Practical Internet

of Things Security

A practical, indispensable security guide that will navigate you
through the complex realm of securely building and deploying
systems in our loT-connected world

PACKT

Practical Internet of Things
Security

A practical, indispensable security guide that
will navigate you through the complex realm of
securely building and deploying systems in our
loT-connected world

Brian Russell

Drew Van Duren

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

[FM-1]

Practical Internet of Things Security

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016
Production reference: 1230616

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-963-9

www . packtpub. com

[FM-2]

Credits

Authors
Brian Russell

Drew Van Duren

Reviewer
Aaron Guzman

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Prachi Bisht

Content Development Editor
Arshiya Ayaz Umer

Technical Editor
Siddhi Rane

Copy Editor
Safis Editing

[FM-3]

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Authors

Brian Russell is a chief engineer focused on cyber security solutions for Leidos
(https://www.leidos.com/). He oversees the design and development of security
solutions and the implementation of privacy and trust controls for customers,

with a focus on securing Internet of Things (IoT). Brian leads efforts that include
security engineering for Unmanned Aircraft Systems (UAS) and connected vehicles
and development security systems, including high assurance cryptographic key
management systems. He has 16 years of information security experience. He serves
as chair of the Cloud Security Alliance (CSA) Internet of Things (IoT) Working
Group, and as a member of the Federal Communications Commission (FCC)
Technological Advisory Council (TAC) Cybersecurity Working Group. Brian

also volunteers in support of the Center for Internet Security (CIS) 20 Critical
Security Controls Editorial Panel and the Securing Smart Cities (5SC) Initiative
(http://securingsmartcities.org/).

Join the Cloud Security Alliance (CSA) IoT WG
@https://cloudsecurityalliance.org/group/internet-of-things/# join.

You can contact Brian at https://www.linkedin.com/in/brian-russell-
65a4991.

I would like to thank my wife, Charmae, and children, Trinity and
Ethan. Their encouragement and love during my time collaboration
on this project has been invaluable. I would also like to thank all
the great volunteers and staff of the Cloud Security Alliance (CSA)
Internet of Things (IoT) Working Group, who have worked with
me over the past few years to better understand and recommend
solutions for IoT security. Lastly, I would like to thank my parents,
without whom I would not have the drive to complete this book.

[FM-4]

Drew Van Duren currently works at Leidos as a senior cryptographic and
cybersecurity engineer, highlighting 15 years of support to commercial, US
Department of Defense, and US Department of Transportation (USDOT) customers
in their efforts to secure vital transportation and national security systems. Originally
an aerospace engineer, his experience evolved into cyber-physical (transportation
system) risk management, secure cryptographic communications engineering, and
secure network protocol design for high assurance DoD systems. Drew has provided
extensive security expertise to the Federal Aviation Administration's Unmanned
Aircraft Systems (UAS) integration office and supported RTCA standards body in
the development of cryptographic protections for unmanned aircraft flying in the US
National Airspace System. He has additionally supported USDOT Federal Highway
Administration (FHWA) and the automotive industry in threat modeling and security
analysis of connected vehicle communications design, security systems, surface
transportation systems, and cryptographic credentialing operations via the connected
vehicle security credential management system (SCMS). Prior to his work in the
transportation industry, Drew was a technical director, managing two of the largest
(FIPS 140-2) cryptographic testing laboratories and frequently provided cryptographic
key management and protocol expertise to various national security programs. He

is a licensed pilot and flies drone systems commercially, and is also a co-founder

of Responsible Robotics, LLC, which is dedicated to safe and responsible flight
operations for unmanned aircraft.

You can reach Drew at https://www.linkedin.com/in/drew-van-duren-33a7b54.

I would first like to thank my wife, Robin, and children, Jakob and
Lindsey, for their immense love, humor, and patience that shone
brightly as I collaborated on this book. They were always keen

to provide the diversions when I needed them the most. I would
also like to thank my parents for their unceasing love, discipline,
and encouragement to pursue diverse interests —model making,
engineering, aviation, and music —in my formative years. More than
anything, playing the cello has enriched and centered me amid life's
demands. Lastly, my gratitude goes to my departed grandparents,
especially my maternal grandfather, Arthur Glenn Foster, whose
unquenchable scientific and engineering inquisitiveness provided
just the footsteps I needed in my young life.

[FM-5]

About the Reviewer

Aaron Guzman is a principal penetration tester from the Los Angeles area with
expertise in application security, mobile pentesting, web pentesting, IoT hacking,
and network penetration testing. He has previously worked with established tech
companies such as Belkin, Symantec, and Dell, breaking code and architecting
infrastructures. With Aaron's years of experience, he has given presentations at
various conferences, ranging from Defcon and OWASP AppSecUSA to developer
code camps across America. He has contributed to many IoT security guideline
publications and open source community projects around application security.
Furthermore, Aaron is a chapter leader for the Open Web Application Security
Project (OWASP), Los Angeles, Cloud Security Alliance SoCal (CSA SoCal),

and High Technology Crime Investigation Association of Southern California
(HTCIA SoCal). You can follow Aaron's latest research and updates on Twitter

at @scriptingxss.

[FM-6]

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

C)

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

[FM-7]

Table of Contents

Preface iX
Chapter 1: A Brave New World 1
Defining the loT 3
Cybersecurity versus loT security and cyber-physical systems 5
Why cross-industry collaboration is vital 7
loT uses today 10
Energy industry and smart grid 11
Connected vehicles and transportation 11
Manufacturing 11
Wearables 12
Implantables and medical devices 12
The 1oT in the enterprise 13
The things in the loT 17
The loT device lifecycle 17

The hardware 19
Operating systems 20

loT communications 21
Messaging protocols 23
Transport protocols 27
Network protocols 28
Data link and physical protocols 28

loT data collection, storage, and analytics 30

loT integration platforms and solutions 30
The loT of the future and the need to secure 31
The future — cognitive systems and the loT 31

Summary 32

[i]

Table of Contents

Chapter 2: Vulnerabilities, Attacks, and Countermeasures 33
Primer on threats, vulnerability, and risks (TVR) 34
The classic pillars of information assurance 34
Threats 36
Vulnerability 36
Risks 38
Primer on attacks and countermeasures 39
Common loT attack types 39
Attack trees 41
Building an attack tree 42
Fault (failure) trees and CPS 46
Fault tree and attack tree differences 47
Merging fault and attack tree analysis 47
Example anatomy of a deadly cyber-physical attack 49
Today's loT attacks 52
Attacks 53
Wireless reconnaissance and mapping 53
Security protocol attacks 54
Physical security attacks 54
Application security attacks 54
Lessons learned and systematic approaches 55
Threat modeling an loT system 56
Step 1 — identify the assets 58
Step 2 — create a system/architecture overview 59
Step 3 — decompose the loT system 62
Step 4 — identify threats 65
Step 5 — document the threats 68
Step 6 — rate the threats 69
Summary 70
Chapter 3: Security Engineering for loT Development 71
Building security in to design and development 72
Security in agile developments 73
Focusing on the loT device in operation 76
Secure design 78
Safety and security design 79
Threat modeling 79
Privacy impact assessment 79
Safety impact assessment 80
Compliance 81
Security system integration 84
Processes and agreements 88
Secure acquisition process 88
Secure update process 88

Establish SLAs

88

Lii]

Table of Contents

Establish privacy agreements 89
Consider new liabilities and guard against risk exposure 90
Establish an loT physical security plan 9
Technology selection — security products and services 92
loT device hardware 92
Selecting an MCU 92
Selecting a real-time operating system (RTOS) 93
loT relationship platforms 94
Cryptographic security APIs 95
Authentication/authorization 97
Edge 98
Security monitoring 99
Summary 102
Chapter 4: The loT Security Lifecycle 103
The secure loT system implementation lifecycle 104
Implementation and integration 105
loT security CONOPS document 105
Network and security integration 107
System security verification and validation (V&V) 111
Security training 112
Secure configurations 113
Operations and maintenance 116
Managing identities, roles, and attributes 116
Security monitoring 120
Penetration testing 122
Compliance monitoring 126
Asset and configuration management 126
Incident management 128
Forensics 128
Dispose 128
Secure device disposal and zeroization 129
Data purging 129
Inventory control 129
Data archiving and records management 129
Summary 130
Chapter 5: Cryptographic Fundamentals for
loT Security Engineering 131
Cryptography and its role in securing the loT 132
Types and uses of cryptographic primitives in the loT 133
Encryption and decryption 134
Symmetric encryption 136
Asymmetric encryption 138
Hashes 139
Digital signatures 141
Symmetric (MACs) 143

[iii]

Table of Contents

Random number generation 144
Ciphersuites 146
Cryptographic module principles 147
Cryptographic key management fundamentals 153
Key generation 155
Key establishment 155
Key derivation 156
Key storage 158
Key escrow 158
Key lifetime 158
Key zeroization 159
Accounting and management 160
Summary of key management recommendations 161
Examining cryptographic controls for loT protocols 162
Cryptographic controls built into loT communication protocols 162
ZigBee 163
Bluetooth-LE 165
Near field communication (NFC) 167
Cryptographic controls built into loT messaging protocols 167
MQTT 167
CoAP 167
DDS 168
REST 168
Future directions of the loT and cryptography 169
Summary 171
Chapter 6: Identity and Access Management Solutions for
the loT 173
An introduction to identity and access management for the loT 174
The identity lifecycle 176
Establish naming conventions and uniqueness requirements 177
Naming a device 178
Secure bootstrap 179
Credential and attribute provisioning 181
Local access 183
Account monitoring and control 183
Account updates 183
Account suspension 184
Account/credential deactivation/deletion 184
Authentication credentials 184
Passwords 184
Symmetric keys 185
Certificates 186

[iv]

Table of Contents

X.509 186
IEEE 1609.2 187
Biometrics 187
New work in authorization for the IoT 188
loT IAM infrastructure 188
802.1x 189
PKI for the loT 189
PKI primer 190
Trust stores 192

PKI architecture for privacy 193
Revocation support 194
Authorization and access control 195
OAuth 2.0 195
Authorization and access controls within publish/subscribe protocols 197
Access controls within communication protocols 198
Summary 198
Chapter 7: Mitigating loT Privacy Concerns 199
Privacy challenges introduced by the loT 200
A complex sharing environment 201
Wearables 202
Smart homes 202
Metadata can leak private information also 202
New privacy approaches for credentials 203
Privacy impacts on loT security systems 204
New methods of surveillance 205
Guide to performing an loT PIA 206
Overview 206
Authorities 208
Characterizing collected information 208
Uses of collected information 212
Security 212
Notice 213
Data retention 214
Information sharing 214
Redress 215
Auditing and accountability 216
PbD principles 216
Privacy embedded into design 216
Positive-sum, not zero-sum 217
End-to-end security 217
Visibility and transparency 218
Respect for user privacy 218

[v]

Table of Contents

Privacy engineering recommendations 219
Privacy throughout the organization 220
Privacy engineering professionals 221
Privacy engineering activities 222

Summary 223

Chapter 8: Setting Up a Compliance Monitoring Program
for the loT 225

loT compliance 226
Implementing loT systems in a compliant manner 227
An loT compliance program 229

Executive oversight 229
Policies, procedures, and documentation 230
Training and education 231
Testing 234
Internal compliance monitoring 234
Periodic risk assessments 239

A complex compliance environment 244
Challenges associated with loT compliance 244
Examining existing compliance standards support for the 0T 245

Underwriters Laboratory loT certification 245

NIST CPS efforts 246
NERC CIP 247
HIPAA/HITECH 248

PCI DSS 248

NIST Risk Management Framework (RMF) 250
Summary 251
Chapter 9: Cloud Security for the loT 253

Cloud services and the loT 254
Asset/inventory management 254
Service provisioning, billing, and entitiement management 255
Real-time monitoring 255
Sensor coordination 255
Customer intelligence and marketing 256
Information sharing 256
Message transport/broadcast 257
Examining loT threats from a cloud perspective 257

Exploring cloud service provider loT offerings 259
AWS loT 259
Microsoft Azure IoT suite 264
Cisco Fog Computing 265
IBM Watson loT platform 267

MQTT and REST interfaces 267

[vi]

Table of Contents

Cloud loT security controls 268
Authentication (and authorization) 268
Amazon AWS |IAM 268
Azure authentication 269
Software/firmware updates 269
End-to-end security recommendations 270
Maintain data integrity 271
Secure bootstrap and enroliment of lIoT devices 272
Security monitoring 272
Tailoring an enterprise loT cloud security architecture 273
New directions in cloud-enabled IOT computing 275
loT-enablers of the cloud 275
Software defined networking (SDN) 275
Data services 276
Container support for secure development environments 276
Containers for deployment support 277
Microservices 277
The move to 5G connectivity 278
Cloud-enabled directions 278
On-demand computing and the loT (dynamic compute resources) 278
New distributed trust models for the cloud 279
Cognitive loT 280
Summary 280
Chapter 10: loT Incident Response 281
Threats both to safety and security 282
Planning and executing an loT incident response 285
Incident response planning 287
loT system categorization 287

loT incident response procedures 289
The cloud provider's role 290
loT incident response team composition 291
Communication planning 292
Exercises and operationalizing an IRP in your organization 292
Detection and analysis 293
Analyzing the compromised system 295
Analyzing the loT devices involved 298
Escalate and monitor 299
Containment, eradication, and recovery 300
Post-incident activities 301
Summary 302

Index 303

[vii]

Preface

Only a few people would contest the assertion that the phenomenon of the

Internet of Things poses problems related to security, safety, and privacy. Given
the remarkable industrial and consumer diversity of the IoT, one of the principal
challenges and goals we faced when electing to write this book was determining
how to identify and distill the core IoT security principles in as useful, but
industry-agnostic a way as possible. It was equally important to balance real-world
application with background theory, especially given the unfathomable number

of current and forthcoming IoT products, systems, and applications. To end this,
we included some basic security (and safety) topics that we must adequately, if
minimally, cover as they are needed as a reference point in any meaningful security
conversation. Some of the security topics apply to devices (endpoints), some to
communication connections between them, and yet others to the larger enterprise.

Another goal of this book was to lay out security guidance in a way that did not
regurgitate the vast amounts of existing cybersecurity knowledge as it applies to
today's networks, hosts, operating systems, software, and so on, though we realized
some is necessary for a meaningful discussion on IoT security. Not wanting to

align with a single industry or company selling products, we strove to sufficiently
carve out and tailor useful security approaches that encompass the peculiarities
and nuances of what we think both distinguishes and aligns IoT with conventional
cybersecurity.

A wide range of both legacy industries (for example, home appliance makers, toy
manufacturers, automotive, and so on) and startup technology companies are today
creating and selling connected devices and services at a phenomenal and growing
rate. Unfortunately, not all are terribly secure —a fact that some security researchers
have unrelentingly pointed out, often with a sense of genuine concern. Though much
of the criticism is valid and warranted, some of it has unfortunately been conveyed
with a certain degree of unhelpful hubris.

[ix]

Preface

Interestingly, however, is how advanced some of the legacy industries are with
regard to high-assurance safety and fault-tolerant design. These industries make
extensive use of the core engineering disciplines —mechanical, electrical, industrial,
aerospace, and control engineering —and high-assurance safety design to engineer
products and complex systems that are, well, pretty safe. Many cybersecurity
engineers are frankly ignorant of these disciplines and their remarkable contributions
to safety and fault-tolerant design. Hence, we arrive at one of the serious
obstructions that IoT imposes to achieving its security goals: poor collaboration
between safety, functional, and security engineering disciplines needed to design
and deploy what we term cyber-physical systems (CPS). CPS put the physical

and digital engineering disciplines together in ways that are seldom addressed in
academic curricula or corporate engineering offices. It is our hope that engineers,
security engineers, and all types of technology managers learn to better collaborate
on the required safety and security-assurance goals.

While we benefit from the IoT, we must prevent, to the highest possible degree, our
current and future IoT from harming us; and to do this, we need to secure it properly
and safely. We hope you enjoy this book and find the information useful for securing
your IoT.

What this book covers

Chapter 1, A Brave New World, introduces you to the basics of IoT, its definition, uses,
applications, and its implementations.

Chapter 2, Vulnerabilities, Attacks, and Countermeasures, takes you on a tour where
you will learn about the various threats and the measures that we can take to
counter them.

Chapter 3, Security Engineering for IoT Development, teaches you about the various
phases of the IoT security lifecycle.

Chapter 4, The IoT Security Lifecycle, explores the operational aspects of the IoT
security lifecycle in detail.

Chapter 5, Cryptographic Fundamentals for IoT Security Engineering, provides a
background on applied cryptography.

Chapter 6, Identity and Access Management Solutions for the IoT, dives deep into identity
and access management for the IoT.

Chapter 7, Mitigating IoT Privacy Concerns, explores IoT privacy concerns. It will also
help you to understand how to address and mitigate such concerns.

Chapter 8, Setting Up a Compliance Monitoring Program for the IoT, helps you explore
setting up an IoT compliance program.

[x]

Preface

Chapter 9, Cloud Security for the IoT, explains the concepts of cloud security that are
related to the IoT.

Chapter 10, IoT Incident Response, explores incident management and forensics for
the IoT.

