � �

ð1

�1
hn τ1; � � �; τnð Þ

Yn

i¼1

u t� τið Þdτi ð1:1Þ

where N is the maximum order of the series, and hn(τ1, � � �,τn) is a scalar real valued
function of τ1,� � �,τn, referred to as the nth order Volterra kernel. Generally, y(t) is a
scalar output and u(t) is a scalar bounded input in (1.1). The nth order generalized

frequency response function (GFRF) of nonlinear system (1.1) is defined as the

multivariate Fourier transformation of hn(τ1,� � �,τn) (George 1959)

Hn jω1, � � �, jωnð Þ ¼
ð1

�1
� � �

ð1

�1
hn τ1; � � �; τnð Þexp �j ω1τ1 þ � � � þωnτnð Þð Þdτ1� � �dτn

ð1:2Þ

Equation (1.1) can be regarded as a generalization of the traditional convolution

description (e.g., the impulse response) of linear systems. The Volterra series

expansion in (1.1) is very useful and convenient in modelling and analysis of a

1.2 Frequency Domain Analysis Based on Volterra Series Expansion 3



very wide class of nonlinear systems both in deterministic and stochastic (Volterra

1959; Van De Wouw et al. 2002; Rugh 1981). This has been vindicated by a large

number of applications of the Volterra series reported in system modelling or

identification, control and signal processing for different systems and engineering

practices, including electrical systems, biological systems, mechanical systems,

communication systems, nonlinear filters, image processing, materials engineering,

chemical engineering and so on (Fard et al. 2005; Doyle et al. 2002; French 1976;

Boutabba et al. 2003; Friston et al. 2000; Yang and Tan 2006; Raz and Van Veen

1998; Bussgang et al. 1974). Technically, many of these results are related to direct

estimation or identification of the kernel hn(τ1,� � �,τn) or the GFRF Hn(1, � � � , jωn)

from input output data (Brilliant 1958; Kim and Powers 1988; Bendat 1990; Nam

and Powers 1994; Schetzen 1980; Schoukens et al. 2003; Ljung 1999; Pintelon and

Schoukens 2001).

With the existence of Volterra series expansion, the study of nonlinear systems

in the frequency domain was initiated by the introduction of the concept of the

generalized frequency response functions (GFRFs) as defined in (1.2). This pro-

vides a powerful technique for the study of nonlinear systems, which is similar to

those frequency domain methods established on the basis of transfer functions of

linear systems. Thereafter, a fundamental method, referred to as Probing method

(Rugh 1981), greatly promoted the development of this frequency domain theory

for nonlinear systems. By using the probing method, the GFRFs for a nonlinear

system described by nonlinear differential equations (NDE) or nonlinear auto-

regressive model with exogenous input (NARX) can directly be obtained from its

model parameters. These results were further discussed in Peyton Jones and

Billings (1989) and Billings and Peyton-Jones (1990), respectively. With these

techniques, many results have been achieved for frequency domain analysis of

nonlinear systems. For example, Swain and Billings (2001) extended the compu-

tation of GFRFs for SISO models to the case of MIMO nonlinear systems; a

derivation of the GFRFs of nonlinear systems with mean level or DC terms was

discussed in Zhang et al. (1995); system output spectrum and output frequencies

were studied in Lang and Billings (1996, 1997). Moreover, some preliminary

results for the bound characteristics of the frequency response functions were

given in Zhang and Billings (1996) and Billings and Lang (1996). These bound

results were greatly generalized in Jing et al. (2007a, b) where the bound expres-

sions are described into an elegant and compact form which is a polynomial of the

first order GFRF with nonlinear model parameters as coefficients. The energy

transfer characteristics of nonlinear systems were studied in Billings and Lang

(2002) and Lang and Billings (2005) recently, and some diagram based techniques

for understanding of higher order GFRFs were discussed in Peyton Jones and

Billings (1990) and Yue et al. (2005). Furthermore, the concept of Output Fre-

quency Response Functions of nonlinear systems was proposed in Lang et al. (2006,

2007). These results form a fundamental basis for the development of frequency

domain analysis and design methods for nonlinear systems to be presented in

this book.
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1.3 The Advantages of Volterra Series Based Frequency

Domain Methods, and Problems to Be Studied

The frequency domain analysis of nonlinear systems is much more complicated

than that for linear systems, because nonlinear systems usually have very compli-

cated nonlinear behaviours such as super-harmonics, sub-harmonics, inter-

modulation, and even bifurcation and chaos as mentioned before. These phenomena

complicate the study of nonlinear systems in the frequency domain, and the

frequency domain theory for linear systems can not directly be extended to

nonlinear cases. Although some remarkable results have been developed as

discussed above, there is still a great need for further development aiming at a

systematic and practical method for the analysis and design of nonlinear systems in

the frequency domain.

The study in this book focuses on the frequency domain methods for the class of

nonlinear systems which have a convergent Volterra series expansion for its input

output relationship in the time domain as described in (1.1) (Sandberg 1982, 1983;

Boyd and Chua 1985). By default, the nonlinear systems discussed in what follows

belong to this class of nonlinear systems, referred to as Volterra-type nonlinear

systems. The computation of the GFRFs and output spectrum is a key step in the

frequency domain method based on Volterra series theory. To obtain the GFRFs for

Volterra-type nonlinear systems described by NDE or NARX models, the probing

method can be used (Rugh 1981). Once the GRFRs are obtained for a practical system,

the system output spectrum can then be evaluated (Lang andBillings 1996; Jing 2011).

These form a general procedure for this methodology. In practice, the steps in this

procedure could be replaced by numerical methods using experimental data, which

will be discussed later. The advantages of this method, as mentioned, include the

following points:

(a) It is a mathematically elegant method for a considerably large class of

nonlinear systems frequently encountered in practices of different fields, not

restrict to a specific nonlinear unit or single nonlinear component;

(b) It basically holds for any bounded input signals whatever the input is deter-

ministic or stochastic, not restrict to some specific input signals such as

harmonic or triangle or step inputs;

(c) It provides very similar techniques to these for linear systems. For example the

GFRFs of nonlinear systems are similar to transfer functions of linear systems,

which are familiar to most engineers;

(d) Most importantly, it can directly relate model parameters (or system charac-

teristic parameters including model parameters and input magnitude) to sys-

tem output frequency response (or nonlinear system output spectrum) since the

GFRFs can be recursively computed in terms of model parameters. This can

greatly facilitate nonlinear system analysis and design in practice.

1.3 The Advantages of Volterra Series Based Frequency Domain Methods, and. . . 5



(e) The last but not the least, strong nonlinear behaviours such as chaos or

bifurcation actually can also be investigated with the Volterra series based

methods.

All these points above will be systematically demonstrated and/or discussed in

this book. The readers can also refer to other books or publications for harmonic

balance and describing function methods for a comparative study.

From previous research results, it can be seen that, high order GFRFs are a

sequence of multivariable functions defined in a high dimensional frequency space.

The evaluation of the values of the GFRFs higher than the fourth or fifth order can

become rather difficult due to the large amount of algebra or symbolic manipula-

tions involved (Yue et al. 2005). The situation may become even worse in the

computation of system output spectrum of higher orders, since it involves a series of

repetitive computations of the GFRFs from the first to the highest order that are

involved. Moreover, the existing recursive algorithms for the computation of the

GFRFs and output spectrum can not explicitly and simply reveal the analytical

relationship between system time domain model parameters and system frequency

response functions in a clear and straightforward manner. These inhibit practical

application of the existing theoretical results to such an extent that many problems

remain unsolved regarding the nonlinear characteristics of the GFRFs and system

output spectrum. For example, how these frequency response functions are

influenced by the parameters of the underlying system model, how complex

nonlinear behaviours are related to frequency response functions, and so

on. From the viewpoint of practical applications, it can be seen that a straightfor-

ward analytical expression for the relationship between system time-domain model

parameters and system frequency response functions (including the GFRFs and

output spectrum) can considerably facilitate the analysis and design of Volterra-

type nonlinear systems in the frequency domain.

The following main results are presented in this book to address the problems

above:

• Output frequency characteristics of nonlinear systems are investigated, which

reveal some novel properties about output frequency generation, energy trans-

ferring and cancellation etc. nonlinear effects in the system output frequency

response (Chap. 3);

• A parametric characteristic analysis method is proposed, which provides a

powerful insight into nonlinear system analysis and design with the framework

of the Volterra series based frequency domain method (Chap. 4);

• The parametric characteristics of the GFRFs and nonlinear output spectrum are

studied, which clearly demonstrate the relationship between the system time-

domain model parameters and frequency response functions (Chap. 5-6);

• A systematic nonlinear characteristic output spectrum method is established,

which can greatly facilitate the analysis, design and optimization of nonlinear

output spectrum in terms of characteristic parameters (Chap. 7-9);

6 1 Introduction

http://dx.doi.org/10.1007/978-3-319-12391-2_3
http://dx.doi.org/10.1007/978-3-319-12391-2_4
http://dx.doi.org/10.1007/978-3-319-12391-2_5
http://dx.doi.org/10.1007/978-3-319-12391-2_6


• Understanding of nonlinear influence in the frequency domain is investigated

with a special concept—Alternating series, and applications of the developed

theory and methods in vibration control are presented (Chap. 10-12);

• Magnitude bound characteristics of nonlinear system frequency response func-

tions are studied, which lead to new parametric convergent criteria of Volterra-

type nonlinear systems in terms of system characteristic parameters (Chap. 13-14).

Moreover, it shall be mentioned that Chap. 2 presents some recursive algorithms

for computation of the GFRFs of nonlinear systems. Some special but useful cases

for different nonlinear system models are discussed there. A summary and over-

view section is given thereafter as the conclusion of this book.
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http://dx.doi.org/10.1007/978-3-319-12391-2_8
http://dx.doi.org/10.1007/978-3-319-12391-2_9
http://dx.doi.org/10.1007/978-3-319-12391-2_2


Chapter 2

The Generalized Frequency Response

Functions and Output Spectrum of Nonlinear

Systems

2.1 Volterra Series Expansion and Frequency Response

Functions

As discussed in Chap. 1, the input-output relationship for a wide class of nonlinear

systems can be approximated by a Volterra series up to a sufficiently high

order N as

y tð Þ ¼
XN
n¼1

yn tð Þ ð2:1aÞ

yn tð Þ ¼
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þ
Yn
i¼1

u t� τið Þdτi ð2:1bÞ

where hn(τ1, � � �,τn) is a real valued function of τ1, � � �,τn known as the nth order

Volterra kernel. The nth order generalized frequency response function (GFRF) is

defined as

Hn jω1, � � �, jωnð Þ ¼
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þ exp �j ω1τ1 þ � � � þωnτnð Þð Þdτ1� � �dτn
ð2:2Þ

which is the multidimensional Fourier transform of hn(τ1,� � �,τn). By applying the

inverse Fourier transform of the nth order GFRF, (2.1b) can be written as

yn tð Þ ¼ 1

2πð Þn
ð1
�1

� � �
ð1
�1

Hn jω1, � � �, jωnð Þ
Yn
i¼1

U jωið Þej ω1þ���þωnð Þtdω1� � �dωn
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which can, by denoting ωn¼ω�ω1�� � ��ωn�1, be further written as

yn tð Þ ¼ 1

2π

ð1
�1

"
1

2πð Þn�1

ð1
�1

� � �
ð1
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n�1

Hn jω1, � � �, jωn�1, j ω�ω1� � � ��ωn�1ð Þð Þ

�Un jω1, � � �jωn�1ð Þdω1� � �dωn�1

#
ejωtdω

where Un(jω1,� � �,jωn�1)¼U(jω1)� � �U(jωn�1)U(j(ω�ω1��� ��ωn�1)). Therefore

the Fourier transform of yn(t) is obtained as

Yn jωð Þ ¼ 1

2πð Þn�1

ð1
�1

� � �
ð1
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n�1

Hn jω1, � � �, jωn�1, j ω� ω1 � � � � � ωn�1ð Þð Þ

� Un jω1, � � �, jωn�1ð Þdω1� � �dωn�1 ð2:3Þ

which is referred to as the nth-order output spectrum. The output spectrum of the

nonlinear system in (2.1a,b) can then be computed by

Y jωð Þ ¼
XN
n¼1

Yn jωð Þ ð2:4Þ

Note that in (2.1a,b, 2.3 and 2.4) the input signal u(t) can be any signal with a

Fourier transform U(jω). The GFRFs and output spectrum of each order defined

above are all referred to as frequency response functions of nonlinear systems in

this book. It can be seen that the nonlinear frequency response functions defined

above and associated analysis and design methods are important extension and/or

natural generalization of existing theory and methods for linear systems to the

nonlinear case. A simple comparison is shown in Table 2.1.

2.1.1 The Probing Method

Obviously, the output spectrum of a nonlinear system involves the computation of

the GFRFs. Given the parametric model of a nonlinear system, the GFRFs can be

derived by using the “harmonic probing” method (Rugh 1981), which can be traced

back to Bedrosian and Rice (1971) or earlier. Examples can be seen in Peyton Jones

and Billings (1989), and Billings and Peyton-Jones (1990) etc. Consider the

excitation of system (2.1a,b) with an input consisting of n complex exponentials

defined as

10 2 The Generalized Frequency Response Functions and Output Spectrum of. . .
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u tð Þ ¼
Xn
r¼1

ejωr t ð2:5Þ

The output y(t) is given as

y tð Þ ¼
XN
n¼1

Xn
r1, rn¼1

Hn jωr1 , � � �, jωrnð Þej ωr1
þ���þωrnð Þt ð2:6Þ

Then for the nonlinear system, replacing the input and output by (2.5–2.6), the

nth-order GFRF can be obtained by extracting the coefficients of the term

ej ωr1
þ���þωrnð Þt. For example, consider a static polynomial function,

y tð Þ ¼ f u tð Þð Þ ¼ c1u tð Þ þ c2u tð Þ2 þ c3u tð Þ3 þ . . . þ cnu tð Þn þ . . . ð2:7Þ

The nth-order GFRF between the input u(t) and output y(t) can be derived as

Hn jω1, � � �, jωnð Þ ¼ cn ð2:8Þ

To show this, the GFRFs for (2.7) can be obtained by directly applying the probing

method. Note that (2.6) can be expanded as

y tð Þ ¼ n!Hn jω1, � � �, jωnð Þej ω1þ���þωnð Þt þ n� 1ð Þ!Hn�1 jω1, � � �, jωn�1ð Þej ω1þ���þωn�1ð Þt

þ � � � þ H1 jω1ð Þejω1t þ the other termsð Þ
ð2:9Þ

Using (2.5) and (2.9) with n¼3 in (2.7), it can be obtained that

y tð Þ ¼ 3!H3 jω1, � � �, jω3ð Þej ω1þ���þω3ð Þt þ 2H2 jω1, jω2ð Þej ω1þω2ð ÞtþH1 jω1ð Þejω1t þ the other termsð Þ
¼ c1 ejω1 tþ ejω2tþ ejω3tð Þþ c2 ejω1t þ ejω2t þ ejω3tð Þ2þ c3 ejω1tþ ejω2tþ ejω3tð Þ3þ . . .
þ cn ejω1t þ ejω2 tþ ejω3tð Þn þ . . .

Extracting the coefficients of the term ejω1t from the equation above, it can be

obtained that

H1 jω1ð Þ ¼ c1

Extracting the coefficients of ej ω1þω2ð Þt, it can be obtained that

H2 jω1, jω2ð Þ ¼ c2

Similarly, from the coefficients of ej ω1þ���þω3ð Þt, it can be obtained that

H3 jω1, � � �, jω3ð Þ ¼ c3

12 2 The Generalized Frequency Response Functions and Output Spectrum of. . .



Following this method, the nth-order GFRF can be obtained as

Hn jω1, � � �, jωnð Þ ¼ cn

2.2 The GFRFs for NARX and NDE Models

Nonlinear systems can often be described by different parametric models. To

compute the GFRFs, a parametric model of the nonlinear system under study can

be given. In this book, two parametric models are focused, i.e., the Nonlinear Auto-

Regressive with eXogenous input (NARX) model and Nonlinear Differential Equa-

tion (NDE) model.

The NARXmodel provides a unified and natural representation for a wide class of

nonlinear systems, including many nonlinear models as special cases (e.g., Wiener

models, Hammerstein models). For this reason, the NARX model has been exten-

sively used in various engineering problems for system identification (Li et al. 2011),

signal processing (McWhorter and Scharf 1995; Kay and Nagesha 1994), and control

(Sheng and Chon 2003) etc. In practice, most systems are inherently nonlinear and

can be identified to obtain a NARX model using several efficient algorithms such as

the OLS method (Chen et al. 1989). The NARX model is given by

y tð Þ ¼
XM
m¼1

ym tð Þ

ym tð Þ ¼
Xm
p¼0

XK
k1, kpþq ¼ 1

pþ q ¼ m

cp,q k1; � � �; kpþq

� �Yp
i¼1

y t� kið Þ
Ypþq

i¼pþ1

u t� kið Þ ð2:10Þ

where ym(t) is the mth-order output of the NARX model;
XK

k1, kpþq¼1

�ð Þ ¼
XK
k1¼1

�ð Þ� � �

XK
kpþq¼1

�ð Þ ; p+q is referred to as the nonlinear degree of parameter cp,q(�), which

corresponds to the (p+q)-degree nonlinear terms
Yp
i¼1

y t� kið Þ
Ypþq

i¼pþ1

u t� kið Þ, e.g.,

y(t�1)pu(t�2)q (p orders in terms of the output and q orders in terms of the input),

and ki is the lag of the ith output when i�p or the (i-p)th input when p< i�m with

the maximum lag K; c0,1(.) and c1,0(.) of nonlinear degree 1 are referred to as linear
parameters, and all the other model parameters are referred to as nonlinear param-

eters; the model includes all the possible nonlinear combinations in terms of y(k)
and u(k) with the maximum order M.

The NDE model can be regarded as a continuous-time version of the NARX

model, which is usually obtained by physical modelling and can be given by

2.2 The GFRFs for NARX and NDE Models 13



XM
m¼1

Xm
p¼0

XK
k1, kpþq¼0

cp,q k1; � � �; kpþq

� �Yp
i¼1

dkiy tð Þ
dtki

Ypþq

i¼pþ1

dkiu tð Þ
dtki

¼ 0 ð2:11Þ

where
dkx tð Þ
dtk

���
k¼0

¼ x tð Þ, and all other notations take similar forms and definitions to

those for the NARX model for convenience. But in the NDE model, K is the

maximum order of the derivative, and cp,q(�) for p+q>1 are referred to as nonlinear

parameters corresponding to nonlinear terms in the model of the formYp
i¼1

dkiy tð Þ
dtki

Ypþq

i¼pþ1

dkiu tð Þ
dtki

, e.g., y(t)pu(t)q.

2.2.1 Computation of the GFRFs for NARX Models

By using the probing method demonstrated above, a recursive algorithm to compute

the nth-order GFRF in terms of model parameters for nonlinear systems described

by the NARXmodel can be developed, which is given as follows (Peyton Jones and

Billings 1989; Jing and Lang 2009a):

1�
XK
k1¼1

c1,0 k1ð Þexp �j ω1þ���þωnð Þk1ð Þ
 !

�Hn jω1,���,jωnð Þ

¼
XK

k1,kn¼1

c0,n k1;���;knð Þexp �j ω1k1þ���þωnknð Þð Þ

þ
Xn�1

q¼1

Xn�q

p¼1

XK
k1,kn¼1

cp,q k1;���;kpþq

� �
exp �j

Xq
i¼1

ωn�qþikpþi

 !
Hn�q,p jω1,���,jωn�q

� �
þ
Xn
p¼2

XK
k1,kp¼1

cp,0 k1;���;kp
� �

Hn,p jω1,���,jωnð Þ

ð2:12Þ

Hn,p �ð Þ ¼
Xn�pþ1

i¼1

Hi jω1, � � �, jωið ÞHn�i,p�1 jωiþ1, � � �, jωnð Þexp �j ω1 þ � � � þ ωið Þkp
� �

ð2:13Þ
Hn, 1 jω1, � � �, jωnð Þ ¼ Hn jω1, � � �, jωnð Þexp �j ω1 þ � � � þ ωnð Þk1ð Þ ð2:14Þ

Furthermore, define H0,0(�)¼1, Hn,0(�)¼0 for n>0, Hn,p(�)¼0 for n<p, and let

exp
Xq
i¼1

ε pð Þ
 !

¼ 1 q ¼ 0, p > 1

0 q ¼ 0, p � 1

�
ð2:15Þ
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where ε(p) is a function of p, and

Ln ω1; � � �;ωnð Þ ¼ 1�
XK
k1¼1

c1,0 k1ð Þexp �j ω1 þ � � � þ ωnð Þk1ð Þ ð2:16Þ

Then (2.12) can be written more concisely as

Hn jω1, � � �, jωnð Þ¼ 1

Ln ω1� � �ωnð Þ
Xn
q¼0

Xn�q

p¼0

XK
k1,kpþq¼1

cp,q k1; � � �;kpþq

� �
e

�j

Xq
i¼1

ωn�qþikpþi

� �

�Hn�q,p jω1, � � �, jωn�q

� � ð2:17Þ

Thus the recursive algorithm for the computation of GFRFs is (2.12 or 2.17,

2.13–2.16).

Moreover, Hn,p(jω1, � � �, jωn) in (2.13) can also be written as

Hn,p jω1, � � �, jωnð Þ ¼
Xn�pþ1

r1� � �rp ¼ 1P
ri ¼ n

Yp
i¼1

Hri jωXþ1, � � �, jωXþrið Þ

exp �j ωXþ1 þ � � � þ ωXþrið Þkið Þ ð2:18Þ

where X ¼
Xi�1

x¼1

rx.

2.2.2 Computation of the GFRFs for NDE Models

Similarly, the computation of the GFRFs for the NDE model can be recursively

conducted in terms of model parameters as follows (Billings and Peyton-

Jones1990; Jing et al. 2008e):

Ln jω1þ �� �þ jωnð Þ �Hn jω1, � � �, jωnð Þ ¼
XK

k1,kn¼1

c0,n k1; � � �;knð Þ jω1ð Þk1 � � � jωnð Þkn

þ
Xn�1

q¼1

Xn�q

p¼1

XK
k1,kpþq¼0

cp,q k1; � � �;kpþq

� � Yq
i¼1

jωn�qþi

� �kpþi

 !
Hn�q,p jω1, � � �, jωn�q

� �
þ
Xn
p¼2

XK
k1,kp¼0

cp,0 k1; � � �;kp
� �

Hn,p jω1, � � �, jωnð Þ

ð2:19Þ
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Hn,p �ð Þ ¼
Xn�pþ1

i¼1

Hi jω1, � � �, jωið ÞHn�i,p�1 jωiþ1, � � �, jωnð Þ jω1 þ � � � þ jωið Þkp ð2:20Þ

Hn, 1 jω1, � � �, jωnð Þ ¼ Hn jω1, � � �, jωnð Þ jω1 þ � � � þ jωnð Þk1 ð2:21Þ

where

Ln jω1 þ � � � þ jωnð Þ ¼ �
XK
k1¼0

c1,0 k1ð Þ jω1 þ � � � þ jωnð Þk1 ð2:22Þ

Moreover, Hn,p(jω1, � � �,jωn) in (2.20) can also be written as

Hn,p jω1, � � �, jωnð Þ¼
Xn�pþ1

r1� � �rp ¼ 1P
ri ¼ n

Yp
i¼1

Hri jωXþ1, � � �, jωXþrið Þ jωXþ1þ�� �þ jωXþrið Þki

ð2:23Þ

where

X ¼
Xi�1

x¼1

rx ð2:24Þ

Similarly, for convenience in discussion, define

H0,0 �ð Þ ¼ 1, Hn, 0 �ð Þ ¼ 0 for n > 0, Hn,p �ð Þ ¼ 0 for n < p,

and
Yq
i¼1

�ð Þ ¼ 1 q ¼ 0, p > 1

0 q ¼ 0, p � 1

�
ð2:25Þ

Then (2.19) can be written in a more concise form as

Hn jω1, � � �, jωnð Þ ¼ 1

Ln j
Xn
i¼1

ωi

 !Xn
q¼0

Xn�q

p¼0

XK
k1, kpþq¼0

cp,q k1; � � �; kpþq

� �

�
Yq
i¼1

jωn�qþi

� �kpþi

 !
Hn�q,p jω1, � � �, jωn�q

� � ð2:26Þ

Therefore, the recursive algorithm for the computation of the GFRFs is (2.19 or

2.26, 2.25, 2.20–2.23).

Note that the GFRFs above both for the NARX and NDE models are assumed to

be asymmetric. Generally, different permutations of the frequency variables
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ω1, � � �,ωn may lead to different values of Hn(jω1, � � �, jωn). The symmetric GFRFs

can be obtained as

Hsym
n jω1, � � �, jωnð Þ ¼ 1

n!

X
all the permutations

of 1; 2; . . . ; nf g

Hn jω1, � � �, jωnð Þ ð2:27Þ

But for computation of nonlinear output spectrum in (2.4), asymmetric GFRFs

suffice.

2.3 The GFRFs for a Single Input Double Output

Nonlinear System

In many practical cases, nonlinear system models are usually described by a

nonlinear state equation with a general nonlinear output function of system states.

Sometimes, the output function of interest can also be a nonlinear objective

function to optimize. Therefore, the computation of the GFRFs for nonlinear

systems in this form would be more relevant in practice. The systems can be

classified into several cases: single-input multi-output (SIMO), or multi-input and

multi-output (MIMO) etc. The GFRFs for MIMO systems would be more compli-

cated, which can be referred to Swain and Billings (2001). This section addresses a

much simpler case, i.e., single-input double-output (SIDO), which is actually

frequently encountered in practice. Similar results can be easily extended to the

SIMO case (many multiple-degree-of-freedom mechanical systems would belong

to this case).

Consider the following SIDO NARX system,

x tð Þ ¼
XM1

m¼1

Xm
p¼0

XK
k1, km¼0

cp,m�p k1; � � �; kmð Þ
Yp
i¼1

x t� kið Þ
Ym

i¼pþ1

u t� kið Þ ð2:28aÞ

y tð Þ ¼
XM2

m¼1

Xm
p¼0

XK
k1, km¼0

ecp,m�p k1; � � �; kmð Þ
Yp
i¼1

x t� kið Þ
Ym

i¼pþ1

u t� kið Þ ð2:28bÞ

where M1, M2 and K are all positive integers, and x(t), y(t), u(t) 2 ℝ. Equation
(2.28a) is the system state equation which is still described by a NARX model, and

(2.28b) represents the system output which is a nonlinear function of state x(t) and
input u(t) in a general polynomial form.

Instead of using the probing method for derivation of the GFRFs for (2.28a,b), an

alternative simple method would be adopted here, since the model structure and

nonlinear types are known clearly. Note that the expression of the nth-order GFRF in

(2.12) for the NARX model (2.10) can be divided into three parts. That is, those
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arising from pure input nonlinear terms Hnu �ð Þ corresponding to the first part in the

right side of (2.12), those from cross product nonlinear termsHnuy �ð Þ corresponding to
the second part in the right side of (2.12), and those from pure output nonlinear terms

Hny �ð Þcorresponding to the last part of (2.12). For clarity, (2.12) can also be written as

Hn jω1, � � �, jωnð Þ ¼ Hnu �ð Þ þ Hnuy �ð Þ þ Hny �ð Þ� �
=Ln j ω1 þ � � � þ ωnð Þð Þ ð2:29Þ

Equation (2.29) shows clearly that different categories of nonlinearities produce

different contribution to the system GFRFs. Hence, when deriving the GFRFs of a

nonlinear system, what can be done is to combine the different contributions from

different nonlinearities without directly using the probing method. This property

can be used for the derivation of the GFRFs for (2.28a,b).

To this aim, (2.28a,b) can be regarded as a system of one input u(t) and two

outputs x(t) and y(t). Therefore, there are two sets of GFRFs for (2.28a,b)

corresponding to the two input-output relationships between the input u(t) and

two outputs x(t) and y(t) respectively. Considering the GFRFs from input u(t) to

output x(t), there are three categories of nonlinearities as mentioned before. There-

fore, the nth-order GFRF from input u(t) to output x(t) denoted by Hx
n(jω1,� � �, jωn)

can be directly determined which is the same as (2.12–2.17), i.e.,

Hx
n jω1, � � �, jωnð Þ¼Hx

nu
jω1, � � �, jωnð ÞþHx

nux
jω1, � � �, jωnð ÞþHx

nx
jω1, � � �, jωnð Þ

Ln j ω1þ���þωnð Þð Þ ð2:30Þ

where, Ln j ω1þ���þωnð Þð Þ¼ 1�
XK
k1¼1

c1,0 k1ð Þexp �j ω1þ���þωnð Þk1ð Þ

Hx
nu

jω1, � � �, jωnð Þ ¼
XK

k1, kn¼0

c0,n k1; � � �; knð Þexp �j ω1k1 þ � � � þ ωnknð Þð Þ ð2:31aÞ

Hx
nux

jω1,���,jωnð Þ¼
Xn�1

q¼1

Xn�q

p¼1

XK
k1,kpþq¼0

cp,q k1;���;kpþq

� �
�exp �j ωn�qþ1kpþ1þ���þωnkpþq

� �� �
Hn�q,p jω1,���,jωn�q

� �
ð2:31bÞ

Hx
nx

jω1, � � �, jωnð Þ ¼
Xn
p¼2

XK
k1, kp¼0

cp, 0 k1; � � �; kp
� �

Hn,p jω1, � � �, jωnð Þ ð2:31cÞ

Hn,p jω1, � � �, jωnð Þ ¼
Xn�pþ1

i¼1

Hx
i jω1, � � �, jωið ÞHn�i,p�1 jωiþ1, � � �, jωnð Þ

�exp �j ω1 þ � � � þ ωið Þkp
� � ð2:31dÞ
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Hn, 1 jω1, � � �, jωnð Þ ¼ Hx
n jω1, � � �, jωnð Þexp �j ω1 þ � � � þ ωnð Þk1ð Þ ð2:31eÞ

Similarly, consider the GFRFs from input u(t) to output y(t). There are also three

categories of nonlinearities in terms of input u(t) and output x(t) (similar to those

from input u(t) to output x(t)), and there is one linear output y(t). Note that there are

no nonlinearities in terms of y(t), and all the nonlinearities come from input u(t) and

output x(t). For this reason, the GFRFs from u(t) to y(t) are dependent on the GFRFs

from u(t) to x(t). Therefore, in this case the nth-order GFRF from input u(t) to

output y(t) denoted by Hy
n(jω1,� � �, jωn) is,

Hy
n jω1, � � �, jωnð Þ ¼ Hy

nu
jω1, � � �, jωnð Þ þ Hy

nux
jω1, � � �, jωnð Þ

þHy
nx

jω1, � � �, jωnð Þ ð2:32Þ

where the corresponding terms in (2.32) are

Hy
nu

jω1, � � �, jωnð Þ ¼
XK

k1, kn¼0

ec0,n k1; � � �; knð Þexp �j ω1k1 þ � � � þ ωnknð Þð Þ ð2:33aÞ

Hy
nux

jω1, � � �, jωnð Þ¼
Xn�1

q¼1

Xn�q

p¼1

XK
k1,kpþq¼0

ecp,q k1; � � �;kpþq

� �
�exp �j ωn�qþ1kpþ1þ�� �þωnkpþq

� �� �
Hn�q,p jω1, � � �, jωn�q

� �
ð2:33bÞ

Hy
nx

jω1, � � �, jωnð Þ ¼
Xn
p¼1

XK
k1, kp¼0

ecp, 0 k1; � � �; kp
� �

Hn,p jω1, � � �, jωnð Þ ð2:33cÞ

Note that p is counted from 1 in (2.33c), different from (2.31c) where p is counted

from 2, and Hn,p(jω1,� � �, jωn) in (2.33b, c) is the same as that in (2.31b–d) because

the nonlinearities in (2.28b) have no relationship with y(t) but x(t). The results here

are developed in a very straightforward manner and provide a concise analytical

expression for the GFRFs of the system in (2.28a,b).

Similar results can be obtained for the following SIDO NDE system

XM1

m¼1

Xm
p¼0

XK
k1, km¼0

cp,m�p k1; � � �; kmð Þ
Yp
i¼1

dkix tð Þ
dtki

Ym
i¼pþ1

dkiu tð Þ
dtki

¼ 0 ð2:34aÞ

XM2

m¼1

Xm
p¼0

XK
k1, km¼0

ecp,m�p k1; � � �; kmð Þ
Yp
i¼1

dkix tð Þ
dtki

Ym
i¼pþ1

dkiu tð Þ
dtki

¼ y tð Þ ð2:34bÞ

where x(t), y(t), u(t) 2 ℝ. System (2.34a,b) has similar notations and structure

as system (2.28a,b). It can be regarded as an NDE model with two outputs x(t) and
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y(t), and one input u(t). Hence, following the same idea, the GFRFs for the

relationship from u(t) to y(t) are given as

Hy
n jω1, � � �, jωnð Þ ¼ Hy

nu
jω1, � � �, jωnð Þ þ Hy

nux
jω1, � � �, jωnð Þ

þHy
nx

jω1, � � �, jωnð Þ ð2:35Þ

where

Hy
nu

jω1, � � �, jωnð Þ ¼
XK

k1, kn¼0

ec0,n k1; � � �; knð Þ jω1ð Þk1 � � � jωnð Þkn ð2:36aÞ

Hy
nux

jω1, � � �, jωnð Þ¼
Xn�1

q¼1

Xn�q

p¼1

XK
k1,kpþq¼0

ecp,q k1; � � �;kpþq

� �
� jωn�qþ1

� �kpþ1 � � � jωnð ÞkpþqHn�q,p jω1, � � �, jωn�q

� � ð2:36bÞ

Hy
nx

jω1, � � �, jωnð Þ ¼
Xn
p¼1

XK
k1, kp¼0

ecp, 0 k1; � � �; kp
� �

Hn,p jω1, � � �, jωnð Þ ð2:36cÞ

Hn,p �ð Þ¼
Xn�pþ1

i¼1

Hx
i jω1, � � �, jωið ÞHn�i,p�1 jωiþ1, � � �, jωnð Þ jω1þ���þ jωið Þkp ð2:36dÞ

Hn, 1 jω1, � � �, jωnð Þ ¼ Hx
n jω1, � � �, jωnð Þ jω1 þ � � � þ jωnð Þk1 ð2:36eÞ

where Hx
n(jω1,� � �, jωn) is the nth-order GFRF from u(t) to x(t), which is the same as

that given in (2.19 or 2.26, 2.25, 2.20–2.23).

Example 2.1 Consider the following nonlinear system,

mx t� 2ð Þ þ a1x t� 1ð Þ þ a2x
2 t� 1ð Þ þ a3x

3 t� 1ð Þ þ kx tð Þ ¼ u tð Þ
y tð Þ ¼ a1x t� 1ð Þ þ a2x

2 t� 1ð Þ þ a3x
3 t� 1ð Þ þ kx tð Þ ð2:37Þ

which can be written into the form of model (2.28a,b) with parameters K¼2,

c1,0 2ð Þ ¼ �m=k, c1,0 1ð Þ ¼ �a1=k, c2,0 11ð Þ ¼ �a2=k, c3,0 111ð Þ ¼ �a3=k, c0,1 0ð Þ ¼ 1=kec1,0 1ð Þ ¼ a1,ec2,0 11ð Þ ¼ a2,ec3,0 111ð Þ ¼ a3,ec1,0 0ð Þ ¼ k, and all the other para-

meters are zero. The GFRFs can be computed according to (2.12–2.16). For

example,

Hx
1u

jω1ð Þ ¼
X2
k1¼0

c0,1 k1ð Þexp �jω1k1ð Þ ¼ c0,1 0ð Þ ¼ 1=k, Hy
1u

jω1ð Þ ¼ 0;

Because there are no input nonlinearities and cross nonlinearities, thus

Hx
nu

jω1, � � �, jωnð Þ ¼ 0 and Hy
nu

jω1, � � �, jωnð Þ ¼ 0 for n>1

Hx
nux

jω1, � � �, jωnð Þ ¼ 0 and Hy
nux

jω1, � � �, jωnð Þ ¼ 0 for all n
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Regarding the output nonlinear terms,

Hx
1x

jω1ð Þ ¼ 0;

Hx
2x

jω1, jω2ð Þ ¼
X2
p¼2

X2
k1, kp¼1

cp, 0 k1; � � �; kp
� �

H2,p jω1, jω2ð Þ

¼
X2

k1, kp¼1

c2,0 k1; k2ð ÞH2,2 jω1, jω2ð Þ

¼
X2

k1, kp¼1

c2,0 k1; k2ð ÞHx
1 jω1ð ÞH1,1 jω2ð Þexp �jω1k2ð Þ

¼
X2

k1, kp¼1

c2,0 k1; k2ð ÞHx
1 jω1ð ÞHx

1 jω2ð Þexp �jω2k1ð Þexp �jω1k2ð Þ

¼ �a2
k
H x

1 jω1ð ÞHx
1 jω2ð Þexp �jω2ð Þexp �jω1ð Þ

Hy
1x

jω1ð Þ ¼
X2
k1

ec1,0 k1ð ÞH1,1 jω1ð Þ ¼
X2
k1

ec1,0 k1ð ÞHx
1 jω1ð Þexp �jω1k1ð Þ

¼ a1H
x
1 jω1ð Þexp �jω1ð Þ þ kHx

1 jω1ð Þ

Hy
2x

jω1, jω2ð Þ ¼
X2
p¼1

X2
k1, kp¼0

ecp, 0 k1; � � �; kp
� �

H2,p jω1, jω2ð Þ

¼
X2
k1¼0

ec1,0 k1ð ÞH2,1 jω1, jω2ð Þ þ
X2

k1, k2¼0

ec2,0 k1; k2ð ÞH2,2 jω1, jω2ð Þ

¼
X2
k1¼0

ec1,0 k1ð ÞHx
2 jω1, jω2ð Þexp �j ω1 þ ω2ð Þk1ð Þ

þ
X2

k1, k2¼0

ec2,0 k1; k2ð ÞHx
1 jω1ð ÞHx

1 jω2ð Þexp �jω2k1ð Þexp �jω1k2ð Þ

¼ kHx
2 jω1, jω2ð Þ þ a1H

x
2 jω1, jω2ð Þexp �j ω1 þ ω2ð Þk1ð Þ

þ a2H
x
1 jω1ð ÞHx

1 jω2ð Þexp �jω2ð Þexp �jω1ð Þ

Note that

Ln j ω1þ�� �þωnð Þð Þ¼ 1�
X2
k1¼1

c1,0 k1ð Þexp �j ω1þ�� �þωnð Þk1ð Þ

¼ 1þ a1
k
exp �j ω1þ�� �þωnð Þð Þþm

k
exp �j2 ω1þ�� �þωnð Þð Þ

Hence, by following similar process as above, the GFRFs for x(t) and y(t) can all be

computed recursively up to any high orders. For example,
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Hx
1 jω1ð Þ ¼ Hx

1u
jω1ð Þ þ Hx

1ux
jω1ð Þ þ Hx

1x
jω1ð Þ

L1 jω1ð Þ ¼ 1=k

1þ a1
k exp �jω1ð Þ þ m

k exp �j2ω1ð Þ

Hx
2 jω1, jω2ð Þ ¼ Hx

2u
jω1, jω2ð Þ þ Hx

2ux
jω1, jω2ð Þ þ Hx

2x
jω1, jω2ð Þ

L2 j ω1 þ ω2ð Þð Þ
¼ �a2

k
H x

1 jω1ð ÞHx
1 jω2ð Þexp �jω2ð Þexp �jω1ð Þ

1þ a1
k
exp �j ω1 þ ω2ð Þð Þ þ m

k
exp �j2 ω1 þ ω2ð Þð Þ

Hy
1 jω1ð Þ ¼ Hy

1u
jω1ð Þ þ Hy

1ux
jω1ð Þ þ Hy

1x
jω1ð Þ ¼ k þ a1H

x
1 jω1ð Þexp �jω1ð Þ

Hy
2 jω1, jω2ð Þ ¼Hy

2u
jω1, jω2ð ÞþHy

2ux
jω1, jω2ð ÞþHy

2x
jω1, jω2ð Þ

¼ a1H
x
2 jω1, jω2ð Þexp �j ω1þω2ð Þð Þþ a2H

x
1 jω1ð Þ

�Hx
1 jω2ð Þexp �jω2ð Þexp �jω1ð Þ

It can be verified that the first order GFRFs are the frequency response functions in

z-space of the linear parts of model (2.37).

Example 2.2 Consider a nonlinear mechanical system shown in Fig. 2.1.

The output property of the spring satisfies A¼kx, the damper F¼a1 _x+a3 _x
3, and

the active unit is described by F¼a2 _x
2. u(t) is the external input force. Therefore,

the system dynamics is

m€x ¼ �kx� a1 _x � a2 _x
2 � a3 _x

3 þ u tð Þ ð2:38aÞ

with the transmitted force measured on the base as the output

y tð Þ ¼ a1 _x þ a2 _x
2 þ a3 _x

3 þ kx tð Þ ð2:38bÞ

It can be seen that the continuous time model (2.38a,b) is similar in structure to the

discrete time model (2.37) in Example 2.1. Therefore, similar results regarding the

frequency response functions as demonstrated in Examples 2.1 for the discrete time

model (2.37) can be obtained readily for system (2.38a,b).

BA x(t)

m

u(t)

Active
unit 

Fig. 2.1 A mechanical

system
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2.4 The Frequency Response Functions for Block-Oriented

Nonlinear Systems

Block-oriented nonlinear systems such as Hammerstein and Wiener models are

composed by a cascade combination of a linear dynamic model and a static

(memoryless) nonlinear function. Theoretically, any nonlinear systems which

have a Volterra expansion can be represented by a finite sum of Wiener models

with sufficient accuracy (Korenberg 1982; Boyd and Chua 1985). The Wiener

model is shown to be a reasonable model for many chemical and biological

processes (Zhu 1999; Kalafatis et al. 1995; Hunter and Korenberg 1986). The

magneto-rheological (MR) damping systems can also be well approximated by a

Hammerstein model (Huang et al. 1998). Applications of these block-oriented

models can be found in many areas such as mechanical systems (Huang

et al. 1998), control systems (Bloemen et al. 2001), communication systems

(Wang et al. 2010), chemical processes (Kalafatis et al. 1995), and biological

systems (Hunter and Korenberg 1986).

Frequently-used block-oriented nonlinear models include Wiener model, Ham-

merstein model and Wiener-Hammerstein model etc. This section establishes

frequency response functions for these nonlinear models under assumption that

the nonlinear part allows a polynomial approximation as given in (2.7), which is

then extended to a more general case.

2.4.1 Frequency Response Functions of Wiener Systems

The GFRFs and nonlinear output spectrum are developed for Wiener systems

firstly, and then extended to other models. Consider the Wiener model given by

u tð Þ ¼ g�r tð Þ and y tð Þ ¼ f u tð Þð Þ ð2:39a; bÞ

where “�” represents the convolution operator, g(t) is the impulse response of the

linear part, and f(u(t)) is the static nonlinear part of the system. The linear part is

defined as a stable SISO system, which can be described by parametric FIR/IIR

models or nonparametric models (See Fig. 2.2).

Note that the GFRFs for (2.39b) are given in (2.8). Equation (2.39a) can be

written as

g(t) f [u(t)]
r(t) u(t) y(t)

Fig. 2.2 The Wiener model, where g(t) denotes the linear part and f[•] represents the static

nonlinear function, both of which could be parametric or nonparametric (Jing 2011)
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U jωð Þ ¼ G jωð ÞR jωð Þ

where U(jω), G(jω) and R(jω) are the corresponding Fourier transforms of u(t), g(t)
and r(t) respectively. Using (2.3–2.4), the nth-order output spectrum of (2.39a,b)

can be obtained as

Yn jωð Þ ¼ 1

2πð Þn�1

ð1
�1

� � �
ð1
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n�1

cnUn jω1, � � �, jωn�1ð Þdω1� � �dωn�1

¼ 1

2πð Þn�1

ð1
�1

� � �
ð1
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n�1

cn
Yn
i¼1

G jωið ÞR jωið Þð Þdω1� � �dωn�1

¼ 1

2πð Þn�1

ð1
�1

� � �
ð1
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n�1

cn
Yn
i¼1

G jωið Þ
 !Yn

i¼1

R jωið Þdω1� � �dωn�1

¼ cn

2πð Þn�1

ð1
�1

� � �
ð1
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n�1

Yn
i¼1

G jωið Þ
 !Yn

i¼1

R jωið Þdω1� � �dωn�1

ð2:40Þ

where ωn¼ω�ω1�� � ��ωn�1. Comparing the structure of (2.40) with (2.3) gives

Hn jω1, � � �, jωnð Þ ¼ cn
Yn
i¼1

G jωið Þ ð2:41Þ

With the GFRFs given by (2.41), the output spectrum of Wiener system (2.39a,b)

can therefore be computed under any input signal with spectrum R(jω) based on

(2.3) and (2.41) as,

Yn jωð Þ ¼ cn

2πð Þn�1

ð1
�1

� � �
ð1
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n�1

Yn�1

i¼1

G jωið ÞR jωið Þ
 !

G j ω� ω1 � � � � � ωn�1ð Þð Þ

�R j ω� ω1 � � � � � ωn�1ð Þð Þdω1� � �dωn�1

Let Π(jωi)¼G(jωi)R(jωi), then Y1(jωi)¼c1Π(jωi), which represents the linear

dynamics of the Wiener system. The equation above can be further written as
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Yn jωð Þ ¼ cn

2πð Þn�1

ð1
�1

� � �
ð1
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n�1

Yn�1

i¼1

Π jωið Þ
 !

Π j ω� ω1 � � � � � ωn�1ð Þð Þdω1� � �dωn�1 ð2:42Þ

It can be seen that the nth-order nonlinear output spectrum of Wiener model (2.39a,

b) is completely dependent on the frequency response of system linear part. Given

the frequency response of the linear part (which can be nonparametric), higher

order output spectra can be computed immediately. On the other hand, given higher

order output spectra, the linear part of the system could also be estimated conse-

quently. These will be discussed later. The overall output spectrum is a combination

of all different order output spectra. Clearly, the nonlinear frequency response

functions obtained above can provide an effective insight into the analytical

analysis and design of Wiener systems in the frequency domain. Note that the

magnitude bound of system output spectrum often provides a useful insight into

system dynamics at different frequencies and also into the relationship between

frequency response functions and model parameters (Jing et al. 2007a, 2008b, d).

With the GFRFs developed above, the bound characteristics of the output spectrum

of Wiener system (2.39a,b) can be investigated readily. It is known that output

frequencies of nonlinear systems are always more complicated than linear systems

including sub- or super-harmonics and inter-modulations (Jing et al. 2010). The

GFRFs and output spectrum above could also shed light on the analysis of output

frequency characteristics of Wiener-type nonlinear systems.

2.4.2 The GFRFs of Wiener-Hammerstein or Hammerstein
Systems

The Wiener-Hammerstein model can be described by

u tð Þ ¼ g�r tð Þ; x tð Þ ¼ f u tð Þð Þ and y tð Þ ¼ p�x tð Þ ð2:43a; b; cÞ

where p and g denote the linear parts following and preceding nonlinear function

f(·) (See Fig. 2.3).
Consider the subsystem from r(t) to x(t), which is the Wiener model in (2.39a,b).

According to (2.40–2.41), the nth-order output spectrum of this subsystem is

g(t) f(u(t))
r(t) u(t) x(t) y(t)

p(t)

Fig. 2.3 The Wiener-Hammerstein model, where g(t) and p(t) denote the linear parts and f(•)
represents the static nonlinear function, g-f is actually a Wiener sub-system and f-p is a Hammer-

stein sub-system (Jing 2011)
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Xn jωð Þ ¼ 1

2πð Þn�1

ð1
�1

� � �
ð1
�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n�1

cn
Yn
i¼1

G jωið Þ
 !Yn

i¼1

R jωið Þdω1� � �dωn�1

where ωn¼ω�ω1�� � ��ωn�1. Then the nth-order output spectrum of (2.43a–c) is

Yn jωð Þ¼Xn jωð ÞP jωð Þ

¼ cnP jωð Þ
2πð Þn�1

ð1
�1

���
ð1
�1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n�1

Yn
i¼1

G jωið Þ
 !Yn

i¼1

R jωið Þdω1� � �dωn�1 ð2:44Þ

where P(jω) is the Fourier transform of p(t). Therefore, the nth-order GFRF for

(2.43a–c) is

Hn jω1, � � �, jωnð Þ ¼ cnP jωð Þ
Yn
i¼1

G jωið Þ ð2:45aÞ

Noting that ω¼ω1+ � � �+ωn in (2.45a), the equation above can be written as

Hn jω1, � � �, jωnð Þ ¼ cnP jω1 þ � � � þ jωnð Þ
Yn
i¼1

G jωið Þ ð2:45bÞ

Using (2.45b) and noting the Hammerstein model is only a special case (g(t)¼1) of

the Wiener-Hammerstein model, the GFRFs of Hammerstein systems can be

obtained immediately as

Hn jω1, � � �, jωnð Þ ¼ cnP jω1 þ � � � þ jωnð Þ ð2:46Þ

Note that, the GFRFs and output spectrum of block-oriented nonlinear systems are

derived by employing the structure property of the nonlinear output spectrum

defined in (2.3) and the structure information of block-oriented models. The

resulting frequency response functions are expressed into analytical functions of

model parameters, which are not restricted to a specific input but allow any form of

input signals. However, many existing frequency-domain results for nonlinear

analysis require a specific sinusoidal input signal (Alleyne and Hedrick 1995;

Gelb and Velde 1968; Nuij et al. 2006; Schmidt and Tondl 1986; Huang

et al. 1998; Baumgartner and Rugh 1975; Krzyzak 1996; Crama and Schoukens

2001; Bai 2003). In the GFRFs, the relationships among the output spectrum, the

GFRFs, the system nonlinear parameters, and also the linear dynamics of the

system are demonstrated clearly. With these frequency response functions, bound

characteristics of the output spectrum and output frequency characteristics etc can

all be studied by following the methods in Jing et al. (2006, 2007a, 2008b, d, 2010).
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2.4.3 Extension to a More General Polynomial Case

The static nonlinear function of block-oriented models discussed above is only a

univariate polynomial function. A more general case is studied in this section. Since

both the Wiener and Hammerstein models are special cases, consider the following

Wiener-Hammerstein model,

u tð Þ ¼ g�r tð Þ; x tð Þ ¼ f u tð Þ, r tð Þð Þ and y tð Þ ¼ p�x tð Þ ð2:47a; b; cÞ

where the nonlinear function is defined as a more general multivariate polynomial

function as

f u tð Þ,r tð Þð Þ¼
XM
m¼1

Xm
p¼0

XK
k1,km¼0

cp,m�p k1; � � �;kmð Þ
Yp
i¼1

dkiu tð Þ
dtki

Ym
i¼pþ1

dki r tð Þ
dtki

ð2:47dÞ

whereM is the maximum nonlinear degree of the polynomial, K is the maximum

order of the derivative and cp,m�p(k1, � � �,km) is the coefficient of a termYp
i¼1

dkiu tð Þ
dtki

Ym
i¼pþ1

dki r tð Þ
dtki

in the polynomial.

Obviously, the univariate polynomial function in (2.7) is only a special case of

the general form (2.47d). That is, if letting cp, 0ð0, � � �, 0|fflfflffl{zfflfflffl}
p

Þ ¼ cp for p¼1,2,. . . and the

other coefficients in (2.47d) are zero, then (2.47d) will become (2.7). Obviously,

(2.47a–d) can represent a wider class of nonlinear systems. For example, if (2.47d)

is of sufficiently high degree and includes all possible linear and nonlinear combi-

nations of input u(t) and its derivatives of sufficiently high orders, it will be an

equivalent nonlinear IIR model of the Volterra-type nonlinear systems (Kotsios

1997). The following results can be obtained.

Proposition 2.1 The nth-order GFRF of Wiener-Hammerstein system (2.47a–d) is

given by

Hn jω1, � � �, jωnð Þ ¼ P jω1 þ � � � þ jωnð Þ Hnr jω1, � � �, jωnð Þð
þHnru jω1, � � �, jωnð Þ þ Hnu jω1, � � �, jωnð ÞÞ ð2:48Þ

Similarly, for Wiener systems with a general polynomial function (2.47d) it is given

by

Hn jω1, � � �, jωnð Þ¼Hnr jω1,� � �,jωnð ÞþHnru jω1,� � �,jωnð ÞþHnu jω1, � � �, jωnð Þ ð2:49Þ

and for Hammerstein systems with a general polynomial function (2.47d) it is
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Hn jω1, � � �, jωnð Þ ¼ P jω1 þ � � � þ jωnð ÞHnr jω1, � � �, jωnð Þ ð2:50Þ

where Hnr jω1, � � �, jωnð Þ, Hnru jω1, � � �, jωnð Þ and Hnu jω1, � � �, jωnð Þ are given by

Hnr jω1, � � �, jωnð Þ ¼
XK

k1, kn¼0

c0,n k1; � � �; knð Þ jω1ð Þk1 � � � jωnð Þkn ð2:51aÞ

Hnru jω1, � � �, jωnð Þ ¼
Xn�1

q¼1

Xn�q

p¼1

XK
k1, kpþq¼0

cp,q k1; � � �; kpþq

� �
jωn�qþ1

� �kpþ1 � � � jωnð Þkpþq

�Hn�q,p jω1, � � �, jωn�q

� � ð2:51bÞ

Hnu jω1, � � �, jωnð Þ ¼
Xn
p¼1

XK
k1, kp¼0

cp, 0 k1; � � �; kp
� �

Hn,p jω1, � � �, jωnð Þ ð2:51cÞ

Hn,p �ð Þ ¼ G jω1ð ÞHn�1,p�1 jω2, � � �, jωnð Þ jω1ð Þkp ð2:51dÞ

Hn, 1 jω1, � � �, jωnð Þ ¼ G jω1ð Þ jω1ð Þk1 n ¼ 1

0 else

�
ð2:51eÞ

Proof See Sect. 2.6.

Since (2.39b) is a special case of (2.47d) (cp,0(0, � � �,0)¼cp and the others zero in
(2.47d)), the nth-order GFRF in (2.41) for Wiener model (2.39a,b) can be shown to

be a special case of (2.51a–e). That is, only the parameter cn, 0ð0, � � �, 0|fflfflffl{zfflfflffl}
n

Þ ¼ cn is not

zero and the others are zero in (2.51a–e). Therefore,

Hn jω1, � � �, jωnð Þ¼Hnr jω1, � � �, jωnð ÞþHnru jω1, � � �, jωnð ÞþHnu jω1, � � �, jωnð Þ ð2:52aÞ
Hnr jω1, � � �, jωnð Þ ¼ 0, Hnru jω1, � � �, jωnð Þ ¼ 0 ð2:52b; cÞ

Hnu jω1, � � �, jωnð Þ ¼ cn, 0 0; � � �; 0ð ÞHn,n jω1, � � �, jωnð Þ ð2:52dÞ
Hn,n �ð Þ ¼ G jω1ð ÞHn�1,n�1 jω2, � � �, jωnð Þ jω1ð Þ0

¼ G jω1ð ÞG jω2ð Þ� � �G jωn�1ð ÞH1,1 jωnð Þ ð2:52eÞ
H1,1 jωnð Þ ¼ G jωnð Þ ð2:52fÞ

The nth-order GFRF for (2.39a,b) can now be obtained from (2.52a–f) which is

exactly (2.41).

Although the nonlinear frequency response functions above are all developed for

continuous time system models, it would be easy to extend them to discrete time

systems. In this section, analytical frequency response functions including gener-

alized frequency response functions (GFRFs) and nonlinear output spectrum of

block-oriented nonlinear systems are developed, which can demonstrate clearly the

relationship between frequency response functions and model parameters, and also

the dependence of frequency response functions on the linear part of the model. The
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nonlinear part of these models can be a more general multivariate polynomial

function. These fundamental results provide a significant insight into the analysis

and design of block-oriented nonlinear systems. Effective algorithms can also be

developed for the estimation of nonlinear output spectrum and for parametric or

nonparametric identification of nonlinear systems, which can be referred to

Jing (2011).

2.5 Conclusions

The computation of the GFRFs and/or output spectrum for a given nonlinear system

described by NARX, NDE or Block-oriented models is a fundamental task for

nonlinear analysis in the frequency domain. This chapter summarizes the results for

the computation of the GFRFs and output spectrum for several frequently-used

parametric models, and shows that the GFRFs are the explicit functions of model

parameters (of different nonlinear degrees), which can be regarded as an important

extension of the transfer function concept of linear systems to the nonlinear case.

2.6 Proof of Proposition 2.1

As the Wiener system is a sub-system of the Wiener-Hammerstein system in

(2.47a–d), the GFRFs for the sub-Wiener system can be derived firstly and then it

will be easily extended to the other block-oriented models as demonstrated in

Sect. 2.41–2.42. To derive the GFRFs for Wiener systems with the general poly-

nomial function (2.47d), i.e.,

u tð Þ ¼ g�r tð Þ and y tð Þ ¼ f u tð Þ, r tð Þð Þ ðA1;A2Þ

f u tð Þ, r tð Þð Þ ¼
XM
m¼1

Xm
p¼0

XK
k1, km¼0

cp,m�p k1; � � �; kmð Þ
Yp
i¼1

dkiu tð Þ
dtki

Ym
i¼pþ1

dki r tð Þ
dtki

ðA3Þ

the model can be regarded as a nonlinear differential equation model with two

outputs u(t) and y(t), and one input r(t). Note that the frequency response function

from the input r(t) to the intermediate output u(t) is the Fourier transform of the

impulse response function g(t), i.e., G(jω), which is a linear dynamics; while the

frequency responses from the input r(t) to the output y(t) involve nonlinear

dynamics. The latter are the GFRFs to be derived. The terms in the polynomial

function f(u(t),r(t)) can be categorized into three groups, i.e., pure input terms

c0,m k1; � � �; kmð Þ
Ym
i¼1

dki r tð Þ
dtki

, pure output terms cp, 0 k1; � � �; kp
� �Yp

i¼1

dkiu tð Þ
dtki

, and
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input-output cross terms cp,m�p k1; � � �; kmð Þ
Yp
i¼1

dkiu tð Þ
dtki

Ym
i¼pþ1

dki r tð Þ
dtki

(0<p<m).

Therefore, by applying the probing method, each group of terms corresponds to a

specific form of contributions to the nth-order GFRF of Wiener system (A1–A3),

which can be written as

Hn jω1, � � �, jωnð Þ ¼ Hnr jω1, � � �, jωnð Þ þ Hnru jω1, � � �, jωnð Þ
þHnu jω1, � � �, jωnð Þ ðA4Þ

where Hnr jω1, � � �, jωnð Þ represents the contribution from the pure input terms and

similar notations are used for the other terms. This is a special case of the system

studied in Sect. 2.3 or Jing et al. (2008c). Therefore following the method there, the

equations in (2.51a–e) can be obtained.

Similarly, the corresponding GFRFs for the Hammerstein model and Wiener-

Hammerstein model with the general polynomial function defined in (2.47d) can be

derived respectively. Note that only input nonlinearity is involved in the Hammer-

stein model. The extended polynomial function for the Hammerstein model can be

written as

x tð Þ ¼ f r tð Þð Þ ¼
XM
m¼1

XK
k1, km¼0

c0,m k1; � � �; kmð Þ
Ym
i¼1

dki r tð Þ
dtki

ðA5Þ

Following the same line, the nth-order GFRF for the extended Hammerstein model

is given by

Hn jω1, � � �, jωnð Þ¼P jω1þ���þ jωnð Þ
XK

k1,kn¼0

c0,n k1; � � �;knð Þ jω1ð Þk1 � � � jωnð Þkn ðA6Þ

The nth-order GFRF for the Wiener-Hammerstein model (2.47a–d) can be obtained

as

Hn jω1, � � �, jωnð Þ ¼ P jω1 þ � � � þ jωnð Þ Hnr jω1, � � �, jωnð Þð
þHnru jω1, � � �, jωnð Þ þ Hnu jω1, � � �, jωnð ÞÞ ðA7Þ

where Hnr jω1, � � �, jωnð Þ, Hnru jω1, � � �, jωnð Þ and Hnu jω1, � � �, jωnð Þ are given by

(2.51a–e). This completes the proof. ∎
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Chapter 3

Output Frequency Characteristics of
Nonlinear Systems

3.1 Introduction

An important phenomenon for nonlinear systems in the frequency domain is that

there are always very complicated output frequencies, appearing as super-

harmonics, sub-harmonics, inter-modulation, and so on. This usually makes it

rather difficult to analyze and design output frequency response of nonlinear

systems, compared with linear systems. Output frequencies of nonlinear systems

have been studied by several authors (Raz and Van Veen 1998; Lang and Billings

1997, 2000; Bedrosian and Rice 1971; Wu et al. 2007; Wei et al. 2007; Bussgang

et al. 1974; Frank 1996). These results provide different viewpoints for computation

and prediction of output frequencies of nonlinear systems. It is shown that Volterra-

type nonlinear systems can effectively be used to account for super-harmonics and

inter-modulation in nonlinear output spectrum.

In this chapter, some interesting properties of output frequencies of Volterra-

type nonlinear systems are particularly investigated. These results provide a very

novel and useful insight into the super-harmonic and inter-modulation phenomena

in output frequency response of nonlinear systems, with consideration of the effects

incurred by different nonlinear components in the system. The new properties

theoretically demonstrate several fundamental output frequency characteristics

and unveil clearly the mechanism of the interaction (or coupling effects) between

different harmonic behaviors in system output frequency response incurred by

different nonlinear components. These results have significance in the analysis

and design of nonlinear systems and nonlinear filters in order to achieve a specific

output spectrum in a desired frequency band by taking advantage of nonlinearities.

They can provide an important guidance to modeling, identification, control and

signal processing by using the Volterra series theory in practice.
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3.2 Output Frequencies of Nonlinear Systems

As discussed in Chap. 2, the output spectrum of nonlinear system (2.1) subject to a

general input can be computed by (2.3–2.4). For convenience, the output spectrum

of system (2.1) in (2.3-2.4) can also be written as (Lang and Billings 1996)

Y jωð Þ ¼
XN
n¼1

Yn jωð Þ

Yn jωð Þ ¼ 1ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Hn jω1, � � �, jωnð Þ
Yn
i¼1

U jωið Þdσω
ð3:1Þ

where

ð
ω1þ���þωn¼ω

�ð Þdσω represents the integration on the super plane ω1 + � � �+ωn¼ω.

Yn( jω) is referred to as the nth-order output spectrum. For a specific case, when the

system is subject to a multi-tone input

u tð Þ ¼
XK
i¼1

Fij j cos ωitþ∠Fið Þ ð3:2Þ

the system output spectrum is

Y jωð Þ ¼
XN
n¼1

Yn jωð Þ

Yn jωð Þ ¼ 1

2n

X
ωk1

þ���þωkn¼ω

Hn jωk1 , � � �, jωknð ÞF ωk1ð Þ� � �F ωknð Þ
ð3:3Þ

where K > 0ð Þ 2 ℤ, Fi 2 ℂ, F ωkið Þ can be written explicitly as

FðωkiÞ ¼ jFjkijjej∠Fjki j�sgn1ðkiÞ for ki 2 f�1, � � �, � Kg, and

sgn 1ðaÞ ¼
1 a > 0

0 a ¼ 0

�1 a < 0

for a 2 :

8><
>:

Nonlinear systems usually have complicated output frequencies, which are quite

different from linear systems having output frequencies completely identical to the

input frequencies. From (3.1) and (3.3), it can be seen that the output frequencies in

the nth-order output spectrum, denoted by Wn and simply referred to as the nth-
order output frequencies, are completely determined by
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ω ¼ ω1 þ ω2 þ � � � þ ωn or ω ¼ ωk1 þ ωk2 þ � � � þ ωkn

which produce super-harmonics and inter-modulation in system output frequencies.

In this chapter, the input u(t) in (3.1) is considered to be any continuous and

bounded input function in t� 0 with Fourier transform U( jω) whose domain

(input frequency range) is denoted by V, i.e., ω2V, and V can be regarded as any

closed set in the real. The multi-tone function (3.2) is only a special case of this.

Therefore, for the input U( jω) defined in V, the nth-order output frequencies are

Wn ¼ ω ¼ ω1 þ ω2 þ � � � þ ωn ωi 2 V, i ¼ 1, 2, . . . , n
��� � ð3:4aÞ

or for the multi-tone input (3.2),

Wn ¼ ω ¼ ωk1 þ ωk2 þ � � � þ ωkn ωki 2 V, i ¼ 1, 2, . . . , n
��� � ð3:4bÞ

where V ¼ �V [ V. This is an analytical expression for the super-harmonics and

inter-modulations in the nth-order output frequencies of nonlinear systems. All the

output frequencies up to order N, denoted by W, can be written as

W ¼ W1 [W2 [ � � � [WN ð3:4cÞ

In (3.4a–c),V represents the theoretical input frequency range including both positive

and negative frequencies contributing to high order (larger than 1) output spectra

(involving only positive frequencies), V is the physical input frequency range contrib-

uting to every order output spectrumandW1 represents the output frequencies incurred

by the linear part of the system. For example, V may be a real set [a, b][ [c, d], thus

V ¼ �d, � c½ � [ �b, � a½ � [ a; b½ � [ c; d½ �, where d� c� b� a> 0. When the

system is subject to the multi-tone input (3.2), then the input frequency range is

V ¼ �ω1, � ω2, � � �, � ωK

� �
, which is obviously a special case of the former one.

3.3 Fundamental Properties of Nonlinear Output
Frequencies

In this section, fundamental properties of the output frequencies of system (2.1)

with assumption that V is any closed set of frequency points in the real are

developed. Importantly, the periodicity of output frequencies is revealed. Although

some results about the computation of system output frequencies for the case with

V¼[a,b] has been studied in Raz and Van Veen (1998) and Lang and Billings

(1997), for the multi-tone case in Lang and Billings (2000), Wei et al. (2007) and

Yuan and Opal (2001) and for the multiple narrow-band signals in Bussgang

et al. (1974), and some of the properties discussed in this section can be partly

concluded from these previous results for the case V¼[a,b] and multi-tone case
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V ¼ ω1;ω2; � � �;ωK

� �
, all the properties of this section are established in a uniform

manner based on the analytical expressions (3.4a–c) for the input domain Vwhich is

any closed set in the real.

The following Property is straightforward from (3.4a, b).

Property 3.1 Consider the nth-order output frequency Wn,

(a) Expansion, i.e., Wn� 2�Wn;

(b) Symmetry, i.e., 8Ω2Wn, then �Ω2Wn;

(c) n-multiple, i.e., max(Wn) ¼ n �max(V) and min(Wn) ¼� n �max(V ). □

Property 3.1 shows that the output frequency range will expand larger and larger

with the increase of the nonlinear order (Property 3.1a), the expansion is symmetric

around zero point (Property 3.1b) and its rate is n-multiple of the input frequency

range (Property 3.1c). These are some fundamental properties which may be known

in literature for some cases and clearly stated here for Volterra-type nonlinear

systems subject to the mentioned class of input signals. Property 3.1a shows that,

the (n�2)th order output frequenciesWn�2 are completely included in the nth-order
output frequencies Wn. This property can be used to facilitate the computation of

output frequencies for nonlinear systems. That is, only the highest order of Wn in

odd number and the highest order in even number, of which the corresponding

GFRFs are not zero, are needed to be considered in (3.4c) (e.g., W¼WN� 1[WN).

For example, suppose the system maximum order N¼10, then onlyW10 andW9 are

needed to be computed if H10(.) and H9(.) are not zero, and the system output

frequencies are W¼W9[W10 (in case that H9(.) is zero, W9 should be replaced by

the output frequencies corresponding to the highest odd order of nonzero GFRFs).

For the case that V¼[a,b], Property 3.1a can also be concluded from the results in

Lang and Billings (1997). Here the conclusion is shown to hold for any V.
The following proposition theoretically demonstrates another fundamental and

very useful property for the output frequencies of nonlinear systems, and provides a

novel and interesting insight into system output frequency characteristics.

Proposition 3.1 (Periodicity Property) The frequencies in Wn can be generated

periodically as follows

Wn ¼ [nþ1

i¼1
Πi nð Þ ð3:5aÞ

Πi nð Þ ¼ ω ¼ ω1 þ ω2 þ � � � þ ωn

ωj 2 V,
ωj < 0 for 1 � j � i� 1,

ωj > 0 for j � i

������
8<
:

9=
; ð3:5bÞ

or

Πi nð Þ ¼ ω ¼ ωk1 þ ωk2 þ � � � þ ωkn

ωkj 2 V,
ωkj < 0 for 1 � j � i� 1,

ωkj > 0 for j � i

������
8<
:

9=
; ð3:5cÞ

The process above has the following properties
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max Πi nð Þð Þ ¼ � i� 1ð Þmin Vð Þ þ n� iþ 1ð Þmax Vð Þ ð3:6aÞ

and

min Πi nð Þð Þ ¼ � i� 1ð Þmax Vð Þ þ n� iþ 1ð Þmin Vð Þ ð3:6bÞ
max Πi�1 nð Þð Þ �max Πi nð Þð Þ ¼ min Πi�1 nð Þð Þ �min Πi nð Þð Þ

¼ min Vð Þ þmax Vð Þ ð3:4cÞ
Δ nð Þ ¼ max Πi nð Þð Þ �min Πi nð Þð Þ ¼ n � max Vð Þ �min Vð Þð Þ ð3:6dÞ

Moreover, when the system is subject to the class of input signals U( jω) defined
in [a,b] or specially subject to the multi-tone input (3.2) with

ωiþ1 � ωi ¼ const > 0 for i ¼ 1, . . . ,K � 1 K > 1
� �

, then

Πi nð Þ ¼ Πi�1 nð Þ � T for i ¼ 2, . . . , nþ 1 ð3:6eÞ

where T¼min(V ) +max(V ) is the length of the frequency generation period,

Πi(n)� T is a set whose elements are the elements in Πi(n) minus T, and Δ(n) is
referred to as the frequency span in each period.

Proof See Sect. 3.6. □

Note that (3.6e) is a very useful property which can be used to simplify the

computation of the output frequencies in applicable cases, because only one period

of frequencies are needed to be computed and the other frequencies can be simply

obtained by subtracting the length T. However, this property cannot hold for any

input cases. The following corollary is straightforward.

Corollary 3.1 When the system is subject to the class of input U(jω) which is

specially defined in

[Z
i¼1

aþ i� 1ð Þε, bþ i� 1ð Þε½ �

where b� a, ε� (b� a) and Z is a positive integer, then (3.6e) holds. □

Property 3.2 Consider Πi(n) inWn, which corresponds to the frequencies in the ith
frequency generation period,

(a) If the system input is the multi-tone function (3.2), then for any two

frequencies Ω and Ω0 in Πi(n) and any two frequencies ω and ω0 in V,
min(Ω�Ω0)¼min(ω�ω0).

(b) If Δ(n)> T, then max(Πi+ 1(n))>min(Πi(n)) for i¼ 1, . . ., n. That is,

there is overlap between the successive periods of frequencies in Wn.

Proof (a) is obvious from the proof for Proposition 3.1. Note that max(Πi+ 1(n))¼
max(Πi(n))� T, thus it can be derived that max(Πi+ 1(n))�min(Πi(n))¼max

(Πi(n))�min(Πi(n))� T¼Δ(n)� T> 0. Thus (b) is proved. □
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The results above theoretically demonstrate some interesting properties of

nonlinear system output frequencies. The periodicity of such output frequencies

can be used to simplify the computation of the output frequencies for some special

cases as mentioned above (where only one period of output frequencies need to be

computed), and facilitate the computation of the output frequencies in the general

case. Importantly, it theoretically reveals a novel insight into the output frequencies

of nonlinear systems and helps understanding of the nonlinear behaviors in output

frequency response of Volterra-type nonlinear systems. Interesting results based on

this property will be further discussed later.

Example 3.1 Consider a simple nonlinear system as follows

y ¼ �0:01 _y þ au2 þ bu3 þ cu� dy3

The input is a multi-tone function u(t)¼sin(6t)+sin(7t)+sin(8t). In order to demon-

strate the properties above clearly, only several simple cases of the system are

considered here. Firstly, consider c¼d¼0. That is, there are only nonlinear compo-

nents (of nonlinear degrees 2 and 3) related only to the input (in short, input

nonlinearities). Therefore, there will be only finite output frequencies because

only the first, second and third order GFRFs are not zero and all the other orders

are zero. The output spectra are given in Figs. 3.1 and 3.2 under different cases of

input nonlinearities. As mentioned, because there are only input nonlinearities with

order 2 and 3 in the system, the system output frequencies of the system are totally

the same as the second and third order output frequencies. That is, W¼W2 for a¼1

and b¼c¼d¼0; W¼W3 for a¼c¼d¼0 and b¼1; and W¼W2[W3 for a¼1, b¼1,

and c¼d¼0. Specifically, for the case a¼c¼d¼0 and b¼1 (Fig. 3.1), noting that V¼
{6,7,8}, and according to Proposition 1, there should be four periods in the output

frequencies, two of which are positive, i.e., Π1(3)¼ {18, 19, 20, 21, 22, 23, 24} and

Π2(3)¼ {4, 5, 6, 7, 8, 9, 10} ; the period is T¼6+8¼14; the frequency span in each

period is Δ(3)¼max(Πi(3))�min(Πi(3))¼ 3 � (max(V )�min(V ))¼ 6. Figures 3.1

and 3.2 demonstrate the results in Properties 3.1c–3.2a and Proposition 3.1. It is

also shown that the system output frequencies are simply the accumulation of all the

output frequencies in each order output spectrum when the involved nonlinearities

have no coupling effect and no overlap as stated in Property 3.2b. When and how

there are coupling effects between different nonlinearities will be discussed in the

next section. Note that the output response spectrum shown in the figures is 2|Y| not

|Y|, because 2|Y| represents the physical magnitude of the system output.

When considering more complicated cases that there are different nonlinearities

existing in the input and output of the system, the periodicity of the output

frequencies can still be observed, but the interaction (i.e., the coupling effects) at

some frequencies among different output harmonic responses incurred by different

nonlinearities usually produce very complicated output spectrum. However, proper

design of these different nonlinear terms can result in very special desirable output

behaviour.
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See Fig. 3.3a–c. The output harmonics incurred by different single cubic

nonlinear term in input or output both demonstrate the periodicity. The output

harmonics incurred by single input nonlinearity are finite (see Fig. 3.3a) while the

ones incurred by output nonlinearity are infinite (Fig. 3.3b). When both the two

cubic nonlinearities work together, the output harmonics are still periodic but

demonstrate coupling effect such that the output magnitude at the frequencies

6, 7, 8 are coincidently 1.
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Fig. 3.1 Output

frequencies when (a) a¼ 1,

b¼ c¼ d¼ 0 and (b)
a¼ c¼ d¼ 0, b¼ 1 (Jing

et al. 2010)
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3.4 Nonlinear Effect in Each Frequency Generation Period

The periodicity of output frequencies is revealed and demonstrated in the last

section. In this section, the nonlinear harmonic or inter-modulated effect on system

output spectrum in each frequency generation period, are studied. Firstly, a general

property for each period of output frequencies of nonlinear systems is given. Then

the interaction between different output harmonics incurred by different input

nonlinearities is investigated as a case study. It is well known in literature and

also as demonstrated in Example 3.1 that different nonlinearities can usually

interact with each other such that the output harmonics incurred by different non-

linearities have coupling effects and become complicated. However, the mecha-

nism about what the coupling effect is and how the different output harmonics

interact with each other is seldom reported. In this section, after a general property

is discussed, the interaction mechanism between different input nonlinearities is

studied in detail based on the periodicity and under an assumption that the non-

linearities only exist in system input for simplicity in discussion. This does not only

demonstrate the usefulness of the novel perspective revealed by the periodicity

property, but also provide some useful results for the analysis and design of

nonlinear FIR filters, which can be referred to the topic discussed in Billings and

Lang (2002). Moreover, although it is convenient to analyze the input nonlinearities

because the input nonlinearities only bring finite order output spectrum and less

coupling effect when there are no system nonlinearities related to the output. More

complicated results in this topic for the other kind of nonlinearities can be devel-

oped by following the similar method.

Firstly, from (3.1) and (3.3), it can be seen that the operators

ð
ω1þ���þωn¼ω

�ð Þdσω and

X
ωk1

þ���þωkn¼ω

�ð Þ have an important role in the frequency characteristics of the nth-order
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Fig. 3.2 Output

frequencies when a¼ 1,

b¼ 1, c¼ d¼ 0 (Jing

et al. 2010)
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Fig. 3.3 Output

frequencies when (a) a¼ 0,

c¼ 1, b¼ 0.1, d¼ 0; (b)
a¼ 0, c¼ 1, b¼ 0, d¼ 0.1;

(c) a¼ 0, c¼ 1, b¼ 0.1,

d¼ 0.1 (Jing et al. 2010)
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output spectrum in each frequency generation period. The following property can

be obtained.

Property 3.3 For ω 2 Πi nð Þ 1 � i � nþ 1ð Þ=2b cð Þ,
X

ωk1
þ���þωkn¼ω

1, reaches its

maximum at the central frequency (max(Πi(n)) +min(Πi(n)))/2 or around the cen-

tral frequency if the central frequency is not in Πi(n), and has its minimum value at

frequencies max(Πi(n)) and min(Πi(n)), i.e.,

min
ω2Πi nð Þ

 X
ωk1

þ���þωkn¼ω

1

!
¼

X
ωk1

þ���þωkn¼max Πi nð Þð Þ
1 ¼

X
ωk1

þ���þωkn¼min Πi nð Þð Þ
1 ¼ Ci�1

n

where Ck
n ¼ n n�1ð Þ��� n�kþ1ð Þ

k! 0 � k � nð Þ C0
n ¼ 1

� �
. Moreover, for ω2Πi(n)

(2� i�b(n+ 1)/2c), X
ωk1

þ���þωkn¼ω

1 >
X

ωk1
þ���þωkn¼<ωþT>

1

Especially, for the multi-tone input case with ωi+ 1�ωi¼ const> 0 for

i ¼ 1, . . . ,K � 1, X
ωk1

þ���þωkn¼max Πi nð Þð Þ�k
0 �const

1 ¼
X

ωk1
þ���þωkn¼min Πi nð Þð Þþk

0 �const
1

for 0� k0 �Δ(n)/const. Where, b(n+ 1)/2c is the largest integer which is not

more than (n+ 1)/2, <ω + T> is the frequency in Πi� 1(n) which is the nearest to

ω + T. The similar results also hold for the input defined in Corollary 3.1 by

replacing
X

ωk1
þ���þωkn¼ω

1 with

ð
ω1þ���þωn¼ω

1dσω.

Proof Note that
X

ωk1
þ���þωkn¼ω

1 is equal to the number of all the combinations satisfying

ωk1 þ � � � þ ωkn ¼ ω and with the n frequency variables satisfying the conditions in
Πi(n), thus the conclusions in this property can be obtained by using the combina-

torics, which are straightforward. When the values of ω1 and ωK are fixed and K is

approaching infinity such that const approaches zero, the multi-tone frequencies

will become a continuous closed set ω1;ωK

� 	
. The input frequencies defined in

Corollary 3.1 are further extended from these two cases. Hence, the conclusions

holding for the multi-tone case can be easily extended to the input case defined in

Corollary 3.1. This completes the proof. □

Property 3.3 shows that in each frequency generation period, the effect of the

operator

ð
ω1þ���þωn¼ω

�ð Þdσω and
X

ωk1
þ���þωkn¼ω

�ð Þ on system output spectrum tends naturally to

40 3 Output Frequency Characteristics of Nonlinear Systems



be more complicated at the central frequency. That is, there is only one combination

for the frequency variables in the operator
X

ωk1
þ���þωkn¼ω

�ð Þ at the two boundary frequency

of each period, it reaches the maximum at the central frequency of the same period

and tends to be decreasing in different period with the frequency increasing. These

can be regarded as the natural characteristics of the output frequencies that cannot

be designed (This can be seen in the Figures of Examples 3.1–3.2).

3.4.1 Nonlinear Effect of Different Input Nonlinearities

As mentioned, different nonlinearities may have quite different effect on system

output spectrum and there will be many coupling effects at the same frequency from

different nonlinearities. This will make the output spectrum at the frequencies of

interest to be enhanced or suppressed. For example, different nonlinearities (e.g.,

u(t)3 and _u tð Þu tð Þ2 are both input nonlinearity with nonlinear degree 3) may bring

the same output frequencies according to Jing et al. (2006). However, the effect

from different nonlinearities at the same frequency generation period may coun-

teract with each other such that the output spectrum may be suppressed in some

periods and others enhanced. This property is of great significance in the design of

nonlinear systems for suppressing output vibration (Zhou and Misawa 2005; Jing

et al. 2008a). As discussed, the periodicity property reveals a useful perspective for

understanding of interaction mechanism between different system nonlinearities. In

order to demonstrate this, the nonlinear effect between the harmonics incurred by

different input nonlinearities is studied in this subsection.

Consider Volterra-type nonlinear systems described by the NDE model in

(2.11). For convenience, it is given here as

XM
m¼1

Xm
p¼0

XK
l1, lpþq¼0

cp,q l1; � � �; lpþq

� �Yp
i¼1

dliy tð Þ
dtli

Ypþq

i¼pþ1

dliu tð Þ
dtli

¼ 0 ð3:7Þ

There are three kinds of nonlinearities in (3.7): input nonlinearity with coefficient

c0,q(.) (q>1), output nonlinearity with coefficient cp,0(.) (p>1), and input output

cross nonlinearity with coefficient cp,q(.) (p+q>1 and p>0). Here, consider that

there are only input nonlinearities in the NDE model above, i.e., cp,q(.)¼0 for all p
+q>1 and p>0. In this case, the GFRFs can be written as

Hn jω1, � � �, jωnð Þ ¼ 1

Ln jω1 þ � � � þ jωnð Þ
XK

l1, ln¼0

c0,n l1; � � �; lnð Þ jω1ð Þl1 � � � jωnð Þln

ð3:8Þ

where
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Ln jω1 þ � � � þ jωnð Þ ¼ �
XK
l1¼0

c1,0 l1ð Þ jω1 þ � � � þ jωnð Þl1 ð3:9Þ

From (3.8, 3.9) and (3.3), the nth-order output spectrum under the multi-tone input

(3.2) can be obtained as

Yn jωð Þ ¼ 1

2n

X
ωk1

þ���þωkn¼ω

 
F ωk1ð Þ� � �F ωknð Þ

Ln jωk1 þ � � � þ jωknð Þ

	
XK

l1, ln¼1

c0,n l1; � � �; lnð Þ jωk1ð Þl1 � � � jωknð Þln
!

¼ 1

2nLn jωð Þ
X

ωk1
þ���þωkn¼ω

F ωk1ð Þ� � �F ωknð Þð

	
XK

l1, ln¼1

c0,n l1; � � �; lnð Þ jωk1ð Þl1 � � � jωknð ÞlnÞ ð3:10Þ

To study the nonlinear effect from input nonlinearity in each frequency generation

period, the following results can be obtained.

Definition 3.1 (Opposite Property) Considering two input nonlinear terms of the

same degree with coefficients c0,n(l1, � � �, ln) and c0,n(l
0
1, � � �, l

0
n), if there exist two

nonzero real number c1 and c2 satisfying c0,n(l1, � � �, ln)¼ c1 and c0,n(l
0
1, � � �, l

0
n)¼ c2,

such that at a given frequency Ω?>?0,

X
ωk1

þ���þωkn¼Ω
F ωk1ð Þ� � �F ωknð Þ � c1 jωk1ð Þl1 � � � jωknð Þln þ c2 jωk1ð Þl

0
1 � � � jωknð Þl

0
n


 �
 �
¼ 0

with respect to a multi-tone input (3.2), then the two terms are referred to as being

opposite at frequency Ω under c0,n(l1, � � �, ln)¼ c1 and c0,n(l
0
1, � � �, l

0
n)¼ c2, whose

effects in frequency domain counteract with each other at Ω.

The following definition will be used in what follows:

sgn aþ bjð Þ ¼ sgn1 að Þ sgn1 bð Þ½ � for a, b 2 ℝ:

Proposition 3.2 summarized the cancellation property of input nonlinearities.