What you need for this book

You will need SecurelTree version 4.3, a common desktop or laptop, and a Windows,
Mac, or Linux platform running Java 8.

Who this book is for

This book targets IT security professionals and security engineers (including
pentesters, security architects, and ethical hackers) who would like to ensure the
security of their organization's data when connected through the IoT. Business
analysts and managers will also find this book useful.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Smart light switches in which the switch sends a PuT command to change the
behavior (state, color) of each light in the system."

New terms and important words are shown in bold.

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[xi]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

[xii]

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[xiii]

A Brave New World

"When the winds of change blow, some people build walls and others build
windmills."

— Chinese proverb

The Internet of Things is changing everything. Unfortunately, many industries,
consumer and commercial technology device owners, and infrastructure operators
are fast discovering themselves at the precipice of a security nightmare. The drive

to make all devices "smart" is creating a frenzy of opportunity for cyber-criminals,
nation-state actors, and security researchers alike. These threats will only grow

in their potential impact on the economy, corporations, business transactions,
individual privacy, and safety. Target, Sony Pictures, insurance providers such as
Blue Cross, and even the White House Office of Personnel and Management (OPM)
provide vivid, not-so-pleasant newsflashes about major vulnerabilities and security
breaches in the traditional cybersecurity sense. Some of these breaches have led to
the tarnishing or downfall of companies and CEOs, and most importantly, significant
damage to individual citizens. Our record in cybersecurity has proven to be
substandard. Now consider the world of the Internet of Things, or IoT, things such
as Linux-embedded smart refrigerators, connected washing machines, automobiles,
wearables, implantable medical devices, factory robotics systems, and just about
anything newly connected over networks. Historically, many of these industries
never had to be concerned with security. Given the feverish race to be competitive
with marketable new products and features, however, they now find themselves in
dangerous territory, not knowing how to develop, deploy, and securely operate.

[11]

A Brave New World

While we advance technologically, there are ever-present human motivations and
tendencies in some people to attempt, consciously or unconsciously, to exploit
those advancements. We asserted above that we are at the precipice of a security
nightmare. What do we mean by this? For one, technology innovation in the IoT is
rapidly outpacing the security knowledge and awareness of the IoT. New physical
and information systems, devices, and connections barely dreamed of a decade ago
are quickly stretching human ethics to the limit. Consider a similar field that allows
us to draw analogies —bioethics and the new, extraordinary genetic engineering
capabilities we now have. We can now biologically synthesize DNA from digitally
sequenced nucleotide bases to engineer new attributes into creatures, and humans.
Just because we can do something doesn't mean we always should. Just because we
can connect a new device doesn't mean we always should. But that is exactly what
the IoT is doing.

We must counterbalance all of our dreamy, hopeful thoughts about humanity's
future with the fact that human consciousness and behavior always has, and
always will, fall short of utopian ideals. There will always be overt and concealed
criminal activity; there will always be otherwise decent citizens who find themselves
entangled in plots, financial messes, blackmail; there will always be accidents; there
will always be profiteers and scammers willing to hurt and benefit from the misery
of others. In short, there will always be some individuals motivated to break in and
compromise devices and systems for the same reason a burglar breaks into your
house to steal your most prized possessions. Your loss is his gain. Worse, with

the IoT, the motivation may extend to imposing physical injury or even death in
some cases. A keystroke today can save a human life if properly configuring a
pacemaker; it can also disable a car's braking system or hobble an Iranian nuclear
research facility.

IoT security is clearly important, but before we can delve into practical aspects of
securing it, the remainder of this chapter will address the following:

* Defining the IoT

* IoT uses today

* The cybersecurity, cyber-physical, and IoT relationship

* Why cross-industry collaboration is vital

* The things in the IoT

* Enterprise IoT

e The IoT of the future and the need to secure it

[2]

Chapter 1

Defining the loT

While any new generation prides itself on the technological advancements it enjoys
compared to its forebears, it is not uncommon for each to dismiss or simply not
acknowledge the enormity of thought, innovation, collaboration, competition, and
connections throughout history that made, say, smartphones or unmanned aircraft
possible. The reality is that while previous generations may not have enjoyed the
realizations in gadgetry we have today, they most certainly did envision them.
Science fiction has always served as a frighteningly predictive medium, whether

it's Arthur C. Clarke's envisioning of Earth-orbiting satellites or E.E. "Doc" Smith's
classic sci-fi stories melding the universe of thought and action together (reminiscent
of today's phenomenal, new brain-machine interfaces). While the term and acronym
IoT is new, the ideas of today's and tomorrow's IoT are not.

Consider one of the greatest engineering pioneers, Nikola Tesla, who in a 1926
interview with Colliers magazine said:

"When wireless is perfectly applied the whole earth will be converted into a huge
brain, which in fact it is, all things being particles of a real and rhythmic whole and
the instruments through which we shall be able to do this will be amazingly simple
compared with our present telephone. A man will be able to carry one in his vest
pocket."

Source: http://www.tfcbooks.com/tesla/1926-01-30.htmv

In 1950, the British scientist Alan Turing was quoted as saying;:

"It can also be maintained that it is best to provide the machine with the best sense
organs that money can buy, and then teach it to understand and speak English.
This process could follow the normal teaching of a child."

Source: A. M. Turing (1950) Computing Machinery and Intelligence.
Mind 49: 433-460

No doubt, the incredible advancements in digital processing, communications,
manufacturing, sensors, and control are bringing to life the realistic imaginings of
both our current generation and our forebears. Such advancements provide us a
powerful metaphor of the very ecosystem of the thoughts, needs, and wants that
drive us to build new tools and solutions we both want for enjoyment and need
for survival.

[31]

http://www.tfcbooks.com/tesla/1926-01-30.htmv

A Brave New World

We arrive then at the problem of how to define the IoT and how to distinguish the
IoT from today's Internet of, well, computers. The IoT is certainly not a new term for
mobile-to-mobile technology. It is far more. While many definitions of the IoT exist,
we will primarily lean on the following three throughout this book:

The ITU's member-approved definition defines the IoT as "A global
infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving,
interoperable information and communication technologies."

http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060

The IEEE's small environment description of the IoT is "An IoT is a network
that connects uniquely identifiable "things" to the Internet. The "things" have
sensing/actuation and potential programmability capabilities. Through the
exploitation of the unique identification and sensing, information about the
"thing" can be collected and the state of the "thing" can be changed from
anywhere, anytime, by anything."

http://iot.ieee.org/images/files/pdf/IEEE IoT Towards
Definition Internet of Things Revisionl 27MAY15.pdf

The IEEE's large environment scenario describes the IoT as "Internet

of Things envisions a self-configuring, adaptive, complex network

that interconnects things to the Internet through the use of standard
communication protocols. The interconnected things have physical or
virtual representation in the digital world, sensing/actuation capability, a
programmability feature, and are uniquely identifiable. The representation
contains information including the thing's identity, status, location, or any
other business, social or privately relevant information. The things offer
services, with or without human intervention, through the exploitation

of unique identification, data capture and communication, and actuation
capability. The service is exploited through the use of intelligent interfaces
and is made available anywhere, anytime, and for anything taking security
into consideration."

http://iot.ieee.org/images/files/pdf/IEEE_IoT Towards_
Definition Internet of Things Revisionl 27MAY15.pdf

Each of these definitions is complementary. They overlap and describe just about
anything that can be dreamed up and physically or logically connected to anything
else over a diverse, Internet-connected world.

[4]

http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf

Chapter 1

Cybersecurity versus loT security and cyber-
physical systems

IoT security is not traditional cybersecurity, but a fusion of cybersecurity with

other engineering disciplines. It addresses much more than mere data, servers,
network infrastructure, and information security. Rather, it includes the direct or
distributed monitoring and/or control of the state of physical systems connected
over the Internet. In other words, a large element of what distinguishes the IoT

from cybersecurity is what many industry practitioners today refer to as cyber-
physical systems. Cybersecurity, if you like that term at all, generally does not
address the physical and security aspects of the hardware device or the physical
world interactions it can have. Digital control of physical processes over networks
makes the IoT unique in that the security equation is not limited to basic information
assurance principles of confidentiality, integrity, non-repudiation, and so on,

but also that of physical resources and machines that originate and receive that
information in the physical world. In other words, the IoT has very real analog and
physical elements. IoT devices are physical things, many of which are safety-related.
Therefore, the compromise of such devices may lead to physical harm of persons and
property, even death.

The subject of IoT security, then, is not the application of a single, static set of meta-
security rules as they apply to networked devices and hosts. It requires a unique
application for each system and system-of-systems in which IoT devices participate.
IoT devices have many different embodiments, but collectively, an IoT device is
almost anything possessing the following properties:

* Ability to communicate either directly on, or indirectly over the Internet

* Manipulates or monitors something physical (in the device or the device's
medium or environment), that is, the thing itself, or a direct connection
to a thing

Cognizant of these two properties, anything physical can be an IoT device because
anything physical today can be connected to the Internet with the appropriate
electronic interfaces. The security of the IoT device is then a function of the device's
use, the physical process or state impacted by or controlled by the device, and the
sensitivity of the systems to which the device connects.

[51]

A Brave New World

Cyber-physical systems (CPS) are a huge, overlapping subset of the IoT. They

fuse a broad range of engineering disciplines, each with a historically well-defined
scope that includes the essential theory, lore, application, and relevant subject
matter needed by their respective practitioners. These topics range from engineering
dynamics, fluid dynamics, thermodynamics, control theory, digital design, and
many others. So, what is the difference between the IoT and CPSs? Borrowing
from the IEEE, the principal difference is that a CPS comprising connected sensors,
actuators, and monitoring/control systems do not necessarily have to be connected
to the Internet. A CPS can be isolated from the Internet and still achieve its business
objective. From a communications perspective, an loT is comprised of things that,
necessarily and by definition, are connected to the Internet and through some
aggregation of applications achieve some business objective.

Note that CPS, even if technically air-gapped from the Internet, will
almost always be connected in some way to the Internet, whether through
its supply chain, operating personnel, or out-of-band software patch
L management system.
http://iot.ieee.org/images/files/pdf/IEEE_IoT Towards
Definition Internet of Things Revisionl 27MAY15.pdf

Any ‘Thing’

Sensor and Actuator
‘Things’

g2

5 8. Internet of Things

a3

=8

R
ow ow
oc o
o = o =.
g3 g3
R 3 a

[6]

http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf

Chapter 1

In other words, it is worthwhile to think of the IoT as a superset of CPS, as CPS can
be enveloped into the IoT simply by connectivity to the Internet. A CPS is generally
a rigorously engineered system designed for safety, security, and functionality.
Emergent enterprise IoT deployments should take lessons learned from the
engineering rigor associated with CPS.

Why cross-industry collaboration is vital

We will cover IoT security engineering in the following chapters, but for now we
would like to emphasize how cross-discipline security engineering is in the real
world. One struggles to find it covered in academic curricula outside of a few
university computer science programs, network engineering, or dedicated security
programs such as SANS. Most security practitioners have strong computer science
and networking skills but are less versed in the physical and safety engineering
disciplines covered by core engineering curricula. So, the cyber-physical aspects of
the IoT face a safety versus security clash of cultures and conundrums:

* Everyone is responsible for security

* TheIoT and CPS expose huge security problems crisscrossing information
computing and the physical world

* Most traditional, core engineering disciplines rarely address security
engineering (though some address safety)

* Many security engineers are ignorant of core engineering disciplines
(for example, mechanical, chemical, electrical), including fault-tolerant
safety design

Because the IoT is concerned with connecting physically engineered and
manufactured objects —and thus may be a CPS — this conundrum more than any
other comes into play. The IoT device engineer may be well versed in safety issues,
but not fully understand the security implications of design decisions. Likewise,
skilled security engineers may not understand the physical engineering nuances of
a thing to ascertain and characterize its physical-world interactions (in its intended
environment) and fix them. In other words, core engineering disciplines typically
focus on functional design, creating things to do what we want them to do. Security
engineering shifts the view to consider what the thing can do and how one might
misuse it in ways the original designer never considered. Malicious hackers depend
on this. The refrigeration system engineer never had to consider a cryptographic
access control scheme in what was historically a basic thermodynamic system
design. Now, designers of connected refrigerators do, because malicious hackers will
look for unauthenticated data originating from the refrigerator or attempt to exploit
it and pivot to additional nodes in a home network.

[71

A Brave New World

Security engineering is maturing as a cross-discipline, fortunately. One can argue
that it is more efficient to enlighten a broad range of engineering professionals

in baseline security principles than it is to train existing security engineers in

all physical engineering subjects. Improving loT security requires that security
engineering tenets and principles be learned and promulgated by the core
engineering disciplines in their respective industries. If not, industries will

never succeed in responding well to emergent threats. Such a response requires
appropriating the right security mitigations at the right time when they are the least
expensive to implement (that is, the original design as well as its flexibility and
accommodation of future-proofing principles). For example, a thermodynamics
process and control engineer designing a power-plant will have tremendous
knowledge concerning the physical processes of the control system, safety
redundancies, and so on. If she understands security engineering principles, she will
be in a much better position to dictate additional sensors, redundant state estimation
logic, or redundant actuators based on certain exposures to other networks. In
addition, she will be in a much better position to ascertain the sensitivity of certain
state variables and timing information that network, host, application, sensor,

and actuator security controls should help protect. She can better characterize the
cyber-attack and control system interactions that might cause gas pressure and
temperature tolerances to be exceeded with a resultant explosion. The traditional
network cybersecurity engineer will not have the physical engineering basis on
which to orchestrate these design decisions.

Before characterizing today's IoT devices and enterprises, it should be clear how
cross-cutting the IoT is across industries. Medical device and biomedical companies,
automotive and aircraft manufacturers, the energy industry, even video game
makers and broad consumer markets are involved in the IoT. These industries,
historically isolated from each other, must learn to collaborate when it comes to
securing their devices and infrastructure. Unfortunately, there are some in these
industries who believe that most security mitigations need to be developed and
deployed uniquely in each industry. This isolated, turf-protecting approach is ill-
advised and short-sighted. It has the potential of stifling valuable cross-industry
security collaboration, learning, and development of common countermeasures.

[8]

Chapter 1

IoT security is an equal-opportunity threat environment; the same threats against
one industry exist against the others. An attack and compromise of one device
today may represent a threat to devices in almost all other industries. A smart light
bulb installed in a hospital may be compromised and used to perform various
privacy attacks on medical devices. In other words, the cross-industry relationship
may be due to intersections in the supply chain or the fact that one industry's loT
implementations were added to another industry's systems. Real-time intelligence
as well as lessons learned from attacks against industrial control systems should

be leveraged by all industries and tailored to suit. Threat intelligence, defined well
by Gartner, is: evidence-based knowledge, including context, mechanisms, indicators,
implications and actionable advice, about an existing or emerging menace or hazard to assets
that can be used to inform decisions regarding the subject's response to that menace or hazard
(http://www.gartner.com/document/2487216).

The discovery, analysis, understanding and sharing of how real-world threats are
compromising ever-present vulnerabilities needs to be improved for the IoT. No
single industry, government organization, standards body or other entity can assume
to be the dominant control of threat intelligence and information sharing. Security is
an ecosystem.

As a government standards body, NIST is well aware of this problem. NIST's
recently formed CPS Public Working Group represents a cross-industry collaboration
of security professionals working to build a framework approach to solving many
cyber-physical IoT challenges facing different industries. It is accomplishing this in
meta-form through its draft Framework for Cyber-Physical Systems. This framework
provides a useful reference frame from which to describe CPS along with their
security and physical properties. Industries will be able to leverage the framework

to improve and communicate CPS designs and provide a basis on which to develop
system-specific security standards. This book will address CPS security in more
detail in terms of common patterns that span many industries.

[o]

http://www.gartner.com/document/2487216

A Brave New World

Like the thermodynamics example we provided above, cyber-physical and many
IoT systems frequently invoke an intersection of safety and security engineering,
two disciplines that have developed on very different evolutionary paths but which
possess partially overlapping goals. We will delve more into safety aspects of IoT
security engineering later in this volume, but for now we point out an elegantly
expressed distinction between safety and security provided by noted academic Dr.
Barry Boehm, Axelrod, W. C., Engineering Safe and Secure Software Systems, p.61,
Massachussetts, Artech House, 2013. He poignantly but beautifully expressed the
relationship as follows:

* Safety: The system must not harm the world

* Security: The world must not harm the system

Thus it is clear that the IoT and IoT security are much more complex than traditional
networks, hosts and cybersecurity. Safety-conscious industries such as aircraft
manufacturers, regulators, and researchers have evolved highly effective safety
engineering approaches and standards because aircraft can harm the world, and

the people in it. The aircraft industry today, like the automotive industry, is now
playing catch-up with regard to security due to the accelerating growth of network
connectivity to their vehicles.

loT uses today

It is a cliché to declare how fast Moore's law is changing our technology-rich world,
how connected our devices, social networks, even bodies, cars, and other objects
are becoming,.

Another useful way to think of the IoT is what happens when the network extends
not to the last mile or last inch endpoint, but the last micron where virtual and
digital become physical. Whether the network extends to a motor servo controller,
temperature sensor, accelerometer, light bulb, stepper motor, washing machine
monitor, or pacemaker, the effect is the same; the information sources and sinks
allow broad control, monitoring, and useful visibility between our physical and
virtual worlds. In the case of the IoT, the physical world is a direct component

of the digital information, whether acting as subject or object.

IoT applications are boundless. Volumes could be written today about what is
already deployed and what is currently being planned. The following are just a few
examples of how we are leveraging the IoT.

[10]

Chapter 1

Energy industry and smart grid

Fast disappearing are the days of utility companies sending workers out in vans
to read the electrical and gas meters mounted to the exterior of your house. Some
homes today and all homes tomorrow will be connected homes with connected
smart appliances that communicate electrical demand and load information
with the utilities. Combined with a utility's ability to reach down into the home's
appliance, such demand-response technology aims to make our energy generation
and distribution systems much more efficient, resilient, and more supportive of
environmentally responsible living. Home appliances represent just one Home
Area Network component of the so-called smart grid, however. The distribution,
monitoring, and control systems of this energy system involve the IoT in many
capacities. Ubiquitous sensing, control, and communications needed in energy
production are critical CPS elements of the IoT. The newly installed smart meter
now attached to your home is just one example, and allows direct two-way
communication between your home's electrical enclave and the utility providing
its energy.

Connected vehicles and transportation

Consider a connected automobile that is constantly leveraging an onboard array of
sensors that scan the roadway and make real-time calculations to identify potential
safety issues that a driver would not be able to see. Now, add additional vehicle-
to-vehicle (V2V) communication capabilities that allow other cars to message and
signal to your vehicle. Preemptive messages allow decisions to be made based on
information that is not yet available to the driver's or vehicle's line-of-sight sensors
(for example, reporting of vehicle pile-up in dense fog conditions). With all of these
capabilities, we can begin to have confidence in the abilities of cars to eventually
drive themselves (autonomous vehicles) safely and not just report hazards to us.

Manufacturing

The manufacturing world has driven a substantial amount of the industrial IoT use
cases. Robotic systems, assembly lines, manufacturing plan design and operation;

all of these systems are driven by myriad types of connected sensors and actuators.
Originally isolated, now they're connected over various data buses, intranets, and
the Internet. Distributed automation and control requires diverse and distributed
devices communicating with management and monitoring applications. Improving
the efficiency of these systems has been the principal driver for such IoT enablement.

[11]

A Brave New World

Wearables

Wearables in the IoT include anything strapped to or otherwise attached to the
human body that collects state, communicates information, or otherwise performs
some type of control function on or around the individual. The Apple iWatch, FitBit,
and others are well-known examples. Wearable, networked sensors may detect
inertial acceleration (for example, to evaluate a runner's stride and tempo), heart rate,
temperature, geospatial location (for calculating speed and historic tracks), and many
others. The enormous utility of wearables and the data they produce is evident in the
variety of wearable applications available on today's iTunes proprietary application
stores. The majority of wearables have direct or indirect network connectivity to
various cloud service providers typically associated with the wearables manufacturer
(for example, Fitbit). Some organizations are now including wearables in corporate
fitness programs to track employee health and encourage health-conscious living
with the promise of lowering corporate and employee healthcare expenses.

New advancements will transform wearables, however, into far more sophisticated
structures and enhancements to common living items. For example, micro devices
and sensors are being embedded into clothing; virtual reality goggles are being
miniaturized and are transforming how we simultaneously interface with the
physical and virtual worlds. In addition, the variety of new consumer-level medical
wearables promises to improve health monitoring and reporting. The barriers are
fast disappearing between the machine and the human body.

Implantables and medical devices

If wearable IoT devices don't closely enough bridge the physical and cyber domains,
implantables make up the distance. Implantables include any sensor, controller,

or communication device that is inserted and operated within the human body.
While implantable IoT devices are typically associated with the medical field (for
example, pacemakers), they may also include non-medical products and use cases
such as embedded RFID tags usable in physical and logical access control systems.
The implant industry is no different than any other device industry in that it has
added new communication interfaces to implanted devices that allow the devices

to be accessed, controlled, and monitored over a network. Those devices just
happened to be located subcutaneously in human beings or other creatures. Both
wearables and implantable IoT devices are being miniaturized in the form of micro-
electrical mechanical systems (MEMS), some of which can communicate over radio
frequency (RF).

[12]

Chapter 1

The IoT in the enterprise

Enterprise IoT is also moving forward with the deployment of IoT systems that
serve various business purposes. Some industries have matured their concepts of
IoT more than others. In the energy industry, for example, the roll-out of advanced
metering infrastructures (which include smart meters with wireless communications
capabilities) has greatly enhanced the energy use and monitoring capabilities of the
utility. Other industries, such as retail, for example, are still trying to determine how
to fully leverage new sensors and data in retail establishments to support enhanced
marketing capabilities, improved customer satisfaction, and higher sales.

The architecture of IoT enterprise systems is relatively consistent across industries.
Given the various technology layers and physical components that comprise an

IoT ecosystem, it is good to consider an enterprise IoT implementation as a system-
of-systems. The architecting of these systems that provide business value to
organizations can be a complex undertaking, as enterprise architects work to design
integrated solutions that include edge devices, gateways, applications, transports,
cloud services, diverse protocols, and data analytics capabilities.

Indeed, some enterprises may find that they must utilize IoT capabilities typically
found in other industries and served by new or unfamiliar technology providers.
Consider a typical Fortune 500 company that may own both manufacturing and
retail facilities. This company's Chief Information Officer (CIO) may need to
consider deploying smart manufacturing systems, including sensors that track
industrial equipment health status, robotics that perform various manufacturing
functions, as well as sensors that provide data used to optimize the overall
manufacturing process. Some of the deployed sensors may even be embedded
right in their own products to add additional benefits for their customers.

This same company must also consider how to leverage the IoT to offer enhanced
retail experiences to their customers. This may include information transmitted to
smart billboards. In the near future, through direct integration with a connected
vehicle's infotainment system, customized advertisements to consumers as they
pass by a retail establishment will be possible. There are also complex data analytics
capabilities required to support these integrations and customizations.

Elaborating on the Fortune 500 company example, the same CIO may also be tasked
with managing fleets of connected cars and shipping vehicles, drone systems that
support the inspection of critical infrastructure and facilities, agricultural sensors that
are embedded into the ground to provide feedback on soil quality, and even sensors
embedded in concrete to provide feedback on the curing process at their construction
sites. These examples only begin to scratch the surface of the types of connected IoT
implementations and deployments we will see by 2020 and beyond.

[13]

A Brave New World

This complexity introduces challenges to keeping the IoT secure, and ensuring

that particular instances of the IoT cannot be used as a pivoting point to attack

other enterprise systems and applications. For this, organizations must employ

the services of enterprise security architects who can look at the IoT from the big
picture perspective. Security architects will need to be critically involved early in the
design process to establish security requirements that must be tracked and followed
through during the development and deployment of the enterprise IoT system. It is
much too expensive to attempt to integrate security after the fact. Enterprise security
architects will select the infrastructure and backend system components that can
easily scale to support not only the massive quantities of loT-generated data, but also
have the ability to make secure, actionable sense of all of that data. The following
figure provides a representative view of a generic enterprise loT system-of-systems,
and showcases the IoT's dynamic and diverse nature:

~~ Reportin
L Gateway p 9
Healthcare
Smart
Sensors
. [a5a} External Web
‘. . Service integrations
Bluetooth-LE RF

Enterprise loT Data
Aggregation

6LoWPAN Sensor

Network
e

1 Topic
. Subscribers

MQTT

ﬁ Gateway
Roadside
vv o9 o ENERGY MQTT-SM
Gy G ol Monitoring Gateway
T T = =
L

CoAP Sensor Network
Connected Vehicles

e

Fleet Management ENVIRONMENTAL
MONITORING marr
Sensor Net
(Publish/
Subscribe)

[14]

Chapter 1

Generically, an IoT deployment can consist of smart sensors, control systems and
actuators, web and other cloud services, analytics, reporting, and a host of other
components and services that satisfy a variety of business use cases. Note that in the
preceding figure, we see energy IoT deployments connected to the cloud along with
connected vehicle roadside equipment, healthcare equipment, and environmental
monitoring sensors. This is not accidental — as previously discussed, one principal
feature of IoT is that anything can be connected to everything, and everything to
anything. It is perfectly conceivable that a healthcare biosensor both connects to a
hospital's monitoring and data analytics system and simultaneously communicates
power consumption data to local and remote energy monitoring equipment

and systems.

As enterprise security architects begin to design their systems, they will note that
the flexibility associated with today's IoT market affords them significant creative
ability, as they bring together many different types of protocols, processors, and
sensors to meet business objectives. As designs mature, it will become evident that
organizations should consider a revision to their overall enterprise architecture to
better meet the scaling needs afforded by the large quantities of data that will be
collected. Gartner predicts that we will begin to see a shift in the design of transport
networks and data processing centers as the IoT matures:

"IoT threatens to generate massive amounts of input data from sources that are
globally distributed. Transferring the entirety of that data to a single location for
processing will not be technically and economically viable. The recent trend to
centralize applications to reduce costs and increase security is incompatible with
the IoT. Organizations will be forced to aggregate data in multiple distributed
mini data centers where initial processing can occur. Relevant data will then be
forwarded to a central site for additional processing."

Source: http://www.gartner.com/newsroom/id/2684616

In other words, unprecedented amounts of data will be moved around in
unprecedented ways. Integration points will also play a significant role in an
enterprise's IoT adoption strategy. Today's ability to share data across organizational
boundaries is large, but dwarfed by the justifications and ability to do so in the

near future. Many of the data analytics capabilities that support the IoT will rely

on a mix of data captured from sensors as well as data from third parties and
independent websites.

[15]

http://www.gartner.com/newsroom/id/2684616

A Brave New World

Consider the concept of a microgrid. Microgrids are self-contained energy generation
and distribution systems that allow owner-operators to be heavily self-sufficient.
Microgrid control systems rely on data captured from the edge devices themselves,
for example, solar panels or wind turbines, but also require data collected from the
Internet. The control system may capture data on energy prices from the local utility
through an application programming interface (API) that allows the system to
determine the optimal time to generate versus buy (or even sell back) energy from
the utility. The same control system may require weather forecast feeds to predict
how much energy their solar panel installations will generate during a certain period
of time.

Another example of the immense data collection from IoT devices is the anticipated
proliferation of Unmanned Aerial Systems (UAS) —or drones — that provide

an aerial platform for deploying data-rich airborne sensors. Today, 3D terrain
mapping is performed by inexpensive drones that collect high-resolution images
and associated metadata (location, camera information, and so on) and transfer
them to powerful backend systems for photogrammetric processing and digital
model generation. The processing of these datasets is too computationally intensive
to perform directly on a drone that faces unavoidable size, weight, and power
constraints. It must be done in backend systems and servers. These uses will
continue to grow, especially as the countries around the world make progress at
safely integrated unmanned aircraft into their national airspace systems.

From a security perspective, it is interesting to examine an enterprise IoT
implementation based on the many new points of connection and data types. These
integration points can significantly heighten the attack surface of an enterprise;
therefore, they must be thoroughly evaluated to understand the threats and most
cost-effective mitigations.

Another IoT challenge facing enterprise engineers is the ability to securely automate
processes and workflows. One of the greatest strengths of the IoT its emphasis

on automating transactions between devices and systems; however, we must
ensure that sufficient levels of trust are engineered into the systems supporting
those transactions. Not doing so will allow adversaries to leverage the automation
processes for their own purposes as scalable attack vectors. Organizations that
heavily automate workflows should spend adequate time designing their endpoint
hardening strategies and the cryptographic support technologies that are vitally
important to enabling device and system trust. This can often include infrastructure
build-outs such as Public Key Infrastructure (PKI) that provision authentication,
confidentiality, and cryptographic credentials to each endpoint in a transaction to
enable confidentiality, integrity, and authentication services.

[16]

Chapter 1

The things in the loT

There are so many different types of "things" within the IoT that it becomes difficult
to prescribe security recommendations for the development of any one particular
thing. To aid in doing this, we must first understand the definition of devices and
things. ITU-T Y.2060 prescribes the following definitions:

* Device: A piece of equipment with the mandatory capabilities of
communication and the optional capabilities of sensing, actuation, data
capture, data storage, and data processing

* Thing: An object of the physical world (physical things) or the information
world (virtual things), which is capable of being identified and integrated
into communication networks

An intrinsic capability of a thing, as it applies to the IoT, is its capability to
communicate. The communication methods and layers, especially as they apply to
security, are therefore given special attention in this book. Other aspects, such as
data storage, sophisticated processing, and data capture, are not present in all IoT
devices, but will be addressed in this book as well.

The definition of a thing is especially interesting as it refers to both physical and
virtual devices. In practice, we have seen the concept of virtual things in the context
of cloud provider solutions. For example, the Amazon Web Services (AWS) IoT
Cloud service includes elements known as thing shadows, virtual representations
of physical things. These thing shadows allow the enterprise to track the state of
physical things even when network connectivity is disrupted and they are not
observably online.

Some common IoT things include smart home appliances, connected vehicles
(onboard equipment as well as roadside-mounted units), RFID systems used in
inventory and identification systems, wearables, wired and wireless sensor arrays
and networks, local and remote gateways (mobile phones, tablets), Unmanned
Aircraft Systems (UAS), and a host of typically low-power embedded devices.
Next, we decompose common elements of IoT devices.

The loT device lifecycle

Before delving into the basic constitution of an IoT device, we first need to clarify
aspects of the IoT lifecycle. IoT security ultimately depends on the entire lifecycle,
therefore this book aims to provide security guidance across most of it. You will
see certain terms in this book used to specify different IoT lifecycle phases and the
relevant actors in each.

[17]

A Brave New World

loT device implementation

This includes all aspects of IoT device design and development. At times, we simply
refer to it as implementation. It includes the actual, physical, and logical designers

of an IoT device in its manufacturing and patching supply chain. Organizations
included in this phase include the following:

* Original Equipment Manufacturer (or just "manufacturer") (OEM): OEMs
will typically procure off-the-shelf hardware and firmware and tailor a
device with unique physical characteristics, enclosure, and/or applications.
They package and distribute the products to end operators.

* Board Support Package (BSP) vendors: This vendor typically provides to the
OEM customized or off-the-shelf firmware, APIs, and drivers between the
hardware and operating systems.

* Original Design Manufacturers (ODM): ODMs will typically provide
custom operating systems and OS APIs to OEMs. They may also include
hardware sub-assemblies that OEMs make use of.

loT service implementation

This phase refers to the service organizations who support IoT deployments through
enterprise APIs, gateways, and other architectural commodities. Organizations
supporting this phase include the following:

* Cloud service provider (CSP): These organizations typically provide,
at a minimum, infrastructure as a service

* OEMs: In some cases, IoT device manufacturers (for example, Samsung)
operate and manage their own infrastructure

loT device and service deployment

This lifecycle phase refers to the end deployment of the IoT devices using IoT
infrastructure. IoT deployment typically involves IoT application providers, end
service providers, and other businesses. Some of these businesses may operate
their own infrastructures (for example, some OEMs), but some make use of existing
infrastructure offerings as provided by Amazon AWS, Microsoft Azure, and others.
They typically provide service layers on top of what the infrastructure supports.

[18]

Chapter 1

e loT Device . __._ __
loT Device/Service ™ Implementation T

Deployment 7 Implement to others’ >

7 N specifications “-_\

/ K K . .

/ Users, loT Device ", /" Implement to their I *

,-‘ Deployers & Maintainers /4 own specifications m ‘-\
i H —

; '
i _ OEM !
! i

! i 7
1 ol s
i £ Other Implementers K4
i i (BSPs, Security -~
i H ~ Libraries, s, etc, -
] Connect and Invoke : e, hep),-
| Services i "'».H_H et
i -2 —=T
i T T R
i — i T
A - i TS
\-\ /./" loT Service ! Infrastructure Services, T~
e Providers ! APls, etc ~.
Fa Iy .

/ _\ 7 loT Infrastructure as a \.ll
N Implement, Integrate ,* teze“éi'fu 5 ;

", AY 3 &= o 3
NN and Deploy IOT /" Infrastructure Service S
~. . Commercial Services’ Providers) -
“‘___\ //' _,.1/
-‘I\-"“w_ e - - -’""“
e . loT Services pemmm T

Implementation

This book jumps around the three simplified lifecycle categories described above
depending on the security topic at hand. Each has an indispensible impact on the
end security of the devices and their tailored usage.

The hardware

There are a number of IoT development boards that have become popular for
prototyping and provide various levels of functionality. Examples of these boards
come from Arduino, Beagle Board, Pinoccio, Rasberry Pi, and CubieBoard, among
others. These development boards include microcontrollers (MCUs), which serve as
the brains of the device, provide memory, and a number of both digital and analog
General Purpose Input/Output (GPIO) pins. These boards can be modularly stacked
with other boards to provide communication capabilities, new sensors, actuators,
and so on to form a complete IoT device.