Proposition 3.2 (Cancellation Effect of Input Nonlinearity) Consider nonlinear

systems with only input nonlinearities subject to multi-tone input, in which there
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are two nonlinear terms with coefficients c0,n(l1, � � �, ln) and c0,n(l
0
1, � � �, l

0
n). If there

exists a non-negative integer m�b(n + 1)/2c� 1 such that sgn F ωk1ð Þ� � �F ωknð Þð Þ is
constant with respect to all the combinations of ωk1 , � � �,ωkn 2 �ω1, � � �, � ωK

� �
satisfyingωk1 þ � � � þ ωkn 2 Πmþ1 nð Þ, then the two nonlinear terms can be designed

to be opposite at any frequency in the (m+1)th frequency generation period

Πm+ 1(n) with proper parametric values of the two coefficients, if and only ifXn
i¼1

li and
Xn
i¼1

l
0
i are both odd integers or even integers simultaneously (The proof

is given in Sect. 3.6). □

Note that if two nonlinear terms satisfying the conditions in Proposition 3.2

are opposite in Πm + 1(n), this does imply that the effects from these two nonlinear

terms on system output spectrum can be counteracted with each other completely

at any given frequency in Πm + 1(n) but not implies that they can be counteracted

completely at all the other frequencies in Πm + 1(n) at the same time. Examples

for that sgn F ωk1ð Þ� � �F ωknð Þð Þ is constant with respect to all the combinations of

ωk1 , � � �,ωkn 2 �ω1, � � �, � ωK

� �
satisfying ωk1 þ � � � þ ωkn 2 Πm + 1(n), are that

K ¼ 1 or Fi is a real number in (3.2). Proposition 3.2 shows that what input

nonlinear terms of the same nonlinear degree can be opposite and thus provides

guidance about how to choose from input nonlinear terms to achieve a proper

output spectrum.

Moreover, from (3.10), it can be seen that the magnitude of Yn(jω) is dependent

on three terms: Ln(jω) and F ωk1ð Þ� � �F ωknð Þ
XK

l1, ln¼1

c0,n l1; � � �; lnð Þ jωk1ð Þl1 � � � jωknð Þln ,

and the function operator
X

ωk1
þ���þωkn¼ω

�ð Þ.
X

ωk1
þ���þωkn¼ω

�ð Þ represents a natural character-

istic of the system which cannot be designed as mentioned. The first term Ln(jω)
represents the influence from the linear part of the system and the second term

represents the nonlinear influence from input nonlinearities. These two terms can be

designed purposely in practice. Therefore, the results in Proposition 3.2 provide a

useful insight into the design of input nonlinearities to achieve a specific output

spectrum in practice. The following corollaries are straightforward from Proposi-

tion 3.2.

Corollary 3.2 Suppose the conditions in Proposition 3.2 are satisfied for two

nonlinear terms but they are not opposite at a frequency when c0,n(l1, � � �, ln)¼ c1
and c0,n(l

0
1, � � �, l

0
n)¼ c2, then they must be opposite at this frequency when

c0,n(l1, � � �, ln)¼ c1 and c0,n(l
0
1, � � �, l

0
n)¼� sgn1(c2)c3 for a proper value of c3. □

Corollary 3.3 Suppose the conditions in Proposition 3.2 are satisfied for two

nonlinear terms with nonzero coefficients c0,n(l1, � � �, ln) and c0,n(l
0
1, � � �, l

0
n). For a
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proper value of c0,n(l1, � � �, ln)/c0,n(l01, � � �, l
0
n)> 0, they are opposite in Πm + 1(n) if for

a real Ω> 0,

sgn1
X

ωk1 þ � � � þ ωkn ¼ n� 2mð Þ � Ω
ωk1 , � � �,ωkn 2 þΩ, � Ωf g

ωk1ð Þl1 � � � ωknð Þln

0
BBBB@

1
CCCCA �1ð Þ

l1�l
0
1
þ���þln�l

0
nj j

2

j k

¼ �sgn1
X

ωk1 þ � � � þ ωkn ¼ n� 2mð Þ � Ω
ωk1 , � � �,ωkn 2 þΩ, � Ωf g

ωk1ð Þl
0
1 � � � ωknð Þl

0
n

0
BBBB@

1
CCCCA ð3:11Þ

Proof See the proof in Sect. 3.6. □

Note that similar results can be extended for the other kinds of nonlinearities.

Example 3.2 Consider a simple nonlinear system as follows

y ¼ �0:01 _y þ au5 þ bu3 _u2

The input is a multi-tone signal u(t)¼0.8sin(7t)+0.8sin(8t)+ sin(9t), which can be

written as u(t)¼0.8cos(7t�90
)+ 0.8cos(8t�90
)+cos(9t�90
). Therefore, F

(ω� 1)¼� 0.8j, F(ω�?2)¼� 0.8j and F(ω�?3)¼� j. Firstly, it can be verified

that, sgn F ωk1ð Þ� � �F ωk5ð Þð Þ) is constant in each period Πi(5) for i¼1,..,6. Secondly,

the involved coefficients are c0,5(0,0,0,0,0)¼a and c0,5(0,0,0,1,1)¼b which satisfy

that
Xn
i¼1

li ¼ 0ð Þ and
Xn
i¼1

l
0
i ¼ 2ð Þ are both even integers. Therefore, the two nonlinear

terms au5 and bu3 _u2 can be opposite in each frequency generation period by

properly designing a and b. These can be verified by simulations (See Figs. 3.4,

3.5, 3.6, and 3.7). It can be seen that, by choosing carefully the values of a and b, the
effects on output frequency response from the two nonlinear terms can be

counteracted with each other in each frequency period. It shall be noted that

when the output spectrum is suppressed in one period, it may be enhanced in the

other.

For a specific frequency period and under specific values of a and b, Corollary
3.2 and Corollary 3.3 can be used to check whether it is suppressed or not. The

frequencies in the second frequency generation period Π2(5)¼ {19, 20, . . ., 29} is

taken as an example to illustrate this for the case a¼1.3, b¼0.1. For the nonlinear

term au5, (3.11) can be checked as (for n¼5)
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Fig. 3.4 Output spectrum

when (a) a¼ 1.3, b¼ 0 and

(b) a¼ 0, b¼ 0.1 (Jing

et al. 2010)
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Fig. 3.5 Output spectrum

when a¼ 1.3, b¼ 0.1(Jing

et al. 2010)
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Fig. 3.6 Output spectrum

when a¼�1.3, b¼ 0.1

(Jing et al. 2010)
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sgn1
X

ωk1 þ � � � þ ωkn ¼ n� 2mð Þ � Ω
ωk1 , � � �,ωkn 2 þΩ, � Ωf g

ωk1ð Þl1 � � � ωknð Þln

0
BBBB@

1
CCCCA �1ð Þ

l1�l
0
1
þ���þln�l

0
nj j

2

j k

¼ sgn1
X

ωk1 þ � � � þ ωk5 ¼ 5� 2ð Þ � Ω
ωk1 , � � �,ωk5 2 þΩ, � Ωf g

ωk1ð Þ0� � � ωk5ð Þ0

0
BBBB@

1
CCCCA �1ð Þ1

¼ sgn1
X

ωk1 þ � � � þ ωk5 ¼ 3 � Ω
ωk1 , � � �,ωk5 2 þΩ, � Ωf g

1

0
BBBB@

1
CCCCA �1ð Þ1 ¼ �1

For the nonlinear term bu3 _u2,
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Fig. 3.7 Output spectrum

when a¼ 7, b¼ 0.1 (Jing

et al. 2010)
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�sgn1
X

ωk1 þ � � � þ ωkn ¼ n� 2mð Þ � Ω
ωk1 , � � �,ωkn 2 þΩ, �Ωf g

ωk1ð Þl
0
1 � � � ωknð Þl

0
n

0
BBBB@

1
CCCCA

¼ �sgn1
X

ωk1 þ � � � þ ωk5 ¼ 5� 2ð Þ �Ω
ωk1 , � � �,ωk5 2 þΩ, � Ωf g

ωk4ð Þ1 ωk5ð Þ1

0
BBBB@

1
CCCCA

¼ �sgn1
X

ωk1 þ � � � þ ωk5 ¼ 3Ω
ωk1 , � � �,ωk5 2 þΩ, � Ωf g

�
ωk1ωk2

�
0
BBBB@

1
CCCCA

Note that there are five combinations for ωk1 þ � � � þ ωk5 ¼ 3Ω;
ωk1 , � � �,ωk5 2 þΩ, �Ωf g, i.e., �Ω,Ω,Ω,Ω,Ω; Ω,�Ω,Ω,Ω,Ω; Ω,Ω,�Ω,Ω,Ω;
Ω,Ω,Ω,�Ω,Ω; Ω,Ω,Ω,Ω,�Ω; Therefore

�sgn1
X

ωk1 þ � � � þ ωk5 ¼ 3Ω
ωk1 , � � �,ωk5 2 þΩ, � Ωf g

�
ωk1ωk2

�
0
BBBB@

1
CCCCA ¼ �sgn1 Ω2

� � ¼ �1

Equation (3.11) is satisfied.

From Fig. 3.5 it can be seen that, the counteraction between the effects from the

two input nonlinear terms when a¼1.3, b¼0.1 results in the suppression of the

output spectrum in the second period, but the enhancement for the first period and

little suppression for the third period, compared with the output spectrum under

single nonlinear term au5. Similar results can be seen in Figs. 3.6 and 3.7 under

different parameter values.

Moreover, it is obvious that given system model and input, the system output

spectrum can be analytically computed from (3.1–3.3). On the other hand, given

system model in the multi-tone input case, the input function can be obtained from

the output spectrum at a specific frequency generation period for example Π1(n).
Because each output frequency in Πi(n) can be explicitly determined, thus a series

of equations can be obtained in terms ofF ωk1ð Þ� � �F ωknð Þ, and then F(ω1), � � �F(ωn)

can be solved. That is, the original input signal can be recovered from the received

signal in a specific frequency generation period. This is another interesting property

based on the periodicity and is worth further investigating.
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3.5 Conclusion

The super-harmonics and inter-modulations in output frequencies of nonlinear

systems are theoretically studied and demonstrated, and some interesting properties

of system output frequencies are revealed explicitly in a general and analytical

form. These properties provide a useful insight into the nonlinear behavior in the

output spectrum of Volterra-type nonlinear systems such as the periodicity and

opposite property in the frequency domain. Especially, the interaction mechanism

among different output harmonics in system output spectrum incurred by different

input nonlinearities is demonstrated using the new perspective revealed by the

periodicity property. There are few results having been reported in this topic.

These results can be used for the design of nonlinear systems or nonlinear FIR

filters to achieve a special output spectrum by taking advantage of nonlinearities,

and thus provide an important and significant guidance to the analysis and design of

nonlinear systems in the frequency domain. Further study will focus on these

theoretical and practical issues. For example, given a specific frequency interval,

how to achieve a suppressed output spectrum by using the opposite property; how to

extend the current results for only input nonlinearities to more general complicated

cases, and so on.

Moreover, output frequency characteristics can also be studied with a parametric

characteristic analysis, which can indicate how different nonlinear parameters

affect output frequencies to certain extent. This will be studied in the following

chapters.

3.6 Proofs

A. Proof of Proposition 3.1
Consider multi-tone input case only. Then the same results can be extended to the

general input case readily. From (3.4b), it can be seen that the frequencies inWn are

determined byω ¼ ωk1 þ ωk2 þ � � � þ ωkn . When all the frequency variableωki 2 V
for i ¼ 1, . . . , nð Þ are positive, i.e., ωki > 0 for i ¼ 1, . . . , n, the computed fre-

quencies are obviously those in Π1(n). Then Π2(n) can be computed by setting that

there is only one frequency variable (for example ωk1 ) to be negative and all the

other frequency variables to be positive, i.e.,

Π2 nð Þ ¼ ω ¼ ωk1 þ ωk2 þ � � � þ ωkn
ωki 2 V,ωk1 < 0,ωki > 0,

i ¼ 2, 3, . . . , n

����
� 


Similarly, Π3(n) can be computed by setting that there is only two frequency

variables (for example ωk1 and ωk2 ) are negative and all the other frequency

variables are positive, i.e.,
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Π3 nð Þ ¼ ω ¼ ωk1 þ ωk2 þ � � � þ ωkn
ωki 2 V,ωk1 < 0,ωk2 < 0,

ωki > 0, i ¼ 2, 3, . . . , n

����
� 


Proceed with this process until that all the frequency variables are negative. There

are totally n negative frequencies (or frequency variables) in V, thus it is obvious
that the repetitive number of the computation process above is n.

From (3.5c), it can be obtained that

max Πi nð Þð Þ ¼ � i� 1ð Þmin Vð Þ þ n� iþ 1ð Þmax Vð Þ and min Πi nð Þð Þ
¼ � i� 1ð Þmax Vð Þ þ n� iþ 1ð Þmin Vð Þ

Therefore,

max Πi�1 nð Þð Þ �max Πi nð Þð Þ ¼ � i� 2ð Þmin Vð Þ þ n� iþ 2ð Þmax Vð Þ
þ i� 1ð Þmin Vð Þ � n� iþ 1ð Þmax Vð Þ

¼ min Vð Þ þmax Vð Þ ¼ T

and

min Πi�1 nð Þð Þ �min Πi nð Þð Þ ¼ � i� 2ð Þmax Vð Þ þ n� iþ 2ð Þmin Vð Þ
þ i� 1ð Þmax Vð Þ � n� iþ 1ð Þmin Vð Þ

¼ max Vð Þ þmin Vð Þ ¼ T

Moreover, the specific width that the frequencies span in Πi(n) is

Δ nð Þ ¼ max Πi nð Þð Þ �min Πi nð Þð Þ
¼ � i� 1ð Þmin Vð Þ þ n� iþ 1ð Þmax Vð Þ

þ i� 1ð Þmax Vð Þ � n� iþ 1ð Þmin Vð Þ
¼ n � max Vð Þ �min Vð Þð Þ

which is a constant.

Now consider the case that the input is the multi-tone (3.2) with

ωiþ1 � ωi ¼ const > 0 for i ¼ 1, . . . ,K � 1. In this case, it can be shown that

the difference between any two successive frequencies in Πi(n) is const. For

example, for any Ω2Πi(n), let Ω ¼ ωk1 þ ωk2 þ � � � þ ωkn . Without specialty,

suppose min Vð Þ � ωk1 < max Vð Þ, then the smallest frequency that is larger than

Ω must be Ω0 which can be computed as ω
0
k1
þ ωk2 þ � � � þ ωkn where

ω
0
k1
¼ ωk1 þ const. Hence, there exists an integer number 0� α�Δ(n)/const such

that Ω¼min(Πi(n)) + α � const for 8Ω2Πi(n). Considering 8Ω2Πi(n) with

Ω¼min(Πi(n)) + αΔ(n), it can be derived that
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Ωþ T ¼ min Πi nð Þð Þ þ αΔ nð Þ þ T ¼ � i� 1ð Þmax Vð Þ þ n� iþ 1ð Þmin Vð Þ
þαΔ nð Þ þmax Vð Þ þmin Vð Þ

¼ � i� 2ð Þ �max Vð Þ þ n� iþ 2ð Þmin Vð Þ þ αΔ nð Þ
¼ min Πi�1 nð Þð Þ þ αΔ nð Þ 2 Πi�1 nð Þ

Therefore, for 8Ω2Πi(n) there exists a frequency Ω0 2Πi� 1(n) such that

Ω0 ¼Ω+ T and vice versa. This gives (3.6e). When ω1¼ a, ωK ¼ b and K ! 1
such thatωiþ1 � ωi ¼ const ! 0 for i ¼ 1, . . . ,K � 1, it will become the case of

a general input U(jω) defined in [a,b]. The proposition is proved. □

B. Proof of Proposition 3.2
When the multi-tone input satisfies that sgn F ωk1ð Þ� � �F ωknð Þð Þ is constant with

respect to all the combinations of ωk1 , � � �,ωkn 2 �ω1, � � �, � ωK

� �
satisfying

ωk1 þ � � � þ ωkn 2 Πmþ1 nð Þ (for example K ¼ 1 or Fi is a real number in (3.2)),

then the opposite condition according to Definition 3.1 is that, there exist two

nonzero real number c1 and c2 such that at a given frequency Ω0 2Πm + 1(n),

X
ωk1

þ���þωkn¼Ω0
c1 jωk1ð Þl1 � � � jωknð Þln þ c2 jωk1ð Þl

0
1 � � � jωknð Þl

0
n


 �
¼ 0 ðB0Þ

(B0) can also be written as

X
ωk1

þ���þωkn¼Ω0

c1
c2

jð Þ

Xn
i¼1

li � l
0
i


 �
ωk1ð Þl1 � � � ωknð Þln

0
BB@

1
CCA

¼ �
X

ωk1
þ���þωkn¼Ω0

ωk1ð Þl
0
1 � � � ωknð Þl

0
n


 �
ðB1Þ

Note that given two specific nonlinear parameters c0,n(l1, � � �, ln) and c0,n(l
0
1, � � �, l

0
n),

it can be seen that ωk1ð Þl1 � � � ωknð Þln and ωk1ð Þl
0
1 � � � ωknð Þl

0
n are both nonzero for

ωk1 , � � �,ωkn 2 �ω1, � � �, � ωK

� �
satisfying ωk1 þ � � � þ ωkn 2 Πmþ1 nð Þ, and the

right side of (B1) is real, therefore

jð Þ

Xn
i¼1

li � l
0
i


 �
must be nonzero real ðB2Þ

On the other hand, if (B2) holds, whatever the value of

�
X

ωk1
þ���þωkn¼Ω0

ωk1ð Þl
0
1 � � � ωknð Þl

0
n


 �
is, there always exist two real number c1 and c2
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such that (B1) holds. Hence, the opposite condition above now is equivalent to be

that (B2) holds. That (B2) holds is equivalent to be that
Xn
i¼1

li � l
0
i


 �
is an even

integer. This is further equivalent to be that
Xn
i¼1

li and
Xn
i¼1

l
0
i are both odd integers or

even integers simultaneously. □

C. Proof of Corollary 3.3

Noting that
Xn
i¼1

li � l
0
i


 �
is an even integer, then from (3.11), it can be derived that

sgn
X

ωk1
þ���þωkn¼Ω0

c1 jωk1ð Þl1 � � � jωknð Þln

 �0

@
1
A

¼ �sgn
X

ωk1
þ���þωkn¼Ω0

c2 jωk1ð Þl
0
1 � � � jωknð Þl

0
n


 �0
@

1
A ðB3Þ

where ωk1 , � � �,ωkn 2 þΩ, � Ωf g and Ω0 ¼ (n� 2m)Ω for any Ω> 0. (B3) implies

that there exist two nonzero real number c1 and c2 satisfying c1/c2>0 such that at a

given frequency Ω0 2Πm + 1(n)¼ {(n� 2m)Ω}, (B0) holds. Note that Πm + 1(n)¼
{(n� 2m)Ω} is the case that the input is a single tone function i.e., K ¼ 1. Hence,

(3.11) implies that (B0) holds forK ¼ 1. To finish the proof, it needs to prove that, if

(3.11) holds, then (B0) holds for all Ω
0 2 Πmþ1 nð ÞK>1 (note that when K > 1 there

are more than one elements in Πmþ1 nð ÞK>1). By using the mathematical induction

and combination theory, it can be proved that

sgn
X

ωk1 þ � � � þ ωkn ¼ Ω
0

Ω
0 2 Πmþ1 nð Þ _K¼1

c1 jωk1ð Þl1 � � � jωknð Þln

 �

0
BBBBB@

1
CCCCCA

¼ sgn
X

ωk1 þ � � � þ ωkn ¼ Ω
0

Ω
0 2 Πmþ1 nð Þ _K>1

c2 jωk1ð Þl1 � � � jωknð Þln

 �

0
BBBBB@

1
CCCCCA

For paper limitation, this is omitted. Therefore, if (3.11) holds, (B0) holds for all

Ω
0 2 Πmþ1 nð ÞK>1. □
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Chapter 4

Parametric Characteristic Analysis

4.1 Separable Functions

Definition 4.1 A function h(s; x) is said to be separable with respect to parameter

x if it can be written as h(s; x)¼ g(x) � f1(s) + f0(s), where fi(.) for i¼0,1 are functions

of variable s but independent of the parameter x. □

A function h(s; x) satisfying Definition 4.1 is referred to as x-separable function or

simply separable function, where x is referred to as the parameter of interest which

may be a parameter to be designed for a system, and s represents other parameters

or variables, which may be a reference variable (or independent variable) of a

system such as time or frequency.

Remark 4.1 In the definition of an x-separable function h(s; x), x may be a vector

including all the separable parameters of interest, and s denotes not only the

independent variables of h(.), but also may include all the other un-separable and

uninterested parameters in h(.). The parameter x and s are real or complex valued,

but the detailed properties of the function h(.) and its parameters are not necessarily

considered here. Note also that in Definition 4.1, f0(s) and f1(s) are invariant with

respect to x and g(x). Thus h(s; x) can be regarded as a pure function of x for any

specific s. In this case, if g(x) is known, and additionally the values of h(s; x) and g
(x) under some different values of x, for example x1 and x2, can be obtained by

certain methods (simulations or experimental tests), then the values of f0(s) and f1(s)
can be achieved by the Least Square method, i.e.,
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h s; x1ð Þ ¼ g x1ð Þ � f 1 sð Þ þ f 0 sð Þ
h s; x2ð Þ ¼ g x2ð Þ � f 1 sð Þ þ f 0 sð Þ

�
) f 0 sð Þ

f 1 sð Þ
� �

¼ 1 g x1ð Þ
1 g x2ð Þ
� ��1

h s; x1ð Þ
h s; x2ð Þ
� �

ð4:1Þ

Thus the function h(s; x) at a given s can be obtained which is an analytical function
of the parameter x. This provides a numerical method to determine the relationship

between the parameters of interest and the corresponding function. □

An x-separable function h(s; x) at a given point s is denoted as h(x)|s, or simply as

h(x)s.
Consider a parameterized function series

H s; xð Þ ¼ g1 xð Þf 1 sð Þ þ g2 xð Þf 2 sð Þ þ � � � þ gn xð Þf n sð Þ ¼ G � FT ð4:2Þ

where n>1, fi(s) and gi(x) for i¼1,. . .,n are all scalar functions, let F¼ [ f1(s),
f2(s), � � �, fn(s)] and G¼ [g1(x), g2(x), � � �, gn(x)], x and s are both parameterized

vectors including the interested parameters and other parameters, respectively.

The series is obviously x-separable, thus H(x)s is completely determined by the

parameters in x or the values of g1(x), g2(x), � � �, gn(x). Note that at a given point s,
the characteristics of the series H(s; x) is completely determined by G, and how the

parameters in x are included in H(s; x) is completely demonstrated in G, too.
Therefore, the parametric characteristics of the series H(s; x) can be totally revealed
by the function vector G. The vectorG is referred to as the parametric characteristic

vector of the series. If the characteristic vector G is determined, then following the

method mentioned in Remark 4.1, the function H(x)s which shows the analytical

relationship between the concerned parameter x and the series is achieved, and

consequently the effects on the series from each parameter in x can be studied.

The function H(x)s is referred to as parametric characteristic function of the series

H(s; x). Based on the discussions above, the following result can be concluded.

Lemma 4.1 If H(s; x) is a separable function with respect to the parameter x, then
there must exist a parametric characteristic vector G and an appropriate function

vector F, such that H(s; x)¼ G �FT, where the elements of G are functions of x and
independent of s, and the elements of F are functions of s but independent of x. □

According to the definition and discussion above, it will be seen that the nth-
order GFRF of the NDE model in (2.11) and NARX model in (2.10) is separable

with respect to any nonlinear parameters of the corresponding models. As men-

tioned, in order to study the relationship between an interested function H(s; x) and
its separable parameters x, the parametric characteristic vector G should be

obtained. For a simple parameterized function, it may be easy to obtain parameter-

ized vector G. But for a complicated function series with recursive computations,

this is not straightforward. To this aim, and more importantly for the purpose of the

parametric characteristic analysis for the nth-order GFRF and output spectrum of

Volterra-type nonlinear systems described by (2.10) or (2.11), a novel operator is

introduced in the following section for the extraction of any parameters of interest

involved in a separable parameterized polynomial function series.
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4.2 Coefficient Extractor

Let Cs be a set of parameters which takes values in ℂ, let Pc be a monomial function

set defined in Cs, i.e.,Pc ¼ cr11 c
r2
2 � � �crII ci 2 Cs, ri 2 Z0, I ¼ Csj jj� �

, where Csj j is the
number of the parameters in Cs, ℤ+ denotes all the positive integers. Let Ws be

another parameter set similar to Cs but Ws\Cs¼ϕ, and let Pf be a function set

defined in Ws, i.e., Pf ¼ {f(w1, � � �,wI)|wi2Ws, I¼ |Ws|}. Let Ξ denote all the finite

order function series with coefficients in Pc timing some functions in Pf. A series in

Ξ can be written as

HCF ¼ s1f 1 þ s2f 2 þ � � � þ sσf σ 2 Ξ ð4:3Þ

where si2Pc, fi2Pf for i¼1,. . ., σ 2 ℤ+, C¼[s1,s2,. . ., sσ], and F¼[ f1, f2,. . .,fσ]
T.

Obviously, this series is separable with respect to the parameters in Cs and Ws.

Define a Coefficient Extraction operator CE :Ξ!Pc
σ, such that

CE HCFð Þ ¼ s1; s2; � � �; sσ½ � ¼ C 2 Pc
σ ð4:4Þ

where Pσ
c ¼ {[s1, s2, � � �, sσ]|s1, � � �, sσ2Pc}. This operator has the following

properties:

(1) Reduced vectorized sum “�”.

CE HC1F1
þ HC2F2

ð Þ ¼ CE HC1F1
ð Þ � CE HC2F2

ð Þ ¼ C1 � C2 ¼ C1;C
0
2

h i
and C

0
2 ¼ VEC C2 � C1 \ C2

� �
, where C1 ¼ C1 ið Þ 1 � i � C1j jjf g,

C2 ¼ C2 ið Þ 1 � i � C2j jjf g, VEC(.) is a vector consisting of all the elements

in set (.). C
0
2 is a vector including all the elements in C2 except the same

elements as those in C1.

(2) Reduced Kronecker product “�”.

CE HC1F1
� HC2F2

ð Þ ¼ CE HC1F1
ð Þ � CE HC2F2

ð Þ
¼ C1 � C2≜VEC c

C3 ¼ C1 1ð ÞC2, � � �,C1 C1j jð ÞC2½ �
c ¼ C3 ið Þ, 1 � i � C3j j
				

� 


which implies that there are no repetitive elements in C1�C2.

(3) Invariant.

(i) CE(α �HCF)¼CE(HCF), 8 α =2Cs; (ii) CE HCF1
þ HCF2

ð Þ ¼ CE HC F1þF2ð Þ
� �

¼ C:

(4) Unitary. (i) If ∂HCF

∂c ¼ 0 for 8 c2Cs, then CE(HCF)¼ 1; (ii) if HCF¼0 for

8 c2Cs, then CE(HCF)¼0. When there is a unitary 1 in CE(HCF), there is a

nonzero constant term in the corresponding series HCF which has no relation

with the parameters in Cs.
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(5) Inverse. CE�1(C)¼HCF. This implies any a vector C consisting of the elements

in Pc should correspond to at least one series in Ξ.
(6) CE HC1F1

ð Þ � CE HC2F2
ð Þ if the elements ofC1 are the same as those ofC2, where

“�” means equivalence. That is, both series are in fact the same result consid-

ering the order of sifi in the series has no effect on the value of a series HCF. This

further implies that the CE operator is also commutative and associative, for

instance, CE HC1F1
þ HC2F2

ð Þ ¼ C1 � C2 � CE HC2F2
þ HC1F1

ð Þ ¼ C2 � C1.

Hence, the results by the CE operator may be different but all may correspond

to the same function series and are thus equivalent.

(7) Separable with respect to parameters of interest only. A parameter in a series

can only be extracted if the parameter is of interest and the series is separable

with respect to this parameter. Thus the operation result is different for different

purposes.

Note that from the definition of the CE operator above, all the operations are in terms

of the parameters in Cs, and the CE operator sets up a mapping from Ξ to Pc
σ. For

convenience, let �
	ð Þ

�ð Þ and �
	ð Þ

�ð Þ denote the multiplication and addition by the reduced

Kronecker product “�” and vectorized sum “�” of the terms in (.) satisfying (*),

respectively; and �k
i¼1

Cp,q ¼ Cp,q � � � � � Cp,q can be simply written as Ck
p;q. For

model (2.11), define the (p+q)th degree nonlinear parameter vector as

Cp,q ¼ ½cp,q 0; � � �; 0ð Þ, cp,q 0; � � �; 1ð Þ, � � �, cp,qðK, � � �,K|fflfflfflffl{zfflfflfflffl}
pþq¼m

Þ� ð4:5Þ

which includes all the nonlinear parameters of the form cp,q(.) in model (2.11).

A similar definition for model (2.10) as

Cp,q ¼ ½cp,q 1; � � �; 1ð Þ, cp,q 1; � � �; 2ð Þ, � � �, cp,qðK, � � �,K|fflfflfflffl{zfflfflfflffl}
pþq¼m

Þ� ð4:6Þ

Note that Cp,q can also be regarded as a set of the (p+q)th degree nonlinear

parameters of the form cp,q(.). Moreover, if all the elements of CE(HCF) are zero,

i.e., CE(HCF)¼0, then CE(HCF) is also regarded as empty.

The CE operator provides a useful tool for the analysis of the parametric

characteristics of separable functions. It can be shown that the nonlinear parametric

characteristics of the GFRFs for (2.10) or (2.11) can be obtained by directly

substituting the operations “+” and “.” by “�” and “�” in the corresponding

recursive algorithms, respectively, and neglecting the corresponding multiplied

frequency functions. This is demonstrated by the following example.

Example 4.1 Computation of the parametric characteristics of the second order

GFRF of model (2.11). The second order GFRF from (2.19–2.24) is
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L nð Þ �Hn jω1, � � �, jωnð Þ¼
XK

k1,kn¼1

c0,n k1; � � �;knð Þ jω1ð Þk1 � � � jωnð Þkn

þ
Xn�1

q¼1

Xn�q

p¼1

XK
k1,kpþq¼0

cp,q k1; � � �;kpþq

� �
jωn�qþ1

� �kpþ1 � � � jωnð ÞkpþqHn�q,p jω1, � � �, jωn�q

� �
þ
Xn
p¼2

XK
k1,kp¼0

cp,0 k1; � � �;kp
� �

Hn,p jω1, � � �, jωnð Þ

ð4:7Þ

for n¼2, where L 2ð Þ¼�
XK
k1¼0

c1,0 k1ð Þ jω1þ jω2ð Þk1 , H1,1 jω1ð Þ¼H1 jω1ð Þ jω1ð Þk1 ,

H2,2 �ð Þ¼H1 jω1ð ÞH1,1 jω2ð Þ jω1ð Þk2 .
Applying the CE operator to (4.7) for nonlinear parameters and using the

notation in (4.5), it can be obtained that

CE H2 �ð Þð Þ¼CE L 2ð Þ�H2 �ð Þð Þ
¼C0,2� �

q¼1

2�1 �
p¼1

2�q
Cp,q �CE H2�q,p �ð Þ� � ! !

� �
p¼2

2
Cp,0 �CE H2,p �ð Þ� �� 


¼C0,2� C1,1�CE H1,1 �ð Þð Þ
 !

� C2,0�CE H2,2 �ð Þð Þ
 !

Note that H1(.) has no relationship with nonlinear parameters, from the definition of

CE operator, it can be obtained that CE(H1(.))¼1. Similarly, it can be obtained that

CE(H2,2(.))¼1. Therefore, the parametric characteristic vector of the second order

GFRF is

CE H2 �ð Þð Þ ¼ C0,2 � C1,1 � C2,0 ð4:8Þ

Equation (4.8) shows clearly that nonlinear parameters in C0,2, C1,1 and C2,0 have

independent effects on the second order GFRF without interference, and no any

other nonlinear parameters have any influence on the second order GFRF. This

provides an explicit insight into the relationship between the second order GFRF

and nonlinear parameters. For example, if H2(.) is required to have a special

amplitude or phase, only the parameters in C0,2, C1,1 and C2,0 may need to be

designed purposely. □

Example 4.1 shows that the CE operator is very effective for the derivation of the

parametric characteristic vector of a separable function series about the parameters

of interest. It provides a fundamental technique for the study of parametric effects

on the involved parameter-separable function series for any systems. In the present

study, in most cases, the CE operator will be applied for all the nonlinear param-

eters in model (2.10) or model (2.11). When the CE operator is applied for a specific
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nonlinear parameter c, the parametric characteristic of the nth-order GFRF will be

denoted by CE(Hn(.))c.

4.3 Case Study: Parametric Characteristics of Output
Frequencies

There are three categories of nonlinearities in model (2.10) or (2.11): input

nonlinearity with coefficient c0,q(.) (q>1), output nonlinearity with coefficient

c0p,0(.) (p>1), and input output cross nonlinearity with coefficient cp,q(.) (p+q>1

and p>0) (where p and q are integers). Different category and degree of

nonlinearity in a system can bring different output frequencies to the system.

How a nonlinear term affects system output frequencies and what the effect is,

are very interesting and important topics. However, few results have been reported

for this. As an example for application of the parametric characteristic analysis

established in this chapter, this section provides some useful results for this topic

based on the output frequency properties developed in Chap. 3.

Consider the NDE system in (2.11). What model parameters contribute to a

specific order GFRF and how model parameters affect the GFRFs can be revealed

by using the parametric characteristic analysis. From (3.1)–(3.3), it can be seen that

the nth-order output frequencies Wn are also determined by the nth order GFRF. If

the nth order GFRF is zero, thenWn¼[]. It is known from Chap. 2 that the nth order
GFRF is dependent on its parametric characteristics, thus the nth-order output

frequencies are also determined by the parametric characteristics of the nth-order

GFRF. Therefore, (3.4a,b) can be written as

Wn¼ ω¼ ω1þω2þ���þωnð Þ � 1�δ CE Hn ω1; � � �;ωnð Þð Þð Þ� �
ωi2V, i¼1,2, . . . ,n
		� �

ð4:9aÞ

and

Wn¼ ω¼ ωk1þωk2þ���þωknð Þ� 1�δ CE Hn ωk1 ;���;ωknð Þð Þð Þ� �
ωki2V,i¼1,2, ...,n
		� �

ð4:9bÞ

where δðxÞ¼ 1 x¼0 or 1

0 else

�
. In (4.9a,b), suppose Wn is empty when

δ CE Hn :ð Þð Þð Þ¼1.

Equations (4.9a,b) demonstrate the parametric characteristics of the output

frequencies for Volterra-type nonlinear systems described by (2.10) and (2.11),

by which the effect on the system output frequencies from different nonlinearities

can be studied. Since negative output frequencies are symmetrical with positive

output frequencies with respect to zero (Property 3.1b), thus for convenience only

non-negative output frequencies are considered in what follows.
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Property 4.1 Regarding nonlinearities of odd and even degrees,

(a) when there are no nonlinearities of even degrees, the output frequencies

generated by the nonlinearities with odd degrees happen at central frequencies

(2l+1)T/2 for l¼0,1,2,. . .with certain frequency span, where T is the frequency

generation period (Chap. 3);

(b) when there are only input nonlinearities of even degrees, the output frequencies

happen at central frequencies l � T for l¼0,1,2,. . . with certain frequency span;

(c) in other cases, the output frequencies happen at central frequencies l∙T/2 for

l¼0,1,2,. . . with certain frequency span.

The frequency span is Δ(n) corresponding to the nth order output frequencies if

applicable.

Proof See Sect. 4.5 for the proof. □

Property 4.1 shows that odd degrees of nonlinearities bring quite different output

frequencies to the system from those brought by even degrees of nonlinearities.

Property 4.2 Regarding different categories of nonlinearities,

(a) when there are only input nonlinearities of largest nonlinear degree n, the

non-negative output frequencies are in the closed set [0, n∙max(V )];
(b) in other cases, the output frequencies span to infinity.

Proof (a) From the GFRFs in Chap. 2 (and the corresponding parametric charac-

teristics to be further discussed in Chap. 5), only the GFRFs of orders equal to the

nonlinear degrees of the non-zero input nonlinearities are not zero since there are no

other kinds of nonlinearities in the system. Thus the largest order of non-zero

GFRFs is n. The conclusion is therefore straightforward from Property 3.1c. (b) If

there are other kinds of nonlinearities, the largest order of nonzero GFRFs will be

infinite, because for any parameter cp,q(.) with p>0 and p+q>1, it can form a

monomial with any high nonlinear degree (cp,q(.)
n) and thus contribute to any

high order GFRF (this will be more clear from the parametric characteristics of

the GFRFs in Chap. 5). Thus the output frequencies can span to infinity. This

completes the proof. □

The input nonlinearities of a finite degree can independently produce output

frequencies in a finite frequency band.

Property 4.3 Regarding different categories and degrees of nonlinearities,

(a) when there are only input nonlinearities, a nonlinear term of degree n can only
produce output frequencies Wn, and there are no crossing effect on output

frequencies between different degrees of input nonlinearities;

(b) in other cases, a nonlinear term of degree n contributes to not only output

frequenciesWn but also some high order output frequenciesWm for m> n due
to crossing effect with other nonlinearities.

Proof (a) Considering a nonlinear coefficient c0,n(.), it can be seen from the GFRFs

in Chap. 2 that, only CE(Hn(.)) is not empty, if all the other degree and type of
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nonlinear parameters are zero. That is, c0,n(.) only contributes to Hn(.) in this case.

If there are other input nonlinearities, it can be known from Proposition 3.1 in

Chap. 3 that only nonlinear parameters from input nonlinearities cannot form an

effective monomial which is an element of any order GFRF. That is there are no

crossing effects between different degrees of input nonlinearities. (b) When there

are output or input-output cross nonlinearities, it can be seen from the GFRFs in

Chap. 2 (and the corresponding parametric characteristics to be further discussed in

Chap. 5) that there are crossing effects between different nonlinearities, and the

nonlinear degree of any effective monomial (e.g. c1,q(.)c0,q(.)
n (q>1)) formed by the

coefficients from the crossing nonlinearities can be infinity. Thus a nonlinear

parameter of degree n, for example c0,n(.), has contribution not only to Hn(.), but

also to some higher order GFRFs, for example c1,n(.)c0,n(.)
z is an element of CE

(Hm(.)) where m¼z·n+n+1�z. This completes the proof. □

From Property 4.3, the crossing effect usually happens easily between the output

nonlinearities and the input-output cross nonlinearities.

Properties 4.1–4.3 provide some novel and interesting results about the output

frequencies for nonlinear systems when the effects from different nonlinearities are

considered, based on the GFRFs in Chap. 2 (and the corresponding parametric

characteristics to be further discussed in Chap. 5). Property 4.1 shows that odd

degrees of nonlinearities have quite different effect on system output frequencies

from even degrees of nonlinearities. Especially, it is shown from the properties

above that input nonlinearities have special effect on system output frequencies

compared with the other categories of nonlinearities. That is, input nonlinearities

can move the input frequencies to higher frequency bands without interference

between different frequency generation periods. These properties may have signif-

icance in design of nonlinear systems for some special purposes in practices. For

example, some proper input nonlinearities can be used to design a nonlinear filter

such that input frequencies are moved to a place of higher frequency or lower

frequency as discussed in Billings and Lang (2002). The results in this section have

also significance in modelling and identification of nonlinear systems. For example,

if a nonlinear system has only output frequencies which are odd multiples of the

input frequency when subjected to a sinusoidal input, the system may have only

nonlinearities of odd degree according to Property 4.1. Obviously, the results in this

section provide a useful guidance to the structure determination and parameter

selection for the design of novel nonlinear filters and also for system modelling or

identification.

Example 4.2 Consider a simple nonlinear system as follows

y ¼ �0:01 _y þ au5 � by3 � cy2

The input is a multi-tone function u(t)¼sin(6t)+sin(7t)+sin(8t). The output spectra

under different parameter values are given in Figs. 4.1, 4.2, and 4.3, which

demonstrate the results in Properties 4.1–4.3. For the input nonlinearity, the readers

can also refer to Figs. 3.1–3.7.
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When there are only odd nonlinearities, the output frequencies happen at around

central frequencies 7*(2k+1). When there are even nonlinearities, the output fre-

quencies appear at around central frequencies 7*k. The input nonlinearities only

produce independently the output frequencies within a finite frequency band. The

periodicity of the output frequencies can also be seen clearly from these figures.

Especially, it is worthy pointing out from Figs. 3.1, 3.2 and 4.1 that there can be

no coupling effects between proper chosen input nonlinearities as mentioned

before, which cannot be realized by the other categories of nonlinearities.
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Thus the input frequencies can be moved to higher frequency periodically without

interference between different periods and then decoded by using some methods.

This property may have significance when a system is designed to achieve a special

output spectrum at a desired frequency band in practices by using nonlinearities.

4.4 Conclusions

The parametric characteristic analysis given in this chapter is to reveal how the

parameters of interest in a separable parameterized function series or polynomial

affect the function series or polynomial and what the possible effects are. This can

provide a novel and convenient approach to investigate nonlinear effects incurred

by different type and degree of nonlinearities in the frequency response functions of

nonlinear systems. Using this method, the GFRF and nonlinear output spectrum can

all be studied in a parametric way and eventually formulated into a more practical

form for nonlinear system analysis, design and optimization in the frequency

domain.

Importantly, the CE operator provides an important and fundamental technique

for this parametric characteristic analysis method. As shown in Sect. 4.3, the

parametric characteristic analysis based on the CE operator can allow a convenient

way to analyze the output frequency characteristics in terms of different nonlinear
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terms. More interesting and useful results will be developed and demonstrated in

the following chapters for the parametric characteristics of the GFRFs using this

novel CE operator.

4.5 Proof of Property 4.1

The proof needs the parametric characteristic result in Chap. 5, which are directly

cited here.

(a) According to the GFRFs in Chap. 2 (and the corresponding parametric char-

acteristics to be further discussed in Chap. 5), the elements of CE(Hn(.)) must

be monomial functions of the coefficients of the nonlinear terms, i.e., cp1,q1 �ð Þ
� � �cpL,qL �ð Þ for some L
 1. Note that there are only nonlinearities of odd

degrees, i.e., 2k+1 (k¼0,1,2,. . .), thus the nonlinear degree of any monomial

in this case is (Proposition 5.1 in Chap. 5) n ¼
XL
i¼1

pi þ qið Þ � Lþ 1 ¼
XL
i¼1

2ki þ 1ð Þ � Lþ 1 ¼ 2
XL
i¼1

ki þ 1. Clearly, n is still an odd number. That

is the nonlinearities in the system of this case can only contribute to odd order

GFRFs. Thus all the even order GFRFs are zero, i.e., CE(Hn(.))¼0 for n is even.

Therefore, Wn may not be empty only when n is odd, otherwise it is empty.

Suppose n is an odd integer and CE(Hn(.)) 6¼0 and 1. That is, there are

nonzero elements in CE(Hn(.)) and all the elements in CE(Hn(.)) consist of the

coefficients of some nonlinear terms of the studied case. According to Prop-

osition 3.1, the first period in Wn must be Π1(n)� [n �min(V), n �max(V )],
whose central point is obviously n � T/2 and of which the frequency span is

Δ(n). Also from Proposition 7.1, the kth period inWn must be Πk(n)� [n �min

(V )� (k� 1)T, n �max(V )� (k� 1)T], whose central point is obviously n∙T/
2�(k�1)T¼(n�2(k�1))T/2 and of which the frequency span is still Δ(n).
Note that n�2(k�1) is an odd integer for k¼1,2,. . .. The first point of the

property is proved.

(b) Consider the case that there are only input nonlinearities of even degrees. In

this case, it can be verified from the parametric characteristics in Chap. 5 that

only the GFRFs of orders equal to the nonlinear degrees of the non-zero input

nonlinearities are not zero. That is, only some GFRFs of even orders are not

zero. Suppose n is an even integer and CE(Hn(.)) 6¼0 and 1. According to

Proposition 3.1, the kth period in Wn must be Πk(n)� [n �min(V )� (k� 1)T,
n �max(V )� (k� 1)T], whose central point is obviously n∙T/2�(k�1)T¼(n�2

(k�1))T/2 and of which the frequency span is Δ(n). Note that n�2(k�1) is an

even integer for k¼1,2,. . .. This second point of the property is proved.

(c) The conclusion is straightforward since there are non-zero GFRFs of even and

odd orders. This completes the proof. □
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Chapter 5

The Parametric Characteristics of the GFRFs
and the Parametric Characteristics Based
Analysis

5.1 The GFRFs and Notations

The concept of the GFRFs provides a basis for the study of nonlinear systems in the

frequency domain. For a specific parametric model of nonlinear systems such as

NARX, NDE, Block-oriented models, the GFRFs can be derived with the probing

methods as discussed in Chap. 2. For convenience of discussions, the computation

of the nth-order GFRF for the NDE model (2.11) is given here:

Ln jω1 þ � � � þ jωnð Þ � Hn jω1, � � �, jωnð Þ ¼
XK

k1, kn¼1

c0,n k1; � � �; knð Þ jω1ð Þk1 � � � jωnð Þkn

þ
Xn�1

q¼1

Xn�q

p¼1

XK
k1, kpþq¼0

cp,q k1; � � �; kpþq

� � Yq
i¼1

jωn�qþi

� �kpþi

 !
Hn�q,p jω1, � � �, jωn�q

� �

þ
Xn
p¼2

XK
k1, kp¼0

cp, 0 k1; � � �; kp
� �

Hn,p jω1, � � �, jωnð Þ

ð5:1Þ

Hn,p �ð Þ ¼
Xn�pþ1

i¼1

Hi jω1, � � �, jωið ÞHn�i,p�1 jωiþ1, � � �, jωnð Þ jω1 þ � � � þ jωið Þkp ð5:2Þ
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Hn, 1 jω1, � � �, jωnð Þ ¼ Hn jω1, � � �, jωnð Þ jω1 þ � � � þ jωnð Þk1 ð5:3Þ

where

Ln jω1 þ � � � þ jωnð Þ ¼ �
XK
k1¼0

c1,0 k1ð Þ jω1 þ � � � þ jωnð Þk1 ð5:4Þ

Moreover, Hn,p(jω1, � � �, jωn) in (3.2) can also be written as

Hn,p jω1, � � �, jωnð Þ ¼
Xn�pþ1

r1� � �rp ¼ 1P
ri ¼ n

Yp
i¼1

Hri jωXþ1, � � �, jωXþrið Þ jωXþ1 þ � � � þ jωXþrið Þki

ð5:5Þ

where

X ¼
Xi�1

x¼1

rx ð5:6Þ

Furthermore, if defining the following notations,

H0,0 �ð Þ ¼ 1; ð5:7Þ
Hn, 0 �ð Þ ¼ 0 for n > 0; ð5:8Þ
Hn,p �ð Þ ¼ 0 for n < p; ð5:9Þ

and

Yq
i¼1

�ð Þ ¼ 1 q ¼ 0, p > 1

0 q ¼ 0, p � 1

�
ð5:10Þ

then (5.1) can be written in a more concise form as

Hn jω1, � � �, jωnð Þ ¼ 1

Ln j
Xn
i¼1

ωi

 !Xn
q¼0

Xn�q

p¼0

XK
k1, kpþq¼0

cp,q k1; � � �; kpþq

� �

Yq
i¼1

jωn�qþi

� �kpþi

 !
Hn�q,p jω1, � � �, jωn�q

� � ð5:11Þ
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Therefore, the recursive algorithm for the computation of the GFRFs is (5.8 or 5.11,

5.10, 5.2–5.5).

Importantly, comparing the nth-order GFRF in (5.11) for the NDE model and

that for the NARX model in (2.17), i.e.,

Hn jω1,� � �, jωnð Þ¼ 1

Ln ω1� ��ωnð Þ
Xn
q¼0

Xn�q

p¼0

X
k1,kpþq¼1

K

cp,q k1;� ��;kpþq

� �
e

�j

Xq
i¼1

ωn�qþikpþi

� �
Hn�q,p jω1, � ��, jωn�q

� �
ð5:12Þ

both (5.11) and (5.12) have the same structure and notations. Therefore, the

parametric characteristics of the GFRFs for the NDE model are the same as for

the NARX model.

From the recursive algorithm for the computation of the GFRFs in (5.8 or 5.11,

5.10, 5.2–5.5), it can be seen that the nth-order GFRF is a parameter-separable

polynomial function with respect to the nonlinear parameters in model (2.10 or

2.11). For convenience, let

C n;Kð Þ ¼ cp,q k1; � � �; kpþq

� � p ¼ 0� � �m, pþ q ¼ m,
2 � m � n

ki ¼ 0� � �K, i ¼ 1� � �pþ q

������
0
@

1
A ð5:13Þ

which includes all the nonlinear parameters from nonlinear degree 2 to n. Obvi-
ously, C(M,K ) includes all the nonlinear parameters involved in model (2.10 or

2.11). In the following sections, the CE operator will be applied to all the nonlinear

parameters in C(n,K ). Note also the notations defined in (4.5) and (4.6), which will

be used frequently throughout this book without further explanation.

5.2 Parametric Characteristics of the GFRFs

A fundamental result can be obtained firstly for the parametric characteristic of the

nth-order GFRF in (5.11) or (5.12), which provides an important basis for the

parametric characteristic analysis of the frequency response functions in the fol-

lowing studies.

Proposition 5.1 Consider the GFRFs in (5.1). There exists a complex valued

function vector with appropriate dimension fn(jω1, � � �, jωn) which is a function of

jω1, � � �, jωn and the linear parameters of the NDE model (2.11), such that

Hn jω1, � � �, jωnð Þ ¼ CE Hn jω1, � � �, jωnð Þð Þ � f n jω1, � � �, jωnð Þ ð5:14Þ

where CE(Hn(jω1, � � �, jωn)) is the parametric characteristic vector of the nth-order
GFRF, and its elements include and only include all the nonlinear parameters in
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C0,n and all the parameter monomials in Cp,q � Cp1,q1 � Cp2,q2 � � � � � Cpk ,qk for

0� k� n� 2, whose subscripts satisfy

pþ qþ
Xk
i¼1

pi þ qið Þ ¼ nþ k, 2 � pi þ qi � n� k, 2 � pþ q

� n� k and 1 � p � n� k ð5:15Þ

Proof Equation (5.14) is directly followed from Lemma 4.1 and the corresponding

discussions in Chap. 4. It can be derived by applying the CE operator to Eqs. (5.1)–

(5.4) that

CE Hn jω1, � � �, jωnð Þð Þ ¼ C0,n � �
q¼1

n�1 �
p¼1

n�q
Cp,q � CE Hn�q,p �ð Þ� �� �

� �
p¼2

n
Cp, 0 � CE Hn,p �ð Þ� �� �

ð5:16aÞ

CE Hn,p �ð Þ� � ¼ �
i¼1

n�pþ1

CE Hi �ð Þð Þ � CE Hn�i,p�1 �ð Þ� �
or CE Hn,p �ð Þ� �

¼ �
r1� � �rp ¼ 1P

ri ¼ n

n�pþ1 �
i¼1

p
CE Hri �ð Þð Þ ð5:16bÞ

CE Hn, 1 �ð Þð Þ ¼ CE Hn �ð Þð Þ ð5:16cÞ

Obviously, C0,n is the first term in Eq. (5.16a). For clarity, consider a

simpler case that there is only output nonlinearities in (5.16a), then (5.16a)

is reduced to the last term of Eq. (5.16a), i.e.,

�
p¼2

n
Cp, 0 � CE Hn,p �ð Þ� � ¼ �

p¼2

n
Cp, 0 � �

r1� � �rp ¼ 1P
ri ¼ n

n�pþ1 �
i¼1

p
CE Hri �ð Þð Þ:

Note that �
r1� � �rp ¼ 1P

ri ¼ n

n�pþ1 �
i¼1

p
CE Hri �ð Þð Þ includes all the combinations of (r1,r2,. . .,rp)

satisfying
Xp
i¼1

ri ¼ n, 1� ri� n� p + 1, and 2� p� n. Moreover, CE(H1(�))¼ 1

since there are no nonlinear parameters in it, and any repetitive combinations

have no contribution. Hence, �
r1� � �rp ¼ 1P

ri ¼ n

n�pþ1 �
i¼1

p
CE Hri �ð Þð Þ must include all the

possible non-repetitive combinations of (r1,r2,. . .,rk) satisfyingXk
i¼1

ri ¼ n� pþ k, 2� ri� n� p+ 1 and 1� k� p. So does CE(Hn(jω1, � � �, jωn)).
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Each of the subscript combinations corresponds to a monomial of the involved

nonlinear parameters. Thus, by including the term Cp,0 and considering the range

of each variable (i.e., ri, p, and k), CE(Hn(jω1, � � �, jωn)) must include all the

possible non-repetitive monomial functions of the nonlinear parameters of the

form Cp0 � Cr10 � Cr20 � � � � � Crk0 satisfying pþ
Xk
i¼1

ri ¼ nþ k, 2� ri� n� k,

0� k� n� 2 and 2� p� n� k.

When the other types of nonlinearities are considered, by extending the

results above to a more general case such that the nonlinear parameters appear

in the form Cpq � Cp1q1 � Cp2q2 � � � � � Cpkqk and the subscripts satisfy

pþ qþ
Xk
i¼1

pi þ qið Þ ¼ nþ k, 2� pi + qi� n� k, 0� k� n� 2, 2� p + q� n� k

and 1� p� n� k, the same conclusion can be reached. Hence, the proposition is

proved. □

Remark 5.1 In Proposition 5.1, fn(jω1, � � �, jωn) is not a function of

CE(Hn(jω1, � � �, jωn)) and is invariant at a specific point (ω1, � � �,ωn) if the

linear parameters of model (1.5) are fixed. Proposition 5.1 provides for the

first time an explicit analytical expression for the nth-order GFRF which

reveals a straightforward relationship between the nonlinear parameters of

model (1.5) and the system GFRFs, and is an explicit function of the nonlinear

parameters at any specific frequency point (ω1, � � �,ωn). Equation (5.14) is

referred to as the parametric characteristic function of the nth-order GFRF,

which is denoted by Hn C n;Kð Þð Þ ω1;���;ωnð Þ. □

Remark 5.2 As mentioned in Chap. 4, the CE operator sets up a mapping from Ξ
to Pc

σ (see the definitions in Sect. 4.2). When applying the CE operator to the

GFRFs of the NDE model (2.11),

Cs ¼ C M;Kð Þ;
Ws ¼ ω1; � � �;ωNf g [ c1,0 k1ð Þ, c0,1 k1ð Þ 0 � k1 � Kjf g;
Pc ¼ cr11 c

r2
2 � � �crII ci 2 C M;Kð Þ, ri 2 0, I ¼ C M;Kð Þj jj� 	

and

Ξ ¼ Hn �ð Þ 1 � n � Njf g:

The condition described by (5.15) in Proposition 5.1 provides a sufficient and

necessary condition on what nonlinear parameters of model (2.11) can appear in

the nth-order GFRF, and also how the GFRF is determined by these parameters. □

For a better understanding of the parametric characteristic CE(Hn(jω1, � � �, jωn)),

the following properties of CE(Hn(jω1, � � �, jωn)) for the NDE model (2.11) can be

obtained, based on Proposition 5.1.
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Definition 5.1 If a nonlinear parameter monomial
Yk
i¼1

cjipiqi �ð Þ (k>0, ji� 0) is an

element of CE(Hn(jω1, � � �, jωn)), then it has an independent contribution to

Hn(jω1, � � �, jωn), and is referred to as a complete monomial of order n (simply as

n-order complete); otherwise, if it is part of an n-order complete monomial, then it

is referred to as n-order incomplete.

Obviously, all the elements in CE(Hn(jω1, � � �, jωn)) are n-order complete.

Property 5.1 The largest nonlinear degree of the nonlinear parameters appearing

in CE(Hn(jω1, � � �, jωn)) is n corresponding to nonlinear parameters cp,q(.) with

p+q¼n, and the n-degree nonlinear parameters of form cp,q(.) (p+q¼n) are all

n-order complete.

Proof In (5.15) when p+q¼n, then pþqþ
Xk
i¼1

piþqið Þ¼ nþ
Xk
i¼1

piþqið Þ¼ nþ k,

which further yields
Xk
i¼1

piþqið Þ¼ k. Note that 2�pi+qi�n�k and 0�k�n�2,

thus k¼pi¼qi¼0. Therefore, the property is proved. □

Property 5.2 cp,q(.) is j-order incomplete for j>p+q. That is, for a nonlinear

parameter cp,q(.), it will appear in all the GFRFs of order larger than p+q.

Proof This property can be seen from the recursive Eqs. (5.16a–c) and can also be

proved from Proposition 5.1. Suppose cp,q(.) does not appear in Hn(jω1, � � �, jωn),

where n>p+q. Consider a monomial cp,q(.)c
k
2;0(.) with k¼n-p-q. It can be verified

from Proposition 5.1 that cp,q(.)c
n� p� q
2;0 (.) is n-order complete. This results in a

contradiction. □

Properties 5.1–5.2 show that only the nonlinear parameters of degree from 2 to

n have contribution to CE(Hn(jω1, � � �, jωn)), and the n-degree nonlinear parameters

contribute to all the GFRFs of order � n.

Property 5.3 If 2� pi+ qi, 1� k and there is at least one pi satisfying 1� pi except
for k¼1, then cp1q1 �ð Þcp2q2 �ð Þ� � �cpkqk �ð Þ is Z-order complete, where

Z ¼
Xk
i¼1

pi þ qið Þ � k þ 1. Moreover,
Yk
i¼1

cpiqi �ð Þ are j-order incomplete for j>Z,

and have no effect on the GFRFs of order less than Z. □

The proof of Property 5.3 is given in Sect. 5.5. Given any monomial

cp1q1 �ð Þcp2q2 �ð Þ� � �cpkqk �ð Þ, it can be easily determined from Property 5.3 that, to

which order GFRF the monomial contributes independently. For instance, consider

a nonlinear parameter c3,2(.), which corresponds to the nonlinear termY3
i¼1

dkiy tð Þ
dtki

Y5
i¼4

dkiu tð Þ
dtki

. It follows from Property 5.3 that Z¼(3+2)�1+1¼5. Thus
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this nonlinear term has an independent contribution to the fifth order GFRF H5(.)

and affects all the GFRFs of order larger than 5. Moreover, it has no effect on the

GFRFs less than the fifth order.

Property 5.4 If 1� ri and 1� k, then the elements ofCE
Yk
i¼1

Hri �ð Þ
 !

are all Z-order

complete, where Z¼
Xk
i¼1

ri�kþ1, and are all j-order incomplete for j>Z, and have

no effect on the GFRFs of order less than Z. Similarly, the elements of
Yk1
i¼1

cpiqi �ð Þ�

CE
Yk2
i¼1

Hri �ð Þ
 !

are allZ-order complete, whereZ¼
Xk1
i¼1

piþqið Þþ
Xk2
i¼1

ri�k1�k2þ1,

and are all j-order incomplete for j>Z, and have no effect on the GFRFs of order

less than Z. □

The proof of Property 5.4 is given in Sect. 5.5. Obviously, this property is an

extension of Property 5.3, which shows that some computation by “�” between

some parameters and the parametric characteristics of some different order GFRFs

may result in the same parametric characteristic.

Property 5.5 CE(Hn,p(�))¼CE(Hn� p+ 1(�)). □

The proof of Property 5.5 is given in Sect. 5.5. This property, together with

Property 5.4, provides a simplified approach to the recursive computation of the

parametric characteristic of the nth-order GFRF in Eqs. (5.16a–c), which is sum-

marized in Corollary 5.1 as follows.

Corollary 5.1 The parametric characteristic of the nth-order GFRF for model

(2.11) can be recursively determined as

CE Hn jω1, � � �, jωnð Þð Þ
¼ C0,n � �

q¼1

n�1
Cn�q,q � �

p¼1

n�q�1

Cp,q � χC n; p; q; n� q
2


 �� �� �� �

� Cn, 0 � �
p¼2

n�1
Cp, 0 � χC n; p; 0;

nþ 1

2

j k
 �� �� �
ð5:17Þ

where b � c is to take the integer part, χC n; p; q;ℵð Þ ¼ CE Hn�p�qþ1 �ð Þ� �
p � ℵ

C0,n�p�qþ1 p > ℵ

�
,

and ℵ is a positive integer.

Proof Using Property 5.5, (5.16a) can be written as (n>1)
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CE Hn jω1, � � �, jωnð Þð Þ ¼ C0,n � �
q¼1

n�1 �
p¼1

n�q
Cp,q � CE Hn�q�pþ1 �ð Þ� �� �

� �
p¼2

n
Cp, 0 � CE Hn�pþ1 �ð Þ� �� �

ð5:18Þ

Note from Property 5.4 that some computations in the second and third parts of the

last equation are repetitive. For example, the monomials in Cn� 2,1�CE(Hn� n

+ 2� 1 + 1(�))¼Cn� 2,1�CE(H2(�)) (n>2) are included in C1,1�CE(Hn� 1(�))[
C2,0�CE(Hn� 1(�)), except the monomials in Cn� 2,1 �C0,2. For this reason, (5.18)

can be further written as

CE Hn jω1, � � �, jωnð Þð Þ
¼C0,n� �

q¼1

n�1
Cn�q,q� �

p¼1

n�q=2b c
Cp,q�CE Hn�q�pþ1 �ð Þ� � !(

� �
p¼ n�q=2b cþ1

n�q�1

Cp,q�C0,n�q�pþ1

� !)

� Cn,0� �
p¼2

nþ1=2b c
Cp,0�CE Hn�pþ1 �ð Þ� � !

� �
p¼ nþ1=2b cþ1

n�1
Cp,0�C0,n�pþ1

 !( )

This produces Eq. (5.17). The proof is completed. □

Remark 5.3 Corollary 5.1 provides an alternative recursive way to determine the

parametric characteristic of the nth-order GFRF. If there are only some nonlinear

parameters in (5.13) of interest, then Eq. (5.17) and all the results above can still be

used by taking other parameters as 1 if they are nonzero, or as zero if they are zero.

Therefore, whatever nonlinear parameters (for instance x) are concerned, the

parametric characteristic function with respect to x denoted by

Hn xð Þ ω1, ���,ωn;C n;Kð Þ\ xð Þ and the parametric characteristic CE(Hn(jω1, � � �, jωn)) can

all be derived by following the same method established above. □

The parametric characteristic analysis of this section can be used to demonstrate

how the parameters of interest affect the GFRFs and consequently provide useful

information for both the GFRF evaluation and system analysis. The following

example provides an illustration for this.

Example 5.1 Consider the parametric characteristics of the following two cases:

Case 1: Suppose there is only one input nonlinear term C0,3 6¼ 0, and all the other

nonlinear parameters are zero in model (2.11). Then the parametric characteristics

of the nth-order GFRF can be computed as

If n<3, it follows from Property 5.1 that CE(Hn(jω1, � � �, jωn))¼ 0.

If n¼3, it also follows from Property 5.1 that the parameters in C0,3 are all

3-order complete. Thus CE(H3(jω1, � � �, jω3))¼C0,3.
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If n>3, it follows from Property 5.2, C0,3 should be n-order incomplete in this

case. However, from the Definition 5.1, a complete monomial should have at least

one p� 1. Since there are no other nonzero nonlinear parameters, CE(Hn(jω1, � � �,
jωn))¼ 0 for this case.

Therefore, CE(Hn(jω1, � � �, jωn))¼ 0 for n 6¼ 1 and n 6¼ 3 in Case 1. That is, only

H1(jω) and H3(jω1, � � �, jω3) are nonzero in this case. Obviously, the computation of

the parametric characteristics can provide guidance to the computation and analysis

of the GFRFs from this case study.

Case 2: Suppose only C0,3 6¼ 0 and C2,0 6¼ 0, and all the other nonlinear param-

eters are zero. Then the parametric characteristics of the GFRFs can be simply

determined as

CE H1 jω1ð Þð Þ ¼ 1, CE H2 jω1, jω2ð Þð Þ ¼ C2,0, CE H3 jω1, � � �, jω3ð Þð Þ ¼ C2
2,0 � C0,3

CE H4 jω1, � � �, jω4ð Þð Þ ¼ C3
2,0 � C0,3 � C2,0, CE H5 jω1, � � �, jω5ð Þð Þ

¼ C4
2,0 � C0,3 � C2

2,0

CE H6 jω1, � � �, jω6ð Þð Þ ¼ C6
2,0 � C0,3 � C3

2,0 � C2
0,3 � C2,0

Especially, if only C0,3 is of interest for analysis, then C2,0 can be regarded as

constant 1. In this case, the parametric characteristics of the GFRFs can be obtained

as

CE H1 jω1ð Þð Þ ¼ CE H2 jω1, jω2ð Þð Þ ¼ 1, CE H3 jω1, � � �, jω3ð Þð Þ ¼ C0,3

CE H4 jω1, � � �, jω4ð Þð Þ ¼ C0,3, CE H5 jω1, � � �, jω5ð Þð Þ
¼ C0,3, CE H6 jω1, � � �, jω6ð Þð Þ ¼ C0,3 � C2

0,3

Note that different parametric characteristics of the GFRFs correspond to different

polynomial functions with respect to the parameters of interest, which can demon-

strate how the parameters of interest affect the GFRFs and thus provide some useful

information for the system analysis. For example, from the parametric characteristics

in Case 2, it can be seen that the sensitivity of the GFRFs for n<6 with respect to C0,3

is a constant when C2,0 and the linear parameters are constant. This may imply that in

order to make the system less sensitive to the input nonlinear term with coefficient

C0,3, it needs only to adjust the parameters in C2,0 and the linear parameters of model

(2.11) to reduce the corresponding constants in Case 2 under certain conditions. □

The parametric characteristic and its properties developed in this section for the

nth-order GFRF demonstrate what the parametric characteristics of the GFRFs are,

and how the nonlinear parameters in C(n,K ) make contributions to the nth-order
GFRF. As demonstrated in Example 5.1, these fundamental results can be used to

reveal how the nonlinear parameters affect the GFRFs and how the frequency

response functions of model (2.11) are constructed and thus dominated by the

model parameters which define system nonlinearities. Based on these results, useful

results can be developed and will be discussed in more details in the following

sections and chapters.
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5.3 Parametric Characteristics Based Analysis

Based on the parametric characteristics of the GFRFs established in the last section,

many significant results can be obtained. The parametric characteristic analysis can

provide an important insight into at least the following aspects:

(a) System nonlinear effects on frequency response functions (including the

GFRFs and output spectrum)—mainly discussed in this section, Chaps. 6–10

and 12;

(b) The detailed polynomial structure of frequency response functions—mainly

discussed in this section and Chaps. 6–10;

(c) Computations of the GFRFs and output spectrum—mainly discussed in

Chap. 11;

(d) Understanding of nonlinear behaviour in the frequency domain—mainly

discussed in Chaps. 4–6 and 12;

(e) Analysis and design of system output behaviour by using nonlinearities—

mainly discussed in Chaps. 9 and 10.

In this section, some of these results are given, and more detailed results will be

discussed later in the following chapters.

5.3.1 Nonlinear Effect on the GFRFs from Different
Nonlinear Parameters

As mentioned before, the nonlinearities in model (2.10) or model (2.11) can be

classified into three categories as follows:

(a) Pure input nonlinearities. This refers to the nonlinear parameters c0,n(.), which
are the first term in the parametric characteristics in Eq. (5.17) or (5.18);

(b) Pure output nonlinearities. This refers to the nonlinear parameters cn,0(.),
which are the last term in Eq. (5.17) or (5.18);

(c) Input-output cross nonlinearities, This refers to the nonlinear parameters

cp,q(.), which are the second term in (5.17) or (5.18).

It is known that different nonlinearity has a different effect on system dynamics.

Different nonlinear parameters correspond to different degree and category of

nonlinearities. Hence, the frequency characteristics of frequency response functions

and the effects of different nonlinear parameters on system output behaviour can be

revealed by the parametric characteristic analysis of the corresponding frequency

response functions. Since the GFRFs represent system frequency characteristics,

the study on the nonlinear effect on the GFRFs from different categories of non-

linearities can provide an important insight into the relationship between the system

frequency characteristics and physical model parameters. In this section, the para-

metric characteristics based analysis is investigated and discussed for the GFRFs in
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order to reveal how different model parameters have their effect on the frequency

response functions for model (2.11), and therefore affect the system frequency

characteristics. In what follows, the k+1 in monomial Cpq � Cp1q1 � Cp2q2 � � � �
�Cpkqk is referred to as the power of the monomial.

A. Pure Input Nonlinearities
As mentioned, this category of nonlinearities correspond to the nonlinear parame-

ters of the form c0,q(.) with q>1. If n¼q, then from Property 5.1 the parametric

characteristic of the nth-order GFRF with respect to the parameters in C0,q is

CE Hn jω1, � � �, jωnð Þð ÞC0,q
¼ C0,q ð5:19aÞ

and if n<q,

CE Hn jω1, � � �, jωnð Þð ÞC0,q
¼ 1 ð5:19bÞ

For n>q, since there is at least one parameter cp,q(.) with p>0 for any complete

monomials (except c0,n(.)) in CE Hn jω1, � � �, jωnð Þð Þc0,q �ð Þ from Proposition 5.1, thus

c0,q(.)
ρ for any ρ> 0 cannot be an independent entry in CE Hn jω1, � � �, jωnð Þð Þc0,q �ð Þ.

The largest power ρ can only appear in the monomial c0,q :ð Þρcp0 ,q0 :ð Þ, where cp0 ,q0 :ð Þ
is nonzero, satisfies p0 � 1 and p0 + q0 � 2 and has the smallest p0 + q0. In this case,

ρ can be computed from Property 5.3 as

ρ n; 0; qð Þ ¼ n� p
0 � q

0

q� 1

For example, if p0 + q0 ¼ 2, then

ρ n; 0; qð Þ ¼
n� 1
q�1

j k
if n� 1

q�1
is not an integer

n� q
q�1

else

8<
:

Therefore, for n>q,

CE Hn jω1, � � �, jωnð Þð ÞC0,q
¼ 1 C0,q C0,q

2 � � � C0,q
ρ n;0;qð Þ� � ð5:19cÞ

In particular, when all the other nonlinear parameters are zero except for C0,q, then

(n>1)

CE Hn jω1, � � �, jωnð Þð ÞC0,q
¼ C0,q if q ¼ n

0 else

�
ð5:19dÞ

It can further be verified that the parametric characteristic CE Hn jω1, � � �, jωnð Þð ÞC0,q

is the same as (5.19d) even when only all the other categories of nonlinear

parameters are zero except for the input nonlinearity.
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From the parametric characteristic analysis of the nth-order GFRF for the input

nonlinearity, it can be concluded that,

(A1) The parametric characteristic function with respect to the input nonlinearity

for the nth-order GFRF is a polynomial of the largest degree ρ(n, 0, q), i.e.,

Hn C0,q

� �
jω1, ���, jωn;C n;Kð Þ\C0,qð Þ ¼ 1 C0,q C0,q

2 � � � C0,q
ρ n;0;qð Þ� �

� f n jω1, � � �, jωn;C n;Kð Þ\C0,q

� �
where fn(jω1, � � �, jωn;C(n,K )\C0,q) is an appropriate function vector.

(A2) The largest power for the input nonlinearity of an independent contribution in

CE(Hn(jω1, � � �, jωn)) is 1, which corresponds to the nonlinear parameters in

C0,n.

(A3) For comparison with the other categories of nonlinearities, considering the

individual effect of pure input nonlinearity when there are no other categories

of nonlinearities, i.e., output nonlinearity and input-output cross nonlinearity,
it can be seen from (5.19d) that the input nonlinearities have no auto-crossing

effects on system dynamics. That is, each degree of the input nonlinearities

has an independent contribution to the corresponding order GFRF and the

largest power of a complete monomial from input nonlinearities is 1, i.e., the

nth-order GFRF is simply Hn(jω1, � � �, jωn)¼C0,q � fn(jω1, � � �, jωn) from Prop-

osition 5.1. Obviously, if C0,n¼0, there will be no contribution from the input

nonlinearities in the nth-order GFRF. It will be seen that these demonstrate a

quite different property for the input nonlinearity from other categories of

nonlinearities.

It is known that a difficulty in the analysis of Volterra systems is that the Volterra

kernels in the time domain usually interact with each order due to the crossing

nonlinear effects from different nonlinearities, and so are the GFRFs in the fre-

quency domain. From the discussions above, this difficulty does not hold for

the case that there are only input nonlinearities, e.g., for the class of Volterra

systems studied in Kotsios (1997). The parametric characteristic analysis for the

input nonlinearities can also make light on the selection of different parameters for

the energy transfer filter design in Billings and Lang (2002).

B. Pure Output Nonlinearities
This category of nonlinearities correspond to the nonlinear parameters of the form

cp,0(.) with p>1. If n¼p, then from Property 5.1

CE Hn jω1, � � �, jωnð Þð ÞCp,0
¼ Cp, 0 ð5:20aÞ

If n<p, also from Property 5.1
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CE Hn jω1, � � �, jωnð Þð ÞCp,0
¼ 1 ð5:20bÞ

These are similar to the input nonlinearity. If n>p, then from Properties 5.1–5.3 Cp,0

will contribute to all the GFRFs of order lager than p. From Property 5, cp,0(.)
ρ for

ρ> 0 is a complete monomial for the Zth-order GFRFs where Z¼ (p� 1)ρ+ 1. For
the nth-order GFRF with n>p, the largest power ρ can be computed from Property

5.3 as

ρ n; p; 0ð Þ ¼ n� 1

p� 1

j k

Thus, for n>p,

CE Hn jω1, � � �, jωnð Þð ÞCp,0
¼ 1 Cp, 0 Cp, 0

2 � � � Cp, 0
ρ n;p;0ð Þ� � ð5:20cÞ

Consider the particular case where all nonlinear parameters are zero except the

parameters in Cp,0, then for n>1

CE Hn jω1, � � �, jωnð Þð ÞCp,0
¼

0 if p> n or n-1
p-1 is not an integer

Cp,0
ρ n;p;0ð Þ else

(
ð5:20dÞ

However, when all other nonlinear parameters are zero except output nonlinear

parameters, the parametric characteristic CE Hn jω1, � � �, jωnð Þð ÞCp,0
for n>p is the

same as (5.20c).

From the parametric characteristic analysis of the nth-order GFRF for the pure

output nonlinearity, it can be concluded that,

(B1) The parametric characteristic function with respect to the output nonlinearity

for the nth-order GFRF is a polynomial of the largest degree ρ(n, p, 0), i.e.,

Hn Cp, 0

� �
jω1, ���, jωn;C n;Kð Þ\Cp,0ð Þ ¼ 1 Cp, 0 Cp, 0

2 � � � Cp, 0
ρ n;p;0ð Þ� �

� f n jω1, � � �, jωn;C n;Kð Þ\Cp, 0

� �
where fn(jω1, � � �, jωn;C(n,K )\Cp,0) is an appropriate function vector. Note

that ρ(n, p, 0)�ρ(n, 0, q), which may imply that for the same nonlinear degree,

output nonlinearity has a larger effect on the system than input nonlinearity.

(B2) The largest power for the output nonlinear parameter Cp,0 of an independent

contribution in CE(Hn(jω1, � � �, jωn)) is ρ(n, p, 0), which corresponds to the

n-order complete monomial Cp,0
ρ(n,p,0). However, the largest power for the

output nonlinearity of a complete monomial in CE(Hn(jω1, � � �, jωn)) is k,
corresponding to the monomial Cp1, 0 � Cp2, 0 � � � � � Cpk , 0, where

k¼ p1 + � � �+ pk+ 1� n. This is quite different from the input nonlinearity.
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(B3) Considering the individual effect of pure output nonlinearity when there are

no other categories of nonlinearities, i.e., input nonlinearity and input-output

cross nonlinearity, it can be seen from (5.20c) that the output nonlinearities

have auto-crossing nonlinear effects on system dynamics. That is, different

degree of output nonlinearities can form a complete monomial in the

nth-order GFRF and the largest power of this kind of complete monomials

from output nonlinearities is k as mentioned in (B2). Obviously, if the degree-

n nonlinear parameter Cn,0¼0, there are still contributions from the output

nonlinearities in the nth-order GFRF if there are other nonzero output

nonlinear parameters of degree less than n. These may imply that output

nonlinearity has more complicated and larger effect on the system than input

nonlinearity of the same order, which shows a property different from that of

the input nonlinearity as mentioned in (A3).

(B4) It can be seen from (5.20c, d) that Cp,0 will contribute independently to the

GFRFs whose orders are (p�1)i+1 for i¼1,2,3,. . .. It is known that for a

Volterra system, the system nonlinear dynamics is usually dominated by the

first several order GFRFs (Taylor 1999; Boyd and Chua 1985). This implies

that the nonlinear terms with coefficient Cp,0 of smaller nonlinear degree, e.g.,
2 and 3, take much greater roles in the GFRFs than other pure output non-

linearities. This property is significant for the design of nonlinear feedback

controller design, where a desired degree of nonlinearity should be deter-

mined for control objectives (Jing et al.2006; Van Moer et al. 2001). This will

be further discussed in Chap. 9.

C. Input-Output Cross Nonlinearities
This category of nonlinearities corresponds to the nonlinear parameters of the form

cp,q(.) with p� 1 and q� 1. It can be verified that the parametric characteristics of

the GFRFs with respect to such nonlinearities are very similar to those for the pure

output nonlinearities as shown in B, and the conclusions held for the output

nonlinearity still hold for the input-output cross nonlinearity. Thus the detailed

discussions are omitted here. For a summary, the following parametric characteri-

stics hold for both of these two categories of nonlinearities

CE Hn jω1, � � �, jωnð Þð ÞCp,q
¼ 1 if n < pþ q

1 Cp,q Cp,q
2 � � � Cp,q

ρ n;p;qð Þ� �
else

(

ð5:21Þ

where, n>1, ρ n; p; qð Þ ¼ n�1
pþq�1

j k
, p� 1 and p+ q� 2.

A difference between the input-output cross nonlinearity and the pure output

nonlinearity may be that the output nonlinearity can be relatively easily realized by

a nonlinear state or output feedback control in practice. A simple comparison is

summarized in Table 5.1.
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Remark 5.4 Based on the parametric characteristic of the nth-order GFRF with

respect to nonlinear parameters in Cp,q, the sensitivity of the GFRFs with respect to

these nonlinear parameters can also be studied. From Proposition 5.1, the sensitivity

ofHn(jω1, � � �, jωn) with respect to a specific nonlinear parameter c can be computed

as

∂Hn cð Þ ω1, ���,ωn;C M;K;nð Þ\ cð Þ
∂c

¼ ∂Hn jω1, � � �, jωnð Þ
∂c

¼ ∂CE Hn jω1, � � �, jωnð Þð Þ
∂c

� f n jω1, � � �, jωnð Þ ð5:22Þ

Thus, the sensitivity of the nth-order GFRF with respect to any nonlinear parameter

c¼cp,q(.) with p� 1 and p + q� 2 can be obtained from (5.21) as:

∂Hn cð Þ ω1, ���,ωn;C K;nð Þ\ cð Þ
∂c

¼ 0 1 2c � � � ρ n; p; qð Þcρ n;p;qð Þ�1
� �
� f n jω1, � � �, jωn;C K; nð Þ\ cð Þ ð5:23Þ

where f n jω1, � � �, jωn;C K; nð Þ\ cð Þ is an appropriate function vector defined

in Proposition 5.1. Obviously, the sensitivity to a specific parameter is still an

analytical polynomial function of the nonlinear parameter. From the parametric

characteristics in (5.19a–5.21), it can be concluded that the sensitivity of the nth-
order GFRF with respect to an input nonlinear parameter must be zero or constant

when there are no other category of nonlinearities. However, this can only happen

to the output nonlinear parameters and input-output cross nonlinear parameters if

the nonlinear degree of the parameter of interest is n. Otherwise, the sensitivity

function with respect to an output or an input-output cross nonlinear parameter is

still an analytical polynomial function of the parameter of interest and some other

nonzero parameters.

5.4 Conclusions

The parametric characteristic analysis discussed in Chap. 4 is used in this

Chapter for the study of the parametric characteristics of the GFRFs of Volterra-

type nonlinear systems described by the NDE model (2.11) or NARX model (2.10).

Fundamental and significant results have been established for the parametric

characteristics of the GFRFs of the nonlinear systems. The method has been

shown to be of great significance in understanding the system’s frequency response
functions and the nonlinear influence incurred by different nonlinear terms. As

mentioned in Sect. 5.3, the significance has at least five aspects, some of which have

been demonstrated in this chapter and more will be discussed and investigated later.

From the results of this Chapter, it can be seen that, the parametric characteris-

tics of the GFRFs can explicitly reveal the relationship between the time domain
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model parameters and the GFRFs and therefore provide a useful insight into the

analysis and design of nonlinear systems in the frequency domain. By using the

parametric characteristic analysis, system nonlinear frequency domain characteris-

tics can be studied in terms of the time domain model parameters which define

system nonlinearities, and the dependence of the frequency response functions of

nonlinear systems on model parameters can be revealed. As it will be shown further

in the following chapters, the analytical relationship between system output spec-

trum and model parameters can also be determined explicitly, and the nonlinear

effect on the system output frequency response from different nonlinearities can be

unveiled. This will facilitate the study of nonlinear behaviours in the frequency

domain and unveil the effects of different categories of system nonlinearities on the

output frequency response. All these results provide a novel insight to the frequency

domain analysis of nonlinear systems, which may be difficult to address with other

existing methods in the literature.

5.5 Proofs

Proof of Property 5.3 From Proposition 5.1, CE(HZ(�)) includes all non-repetitive
monomial functions of the nonlinear parameters in model (2.11) of the form

Cpq � Cp1q1 � Cp2q2 � � � � � Cpkqk , where the subscripts satisfy

pþ qþ
Xk0
i¼1

pi þ qið Þ ¼ Zþ k
0
, 2�pi+qi�Z� k0, 0� k0 �Z�2, 2�p+q�Z� k0,

and noting 1�p�Z� k0, thus �
i¼1

k
Cpiqi is included in CE(HZ(�)). Moreover, substi-

tute k by k+x, where x>0 is an integer, then Z
0 ¼
Xkþx

i¼1

pi þ qið Þ � k� xþ 1, which

further yields Z
0 � Z ¼

Xx
i¼1

pi þ qið Þ � x. Note that 2�pi+qi, thus

Z
0 � Z �

Xx
i¼1

2� x¼ x. Therefore, �
i¼1

k
Cpiqi must appear in CE(Hj(jω1, � � �, jωj)) for

j>Z and but must not appear in the GFRFs of order less than j. This completes the

proof. □

Proof of Property 5.4 From Proposition 5.1, any element

cp1,q1 �ð Þcp2,q2 �ð Þ� � �cpkri ,qkri �ð Þ in CE(Hri �ð Þ) with ri>1 satisfy
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ri ¼
Xkri
i¼1

pi þ qið Þ � kri þ 1

Note that if ri¼1, then CE(Hri �ð Þ)¼1. In this case, suppose (pi+ qi)¼ 1 for consis-

tence. Therefore,

Xk
i¼1

ri � k þ 1 ¼
Xk
i¼1

Xkri
j¼1

pj þ qj
� ��Xk

i¼1

kri þ k

 !
� k þ 1

¼
Xk
i¼1

Xkri
j¼1

pj þ qj
� ��Xk

i¼1

kri þ 1 ¼ Z:

This proves the first part of this property. The second part follows from the first part

and Property 5.3. □

Proof of Property 5.5 A different proof was given in Proposition 3 of Jing

et al. (2006), but here presents a more concise proof based on the properties

developed in Sect. 5.2. Applying the CE operator to Eq. (5.5), it can be obtained that

CE Hn,p jω1, � � �, jωnð Þ� �¼ �n�pþ1

r1� � �rp ¼ 1P
ri ¼ n

�
i¼1

p
CE Hri �ð Þð Þ

¼CE Hn�pþ1 �ð Þ� �� �n�p

r1� � �rp ¼ 1P
ri ¼ n

�
i¼1

p
CE Hri �ð Þð Þ

0
BBB@

1
CCCA

From Property 5.4, it follows that all the elements in �n�p

r1� � �rp ¼ 1P
ri ¼ n

�
i¼1

p
CE Hri �ð Þð Þ

should be Z-order complete, where Z¼
Xp
i¼1

ri�pþ1¼ n�pþ1. This completes

the proof. □
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Chapter 6

The Parametric Characteristics of Nonlinear

Output Spectrum and Applications

6.1 Introduction

The parametric characteristics of system output spectrum are studied, especially

with respect to specific nonlinear parameters of interest. The results are developed

based on the GFRFs of the NDE model (2.11) but would be the same for the NARX

model (2.10). These results establish the foundation for nonlinear analysis in the

frequency domain based on nonlinear output spectrum. Some potential applications

of these results are partially demonstrated in this chapter, and more will be

developed in the following chapters including nonlinear output spectrum based

analysis, nonlinear characteristic output spectrum and so on.