[19]

A Brave New World

There are a number of MCUs on the market today that are well suited for IoT
development and included within various development boards. Leading developers
of MCUs include ARM, Intel, Broadcom, Atmel, Texas Instruments (TI), Freescale,
and Microchip Technology. MCUs are integrated circuits (IC) that contain a
processor, Read Only Memory (ROM), and Random Access Memory (RAM).
Memory resources are frequently limited in these devices; however, a number

of manufacturers are IoT-enabling just about anything by augmenting these
microcontrollers with complete network stacks, interfaces, and RF and cellular-type
transceivers. All of this horsepower is going into system-on-chip configurations and
miniaturized daughter boards (single board computers).

In terms of sensor types in the IoT, the sky is the limit. Examples include temperature
sensors, accelerometers, air quality sensors, potentiometers, proximity sensors,
moisture sensors, and vibration sensors. These sensors are frequently hardwired into
the MCU for local processing, responsive actuation, and/or relay to other systems.

Operating systems

Although some IoT devices do not require an operating system, many utilize real
time operating system (RTOS) for process and memory management as well as
utility services supporting messaging and other communications. The selection of
each RTOS is based on needed performance, security and functional requirements
of the product.

The selection of any particular IoT component product needs to be evaluated against
the requirements of a particular IoT system. Some organizations may require more
elaborate operating systems with additional security features such as separation
kernels, high assurance process isolation, information flow control, and/or tightly
integrated cryptographic security architectures. In these scenarios, an enterprise
security architect should look to procure devices that support high-assurance
RTOSes, such as Green Hills IntegrityOS or Lynx Software's LynxOS. Some popular
IoT operating systems include TinyOS, Contiki, Mantis, FreeRTOS, BrilloOS,
Embedded Linux, ARM's mbedOS, and Snappy Ubuntu Core.

[20]

Chapter 1

Other critical security attributes pertain to security configuration and the storage
of security sensitive parameters. In some instances, configuration settings that are
applied to an operating system are lost upon power cycle without battery-backed
RAM or some other persistent storage. In many instances, a configuration file is
kept within persistent memory to provide the various network and other settings
necessary to allow the device to perform its functions and communicate. Of even
greater interest is the handling of the root password, other account passwords, and
cryptographic keys stored on the devices when the device is power-cycled. Each

of these issues has one or more security implications and requires the attention of
security engineers.

loT communications

In most deployments, an IoT device communicates with a gateway that in turn
communicates with a controller or a web service. There are many gateway options,
some as simple as a mobile device (smart phone) co-located with the IoT endpoint
and communicating over an RF protocol such as Bluetooth-LE, ZigBee, or Wi-Fi.
Gateways such as this are sometimes called edge gateways. Others may be more
centrally located in data centers to support any number of dedicated or proprietary
gateway loT protocols, such as message queuing telemetry transport (MQTT) or
representational state transfer (REST) communications. The web service may be
provided by the manufacturer of the device, or it may be an enterprise or public
cloud service that collects information from the fielded edge devices.

In many situations, the end-to-end connectivity between a fielded IoT device

and web service may be provided by a series of field and cloud gateways, each
aggregating larger quantities of data from sprawled-out devices. Dell, Intel, and
other companies have recently introduced IoT gateways to the market. Companies
such as Systech offer multi-protocol gateways that allow for a variety of IoT device
types to be connected together, using multiple antennas and receivers. There are
also consumer-focused gateways, also called hubs, available in the commercial
market, that support smart home communications. The Samsung SmartThings
hub (https://www.smartthings.com/) is one example of this.

[21]

https://www.smartthings.com/

A Brave New World

IoT devices may also communicate horizontally, enabling some powerful interactive
features. Enabling connected workflows requires the ability to interface via an API
to many diverse IoT product types. Consider the example of the smart home for
illustrative purposes. As you wake in the morning, your wearable autonomously
transmits the wake-up signal over the Wi-Fi network to subscribing devices.

The smart television turns on to your favorite news channel, the window blinds
automatically rise, the coffee maker kicks off, the shower starts and your car sets a
timer to warm up before you leave your home. All of these interactions are enabled
through device-to-device communications and illustrate the immense potential of
applying the IoT to business enterprises.

Within an IoT device and its host network, a wide array of protocols may be used to
enable message transfer and communication. The selection of the appropriate stack
of messaging and communication protocols is dependent upon the use cases and
security requirements of any specific system; however, there are common protocols
that each serve valuable purposes:

/ \
REST AMQOP
Application MQTT-SN

MQTT LLAP XMPP-IoT
Layer CoAP ssl
\ DDS XMPP y
g N\
Transport ep Transport T
Layer izp Security DTLS
L J
'g '
1Pvd
Network Layer IPv6
6LoWPAN (adaptation Layer)
. v,
LR-WPAN 802.15.4 IEEE 1609 WAVE LTE Sigfox
Link Layer/ INSTEON 80211 Wi 802156 WBAN DA

NFC
P hysica | WIRELESSHART Zigbee ZWave GPRS DASHT
Bluetooth /LE ~ 6LoWPAN Thread LoRaWAN

[22]

Chapter 1

This figure provides a view into some of the better-known protocols that can be
implemented by IoT devices to form a complete communications stack.

It is worth noting that at this time, many products' design and security requirements
are purely up to the manufacturer due to the infancy of the IoT. In many cases,
security professionals may not be included this early in the development phase.
Although some organizations may provide guidelines, suggestions and checklists,

it is important to note that industry regulations strictly pertaining to IoT devices

are almost non-existent. The industry for which the device is intended may have its
own requirements for privacy, transport communications, and so on, but they are
typically based on existing regulatory or compliance requirements such as HIPAA,
PCI, SOX, and others. The industrial IoT will probably lead the way in developing
much-needed security standardizations before consumer-oriented organizations. For
the time being, early efforts to secure IoT implementation and deployment are akin
to stuffing square pegs into round holes. The IoT simply has different needs.

Messaging protocols

At the top of the IoT communication stack live the protocols that support the
exchange of formatted message data between two endpoints, typically clients and
servers, or client-to-client. Protocols such as the MQTT, the Constrained Application
Protocol (CoAP), the Data Distribution Service (DDS), the Advanced Message
Queuing Protocol (AMQP), and the Extensible Messaging and Presence Protocol
(XMPP) run on top of lower-layer communication protocols and provide the ability
for both clients and servers to efficiently agree upon data to exchange. RESTful
communications can also be run very effectively within many IoT systems. As of
today, REST-based communications and MQTT seem to be leading the way.

(http://www.hivemg.com/blog/how-to-get-started-with-mgtt)

[23]

http://www.hivemq.com/blog/how-to-get-started-with-mqtt

A Brave New World

MQTT

MQTT is a publish/subscribe model whereby clients subscribe to topics and
maintain an always-on TCP connection to a broker server. As new messages are
sent to the broker, they include the topic with the message, allowing the broker to
determine which clients should receive the message. Messages are pushed to the
clients through the always-on connection.

Subscribers

MQTT Gateway

W
O g

Weather Sensors MQTT Sensor
." Net {Publish/

Subscribe}

This neatly supports a variety of communication use cases, wherein sensors MQTT-
publish their data to a broker and the broker passes them on to other subscribing
systems that have an interest in consuming or further processing the sensor data.
Although MQTT is primarily suited for use over TCP-based networks, the MQTT
For Sensor Networks (MQTT-SN) specification provides an optimized version of
MQTT for use within wireless sensor networks (WSN).

[24]

Chapter 1

Stanford-Clark and Linh Truong. MQTT For Sensor Networks (MQTT-SN) protocol
specification, Version 1.2. International Business Machines (IBM). 2013. URL:
http://mgtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_vl.2.pdf.

MQTT-SN is well suited for use with battery-operated devices possessing limited
processing and storage resources. It allows sensors and actuators to make use of the
publish/subscribe model on top of ZigBee and similar RF protocol specifications.

CoAP

CoAP is another IoT messaging protocol, UDP-based, and intended for use in
resource-constrained Internet devices such as WSN nodes. It consists of a set of
messages that map easily to HTTP: GET, POST, PUT, and DELETE.

Controller

CoAP://

T T
b OO 9

CoAP Sensor Network

GET
POST
PUT
DELETE

Source: http://www.herjulf.se/download/coap-2013-fall.pdf

CoAP device implementations communicate to web servers using specific Uniform
Resource Indicators (URIs) to process commands. Examples of CoAP-enabled
implementations include smart light switches in which the switch sends a puT
command to change the behavior (state, color) of each light in the system.

XMPP

XMPP is based on Extensible Markup Language (XML) and is an open technology
for real-time communications. It evolved from the Jabber Instant Messaging (IM)
prOtOCOIZ http://www.ibm.com/developerworks/library/x-xmppintro/.

[25]

http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://www.herjulf.se/download/coap-2013-fall.pdf
http://www.ibm.com/developerworks/library/x-xmppintro/

A Brave New World

XMPP supports the transmission of XML messages over TCP transport, allowing IoT
developers to efficiently implement service discovery and service advertisements.

XMPP-IoT is a tailored version of XMPP. Similar to human-to-human
communication scenarios, XMPP-IoT communications begin with friend requests:
http://www.xmpp-iot.org/basics/being-friends/.

Upon confirmation of a friend request, the two IoT devices are able to communicate
with each other regardless of their domains. There also exist parent-child device
relationships. Parent nodes within XMPP-IoT offer a degree of security in that they
can provide policies dictating whom a particular child node can trust (and hence
become friends with). Communication between IoT devices cannot proceed without
a confirmed friend request between them.

DDS

DDS is a data bus used for integrating intelligent machines. Like MQTT, it also uses a
publish/subscribe model for readers to subscribe to topics of interest.

D <«—Data Readers—»

Topic:
Position

Topic:
Temperature

Position

¥ ¥ 6 ¥

Source: http://www.slideshare.net/Angelo.Corsaro/applied-opensplice-
dds-a-collection-of-use-cases

[26]

http://www.xmpp-iot.org/basics/being-friends/
http://www.slideshare.net/Angelo.Corsaro/applied-opensplice-dds-a-collection-of-use-cases
http://www.slideshare.net/Angelo.Corsaro/applied-opensplice-dds-a-collection-of-use-cases

Chapter 1

DDS allows communications to happen in an anonymous and automated fashion,
since no relationship between endpoints is required. Additionally, Quality of
Service (QoS) mechanisms are built into the protocol. DDS is designed primarily
for device-to-device communication and is used in deployment scenarios involving
wind farms, medical imaging systems, and asset-tracking systems.

AMQP

AMQP was designed to provide a queuing system in support of server-to-server
communications. Applied to the IoT, it allows for both publish/subscribe and
point-to-point based communications. AMQP IoT endpoints listen for messages
on each queue. AMQP has been deployed in numerous sectors, such as
transportation in which vehicle telemetry devices provide data to analytics
systems for near-real-time processing.

Gateways

Most of the message specifications discussed so far require the implementation

of protocol-specific gateways or other devices to either re-encapsulate the
communications over another protocol (for example, if it needs to become IP-
routable) or perform protocol translation. The different ways of fusing such protocols
can have enormous security implications, potentially introducing new attack
surfaces into an enterprise. Protocol limitations, configuration, and stacking options
must be taken into account during the design of the enterprise architecture. Threat
modeling exercises by appropriately qualified protocol security engineers can help in
the process.

Transport protocols

The Internet was designed to operate reliably using the Transmission Control
Protocol (TCP), which facilitates the acknowledgement of TCP segments
transmitted across a network. TCP is the protocol of choice for today's web-based
communications as the underlying, reliable transport. Some IoT products have
been designed to operate using TCP (for example, those products robust enough
to employ a full TCP/IP stack that can speak HTTP or MQTT over a secure

(TLS) connection). TCP is frequently unsuitable for use in constrained network
environments suffering from high latency or limited bandwidth.

[27]

A Brave New World

The User Datagram Protocol (UDP) provides a useful alternative, however. UDP
provides a lightweight transport mechanism for connectionless communications
(unlike session-based TCP). Many highly constrained IoT sensor devices support
UDP. For example, MQTT-SN is a tailored version of MQTT that works with UDP.
Other protocols, such as CoAP, are also designed to work well with UDP. There is
even an alternative TLS design called Datagram TLS (DTLS) intended for products
that implement UDP-based transport.

Network protocols

IPv4 and IPv6 both play a role at various points within many IoT systems. Tailored
protocol stacks such as IPv6 over Low Power Wireless Personal Area Networks
(6LoWPAN) support the use of IPv6 within network-constrained environments
common to many IoT devices. 6LoWPan supports wireless Internet connectivity at
lower data rates to accommodate highly constrained device form factors: http://
projets-gmi.univ-avignon.fr/projets//projl112/M1/p09/doc/6LOWPAN
overview.pdf.

6LoWPAN builds upon the 802.15.4 -Low Rate Wireless Personal Area Networks
(LRWPAN) specification to create an adaptation layer that supports IPv6. The
adaptation layer provides features that include IPv6 with UDP header compression
and support for fragmentation, allowing constrained sensors, for example, to be used
in building automation and security. Using 6LoOWPAN, designers can take advantage
of link encryption offered within IEEE 802.15.4 but can also apply transport layer
encryption such as DTLS.

Data link and physical protocols

If you examine the many communication protocols available within the IoT, you
notice that one in particular, IEEE 802.15.4, plays a significant role as the foundation
for other protocols — providing the Physical (PHY) and Medium Access Control
(MAC) layers for protocols such as ZigBee, 6(LOWPAN, WirelessHART, and

even thread.

IEEE 802.15.4

802.15.4 is designed to operate using either point-to-point or star topologies and
is ideal for use in low-power or low-speed environments. 802.15.4 devices operate
in the 915 MHz and 2.4 GHz frequency ranges, support data rates up to 250 kb/s
and communication ranges of roughly 10 meters. The PHY layer is responsible for
managing RF network access, while the MAC layer is responsible for managing
transmission and receipt of frames onto the data link.

[28]

http://projets-gmi.univ-avignon.fr/projets//proj1112/M1/p09/doc/6LoWPAN_overview.pdf
http://projets-gmi.univ-avignon.fr/projets//proj1112/M1/p09/doc/6LoWPAN_overview.pdf
http://projets-gmi.univ-avignon.fr/projets//proj1112/M1/p09/doc/6LoWPAN_overview.pdf

Chapter 1

ZWave

Another protocol that operates at this layer of the stack is ZWave. ZWave supports
the transmission of three frame types on a network - unicast, multicast, and
broadcast. Unicast communications (that is, direct) are acknowledged by the
receiver; however, neither multicast nor broadcast transmissions are acknowledged.
ZWave networks consist of controllers and slaves. There are variants of each of
these, of course. For example, there can be both primary and secondary controllers.
Primary controllers have responsibilities such as the ability to add/remove nodes
form the network. ZWave operates at 908.42 MHz (North America)/868.42 MHz
(Europe) frequency with data rates of 100 kb/s over a range of about 30 meters.

Bluetooth/Bluetooth Smart (also known as Bluetooth Low Energy or BLE) is an
evolution of Bluetooth designed for enhanced battery life. Bluetooth Smart achieves
its power saving capability by defaulting to sleep mode and only waking when
needed. Both operate in the 2.4 GHz frequency range. Bluetooth Smart implements a
high-rate frequency-hopping spread spectrum and supports AES encryption.

Reference: http://www.medicalelectronicsdesign.com/article/bluetooth-
low-energy-vs-classic-bluetooth-choose-best-wireless-technology-your-

application

Power Line Communications

In the energy industry, WirelessHART and Power Line Communications (PLC)
technologies such as Insteon are additional technologies that operate at the link and
physical layers of the communication stack. PLC-enabled devices (not to be confused
with Programmable Logic Controller) can support both home and industrial uses
and are interesting in that their communications are modulated directly over existing
power lines. This communications method enables power-connected devices to be
controlled and monitored without secondary communication conduits.

Reference: http://www.eetimes.com/document .asp?doc_id=1279014

Cellular communications

The move towards 5G communications will have a significant impact on IoT system
designs. When 5G rolls out with higher throughput and the ability to support many
more connections, we will begin to see increased movement for direct connectivity
of IoT devices to the cloud. This will allow for new centralized controller functions
to be created that support multitudes of geographically dispersed sensors/actuators
with limited infrastructure in place. More robust cellular capabilities will further
enable the cloud to be the aggregation point for sensor data feeds, web service
interactions, and interfaces to numerous enterprise applications.

[29]

http://www.medicalelectronicsdesign.com/article/bluetooth-low-energy-vs-classic-bluetooth-choose-best-wireless-technology-your-application
http://www.medicalelectronicsdesign.com/article/bluetooth-low-energy-vs-classic-bluetooth-choose-best-wireless-technology-your-application
http://www.medicalelectronicsdesign.com/article/bluetooth-low-energy-vs-classic-bluetooth-choose-best-wireless-technology-your-application
http://www.eetimes.com/document.asp?doc_id=1279014

A Brave New World

loT data collection, storage, and analytics

So far, we have talked extensively about the endpoints and the protocols

that comprise the IoT. Although there is great promise in device-to-device
communication and coordination, there are even more opportunities to streamline
business processes, enhance customer experiences, and increase capabilities when
the power of connected devices is paired with the ability to analyze data. The cloud
offers a ready-made infrastructure to support this pairing.

Many public CSPs have deployed IoT services that are well integrated with their
other cloud offerings. AWS, for example, has created the AWS IoT service. This
service allows IoT devices to be configured and connect to the AWS IoT gateway
using MQTT or REST communications. Data can also be ingested into AWS through
platforms such as Kinesis or Kinesis Firehose. Kinesis Firehose, for example, can

be used to collect and process large streams of data and forward on to other AWS
infrastructure components for storage and analysis.

Once data has been collected within a CSP, logic rules can be set up to forward
that data where most appropriate. Data can be sent for analysis, storage, or to

be combined with other data from other devices and systems. Reasons for the
analysis of IoT data run the gamut from wanting to understand trends in shopping
patterns (for example, beacons) to predicting whether a machine will break down
(predictive maintenance).

Other CSPs have also entered the IoT marketplace. Microsoft's Azure offering now
has a specific IoT service in addition to IBM and Google. Even Software as a Service
(SaaS) providers have begun offering analytics services. Salesforce.com has designed
a tailored IoT analytics solution. Salesforce makes use of the Apache stack to connect
devices to the cloud and analyze their large data streams. Salesforce's IoT Cloud
relies upon Apache's Cassandra database, the Spark data-processing engine, Storm
for data analysis, and Kafka for messaging.

Reference: http://fortune.com/2015/09/15/salesforce-com-iot-cloud/

loT integration platforms and solutions

As new IoT devices and systems continue to be built by diverse organizations,
we're beginning to see the need for improved and enhanced integration capabilities.
Companies such as Xively and Thingspeak are now offering flexible development
solutions for integrating new things into enterprise architectures. In the domain of
smart cities, platforms such as Accella and SCOPE, a "smart-city cloud-based open
platform and ecosystem", offer the ability to integrate a variety of IoT systems into
enterprise solutions.

[30]

http://fortune.com/2015/09/15/salesforce-com-iot-cloud/

Chapter 1

These platforms provide APIs that IoT device developers can leverage to build new
features and services. Increasingly, IoT developers are incorporating these APIs and
demonstrating ease-of-integration into enterprise IT environments. The Thingspeak
API, for example, can be used to integrate IoT devices via HTTP communications.
This enables organizations to capture data from their sensors, analyze that data, and
then take action on that data. Similarly, AllJoyn is an open source project from the
AllSeen Alliance. It is focused heavily on interoperability between IoT devices even
when the devices use different transport mechanisms. As IoT matures, disparate
IoT components, protocols, and APIs will continue to be glued together to build
powerful enterprise-wide systems. These trends beg the question of just how
secured these systems will be.

The loT of the future and the need to
secure

While today's IoT innovations continue to push the envelope identifying and
establishing new relationships between objects, systems, and people, our
imaginations continuously dream up new capabilities to solve problems at
unprecedented scale. When we apply our imaginative prowess, the promises
of the IoT becomes boundless. Today, we are barely scratching the surface.

The future — cognitive systems and the loT

The computer-to-device and device-device IoT is poised for staggering growth today
and over the coming years, but what about brand new research that is on the brink of
consumerization? What will need to secure in the future, and how will it depend on
how we secure the IoT today? Cognitive systems and research provides us a valuable
glimpse into the IoT of tomorrow.

Over a decade ago, Duke University researchers demonstrated cognitive control of
a robotic arm by translating neural control signals from electrodes embedded into
the parietal and frontal cortex lobes of a monkey's brain. The researchers converted
the brain signals to motor servo actuator inputs. These inputs allowed the monkey
— through initial training on a joystick — to control a non-biological, robotic arm
using only visual feedback to adjust its own motor-driving thoughts. So-called
brain-computer interfaces (BCI), or brain-machine interfaces (BMI), continue to
be advanced by Dr. Miguel Nocolelis' Duke laboratory and others. The technology
promises a future in which neuroprosthetics allow debilitated individuals to regain
physical function by wearing and controlling robotic systems merely by thought.
Research has also demonstrated brain-to-brain functioning, allowing distributed,
cognitive problem-solving through brainlets.

[31]

A Brave New World

Digital conversion of brain-sensed (via neuroencaphalography) signals allows the
cognition-ready data to be conveyed over data buses, IP networks, and yes, even
the Internet. In terms of the IoT, this type of cognitive research implies a future in
which some types of smart devices will be smart because there is a human or other
type of brain controlling or receiving signals from it across a BMI. Or the human
brain is made hyper-aware by providing it sensor feeds from sensors located
thousands of kilometers away. Imagine a pilot flying a drone as though it were

an extension of his body, but the pilot has no joystick. Using only thought signals
(controls) and feedback (feeling) conveyed over a communications link, all necessary
flight maneuvers and adjustments can be made. Imagine the aircraft's airspeed, as
measured by its pitot tube, conveyed in digital form to the pilot's BMI interface and
the pilot "feeling" the speed like wind blowing across his skin. That future of the IoT
is not as far off as it may seem.

Now imagine what type of IoT security may be needed in such cognitive systems
where the things are human brains and dynamic physical systems. How would one
authenticate a human brain, for example, to a device, or authenticate the device back
to the brain? What would digital integrity losses entail with the BMI? What could
happen if outgoing or incoming signals were spoofed, corrupted, or manipulated in
timing and availability? The overarching benefits of today's IoT, as large as they are,
are small when we consider such future systems and what they mean to the human
race. So too are the threats and risks.

Summary

In this chapter, we saw how the world is developing and advancing towards a better
future with the help of the IoT. We also looked at various uses of the IoT in today's
world and then had a brief look at its concepts.

In the next chapter, we will learn about the various threats and the measures that we
can take to avoid/overcome them.

[32]

Vulnerabilities, Attacks, and
Countermeasures

This chapter elaborates on attack methods against IoT implementations and
deployments, how attacks are organized into attack trees, and how IoT cyber-
physical systems complicate the threat landscape. We then rationalize a systematic
methodology for incorporating countermeasures to secure the IoT. We will explore
both typical and unique vulnerabilities seen within various layers of the IoT
technology stack and describe new ways in which electronic and physical threats
interact. We provide a tailored approach to threat modeling to show the reader how
to perform usable IoT threat modeling in their own organizations.

We explore vulnerabilities, attacks, and countermeasures, and methods of managing
them through the following chapter subsections:

* Primer on threats, vulnerability, and risk

¢ Primer on attacks and countermeasures

* Today's IoT attacks

* Lessons learned — the use of systematic approaches

[33]

Vulnerabilities, Attacks, and Countermeasures

Primer on threats, vulnerability, and risks
(TVR)

A substantial amount of academic wrangling has evolved competing definitions

for the concepts of threats, vulnerability, and risks. In the interest of keeping this
volume practical and usable, we will first revisit in this section what the information
assurance industry has termed the five pillars of information assurance. These
pillars, or domains, of information assurance represent the highest-level categories

of assurance in an information system. Next, we will introduce two additional pillars
that are critically important in cyber-physical systems. Once introduced, we will then
explore IoT threats, vulnerabilities and risks.

The classic pillars of information assurance

It is nearly impossible to discuss practical aspects of threat, vulnerability, and risk
without identifying the essential components of information assurance (IA), an
important subdomain of IoT security. Succinctly, they are as follows:

* Confidentiality: Keeping sensitive information secret and protected from
disclosure

* Integrity: Ensuring that information is not modified, accidentally or
purposefully, without being detected

* Authentication: Ensuring that the source of data is from a known identity or
endpoint (generally follows identification)

* Non-repudiation: Ensuring that an individual or system cannot later deny
having performed an action

* Availability: Ensuring that information is available when needed

Satisfying an information security goal does not necessarily imply that an
organization has to keep all of the preceding assurances in place. Not all data
requires confidentiality, for example. Information and data categorization is a
complex topic in itself and not all information is critically sensitive or important.
Proper threat modeling of a device and its hosted applications and data requires an
organization to identify the sensitivities of both individual data elements and data in
aggregate form. Aggregation risks of large, seemingly benign IoT datasets pose some
of the most difficult challenges. Well-defined data categories and combinational
constraints enable specific assurances such as confidentiality or integrity to be
defined for each data element or complex information type.

[34]

Chapter 2

The five pillars of IA each apply to the IoT because the IoT blends information with
a device's environment, physicality, information, data sources, sinks, and networks.
Beyond the pillars of IA, however, we must introduce two additional assurances that
relate to cyber-physical aspects of the IoT, namely, resilience and safety. Resilience
and safety engineering are closely related; we define and distinguish them in

this section.

Resilience in the cyber-physical IoT relates to resilience of a cyber-physical
control system:

"A resilient control system is one that maintains state awareness and an accepted
level of operational normalcy in response to disturbances, including threats of an
unexpected and malicious nature."

Source: Rieger, C.G.; Gertman, D.I.; McQueen, M.A. (May 2009), Resilient Control
Systems: Next Generation Design Research, Catania, Italy: 2nd IEEE Conference on
Human System Interaction.

Safety in the cyber-physical IoT is defined as:
"The condition of being safe from undergoing or causing hurt, injury, or loss."
Source: http://www.merriam-webster.com/dictionary/safety

The IoT's convergence of the five pillars of IA with resilience and safety implies
that cyber-physical engineers adhere to security and safety approaches that
simultaneously address both failure (fault) trees for safety and attack trees for
security. Safety design decisions and security controls comprise the solution space
wherein engineers must simultaneously address the following;:

* Fault tree best practices to avoid common mode failures

* Appropriate risk-based security controls that help inhibit an adversary
from compromising the system and wreaking havoc on safety controls and
systems impacted by safety controls

An engineering approach is needed in the IoT that merges both attack and fault tree
analysis to identify and resolve common mode failures and attack vectors. Isolated
inspection of either tree may no longer be sufficient.

[35]

http://www.merriam-webster.com/dictionary/safety

Vulnerabilities, Attacks, and Countermeasures

Threats

It is important to distinguish between a threat and threat source (or threat actor).
Each threat has a threat actor. For example, in the case of the burglar invading

your home, it is tempting to consider the burglar as the actual threat, but it is more
accurate and useful to consider him the threat source (or actor). He is the actor, who
may attack your house for a variety of malicious purposes, most notably his self-
serving desire to separate you from your valued assets. In this context, the threat is
actually the potential for the burglary to be performed, or more generally represents
the exploit potential.

Threats may therefore come in a variety of types, both natural and man-made.
Tornados, floods, and hurricanes can be considered natural threats; in these cases,
the Earth's weather serves as the threat actor (or acts of God in the lingo of many
insurance policies).

IoT threats include all of the information assurance threats to management and
application data sent to and from IoT devices. In addition, IoT devices are subject to
the same physical security, hardware, software quality, environmental, supply chain,
and many other threats inherent in both security and safety domains. IoT devices

in CPS (for example, actuation, physical sensing, and so on) are subject to physical
reliability and resilience threats beyond just the compromise and degradation of

the computing platform. Additional engineering disciplines are at play in CPS,

such as classical control theory, state estimation and control, and others that use
sensors, sensor feedback, controllers, filters, and actuation devices to manipulate
physical system states. Threats can also target control system transfer functions, state
estimation filters (such as Kalman filters), and other inner control loop artifacts that
have direct responses and consequences in the physical world.

Vulnerability

Vulnerability is the term we use to identify a weakness, either in the design,
integration, or operation of a system or device. Vulnerabilities are ever-present,

and countless new ones are discovered every day. Many online databases and web
portals now provide us with automated updates on newly discovered vulnerabilities.
The following diagram provides a view into the relationships between each of

these concepts:

[36]

Chapter 2

Imagines the
Threat
Planning
—~ [>
. ‘:3
w Threat The exploit potential
Threat actor J
Vulnerability The weak spot to be exploited
S~ J
Execution
Attack The targeted exploit performed
Repeat u
(as needed)
The compromise, or impact of the
~ Compromise successful exploitation
Assess

Vulnerabilities may be deficiencies in a device's physical protection (for example,
weaknesses in a device's casing that allow the ability to tamper), software quality,
configuration, suitability of protocol security for its environment, or appropriateness
of the protocols themselves. They can include just about anything in the device,
from design implementation deficiencies in the hardware (for example, allowing
tampering with FPGA or EEPROM), to internal physical architecture and interfaces,
the operating system, or applications. Attackers are well aware of the vulnerability
potentials. They will typically seek to unearth the vulnerabilities that are easiest,
least costly, or fastest to exploit. Malicious hacking drives a for-profit marketplace of
its own in dark web settings; malicious hackers understand the concept of return-on-
investment (ROI) well. While the threat is the potential for exploit, the vulnerability
is the target of the actual exploit from the threat actor.

[37]

Vulnerabilities, Attacks, and Countermeasures

Risks

One can use qualitative or quantitative methods for evaluating risk. Simply put,
risk is one's exposure to loss. It is different from vulnerability, because it depends

on the probability of a particular event, attack, or condition and has a strong link

to the motivations of an attacker. It also depends on how large the impact is of a
single, atomic compromise or a whole campaign of attack/compromise events.
Vulnerability does not directly invoke impact or probability, but is the innate
weakness itself. It may be easy or hard to exploit, or result in a small or large loss
when exploited. For example, a desktop operating system may have a serious
vulnerability in its process isolation logic allowing an untrusted process to access
the virtual memory of another application. This vulnerability may be exploitable
and most certainly represents a weakness, but if the system is air-gapped and never
connected directly or indirectly to the Internet, the vulnerability may invoke little if
any risk —exposure. If, on the other hand, the platform is connected to the Internet,
the risk level may jump due to an attacker finding a practical means of injecting
hostile shell code that exploits the process isolation vulnerability and allows the
attacker to assume ownership of the machine.

Risk can be managed through threat modeling, which helps ascertain the following;:

* Impact and overall cost of a compromise
* How valuable the target may be to attackers
* Anticipated skill and motivations of the attackers (based on threat modeling)

* A priori knowledge of a system's vulnerabilities (for example, those
discovered during threat modeling, public advisories, penetration testing,
and so on)

Risk management relies on judicious application of mitigations against the types

of vulnerabilities that are known to be present and that may be targeted by the
potential exploits (threats). Naturally, not all vulnerabilities will be known ahead of
time; these we call zero-days or 0 days. We know that certain OS vulnerabilities are
in our Windows operating system; therefore, we apply well-selected anti-malware
and network monitoring equipment to reduce the exposure. Because mitigating
security controls are never perfect, we are still left with some smaller remaining
amount of risk, typically called residual risk. Residual risk is often accepted as is,
or offset by the application of other risk offset mechanisms such as insurance.

[38]

Chapter 2

Primer on attacks and countermeasures

Now that we have briefly visited threats, vulnerabilities, and risk, let's dive into
greater detail on the types and compositions of attacks present in the IoT and how
they can be put together to perform attack campaigns. In this section, we also
introduce attack trees (and fault trees) to help readers visualize and communicate
how real-world attacks can happen. It is also our hope that they gain wider adoption
and use in broader threat modeling activities, not unlike the threat model example
later in the chapter.

Common loT attack types

There are many attack types to cover in this book; however, the following list
provides some of the most significant as they relate to the IoT:

Wired and wireless scanning and mapping attacks

Protocol attacks

Eavesdropping attacks (loss of confidentiality)

Cryptographic algorithm and key management attacks

Spoofing and masquerading (authentication attacks)

Operating system and application integrity attacks

Denial of service and jamming

Physical security attacks (for example, tampering, interface exposures)

Access control attacks (privilege escalation)

[39]

Vulnerabilities, Attacks, and Countermeasures

The preceding attacks are only a small sample of what exists in the wild. In the

real world, however, most attacks are highly customized to a specific, known
vulnerability. A vulnerability that is not yet publicly known, and for which an
exploit has typically been developed, is called a zero-day (or O-day) vulnerability.
Any number of attacks may exploit such vulnerabilities, and any number of attacks
may be publicly shared over the Internet to do so. Well-placed security controls

are vital to reducing either the likelihood or severity of an attack's exploitation of a
vulnerability. The following diagram shows the ecosystem of attacks, vulnerabilities,
and controls:

__— Threat (Source) ‘

creates / Actor
performs
Attack ‘
c benefits ||'
\ incurs to
victim(s)
) exploits
increases /
attacker's \
cost of
performing Vulnerability Impact

l detects / \
lessens

reduces reduces future

likelihood \ protects / severity

\ [\

Deterrent or) trigger .
Compensating ‘ Detective Preventative

A,

Corrective

Controls

[40]

Chapter 2

The types of attacks on IoT systems will grow over time and in some cases will
follow profit motive trends similar to what we see in the evolving cybersecurity
industry. For example, today there is a disturbing trend in the malware business
whereby attackers employ cryptographic algorithms to encrypt a victim's personal
hard drive data. The attackers then offer to return the data, decrypted, for a fee.
Called ransomware, the potential for such an attack in the IoT realm is frightening.
Consider a malicious hacker performing ransom attacks on physical infrastructure
or medical equipment. One receives a note that one's pacemaker was unknowingly
compromised, the victim receives a short, non-lethal jolt to prove it, then is
instructed to immediately wire funds to a destination account or risk a full-fledged,
potentially lethal attack. Consider automobiles, garage doors opening (while on
vacation), and other potential activities usable by malicious actors for ransom. The
IoT must take these types of attacks seriously and not dismiss them as the musings of
pundits. The greatest challenge in the security industry is finding methods today of
defending against tomorrow's attacks.