6.2 Parametric Characteristics of Nonlinear Output

Spectrum

The nonlinear output spectrum has been discussed in Chaps. 2 and 3. For conve-

nience, it is rewritten here as

Y jωð Þ ¼
XN
n¼1

Yn jωð Þ ð6:1Þ

when subject to a general input u(t), in (6.1)

Yn jωð Þ ¼ 1ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Hn jω1, � � �, jωnð Þ
Yn
i¼1

U jωið Þdσω ð6:2Þ
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When the input is a specific multi-tone function, i.e.,

u tð Þ ¼
XK
i¼1

Fij j cos ωitþ∠Fið Þ

in (6.1)

Yn jωð Þ ¼ 1

2n

X
ωk1

þ���þωkn¼ω

Hn jωk1 , � � �, jωknð ÞF ωk1ð Þ� � �F ωknð Þ ð6:3Þ

where

F ωkið Þ ¼ F kij j
�� ��ej∠F kij j�sgn1 kið Þ

for ki 2 �1, � � �, � K
� �

, and sgn1 að Þ

¼
1 a > 0

0 a ¼ 0

�1 a < 0

8<: for a 2 ℝ ð6:4Þ

Definition 6.1 A function y(h;s) is homogeneous of degree d with respect to h if

y(ch;s)¼cdy(h;s), where c is a constant, s denotes the independent variables of y(.),
and h may be a parameter or a function of certain variables and parameters.

The detailed properties of the functions and variables in Definition 6.1 are not

necessarily considered here. The definition of a homogeneous function can also be

referred to Rugh (1981). From Definition 6.1, it can be verified that (6.2) and (6.3)

are both 1-degree homogeneous with respect to the nth-order GFRF Hn(�). From
this definition, the following lemma is obvious.

Lemma 6.1 If y(h;s1) is a homogeneous function of degree d, and h(.) is a

separable function with respect to parameter x whose parametric characteristic

function can be written as h(x)¼g(x)f(s2), then y(h;s1) is a separable function with

respect to x and its parametric characteristic function can be written as y(x)s ¼
g(x) )[d]fy(f(s2);s1), where s1 denotes the un-separable or un-interested parameters or

variables in h(.), s2 denotes some variables in y(.), fy(f(s2);s1) is an appropriate

function vector, and g(x)[d] is the d times reduced kronecker product of g(x).

From Proposition 5.1, Lemma 6.1 and (6.1)–(6.2), the following result can be

obtained for a homogeneous function Y(Hn(.); s) of degree d, where Hn(.) is the nth-
order GFRF.

Proposition 6.1 Yn(Hn(jω1, . . ., jωn);ω1, � � �,ωn) is a homogeneous function of

degree d with respect to the nth-order GFRF Hn(jω1, . . ., jωn). Then

Yn(Hn(jω1, . . ., jωn);ω1, � � �,ωn) is a separable function with respect to the nonlinear

parameters in (5.13), whose parametric characteristic function can be described by
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Yn C M;Kð Þð Þω1, ���,ωn
¼ CE Hn jω1, . . . , jωnð Þð Þ� d½ �eYn f n jω1, � � �, jωnð Þ;ω1, � � �,ωnð Þ

ð6:5Þ

The sensitivity of the homogeneous function with respect to a specific parameter

c is

∂Yn C M;Kð Þð Þω1, ���,ωn

∂c
¼ ∂CE Hn jω1, � � �, jωnð Þð Þ d½ �

∂c

� Yn f n jω1, � � �, jωnð Þ;ω1, � � �,ωnð Þ ð6:6Þ

where Ỹn( fn(jω1, � � �, jωn);ω1, � � �,ωn) is an appropriate function vector, and when

d¼1

eYn f n jω1, � � �, jωnð Þ;ω1, � � �,ωnð Þ ¼ Yn f n jω1, � � �, jωnð Þ;ω1, � � �,ωnð Þ ð6:7Þ

Proof The results are straightforward from Proposition 5.1, Lemma 6.1 and (6.1)–

(6.2).

The following result can be concluded directly from Proposition 6.1 for the

output spectrum of system (2.1) described by the NDE or NARX model (2.10) and

(2.11).

Corollary 6.1 The output frequency response function Y(jω) in (6.1) is separable

with respect to the nonlinear parameters in (5.13), whose parametric characteristic

function can be described by

Y C M;Kð Þð Þω ¼
XN
n¼1

CE Hn �ð Þð Þ � Yn f n �ð Þ; jωð Þ ð6:8aÞ

and whose parametric characteristic is

CE Y jωð Þð Þ ¼ �
n¼1

N
CE Hn �ð Þð Þ ð6:8bÞ

The sensitivity of the output frequency response with respect to a specific parameter

c is

∂Y jωð Þ
∂c

¼
XN
n¼1

∂CE Hn �ð Þð Þ
∂c

� Yn f n �ð Þ; jωð Þ ð6:9Þ

where, if the input is a general function, then ω¼ω1 + � � �+ωn,
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Yn f n �ð Þ; jωð Þ ¼ Yn f n jω1, � � �, jωnð Þ; jωð Þ

¼ 1ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

f n jω1, � � �, jωnð Þ
Yn
i¼1

U jωið Þdσω ð6:10Þ

if the input is the multi-tone function given in (3.2), then ω ¼ ωk1 þ � � � þ ωkn ,

Yn f n �ð Þ; jωð Þ ¼ Yn f n jωk1 , � � �, jωknð Þ; jωð Þ

¼ 1

2n

X
ωk1

þ���þωkn¼ω

f n jωk1 , � � �, jωknð ÞF ωk1ð Þ� � �F ωknð Þ ð6:11Þ

□

From these results, it is noted that the system output spectrum can also be

expressed by a polynomial function of the nonlinear parameters in C(M,K) based
on the parametric characteristics of the GFRFs, and the detailed structure of this

polynomial function with respect to any parameters of interest is completely

determined by its parametric characteristics. Therefore, how the nonlinear param-

eters affect the system output spectrum can be studied through the parametric

characteristic analysis as discussed in Chap. 5.

Remark 6.1 Note that CE(Hn(�)) can be derived from the system model parameters

according to the results developed in Chap. 5. Given a specific system described by

model (2.10) or model (2.11), Y(C(M,K)ω can be obtained by the FFT of the time

domain output data from simulations or experiments at frequency ω. Therefore,
Yn( fn(�); jω) for n¼1,. . .,N can be obtained by the Least Square method as men-

tioned in Remark 4.1. Then Yn C n;Kð Þð Þω¼ω1þ���þωn
¼ CE Hn �ð Þð Þ � Yn f n �ð Þ; jωð Þ for

n¼1,. . .,N and the sensitivity (6.6) and (6.8a,b) can all be obtained. This provides a

numerical method to compute the output spectrum and its each order component

which are now determined as analytical polynomial functions of any interested

nonlinear parameters. Thus the analysis and design of the output performance of

nonlinear systems can now be conducted in terms of these model parameters.

Compared with the direct computation by using (2.12)–(2.16) or (2.19)–(2.24)

and (3.1)–(3.3) or (2.3)–(2.4), the computational complexity is reduced. Compared

with the results in Lang et al. (2007), the parametric characteristic analysis of this

study provides an explicit analytical expression for the relationship between system

output spectrum and model parameters with detailed polynomial structure up to any

order and each order output spectrum component can also be determined. More-

over, let
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Gn

�
C M;K; nð Þω¼ω1þ���þωn

¼ CE Hn �ð Þð Þ � Yn f n �ð Þ; jωð Þ
1ffiffi

n
p

2πð Þn�1

ð
ω1þ���þωn¼ω

Yn
i¼1

U jωið Þdσω
ð6:12Þ

This is the parametric characteristic function of the nth-order nonlinear output

frequency response function defined in Lang and Billings (2005), which can be

used for the fault diagnosis of engineering systems and structures. □

6.2.1 Parametric Characteristics with Respect to Some
Specific Parameters in Cp,q

As discussed before, the parametric characteristic vector CE(Hn(�)) for all the

model parameters of nonlinear degree >1 (referred to as nonlinear parameters)

can be obtained according to Proposition 5.1 or (5.17)–(5.18) in Corollary 5.1, and

if there are only some parameters of interest, the computation can be conducted by

only replacing the other nonzero parameters with 1. In many cases, only several

specific model parameters, for example parameters in Cp,q, are of interest for the

analysis of a specific nonlinear system. Thus, the computation of the parametric

characteristic vector in (5.17) and (6.8a,b) can be simplified greatly. This section

provides some useful results for the computation of parametric characteristics with

respect to one or more specific parameters in Cp,q, which can effectively facilitate

the determination of the OFRF and the analysis based on the OFRF that will be

discussed later.

Let

δðpÞ ¼ 1 if p ¼ 0

0 else
, and posðxÞ ¼ 1 if x > 0

0 else

��
ð6:13Þ

Proposition 6.2 Consider only the nonlinear parameter Cp,q¼c. The parametric

characteristic vector of the nth-order GFRF with respect to the parameter c is

CE Hn jω1, � � �, jωnð Þð Þ ¼ 1 c c2 � � � c
n�1

pþq�1b c�δ pð Þ�pos n�qð Þ
h i

ð6:14Þ

where b � c is to get the integer part of (.). □

The Proof of Proposition 6.2 is given in Sect. 6.6. Note that here c may be one

parameter or a vector of some parameters of the same nonlinear degree and type in

Cpq. Also note that cn ¼ c� � � �c� c|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

and � is the reduced Kronecker product

defined in Chap. 4, when c is a vector. Proposition 6.2 establishes a very useful

result to study the effects on the output frequency response from a specific

nonlinear degree and type of nonlinear parameters. Note also that if some other
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nonlinear parameters in model (2.10) or (2.11) are zero, only several terms in (6.14)

take effect. The detailed form of CE(Hn(jω1, � � �, jωn)) can be derived from Prop-

osition 5.1 or (5.17) in Corollary 5.1. However, a direct use of (6.14) does not affect

the final result.

Corollary 6.2 If all the other nonlinear parameters are zero except Cp,q¼c. Then
the parametric characteristic vector of the nth-order GFRF with respect to the

parameter c is: if (n>p+q and p>0), or (n¼p+q), and if additionally n�1
pþq�1

is an

integer, then

CE Hn jω1, � � �, jωnð Þð Þ ¼ c
n�1

pþq�1

else

CE Hn jω1, � � �, jωnð Þð Þ ¼ 0

which can be summarized as

CE Hn jω1, � � �, jωnð Þð Þ ¼ c
n�1

pþq�1 � δ n� 1

pþ q� 1
� n� 1

pþ q� 1


 �� 

� 1� δ pð Þpos n� qð Þð Þ ð6:15Þ

Proof The results can be directly achieved from Propositions 5.1 and 6.2. □

Corollary 6.2 provides a more special case of Volterra-type nonlinear systems

described by (2.10) or (2.11). There are only several nonlinear parameters of the

same nonlinear type and degree in the considered system. This result will be

demonstrated in the simulation studies in the next chapter. The following results

can be obtained for the output frequency response.

Proposition 6.3 Consider only the nonlinear parameter Cp,q¼c. The parametric

characteristic vector of the output spectrum in (6.1) with respect to the parameter c
can be written as

CE Y jωð Þð Þ ¼ �
n¼1

N
CE Hn �ð Þð Þ

¼ 1 c c2 � � � c
N�1

pþq�1b c�δ pð Þ�pos N�qð Þ�δ N�1
pþq�1

� N�1
pþq�1b cð Þ

h i
ð6:16Þ

Then there exists a complex valued function vector F(jω1, � � �, jωn;C(M,K)\c) with
appropriate dimension such that

Y cð Þω;C M;Kð Þ\ c ¼ CE Y jωð Þð Þ � F jω1, � � �, jωn;C M;Kð Þ\ cð Þ ð6:17Þ
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If all the other nonlinear parameters are zero except that Cp,q¼ c 6¼ 0 (p + q> 1).

Then the parametric characteristic vector of the output spectrum in (6.1) with

respect to the parameter c is: if p¼0

CE Y jωð Þð Þ ¼ 1� CE Hq �ð Þ� � � 1� pos q� Nð Þð Þ
¼ 1 c � 1� pos q� Nð Þð Þ½ � ð6:18Þ

else

CE Y jωð Þð Þ ¼ �
i¼0

N�1=
pþq�1

� �
CE H pþq�1ð Þiþ1 �ð Þ� �

¼ 1 c c2 � � � c
N�1=

pþq�1

� �h i
ð6:19Þ

□

The proof of Proposition 6.3 is given in Sect. 6.6. From Corollary 6.2 and

Proposition 6.3, it can be seen that different nonlinearities will result in a quite

different polynomial structure for the output spectrum, and thus affect the system

output frequency response in a different way. By using the results established

above, the effect from different nonlinearities on system output frequency charac-

teristics can now be studied. This will be further studied in the following sections.

Moreover, the results above involve the computation of cn. If c is an I-dimension

vector, there will be many repetitive terms involved in cn. To simplify the compu-

tation, the following lemma can be used.

Lemma 6.2 Let be c¼[c1,c2,. . .,cI] which can also be denoted by c[1:I], and
cn ¼ c� c� � � � c|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n

, “�” is the reduced Kronecker product defined in Chap. 4,

n� 1 and I� 1. Then

cn ¼ cn�1 � c1, � � �, cn�1 s 1ð Þn � s ið Þn þ 1 : s 1ð Þn
� � � ci, � � �, cn�1 s 1ð Þn

� � � cI� �
where s ið Þn ¼

XI
j¼i

s jð Þn�1, s(.)1¼1, and 1	 i	 I. Moreover, DIM(cn)¼ s(1)n+ 1, and

the location of ci
n in cn is s(1)n+1�s(i)n+1+1. □

The Proof of Lemma 6.2 is given in Sect. 6.6.
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6.2.2 An Example

To illustrate the results above and to introduce the basic idea of the parametric

characteristics based output spectrum analysis that will be discussed further, an

example is given in this section. Consider a nonlinear system,

a1€x ¼ �a2x� a3 _x � c1 _x
3 � c2 _x

2x� c3x
3 þ bu tð Þ ð6:20Þ

which is a simple case of model (2.11) with M¼3, K¼2, c10(2)¼ a1, c10(1)¼ a3,
C10(0)¼ a2, c30(111)¼ c1, c30(110)¼ c2, c30(000)¼ c3, c01(0)¼� b, all other

parameters are zero. The GFRFs for system (6.20) can be computed according to

(2.19)–(2.24). In the following, the parametric characteristics of the GFRFs for

system (4.20) are discussed firstly. As will be seen, the parametric characteristics of

the GFRFs provide a useful guidance to the analysis and computation of system

frequency response functions.

When all the other nonlinear parameters are zero except Cp,q, it can be obtained

from Corollary 6.2 that the parametric characteristic of the nth-order GFRF with

respect to Cp,q is

CE Hn jω1, � � �, jωnð Þð Þ ¼ Cp,q
n�1

pþq�1 � δ n� 1

pþ q� 1
� n� 1

pþ q� 1


 �� 

� 1� δ pð Þpos n� qð Þð Þ ð6:21Þ

For system (6.20), note that a1, a2, a3 and b are all linear parameters, and the nonzero

nonlinear parameters are

C30 ¼ c30 000ð Þ c30 110ð Þ c30 111ð Þ½ � ¼ c3 c2 c1½ �.
Hence,

CE Hn jω1, � � �, jωnð Þð Þ ¼ C3,0
i ¼ c3 c2 c1½ �i for n ¼ 2iþ 1, i ¼ 1, 2, 3, . . . ;

else

CE Hn jω1, � � �, jωnð Þð Þ ¼ 0: ð6:22Þ

It is easy to compute from (6.22) as follows:

For n¼3, CE H3 jω1, � � �, jω3ð Þð Þ ¼ c3 c2 c1½ �;
For n¼5, CE H5 jω1, � � �, jω5ð Þð Þ ¼ c3 c2 c1½ �2 ¼ c3 c2 c1½ � � c3 c2 c1½ �

¼ c3
2,c3c2,c3c1,c2

2,c2c1,c1
2

� �
;

For n¼7,

CE H7 jω1, � � �, jω7ð Þð Þ¼ c3 c2 c1½ �3 ¼ c3 c2½ c1�� c3 c2 c1½ �� c3 c2 c1½ �
¼ c3

3,c3
2c2,c3

2c1,c3c2
2,c3c2c1,c3c1

2,c2
3,c2

2c1,c2c1
2,c1

3
� �
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From Proposition 5.1, there must exist a complex valued function vector

f n jω1, � � �, jωnð Þ with appropriate dimension, such that for n¼2i+1, i¼1,2,3,. . .,

Hn c1; c2; c3ð Þ ω1;���;ωnð Þ ¼ c3 c2 c1½ �i � f n jω1, � � �, jωnð Þ ð6:23Þ

else

Hn c1; c2; c3ð Þ ω1;���;ωnð Þ ¼ 0:

When there is only one parameter for example c1 is of interest for analysis, the

parametric characteristic can be obtained by simply letting C3,0¼c1 in (6.22), i.e.,

the parametric characteristic vector is: for n¼2i+1 and i¼1,2,3,. . .

CE Hn jω1, � � �, jωnð Þð Þ ¼ 1 c1 c1
2 � � � c1

i
� � ð6:24Þ

else

CE Hn jω1, � � �, jωnð Þð Þ ¼ 0 ð6:25Þ

Thus the parametric characteristic function with respect to the parameter c1 is: for
n¼2i+1 and i¼1,2,3,. . .

Hn c1ð Þ ω1;���;ωn;c2;c3ð Þ ¼ 1 c1 c1
2 � � � c1

i
� � � f n jω1, � � �, jωn; c2, c3ð Þ ð6:26Þ

else

Hn c1ð Þ ω1;���;ωn;c2;c3ð Þ ¼ 0 ð6:27Þ

where, f n jω1, � � �, jωn; c2, c3ð Þ is a complex valued function vector with appropriate

dimension. The sensitivity of the nth-order GFRFs for n¼2i+1 and i¼1,2,3,. . . with
respect to the parameter c1 can also be obtained as

∂Hn c1ð Þ ω1;���;ωn;c2;c3ð Þ
∂c1

¼ 0 1 2c1 � � � ici�1
� � � f n jω1, � � �, jωn; c2, c3ð Þ ð6:28Þ

Consider the output spectrum of system (6.20). From Proposition 6.3,

CE X jωð Þð Þ ¼ �
i¼0

N�1=
2

� �
CE H2iþ1 �ð Þð Þ ¼ �

i¼0

N�1=
2

� �
C30

i ð6:29Þ

Suppose the output function of interest is
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y ¼ a2xþ a3 _x � c1 _x
3 � c2 _x

2x� c3x
3 ð6:30Þ

It will be shown in Sect. 6.4 that

CE Y jωð Þð Þ ¼ CE X jωð Þð Þ ð6:31Þ

Then from Proposition 6.3, the parametric characteristic function for the output

frequency response Y(jω) of system (6.20) with respect to nonlinear parameters c1,

c2 and c3 is

Y c1; c2; c3ð Þω ¼
XN�1=

2

� �
i¼0

C30
i � Yi f i �ð Þ; jωð Þ

¼ �
i¼0

N�1=
2

� �
C30

i

0@ 1A � Y0 f 0 �ð Þ; jωð Þ Y1 f 1 �ð Þ; jωð ÞT � � � Y
N�1=

2

� � f
N�1=

2

� � �ð Þ; jω
� 
T� �T

ð6:32Þ

For convenience, consider a much simpler case. Let c2¼c3¼0, then

C30¼ c30(111)¼ c1. Therefore the parametric characteristic function in this simple

case is

Y c1ð Þω ¼ Y0 f 0 �ð Þ; jωð Þ þ c1 � Y1 f 1 �ð Þ; jωð Þ þ � � � þ c1
N�1=

2

� �
� Y

N�1=
2

� � f
N�1=

2

� � �ð Þ; jω
� 


¼ 1 c1 � � � c1
N�1=

2

� �� �
� Y0 f 0 �ð Þ; jωð Þ Y1 f 1 �ð Þ; jωð Þ � � � Y

N�1=
2

� � f
N�1=

2

� � �ð Þ; jω
� 
� �T

ð6:33Þ

As mentioned in Remark 4.1 and Remark 6.1,

Y0 f 0 �ð Þ; jωð Þ Y1 f 1 �ð Þ; jωð Þ � � � Y N�1=
2

� � f N�1=
2

� � �ð Þ; jω
� 
� �T

can be com-

puted by a numerical method for a specific input u(t) and at a specific frequency ω.

The idea is to obtain N�1=
2

j k
þ 1 system output frequency responses from N�1=

2

j k
þ1simulations or experimental tests on the system (6.20) under N�1=

2

j k
þ 1different

values of the nonlinear parameter c1 and the same input u(t), then yielding

Y jωð Þ0
Y jωð Þ1
⋮

Y jωð Þ
N�1=

2

� �
26664

37775¼
1 c1 0ð Þ ��� c1 0ð Þ N�1=

2

� �
1 c1 1ð Þ ��� c1 1ð Þ
1 ⋮ ⋱ ⋮
1 c1 N�1=

2
b cð Þ ��� c1 N�1=

2
b cð Þ N�1=

2

� �
26664

37775 �
Y0 f 0 �ð Þ;jωð Þ
Y1 f 1 �ð Þ;jωð Þ

⋮
Y

N�1=
2

� � f
N�1=

2

� � �ð Þ;jω
� 


26664
37775 ð6:34Þ

Hence,
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Y0 f 0 �ð Þ;jωð Þ
Y1 f 1 �ð Þ;jωð Þ

⋮
Y

N�1=
2

� � f
N�1=

2

� � �ð Þ;jω
� 


26664
37775¼

1 c1 0ð Þ ��� c1 0ð Þ N�1=
2

� �
1 c1 1ð Þ ��� c1 1ð Þ
1 ⋮ ⋱ ⋮
1 c1 N�1=

2
b cð Þ ��� c1 N�1=

2
b cð Þ N�1=

2

� �
26664

37775
�1

�
Y jωð Þ0
Y jωð Þ1
⋮

Y jωð Þ
N�1=

2

� �
26664

37775 ð6:35Þ

Then (6.33) is determined explicitly, which is an analytical function of the

nonlinear parameter c1. The system output frequency response can therefore be

analyzed and optimized in terms of the nonlinear parameters. And also from (6.33),

the sensitivity of the system output frequency response with respect to the nonlinear

parameter, and the nonlinear output frequency response function defined in (6.12)

can both be studied. For more complicated cases, a similar process can be followed

to conduct a required analysis and design in terms of multiple nonlinear parameters

for model (2.11). Compared with the results in Lang et al. (2007), since the detailed

polynomial structure for the output spectrum up to any order can be explicitly

determined, this can greatly reduce the simulation amount needed in the numerical

method when multiple parameters are considered.

6.3 Parametric Characteristic Analysis of Nonlinear

Effects on System Output Frequencies

As discussed in Sect. 4.3, different nonlinearities may result in different output

spectrum characteristics for a system. It is known that nonlinear systems have more

abundant output frequencies than the driving frequencies, which demonstrates an

energy transferring phenomenon and usually is difficult to predict when and where

an output will happen. In order to achieve a desired output spectrum at certain given

frequencies, the system should be properly designed to include or exclude some

appropriate nonlinearity. In this subsection, how the different nonlinear parameters

affect the system output frequencies when subject to a harmonic input is studied to

further demonstrate the usefulness of the parametric characteristic analysis method.

Consider the NDE model (2.11) subject to a harmonic input

u tð Þ ¼ Fd sin Ωtð Þ ð6:36Þ

In this case, F ωk1ð Þ in the nth-order output spectrum (3.2) is

F ωklð Þ ¼ �jklFd, for kl ¼ �1, ωkl ¼ klΩ, and l ¼ 1, � � �, n ð6:37Þ

Thus (3.3) can be written as
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Yn jωð Þ ¼ 1

2n

X
ωk1

þ���þωkn¼ω

Hn jωk1 , � � �, jωknð Þ � Fn
d � k1� � �knð Þ � �jð Þn

¼ CF nð Þ
2n

X
ωk1

þ���þωkn¼ω

Hn jωk1 , � � �, jωknð Þ ð6:38Þ

where

CF nð Þ ¼ Fn
d � k1� � �knð Þ � �jð Þn ð6:39Þ

From (6.38), it can be seen that the output frequency range for the nth-order output
spectrum in this case is completely determined byωk1 þ � � � þ ωkn ¼ ω and the nth-
order GFRF. Note that ωkl ¼ �Ω for l¼ 1, � � �, n. Thus the output frequency range

for the nth-order output spectrum can only possibly be {kΩjk¼ 0, 1, 2, . . .}, which
can be written as

Wn ¼ ω ω¼ ωk1 þ � � � þωknð Þ � 1� δ Hn �ð Þð Þð Þ, ωkl ¼�Ω,j 1	 l	 nf g ð6:40Þ

Therefore the output frequency range for the system output spectrum is

WO ¼
[

1	n	N

Wn ð6:41Þ

Obviously, when certain orders of the GFRFs are zero, it will lead to no output

spectrum at certain frequencies. From Proposition 5.1, (6.40) can also be written as

Wn ¼ ω ω ¼ ωk1 þ � � � þ ωknð Þ � 1� δ CE Hn �ð Þð Þð Þð Þ, ωkl ¼ �Ω,j 1 	 l 	 nf g
ð6:42Þ

This demonstrates the effects of nonlinear parameters on the system output fre-

quency characteristics. From (6.42), the following lemma is straightforward.

In what follows, ω¼ 2lΩ for l¼0,1,2,. . . are called even frequencies, and ω¼
(2l+ 1)Ω for l¼0,1,2,. . . are called odd frequencies.

Lemma 6.3 Consider the output frequencies of model (2.11) when subject to a

harmonic input (6.36). Wn can only include even frequencies, when n is an even

number, and Wn only includes odd frequencies, when n is an odd number. □

Consider the effects of different nonlinear parameters in the following cases.

(A) Pure Input Nonlinearities

When there are only input nonlinearity in model (2.11) and supposing C0,n 6¼ 0, then

from Sect. 5.3.1A, CE(Hn(�))¼C0,n. Equation (6.42) can be written as
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Wn ¼ ω ω ¼ ωk1 þ � � � þ ωknð Þ � 1� δ C0,nð Þð Þ, ωkl ¼ �Ω,j 1 	 l 	 nf g ð6:43Þ

which further yields

Wn ¼ 2lΩ � 1� δ C0,nð Þð Þ 0 	 l 	 n=2j , n � 2f g if n is an even integer

2lþ 1ð ÞΩ � 1� δ C0,nð Þð Þ 0 	 l 	 n� 1ð Þ=2j , n � 3f g if n is an odd integer

�
ð6:44Þ

ObviouslyW1¼ {Ω}, which represents the linear output frequency. Equation (6.44)
shows that for any a pure input nonlinear term of nonlinear degree n, it will
introduce a finite output frequency range from 0 to nΩ. If the nonlinear degree

n is an even integer, the introduced output spectrum will appear at even frequencies,

and if the nonlinear degree n is an odd integer, it will appear at odd frequencies.

Example 6.1 To verify the result above, a simulation result is provided for system

(6.20) with a1¼1, a2¼1, a3¼0.5, c1¼c2¼c3¼0, b¼u(t)4 or u(t)5. See Fig. 6.1.

(B) Output Nonlinearity and Input–Output Cross Nonlinearity

When all the other nonlinear parameters are zero except for Cp,q, then from (5.20d)

and Sect. 5.3.1C, the parametric characteristic of the nth-order GFRF can be

summarized as for n>1

CE Hn jω1, � � �, jωnð Þð ÞCp,q
¼ Cp,q

n�1
pþq�1 � step n� p� qð Þ

� δ n� 1

pþ q� 1
� n� 1

pþ q� 1

j k� �
ð6:45Þ

where

step xð Þ ¼ 1 if x � 0

0 else

�
ð6:46Þ

Equation (6.45) demonstrates the independent contribution from parameters in Cp,q

to the nth-order GFRF. Only when n�1
pþq�1

is an integer and n� p+ q, then

CE Hn jω1, � � �, jωnð Þð ÞCp,q
is nonzero. In this case, it can be obtained from (6.42) that

for n¼1,

W1 ¼ Ωf g ð6:47Þ

for n>1, and if n�1
pþq�1

is an integer and n� p+ q,

Wn ¼ ω ω ¼ ωk1 þ � � � þ ωknð Þ � �1� δ Cp,q
n�1

pþq�1

� �
, ωkl ¼ �Ω,

�� 1 	 l 	 n
� �

ð6:48Þ

else
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Fig. 6.1 Output spectrum of a nonlinear system with only one input nonlinear term having

coefficient c0,5(.) (a) or c0,6(.) (b), subject to the input u(t)¼ 10 sin(t) (Jing et al. 2009a)
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Wn ¼ fg ð6:49Þ

From (6.48), the nonlinear terms with coefficients Cp,q will bring output

spectrum at some frequencies only when n�1
pþq�1

is an integer and n� p+ q. Let

ρ ¼ n� 1

pþ q� 1
ð6:50Þ

which is a positive integer and can go to infinity when n goes to infinity.

If p+q¼2l for l¼1,2,3,. . ., i.e., the nonlinear degree is an even integer, then from
(6.50)

n ¼ 2l� 1ð Þρþ 1 ð6:51Þ

In this case, (6.51) can not only give an even number but also an odd number. That

is, for a nonlinear parameter with even nonlinear degree, it can make an indepen-

dent contribution to both even and odd order of GFRFs. Therefore, from Lemma

1 an even degree nonlinear parameter will drive the system to have output spectrum

at all the even and odd frequencies. Similarly, if p+q¼2l+1 for l¼1,2,3,. . ., then
from (6.50)

n ¼ 2lρþ 1 ð6:52Þ

In this case, (6.52) must give an odd integer.

The following conclusion is straightforward from the discussions above.

Proposition 6.4 Consider the output frequencies of model (2.11) when subject to a

harmonic input (6.36). For any nonlinear term with coefficient cp,q(.), where p+q>1

and p>0, if the nonlinear degree p+q is an odd integer, it will bring super-

harmonics to the system output spectrum only at these frequencies which are odd

integer multiples of the input frequency; if p+q is an even integer, it will introduce

super-harmonics at all frequencies which are nonnegative integer multiples of the

input frequency. □

These results can be verified by a simple example in simulation below.

Example 6.2 Consider system (6.20) subject to the harmonic input u(t)¼ 5 sin(t)
with a1¼1, a2¼1, a3¼0.5, c3¼0, b¼1 and two cases: c1¼c3,0(111), c2¼0 and c1¼0,

c2¼c6,0(000111) x
2ẋ. See Fig. 6.2, where the output frequency responses of the two

cases are given. It can be seen that the harmonics happen only at odd frequencies

when subject to the third degree nonlinearity; however, there are harmonics at all

the integer frequencies when subject to the sixth degree nonlinearity.
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Fig. 6.2 Output spectrum of a nonlinear system with only one output nonlinear term having

coefficient c3,0(.) (a) or c6,0(.) (b) (Jing et al. 2009a)
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6.4 Parametric Characteristics of a Single Input Double

Output Nonlinear System

Consider the SIDO nonlinear system in (2.28) or (2.34), which has a general

nonlinear output, and can be frequently encountered in practice as mentioned

before. The parametric characteristics of this kind of nonlinear systems are studied

in this section. For convenience, the SIDO NARX system is written as follows,

x tð Þ ¼
XM1

m¼1

Xm
p¼0

XK
k1, km¼0

cp,m�p k1; � � �; kmð Þ
Yp
i¼1

x t� kið Þ
Ym

i¼pþ1

u t� kið Þ ð6:53aÞ

y tð Þ ¼
XM2

m¼1

Xm
p¼0

XK
k1, km¼0

ecp,m�p k1; � � �; kmð Þ
Yp
i¼1

x t� kið Þ
Ym

i¼pþ1

u t� kið Þ ð6:53bÞ

The notations and corresponding definitions can be referred to Sect. 2.3. The

GFRFs of this system are given in (2.30)–(2.33). From the GFRFs of model

(6.53a,b), the output frequency response of (6.53a,b) can also be derived readily

by extending the results in (3.1) and (3.3). Regard x(t) and y(t) as two outputs

actuated by the same input u(t), then

X jωð Þ ¼
XN
n¼1

1ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Hx
n jω1, � � �, jωnð Þ

Yn
i¼1

U jωið Þdσω ð6:54aÞ

Y jωð Þ ¼
XN
n¼1

1ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Hy
n jω1, � � �, jωnð Þ

Yn
i¼1

U jωið Þdσω ð6:54bÞ

When the system input is a multi-tone signal (3.2), then the system output fre-

quency response can be similarly derived as:

X jωð Þ ¼
XN
n¼1

1

2n

X
ωk1

þ���þωkn¼ω

Hx
n jωk1 , � � �, jωknð ÞF ωk1ð Þ� � �F ωknð Þ ð6:55aÞ

Y jωð Þ ¼
XN
n¼1

1

2n

X
ωk1

þ���þωkn¼ω

Hy
n jωk1 , � � �, jωknð ÞF ωk1ð Þ� � �F ωknð Þ ð6:55bÞ

where F ωð Þ ¼ Fij jej∠Fi if ω 2 ωk, k ¼ �1, � � �, � Kf g
0 else

�
,ω�k ¼ �ωk:

It can be seen from the results above that the frequency response functions for

nonlinear systems are quite different from those for linear systems. It is known that

in a linear system, frequency response functions of different parts can be combined

together via addition or multiplication. This is not the case for nonlinear systems.
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For instance, if x(t) is only regarded as an input in (6.53b) independent of (6.53a),

then the GFRFs Hy
n(jω1, � � �, jωn) and therefore the output spectrum Y(jω) will all

be changed completely for n>1, since in this case there are only input nonlinearities

in (6.53b) and no output nonlinearities. Even so, it can also be seen from (6.54a,b)

and (6.55a,b) that the output frequency ranges for both x(t) and y(t) are the same

one, i.e.,

[N
n¼1

ω ω ¼ ω1 þ � � � þ ωn,ωi 2 Rωjf g ð6:56Þ

where Rω represents the input frequency range, for example Rω¼ {ωk, k¼� 1, � � �,
�K} for the multi-tone signal (3.2).

As discussed before, the parametric characteristic analysis presented in

Chaps. 4 and 5 can be used to reveal which model parameters contribute to

and how these parameters affect system frequency response functions, and thus

the explicit relationship between system frequency response and system time

domain model parameters can be unveiled. In this section, the parameter char-

acteristics of the output frequency response function related to the output y(t) of

model (6.53a,b) with respect to nonlinear parameters are studied, and the

nonlinear parameters in (6.53a) are focused since nonlinear parameters in

(6.53b) has no effect on system dynamics. In what follows, let

C nð Þ ¼ cp,q k1� � �kpþq

� �
1 < pþ q 	 n, 0 	 ki 	 K, 1 	 i 	 pþ qj� �

denotes all

the nonlinear parameters in (6.53a) with degree from 2 to n, and similarly

denote all the parameters in (6.53b) with degree from 2 to n as:eC nð Þ ¼ ecp,q k1� � �kpþq

� �
1 < pþ q 	 n, 0 	 ki 	 K, 1 	 i 	 pþ qj� �

. All the

(p+q)th degree nonlinear parameters in (6.53a,b) of form cp,q(.) construct a

vector denoted by

Cp,q ¼ cp,q 0; � � �; 0ð Þ, cp,q 0; � � �; 1ð Þ, � � �, cp,q K, � � �,K|fflfflfflffl{zfflfflfflffl}
pþq

0@ 1A24 35
In what follows, CE(HCF)ϑ means to only extract the parameters in the set ϑ from

HCF, and without specialty CE(HCF) means to extract all the nonlinear parameters

(i.e., its nonlinearity degree >1) appearing in HCF.

6.4.1 Parametric Characteristic Analysis forHx
n(jω1, � � �, jωn)

Application of the CE operator to a complicated series for its parametric charac-

teristics can be performed by directly replacing the addition and multiplication in

the series by “�” and “�” respectively.

100 6 The Parametric Characteristics of Nonlinear Output Spectrum and Applications

http://dx.doi.org/10.1007/978-3-319-12391-2_4
http://dx.doi.org/10.1007/978-3-319-12391-2_5


The parametric characteristic of the nth-order GFRF Hx
n(jω1, � � �, jωn) with

respect to nonlinear parameters C nð Þ is

CE Hx
n jω1,���,jωnð Þ� �¼CE

Hx
nu

jω1,���,jωnð ÞþHx
nux

jω1,���,jωnð ÞþHx
nx

jω1,���,jωnð Þ
Ln j ω1þ���þωnð Þð Þ

� 

¼CE Hx

nu
jω1,���, jωnð Þ

� �
�CE Hx

nux
jω1,���,jωnð Þ

� �
�CE Hx

nx
jω1,���,jωnð Þ

� �
¼C0,n� �

q¼1

n�1 �
p¼1

n�q
Cp,q�CE Hn�q,p �ð Þ� �� 


� �
p¼2

n

Cp,0�CE Hn,p �ð Þ� �� 

ð6:57Þ

where

CE Hn,p �ð Þ� � ¼ �
i¼1

n�pþ1

CE Hx
i �ð Þ� �� CE Hn�i,p�1 �ð Þ� �

or CE Hn,p �ð Þ� �
¼ �

r1� � �rp ¼ 1X
ri ¼ n

n�pþ1 �
i¼1

p
CE Hx

ri
�ð Þ

� �
ð6:58Þ

CE Hn, 1 �ð Þð Þ ¼ CE Hx
n �ð Þ� �� ð6:59Þ

Note that in (6.57), E(1/Ln(j(ω1 + � � �+ωn)))¼ 1 since there are no nonlinear

parameters (in the set C nð Þ) in 1/Ln(j(ω1 + � � �+ωn)). It is shown in Chap. 5 that

CE Hn,p �ð Þ� � ¼ CE Hx
n�pþ1 �ð Þ

� �
ð6:60Þ

and thus (6.57) is simplified as

CE Hx
n jω1, � � �, jωnð Þ� �
¼ C0,n � �

q¼1

n�1 �
p¼1

n�q
Cp,q � CE Hx

n�q�pþ1 �ð Þ
� �� 


� Cn, 0 � �
p¼2

nþ1=2b c
Cp, 0 � CE Hx

n�pþ1 �ð Þ
� � ! ð6:61Þ

From (6.61), CE(Hx
n(jω1, � � �, jωn)) has no relationship with eC nð Þ. With the para-

metric characteristics (6.61), it can be concluded (referring to Chap. 5) that there

must exist a complex valued function vector fn(jω1, � � �, jωn) with appropriate

dimension, such that

Hx
n jω1, � � �, jωnð Þ ¼ CE Hx

n jω1, � � �, jωnð Þ� � � f n jω1, � � �, jωnð Þ ð6:62Þ

Equation (6.62) provides an explicit expression for the relationship between

nonlinear parameters C nð Þ and the nth-order GFRF from u(t) to x(t). For any
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parameter of interest, how its effect is on the GFRFs can be revealed by checking

CE(Hx
n(jω1, � � �, jωn)). From (6.62), Hx

n(jω1, � � �, jωn) is in fact a polynomial function

of parameters in C nð Þ which define system nonlinearities, thus some qualitative

properties of Hx
n(jω1, � � �, jωn) can also be indicated by CE(Hx

n(jω1, � � �, jωn)). More-

over, using (6.62), (6.54a) can be written as

X jωð Þ ¼
XN
n¼1

CE Hx
n jω1, � � �, jωnð Þ� � � Fn jωð Þ ð6:63Þ

where Fn jωð Þ ¼ 1ffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

f n jω1, � � �, jωnð Þ �
Yn
i¼1

U jωið Þdσω. This is the

parametric characteristic function expression for the output X(jω). By using this

expression, X(jω) can be obtained by following a numerical method without

complicated computation involved in (2.30)–(2.33).

6.4.2 Parametric Characteristic Analysis forHy
n(jω1, � � �, jωn)

To study the parametric characteristic of the nth-order GFRF Hy
n(jω1, � � �, jωn) with

respect to only model nonlinear parameters in C nð Þ, the parametric characteristic

with respect to model parameters inC nð Þ and eC nð Þ are derived first and then the case
with respect only to nonlinear parameters in C nð Þ is discussed.

Applying the CE operator to (2.32) yields,

CE Hy
n jω1,���,jωnð Þ� �¼CE Hy

nu
jω1,���,jωnð Þ

� �
�CE Hy

nux
jω1,���,jωnð Þ

� �
�CE Hy

nx
jω1,���,jωnð Þ

� �
¼ eC0,n� �

q¼1

n�1 �
p¼1

n�q eCp,q�CE Hn�q,p jω1,���,jωn�q

� �� �� 

� �

p¼1

n eCp,0�CE Hn,p jω1,���,jωnð Þ� �� 


using (6.60), which further gives

CE Hy
n jω1, � � �, jωnð Þ� �

¼ eC0,n � �
q¼1

n�1 �
p¼1

n�q eCp,q � CE Hx
n�q�pþ1 jω1, � � �, jωn�q

� �� �� 

� �

p¼1

n eCp, 0 � CE Hx
n�pþ1 jω1, � � �, jωnð Þ

� �� 
 ð6:64Þ

Thus the parametric characteristic ofHy
n(jω1, � � �, jωn) with respect to both nonlinear

parameters in C nð Þ and eC nð Þ is obtained.
Especially, if eC nð Þ is independent of C nð Þ, the parametric characteristic of Hy

n

(jω1, � � �, jωn) with respect to nonlinear parameters in eC nð Þ can be written as
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CE Hy
n jω1, � � �, jωnð Þ� �eC nð Þ ¼ eC0,n � �

q¼1

n�1 �
p¼1

n�q eCp,q

� 

� �

p¼2

n eCp, 0

� 

ð6:65Þ

Therefore, in this case Hy
n(jω1, � � �, jωn) can be expressed as a polynomial function

of eC nð Þ as

Hy
n jω1, � � �, jωn; eC nð Þ
� �

¼ CE Hy
n jω1, � � �, jωnð Þ� �eC nð Þ

� f n jω1, � � �, jωn;C nð Þ� � ð6:66Þ

where f n jω1, � � �, jωn;C nð Þ� �
is a complex valued function vector with an appropri-

ate dimension, which is also a function of the parameters in C nð Þ in this case. From
(6.65), it can be seen thatCE Hy

n jω1, � � �, jωnð Þ� �eC nð Þ is a vector which is composed of

all the elements in eC nð Þ. That is, the nth-order GFRF is a polynomial function of all

the parameters in eC nð Þ if eC nð Þ is independent of C nð Þ. This conclusion is

straightforward. The case where eC nð Þ is dependent on C nð Þ will be discussed in

the following section.

6.4.2.1 Parametric Characteristics of Hy
n( jω1, � � �, jωn) with Respect to

C nð Þ

What is of more interest is the parametric characteristic of Hy
n( jω1, � � �, jωn) with

respect to nonlinear parameters in C nð Þ which define system nonlinear dynamics.

Consider two cases as follows.

(1) eC nð Þ has no relationship with C nð Þ
In this case, it can be derived from (6.64) that

CE Hy
n jω1, � � �, jωnð Þ� �

C nð Þ ¼ �
q¼1

n�1 �
p¼1

n�q
1� δ eCp,q

� �� �
� CE Hx

n�q�pþ1 jω1, � � �, jωn�q

� �� �� 

�� �

p¼1

n
1� δ eCp, 0

� �� �
� CE Hx

n�pþ1 jω1, � � �, jωnð Þ
� �� 


ð6:67Þ

where δ Cp,q

� � ¼ 0 Cp,q 6¼ 0

1 Cp,q ¼ 0

�
. From (6.67) it can be seen that

CE Hy
n jω1, � � �, jωnð Þ� �

C nð Þ is the summation by “�” of parametric characteristics

of some GFRFs for x(t) from the 1st order to the nth order. From the definition of

operation “�”, the repetitive terms should not be counted. Therefore, (6.67) is

simplified as
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CE Hy
n jω1, � � �, jωnð Þ� �

C nð Þ ¼ �
p¼1

n
χ n; pð Þ

� CE Hx
n�pþ1 jω1, � � �, jωnð Þ

� �
C n�pþ1ð Þ

ð6:68Þ

where

χ n; pð Þ ¼ 1� δ
X

0 	 q 	 n� 1, 1 	 p
0 	 n� q

p
0 þ q ¼ p

1� δ eCp0 ,q

� �� �
0BBBBB@

1CCCCCA ð6:69Þ

Equation (6.69) means that if there is at least one nonzero eCp0 ,q then the

corresponding CE(Hx
n� q� pþ 1(jω1, � � �, jωn� q)) will be counted in (6.68).

According to Proposition 5.1 in Chap. 5, it follows from (6.68) that the nth-order

GFRF for y(t) has relationship with all the nonlinear parameters in C nð Þ of degree
from 2 to n0 in this case, where n0 	 n.

(2) eC nð Þ has linear relationship withC nð Þ byecp,q �ð Þ ¼ eα þ eβcp,q �ð Þ for some real
number α and β

Note that applying the CE operator to ecp,q �ð Þ ¼ eα þ eβcp,q �ð Þ for the nonlinear

parameter cp,q �ð Þ gives CE ecp,q �ð Þ� � ¼ CE eα þ eβcp,q �ð Þ
� �

¼ cp,q �ð Þ, i.e.,

CE eCp,q

� �
¼ Cp,q. Hence, in this case (6.64) should be

CE Hy
n jω1, � � �, jωnð Þ� �

¼ C0,n � �
q¼1

n�1 �
p¼1

n�q
Cp,q � CE Hx

n�q�pþ1 jω1, � � �, jωn�q

� �� �� 

�� �n

p¼1
Cp, 0 � CE Hx

n�pþ1 jω1, � � �, jωnð Þ
� �

Þ
� ð6:70Þ

Equation (6.70) can be further written as

CE Hy
n jω1, � � �, jωnð Þ� �

¼ C0,n � �
q¼1

n�1 �
p¼1

n�q
Cp,q � CE Hx

n�q�pþ1 jω1, � � �, jωn�q

� �� �� 

�� �n

p¼2
Cp, 0 � CE Hx

n�pþ1 jω1, � � �, jωnð Þ
� �� 


��C1,0 � CE Hx
n jω1, � � �, jωnð Þ� �

¼ CE Hx
n jω1, � � �, jωnð Þ� �� C1,0 � CE Hx

n jω1, � � �, jωnð Þ� �
ð6:71Þ
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In the derivation of (6.71), (6.57) and (6.60) are used. Equation (6.71) can reveal

that how the model parameters in (6.53a) affect system output frequency response.

When only nonlinear parameters are considered under the assumption that linear

parameters are fixed in the model, then (6.71) is simplified as

CE Hy
n jω1, � � �, jωnð Þ� �

C nð Þ ¼ CE Hx
n jω1, � � �, jωnð Þ� �

C nð Þ ð6:72Þ

Equation (6.72) indicates that the parametric characteristics of the GFRFs for y(t)

and x(t) are the same with respect to model nonlinear parameters inC nð Þ. Note that
(6.72) has a relationship with all the parameters inC nð Þ from degree 2 to n, which is
different from (6.68). In this case both X(jω) and Y(jω) can be expressed as a

polynomial function of model nonlinear parameters in C nð Þ with the same polyno-

mial structure.

6.4.2.2 Some Further Results and Discussions

The following results can be summarized based on Sect. 6.4.2.1.

Proposition 6.5 Considering system (6.53a,b), there exists a complex valued

function vector ef n jω1, � � �, jωnð Þ with appropriate dimension which is a function

of linear parameters, such that

Hy
n jω1, � � �, jωnð Þ ¼ CE Hy

n jω1, � � �, jωnð Þ� �
C nð Þ � ef n jω1, � � �, jωnð Þ ð6:73Þ

and the output spectrum of system (6.53a,b) can be written as

Y jω;C Nð Þ� � ¼XN
n¼1

CE Hy
n jω1, � � �, jωnð Þ� �

C nð Þ � eFn jωð Þ ð6:74Þ

where eFn jωð Þ ¼ 1ffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

ef n jω1, � � �, jωnð Þ �
Yn
i¼1

U jωið Þdσω. If the input of

system (6.53a,b) is the multi-tone signal (3.2), then the output spectrum of system

(6.53a,b) can be expressed as

Y jω;C Nð Þ� � ¼XN
n¼1

CE Hy
n jωk1 , � � �, jωknð Þ� �

C nð Þ �
eeFn jωð Þ ð6:75Þ

where eeFn jωð Þ ¼ 1
2n

X
ωk1

þ���þωkn¼ω

ef n jωk1 , � � �, jωknð Þ � F ωk1ð Þ� � �F ωknð Þ, and

CE Hy
n jω1, � � �, jωnð Þ� �

C nð Þ is given in (6.68) or (6.72).
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Proof The results are straightforward from the discussions above and the results in

Chaps. 4 and 5. □

Proposition 6.6 Under the same assumption as Proposition 6.5 for system (6.53a,

b). If eC nð Þ has either no relationship or linear relationship with C nð Þ, then CE

Hy
n jω1, � � �, jωnð Þ� �

C nð Þ is given in (6.68) or (6.72), and the parametric characteristic

vector for Y(jω) can both be written as

CE Y jωð Þð ÞC Nð Þ ¼ �
n¼1

N
CE Hx

n jω1, � � �, jωnð Þ� �
C nð Þ ð6:76Þ

That is, there exists a complex valued function vector F̂ jω1, � � �, jωnð Þ with

appropriate dimension, which is a function of nonlinear parameters in eC Nð Þ, linear
parameters and the input, such that

Y jω;C Nð Þ� � ¼ �
n¼1

N
CE Hx

n jω1, � � �, jωnð Þ� �
C nð Þ

� 

� F̂ jωð Þ ð6:77Þ

Proof See the proof in Sect. 6.6. □

From Proposition 6.6, both of the two mentioned cases have the same parametric

characteristics for the output spectrum Y(jω). If eC nð Þ has no relationship with C nð Þ,
(6.76) may be conservative since some terms in (6.76) have no contribution.

However, this does not affect the result of (6.77) because the corresponding terms

in the complex valued vector will actually be zero after numerical identification.

Once the parametric characteristics CE Hy
n jω1, � � �, jωnð Þ� �

C nð Þ are derived, the

polynomial structure of the parametric characteristic expression for Y(jω) is deter-
mined, and then as mentioned above, (6.74) and (6.75) can be determined by using a

numerical method. Therefore, analysis, design and optimization of system output

frequency response can be conducted based on this explicit polynomial expression

in terms of nonlinear parameters in C Nð Þ.
Example 6.3 Consider nonlinear system (2.37) again. Note that there are only two

nonlinear parameters in C nð Þ, i.e., c2,0 11ð Þ ¼ �a2=k, c3,0 111ð Þ ¼ �a3=k, and the

nonlinear parameters in eC nð Þ are linear functions of the corresponding parameters

in C nð Þ. Let C2,0 ¼ �a2=k,C3,0 ¼ �a3=k. The GFRFs up to the fifth orders are

computed according to (6.72) as follows,

CE Hy
1 jω1ð Þ� � ¼ 1 ð6:78Þ
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CE Hy
2 jω1, jω2ð Þ� �

C 2ð Þ ¼ CE Hx
2 jω1, jω2ð Þ� �

C 2ð Þ ¼ C2,0 � �
p¼2

2þ1=2b c
Cp, 0 � CE Hx

2�pþ1 �ð Þ
� �

¼ C2,0 � 0 ¼ C2,0 ¼ �a2=k

ð6:79Þ

CE Hy
3 jω1, � � �, jω3ð Þ� �

C 3ð Þ ¼ CE Hx
3 jω1, � � �, jω3ð Þ� �

C 3ð Þ ¼ C3,0 � �
p¼2

3þ1=2b c
Cp, 0 � CE Hx

3�pþ1 �ð Þ
� �

¼ C3,0 � C2,0 � CE Hx
2 �ð Þ� � ¼ C3,0 � C2,0

2 ¼ �a3
k
,
a22
k2

� �
ð6:80Þ

CE Hy
4 jω1, � � �, jω4ð Þ� �

C 4ð Þ ¼ CE Hx
4 jω1, � � �, jω4ð Þ� �

C 4ð Þ ¼ C4,0 � �
p¼2

4þ1=2b c
Cp, 0 � CE Hx

4�pþ1 �ð Þ
� �

¼ 0� C2,0 � CE Hx
3 �ð Þ� � ¼ C2,0 � C3,0 � C2,0

2
� �

¼ C2,0 � C3,0 � C2,0
3 ¼ a2a3

k2
, � a32

k3

� �
ð6:81Þ

CE Hy
5 jω1, � � �, jω5ð Þ� �

C 5ð Þ ¼ CE Hx
5 jω1, � � �, jω5ð Þ� �

C 5ð Þ ¼ C5,0 � �
p¼2

5þ1=2b c
Cp, 0 � CE Hx

5�pþ1 �ð Þ
� �

¼ 0� C2,0 � CE Hx
4 �ð Þ� �� C3,0 � CE Hx

3 �ð Þ� �
¼ C2,0

2 � C3,0 � C2,0
4 � C3,0

2 ¼ a22a3

k3
;
a42
k4
;
a23
k2

� �
ð6:82Þ

The parametric characteristic of the output spectrum up to the fifth order can be

obtained as

CE Y jωð Þð ÞC 5ð Þ ¼ �
n¼1

5
CE Hy

n jω1, � � �, jωnð Þ� �
C nð Þ

¼ 1, � a2
k
, � a3

k
,
a22
k2
,
a2a3

k2
, � a32

k3
,
a22a3

k3
,
a42
k4

,
a23
k2

� �
ð6:83Þ

Then according to Proposition 6.6, there exists a complex valued function vector

F̂ jω1, � � �, jω5ð Þ such that

Y jω; a2; a3ð Þ ¼ 1, � a2
k
, � a3

k
,
a22
k2
,
a2a3

k2
, � a32

k3
,
a22a3

k3
,
a42
k4

,
a23
k2

� �
� F̂ jω1, � � �, jω5ð Þ ð6:84Þ

It should be noted that the system output spectrum in (6.84) is only approximated up

to the fifth order. In order to have a higher accuracy, higher order approximation

might be needed in practice. To obtain the explicit relationship between system

output spectrum and the nonlinear parameters a2 and a3 at a specific frequency of
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interest, F̂ jω1, � � �, jω5ð Þ in (6.84) can be determined by using a numerical method

as mentioned before. The idea is to obtain Z system output frequency responses

from Z simulations or experimental tests on the system (2.37) under Z different

values of the nonlinear parameters (a2a3) and the same input u(t), then yielding

YZ ¼ Y jω; a2; a3ð Þ1 Y jω; a2; a3ð Þ2 � � � Y jω; a2; a3ð ÞZ½ �T

¼ Φ � F̂ jω1, � � �, jω5ð Þ ð6:85Þ

where

Φ¼

1, �a2 1ð Þ
k

, �a3 1ð Þ
k

,
a22 1ð Þ
k2

,
a2 1ð Þa3 1ð Þ

k2
, �a32 1ð Þ

k3
,
a22 1ð Þa3 1ð Þ

k3
,
a42 1ð Þ
k4

,
a23 1ð Þ
k2

1, �a2 2ð Þ
k

, �a3 2ð Þ
k

,
a22 2ð Þ
k2

,
a2 2ð Þa3 2ð Þ

k2
, �a32 2ð Þ

k3
,
a22 2ð Þa3 2ð Þ

k3
,
a42 2ð Þ
k4

,
a23 2ð Þ
k2

⋮

1, �a2 Zð Þ
k

, �a3 Zð Þ
k

,
a22 Zð Þ
k2

,
a2 Zð Þa3 Zð Þ

k2
, �a32 Zð Þ

k3
,
a22 Zð Þa3 Zð Þ

k3
,
a42 Zð Þ
k4

,
a23 Zð Þ
k2

266666664

377777775
ð6:86Þ

Then

F̂ jω1, � � �, jω5ð Þ ¼ ΦTΦ
� ��1ΦTYZ ð6:87Þ

Therefore, (6.84) can be determined, which is an explicitly analytical function of

the nonlinear parameters a2 and a3. By using this method, the system output

frequency response can thus be analyzed and designed in terms of model nonlinear

parameters of interest.

6.5 Conclusions

The parametric characteristic analysis is performed for nonlinear output spectrum

of Volterra-type nonlinear systems described by NDE models or NARX models in

this Chapter and some fundamental results for the parametric characteristics of

nonlinear output spectrum are established and demonstrated, including parametric

characteristics based analysis, parametric characteristic analysis of nonlinear

effects on system output frequency, and parametric characteristics of SIDO

nonlinear systems etc.

Based on these results, the parametric characteristics based output spectrum

analysis for nonlinear systems will be further shown in the following two chapters,

and the nonlinear characteristic output spectrum is thereafter developed in Chap. 9.
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6.6 Proofs

Proof of Proposition 6.2

Regard all other nonlinear parameters as constants or 1. From Proposition 5.1 and

Properties 5.1–5.5, if p+q>n then the parameter has no contribution to CE(Hn(.)),

in this case CE(Hn(.))¼1 with respect to this parameter. Similarly, if p+q¼n then

the parameter is an independent contribution in CE(Hn(.)), thus CE(Hn(.))¼[1 c]

with respect to this parameter in this case. If p+q<n and p>0, then the independent

contribution in CE(Hn(.)) for this parameter should be c
n�1

pþq�1b c, and the monomials

cx for 0 	 x < n�1
pþq�1

j k
are all not independent contributions in CE(Hn(.)). Hence

CE Hn �ð Þð Þ ¼ 1 c c2 � � � c
n�1

pþq�1b c
h i

for this case. The similar result is held for

the case p+q<n and p¼0. However, since there should be at least one p>0 in a

complete monomial, thus in this latter case cx for any x are not complete, which

follows CE Hn �ð Þð Þ ¼ 1 c c2 � � � c
n�1

pþq�1b c�1

h i
. The parametric characteristic

vector for the nonlinear parameter c for all the cases above can be summarized into

CE Hn �ð Þð Þ ¼ 1 c c2 � � � c
n�1

pþq�1b c�δ pð Þ�pos n�qð Þ
h i

This completes the proof. □

Proof of Proposition 6.3

Equation (6.16) is summarized from (5.19)–(5.21), and when all the other param-

eters are zero except c¼cp,q(.), the following equation can also be summarized from

(5.19)–(5.21)

CE Hn jω1, � � �, jωnð Þð Þ ¼ c
n�1

pþq�1 � δ n� 1

pþ q� 1
� n� 1

pþ q� 1


 �� 

� 1� δ pð Þpos n� qð Þð Þ

Therefore, it can be shown that

CE Y jωð Þð Þ ¼ �
i¼0

N�1=
pþq�1

� �
CE H pþq�1ð Þiþ1 �ð Þ� �

¼ �
i¼0

N�1=
pþq�1

� �
ci � δ i� ib cð Þ � 1� δ pð Þpos pþ q� 1ð Þiþ 1� qð Þð Þ

¼ �
i¼0

N�1=
pþq�1

� �
ci � 1� δ pð Þpos pþ q� 1ð Þiþ 1� qð Þð Þ

If p¼0, 1� δ(p)pos((p + q� 1)i+ 1� q)¼ 1� pos((q� 1)i+ 1� q), which yields,
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CE Y jωð Þð Þ ¼ 1 c � 1� pos q� Nð Þð Þ½ �

else, 1� δ(p)pos((p+ q� 1)i+ 1� q)¼ 1, which yields

CE Y jωð Þð Þ ¼ �
i¼0

N�1=
pþq�1

� �
CE H pþq�1ð Þiþ1 �ð Þ� � ¼ 1 c c2 � � � c

N�1=
pþq�1

� �h i
This completes the proof. □

Proof of Lemma 6.2

The lemma is summarized by the following observation. For clarity, let I¼3.

cn ¼ c� c� � � � c|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

s ið Þn ¼
XI
j¼i

s jð Þn�1 for i ¼ 1, 2, 3

n ¼ 1 c1 c2 c3½ � 1 1 1

n ¼ 2 c1 c2 c3½ � � c1 c2 c3½ � 3 2 1

¼ c1
2 c1c2 c1c3 c2

2 c2c3 c3
2½ �

n ¼ 3 c1
2 c1c2 c1c3 c2

2 c2c3 c3
2½ � � c1 c2 c3½ � 6 3 1

¼ c1
3 c1

2c2 c1
2c3 c1c2

2 c1c2c3 c1c3
2 c2

3 c2
2c3 c2c3

2 c3
3½ �

n ¼ 4 c1
3 c1

2c2 c1
2c3 c1c2

2 c1c2c3 c1c3
2 c2

3 c2
2c3 c2c3

2 c3
3½ � � c1 c2 c3½ � 10 4 1

¼ �c14 c1
3c2 c1

3c3 c1
2c2

2 c1
2c2c3 c1

2c3
2 c1c2

3 c1c2
2c3 c1c2c3

2 c1c3
3

c2
4 c2

3c3 c2
2c3

2 c2c3
3 c3

4
�

n ¼ 5
�
c1

4
c1

3c2 c1
3c3 c1

2c2
2 c1

2c2c3 c1
2c3

2 c1c2
3 c1c2

2c3 c1c2c3
2 c1c3

3 15 5 1

c2
4 c2

3c3 c2
2c3

2 c2c3
3 c3

4
�� c1 c2 c3½ �

¼ �c15 c1
4c2 c1

4c3 c1
3c2

2 c1
3c2c3 c1

3c3
2 c1

2c2
3 c1

2c2
2c3 c1

2c2c3
2 c1

2c3
3

c1c2
4 c1c2

3c3 c1c2
2c3

2 c1c2c3
3 c1c3

4 c2
5 c2

4c3 c2
3c3

2 c2
2c3

3 c2c3
4 c3

5
�

To complete the proof, the complete mathematical induction can be adopted. An

outline for this proof is given here. Note that

cn ¼ cn�1 � c1, � � �, cn�1 s 1ð Þn � s ið Þn þ 1 : s 1ð Þn
� � � ci, � � �, cn�1 s 1ð Þn

� � � cI� �
includes all the non-repetitive terms of form ck11 c

k2
2 � � �ckII with k1 + k2 + � � �+ kI¼ n

and 0	 k1, k2, � � �, kI	 n. These terms can be separated into I parts, the ith part of

which, i.e., cn� 1[s(1)n� s(i)n+ 1 : s(1)n] � ci, includes all the non-repetitive terms of

degree n which are obtained by the parameter ci timing the components of degree

n�1 in cn�1 from s(1)n� s(i)n + 1 to s(1)n. Assume that the lemma holds for step n.
Then for the step n+1, the ith part of the components in cn+1 must be cn[s(1)n+ 1� (s
(i)n+ � � �+ s(I)n) + 1 : s(1)n+ 1] � ci which is cn[s(1)n+ 1� s(i)n+ 1 + 1 : s(1)n+ 1] � ci.
This completes the proof of Lemma 6.2.

Proof of Proposition 6.6

From (6.74) and (6.75), the parametric characteristic vector for Y(jω) is

110 6 The Parametric Characteristics of Nonlinear Output Spectrum and Applications



CE Y jωð Þð ÞC Nð Þ ¼ �
n¼1

N
CE Hy

n jω1, � � �, jωnð Þ� �
C nð Þ ðA1Þ

If eC nð Þhas a linear relationship withC nð Þ, thenCE Hy
n jω1, � � �, jωnð Þ� �

C nð Þ is given by
(6.72). In this case, (6.76) is straightforward by substituting (6.72) into (A1). IfeC nð Þ has no relationship with C nð Þ, then substituting (6.68) into (A1) yields

CE Y jωð Þð ÞC Nð Þ ¼ �
n¼1

N �
p¼1

n
χ n; pð Þ � CE Hx

n�pþ1 jω1, � � �, jωnð ÞC nð Þ
� �� 


ðA2Þ

By the definition of operation “�”, repetitive terms should be removed. Therefore,

(A2) further gives

CE Y jωð Þð ÞC Nð Þ ¼ �
p¼1

N
χ N; pð Þ � CE Hx

N�pþ1 jω1, � � �, jωNð ÞC Nð Þ
� �

ðA3Þ

Note that, all the elements in vector �
p¼1

N
χ N; pð Þ � CE Hx

N�pþ1 jω1, � � �, jωNð ÞC Nð Þ
� �

must be elements in vector �
n¼1

N
CE Hx

n jω1, � � �, jωnð ÞC nð Þ
� �

. Hence, the parametric

characteristics in (A3) are all included in (6.76). Equation (6.77) is straightforward

from Proposition 6.5. □
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Chapter 7

The Parametric Characteristics Based

Output Spectrum Analysis

7.1 Introduction

The parametric characteristic analysis provides a powerful tool for nonlinear

analysis in the frequency domain, which can be used for many important issues

related to analysis, design and understanding of nonlinear dynamics and influence,

from the viewpoints of output frequency response of nonlinear systems and/or the

GFRFs. In this chapter, the output frequency response or output spectrum based

analysis method is demonstrated, which actually has already been discussed in

remarks and examples in the previous chapters. The parametric characteristic

analysis can provide obvious benefits for example in determination of the paramet-

ric structure and in reduction of computation cost, which will be theoretically

addressed in the chapter thereafter. Based on these results, the nonlinear character-

istic output spectrum based analysis is established in Chap. 9, which is a much

improved version of the output frequency response function based analysis method

in this chapter. Following these, the GFRFs based analysis with the parametric

characteristic approach will be investigated more, including understanding of

nonlinear influence in the frequency domain, and bound evaluation of output

response of nonlinear systems etc.

7.2 The Parametric Characteristics Based Output

Spectrum Analysis

Using the parametric characteristic result in Corollary 6.1, the output spectrum

(6.8a) can be simply rewritten as
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Y jωð Þ ¼ ψ �Φ jωð ÞT ð7:1Þ

Where ψ ¼ �N
n¼1

CE Hn �ð Þð Þ, Φ jωð Þ ¼ ϕ1 jωð Þ ϕ2 jωð Þ � � � ϕN jωð Þ½ �. Note

that ϕ1(jω)¼H1(jω) is the first order GFRF, which represents the linear part of

model (2.10) or (2.11), and ϕn(jω)¼Yn(fn(�); jω). The function in (7.1) is referred to
here as output frequency response function (OFRF) or nonlinear output spectrum

with parametric characteristics.

As discussed before, (6.8) or (7.1) provide a more straightforward analytical

expression for the relationship between system time-domain model parameters and

system output frequency response. By using this explicit relationship, system

output frequency response can therefore be analyzed in terms of any model

parameters of interest. Hence, it can considerably facilitate the analysis and design

of output frequency response characteristics of nonlinear systems in the frequency

domain. As demonstrated in Sect. 6.2.2, the main idea for the parametric charac-

teristics based output spectrum analysis in this Chapter is that, given the model of a

nonlinear system in the form of model (2.10) or (2.11), CE(Hn(�)) can be computed

according to Proposition 5.1 or Corollary 5.1, and ϕn(jω) can be obtained according
to a numerical method which is mentioned before and will be discussed in more

details later. Thus the output spectrum of the nonlinear system subject to any

specific input can be obtained, which is an analytical function of nonlinear param-

eters of the system model, and finally frequency domain analysis for the nonlinear

system can be conducted in terms of specific model parameters of interest.

The parametric characteristics based output spectrum analysis for system (2.10)

or (2.11) is discussed in Sect. 7.2.1. In order to conduct the parametric character-

istics based output spectrum analysis, a general procedure is provided in Sect. 7.2.2,

where several basic algorithms and related results are discussed.

7.2.1 A General Frequency Domain Method

The parametric characteristics based output spectrum analysis for nonlinear sys-

tems described by (2.10) or (2.11) is totally a new frequency domain method for

nonlinear analysis. The most noticeable advantage of this method is that any system

model parameters of interest can be directly related to the interested engineering

analysis and design objective which is dependent on system output frequency

response, and thus the system output frequency response can be analysed in terms

of some model parameters of interest in an easily-manipulated manner. This

method does not restrict to a specific input signal and can be used for a considerable

larger class of nonlinear systems. These are the main differences of this method

from the other existing methods such as Popov-theory based analysis, describing

functions and harmonic balance methods as discussed in Chap. 1.

One important step of this method is to determine the output spectrum with

parametric characteristics for the system under study. This will be discussed in
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more detailed in the following section. Once the system output spectrum is

obtained, based on the result in Proposition 6.3 and (7.1), the output frequency

response function with respect to a specific parameter c can be written as

Y jωð Þ ¼ φ0 jωð Þ þ cφ1 jωð Þ þ c2φ2 jωð Þ þ � � � þ c‘φ‘ jωð Þ þ � � � ð7:2aÞ

Since Y(jω) is also a function of c, therefore, (7.2a) is rewritten more clearly as

Y jω; cð Þ ¼ φ0 jωð Þ þ cφ1 jωð Þ þ c2φ2 jωð Þ þ � � � þ c‘φ‘ jωð Þ þ � � � ð7:2bÞ

Y(jω;c) is in fact a series of an infinite order, ‘ is a positive integer which can be

determined by Proposition 6.3,φi jωð Þ is the complex valued function corresponding

to the coefficient ci in (7.2b). If all the other degree and type of nonlinear parameters

are zero except that Cp,q¼c 6¼ 0 (p+q>1), thenφiþ1 jωð Þ ¼ φi jωð Þ (φi(jω) is defined
in (6.8), (6.10), (6.11), or (7.1). Based on (7.2a,b), the following analysis can be

conducted.

• Sensitivity of the output frequency response to nonlinear parameters

Based on (7.2a,b), this can be obtained easily as

∂Y jω; cð Þ
∂c

¼ φ1 jωð Þ þ 2cφ2 jωð Þ þ � � � þ ‘c‘�1φl jωð Þ þ � � � ð7:3Þ

Similarly, the sensitivity of the magnitude of the output frequency response with

respect to the nonlinear parameters can also be derived. Note that

Y jω; cð Þj j2 ¼ Y jω; cð ÞY �jω; cð Þ ¼ φ0 jωð Þ þ cφ1 jωð Þ þ c2φ2 jωð Þ þ � � �ð Þ
� φ0 �jωð Þ þ cφ1 �jωð Þ þ c2φ2 �jωð Þ þ � � �� �

¼ φ0 � φ�
0 þ

X1
‘¼1

c‘
X‘
i¼0

φi � φ�
‘�i

 !
:

¼ p0 þ cp1 þ c2p2 þ � � � þ c2‘p2‘ þ � � � ð7:4Þ

It is obvious that the spectral density of the output frequency response is still a

polynomial function of the parameter c. Equation (7.4) can also be directly

derived by following Process C that will be discussed later (Sect. 7.2.2.2).

Thus, the sensitivity of the magnitude of the output spectrum to the parameter

c can be obtained as
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∂ Y jω; cð Þj j
∂c

¼ 1

2 Y jω; cð Þj j
∂ Y jω; cð Þj j2

∂c

¼ 1

2 Y jω; cð Þj j
X1
‘¼1

‘c‘�1
X‘
i¼0

φi � φ�
‘�1

� !
ð7:5aÞ

Given (7.3), (7.5a) can also be computed as

∂ Y jω; cð Þj j
∂c

¼ 1

2 Y jω; cð Þj j
∂ Y jω; cð Þj j2

∂c

¼ 1

2 Y jω; cð Þj j
∂Y jω; cð Þ

∂c
Y �jω; cð Þ þ Y jω; cð Þ∂Y �jω; cð Þ

∂c

� �

¼ ℜ
∂Y jω; cð Þ

∂c
� Y �jω; cð Þ
Y jω; cð Þj j

� �
ð7:5bÞ

The sensitivity function for system output spectrum with respect to a nonlinear

parameter provides a useful insight into the effect on system output performance

of specific model parameters. This will be illustrated in Sect. 7.3. Another

possible application of the sensitivity function is vibration suppression. In

many engineering practice, the effect of vibrations should be considerably

suppressed. From (7.5a,b), it can be seen that if Y(jω,c) represents the spectrum

of a vibration, in order to suppress the vibration, it should be ensured that
∂ Y jω;cð Þj j

∂c
< 0 for some c. Consider (7.4), the following conclusion is obvious.

(a)
∂ Y jω;cð Þj j

∂c < 0 for some c ) ∃some n > 0,
Xn
i¼0

sign cn�1
� �

φi � φ�
n�i < 0

(b) p1 ¼ Re φ0 jωð Þ � φ1 �jωð Þð Þ < 0 ) there exists ε>0 such that
∂ Y jω;cð Þj j

∂c < 0

for 0<c<ε or �ε<c<0. Where sign xð Þ ¼ 1 x � 0

�1 else

�
, Re(�) is to get

the real part of (.). If a nonlinear parameter c satisfies

p1 ¼ Re φ0 jωð Þ � φ1 �jωð Þð Þ < 0, then it can be utilized for the vibration

suppression objective.

• Evaluation of the radius of convergence for the output frequency response

with respect to nonlinear parameters

It is followed from (7.2a,b) that the radius of convergence is given by

R ¼ lim
‘!1

φ‘�1 jωð Þ
φ‘ jωð Þ
����

���� ð7:6Þ
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Obviously, if jcj<R, then the series is convergent. Define a Ratio Function

R ‘; cð Þ ¼ φ‘�1 jωð Þc
φ‘ jωð Þc

����
���� ð7:7Þ

which is a function of ‘ and also varies with different nonlinear parameters. It

can be seen that, if

ΔR ‘; c1ð Þ
Δ‘

>
ΔR ‘; c2ð Þ

Δ‘
ð7:8Þ

then the output spectrum has a larger radius of convergence with respect to c1
than that with respect to c2. Equation (7.7) and inequality (7.8) can be used as an

evaluation of the effect on the convergence of the Volterra series expansion for

the nonlinear system under study from a model parameter and the comparative

advantage between different parameters. Note that divergence of the Volterra

series expansion can sometimes imply the instability of the system under study

or the nonexistence of a Volterra series expansion. Thus this analysis can

provide some useful information for the design of system output frequency

response in terms of different model parameters.

• Optimization of the output frequency response in terms of nonlinear

parameters

Importantly, given a desired magnitude of the output frequency response Y*, an
optimal c* in ∂Sc can be found such that

min
c2∂Sc

Y jω; cð Þj j � Y�ð Þ ð7:9Þ

A systematic method for this purpose is yet to be developed, which will be

discussed in the future study.

7.2.2 Determination of Output Spectrum Based
on Its Parametric Characteristics

As mentioned before, an important step for output spectrum analysis based on the

parametric characteristics is to obtain the parametric characteristic function of

system output spectrum in (7.1) (i.e., the OFRF). In this section, a general procedure

for the determination of the OFRF for a given model (2.10) or (2.11) is provided,

and useful algorithms and techniques are discussed.
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7.2.2.1 Computation of Parametric Characteristics

This step is to derive ψ ¼ �N
n¼1

CE Hn �ð Þð Þ in (7.1).

• Determination of the largest orderN
To derive the parametric characteristics of OFRF, the first task is to compute the

largest order, i.e., N, of the Volterra series expansion for the nonlinear system,

which is basically determined by the significance of the truncation error in the

Volterra series expansion of finite order. This can alternatively be done by

evaluating the magnitude of the nth-order output frequency response Yn(jω).
For example, the magnitude bound of Yn(jω) for the NARX model (2.10) can be

evaluated by (Jing et al. 2007a, b), which will be discussed in Chap. 13,

Yn jωð Þj j 	 αn � bn � ℏT
n ð7:10Þ

where αn,ℏn are complex valued functions, and bn is a function vector of the

system model parameters. For the detailed definitions for αn,bn,ℏn refer to Jing

et al. 2007a, b. If the magnitude bound of a certain order of Yn(jω) is less than a

predefined value (for instance 10�8), then the largest order N is obtained. It

should be noted that the magnitude bound is a function of the model nonlinear

parameters. Therefore, the largest range of interest for each nonlinear parameter

should be considered in the evaluation of |Yn(jω)|. The truncation order selection
issue will be further discussed in Chap. 9, where it is well addressed from a

different point of view.

• Determination of the parametric characteristics

Once the largest order N is determined, the next step is to derive the

parametric characteristics of GFRFs for the nonlinear system, i.e., CE
(Hn(�)) from n¼2 to N, which will be used in the computation of

ψ ¼ �N
n¼1

CE Hn �ð Þð Þ. Note that CE(Hn(�)) is computed in terms of the param-

eter vectors Cp,q ¼ ½cp,q 0; � � �; 0ð Þ, cp,q 0; � � �; 1ð Þ, � � �, cp,qðK, � � �,K|fflfflfflfflffl{zfflfflfflfflffl}
pþq

Þ� for some

p,q in (5.17).

Basically, for some specific parameters to be analysed for a system, CE(Hn(�))
can be recursively computed by (5.17) with respect to these parameters of

interest with other nonzero nonlinear parameters being 1. Alternatively, CE
(Hn(�)) can also be determined directly without recursive computations by

using the results in Proposition 5.1. Based on Proposition 5.1, the parametric

characteristic CE(Hn(�)) can be obtained as follows, which is referred to as

Process A: for 0	k	n�2,

(A1) Generate all the combinations (r0, r1, r2. . ., rk) satisfying r0 þ
Xk
i¼1

ri ¼ n

þk and 2	ri	n�k with respect to a specific value of k;
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(A2) Generate all the possible combinations (pi,qi) with respect to each ri
satisfying pi+qi¼ri, and note that when it is for r0, 1	p0	n�k;

(A3) All the possible combinations can now be generated based on Step

(A1) and (A2), then remove all the repetitive terms;

(A4) CE(Hn(�)) is obtained in terms of the parameter vectors Cp,q for some p,q,
which can be stored for any future usage. For a specific nonlinear system,

CE(Hn(�)) can be obtained only by replacing the corresponding parameter

vector Cp,q of interest with respect to the specific nonlinear system, and the

other parameters in CE(Hn(�)) are set to be zero if it is zero or set to be 1 if
it is not of interest;

(A5) Achieve the final result by manipulating CE(Hn(�)) according to the oper-

ation rules of “�” and “
” (See Chap. 4), and removing the repetitive

terms.

By this process, the parametric characteristic CE(Hn(�)) can be obtained

without recursive computations. For a summary, the parametric characteristic

vector ψ ¼ �N
n¼1

CE Hn �ð Þð Þ can be computed by following the process below,

which is referred to as Process B:

(B1) Determine the set of the nonlinear parameters of interest, denoted by SC;
(B2) Determine the largest possible ranges for the nonlinear parameters of

interest, denoted by ∂SC;
(B3) Determine the largest order N of the Volterra series expansion according to

(7.10) and the discussions there.

(B4) Computation of CE(Hn(�)) with respect to the parameters SC of interest

following Process A or (5.17) from n¼2 to N.

(B5) Combine the final parametric characteristic vector ψ ¼ �N
n¼1

CE Hn �ð Þð Þ.

Therefore, based on Process A and Process B, the parametric characteristics of

the output frequency response with respect to any specific model parameters of

interest, which are the coefficients of the polynomial function (7.1), can be deter-

mined. Thus the structure of the polynomial (7.1) is explicitly determined at this

stage. Note that, the parametric characteristic vector CE(Hn(�)) for all the model

nonlinear parameters in (5.13) can be obtained according to (5.17) or Process A,

and if there are only some parameters of interest, the computation can be conducted

by only replacing other nonzero parameters with 1 as mentioned above.

7.2.2.2 A Numerical Method

This is to determine Φ jωð Þ ¼ ϕ1 jωð Þ ϕ2 jωð Þ � � � ϕN jωð Þ½ � in (7.1), then the

OFRF in (7.1) is obtained consequently. Since the system model is supposed to be

known, the parametric characteristic vector ψ ¼ �N
n¼1

CE Hn �ð Þð Þ is achieved, and
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note that Φ(jω) is invariant with respect to ψ ¼ �N
n¼1

CE Hn �ð Þð Þ, thus Φ(jω) can be

derived with respect to any a specific input by following a numerical method as

follows, which is referred to as Process C:

(C1) Choose a series of different values of the nonlinear parameters of interest,

which are properly distributed in ∂SC, to form a series of vectors ψ1� � �ψρ(N ),

where ρ(N )¼jψ j denotes the dimension of vector ψ , such that

Ψ ¼ ψ1
T � � �ψρ Nð Þ

T
h iT

is non-singular ð7:11Þ

(C2) Given a frequency ω where the output frequency response of the nonlinear

system is to be analysed or designed. Excite the system using the same input

under different values of the nonlinear parameters ψ1 � � �ψρ(N ); collect the

time domain output y(t) for each case, and evaluate the output frequency

response Y(jω)1� � �Y(jω)ρ(N ) at the frequency ω by FFT technique.

(C3) Step 2 yields

Ψ �Φ jωð ÞT ¼
ψ1

ψ2

⋮
ψρ Nð Þ

2
664

3
775 �

φ1 jωð Þ
φ2 jωð Þ
⋮

φρ Nð Þ jωð Þ

2
664

3
775 ¼

Y jωð Þ1
Y jωð Þ2
⋮

Y jωð Þρ Nð Þ

2
664

3
775 ¼: YY jωð Þ ð7:12Þ

Hence,

Φ jωð ÞT ¼ ϕ 1 jωð Þ ϕ2 jωð Þ � � � ϕN jωð Þ½ �T
¼ φ1 jωð Þ φ2 jωð Þ � � � φρ Nð Þ jωð Þ	 
T ¼ Ψ�1 � YY jωð Þ ð7:13Þ

In Step C1, ρ(N ) different values of the parameter vector Ψ in the parameter

space ∂SC, such that det(Ψ) 6¼0 can be obtained by choosing a grid of parameter

values of the nonlinear parameters of interest properly spanned in ∂SC, or using a

stochastic-based searching method or other optimization search methods such as

GA to generate a non-singular matrix Ψ. In practices, it is not difficult to find such a
matrix with a proper inverse, which will be illustrated in Sect. 7.3. In Step C2, given

the largest order N of the system output spectrum, it can be seen that this algorithm

needs ρ(N ) simulations to obtain ρ(N ) output frequency responses under different

parameter values. Note from Step C1 that ρ Nð Þ ¼ ψj j ¼ �N
n¼1

CE Hn �ð Þð Þj
���� , which is

not only a function of the largest order N but also dependent on the number of

parameters of interest. This implies the simulation burden will become heavier if

the number of the parameters of interest and the largest order N are becoming

larger. In Step C3, since det(Ψ) 6¼0, the complex valued function vector Φ(jω) in
(7.13) is unique, which implies the result in (7.13) can sufficiently approximate

their real values if the truncation error incurred by the largest order N of the Volterra

series is sufficiently small.
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Therefore, by following Process C, the complex valued function vector Φ(jω)
can accurately be obtained for the specific input function used in Step C2 and at the

given frequency ω. Consequently, the OFRF (7.1) subject to the specific input

function is now explicitly determined by following the method discussed above for

the nonlinear system of interest. Although the function vector Φ(jω) is obtained by

using the numerical method above and consequently the obtained OFRF is not an

analytical function of the frequencies and the input, the achieved relationship

between the output spectrum and model nonlinear parameters is analytical and

explicit for the specific input function at the given frequency ω. Moreover, note that

since CE(Hn(�)) is known, and Φ jωð Þ ¼ φ1 jωð Þ φ2 jωð Þ � � � φN jωð Þ½ � is deter-
mined, then Yn(jω)¼CE(Hn(�)) �φn(jω)

T is also determined, which represents the

analytical function for the nth-order output frequency response of nonlinear

systems.

It should also be noted that, the proposed method above as demonstrated in

this section enable the OFRF to be obtained directly in a concise polynomial

form as (7.1) without the complex integration in the high-dimensional super-plane

ω¼ω1+� � �+ωn especially when the nonlinearity order n is high. By using the

proposed method above, the OFRF can be determined up to a very high order with

respect to any specific model parameters of interest and any specific input signal at any

given frequency. The cost may lie in that the new method needs ρ(N) simulations.

Once the OFRF is obtained, the analysis and design of nonlinear systems

described by model (2.10) or (2.11) can be carried out in terms of the model

parameters of interest which define system nonlinearities and may represent some

structural and controllable factors of a practical engineering system. For example,

the sensitivity of system output frequency response with respect to a nonlinear

parameter can be studied based on the analytical expression (7.1). By using the link

between the nonlinear terms of interest and the components of a practical engi-

neering system and structure, the OFRF may provide a useful insight into the design

of nonlinear components in the system to achieve a desired output performance.

Therefore, the OFRF based analysis method provides a novel approach to the

analysis and synthesis of a large class of nonlinear systems subject to any input

signal in the frequency domain.

7.3 Simulations

To demonstrate the application of the new frequency domain analysis method

discussed in this Chapter, a nonlinear spring-damping system is studied as shown

in Fig. 7.1. The system has two nonlinear passive components and one nonlinear

active unit. The active unit is described by F¼c1ẋ
2x+c2xẋ

2, the output property of

the spring satisfiesF ¼ K̂ xþ c3x
3, and the damper F¼Bẋ+c4ẋ

3. u(t) is the external
input force. The system dynamics can be described by
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M̂ €x ¼ �K̂ x� B _x � c1 _x
2x� c2 _xx

2 � c3x
3 � c4 _x

3 þ u tð Þ ð7:14aÞ

Let the output be

y ¼ K̂ x ð7:14bÞ

This may represent a vibration isolator system with nonlinear spring and damping

characteristics. The task for this case study is to investigate how the nonlinear terms

included both in passive and active unites affect the output and what the effect

might be, and thus to provide a useful insight into the design of corresponding

nonlinear parameters to achieve a desired output frequency response.

For clarity in discussion, let M̂ ¼ 240, K̂ ¼16,000, and B¼296, then (7.14a,b)

can be rewritten as

240€x ¼ �16, 000x� 296 _x � c1 _x
2x� c2 _xx

2 � c3x
3 � c4 _x

3 þ u tð Þ ð7:15aÞ
y ¼ 16, 000x ð7:15bÞ

Equation (7.15a) is a simple case of the NDE model (2.11) with M̂ ¼ 3, K̂ ¼ 2,

c10(2)¼240, c10(1)¼296, c10(0)¼16000, c30(111)¼c4, c30(110)¼c1, c30(100)¼
c2, c30(000)¼c3, c01(0)¼�1, and all the other parameters are zero. Therefore,

what is of interest for this study is to analyse the effect of the nonlinear terms with

coefficients c1, c2, c3 and c4 on the system output frequency response. To achieve

this objective, the procedure proposed in Sect. 7.2.2 are adopted to derive the

OFRF of system (7.15a,b), and the results in Sect. 6.1 will be used for the

computation of the parametric characteristic of the OFRF with respect to the

nonlinear parameters c1, c2, c3 and c4. Moreover, though the method proposed in

this paper is suitable for a general input function u(t), for convenience in discus-

sion, the input of system (7.15a,b) is considered to be a sinusoidal function u(t)¼
100sin(8.1t). To illustrate the new results more clearly, first only the effect of

parameter c2 is considered and it is assumed that c1¼c3¼c4¼0. Then compli-

cated cases where the effect of more than one nonlinear parameters is involved

will also be investigated.

Active
unit BK x(t)

u(t)

M

Fig. 7.1 A mechanical

system
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7.3.1 Determination of the Parametric Characteristics
of OFRF

Note that all the parameters of interest belong to C30, and the other degrees of

nonlinear parameters are all zero. Thus Corollary 6.2 and Proposition 6.3 can be

utilised directly. Therefore,

CE Hn jω1, � � �, jωnð Þð Þ ¼ c
n�1
2 � δ n� 1

2
� n� 1

2

� �� �
� 1� δ 3ð Þpos nð Þð Þ ¼ c

n�1
2 � δ n� 1

2
� n� 1

2

� �� �

ψ ¼ CE Y jωð Þð Þ ¼ �
i¼0

N�1=
pþq�1


 �
CE H pþq�1ð Þiþ1 �ð Þ� � ¼ 1 c c2 � � � c

N�1=
pþq�1


 �h i

¼ 1 c c2 � � � c
N�1=

2


 �h i
ð7:16Þ

where c¼c2. To derive the detailed form for ψ , the largest order N should be

determined first according to Process B in Sect. 6.2.2. In order to have a larger range

in which the parameters can vary, in this case let c22(0,108). The magnitude bound

of Yn(jω) can then be evaluated as mentioned in Process B. However, for paper

limitation, the detailed computation is omitted in this case. It can be verified that

N¼23 is enough for use in this case. Therefore,

ψ ¼ 1 c c2 � � � c 23�1=2b c
h i

¼ 1, c2, c2
2, c2

3, c2
4, c2

5, . . . , c2
11

	 
 ð7:17Þ

7.3.2 Determination of Φ(jω) for the OFRF

Following Process C, the matrix Ψ¼[ψ1
T � � �ψρ

T]T should be constructed first. In

this case, for any 12 different values of c2, the matrix Ψ is a Vandermonde matrix

and thus non-singular. Note that in many cases, the parameters may be set to be

some large values and cover a large range. This will make the element values in the

matrix Ψ extraordinarily large. Then when the inverse of matrix Ψ is computed,

there may be some computation error involved in Matlab. To overcome this

problem, Ψ can be written as

ψ ¼ �
i¼0

N�1=
pþq�1


 �
kCE H pþq�1ð Þiþ1 �ð Þ� �

=k¼ 1 k c=kð Þ k2 c=kð Þ2 � � � k
N�1=

2


 �
c=kð Þ N�1=

2


 �h i
ð7:18Þ

Then (7.1) can be written as
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Y jω; cð Þ ¼ ψ �Φ jωð ÞT

¼ 1 c=kð Þ c=kð Þ2 � � � c=kð Þ‘
	 


φ1 jωð Þ kφ2 jωð Þ � � � k‘φ‘ jωð Þ
	 
T

ð7:19Þ

where ‘ ¼ N � 1=2cb . Moreover, the range for each parameter can be divided into

several sub-range, and the final result is the combination of these results obtained

for each sub-range. In this study, let k¼105, then c2 ¼ c2=k 2 0; 1000½ �. Choose c2
to be the following values to construct Ψ¼[ψ1

T � � �ψρ
T]T, i.e., 0.1,1,50,65,80,

100,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950,980,

1,000. The output frequency response

YY jωð Þ ¼ Y jωð Þ1 Y jωð Þ2 � � � Y jωð Þρ
	 
 ð7:20Þ

of system (7.15a,b) at ω¼8.1 rad/s corresponding to different values of c2 can be

obtained through FFT of the time-domain output response. Then using (7.19), it can

be derived from (7.13) that

Φ jωð ÞT ¼ φ1 jωð Þ kφ2 jωð Þ � � � k‘φ‘ jωð Þ
	 
T

¼ ΨTΨ
� ��1ΨT � YY jωð Þ ð7:21Þ

Therefore, the output frequency response function of system (7.15a,b) with respect

to nonlinear parameter c2 in the case of c1¼c3¼c4¼0 is obtained as

Y jω; c2ð Þ ¼ 2:060893505718041eþ 002 � 2:402014548824790eþ 002ið Þ
þ k�1 � 5:14248529981906þ 5:35676372314361ið Þ c2
þ k�2 0:08589533966805� 0:08827649204263ið Þ c22
þ k�3 �8:068953639113292e� 004 þ 8:248154776018186e� 004ið Þ c23
þ k�4 4:598423724418538e� 006 � 4:686570228695798e� 006ið Þ c24
þ k�5 �1:679591261850433e� 008 þ 1:708497491564935e� 008ið Þ c25
þ k�6 4:056287337706451e� 011 � 4:120496550333245e� 011ið Þ c26
þ k�7 �6:544911009113156e� 014 þ 6:641760366680977e� 014ið Þ c27
þ k�8 6:976300614229155e� 017 � 7:073928662624432e� 017ið Þ c28
þ k�9 �4:713366512185836e� 020 þ 4:776287453573993e� 020ið Þ c29
þ k�10 1:827866445826756e� 023 � 1:851299290299388e� 023ið Þ c210
þ k�11 �3:098310700824303e� 027 þ 3:136656793561425e� 027ið Þ c211

ð7:22Þ

Based on this function, (7.4) can be further computed as
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Y jω;cð Þj j2 ¼ p0þcp1þ c2p2þ�� �þ c2‘p2‘þ�� �� � �
¼ 1:001695593467675eþ005ð Þþ k�1 �4:693027791051078eþ003ð Þc2
þk�2 1:329525858242289eþ002ð Þc22þ k�3 �2:55801250200731ð Þc23
þk�40:03645314106899c2

4þ k�5 �3:968756773045435e�004ð Þc25
þk�60:01517275811829c2

6þ . . .

ð7:23Þ

Note that this is an alternating series and it holds that jpij> jpi+1j and jpij!0. Hence

the series may keep decreasing when c is going larger and within its radius of

convergence. By following the similar method demonstrated above, the output

frequency response functions of system (7.15a,b) with respect to nonlinear param-

eters c1, c2, c3 and c4 of different cases can all be obtained, for instance Y(jω;c1), Y
(jω;c3), and Y(jω;c4) (The other nonlinear parameters are zero if not appearing in

the function). The results are shown in Figs. 7.2, 7.3, and 7.4.

Figure 7.2 shows that the variation of the magnitude of the output frequency

response functions with respect to each nonlinear parameter. It can be seen that

there is a good matching between the theoretical computation results and the

simulation results to which they have been fitted, and there is also a good match
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Fig. 7.2 Output frequency response functions with respect to c1 to c4 respectively (Jing

et al. 2008d)
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between the theoretical computation results and the simulation tests (for parameter

c3) which are independent of the fitted simulation results. From both Figs. 7.2 and

7.3 it can also be seen that the system output frequency response is much more

sensitive to the variation of the nonlinear parameters when they are small. Once the

value of a nonlinear parameter is sufficient large, then the sensitivity will tend to be

zero. From the comparison of these four nonlinear terms, it can be concluded that

the system output frequency response is more sensitive to the variation of the

nonlinear parameter c4 when the values are small; however when the values of

each nonlinear parameters are sufficient large, the system output spectrum is more

sensitive to the nonlinear parameter c2. From Fig. 7.4 it can be seen that the

convergence of the output frequency response functions are all very fast.. It is

noted that the ratio functions of c2 and c3 go up much faster than that of c1,

especially c2. This implies that the radius of convergence of the output spectrum

corresponding to c2 should be larger. Simulation tests verify that the system is still

stable when c2¼1017 where the magnitude of the output spectrum is 0.0216, while

the system may tend to be unstable when c1 tends to be larger than 108.
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Fig. 7.3 Sensitivity function of the OFRFs with respect to c1 to c3 respectively (Jing et al. 2008d)

126 7 The Parametric Characteristics Based Output Spectrum Analysis



From the analysis above for the four nonlinear parameters of nonlinear degree

3, respectively, it can be seen that

• The computed system output spectrum has a larger radius of convergence with

respect to c2, c3 and c4.

• The system output spectrum is more sensitive to c4 and less sensitive to c3;

• If the output spectrum with respect to a nonlinear parameter is an alternating

series satisfying jpij> jpi+1j and jpij!0, then the system output spectrummay be

reduced to zero if additionally the radius of convergence for this parameter is

sufficiently large.

• The magnitude of output spectrum decreases with the increase of the values of

the nonlinear parameters. Thus an introduction of some simple nonlinear terms

into a linear system may greatly improve the performance of output frequency

response, and the stability of a nonlinear system is not necessarily deteriorated

with increasing the values of nonlinear parameters; This also shows that a larger

value of the parameter for a nonlinear term may not lead to a bad performance of

a system.

Fig. 7.4 Ratio functions with respect to c1 to c4 respectively (Jing et al. 2008d)
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• For system (7.15a,b), the nonlinear parameters c3 and c4 can be designed to be

large enough to achieve a sufficiently small transmitted force since they corre-

spond to passive elements, and several nonlinear terms in the active part can

work together to achieve a better performance.

To demonstrate further the advantage of the OFRF based analysis and to show

more clearly the effect on the system output spectrum from several nonlinear

parameters, the OFRF with respect to c1, c2 and c3, i.e., Y(jω;c1,c2,c3) is derived.
Let c12[0,105],c22[0,6 �105],c32[0,5�105],c4 ¼ �500, and the largest order N of

the output spectrum is determined to be 11, then the parametric characteristic can be

obtained as (c¼[c1,c2,c3])

ψ ¼ 1 c c2 � � � c
11�1=

2


 �h i
¼ 	1, c1, c2, c3, c12, c1c2, c1c3, c22, c2c3, c32,

c1
3, c1

2c2, c1
2c3, c1c2

2, c1c2c3, c2
3, c2

2c3, c2c3
2, c3

3, c1
4, c1

3c2, c1
3c3, c1

2c2
2,

c1
2c2c3, c1

2c3
2, c1c2

3, c1c2
2c3, c1c2c3

2, c1c3
3, c2

4, c2
3c3, c2

2c3
2, c2c3

3, c3
4, c1

5,

c1
4c2, c1

4c3, c1
3c2

2, c1
3c2c3, c1

3c3
2, c1

2c2
3, c1

2c2
2c3, c1

2c2c3
2, c1

2c3
3, c1c2

4,

c1c2
3c3, c1c2

2c3
2, c1c2c3

3, c1c3
4, c2

5, c2
4c3, c2

3c3
2, c2

2c3
3, c2c3

4, c3
5


ð7:24Þ

In order to construct the non-singular matrix Ψ, the series of ρ(N )¼55 different

points c¼[c1,c2,c3] in ∂SC¼{c¼[c1,c2,c3]|c12[0,1],c22[0,6],c32[0,5]} can be

obtained by using a simple stochastic-based searching method. In simulations, it is

noticed that is easy to find such a series of points that det(Ψ) 6¼0. For example, a

series of points c¼[c1,c2,c3] are illustrated in Fig. 7.5, and it can be obtained in this
case that det(Ψ)¼0.08608811188201. It can be seen from simulations that it is easy

to find a non-singular matrix Ψ with a proper inverse.
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Fig. 7.5 A series of 55 points c¼[c1,c2,c3] by random generation in {[0,1], [0,6], [0,5]} where the

y-axis is the value of different parameters and the x-axis is the number of different point in the

series (Jing et al. 2008d)
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Then following the same procedure as demonstrated above, the OFRF Y(jω;c1,
c2,c3) in this case can be obtained. The results are shown in Figs. 7.6 and 7.7, and

the following points can be summarized.

• By using the OFRF, the output spectrum can be plotted and analyzed under

different combinations of the nonlinear parameters c1, c2 and c3. This provides a

straightforward understanding of the relationship between system output spec-

trum and model parameters which define nonlinearities.

• The OFRF varies with different values of c1, c2 and c3. The effect on the output

spectrum from any two nonlinear terms is not necessarily the simple combina-

tion of the contributions from each term respectively. Thus the parameters can

be analyzed in order to obtain the best output frequency response performance.

The OFRF provides a useful basis for this kind of analysis and optimization.

From the discussions above, it can be concluded that the OFRF based analysis

provides a novel, effective and useful approach to the analysis and design of

nonlinear systems in the frequency domain.

Fig. 7.6 Output spectrum with respect to c1, c2 and c3 (Jing et al. 2008d)
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7.4 Conclusions and Discussions

The OFRF based analysis for nonlinear Volterra systems is discussed and demon-

strated in this chapter. The OFRF based analysis provides a novel and effective

approach to the analysis and design of nonlinear systems in the frequency domain

by using the explicit relationship between the system output frequency response

and model parameters. The OFRF is characterized by its parametric characteristics

Fig. 7.7 Output spectrum with respect to any two combinations of c1, c2 and c3 (Jing et al. 2008d)
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multiplied with an associated complex valued frequency dependent function vector.

Thus instead of the direct analytical computation of the OFRF, the proposed

method simplifies the computation of the OFRF by splitting the computation

procedure into two parts— the one is the computation of the parametric character-

istics of the OFRF, which is analytical in the determination of the relationship

between the output spectrum and model parameters, and simpler to be carried out,

and the other is the determination of the complex valued frequency dependent

function vectors, which are obtained by using the Least square method. Some

fundamental results, techniques, and a general procedure for the determination of

the OFRF for a given NDE or NARX model subjected to any specific input signal

are provided. Although the proposed method needs ρ(N ) simulation data for the

numerical method of Process C, and the OFRF obtained by the proposed method is

not analytical with respect to the input signal and frequency variants at present, the

case study for a simple mechanical system shows that the OFRF based analysis is a

useful approach to the analysis and design of nonlinear systems in the frequency

domain.
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Chapter 8

Determination of Nonlinear Output

Spectrum Based on Its Parametric

Characteristics: Some Theoretical Issues

8.1 Introduction

Volterra-type nonlinear systems represent a considerably large class of nonlinear

systems, and have been extensively applied in various engineering practice. As an

important extension of traditional transfer function theory of linear systems, an

important concept, referred to as the GFRF, initiates the frequency domain analysis

and design of nonlinear systems. The GFRFs for a parametric nonlinear system

described by a NDE or NARX model are given in Chap. 2, and nonlinear output

frequency response are discussed in Chaps. 3, 6 and 7.

The output frequency response function (OFRF) of nonlinear systems is shown

to be a polynomial function of model parameters (Chaps. 6 and 7). This reveals an

explicit relationship between system output spectrum and model parameters, and

consequently the system output frequency response can be studied in terms of any

model parameters of interest subject to any input signals. This can greatly facilitate

the analysis and design of nonlinear output response (or behavior) of nonlinear

systems in the frequency domain. In order to perform an OFRF-based analysis for a

nonlinear system, the OFRF can be analytically determined. Usually, this can be

done by using the recursive algorithm in Chap. 2 to compute the GFRFs, then using

the result in Chap. 6 (and also Chap. 11) to analytically obtain the output spectrum,

and finally expressing the output spectrum to a polynomial form in terms of model

parameters of concern. However, it can be seen that, the process above is very

computationally intensive especially when the involved Volterra order is larger

than 5.

To solve this problem, the detailed polynomial structure of the OFRF for up to

any order in terms of any model parameters can be obtained by using the results in
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Chaps. 6 and 7. Then if a series simulation or experimental data are collected, a

numerical method may be adopted to determine the OFRF as discussed before. This

can reduce the computational complexity as mentioned. However, the problem is,

whether the analytical parametric relationship of the OFRF with respect to any

model parameters can always be explicitly determined by using this numerical

method with a possible specially-designed simulation or experimental data. To this

aim, this study showed that, based on the parametric characteristics of the OFRF,

the analytical parametric relationship of the OFRF up to any order and every

specific order of the OFRF can all be determined accurately by using a simple

Least Square method (when there is no data noise and measurement error). Practical

methods to generate a special series of values for the parametric characteristic

vector are discussed such that a unique solution can be obtained. This Chapter not

only solves a fundamental problem for the OFRF-based method for nonlinear

systems, but also provides a theoretical basis for the determination of the analytical

parametric relationship of polynomial structures in dynamic systems. Theoretical

analysis and simulations demonstrate the results.

8.2 The Problem

The input–output relationship of nonlinear systems can be approximated by a

Volterra series up to a sufficiently high order N. Consider Volterra-type nonlinear
systems described by the NDE model (2.11), i.e.,

XM
m¼1

Xm
p¼0

XK
k1, kpþq¼0

cp,q k1; � � �; kpþq

� �Yp
i¼1

dkiy tð Þ
dtki

Ypþq

i¼pþ1

dkiu tð Þ
dtki

¼ 0 ð8:1Þ

where the notations can be referred to Chap. 2.

The OFRF of system (8.1) can be expressed into a polynomial function of model

parameters as studied in Chap. 6 (and will be discussed more in Chap. 11),

Y jωð Þ ¼
Xm1

j1¼0

� � �
XmsN

jsN¼0

γj1���jsN ω;U ωð Þð Þ � cj11,1 :ð Þ� � �cjsNsNsN :ð Þ ð8:2Þ

γj1���jsN ω;U ωð Þð Þ are complex valued functions and c
j1
1,1 :ð Þ� � �cjsNsNsN :ð Þ is a monomial

function of model parameters, which also represents a combination among all the

possible combinations consisting of model parameters from degree 0 to m1 +msN.

Note that (8.2) includes many unnecessary terms c
j1
1, 1 :ð Þ� � �cjsNsNsN :ð Þwhich do actually

not appear in the OFRF. For this reason, the detailed parametric structure of this

polynomial function can be revealed by using the method in Chaps. 4–6 as
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Y jωð Þ ¼
XN
n¼1

Yn jωð Þ ð8:3Þ

Yn jωð Þ ¼ CE Hn jω1, � � �, jωnð Þð Þ � F̂ n jω;U jωð Þð Þ ð8:4Þ

where F̂ n jω;U jωð Þð Þ is a complex valued function vector and has the same

dimension with CE(Hn(jω1, � � �, jωn)). Note that F̂ n jω;U jωð Þð Þ is dependent on

the system linear parameters and input U(jω), which is thereafter denoted by F̂ n

jωð Þ for convenience. CE(Hn(jω1, � � �, jωn)) is referred to as the parametric charac-

teristic of the nth-order GFRF for system (8.1), which is a vector whose elements

are functions of model parameters, and can be recursively determined by

CE Hn jω1, � � �, jωnð Þð Þ ¼ C0,n � �n�1

q¼1
�n�q

p¼1
Cp,q � CE Hn�q�pþ1 �ð Þ� �� �

� �n
p¼2

Cp, 0 � CE Hn�pþ1 �ð Þ� �� �
ð8:5Þ

with terminating condition CE(H1(jωi))¼ 1 or 0. Note that CE is a new operator

with two operations “�” and “�” defined in Chap. 4, and Cp,q represents the p+ qth
degree nonlinear parameter vector, i.e.,

Cp,q ¼ ½cp,q 0; � � �; 0ð Þ, cp,q 0; � � �; 1ð Þ, � � �, cp,q ðK, � � �,KÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþq¼m

�

For convenience, (8.3 and 8.4) can be written as

Y jωð Þ ¼ ψ �Φ jωð ÞT ð8:6aÞ

where

ψ ¼ �N
n¼1

CE Hn jω1, � � �, jωnð Þð Þ ð8:6bÞ

Φ jωð Þ ¼ F̂ 1 jωð ÞT F̂ 2 jωð ÞT � � � F̂ N jωð ÞT
� � ð8:6cÞ

At this stage, in order to obtain the analytical parametric relationship of the OFRF

described by (8.6a–c) with the known polynomial structure in terms of any model

parameters for system (8.1) under any specific input, the complex-valued frequency

function Φ(jω) should be determined. As mentioned, the analytical computation of

Φ(jω) can be conducted by using the results in Chap. 3–6, Jing et al. (2008e) and

Jing and Lang (2009a), but it is very computationally intensive. However, this can

alternatively be achieved by using the following method as discussed in Chap. 7,

referred to here as Algorithm A:
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(A1) Choose ρ series of different values of the model parameters to form a series of

vectors ψ1 � � �ψρ;

(A2) At a given frequency ω, actuate the system using the same input under the

different values of the nonlinear parameters ψ1 � � �ψρ, then collect the time

domain output y(t) for each case. Finally, obtain a series of output frequency

response Y(jω)1 � � � Y(jω)ρ at the frequency ω by the FFT.

(A3) It follows from Step (A2)

Ψ �Φ jωð ÞT ¼
ψ1

ψ2

⋮
ψρ

2
664

3
775 �Φ jωð ÞT ¼

Y jωð Þ1
Y jωð Þ2
⋮

Y jωð Þρ

2
664

3
775 ¼: YY jωð Þ

Hence,

Φ jωð ÞT ¼ ΨTΨ
� ��1 � YY jωð Þ ð8:7Þ

From the algorithm above, it can be seen that ρ should at least be equal to the

dimension of ψ i and Ψ¼ [ψT
1 , � � �,ψT

ρ ]
T should be non-singular in order to achieve a

unique and accurate evaluation for Φ(jω). When all the possible combinations of

parametric monomials involved in (8.2) are considered, it is solvable for this

problem by the algorithm above for any series of different parameter values (See

the detailed in Chap. 7). However, the true polynomial coefficients of the OFRF are

determined by the parametric characteristics �N
n¼1

CE Hn �ð Þð Þ, which is only a part of

the monomials appearing in (8.2) in terms of the model parameters. Hence, the

existence of the solution is not necessarily possible and how to generate a series of

different parameter values is also yet to be solved.

For example, considering a polynomial Y¼ y0 + c1c2y1 + c1c3y2 (ci’s are param-

eters and yi’s are yet to be determined), it needs at least two different values of (c1,
c2, c3) to obtain y1 and y2, i.e.,

Y 1ð Þ � y0
Y 2ð Þ � y0

	 

¼ c1 1ð Þc2 1ð Þ c1 1ð Þc3 1ð Þ

c1 2ð Þc2 2ð Þ c1 2ð Þc2 2ð Þ
	 


y1
y2

	 


If let (c1, c2, c3)¼ (0,1,2) and (0,2,1), then the coefficient matrix is
0 2

0 2

	 

. In this

case, the solution is not unique for y1 and y2.
This problem may be solved if the number ρ [in Step (A1)] of different values of

(c1, c2, c3) is increased. However, this does not guarantee the existence of the

solution and will increase the simulation or experimental burden in Step (A2).

Therefore, the problems are, given the detailed polynomial structure in terms of any
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model parameters, whether the polynomial (8.6a–c) can be solved by the algorithm

above when ρ equals the dimension of ψ i, and whether the complex valued function

vectors F̂ n jωð Þ for n¼ 1 to N can accurately be obtained and every specific

component of the OFRF, i.e., Yn(jω) for n¼ 1 to N, can also be determined from

these complex valued function vectors. These are motivations of this study.

It shall be noted that the accurate determination of the polynomial structure of

the OFRF in terms of any model parameters can effectively reduce the computation

and simulation (experimental) burden in the determination process for the OFRF.

This will be further discussed in the following section. Regarding the parametric

characteristics of the OFRF, consider a special but frequently encountered case in

practice for system (8.1) as follows, which can further simplify the determination of

the OFRF structure.

Proposition 8.1 Consider the input function for system (8.1) to be u(t)¼Fd sin

(Ωt). The parametric characteristics of the system OFRF at the driving frequency Ω
is

CE Y jΩð Þð Þ ¼ �
N�1=2b c

n¼0
CE Y2nþ1 jΩð Þð Þ

CE Y2nþ1 jΩð Þð Þ ¼ CE H2nþ1 �ð Þð Þ ð8:8Þ

where b � c is to take the integer part.

Proof See the proof in Sect. 8.6A. □

In the practical analysis of a nonlinear system, a harmonic excitation like u(t)¼
Fd sin(Ωt) is often adopted. In these cases, Proposition 8.1 provides a useful

guidance for the accurate computation of the OFRF structure.

8.3 Solution Existence Theorem

In order to solve the problems mentioned above, some preliminary results are

discussed first, which are summarized in Lemmas 8.1–8.5 below and demonstrate

some important properties for the parametric characteristics of the OFRF and

Algorithm A. The following Lemma 8.1 is an important result about the parametric

characteristics of the GFRFs, which is Proposition 5.1 in Chap. 5.

Lemma 8.1 The elements of CE(Hn(jω1, � � �, jωn)) include and only include the

nonlinear parameters in C0n and all the nonlinear parameter monomials in Cp,q

�Cp1,q1 � Cp2,q2 � � � � � Cpk ,qk for 0� k� n� 2, where the subscripts satisfy
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pþ qþ
Xk
i¼1

pi þ qið Þ ¼ nþ k

1 � p � n� k, 2 � pþ q � n� k, 2 � pi þ qi � n� k

9>=
>; ð8:9Þ

According to Lemma 8.1, for example, a parameter monomial like (c1,1(�))2c2,0(�)
c0,2(�) must appear in the zth-order GFRF, where Z¼ 2 � (1 + 1) + 2 + 2� 3¼ 5. CE
(Hn(jω1, � � �, jωn)) can be obtained directly from model parameters according to the

Lemma 8.1 without recursive computation. This can be carried out by counting

k from 0 to n�2, then write out all the monomials satisfying the corresponding

conditions in Lemma 8.1 and remove all the repetitive terms (see Definition 8.1

below). Based on these results, the following results can be obtained.

Lemma 8.2 (1) CE(Hn(jω1, � � �, jωn)) includes and only includes all the nonlinear

parameters of degree from 2 to n. (2) If p> 0, (cp,q(�))k+ 1 is an element of CE
(Hn(jω1, � � �, jωn)) with k ¼ n�p�q

pþq�1
.

Proof See the proof in Sect. 8.6B. □

Lemma 8.2 shows which degree of nonlinear parameters have contribution to

Hn(jω1, � � �, jωn). From Lemma 8.2, it can also be seen that for the case that only

one parameter cpq(.) 6¼ 0 and all the other nonlinear parameters are zero

for model (8.1), the parametric characteristic of the nth-order GFRF is

CE Hn jω1, � � �, jωnð Þð Þ ¼ cp,q �ð Þ� � n�1
pþq�1 if (n> p+ q and p> 0 and (n�1)/(p+ q�1)

is an integer) or (n¼ p+ q), else CE(Hn( jω1, � � �, jωn))¼ 0. This will be used later.

For convenience, let

int a1; b1; a2; b2; � � �; ak; bkð Þ ¼ a110
2k þ b110

2k�1 þ a210
2k�2 þ b210

2k�3

þ � � � þ ak10
2 þ bk ð8:10Þ

where a1, b1, a2, b2 � � � ak, bk are some non-negative integer numbers.

Definition 8.1 Consider monomials cp1,q1 k1� � �kp1þq1

� � � cp2,q2 k1� � �kp2q2
� �� � �cpk ,qk

k1� � �kpkqk
� �

and ca1,b1 k1� � �ka1þb1ð Þ � ca2,b2 k1� � �ka2þb2ð Þ� � �cak ,bk k1� � �kakþbkð Þ. If

there exists a permutation for the subscripts of cp1,q1 �ð Þ � cp2,q2 �ð Þ� � �cpk ,qk �ð Þ, i.e.,
( p

0
1, q

0
1)( p

0
2, q

0
2) � � � ( p

0
k, q

0
k), such that

int p
0
1q

0
1p

0
2q

0
2� � �p

0
kq

0
k

� �
int a1b1a2b2� � �akbkð Þ ¼ 1 and

int k1� � �kp0
1
þq0 1

k1� � �kp0
2
q
0
2
� � �k1� � �kp0

k
q
0
k

� �
int k1� � �ka1þb1k1� � �ka2þb2 � � �k1� � �kakþbkð Þ ¼ 1

then the two monomials are repetitive, otherwise non-repetitive.

Remark 8.1 According to Definition 8.1, c1,1(1, 1) � c2,0(1, 1) and c2,0(1, 1)
c1,1(1, 1) are repetitive, but c1,1(1, 1) � c2,0(1, 1) and c2,0(1, 1)c1,1(1, 1)

2 are
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non-repetitive. By the definition of the CE operator, there are no repetitive terms in

the parametric characteristic CE(Hn( jω1, � � �, jωn)).

Lemma 8.3 There are no repetitive elements between the parametric characteris-

tics of any two different order GFRFs when all the nonlinear parameters are

considered. This is denoted by

CE(Hn( jω1, � � �, jωn))^CE(Hm( jω1, � � �, jωm))¼ 0 for m 6¼ n.

Proof See the proof in Sect. 8.6C. □

Remark 8.2 Although there are always no repetitive terms in the parametric

characteristics of the same order OFRF, there may be repetitive terms between

the parametric characteristics of different order GFRFs in practices when there are

only part of the model parameters are interested for an OFRF analysis. Lemma 8.3

shows that when all the nonlinear parameters are interested, then there must be no

repetitive elements between the parametric characteristics of different order

GFRFs. When there are no repetitive terms between different order GFRFs, (8.4)

can be used to determine every specific component of the OFRF, i.e., Yn(jω) for
n¼ 1,. . .,n.

The following lemma is a fundamental result for the proof of Theorem 8.1

below.

Lemma 8.4 Consider equation eY¼ ζ �φT, where ζ 2ℜn whose elements are

monomials of parameters c1,c2,. . .,cm taking values in a parameter space SC
which is a subspace of ℜm, φ is a nonzero complex-valued vector in Cn and is

also independent of ζ. If there exist n points (c1(1),c2(1),. . .,cm(1)]. . . (c1(n),
c2(n),. . .,cm(n)) in SC such that

ζ c1 ið Þ,c2 ið Þ, ...,cm ið Þð Þ


 � φT ¼ 0 for i¼ 1 to n

and

ζ c1 ið Þ,c2 ið Þ, ...,cm ið Þð Þ


 for i¼ 1 to n is a base of ℜn

then (p1) φ¼ 0;

(p2) ζ �φT¼ 0 for any ζ 2ℜn;

(p3) ζ �φT¼ 0 for any point in the parameter space SC.

Proof See the proof in Sect. 8.6D. □

All the nonlinear parameters from degree 2 to N of the model (8.1) form a

parameter vector C inℜσ1 , where σ1 denotes the dimension of C which is a function

of N. Let SC denote a subspace of ℜσ1 around the zero point and be the definition

domain of C. Recalling (8.6b), it is from Lemma 8.2 that elements of ψ are

monomial functions of elements of C. Let σ2 denotes the dimension of ψ . It should
be noted from Remark 8.1 and Lemma 8.3 that there are no repetitive elements in ψ .
That is, each element in ψ is a non-repetitive monomial function of some nonlinear

parameters in C. The following lemma can be obtained, which is an important result

for the accurate and unique determination of the OFRF by using Algorithm A and

shows that there exists a series points in the parameter space SC for the parametric
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characteristic vector of the OFRF such that a non-singular matrixΨ¼ [ψT
1 , � � �,ψT

ρ ]
T

required in Algorithm A can be generated.

Lemma 8.5 There exist σ2 points C(1). . .C(σ2) in SC, such that ψ |C(i) for i¼ 1 to σ2
form a basis of ℜσ2 .

Proof See the proof in Sect. 8.6E. □

Now consider (8.6a–c) and Algorithm A. Note from Jing et al. (2008e) and Jing

and Lang (2009a) that for n¼ 1, F̂ 1 jωð Þ in (8.6c) represents the frequency response
of the linear part of the system, i.e., F̂ 1 jωð Þ ¼ H1 jωð ÞU jωð Þ or Fd

2
H1 jω1ð Þ for the

general input or multi-tone input respectively. Based on Lemmas 8.1–8.5, the

following theorem can address the solution existence problem of Algorithm A.

Theorem 8.1 Consider Volterra systems described by NDE model (8.1) which has

a parameter space SC and subject to a specific input function u(t). The maximum

order of the Volterra series is N, and the truncation error is denoted by o(N + 1).

Suppose o(N + 1) ¼0, then there exist a series of points in SC, i.e., C(1),C(2) . . .
C(σ2), such that the analytically parametric relationship for the system OFRF can be

determined as

eY jωð Þ ¼ ψ � eΦ jωð ÞT ð8:11aÞ

with zero error in SC, and in case that SC includes all the nonlinear parameters of

model (8.1)

eYn jωð Þ ¼ CE Hn �ð Þð Þ � eFn jωð ÞT ð8:11bÞ

with zero error in SC, where

eΦ jωð ÞT ¼ eF1 jωð Þ eF2 jωð Þ � � � eFN jωð Þ
� �T ¼ Φ jωð ÞT

¼ ψ C 1ð ÞT


 ψ C 2ð ÞT



 � � � ψ C σ2ð ÞT


� ��T

Y jωð Þ C 1ð Þ


�

Y jωð Þ C 2ð Þ


 � � �Y jωð Þ C σ2ð Þ



 �T ð8:11cÞ

Y( jω)|C(i) is the output frequency response obtained by a simulation or experiment

when the model parameter vector is C(i) and actuated by the specific input u(t).
Considering the truncation error o(N + 1) 6¼ 0, then

e eΦ jωð Þ �Φ jωð Þ
� �

¼ eΦ jωð ÞT �Φ jωð ÞT�� ��
¼ Ψ�1

C 1���σ2ð Þ


 � oNþ1 C 1���σ2ð Þ



�� �� ð8:11dÞ
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e eY jωð Þ � Y jωð Þ
� �

¼ eY jωð Þ � Y jωð Þ�� ��
¼ ψ � Ψ�1

C 1���σ2ð Þ


 � oNþ1 C 1���σ2ð Þ



 � o N þ 1ð Þ�� �� ð8:11eÞ

where, Ψ C 1���σ2ð Þ


 ¼ ψ C 1ð ÞT



 ψ C 2ð ÞT


 � � � ψ C σ2ð ÞT



� �T
,

oNþ1 C 1���σ2ð Þ


 ¼ o N þ 1ð Þ C 1ð Þ



 o N þ 1ð Þ C 2ð Þ


 � � � o N þ 1ð Þ C σ2ð Þ



� �T
Proof See the proof in Sect. 8.6F. □

From Theorem 8.1, it can be seen that, det Ψ C 1���σ2ð Þ


� �

is larger, the error of the

algorithm will be smaller. Theorem 8.1 provides a fundamental result for the

accurate numerical determination of the analytically parametric relationship for

the OFRF and its every specific component. Given the model of a nonlinear system,

to determine the analytically parametric relationship of the system OFRF based on

Theorem 8.1, the following procedure can be followed (Algorithm B):

(B1) Determine the largest nonlinearity order N. Given the system model, the

variation domain SC of the model parameters of interest, the largest

nonlinearity order N needed for an accurate Volterra series approximation

can be obtained by evaluating the truncation error of the series. This can be

done by following the bound evaluation method in Jing et al. (2007a).

(B2) Compute the parametric characteristics of the GFRFs CE(Hn(jω1, � � �, jωn))

from 2 to N according to (8.5) or Lemma 8.1 to obtain ψ ¼ �N
n¼1

CE Hn �ð Þð Þ:
(B3) Choose a series of points in SC for the parameter vector Cwhich consists of all

the parameters of interest, such that ψ |C(i) for i¼ 1 to σ2 is a base of ℜσ2 .

(B4) Using a specific input, actuate the system in simulations under different model

parameters C(i) to obtain Y( jω)|C(i) for i¼ 1 to σ2.
(B5) Then the analytical parametric relationship for the OFRF and its different

components can all be determined according to (8.11a–e) with respect to the

specific input.

Remark 8.3 After the simulation (or experimental) data are collected according to

the procedure above, the computation burden are only those in (8.11c). Compared

with the analytical determination of the OFRF structure by using the recursive

algorithm in Jing et al. (2008e) or Chap. 11, the parametric characteristic analysis

facilitates the determination of the parametric relationship for the OFRF. Moreover,

it can be seen that there are only σ2 simulations needed for the collection of Y(jω)|C(i) in
this algorithm. Thus the simulation (or experimental) burden is also greatly reduced.

For example, suppose the largest nonlinearity order N¼ 3 and only cp,q(1 � � � 1) is
nonzero in Cp,q, then according to Lemma 8.1 or (8.5), it can be obtained that
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CE H1 jω1ð Þð Þ ¼ 1, CE H2 jω1, jω2ð Þð Þ ¼ C0,2 � C1,1 � C2,0

CE H3 jω1, � � �, jω3ð Þð Þ
¼ C0,3 � C1,1 � C0,2 � C1,1

2 � C1,1 � C2,0 � C2,1�
C1,2 � C2,0 � C0,2 � C2,0

2 � C3,0

¼ C0,3 � C1,1 � C0,2 � C1,1
2 � C1,1 � C2,0 � C2,1�

C1,2 � C2,0 � C0,2 � C2,0
2 � C3,0

Therefore, σ2 ¼ DIM ψð Þ ¼ DIM �N
n¼1

CE Hn �ð Þð Þ
� �

¼ 13, that is, only 13 simula-

tions are needed. According to the method in Jing et al. (2008e) or Chap. 11, all the

parameters from power 0 to 2 should be counted. Note that there are seven different

parameters, thus there are totally 37 cases, which means that there should be 37

simulations needed. Especially, based on the parametric characteristics, every

specific component of the OFRF can be determined readily after the OFRF is

obtained, while this cannot be obtained by analytical computation. Therefore, the

results developed in this paper facilitate the application of the OFRF based method

for the frequency domain analysis of nonlinear systems.

Remark 8.4 To conduct the procedure in Algorithm B in order to determine the

OFRF, a problem may be: how to find a proper series of the parameter vector in SC,

i.e., C(1),C(2) . . .C(σ2), such that ψ C 1ð ÞT


 ψ C 2ð ÞT



 � � � ψ C σ2ð ÞT


� �

is

non-singular. An improper series may result in the matrix to be ill-conditioned or

even singular. To solve this problem, a simple stochastic searching method as given

in the following or other searching methods such as GA can be used since the series

of different values of the parameter vector exists from Lemma 8.5. For example

(Algorithm C),

(C1) C(1),C(2) . . .C(σ2) can be generated randomly in SC or a smaller subspace SC
(where SC � SC ) according to a distribution function, or each parameter in

C can be generated randomly in its own variation domain (or a sub-domain)

according to a distribution function;

(C2) After a series of points are obtained, the determinate of the matrix

ψ C 1ð ÞT


 ψ C 2ð ÞT



 � � � ψ C σ2ð ÞT


� �

can then be computed;

(C3) Repeat this process until find a series such that the determinate of

ψ C 1ð ÞT


 ψ C 2ð ÞT



 � � � ψ C σ2ð ÞT


� �

is a satisfactory value.

This will be demonstrated in the next section.
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8.4 Simulations

In this section, an example is provided to demonstrate the theoretical results above.

Consider a nonlinear system (Fig. 8.1)

240€x ¼ �16, 000x� f x; _xð Þ _x þ u tð Þ ð8:12aÞ

where u(t)¼ 100 sin(8.1t), and f(x, ẋ)¼ 296 + c1ẋ
2 + c2ẋx. The output is

y ¼ 16, 000xþ f x; _xð Þ _x ð8:12bÞ

Equation (8.12a) represents the transmitted force from u(t) to the ground, and is a

simple case of system (8.1) with M¼ 3, K¼ 2, c10(2)¼ 240, c10(1)¼ 296C10(0)¼
16, 000 c30(111)¼ c1, c30(110)¼ c2, c01(0)¼� 1, and all the other parameters are

zero. This is a model of the following spring-damping system with nonlinear

damping f(x, ẋ)¼ 296 + c1ẋ
2 + c2ẋx.

In system (8.12a,b), only nonlinear parameters in C30 are not zero, i.e.,

C30 ¼ c30 110ð Þ c30 111ð Þ½ � ¼ c2 c1½ �

In this case, it can be shown from (8.5) that

CE(H2k( jω1, � � �, jωn))¼ 0 and CE(H2k+ 1(jω1, � � �, jωn))¼Ck
30, for k¼ 1,2, 3,. . .

This can also directly be obtained from Lemma 8.2. From Proposition 8.1,

CE X jωð Þð Þ ¼ �
N�1=

2

� �
n¼0

CE H2nþ1 jω1, � � �, jωnð Þð Þ

¼ 1� C30 � C2
30 � C3

30 � � � � � C
N�1=

2

� �
30 ð8:13aÞ

That is

f(.)L x(t)

u(t)

m=240

Fig. 8.1 A spring-damping

system with nonlinear

damping
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X jωð Þ ¼ 1� C30 � C2
30 � C3

30 � � � � � C
N�1=

2

� �
30

� �

� F1 jωð ÞT F2 jωð ÞT � � � FN jωð ÞT
h iT

ð8:13bÞ

CE(X( jω))can readily be computed according to (8.13a). For example, for N¼ 5

CE X jωð Þð Þ ¼ 1� C30 � C2
30 � C3

30 � � � � � C
N�1=

2

� �
30

¼ 1, c2, c1, c2
2, c2c1, c1

2, c2
3, c2

2c1, c2c1
2, c1

3, c2
4, c2

3c1, c2
2c1

2,
�
c2c1

3, c1
4, c2

5, c2
4c1, c2

3c1
2, c2

2c1
3, c2c1

4, c1
5� ð8:13cÞ

Therefore an explicit analytical expression for the OFRF X(jω) for up to the fifth

order in terms of the system nonlinear parameters c1 and c2 are obtained as given by
(8.13b,c). It can be shown that CE(Y( jω))¼CE(X( jω))CE(Y( jω))¼CE(X( jω))
(Chap. 6). Therefore

CE Y jωð Þð Þ ¼ �N
n¼1

CE Hn jω1, � � �, jωnð Þð Þ

¼ 1� C30 � C2
30 � C3

30 � � � � � C
N�1=

2

� �
30 ¼: ψ ð8:14aÞ

and

Y jωð Þ ¼ ψ � F1 jωð ÞT F2 jωð ÞT � � � FN jωð ÞT
h iT

ð8:14bÞ

To find a proper series of the points CE(Y( jω)) in SC, for example 0� c1, c2� 5, the

Algorithm C mentioned in Remark 8.4 can be used. In simulations, it is easy to find

a proper series. This verifies the result of Theorem 8.1. Locations of a series of the

points C[i]¼ (c1[i],c2[i]) from i¼ 1 to 21 is demonstrated in Fig. 8.2, which are

generated according to a uniform distribution. In this case, the determinate of the

matrix ψ C 1ð ÞT


 ψ C 2ð ÞT



 � � � ψ C 21ð ÞT


� ��1 ¼ 0:9321875125788.

For clarity of illustration, consider a much simpler case of c2¼ 0, i.e., C30¼ c1
(More complicated cases can be referred to Chap. 7). When N¼ 21, it can be

obtained from (8.14a,b) that CE(Y( jω))¼ [1 c1 c21 c31 � � � c101 ], and

consequently
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Y jωð Þ ¼ 1 c1 c21 c31 � � � c101
� � � F1 jωð Þ F2 jωð Þ � � � F11 jωð Þ

h iT

Choose 11 different values of c1, Fi jωð Þ can be obtained according to Theorem 8.1

as

F jωð Þ ¼
1 c1 1ð Þ � � � c101 1ð Þ
1 c1 2ð Þ � � � c101 2ð Þ
⋮ ⋮ ⋱ ⋮
1 c1 11ð Þ c101 11ð Þ

2
664

3
775
�1

�
Y jωð Þ c1 1ð Þ




Y jωð Þ c1 2ð Þ




⋮

Y jωð Þ c1 11ð Þ




2
664

3
775 ð8:15Þ

It can be seen that the parameter matrix is a Vandermonde matrix. Thus if c1(i) 6¼
c1( j) for i 6¼ j, it is non-singular. In order to determineFi jωð Þ in the above equation,
simulation studies are carried out for 11 different values of c1 as c1¼ 0.5, 50, 100,

500, 800, 1,200, 1,800, 2,600, 3,500, 4,500, 5,000, to produce 11 corresponding

output responses. The FFT results of these responses at the system driving fre-

quency ω0¼ 8.1 rad/s were obtained as

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

c1

c2

Fig. 8.2 A series of points (c1[i],c2[i]) from i¼ 1 to 21 (Jing et al. 2009d)
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YY ¼ �
3:355387229685395eþ 002ð Þ � 9:144123368552089eþ 000i,

3:311400634432650eþ 002ð Þ � 8:791324203084603eþ 000i,

3:270304131496312eþ 002ð Þ � 8:453482697096458eþ 000i,

3:020996757260479eþ 002ð Þ � 6:232073185455284eþ 000i,

2:889224705331136eþ 002ð Þ � 4:937579404570077eþ 000i,

2:753247618357106eþ 002ð Þ � 3:513785421406298eþ 000i,

2:599814606290563eþ 002ð Þ � 1:799344961942028eþ 000i,

2:449407272303421eþ 002ð Þ � 7:146831574203648e� 003i,

2:322782654921158eþ 002ð Þ þ 1:587748875652816eþ 000i,

2:213884644417550eþ 002ð Þ þ 3:022652971105967eþ 000i,

2:168038059608033eþ 002ð Þ þ 3:644341792781596eþ 000i
�

Then from (8.15), F jω0ð Þ was determined as

F jω0ð Þ ¼ �
3:355850061999765eþ 002 þ 9:147787717329777eþ 000i,

� 0:09260545518186� 0:00733079515829i
7:802545290190465e� 005 þ 4:196941358069068e� 006i

�8:171412395831490e� 008 � 3:472552369765044e� 009i

7:983194136013857e� 011 þ 2:975659825236403e� 012i

�6:014819558373321e� 014 � 2:095287675780629e� 015i

3:139462445085954e� 017 þ 1:055716258995395e� 018i

�1:065920417366710e� 020 � 3:515136904764629e� 022i

2:214834610655676e� 024 þ 7:220197982843919e� 026i

�2:536564081104798e� 028 � 8:209302192093296e� 030i

1:219975622824295e� 032 þ 3:929425356306088e� 034i
�
:

Consequently, the parametric relationship for the OFRF of system (8.12a,b)

subject to the input u(t)¼ 100 sin(8.1t) at frequency ω0¼ 8.1 was obtained as

Y jω0ð Þ ¼ 1 c1 c21 c31 � � � c101
� �
� F1 jω0ð Þ F2 jω0ð Þ � � � F11 jω0ð Þ
h iT

ð8:16Þ

For each order component of the OFRF, it can be obtained from Theorem 8.1 and

Proposition 8.1 that for n¼ 1,2,3,. . .

Y2n�1 jω0ð Þ ¼ cn1 � Fn jω0ð Þand Y2n jω0ð Þ ¼ 0and ð8:17Þ

From (8.16), the effect of the nonlinear parameter c1 on the system output fre-

quency response at frequency ω0 can readily be analysed. Figure 8.3 shows a

comparison of the magnitudes of the output spectrum evaluated by (8.16) and

their real values under different values of the nonlinear parameter c1. Note that

the error between the computed values and the real values is very small. Further-

more, the frequency domain analysis and design of system (8.12a,b) to achieve a
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desired output response y(t) can now be conducted from (8.16). Given a desired

output spectrum Y* at frequency ω0, the nonlinear parameter c1 can be optimized

using (8.16) such that the difference |Y( jω0)� Y*| can be made as small as possible.

8.5 Conclusions

This chapter shows that, the analytical parametric relationship described by the

OFRF with a polynomial structure in terms of any model parameters of interest for

Volterra systems given by a NDEmodel can be determined explicitly up to any high

order by using a simple Least Square method with some simulation or experimental

data, and every specific component of the OFRF can also be determined effectively.

Moreover, it should be noted that the main result established in Theorem 8.1 is not

only applicable for the OFRF based method, but also has significance for the

determination of any analytical parametric relationship for this kind of system

polynomial functions by using numerical methods.

To fully understand the results of this chapter, the readers can refer to Jing

et al. (2008e, 2009d), Jing and Lang (2009a), Chen et al. (2013), and also other

corresponding chapters.

0 100 200 300 400 500 600 700 800 900 1000
280
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300

310

320

330

340
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|Y
|

Real magnitude of the output spectrum
Magnitude valued by equation (16)

Fig. 8.3 Relationship between the output spectrum and nonlinear parameter c1 (Jing et al. 2009d)
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8.6 Proofs

A. Proof of Proposition 8.1

When the input function is u(t)¼Fd sin(Ωt), it can be obtained from (3.3) in Chap. 3

that

ωkl ¼ klΩ, kl¼	 1 and F ωklð Þ ¼ �jklFd, for l¼ 1, � � �, n
From the results in Sect. 3.3 of Jing et al. (2006), it can be obtained in this case

Fi jΩð Þ ¼ 1

2i

X
ωk1

þ���þωki
¼Ω

f i jωk1 , � � �, jωkið Þ � F ωk1ð Þ� � �F ωkið Þ

Note that when i¼ 2n + 1, the conditionωk1 þ � � � þ ωk2nþ1
¼ Ωmeans that there are

n frequenciesωkl ¼ �ω and n + 1 frequenciesωkl ¼ ω. Thus, when i¼ 2n,ωk1 þ � � �
þωk2n 6¼ Ω for any cases. This shows that f 2n jωk1 , � � �, jωk2nð Þ ¼0, which further

yields thatF2n jΩð Þ¼0 for n¼ 1,2,3,. . .. Therefore, the parametric characteristics of

the OFRF in this case can be written as (8.7). This completes the proof. □

B. Proof of Lemma 8.2

(1) Consider a parameter cp,q(�). If p + q¼ n, it is from Lemma 8.1 that cp,q(�) is an
element of CE(Hn(jω1, � � �, jωn)). If p + q> n, this parameter cannot appear in

Hn(jω1, � � �, jωn), since the conditions in Lemma 8.1, e.g.,

pþ qþ
Xk
i¼1

pi þ qið Þ ¼ nþ k, cannot be satisfied. If p + q< n, then there

must exist a k 
 0 such that pþ qþ
Xk
i¼1

pi þ qið Þ ¼ nþ k. That is, cp,q(�)
must appear in a monomial which is an element of CE(Hn( jω1, � � �, jωn)).

(2) For (cp,q(�))k+1, it is from Lemma 8.1 that pþ qþ
Xk
i¼1

pþ qð Þ ¼ nþ k, which

yields k¼ n�p�q
pþq�1

. This completes the proof. □

C. Proof of Lemma 8.3

This can be proved by contradiction. Suppose there is a parameter monomial cp,q
�ð Þcp1,q1 �ð Þcp2,q2 �ð Þ� � �cpk ,qk �ð Þ which is not only an element of CE(Hn( jω1, � � �, jωn))

but also an element of CE(Hm( jω1, � � �, jωm)), where m 6¼ n. Then from Lemma 8.1,

it can be derived that pþ qþ
Xk
i¼1

pi þ qið Þ ¼ nþ k and

pþ qþ
Xk
i¼1

pi þ qið Þ ¼ mþ 1þ k. Thus n + k¼m+k, i.e., n¼m. This is a con-

tradiction. The Lemma is proved. □

148 8 Determination of Nonlinear Output Spectrum Based on Its Parametric. . .

http://dx.doi.org/10.1007/978-3-319-12391-2_3


D. Proof of Lemma 8.4

Since ζ c1 ið Þ,c2 ið Þ, ...,cm ið Þð Þ


 for i¼ 1 to n is a base ofℜn, then for any ζ 2ℜn there exist

a series of real numbers α1 � � � αn, such that

ζ ¼ α1ζ c1 1ð Þ,c2 1ð Þ, ...,cm 1ð Þð Þ


 þ � � � þ αnζ c1 nð Þ,c2 nð Þ, ...,cm nð Þð Þ




which yields

ζ � φT ¼ α1ζ c1 1ð Þ,c2 1ð Þ, ...,cm 1ð Þð Þ


 � φT þ � � � þ αnζ c1 nð Þ,c2 nð Þ, ...,cm nð Þð Þ



 � φT ¼ 0

(p2) is proved. (p1) is equivalent to (p2). For any point in the parameter space SC,
there is a corresponding vector ζ 2ℜn, thus it follows from (p2) that ζ �φT¼ 0.

(p3) is proved. This completes the proof. □

E. Proof of Lemma 8.5

To proceed with the proof of this lemma, two special cases are studied first.

Case 1. Consider two different monomials cr11 c
r2
2 � � �crmm and cl11 c

l2
2 � � �clmm , where c1,

c2, . . ., cm are parameters in C, and r1,r2,. . .,rm, l1,l2,. . .,lm are non-negative integers.

There exists at least one 1� i�m for the two monomials satisfying ri 6¼ li. Without

speciality, suppose r1 6¼ l1. Then suppose for any points (c1, c2, . . ., cm) satisfying

ci 6¼ 0, there is a nonzero constant β, such that cl1�r1
1 cl2�r2

2 � � �clm�rm
m ¼ β. Letting c1

¼ c1

�
β

1
l1�r

gives cl1�r1
1 cl2�r2

2 � � �clm�rm
m ¼ 1 for any points (c1, c2, . . ., cm) satisfying

ci 6¼ 0. This further yields l1 � r1ð Þlgc1 þ l2 � r2ð Þlgc2 þ � � � þ lm � rmð Þlgcm ¼ 0

for any points (c1, c2, . . ., cm) satisfying ci 6¼ 0. This shows that ri¼ li, which results

in a contradiction. Therefore, cl1�r1
1 cl2�r2

2 � � �clm�rm
m cannot be a nonzero constant. For

any two points (c1(1), c2(1), . . ., cm(1)) and (c1(2), c2(2), . . ., cm(2)) such that

cl1�r1
1 1ð Þcl2�r2

2 1ð Þ� � �clm�rm
m 1ð Þ 6¼ cl1�r1

1 2ð Þcl2�r2
2 2ð Þ� � �clm�rm

m 2ð Þ

it can be obtained by equivalent row transforms that

cr11 1ð Þcr22 1ð Þ� � �crmm 1ð Þ� cl11 1ð Þcl22 1ð Þ� � �clmm 1ð Þ
cr11 2ð Þcr22 2ð Þ� � �crmm 2ð Þ cl11 2ð Þcl22 2ð Þ� � �clmm 2ð Þ

	 

) 1 cl1�r1

1 1ð Þcl2�r2
2 1ð Þ� � �clm�rm

m 1ð Þ
1 cl1�r1

1 2ð Þcl2�r2
2 2ð Þ� � �clm�rm

m 2ð Þ
	 


) 1 cl1�r1
1 1ð Þcl2�r2

2 1ð Þ� � �clm�rm
m 1ð Þ

0 cl1�r1
1 2ð Þcl2�r2

2 2ð Þ� � �clm�rm
m 2ð Þ� cl1�r1

1 1ð Þcl2�r2
2 1ð Þ� � �clm�rm

m 1ð Þ
	 


It is obvious that the matrix is non-singular.

Case 2. Consider the same two different monomials cr11 c
r2
2 � � �crmm and cl11 c

l2
2 � � �clmm

as Case 1. Let a ¼ cr11 c
r2
2 � � �crmm þ a1, and b ¼ cl11 c

l2
2 � � �clmm þ b1, where a1 and b1 are

two constant real numbers, and suppose a1 6¼ 0 without speciality. Suppose for any

points (c1, c2, . . ., cm), there is a nonzero constant β, such that b=a � β, which gives

8.6 Proofs 149



cl11 c
l2
2 � � �clmm þ b1 � βcr11 c

r2
2 � � �crmm þ βa1

If b1¼ βa1, then it is the case 1. Consider the case b1 6¼ βa1. There must be some

points (c1, c2, . . ., cm) such that cr11 c
r2
2 � � �crmm ¼ b1�βa1

β . Thus for these points,

cl11 c
l2
2 � � �clmm � 0. This results in a contradiction with cr11 c

r2
2 � � �crmm ¼ b1�βa1

β . Therefore,

b=a cannot be a nonzero constant. For any two points (c1(1), c2(1), . . ., cm(1)) and
(c1(2), c2(2), . . ., cm(2)) such that

b 1ð Þ.a 1ð Þ 6¼ b 2ð Þ.a 2ð Þ

it can be obtained by equivalent row transformation that

cr11 1ð Þcr22 1ð Þ� � �crmm 1ð Þ�þ a1 cl11 1ð Þcl22 1ð Þ� � �clmm 1ð Þ þ b1
cr11 2ð Þcr22 2ð Þ� � �crmm 2ð Þ þ a1 cl11 2ð Þcl22 2ð Þ� � �clmm 2ð Þ þ b1

	 

) 1 b 1ð Þ=a 1ð Þ

1 b 2ð Þ=a 2ð Þ
	 


) 1 b 1ð Þ=a 1ð Þ
0 b 2ð Þ=a 2ð Þ � b 1ð Þ=a 1ð Þ

	 


It is obvious that the matrix is non-singular.

Now consider the proof of the lemma. As mentioned, it is from Remark 8.1 and

Lemma 8.3 that there are no repetitive elements in ψ . That is, each element in ψ is a

non-repetitive monomial of some nonlinear parameters in C. Choose different

points C(i) in SC for i¼ 1 to σ2, then produce a matrix row by row. For the first

two rows, it is Case 1 if only considering the first two columns. Thus by equivalent

row transformation, the first two rows can be transformed into an upper triangle

form as Case 1, i.e., the entries in the first two columns and below the diagonal line

are zero, while the diagonal entries in the first two rows are nonzero. For the next

two rows, it is Case 2 if only considering the next two columns. Then by equivalent

row transformation, the next two rows can also be transformed into an upper

triangle form as Case 2, i.e., the entries in the first four columns and below the

diagonal line are zero, while the diagonal entries in the first four rows are nonzero.

Proceed this process forward until the last two or one rows. Therefore, the matrix

can be equivalently transformed into an upper triangle form with nonzero diagonal

entries, which is obviously non-singular. This shows that, there exist a series of

points C(i) in SC for i¼ 1 to σ2 such that each rows of the generated matrix as

mentioned above, i.e., ψ |C(i ) for i¼ t to σ2 are independent. This completes the

proof. □

F. Proof of Theorem 8.1

When there is no truncation error, from Lemma 8.5, there exist a series of C(1),
C(2). . .C(σ2) such that

ψ |C(i) for i¼ 1 to σ2 is a base of ℜσ2

and additionally from (8.6a) and (8.11a), it can be obtained that for each ψ |C(i)
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ψ C ið Þ


 � eΦ jωð Þ �Φ jωð Þ

� �T
¼ 0

Then from Lemma 8.4, for all the points in SC

ψ � eΦ jωð Þ �Φ jωð Þ
� �T

¼ 0 and eΦ jωð Þ ¼ Φ jωð Þ.
In case that SC includes all the nonlinear parameters of NDE model (8.1), from

Lemma 8.3, CE(Hn( jω1, � � �, jωn))^CE(Hm( jω1, � � �, jωm))¼ 0 for m 6¼ n, then

eYn jωð Þ ¼ CE Hn �ð Þð Þ � eFn jωð ÞT

Consider the truncation error o(N + 1) 6¼ 0. In this case,

Y jωð Þ ¼ ψ �Φ jωð ÞT þ o N þ 1ð Þ

Therefore,

Φ jωð ÞT¼ ψ C 1ð ÞT


 ψ C 2ð ÞT



 ��� ψ C σ2ð ÞT


� ��T

� Y jωð Þ�o Nþ1ð Þð Þ C 1ð Þ


 Y jωð Þ�o Nþ1ð Þð Þ C 2ð Þ



 ��� Y jωð Þ�o Nþ1ð Þð Þ C σ2ð Þ


� �T

¼Ψ�1
C 1���σ2ð Þ


 � Y�oNþ1ð Þ C 1���σ2ð Þ



 ¼Ψ�1
C 1���σ2ð Þ


 �Y C 1���σ2ð Þ



 �Ψ�1
C 1���σ2ð Þ


 �oNþ1 C 1���σ2ð Þ




¼ eΦ jωð ÞT�Ψ�1

C 1���σ2ð Þ


 �oNþ1 C 1���σ2ð Þ




where Y C 1���σ2ð Þ



 ¼ Y jωð Þ C 1ð Þ


 Y jωð Þ C 2ð Þ



 ��� Y jωð Þ C σ2ð Þ


� �T

. This leads to (8.11d).

Note that eY jωð Þ¼ψ � eΦ jωð ÞT . Therefore,

eY jωð Þ � Y jωð Þ ¼ ψ � eΦ jωð Þ �Φ jωð Þ
� �T

� o N þ 1ð Þ

This, together with (8.11d), leads to (8.11e). The proof is completed. □
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Chapter 9

Nonlinear Characteristic Output Spectrum

9.1 Introduction

Nonlinear analysis takes an important role in system analysis and design in practice.

Several methods are available in the literature to this aim including perturbation

method, averaging method and harmonic balance method etc (Judd 1998; Mees

1981; Gilmore and Steer 1991). As shown in the previous chapters, nonlinear

analysis can be conducted in the frequency domain systematically based on the

Volterra series theory.

However, the nonlinear analysis based on the GFRFs usually involves compli-

cated computation cost especially for the orders higher than 3. Importantly, the

traditional recursive algorithms for the GFRFs are easy to implement but actually

complicate the relationship between the GFRFs and model parameters. In Chaps. 4–

6, it is shown that both the GFRF and the output spectrum can be formulated into a

polynomial in terms of nonlinear parameters of system model. Especially, through a

parametric characteristic analysis and a mapping function (see Jing et al. 2008b or

Chap. 11), the GFRFs and output spectrum can all be expressed into a straightforward

polynomial function with respect to any nonlinear parameters of interest. Thus, for a

nonlinear system described by a NDE or NARX model, these results could provide a

significant insight or powerful approach into the nonlinear influence on system output

frequency response (which will be discussed further in Chaps. 11 and 12). However,

quantitative analysis of the nonlinear dynamics and its effect on system dynamic

response still encounters problems due to computation complexity. Although a

numerical method could be adopted for an estimation of the output frequency

response function (OFRF) (Chaps. 6–8), biased or even wrong estimates may happen

since the truncation order of the underlying Volterra series expansion for the

nonlinear system under study is difficult to know in advance (it may also be varying

with different input magnitudes). This may affect the effectiveness and reliability of

the OFRF-based analysis.
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In this chapter, a systematic frequency domain method for nonlinear analysis,

design and estimation of nonlinear systems is established based on the discussions

in the previous chapters. This method allows accurate determination of the linear

and nonlinear components in system output spectrum of a given nonlinear system

described by NDE, NARX or NBO (nonlinear block-oriented) models, with some

simulation or experiment data. These output spectrum components can then be used

for system identification or nonlinear analysis for different purposes such as fault

detection etc. Noticeably, the OFRF in Chaps. 7 and 8 is expressed into a much

improved polynomial function, referred to here as nonlinear characteristic output

spectrum (nCOS) function, which is an explicit expression for the relationship

between nonlinear output spectrum and system characteristic parameters of interest

including nonlinear parameters, frequency variable, and input excitation magnitude

(not just nonlinear parameters as that in Chaps. 7 and 8) with a more generic

parametric structure. With the accurate determination of system output spectrum

components in the previous step, the nCOS function can therefore be accurately

determined up to any high orders, with less simulation trials and computation cost

compared with a pure simulation based study or traditional theoretical computation

(Yue et al. 2005; Jing et al. 2008e). These results can provide a significant approach

for qualitative and quantitative analysis and design of nonlinear dynamics in the

frequency domain. The study on a nonlinear vehicle suspension system is given to

illustrate the results.

9.2 Nonlinear Characteristic Output Spectrum (nCOS)

and the Problem

Nonlinear systems can usually be identified or modeled into a parametric model

such as NDE, NARX or NBO models in practice. The nonlinear output spectrum of

those nonlinear systems is not only a complex-valued function of frequency vari-

ables but also a function of model parameters and input magnitude of interest

(which are all referred to as characteristic parameters in this study). An explicit

relationship between system output spectrum and characteristic parameters would

be of great significance for system analysis and design. Consider the NDE system

(2.11) again. It is shown in Chap. 6 (and also Chap. 11) that nonlinear output

spectrum of NDE models can be written into an explicit polynomial function of

system characteristic parameters as

Y jωð Þ ¼
XN
n¼1

χn � φn jωð ÞT : ð9:1Þ

where χn denotes the nth-order characteristic parameter vector composed of

nonlinear parameters and φn(jω) its correlative complex-valued function of the

nth-order output spectrum, both of which can be (analytically) determined with the
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method in Chaps. 5, 6 and 11. Any nonlinear parameters of interest in analysis and

design will be included in χn, given by

χn ¼ Cn, 0 � �
k ¼ 0Xk

i¼0

pi þ qið Þ ¼ nþ k

1 � p0 � n� k, 2 � pi þ qi � n� k

n�2 �
i¼0

k
Cpi,qi

� �
ð9:2Þ

where Cp,q¼½cp,q 0;���;0ð Þ,cp,q 0;���;1ð Þ,���,cp,qðK,���,K|fflfflfflffl{zfflfflfflffl}
pþq¼m

Þ�, � and � are two opera-

tors defined for symbolic manipulation (see the details in Chap. 4). For example, for

two vectors C1 and C2 consisting of some symbolic variables, C1�C2 is a vector

including all the elements in C1 and C2 without repetition, and C1�C2 is a vector

including all the elements produced by the Kronecker product without repetition. If

some model parameters will not be considered in the analysis and design, they can

be set to 1 by default in (9.2). If there is an element 1 in χn, it means that there will

be a pure frequency-dependent term in the polynomial (9.1). Similar results hold for

the NARX model.

Obviously, (9.1) is an analytical and straightforward function of system charac-

teristic parameters, which could considerably facilitate the analysis and design of

nonlinear systems in the frequency domain. To emphasize the parametric relation-

ship between the nonlinear output spectrum (nOS) and the characteristic parameters

(including nonlinear parameters, excitation magnitude and frequency), (9.1) is

referred to here as nonlinear characteristic output spectrum (nCOS) function and

the nth-order component as the nth-order nCOS. In order to conduct a nonlinear

analysis based on the nCOS function in (9.1), both χn and φn(jω) must be deter-

mined up to a sufficiently high order. Since nonlinear systems can always be

identified into a NARX, NDE or NBO model with experiment data in practice

(Worden and Tomlinson 2001; Jing 2011; Ahn and Anh 2010; Wei and Billings

2008), this chapter suppose that a nonlinear model of the system of interest is

already known. Therefore χn is known from (9.2) with the nonlinear model, and

thus only φn(jω) is yet to be determined. Although φn(jω) can be computed

analytically with the method in Chap. 11, the computation cost is usually high

and it is even worse for high orders (>5). Therefore, the objective is to develop an

effective method such that φn(jω) can be determined accurately and directly with

only some simulation data.

From (9.1), a simple least square algorithm could be applied in order to compute

φn(jω) under different parameter excitations as discussed in Chaps. 6 and 7.

However, the difficulty is that the maximum truncation order N is not known and

it is also varying with different input magnitudes. A larger input magnitude or a

larger range of a specific model parameter of interest would result in a larger

truncation order N (for an accurate Volterra series expansion). An inappropriate

guessed truncation order N will lead to large error in the computation of φn(jω). A
sufficiently larger N could be attempted to avoid this problem (if realistic), but will
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easily result in singularity of the matrix inverse in the least square (LS) algorithm. If

φn(jω) is not computed correctly, the simple least square algorithm can only

guarantee accurate fitting at the training points, and the generalization of (9.1)

could be very worse.

To solve the problems mentioned above, new algorithms will be developed so

that φn(jω) can be determined accurately with only some simulation data and

without knowing the best truncation order N*.

9.3 Accurate Determination of the nCOS Function

For determination of the nCOS function (9.1), the first step of the proposed method

is to compute the nth-order output spectrum (for any n) based on numerical or

experimental data, and then to determine the nth-order nCOS function.

9.3.1 Computation of the nth-Order Output Spectrum

The nonlinear output spectrum (nOS) in (2.4) can be rewritten by considering the

truncation error σ[N](jω) and input function ρR(jω) as

Y jωð Þρ ¼
X1
n¼1

ρnYn jωð Þ ¼ ρY1 jωð Þ þ ρ2Y2 jωð Þ þ ρ3Y3 jωð Þ þ � � �

¼
XN
n¼1

ρnYn jωð Þ þ σ N;ρ½ � jωð Þ ð9:3Þ

where σ[N,ρ](jω) represents the truncation error, including all the remaining higher

order output spectrum components in Volterra series expansion; ρ is a constant

which is used to represent different magnitude of the input.

To determine Yn(jω) for n2ℵ¼{1,2,3,. . .N}, a multi-level excitation method can

be adopted as shown in Chap. 7. The system can be excited by the same input R (jω) of
different magnitudes ρ0, ρ1, ρ2,. . ., ρN�1, and there will be a series of output obtained

accordingly, which are denoted by Y(jω)ρ0, Y(jω)ρ1, Y(jω)ρ2,. . ., Y(jω)ρN�1. Through a

LS method, it gives

Ŷ 1 jωð Þ
Ŷ 2 jωð Þ
⋮

Ŷ N jωð Þ

2664
3775 ¼

ρ0 ρ20 � � � ρN
0

ρ1 ρ21 � � � ρN
1

⋮ ⋮ ⋱ ⋮
ρN�1 ρ2N�1 � � � ρN

N�1

2664
3775
�1 Y jωð Þρ0

Y jωð Þρ1
⋮

Y jωð ÞρN�1

2664
3775 ð9:4Þ
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The square matrix above is nonsingular if ρ0 6¼ρ1 6¼ . . . 6¼ρN�1. Note that the

computation of Yn(jω) for n2ℵ¼{1,2,3, . . .N} is basically accurate if the trunca-

tion error σ[N,ρ](jω) is trivial. Otherwise, the computation for Yn(jω) could be

significantly biased, and the LS in (9.4) only results in a good fitting at the training

points. To overcome this problem, an alternative method can be employed by

choosing the excitation magnitudes ρ0, ρ1,. . ., ρN�1 so that the accurate computa-

tion through (9.4) can be achieved for any given N. The following results are

derived for this purpose.

Proposition 9.1

ΔY1 jωð Þ ¼ �1ð ÞN�1ρ0ρ1� � �ρN�1 �
X1
k¼0

ρ0 þ ρ1 þ � � � þ ρN�1ð Þ k½ �YNþkþ1 jωð Þ ð9:5aÞ

ΔYN jωð Þ ¼
X1
k¼1

ρ0 þ ρ1 þ � � � þ ρN�1ð Þ k½ �YNþk jωð Þ ð9:5bÞ

where for N(>1) nonzero distinct real numbers and for any non-negative integer r,

x1 þ x2 þ � � � þ xNð Þ r½ � ¼
X

l1þl2þ���þlN¼r

l1, l2, ..., lN2 0;1;2;...;rf g

xl11 x
l2
2 � � � xlNN ð9:5cÞ

Proof See the proof in Sect. 9.6A.

Proposition 9.1 provides a straightforward insight into the computation error

incurred by excitation magnitudes and truncation order. Given a truncation order N,

different values of the excitation magnitudes could bring very different computa-

tion error. Proposition 9.1 demonstrates an effective method for designing ρ0ρ1� � �
ρN�1 so that the computation errors (i.e., ΔY1(jω), ΔYN(jω)) can be mitigated for

any N.

In (9.5a,b), the computation of (ρ0+ρ1+ � � �+ρN�1)
[k] is involved. Lemma 9.1

gives a recursive method for this.

Lemma 9.1

ρ0 þ ρ1 þ � � � þ ρN�1ð Þ k½ � ¼
XN�1

r¼0

ρr ρr þ � � � þ ρN�1ð Þ k�1½ �

Proof By a mathematical induction, it is easy to have this conclusion.

Based on Proposition 9.1, different excitation methods can be used to minimize

the computation error. The following results can be obtained by applying

Proposition 9.1.
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Corollary 9.1 Case 1: N¼3,ρ1¼�ρ,ρ2¼�ρ/α,ρ0¼�ρ1�ρ2, 0<ρ<1, α>1.

ΔY1 jωð Þ¼αþ1

α2
ρ3 � Y4 jωð Þþα2þαþ1

α2
ρ2Y6 jωð Þþαþ1

α2
ρ3Y7 jωð Þþ���

� �
ð9:6aÞ

ΔY3 jωð Þ ¼ α2 þ αþ 1

α2
ρ2Y5 jωð Þ þ αþ 1

α2
ρ3Y6 jωð Þ

þ α4 þ 2α3 þ 3α2 þ 2αþ 1

α4
ρ4Y7 jωð Þ� � � ð9:6bÞ

Case 2: N¼5,ρ0¼ρ,ρ1¼�ρ,ρ2¼�ρ/β,ρ3¼�ρ2/α,ρ4¼�ρ2�ρ3,0<ρ<1, β>1, α>1.

ΔY1 jωð Þ ¼ � 1

αβ

1

α
þ 1

β

� �
ρ5
�
Y6 jωð Þ

þ 1þ 1

α2
þ 1

β2
þ 1

αβ

� �
ρ2Y8 jωð Þ þ 1

αβ

1

α
þ 1

β

� �
ρ3Y9 jωð Þ þ � � ��

ð9:6cÞ

ΔY5 jωð Þ ¼ 1þ 1

α2
þ 1

β2
þ 1

αβ

� �
ρ2Y7 jωð Þ þ 1

αβ

1

α
þ 1

β

� �
ρ3Y8 jωð Þ þ � � � ð9:6dÞ

Proof See the proof in Sect. 9.6B.

Corollary 9.1 indicates that properly choosing the excitation magnitudes as

specified would produce accurate computation of Y1(jω) and Y3(jω) or Y5(jω),
respectively, although the truncation order is chosen as N¼3 or 5. The result in

Proposition 9.1 actually provides many choices for this purpose. For example, in

Case 2 of Corollary 9.1, if ρ¼0.001, β¼2, and α¼10, then (9.6c,d) can be written

as

ΔY1 jωð Þ¼�0:03�0:0015 Y6 jωð Þþ1:31�0:0012Y8 jωð Þþ0:03�0:0013Y9 jωð Þþ���� �
ΔY5 jωð Þ ¼ 1:31 � 0:0012Y7 jωð Þ þ 0:03 � 0:0013Y8 jωð Þ þ � � �

From the equations above it can be seen that higher order output spectra (>5) would

have very limited effect on the determination of lower order output spectra. The

computation error in Y5(jω) incurred by Y7(jω) would be 1.31 �0.0012Y7(jω). Only
when the magnitude of Y7(jω) is larger than 106, the influence could be significant.

Similar conclusions hold for the other higher orders. Moreover, it can be checked

by a mathematical induction that the other orders of output spectra between 1 and

5 can also be computed accurately if Y5(jω) can be computed sufficiently accu-

rately. For different order N, similar results can be obtained.

Corollary 9.1 leads to the following estimation algorithm for the nth-order

output spectrum (referred to as nth-order Output Spectrum Estimation (nth-OSE)

algorithm).
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Step 1. Choose N¼3 or 5 etc, and properly set ρ, α and β, satisfying 0<ρ<1, β>1,

α>1, e.g., ρ¼0.001, α¼10 and β¼2.

Step 2. Use (9.4) to find the estimates for Yn(jω), i.e., Ŷn(jω), for n¼1,2,. . .,N. Note
that the computation error for n¼1 or N is given by (9.6a,b) or (9.6c,d).

Step 3. Note that (9.3) can be written as

Y(jω)ρ/ρ�Y1(jω)¼ρY2(jω)+ρ
2Y3(jω)+ � � � Therefore, replacing Y jωð Þρi by

Y jωð Þρi=ρi � Ŷ 1 jωð Þ in (9.4) and re-applying (9.4) with a larger ρ (usually

5–10 times than the previous one) lead to the estimation of Yn(jω), i.e., Ŷn(jω)
for n¼2,. . .,N+1. The estimation error is still given by (9.6a–d) accordingly

by replacing Yi(jω) with Yi+1(jω).
Step 4. Similarly, (9.3) can be written as

(Y(jω)ρ�ρY1(jω)�ρ2Y2(jω))/ρ
2¼ρY3(jω)+ρ

2Y4(jω) + � � � Therefore,

replacing Y jωð Þρi by (Y(jω)ρ�ρY1(jω)�ρ2Y2(jω))/ρ
2 in (9.4) and re-applying

(9.4) with a larger ρ (usually 5–10 times than the previous one) leads to the

estimation of Yn(jω), i.e., Ŷn(jω) for n¼3,. . .,N+2.

Step 5. Follow a similar process as Step 3 and Step 4 until a sufficiently high

order N*. The truncation order N* is not known but can be determined

by evaluating the magnitude of Ŷ N� jωð Þ according to a predefined threshold

(e.g., Ŷ N� jωð Þ		 		 < ε).

With the nth-OSE algorithm, the nth-order output spectrum can be determined

accurately (by properly choosing ρ (discussed later)) into a nonparametric form and

an appropriate truncation order N* can also be obtained. This estimation process

does not necessarily need a system model but input–output data only from simula-

tions or experiments.

9.3.2 Determination of the nth-Order nCOS Function

From (9.1), the nth-order nCOS function can be written as

Yn jωð Þ ¼ χn � φn jωð ÞT ð9:7Þ

where χn is the nth-order characteristic parameter vector given by (9.2). If the

system model under study is not known, several methods as mentioned before can

be employed to identify a NDE, NARX or NBO model from experimental data.

Here supposes that the NDE model of the system is known and similar results hold

for other models. With the NDE model, χn is known explicitly for any characteristic
parameters (Chaps. 5 and 6).

At any frequency ω, an identification method can be used to determine φn(jω).
Let τ denote the dimension of χn, and suppose there are m characteristic parameters

in χn, i.e., c1,c2,. . .,cm. Denote c ¼ c1; c2; . . . ; cmð Þ. Then,
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Step 1: Compute the nth-order characteristic vector χn using (9.2) with respect to c.
If χn¼1 implying that this order output spectrum has no relationship with c, then
let n!n+1 and repeat Step 1; otherwise, go to Step 2–5;

Step 2: Randomly generate τ distinct points c ¼ c1; c2; . . . ; cmð Þ so that

1 χn c1j
h i

; 1 χn c2j
h i

; . . . ; 1 χn cmj
h ih i

is nonsingular.

Step 3: At each point c ¼ c1; c2; . . . ; cmð Þ, the system can be simulated subject to a

specific input and applying the nth-OSE algorithm leads to determination of the

nth-order output spectrum denoted by Ŷ n jωð Þ cj , i.e.,

Ŷ n jωð Þ cj ¼ Ŷ n jωð Þ c¼0j þ χn cj � ϕn jωð ÞT

Step 4: It can be obtained that

bYn jωð Þ c¼0j , φ̂ n jωð Þ
h iT

¼ 1 χn c1j
h i

; 1 χn c2j
h i

; . . . ; 1 χn cmj
h ih i�1

� Ŷ n jωð Þ c1j , Ŷ n jωð Þ c2j , . . . , Ŷ n jωð Þ cmj
h iT ð9:8Þ

Step 5: Thus, the nth-order nCOS function (9.7) is achieved, and finally the

nCOS function can be obtained as

Ŷ jωð Þ ¼ ρŶ 1 jωð Þþ
Xχn cj ¼1

n¼2,3, ...
ρnŶ n jωð Þ þ

Xχn cj 6¼1

n¼2,3, ...
ρn Ŷ n jωð Þ c¼0j þ χn cj φ̂ n jωð ÞT

 �

The method above is referred to as nth-order nCOS estimation (nth-COSE)

algorithm. Because the elements in χn is symbolically independent, there must

exist τ distinct points c¼ c1;c2; . . . ;cmð Þ such that the matrix

χn c1j ;χn
c2j
; . . . ;χn

cmj

� 

is nonsingular (Chap. 8). If the estimation of bYn jωð Þ cij is

unbiased, the determination of bφn jωð Þ in (9.8) will be unbiased. Compared with the

result in Chap. 7, (a) the nCOS function here is determined as not only a polynomial

function of model parameters but also an explicit function of the input magnitude ρ;
(b) The best truncation order N* is not necessarily known in advance (this must be

given in the previous result); (c) With the help of the nth-OSE algorithm, the

complex-valued polynomial coefficients can be determined accurately, while the

previous algorithm may result in biased (if not wrong) estimation; (d) The

parameter-independent terms such as bYn jωð Þ c¼0j are explicitly considered in the

nCOS function, which are incurred by those which have no relationship with model

parameter c; Thus the characteristic parametric structure of the nCOS function is

more generic.
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9.4 Example Studies

Applications of the results can be found in different areas. The nth-OSE algorithm

can be used for estimation of nonlinear polynomial like (9.3). The accurate deter-

mination of each order of nonlinear output spectrum components can be used for

nonlinear detection in non-destructive evaluation (Jing 2011; Chatterjee 2010;

Lang and Peng 2008). The method can also be used to accurately estimate the

linear part of a nonlinear system where the nonlinearity could be complicated.

Importantly, the accurate determination of the nCOS function can be used for

nonlinear analysis and design. These will be demonstrated with a nonlinear vehicle

suspension system.

9.4.1 Identification of a Polynomial Function

Given a polynomial function

f xð Þ ¼ 10x� 20x2 þ 300x3 � 40x4 þ 500x5 � 600x6 þ 700x7 � 800x8 þ 900x9

For convenience in understanding, the equation above can be regarded as a poly-

nomial in (9.3) with ρ¼x, Y(jω)ρ¼f(x) and Yi(jω)¼10,�20, . . . for i¼1,2, . . .. The
coefficients can be estimated accurately with any guessed truncation order N (the

real one is N¼9) using the nth-OSE algorithm. For example, by Corollary 9.1,

taking N¼5, ρ¼0.001, α¼10 and β¼2, the coefficients of the first 5 orders are

given in Fig. 9.1a by applying Steps 1–2 of the nth-OSE algorithm. By applying

Step 3 with ρ¼0.01, the estimation for the coefficients from the second to the sixth

orders is shown in Fig. 9.1b. Both clearly show that the estimated coefficients

accurately match the real values.

One issue with the nth-OSE algorithm is how to choose the excitation magnitude

ρ for both α and β are given heuristically satisfying α>1 and β>1. From Table 9.1,

it can be seen that given α¼10 and β¼2, different values for ρ result in a little

difference in the estimation of lower order coefficients (especially for order 1), but

could lead to very different estimates for higher order coefficients such as the

coefficient of order 5. Table 9.1 shows that there is a large range for ρ to choose

(e.g., 0<ρ<0.1) to have an accurate estimation for each coefficient especially for

lower order coefficients. It also clearly indicates that the estimation could be greatly

biased without a proper value for ρ (e.g., ρ¼0.5).