Attack trees

It is easy in the security industry to be drawn to the latest and greatest exploits

and attack methodologies. We frequently speak of attack vectors and attack
surfaces without any real specificity or rigor. If it is specific, it is usually in the form
of news reports or publications from security researchers about new zero-days
discovered in the wild and how they may have been deployed against a target. In
other words, many of our discussions about attack vectors and attack surfaces are
simply undisciplined.

It is possible for a single attack on a device or application to yield substantial value
to an attacker, either in information compromised, manipulation of the device for
physical effect, or opportunities for pivoting elsewhere in the device's network.

In practice, however, an attack is usually part of a campaign of grouped and/or
sequenced subattacks or other activities, each carefully chosen from a variety of
intelligence methods (for example, human social engineering, profiling, scanning,
Internet research, familiarity with the system, and so on). Each activity designed to
accomplish its immediate goal has some level of difficulty, cost, and probability of
success. Attack trees help us model these characteristics in devices and systems.

[41]

Vulnerabilities, Attacks, and Countermeasures

Attack trees are conceptual diagrams showing how an asset, or target, might be attacked
(https://en.wikipedia.org/wiki/Attack_tree). In other words, when it is time
to really understand a system's security posture and not just knee-jerk worry about
the latest, sensational reported attack vectors du jour, it is time to build an attack
tree. An attack tree can help your organization visualize, communicate, and come to
a more realistic understanding of the sequence of vulnerability that can be exploited
for some end effect.

Building an attack tree

If you haven't done it before, building an attack tree can seem like a daunting task,
and it is difficult to know where to start. To begin, a tool is needed to both build the
model and run analysis against it. One example is SecurlTree, a capabilities-based
attack tree modeling tool built by the Canadian company Amenaza (the Spanish
word for threat) (http://www.amenaza.com/). Building an attack tree is perhaps
best described with a simple example.

Suppose an attacker wishes to accomplish the overarching goal of re-directing an
Unmanned Aircraft Systems (UAS), that is, a drone, while in flight. The following
diagram shows the top-level activities of the attack tree to accomplish this:

Redirect UAS

Corrupt Navigation
Database

@f GPS

Spoof Ground Control
Station

4

4

4

You will notice the two well-known logic operator symbols for AND (smooth and
rounded top) and OR (pointy top). The root node, entitled Redirect UAS represents
the end objective and is made up of an OR operator. This means that any one of its
children can satisfy the end goal. In this case, the attacker may redirect the aircraft by
any of the following methods:

* Corrupting its navigation database: A navigation database maps named
locations to positions in space (latitude, longitude, and typically, altitude
above mean sea level). In practice, there are many potential ways to
compromise a navigation database, for example, either directly on the
aircraft, its ground control station, or even in the navigation and mapping
supply chain (this is true of manned aviation as well, as commercial airliners'
flight computers have extensive navigation databases).

[42]

https://en.wikipedia.org/wiki/Attack_tree
http://www.amenaza.com/

Chapter 2

Spoofing GPS: In this case, the attacker could choose to perform an active
RF-based GPS attack in which they generate and transmit false GPS timing
data that the drone interprets as a false location. In response, the drone

(if under autonomous flight) navigates unknowingly, based on its falsely
perceived location, and follows a path maliciously designed by the attacker.
(Note, we assume there is no machine vision or other passive navigation
system in use.)

Spoofing the ground control station (GCS): In this option, the attacker
can find a way to spoof the drone's legitimate operator and attempt to send
malicious routing commands.

Now, let's expand the attack tree a bit (the tiny arrow pointing to a horizontal line at
the bottom of each node indicates the node is expandable). Specifically, let's expand
the Corrupt Navigation Database goal node:

Corrupt Navigation
Database

ransitive Trust DB Server
(SQL)

This Corrupt Navigation Database node is an AND operator; therefore, each
and every one of its children in the tree must be satisfied to achieve it. In this case,
each of the following is needed:

Some attack that exploits a transitive trust relationship needed to get into the
supply chain of the navigation database

A compromise of the navigation database server

The modification of the Geographic Information System (GIS) tables
within the navigation database (for example, tell the drone that its
destination is 100 m to the North, East, and below its actual destination,
and it might just crash into the ground or a building)

Two of the nodes, Exploit Transitive Trust and Compro DB server, each have
subtrees. The third node, modify GIS tables, does not and is therefore called a leaf
node. Leaf nodes represent the actual attack vector entry points into the model, that
is, the attacker's activities, whereas its parents (AND OR nodes) represent either
specific device states, system states, or goals that the attacker may achieve through
their activities.

[43]

Vulnerabilities, Attacks, and Countermeasures

Expanding the Exploit Transitive Trust subtree gives us the following image:

Corrupt Navigation
Database
|

Modify GIS
Tables
(sQu)

Exploit
Transitive Trust
AL Access network by ’ Establish

Malware abuse of transitive trust malicious connection

Trick Obtain DMZ Establish presence on GIS Connect bg:s& g ; M:]id'zlghe Agglél;e
ini Services network via DMZ trust i
administrator | | beachhead Ay vendor attack on market

Load
Malware
via

Without going into detail on every node, it becomes apparent that careful thought
and consideration goes into developing an effective, usable attack tree. In summary,
trees have subtrees that can be very simple or complex. Typically, the more complex
the subtree, the greater the need to analyze it offline of the main tree in what is called
subtree analysis. In practice, proper rigor in attack tree modeling requires a number
of experts in each of the sub-tree domains. It is strongly suggested that attack tree
modeling become a normal part of IoT system (or device) security engineering.

The SecurITree tool goes much further than just creating tree diagrams.
Its dialogs assist you in modeling each attack goal by establishing indicators
such as the following:

* Capabilities of the attacker, such as technical ability, noticeability, cost of the
attack, and so on
* Behaviors and probabilities

* Impact of the attack to the victim (note that by the time the subtree impacts
aggregate up to the root node, the final impact can be enormous)

* Benefits to the attacker (of given impacts) are motivating impacts for
the attack

¢ Detriments to the attacker are demotivators for the attack

[44]

Chapter 2

Once all of this data is input to the tool, the real fun begins in the analysis and
reporting. The tool computes each and every attack vector (attack scenario) based on
all of the possible tree traversals and logic operators that define each attack goal. For
each attack scenario, the total cost of the attack, its probability and its total impact
are computed and then sorted according whatever criteria you select. Note that even
a moderately sized tree can generate thousands, tens of thousands, or hundreds of
thousands of attack scenarios, though not all are necessarily interesting or likely

(the process of whittling down the attack scenarios to the ones that count most is
called reduction).

Once the attack scenarios are generated, interesting reports can be generated,

for example, a graph of willingness-to-capability ratios (for the analyzed attack
scenarios). The slope of the curve can indicate interesting aspects of the psychology
of the selected attacker profile, such as to what extent they may continue to pursue
attacks in the face of limited capability. This information can be quite useful in
selecting and prioritizing the security controls and other mitigations you select.
Other reports can be generated as well. For example, cumulative risk can be
graphically displayed over a defined period of time as a function of the number

of computed attack scenarios (based on each one's characteristics).

The tool has many other interesting and useful features as well. Recommendations
for using this tool include the following:

* Prune your trees into separate files (subtrees) and allow experts in each
subtree domain (whether internal or external to your organization) to
maintain their area. In some cases, certain subtrees remain fairly static and
can potentially be shared between companies and industries as long as the
attack tree indicators are aligned.

* Add trees and subtrees to your version control system and update any time
major system designs are changed, or when anything that might affect the
threat profile of your IoT device, system, or deployment changes.

* Create and maintain (again in version management) your attacker profiles.
They will most certainly change over time, especially if your deployment
begins to collect new and more valuable types of privacy information.
Even your company's growth and financial resources can impact your
attacker profile.

[45]

Vulnerabilities, Attacks, and Countermeasures

Real-world attacks may involve numerous feedback loops within the attack
tree. Successive attacks and compromises of multiple intermediate devices and
systems —each called a pivot—may allow an attacker to reach his final goal.
This is something you don't want.

Keep in mind, however, that the cyber-physical aspects of the IoT introduce

new attack flavors for the root node, goals that may surpass the severity of data
exfiltration, denial of service, and other conventional cyber threats. The new options
are the possible physical world interactions and controls ranging from turning off a
light bulb to turning off a human heart.

To that end, we must also discuss fault trees.

Fault (failure) trees and CPS

A fault tree discussion may seem to be out of place in a section about attacks

and countermeasures. The value of attack trees to IoT implementation and
deployment organizations should be clear by now. Obviously, the more accurate the
attack model, the better the decisions that can be made from it. Attack trees alone

are not sufficient, however, to characterize risks to the many new IoT paradigms. In
Chapter 1, A Brave New World, we introduced cyber-physical systems (CPS), a subset
of the IoT. CPS represent an uncomfortable domain in which both safety and security
engineering disciplines must be combined and reconciled to produce engineering
solutions that simultaneously mitigate both safety and security risks.

Safety and reliability engineering's principal modeling tool is called the fault tree
(also called the failure tree) as used in fault tree analysis (FTA). Other than in
appearance, fault trees are quite different than attack trees.

Fault trees have their origin in the early 1960s at Bell Labs, who supported the US
Air Force to address and help mitigate the frequent reliability failures that befell
the Minuteman I ballistic missile program (https://en.wikipedia.org/wiki/
Fault_tree_analysis). At this time, missile systems —especially their early
guidance, navigation, and control subsystem designs —were prone to frequent
failures. From that time, FTA began to be adopted into other areas of aerospace
(especially commercial aircraft design and certification) and is now used in a
variety of industries that need to achieve extremely high levels of safety assurance.
For example, typical FAA safety requirements mandate aircraft manufacturers

to demonstrate during commercial aircraft certification that their designs meet a

1 x 10-9 (one in a billion) probability of failure. To achieve such low failure rates,
significant levels of redundancy (triple and even quadrature levels in some cases) are
designed into many aircraft systems. Many regulatory aspects of risk management
(for example, as in FAA aircraft certification) lean heavily on FTA.

[46]

https://en.wikipedia.org/wiki/Fault_tree_analysis
https://en.wikipedia.org/wiki/Fault_tree_analysis

Chapter 2

Author's note Van Duren: The author's grandfather, Lt. Col. Arthur Glenn Foster,
was based at Vandenberg Air Force Base in California in the early 1960s, and was
in charge of the Command and Control of Minuteman and Titan II ICBM missiles
worldwide. Many family stories survive to this day of the frequent launches and
spectacular failures of many of these rocket launches on California's beautiful
central coast.

Fault tree and attack tree differences

The principal difference between an attack tree and a fault tree lies in how one enters
and traverses each:

* Fault trees are not based on intelligently planned attacks in which multiple
leaves of the tree are entered at will at the discretion of an intelligent entity

* Fault trees are traversed based on stochastic processes (failure/fault rates)
from each leaf through the dependent, intermediate nodes

* Each fault tree leaf is completely independent (faults occur randomly AND
independently of each other) of all other leaves of the tree

In essence, a fault tree can account for the rate at which an aircraft's braking system
may fail naturally.

In the tool, SecurelTree, we described earlier, one may generate fault trees as well. To
do this, one must define a probability indicator at the leaf nodes of the tree. Within
the indicator dialog, you may enter a probability (for example, 1/100, 1/10,000, and
so on) for the leaf node event/action to transpire.

Merging fault and attack tree analysis

Methods of merging attack tree analysis with FTA exist in the literature, but
significant research and work remains to find new, efficient ways of performing
combined tree analysis for CPS IoT. Processes are needed that help both safety
and security engineers navigate a system's statistical failure modes in a manner
cognizant of the different attack modalities that also may be present. One issue to
overcome is the potentially enormous state space that may ensue from the analysis
and the challenge of making the results useful and actionable for developing
optimal mitigations.

[47]

Vulnerabilities, Attacks, and Countermeasures

With the challenges in mind, high safety and security assurances can still be achieved
today with the following recommendations:

Integrate FTA into safety-critical IoT device and system engineering
methodologies (many IoT implementers are probably not doing this today).

Ensure that the actual, intended IoT use cases are represented in the FTA.
For example, if a device's power filter and supply were to fail or produce an
under-voltage situation, would its microcontroller shut down automatically,
or would it continue to function at high risk of erratic behavior? Maintaining
power supply thresholds in processors is fairly standard design, but do you
have a redundant battery backup that will allow the device to continue to
operate normally as needed, for example, in a safety-critical medical device?

As fault-tolerant design is performed (for example, built-in redundancies,
and so on), ensure the security engineers have a seat at the table. They should
perform security threat modeling on the device (or system) in a way that
addresses its redundancies, gateways, communications protocols, endpoints
and other hosts, environment, and the myriad potential pathways to
compromise any one of them.

As security engineers identify necessary security controls, determine if the
controls impact the fault-tolerance design features or the basic functionality
and performance needed. This may happen, for example, in time-sensitive
safety shutoff/cutoff mechanisms. A security engineer may want to perform
some latency-inducing traffic scanning across a data bus or network, but the
resultant latencies might cause the safety features to respond too slowly, with
disastrous consequences. Workarounds may be possible, for example, by
allowing timing information to flow through alternate pathways.

The scariest combined safety/security threats are those in which an attacker
explicitly targets a safety design feature. For example, a microcontroller
that handles voltage or temperature cutoffs and prevents a thermodynamic
meltdown can possibly be targeted and disabled by an attacker. Redundant
devices can also be targeted such that the failure probabilities skyrocket
when other targeted attacks take place in parallel or sequence. In these
instances, the safety and security experts need to jointly and very carefully
come up with:

[e]

Safety mitigations that don't undermine needed security controls
° Security mitigations that don't diminish safety controls

This is not always an easy feat and there may be instances when
compromises have to be made that result in residual, accepted risks
on both fronts.

[48]

Chapter 2

Example anatomy of a deadly cyber-physical
attack

In the interest of demonstrating an attack tree scenario in the CPS domain of the

IoT, this section highlights a devastating example of a hypothetical cyber-physical
attack. No doubt, most readers are familiar with the Stuxnet worm that targeted the
Iranian CPS responsible for refining Uranium to fissionable levels. Stuxnet, while
immensely damaging to Iranian goals, did not result in a safety failure. It resulted in
an industrial control process failure that caused uranium refinement rates to come

to a standstill. Unfortunately, Stuxnet — while most certainly nation-state in origin—
is only a prelude of things to come with regard to CPS attacks. Keep in mind, the
hypothetical attack below is not trivial and would typically require the resources of a
nation state.

As we mentioned in Chapter 1, A Brave New World, CPS comprise a variety of
networked sensors, controllers and actuators that collectively make up a standalone
or distributed control system. In the world of aviation —a historically safety-

driven industry —amazing advances have been made in fault-tolerant engineering
approaches; many of the lessons learned came about from root cause analysis
investigations of various tragedies. Jet engine reliability, airframe structural integrity,
avionics resilience, as well as hydraulics and fly-by-wire system reliability are all
elements we take for granted in a modern jet aircraft. Aviation software assurance
requirements, as specified in the RTCA standard, DO-178B, are a testament to

some of the lessons learned. The safety improvements, whether fault-tolerant
features of the software, additional redundancies, mechanical or electrical design
features, or software assurance improvements have resulted in failure rate targets
reaching 1 in 1x10-9, a miracle in the history of modern safety engineering. Safety
engineering, however, needs to be distinguished from security engineering in terms
of evolutionary paths; safety engineering by itself may only offer minor protection
against the following attack scenario.

This CPS attack example highlights the convergence of engineering disciplines at
play in the planning, execution, and defense against such an attack. While this attack
is exceedingly improbable today, it is described here to highlight the complexity of
system interactions that can be exploited for malicious purposes. The high-level flow
of the attack is as follows:

* Prerequisites:

° The attacker(s) possesses or procures significant aircraft avionics
system knowledge (note: there are a number of companies and
countries that possess this)

[49]

Vulnerabilities, Attacks, and Countermeasures

° The attacker develops a customized control system exploit for
the aircraft in question. The exploit delivery comprises malware
designed to automatically execute on the aircraft's system

* The attacker compromises an airline's ground maintenance network.
This network hosts the updated avionics software loads that the airline
downloads from the aircraft manufacturer. From the network, maintenance
crews stage the avionics patches into the airliner's integrated modular
avionics (IMA) system.

* The attacker physically or logically tampers the aircraft's legitimate
software/firmware binary (from the manufacturer) with the chosen exploit
delivery mechanism. It is now staged to be loaded into the aircraft avionics
hardware by maintenance personnel.

* The software update is uploaded. The malicious code begins to run and
delivers the exploit reprogramming the controller. The exploit is a new
microcontroller binary that executes logic for the control system's inner loop.
Specifically, it contains a re-write of the controller's notch filtering logic.

* The malicious microcontroller binary overwrites the notch filter mechanism,
eliminating the system's pitch mode (up/down) dampening of the aircraft's
natural and harmonic structural frequencies (imagine bending the wing,
letting go and observing the jostling motion for a second — that's the natural
frequency you normally want dampened). The normal frequency dampening
performed by the notch filter no longer works and is instead replaced
with an opposite response, namely an excitation of the structure at its
natural frequency.