To find the best excitation magnitude ρ, define the following excitation sensi-

tivity function

S ρð Þ ¼ ∂Yρ

∂ρ

				 				 ¼ Yρ � YρþΔ

Δ

				 				
where Yρ denotes the variable to be estimated under the excitation magnitude ρ, and
Δ is a small positive number. By the definition, for each order of the coefficients
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there will be a V-shape or U-shape curve given by the sensitivity function (Fig. 9.2),

and the best excitation magnitude should locate around the bottom of the curve

which corresponds to the slightest estimation error for the corresponding order

coefficient. In Fig. 9.2a, the effective excitation range for the orders 4 and 5 in Table

9.1 are highlighted, which are clearly around the bottom or turning corner of the

V-shape sensitivity function; for the first 3 orders the effective excitation ranges

cover the whole testing excitation range, having very small sensitivity values

(below 1). Similar cases hold for different other values of α and β, for example

α¼5, β¼5 in Fig. 9.2b, indicating that ρ is actually the sensitive parameter to tune

in the nth-OSE algorithm.
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From the discussions above, considering Table 9.1 and Fig. 9.2 and based on

some other testing results, it can be concluded for the nth-OSE algorithm that

(a) The parameters α and β can be chosen heuristically satisfying α>1 and β>1.

The excitation magnitude ρ is the key factor to be tuned properly.

(b) Testing can be done to generate plots of the excitation sensitivity function, in

which the best excitation magnitude locates around the bottom or turning

corner of the V-shape curve, corresponding to the estimation with smallest

error (e.g., the orders 4–5 in Fig. 9.2).

(c) If the V-shape curve is very flat or very low in values at all testing range, this

indicates that all the testing magnitudes are effective for the estimation of the

corresponding order (e.g., the orders 1–3 in Fig. 9.2). Moreover, a flat curve

around the bottom of the V-shape curve implies the estimation with the

corresponding excitation magnitudes is consistently accurate.

(d) The best ρ* obtained in this method implies that the obtained lower order

polynomial estimated by the nth-OSE algorithm will be applicable to the

excitation input ρR(jω) of magnitude ρ 2 0, ρ½ �, where ρ ¼ ρ� when N¼5

and ρ ¼ 1þα
α ρ� when N¼3 by Corollary 9.1.

This could be used as a useful guidance in selection of the excitation magnitude

ρ in the nth-OSE algorithm (referred to as the ρ-selection method). The value of ρ in
step 1 and 3 of the nth-OSE algorithm can both be obtained with this method.

9.4.2 Analysis of Nonlinear Suspension Systems

Consider the analysis of a nonlinear vehicle suspension system (Fig. 9.3) in this

example. It is known that vehicle suspension systems usually have inherent

nonlinearity, which brings difficulties in active or semi- active control. To certain

Table 9.1 Estimation with different excitation magnitude (the bold and italic numbers indicate

the relatively accurate estimation)

ρ
Real

10 �20 30 �40 500

0.00001 10.000 �20.000 300.0000 �36.0000 �1,048,576.0000

0.00005 10.000 �20.000 300.0000 �40.0156 512.0000

0.0001 10.000 �20.000 300.0000 �40.0156 512.0000

0.0005 10.000 �20.000 300.0000 �40.0002 500.0625

0.001 10.000 �20.000 300.0000 �40.0008 500.0000

0.005 10.000 �20.000 300.0000 �40.0192 500.0224

0.01 10.000 �20.000 300.0000 �40.0767 500.0894

0.05 10.000 �19.999 299.9977 �41.9218 502.2419

0.1 10.000 �19.983 299.9720 �47.7635 509.0534

0.5 10.3669 �5.6135 281.7501 �297.5458 798.3785

The effective

range for ρ
0<ρ<0.1 0<ρ<0.1 0<ρ<0.1 0.00005<ρ<0.01 0.0005<ρ<0.01
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extent, accurate identification of the linear part and each nonlinear component

would be very helpful in the analysis and design of a desired suspension system

in practice. The nth-OSE algorithm could be very helpful to this objective. This will

be demonstrated in Case I of this example. On the other hand, it is more and more

noticed that nonlinear damping characteristics could produce superior performance

in vibration suppression compared with linear damping (Chap. 12). To achieve

adjustable damping characteristics, MR dampers are often used as an ideal shock

absorber (Case et al. 2012; Zapateiro et al. 2012). However, the question is how to

design a desired nonlinear damping characteristic for a given vehicle suspension

system. The nonlinear COS function above can provide an alternative approach to

this problem for the nonlinear analysis and design. This will be demonstrated in

Case II of this example.
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The one quarter vehicle suspension model is given as

ms€x s ¼ �f s � b tð Þ _xs � _xuð Þ ð9:9aÞ
mu€x u ¼ f s þ b tð Þ _xs � _xuð Þ � kt xu � x0ð Þ ð9:9bÞ

where the spring force is a nonlinear function given by

f s ¼ ks1 xs � xuð Þ þ ks2 xs � xuð Þ2 þ ks3 xs � xuð Þ3 ð9:9cÞ

and b(t) denotes the nonlinear damping coefficient to be designed, which can

generally be any nonlinear function. In this study, it is as an example written as

b tð Þ ¼ b0 þ b1z
2 ð9:9dÞ

where z¼xs�xu. Previous results have studied the cubic nonlinear damping

b1ż
2(Chap. 7, Jing et al. 2011). For the model parameters above, a model in

Dixit and Buckner (2011) is adopted here as: ms¼240 kg, ks1¼12,394 N/m,

ks2¼�73,696 N/m2, ks3¼3,170,400 N/m3, mu¼25 kg, kt¼160,000 N/m, and

b0¼1,385.4 Ns/m.

Case I: The estimation of the linear part and the nonlinear output spectrum
without knowing the truncation order N and system model. In this part, it is

supposed that the system model is not known and b1¼106 in (9.9d). It can be

seen that the suspension system has strong nonlinearity both in stiffness and

damping elements. The nth-OSE algorithm can be used to estimate the linear part

of the system and therefore to estimate how the nonlinearity takes a role in the

dynamic response using the method discussed in Jing (2011). To this aim, the input

excitation is considered as a multi-tone function given by

u tð Þ ¼ ρ
X10
i¼1

sin 5ið Þtð Þ ð9:10Þ

Fig. 9.3 A nonlinear

vehicle suspension system

(Jing 2014 © IEEE)
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Note that the multi-tone signal above can actually include more frequency points

and thus provide a sufficient excitation to the system at different frequencies of

interest. The parameter ρ is to be determined in the estimation.

Usually the nonlinear output spectrum of system (9.9a–d) would have an infinite

order of output spectrum components but could be truncated at an appropriate order

N to approximate the original nonlinear dynamic response in practice. With the

nth-OSE algorithm, the nth-order output spectrum of any given nonlinear systems

could be estimated in a non-parametric form up to any high order without knowing

the truncation order and system model. If only the estimation of the linear part of

the system is interested, it would be much easier to choose a proper excitation

magnitude ρ. To estimate accurately all the output spectrum components simulta-

neously, ρ must be chosen using the ρ-selection method above. For example, if

taking N¼3, the corresponding parameters can be chosen as ρ¼0.0005 and α¼10

based on the ρ-selection method, and the estimated results for the nth-order output

spectrum up to order 3 are given in Figs. 9.4 and 9.5.

In Fig. 9.4, it can be seen that the output frequencies in the first order are exactly

the same as the input frequencies, those in the second order are doubled and in the

third order tripled. This is completely consistent with the known results in Chap. 3

that is, the output frequencies in the nth-order output spectrum can only appear in

the range [0, nb] given that the input frequencies are in [a, b]. To further validate the

estimation results in Fig. 9.4, the real output spectrum of the linear part is given in

Fig. 9.5. It is clearly shown that the estimated values of the first order output

spectrum exactly match the real ones with overall root-mean-square error

8.5068e-004.
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Similarly, if taking N¼5 and the other parameters by Corollary 9.1 and the ρ–
selection method as ρ¼0.001, α¼10 and β¼2, the estimation results of the output

spectrum up to order 5 are shown in Fig. 9.6. Comparisons indicate that the

estimated first three orders of output spectrum are exactly the same in Figs. 9.4

and 9.6, implying the consistence and validation of the nth-OSE algorithm in

estimation of the nth-order output spectrum for the system. Figures 9.4 and 9.6

both show that the magnitude of the higher order output spectrum is becoming

larger with the increase of order n. Recalling (9.3), this implies that when the input

magnitude is becoming larger, the nonlinearity will take more dominant roles in

system dynamic response and the vibration performance could become worse (see

Fig. 9.7). Figure 9.7 clearly confirms that when the input magnitude is increased to

ρ ¼0.1, the nonlinear response is dominant and vibration transmissibility becomes

obviously worse. Therefore, a proper design of the linear or nonlinear damping

coefficient would be very crucial in vibration control. This consequently incurs a

need for a systematic method for the nonlinear analysis and design, which would be

focused in the following section.

It should be noted that if the excitation magnitude ρ1, ρ2, ρ3 are not properly

chosen according to Corollary 9.1, the estimation results would be greatly biased

(for paper length this is not illustrated here). With the accurately estimated first

order output spectrum, many methods are available to estimate a linear parametric

model (Levi 1959; Young 1985; Ibrahim 2008). This is not demonstrated here

either. Moreover, it is interesting to mention that the nth-OSE algorithm developed

here provides an effective tool to accurately estimate the linear and nonlinear

components in the dynamical response of a system. This would also be of signif-

icance to non-destructive evaluation and similar topics can be referred to (Jing

2011; Chatterjee 2010; Lang and Peng 2008). It is noted that in application of the

method to experimental data, noise corruption can never be avoided. Preliminary

results indicate that the additive noise can basically have little effects on the
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estimation with the nth-OSE algorithm after using some noise processing methods.

This will be further investigated in future studies.

Case II: The estimation of the nCOS function with respect to the nonlinear
damping. To explore the nonlinear benefit in vibration control, the nonlinear

damping characteristic can be analyzed by regarding €xs as the system output, i.e.,
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Fig. 9.6 The estimated output spectrum up to order 5 (Jing 2014 © IEEE)
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y ¼ €x tf¼}TTf90d833aI}s ð9:11Þ

and deriving the nonlinear COS function in (5) in terms of the nonlinear parameter

b1. To this aim, consider the input as

u tð Þ ¼ ρ sin Ωtð Þ ð9:12Þ

whereΩ could be any frequency of interest. Since only a cubic order nonlinear term

b1z
2ż would be considered, it can be obtained using the parametric characteristic

analysis (Chaps. 5 and 6) that

χ2 ¼ 1; χ3 ¼ b1; χ4 ¼ b1; χ5 ¼ b1, b
2
1

� �
; χ6 ¼ b1, b

2
1

� �
;

χ7 ¼ b1, b
2
1, b

3
1

� �
; χ8 ¼ b1, b

2
1, b

3
1

� �
; � � �

Then in this case the nonlinear COS function can be written as

Y jωð Þ ¼ Y1 jωð Þ þ Y2 jωð Þ þ Y3 jωð Þjb1¼0

þ b1 � φ3 b1; jωð Þ þ Y4 jωð Þjb1¼0 þ b1 � φ4 b1; jωð Þ
þ Y5 jωð Þjb1¼0 þ b1 � φ5 b1; jωð Þ þ b21 � φ5 b21; jω

� �þ � � �
ð9:13Þ

Note that Y1(jω) and Y2(jω) are the first and second order output spectrum,

Y3 jωð Þjb1¼0, Y4 jωð Þjb1¼0, and Y5 jωð Þjb1¼0 are all incurred by the second and third

order nonlinearity in the stiffness, which have no relationship with the nonlinear

damping term. By the parametric characteristic analysis, there will be a term in χ5
given by the multiplication between b1 and the coefficient of the third order

nonlinearity in the stiffness. While the latter is a constant, it thus yields the term

b1 in χ5. This results in the term b1φ5(b1;jω) in (9.13). By applying the nth-COSE

algorithm, the estimation of (9.13) can be obtained as

^
Y ðjωÞ ¼ ρŶ1ðjωÞ þ ρ2Ŷ2ðjωÞ þ ρ3 ½^Y3ðjωÞjb1¼0 þ b1 � φ̂3ðb1; jωÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ŷ
3
ðjω, b1Þ

þ ρ4 ½^Y4ðjωÞjb1¼0 þ b1 � φ̂4ðb1; jωÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ŷ
4
ðjω, b1Þ

þ ρ5 ½^Y5ðjωÞjb1¼0 þ b1 � φ̂5ðb1; jωÞ þ b21 � φ̂5ðb21; jωÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ŷ
5
ðjω, b1Þþ���

ð9:14Þ

Note that the nCOS function in (9.14) is an explicit function of the frequency ω,
nonlinear parameter b1 and excitation magnitude ρ. In (9.12), consider Ω¼18 rad/s

as the input frequency, which is around the resonant frequency of the system and
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also a sensitive frequency to human body. If in (9.14), take ω¼Ω, the even order

output spectrum at this frequency must be zero (Jing et al. 2006, 2010). Thus, (9.14)

can be written as

Ŷ jΩð Þ ¼ ρŶ 1 jΩð Þ þ ρ3 Ŷ3 jΩð Þjb1¼0 þ b1 � φ̂3 b1; jΩð Þ
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ŷ 3 jΩ, b1ð Þ

þρ5 Ŷ5 jΩð Þjb1¼0 þ b1 � φ̂5 b1; jΩð Þ þ b21 � φ̂5 b21; jΩ
� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ŷ 5 jΩ, b1ð Þ

þ� � �
ð9:15Þ

By the nth-COSE algorithm, to estimate (9.15), the following steps can be used

(referred to as the nCOSE-procedure):

(a) Setting b1¼106 (or any other value), apply the nth-OSE algorithm to estimate

Yn(jω) for n¼1,2,3,. . .,5. . .;
(b) Take the estimated values of the output spectrum Yn(jω) at the frequency Ω,

denoted by Ŷ1(jΩ), Ŷ3(jΩ) and Ŷ5(jΩ) (Ŷ2(jΩ) and Ŷ4(jΩ) must be zero);

(c) Take b1¼105 (or any other value) and b1¼0 (preferable), and repeat (a-b);

(d) Equation (9.15) can therefore be estimated using a least square method for

each component.

Based on Steps (a–c), Table 9.2 can be obtained with the parameter setting in the

nth-OSE algorithm as ρ¼0.001, α¼10 and β¼2 as suggested in the previous case

study.

In Table 9.2, the estimates for Y1(jΩ) under each parameter value are consistent

since Y1(jΩ) is the dynamic response of the linear part of the system, independent of

system nonlinearity. This confirms again the effectiveness and reliability of the

nth-OSE algorithm.

For the estimation of Ŷ3(jΩ,b1) in (9.15), Table 9.2 yields

Ŷ 3 jΩð Þjb1¼0 ¼ 5:3988eþ 002 þ 1:2252eþ 004i

Therefore,

φ̂ 3 b1; jΩð Þ ¼ Ŷ 3 jΩ, b1ð Þ � Ŷ 3 jΩð Þjb1¼0

�
=b1

¼ 2:8583eþ 003 � 1:2300eþ 002ið Þ10�5

2:8583eþ 004 � 1:2310eþ 003ið Þ10�6

�
for b1¼105 and 106, respectively, which are almost the same. The averaged value

can be used
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φ̂ 3 b1; jΩð Þ ¼ 2:8583eþ 003 � 1:2305eþ 002ið Þ10�5

Similarly, it can be obtained that

φ̂ 5 b1; jΩð Þ
φ̂ 5 b21; jΩ

� �� 

¼ 105 1010

106 1012

� 
�1 Ŷ 5 jΩ, 105
� �� Ŷ 5 jΩð Þjb1¼0

Ŷ 5 jΩ, 106
� �� Ŷ 5 jΩð Þjb1¼0

" #
¼ 2:6045 � 0:8490i

�1:2271e-007 � 1:9889e� 009i

� 

Therefore, the nCOS function (up to the fifth order) of the system with respect to

input (9.12) and nonlinear damping parameter b1 is obtained. To verify the nCOS

function in output prediction, different excitation magnitudes and different

nonlinear damping coefficient b1 can be used for a validation, which is shown in

Fig. 9.8 and Table 9.3, indicating clearly the exact prediction by using the estimated

nCOS function (9.15) in the excitation range ρ 2[0,0.001].
Importantly, it can also be checked that the prediction of the estimated nCOS

(up to the fifth order) is still reliable even when the excitation magnitude is larger

for example up to 0.05 (see Fig. 9.9 and Table 9.3), which is much larger than the

excitation range [0, 0.001] used in the estimation. Similar conclusion can be drawn

for a larger parameter value b1. This demonstrates clearly the reliability and

advantage using the nCOS function in system analysis. Moreover, comparing

Table 9.2 The estimated output spectrum at Ω rad/s for different values of b1

b1 Ŷ1(jΩ) Ŷ3(jΩ) Ŷ5(jΩ)

0 1.0876e+002+7.2310e

+001i

5.3988e+002+1.2252e

+004i

1.8958e+005+2.5757e

+006i

105 1.0876e+002+7.2310e

+001i

3.3982e+003+1.2129e

+004i

4.3776e+005+2.4906e

+006i

106 1.0876e+002+7.2310e

+001i

2.9123e+004+1.1021e

+004i

1.5670e+006+1.7068e

+006i
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Fig. 9.9 with Fig. 9.8, it can also be seen that the nonlinear dynamics become more

obviously when the input magnitude becomes larger. Using the nth-COSE algo-

rithm, it is easy to estimate the nCOS function up to any high order. This therefore

provides a useful tool for the analysis and design of nonlinear damping in vehicle

suspension systems, and the parameter optimization would also be possible in terms

of any nonlinear parameters of interest to achieve a desired output spectrum in

vibration suppression. The advantages of the nCOS function based method pro-

posed in this study for nonlinear analysis and design could be that it provides an

explicit expression for the relationship between nonlinear output spectrum and

system parameters of interest (including frequency, nonlinear parameters and

excitation magnitude), and this relationship can be accurately determined with

less simulation trials and computation cost compared with a pure simulation

based study or traditional theoretical computations. Regarding the last point, for

example, to obtain the nCOS in (9.15), the nCOSE-procedure above involves at

Table 9.3 Prediction of the

estimated nCOS function with

(9.15) (Jing 2014 © IEEE)

ρ b1 Real magnitude Prediction by (19)

0 0 0 0

0.5*10�3 5*105 0.0653 0.0653

0.5*10�3 2.5*105 0.0653 0.0653

0.5*10�3 7.5*105 0.0653 0.0653

0.25*10�3 5*105 0.0327 0.0327

0.75*10�3 5*105 0.098 0.098

10�3 106 0.1306 0.1306

0.01 2*105 1.3181 1.3181

0.01 6*105 1.3274 1.3274

0.03 6*105 4.5275 4.5504

0.05 6*105 9.5741 9.9726

0.05 106 10.655 11.3523
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most 15 simulation trials and 15 runs of the FFT algorithms. However, only to

generate Fig. 9.9, there are totally 11*101 grid points for (ρ,b1) (i.e., ρ¼
0:0.005:0.05 and b1¼0:10000:106), and thus it involves 1,111 times of simulation

trials and 1,111 FFTs. If there are more nonlinear parameters involved, the nCOS

based method would be more efficient and effective in practice.

Moreover, to further illustrate the nonlinear damping given in (9.9d), compari-

sons between the nonlinear damping (b1) and linear damping (b0) are conducted for

the peak suppression of the vehicle suspension system. For the same input (9.12)

with excitation magnitude ρ¼0.05 andΩ¼18 rad/s, the linear damping is used with

b02[0, 1385.4*100] and b1¼0 firstly, and the nonlinear damping is then used with

b0¼1,385.4 and b12[0, 1385.4*100] secondly. The output magnitudes at Ω for

both cases are shown in Fig. 9.10.

The results for the nonlinear damping can directly be obtained by using the

nCOS function (9.15) developed above. When the nonlinear damping coefficient is

increased, the vibration magnitude is slightly increased starting from 7.9 (which is

the output magnitude when there is no nonlinear damping but only linear damping

b0¼1,385.4); while the vibration magnitude is greatly increased with the increase

of b0 when there is no nonlinear damping. This implies an alternative approach to

vibration control in practice since introducing nonlinear damping brings little effect

on the damping performance of the original systems at the resonance frequency but

could bring vibration suppression over a broad band of frequencies. For example,

Fig. 9.10 implies that a small linear damping could be better in vibration control at

steady state. But too small damping would definitely bring strong vibration con-

sidering the transient response. A proper nonlinear damping could be introduced,

together with a small linear damping, to the system, which could suppress transient

vibrations quickly and simultaneously keep a small linear damping performance in

vibration transmissibility. This is confirmed by Fig. 9.11, where a small linear

damping with b0¼1,385.4*0.0005 results in a very slow suppression speed in

vibration control, while together with a nonlinear damping b1¼10,000 could it

bring a much faster convergence speed and thus lead to better vibration
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suppression. More discussions about nonlinear damping could be referred to Jing

and Lang (2009b), Xiao, et al (2013b), Chapters 10 and 12.

9.5 Conclusions

A systematic frequency domain method for nonlinear analysis, design and estima-

tion of nonlinear systems is discussed in this chapter using the concept of nonlinear

characteristic output spectrum (nCOS) function, which is referred to here as the

nCOS based method. This method allows accurate determination of the linear and

nonlinear components in the nonlinear output spectrum of a given nonlinear system

described by NDE, NARX or NBO models, provided with some simulation or

experiment output data. These output spectrum components can then be used for

system identification or nonlinear analysis for different purposes such as signal

processing, vibration control and fault detection etc. Importantly, the nCOS func-

tion can therefore be developed, which is an explicit expression for the relationship

between nonlinear output spectrum and system characteristic parameters of interest

(including nonlinear parameters, frequency, and excitation magnitude). This rela-

tionship can be accurately obtained with less simulation trials and computation cost

compared with a pure simulation based study or traditional theoretical computation,

and could provide a significant and straightforward method for nonlinear analysis

and design. The nCOS function can be regarded as a greatly-improved version of

the OFRF function established in Chaps. 6–8.

9.6 Proofs

A. Proof of Proposition 9.1

The proof needs three more lemmas. An outline of the proof is given here and the

detailed proof for Lemmas 9.2–9.4 can be referred to Jing (2012). The inverse
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matrix in (9.4) is denoted by A whose element is denoted by Ai,r. An explicit

expression for Ai,r is given in Lemma 9.2. Lemma 9.3 provide an analytical

computation of the estimation error in terms of the truncation order N and the

excitation magnitudes ρ1, ρ2, ρ3. . . based on Lemma 9.2 and using (9.3), while

Lemma 9.4 provides a method for the simplification of the estimation error

in Lemma 9.3 for different excitation magnitudes ρ1, ρ2, ρ3. . .. With Lemma 9.3

and Lemma 9.4, the result of this proposition can be established.

Lemma 9.2

Ai, r ¼
�1ð ÞN�i

X
m¼N�i;j1 6¼���6¼jm2ℵ0\ r�1f g with no repetition

ρj1ρj2 � � �ρjmY
k2ℵ0\ r�1f g

ρr�1 � ρkð Þ ;

where 1�i, r�N, ℵ0¼{0,1,2, � � �,N�1}, ρj0 ¼ 1.

Lemma 9.3 Given the truncation order N, the estimation error with (8) for the

nth-order output spectrum, i.e., ΔYn(jω), is

ΔYn jωð Þ ¼
XN
j¼1

An, j � ρN
j�1σ N;ρj�1½ � jωð Þ ¼

XN
j¼1

�1ð ÞN�nP
m ¼ N � n;

j1 6¼ � � � 6¼ jm 2 ℵ0\ j� 1f g
ρj1ρj2 � � �ρjmY

k2ℵ0\ j�1f g ρj�1 � ρk
� � � ρN

j�1σ N;ρj�1½ � �ð Þ

0BBB@
1CCCA

where Ai, j ¼

�1ð ÞN�i
P

m ¼ N � i;
j1 6¼ � � � 6¼ jm 2 ℵ0\ j� 1f g

ρj1ρj2 ���ρjm

Y
k2ℵ0\ j�1f g

ρj�1�ρkð Þ , ℵ0¼{0,1,2, � � �,N�1}

and ρj0 ¼ 1;

σ N;ρ½ � jωð Þ ¼ YNþ1 jωð Þ þ ρYNþ2 jωð Þ þ ρ2YNþ3 jωð Þ þ � � �, and σ N;ρ½ � jωð Þ
¼ ρNþ1σ N;ρ½ � jωð Þ

.

Lemma 9.4 For 8 x1, x2, . . ., xN2 R\0 satisfying x1 6¼x2 6¼ . . . 6¼ xN and N>1, it

holds that

XN
i¼1

xmiYN

k¼1,k 6¼i
xi � xkð Þ

¼ x1 þ x2 þ � � � þ xNð Þ m�Nþ1½ �

0

m 	 N � 1

0 � m < N � 1

�

The following proof is given. From (9.3),
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ρN�1
r�1 σ N;ρr�1½ � jωð Þ¼ρN�1

r�1 YNþ1 jωð ÞþρN
r�1YNþ2 jωð ÞþρNþ1

r�1 YNþ3 jωð Þþ��� ðA1Þ

Using Lemmas 9.3 and 9.4 and (A1),

ΔY1 jωð Þ ¼ �1ð ÞN�1ρ0ρ1� � �ρN�1

XN
r¼1

ρN�1
r�1 σ N;ρr�1½ � jωð ÞY

k2ℵ0 \ r�1f g ρr�1 � ρkð Þ

¼ �1ð ÞN�1ρ0ρ1� � �ρN�1

XN
r¼1

ρN�1
r�1 YNþ1 jωð ÞY

k2ℵ0 \ r�1f g ρr�1 � ρkð Þ þ
XN
r¼1

ρN
r�1YNþ2 jωð ÞY

k2ℵ0 \ r�1f g ρr�1 � ρkð Þ þ � � �
0@ 1A

¼ �1ð ÞN�1ρ0ρ1� � �ρN�1

ρ0 þ ρ1 þ � � � þ ρN�1ð Þ 0½ �YNþ1 jωð Þ
þ ρ0 þ ρ1 þ � � � þ ρN�1ð Þ 1½ �YNþ2 jωð Þ

þ ρ0 þ ρ1 þ � � � þ ρN�1ð Þ 2½ �YNþ3 jωð Þ� � �

0B@
1CA ðA2Þ

This gives (9.5a). Similarly, (9.5b) can be obtained.

B. Proof of Corollary 9.1

Considering N¼3 firstly, the output spectrum is truncated at N¼3, which can be

written as

Y jωð Þ ¼ Y1 jωð Þ þ Y2 jωð Þ þ Y3 jωð Þ þ σ 3½ � jωð Þ

where σ[3](jω)¼Y4(jω)+Y5(jω)+Y6(jω)+ � � � is the truncation error. Using (9.4) to

estimate the different orders of output spectra, the estimation errors are given by

Proposition 1

ΔY1 jωð Þ ¼ �ρ0ρ1ρ2
X1
k¼0

ρ0 þ ρ1 þ ρ2ð Þ k½ �Ykþ3 jωð Þ

ΔY3 jωð Þ ¼
X1
k¼1

ρ0 þ ρ1 þ ρ2ð Þ k½ �Ykþ2 jωð Þ

If choosing ρ0+ρ1+ρ2¼0, ρ1¼�ρ, ρ2¼�ρ/α, and using Lemma 9.1, computation

of (ρ0+ρ1+ρ2)
[k] can be obtained as

ρ0 þ ρ1 þ ρ2ð Þ 1½ � ¼ ρ0 þ ρ1 þ ρ2 ¼ 0

ρ0 þ ρ1 þ ρ2ð Þ 2½ � ¼ ρ0 ρ0 þ ρ1 þ ρ2ð Þ 1½ � þ ρ1 ρ1 þ ρ2ð Þ 1½ �

þρ22 ¼ ρ1 þ ρ2ð Þ2 � ρ1ρ2 ¼
α2 þ αþ 1

α2
ρ2
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ρ0 þ ρ1 þ ρ2ð Þ 3½ � ¼ ρ0ρ1ρ2 ¼
αþ 1

α2
ρ3

ρ0 þ ρ1 þ ρ2ð Þ 4½ � ¼ ρ0ρ0ρ1ρ2 þ ρ41 þ ρ31ρ2 þ ρ21ρ
2
2 þ ρ1ρ

3
2 þ ρ42

¼ α4 þ 2α3 þ 3α2 þ 2αþ 1

α4
ρ4

. . .. . .
Therefore, (9.6a,b) can be obtained. Following a similar process, (9.6c,d) can be

derived.

9.6 Proofs 177



Chapter 10

Using Nonlinearity for Output Vibration

Suppression: An Application Study

10.1 Introduction

Suppression of periodic disturbances covers a wide range of engineering practices,

involved in active control and isolation of vibrations in mechanical, vehicle and

aerospace systems. Traditionally, an increase in damping can reduce the response at

the resonance. However, this is often at the expense of degradation of isolation at

high frequencies (Graham and McRuer 1961). Many methods have been proposed

to deal with this problem, such as optimal control, H-infinity control, “skyhook”

damper, repetitive learning control, and optimization etc (Graham and McRuer

1961; Housner et al. 1997; Karnopp 1995; Lee and Smith 2000). A much more

comprehensive and up-to-date survey can refer to Hrovat (1997). Nonlinear feed-

back is an approach that has been noted recently by some researchers (Alleyne and

Hedrick 1995; Chantranuwathanal and Peng 1999; Zhu et al. 2001). It is shown in

Lee and Smith (2000) that, although it is not possible to use linear time-invariant

controllers to robustly stabilize a controlled plant and to achieve asymptotic

rejection of a periodic disturbance, the problem is solvable by using a nonlinear

controller for a linear plant subjected to a triangular wave disturbance. Based on the

Hamiltonian system theory, an optimal nonlinear feedback control strategy is

proposed in Zhu et al. (2001) for randomly excited structural systems. It has also

been reported many times that existing nonlinearities or deliberately introduced

nonlinearities may bring benefits to control system design (Graham and McRuer

1961). Hence, the design of a nonlinear feedback controller to suppress periodic

disturbances has great potential to achieve a considerably improved control perfor-

mance. However, it should be noted that most of these existing methods mentioned

above are based on state space and in the time domain, and some of those usually

involve a complicated design procedure.

Based on the results discussed previous Chapters, the OFRF (output frequency

response function) for nonlinear systems can be obtained explicitly, which reveals
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an analytical relationship between system output spectrum and system model

parameters for a wide class of nonlinear systems and provides an important basis

for the analysis and design of output response behaviour of nonlinear systems in the

frequency domain. For a linear controlled plant subject to periodic disturbances, if a

nonlinear feedback is introduced to produce a nonlinear closed loop system, the

relationship between the disturbance and the system output is nonlinear and can,

under certain conditions, be described in the frequency domain by using the OFRF

to explicitly relate the controller parameters to the system output frequency

response. Therefore, by properly designing the controller parameters based on

this explicit relationship, the effect of the periodic disturbance on the system output

frequency response could be significantly suppressed. Motivated by this idea, a

frequency domain approach to the analysis and design of nonlinear feedback for the

exploitation of the potential advantage of nonlinearities is proposed in this study to

suppress sinusoidal exogenous disturbances for a linear controlled plant.

This chapter is organized as follows. The problem formulation is given in Sect.

10.2, which is divided into several basic problems that can be addressed separately.

Section 10.3 is concerned with some fundamental issues of the analysis and design

of nonlinear feedback corresponding to different basic problems. Some theoretical

results and techniques needed to solve these basic problems are established. Section

10.4 illustrates the implementation of the new approach by tackling a simple

vibration system. Some proofs for the theoretical results are provided in Sect.

10.6 and a conclusion is given in Sect. 10.5.

10.2 Problem Formulation

Consider an SISO linear system described by the following differential equation:

XL
l¼0

Cx lð ÞDlxþ b � uþ e � η ¼ 0 ð10:1Þ

y ¼
XL�1

l¼0

Cy lð ÞDlxþ d � u ð10:2Þ

where, x, y, u, η2ℝ1 represent the system state, output, control input, and an

exogenous disturbance input respectively; η stands for a known, external, bounded

and periodical vibration, which can be described by a summation of multiple

sinusoidal functions; L is a positive integer; Dl is an operator defined by Dlx¼dlx/
dtl. The model of system (10.1)–(10.2) can also be written in a state-space form:

_X ¼ AXþ Buþ Eη ð10:3Þ
y ¼ CXþ du ð10:4Þ
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where, X¼[x, D1x, . . ., DL�1x]T2ℜL is the system state variable, A and C are

matrixes with appropriate dimensions, B¼[01�(L�1), b]T, E¼[01�(L�1), e]
T. The

problem to be addressed as case study of the theory and methods discussed in

previous chapters is:

Given a frequency interval I(ω) and a desired magnitude level of the output
frequency response Y*over this frequency interval, find a nonlinear feedback
control law

u ¼ �φ x, D1x, . . . , DL�1x
� � ð10:5Þ

such that

max
ω2I ωð Þ

Y jωð ÞY �jωð Þð Þ � Y� ð10:6aÞ

where the feedback control law �φ(x, D1x, . . ., DL�1x) is generally a nonlinear
function of x, D1x, . . ., DL�1x, with the linear state/output feedback as a special
case; Y(jω) is the spectrum of the system output.

For the purpose of implementation, the control objective (10.6a) is transformed

to be

max
ωk2 I ωð Þ
k¼1, 2,. . . , k

Y jωkð ÞY �jωkð Þð Þ � Y� ð10:6bÞ

That is, evaluate the output spectrum at a series frequency point such that the

maximum value is suppressed to a desired level. The control law (10.5) should

therefore achieve the control objective defined by (10.6b). In the following, assume

I(ω)¼ω0, that is only the output response at a specific frequency is considered. Let

Y ¼ Y jωð ÞY �jωð Þj ω0;uð Þ, then Y0 ¼ Y jωð ÞY �jωð Þj ω0;0ð Þ shows the magnitude of the

system output frequency response at frequency ω0 under zero control input.

Obviously,

Y jωð ÞY �jωð Þj ω0;uð Þ � Y� < Y0 ¼ Y jωð ÞY �jωð Þj ω0;0ð Þ ð10:7Þ

To obtain a nonlinear feedback controller, φ(x, D1x, . . ., DL�1x) is written in a

polynomial form in terms of x, D1x, . . ., DL�1x as

φ x, D1x, . . . , DL�1x
� � ¼XM

p¼1

XL�1

l1���lp¼0

Cp0 l1; � � �; lp
� �Yp

i¼1

Dlix ð10:8Þ

where M is a positive integer representing the maximum degree of nonlinearity in

terms of Dix(t) (i¼0. . .L�1);
XL�1

l1���lp¼0

�ð Þ ¼
XL�1

l1¼0

� � �
XL�1

lp¼0

�ð Þ. The nonlinear function in
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(10.8) includes a general class of possible linear and nonlinear functions of Dix (i¼
0. . .L�1). Since Dix¼e(i+1)TX, where e(i+1) is an L-dimensional column vector

whose (i+1)th element is 1 with all other terms zero, φ(x, D1x, . . ., DL�1x) can also

be written as a function of X, i.e., φ(X). As mentioned before, for the parameters

Cp0(.) (p¼1,. . .,M ), when p¼1 the parameters will be referred to as the linear

parameters corresponding to the linear terms in (10.8), e.g., C1,0 2ð Þ d2x tð Þ
dt2 . All

other parameters in (10.8) will be referred to as nonlinear parameters corresponding

to the nonlinear terms
Yp
i¼1

Dlix tð Þ. p is the nonlinear degree of nonlinear parameter

Cp0(�). Let

C M; Lð Þ ¼ Cp0 l1; � � �; lp
� � p ¼ 1� � �M

li ¼ 0� � �L� 1

i ¼ 1� � �p

������
0@ 1A ð10:9Þ

which includes all the parameters in (10.8). Substituting (10.8) into (10.1) and

(10.2) yields the closed loop system as

XM
p¼1

XL
l1���lp¼0

Cp0 l1; � � �; lp
� �Yp

i¼1

Dlixþ e � η ¼ 0 ð10:10aÞ

XM
p¼1

XL�1

l1���lp¼0

eCp0 l1; � � �; lp
� �Yp

i¼1

Dlix ¼ y ð10:10bÞ

where,

C10 l1ð Þ ¼ Cx l1ð Þ � bC10 l1ð Þ, eC10 l1ð Þ ¼ Cy l1ð Þ � dC10 l1ð Þ
Cp0 l1; � � �; lp
� � ¼ �bCp0 l1; � � �; lp

� �
, eCp0 l1; � � �; lp

� � ¼ �dCp0 l1; � � �; lp
� �

;

for p¼2 � � �M, li¼0� � �L, and i¼1 � � �p. Equation (10.10a,b) is a nonlinear differ-

ential equation model, whose generalized frequency response function can be

obtained by using the results in Chap. 2. According to the results in Chen and

Billings (1989), the model can represent a wide class of nonlinear systems. This

implies that the nonlinear control law (10.8) can be used for many control purposes

of interests. The task for the nonlinear feedback controller design is to determine

M and a range for the controller parameters in (10.9) to make the closed loop system

(10.10a,b) bounded stable around its zero equilibrium, and then to determine the

specific values for the controller parameters from the OFRF which defines the

relationship between the closed loop system output spectrum and controller param-

eters to achieve the required steady state performance (10.7).

There are generally four fundamental issues to be addressed for the nonlinear

feedback design problem as follows:
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(a) Determination of the analytical relationship between the system output spec-

trum and the nonlinear controller parameters.

(b) Determination of an appropriate structure for the nonlinear feedback control-

ler. Only nonlinear terms which are useful for the control purpose are needed

in the controller to achieve the design objective.

(c) Derivation of a range for the values of the control parameters over which the

stability of the closed loop nonlinear system is guaranteed.

(d) Development of an effective numerical method for the practical implementa-

tion of the feedback controller design.

Section 10.3 is to investigate these fundamental issues. A simulation study will

be presented thereafter to illustrate these results.

10.3 Fundamental Results for the Analysis and Design

of the Nonlinear Feedback Control

10.3.1 Output Frequency Response Function

In this section, the output frequency response of the closed loop nonlinear system

(10.10a,b) is derived. The relationship between the system output spectrum and the

controller parameters are investigated to produce some useful results for the

nonlinear feedback analysis and design.

A. Output Spectrum of the Closed Loop System

As discussed before, any time invariant, causal, nonlinear system with fading

memory can be approximated by a finite Volterra series. With the BIBO stability

condition for the controller parameters which will be studied in Sect. 10.3.3, the

relationship between the output y(t) and the input η(t) of system (10.10a,b) can be

approximated by a Volterra functional series up to a finite order N as described by

(2.1), i.e.,

y tð Þ ¼
XN
n¼1

yn tð Þ, yn ¼
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þ
Yn
i¼1

η t� τið Þdτi ð10:11Þ

where hn(τ1, � � �,τn) is the nth order Volterra kernel of system (10.10a,b)

corresponding to the input–output relationship from η(t) to y(t). When the input

in (10.11) is a multi-tone function in (3.2), i.e.,

η tð Þ ¼
XK
i¼1

Fij j cos ωitþ∠Fið Þ ð10:12Þ

the system output spectrum can be obtained as given in (3.3), i.e.,
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Y jωð Þ ¼
XN
n¼1

1

2n

X
ωk1

þ���þωkn¼ω

Hn jωk1 , � � �, jωknð ÞF ωk1ð Þ� � �F ωknð Þ ð10:13Þ

where,

F ωð Þ ¼ Fij jej∠Fi if ω2 ωk, k ¼ �1, � � �, � Kf g
0 else

�
ð10:14Þ

Hn jωk1 , � � �, jωknð Þ ¼
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þe�j ω1τ1þ���þωnτnð Þdτ1� � �dτn ð10:15Þ

Equation (10.15) is the nth-order generalised frequency response function (GFRF)

of system (10.10a,b) for the relationship between η(t) and y(t), which can be

obtained by directly following the results in Sect. 2.3.

Proposition 10.1 The GFRFs Hn jωk1 , � � �, jωknð Þ from the disturbance η(t) to the

output y(t) of nonlinear system (10.10a,b) can be determined as

Hn jω1, � � �, jωnð Þ ¼
Xn
p¼1

XL�1

l1���lp¼0

eCp0 l1� � �lp
� �

H1
np jω1, � � �, jωnð Þ ð10:16aÞ

H1
np jω1, � � �, jωnð Þ ¼

Xn�pþ1

i¼1

H1
i jω1, � � �, jωið ÞH1

n�i,p�1 jωiþ1, � � �, jωnð Þ jω1 þ � � � þ jωið Þlp

ð10:16bÞ
H1

n1 jω1, � � �, jωnð Þ ¼ H1
n jω1, � � �, jωnð Þ jω1 þ � � � þ jωnð Þl1 , H1

1 jω1ð Þ

¼ e

�XL
l1¼0

C10 l1ð Þ jω1ð Þl1 ð10:16cÞ

H1
n jω1, � � �, jωnð Þ ¼�1

e
H1

1 jω1þ �� �þ jωnð Þ
Xn
p¼2

XL�1

l1���lp¼0

Cp0 l1� � �lp
� �

H1
np jω1, � � �, jωnð Þ� eδ n� 1ð Þ

0@ 1A
ð10:16dÞ

and δ nð Þ ¼ 1 n¼ 0

0 otherwise

�
. □

From Proposition 10.1, the GFRFs can be computed recursively from the time

domain model (10.10a,b), and the output spectrum of system (10.10a,b) can be

obtained analytically from (10.13) and (10.16a–d), which are an explicit function of

the parameters in the control law (10.8). Therefore, the design of controller (10.8)

can be studied in the frequency domain. In order to obtain an analytical relationship

between the system output spectrum and model parameters from these recursive

computations the OFRF of system (10.10a,b) is expressed as a polynomial function

of the nonlinear controller parameters in (10.9) according to Chaps. 6 and 7, i.e.,
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Y jωð Þ ¼ P0 jωð Þ þ a1P1 jωð Þ þ a2P2 jωð Þ þ � � � ð10:17aÞ

where P0(jω) is the linear part of the system output frequency response, Pi(jω) (i�1)

represents the effects of higher order nonlinearities, and ai (i¼1,2,� � �) are functions of
the nonlinear controller parameters which can be determined by following Chaps. 5 and

6. Moreover, for a nonlinear controller parameter c in (10.9), there exists a series of

functions of frequency ω Pi jωð Þ, i ¼ 0, 1, 2, 3, . . .
� �

such that

Y jωð Þ ¼ P0 jωð Þ þ cP1 jωð Þ þ c2P2 jωð Þ þ � � � ð10:17bÞ

Equation (10.17b) explicitly shows the relationship between the system output

spectrum and the nonlinear controller parameters, and therefore enables the

OFRF to be determined by using a simple numerical method which will be

discussed in Sect. 10.3.4. Obviously, this considerably facilitates the analysis and

design of the nonlinear feedback controller in the frequency domain. In order to

reveal the contribution of the nonlinear controller parameters of different degrees to

the output spectrum more clearly and thus shed light on the issue of the structure

determination for the control law (10.8), some useful results regarding the para-

metric characteristic of the OFRF are discussed in the following section.

B. Parametric Characteristic Analysis of the Output Spectrum

The parametric characteristic analysis of the system output spectrum is to investi-

gate the polynomial structure of OFRF (10.17a), and to reveal how the frequency

response functions in (10.13) and (10.16a–d) depend on the nonlinear controller

parameters (i.e., Cp0(.) for p>1) in (10.9).

Following the results in Sect. 6.4, the parametric characteristics of the GFRF H1
n

(jω1, � � �,jωn) from u(t) to y(t) can be obtained as for n>1

CE H1
n jω1, � � �, jωnð Þ� � ¼ 	

p¼2

n
Cp, 0 
 CE H1

n,p jω1, � � �, jωnð Þ
	 
	 


¼ 	
p¼2

n
Cp, 0 
 CE H1

n�pþ1 jω1, � � �, jωnð Þ
	 
	 


¼ Cn0 	 	
p¼2

nþ1=2½ �
Cp0 
 CE H1

n�pþ1 �ð Þ
	 
	 


ð10:18Þ

For n¼1, CE(H1
1(jω1))¼1. Here, [n/2] means to take the integer part of [.]. From

the invariant property of the CE operator, it follows for the nonlinear controller

parameters in (10.9) that
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CE Cp0 l1; � � �; lp
� �� � ¼ Cp0 l1; � � �; lpþq

� �
, CE eCp0 l1; � � �; lp

� �	 

¼ Cp0 l1; � � �; lp

� �
Applying CE operator to (10.16a) for the nonlinear parameters in (10.9),

CE Hn jω1, � � �, jωnð Þð Þ ¼ CE
XL
l1¼0

eC1,0 l1ð ÞH1
n, 1 jω1, � � �, jωnð Þ þ

Xn
p¼2

XL
l1���lp¼0

eCp0 l1� � �lp
� �

H1
np jω1, � � �, jωnð Þ

0@ 1A
¼ CE

XL
l1¼0

Cy l1ð Þ � C10 l1ð Þ�H1
n1

�
jω1, � � �, jωn

� �þXn
p¼2

XL
l1���lp¼0

�dð ÞCp0 l1� � �lp
� �

H1
np jω1, � � �, jωnð Þ

0@ 1A
¼

1

	n
p¼2

Cp0 
 CE H1
np jω1, � � �, jωnð Þ

	 
	 

8><>:

n ¼ 1

n > 1

ð10:19Þ

Therefore, with respect to the nonlinear parameters in (10.9), the parametric

characteristics of the GFRFs Hn(jω1, � � �,jωn) from η(t) to y(t) is the same as those

of the GFRFs H1
n(jω1, � � �,jωn) from u(t) to y(t), i.e.,

CE H2
n �ð Þ� � ¼ CE H1

n �ð Þ� �
for n > 0 ð10:20Þ

That is, the effect of the nonlinear parameters in (10.9) on the GFRFs Hn(jω1, � � �,
jωn) is the same as that on the GFRFs H1

n(jω1, � � �, jωn). Equations (10.18)–(10.20)

reveal how the GFRFs depend on the nonlinear controller parameters in (10.9).

Based on these results, the parametric characteristic of the OFRF can be obtained as

CE Y jωð Þð Þ ¼ CE
XN
n¼1

1

2n

X
ωk1

þ���þωkn¼ω

H2
n jωk1 , � � �, jωknð ÞF ωk1ð Þ� � �F ωknð Þ

0@ 1A
¼ CE

XN
n¼1

X
ωk1

þ���þωkn¼ω

H2
n jωk1 , � � �, jωknð Þ

0@ 1A ¼ CE
XN
n¼1

H2
n jωk1 , � � �, jωknð Þ

 !
¼ CE H2

1 �ð Þ� �	 CE H2
2 �ð Þ� �	 � � � 	 CE H2

N �ð Þ� � ¼ CE H1
1 �ð Þ� �	 CE H1

2 �ð Þ� �	 � � � 	 CE H1
N �ð Þ� �

ð10:21aÞ

Therefore, according to the results in Chap. 6, there exist a complex valued function

vector eFn jωð Þ with appropriate dimension such that

Y jωð Þ ¼ 	N
n¼1

CE H1
n jω1, � � �, jωnð Þ� �� �

� eFn jωð Þ ð10:21bÞ

This is the detailed polynomial function of (10.17a). Equation (10.21b) provides an

analytical and straightforward expression for the relationship between system

output spectrum and the controller parameters. Now the coefficients of the polyno-

mial function (10.17a) can be determined as
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a1 a2 a3 � � � aK½ � ¼ CE Y jωð Þð Þ
¼ CE H1

1 �ð Þ� �	CE H1
2 �ð Þ� �	 � � � 	CE H1

N �ð Þ� � ð10:21cÞ

where K is the dimension of the vector CE(H1
1(�))	CE(H1

2(�))	� � �	CE(H1
N(�)).

In order to better understand these parametric characteristics, the following

results are given, which is a special case of Proposition 5.1.

Proposition 10.2 The elements in CE(H1
n(jω1, � � �, jωn)) include and only include

all the parameter monomials (consisting of the nonlinear parameters in (10.9)) in

Cp0 
 Cr10 
 Cr20 
 � � � 
 Crk0 for 0�k�n�2, satisfying pþ
Xk
i¼1

ri ¼ nþ k, 2�
ri�n�1, and 2�p�n. □

Proposition 10.2 shows whether and how a nonlinear parameter in (10.9) is

included in CE(H1
n(jω1, � � �, jωn)). Different parameters may form one monomial

acting as an element in CE(H1
n(jω1,� � �, jωn)), and thus have a coupled effect on H1

n

(jω1, � � �,jωn). If a nonlinear parameter appears in CE(H1
n(jω1, � � �,jωn)), this implies

that it has an effect onH1
n(jω1, � � �,jωn) and thus on Y(jω). If this nonlinear parameter

is an independent element in CE(H1
n(jω1, � � �, jωn)), then it has an independent effect

on Y(jω). Furthermore, if a parameter frequently appears in CE(H1
n(jω1, � � �, jωn))

with different monomial degrees, this may implies that this parameter has more

strong effect on H1
n(jω1, � � �,jωn) and thus Y(jω). For this reason, the parametric

characteristic analysis of H1
n(jω1, � � �,jωn) can shed light on the effect of different

nonlinear parameters on H1
n(jω1, � � �,jωn) and thus Y(jω).

From Proposition 10.2 (also referring to Property 5.3 for the general case), the

term (Cn0)
i should be included in the GFRF Hm(.), where m is computed as m+k¼m

+i�1¼ni. Hence,m¼ ni�i+1¼1+(n�1)i. It can be seen that, when n is smaller,Cn,0

will contribute independently to more GFRFs whose orders are (n�1)i+1 for

i¼1,2,3,. . .; and if n is larger, Cn,0 can only affect the GFRFs of orders higher

than n. It is known that for a Volterra system, the system nonlinear dynamics could

be dominated by low order GFRFs (Boyd and Chua 1985). This implies that the

nonlinear terms with coefficient Cn,0 of smaller nonlinear degree, e.g., 2 and 3, may

play greater roles than other pure output nonlinear terms. This property is signifi-

cant for the selection of possible nonlinear terms in the feedback design. Moreover,

it can be verified from Proposition 10.2 that, If the second and third degree

nonlinear control parameters are all zero, i.e., C20¼0 and C30¼0, then H2(.)¼0,

and H3(.)¼0. However, even if Cn0¼0 (for n>3), the nth order GFRF Hn(.) is not

zero, providing there are nonzero terms in C20 or C30. This further demonstrates

that the nonlinear controller parameters in C20 and C30 have a more important role

in the determination of the GFRFs than other nonlinear parameters, and thus has a

more important effect on the output spectrum. These imply that a lower degree

nonlinear feedback may be sufficient for some control problems. These provide a

guidance for the selection of the candidate terms in (10.9).
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10.3.2 The Structure of the Nonlinear Feedback Controller

The determination of the structure for the nonlinear feedback controller (10.8) is an

important task to be tackled. Firstly, as discussed in Sect. 10.3.1(B), the structure

parameter M in (10.8) should be chosen as small as possible since lower degree of

nonlinear terms have greater contributions to the output spectrum. It can be

increased gradually until the control objective is achieved. Secondly, after M is

determined, whether a term in Cp0 is effective or not should be checked. An

effective controller must satisfy the inequality (10.7). Thus for the effectiveness

of a specific nonlinear controller parameter c, this requirement can be written as

∂ Y jω0ð Þj j
∂c

< 0 for some c ð10:22Þ

Consider the specific nonlinear controller parameter c in Cp0 and let all the other

nonlinear controller parameters be zero or assumed to be a constant. Then only the

nonlinear coefficient ci appears in CE(H1
1þðp�1Þi(.)) according to Proposition 10.2.

Therefore, only the GFRFs for the orders 1+(p�1)i (for i¼1,2,3,. . .) need to be

computed to obtain the system output spectrum in (10.13). According to (10.21a–c),

the output spectrum can be written as

Y jω; cð Þ ¼ P0 jωð Þ þ cP1 jωð Þ þ c2P2 jωð Þ þ � � � ð10:23Þ

It can easily be shown that if Re P0 jωð Þ � P1 �jωð Þ� �
< 0 then there must exist ε>

0 such that
∂ Y jωð Þj j

∂c < 0 for 0<c<ε or �ε<c<0, where Re(�) is to take the real part
of (.). This can be used to find the nonlinear terms which are effective. Only the

effective nonlinear terms in C(M ) is considered. By this way, the structure of the

nonlinear function (10.8) can be determined. It should be noted that, in this process

the output spectrum needs to be analytically computed up to at most the third order

by using (10.12)–(10.16a–d). The structure of the control law (10.8) can also be

determined by simply including all the possible nonlinear terms of degree up to M.

Once the output spectrum is determined by the numerical method in Sect. 10.3.4,

the values of the coefficients of these nonlinear terms can be optimized for the

control objective (10.7) in the stability region developed in the following section. If

the objective (10.7) cannot be achieved after M is enough large, this may implies

that the objective (10.7) cannot be achieved by the controller (10.8) and a better

possible solution can be used for this case.

10.3.3 Stability of the Closed-Loop System

As mentioned above, the stability of a nonlinear system should be guaranteed such

that the nonlinear system can be approximated by a locally convergent Volterra
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series. Therefore, a range for the nonlinear controller parameters which can ensure

the stability of the closed loop system (10.10a,b) can be determined. For simplicity,

(10.10a,b) can also be written in a state space form as

_X ¼ AX� Bφ Xð Þ þ Eη :¼ f Xð Þ þ Eη ð10:24aÞ
y ¼ CX � Dφ Xð Þ :¼ h Xð Þ ð10:24bÞ

A, B, C, D, E are appropriate matrices which are the same as the matrices in (10.3)

and (10.4). Note that the exogenous disturbance in (10.24a,b) is a periodic bounded

signal, and the objective in a vibration control is often to suppress the output

vibration below a desired level, a concept of asymptotic stability to a ball is adopted

in this section. This concept implies that the magnitude of the output for a system is

asymptotically controlled to a satisfactory predefined level. Based on this concept, a

general result is then derived to ensure the stability of the closed loop nonlinear

system (10.24a,b), which can be regarded as an application of some existing

theories in Isidori (1999).

A Ball Bρ(X) is defined as: Bρ(X)¼{X|kXk�ρ, ρ>0}. A K-function γ(s) is an
increasing function of s, and a KL-function β(s,t) is an increasing function of s, but a
decreasing function of t. For detailed definitions of K/KL-functions can refer to

Isidori (1999).

Asymptotic Stability to a Ball Given an initial state X02ℜn and disturbance

input η of a nonlinear system, if there exists a KL-function β such that the solutionX
(t,X0,η) (for t�0) of the system satisfies kX(t,X0,η)k�β(kX0k, t)+ρ, 8 t>0, then

the system is said to be asymptotically stable to a ball Bρ(X), where ρ is an upper

bound function of η, i.e., there exist a K-function γ such that ρ¼γ(kηk1).

Assumption 10.1 There exists a K-function o such that the output function h(X) of
the nonlinear system (10.24a,b) satisfies kh(X)k�o(kXk).
Proposition 10.3 If assumption 10.1 holds, then the following statements are

equivalent:

(a) There exist a smooth function V :ℜL!ℜ�0 and K1-functions β1,β2 and K-
functions α, γ such that

β1 Xk kð Þ � V Xð Þ � β2 Xk kð Þ and
∂V Xð Þ
∂X

f Xð Þ þ Eηf g
� �α Xk kð Þ þ γ ηk k1

� � ð10:25Þ

(b) System (10.24a,b) is asymptotically stable to the ball Bρ(X) with

ρ¼β1(2�β�1
2 �α�1 �γ(kηk1)), and the output of system (10.24a,b) is

asymptotically stable to the ball Bo(2ρ)(y). □

Proof See the proof in Sect. 10.6. □
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Note that Proposition 10.3 can guarantee the asymptotical stability to a ball of

system (10.24a,b) when subject to bounded disturbance, and asymptotical stability

to zero when the disturbance tends to zero. This is just the property of fading

memory which is required for the existence of a convergent Volterra series approx-

imation for the system input–output relationship (Boyd and Chua 1985). Although

it is not easy to derive a general stability condition for the general controller (10.5),

there are always various methods (Ogota 1996) to choose a proper Lyapunov

function based on Proposition 10.3 to derive a stability condition for a specific

controller.

10.3.4 A Numerical Method for the Nonlinear Feedback
Controller Design

The nonlinear controller parameters can be determined by solving (10.17b) to

satisfy the performance (10.6b) or (10.7) under the stability condition. However,

it can be seen that the analytical derivation of the output spectrum of system

(10.10a,b) involves complicated symbolic computation for orders higher than

5. To circumvent this problem, as discussed in Sect. 10.3.1(A), the numerical

method discussed in Chaps. 7 and 8 can be used since the detailed polynomial

structure of the OFRF can be determined by using the method in Sect. 10.3.1, which

is summarized as follows:

(1) The system output frequency response function can be expressed as Y jωð ÞY
�jωð Þ ¼ ��Y jωð Þ��2 ¼ C � eP jωð Þaccording to (10.21a–c) with a finite polynomial

degree, where eP jωð Þ is a complex valued function vector,

C¼ 1 c1 c2 c3 � � � cK!½ � ¼ CE H1
1 �ð Þ� �	CE H1

2 �ð Þ� �	 �� �	CE H1
N �ð Þ� �� �


 CE H1
1 �ð Þ� �	CE H1

2 �ð Þ� �	 �� �	CE H1
N �ð Þ� �� �

(2) Collect the system time domain steady output yi(t) under different values of the
controller parameters Ci¼[1 c1i,c2i,. . .c(K!)i] for i¼1,2,3,. . .Ni;

(3) Evaluate the FFT for yi(t) to obtain Yi(jω), then obtain the magnitude |Yi(jω0)|
2

at frequency ω0, and finally form a vector YY ¼ ��Y1 jω0ð Þ��2, � � �, ��YNi
jω0ð Þ��2
 �T

(4) Obtain the following equation,

1, c11, c12, � � �,c1,K!
1, c21, c22, � � �,c2,K!
� � �, � � �, � � �, � � �, � � �
1,cNi1,cNi2, � � �,cNi,K!

2664
3775 �

eP0eP1

⋮ePK!

2664
3775¼

��Y1 jω0ð Þ��2��Y2 jω0ð Þ��2
⋮��YNi

jω0ð Þ��2
2664

3775 i:e:, ψC � eP jω0ð Þ ¼ YY

(5) Evaluate the function eP jω0ð Þ by using Least Squares,

eP jω0ð Þ ¼ ψC
T � ψC

� ��1 � ψC
T � YY
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(6) Finally, the nonlinear controller parameters C* for given Y* at a specific

frequency ω0 can be determined according to

Y� ¼¼ C� � eP jω0ð Þ

The numerical method above is very effective for the implementation of the

design of the proposed nonlinear controller parameters, which will be verified by a

simulation study in Sect. 10.5.

Although there are some time domain methods which can address the nonlinear

control problems based on Lyapunov stability theory such as the back-stepping

technique and feedback linearization (Isidori 1999) etc, few results are available for

the design and analysis of a nonlinear feedback controller in the frequency domain

to achieve a desired frequency domain performance. Based on the analytical

relationship between system output spectrum and controller parameters defined

by the OFRF, the analysis and design of a nonlinear feedback controller can be

conducted in the frequency domain. For a summary, a general procedure for this

new method is given as follows.

(A) Derivation of the output spectrum for the closed loop system given M and L.
Given M and L in (10.8), the general output spectrum with respect to the

control law (10.8) for the closed loop system (10.10a,b) can be obtained

according to (10.13) and (10.16a–d). This will be used for the validation of

the effectiveness of nonlinear terms in the next step. L is the maximum

derivative order which is dependent of the system model, and M is the

maximum nonlinearity order which can be given as 2 or 3 at this stage.

(B) Determination of the structure of the nonlinear feedback function in (10.8).

This is to determine the value of M and choose the effective nonlinear

controller parameters Cp0(.) (p¼2,3,. . .,M ). Based on the analysis of the

parametric characteristics in Sect. 10.3.1B, the nonlinear controller parameters

included in C20 and C30 take a dominant role in the determination of GFRFs

and output spectrum. Hence, M can be chosen as 2 or 3 at the beginning, and

increased later if needed. The effectiveness of each nonlinear parameter can be

checked by ℜ P0 jωð Þ � P1 �jωð Þ� �
< 0, where P1 �jωð Þ can be computed from

Step(A) by letting the other nonlinear parameters to be zero and P0 jωð Þ is the
linear part of the output spectrum in this case. If the parameter is not effective,

it can be discarded.

(C) Derivation of the region for the nonlinear feedback parameters in Cp0(.) for

p¼2,3,. . .,M.
This is to ensure the stability of the nonlinear closed loop system (10.10a,b),

which can be conducted by applying Proposition 10.3 to derive a stability

condition for the closed loop system in terms of the nonlinear controller

parameters. Although how to develop a systematic method for this purpose

for a general nonlinear system is still an open problem, this can be easily done

for some special or simple cases.
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(D) Determination of the OFRF by using the numerical method and the optimal

values for the nonlinear parameters

This is to derive a detailed polynomial expression for the output spectrum

according to (10.21a–c) for the maximum nonlinearity order M larger than

3, and use the numerical method provided above to determine the desired value

for each nonlinear controller parameter within the stability region to achieve

the control objective (10.6b) or (10.7).

10.4 Simulation Study

Consider a simple case of the model in (10.1) and (10.2), which can be written as

M€x ¼ �Kx� a1 _x þ ηþ uð Þ
y ¼ Kxþ a1 _x � u

�
This is the model of a vibration isolation system studied in Daley et al. (2006)

(Fig. 10.1), where y(t) is the force transmitted from the disturbance η(t) to the

ground, K and a1 are the spring and a damping characteristic parameters

respectively.

Following the procedure in Sect. 10.3, a nonlinear feedback active controller u(t)
is designed and analysed for the suppression of the force transmitted to the ground.

It will be shown that a simple nonlinear feedback can bring much better improve-

ment for the system performance, compared with a linear feedback control.

According to the general procedure above, the output spectrum under control law

(10.8) for the closed loop system should first symbolically be determined. But for

this simple example, it can be left to the next step.

10.4.1 Determination of the Structure of the Nonlinear
Feedback Controller

Considering the nonlinear feedback in (10.8), for this simple system, M is directly

chosen to be 3, and all the other nonlinear controller parameters are chosen to be

Active

unit u(t)
a 1

K x(t)

M

)(th

Fig. 10.1 A vibration

isolation system
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zero except C30(111)¼a3 which represents a nonlinear damping and will be shown

to be effective in the later analysis. If C30(111)¼a3 is not effective, more other

nonlinear terms can be chosen.

The nonlinear feedback control law now is

u ¼ �a3 _x
3

and the closed loop system is therefore

M€x ¼ �Kx� a1 _x � a3 _x
3 þ η að Þ

y ¼ Kxþ a1 _x þ a3 _x
3 bð Þ

�
ð10:26Þ

Note that system (10.26) is a very simple case of system (10.10a,b), that is, L¼2,

C10 2ð Þ ¼ M, C10 1ð Þ ¼ a1, C10 0ð Þ ¼ K, C30 111ð Þ ¼ a3, C01 0ð Þ ¼ �1 andeC10 1ð Þ ¼ a1, eC10 0ð Þ ¼ K, eC30 111ð Þ ¼ a3; All other parameters in model (10.10a,

b) are zero. Moreover, assume the disturbance input is η(t)¼Fdsin(8.1t) (8.1 is the

concerned working frequency of the system), which is a single tone function and a

simple case of (10.12). Now the task for the nonlinear feedback controller design is

to determine a3 such that system (10.26) satisfies the control objective (10.7).

To verify the effectiveness of this nonlinear control, the output spectrum should

be computed up to the third order as discussed in Step(B). Note that only C30(111)¼
a3 and other nonlinear parameters Cp0 for p>2 are all zero. According to (10.18)–

(10.20), the following parametric characteristics of the GFRFs can be obtained

CE H1
2 �ð Þ� � ¼ C20 	

X2þ1=
2


 �
p¼2

Cp0 
 CE H1
2�pþ1 �ð Þ

	 

¼ C20 ¼ 0, CE H1

3 �ð Þ� �

¼ C30 	
X3þ1=

2


 �
p¼2

Cp0 
 CE H1
3�pþ1 �ð Þ

	 

¼ C30 ¼ a3

CE H1
4 �ð Þ� � ¼ C40 	

X4þ1=
2


 �
p¼2

Cp0 
 CE H1
4�pþ1 �ð Þ

	 

¼ 0, CE H1

5 �ð Þ� �

¼ C50 	
X5þ1=

2


 �
p¼2

Cp0 
 CE H1
5�pþ1 �ð Þ

	 

¼ C30 
 CE H1

3 �ð Þ� � ¼ a23;

It is easy to check from Propositions 10.2 that

CE H1
2nþ1 �ð Þ� � ¼ an

3 for n > 0 and all other CE H1
i �ð Þ� � ¼ 0 ð10:27Þ
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This shows that only H1
2nþ1(�) for n>0 are nonzero and all others are zero. There-

fore, the output spectrum can be computed from (10.13) and (10.16a–d) with only

odd order GFRFs as

Y jωð Þ ¼
XN
n¼1

1

22nþ1

X
ωk1

þ���þωk2nþ1
¼ω

H2
2nþ1 jωk1 , � � �, jωk2nþ1

� �
F ωk1ð Þ� � �F ωk2nþ1

� �
¼ 1

2
H2

1 jωð ÞF ωð Þ þ a3
8

X
ωk1

þ���þωk3
¼ω

G2
3 jωk1 , jωk2 , jωk3ð ÞF ωk1ð ÞF ωk2ð ÞF ωk3ð Þ

þ a23
32

X
ωk1

þ���þωk5
¼ω

G2
5 jωk1 , � � �, jωk5ð ÞF ωk1ð Þ� � �F ωk5ð Þ þ � � �

:¼ P0 jωð Þ þ a3P1 jωð Þ þ a23P2 jωð Þ þ � � � ð10:28aÞ

where

P0 jωð Þ ¼ 1

2
H2

1 jωð ÞF ωð Þ ¼ �j a1 jωð Þ þ Kð ÞFd

2M jωð Þ2 þ 2a1 jωð Þ1 þ 2K
, P1 jωð Þ ¼ �3

8
MF3

dω
5 H1

1 jωð Þ�� ��2 H1
1 jωð Þ
 �2

P2 jωð Þ ¼ � 3j

32
MF5

d jωH1
1 jωð Þ�� ��4 jωH1

1 jωð Þ
 �2
jωð Þ � j3ωH1

1 j3ωð Þ � j3ωH1
1 �jωð Þ þ j6ωH1

1 jωð Þ� �
;

ð10:28bÞ

Note that carrying out the computation above, the analytical relationship between

the output spectrum and nonlinear parameter a3 can be obtained explicitly for up to

any high orders. It can be checked that Re P0 jω0ð Þ � P1 �jω0ð Þ� � ¼ 0:5 P0 jω0ð ÞP1

�
�jω0ð Þ þ P0 �jω0ð ÞP1 jω0ð ÞÞ ¼ �31:132 < 0 when a3>0,ω0¼8.1 rad/s and other

system parameters as given in the simulation studies. Hence, the nonlinear control

parameter a3 is effective. If there are other nonlinear controller parameters, the

same method can be used to check the effectiveness as discussed in Step(B). Only

the effective nonlinear terms are used in the controller.

10.4.2 Derivation of the Stability Region for the Parameter a3

According to Proposition 10.3, the following result can be obtained.

Proposition 10.4 Consider the closed loop system (10.26), and assume the exog-

enous disturbance input satisfies kη(t)k�Fd. The system is asymptotically stable

to a ball B
Fd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmin Qð Þ�1ε

p Xð Þ, if a3>0 and additionally there exist P¼PT>0, β>0 and

ε>0 such that
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Q ¼ �ATP� PA� ε�1PEETP �βATCT þ PB� βPEETCT

� þ2βCB� ε�1β2CEETCT

� �
> 0

Moreover, the closed loop system (10.26) without a disturbance input is global

asymptotically stable if the above inequality holds with E¼0. Here,

A ¼ 0 1

�K=
M � a1=M

� �
, B ¼ 0; 1=

M½ �T , C¼[0,1], E ¼ 0; 1=
M½ �T .

Proof See the proof in Sect. 10.6. □

It is noted that the inequality in Proposition 10.4 has no relation with a3 and is

determined by the linear part of system (10.26) which can be checked by using the

LMI technique by Boyd et al. (1994). This implies that the value of a3 has no effect
on the stability of the system if the inequality is satisfied. Hence, the nonlinear

controller parameter a3 is now only restricted to the region [0,1), provided that the

linear system satisfies the inequality condition.

10.4.3 Derivation of the OFRF and Determination
of the Desired Value of the Nonlinear Parameter a3

By using (10.27), the parametric characteristics of the output spectrum of nonlinear

system (10.26) can be obtained as

CE Y jωð Þð Þ ¼ CE H1
1 �ð Þ� �	 CE H1

2 �ð Þ� �	 � � � 	 CE H1
N �ð Þ� �

¼ 1 a3 a23 � � � aZ
3


 �
where Z ¼ N�1=

2
cb . Therefore, the system output spectrum can be written as a

polynomial expression as

Y jωð Þ ¼ P0 jωð Þ þ a3P1 jωð Þ þ a23P2 jωð Þ þ � � � þ aZ
3 PZ jωð Þ

Hence,

Y jωð ÞY �jωð Þ ¼ Y jωð Þj j2 ¼ P0 jωð Þ�� ��2 þ a3 P0 jωð ÞP1 �jωð Þ þ P0 �jωð ÞP1 jωð Þ� �
þa23 P1 jωð Þ�� ��2 þ P0 jωð ÞP2 �jωð Þ þ P0 �jωð ÞP2 jωð Þ

	 

þ � � �
ð10:28cÞ

Clearly, jY(jω)j2 is also a polynomial function of a3. Given the magnitude of a

desired output frequency response Y* at any frequency ω0, a3 can be solved from

(10.28c) provided that jY(jω)j can be approximated by a polynomial expression of a

finite order. In order to determine a desired value for a3 to achieve the control

objective (10.7), the numerical method proposed in Sect. 10.3.4 is used. Since
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(10.28c) is a polynomial function of a3, jY(jω)j2 can be directly approximated by a

polynomial function of a3 as follows:

Y jωð ÞY �jωð Þ¼ Y jωð Þj j2

� a2Z3
eP2Zþ�� �an

3
ePnþan�1

3
ePn�1þ�� �þa3eP1þ P0 jωð Þ�� ��2 ð10:29aÞ

where jY(jω)j2 can be obtained via evaluating the FFT of the system output

response from the system simulations or experimental data. Given 2Z different

values of a3, i.e., a31, a32, . . ., a3,2Z, (10.29a) can be further written as (for each

values of a3)

Y jωð Þi
�� ��2 � a2Z3i

eP2Z þ � � �an
3i
ePn þ an�1

3i
ePn�1 þ � � � þ a3ieP1 þ P0 jωð Þ�� ��2

for i¼1,2,. . .,2Z, i.e.,

a31 a231 a331 � � � a2Z31

a32 a232 a332 � � � a2Z32

⋱ ⋮
a3,2Z a23,2Z a33,2Z � � � a2Z3,2Z

266664
377775 �

eP1eP2

⋮eP2Z

2664
3775 ¼

Y jωð Þ1
�� ��2 � P0 jωð Þ�� ��2
Y jωð Þ2
�� ��2 � P0 jωð Þ�� ��2
⋮
Y jωð Þ2Z
�� ��2 � P0 jωð Þ�� ��2

26664
37775

Then eP1, eP2, � � �, eP2Z are obtained as

eP1eP2

⋮eP2Z

2664
3775¼

a31 a231 a331 � � � a2Z31

a32 a232 a332 � � � a2Z32

⋱ ⋮
a3,2Z a23,2Z a33,2Z � � � a2Z3,2Z

266664
377775
�1

�
Y jωð Þ1
�� ��2� P0 jωð Þ�� ��2
Y jωð Þ2
�� ��2� P0 jωð Þ�� ��2
⋮
Y jωð Þ2Z
�� ��2� P0 jωð Þ�� ��2
26664

37775 ð10:29bÞ

Consequently, (10.29a) is obtained. By using this method, a polynomial expression

of jY(jω)j2 in any order can be achieved. Given a desired output frequency response
Y* at a frequency ω0, a3 can be solved from (10.29a) to implement the design. Note

that roots of (10.29a) are multiple. According to Proposition 10.4, the solution a3
should be a nonnegative real number.

10.4.4 Simulation Results

In the simulation study, the parameters of system (10.26) are: K¼16,000 N/m,

a1¼296 N S/m, M¼240 kg. The resonant frequency of the system is ω0¼8.1 rad/s.

In order to show the effectiveness and advantage of the nonlinear feedback con-

troller u¼�a3ẋ
3, a linear controller u¼�a2ẋ will be used for a comparison.
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Firstly, let Fd¼100 N. We need to obtain the polynomial function (10.29a). In

order to have a larger working region of a3, let Z¼6 in (10.29a), and a3¼500,

1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 12,000, 14,000, 16,000, 18,000, 20,000.

Under these different values of a3, the output frequency response of the system was

obtained and the corresponding output spectrum was determined via FFT opera-

tions. Then ePn jωð Þ for n¼1. . .12 were obtained according to (10.29b), which are

summarized partly in Table 10.1. For comparisons, the corresponding theoretical

results were also computed from (10.28a–c) and are given partly in Table 10.1.

From Table 10.1, it can be seen that there is a good match between the numerical

analysis results and the theoretical computations although there are some errors.

This result shows that the theoretical computation results are basically consistent

with the results from the simulation analyses. It can also be seen from the numerical

analysis results in Table 10.1 that (10.29a) is in fact an alternative series in this case.

Figure 10.2 shows the results of the system output spectrum under different

values of the nonlinear control parameter a3 and provides a comparison between

theoretical computations using polynomial expression (10.28c) up to the 3rd order

and the numerical results using the polynomial expression (10.29a) up to the 12th

order. This result demonstrates the analytical relationship between the nonlinear

control parameter and the system output spectrum, and shows that the theoretical

results have a good match with the numerical results when a3 is small since only up

to the third order GFRF are used in the theoretical computations. Hence, with an

increase of a3, the numerical method has to be used in order to give correct results.

Moreover, it should be noted that the magnitude of the system output spectrum

decreases with the increase of a3. This verifies that the nonlinear control parameter

a3 is effective for the control problem.

Without a control input, the system output frequency spectrum is as shown in

Fig. 10.3b, where Y jωð Þjω0
¼ 335:71. Note that the output response spectrum

shown in the figures is 2|Y| not |Y|, which is also applied on the plot of the output

spectrum using the theoretical computation. This is because 2|Y| represents the

physical magnitude of the system output at the frequency ω0. If the desired output

Table 10.1 Comparison between simulation and theoretical results (Jing et al. 2008a)

Simulation results from (10.29a,b) Theoretical results from (10.28a–c)

P0 jωð Þ�� ��2 1.1270e+05 P0 jωð Þ�� ��2 1.1257e+05eP1
�58.9652 P0 jωð ÞP1 �jωð Þ

þP0 �jωð ÞP1 jωð Þ
�62.2641

eP2
0.0423 P1 jωð Þ�� ��2 þ P0 jωð ÞP2 �jωð Þ

þP0 �jωð ÞP2 jωð Þ
0.0615

eP3
�2.3762e�005 __ __eP4
10.1382e�009 __ __eP5
�2.3593e�012 __ __

. . . . . . . . . . . .
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frequency spectrum is set to be Y*¼180, then the calculation according to (10.29a,

b) and Proposition 10.4 yields a3¼118,610. The output frequency spectrum under

the nonlinear feedback control is shown in Fig. 10.3a, where Y jωð Þjω0
¼ 180:08,

and hence the result matches the desired result quite well. The system outputs in the

time domain without and under the nonlinear feedback control are given in Fig.

10.4. It can be seen that the system steady state performance is considerably

improved when the nonlinear controller is used.

In order to further demonstrate the advantage of the nonlinear feedback control,

consider a linear controller u¼�275ẋ. Under this linear control, the system output
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Fig. 10.2 Analytical relationship between the system output spectrum and the control parameter

a3 (Jing et al. 2008a)
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Fig. 10.3 Output spectrum (a) without a feedback control, (b) with the designed nonlinear

feedback (Jing et al. 2008a)
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frequency response as shown in Fig. 10.5 is similar to that achieved under the

nonlinear controller. However, when Fd is increased to 200 N, the output frequency

response is quite different under the two controllers. The nonlinear feedback

controller results in a much smaller magnitude of output frequency response at

frequency ω0, referring to Fig. 10.6. Figure 10.7 shows the results of the system

outputs in the time domain under the two different control inputs, indicating the
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Fig. 10.4 System output in time domain: before and after control (Jing et al. 2008a)

Fig. 10.5 Output spectrum with the linear feedback control (Jing et al. 2008a)
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nonlinear controller has a much better result than the linear controller. When the

input frequency ω0 is increased to be 15 rad/s, the same conclusions can be reached

for the two controllers, referring to Fig. 10.8. When the input frequency is

decreased to be 5 rad/s, the output spectrums under the two controllers are similar

(see Fig. 10.9). On the other hand, although increase of the liner damping can also

achieve better output performance at the driving frequency, this will degrade the

a b

Fig. 10.6 Output spectrum (a) with the linear feedback control and (b) with the designed

nonlinear feedback control, when Fd is increased to Fd¼200 (a2¼275, a3¼11,869) (Jing

et al. 2008a)
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Fig. 10.7 The system outputs in time domain under different control inputs (Fd¼200) (Jing

et al. 2008a)
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output performance at high frequencies as known in literature (Fig. 10.10). How-

ever, the nonlinear damping has no obviously such a limitation (Fig. 10.11).

The results demonstrate that a cubic nonlinear damping as introduced by a

simple nonlinear feedback control can achieve better performance than a linear

damping control for vibration suppression both in low and high frequencies. The

frequency domain method proposed in this study provides an effective approach to

the analysis and design of the nonlinear feedback control. Although only a simple

case with only one nonlinear term is studied in this simulation, much more

complicated cases with multiple nonlinear parameters can also be analysed and

designed by following a similar method. It should be noted that there may be some

other methods in the literature which can be used to realize the same control

purpose of this study, however, the advantage of this method is that it can directly

relate the nonlinear controller parameters to system output frequency response and
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Fig. 10.8 Output spectrum (a) with the linear feedback control and (b) with the designed

nonlinear feedback control, when ω0¼15 rad/s, Fd¼100, a2¼275, a3¼11,869 (Jing et al. 2008a)
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Fig. 10.9 Output spectrum (a) with the linear feedback control and (b) with the designed

nonlinear feedback control when ω0¼5 rad/s, Fd¼100, a2¼275, a3¼11,869 (Jing et al. 2008a)
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therefore the nonlinear controller or structural parameters can be analysed and

designed in the frequency domain, which is a more understandable way in engi-

neering practice. Furthermore, the designed controller, for instance the nonlinear

damping designed in the example study above, may also be realized by a passive

unite, and the analysis by using this method can be performed directly for a physical

characteristics of a structural unite in a system. This will have great significance in

practical applications.
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Fig. 10.10 Output spectrum with the linear feedback control when (a) a2¼275 and (b) a2¼2,750

(ω0¼15 rad/s, Fd¼200) (Jing et al. 2008a)
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Fig. 10.11 Output spectrum with the nonlinear feedback control when (a) a3¼11,869 and (b)

a3¼118,690 (ω0¼15 rad/s, Fd¼200) (Here, a3 is just arbitrarily increased to see the control

effect) (Jing et al. 2008a)
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10.5 Conclusions

A frequency domain approach to the analysis and design of nonlinear feedback

controller for suppressing periodic disturbances is studied and some preliminary

results in this subject are provided. Although there are already some time-domain

methods, which can address nonlinear control problems based on Lyapunov stabil-

ity theory, few results are available for analysis and design of a nonlinear feedback

controller in the frequency domain to achieve a desired frequency domain perfor-

mance. Based on the analytical relationship between system output spectrum and

controller parameters defined by the OFRF, this chapter demonstrates a systematic

frequency domain approach to exploiting the potential advantage of nonlinearities

to achieve a desired output frequency domain performance for the analysis and

design of vibration systems. Compared with other existing methods for the same

purposes, the method in this chapter can directly relate the nonlinear parameters of

interest to the system output frequency response and the designed controller may

also be realized by a passive unite in practice. Although the results in this paper are

developed for the problem of periodic disturbance suppression for SISO linear

plants, the idea can be extended to a more general case (i.e., nonlinear controlled
plants) and to address more complicated control problems.

Exploring nonlinear benefits for vibration control is an interesting and hot

topic in the literature. More results in this topic can also be referred to Xiao

et al. (2013a), Jing et al. (2009c, 2010, 2011), Jing and Lang (2009b) and Liu

et al. (2015).

10.6 Proofs

A. Proof of Proposition 10.3

To prove Proposition 10.3, the following Lemmas are needed.

Lemma 10.3 Consider two positive, scalar and continuous process in time t, x(t)
and y(t) satisfying y(t)�α(x(t)) (for t�0), where α is a K-function. If x(t) is

asymptotically stable to a ball Bρ(x), then y(t) is asymptotically stable to a ball

Bα(2ρ)(y).

Proof There exists a KL-function β, such that function x(t) (for t�0) satisfies x
(t)�β(x(0), t)+ρ, 8 t>0. Therefore,

y tð Þ � α x tð Þð Þ ¼ α β x 0ð Þ, tð Þ þ ρð Þ � α max 2β x 0ð Þ, tð Þ, 2ρð Þð Þ
¼ max α 2β x 0ð Þ, tð Þð Þ, α 2ρð Þð Þ � α 2β x 0ð Þ, tð Þð Þ þ α 2ρð Þ

Note that α(2β(x(0), t)) is still a KL-function of x(0) and t, thus the lemma is

concluded. □
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From Lemma 10.3, if there exists a K-function o such that the output function h
(X) of a nonlinear system satisfies kh(X)k�o(kXk), then the system output is

asymptotically stable to a ball if the system is asymptotically stable to a ball.

Lemma 10.4 Consider a scalar differential inequality ẏ(t)��α(y(t))+γ, where α
is a K-function and γ is a constant and y(t) satisfies Lipschitz condition. Then there

exists KL-function β such that

y tð Þ � β y t0ð Þ � α�1 γð Þ�� ��; t� �þ α�1 γð Þ:

Proof Consider the differential equation ẏ(t)¼�α(y(t)). From Lemma 10.1.2 in

Isidori (1999) it is known that, there is a KL-function β such that y(t)¼β(y(t0), t).
Similarly, considering the differential equation ẏ(t)¼�α(y(t))+γ, then y(t)¼sign(y
(t0)�α�1(γ)) �β(|y(t0)�α�1(γ)|, t)+α�1(γ). Thus from the comparison principle and

the differential inequality ẏ(t)��α(y(t))+γ, the lemma follows. □

Then to prove Proposition 10.3, it follows from (10.25) that

_V X tð Þð Þ � �α Xk kð Þ þ γ ηk k1
� � ðA1Þ

Noting V(X)�β2(kXk), we have kXk�β�1
2 (V(X)). Substituting this inequality into

(A1), we have

_V X tð Þð Þ � �α β�1
2 V Xð Þð Þ� �þ γ ηk k1

� �
From lemma 10.4, it follows that, there exist a KL-function β, such that

V X tð Þð Þ � β V0; tð Þ þ β�1
2 � α�1 � γ ηk k1

� � ðA2Þ

where, V0¼jV(X(t0))�β�1
2 �α�1 �γ(kηk1)j. From (A2), V(X(t)) is asymptotically

stable to the ball Bβ�1
2 �α�1�γ ηk k1ð Þ Vð Þ. Noting β1(kXk)�V(X), we have kXk�β1(V

(X)). From lemma 10.3, X(t) is asymptotically stable to the ball Bρ(X). Further-

more, since assumption 10.1 holds, from lemma 10.3, y(t) is asymptotically stable

to the ball Bo(2ρ)(y). This completes the proof of sufficiency. The proof of the

necessity of the proposition can follow a similar method as demonstrated in the

appendix of Hu et al. (2005). The proof completes. □

B. Proof of Proposition 10.4

The state-space equation of system (10.26a) can be written as Ẋ¼AX�Bϕ+Eη,
where, X¼[x, ẋ]T, ϕ¼a3σ

3, σ¼CX. Choose a Lyapunov candidate as:

V ¼ XTPXþ α

2
σ4 ðA3Þ

where, α>0. Equation (A3) further gives
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_V ¼XTP _Xþ _X
T
PXþ 2ασ3C _X ¼XT ATPþPA

� �
X� 2XTPBϕþ 2XTPEηþ 2α

a3
ϕC AX�BϕþEηð Þ

¼XT ATPþPA
� �

X� 2XTPBϕþ 2α

a3
ϕCAX� 2α

a3
ϕCBϕþ 2XTPEηþ 2α

a3
ϕCEη ðA4Þ

Let Z¼ X

ϕ

� �
, T¼ PE

α

a3 CE

" #
, and β¼α/a3 then (A4) gives

_V ¼ZT ATPþPA βATCT �PB

� �2βCB

� �
ZþZTTη�ZT ATPþPA βATCT �PB

� �2βCB

� �
Zþ ε�1ZTTTTZþ εηTη

¼ZT ATPþPA βATCT �PB

� �2βCB

� �
þ ε�1TTT

� �
Zþ εη2 ¼�ZTQZþ εη2

Note that, in the inequality above, the following inequality is used

2ZTTη�ε�1ZTTTTZ+εηTη, for any ε>0.