* The aircraft begins flight and hits mild turbulence shortly after takeoff (note,
hitting turbulence would probably not be necessary). The turbulence induces
the wing's natural vibration modes that are normally dampened by the
control system's notch filter. Instead, the oscillation excites the wing's natural
harmonic mode; the controller's excitation response increases in amplitude
(the wing tips vibrate wildly up and down) until the wing experiences a
catastrophic structural failure and disintegrates.

* The disintegrated wing structure causes the aircraft to crash. The attacker's
end goal is achieved.

[50]

Chapter 2

Now that we have your attention, we must reiterate that this is an exceedingly low
probability, highly sophisticated attack, and that there are much easier ways of
bringing down an aircraft. However, CPS attacks may become more attractive over
time depending on the attacker(s) motivations and the networking of control systems
offers new attack vectors to gain initial footholds. The sad news is that such attacks —
whether against transportation systems or smart home appliances —will become
more feasible over time unless the cross-discipline safety and security collaborations
we have already discussed become standard practice and improve.

There are numerous mitigations that could have thwarted the aircraft control system
attack, as described. For example, if all avionics binaries were cryptographically
signed by the manufacturer, integrity can be protected end-to-end. If the avionics
manufacturer only applies a cyclic redundancy check (CRC), an attacker may be
able to find easy ways of thwarting it (CRCs were designed to detect accidental fault-
based integrity errors, not intelligently designed integrity attacks). If the binaries are
cryptographically integrity-protected, the attacker will find it much more difficult

to modify code without failing the integrity check at both installation and system
power-up. The redesigned controller logic would be much more difficult to inject. In
the safety world, a CRC is generally sufficient, but not in the security world of cyber-
physical systems where enhanced, end-to-end security is preferred when possible.
Simply transferring an updated avionics binary over a cryptographically protected
network connection (for example, TLS) would not meet the goal of protecting the
binary end-to-end from the manufacturer into the aircraft. The TLS cryptographic
connection would not satisfy the end-to-end need of ensuring the binary has not
been tampered in its delivery supply chain. This chain extends from the point of
compilation and build (from original sources) all the way to the point of avionics
software load, power-on, and self-tests.

In practice, some elements of safety engineering, such as triple or quadruple
redundant controllers and independent data buses can help mitigate certain
security threats. The unlikely attack we provided above would likely have been
thwarted by the redundant controllers, command inputs overriding the rogue one.
Redundancies, however, are not sure bets in the security world; therefore, do not
let technology companies and government agencies dissuade your skepticism and
concern. An intelligent adversary, given time, resources, and motivation, can find a
way to maliciously induce what safety engineers call common mode failures. With
ingenuity, even the fault-tolerant features of a design —meant to prevent failures —
can be weaponized to induce them.

[51]

Vulnerabilities, Attacks, and Countermeasures

Today's loT attacks

Many of today's attacks against consumer IoT devices have been largely conducted
by researchers with the goal of bettering the state of IoT security. These attacks often
gain wide attention, and many times result in changes to the security posture of

the device being tested. Conducted responsibly, this type of white hat and gray hat
testing is valuable because it helps manufacturers address and fix vulnerabilities
before widespread exploitation is achieved by those with less benevolent motives.

It is generally bittersweet news for manufacturers, however. Many manufacturers
struggle with how to properly respond to reported vulnerabilities by security
researchers. Some organizations actively enlist the aid of the research community
through organizations such as BuildItSecure.ly where volunteers focus on
identifying vulnerabilities in software or hardware implementation at the request

of the developer themselves. Some organizations operate their own bug bounty
programs, in which security professionals are encouraged to find and report
vulnerabilities (and get rewarded for them). Other organizations, however, turn a
blind eye to vulnerabilities reported in their products, or worse, attempt to prosecute
the researchers.

An attack campaign that received much attention was the hack of a 2014 Jeep
Cherokee in 2015 by researchers Charlie Miller and Chris Valasek. The two
researchers' discoveries were detailed very well in their report Remote
Exploitation of an Unaltered Passenger Vehicle.

Miller, Charlie and Valesek, Chris. Remote Exploitation of an Unaltered Passenger
Vehicle. 10 August 2015. Downloaded at http://illmatics.com/Remote%20Car%20
Hacking.pdf.

Their hack was part of a larger set of research focused on identifying weaknesses
in connected vehicles. That research has grown over time by the pair and has
been accompanied by continued work at the University of San Diego, California
(UCSD). The exploitation of the Jeep relied on a number of factors that, in concert,
allowed the researchers to achieve their goal of remotely controlling the vehicle.

Automotive vehicles implement controller area network (CAN) buses to allow
individual components, known as electronic control units (ECUs), to communicate.
Example ECUs include safety-critical components such as the braking systems,
power steering, and so on. The CAN bus typically has no security applied to
validate that messages transmitted on the bus originated from an authorized source
or that the messages haven't been altered before reaching their destination(s).

There is neither authentication nor integrity applied to messages. This may seem
counterintuitive to a security practitioner; however, the timing of the messages on
the bus is of critical importance to meet real-time control system requirements in
which latency is unacceptable.

[52]

http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf

Chapter 2

Data Exchange On The CAN Bus 1, Self-Study Programme 238. Available at http://
www.volkspage.net/technik/ssp/ssp/SSP_238.pdf.

The remote exploitation of the Jeep by Dr. Miller and Mr. Valasek took advantage

of a number of flaws in the infrastructure as well as the individual subcomponents
of the Jeep. To start, the cellular network that supported telematics for the vehicle
allowed direct device-to-device communications from anywhere. This provided the
researchers the ability to communicate directly with the vehicle, and even to scan for
potential victims over the network.

Once communications were established to the Jeep, the researchers began to take
advantage of other security flaws in the system. One example was a feature that was
built into the radio unit. The feature was an execute function within the code that
could be called to execute arbitrary data. From there, another security flaw provided
the ability to move laterally through the system and actually transmit messages
remotely onto the CAN buses (IHS and C). In the Jeep architecture, both CAN buses
were connected to the radio unit, which communicated through a chip that allowed
its firmware to be updated with no cryptographic protections (for example, digital
signature). This final flaw and the resulting compromise illustrate that small issues
within many systems sometimes add up to big problems.

Attacks

This section outlines a few typical attack categories against enterprise
IoT components.

Wireless reconnaissance and mapping

The majority of IoT devices on the market utilize wireless communication protocols
such as ZigBee, ZWave, Bluetooth-LE, WiFi802.11, and others. Similar to the war
dialing days of old where hackers scanned through telephone switching networks
to identify electronic modems, today, researchers are successfully demonstrating
scanning attacks against IoT devices. One example is the Texas-based company
Praetorian, which in Austin, TX, has used a low-flying drone outfitted with a
custom ZigBee protocol scanner to identify thousands of ZigBee-enabled IoT device
beacon requests. Just as network scanning using tools such as Nmap is commonly
utilized by hackers to gather intelligence about hosts, subnets, ports, and protocols
in networks, similar paradigms are being used against IoT devices — things that
may open your garage door, lock your front door, turn lights on and off, and so

on. Wireless reconnaissance will often precede full-scale device attacks (http://
fortune.com/2015/08/05/researchers-drone-discover-connected-devices-
austin/).

[53]

http://www.volkspage.net/technik/ssp/ssp/SSP_238.pdf
http://www.volkspage.net/technik/ssp/ssp/SSP_238.pdf
http://fortune.com/2015/08/05/researchers-drone-discover-connected-devices-austin/
http://fortune.com/2015/08/05/researchers-drone-discover-connected-devices-austin/
http://fortune.com/2015/08/05/researchers-drone-discover-connected-devices-austin/

Vulnerabilities, Attacks, and Countermeasures

Security protocol attacks

Many security protocols can sustain attacks against vulnerabilities introduced either
in the protocol design (specification), implementation and even configuration stages
(in which different, viable protocol options are set). As an example, researchers
found while testing a ZigBee-based consumer IoT implementation that the protocol
was designed for easy setup and usage but lacked configuration possibilities for
security and performed vulnerable device pairing procedures. These procedures
allow external parties to sniff the exchanged network key during the ZigBee pairing
transaction and gain control of the ZigBee device. Understanding the limitations of a
chosen protocol is absolutely critical to determining what additional layered security
controls must be put in place to keep the system secure (https://www.blackhat.
com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-
Bad-And-The-Ugly-wp.pdf).

Physical security attacks

Physical security is a topic frequently overlooked by IoT vendors that are only
familiar with designing equipment, appliances, and other tools historically

not subject to exploitation. Physical security attacks include those in which the
attacker(s) physically penetrate the enclosure of a host, embedded device, or other
type of IoT computing platform to gain access to its processor, memory devices,

and other sensitive components. Once accessed over an exposed interface (for
example, JTAG), the attacker can readily access memory, sensitive key material,
passwords, configuration data, and a variety of other sensitive parameters. Many

of today's security appliances now include extensive protections against physical
security attacks. Various tamper evidence controls, tamper response mechanisms (for
example, automatic wiping of memory), and other techniques exist to protect devices
from physical penetration. Smart card chips, hardware security modules (HSM),

and many other types of cryptographic module employ such protections to protect
cryptographic variables —hence device identity and data—from compromise.

Application security attacks

IoT devices and connections can be exploited through attacks against application
endpoints. Application endpoints include web servers as well as mobile device
applications (for example, iPhone, Android) that have a role in controlling the
device. Application code running on the device itself can also be directly targeted.
Application fuzzing can find ways of compromising the application host and taking
control of its processes. In addition, reverse engineering and other notable attacks
can uncover sad but still common implementation vulnerabilities such as hardcoded
keys, passwords, and other strings in the application binary. These parameters can
be useful in various exploits.

[54]

https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf

Chapter 2

Lessons learned and systematic
approaches

IoT systems can be highly complex implementations that encompass many
technology layers. Each layer has the potential to introduce new vulnerabilities into
the overall IoT system. Our discussions related to potential airline attacks as well as
real-world automobile attacks provide glimpses into understanding how overcoming
the vulnerabilities of each component within a system is critical in combating highly
motivated attackers from reaching their goals.

This becomes even more concerning as the IoT intersects safety and security
engineering in the physical and electronic worlds. Described earlier, collaboration
between the security engineering discipline and other engineering disciplines is
needed now, to allow system designers to build security into the foundations of their
products and guard against attacks that focus specifically on removing, dismantling,
or reducing the effectiveness of safety controls in IoT CPS.

An interesting point related to the IoT is the need to be critical of third-party
components or interfaces that may be added at a later time to an IoT deployment.
Examples of this persist in the automotive industry, such as after-market devices that
plug into vehicle ODB-II ports. Research has shown that at least one of these devices
can be used to take control of the vehicle under certain circumstances. Security
architects must understand that the security of the system as a whole is only as
strong as the weakest link in the chain, and understand when the potential is there
for a user to introduce new components that make the attack surface much larger
than originally intended.

The security community has also collectively learned that many developers are
fundamentally not familiar with engineering security into systems. This is primarily
true because of the general lack of security training and awareness in the software
engineering world. There are also cultural barriers between software developers,
security, and other types of engineers. Whether discussing Supervisory Control
and Data Acquisition (SCADA) systems, connected vehicles, or smart refrigerators,
product engineers have historically not had to worry about bad actors gaining
remote access to the target. This is no longer true.

The key take-away from this discussion is the need to systematically evaluate the
security posture of an IoT implementation and its deployment. This means it is
equally important for OEM/ODM vendors developing specific IoT devices as it is for
the enterprise architect integrating an IoT system on the fly.

[55]

Vulnerabilities, Attacks, and Countermeasures

Threat modeling provides us a methodical approach to performing a security
evaluation of a system or system design. We next demonstrate the tailored
development and use of a threat model. Threat modeling helps develop a thorough
understanding of the actors, entry points, and assets within a system. It also provides
a detailed view of the threats to which the system is exposed. Note that threat
modeling and attack/fault tree modeling go hand in hand. The latter should be
performed in the context of an overarching threat modeling approach.

Threat modeling an loT system

A valuable reference for threat modeling can be found in Adam Shostack's book
Threat Modeling: Designing for Security.

Source: Shostack, A. (2014), Threat Modeling: Designing for Security. Indianapolis,
IN; Wiley

Microsoft also defines a well-thought-out threat modeling approach using multiple
steps to determine the severity of threats introduced by a new system. Note that
threat modeling is the larger exercise of identifying threats and threat sources; attack
modeling, described earlier, is attacker-focused and designed to show the nuances
of how vulnerabilities may be exploited. The threat modeling process that we will
follow in this example is illustrated in the following diagram:

1. Identify the Assets

¥

2. Create an loT System Architecture
Overview

A

3. Decompaose the loT System
L

4. Identify Threats

¥

| 5. Document Threats ‘

¥

| 6. Rate the Threats ‘

[56]

Chapter 2

To illustrate the threat modeling process, we will evaluate threats to a smart parking
system. A smart parking system is a useful IoT reference system because it involves
deploying IoT elements into a high-threat environment (some individuals would
cheat a parking payment system if they could, and laugh all the way home).

The system contains multiple endpoints that capture and feed data to a backend
infrastructure for processing. The system provides data analytics to provide trend
analysis for decision makers, correlation of sensor data to identify parking violators
in real time, and exposes an API to smartphone applications that support customer
features such as real-time parking spot status and payments. Many IoT systems are
architected with similar components and interfaces.

In this example, our smart parking system is differentiated from a real-life smart
parking solution. Our example system provides a richer set of functionalities for
illustrative purposes:

* Consumer-facing service: This allows customers to determine vacancy status
and pricing for nearby parking spots

* Payment flexibility: The ability to accept multiple forms of payment,
including credit cards, cash/coins, and mobile payment services (for
example, Apple Pay, Google Wallet)

* Entitlement enforcement: The ability to track the allocated time purchased
for a spot, determine when the entitlement has expired, sense when a vehicle
has overstayed the purchased period, and communicate the violation to
parking enforcement

* Trend analysis: The ability to collect and analyze historical parking data and
provide trend reports to parking managers

* Demand-response pricing: The ability to change pricing depending on the
demand for each space

Source: https://www.cisco.com/web/strategy/docs/parking aag final.pdf

Given that the system is designed to collect payment from consumers, alert
enforcement officials when non-payment has occurred, and provide appropriate
pricing based on the current demand for parking, the appropriate security goals for
the system could be stated as follows:

* Maintain integrity of all data collected within the system

* Maintain confidentiality of sensitive data within the system

* Maintain the availability of the system as a whole and each of its
individual components

[571]

https://www.cisco.com/web/strategy/docs/parking_aag_final.pdf

Vulnerabilities, Attacks, and Countermeasures

Within the smart parking system, sensitive data can be defined as payment data as
well as data that can leak privacy information. Examples include video recordings
that capture license plate information.

Step 1 — identify the assets

Documentation of the assets within the system provides an understanding of what
must be protected. Assets are items that are of interest to an attacker. For the smart
parking solution, we can see typical assets described in in the following table. Note
that for space-saving purposes we have simplified the asset list somewhat:

ID

Asset

Description

1

Sensor data

Sensor data is telemetry that signals whether a parking

spot is filled or empty. Sensor data is generated by each
sensor, which is placed where convenient within a parking
structure. Sensor data is transmitted via ZigBee protocol to
the sensor gateway. Data is merged with other sensor data
and transmitted via Wi-Fi to a router that is connected to the
cloud. Sensor data is then processed by an application and
also sent to a database for raw storage.

Video streams

Video streams are captured by IP camera and data is
transmitted to a wireless router.

Payment data

Payment data is transmitted from a smartphone or kiosk
to a payment processing system. Payment data is typically
tokenized during transmission.

Lot sensors

Vehicle sensors are placed in-ground or overhead
to determine when a spot is vacant or filled. Sensors
communicate via ZigBee with the sensor gateway.

Sensor gateway

Aggregate data from all sensors in a geographic area using
ZigBee. Gateways communicate using Wi-Fi with backend
processing systems.

[58]

Chapter 2

ID Asset Description
5 IP camera Records video of spots to identify abusers of the system.
Data sent over Wi-Fi network to backend processing
systems.
6 Parking Processes data received from sensors and provides parking
application and rate information to customers through smartphone app
and kiosks.
7 Analytics system Collects data directly from cameras and sensor gateways.
9 Kiosk Exposed to the environment and communicates with
parking sensors and sensor gateways.
10 Infrastructure Provides communication access across the system and
communications interfaces with all aspects of the system.
equipment

Step 2 — create a system/architecture overview

This step provides a solid foundation for understanding not only the expected
functionality of the IoT system, but also how an attacker could misuse the system.
There are three sub-steps to this part of the threat modeling process:

1. Start with documenting expected functionality.

2. Create an architectural diagram that details the new IoT system. During
this process, trust boundaries in the architecture should be established.
Trust boundaries should elucidate the trust between actors, and
their directionality.