If Q¼QT>0, then ZTQZ�λmin(Q)kXk2 is a K-function of ||X||. Hence,

according to Proposition 10.3, the system is asymptotically stable to a ball Bρ(X)

with ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmin Qð Þ�1εsup ηk k2

	 
r
¼ Fd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmin Qð Þ�1ε

q
. Additionally, when there is

no exogenous disturbance input, and ifQ¼QT>0 holds with E¼0, then it is obvious

that the system without a disturbance input is globally asymptotically stable. This

completes the proof. □
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Chapter 11

Mapping from Parametric Characteristics to

the GFRFs and Output Spectrum

11.1 Introduction

Frequency domain methods for nonlinear systems have been studied for many years

(Taylor 1999; Solomou et al. 2002; Pavlov et al. 2007). The frequency domain

theory for Volterra systems was initiated by the concept of the GFRF (George

1959). Thereafter, many significant results relating to the estimation and computa-

tion of the GFRFs and analysis of output frequency response for practical nonlinear

systems have been developed (Bendat 1990; Billings and Lang 1996; Chua and Ng

1979; and also see Chaps. 2–10).

To compute the GFRFs of nonlinear systems, Bedrosian and Rice (1971)

introduced the “harmonic probing” method. By applying the probing method

(Rugh 1981), algorithms to compute the GFRFs for nonlinear Volterra systems

described by the NDE, NARX and NBO models were derived, which enable the

nth-order GFRF to be recursively obtained in terms of the coefficients of the

governing nonlinear model (Chap. 2). Based on the GFRFs, frequency response

characteristics of nonlinear systems can then be investigated as shown before.

These results are important extensions of well known frequency domain methods

of linear systems such as transfer function or Bode diagram, and provide a system-

atic and effective method for analysis of nonlinear systems in the frequency

domain.

However, it can be seen that existing recursive algorithms for computations of

the GFRFs and system output spectrum can not explicitly and simply reveal the

analytical relationship between system time domain model parameters and system

frequency response functions in a clear and straightforward way. Therefore, many

problems remain unsolved, related to how the frequency response functions are

influenced by the parameters of the underlying system, and how they are connected

to complex non-linear behaviours, etc. In order to solve these problems, the

parametric characteristics of the GFRFs were studied in Chaps. 4–5, which
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effectively build up a mapping from the GFRF to its parametric characteristic and

provide an explicit expression for the analytical relationship between the GFRFs

and system time-domain model parameters. The significance of the parametric

characteristic analysis of the GFRFs is that it can reveal what model parameters

contribute to and how these parameters affect system frequency response functions

including the GFRFs and output frequency response function (see the detailed

results and discussions in the previous chapters). This provides an effective

approach to the analysis of the frequency domain characteristics of nonlinear

systems in terms of system time domain model parameters.

The study in this chapter is based on the results in Chap. 5. It is shown in

Chaps. 5–6 that the nth-order GFRF and output spectrum of a nonlinear Volterra

system can both be written as an explicit and straightforward polynomial function

in terms of nonlinear model parameters, and this polynomial function is character-

ized by its parametric characteristics with its coefficients being complex valued

functions of frequencies and dependent on the system linear dynamics and input.

Note that, the parametric characteristics can be analytically determined by the

results in Chap. 5. The objective of this chapter is to analytically determine the

complex valued functions related to the parametric characteristics. An inverse

mapping function from the parametric characteristics of the GFRFs to the GFRFs

is therefore studied. By using this new mapping function, the nth-order GFRF can

directly be recovered from its parametric characteristic as an n-degree polynomial

function of the first order GFRF, revealing an explicit analytical relationship

between higher order GFRFs and system linear frequency response function.

Compared with the existing recursive algorithm for the computation of the

GFRFs, the new mapping function enables the nth-order GFRF to be explicitly

expressed in a more straightforward and meaningful way. Note from previous

results that higher order GFRFs are recursively dependent on lower order GFRFs.

This recursive relationship often complicates the qualitative analysis and under-

standing of system frequency characteristics. The new results can effectively

overcome this problem, and unveil the system’s linear and nonlinear factors

included in the nth-order GFRF more clearly. This provides a useful insight into

the frequency domain analysis and design of nonlinear systems based on the

GFRFs, and can be regarded as an important application of the parametric charac-

teristic theory established in the previous chapters.

11.1.1 Some Notations for This Chapter

Some notations are listed here especially for readers’ convenience in understanding
the discussions of this Chapter, although some of these notations have already

appeared in previous chapters and will also be used in the following chapters.
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cp,q(k1, � � �,kp+q) A model parameter in the NDE model, ki is
the order of the derivative, p represents the

order of the involved output nonlinearity,

q is the order of the involved input

nonlinearity, and p+q is the nonlinear

degree of the parameter.

Hn(jω1, � � �, jωn) The nth-order GFRF

Cp,q ¼ cp,q 0; � � �; 0ð Þ, cp,q 0; � � �; 1ð Þ,�
� � �, cp,q

�
K, � � �,K|fflfflfflffl{zfflfflfflffl}
pþq¼m

��
A parameter vector consisting of all the

nonlinear parameters of the form

cp,q(k1,� � �,kp+q)

CE(.) The coefficient extraction operator

(Chap. 4)

CE(Hn(jω1, � � �,jωn)) The parametric characteristics of the

nth-order GFRF

fn(jω1, � � �, jωn) The correlative function of CE(Hn(jω1, � � �,
jωn))

� The reduced Kronecker product defined in

the CE operator

� The reduced vectorized summation defined

in the CE operator

cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ A monomial consisting of nonlinear

parameters

sx1sx2 � � �sxp A p-partition of a monomial

cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ
sxi A monomial of xi parameters of

cp0,q0 �ð Þ, � � �, cpk ,qk �ð Þ� �
of the involved

monomial, 0�xi�k, and s0¼1

φn :SC(n)!Sf (n) A new mapping function from the

parametric characteristics to the correlative

functions, SC(n) is the set of all the
monomials in the parametric

characteristics and Sf(n) is the set of all the
involved correlative functions in the nth

order GFRF.

n sx sð Þð Þ The order of the GFRF where the

monomial sx sð Þ is generated
λn ω1; � � �;ωnð Þ The maximum eigenvalue of the frequency

characteristic matrix Θn of the nth-order

GFRF
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11.2 The nth-Order GFRF and Its Parametric

Characteristic

In this chapter, consider Volterra-type nonlinear systems described by the NDE

model in (2.11). Similar results can be extended to the NARX model (2.10). For

convenience, some basic results are restated in this section as follows.

Using the definitions in (2.25), i.e.,

H0,0 �ð Þ ¼ 1, Hn, 0 �ð Þ ¼ 0 for n > 0, Hn,p �ð Þ ¼ 0 for n < p, and
Yq
i¼1

�ð Þ

¼ 1 q ¼ 0, p > 1

0 q ¼ 0, p � 1

�
ð11:1Þ

The nth-order GFRF for (2.11) can be written as (2.26), i.e.,

Hn jω1, � � �, jωnð Þ ¼ 1

Ln j
Xn
i¼1

ωi

 !Xn
q¼0

Xn�q

p¼0

XK
k1, kpþq¼0

cp,q k1; � � �; kpþq

� �

�
Yq
i¼1

jωn�qþi

� �kpþi

 !
Hn�q,p jω1, � � �, jωn�q

� � ð11:2Þ

The parametric characteristic of the nth-order GFRF can be simply computed as

(See Corollary 5.l for details)

CE Hn jω1, � � �, jωnð Þð Þ ¼ C0,n � �n�1

q¼1
�n�q

p¼1
Cp,q � CE Hn�q�pþ1 �ð Þ� �	 


� �
p¼2

n
Cp, 0 � CE Hn�pþ1 �ð Þ� �	 


ð11:3Þ

Moreover, CE(Hn(jω1, � � �,jωn)) can also be determined by following the results in

Proposition 5.1, which allows the direct determination of the parameter character-

istic vector of the nth-order GFRF without recursive computations and provides a

sufficient and necessary condition for which nonlinear parameters and how these

parameters are included in CE(Hn(jω1,� � �, jωn)).

Based on the parametric characteristic analysis in Chaps. 4–5, the nth-order
GFRF can be expressed as

Hn jω1, � � �, jωnð Þ ¼ CE Hn jω1, � � �, jωnð Þð Þ � f n jω1, � � �, jωnð Þ ð11:4Þ

where fn(jω1, � � �,jωn) is a complex valued function vector with an appropriate

dimension, which is referred to as the correlative function of the parametric

characteristic CE(Hn(jω1, � � �, jωn)) in this study.
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Equation (11.4) provides an explicit expression for the analytical relationship

between the GFRFs and system time-domain model parameters. Based on these

results, system nonlinear characteristics can be studied in the frequency domain

from novel perspectives including frequency characteristics of system output

frequency response, nonlinear effect from specific nonlinear parameters, and para-

metric sensitivity analysis etc as demonstrated in the previous chapters. In this

chapter, an algorithm is provided to explicitly determine the correlative function

fn(jω1, � � �, jωn) in (11.4) directly in terms of the first order GFRF H1(jω1) based on

the parametric characteristic vector CE(Hn(jω1, � � �, jωn)). To achieve this objective,

a mapping from CE(Hn(jω1,� � �, jωn)) to Hn(jω1, � � �,jωn) is established such that the

nth-order GFRF can directly be written into the parametric characteristic function

(11.4) in an analytical form by using this mapping function, and some new

properties of the GFRFs are developed. These results allow higher order GFRFs

and consequently the OFRF to be analytically expressed as a functional of the

system linear FRF (i.e., the first order GFRF), and thus provide a novel qualitative

and quantitative approach to understanding of nonlinear dynamics in the frequency

domain (see more discussions in Chap. 12).

11.3 Mapping from the Parametric Characteristic

to the nth-Order GFRF

The parametric characteristic vector CE(Hn(jω1, � � �,jωn)) of the nth-order
GFRF can be recursively determined by (11.3), which has elements of the form

Cp,q � Cp1,q1 � Cp2,q2 � � � � � Cpk ,qk (n�2	k	0), and each element of which has

a corresponding complex valued correlative function in vector fn(jω1,� � �, jωn).

For example, c0,n(k1, � � �,kn) corresponds to the complex valued function jω1ð Þk1
� � � jωnð Þkn in the nth-order GFRF.

From Proposition 5.1, an element in CE(Hn(jω1, � � �,jωn)) is either a single

parameter coming from pure input nonlinearity such as c0n(.), or a nonlinear

parameter monomial function of the form Cp,q � Cp1,q1 � Cp2,q2 � � � � � Cpk ,qk

satisfying (5.15), and the first parameter of Cp,q � Cp1,q1 � Cp2,q2 � � � � � Cpk ,qk

must come from pure output nonlinearity or input–output cross nonlinearity, i.e.,
cpq(.) with p	1 and p+q>1. For this reason, the following definition is given.

Definition 11.1 A parameter monomial of the form Cp,q � Cp1,q1 � Cp2,q2 � � � �
�Cpk ,qk with k	0 and p+q>1 is said to be effective or an effective combination of

the involved nonlinear parameters for CE(Hn(jω1,� � �, jωn)) if p+q¼n(>1) for k¼0,

or (5.15) is satisfied for k>0. □

From Definition 11.1, it is obvious that all the monomials in CE(Hn(jω1, � � �, jωn))

are effective combinations. The following lemma shows further that what an

effective monomial should be in certain order GFRF and how it is generated in

this order GFRF.
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Lemma 11.1 For a monomial cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ with k>0, the following

statements hold:

(1) it is effective for the Zth-order GFRF if and only if there is at least one

parameter cpi,qi(.) with pi>0, where Z ¼
Xk
i¼0

pi þ qið Þ � k.

(2) if there are l different parameters with pi>0, then there are l different
cases in which this monomial is produced by the recursive computation of

the Zth-order GFRF.

Proof (1) This is directly from Definition 11.1. Z can be computed according to

Proposition 5.1, i.e., p0 þ q0 þ
Xk
i¼1

pi þ qið Þ ¼ Z þ k, which yields

Z ¼
Xk
i¼0

pi þ qið Þ � k. (2) From the second and third terms in the recursive algo-

rithm of (2.19) or (5.1), i.e.,

Xn�1

q¼1

Xn�q

p¼1

XK
k1, kpþq¼0

cp,q k1; � � �; kpþq

� � Yq
i¼1

jωn�qþi

� �kpþi

 !
Hn�q,p jω1, � � �, jωn�q

� �

þ
Xn
p¼2

XK
k1, kp¼0

cp, 0 k1; � � �; kp
� �

Hn,p jω1, � � �, jωnð Þ

ð11:5Þ

it can be seen that all the nonlinear parameters with p>0 and p+q�n are involved

in the nth-order GFRF, and each of these parameters must correspond to the initial

parameter in an effective monomial of CE(Hn(jω1, � � �, jωn)). Hence, if there are

l different parameters with pi>0 in the monomial cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ, then
there will be l different cases in which this monomial is produced in the Zth order

GFRF. This completes the proof. □

Definition 11.2 A (p,q)-partition of Hn(jω1, � � �, jωn) is a combination Hr1 wr1ð ÞHr2

wr2ð Þ� � �Hrp wrp

� �
satisfying

Xp
i¼1

ri ¼ n� q, where 1�ri�n�p�q+1, and wri is a

set consisting of ri different frequency variables such that

[p
i¼1

wri ¼ ω1;ω2; � � �;ωnf g and wri \ wrj ¼ ϕ for i 6¼j. □

For example, H1(ω1)H1(ω2)H3(ω3 � � �ω5) and H1(ω1)H2(ω2,ω3)H2(ω4,ω5) are

two (3,0)-partitions of H5(jω1, � � �, jω5).

Definition 11.3 A p-partition of an effective monomial cp1,q1 �ð Þ� � �cpk ,qk �ð Þ is a

combination sx1sx2 � � �sxp , where sxi is a monomial of xi parameters in

cp1,q1 �ð Þ, � � �, cpk ,qk �ð Þ� �
, 0�xi�k, s0¼1, and each non-unitary sxi is an effective

monomial satisfying
Xp
i¼1

xi ¼ k and sx1sx2 � � �sxp ¼ cp1,q1 �ð Þ� � �cpk ,qk �ð Þ. □
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The sub-monomial sxi in a p-partition of an effective monomial cp1,q1 �ð Þ
� � �cpk ,qk �ð Þ is denoted by sxi cp1,q1 �ð Þ� � �cpk ,qk �ð Þ� �

. Suppose that a

p-partition for 1 is still 1, i.e., 1 � 1� � �1|fflfflfflffl{zfflfflfflffl}
p

¼ 1. Obviously

cp1,q1 �ð Þ� � �cpk ,qk �ð Þ ¼ sx1sx2 � � �sxp cp1,q1 �ð Þ� � �cpk ,qk �ð Þ� �¼ sk cp1,q1 �ð Þ� � �cpk ,qk �ð Þ� �
. For

example, s1(c1,1(�))s2(c2,1(�)c3,0(�)) and s2(c1,1(�)c2,1(�))s1(c3,0(�)) are two

2-partitions of c1,1(�)c2,1(�)c3,0(�). Moreover, note that when s0 appear in a

p-partition of a monomial, it means that there is a H1(.) which appears in

the corresponding (p,q)-partition for Hn(.).

For an effective monomial cp,q �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ in CE(Hn(jω1, � � �, jωn)),

without speciality, suppose the first parameter cp,q(�) is directly generated in the

recursive computation of Hn(jω1, � � �, jωn), then the other parameters must be gen-

erated from the lower order GFRFs that are involved in the recursive computation

of Hn(jω1,� � �, jωn). From (2.19)–(2.23) or (5.1)–(5.5) it can be seen that each

parameter in a monomial corresponds to a certain order GFRF from which it is

generated. The following lemma shows how a monomial is generated inHn(jω1, � � �,
jωn) by using the new concepts defined above. This provides an important insight

into the mapping from a monomial to its correlative function.

Lemma 11.2 If a monomial cp,q �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ is effective, and cp,q(�) is the
initial parameter directly generated in the xth-order GFRF and p>0, then

(1) cp1,q1 �ð Þ� � �cpk,qk �ð Þ comes from (p,q)-partitions of the xth-order GFRF,

where x¼ pþ qþ
Xk
i¼1

pi þ qið Þ � k;

(2) if additionally s0 is supposed to be generated from H1(.), then each p-parti-
tion of cp1,q1 �ð Þ� � �cpk ,qk �ð Þ corresponds to a (p,q)-partition of the xth-order

GFRF, and each (p,q)-partition of the xth-order GFRF produces at least one

p-partition for cp1,q1 �ð Þ� � �cpk ,qk �ð Þ;
(3) the correlative function of cp1,q1 �ð Þ� � �cpk ,qk �ð Þ is the summation of the

correlative functions from all the (p,q)-partitions of the xth-order
GFRF which produces cp1,q1 �ð Þ� � �cpk ,qk �ð Þ, and therefore is the summation

of the correlative functions corresponding to all the p-partition of

cp1,q1 �ð Þ� � �cpk ,qk �ð Þ.
Proof See Sect. 11.6 for the proof. □

Remark 11.1 From Lemma 11.2, it can be seen that all the (p,q)-partitions of the
xth-order GFRF which produce cp1,q1 �ð Þ� � �cpk,qk �ð Þ are all the (p,q)-partitions

corresponding to all the p-partitions for cp1,q1 �ð Þ� � �cpk ,qk �ð Þ. Therefore, to obtain

all the (p,q)-partitions of interest, all the p-partitions for cp1,q1 �ð Þ� � �cpk ,qk �ð Þ is

needed to be determined. □

Based on the results above, in order to determine the mapping between a

parameter monomial cp,q �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ and its correlative function in fn(jω1,

� � �,jωn), the following operator is defined.
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Definition 11.4 Let SC(n) be a set composed of all the elements in CE(Hn(jω1, � � �,
jωn)), and let Sf(n) be a set of the complex-valued functions of the frequency

variables jω1, � � �, jωn. Then define a mapping

φn : SC nð Þ ! Sf nð Þ ð11:6aÞ

such that in ω1, � � �,ωn

Hsym
n jω1, � � �, jωnð Þ ¼ 1

n!

X
all the permutations

of 1;2; . . . ;nf g

CE Hn jω1, � � �, jωnð Þð Þ�φn CE Hn jω1, � � �, jωnð Þð Þð Þ

ð11:6bÞ

□

That is, by using the mapping function above, an asymmetric GFRF can be

obtained as

Hn jω1, � � �, jωnð Þ ¼ CE Hn jω1, � � �, jωnð Þð Þ � φn CE Hn jω1, � � �, jωnð Þð Þð Þ

The existence of this mapping function is obvious. For example,

φn c0,n k1; � � �; knð Þð Þ ¼ jω1ð Þk1 � � � jωnð Þkn . The task is to determine the complex

valued correlative function φn cp,q �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ� �
for any nonlinear param-

eter monomial cp,q �ð Þcp1,q1 �ð Þ� � �cpk,qk �ð Þ (0�k�n�2) in CE(Hn(jω1,� � �, jωn)).

Based on Lemma 11.1–11.2, the following result can be obtained.

Proposition 11.1 For an effective nonlinear parameter monomial

cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ, let s ¼ cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ,
n sx sð Þð Þ ¼

Xx
i¼1

pi þ qið Þ � xþ 1, where x is the number of the parameters in sx,

Xx
i¼1

pi þ qið Þ is the summation of the subscripts of all the parameters in sx,
Xx
i¼1

:ð Þ
¼ 0 if x<1 and n(1)¼1. Then for 0 � k � n sð Þ � 2
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ϕn sð Þ cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� �

¼
X

all the 2� partitions

for s satisfying

s1 sð Þ ¼ cp,q �ð Þ and p > 0

f 1 cp,q �ð Þ, n sð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� �n

�
X

all the p� partitions

for s=cpq �ð Þ

X
all the different

permutations

of sx1 ; � � �; sxp
� �

f 2a sx1 � � �sxp s=cp,q �ð Þ� �
;ωl 1ð Þ� � �ωl n sð Þ�qð Þ

� �h

�
Yp
i¼1

ϕn sxi s=cp,q �ð Þð Þð Þ sxi s=cp,q �ð Þ� �
;ωl X ið Þþ1ð Þ� � �ωl X ið Þþn sxi s=cpq �ð Þð Þð Þð Þ

� �io
ð11:7aÞ

or simplified as

φn sð Þ cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� �

¼
X

all the 2� partitions

for s satisfying

s1 sð Þ ¼ cp,q �ð Þ and p > 0

f 1 cp,q �ð Þ, n sð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� ��

�
X

all the p� partitions

for s=cp,q �ð Þ

f 2b sx1 � � �sxp s=cp,q �ð Þ� �
;ωl 1ð Þ� � �ωl n sð Þ�qð Þ

� ��

�
Yp
i¼1

φn sxi s=cp,q �ð Þð Þð Þ sxi s=cp,q �ð Þ� �
;ωl X ið Þþ1ð Þ� � �ωl X ið Þþn sxi s=cp,q �ð Þð Þð Þð Þ

� �io
ð11:7bÞ

the terminating condition is k¼0 and φ1(1;ωi)¼H1(jωi), where,

X ið Þ ¼
Xi�1

j¼1

n sxj s=cpq �ð Þ� �� �
or X ið Þ ¼

Xi�1

j¼1

n sxj s=cpq �ð Þ� �� � ð11:8aÞ

f 1 cp,q �ð Þ, n sð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� � ¼ �Yq

i¼1

jωl n sð Þ�qþið Þ
� �kpþi



Ln sð Þ j

Xn sð Þ

i¼1

ωl ið Þ

 !

ð11:8bÞ
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f 2a sx1 � � �sxp s=cp,q �ð Þ� �
;ωl 1ð Þ� � �ωl n sð Þ�qð Þ

� �
¼
Yp
i¼1

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþn sxi s=cpq �ð Þð Þð Þð Þ
� �ki ð11:8cÞ

f 2b sx1 � � �sxp s=cp,q �ð Þ� �
;ωl 1ð Þ� � �ωl n sð Þ�qð Þ

� �
¼ n
x

n
k

X
all the different

permutations

of k1; � � �; kp
� �

Yp
i¼1

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþn sxi s=cpq �ð Þð Þð Þð Þ
� �ki

ð11:8dÞ

Moreover, sx1 , � � �sxp
� �

is a permutation of sx1 , � � �sxp
� �

,ωl 1ð Þ� � �ωl n sð Þð Þ represents the
frequency variables involved in the corresponding functions, li) for i ¼ 1 . . . n sð Þ is
a positive integer representing the index of the frequency variables, n
k ¼ p!

n1!n2!���nc!,
n1+. . .+nc¼p, c is the number of distinct differentials ki appearing in the combi-

nation, ni is the number of repetitions of the ith distinct differential ki, and a similar

definition holds for n
x . □

Proof See Sect. 11.6 for the proof. □

Remark 11.2 Equations (11.7a,b) are recursive. The terminating condition is k¼0,

which is also included in (11.7a,b). For k¼0, it can be derived from (11.7b) that

ϕn sð Þ cp,q �ð Þ;ωl 1ð Þ���ωl n sð Þð Þ
� �¼ϕpþq cp,q �ð Þ;ωl 1ð Þ���ωl pþqð Þ

� �
¼ f 1 cp,q �ð Þ,pþq;ωl 1ð Þ���ωl pþqð Þ

� �
�

X
all the p�partitions

for 1

f 2b sx1 ���sxp 1ð Þ;ωl 1ð Þ���ωl pþq�qð Þ
� � Yp

i¼1

ϕn sxi 1ð Þð Þ sxi 1ð Þ;ωl X ið Þþ1ð Þ���ωl X ið Þþn sxi 1ð Þð Þð Þ
� �

¼ f 1 cp,q �ð Þ,pþq;ωl 1ð Þ���ωl pþqð Þ
� � � f 2b 11���1|fflffl{zfflffl}

p

;ωl 1ð Þ���ωl pð Þ

0
@

1
A �
Yp
i¼1

ϕ1 1;ωið Þ

¼ 1

Lpþq j
Xpþq

i¼1

ωl ið Þ

 !�Yq
i¼1

jωl pþið Þ
� �kpþi �

Yp
i¼1

jωl ið Þ
� �ki �Yp

i¼1

H1 jωl ið Þ
� �

ð11:9Þ

Note that in this case, pþq¼n sð Þ from (5.15), and s¼cp,q �ð Þ corresponding to a

specific recursive terminal. Hence, (11.9) can be written as
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φn sð Þ cp,q �ð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� � ¼ 1

Ln sð Þ j
Xn sð Þ

i¼1

ωl ið Þ

 !�Yq
i¼1

jωl pþið Þ
� �kpþi

�
Yp
i¼1

jωl ið Þ
� �ki �Yp

i¼1

H1 jωl ið Þ
� � ð11:10Þ

In order to verify this result, let n ¼ n sð Þ ¼ pþ q, it can be obtained from (11.2)

that for a parameter cp,q(�), its correlative function is

1

Ln sð Þ j
Xn sð Þ

i¼1

ωi

 !Yq
i¼1

jωpþi

� �kpþi
�
Hp,p jω1, � � �, jωp

� �

From (5.5), Hp,p jω1, � � �, jωp

� � ¼Yp
i¼1

jωið Þki �
Yp
i¼1

H1 jωið Þ. This is consistent with

(11.10). To further understand the results in Proposition 11.1, the following figure

can be referred, which demonstrates the recursive process in the new mapping

function and the structure of the theoretical results above (See Fig. 11.1). □

To further demonstrate the results, the following example is given.

Example 11.1 Consider the fourth-order GFRF. The parametric characteristic of

the fourth-order GFRF can be obtained from Proposition 5.1 that

Fig. 11.1 An illustration of the relationships in Proposition 11.1 (Jing et al. 2008e)
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CE H4 jω1, � � �, jω4ð Þð Þ ¼ C0,4 � C1,3 � C3,1 � C2,2 � C4,0 � C1,1 � C0,3 � C1,1

� C1,2 � C1,1 � C2,1 � C1,1 � C3,0 � C1,2 � C0,2 � C1,2

� C2,0 � C2,0 � C0,3 � C2,0 � C2,1 � C2,0 � C3,0 � C2,1

� C0,2 � C3,0 � C0,2 � C1,1 � C0,2
2 � C1,1

2 � C0,2 � C1,1

� C0,2 � C2,0 � C1,1
3 � C1,1

2 � C2,0 � C1,1 � C2,0
2 � C2,0

� C0,2
2 � C2,0

2 � C0,2 � C2,0
3

By using Proposition 11.1, the correlative function of each term in CE(H4(jω1, � � �,
jω4)) can all be obtained. For example, for the term c1,1(.)c0,2(.)c2,0(.), it can be

derived that

φn sð Þ c1,1 �ð Þc0,2 �ð Þc2,0 �ð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� �¼ φ4 c1,1 �ð Þc0,2 �ð Þc2,0 �ð Þ;ω1� � �ω4ð Þ

¼ f 1 c1,1 �ð Þ, 4;ω1� � �ω4ð Þ
� f 2b s2 c0,2 �ð Þc2,0 �ð Þð Þ;ω1� � �ω3ð Þ �φn s2 c0,2 �ð Þc2,0 �ð Þð Þð Þ s2 c0,2 �ð Þc2,0 �ð Þð Þ;ωX 1ð Þþ1� � �ωX 1ð Þþn s2 c0,2 �ð Þc2,0 �ð Þð Þð Þ

� �h i
þf 1 c2,0 �ð Þ, 4;ω1� � �ω4ð Þ
� f 2b s0s2 c1,1 �ð Þc0,2 �ð Þð Þ;ω1� � �ω4ð Þ½ �φn s0 c1,1 �ð Þc0,2 �ð Þð Þð Þ s0 c1,1 �ð Þc0,2 �ð Þð Þ;ωX 1ð Þþ1� � �ωX 1ð Þþn s0 c1,1 �ð Þc0,2 �ð Þð Þð Þ

� �
�φn s2 c1,1 �ð Þc0,2 �ð Þð Þð Þ s2 c1,1 �ð Þc0,2 �ð Þð Þ;ωX 2ð Þþ1� � �ωX 2ð Þþn s2 c1,1 �ð Þc0,2 �ð Þð Þð Þ

� �
þ f 2b s1s1 c1,1 �ð Þc0,2 �ð Þð Þ;ω1� � �ω4ð Þ �φn s1 c1,1 �ð Þð Þð Þ s1 c1,1 �ð Þð Þ;ωX 1ð Þþ1� � �ωX 1ð Þþn s1 c1,1 �ð Þð Þð Þ

� �
�φn s1 c0,2 �ð Þð Þð Þ s1 c0,2 �ð Þð Þ;ωX 2ð Þþ1� � �ωX 2ð Þþn s1 c0,2 �ð Þð Þð Þ

� �i
¼ f 1 c1,1 �ð Þ, 4;ω1� � �ω4ð Þ
� f 2b c0,2 �ð Þc2,0 �ð Þ;ω1� � �ω3ð Þ �φn c0,2 �ð Þc2,0 �ð Þð Þ c0,2 �ð Þc2,0 �ð Þ;ω0þ1� � �ω0þn c0,2 �ð Þc2,0 �ð Þð Þ

� �h i
þf 1 c2,0 �ð Þ, 4;ω1� � �ω4ð Þ
� f 2b s0s2 c1,1 �ð Þc0,2 �ð Þð Þ;ω1� � �ω4ð Þ½ �φn 1ð Þ 1;ω1� � �ωn 1ð Þ

� �
φn c1,1 �ð Þc0,2 �ð Þð Þ c1,1 �ð Þc0,2 �ð Þ;ωn 1ð Þþ1� � �ωn 1ð Þþn c1,1 �ð Þc0,2 �ð Þð Þ

� �
þf 2b s1s1 c1,1 �ð Þc0,2 �ð Þð Þ;ω1� � �ω4ð Þ �φ2 c1,1 �ð Þ;ωX 1ð Þþ1� � �ωX 1ð Þþn s1 c1,1 �ð Þð Þð Þ

� �
�φ2 c0,2 �ð Þ;ωX 2ð Þþ1� � �ωX 2ð Þþn s1 c0,2 �ð Þð Þð Þ
� �i

¼ f 1 c1,1 �ð Þ, 4;ω1� � �ω4ð Þ � f 2b c0,2 �ð Þc2,0 �ð Þ;ω1� � �ω3ð Þ �ϕ3 c0,2 �ð Þc2,0 �ð Þ;ω1� � �ω3ð Þ½ �
þf 1 c2,0 �ð Þ, 4;ω1� � �ω4ð Þ � f 2b s0s2 c1,1 �ð Þc0,2 �ð Þð Þ;ω1� � �ω4ð Þ½ �ϕ1 1;ω1ð Þϕ3 c1,1 �ð Þc0,2 �ð Þ;ω2� � �ω4ð Þ

þ f 2b s1s1 c1,1 �ð Þc0,2 �ð Þð Þ;ω1� � �ω4ð Þ �ϕ2 c1,1 �ð Þ;ω1,ω2ð Þ�ϕ2 c0,2 �ð Þ;ω3,ω4ð Þ�
ð11:11Þ

To proceed with the recursive computation, it can be derived that

f 1 c1,1 �ð Þ, 4;ω1� � �ω4ð Þ ¼
Y1
i¼1

jω3þið Þk1þi

.
L4 j

X4
i¼1

ωi

 !
¼ jω4ð Þk2

.
L4 j

X4
i¼1

ωi

 !

ð11:12aÞ

f 1 c2,0 �ð Þ, 4;ω1� � �ω4ð Þ ¼ 1
.
L4 j

X4
i¼1

ωi

 !
ð11:12bÞ

f 2b sx1 c2,0 �ð Þc0,2 �ð Þð Þ;ω1� � �ω3ð Þ ¼ jω1 þ � � � þ jω3ð Þk1 ð11:12cÞ
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f 2b s0s2 c1,1 �ð Þc0,2 �ð Þð Þ;ω1� � �ω4ð Þ ¼
X

all the different

permutations

of k1; � � �;kp
� �

Y2
i¼1

jωX ið Þþ1 þ � � � þ jωX ið Þþn sxi s=cpq �ð Þð Þð Þ
� �ki

¼ jω1ð Þk1 jω2 þ � � � þ jω4ð Þk2 þ jω2 þ � � � þ jω4ð Þk1 jω1ð Þk2 ð11:12dÞ
ϕ3 c0,2 �ð Þc2,0 �ð Þ;ω1� � �ω3ð Þ
¼ f 1 c2,0 �ð Þ, 3;ω1� � �ω3ð Þ � f 2b sx1sx2 c0,2 �ð Þð Þ;ω1� � �ω3ð Þ

Y2
i¼1

ϕn sxi s=cpq �ð Þð Þð Þ sxi c0,2 �ð Þð Þ;ωX ið Þþ1� � �ωX ið Þþn sxi c0,2 �ð Þð Þð Þ
� �

¼ f 1 c2,0 �ð Þ, 3;ω1� � �ω3ð Þ � f 2b sx1sx2 c0,2 �ð Þð Þ;ω1� � �ω3ð Þϕ1 1;ω1ð Þϕ2 c0,2 �ð Þ;ω2,ω3ð Þ
¼ 1

L3 j
X3
i¼1

ωi

 ! � jω1ð Þk1 jω2 þ jω3ð Þk2 þ jω3 þ jω2ð Þk1 jω1ð Þk2
� �

� H1 jω1ð Þ � 1

L2 jω2 þ jω3ð Þ jω2ð Þk1 jω3ð Þk2

ð11:12eÞ
φ3 c1,1 �ð Þc0,2 �ð Þ;ω2� � �ω4ð Þ
¼ f 1 c1,1 �ð Þ, 3;ω2� � �ω4ð Þ � f 2b sx1 c0,2 �ð Þð Þ;ω2,ω3ð Þ �φn sx1 c0,2 �ð Þð Þð Þ sx1 c0,2 �ð Þð Þ;ω2,ω3ð Þ
¼ f 1 c1,1 �ð Þ, 3;ω2� � �ω4ð Þ � f 2b c0,2 �ð Þ;ω2,ω3ð Þ �φ2 c0,2 �ð Þ;ω2,ω3ð Þ

¼ jω4ð Þk2
L3 jω2þ � � �þ jω4ð Þ � jω2þ jω3ð Þk1 � 1

L2 jω2þ jω3ð Þ jω2ð Þk1 jω3ð Þk2

ð11:12fÞ

Using (11.12a–f) in (11.11) yields

φ4 c1,1 �ð Þc0,2 �ð Þc2,0 �ð Þ;ω1�� �ω4ð Þ
¼ f 1 c1,1 �ð Þ,4;ω1� � �ω4ð Þ � f 2b c0,2 �ð Þc2,0 �ð Þ;ω1� ��ω3ð Þ �φ3 c0,2 �ð Þc2,0 �ð Þ;ω1� ��ω3ð Þ½ �
þf 1 c2,0 �ð Þ,4;ω1� � �ω4ð Þ � f 2b s0s2 c1,1 �ð Þc0,2 �ð Þð Þ;ω1� � �ω4ð Þ½ �φ1 1;ω1ð Þφ3 c1,1 �ð Þc0,2 �ð Þ;ω2� � �ω4ð Þ

þ f 2b s1s1 c1,1 �ð Þc0,2 �ð Þð Þ;ω1� � �ω4ð Þ �φ2 c1,1 �ð Þ;ω1,ω2ð Þ�φ2 c0,2 �ð Þ;ω3,ω4ð Þ�

¼
jω4ð Þk2 jω1þ���þ jω3ð Þk1 jω1ð Þk1 jω2þ jω3ð Þk2 þ jω3þ jω2ð Þk1 jω1ð Þk2

� �
jω2ð Þk1 jω3ð Þk2

L4 jω1þ���þ jω4ð ÞL3 jω1þ jω2þ jω3ð ÞL2 jω2þ jω3ð Þ �H1 jω1ð Þ

þ
jω1ð Þk1 jω2þ���þ jω4ð Þk2 þ jω2þ���þ jω4ð Þk1 jω1ð Þk2

� �
jω4ð Þk2 jω2þ jω3ð Þk1 jω2ð Þk1 jω3ð Þk2

L4 jω1þ���þ jω4ð ÞL3 jω2þ���þ jω4ð ÞL2 jω2þ jω3ð Þ H1 jω1ð Þ

þ
jω1þ jω2ð Þk1 jω3þ jω4ð Þk2 þ jω3þ jω4ð Þk1 jω1þ jω2ð Þk2

� �
jω4ð Þk2 jω3ð Þk1 jω1ð Þk1 jω2ð Þk2

L4 jω1þ���þ jω4ð ÞL2 jω3þ jω4ð ÞL2 jω2þ jω1ð Þ H1 jω1ð Þ

ð11:13Þ

Therefore, the correlative function of the parameter monomial c1,1(�)c0,2(�)c2,0(�) is
obtained. It can be verified that the same result can be obtained by using the

recursive algorithm in (11.2), (5.2)–(5.3), (11.1). For the sake of brevity, this is
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omitted. By following the same method, the whole correlative function vector

φ4(CE(H4(jω1, � � �, jω4))) can be determined. Thus the fourth-order GFRF

H4(jω1, � � �, jω4) can directly be written into a parametric characteristic form which

can provide a straightforward and meaningful insight into the relationship between

H4(jω1, � � �, jω4) and nonlinear parameters, and also between H4(jω1,� � �,jω4) and

H1(jω1). □

Remark 11.3 From Example 11.1, it can be seen that Proposition 11.1 provides an

effective method to determine the correlative function for an effective monomial

cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ, and the computation process should be able to be carried

out automatically without manual intervention. Therefore, Proposition 11.1 pro-

vides a simplified method to determine the nth-order GFRF directly into a more

meaningful form as (11.4) which can demonstrate the parametric characteristic

clearly and describe the nth-order GFRF in terms of the first order GFRFH1(jω) and
nonlinear parameters. This reveals a more straightforward insight into the relation-

ships between Hn(jω1,� � �, jωn) and nonlinear parameters, and between Hn(jω1, � � �,
jωn) and H1(jω). Note that the high order GFRFs can represent system nonlinear

frequency response characteristics (Billings and Peyton-Jones1990; Yue

et al. 2005) and H1(jω) represents the linear part of the system model. Hence, the

results in Proposition 11.1 not only facilitate the analysis of the connection between

system frequency response characteristics and model linear and nonlinear param-

eters, but also provide a new perspective on the understanding of the GFRFs and on

the analysis of nonlinear systems based on the GFRFs. □

11.4 Some New Properties

Based on the mapping function φn established in the last section, some new

properties of the nth-order GFRF are discussed in this section.

11.4.1 Determination of FRFs Based on Parametric
Characteristics

There are several relationships involved in this paper.Hn(jω1, � � �,jωn) is determined

from the NDE model in terms of the model parameters. The CE operator is a

mapping from Hn(jω1, � � �,jωn) to its parametric characteristic, which can also be

regarded as a mapping from the nonlinear parameters of the NDE model to the

parametric characteristics of Hn(jω1, � � �,jωn). Thus there is a bijective mapping

betweenHn(jω1, � � �, jωn) and the NDEmodel. The function φn can be regarded as an

inverse mapping of the CE operator such that the nth-order GFRF can be

220 11 Mapping from Parametric Characteristics to the GFRFs and Output Spectrum



reconstructed from its parametric characteristic, which can also be regarded as a

mapping from the nonlinear parameters of the NDE model to Hn(jω1, � � �,jωn). This

can refer to Fig. 11.2, where “•” represents the point multiplication between the

parametric monomial and its correlative function.

It can be seen from Fig. 11.2 that

Hn jω1, � � �, jωnð Þ ¼ CE Hn �ð Þð Þ � φn CE Hn �ð Þð Þð Þ ð11:14Þ

From (11.14), the inverse of the operator CE can simply be written as (x¼CE
(Hn(�)))

CE�1 xð Þ ¼ x � φn xð Þ

which constructs a mapping directly from the parametric characteristic of the nth-
order GFRF to the nth-order GFRF itself. Note that CE(Hn(�)) includes all the

nonlinear parameters of degree from 2 to n of the nonlinear system of interest, and

φn(CE(Hn(�))) is a complex valued function vector including the effect of the

complicated nonlinear characteristics and also the effect of the linear part of the

nonlinear system. Hence, (11.14) reveals a new perspective on the computation and

understanding of the GFRFs as discussed in Sect. 11.3, and also provides a new

insight into the frequency domain analysis of nonlinear systems based on the

GFRFs.

From the results in Chaps. 5–6, the output spectrum of model (2.11) can now be

determined as

Y jωð Þ ¼
XN
n¼1

CE Hn jω1, � � �, jωnð Þð Þ � F̂ n jωð Þ ð11:15aÞ

when the input is a general input U(jω),

Fig. 11.2 Relationship between φn and CE (Jing et al. 2008e)
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F̂n jωð Þ ¼ 1ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

φn CE Hn jω1, � � �, jωnð Þð Þð Þ �
Yn
i¼1

U jωið Þdσω

ð11:15bÞ

when the input is a multi-tone function u tð Þ ¼
XK
i¼1

Fij j cos ωitþ∠Fið Þ,

F̂n jωð Þ ¼ 1

2n

X
ωk1

þ���þωkn¼ω

φn CE Hn jωk1 , � � �, jωknð Þð Þð Þ � F ωk1ð Þ� � �F ωknð Þ ð11:15cÞ

It is obvious that (11.15a) is an explicit analytical polynomial functions with

coefficients in SC(1)[� � �[SC(N ) and the corresponding correlative functions in

Sf (1)[� � �[Sf(N ). This demonstrates a direct analytical relationship between sys-

tem output spectrum and system time-domain model parameters. The effects on

system output spectrum from the linear parameters are included in Sf (1)[� � �[
Sf (N ), and the effects from the nonlinear parameters are included in SC(1)[� � �[
SC(N ) and also embodied in Sf(1)[� � �[Sf (N ). This will facilitate the analysis of

output frequency response characteristics of nonlinear systems. For example, for

any parameters of model (2.11) of interest, which may represent some specific

physical characteristics, the output spectrum can therefore directly be written as a

polynomial in terms of these parameters. Then how these parameters affect the

system output spectrum needs only to be investigated by studying the frequency

characteristics of the new mapping functions involved in the polynomial and

simultaneously optimizing the values of these nonlinear parameters. Further study

in this topic will be introduced in the next chapter.

11.4.2 Magnitude of the nth-Order GFRF

Based on (11.14), the magnitude of the nth-order GFRF can be expressed in terms

of its parametric characteristic.

Corollary 11.1 Let CEn¼CE(Hn(�)), Θn¼φn(CE(Hn(�))) �φn(CE(Hn(�)))*, φn¼
φn(CE(Hn(�))), and Λn¼CE(Hn(�))TCE(Hn(�)), then

Hn jω1, � � �, jωnð Þj j2 ¼ CEnΘnCE
T
n ð11:16aÞ

Hn jω1, � � �, jωnð Þj j2 ¼ φ

nΛnφn ð11:16bÞ

Proof It can be derived from (11.14) that
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Hn jω1, � � �, jωnð Þj j2 ¼ Hn jω1, � � �, jωnð Þ � H

n jω1, � � �, jωnð Þ

¼ CE Hn �ð Þð Þ � φn CE Hn �ð Þð Þð Þ � CE Hn �ð Þð Þ � φn CE Hn �ð Þð Þð Þð Þ

¼ CE Hn �ð Þð Þ � φn CE Hn �ð Þð Þð Þ � φn CE Hn �ð Þð Þð Þ
ð Þ � CE Hn �ð Þð ÞT ¼ CEnΘnCE

T
n

The result in (11.16b) can also be achieved by following the same method. This

completes the proof. □

From Corollary 11.1, the square of the magnitude of the nth-order GFRF is

proportional to a quadratic function of the parametric characteristic and also

proportional to a quadratic function of the corresponding correlative function.

Corollary 11.1 provides a new property of the nth-order GFRF, which reveals the

relationship between the magnitude of Hn(jω1, � � �,jωn) and its nonlinear parametric

characteristic, and also the relationship between the magnitude of Hn(jω1,� � �, jωn)

and the correlative functions which involve both the system linear and nonlinear

characteristics. Given a requirement on | Hn(jω1,� � �, jωn) |, the condition on model

parameters can be derived by using (11.16a,b). This may provide a new technique

for the analysis and design of nonlinear systems based on the nth-order GFRF in the

frequency domain.

Moreover, it can be seen that the frequency characteristic matrix Θn is a

Hermitian matrix, whose eigenvalues are the positive real valued functions of the

system linear parameters but invariant to the values of the system nonlinear

parameters in CE(Hn(�)). Thus different nonlinearities may result in different

frequency characteristic matrix Θn, but the same nonlinearities will have an invari-

ant matrix Θn. This property of the nth-order GFRF provides a new insight into the

nonlinear effect on the high order GFRFs from different nonlinearities. For this

purpose, define a new function

λn ω1; � � �;ωnð Þ ¼ λmax Θnð Þ ð11:17Þ

which is the maximum eigenvalue of the frequency characteristic matrix Θn. As

mentioned, the frequency spectrum of this function can act as a novel insight into

the nonlinear effect on the GFRFs from different nonlinearities, since this function

is only dependent on different nonlinearities but independent of their values.

However, the frequency response spectrum of the GFRFs will change greatly

with the values of the involved nonlinear parameters, which cannot provide a

clear insight into the nonlinear effects between different nonlinearities.

Moreover, the following results can be obtained for the bound evaluation for the

nth-order GFRF based on the results above.
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Proposition 11.2

sup
ω1, ���,ωn

Hn jω1, � � �, jωnð Þj j �
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þj jdτ1� � �dτn

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup

ω1, ���,ωn

λmax Θnð Þð Þ
r

� CEnk k ð11:18aÞ

sup
ω1, ���,ωn

Hn jω1, � � �, jωnð Þj j �
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þj jdτ1� � �dτn

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax Λnð Þ

p
� sup
ω1, ���,ωn

φnk kð Þ ð11:18bÞ

Proof See Sect. 11.6 for the proof. □

From (11.18a,b), it can be seen that the magnitude of the nth-order GFRF is

proportional to a quadratic function of the parametric characteristics and also

proportional to a quadratic function of the corresponding correlative function.

These results demonstrate a new property of the nth-order GFRF, which reveals

the relationship between the magnitude of Hn(jω1,� � �, jωn) and its nonlinear

parametric characteristics, and also the relationship between the magnitude of

Hn(jω1, � � �, jωn) and the correlative functions which include the linear

(the first order GFRF) and nonlinear characteristics. Given a requirement on

| Hn(jω1, � � �, jωn) |, the condition on model parameters or the first order GFRF can

be derived by using these results. Proposition 11.2 also shows that the absolute

integration of the nth-order Volterra kernel function in the time domain is bounded

by a quadratic function of the parametric characteristics. This reveals the relation-

ship between the model parameters and the stability of Volterra series. Obviously,

these may provide a new insight into the analysis and design of nonlinear systems

based on the nth-order GFRF in the frequency domain.

11.4.3 Relationship Between Hn(jω1, � � �,jωn) and H1(jω1)

As illustrated in Example 11.1, Hn(jω1, � � �, jωn) can directly be determined in terms

of the first order GFRF H1(jω) based on the novel mapping function φn according to

its parametric characteristic. The following results can be concluded.

Corollary 11.2 For an effective parametric monomial cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ,
its correlative function is a ρ-degree function of H1(jωl(1)) which can be written as a

symmetric form
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φn sð Þ cp0,q0 �ð Þcp1,q1 �ð Þ� � �cpk ,qk �ð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� �

¼ n sð Þ�ρð Þ!ρ!
n sð Þ!

X
all the combinations of ρ integers r1;r2; � � �;rρ

� �
taken from 1,2, � � �,n sð Þf gwithout repetition
j is for different combination

μj ωl 1ð Þ� � �ωl n sð Þð Þ
� �Yρ

i¼1

H1 jωl ið Þ
� �

where ρ¼ n sð Þ�
Xk
i¼0

qi¼
Xk
i¼0

pi�k, l¼ r1;r2; � � �;rρ
� �

, and μj ωl 1ð Þ� � �ωl n sð Þð Þ
� �

can be

determined by (11.7a–11.8d). Therefore, the nth-order GFRF can be regarded as an

n-degree polynomial function of H1(jωl(1)). □

Proof See Sect. 11.6 for the proof. □

Corollary 11.2 demonstrates the relationship between Hn(jω1, � � �,jωn) and

H1(jω), and reveals how the first order GFRF, which represents the linear part of

system model, affects the higher order GFRFs, together with the nonlinear dynam-

ics. Note that for any specific parameters of interest, the polynomial structure of the

FRFs is explicitly determined in terms of these parameters, thus the property of this

polynomial function is greatly dependent on the “coefficients” of these parameter

monomials in the polynomial, which correspond to the correlative functions of the

parametric characteristics of the polynomial and are determined by the new map-

ping function. Hence, Corollary 11.2 is important for the qualitative analysis of the

connection between Hn(jω1, � � �, jωn) and H1(jω), and also between nonlinear

parameters and high order GFRFs.

Example 11.2 To demonstrate the theoretical results above, consider a simple

mechanical system shown in Fig. 11.3.

The output property of the spring satisfies F¼Ky+c1y
3, and the damper F¼Bẏ+

c2ẏ
3. u(t) is the external input force. The system dynamics can be described by

m€y ¼ �Ky� B _y � c1y
3 � c2 _y

3 þ u tð Þ ð11:19Þ

which can be written into the form of NDEmodel (2.11) withM¼3, K¼2, c1,0(2)¼
m, c1,0(1)¼B, c1,0(0)¼K, c3,0(000)¼c1, c3,0(111)¼c2, c0,1(0)¼�1, and all the

other parameters are zero.

There are two nonlinear terms c3,0(000)¼c1 and c3,0(111)¼c2 in model (11.19),

which are all pure output nonlinearity and can be written as C3,0¼[c1,c2]. The
parametric characteristics of the GFRFs of model (11.19) with respect to nonlinear

parameter C3,0 can be obtained according to (11.3) or Proposition 5.1 as

CE(H2i+1(.))¼C3,0
i for i¼0,1,2,. . .,, otherwise CE(H2i(.))¼0 for i¼1,2,3,. . .

Therefore,
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CE H1 :ð Þð Þ ¼ 1;

CE H3 :ð Þð Þ ¼ C3,0 ¼ c1 c2½ �;
CE H5 :ð Þð Þ ¼ C3,0 � C3,0 ¼ c1

2 c1c2 c2
2

� �
;

CE H7 :ð Þð Þ ¼ C3,0 � C3,0 � C3,0 ¼ c1
3 c1

2c2 c1c2
2 c2

3
� �

. . . . . .

By using (11.7a)–(11.10), it can be obtained that

φ3 c3,0 000ð Þ;ω1,ω2,ω3ð Þ ¼ 1

L3 j
X3
i¼1

ωi

 ! �
Y3
i¼1

jωið Þ0 �
Y3
i¼1

H1 jωið Þ

¼ 1

L3 j
X3
i¼1

ωi

 ! �
Y3
i¼1

H1 jωið Þ

φ3 c3,0 111ð Þ;ω1,ω2,ω3ð Þ ¼ 1

L3 j
X3
i¼1

ωi

 ! �
Y3
i¼1

jωið Þ �
Y3
i¼1

H1 jωið Þ

¼

Y3
i¼1

jωið Þ

L3 j
X3
i¼1

ωi

 ! �
Y3
i¼1

H1 jωið Þ

φ5 c3,0 000ð Þc3,0 000ð Þ;ω1, � � �,ω5ð Þ
¼ f 1 c3,0 000ð Þ, 5;ω1, � � �,ω5ð Þ �

X
all the 3� partitions

for c3,0 000ð Þ

X
all the different

permutations of 0;0;1f g

f 2a sx1 � � �sxp c3,0 000ð Þð Þ;ω1� � �ω5

� ��

�
Y3
i¼1

φn sxi s=cpq �ð Þð Þð Þ sxi c3,0 000ð Þð Þ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþn sxi s=cp,q �ð Þð Þð Þð Þ
� �i

¼ f 1 c3,0 000ð Þ, 5;ω1, � � �,ω5ð Þ�
f 2a s0s0s1 c3,0 000ð Þð Þ;ω1� � �ω5ð Þφ1 1;ω1ð Þφ1 1;ω2ð Þφ3 c3,0 000ð Þ;ω3� � �ω5ð Þ
þf 2a s0s1s0 c3,0 000ð Þð Þ;ω1� � �ω5ð Þφ1 1;ω1ð Þφ3 c3,0 000ð Þ;ω2� � �ω4ð Þφ1 1;ω5ð Þ
þf 2a s1s0s0 c3,0 000ð Þð Þ;ω1� � �ω5ð Þφ3 c3,0 000ð Þ;ω1� � �ω3ð Þφ1 1;ω4ð Þφ1 1;ω5ð Þ

0
@

1
A

BK
y(t)

u(t)

m

Fig. 11.3 A mechanical

system
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¼ 1

L5 j
X5
i¼1

ωi

 ! �

H1 ω1ð ÞH1 ω2ð Þ
Y5
i¼3

H1 jωið Þ=L3 j
X5
i¼3

ωi

 !

þH1 ω1ð Þ
Y4
i¼2

H1 jωið ÞH1 ω5ð Þ=L3 j
X4
i¼2

ωi

 !

þ
Y3
i¼1

H1 jωið ÞH1 ω4ð ÞH1 ω5ð Þ=L3 j
X3
i¼1

ωi

 !

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ 1

L5 j
X5
i¼1

ωi

 ! � 1

L3 j
X5
i¼3

ωi

 !þ 1

L3 j
X4
i¼2

ωi

 !þ 1

L3 j
X3
i¼1

ωi

 !
0
BBBB@

1
CCCCA �

Y5
i¼1

H1 jωið Þ

φ5 c3,0 111ð Þc3,0 111ð Þ;ω1, � � �,ω5ð Þ
¼ f 1 c3,0 111ð Þ, 5;ω1, � � �,ω5ð Þ �

X
all the 3� partitions

for c3,0 111ð Þ

X
all the different

permutations of 0;0;1f g

f 2a sx1 � � �sxp c3,0 111ð Þð Þ;ω1� � �ω5

� ��

�
Y3
i¼1

φn sxi s=cp,q �ð Þð Þð Þ sxi c3,0 111ð Þð Þ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþn sxi s=cp,q �ð Þð Þð Þð Þ
� �i

¼ f 1 c3,0 111ð Þ, 5;ω1, � � �,ω5ð Þ�
f 2a s0s0s1 c3,0 111ð Þð Þ;ω1� � �ω5ð Þφ1 1;ω1ð Þφ1 1;ω2ð Þφ3 c3,0 111ð Þ;ω3� � �ω5ð Þ
þf 2a s0s1s0 c3,0 111ð Þð Þ;ω1� � �ω5ð Þφ1 1;ω1ð Þφ3 c3,0 111ð Þ;ω2� � �ω4ð Þφ1 1;ω5ð Þ
þf 2a s1s0s0 c30 111ð Þð Þ;ω1� � �ω5ð Þφ3 c30 111ð Þ;ω1� � �ω3ð Þφ1 1;ω4ð Þφ1 1;ω5ð Þ

0
@

1
A

¼ 1

L5 j
X5
i¼1

ωi

 !�
j
X5
i¼3

ωi

 !Y5
i¼1

jωið Þ

L3 j
X5
i¼3

ωi

 ! þ
j
X4
i¼2

ωi

 !Y5
i¼1

jωið Þ

L3 j
X4
i¼2

ωi

 ! þ
j
X3
i¼1

ωi

 !Y5
i¼1

jωið Þ

L3 j
X3
i¼1

ωi

 !
0
BBBB@

1
CCCCA

�
Y5
i¼1

H1 jωið Þ

φ5 c3,0 000ð Þc3,0 111ð Þ;ω1, � � �,ω5ð Þ
¼ f 1 c3,0 000ð Þ,5;ω1, � � �,ω5ð Þ

�
X

all the 3�partitions

for c3,0 111ð Þ

X
all the different

permutations of 0;0;1f g

f 2a sx1 � � �sxp c3,0 111ð Þð Þ;ω1� � �ω5

� ��

�
Y3
i¼1

φn sxi s=cp,q �ð Þð Þð Þ sxi c3,0 111ð Þð Þ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþn sxi s=cp,q �ð Þð Þð Þð Þ
� �i

þ f 1 c3,0 111ð Þ,5;ω1, � � �,ω5ð Þ
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�
X
all the 3�partitions

for c3,0 000ð Þ

X
all the different

permutations of 0;0;1f g

f 2a sx1 � � �sxp c3,0 000ð Þð Þ;ω1� � �ω5

� ��

�
Y3
i¼1

φn sxi s=cp,q �ð Þð Þð Þ sxi c3,0 000ð Þð Þ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþn sxi s=cp,q �ð Þð Þð Þð Þ
� �i

¼ f 1 c3,0 000ð Þ,5;ω1, � � �,ω5ð Þ

�
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þf 2a s1s0s0 c3,0 111ð Þð Þ;ω1� � �ω5ð Þφ3 c3,0 111ð Þ;ω1� � �ω3ð Þφ1 1;ω4ð Þφ1 1;ω5ð Þ
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@

1
A
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�
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þf 2a s1s0s0 c3,0 000ð Þð Þ;ω1� � �ω5ð Þφ3 c3,0 000ð Þ;ω1� � �ω3ð Þφ1 1;ω4ð Þφ1 1;ω5ð Þ

0
@
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A

¼ 1
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i¼1
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 !Y5
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 !Y5
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�
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Hence, it can be obtained that

φ3 CE H3 �ð Þð Þð Þ ¼ 1

L3 j
X3
i¼1

ωi

 ! �
1Y3

i¼1

jωið Þ

2
4

3
5 �
Y3
i¼1

H1 jωið Þ

φ5 CE H5 ω1; � � �;ω5ð Þð Þð Þ ¼ 1

L5 j
X5
i¼1

ωi

 !
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By using (11.14), the GFRFs for n¼3 and 5 of system (11.19) can be obtained.

Proceeding with the computation process above, any higher order GFRFs of system

(11.19) can be derived and written in a much more meaningful form. It can be seen

that, the correlative function of a monomial in the parametric characteristic of the

nth-order GFRF is an n-degree polynomial of the first order GFRF as stated in

Corollary 11.2, and so the nth-order GFRF is. Based on (11.14), the first order

parametric sensitivity of the GFRFs with respect to any nonlinear parameter can be

studied as

∂Hn jω1, � � �, jωnð Þ
∂c

¼ ∂CE Hn �ð Þð Þ
∂c

� φn CE Hn �ð Þð Þð Þ

For example,

∂H3 jω1, � � �, jω3ð Þ
∂c1

¼ ∂CE H3 �ð Þð Þ
∂c1

� φ3 CE H3 �ð Þð Þð Þ ¼ 1; 0½ � � φ3 CE H3 �ð Þð Þð Þ

¼
Y3
i¼1

H1 jωið Þ=L3 j
X3
i¼1

ωi

 !

Similarly,

∂H5 jω1, � � �, jω5ð Þ
∂c1

¼ ∂CE H5 �ð Þð Þ
∂c1

� φ5 CE H5 �ð Þð Þð Þ ¼ 2c1, c2, 0½ � � φ5 CE H5 �ð Þð Þð Þ:
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Similar results can also be obtained for parameter c2. It can be seen that the

sensitivity of the third order GFRF with respect to the nonlinear spring c1 and

nonlinear damping c2 is constant which is dependent on linear parameters, but the

sensitivity of the higher order GFRFs will be a function of these nonlinearities and

the linear parameters. Note that for a Volterra system, the system output is usually

dominated by its several low order GFRFs (Boyd and Chua 1985). Hence, in order

to make the system less sensitive to these nonlinearities, the linear parameters

should properly be designed.

Moreover, the magnitude of Hn(jω1, � � �, jωn) can also be evaluated readily

according to Corollary 11.1. For example, for n¼3

H3 jω1, � � �, jω3ð Þj j2 ¼ CE3Θ3CE
T
3

¼

Y3
i¼1

H1 jωið Þ

L3 j
X3
i¼1

ωi

 !
����������

����������

2

� c1
c2

� �T 1
Y3
i¼1

jωið Þ

�
Y3
i¼1

jωið Þ
Y3
i¼1

ω2
i

� �

2
66664

3
77775

c1
c2

� �

As mentioned above, instead of studying the Bode diagram of H3(jω1, � � �,jω3), the

frequency response spectrum of the maximum eigenvalue of the third order fre-

quency characteristic matrix defined in Corollary 11.1 can be investigated. See Fig.

11.4. Different values of the linear parameters will result in a different view. An

increase of the linear damping enables the magnitude to increase for higher ω1+ω2

+ω3 along the line ω1+ω3¼0. Note that the system output spectrum (11.15a–c)

involves the computation of the GFRFs along a super-planeω1+ � � �+ωn¼ω. The
frequency response spectra of the maximum eigenvalue on the plane ω1+ � � �
+ω3¼ω with different output frequency ω are given in Fig. 11.5. The peak and

valley in the figures can represent special properties of the system. Understanding

of these diagrams can follow the method in Yue et al. (2005), and further results are

under study.

The system output spectrum can also be studied. For example, suppose the

system is subject to a harmonic input u(t)¼Fdsin(ω0t) (Fd>0), then the magni-

tude of the third order output spectrum can be evaluated as (Jing et al. 2007a)

Y3 jωð Þj j � 1

23

X
ωk1

þ���þωk3
¼ω

H3 jωk1 , � � �, jωk3ð Þj j F ωk1ð Þ� � �F ωk3ð Þj j

� F3
d

23

X
ωk1

þ���þωk3
¼ω

H3 jωk1 , � � �, jωk3ð Þj j

From corollary 11.1, H3 jω1, � � �, jω3ð Þj j � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3 jω1, � � �, jωnð Þp

CET
3

�� ��. Therefore,
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Y3 jωð Þj j � F3
d

23

X
ωk1

þ���þωk3
¼ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3 jω1, � � �, jωnð Þ

p
CET

3

�� ��

¼ F3
d

23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22

q X
ωk1

þ���þωk3
¼ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3 jω1, � � �, jωnð Þ

p

For ω¼0.8 and m¼2.4, B¼29.6, K¼1.6, it can be obtained that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3 jω1, � � �, jωnð Þp

�0.006055896. Hence, in this case

Y3 jωð Þj j � 0:00227096F3
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22

q

Obviously, given a requirement on the bound of |Y3(jω)|, the design restriction on

the nonlinear parameters c1 and c2 can be further derived. □

Fig. 11.4 Frequency response spectrum of the maximum eigenvalue when m¼24, B¼2.96 (left)
or 29.6 (right), K¼160 (Jing et al. 2008e)

Fig. 11.5 Frequency response spectrum of the maximum eigenvalue when m¼2.4, B¼2.96,

K¼ 1.6 and ω1+ω2+ω3¼0.8 (left) or 1.5 (right) (Jing et al. 2008e)
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11.5 Conclusions

A mapping function from the parametric characteristics to the GFRFs is established.

The nth-order GFRF can directly be written into a more straightforward and

meaningful form in terms of the first order GFRF and model parameters based on

the parametric characteristic, which explicitly unveils the linear and nonlinear

factors included in the GFRFs and can be regarded as an n-degree polynomial

function of the first order GFRF. These results demonstrate some new properties

of the GFRFs, which can reveal clearly the relationship between the nth-order GFRF

and its parametric characteristic, and also the relationship between the higher order

GFRF and the first order GFRF. These provide a novel and useful insight into the

frequency domain analysis and design of nonlinear systems based on the GFRFs.

Note that the results of this study are established for nonlinear systems described by

the NDE model, similar results can be extended to discrete time nonlinear systems

described by NARX model (Jing and Lang 2009a). As shown, the results provide a

useful tool for investigation of nonlinear dynamics in the frequency domain and thus

a useful insight into frequency domain analysis and design of nonlinear systems

based on the GFRFs. With the mapping function established, nonlinear influence on

system output spectrum can be studied, which is discussed in the next chapter.

11.6 Proofs

A. Proof of Lemma 11.2

(1) From Proposition 5.1, it can be computed that cpq �ð Þcp1q1 �ð Þ� � �cpkqk �ð Þ comes

from the xth-order GFRF, where x ¼ pþ qþ
Xk
i¼1

pi þ qið Þ � k. It is obvious

that cp1q1 �ð Þ� � �cpkqk �ð Þ comes from the correlative function of the parameter

cpq(�) in (5.1) or (11.2) for the xth-order GFRF, i.e.,Yq
i¼1

jωx�qþi

� �kpþi

 !
Hx�q,p jω1, � � �, jωx�q

� �
, that is, it comes from Hx�q,

p(jω1, � � �, jωn�q). From (5.5), it follows that

Hx�q,p jω1, � � �, jωx�q

� � ¼ Xx�p�qþ1

r1� � �rp ¼ 1P
ri ¼ x� q

Yp
i¼1

Hri jωrXþ1
, � � �, jωrXþri

� �
jωrXþ1

þ � � � þ jωrXþri

� �ki ðB1Þ

Obviously,
Yp
i¼1

Hri jωrXþ1
, � � �, jωrXþri

� �
is a (p,q)-partition for the xth-order GFRF
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(2) Supposing that s0 comes from H1(.), each monomial sxi in a p-partition for cp1q1

�ð Þ� � �cpkqk �ð Þ comes from the
Xxi
j¼1

pj þ qj
� �� xi þ 1

 !
th-order GFRF if xi>0,

therefore, each p-partition for cp1q1 �ð Þ� � �cpkqk �ð Þ corresponds to a combination of

Hr1 wr1ð ÞHr2 wr2ð Þ� � �Hrp wrp

� �
which must included in (B1) since (B1) includes

all the possible (p,q)-partitions, where ri ¼
Xxi
j¼1

pj þ qj
� �� xi þ 1. That is, each

p-partition for cp1q1 �ð Þ� � �cpkqk �ð Þ corresponds to a (p,q)-partition for the xth-

order GFRF. On the other hand, each (p,q)-partition in (B1) which produces

cp1q1 �ð Þ� � �cpkqk �ð Þ must correspond to at least one p-partition for

cp1q1 �ð Þ� � �cpkqk �ð Þ.
(3) Equation (B1) includes all the (p,q)-partitions for the xth-order GFRF which

produce cp1q1 �ð Þ� � �cpkqk �ð Þ, thus the correlative function of cp1q1 �ð Þ� � �cpkqk �ð Þ are
the summation of all the correlative functions of each (p,q)-partition. Note that
each (p,q)-partition may produce more than one p-partition for

cp1q1 �ð Þ� � �cpkqk �ð Þ. This implies there are more than one cases in the same (p,

q)-partition to produce cp1q1 �ð Þ� � �cpkqk �ð Þ. Therefore, the correlative function of

cp1q1 �ð Þ� � �cpkqk �ð Þ should be the summation of the correlative functions

corresponding to all the cases where cp1q1 �ð Þ� � �cpkqk �ð Þ are produced.
This completes the proof. □

B. Proof of Proposition 11.1

Considering the recursive equation (11.2), the recursive structure in (11.7a) is

directly followed from Lemma 11.1 (2) and Lemma 11.2 (3). That is, the correlative

function of cp1q1 �ð Þ� � �cpkqk �ð Þ are the summation of the correlative functions with

respect to all the cases by which this monomial is produced in the same n sð Þth-order
GFRF, in each case it should include all the correlative functions corresponding to

all the p-partition for cp1q1 �ð Þ� � �cpkqk �ð Þ, and for each p-partition of cp1q1 �ð Þ� � �cpkqk �ð Þ,
the correlative function should include all the permutations of x1x2. . .xp, since the

correlative function f 2a sx1 � � �sxp s=cpq �ð Þ� �
;ωl 1ð Þ� � �ωl n sð Þ�qð Þ

� �
is different with each

different permutation which can be seen from (5.5). f 1 cp,q �ð Þ, n sð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� �

is a part of the correlative function for cp,q(k1,� � �,kp+q) except for

Hn sð Þ�q,p jω1, � � �, jωn sð Þ�q

� �
, which directly follows from (11.2).

f 2a sx1 � � �sxp s=cpq �ð Þ� �
;ωl 1ð Þ� � �ωl n sð Þ�qð Þ

� �
is a part of the correlative function with

respect to a permutation of a p-partition sx1 � � �sxp s=cpq �ð Þ� �
of the monomial s=cpq �ð Þ

which corresponds to a (p,q)-partition for the n sð Þth-order GFRF, and it is followed
from (5.5). Equation (11.7b) has a similar structure with (11.7a), and is an

optimised one which simplifies the computation of (11.7a) for the reason thatYp
i¼1

φn sxi s=cpq �ð Þð Þð Þ sxi s=cpq �ð Þ� �
;ωl X ið Þþ1ð Þ� � �ωl X ið Þþn sxi s=cpq �ð Þð Þð Þð Þ

� �
is identical to

each other under each permutation of a p-partition for the monomial s=cpq �ð Þ, and
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therefore the contribution from each permutation is included in

f 2b sx1 � � �sxp s=cpq �ð Þ� �
;ωl 1ð Þ� � �ωl n sð Þ�qð Þ

� �
which can be obtained from (5.5) and is

also given in Peyton Jones (2007). This completes the proof. □

C. Proof of Proposition 11.2

From (2.2), it can be obtained that

Hn jω1, � � �, jωnð Þj j �
ð1
�1

� � �
ð1
�1

hn τ1; � � �;τnð Þexp �j ω1τ1þ �� �þωnτnð Þð Þj jdτ1� � �dτn

which further gives

sup
ω1, ���,ωn

Hn jω1, � � �, jωnð Þj j �
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þj jdτ1� � �dτn

Suppose at point (ω

1,� � �,ω


n), it holds that

sup
ω1, ���,ωn

Hn jω1, � � �, jωnð Þj j ¼ Hn jω

1, � � �, jω


n

� ��� ��
¼
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þj jdτ1� � �dτn

From (11.16a), it can be obtained that

Hn jω1, � � �, jωnð Þj j2 � λmax Θnð Þ � CEnCE
T
n

Thus it holds that

Hn jω

1, � � �, jω


n

� ��� ��2 � λmax Θn ω

1; � � �;ω


n

� �� � � CEnCE
T
n

Hence,

ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þj jdτ1� � �dτn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
supω1, ���,ωn

λmax Θnð Þð Þ
q

� CEnk k.
Following a similar process, (11.18b) can be obtained. This completes the proof. □

D. Proof of Corollary 11.2

From (11.10), for a parameter corresponding to a pure input nonlinear term c0,q(.), it
can be derived that

φn sð Þ c0q �ð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� � ¼ 1

Ln sð Þ j
Xn sð Þ

i¼1

ωl ið Þ

 !�Yq
i¼1

jωl ið Þ
� �ki

There is no H1(jωl(1)) appearing in the correlative function. That is, the degree

of H1(jωl(1)) in the correlative function of this kind of nonlinear parameters is
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zero. For a parameter corresponding to a pure output nonlinear term cp,0(.),

it can be derived that φn sð Þ cp0 �ð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� � ¼ φn sð Þ cn sð Þ0

�
�ð Þ;ωl 1ð Þ� � �ωl n sð Þð ÞÞ ¼ 1

Ln sð Þ j

Xn sð Þ

i¼1

ωl ið Þ

 !Yn sð Þ

i¼1

jωl ið Þ
� �ki �Yn sð Þ

i¼1

H1 jωl ið Þ
� �

.

The degree of H1(jωl(1)) in the correlative function of this kind of nonlinear

parameters is n sð Þ. For a parameter corresponding to a pure input–output

nonlinear term cp,q(.), it can be seen from (11.10) that the degree of H1(jωl(1)) in

the correlative function of this kind of nonlinear parameters is n sð Þ � q.
Hence, after recursive computation, for a monomial cp0q0 �ð Þcp1q1 �ð Þ� � �cpkqk �ð Þ,
the degree of H1(jωl(1)) in the correlative function is

n sð Þ �
Xk
i¼0

qi ¼
Xk
i¼0

pi þ qið Þ � k �
Xk
i¼0

qi ¼
Xk
i¼0

pi � k. It is also noted that the

largest order is n sð Þ when all qi¼0 corresponding to the parametric monomial

whose parameters are all from pure output nonlinearity, and the smallest order is

zero when n sð Þ ¼
Xk
i¼0

qi corresponding to the parametric monomial whose param-

eters are all from pure input nonlinearity. Therefore, Hn(jω1, � � �, jωn) can be

regarded as an n-degree polynomial function of H1(jωl(1)). This completes the

proof. □
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Chapter 12

The Alternating Series Approach to

Nonlinear Influence in the Frequency

Domain

12.1 Introduction

It is known that the transfer function of a linear system provides a coordinate-free

and equivalent description for system dynamics, which greatly facilitates the

analysis and design of system output response. Although the frequency-domain

theory for linear systems is well established in the literature, the corresponding

methods for linear systems cannot directly be used for frequency domain analysis of

nonlinear systems. Nonlinear systems usually have very complicated output fre-

quency characteristics such as harmonics and inter-modulation. Investigation of

these nonlinear phenomena in the frequency domain is far from full development.

In this study, understanding of nonlinear effect in the frequency domain is

investigated from a novel viewpoint for the Volterra class of nonlinear systems.

The system output spectrum is shown to be an alternating series with respect to

some model parameters that define system nonlinearities. The output spectrum can

therefore be suppressed by exploiting the alternating properties to design

corresponding parameters. The concept of alternating series provides a novel

insight into the nonlinear influence on system output response in the frequency

domain. The sufficient (and necessary) conditions in which the output spectrum can

be transformed into an alternating series are studied. To illustrate the new results,

several examples are given, which investigated a single degree of freedom (SDOF)

mass-spring-damper system with a cubic nonlinear damper. All these results dem-

onstrate a novel insight into the analysis and design of nonlinearities in the

frequency domain.

The content of this chapter is organised as follows. Section 12.2 provides a

simple explanation for the background of this study. The novel nonlinear charac-

teristic and its influence are discussed in Sect. 12.3. Section 12.4 gives a sufficient

and necessary condition under which system output spectrum can be transformed

into an alternating series. A conclusion is given in Sect. 12.5.
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12.2 An Outline of Frequency Response Functions

of Nonlinear Systems

For convenience, an outline is given in this section for some results discussed in the

previous chapters relating to frequency response functions that form the basis of

this study. As mentioned, a wide class of nonlinear systems can be approximated by

the Volterra series up to a maximum order N around the zero equilibrium (Boyd and

Chua 1985) described by (2.1a,b). In this Chapter, consider nonlinear systems

described by the NDE model (2.11). The computation of the nth-order generalized
frequency response function (GFRF) for the NDE model (2.11) can be conducted

by following (2.19–2.26). The output spectrum of model (2.11) can be evaluated by

(3.1), i.e.,

Y jωð Þ ¼
XN
n¼1

1ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Hn jω1, � � �, jωnð Þ
Yn
i¼1

U jωið Þdσω ð12:1Þ

where,

Hn jω1, � � �, jωnð Þ ¼
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þexp �j ω1τ1 þ � � � þωnτnð Þð Þdτ1� � �dτn
ð12:2Þ

is known as the nth-order GFRF defined in George (1959). When the system input is

a multi-tone function described by (3.2), the system output frequency response can

be described as:

Y jωð Þ ¼
XN
n¼1

1

2n

X
ωk1

þ���þωkn¼ω

Hn jωk1 , � � �, jωknð ÞF ωk1ð Þ� � �F ωknð Þ ð12:3Þ

where F ωkið Þ can be explicitly written as

F ωkið Þ ¼ F kij j
�� ��ej∠F kij j�sig kið Þ

for ki 2 �1, � � �, � K
� � ð12:4Þ

where sgn að Þ ¼ 1 a � 0

�1 a < 0

�
, and ωki 2 �ω1, � � �, � ωK

� �
.

In order to reveal the relationship between the system frequency response

functions and model parameters, the parametric characteristics of the GFRFs and

output spectrum are studied in Chaps. 5 and 6. The results show that the nth-order
GFRF can be expressed as a more straightforward polynomial function of the

system nonlinear parameters, i.e.,
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Hn jω1, � � �, jωnð Þ ¼ CE Hn jω1, � � �, jωnð Þð Þ � f n jω1, � � �, jωnð Þ ð12:5Þ

where, CE(Hn(jω1, � � �, jωn)) is referred to as the parametric characteristic of the

nth-order GFRF Hn(jω1, � � �, jωn), which can recursively be determined by (5.17) or

(5.18), e.g.,

CE Hn jω1, � � �, jωnð Þð Þ ¼ C0,n � �n�1

q¼1
�n�q

p¼1
Cp,q � CE Hn�q�pþ1 �ð Þ� �	 


� �n
p¼2

Cp, 0 � CE Hn�pþ1 �ð Þ� �	 

Note that CE is a new operator with two operations “�” and “�” defined in Chap. 4,

and Cp,q is a vector consisting of all the (p+q)th degree nonlinear parameters, i.e.,

Cp,q ¼ ½cp,q 0; � � �; 0ð Þ, cp,q 0; � � �; 1ð Þ, � � �, cp,qðK, � � �,K|fflfflfflffl{zfflfflfflffl}
pþq¼m

Þ�

In (12.5), fn(jω1, � � �, jωn) is a complex valued vector with the same dimension as

CE(Hn(jω1, � � �, jωn)). In Chap. 11, a mapping φn(CE(Hn(�));ω1, � � �,ωn) from the

parametric characteristic CE(Hn(jω1, � � �, jωn)) to its corresponding correlative

function fn(jω1, � � �, jωn) is established as

ϕn sð Þ cp0q0 �ð Þcp1q1 �ð Þ� � �cpkqk �ð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� �

¼
X

all the 2� partitions

for s satisfying
s1 sð Þ ¼ cpq �ð Þ and p> 0

f 1 cp,q �ð Þ,n sð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� ��

�
X

all the p� partitions

for s=cpq �ð Þ

X
all the different

permutations

of sx1 ; � � �; sxp
� �

f 2a sx1 � � �sxp s=cpq �ð Þ� �
;ωl 1ð Þ� � �ωl n sð Þ�qð Þ

� ��

�
Yp
i¼1

ϕn sxi s=cpq �ð Þð Þð Þ sxi s=cpq �ð Þ� �
;ωl X ið Þþ1ð Þ� � �ωl X ið Þþn sxi s=cpq �ð Þð Þð Þð Þ


 �io
ð12:6aÞ

where the terminating condition is k¼0 and φ1(1;ωi)¼H1(jωi) (which is the first

order GFRF, i.e., transfer function when all nonlinear parameters are zero),

sx1 , � � �sxp
� �

is a permutation of sx1 , � � �sxp
� �

, ωl 1ð Þ� � �ωl n sð Þð Þ represents the frequency
variables involved in the corresponding functions, li) for i¼ 1 . . .n sð Þ is a

positive integer representing the index of the frequency variables,

s¼ cp0q0 �ð Þcp1q1 �ð Þ� � �cpkqk �ð Þ, n sx sð Þð Þ ¼
Xx
i¼1

piþ qið Þ� xþ 1, x is the number of
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the parameters in sx,
Xx
i¼1

piþ qið Þ is the summation of the subscripts of all the

parameters in sx. Moreover,

X ið Þ ¼
Xi�1

j¼1

n sxj s=cpq �ð Þ� �� �
,

Ln jω1 þ � � � þ jωnð Þ ¼ �
XK
r1¼0

c1,0 r1ð Þ jω1 þ � � � þ jωnð Þr1 ;

f 1 cp,q �ð Þ, n sð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� � ¼ �Yq

i¼1

jωl n sð Þ�qþið Þ
� �rpþi=Ln sð Þ j

Xn sð Þ

i¼1

ωl ið Þ

 !
ð12:6bÞ

f 2a sx1 � � �sxp s=cpq �ð Þ� �
;ωl 1ð Þ� � �ωl n sð Þ�qð Þ

� �
¼
Yp
i¼1

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþn sxi s=cpq �ð Þð Þð Þð Þ

 �ri ð12:6cÞ

The mapping function φn(CE(Hn(�));ω1, � � �,ωn) enables the complex valued func-

tion fn(jω1, � � �, jωn) to be analytically and directly determined in terms of the first

order GFRF and model nonlinear parameters. Therefore, the nth-order GFRF can

directly be written into a more straightforward and meaningful polynomial function

in terms of the first order GFRF and model parameters by using the mapping

function φn(CE(Hn(�));ω1, � � �,ωn) as

Hn jω1, � � �, jωnð Þ ¼ CE Hn jω1, � � �, jωnð Þð Þ � φn CE Hn �ð Þð Þ;ω1, � � �,ωnð Þ ð12:7Þ

Note that although the recursive expression of φn(CE(Hn(�));ω1, � � �,ωn) seems

complicated, both CE(Hn(jω1, � � �, jωn)) and φn(CE(Hn(�));ω1, � � �,ωn) can be com-

puted through the symbolic manipulation using some available computer software

such as Matlab. Therefore, given any nonlinear model as (2.11), a clear polynomial

expression as (12.7) can be obtained readily.

Using (12.7), (12.1) can be written as

Y jωð Þ ¼
XN
n¼1

CE Hn jω1, � � �, jωnð Þð Þ � Fn jωð Þ ð12:8aÞ

where Fn jωð Þ ¼ 1ffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

φn

�
CE Hn �ð Þ;ω1, � � �,ωnð Þ �

Yn
i¼1

U jωið Þdσω:

Similarly, (12.3) can be written as
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Y jωð Þ ¼
XN
n¼1

CE Hn jωk1 , � � �, jωknð Þð Þ � eFn ωð Þ ð12:8bÞ

where eFn jωð Þ ¼ 1
2n

X
ωk1

þ���þωkn¼ω

φn CE Hn �ð Þð Þ;ωk1 , � � �,ωknð Þ � F ωk1ð Þ� � �F ωknð Þ:

Note that (12.8a) or (12.8b) is also a polynomial function of model parameters

whose structure is determined by the parametric characteristics CE(Hn(jω1, � � �,
jωn)) and truncated at the largest order N. The significance of the expressions in

(12.7, 12.8a,b) is that, the explicit relationship between any model parameters and

the frequency response functions can be demonstrated and thus it is convenient to

be used for system analysis and design. For example, if one wants to know how a

parameter c is related to the GFRFs and output spectrum, one can directly find the

polynomial expansions of the GFRFs and output spectrum in terms of the parameter

c using the method above. Usually, in this polynomial expansion, the first several

orders take a dominant part in the overall effect of parameter c. Then for an analysis
and design purpose, one needs only to study the first several coefficients of the

polynomial which are determined by φn(CE(Hn(�));ω1, � � �,ωn).

Example 12.1 Consider a simple example to demonstrate the results above.

Suppose all the other nonlinear parameters in (2.11) are zero except c1,1(1,1),
c0,2(1,1), c2,0(1,1). For convenience, c1,1(1,1) is written as c1,1 and so

on. Consider the parametric characteristic ofH3(.), which can be derived from (5.8),

CE H3 jω1, � � �, jω3ð Þð Þ
¼C0,3�C1,1�C0,2�C2

1,1�C1,1�C2,0�C2,1�C1,2�C2,0�C0,2�C2
2,0�C3,0

¼C1,1�C0,2�C2
1,1�C1,1�C2,0�C2,0�C0,2�C2

2,0

Note that C1,1¼c1,1, C0,2¼c0,2, C2,0¼c2,0. Thus,

CE H3 jω1, � � �, jω3ð Þð Þ ¼ c1,1c0,2, c
2
1,1, c1,1c2,0, c2,0c0,2, c2,0c1,1, c

2
2,0

� �
Using (12.6a–c), the correlative functions of each term in CE(H3(jω1, � � �, jω3)) can

all be obtained. For example, for the term c1,1c0,2, it can be derived directly from

(12.6a–c) that

φn sð Þ c1,1 �ð Þc0,2 �ð Þ;ωl 1ð Þ� � �ωl n sð Þð Þ
� �¼φ3 c1,1 �ð Þc0,2 �ð Þ;ω1� � �ω3ð Þ

¼ f 1 c1,1 �ð Þ,3;ω1� � �ω3ð Þ � f 2a s1 c1,1 �ð Þc0,2 �ð Þ=c1,1 �ð Þð Þ;ω1,ω2ð Þ �φ2 s1 c0,2 �ð Þð Þ;ω1,ω2ð Þ
¼ f 1 c1,1 �ð Þ,3;ω1� � �ω3ð Þ � f 2a c0,2 �ð Þ;ω1,ω2ð Þ �φ2 c0,2 �ð Þ;ω1,ω2ð Þ
¼ jω3

L3 jω1þ���þ jω3ð Þ � jω1þ jω2ð Þ � jω1jω2

L2 jω1þ jω2ð Þ¼
jω1jω2jω3 jω1þ jω2ð Þ

L3 jω1þ���þ jω3ð ÞL2 jω1þ jω2ð Þ

Proceed with the process above, the whole correlative function of CE(H3(jω1, � � �,
jω3)) can be obtained, and then (12.7, 12.8a,b) can be determined. The process

above demonstrates a new way to analytically compute the high order GFRFs, and
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the final results can directly be written into a polynomial form as (12.7, 12.8a,b), for

example

H3 jω1, � � �, jω3ð Þ ¼ c1,1c0,2, c
2
1,1, c1,1c2,0, c2,0c0,2, c2,0c1,1, c

2
2,0

� �
� φ3 CE H3 jω1, � � �, jω3ð Þð Þ;ω1, � � �,ω3ð Þ

¼ c1,1c0,2 � φ3 c1,1c0,2;ω1, � � �,ω3ð Þ þ c21,1 � φ3 c21,1;ω1; � � �;ω3

� �
þ . . .þ c22,0 � φ3 c22,0;ω1; � � �;ω3

� �
Compared with the recursive computation of the GFRFs in Appendix E, the

expression above demonstrates the polynomial relationship between model param-

eters and the GFRFs in a more straightforward manner.

As discussed in Chap. 11, it can be seen from (12.7, 12.8a,b) and Example 12.1

that the mapping function φn(CE(Hn(�));ω1, � � �,ωn) can facilitate the frequency

domain analysis of nonlinear systems such that the relationship between the

frequency response functions and model parameters, and the relationship between

the frequency response functions and H1(jωl(1)) can be demonstrated explicitly, and

some new properties of the GFRFs and output spectrum can be revealed. As

revealed in those previous studies, the output spectrum of a nonlinear system can

be expanded as a power series with respect to a specific model parameter (e.g., c) of
interest by using (12.8a,b) for N!1. The nonlinear effect on system output

spectrum incurred by this model parameter c, which may represent the physical

characteristic of a structural unit in the system, can then be analysed and designed

by studying the resulting power series in the frequency domain. Note that the

fundamental properties of this power series (e.g. convergence) are to a large extent

dominated by the properties of its coefficients, which are explicitly determined by

the mapping function φn(CE(Hn(�));ω1, � � �,ωn). Thus studying the properties of

this power series is now equivalent to studying the properties of the mapping

function φn(CE(Hn(�));ω1, � � �,ωn). Therefore, the mapping function φn(CE
(Hn(�));ω1, � � �,ωn) introduced above provides an important and significant tech-

nique for this frequency domain analysis to study the nonlinear influence on system

output spectrum.

In this Chapter, a novel property of the nonlinear influence on system output

spectrum is revealed by exploring the new mapping function φn(CE
(Hn(�));ω1, � � �,ωn) and frequency response functions defined in (12.7, 12.8a,b). It

will be shown that the nonlinear terms in a system can drive the system output

spectrum to be an alternating series under certain conditions when the system is

subjected to a sinusoidal input, and the system output spectrum will be shown to

have some interesting properties when it can be expanded into an alternating series

with respect to a specific model parameter of interest. This provides a novel insight

into the nonlinear effect on the system output spectrum incurred by corresponding

nonlinear terms in a nonlinear system.
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It should be noted that the alternating series is an important concept adopted in

this study, which might not be something surprising in practice. It can be seen that a

stable root of a linear system is an alternating series in Taylor series expansion (for

example the Taylor series expansion of 1
sþ2

). Therefore, the alternating series might

be a natural characteristic related to system dynamics and a potentially promising

way to understand nonlinear behaviours in the frequency domain. However, all

these are yet to be developed and this is the first study in this direction.

12.3 Alternating Phenomenon in the Output Spectrum

and Its Influence

The alternating phenomena and its influence are firstly discussed in this section to

point out the significance of this novel property, and then the conditions under

which system output spectrum can be expressed into an alternating series are

studied in the following section.

For any specific nonlinear parameter c in model (2.11), the output spectrum

(12.8a,b) can be expanded with respect to this parameter into a power series as

Y jωð Þ ¼ F0 jωð Þ þ cF1 jωð Þ þ c2F2 jωð Þ þ � � � þ cρFρ jωð Þ þ � � � ð12:9Þ

Note that when c represents a pure input nonlinearity, (12.9) may be a finite series;

in other cases, it is definitely an infinite series, and if only the first ρ terms in the

series (12.9) are considered, there is a truncation error denoted by o(ρ). Fi(jω) for

i¼0,1,2,. . . can be obtained fromFi jωð Þ or eFi jωð Þ in (12.8a,b) by using the mapping

φn(CE(Hn(�));ω1, � � �,ωn). Clearly, Fi(jω) dominate the property of this power

series. Thus the property of this power series can be revealed by studying the

property of φn(CE(Hn(�));ω1, � � �,ωn). This will be discussed in detail in the next

section. In this section, the alternating phenomenon of this power series and its

influence are discussed.

For any υ2ℂ, define an operator as

sgnc υð Þ ¼ sgnr Re υð Þð Þ sgnr Im υð Þð Þ½ � ð12:10Þ

where sgnr xð Þ ¼
þ1 x > 0

0 x ¼ 0

�1 x < 0

8<: for x2ℝ.

Definition 12.1 (Alternating Series) Consider a power series of form (12.9) with

c>0. If sgnc(Fi(jω))¼� sgnc(Fi+ 1(jω)) for i¼0,1,2,3,. . ., then the series is an

alternating series.
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The series (12.9) can be written into two series as

Y jωð Þ ¼ Re Y jωð Þð Þ þ j Im Y jωð Þð Þð Þ
¼ Re F0 jωð Þð Þ þ cRe F1 jωð Þð Þ þ c2Re F2 jωð Þð Þ þ � � � þ cρRe Fρ jωð Þ� �þ � � �

þ j Im F0 jωð Þð Þ þ cIm F1 jωð Þð Þ þ c2Im F2 jωð Þð Þ þ � � � þ cρIm Fρ jωð Þ� �þ � � �� �
ð12:11Þ

From Definition 12.1, if Y(jω) is an alternating series, then Re(Y(jω)) and Im(Y(jω))
are both alternating. When (12.9) is an alternating series, there are some interesting

properties summarized in Proposition 12.1. Denote

Y jωð Þ1!ρ ¼ F0 jωð Þ þ cF1 jωð Þ þ c2F2 jωð Þ þ � � � þ cρFρ jωð Þ ð12:12Þ

Proposition 12.1 Suppose (12.9) is an alternating series for c>0, then:

(1) if there exist T>0 and R>0 such that for i>T

min � Re Fi jωð Þð Þ
Re Fiþ1 jωð Þð Þ , �

Im Fi jωð Þð Þ
Im Fiþ1 jωð Þð Þ

� �
> R

then (12.9) has a radius of convergence R, the truncation error for a finite

order ρ> T is |o(ρ)|	 cρ+ 1|Fρ+ 1(jω)|, and for all n�0,

Y jωð Þj j 2 Πn ¼ Y jωð Þ1!Tþ2nþ1

�� ��, Y jωð Þ1!Tþ2n

�� ��� �
and Πnþ1 
 Πn;

(2) |Y(jω)|2¼ Y(jω)Y(�jω) is also an alternating series with respect to parameter c;
Furthermore, |Y(jω)|2¼ Y(jω)Y(�jω) is alternating only if Re(Y(jω)) is

alternating;

(3) there exists a c > 0 such that
∂ Y jωð Þj j

∂c < 0 for 0 < c < c:

Proof

(1) Y(jω) is convergent if and only if Re(Y(jω)) and Im(Y(jω)) are both convergent.
Since Y(jω) is an alternating series, Re(Y(jω)) and Im(Y(jω)) are both alternat-

ing from Definition 12.1. Then according to Bromwich (1991), Re(Y(jω)) is
convergent if |Re(c iF i (jω))|> |Re(ci+ 1F i + 1(jω))| and limi!1 Re ciFi jωð Þð Þj j
¼ 0:Therefore, if there exists T>0 such that |Re(ciFi(jω))|> |Re(ci+ 1Fi+ 1(jω))|
for i>T and limi!1 Re ciFi jωð Þð Þj j ¼ 0; the alternating series Re(Y(jω)) is also

convergent. Now since there exist T>0 and R>0 such that� Re Fi jωð Þð Þ
Re Fiþ1 jωð Þð Þ > R for

i>T and note c<R, it can be obtained that for i>T
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�Re ciþ1Fiþ1 jωð Þð Þ
Re ciFi jωð Þð Þ ¼ �Re cFiþ1 jωð Þð Þ

Re Fi jωð Þð Þ ¼ Re cFiþ1 jωð Þð Þ
Re Fi jωð Þð Þ

���� ���� < c

R
< 1

i.e., |Re(ciFi(jω))|> |Re(ci+ 1Fi+ 1(jω))| for i>T and c<R. Moreover, it can also

be obtained that for n>0

Re FTþn jωð Þð Þj j < 1

Rn Re FT jωð Þð Þj j

It further yields that

Re cTþnFTþn jωð Þ� ��� �� < c

R


 �n
cT Re FT jωð Þð Þj j

That is, lim
n!1 Re cTþnFTþn jωð Þð Þj j ¼ 0: Therefore, Re(Y(jω)) is convergent.

Similarly, it can be proved that Im(Y(jω)) is convergent. This proves that

Y(jω) is convergent. The truncation errors for the real convergent alternating

series Re(Y(jω)) and Im(Y(jω)) are

oR ρð Þj j 	 cρþ1 Re Fρþ1 jωð Þ� ��� �� and oI ρð Þj j 	 cρþ1 Im Fρþ1 jωð Þ� ��� ��
Therefore, the truncation error for the series Y(jω) is

o ρð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oR ρð Þ2 þ oI ρð Þ2

q
	 cρþ1 Fρþ1 jωð Þ�� ��

It can be shown that for Re(Y(jω)) and Im(Y(jω)), for n�0

Re Y jωð Þ1!Tþ1

� ��� �� < � � � < Re Y jωð Þ1!Tþ2nþ1

� ��� �� < Re Y jωð Þð Þj j
< Re Y jωð Þ1!Tþ2n

� ��� �� < � � � < Re Y jωð Þ1!T

� ��� ��
Im Y jωð Þ1!Tþ1

� ��� �� < � � � < Im Y jωð Þ1!Tþ2nþ1

� ��� �� < Im Y jωð Þð Þj j
< Im Y jωð Þ1!Tþ2n

� ��� �� < � � � < Im Y jωð Þ1!T

� ��� ��
Therefore, |Y(jω)1! T + 1|< � � �< |Y(jω)1! T + 2n+ 1|< |Y(jω)|< |Y(jω)1! T + 2n|

< � � �< |Y (jω)1! T|.

(2) Y jωð Þj j2 ¼ Y jωð ÞY �jωð Þ
¼ F0 jωð Þ þ cF1 jωð Þ þ c2F2 jωð Þ þ � � �� �

F0 �jωð Þ þ cF1 �jωð Þ;þc2F2 �jωð Þ þ � � �� �
¼

X
n¼0, 1, 2, ...

cn
Xn
i¼0

Fi jωð ÞFn�i �jωð Þ

It can be verified that the (2k)th terms in the series are positive and the (2k+1)

th terms are negative. Moreover, it needs only the real parts of the terms in

Y(jω) to be alternating for |Y(jω)|2¼ Y(jω)Y(�jω) to be alternating.
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(3)
∂ Y jωð Þj j

∂c
¼ 1

2 Y jωð Þj j
∂ Y jωð Þj j2

∂c

¼ 1

2 Y jωð Þj j Re F0 jωð ÞF1 �jωð Þð Þþc
X

n¼1,2,...
ncn�1

Xn
i¼0

Fi jωð ÞFn�i �jωð Þ
( )

Since Re(F0(jω)F1(�jω))< 0, there must exist c > 0 such that
∂ Y jωð Þj j

∂c < 0 for

0 < c < c: This completes the proof. □

Proposition 12.1 shows that if the system output spectrum can be expressed as

an alternating series with respect to a specific parameter c, it is always easier to
find a c such that the output spectrum is convergent and its magnitude can always

be suppressed by a properly designed c. Moreover, it is also shown that the low

limit of the magnitude of the output spectrum that can be reached is larger than

|Y(jω)1! T + 2| and the truncation error can also be easily evaluated, if the output

spectrum can be expressed into an alternating series.

An example is given to illustrate these results.

Example 12.2 Consider a SDOF spring-damping system with a cubic nonlinear

damping which can be described by the following differential equation,

m€y ¼ �k0y� B _y � c _y3 þ u tð Þ ð12:13Þ

Note that k0 represents the spring characteristic, B the damping characteristic and

c is the cubic nonlinear damping characteristic. This system is a simple case of NDE

model (2.11) and can be written into the form of NDE model with M¼3, K¼2,

c10(2)¼m, c10(1)¼B, c10(0)¼ k0, c30(111)¼ c, c01(0)¼� 1 and all the other

parameters are zero.

Note that there is only one output nonlinear term in this case, the nth-order GFRF
for system (12.13) can be derived according to the algorithm in (2.19–2.26), which

can recursively be given as

Hn jω1, � � �, jωnð Þ ¼ c3,0 1; 1; 1ð ÞHn, 3 jω1, � � �, jωnð Þ
Ln jω1 þ � � � þ jωnð Þ

Hn, 3 �ð Þ ¼
Xn�2

i¼1

Hi jω1, � � �, jωið ÞHn�i, 2 jωiþ1, � � �, jωnð Þ jω1 þ � � � þ jωið Þ

Hn, 1 jω1, � � �, jωnð Þ ¼ Hn jω1, � � �, jωnð Þ jω1 þ � � � þ jωnð Þ

Proceeding with the recursive computation above, it can be seen that Hn(jω1, � � �,
jωn) is a polynomial of c30(111), and substituting these equations above into (12.8a,
b) gives another polynomial for the output spectrum. By using the relationship

(12.7) and the mapping function φn(CE(Hn(�));ω1, � � �,ωn), these results can be

obtained directly as follows.
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For simplicity, let u(t) ¼ Fd sin(Ωt) (Fd> 0). Then F ωklð Þ ¼ �jklFd; for kl ¼ �1,

ωkl ¼ klΩ; and l¼ 1, � � �,n in (12.8b). By using (5.15) or Property 5.3, it can be

obtained that for n¼0,1,2,3,. . .

CE H2nþ1 jωk1 , � � �, jωk2nþ1

� �� � ¼ c3,0 1; 1; 1ð Þð Þn and CE H2n jωk1 , � � �, jωk2nð Þð Þ ¼ 0

ð12:14Þ

Therefore, for n¼0,1,2,3,. . .

H2nþ1 jωk1 , � � �, jωk2nþ1

� � ¼ cn � φ2nþ1 CE H2nþ1 �ð Þð Þ;ωk1 , � � �,ωk2nþ1

� �
and

H2n jωk1 , � � �, jωk2nð Þ ¼ 0 ð12:15Þ

Then the output spectrum at frequency Ω can be computed as

Y jΩð Þ ¼
XN�1=2b c

n¼0

cn � eF2nþ1 Ωð Þ ð12:16Þ

where eF2nþ1 jΩð Þ can be computed as

eF2nþ1 jΩð Þ ¼ 1

22nþ1

X
ωk1

þ���þωk2nþ1
¼Ω

φ2nþ1 CE H2nþ1 �ð Þð Þ;ωk1 , � � �,ωk2nþ1

� �
� �jFdð Þ2nþ1 � k1k2� � �k2nþ1

¼ 1

22nþ1

X
ωk1

þ���þωk2nþ1
¼Ω

φ2nþ1 CE H2nþ1 �ð Þð Þ;ωk1 , � � �,ωk2nþ1

� �
� �1ð Þnþ1j Fdð Þ2nþ1 � �1ð Þn

¼ �j
Fd

2

	 
2nþ1 X
ωk1

þ���þωk2nþ1
¼Ω

φ2nþ1 CE H2nþ1 �ð Þð Þ;ωk1 , � � �,ωk2nþ1

� �
ð12:17Þ

and φ2nþ1 CE H2nþ1 �ð Þð Þ;ωk1 , � � �,ωk2nþ1

� � ¼ φ2nþ1 c30 1; 1; 1ð Þn;ωk1 , � � �,ωk2nþ1

� �
can

be obtained according to (12.6a–c). For example,

12.3 Alternating Phenomenon in the Output Spectrum and Its Influence 247



φ3 c30 111ð Þ;ωk1 ,ωk2 ,ωk3ð Þ ¼ 1

L3 j
X3
i¼1

ωki

 ! �
Y3
i¼1

jωkið Þ �
Y3
i¼1

H1 jωkið Þ

¼

Y3
i¼1

jωkið Þ

L3 j
X3
i¼1

ωki

 ! �
Y3
i¼1

H1 jωkið Þ

ϕ5 c3,0 111ð Þc3,0 111ð Þ;ωk1 , � � �,ωk5


 �
¼ f 1 c3,0 111ð Þ, 5;ωk1 , � � �,ωk5


 �
�

X
all the 3� partitions

for c3,0 111ð Þ

X
all the different

permutations of 0;0;1f g

f 2a sx1 � � �sxp c3,0 111ð Þ

 �

;ωk1 , � � �,ωk5


 �h

�
Y3
i¼1

ϕ
n sxi s=cp,q �ð Þð Þ

 � sxi c3,0 111ð Þ


 �
;ω

l X ið Þþ1
� �� � �ω

l X ið Þþn sxi s=cp,q �ð Þð Þ

 �
 �0@ 1A35

¼ f 1 c3,0 111ð Þ, 5;ωk1 , � � �,ωk5


 �

�

f 2a s0s0s1 c3,0 111ð Þ

 �

;ωk1 , � � �,ωk5


 �
ϕ1 1;ωk1


 �
ϕ1 1;ωk2


 �
ϕ3 c3,0 111ð Þ;ωk3 � � �ωk5


 �
þf 2a s0s1s0 c3,0 111ð Þ


 �
;ωk1 , � � �,ωk5


 �
ϕ1 1;ωk1


 �
ϕ3 c3,0 111ð Þ;ωk2 � � �ωk4


 �
ϕ1 1;ωk5


 �
þf 2a s1s0s0 c30 111ð Þð Þ;ωk1 , � � �,ωk5


 �
ϕ3 c30 111ð Þ;ωk1 � � �ωk3


 �
ϕ1 1;ωk4


 �
ϕ1 1;ωk5


 �
0BBBB@

1CCCCA
¼ 1

L5 j
X5
i¼1

ωki

 !

�
j
X5
i¼3

ωki

 !Y5
i¼1

jωkið Þ

L3 j
X5
i¼3

ωki

 ! þ
j
X4
i¼2

ωki

 !Y5
i¼1

jωkið Þ

L3 j
X4
i¼2

ωki

 ! þ
j
X3
i¼1

ωki

 !Y5
i¼1

jωkið Þ

L3 j
X3
i¼1

ωki

 !
0BBBB@

1CCCCA
�
Y5
i¼1

H1 jωkið Þ

whereωki 2 Ω, �Ωf g; and so on. Substituting these results into (12.16), the output
spectrum is clearly a power series with respect to the parameter c. When there are

more nonlinear terms, it is obvious that the computation process above can directly

result in a straightforward multivariate power series with respect to these nonlinear
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parameters. To check the alternating phenomenon of the output spectrum, consider

the following values for each linear parameter: m¼240, k0¼16,000, B¼296,

Fd¼100, and Ω¼ 8.165. Then it is obtained that

Y jΩð Þ ¼ eF1 Ωð Þ þ ceF3 Ωð Þ þ c2eF5 Ωð Þ þ � � �
¼ �j

Fd

2

	 

H1 jΩð Þ þ 3 Fd

2

� �3 Ω3 H1 jΩð Þj j2H1 jΩð Þ
L1 jΩð Þ

þ 3 Fd

2

� �5 Ω5 H1 jΩð Þj j4H1 jΩð Þ
L1 jΩð Þ

j6Ω
L1 jΩð Þ þ

j3Ω
L1 j3Ωð Þ þ

�j3Ω
L1 �jΩð Þ

	 

þ � � �

¼ �0:02068817126756 þ 0:00000114704116ið Þ
þ 5:982851578532449e-006 � 12:634300276113922e-010ið Þc
þ �5:192417616715994e-009 þ 3:323565122085705e-011ið Þc2 þ . . .

ð12:18aÞ

The series is alternating. In order to check the series further, computation of φ2nþ1

c3,0 1; 1; 1ð Þn;ωk1 , � � �,ωk2nþ1

� �
can be carried out for higher orders. It can also be

verified that the magnitude square of the output spectrum (12.18a) is still an

alternating series, i.e.,

Y jΩð Þj j2 ¼ 4:280004317115985e-004ð Þ � 2:475485177721052e-007ð Þc
þ 2:506378395908398e-010ð Þc2 � . . .

ð12:18bÞ

As pointed in Proposition 12.1, it is easy to find a c such that (12.8a,b) are

convergent and their limits are decreased. From (12.18b) and according to Propo-

sition 12.1, it can be computed that 0.01671739<|Y(jΩ)|<0.0192276<0.0206882

for c¼600. This can be verified by Fig. 12.1. Figure 12.1 is a result from simulation

tests, and shows that the magnitude of the output spectrum decreases when

c increases. This property is of great significance in practical engineering systems

for output suppression through structural characteristic design or feedback control.

12.4 Alternating Conditions

In this section, the conditions under which the output spectrum described by (12.9)

can be expressed as an alternating series with respect to a specific nonlinear

parameter are studied. Suppose the system is subjected to a harmonic input u
(t)¼Fd sin(Ωt) (Fd> 0) (The results for this case can be extended to the general

input) and only the output nonlinearities (i.e., cp,0(.) with p�2) are considered. For

convenience, assume that there is only one nonlinear parameter cp,0(.) in model

(2.11) and all the other nonlinear parameters are zero.

Under the assumptions above, it can be obtained from the parametric character-

istic analysis in Chaps. 5 and 6 as demonstrated in Example 12.2 and (12.8b) that
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Y jΩð Þ ¼ Y1 jΩð Þ þ Yp jΩð Þ þ � � � þ Y p�1ð Þnþ1 jΩð Þ þ � � �
¼ eF1 Ωð Þ þ cp, 0 �ð ÞeFp Ωð Þ þ � � � þ cp, 0 �ð ÞneF p�1ð Þnþ1 Ωð Þ þ � � �
¼ eF1 Ωð Þ þ cp, 0 �ð ÞeFp Ωð Þ þ � � � þ cp, 0 �ð ÞneF p�1ð Þnþ1 Ωð Þ þ � � �

ð12:19aÞ

whereωki 2 �Ωf g; eF p�1ð Þnþ1 jΩð Þ can be computed from (12.8b), and n is a positive

integer. Noting that F ωklð Þ ¼ �jklFd; kl ¼ �1, ωkl ¼ klΩ; and l¼ 1, � � �, n in

(12.8b),

eF p�1ð Þnþ1 jΩð Þ ¼ 1

2 p�1ð Þnþ1

X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

φ p�1ð Þnþ1 cp, 0 �ð Þn;ωk1 , � � �,ωk p�1ð Þnþ1


 �
� �jFdð Þ p�1ð Þnþ1 � k1k2� � �k p�1ð Þnþ1

ð12:19bÞ

If p is an odd integer, then (p�1)n+1 is also an odd integer. Thus there should be

(p�1)n/2 frequency variables being�Ω and (p�1)n/2+1 frequency variables being

Ω such that ωk1 þ � � � þ ωk p�1ð Þnþ1
¼ Ω: In this case,

�jFdð Þ p�1ð Þnþ1 � k1k2� � �k p�1ð Þnþ1 ¼ �1ð Þ � j � j2
� � p�1ð Þn=2 � Fdð Þ p�1ð Þnþ1

� �1ð Þ p�1ð Þn=2

¼ �j Fdð Þ p�1ð Þnþ1
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Fig. 12.1 Magnitude of output spectrum (Jing et al. 2011)
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If p is an even integer, then (p�1)n+1 is an odd integer for n¼2k (k¼1,2,3,. . .) and
an even integer for n¼2k�1 (k¼1,2,3,. . .). When n is an odd integer, ωk1 þ � � �
þωk p�1ð Þnþ1

6¼ Ω for ωkl 2 �Ωf g: This gives that eF p�1ð Þnþ1 jΩð Þ ¼ 0: When n is an

even integer, (p�1)n+1 is an odd integer. In this case, it is similar to that p is an odd
integer. Therefore, for n>0

eF p�1ð Þnþ1 jΩð Þ ¼

�j
Fd
2


 � p�1ð Þnþ1 X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

φ p�1ð Þnþ1 cp, 0 �ð Þn ;ωk1 , � � �,ωk p�1ð Þnþ1

	 

0

8>><>>:
if p is odd or n is even

else

ð12:19cÞ

From (12.19a–c) it is obvious that the property of the new mapping

φ p�1ð Þnþ1 cp, 0 �ð Þn;ωk1 , � � �,ωk p�1ð Þnþ1

	 

plays a key role in the series. To develop the

alternating conditions for series (12.19a), the following results can be obtained.

Lemma 12.1 Thatφ p�1ð Þnþ1 cp, 0 �ð Þn;ωk1 , � � �,ωk p�1ð Þnþ1


 �
is symmetric or asymmet-

ric has no influence on eF p�1ð Þnþ1 jΩð Þ:
This lemma is obvious since

X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

�ð Þ includes all the possible

permutations of ωk1 ; � � �;ωk2nþ1

� �
: Although there are many choices to obtain the

asymmetric φ p�1ð Þnþ1 cp, 0 �ð Þn;ωk1 , � � �,ωk p�1ð Þnþ1


 �
which may be different at differ-

ent permutation ωk1 ; � � �;ωk p�1ð Þnþ1


 �
; they have no different effect on the analysis ofeF p�1ð Þnþ1 jΩð Þ:

Lemma 12.2 Consider parameter cp,q(r1,r2,. . .,rp+q).

(a1) If p� 2 and q¼0, then
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ϕn sð Þ cp, 0 �ð Þn;ωl 1ð Þ� � �ωl n sð Þð Þ
	 


¼ ϕ p�1ð Þnþ1 cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
	 


¼
�1ð Þn�1

Yp�1ð Þnþ1

i¼1

H1 jωl ið Þ
	 


L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ
	 


�
X

all the different combinations

of x1; x2; . . . ; xp

n o
satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

Yp
i¼1

ϕ
0
p�1ð Þxiþ1

cp, 0 �ð Þxi ;ω
l X ið Þþ1
� �� � �ω

l X ið Þþ p�1ð Þxiþ1
� �	 
24

�
nx

� x1; � � �; xp

 �

nr� r1; � � �; rp

 � �

X
all the different

permutations of

k1; � � �; kp
n o

Yp
i¼1

jω
l X ið Þþ1
� � þ � � � þ jω

l X ið Þþ p�1ð Þxiþ1
� �	 
ri35

where,

ϕ
0
p�1ð Þnþ1

cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
	 


¼ �1

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ
	 


�
X

all the different combinations

of x1; x2; . . . ; xp

n o
satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

Yp
i¼1

ϕ
0
p�1ð Þxiþ1

cp, 0 �ð Þxi ;ω
l X ið Þþ1
� �� � �ω

l X ið Þþ p�1ð Þxiþ1
� �	 
24

�
nx

� x1; � � �; xp

 �

nr� r1; � � �; rp

 � �

X
all the different

permutations of

r1; � � �; rp
n o

Yp
i¼1

jω
l X ið Þþ1
� � þ � � � þ jω

l X ið Þþ p�1ð Þxiþ1
� �	 
ri35

the termination is φ
0
1
(1;ωi)¼1. n�r r1; � � �; rp


 �
¼ p!

n1!n2!���ne! ; n1+. . .+ne¼p, e is the

number of distinct differentials ri appearing in the combination, ni is the

number of repetitions of ri, and a similar definition holds for n�x x1; � � �; xp

 �

:
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(a2) If p� 2, q¼0 and r1¼r2¼. . .¼rp¼r, then

φ p�1ð Þnþ1 cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
� �

¼
�1ð Þn�1

Yp�1ð Þnþ1

i¼1

jωl ið Þ
� �r

H1 jωl ið Þ
� �� �

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ
� �

�
X

all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

nx
� x1; � � �; xp
� �

�
Yp
i¼1

φ
00
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �
where,

if xi ¼ 0, φ
00
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �
¼ 1;

otherwise,

φ
00
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �
¼

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �r

�L p�1ð Þxiþ1 jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �

�
X

all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ xi � 1, 0 	 xj 	 xi � 1

nx
� x1; � � �; xp
� �

�
Yp
j¼1

φ
00
p�1ð Þxjþ1 cp, 0 �ð Þxj ;ω

l X
0
jð Þþ1

� �� � �ω
l X

0
jð Þþ p�1ð Þxjþ1

� �	 


The recursive terminal of φ
00
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �
is xi ¼ 1:
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Proof
φn sð Þ cp, 0 �ð Þn;ωl 1ð Þ� � �ωl n sð Þð Þ

	 

¼ φ p�1ð Þnþ1 cp, 0 �ð Þcp, 0 �ð Þ� � �cp, 0 �ð Þ;ωl 1ð Þ� � �ω l p�1ð Þnþ1ð Þ

	 

¼

X
all the 2� partitions

for s satisfying

s1 sð Þ ¼ cp, 0 �ð Þ

f1 cp, 0 �ð Þ, p� 1ð Þnþ 1;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
	 
�

�
X

all the p� partitions

for s=c3, 0 �ð Þ

X
all the different

permutations

of sx1 ; � � �; sxp
n o

f2a sx1
� � �sxp cp0 �ð Þn�1

	 

;ωl 1ð Þ� � �ωl n sð Þð Þ

	 
�

�
Yp
i¼1

φ
n sxi cp, 0 �ð Þn�1


 �
 � sxi
cp, 0 �ð Þn�1
	 


;ω
l X ið Þþ1

 � � � �ω

l X ið Þþn sxi cp, 0 �ð Þn�1

 �
 �
 �0@ 1A359=;

¼ 1

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ
	 


�
X

all the p� partitions

for s=cp, 0 �ð Þ

X
all the different

permutations

of sx1 ; � � �; sxp
n o

Yp
i¼1

jω
l X ið Þþ1

 � þ � � � þ jω

l X ið Þþn sxi cp, 0 �ð Þn�1

 �
 �
 �0@ 1Ari24

�
Yp
i¼1

φ
n sxi cp, 0 �ð Þn�1


 �
 � sxi
cp, 0 �ð Þn�1
	 


;ω
l X ið Þþ1

 � � � �ω

l X ið Þþn sxi cp, 0 �ð Þn�1

 �
 �
 �0@ 1A35

¼ 1

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ
	 


�
X

all the different combinations

of x1; x2; . . . ; xp

n o
satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n-1

X
all the different

permutations of

each combination

Yp
i¼1

jω
l X ið Þþ1

 � þ � � � þ jω

l X ið Þþ p�1ð Þxiþ1

 �0@ 1Ari24

�
Yp
i¼1

φ p�1ð Þxiþ1 cp, 0 �ð Þxi ;ω
l X ið Þþ1

 � � � �ω

l X ið Þþ p�1ð Þxiþ1

 �0@ 1A35

Note that different permutations in each combination have no difference to

Yp
i¼1

φ p�1ð Þxiþ1 cp,0 �ð Þxi ;ω
l X ið Þþ1

 � ���ω

l X ið Þþ p�1ð Þxiþ1

 �0@ 1A, thus φ(p�1)n+1(cp,0(�)

n;ω1���ω(p�1)n+1)

can be written as
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φ p�1ð Þnþ1 cp, 0 �ð Þn;ω1� � �ω p�1ð Þnþ1

	 

¼ 1

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ
	 


�
X

all the different combinations

of x1; x2; . . . ; xp

n o
satisfying

x1 þ � � � þ x3 ¼ n� 1, 0 	 xi 	 n� 1

Yp
i¼1

φ p�1ð Þxiþ1 cp, 0 �ð Þxi ;ω
l X ið Þþ1
� �� � �ω

l X ið Þþ p�1ð Þxiþ1
� �	 


�
X

all the different

permutations of

each combination

Yp
i¼1

jω
l X ið Þþ1
� � þ � � � þ jω

l X ið Þþ p�1ð Þxiþ1
� �	 
ri

¼ 1

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ
	 


�
X

all the different combinations

of x1; x2; . . . ; xp

n o
satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

Yp
i¼1

φ p�1ð Þxiþ1 cp, 0 �ð Þxi ;ω
l X ið Þþ1
� �� � �ω

l X ið Þþ p�1ð Þxiþ1
� �	 


�
nx

� x1; � � �; xp

 �

nr� r1; � � �; rp

 � �

X
all the different

permutations of

r1; � � �; rp
n o

Yp
i¼1

jω
l X ið Þþ1
� � þ � � � þ jω

l X ið Þþ p�1ð Þxiþ1
� �	 
ri

n�x x1; � � �; xp

 �

and n�r (r1, � � �, rp) are the numbers of the corresponding combinations

involved, which can be obtained from the combination theory and can also be

referred to Peyton Jones (2007). From an inspection of the recursive relationship in

the equation above, it can be seen that there are (p�1)n+1 H1(jωi) with different

frequency variable at the end of the recursive relationship. Thus they can be brought

out as a common factor. This gives

φ p�1ð Þnþ1 cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
� �

¼ �1ð Þn
Yp�1ð Þnþ1

i¼1

H1 jωl ið Þ
� � � φ0

p�1ð Þnþ1 cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
� � ð12:20aÞ

where,
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φ
0
p�1ð Þnþ1

cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ

 �

¼ �1

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ

 �

�
X

all the different combinations

of x1; x2; . . . ; xp

n o
satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

Yp
i¼1

φ
0
p�1ð Þxiþ1

cp, 0 �ð Þxi ;ω
l X ið Þþ1
� �� � �ω

l X ið Þþ p�1ð Þxiþ1
� �	 


�
nx

� x1; � � �; xp

 �

nr� r1; � � �; rp

 �

�
X

all the different

permutations of

r1; � � �; rp
n o

Yp
i¼1

jω
l X ið Þþ1
� � þ � � � þ jω

l X ið Þþ p�1ð Þxiþ1
� �	 
ri

ð12:20bÞ

the termination is φ
0
1
(1;ωi)¼1. Note that when xi ¼ 0; there is a term jω

l X ið Þþ1
� �	 
ri

appearing from nx
� x1;���;xpð Þ

nr� r1;���;rpð Þ �
X

all the different

permutations of

r1; � � �; rp
n o

Yp
i¼1

jω
l X ið Þþ1
� � þ � � � þ jω

l X ið Þþ p�1ð Þxiþ1
� �	 
ri

:

It can be verified that in each recursion of φ
0
ðp� 1Þnþ 1

(cp,0(�)n;ωl(1) � � �ωl((p�1)n+1)), there

may be some frequency variables appearing individually in the form of jω
l X ið Þþ1
� �	 
ri

;

and these variables will not appear individually in the same form in the subsequent

recursion. At the end of the recursion, all the frequency variables should have

appeared in this form. Thus these terms can also be brought out as common factors

if r1¼r2¼. . .¼rp. In the case of r1¼r2¼. . .¼rp¼r,

nx
� x1; � � �; xp
� �

nr� r1; � � �; rp
� � �

X
all the different

permutations of

r1; � � �; rp
� �

Yp
i¼1

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �ri

¼ nx
� x1; � � �; xp
� � �Yp

i¼1

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �ri

Therefore (12.20a,b) can be written, if r1¼r2¼. . .¼rp, as
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φ p�1ð Þnþ1 cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
� �

¼ �1ð Þn
Yp�1ð Þnþ1

i¼1

jωl ið Þ
� �r

H1 jωl ið Þ
� �� � � φ0

p�1ð Þnþ1 cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
� �

ð12:21aÞ
ϕ
0
p�1ð Þnþ1

cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ

 �

¼ �1

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ

 �

�
X

all the different combinations

of x1; x2; . . . ; xp

n o
satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

Yp
i¼1

ϕ
0
p�1ð Þxiþ1

cp, 0 �ð Þxi ;ω
l X ið Þþ1
� �� � �ω

l X ið Þþ p�1ð Þxiþ1
� �	 


� nx� x1; � � �; xp

 �

�
Yp
i¼1

jω
l X ið Þþ1
� � þ � � � þ jω

l X ið Þþ p�1ð Þxiþ1
� �	 
ri 1�δ xið Þð Þ

ð12:21bÞ

(12.21b) can be further written as

ϕ
0
p�1ð Þnþ1 cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ

� �
¼ �1

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ
� �

�
X

all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

nx
� x1; � � �; xp
� �

�
Yp
i¼1

ϕ
00
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �
ð12:22aÞ

where, if xi ¼ 0;

φ
00
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �
¼ 1;

otherwise,
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φ
00
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �
¼ jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �r

φ
0
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �
¼

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �r

�L p�1ð Þxiþ1 jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �

�
X

all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ xi � 1, 0 	 xi 	 xi � 1

nx
� x1; � � �; xp
� �

�
Yp
i¼1

jω
l X

0
ið Þþ1

� � þ � � � þ jω
l X

0
ið Þþ p�1ð Þxiþ1

� �	 
ri 1�δ xið Þð Þ

φ
0
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ω

l X
0
ið Þþ1

� �� � �ω
l X

0
ið Þþ p�1ð Þxiþ1

� �	 


¼
jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �r

�L p�1ð Þxiþ1 jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �

�
X

all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ xi � 1, 0 	 xi 	 xi � 1

nx
� x1; � � �; xp
� �

�
Yp
i¼1

ϕ
00
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ω

l X
0
ið Þþ1

� �� � �ω
l X

0
ið Þþ p�1ð Þxiþ1

� �	 

ð12:22bÞ

The recursive terminal of (12.22b) is xi ¼ 1:Substituting (12.20b) into (12.20a) and
substituting (12.22a,b) into (12.21a), the lemma can be obtained. This completes

the proof. □

For convenience, define an operator “*” for sgnc(.) satisfying

sgnc υ1ð Þ � sgnc υ2ð Þ ¼ sgnr Re υ1υ2ð Þð Þ sgnr Im υ1υ2ð Þð Þ½ �

for any υ1, υ22ℂ. It is obvious sgnc(υ1) * sgnc(υ2)¼ sgnc(υ1υ2).
The following lemma is straightforward.
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Lemma 12.3 For υ1, υ2, ν2ℂ, suppose sgnc(υ1)¼� sgnc(υ2). If Re(ν)Im(ν)¼ 0,

then sgnc(υ1ν)¼� sgnc(υ2ν). If Re(ν)Im(ν)¼ 0 and ν 6¼ 0, then sgnc(υ1/ν)¼�
sgnc(υ2/ν). □

Proposition 12.2 The output spectrum in (12.19a) is an alternating series with

respect to any specific parameter cp,0(r1,r2,. . .,rp) satisfying cp,0(.)>0 and p ¼ 2r
þ1 for r ¼ 1, 2, 3, . . .

(a1) if and only if

sgnc

X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

�1ð Þn�1φ p�1ð Þnþ1 cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
� �0@ 1A ¼ const, i:e:;

sgnc

H1 jΩð Þ
L p�1ð Þnþ1 jΩð Þ

X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

X
all the different combinations

of x1 ; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

Yp
i¼1

φ
0
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �"

� nx
� x1 ; � � �; xp
� �

nr� r1 ; � � �; rp
� � �

X
all the different

permutations of

r1; � � �; rp
� �

Yp
i¼1

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �ri#

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
¼ const

ð12:23Þ

(a2) if r1¼r2¼. . .¼rp¼r in cp,0(.), Re
H1 jΩð Þ

L p�1ð Þnþ1 jΩð Þ

 �

Im
H1 jΩð Þ

L p�1ð Þnþ1 jΩð Þ

 �

¼ 0; and
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sgnc

X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

X
all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

nx
� x1; � � �; xp
� ��

�
Yp
i¼1

φ
00
p�1ð Þxiþ1

�
cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ

�i

0BBBBBBB@

1CCCCCCCA
¼ const ð12:24Þ

where const is a two-dimensional constant vector whose elements are +1, 0 or

�1.

Proof

(a1) From Lemma 12.1, any asymmetric φ p�1ð Þnþ1 cp, 0 �ð Þn;ωk1 , � � �,ωk p�1ð Þnþ1


 �
is

sufficient for the computation of eF p�1ð Þnþ1 jΩð Þ: It can be obtained that

sgnc eF p�1ð Þnþ1 jΩð Þ

 �

¼sgnc �j
Fd

2

	 
 p�1ð Þnþ1
 !

∗sgn
X

ωk1
þ���þωk p�1ð Þnþ1

¼Ω
φ p�1ð Þnþ1 cp,0 �ð Þn;ωk1 ,���,ωk p�1ð Þnþ1


 �0@ 1A
From Lemma 12.3, sgnc �j Fd

2

� � p�1ð Þnþ1

 �

has no effect on the alternating nature of

the sequence eF p�1ð Þnþ1 jΩð Þ for n¼1,2,3,.... Hence, (12.19a) is an alternating

series with respect to cp,0(.) if and only if the sequenceX
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

φ p�1ð Þnþ1 cp,0 �ð Þn;ωk1 ,���,ωk p�1ð Þnþ1


 �
for n¼1,2,3,... is alter-

nating. This is equivalent to

sgnc

X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

�1ð Þn�1φ p�1ð Þnþ1 cp, 0 �ð Þn;ωl 1ð Þ� � �ωl p�1ð Þnþ1ð Þ
� �0@ 1A ¼ const

In the equation above, replacing φ p�1ð Þnþ1 cp, 0 �ð Þn;ωk1 , � � �,ωk p�1ð Þnþ1


 �
by

using the result in Lemma 12.2 and noting (p�1)n+1 is an odd integer, it

can be obtained that
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sgnc

X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

Yp�1ð Þnþ1

i¼1

H1 jωl ið Þ
� �

L p�1ð Þnþ1 jωl 1ð Þ þ � � � þ jωl p�1ð Þnþ1ð Þ
� �

�
X

all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

Yp
i¼1

ϕ
0
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �"

� nx
� x1; � � �; xp
� �

nr� r1; � � �; rp
� � �

X
all the different

permutations of

r1; � � �; rp
� �

Yp
i¼1

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �ri#

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

¼ sgnc

H1 jΩð Þ
Yp�1ð Þn=2

i¼1

H1 jΩð Þj j2

L p�1ð Þnþ1 jΩð Þ �
X

ωk1
þ���þωk p�1ð Þnþ1

¼Ω

X
all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

Yp
i¼1

ϕ
0
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �"

� nx
� x1; � � �; xp
� �

nr� r1; � � �; rp
� � �

X
all the different

permutations of

r1; � � �; rp
� �

Yp
i¼1

jωl X ið Þþ1ð Þ þ � � � þ jωl X ið Þþ p�1ð Þxiþ1ð Þ

 �ri#

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

¼ const

Note that
Yp�1ð Þn=2

i¼1

H1 jΩð Þj j2 has no effect on the equality above from using

Lemma 12.3, then the equation above is equivalent to (12.23).

(a2) If additionally, r1¼r2¼. . .¼rp¼r in cp,0(.), then using the result in Lemma

12.2, (12.23) can be written as

sgnc

jΩð ÞrH1 jΩð Þ
L p�1ð Þnþ1 jΩð Þ

X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

X
all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

nx
� x1; � � �; xp
� ��

�
Yp
i¼1

φ
00
p�1ð Þxiþ1

�
cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ

�i

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼ const

From Lemma 12.3, (jΩ)r has no effect on this equation. Then the equation

above is equivalent to
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sgnc

H1 jΩð Þ
L p�1ð Þnþ1 jΩð Þ

X
ωk1

þ���þωk p�1ð Þnþ1
¼Ω

X
all the different combinations

of x1; x2; . . . ; xp
� �

satisfying

x1 þ � � � þ xp ¼ n� 1, 0 	 xi 	 n� 1

nx
� x1; � � �; xp
� ��

�
Yp
i¼1

φ
00
p�1ð Þxiþ1

�
cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ

�i

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼ const

If Re
H1 jΩð Þ

L p�1ð Þnþ1 jΩð Þ

 �

Im
H1 jΩð Þ

L p�1ð Þnþ1 jΩð Þ

 �

¼ 0; then H1 jΩð Þ
L p�1ð Þnþ1 jΩð Þ has no effect, either.

This gives (12.24). The proof is completed. □

Proposition 12.2 provides a sufficient and necessary condition for the output

spectrum series (12.19a) to be an alternating series with respect to a specific

nonlinear parameter cp,0(r1,r2,. . .,rp) satisfying cp,0(.)>0 and p ¼ 2r þ 1 for r ¼ 1,

2, 3, . . . : Similar results can also be established for any other nonlinear parameters.

Regarding nonlinear parameter cp,0(r1,r2,. . .,rp) satisfying cp,0(.)>0 and p ¼ 2r for
r ¼ 1, 2, 3, . . . ; it can be obtained from (12.19a) that

Y jΩð Þ ¼ eF1 Ωð Þ þ cp, 0 �ð Þ2eF2 p�1ð Þþ1 Ωð Þ þ � � � þ cp, 0 �ð Þ2neF2 p�1ð Þnþ1 Ωð Þ þ � � �

eF2 p�1ð Þnþ1 Ωð Þ for n¼1,2,3,. . . should be alternating so that Y(jΩ) is alternating. This
yields

sgnc

X
ωk1

þ���þωk2 p�1ð Þnþ1
¼Ω

φ2 p�1ð Þnþ1 cp,0 �ð Þ2n;ωl 1ð Þ� � �ωl 2 p�1ð Þnþ1ð Þ

 �0@ 1A

¼�sgnc

X
ωk1

þ���þωk2 p�1ð Þ nþ1ð Þþ1
¼Ω

φ2 p�1ð Þ nþ1ð Þþ1 cp,0 �ð Þ2 nþ1ð Þ;ωl 1ð Þ� � �ωl 2 p�1ð Þ nþ1ð Þþ1ð Þ

 �0@ 1A

Clearly, this is completely different from the conditions in Proposition 12.2. It may

be more difficult for the output spectrum to be alternating with respect to cp,0(.)>
0 with p¼2r than cp,0(.)>0 with p¼2rþ1:

Note that (12.19a) is based on the assumption that there is only nonlinear

parameter cp,0(.) and all the other nonlinear parameters are zero. If the effects

from the other nonlinear parameters are considered, (12.19a) can be written as

Y jΩð Þ ¼ eF 0
1 Ωð Þ þ cp, 0 �ð ÞeF 0

p Ωð Þ þ � � � þ cp, 0 �ð ÞneF 0
p�1ð Þnþ1 Ωð Þ þ � � � ð12:25aÞ

where
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eF 0
p�1ð Þnþ1 Ωð Þ ¼ eF p�1ð Þnþ1 Ωð Þ þ δ p�1ð Þnþ1 Ω;Cp0 ,q0 \ cp,0 :ð Þ


 �
ð12:25bÞ

Cp0 ,q0 includes all the nonlinear parameters in the system. Based on the parametric

characteristic analysis in Chap. 5 and the new mapping function φn(CE
(Hn(�));ω1, � � �,ωn) defined in Chap. 11, (12.25b) can be determined consequently.

For example, suppose p is an odd integer larger than 1, then eF p�1ð Þnþ1 jΩð Þ is given
in (12.19c), and δ p�1ð Þnþ1 Ω;Cp0 ,q0 \ cp,0 :ð Þ


 �
can be computed as

δ p�1ð Þnþ1 Ω;Cp0 ,q0 \ cp,0 :ð Þ

 �

¼
X

all the monomails consisting of the parameters in Cp0 ,q0 \ cp, 0 �ð Þ
satisfying npþ

X
p
0
i þ q

0
i


 �
is odd and less than N

�j Fd

2

� �� n cp,0
ns �ð Þð Þ

�
X

ωk1
þ���þωk

n cp,0n s �ð Þð Þ ¼Ω
φn cp,0ns �ð Þð Þ cp, 0

ns Cp
0 ,q0 \ cp, 0 �ð Þ


 �
;ωk1 � � �ωk

n cp,0n s �ð Þð Þ
	 
�

where s Cp0 ,q0 \ cp, 0 �ð Þ

 �

denotes a monomial consisting of some parameters in

Cp0 ,q0 \ cp, 0 �ð Þ:
It is obvious that if (12.19a) is an alternating series, then (12.25a) can still be

alternating under a proper design of the other nonlinear parameters (For example,

these parameters are sufficiently small). Moreover, from the discussions above, it

can be seen that whether the system output spectrum is an alternating series or not

with respect to a specific nonlinear parameter is greatly dependent on the system

linear parameters.

Example 12.3 To demonstrate the theoretical results above, consider again the

model (12.13) in Example 12.2. Let u(t)¼Fd sin(Ωt) (Fd> 0). The output spec-

trum at frequency Ω is given in (12.16) and (12.17). From Lemma 12.2, it can be

derived for this case that

φ2nþ1 c3,0 �ð Þn;ωl 1ð Þ� � �ωl 2nþ1ð Þ
� � ¼ �1ð Þn�1

Y2nþ1

i¼1

jωl ið Þ
� �r

H1 jωl ið Þ
� �� �

L2nþ1 jωl 1ð Þ þ � � � þ jωl 2nþ1ð Þ
� �

�
X

all the different combinations

of x1; x2; x3f g satisfying
x1 þ x2 þ x3 ¼ n� 1, 0 	 xi 	 n� 1

nx
� x1; x2; x3ð Þ �

Y3
i¼1

φ
00
2xiþ1 c3,0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ2xiþ1ð Þ


 �

ð12:26aÞ

where, if xi ¼ 0; φ
00
p�1ð Þxiþ1 cp, 0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ p�1ð Þxiþ1ð Þ


 �
¼ 1; otherwise,
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φ
00
2xiþ1 c3,0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ2xiþ1ð Þ


 �
¼

jωl X ið Þþ1ð Þ þ � � �þ jωl X ið Þþ2xiþ1ð Þ

 �r

�L2xiþ1 jωl X ið Þþ1ð Þ þ � � �þ jωl X ið Þþ2xiþ1ð Þ

 � �

X
all the different combinations

of x1;x2;x3f g satisfying
x1þ x2 þ x3 ¼ xi � 1, 0	 xj 	 xi � 1

nx
� x1;x2;x3ð Þ �

Y3
j¼1

φ
00
2xjþ1 c3,0 �ð Þxj ;ω

l X
0
jð Þþ1

� �� � �ω
l X

0
jð Þþ2xjþ1

� �	 

ð12:26bÞ

Note that the terminal condition for (12.26a,b) is

φ
00
2xiþ1 c3,0 �ð Þxi ;ωl X ið Þþ1ð Þ� � �ωl X ið Þþ2xiþ1ð Þ


 �
xi¼1

����
¼ φ

00
3 c3,0 �ð Þ;ωl 1ð Þ� � �ωl 3ð Þ
� � ¼ jωl 1ð Þ þ � � � þ jωl 3ð Þ

� �r
�L3 jωl 1ð Þ þ � � � þ jωl 3ð Þ

� � ð12:26cÞ

Therefore, from (12.26a–c) it can be shown that φ2n+ 1(c3,0(�)n;ω1 � � �ω2n+ 1) can be

written as

φ2nþ1 c3,0 �ð Þn;ω1� � �ω2nþ1ð Þ¼
�1ð Þn�1

Y2nþ1

i¼1

jωiH1 jωið Þ

L2nþ1 jω1 þ � � � þ jω2nþ1ð Þ

�
X

all the combination x1; x2; . . . ; xn�1ð Þ
satisfying xi 2 2jþ 1

��1 	 j 	 n� 1
� �

x1 � x2 � :: � xn�1, and

} ¼ } happens only if xi þ xiþ1 	 2n� 2

rX x1; x2; . . . ; xn�1ð Þ
Yn�1

i¼1

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� �

ð12:27Þ

where rX(x1, x2, . . ., xn� 1) is a positive integer which can be explicitly determined

by (12.26a,b) and represents the number of all the involved combinations which

have the same
Yn�1

i¼1

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� �: Therefore, according to Proposition

12.2, it can be seen from (12.27) that the output spectrum (12.16) is an alternating

series only if the following two conditions hold:

(b1)

Re
H1 jΩð Þ

L2nþ1 jΩð Þ
	 


Im
H1 jΩð Þ

L2nþ1 jΩð Þ
	 


¼ 0

(b2)
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sgnc

X
ωk1

þ���þωk2nþ1
¼Ω

X
all thecombination x1;x2; . .. ;xn�1ð Þ
satisfyingxi 2 2jþ1

��1	 j	n�1
� �

x1�x2� ::�xn�1, and

}¼}happensonly if xiþxiþ1	2n�2

rX x1;x2;. .. ;xn�1ð Þ
Yn�1

i¼1

jωl 1ð Þ þ���þ jωl xið Þ
�Lxi jωl 1ð Þ þ���þ jωl xið Þ

� �

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
¼ const

Suppose Ω¼
ffiffiffiffi
k0
m

q
which is a natural resonance frequency of model (12.13).

It can be derived that

L2nþ1 jΩð Þ ¼ �
XK
k1¼0

c1,0 r1ð Þ jΩð Þr1 ¼ � m jΩð Þ2 þ B jΩð Þ þ k0


 �
¼ �jBΩ

H1 jΩð Þ ¼ �1

L1 jΩð Þ ¼
1

jBΩ

It is obvious that condition (b1) is satisfied ifΩ ¼
ffiffiffiffi
k0
m

q
:Considering condition (b2),

it can be derived that

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� � ¼ jε xið ÞΩ
�Lxi jε xið ÞΩð Þ ð12:28aÞ

where ε(xi)2 {�(2j+ 1)|0	 j	dn+ 1e}, and dn+ 1e denotes the odd integer not

larger than n+1. Especially, when ε(xi)¼� 1, it yields that

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� � ¼ �jΩ
�Lxi �jΩð Þ ¼

�jΩ
�jBΩ

¼ 1

B
ð12:28bÞ

when |ε(xi)|> 1,

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� � ¼ jε xið ÞΩ
�Lxi jε xið ÞΩð Þ ¼

jε xið ÞΩ
m jε xið ÞΩð Þ2 þ B jε xið ÞΩð Þ þ k0

¼ jε xið ÞΩ
1� ε xið Þ2

 �

k0 þ jε xið ÞΩB
¼ 1

Bþ j ε xið Þ � 1

ε xið Þ

	 
 ffiffiffiffiffiffiffiffi
k0m

p

ð12:28cÞ

If B <<
ffiffiffiffiffiffiffiffi
k0m

p
; then it gives
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jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� � � 1

j ε xið Þ � 1
ε xið Þ


 � ffiffiffiffiffiffiffiffi
k0m

p ð12:28dÞ

Note that in all the combinations involved in the summation operator in (12.27) or

condition (b2), i.e.,X
ωk1

þ���þωk2nþ1
¼Ω

X
all the combination x1; x2; . . . ; xn�1ð Þ
satisfying xi 2 2jþ 1

��1 	 j 	 n� 1
� �

x1 � x2 � :: � xn�1, and

} ¼ } happens only if xi þ xiþ1 	 2n� 2

�ð Þ

There always exists a combination such that

Yn�1

i¼1

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� � ¼ 1

Bn�1
ð12:29Þ

Note that (12.28b) holds both for ε(xi)¼� 1, thus there is no combination such that

Yn�1

i¼1

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� � ¼ � 1

Bn�1

Noting that B <<
ffiffiffiffiffiffiffiffi
k0m

p
; these show that

max
all the involved

combinations

Yn�1

i¼1

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� ������
�����

 !
¼ 1

Bn�1

which happens in the combination where (12.29) holds.

Because there are n+1 frequency variables to be +Ω and n frequency variables to

be �Ω such that ω1 + � � �+ω2n+ 1¼Ω in (12.16) and (12.17), there are more

combinations where ε(xi)> 0 that is ε xið Þ � 1
ε xið Þ


 � ffiffiffiffiffiffiffiffi
k0m

p
> 0 in (12.28c,d). Thus

there are more combinations where Im
jωl 1ð Þþ���þjωl xið Þ

�Lxi jωl 1ð Þþ���þjωl xið Þ

 �0@ 1A is negative. Using

(12.28b) and (12.28d), it can be shown under the condition that B <<
ffiffiffiffiffiffiffiffi
k0m

p
;
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max
all the involved

combinations

Im
Yn�1

i¼1

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� � !�����
�����

 !

� 1

Bn�2 ε xið Þ � 1
ε xið Þ


 � ffiffiffiffiffiffiffiffi
k0m

p ε xið Þ¼3

���� ¼ 1

2:7Bn�2
ffiffiffiffiffiffiffiffi
k0m

p

This happens in the combinations where the argument ofYn�1

i¼1

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� � is either �90
 or +90
. Note that there are more

cases in which the arguments are�90
. If the argument is�180
, the absolute value
of the corresponding imaginary part will be not more than

max
the combination

whose argument is

�1800

Im
Yn�1

i¼1

jωl 1ð Þ þ � � � þ jωl xið Þ
�Lxi jωl 1ð Þ þ � � � þ jωl xið Þ

� � !�����
�����

 !

� 1

Bn�4 ε xið Þ � 1
ε xið Þ


 �3 ffiffiffiffiffiffiffiffi
k0m

p 3
ε xið Þ¼3

���� ¼ 1

2:73Bn�4
ffiffiffiffiffiffiffiffi
k0m

p 3

which is much less than 1
2:7Bn�2

ffiffiffiffiffiffi
k0m

p :

Therefore, if B is sufficiently smaller than
ffiffiffiffiffiffiffiffi
k0m

p
, the following two inequalities

can hold for n>1

Re
X

all the combination x1;x2; . . . ;xn�1ð Þ
satisfying xi 2 2jþ1

��1	 j	 n�1
� �

x1 � x2 � ::� xn�1, and

}¼ } happens only if xiþ xiþ1 	 2n�2

rX x1;x2; . . . ;xn�1ð Þ
Yn�1

i¼1

jωl 1ð Þ þ � � �þ jωl xið Þ
�Lxi jωl 1ð Þ þ �� �þ jωl xið Þ

� �

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
> 0
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Im
X

all the combination x1;x2; . . . ;xn�1ð Þ
satisfying xi 2 2jþ1

��1	 j	 n�1
� �

x1 � x2 � ::� xn�1, and

}¼ } happens only if xiþ xiþ1 	 2n�2

rX x1;x2; . . . ;xn�1ð Þ
Yn�1

i¼1

jωl 1ð Þ þ � � �þ jωl xið Þ
�Lxi jωl 1ð Þ þ �� �þ jωl xið Þ

� �

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
< 0

That is, condition (b2) holds for n>1 under B<<
ffiffiffiffiffiffiffiffi
k0m

p
and Ω¼

ffiffiffiffi
k0
m

q
: Hence,

(12.16) is an alternating series if the following two conditions hold:

(c1) B is sufficiently smaller than
ffiffiffiffiffiffiffiffi
k0m

p
;

(c2) The input frequency is Ω ¼
ffiffiffiffi
k0
m

q
:

Note that in example 12.1, Ω ¼
ffiffiffiffi
k0
m

q
� 8:165,B ¼ 296 � ffiffiffiffiffiffiffiffi

k0m
p ¼ 1, 959:592:

These are consistent with the theoretical results. Therefore the conclusions are

verified.

12.5 Conclusions

Nonlinear influence on system output spectrum is investigated in this Chapter from

a novel perspective—alternating series. For the Volterra class of system nonline-

arities, it is shown for the first time that system output spectrum can be expanded

into an alternating series with respect to (nonlinear) model parameters under certain

conditions and this alternating series has some interesting and favourable properties

for engineering practices. Although there may be several existing methods such as

perturbation analysis that could achieve similar objectives for some cases in

practice, this study proposes a novel and alternative viewpoint on the nonlinear

effect (i.e., alternating series) and on the analysis of nonlinear effect (i.e., the

GFRFs-based) in the frequency domain. As some important properties of a linear

system (e.g. stability) are determined by the positions of the poles of its transfer

function, the concept of alternating series could be a crucial characteristic of

nonlinear behaviours in the frequency domain. Some fundamental results are

therefore developed for characterizing and understanding of nonlinear effects

from this novel viewpoint. Further study will be focused on more detailed design

and analysis methods based on these results for practical systems.
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Chapter 13

Magnitude Bound Characteristics of

Nonlinear Frequency Response Functions

13.1 Introduction

In many cases, the magnitude of a frequency response function such as GFRFs can

reveal important information about the system, and consequently takes a great role

in the analysis of the convergence or stability of the system and the truncation error

of the corresponding Volterra series. It can be used to evaluate the significant orders

of nonlinearities or the significant nonlinear terms for the magnitude bound,

indicate the stability of a system and provide a basis for analysis of system output

frequency response. Several efforts to derive the magnitudes of the GFRFs and

output frequency response have been attempted. A very simple algorithm to

evaluate the magnitude bounds of the GFRFs was provided in Zhang and Billings

(1996). Billings and Lang (1996) proposed a more detailed recursive algorithm to

compute the gain bounds of the GFRFs and output frequency response. Notice that

in these results, the relationship between the magnitude of the system frequency

response functions and the system time domain model parameters is not revealed

explicitly.

New bound characteristics of both the generalized frequency response functions

(GFRFs) and output frequency response for the NARX model are presented in this

chapter. It is shown that the magnitudes of the GFRFs and the system output

spectrum can all be bounded by a polynomial function of the magnitude bound of

the first order GFRF, and the coefficients of the polynomial are functions of the

NARX model parameters. These new bound characteristics of the NARX model

provide an important insight into the relationship between the model parameters

and the magnitudes of the system frequency response functions, reveal the effect of

the model parameters on the stability of the NARX model to a certain extent, and

provide a useful technique for the magnitude based analysis of nonlinear systems in

the frequency domain. Based on these results, truncation error and the highest order

associated with Volterra series expression of nonlinear systems can be studied.

Sufficient conditions for the BIBO stability of the NARX model can also be

© Springer International Publishing Switzerland 2015

X. Jing, Z. Lang, Frequency Domain Analysis and Design of Nonlinear Systems
based on Volterra Series Expansion, Understanding Complex Systems,

DOI 10.1007/978-3-319-12391-2_13

269



established. A numerical example is given to demonstrate the effectiveness of the

theoretical results. An important application of these results will be discussed in

the next chapter to address an important convergence issue of Volterra series

expansion.

The bound characteristics of this chapter can be further developed with less

conservatism, which can be referred to Jing et al. (2008b, 2009b).

13.2 The Frequency Response Functions of Nonlinear

Systems and the NARX Model

For convenience, the technical background of this study is simply given in this

section. The details can be referred to Chaps. 2 and 3. Nonlinear systems with stable

zero equilibrium point can be approximated in the neighbourhood of the equilib-

rium by the Volterra series

y tð Þ ¼
XN
n¼1

ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þ
Yn
i¼1

u t� τið Þdτi ð13:1Þ

where hn(τ1,� � �,τn) is called the nth order Volterra kernel, which is a real valued

function of τ1, � � �,τn, N is the maximum order of the system nonlinearity, which

may need to be large enough to guarantee required accuracy of approximation. The

output frequency response of the system can be described as

Y jωð Þ ¼
XN
n¼1

1ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Hn jω1, � � �, jωnð Þ
Yn
i¼1

U jωið Þdσωn ð13:2Þ

where σωn denotes a small unite in the n dimensional hyperplane ω1+� � �+ωn¼ω,
and

Hn jω1, � � �, jωnð Þ ¼
ð1
�1

� � �
ð1
�1

hn τ1; � � �; τnð Þ exp �j ω1τ1 þ � � � þωnτnð Þð Þdτ1� � �dτn
ð13:3Þ

is the nth order GFRF of system (13.1). When the system is subjected to a multi-

tone input described by

u tð Þ ¼
XK
i¼1

Fij j cos ωitþ∠Fið Þ ð13:4Þ
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the system output spectrum can be written as

Y jωð Þ ¼
XN
n¼1

1

2n

X
ωk1

þ���þωkn¼ω

Hn jωk1 , � � �, jωknð ÞF ωk1ð Þ� � �F ωknð Þ ð13:5Þ

where,

F ωð Þ ¼ Fij jej∠Fi if ω 2 ωk, k ¼ �1, � � �, � Kf g
0 else

�
ð13:6Þ

The NARX model of nonlinear systems is given by

y tð Þ ¼
XM
m¼1

ym tð Þ ð13:7aÞ

ym tð Þ ¼
Xm
p¼0

XK
k1, kpþq¼1

cp,q k1; � � �; kpþq

� �Yp
i¼1

y t� kið Þ
Ypþq

i¼pþ1

u t� kið Þ ð13:7bÞ

where ym(t) is the mth-order output of the system, and p+q¼m, ki¼1,. . ., K,XK
k1, kpþq¼1

�ð Þ ¼
XK
k1¼1

�ð Þ� � �
XK

kpþq¼1

�ð Þ. A recursive algorithm can be used to compute

as follows:

Ln ωð Þ �Hn jω1, � � �, jωnð Þ
¼
XK

k1,kn¼1

c0,n k1; � � �;knð Þexp �j ω1k1þ���þωnknð Þð Þ

þ
Xn�1

q¼1

Xn�q

p¼1

XK
k1,kpþq¼1

cp,q k1; � � �;kpþq

� �
exp �j ωn�qþ1kpþ1þ���þωnkpþq

� �� �
Hn�q,p jω1, � � �, jωn�q

� �
þ
Xn
p¼2

XK
k1,kp¼1

cp,0 k1; � � �;kp
� �

Hn,p jω1, � � �, jωnð Þ

ð13:8Þ

Hn,p �ð Þ ¼
Xn�pþ1

i¼1

Hi jω1, � � �, jωið ÞHn�i,p�1 jωiþ1, � � �, jωnð Þexp �j ω1 þ � � � þ ωið Þkp
� �

ð13:9Þ
Hn, 1 jω1, � � �, jωnð Þ ¼ Hn jω1, � � �, jωnð Þexp �j ω1 þ � � � þ ωnð Þk1ð Þ ð13:10Þ

where Ln ωð Þ ¼ 1�
XK
k1¼1

c1,0 k1ð Þexp �jωk1ð Þ and ω¼ω1+ � � �+ωn. Moreover,

Hn,p(jω1, � � �, jωn) in (13.9) can also be written as
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Hn,p jω1, � � �, jωnð Þ ¼
Xn�pþ1

r1� � �rp ¼ 1P
ri ¼ n

Yp
i¼1

Hri jωrXþ1
, � � �, jωrXþri

� �

�exp �j ωrXþ1
þ � � � þ jωrXþri

� �
ki

� �
, where X ¼

Xi�1

x¼1

rx ð13:11Þ

Based on (13.8)–(13.11), the GFRFs of the NARXmodel (13.7a,b) of any order can

be obtained. The objective of this chapter is to investigate the bound characteristics

of the GFRFs and the output spectrum of nonlinear systems described by the NARX

model to provide an important insight into the effects of the model parameters on

these system frequency response functions. Note that the bounded-input bounded-

output (BIBO) stability can be guaranteed by the frequency domain property of

bounded-input and bounded-output spectrum. The bound characteristics of the

NARX model are also significant for the system BIBO stability. Sufficient bounded

stability criteria of the NARX model can be derived from the bound characteristics

of system output spectrum.

13.3 Bound Characteristics of NARX Model

in the Frequency Domain

In this section, some notations and useful operators are introduced first. Then bound

characteristics of the GFRFs of the NARX model are derived using these notations

and operators. Finally, the bound characteristics of system output spectrum are

developed.

13.3.1 Notations and Operators

Let �L ¼ inf
ω2Iω

Ln ωð Þj j� 	
, where Iω is the non-negative frequency region of the

outputspectrum of a NARX model. In what follows, let
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C p; qð Þ ¼

XK
k1, kpþq¼1

cp,q k1; � � �; kpþq

� �

 

, 1 � q � n� 1, 1 � p � n� q

XK
k1, kn¼1

c0,n k1; � � �; knð Þj j, q ¼ n, p ¼ 0

XK
k1, kp¼1

cp, 0 k1; � � �; kp
� �

 

, q ¼ 0, 2 � p � n

0, else

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð13:12Þ

Obviously, C(p,q) is a nonnegative function of the coefficients cpq(.) defined on all

0�p,q�n. Moreover, let

Hn,p ¼ sup
ω1���ωn2Rω

Hn,p �ð Þ

 

� �
, H0,0 �ð Þ ¼ 1

Hn, 0 �ð Þ ¼ 0 for n > 0

Hn,p �ð Þ ¼ 0 for n < p
Hn ¼ sup

ω1���ωn2Rω

Hn �ð Þj jð Þ

8>>>><>>>>: ð13:13Þ

where Rω is the input frequency range of a NARX model.

In order to develop the bound characteristics of the GFRFs of the NARX model,

define two operators as follows. Consider two polynomials of degree n and

m respectively,

fa¼a0+a1h+� � �+anhn¼a �ℏTn , and fb¼b0+b1h+� � �+bnhm¼b �ℏTm
where the coefficients a0, a1, . . ., an; b0, b1,. . ., bm are all real numbers, h stands

for a real or complex valued function, a¼[ a0, a1, . . ., an], b¼[ b0, b1,. . ., bm], and
ℏi¼[1, h, . . ., hi].

Define a multiplication operator “�” as

a� b ¼ c;

where c is an n+m+1-dimension vector,

c kð Þ ¼
X

iþ j ¼ k
0 � i � n, 0 � j � n

aibj for 0 � k � mþ n:

Denote a� bð Þ kð Þ ¼
X

iþ j ¼ k
0 � i � n, 0 � j � m

aibj.

13.3 Bound Characteristics of NARX Model in the Frequency Domain 273



From this operator it follows that, for example, fa� fb¼a�b �ℏTnþm. Similarly,

define an addition operator “�” as

a� b ¼ c;

where c is an x-dimension vector,

x¼max{m,n}, c(k)¼a(k)+b(k) for 0�k�x.
If k>n or m, then a(k)¼0 or b(k)¼0, accordingly.

From the operator “�” it follows that, for example, fa+ fb¼a�b �ℏTmaxðn;mÞ.
Moreover, let �

	ð Þ
�ð Þ and �

	ð Þ
�ð Þ denote the multiplication and addition in terms of

the operator “�” and “�” for the series (.) satisfying (*), respectively.

Note that the operators “�” and “�” are different from those defined in Chap. 4.

Here they are used for bound computation with a special physical meaning.

13.3.2 Bound Characteristics of the GFRFs

The bound characteristics of the GFRFs are derived in this section. A fundamental

result is given in Lemma 13.1, which shows that the magnitude bound of the nth
order GFRF can be recursively determined from the magnitude bounds of the lower

order GFRFs. Then based on Lemma 13.1, Theorem 13.1 is established which

describes the magnitude bound of the GFRFs as a polynomial function of the

magnitude bound of the first order GFRF H1(jω).

Lemma 13.1

Hn � 1

L

Xn
m¼2

X
pþ q ¼ m
0 � p, q � m

C p; qð ÞHn�q,p

Hn�q,p � sup
Xn�q�pþ1

r1� � �rp ¼ 1P
ri ¼ n� q

Yp
i¼1

Hri jωrXþ1
, � � �, jωrXþri

� �


 


 ¼ Xn�q�pþ1

r1� � �rp ¼ 1P
ri ¼ n� q

Yp
i¼1

Hri

where, n>1, X ¼
Xi�1

x¼1

rx,
X

pþ q ¼ m
0 � p, q � m

�ð Þ or
Xm

p, q ¼ 0

pþ q ¼ m

�ð Þ denotes the sum of the

corresponding terms with respect to all the combinations of (p,q) satisfying

p+q¼m and 0�p,q�m. □

Note that 0�p,q�m denotes that 0�p�m and 0�q�m, and r1� � �rp¼1 means

that r1¼1, � � �,rp¼1.

274 13 Magnitude Bound Characteristics of Nonlinear Frequency Response Functions

http://dx.doi.org/10.1007/978-3-319-12391-2_4


Proof of Lemma 1 From (13.8), (13.12), (13.13), and noting�L is the lower bound

ofLn(ω), it follows

Hn jω1, � � �, jωnð Þj j � �1
L

XK
k1, kn¼1

c0,n k1; � � �; knð Þj j H0,0 jω1, � � �, jωnð Þj j

þ�1
L

Xn�1

q¼1

Xn�q

p¼1

XK
k1, kn¼1

cp,q k1; � � �; kpþq

� �

 

 Hn�q,p jω1, � � �, jωn�q

� �

 



þ�1
L

Xn
p¼2

XK
k1, kp¼1

cp, 0 k1; � � �; kp
� �

 

 Hn,p jω1, � � �, jωnð Þ

 



� �1
L
C 0; nð ÞH0,0 þ 1

L

Xn�1

q¼1

Xn�q

p¼1

C p; qð ÞHn�q,p þ�1
L

Xn
p¼2

C p; 0ð ÞHn,p

¼ �1
L

Xn
q¼0

Xn�q

p¼0

C p; qð ÞHn�q,p ð13:14Þ

It can be easily seen that
Xn
q¼0

Xn�q

p¼0

C p; qð ÞHn�q,p includes all the permutations of

(p,q)satisfying p+q¼m, 0�p,q�m, and m¼2,. . .,n. Hence, it followsXn
q¼0

Xn�q

p¼0

C p; qð ÞHn�q,p ¼
Xn
m¼2

X
pþ q ¼ m
0 � p, q � m

C p; qð ÞHn�q,p

From (13.11), it can be derived that

Hnp ¼ sup Hnp jω1, � � �, jωnð Þ

 

 ¼ sup
Xn�pþ1

r1� � �rp ¼ 1P
ri ¼ n

Yp
i¼1

Hri jωrXþ1
, � � �, jωrXþri

� �
exp �j ωrXþ1

þ � � � þ ωrXþri

� �
ki

� �


 






















� sup

Xn�pþ1

r1� � �rp ¼ 1P
ri ¼ n

Yp
i¼1

Hri jωrXþ1
, � � �, jωrXþri

� �


 


 ¼ Xn�pþ1

r1� � �rp ¼ 1P
ri ¼ n

Yp
i¼1

Hri

Therefore Hn�q,p � sup
Xn�q�pþ1

r1� � �rp ¼ 1P
ri ¼ n� q

Yp
i¼1

Hri jωrXþ1
,

�

 � � �, jωrXþri
Þj ¼

Xn�q�pþ1

r1� � �rp ¼ 1P
ri ¼ n� q

Yp
i¼1

Hri .

This completes the proof. □
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Although Lemma 13.1 shows essentially the same result as those obtained in

Zhang and Billings (1996) and Billings and Lang (1996), Lemma 13.1 provides a

general expression for the magnitude bound of the nth-order GFRF in terms of the

model parameters and H1� � �Hn�1, and compared with the result in Billings and

Lang (1996), it is much simpler in form and derived in a more systematic approach.

Based on Lemma 13.1 and by using the new operators defined in Sect. 13.3.1, a

more comprehensive result about the bound of the GFRFs of the NARX model can

be obtained.

Theorem 13.1 Consider the nth-order GFRF for the NARX model (13.7a,b).

There exists a series of scalar positive real numbers bn0,bn1, � � �,bnn, such that

Hn jω1, � � �, jωnð Þj j � bn0 þ bn1H1 þ bn2H1
2 þ � � � þ bnnH1

n ð13:15aÞ

where the coefficients bn0,bn1, . . .,bnn, can be recursively determined as follows

(denote bn ¼ bn0 bn1 � � � bnn½ 
):

bnk ¼�1
L
C k,n� kð Þþ�1

L
�n�1

m¼2
�

pþq¼m
0� p,q�m

C p;qð Þ � �X
ri ¼ n�q

1� r1� � �rp � n�mþ1

�
i¼1

p
bri

� �0BB@
1CCA

0BB@
1CCA kð Þ

for 0� k� n ð13:15bÞ

b2 ¼ b20; b21; b22½ 
 ¼ 1

L
C 0; 2ð Þ, 1

L
C 1; 1ð Þ, 1

L
C 2; 0ð Þ


 �
ð13:15cÞ

b1 ¼ b10; b11½ 
 ¼ 0; 1½ 
 ð13:15dÞ

Moreover, �p
i¼1

bri ¼ 0 if p<1, and �n
m¼2

�ð Þ ¼ 0 if n<2.

Proof Use the induction method. For the second and third order GFRFs, it is easy

to obtain from Lemma 13.1 that

H2 jω1, jω2ð Þj j � 1

L

X2
m¼2

X
pþ q ¼ m
0 � p, q � m

C p; qð ÞH2�q,p

¼ 1

L
C 0; 2ð Þ þ C 1; 1ð ÞH1,1 þ C 2; 0ð ÞH2,2

� �
¼ 1

L
C 0; 2ð Þ þ C 1; 1ð ÞH1 þ C 2; 0ð ÞH1

2
� �

¼ b2 � hT
2
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H3 jω1, jω2, jω3ð Þj j � �1
L

X3
m¼2

X
pþ q ¼ m

0 � p, q � m

C p; qð ÞH3�q,p

¼ �1
L

C 0; 3ð Þ þ 1

L
C 1; 1ð ÞC 0; 2ð Þ

 !
þ C 1; 2ð Þ þ 1

L
C 1; 1ð Þ2 þ 2

L
C 2; 0ð ÞC 0; 2ð Þ

 !
H1þ

C 2; 1ð Þ þ 1

L
C 1; 1ð ÞC 2; 0ð Þ þ 2

L
C 2; 0ð ÞC 1; 1ð Þ

 !
H1

2 þ C 3; 0ð Þ þ 2

L
C 2; 0ð Þ2

 !
H1

3

0BBBB@
1CCCCA

¼ b3 � hT
3

Hence, the theorem holds for n¼2 and 3. Consider the nth order GFRF under the

assumption that the theorem holds for all the GFRFs of orders less than n. From
Lemma 13.1,

Hn jω1, � � �, jωnð Þj j � 1

L

Xn
m¼2

X
pþ q ¼ m
0 � p, q � m

C p; qð Þsup
X

1 � r1� � �rp � n� mþ 1P
ri ¼ n� q

Yp
i¼1

Hri :ð Þj j

0BB@
1CCA

ð13:16Þ

Note 1�n�m+1�n�1 and 0�∑ri¼n�q�n, each Hri :ð Þj j is bounded by a

polynomial of the form of (13.15a) with degree ri(�n�1), and
Yp
i¼1

Hri :ð Þj j is

therefore bounded by a polynomial of the form (13.15a) with degree n�q(�n). It
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follows from inequality (13.16) that |Hn(jω1, � � �, jωn)| must be bounded by a

polynomial of the form (13.15a) with degree n.
The explicit expression for the coefficients in (13.15a) is derived as follows. It

follows from (13.16) that

Hn jω1, � � �, jωnð Þj j � 1

L

X
pþ q ¼ n
0 � p, q � n

C p; qð Þ sup
X

1 � r1� � �rp � 1P
ri ¼ n� q

Yp
i¼1

Hri :ð Þj j

0BB@
1CCA

þ1

L

Xn�1

m¼2

X
pþ q ¼ m
0 � p, q � m

C p; qð Þ sup
X

1 � r1� � �rp � n� mþ 1P
ri ¼ n� q

Yp
i¼1

Hri :ð Þj j

0BB@
1CCA

¼1

L
C 0; nð Þ þ C 1, n� 1ð ÞH1 þ � � � þ C n; 0ð ÞH1

n� �

þ1

L
sup
Xn�1

m¼2

X
pþ q ¼ m
0 � p, q � m

C p; qð Þ
X

1 � r1� � �rp � n� mþ 1P
ri ¼ n� q

Yp
i¼1

Hri :ð Þj j

0BB@
1CCA

ð13:17Þ

Because

Hri jωrXþ1
, � � �, jωrXþri

� �


 


 � bri , 0 þ bri , 1H1 þ � � � þ bri , riH1
ri ¼ bri � hT

ri
for 1 � ri � n� mþ 1

where bri ¼
�
bri, 0 bri, 1 � � � bri, ri

�
and hri ¼ 1 H1 � � � H1

ri
� �

, it can be

derived by using the operators “�” and “�” that

X
1 � r1� � �rp � n� mþ 1P

ri ¼ n� q

Yp
i¼1

Hri jωrXþ1
, � � �, jωrXþri

� �


 




¼
X

1 � r1� � �rp � n� mþ 1P
ri ¼ n� q

�
i¼ 1

p
bri � hn�q ¼ �X

ri ¼ n� q
1 � r1� � �rp � n� mþ 1

�
i¼1

p
bri

� �0BB@
1CCA � hn�q

Therefore,
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Xn�1

m¼2

X
pþ q ¼ m
0 � p, q � m

C p; qð Þ
X

1 � r1� � �rp � n� mþ 1P
ri ¼ n� q

Yp
i¼1

Hri jωrXþ1
, � � �, jωrXþri

� �


 



0BB@

1CCA

¼ �
m¼2

n�1 �
pþ q ¼ m
0 � p, q � m

C p; qð Þ � �X
ri ¼ n� q

1 � r1� � �rp � n� mþ 1

�
i¼1

p
bri

� �0BB@
1CCA

0BB@
1CCA � hn

and (13.17) can be written as

Hn jω1, � � �, jωnð Þj j � 1

L
C 0; nð Þ þ C 1, n� 1ð ÞH1 þ � � � þ C n; 0ð ÞH1

n� �

þ 1

L
�
m¼2

n�1 �
pþ q ¼ m

0 � p, q � m

C p; qð Þ � �X
ri ¼ n� q

1 � r1� � �rp � n� mþ 1

�
i¼1

p
bri

� �
0BBBBB@

1CCCCCA

0BBBBB@

1CCCCCA � hn

This proves (13.15b). Equation (13.15c) follows from the first two steps of the

recursive computation. The proof of Theorem 13.1 is thus completed. □

Theorem 13.1 throws that the magnitude of the nth-order GFRF can be bounded

by a polynomial function of the magnitude bound of the first order GFRFH1(jω1) of

degree n, and the coefficients of the polynomial are the functions of the model

parameters. This reveals an explicit relationship between the NARX model param-

eters and the magnitude bound of the nth-order GFRF, and is therefore important

for the system analysis. From Theorem 13.1, the magnitude bounds of any order

GFRFs for the NARX model can readily be computed from the model parameters

and the first order GFRF.

13.3.3 Bound Characteristics of the Output Spectrum

Based on Theorem 13.1, a bound function in polynomial form can be derived for the

system output spectrum in terms of the magnitude bound of H1(jω1), and a

sufficient condition for the convergence of the bound function can be obtained in

terms of the system model parameters which can guarantee the BIBO stability of

the NARX model. The results for the boundedness of the output spectrum of the

NARXmodel (13.7a,b) when subjected to a general input are given in the following

theorem.
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Theorem 13.2 Assume the input of the NARX model (13.7a,b) is a general input

with spectrum U(jω) defined by U jωð Þ ¼ U jωð Þ ω 2 Rω

0 otherwise

�
. Then the output

spectrum of the NARX model is bounded by

Y jωð Þj j � �
n¼1

N 1

2πð Þn�1
� bn � hT

n � Uj j 	 � � � 	 U jωð Þj j ¼ �
n¼1

N
αnbn

� �
� hT

N ð13:18aÞ

and the series on the right side of (13.18a) is convergent if the model parameters

satisfy

lim
N ! 1
k ! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n¼1

N
αnbn

� �
kð Þk

s
<

1

H1

ð13:18bÞ

In (13.18a,b), hN¼ 1 H1 ��� H1
N

h i
, bn¼ bn0 bn1 ��� bnn½ 
,

αn¼ 2πð Þ1�n Uj j	���	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
n

, and Uj j	���	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
n

¼ 1ffiffi
n

p
ð

ω1þ���þωn¼ω

Yn
i¼1

U jωið Þj jdσωn.

Proof It can be derived from (13.2) that

Y jωð Þj j �
XN
n¼1

Hn jω	
1, � � �, jω	

n

� �

 

ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Yn
i¼1

U jωið Þdσω
















�
XN
n¼1

Hn jω	
1, � � �, jω	

n

� �

 

ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Yn
i¼1

U jωið Þj jdσωn

¼
XN
n¼1

1

2πð Þn�1
Hn jω	

1, � � �, jω	
n

� �

 

 Uj j 	 � � � 	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

ð13:19Þ

where (jω	
1, � � �, jω	

n) is a point on the hyper-plane ω1+� � �+ωn¼ω satisfying the

mean value principle. According to Theorem 13.1,

Hn :ð Þj j � bn � hT
n ¼ bn0 þ bn1H1 þ bn2H1

2 þ � � � þ bnnH1
n

Thus using the operator “�”, inequality (13.19) yields

Y jωð Þj j � �
n¼1

N 1

2πð Þn�1
� bn � hT

n � Uj j 	 � � � 	 U jωð Þj j ¼ �
n¼1

N
αnbn

� �
� hT

N

which can be rewritten as
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Y jωð Þj j � Y¼ �
n¼1

N
αnbn

� �
0ð Þ þ �

n¼1

N
αnbn

� �
1ð ÞH1þ �

n¼1

N
αnbn

� �
2ð ÞH2

1

þ� � � þ �
n¼1

N
αnbn

� �
kð ÞHk

1 þ � � � ð13:20Þ

The bound of the output spectrum is in general an infinite series as given by

(13.20). The convergence of the series guarantees the stability of the NARX

model. According to Cauchy’s criterion (Weisstein 1999) for convergence, a

sufficient condition for the convergence of the series in (13.20) is

lim
N ! 1
k ! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N
n¼1

αnbn

� �
kð ÞHk

1

k

s
¼ H1 lim

k!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1
n¼1

αnbn

� �
kð Þk

s
< 1. This completes the

proof. □

Note that in Theorem 13.2, bn ¼ bn0 bn1 � � � bnn½ 
 can be determined accord-

ing to Theorem 13.1, and Uj j 	 � � � 	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

¼ 1ffiffi
n

p
ð

ω1þ���þωn¼ω

Yn
i¼1

U jωið Þj jdσωn can be

calculated by an algorithm given in Billings and Lang (1996). Similarly, the following

result can be obtained for the output spectrum of the NARX model (13.7a,b) when the

input is a multi-tone signal.

Theorem 13.3 Assume the input of the NARX model (13.7a,b) is the multi-tone

signal (13.4). Then the output spectrum of the NARX model is bounded by

Y jωð Þj j � �
n¼1

N
2�n � bn � hT

n �
X

ωk1
þ���þωkn¼ω

F ωk1ð Þ� � �F ωknð Þj j
0@ 1A

¼ �
n¼1

N
βnbn

� �
� hT

N ð13:21aÞ

and the series on the right side of (13.21a) is convergent if the system model

parameters satisfy

lim
N ! 1
k ! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n¼1

N
βnbn

� �
kð Þk

s
<

1

H1

ð13:21bÞ

In (13.21a,b) hN ¼ 1 H1 � � � H1
N

h i
, bn ¼ bn0 bn1 � � � bnn½ 
 which can

bedetermined according to Theorem 13.1, βn ¼ 2�n
X

ωk1
þ���þωkn¼ω

F ωk1ð Þ� � �F ωknð Þj j.

Proof From (13.5), it follows that
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Y jωð Þj j �
XN
n¼1

1

2n

X
ωk1

þ���þωkn¼ω

Hn jωk1 , � � �, jωknð Þj j F ωk1ð Þ� � �F ωknð Þj j

�
XN
n¼1

Hn � 2�n
X

ωk1
þ���þωkn¼ω

F ωk1ð Þ� � �F ωknð Þj j
0@ 1A

According to Theorem 13.1, and following a similar process as the proof of

Theorem 13.2, the conclusion of the theorem can be reached. □

In order to illustrate the results above, consider a specific but frequently encoun-

tered case of the NARX model (13.7a,b). When there are only pure output non-

linearities in (13.7a,b), the NARX model is

y tð Þ ¼
XM

m¼p¼1

XK
k1, kp¼1

cp, 0 k1; . . . ; kp
� �Yp

i¼1

y t� kið Þ þ δ m� 1ð Þ
XK
k1¼1

c0,1 k1ð Þu t� k1ð Þ
0@ 1A

ð13:22Þ

where δ mð Þ ¼ 1, m ¼ 0

0, else

�
. For many engineering systems, this model can be

regarded as a general linear/nonlinear state feedback system, and consequently

hassignificance in the analysis and synthesis of feedback control systems in

practical applications (see Chap. 10). When the input is only a sinusoidal signal

u(t)¼Fdsin(ω0t) (Fd>0), then F ωklð Þ ¼ �jklFd for kl ¼ �1, ωkl ¼ klω0, and

l¼1, � � �,n in (13.5). In this case, the following result can be achieved.

Corollary 13.1 Assume the nonlinear system described by NARX model (13.22)

is subjected to the input signal u(t)¼Fdsin(ω0t) (Fd>0). The nth-order GFRF for

this nonlinear system is bounded by

Hn jω1, � � �, jωnð Þj j � bnnH1
n ð13:23aÞ

and the output spectrum of the NARX model is bounded by

Y jωð Þj j �
XN�1=

2b c

n¼0

Cn
2nþ1

Fd

2

� �2nþ1

b2nþ1,2nþ1H1
2nþ1 ð13:23bÞ

which is convergent if the system model parameters satisfy
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lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cn
2nþ1b2nþ1,2nþ1

2nþ1

q
<

2

FdH1

ð13:23cÞ

where bnn ¼ 1

�L
C n; 0ð Þ þ 1

�L
Xn�1

m¼2

C m; 0ð Þ
X

P
ri ¼ n

1 � r1� � �rp � n� mþ 1

Ym
i¼1

briri

0BB@
1CCA, b�c is to take

the integer part of (.).

Proof According to (13.15b) in Theorem 13.1,

bnk ¼ 1

L
�
m¼2

n�1
C m; 0ð Þ �X

ri ¼ n
1 � r1� � �rp � n� mþ 1

�
i¼1

m
bri

� �0BB@
1CCA kð Þ f or 0 � k < n ð13:24aÞ

bnn ¼ 1

L
C n; 0ð Þþ1

L
�
m¼2

n�1
C m; 0ð Þ �X

ri ¼ n
1 � r1� � �rp � n� mþ 1

�
i¼1

m
bri

� �0BB@
1CCA nð Þ ð13:24bÞ

Note b1¼[0,1] and b2 ¼ 0, 0, 1
L2 ωð ÞC 2; 0ð Þ

h i
. It is easy to show that bnk¼0 for

0�k<n in (13.24a). Hence (13.24b) can be written as

bnn ¼ 1

L
C n; 0ð Þ þ 1

L

Xn�1

m¼2

C m; 0ð Þ
X

P
ri ¼ n

1 � r1� � �rp � n� mþ 1

Ym
i¼1

briri

0BB@
1CCA ð13:24cÞ

Hence, from Theorem 13.1 Hn jω1, � � �, jωnð Þj j � bnnH1
n
. From (13.21a), it

followsthat

Y jωð Þj j � �
n¼1

N
βnbn

� �
� hT

N ¼
XN
n¼1

βnbnnH1
n ð13:25Þ

Note that, when the input is a single tone function,
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βn ¼ 2�n
X

ωk1
þ���þωkn¼ω

F ωk1ð Þ� � �F ωknð Þj j

¼
Fd

2

� �n X
ωk1

þ���þωkn¼ω

1,

0

8<: ω 2 ωk1 þ � � � þ ωkn
ωkl ¼ klω0, kl ¼ �1,

1 � l � n





� �
else

ð13:26aÞ

Consider the frequency of interest is ω¼ω0. It is easy to verify that

X
ωk1

þ���þωkn¼ω0

1 ¼ C
n�1=

2

n n ¼ 2k þ 1, k ¼ 0, 1, 2 . . .
0 else

�
ð13:26bÞ

where,Cm
n ¼ n� n�1ð Þ����� n�mþ1ð Þ

m� m�1ð Þ�����2 ¼ n!
m! n�mð Þ!. Note that βn is zero if n is an even number,

it is derived from (13.24c) and (13.25) that

Y jωð Þj j �
XN�1=

2b c

n¼0

Cn
2nþ1

Fd

2

� �2nþ1

b2nþ1,2nþ1H1
2nþ1

From Cauchy’s criterion, if (13.23c) holds, the bound of |Y(jω)| is convergent. This
completes the proof. □

Corollary 13.1 gives a very clear and simple expression for the boundedness of

the frequency response of the NARX model (13.22) in terms of the model param-

eters and the bound of the first order GFRF. The effect of the system model

parameters on the boundedness of the system output spectrum and consequently

the BIBO stability of the NARX model can be analysed through checking the

inequality (13.23c). This simple analytical bound expression for the output fre-

quency response function also provides a very useful and simple method to evaluate

the truncation error associated with the Volterra series expression of nonlinear

systems and the highest order N needed in the Volterra series’ approximation.

Although the check of the stability for a nonlinear system theoretically involves
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the computation of a limitation as given in (13.18b) or (13.21b) or (13.23c), the

result obtained for a sufficiently large N and K or n should be sufficient to provide a
significant indication of the system stability.

13.4 A Numerical Example

Consider a nonlinear system

y tð Þ ¼ 0:15y t� 2ð Þ þ 0:1u t� 1ð Þ � 0:05y t� 1ð Þy t� 2ð Þ
� 0:02y t� 1ð Þ2 � 0:01y t� 1ð Þ3 ð13:27Þ

which can be written into the form (13.22) with c1,0(2)¼0.15,c0,1(1)¼0.1,

c2,0(1,2)¼�0.05,c2,0(1,1)¼�0.02,c3,0(1,1,1)¼�0.01 else cp,q(�)¼0, and

K¼2, M¼3. There are only pure output nonlinear terms in this model.

Compute the magnitude bound of the GFRFs up to fifth order for system (13.27)

according to Corollary 13.1. From (13.8), it can be obtained

H1 jωð Þj j ¼ 0:1exp�jω

1� 0:15exp�j2ω





 



 ¼ 0:1

L

whereL ¼ 1� 0:15exp�j2ω


 

 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:15 cos 2ωð Þ2 þ 0:15 sin 2ωð Þ2
q

. It is easy to

have�L ¼ 0:7225 and thus H1 ¼ 0:1384. According to Corollary 13.1, only bn,n is
needed for evaluating the magnitude bounds of the GFRFs:

For n¼1 and 2, b1,1¼1, b2,2 ¼ 1

�L
C 2; 0ð Þ ¼ 0:07=�L ¼ 0:09689, and thus

H2 jω1, jω2ð Þj j � b2 � hT
2 ¼ 0:07

L
H1

2 ¼ 0:001856

For n¼3,
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b3,3 ¼ 1

L
C 3; 0ð Þ þ 1

L

X2
m¼2

C m; 0ð Þ
XP

ri ¼ 3

1 � r1� � �rp � 2� mþ 2

Ym
i¼1

briri

0BBBB@
1CCCCA

¼ 0:01

L
þ 1

L
C 2; 0ð Þ

XX
ri ¼ 3

1 � r1� � �rp � 2� 2þ 2

Y2
i¼1

briri ¼
0:01

L
þ 0:07

L
2b11b22ð Þ ¼ 0:03261

thus H3 jω1, � � �, jω3ð Þj j � b3 � hT
3 ¼ 0:03261H1

3 ¼ 0:0000864609

For n¼4,

b44 ¼ 1

L
C 4; 0ð Þ þ 1

L

X3
m¼2

C m; 0ð Þ
XP

ri ¼ 4

1 � r1� � �rp � 4� mþ 1

Ym
i¼1

briri

0BBBB@
1CCCCA

¼ 1

L
C 2; 0ð Þ

XP
ri ¼ 4

1 � r1� � �rp � 4� 2þ 1

Y2
i¼1

briri þ C 3; 0ð Þ
XP

ri ¼ 4

1 � r1� � �rp � 4� 3þ 1

Y3
i¼1

briri

0BBBB@
1CCCCA

¼ 1

L
0:07 2b33 þ b222

� �þ 0:01 3b22ð Þ� � ¼ 0:01125

thus

H4 jω1, � � �, jω4ð Þj j � b4 � hT
4 ¼ 0:01125H1

4 ¼ 0:0000041289

For n¼5,

286 13 Magnitude Bound Characteristics of Nonlinear Frequency Response Functions



b55 ¼ 1

L
C 5; 0ð Þ þ 1

L

X4
m¼2

C m; 0ð Þ
XP

ri ¼ 5

1 � r1� � �rp � 5� mþ 1

Ym
i¼1

briri

0BBBB@
1CCCCA

¼ 1

L
C 2; 0ð Þ

XP
ri ¼ 5

1 � r1� � �rp � 5� 2þ 1

Y2
i¼1

briri þ C 3; 0ð Þ
XP

ri ¼ 5

1 � r1� � �rp � 5� 3þ 1

Y3
i¼1

briri þ C 4; 0ð Þ
XP

ri ¼ 5

1 � r1� � �rp � 5� 4þ 1

Y4
i¼1

briri

0BBBB@
1CCCCA

¼ 1

L
0:07 2b22b33 þ 2b44ð Þ þ 0:01 � 3 b33 þ b222

� �� � ¼ 0:004537

thus

H5 jω1, � � �, jω5ð Þj j � b5 � hT
5 ¼ 0:004537H1

5 � 0:00000023036

Carrying on with the above recursive calculation process, the magnitude bound of

the GFRFs of any order can be obtained according to Corollary 13.1. It should be

noted from the above computation that, with the order n going larger, bnn is

becoming smaller, and so is the magnitude bound of the nth order GFRF. These

information can be used to determine the truncation error of the Volterra series

expression of system (13.27) and to determine the largest order N in the Volterra

series approximation (Billings and Lang 1997).

To demonstrate the bound characteristics of the system output spectrum of

the NARX model, consider system (13.27) is subjected to input u(t)¼10sin

(ω0t) (Fd>0). Then, according to Corollary 13.1,

Y jω0ð Þj j �
XN�1=

2b c

n¼0

Cn
2nþ1

Fd

2

� �2nþ1

b2nþ1,2nþ1H1
2nþ1

¼ Fd

2
H1 þ 3F3

d

8
0:03262H1

3 þ 5F5
d

16
0:004537H1

5 þ 35F7
d

128
0:00086719H1

5 þ � � �

þ Cn
2nþ1

Fd

2

� �2nþ1

b2nþ1,2nþ1H1
2nþ1

To check the convergence of this series in the bound expression, the condition

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cn
2nþ1b2nþ1,2nþ1

2nþ1

q
<

2

FdH1

should be analysed. Note that if

13.4 A Numerical Example 287



lim
n!1 b2nþ1,2nþ1 <

2

FdH1

� �2nþ1
1

Cn
2nþ1

¼ 1:44512nþ1

Cn
2nþ1

then the convergent condition must hold. Let b(n)¼b2n+1,2n+1 and

bb nð Þ ¼ 1:44512nþ1

Cn
2nþ1

, which can be easily computed for any n by a computer program.

Obviously, if b(n)<bb(n), then the bound series is convergent. The result is

shown in Fig. 13.1, which indicates the convergence of the bound series where

b(n)¼b2n+1,2n+1 is computed up to the 41st order. Figure 13.1 indicates a very

quick convergent rate of the bound series in this specific case.

Moreover, it shall be noted that through symbolic manipulations, an analytical

expression for the bound expressions of both the GFRFs and the output spectrum of

system (13.27) can be obtained in terms of model parameters cp,q(�). Thus the

magnitude of the GFRFs and output spectrum can be optimized and analysed

with respect to considered model parameters. This issue will be discussed in later

publications.
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Fig. 13.1 Boundedness of the output spectrum (Jing et al. 2007a)
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13.5 Magnitude Bound Characteristics of the SIDO NARX

System

To apply the parametric boundedness approach above, this section provides an

evaluation of the magnitude bound of Y(jω) for the SIDO NARX system in (2.28),

which is significant in many cases where only the magnitude of Y(jω) is needed to

obtain some information of a system without computing the complicated analytical

functions in (2.30–2.33) in multi-dimensional complex space.

It can be derived from (6.54) that

Y jωð Þj j ¼
XN
n¼1

1ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Hy
n jω1, � � �, jωnð Þ

Yn
i¼1

U jωið Þdσω
















¼
XN
n¼1

Hy
n jω	

1, � � �, jω	
n

� �ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Yn
i¼1

U jωið Þdσω
















�
XN
n¼1

Hy
n jω	

1, � � �, jω	
n

� �

 

ffiffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Yn
i¼1

U jωið Þj jdσω

¼
XN
n¼1

1

2πð Þn�1
Hy

n jω	
1, � � �, jω	

n

� �

 

 Uj j 	 � � � 	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

ð13:28aÞ

Denote Yn jωð Þ ¼ 1ffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

Hy
n jω1, � � �, jωnð Þ

Yn
i¼1

U jωið Þdσω representing

the nth-order output frequency response. Then

Yn jωð Þj j � 1

2πð Þn�1
Hy

n jω	
1, � � �, jω	

n

� �

 

 Uj j 	 � � � 	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

ð13:28bÞ

Note that Uj j 	 � � � 	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

can be computed by an algorithm in Billings and Lang

(1996). Thus from (13.28a,b), it can be seen that |Hy
n(jω1, � � �,jωn)| should be

evaluated first in order to obtain the magnitude bound for Y(jω). For this purpose,
the following notations are introduced.
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eC p; qð Þ ¼

XK
k1, kpþq¼0

ecp,q k1; � � �; kpþq

� �

 

, 1 � q � n� 1, 1 � p � n� q

XK
k1, kn¼0

ec0,n k1; � � �; knð Þj j, q ¼ n, p ¼ 0

XK
k1, kp¼0

ecp, 0 k1; � � �; kp
� �

 

, q ¼ 0, 1 � p � n

0, else

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð13:29Þ

C p; qð Þ has the similar definition as (13.29), except C 1; 0ð Þ ¼ 0. Let

L ¼ inf
ω¼ω1þ���þωn

Ln ωð Þj jf g ð13:30Þ

Moreover, let

Hn,p ¼ sup
ω1���ωn2Rω

Hn,p �ð Þ

 

� �
, H0,0 �ð Þ ¼ 1

Hn, 0 �ð Þ ¼ 0 for n > 0

Hn,p �ð Þ ¼ 0 for n < p
H

x
n ¼ sup

ω1���ωn2Rω

Hx
n �ð Þ

 

� �

8>>>><>>>>: ð13:31Þ

where Rω is the input frequency range. Furthermore, two operations “•” and “∘” are
needed in the evaluation of magnitude bound, which are “�” and “�” defined

above respectively.

Proposition 13.1 Considering system (2.28), for ω1+ � � �+ωi 6¼0 (i¼1,2, . . .,n),
the magnitude of Hy

n(jω1,� � �, jωn) for system (2.28) is bounded by

Hy
n jω1, � � �, jωnð Þ

 

� eC 0;nð Þþ ∘

q¼0

n�1
∘
p¼0

n�q eC p;qð Þ � ∘X
ri ¼ n� q

1� r1� � �rp � n� p� qþ 1

�
i¼1

p
bri

� �0B@
1CA � hn ð13:32Þ

where

hn ¼ 1 H
x
1

� �1 � � � H
x
1

� �nh i
and bri ¼

�
bri, 0 bri, 1 � � � bri, ri

� ð13:33Þ

bnk for 0�k�n can be recursively computed as follows,
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bnk ¼ 1

L
C k,n� kð Þþ 1

L
∘

m¼2

n
∘

pþ q¼m
0� p,q�m

C p;qð Þ � ∘X
ri ¼ n� q

1� r1� � �rp � n�mþ 1

�
i¼1

p
bri

� �0B@
1CA

0B@
1CA kð Þ ð13:34Þ

b2 ¼ b20; b21; b22½ 
 ¼ 1

L
C 0; 2ð Þ, 1

L
C 1; 1ð Þ, 1

L
C 2; 0ð Þ


 �
ð13:35Þ

b1 ¼ b10; b11½ 
 ¼ 0; 1½ 
 ð13:36Þ

Moreover, �p
i¼1

bri ¼ 0 if p<1, and ∘
n

m¼2
�ð Þ ¼ 0 if n<2.

Proof See the proof in Sect. 13.7. □

The bound in (13.32) provides another explicit analytical expression for the

relationship between system GFRFs and model parameters. The magnitude bound

of the nth-order GFRF can directly be described by an n-degree polynomial

function of H1. Different order of the GFRFs has a different degree polynomial

of H1, and has no crossing effect with each other. Using (13.28a,b) and (13.32), it

can be derived that

Y jωð Þj j �
XN
n¼1

1

2πð Þn�1
Uj j 	 � � � 	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

n

� eC 0;nð Þ∘ ∘
q¼0

n�1
∘
p¼0

n�q eC p;qð Þ�
�8<:

� ∘X
ri ¼ n� q

1� r1� � �rp � n� p� qþ 1

�
�
i¼1

p
bri

��
� hn

9>=>;
¼ ∘

n¼1

N 1

2πð Þn�1
Uj j 	 � � � 	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

n

� eC 0;nð Þ∘ ∘
q¼0

n�1
∘
p¼0

n�q eC p;qð Þ�
�8<:

� ∘X
ri ¼ n� q

1� r1� � �rp � n� p� qþ 1

�
i¼1

p
bri

� �
1CCCCCA

9>>>>>>=>>>>>>;
� hN ¼ ∘

n¼1

N
αn �Bnð Þ

� �
� hN

ð13:37Þ
Yn jωð Þj j � αn � Bn � hn ð13:38Þ

where
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αn ¼ 1

2πð Þn�1
Uj j 	 � � � 	 U jωð Þj j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n

ð13:39Þ

Bn ¼ eC 0; nð Þ∘ ∘
q¼ 0

n�1
∘
p¼0

n�q eC p; qð Þ � ∘X
ri ¼ n� q

1 � r1� � �rp � n� p� qþ 1

�
i¼1

p
bri

� �
ð13:40Þ

Similarly, when the input of (2.28) is a multi-tone signal (3.2), then the output

spectrum of system (2.28) is bounded by

Y jωð Þj j � ∘
n¼1

N
βn � Bnð Þ

� �
� hN ð13:41Þ

Yn jωð Þj j � βn � Bn � hn ð13:42Þ

βn ¼
1

2n

X
ωk1

þ���þωkn¼ω

F ωk1ð Þ� � �F ωknð Þ ð13:43Þ

The magnitude of a frequency response function for a system usually reveals some

important information about the system, and consequently takes a great role in the

convergence or stability analysis of the system and the truncation error of the

corresponding series. Therefore, the magnitude bound results developed in this

section can be used to measure the significant orders of nonlinearities or to find the

significant nonlinear terms, indicating the stability of a system and providing a basis

for the analysis and optimization of system output frequency response.

Example 13.1 Consider the following system, i.e.,

mx t� 2ð Þ þ a1x t� 1ð Þ þ a3x
3 t� 1ð Þ þ kx tð Þ ¼ u tð Þ

y tð Þ ¼ a1x t� 1ð Þ þ a3x
3 t� 1ð Þ þ kx tð Þ ð13:44Þ

and let u¼Asin(Ωt). Assume that m, a1, a3, and k are all positive. There are only

two nonlinear parameters, i.e., c3,0 111ð Þ ¼ �a3=k and ec3,0 111ð Þ ¼ a3. Before the
magnitude bound of the output spectrum is evaluated, the parametric characteristics

of the GFRFs for y(t) are checked first. In this case, the parametric characteristics

for the GFRFs can be computed according to (6.72). It is noted from (6.78–6.82)

that

CE Hy
2i �ð Þ

� � ¼ 0 for i � 1 ð13:45Þ

thus

Hy
2i �ð Þ ¼ 0 for i � 1 ð13:46Þ

according to Proposition 6.5. Hence, only |Hy
2i�1(�)| for i�1 are needed to be

evaluated for the magnitude of Y(jω). Since the input is a sinusoidal signal, the
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magnitude of Y(jω) can be evaluated by (13.41)–(13.43), which can be written in

this case as

Y jωð Þj j � ∘
i¼1

Nþ1=
2

� �
β2i�1 � B2i�1ð Þ

 !
� h Nþ1=

2

� � ð13:47Þ

and

Y2i�1 jωð Þj j � β2i�1 � B2i�1 � h2i�1 ð13:48Þ

Note that u¼Asin(Ωt) is a single tone signal, then

βn ¼ 2�n
X

ωk1
þ���þωkn¼ω

F ωk1ð Þ� � �F ωknð Þj j

¼
A
2

� �n X
ωk1

þ���þωkn¼ω

1,

0

8<: ω 2 ωk1 þ � � � þ ωkn
ωkl ¼ klΩ, kl ¼ �1,

1 � l � n





� �
else

ð13:49Þ

From (13.34)–(13.36) it can be obtained that

b2i ¼ 0 for i ¼ 1, 2, 3, . . . ð13:50Þ

and for n¼2i�1, i¼1,2,3,. . .

bnk ¼ 0 for 0 � k < n ð13:51Þ

b11 ¼ 1, b33 ¼ 1

L
C 3; 0ð Þ,

bnn ¼ 1

L
C 3; 0ð Þ

X
X

ri ¼ n
1 � r1� � �r3 � n� 3þ 1

Y3
i¼1

briri for n > 3 ð13:52Þ

Therefore,

B1 ¼ ∘
q¼0

0
∘
p¼0

1�q
∘X

ri ¼ 1

1 � r1� � �rp � 2� p� q

eC p; qð Þ � �
i¼1

p
bri

� �� �
¼ eC 1; 0ð Þ � b1 ¼

�

ec1,0 1ð Þ


þ

ec1,0 0ð Þ

 � b1 ¼ 0, a1 þ k½ 
 ð13:53Þ

and for n¼2i�1, i¼2,3. . .

13.5 Magnitude Bound Characteristics of the SIDO NARX System 293



Bn ¼ ∘
n�1

q¼0
∘
p¼0

n�q
∘X

ri ¼ n� q
1 � r1� � �rp � n� p� qþ 1

eC p; qð Þ � �
i¼1

p
bri

� �� �
¼ eC 1; 0ð Þ � bn
� �

∘ eC 3; 0ð Þ�
�

∘X
ri ¼ n

1 � r1� � �r3 � n� 2

�
i¼1

3
bri

�� �
¼ a1 þ kð Þ � bnð Þ∘ a3 � ∘X

ri ¼ n
1 � r1� � �r3 � n � 2

�
i¼1

3
bri

� �0B@
1CA ð13:54Þ

According to (13.54) and (13.51), (13.52), Bn can be computed up to any high

orders. For example,

B3 ¼ a1 þ kð Þ � b3ð Þ∘ a3 � ∘X
ri ¼ 3

1 � r1� � �r3 � 3� 2

�3
i¼1

briÞ
� �

¼ a1 þ kð Þ � b3ð Þ∘ a3 � b1 � b1 � b1ð Þ

0BBB@

¼ a1 þ kð Þ � 0; 0;
a3
kL


 �� �
∘ a3 � 0; 0; 1½ 
ð Þ ¼ 0, 0,

a3 a1 þ kð Þ
kL

þ a3


 �
ð13:55Þ

Let Bn¼[Bn0,Bn1,. . .,Bnn]. Hence, using (13.52) and (13.54),

Bnk ¼ 0 for 0 � k < n ð13:56Þ

Bnn ¼ a1 þ kð Þ � 1
L
C 3; 0ð Þ

XX
ri ¼ n

1 � r1� � �r3 � n� 3þ 1

Y3
i¼1

briri

0BBBBB@

1CCCCCA∘ a3 � ∘X
ri ¼ n

1 � r1� � �r3 � n� 2

�
i¼1

3
briri

� �0BBB@
1CCCA

for n ¼ 2i� 1, i ¼ 1, 2, 3 . . . ð13:57Þ

Since only the last element in Bn is nonzero, (13.47)–(13.48) can be rewritten as

Y jωð Þj j � ∘
Nþ1=

2

� �
i¼1

β2i�1 � B2i�1,2i�1 � H
x
1

� �2i�1
� �

ð13:58Þ

and

Y2i�1 jωð Þj j � β2i�1 � B2i�1,2i�1 � H
x
1

� �2i�1 ð13:59Þ

Note from (13.30)–(13.31) that
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L ¼ inf 1þ m

k
exp
�� j2 ω1 þ � � � þ ωnð Þ þ a1

k
exp
�� j ω1 þ � � � þ ωnð Þ




 


 ð13:60Þ

H
x
1 ¼ sup

1

k þ mexp �j2ω1ð Þ þ a1exp �jω1ð Þ




 



 ð13:61Þ

Based on (13.58)–(13.61), the magnitude bound of the output spectrum of system

(13.44) can be evaluated readily. For instance,

Y1 jΩð Þj j � β1 � B1,1 � Hx
1 ¼ A a1 þ kð Þ

2
H

x
1

Y3 jΩð Þj j � β3 � B3,3 � H
x
1

� �3 ¼ 3A3a3 a1 þ k þ kL
� �
8kL

H
x
1

� �3
This process can be conducted for up to any higher orders, which can be used to

evaluate some properties of the nonlinear system, such as the truncation error of

Volterra series and system stability etc (Sect. 13.3). □

13.6 Conclusions

The bound characteristics of the frequency response functions of the NARX model

including the GFRFs and the output spectrum are developed in this chapter. The

magnitude bounds of the GFRFs and system output spectrum can all be expressed

as a polynomial function of the magnitude bound of the first order frequency

response function, and the coefficients of the polynomial are the functions of the

system model parameters. These bound characteristics reveal an important rela-

tionship between model parameters and the boundedness of system frequency

response functions, and provide a significant insight into magnitude based analysis

of nonlinear systems in the frequency domain. Sufficient conditions for the BIBO

stability of the NARX model can also be derived from these results. Note that the

boundedness results derived in this chapter are based on the use of the triangular

inequality. This may introduce conservatism to a certain extent. Further studies will

focus on practical applications of the established theoretical results, and develop-

ment of methods to reduce possible conservatism associated with these bounded-

ness results. Some results can be referred to the next chapter and Jing et al. (2008b,

2009b).
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13.7 Proof of Proposition 13.1

It is derived from (2.32) that

Hy
n jω1,���,jωnð Þ

 

� XK

k1,kn¼1

ec0,n k1;���;knð Þj j H0,0 jω1,���,jωnð Þj j

þ
Xn�1

q¼1

Xn�q

p¼1

XK
k1,kn¼1

ecp,q k1;���;kpþq

� �

 

 Hn�q,p jω1,���,jωn�q

� �

 

þXn
p¼1

XK
k1,kp¼1

ecp,0 k1;���;kp
� �

 

 Hn,p jω1,���,jωnð Þ

 



� eC 0;nð ÞH0,0þ
Xn�1

q¼1

Xn�q

p¼1

eC p;qð ÞHn�q,pþ
Xn
p¼1

eC p;0ð ÞHn,p¼
Xn
q¼0

Xn�q

p¼0

eC p;qð ÞHn�q,p

ðD1Þ

From Lemma 1 and Theorem 1 in Jing et al. (2007a),

Hn�q,p �
Xn�q�pþ1

r1� � �rp ¼ 1P
ri ¼ n� q

Yp
i¼1

H
x
ri

for p 6¼ 0, q 6¼ n ðD2Þ

and

H
x
ri
¼ bri, 0 þ bri, 1H

x
1 þ � � � þ bri, ri H

x
1

� �ri ¼ bri � hT
ri

ðD3Þ

where bri ¼
�
bri, 0 bri, 1 � � � bri, ri

�
which can be determined by (13.33)–

(13.36), and hri ¼ 1 H
x
1 � � � H

x
1

� �rih i
. Then it can be derived from (D2),

(D3) that

Hn�q,p�
Xn�p�qþ1

r1�� �rp¼1P
ri¼n�q

�
i¼1

p
bri

� �
�hn�q¼ ∘X

ri¼n�q
1� r1���rp�n�p�qþ1

�
i¼1

p
bri

� �0BBBB@
1CCCCA �hn�q ðD4Þ

Substituting (D4) into (D1) yields

Hy
n jω1,���,jωnð Þ

 

� eC 0;nð Þþ

Xn�1

q¼0

Xn�q

p¼0

eC p;qð Þ ∘X
ri¼n�q

1� r1���rp�n�p�qþ1

�
i¼1

p
bri

� �0BBBB@
1CCCCA �hn�q

¼ eC 0;nð Þþ ∘
q¼0

n�1
∘
p¼0

n�q eC p;qð Þ � ∘X
ri¼n�q

1� r1���rp�n�p�qþ1

�
i¼1

p
bri

� �0BBBB@
1CCCCA �hn ðD5Þ

This completes the proof.
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Chapter 14

Parametric Convergence Bounds of Volterra-

Type Nonlinear Systems

14.1 Introduction

Volterra series theory has been extensively used in many different areas, for

example, behavior modeling of radio frequency amplifier, telecommunication

channel modeling and channel equalization, nonlinear adaptive filter design, system

identification, acoustic echo cancellation, active noise control, vibration control,

and even applications in biomedical engineering (Crespo-Cadenas et al. 2010;

Hermann 1990; Krall et al. 2008; Batista et al. 2010; Kuech and Kellermann

2005; Li and Jean 2001; Mileounis and Kalouptsidis 2009; Jing et al. 2012) etc.

To conduct nonlinear analysis and design with Volterra series theory for a given

nonlinear system described by a NARXmodel, a fundamental issue is to ensure that

the excitation magnitude and/or model parameters should be in appropriate ranges

such that the NARX system has a convergent Volterra series expansion. Several

attempts in the literature have been done to derive such a convergence criterion for

guiding practical applications. In Boyd and Chua (1985) and Sandberg (1983),

convergence criteria for fading memory systems or nonlinear operators are theo-

retically given but may be too general to implement in practice. Similarly in Bullo

(2002), a convergence criterion for analytic systems in Lp‐spaces is established. For
a specific nonlinear system, such as Duffing oscillators, convergence criteria in the

frequency domain are discussed in Tomlinson et al. (1996), Peng and Lang (2007)

and Li and Billings (2011). But all those results are either very conservative or

obviously overestimated. Recently, computation of the convergence bound for a

class of input-analytic nonlinear systems is presented in Helie and Laroche (2011).

However, the result is also conservative, and the systems considered are only a

special case of the NARX system.

In this chapter, based on the bound characteristics of frequency response func-

tions, evaluation of the convergence bound in the frequency domain for Volterra

series expansion of nonlinear systems described by NARX models is studied. This
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provides new convergence criteria under which the nonlinear system of interest has

a convergent Volterra series expansion, and the new criteria are expressed explicitly

in terms of the input magnitude, model parameters, and frequency variable. The

new convergence criteria are firstly developed for harmonic inputs, which are

frequency-dependent, and then extended to multi-tone and general input cases,

which are frequency-independent. Based on the theoretical analysis, a general

procedure for calculating the convergence bound is provided. The results provide

a fundamental basis for nonlinear signal processing using the Volterra series theory.

More discussions can also be referred to Xiao et al. (2013a, b).

14.2 The NARX Model and Its Volterra Series Expansion

Problem

Consider the NARX model in (2.10), and suppose that the NARX system is of zero

initial conditions. The input-output relationship of the NARX model can be

approximated by the Volterra series with a maximum truncation order N as in

(2.1). The multi-variate Fourier transform of the nth order Volterra kernel is defined
as the nth order GFRF. The GFRFs for the NARX model can be computed with a

recursive algorithm as given in Chap. 2. With the GFRFs, nonlinear output spec-

trum can therefore be evaluated (See Chaps. 2 and 3). This represents a natural and

formal frequency domain solution of nonlinear systems given a specific excitation

input.

It is known that, whether the input-output relationship of the system in (2.10) has

a convergent Volterra series expansion is greatly dependent on the model param-

eters, input magnitude, and excitation frequency (i.e., characteristic parameters).

Although several results have been developed to evaluate the convergence bound in

the literature, most of the existing criteria focus more on the evaluation of the input

bound under which a convergent series exists and usually have more or less

drawbacks as mentioned before. This study aims at developing new convergent

criteria, which are expressed explicitly in terms of all the characteristic parameters,

for a more general nonlinear system described by the NARX model above using a

frequency domain boundedness approach.

Technically, the nth order GFRF is a function of the characteristic parameters;

thus the boundedness of the GFRFs and nonlinear output spectrum, given in Lemma

14.1, Lemma 14.2, and Lemma 14.3, provides a parametric insight into the output

response of the system (2.10) under any given input signal (based on the results in

Chap. 13); The bound of the output response is expressed into a simple infinite

series form in terms of the nth order GFRF and inputU, which greatly facilitates the
investigation of the convergence of underlying Volterra series expansion. Based on

these boundedness results, the frequency dependent convergence criteria are

derived in Proposition 14.1 and Corollary 14.1 for harmonic inputs, which are

then extended to the cases for any input signals in Proposition 14.3.
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14.3 The Convergence Criteria

Consider the NARX system subjected to a harmonic input

u tð Þ ¼ Aj j cos ωtþ∠Að Þ ¼ A

2
ejωt þ A�

2
e�jωt ð14:1Þ

The output is generally given by (3.3), i.e.,

Y jωð Þ ¼
Xþ1

n¼1

1

2n

X
ω1þ���þωn¼ω

Hn jω1, � � �,ωnð Þ
Yn
i¼1

A ωið Þ ð14:2Þ

where ωi 2 ω, � ωf g, A(ωi)E{A,A*}, |A| is the magnitude of A(ωi) which is

denoted by U in what follows.

The following definitions are needed.

L ωð Þ ¼ inf
ω2W1

Ln jω1, � � �, jωnð Þk kf g ð14:3Þ

where W1 ¼ [1
k¼1

Wk ¼ [1
k¼1

ω
��ω ¼ ω1 þ � � � þ ωk,ωiE ω, � ωf g� �

represents the

output frequency range when the NARX model is excited by (14.1) (Chap. 3),

and the operator k ·k means the absolute value for scalars and Euclidian norm k ·k2
for vectors.

C p; qð Þ ¼
X

k1;���;kmð Þ
cp,q k1; � � �; kmð Þ�� �� ð14:4Þ

From (14.4), C(p,q) is a nonnegative function of the parameters cp,q(·) which are the
coefficients of the NARX model in (2.10). Moreover, let

H1 jω1ð Þ ¼ H1 jω1ð Þk k ð14:5Þ

ℕ denotes the nonnegative integer set, and ℕþ denotes positive integer set.

A. Boundedness of the GFRF and Nonlinear Output Spectrum

Lemma 14.1 For the upper bound of the nth order GFRF, it can be obtained as

sup Hn jω1, � � �, jωnð Þk kj8ω1, � � �,ωn 2 ω, � ωf gf g � Hn jω1, � � �, jωnð Þ

Hn jω1, � � �, jωnð Þ ¼ 1

L ωð Þ C 0; nð Þ þ
Xn
m¼2

Xm
p¼1

C p; qð Þ
Xn�mþ1

r1, ���, rp¼1,
X

ri¼n�q

Yp
i¼1

Hri ωXþ1; � � �;ωXþrið Þ

2
664

3
775

ð14:6Þ

The proof can be referred to Chap. 13.
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Lemma 14.2 The upper bound of the output spectrum atω ¼ kω, k 2 ℕ is given

by

��Y jΩð Þ��� YΩ¼kω Uð Þ ¼
X1
n¼1

Cn�1
kþ2 n�1ð Þ

2kþ2 n�1ð Þ�1
Hkþ2 n�1ð Þ jω1, � � �, jωkþ2 n�1ð Þ

� �
Ukþ2 n�1ð Þ k 2ℕþ ð14:7aÞ

��Y jΩð Þ�� � YΩ¼kω Uð Þ ¼
X1
n¼1

Cn
2n

22n
H2n jω1, � � �, jω2nð ÞU2n k ¼ 0 ð14:7bÞ

where Cn�1
kþ2 n�1ð Þ means the number of n� 1 combinations in a given k þ 2 n� 1ð Þ

elements.

Proof: Following (14.1) and (14.2), for k 2 ℕþ,

Yω¼kω Uð Þ �
Xþ1

n¼1

2

2kþ2 n�1ð Þ
X
ω¼kω

Hkþ2 n�1ð Þ jω1, � � �,ωnð Þ
Ykþ2 n�1ð Þ

i¼1

A ωið Þk k

�
X1
n¼1

Cn�1
kþ2 n�1ð Þ

2kþ2 n�1ð Þ�1
Hkþ2 n�1ð Þ jω1, � � �, jωkþ2 n�1ð Þ

� �
Ukþ2 n�1ð Þ :

For k ¼ 0, (14.7b) is straightforward. □
See also Chap. 13 for a more general case. Here the output response bound is

only for a single tone input (14.1).

Lemma 14.3 The upper bound of the output magnitude which involves all the

frequencies in the output frequency range W1 can be given by,

Y Uð Þω ¼
X1
k¼0

Yω¼kω Uð Þ ¼
X
ω2W1

Yω Uð Þ ¼
X1
n¼1

X
ω2Wn

Yn jωð Þ
�����

�����
¼
Xþ1

n¼1

Hn jω1, � � �, jωnð ÞUn ð14:8Þ

Proof
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X
ω2W1

Y jωð Þ
�����

����� �
X1
n¼1

X
ω2Wn

Yn jωð Þ
�����

����� �
X1
n¼1

1

2n

X
ω2Wn

X
ω1þ���þωn¼ω

Hn jω1, � � �,ωnð Þk k
Yn
i¼1

A ωið Þk k

�
X1
k¼0

�Xkþ1

i¼1

Ckþi
2kþ1

22k

�
H2kþ1 jω1, � � �,ω2kþ1ð ÞU2kþ1

þ
X1
k¼1

Xk
i¼1

Ckþi
2k

22k�1
þ Ck

2k

22k

 !
H2k jω1, � � �,ω2kð ÞU2k

¼
X1
k¼0

H2kþ1 jω1, � � �,ω2kþ1ð ÞU2kþ1 þ
X1
k¼1

H2k jω1, � � �,ω2kð ÞU2k

¼
Xþ1

n¼1

Hn jω1, � � �, jωnð ÞUn

This completes the proof. □

Remark 14.1 Equation (14.7a,b) is the upper bound of the output spectrum of

nonlinear system (2.10) subjected to a harmonic excitation, which can be seen as a

power series with nonnegative coefficients; and (14.8) is the sum of the power

series presented in (14.7a,b). If (14.8) is convergent, then 8k 2 ℕ, (14.7a,b) is

convergent, that is, the upper bound of the output spectrum is convergent. The

bound expression of the output response in (14.8) takes a simple infinite series form.

Obviously, the convergence of this series indicates the convergent of the Volterra

series expansion.

B. Frequency Dependent Convergence Criteria

With the bound results of the nonlinear output spectrum obtained above, the bound

of the output spectrum in (14.8) and the input magnitude U are shown to satisfy an

equation Y Uð Þω ¼ UΦ Y Uð Þω,U
� �

, which gives a closed-form expression for the

bound of the output frequency response, where Φ(*,*) is a function to be defined,

then the Analytic Inversion Lemma (Flajolet and Sedgewick 2009) is used to

develop the frequency dependent convergence criterion.

Definition 14.1 For the case that q 2 ℕ, where q is the nonlinear degree in terms of

system input in the NARX model (2.10), a formal function Φ(x,U ) is defined as,

Φ x;Uð Þ ¼
H1 jωð Þ þ 1

L ωð Þ
Xþ1

q¼m¼2

C 0;mð ÞUm�1

1� 1
L ωð Þ
Xþ1

m¼2

Xm
p¼1

C p; qð Þxp�1Uq

ð14:9Þ

where U is the input amplitude in (14.1) and x is the upper bound of the output

magnitude in (14.8).

For the NARX model with only pure input nonlinearity, the whole input part

which includes both the linear and nonlinear terms in terms of input can be
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equivalent to a new input, and then the new NARX model can be seen as a linear

system. Therefore, this case is not focused on in this study. The following result

presents a convergence criterion for the NARX model with output nonlinear degree

larger than or equal to 1.

Proposition 14.1 Except the case that the NARX model has only nonlinearity with

index p¼1 or together with pure input nonlinearity, the convergence bound for the

Volterra series expansion of the NARX model can be obtained by solving the

following equations to find U,

x ω;Uð Þ ¼ UΦ x ω;Uð Þ,Uð Þ
Φ x ω;Uð Þ,Uð Þ ¼ x ω;Uð Þ∂Φ x;Uð Þ

∂x

(
ð14:10Þ

For the case that the NARX model has only nonlinearity with index p¼1 or

together with pure input nonlinearity, the bound of the infinite series in (14.8) is

given by,

x ¼
H1 jωð ÞU þ 1

L ωð Þ
Xþ1

m¼2

C 0;mð ÞUm

1� 1
L ωð Þ
Xþ1

q¼1

C 1; qð ÞUq

ð14:11aÞ

Then the convergence bound can be obtained by solving,

1

L ωð Þ
Xþ1

q¼1

C 1; qð ÞUq < 1 ð14:11bÞ

Proof An outline of the poof is given here. Firstly, it is shown that the bound of

(14.8) and the input magnitudeU satisfy the equationx ω;Uð Þ ¼ UΦ x ω;Uð Þ,Uð Þby
deriving a closed form expression for the output spectrum bound (see (A1) in the

proof). Then it is shown that the divergence condition of the bound of output

spectrum x(ω,U ) (i.e., the divergence condition of an infinite power series) is

equivalent to the closest point to the expanded centre where the infinite power

series becomes singular. Finally, according to the Analytic Inversion Lemma

(Flajolet and Sedgewick 2009), the singular condition of the bound of output

spectrum x(ω,U ) can be obtained, that is, dU
dx ¼ 0, which further leads to the

conclusion. See the details in Sect. 14.6A. □

Definition 14.2 When the index q in the NARXmodel takes only 0 or 1, the formal

function Φ(x) can also be defined as
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Φ xð Þ ¼
H1 jωð Þ þ 1

L ωð Þ
Xþ1

m¼2

C m� 1, 1ð Þxm�1

1� 1
L ωð Þ
Xþ1

m¼2

C m; 0ð Þxm�1

ð14:12Þ

Corollary 14.1 When Φ(x) is given in (14.12), except the case that the NARX

model has only nonlinear terms like
X
k1;k2ð Þ

c1,1 k1; k2ð Þy t� k1ð Þu t� k2ð Þ, (14.10) still

holds for the convergence bound. For the case that the NARX model only possesses

nonlinearity with p¼1, (14.11a) and (14.11b) hold for the bound of output spectrum

and the convergence bound, respectively.

Proof See Sect. 14.6B. □

To compute the convergence bound, the following procedure can be used.

Algorithm 1

Step 1. Calculate L ωð Þ according to (14.3), calculate the boundH1 ωð Þ of the first
order GFRF, and calculate C(p,q) from (14.4).

Step 2. For the corresponding cases, solve (14.10) or (14.11b) to obtain the

convergence bound respectively.

Moreover, using the results in Proposition 14.1 and Corollary 14.1, a bound for

the truncation error of the Volterra series expansion can be assessed in the fre-

quency domain as follows.

Proposition 14.2 Denote

Y Uð ÞNω ¼
X1

n¼Nþ1

Yn Uð Þω ¼
Xþ1

n¼Nþ1

Hn jω1, � � �, jωnð ÞUn ð14:13Þ

where N is the maximum truncation order. The truncation error bound can be

obtained as

X1
n¼Nþ1

Yn Uð Þω
�����

����� � Y Uð ÞNω ð14:14Þ

When τ(ω,ρ(ω)) exists, the following result holds

Y Uð ÞNω � τ ω, ρ ωð Þð Þ U

ρ ωð Þ
� 	Nþ1


1� U

ρ ωð Þ
� �

ð14:15Þ

Proof According to the Cauchy estimates (Stewart and Tall 1983),
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Hn jω1, � � �, jωnð Þ ¼ 1

n!

dnY Uð Þω
dUn

����
U¼0

� τ ω, ρ ωð Þð Þ
ρ ωð Þ½ �n ;

then

Y Uð ÞNω ¼
Xþ1

n¼Nþ1

Hn jω1, � � �, jωnð ÞUn

�
Xþ1

n¼Nþ1

τ ω, ρ ωð Þð Þ
ρ ωð Þ½ �n Un ¼ τ ω, ρ ωð Þð Þ U

ρ ωð Þ

 �Nþ1



1� U

ρ ωð Þ
� �

This completes the proof. □

Remark 14.2 When the solution of the NARX model (2.10) has unique steady

state, which is related to the fading memory property (Boyd and Chua 1985), the

solution of the NARX model can be approximated by a convergent Volterra series.

Then, the proposed criterion can give a very good estimation of the true bound

under which the solution of the NARX model can be well approximated by a

convergent Volterra series. When the solution of the NARX model has more than

one unique steady state with the given input amplitude, the proposed criteria in

Proposition 14.1 and Corollary 14.1 may lead to over estimation of the true

convergence bound. However, for a given specific NARX model, the Harmonic

Balance method can be used to check whether the solution of the model possesses a

unique steady state or not. A further study will focus on this problem.

C. Frequency Independent Convergence Criteria

As discussed in Remark 14.2, to overcome the over estimation problem of the

frequency dependent convergence criteria above, frequency independent ones can

be derived. Comparing with the frequency dependent results, the frequency

independent ones are more conservative. Simultaneously, the results will be

generalized to more general cases for multi-tone or any input signals. Denote

Ln ¼ inf Ln jω1, � � �, jωnð Þk k��8ωi 2 σω
� �

, L ¼ inf Ln
��n 2 ℕþ� �

, and

Hn ¼ sup Hn jω1, � � �, jωnð Þk k��8ωi 2 σω
� �

, where σω represents the whole nonneg-

ative frequency range.

Proposition 14.3

(1) When the NARX model is subjected to a multi-tone input given by

u tð Þ ¼
XNu

i¼1

Aij j cos ωitþ∠Aið Þ ð14:16Þ

where Nu is the number of input frequency, the frequency independent conver-

gence bound can be obtained by solving,
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τ ¼ ρΦ τ; ρð Þ
Φ τ; ρð Þ ¼ τ∂Φ x;Uð Þ

∂x

���
x¼τ,U¼ρ

(
ð14:17Þ

where U ¼ sup Aij j��i ¼ 1, 2, � � �,Nu

� �
:

(2) When the NARX model is subjected to a general input given by

u tð Þ ¼ 1

2π

ð1
0

2 U jωð Þj j cos ωtþ∠U jωð Þ½ �dω

¼ 1

2π

ð1
�1

U jωð Þejωtdω ¼ 1

2π

ð
ω2σω

U jωð Þejωtdω
ð14:18Þ

where U(jω) represents the input spectrum, the frequency independent conver-

gence bound of the Volterra series expansion of the NARX model with the

general input (14.18) can be obtained by solving,

τ ¼ ρΦ τ; ρð Þ
Φ τ; ρð Þ ¼ τ∂Φ x;Uð Þ

∂x

���
x¼τ,U¼ρ

(

where U ¼ sup U jωð Þj j��ω 2 σω
� �

.

Proof See Sect. 14.6C. □

Remark 14.3 Let Nu in (14.16) equals to 1, then the frequency independent

convergence criterion for the NARX model with single tone input can also be

obtained via (14.17). It should be noted that the results in Proposition 14.3 will

become the result in Helie and Laroche (2011) when the nonlinear system is

restricted to be input-affine, i.e., the maximum nonlinearity degree for the input

not larger than 1 and the difference order of the input limited to 1 in the NARX

model. It will be shown that our results are more general, and less conservative

(even for the latter case).

14.4 Examples

To demonstrate the theoretical results, four NARX models are discussed here with

different input and output nonlinearities. The systems considered in these examples

can be given in the following general form with zero initial conditions,
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y kð Þ ¼ c1,0 1ð Þy k � 1ð Þ þ c1,0 2ð Þy k � 2ð Þ þ c3,0 1; 1; 1ð Þy3 k � 1ð Þ þ c2,1 1; 1; 1ð Þy2 k � 1ð Þu k � 1ð Þ
þ c1,2 1; 1; 1ð Þy k � 1ð Þu2 k � 1ð Þ þ c0,3 1; 1; 1ð Þu3 k � 1ð Þ þ c0,1 1ð Þu k � 1ð Þ

ð14:19Þ

Equation (14.19) can be obtained by using the backward difference method to

discretize the nonlinear differential equation

m€y tð Þ þ c _y tð Þ þ k1y tð Þ þ k30y
3 tð Þ þ k21y

2 tð Þu tð Þ þ k12y tð Þu2 tð Þ þ k03u
3 tð Þ ¼ u tð Þ

with zero initial condition, where

m ¼ 1, c ¼ 0:01ω0, k1 ¼ ω2
0, k30 ¼ 0:01ω6

0, k21 ¼ 1:2306 � 107, k12 ¼ 615:289,
k03 ¼ 0:9229;ω0 ¼ 20π, u tð Þ ¼ U cos ωtð Þ. In (14.19), set Ts ¼ 1=2000s, then u kð Þ
¼ U cos Ωkð Þ ¼ U cos ωTskð Þ and c1,0 1ð Þ ¼ 2� cTs

m � kT2
s

m ¼ 1:9987, c1,0 2ð Þ ¼ cTs

m

�1 ¼ �0:9997, c0,1 1ð Þ ¼ T2
s

m ¼ 2:5 � 10�7c3,0 1; 1; 1ð Þ ¼ � k30T
2
s

m ¼ �153:8223; c2,1

1; 1; 1ð Þ ¼� k21T
2
s

m ¼�3:0764, c1,2 1; 1; 1ð Þ ¼ � k12T
2
s

m ¼ �1:5382�10�4, c0,3 1; 1; 1ð Þ
¼ � k03T

2
s

m ¼ �2:3073 � 10�7:

Firstly, the NARX model in (14.19) with only pure output nonlinearity is

discussed in case A, which is obtained by setting c2,1 1; 1; 1ð Þ ¼ c1,2 1; 1; 1ð Þ ¼ c0,3
1; 1; 1ð Þ ¼ 0; corresponding to the discretized model of the continuous time Duffing

equation. The comparison between the proposed criteria for the mentioned NARX

model and other existing criteria focusing on the Duffing equation is presented.

Then the NARX model with pure output nonlinearity and input-output cross

nonlinearity with q¼1 is given in case B, which is obtained by setting c1,2 1; 1; 1ð Þ
¼ c0,3 1; 1; 1ð Þ ¼ 0 in (14.19). Similarly, the comparisons between the convergence

bounds obtained with the proposed results in Proposition 14.1, Corollary 14.1, and

Proposition 14.3, and with the other existing results are presented. Then the NARX

model with input-output nonlinearity with q¼2 is given in case C, which is

obtained by setting c2,1 1; 1; 1ð Þ ¼ c0,3 1; 1; 1ð Þ ¼ 0 in (14.19). In this case, the

proposed criteria in this study such as Proposition 14.1 and Proposition 14.3 can

effectively provide a convergence bound, but no existing results are available.

Finally, the NARX model with pure output nonlinearity and pure input nonlinearity

is given in case D, which is obtained by setting c2,1 1; 1; 1ð Þ ¼ c1,2 1; 1; 1ð Þ ¼ 0 in

(14.19). In this case, similarly to case C, the proposed criteria in this study such as

Proposition 14.1 and Proposition 14.3 can effectively provide a convergence bound,

but no existing results are available. Moreover, it can be clearly seen how the pure

input nonlinearity affects the convergence bound when compared with case A.

In these examples, the output frequency response up to the Nth order is com-

puted by using (14.1) and (14.2), and then the output frequency response is

transformed into time domain, which is referred to as the synthesized output. The

time domain output response obtained directly from simulation of the model with a

Runge-Kutta method is referred to as the real output. The normalized root mean

square error (NRMSE) is used to measure the difference between the synthesized

output and the real output, which is defined as
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NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ysynthesized kð Þ � yreal kð Þ

 �2

X
yreal kð Þð Þ2

vuuut ð14:20Þ

where ysynthesized(k) is the synthesized output, and yreal(k) is the real output. By

comparisons between the synthesized output and the real output, the validation of

the proposed criteria is shown. In the discussions below, the true convergence

bound of input magnitudes is obtained by numerical simulations.

A. A NARX Model with Pure Output Nonlinearity

The NARXmodel in (14.19) with only pure output nonlinearity is studied here. The

NARX model is given by

y kð Þ ¼ c1,0 1ð Þy k� 1ð Þ þ c1,0 2ð Þy k� 2ð Þ þ c3,0 1;1;1ð Þy3 k� 1ð Þ þ c0,1 1ð Þu k� 1ð Þ ð14:21Þ

Firstly, calculate the upper bound of the linear order GFRF, that is,

H1 ωð Þ ¼ H1 jωð Þ, and the lower bound of Ln(jω), that is, L ωð Þ. In this case, L ωð Þ
¼ inf L ωð Þk k; L 3ωð Þk k; L 5ωð Þk k; � � �f g (Chaps. 3, 5 and 6). Although the output

frequencies happen at all odd multiples of the input frequencies (Chaps. 3, 5 and

6), the first several orders would take dominant roles and thus L ωð Þ could be

evaluated simply by L ωð Þ ¼ inf L ωð Þk k; L 3ωð Þk k; L 5ωð Þk k; L 7ωð Þk kf g. In (14.21),

Φ(x) in (14.12) is the same as that in (14.9). Thus

Φ xð Þ ¼ H1 ωð Þ= 1� C 3; 0ð Þ=L ωð Þ� �
x2

� �
Then solving the equation x dΦ xð Þ

dx ¼ Φ xð Þ, the solution is x ωð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L ωð Þ= 3C 3; 0ð Þ½ �p

.

Then according to the first equation of (14.10), the convergence bound can be

obtained,

ρ ωð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
L ωð Þ

q
= 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3C 3; 0ð Þ

p
H1 ωð Þ

h i

which is presented in Fig. 14.1.

The existing criteria developed for the continuous time model of (14.21), i.e., the

Duffing equation, are also presented in Fig. 14.1 for comparisons. Most existing

criteria such as those mentioned before are obviously over-estimated. The proposed

criteria in this study provide much more reliable and close estimation of the

convergence bound especially for the frequency range below the resonant fre-

quency (it can be verified for the Duffing equation that the system has unique

steady state (relating to the fading memory property (Boyd and Chua 1985)) in this

frequency range). The frequency independent convergence bound obtained by

Proposition 3 is 0.0038. Although the frequency-independent bound is quite con-

servative at the other frequency (accurate at the resonance frequency), it is
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obviously less conservative than the result in Helie and Laroche (2011) (a recently

developed one), while the latter provides a convergence bound as 5:3895 � 10�6.

In Fig. 14.1, at the resonant frequency the convergence bound is 0.0038 and at

the other frequency for example ω¼0.8, it is 0.8322. In Figs. 14.2 and 14.3, the

comparisons between the synthesized output and the real output are presented.

When the input amplitude is taken less than or equal to the computed convergence

bound value, the synthesized output and the simulated real output has a good

agreement. That is, a very small NRMSE can be seen in this case. With a little

larger value of the input amplitude, the synthesized output becomes slowly diver-

gent, with the NRMSE becoming larger and larger.

B. A NARX Model with Pure Output Nonlinearity and Input-Output

Nonlinearity with q¼1

In this case, the NARX model contains both pure output nonlinear term and cross

nonlinear term with q¼1 is given by

y kð Þ ¼ c1,0 1ð Þy k � 1ð Þ þ c1,0 2ð Þy k � 2ð Þ þ c3,0 1; 1; 1ð Þy3 k � 1ð Þ
þ c2,1 1; 1; 1ð Þy2 k � 1ð Þu k � 1ð Þ þ c0,1 1ð Þu k � 1ð Þ ð14:22Þ

To compute the convergence bound,Φ(x,U ) can be obtained from (14.9), that is,
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Fig. 14.1 Frequency domain convergence bound of model (14.21); in the figure, Propositions 1

and 3 refer to Propositions 14.1 and 14.3 respectively. (Xiao et al. 2013b © IEEE)
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Fig. 14.2 Comparison between the synthesized output and the real output under the cosinusoidal

input at ω¼1 (Xiao et al. 2013b)
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Fig. 14.3 Comparison between the synthesized output and the real output under the cosinusoidal

input at ω¼0.8 (Xiao et al. 2013b)
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Φ x;Uð Þ ¼ H1 ωð Þ



1� C 2; 1ð Þ
L ωð Þ xU � C 3; 0ð Þ

L ωð Þ x2
� �

As a comparison, Φ(x) can also be constructed from (14.11a,b), i.e.,

Φ xð Þ ¼ H1 ωð Þ þ C 2; 1ð Þ
L ωð Þ x2

� �

1� C 3; 0ð Þ

L ωð Þ x2
� �

Solving (14.10), the convergence bounds can be obtained, which are presented in

Fig. 14.4.

In Fig. 14.4, the convergence bound obtained by using Corollary 14.1 superim-

poses on that obtained by using Proposition 14.1, both of which provide very good

estimation on the convergence bound except for the frequencies larger than 1.8,

where it can be verified that the system dynamic response possesses more than one

steady states. To overcome the over-estimation problem at some frequencies, the

convergence bound can also be given by Proposition 14.3, which is a frequency

independent bound (i.e., 0.0031). Although this frequency independent bound is

conservative but much better than the bound estimated by the method in Helie and

Laroche (2011), which gives the bound to be 5:3718 � 10�6. It should be noted that

few existing methods could be applicable to this example in the literature. More-

over, the convergence bound obtained with Proposition 14.3 is exactly the conver-

gence bound obtained by using Proposition 14.1 or Corollary 14.1 at the resonant

frequency.
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Fig. 14.4 Frequency domain convergence bound of model (14.22); in the figure, Proposition 1,

Proposition 3 and Corollary 1 refer to Proposition 14.1, Proposition 14.3 and Corollary 14.1,

respectively. (Xiao et al. 2013b © IEEE)
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In Figs. 14.5 and 14.6, when the input amplitude takes a value equal to or smaller

than the computed convergence bound, that is, at ω¼1 in (14.1) it is given as

0.0031 and at the other frequencies for example ω¼0.8 it is given as 0.1960, the

synthesized output has a very good match with the real output up to the seventh
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Fig. 14.5 Comparison between the synthesized output and the real output under the cosinusoidal

input at ω¼1 (Xiao et al. 2013b)
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Fig. 14.6 Comparison between the synthesized output and the real output under the cosinusoidal

input at ω¼0.8. (Xiao et al. 2013b)
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order. When a little larger input amplitude is used, the synthesized output becomes

slowly divergent with an observed increasing NRMSE.

C. A NARX Model with Pure Output Nonlinearity and Input-Output

Nonlinearity with q�2

The NARX model in this case is given as

y kð Þ ¼ c1,0 1ð Þy k � 1ð Þ þ c1,0 2ð Þy k � 2ð Þ þ c3,0 1; 1; 1ð Þy3 k � 1ð Þ
þ c1,2 1; 1; 1ð Þy k � 1ð Þu2 k � 1ð Þ þ c0,1 1ð Þu k � 1ð Þ: ð14:23Þ

No existing results are available to compute the convergence bound for

(14.23). With our results in Proposition 14.1 or Proposition 14.3, the

convergence bound can be computed as follows. From (14.9),

Φ x;Uð Þ ¼ H1 ωð Þ= 1� C 1; 2ð Þ=L ωð Þ� �
U2 � C 3; 0ð Þ=L ωð Þ� �

x2
� �

. Solving (14.10),

the convergence bound in the frequency domain can be obtained, which is

presented in Fig. 14.7. With Proposition 14.3, the frequency independent conver-

gence bound can be obtained, which is 0.0038 after calculation.

The bound results are shown in Fig. 14.7, which indicate clearly that the new

convergence bound can provide a reliable estimation on the convergence condition

for the Volterra series expansion at all frequency band, and the proposed one

matches well the true one obtained by the numerical simulation.

In Figs. 14.8 and 14.9, when the input amplitude takes a value equal to or smaller

than the computed convergence bound value, for example, it is 0.0038 for ω¼1,
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Fig. 14.7 Frequency domain convergence bound of model (14.23); in the figure, Propositions 1

and 3 refer to Propositions 14.1 and 14.3 respectively. (Xiao et al. 2013b © IEEE)
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and 0.6283 for ω¼0.8, the synthesized output up to the seventh order has a very

small NRMSE compared with the real output; when larger input amplitude is used,

the synthesized output becomes slowly divergent with an obvious increasing

NRMSE.
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Fig. 14.8 Comparison between the synthesized output and the real output under the cosinusoidal

input at ω¼1 (Xiao et al. 2013b)
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Fig. 14.9 Comparison between the synthesized output and the real output under the cosinusoidal

input at ω¼0.8 (Xiao et al. 2013b)

14.4 Examples 313



D. A NARX Model with Pure Output Nonlinearity and Pure Input

Nonlinearity with q�2

The NARX model in this example is given as

y kð Þ ¼ c1,0 1ð Þy k � 1ð Þ þ c1,0 2ð Þy k � 2ð Þ þ c3,0 1; 1; 1ð Þy3 k � 1ð Þ
þ c0,3 1; 1; 1ð Þu3 k � 1ð Þ þ c0,1 1ð Þu k � 1ð Þ ð14:24Þ

Similar to Example C, no existing results are available to compute the

convergence bound. From (14.9), Φ x;Uð Þ ¼ H1 ωð Þ þ C 0; 3ð Þ=L ωð Þ� �
U2

� �
=

1� C 3; 0ð Þ=L ωð Þ� �
x2

� �
. According to (14.10) the convergence bound can be

obtained, which is presented in Fig. 14.10. The frequency independent bound can

be obtained according to Proposition 14.3, which is 0.0038.

From Fig. 14.10, it can be seen that the proposed criterion still has good

estimation of the true convergent bound. Moreover, it shall be noted that, when

the NARX model with not only pure input nonlinearity but also other nonlinearity

in the output, the pure input nonlinearity can significantly affects the convergence

bound of the NARX model, which can be seen clearly by comparing example D

with example A. Example D is obtained from example A by introducing pure input

nonlinearity with nonlinear order q¼3, and the estimated convergence bound in

example D is totally different from that in example A.
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Fig. 14.10 Frequency domain convergence bound of model (14.24); in the figure, Propositions 1

and 3 refer to Propositions 14.1 and 14.3 respectively. (Xiao et al. 2013b © IEEE)
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In Figs. 14.11 and 14.12, when the input amplitude takes equal to or lower than

the computed convergence bound, for example, 0.0038 at ω¼1 and 0.6162 at ω¼
0.8, the synthesized output up to the seventh order has very good approximation to

the real output; when a little larger input amplitude is used, the synthesized output

becomes slowly divergent with increasing NRMSE.
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Fig. 14.11 Comparison of the synthesized output and the real output under the cosinusoidal input

at ω¼1 (Xiao et al. 2013b)
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Fig. 14.12 Comparison of the synthesized output and the real output under the cosinusoidal input

at ω¼0.8 (Xiao et al. 2013b)
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14.5 Conclusions

Volterra series has been extensively used in various areas including filter design,

signal processing, system identification, and control etc. The NARX model is

known as a general model for nonlinear systems, which also has been frequently

used in practice for system identification, signal processing, and control etc. Based

on the Volterra series theory, the associated frequency domain theory and methods

for the NARX model developed in the past decade can greatly facilitate the

nonlinear analysis and design. Applications of these results can be found in

different engineering practices such as signal processing, filter design, vibration

control, fault detection, and neuronal systems. The results of this study solve an

important issue related to the application of the Volterra series based theory and

methods mentioned above. From a very engineering point of view, the new results

attempt to systematically answer a long-existing problem, that is, under what

parametric conditions a given nonlinear system (described by the NARX model)

could have a convergent Volterra series expansion for a given testing input signal.

Obviously, these results could provide a significant guidance for nonlinear analysis

and design in nonlinear signal processing and control with the Volterra series based

theory and methods. To demonstrate the results, several examples are given and

discussed. It is shown that, the new convergence criteria can provide a better

evaluation on the convergent region in which the targeted nonlinear system dynam-

ics can be well approximated by a convergent Volterra series expansion in most

frequency range. Given a nonlinear system, if the nonlinearity is examined to be a

non-Volterra-type with the developed results, many methods can be used (for

example, introduction of feedback control or decrease of input magnitude etc) to

ensure the system to be a Volterra type (that is, allowing a convergent Volterra

series expansion). Note that a Volterra-type nonlinearity is well-defined and mild

nonlinear phenomenon, which is much easier for analysis, design and control with

many developed theory and methods both in time and frequency domain, compared

with other complicated nonlinear behaviors such as chaos and bifurcation etc

(Nayfeh and Mook 2008; Sanders and Verhulst 1985; Buonomo and Lo Schiavo

2005).

The parametric convergence bound presented in this Chapter can also be used to

indicate to what extent a given nonlinear system has a convergence Volterra series

expansion in terms of any characteristic parameter. This leads to a new concept—

convergence margin defined in Xiao et al. (2014). More effective parametric

convergence bound can also be developed by considering the frequency and wave

form of multi-tone inputs, which will be reported in Jing and Xiao (2014).
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14.6 Proofs

A. Proof of Proposition 14.1

1

L ωð Þ
Xþ1

m¼2

Xm
p¼1

UqC p; qð Þ Y Uð Þω
� �p þ 1

L ωð Þ
Xþ1

q¼m¼2

C 0;mð ÞUm

¼ 1

L ωð Þ
Xþ1

m¼2

Xm
p¼1

C p; qð Þ
Xþ1

i¼1

Hi jω1, � � �, jωið ÞUi

 !p

Uq þ 1

L ωð Þ
Xþ1

q¼m¼2

C 0;mð ÞUm

¼
Xþ1

n¼2

1

L ωð Þ
Xn
m¼2

Xm
p¼1

C p; qð Þ
Xn�mþ1

ri¼1,
X

ri¼n�q

Yp
i¼1

Hri jω1, � � �, jωrið Þ þ C 0; nð Þ

0
BB@

1
CCAUn

¼
Xþ1

n¼2

Hn jω1, � � �, jωnð ÞUn

then,

1

L ωð Þ
Xþ1

m¼2

Xm
p¼1

UqC p;qð Þ Y Uð Þω
� �p þ 1

L ωð Þ
Xþ1

q¼m¼2

C 0;mð ÞUm ¼ Y Uð Þω �H1 jωð ÞU ðA1Þ

From (A1), Y Uð Þω ¼ UΦ Y Uð Þω,U
� �

holds, and denote

x ω;Uð Þ ¼ Y Uð Þω ¼
Xþ1

n¼1

Hn jω1, � � �, jωnð ÞUn, then the equation can be rewritten as

x ¼ UΦ x;Uð Þ ðA2Þ

Note that here (A2) gives a closed-form expression for the magnitude bound of

output frequency response compared with the power series form in (14.8). From the

above, x ¼ Y Uð Þω is an infinite power series of U expanded at 0. The infinite power

series is analytic in the convergence region, which means that in the convergence

region there does not exist any singularity. Thus the closest point to the expanded

center which makes the bound of output spectrum x ¼ Y Uð Þω singular can be seen

as the convergence bound of the infinite power series.

In Flajolet and Sedgewick (2009), the Analytic Inversion Lemma is stated as: An

analytic function locally admits an analytic inverse near any point where its first

derivative is non-zero. However, a function cannot be analytically inverted in a

neighborhood of a point where its first derivative vanishes.

According to the Analytic Inversion Lemma, the singular condition of the bound

of output spectrum x ¼ Y Uð Þω can be obtained as dU
dx ¼ 0.

Denote r(ω) as the convergence radius of Φ(x,U ).

For the case that the NARX model does not only possess nonlinearity with index

p¼1 or together with pure input nonlinearity,
∂Φ x;Uð Þ

∂x exists and
∂Φ x;Uð Þ

∂x 6¼ 0 ifU 6¼ 0.
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Because x ∂Φ x;Uð Þ
∂x =Φ x;Uð Þ is 0 at x ¼ 0, lim

x!r ωð Þ
x ∂Φ x;Uð Þ

∂x =Φ x;Uð Þ ! 1 and x

∂Φ x;Uð Þ
∂x =Φ x;Uð Þ is an increasing function of x for 0 < x < r ωð Þ, so there exists a

unique solution 0 < τ ω, ρ ωð Þð Þ < r ωð Þ makes x ∂Φ x;Uð Þ
∂x =Φ x;Uð Þ ¼ 1, that is,

Φ x;Uð Þ ¼ x
∂Φ x;Uð Þ

∂x
ðA3Þ

where x ¼ τ ω, ρ ωð Þð Þ,U ¼ ρ ωð Þ.
From (A2), 1 ¼ dU

dx Φ x;Uð Þ þ U ∂Φ x;Uð Þ
∂x þ U ∂Φ x;Uð Þ

∂U
dU
dx holds. Substituting (A2)

and (A3) into the equation, then Φ x;Uð Þ þ U ∂Φ x;Uð Þ
∂U


 �
dU
dx ¼ 0 holds with x ¼ τ

ω, ρ ωð Þð Þ and U ¼ ρ ωð Þ: Because Φ(x,U ),
∂Φ x;Uð Þ

∂U , and U are all positive, then
dU
dx

��
x¼τ ω,ρ ωð Þð Þ ¼ 0 holds. Thus (A3) indicates that the singular condition of the

infinite power series holds, which means that the bound of nonlinear output

spectrum x is singular at U ¼ ρ ωð Þ.
From the analysis above, the convergence bound can be obtained via solving

(14.10).

For the case that the NARX model only has nonlinear terms with index p¼1 or

together with pure input nonlinearity, from (A2), (14.11a) can be obtained directly,

and then the bound results in (14.11b) is straightforward. This completes the

proof. □

B. Proof of Corollary 14.1

1

L ωð Þ
Xþ1

m¼2

X1
q¼0

UqC m� q, qð Þ Y Uð Þω
� �m�q

¼
Xþ1

n¼2

1

L ωð Þ
Xþ1

m¼2

X1
q¼0

C m� q, qð Þ
Xn�mþ1

ri ¼ 1,X
ri ¼ n� q

Ym
i¼1

Hri jω1, � � �, jωrið ÞUn

¼
Xþ1

n¼2

Hn jω1, � � �, jωnð ÞUn

then,

1

L ωð Þ
Xþ1

m¼2

X1
q¼0

UqC m� q, qð Þ Y Uð Þω
� �m�q ¼

Xþ1

n¼2

Hn jω1, � � �, jωnð ÞUn

¼ Y Uð Þω � H1 jωð ÞU ðB1Þ

From (B1), (A2) still holds, and similar to the proof of Proposition 14.1, Corollary

14.1 holds except that when only nonlinear term
X
k1;k2ð Þ

c1,1 k1; k2ð Þy t� k1ð Þu t� k2ð Þ
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is contained in the NARX model, in this case, (14.11a,b) is the direct consequence

of (A2). This completes the proof. □

C. Proof of Proposition 14.3

For the multi-tone input case, denote

σω ¼ ω1; � � �;ωNu
f g, αn ¼ sup

ω2Wn

1
2n

X
ω1þ���þωn¼ω

1
��8ωi 2 σω [ �σω

( )
, and

α ¼ sup αn
��n ¼ 1, 2, � � �� �

.

From Chap. 3, Y jωð Þ ¼
X1
n¼1

Yn jωð Þ ¼
X1
n¼1

1

2n

X
ω1þ���þωn¼ω

Hn jω1, � � �, jωnð Þ
Yn
i¼1

A ωið Þ, 8ωi 2 σω [ �σω.

Then Yn jωð Þk k � 1
2n

X
ω1þ���þωn¼ω

Hn jω1, � � �, jωnð Þk k

Yn
i¼1

A ωið Þk k � HnU
n 1

2n

X
ω1þ���þωn¼ω

1

 !
� αHnU

n,8ω 2 Wn and

Y jωð Þk k �
X1
n¼1

Yn jωð Þ ¼
Xn
n¼1

αHnU
n, 8ω 2 W1. Denote

Y ¼ α
Xn
n¼1

HnU
n ðC1Þ

Equation (C1) is frequency independent, and it can be revised in the following brief

form

Yb ¼ Y

α
¼
Xn
n¼1

HnU
n ðC2Þ

Because α is a nonnegative bounded constant, (C2) has the same convergence

bound with that of (C1). By replacing L ωð Þ with L and H1 jωð Þ with H1, Hn can

be recursively computed with lower order bound according to (14.6). Then similar

to the proof of Proposition 14.1, the result holds.

For the general input case, denote

αn ¼ supω2Wn

1ffiffi
n

p
2πð Þn�1

ð
ω1þ���þωn¼ω

1 dσω
��8ωi 2 σω [ �σω

8><
>:

9>=
>;, and

α ¼ sup αn
��n ¼ 1, 2, � � �� �

. dσω denotes the area of a minute element on the

n-dimensional hyper plane ω ¼ ω1 þ � � � þ ωn.
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From Chap. 3, it can be obtained that

Y jωð Þ ¼
X1
n¼1

Yn jωð Þ ¼
X1
n¼1

1=
ffiffiffi
n

p

2πð Þn�1

ð
ω1þ���þωn¼ω

Hn jω1, � � �, jωnð Þ
Yn
i¼1

U jωið Þdσω ,8ωi 2 σω [ �σω:

Then

Yn jωð Þk k � 1=
ffiffiffi
n

p

2πð Þn�1

ð
ω1þ���þωn¼ω

Hn jω1, � � �, jωnð Þk k
Yn
i¼1

U jωið Þk kdσω

� HnU
n 1=

ffiffiffi
n

p

2πð Þn�1

ð
ω1þ���þωn¼ω

1dσω � αHnU
n, 8ω 2 Wn:

and

Y jωð Þk k �
X1
n¼1

Yn jωð Þ ¼
Xn
n¼1

αHnU
n,8ω 2 W1

Thus (C1) and (C2) still hold for the NARX model with general input. Then

following the method similar to the multi-tone input case, the result holds. This

completes the proof.□
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Chapter 15

Summary and Overview

Frequency domain methods can often provide very intuitive insights into underly-

ing mechanism of a dynamic system under study in a coordinate-free and equivalent

manner, compared with corresponding time domain methods. Therefore, they are

preferable to engineers, widely adopted in engineering practice, and also exten-

sively studied in the literature. Due to complicated output frequency characteristics

and dynamic behaviour of nonlinear systems, a systematic and effective frequency

domain theory or method for the analysis and design of nonlinear systems has been

a focused topic in the past several decades.

Nowadays, several methods are available in the literature for nonlinear analysis

and design as discussed in Chap. 1, including traditional harmonic balance methods,

describing function methods, absolute stability based theory and methods and so on.

Among the progress, active research activities can be seen in development of more

efficient describing functions such as the so-called higher order sinusoidal input

describing function and sinusoidal input describing function (Rijlaarsdam et al.

2011; Pavlov et al. 2007), and more active methodology would be the Volterra series

based approach. The obvious advantages of the Volterra series based frequency

domain theory or method can be seen in that, it is a generic method and applicable

to a considerably large class of nonlinearities but not limited to any specific nonlinear

units or components; it is not restricted to any specific input signals but permissible

to any input excitation; it can directly relate any system characteristic parameters to

nonlinear output frequency response in an analytical and polynomial form; and it

allows symbolic and parametric computations using computer programmes.

In this book, some new advances in the Volterra series based frequency domain

theory or method developed in the past 10 years are summarized from a novel

parametric characteristic approach. These results, including both theoretical inves-

tigation and practical application algorithms, can hopefully present a solid and

important basis for further development of frequency domain theories and methods

for nonlinear analysis and design to solve critical and challenging engineering

issues in the literature and various engineering practices.
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The main results included in this book are:

(a) A parametric characteristic analysis method is established for parameterized

polynomial systems with separable property, which is to reveal what model

parameters affect system frequency response functions and what the influence

could be. Based on this technique, it is shown for the first time that, the

analytical relationship between high order frequency response functions of

Volterra systems and system time-domain model parameters, and also pro-

vides a novel method for understanding of the higher order GFRFs of Volterra

systems. Refer to Chaps. 4–6.

(b) By using the parametric characteristic analysis, system output spectrum up to

any orders can be explicitly expressed as a polynomial function of model

parameters of interest, which can directly relate any characteristic parameters

to system output frequency response such that nonlinear output spectrum can

be analyzed, designed and optimized via these parameters. This provides a

significant basis for nonlinear analysis and design in the frequency domain.

Refer to Chaps. 7–10.

(c) A novel mapping function from the parametric characteristics of the GFRF to

itself is established. This result enables the nth-order GFRF and output spec-

trum to be directly written as a polynomial forms in terms of the first order

GFRF, model parameters and input, which is shown to be a new approach to

understanding of higher order GFRFs. It is theoretically shown for the first

time that system output spectrum can be expressed into an alternating series

with respect to model parameters under certain conditions. The result reveals a

significant nonlinear effect on system output dynamic behaviours in the

frequency domain. Refer to Chaps. 11 and 12.

(d) The nonlinear effects on system output spectrum from different nonlinearities

are also studied. This provides some novel insights into the nonlinear effect on

system output spectrum in the frequency domain, such as the counteraction

between different nonlinearities at some specific frequencies, periodicity

property of output frequencies and so on. These results can facilitate the

structure selection and parameter determination for system modelling, identi-

fication, filtering and controller design. Mainly refer to Chap. 3.

(e) New methods for analysis and design of nonlinear vibration control systems

by employing potential nonlinear benefits are developed. It is a systematic

frequency domain approach for exploiting nonlinearities to achieve a desired

output frequency domain performance for vibration control or suppression.

Refer to Chaps. 10 and 12.

(f) New parametric convergence bound criteria for Volterra series expansion of

nonlinear systems described by the NARX model are developed, based on the

parametric bound characteristics of frequency response functions of the

Volterra class of nonlinear systems. The results solve an important issue

related to the application of Volterra series based theory and methods, that

is, under what parametric conditions a given nonlinear system (described by

the NARX model) could have a convergent Volterra series expansion for a

given testing input signal. Refer to Chaps. 13 and 14.
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Although interesting and significant results have been achieved as discussed in

previous chapters, there are still many tasks yet to be done for a full development of

a systematic frequency domain method for nonlinear system analysis and design.

The following topics would be reasonable to investigate based on those

achievements.

• Exploring nonlinear benefits in vibration control. This is to develop theory and

methods for analysis and design of nonlinear vibration control systems in active,

semi-active or passive control by employing advantageous nonlinear benefits for

much better vibration control/suppression/isolation performance. Nonlinear

energy transfer or cancellation properties as shown in Chap. 3 could be used

for this purpose, and similar topics can also be referred to Chaps. 7, 9, 10 and 12.

The parametric characteristics approach provides a convenient tool for the

corresponding nonlinear analysis and design aiming at a desired output fre-

quency spectrum. The developed frequency domain method (see Chap 9) can

provide a straightforward expression for the relationship between the nonlinear

output spectrum and system characteristic parameters including those which

define nonlinearities. An extension will be done such that this relationship can

also be expressed as a straightforward function of model parameters which

define linear dynamics of the underlying system.

• Characterizing and understanding nonlinearity in the frequency domain. How to

characterize nonlinear dynamics and what the true feature is for a nonlinear

behaviour of interest in the frequency domain are intriguing topics to study,

since straightforward understanding of linear dynamics in the frequency domain

is very well developed and preferable in practice. This topic is greatly related to

fault/crack detection in non-destructive evaluation and structure health monitor-

ing etc, feature or pattern recognition or detection in biological data or dynamic

response signals from various disciplines, signal processing, nonlinear system

identification and feedback design in control, and so on. Similar topics can be

referred to Chaps. 3, 7 and 12.

• Nonlinear system identification in the frequency domain. With known output

frequency characteristics and parametric characteristics of frequency response

functions as demonstrated in Chaps. 3–12, nonlinear system identification would

be much more convenient to conduct with only input-output experiment data.

Obviously, this topic is far from development.

• Parametric convergence bounds of Volterra series expansion and its applica-
tions. As shown in Chaps. 13 and 14, a parametric boundedness approach to the

frequency response functions provides a powerful tool for the analysis and

evaluation of convergent bound of Volterra series expansion of a given para-

metric nonlinear model such as NARX or NDE. Given a nonlinear system, a

parametric convergence bound can be used readily for evaluation of the

nonlinear dynamics about whether it is a Volterra-type or not, and about how

to design nonlinear feedback or model parameters so as to create a Volterra-type

nonlinear system, and consequently the system can be easily analyzed and

controlled with the established frequency domain methods.
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• Extension to describe complex nonlinear behaviours. Besides designing a non-

Volterra-type system to be Volterra-type as mentioned above, some theory and

methods can also be developed technically to allow complex nonlinear behav-

iours such as Chaos and Bifurcation and/or those described by neural networks

to be analyzed in the context of Volterra series expansion and in the frequency

domain. Preliminary research studies already show that the Volterra series based

approach can also be used to interpret some complex nonlinear behaviours

(Boaghe and Billings 2003).

“The fear of the LORD is the beginning of wisdom. . .”
—Proverbs 9:10 King James Bible
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