3. Identify technologies used within the IoT system.

[59]

Vulnerabilities, Attacks, and Countermeasures

Documentation of system functionality is best accomplished by creating a set of use
cases such as those that follow:

Use case 1: Customer pays for time in parking spot

Pre- Customer has installed parking application onto smartphone.

conditions Payment information has been made available for transactions using

parking application.

Use case Customer opens parking application on smartphone.

Smartphone communicates with and collects data from parking
application, and provides real-time location and pricing for nearby
vacant spots.

Customer drives to spot.

Customer uses smartphone application to pay for spot.

Post- Customer has paid to park car for a set amount of time.
conditions

Use case 2: Parking enforcement officer is alerted to non-payment incident

Pre- The time allocated to a parking transaction has expired and the car is
conditions still in the parking spot.
Use case Parking application (backend) records parking session start time.

IP video cameras capture video of vehicle in parking spot.

Parking application correlates video of car in spot with start time and
duration for parking transaction.

System flags for video confirmation once transaction duration has
expired.

IP video cameras provide evidence that vehicle is still parked.
Parking application transmits an alert to enforcement application.

Enforcement officer receives SMS alert and proceeds in person to ticket
the vehicle.

Post- Parking enforcement officer has ticketed the vehicle.
conditions

An architectural diagram of the system details the components of the system, their
interactions, and the protocols employed in their interactions. The following figure is
an architectural diagram of our example smart parking solution.:.

[60]

Chapter 2

IP Cameras

Analytics

L“%

{B)}

Parking Application

m E:“

Parking Enforcement

Application

Zighee

N | u
m O
] T - N
H Eg H
Sensors

1)
! g

sensor Gateway

Once the logical architecture view is complete, it is important to identify and
examine the specific technologies that will comprise the IoT system. This includes

understanding and documenting lower-level details regarding the endpoint devices,
such as the processor types and operating systems.

[61]

Vulnerabilities, Attacks, and Countermeasures

The endpoint details provide the information needed to understand the specific
types of potential vulnerabilities that may eventually be exposed and define
processes for patch management and firmware updates. Understanding and
documenting the protocols that are used by each IoT device will also allow for
updates to the architecture, especially if gaps are found in the cryptographic controls
applied to the data transmitted throughout the system and the organization:

Technology/Platform

Details

ZigBee

Communication Protocol:

Mid-range RF protocol to handle communications between
sensors and sensor gateways.

802.11 Wi-Fi

Communication Protocol:

RF protocol supporting communication between IP-
enabled cameras and wireless (Wi-Fi) router.

ZigBee smart parking
sensor

Supports transmission ranges of 100 m; 2.4 GHz ZigBee
transponder; ARM Cortex M0; 3-year battery life; supports
magnetic and optical detection sensors.

Wireless sensor gateway

2.4 GHz; 100 m range; physical interfaces include: RS-
232, USB, Ethernet; ZigBee communications; capable of
supporting up to 500 concurrent sensor nodes.

Wireless (Wi-Fi) router

2.4 GHz Wi-Fi; 100 m+ range outdoor

Step 3 — decompose the loT system

At this stage, the focus is on understanding the lifecycle of data as it flows through
the system. This understanding allows us to identify vulnerable or weak points that
must be addressed within the security architecture.

To start, one must identify and document the entry points for data within the
system. These points are typically sensors, gateways, or control and management

computing resources.

[62]

Chapter 2

Next, it is important to trace the flow of data from the entry points and document
the various components that interact with that data throughout the system. Identify
high-profile targets for attackers (these can be intermediate or top-level nodes of an
attack tree) — these may be points within the system that aggregate or store data, or
they may be high-value sensors that require significant protection to maintain the
overall integrity of the system. At the end of this activity, a detailed understanding
of the IoT system's attack surface (in terms of data sensitivity and system
movements) emerges:

| [Payment] |
i Data Payment 1
! < Payment App |
! Confirmation !
! Vehicle / :
i License Plate !
| L & Selected Stall i
i | Driver !
i Sr;\f/;rﬁs l— Payment !
"| Phone Confirm !
i Stall & Vehicle Perking
i Kiosk ISR Enforcement 1
| App |
i Unpaid /

i Stalls & ‘
! Available Parking Vehicle 3 i
1 - Stalls App License !
i Plate !
| / Data !
Unpaid Citation | !
] Raw Video Data Stalls Data |
: Stall 1

Parking
. Enforcement
Mobile
% Device

LOther Servisord

Vehicle

[63]

Vulnerabilities, Attacks, and Countermeasures

Once data flows have been thoroughly examined, you can begin to catalogue the
various physical entry points into the system and the intermediate and internal
gateways through which data flows. Also identify trust boundaries. The entry points
and trust boundaries have an enormous security bearing as you identify overall
threats associated with the system:

Entry points

ID Entry point Description

1 Parking The parking management application provides a web service

management that accepts incoming REST-based requests over the exposed
application API. A web application firewall sits in front of this service to
filter unauthorized traffic.

2 Smartphone Connection is made through an API to the parking

application management application. Anyone who has downloaded
the smartphone application can gain access to the system.
The smartphone application is custom-developed and goes
through security verification testing. A TLS connection
is established between the application and the parking
management system.

3 Kiosk A self-contained kiosk on the lot property. This connects via
API to the parking management application. Anyone who
physically visits the kiosk gains access to the system.

4 Sensor gateway Technicians gain access to the sensor gateway administrative

administrative account through remote connectivity over the Wi-Fi network
account (via SSH). Physical access is also possible via direct serial
connection.

5 IP cameras Technicians gain access to root account on IP cameras
remotely over the IP network (via SSH). Ideally, the SSH
connection is certificate-based (PEM files); passwords can
also be used (though are more susceptible to the common
password management deficiencies, dictionary attacks, and
SO on).

6 Enforcement Enforcement officers gain access to enforcement application

application data through SMS alerts sent from the enforcement

application to registered devices. Leverage services such as
Google Cloud Messaging (GCM).

[64]

Chapter 2

Step 4 - identify threats

Within the IoT, there is a clear blending of the physical and electronic worlds. This
results in relatively simplistic physical attacks that can be used to thwart a system's
functionality. As an example, did the designers of the system include any integrity
protections on the position of the cameras that provide data for parking enforcement
correlation?

The amount of human involvement in the system also plays a significant factor in the
types of attacks that could be used against a system. For example, if human parking
enforcement officers aren't involved (that is, the system automatically issues citations
for staying over the time limit), then the ability of the system that reads the license
plates would have to be thoroughly examined. Could someone spoof a vehicle by
simply swapping license plates, or deny the system the ability to read the plate by
putting an obscuring layer on top of them?

The popular STRIDE model can be applied to IoT system deployments.

Use well-known vulnerability repositories to better understand the environment,
such as MITRE's common vulnerabilities and exposures database. Uncovering the
unique threats to any particular IoT instantiation will be guided by these threat
types (note that is also a good time to utilize attack/fault tree analysis for some
implementations and deployments):

Threat type | IoT analysis

Spoofing Examine the system for threats related to the spoofing of machine
identity identity and the ability for an attacker to exploit automated trust
relationships between devices.

Carefully examine the authentication protocols used to set up secure
communications between IoT devices as well as other devices and
applications.

Examine the processes for provisioning identities and credentials to
each IoT device; ensure that there are proper procedural controls in
place to prevent introduction of rogue devices into the system or to leak
credentials to attackers.

[65]

Vulnerabilities, Attacks, and Countermeasures

Threat type

IoT analysis

Tampering
with data

Examine data paths across the entire IoT system; identify targetable
points in the system where tampering of sensitive data can take place:
these will include points of data collection, processing, transport, and
storage.

Carefully examine integrity-protection mechanisms and configurations
to ensure that data tampering is effectively dealt with.

While data is in secure transit (for example, by SSL/TLS), is there a
man-in-the-middle attack scenario possible? The use of certificate-
pinning techniques can help mitigate these threats.

Repudiation

Examine the IoT system for nodes that provide critical data.

These nodes are likely sets of sensors that provide various data for
analysis. It is important to be able to trace back data to a source and
ensure that it was indeed the expected source that provided that data.

Examine the IoT system for weaknesses that might allow an attacker to
inject a rogue node designed to feed bad data. Rogue data injection may
be an attempt to confuse upstream processes or take the system out of
an operational state.

Ensure that attackers are not able to abuse the intended functionality
of IoT systems (for example, illegal operations are disabled or not
allowed).

State changes and time variations (for example, disrupting message
sequencing) should be taken into account.

Information
disclosure

Examine data paths across the entire IoT system, including the backend
processing systems.

Ensure that any device that processes sensitive information has been
identified and that proper encryption controls have been implemented
to guard against disclosure of that information.

Identify data storage nodes within the IoT system and ensure that
data-at-rest encryption controls have been applied.

Examine the IoT system for instances where IoT devices are vulnerable
to being physically stolen and ensure that proper controls, such as key
zeroization, have been considered.

[66]

Chapter 2

Threat type

IoT analysis

Denial of
service

Perform an activity that maps each [oT system to business goals, in an
effort to ensure that appropriate Continuity of Operations (COOP)
planning has occurred.

Examine the throughput provided for each node in the system and
ensure that it is sufficient to withstand relevant denial of service
(DoS) attacks.

Examine the messaging infrastructure (for example, data buses), data
structures, improper use of variables and APIs used within applicable
IoT components and determine if there are vulnerabilities that would
allow a rogue node to drown out the transmissions of a legitimate node.

Privileged
elevation

Examine the administration capabilities provided by the various IoT
devices that make up an IoT system. In some cases, there is only one
level of authentication, which allows configuration of device details. In
other cases, distinct administrator accounts may be available.

Identify instances where there are weaknesses in the ability to segregate
administrative functions from user-level functions within IoT nodes.

Identify weaknesses in the authentication methods employed by IoT
nodes in order to design appropriate authentication controls in the
system.

Physical
security
bypass

Examine the physical protection mechanisms offered by each IoT device;
plan mitigations where possible against any identified weaknesses.

This is most important for IoT deployments that are in public or remote
locations and may be unattended. Physical security controls such as
tamper evidence (or signaling) or tamper response (active, automatic
destruction of sensitive parameters on the device) may be necessary.

Social
engineering

Train staff to guard against social engineering attempts; regularly
monitor assets for suspicious behavior.

Supply chain

issues

Understand the various technological components that comprise IoT
devices and systems; keep track of vulnerabilities related to any of these
technology layers.

[67]

Vulnerabilities, Attacks, and Countermeasures

The application of the STRIDE model with the additional components that support
the IoT can be seen in the following table:

Smart parking threat matrix

Type Example Security
Control

Spoofing Parking thief charges legitimate customer for parking | Authentication
time by accessing that customer's account.

Tampering Parking thief receives free parking through Authentication
unaqthquzed access to backend smart parking Integrity
application.

Repudiation Parking thief receives free parking by asserting that Non-
the system malfunctioned. repudiation

Integrity

Information Malicious actor accesses customer financial details Authentication

disclosure throt.lghicompromise of backend smart parking Confidentiality
application.

Denial of Malicious actor shuts down smart parking system Availability

service through a DoS attack.

Elevation of Malicious actor disrupts smart parking operations by | Authorization

privilege implanting rootkit on backend servers.

Step 5 — document the threats

This step focuses on documenting the threats to the parking system:

#1

Threat description

accessing that customer's account.

Parking thief charges legitimate customer for parking time by

Threat target

Legitimate customer account credentials

Attack techniques

Social engineering; phishing; database compromises; MITM attacks
(including those against cryptographic protocols)

Countermeasures

Require multi-factor authentication on accounts used to access
payment information

Threat description
#2

Parking thief receives free parking through unauthorized access to
backend smart parking application.

Threat target

Parking application

Attack techniques

Application exploit; web server compromise

[68]

Chapter 2

Countermeasures

Implement web application firewall fronting parking application web
server; implement validation of inputs to application over API

Threat description

Parking thief receives free parking by asserting that the system

#3 malfunctioned.

Threat target Parking attendant or administrator

Attack techniques | Social engineering

Countermeasures | Implement data integrity measures on all sensor and video data

captured within the system

Step 6 — rate the threats

Evaluating the likelihood and impact of each threat above allows for selecting
appropriate types and levels of control (and their related costs) to mitigate each.
Threats with higher risk ratings may require larger amounts of investment to
mitigate. Conventional threat-rating methodologies can be used at this step,
including Microsoft's DREAD approach.

The DREAD model asks basic questions for each level of risk and then assigns a
score (1 - 10) for each type of risk that emerges from a particular threat:

* Damage: The amount of damage incurred by a successful attack

* Reproducibility: What level of difficulty is involved in reproducing the

attack?

* Exploitability: Can the attack be easily exploited by others?

* Affected users: What percentage of a user/stakeholder population would be
affected given a successful attack?

* Discoverability: Can the attack be discovered easily by an attacker?

[69]

Vulnerabilities, Attacks, and Countermeasures

An example of a threat rating for our smart parking system is provided in the
following table:

Threat risk ranking: Parking thief charges legitimate customer for parking time by
accessing that customer's account

Item Description Item

score
Damage Damage is limited to a single customer account 3
Potential

Reproducibility | Attack is not highly reproducible unless mass compromise | 4
of customer database occurs

Exploitability Exploitation of this threat can be done by unskilled persons | 8

Affected users Single user in most scenarios

Discoverability | This threat is highly discoverable as it can be accomplished
using non-technical activities

Overall score: 5.2

Security architects who are responsible for designing in the security controls for an
IoT system should continue with this exercise until all threats have been rated. Once
complete, the next step is to perform a comparison of each against the others based
on each one's threat rating (overall score). This will help prioritize the mitigations
within the security architecture.

Summary

This chapter explored IoT vulnerabilities, attacks, and countermeasures by
illustrating how an organization can practically define, characterize, and model an
IoT system's threat posture. With a thorough understanding of the security (and
in some cases, safety) risks, appropriate security architectural development can
commence such that appropriate mitigations are developed and deployed to
systems and devices throughout the enterprise.

In the next chapter, we will discuss the phases of the IoT security lifecycle.

[70]

Security Engineering for loT
Development

Security engineering is a complex subject deserving of multiple volumes. "Security
engineering is a specialized field of engineering that focuses on the security aspects in the
design of systems that need to be able to deal robustly with possible sources of disruption,
ranging from natural disasters to malicious acts" (https://en.wikipedia.org/wiki/
Security_engineering).

In today's fast-paced tech industry, security engineering often takes a back seat to
the rush to develop competitive market-driven features. That is frequently a costly
sacrifice as it provides malicious hackers an opportunity-rich sandbox in which to
develop exploits. In an ideal world and project, a methodical approach includes
identification and evolution of a series of functional business requirements. These
requirements are prototyped, tested, refined, and finalized into an architecture
before being developed, tested and deployed. This is how things might happen in a
perfect, error-free waterfall model. The world is not ideal, however, and IoT devices
and systems will be rolled out by a variety of company types using a multitude of
development practices.

[71]

https://en.wikipedia.org/wiki/Security_engineering
https://en.wikipedia.org/wiki/Security_engineering

Security Engineering for IoT Development

Gartner estimates that by 2017, 50% of all IoT solutions will originate from start-up
companies less than 3 years old. This imposes challenges as security is frequently
an afterthought and minor area of focus for most start-up organizations. The Cloud
Security Alliance (CSA) loT WG performed a survey on loT-based start-ups in
2015 and found that there was a lack of security emphasis and an overall gap in the
strong, dedicated workforce of security professionals. Angel investors and venture
capital firms may also impose barriers to a start-up's meaningful incorporation of
security; security is frequently demoted to a "nice to have" status among an extensive
list of features on the road to success. In this environment, start-up companies and
even more traditional companies will frequently rely on the supposed security

of their suppliers' hardware and software. This occurs regardless of whether the
intended deployment target and environment are commensurate with the suppliers'
stipulations (http://www.gartner.com/newsroom/id/2869521).

In this chapter, we will address the following topics as they relate to IoT
security engineering:

* Selecting a secure development methodology for the IoT

* Designing security in from the start

* Understanding compliance considerations

* Planning for integration of the IoT into existing security systems

* Preparing security processes and agreements

* Selecting security products and services to support the [oT

* Selecting a secure development methodology

Building security in to design and
development

In this section, we discuss the need to securely engineer IoT products and systems.
This guidance is useful whether you are planning a single IoT product, or the
integration and deployment of millions of IoT devices into an enterprise system.
Either way, it is important to build security in from the start by focusing on
methodically understanding threats, tracing security requirements through to
completion, and ensuring that there is a strong focus on securing data.

[72]

http://www.gartner.com/newsroom/id/2869521

Chapter 3

It is easy to say that a product team or systems engineering team has to build
security in from the start, but what does that actually mean? Well, that means that
from the very beginning of a project, engineering teams have thought through how
to enhance the security rigor of the project all the way through completion. This is
something lacking in many of today's fast-paced agile development programs. There
is an investment required to achieving this rigor, both in time and money, as teams
consider the processes and tools to use to achieve their security goals. However,
the upfront costs for these actions pale in comparison to the costs associated with
seeing your product or organization on the top of news streams, battered in social
media, or fined by a government regulator for gross negligence that resulted in a
major compromise.

One of the fundamental tasks as you begin your development or integration

effort is to select your development methodology and examine how to enhance

that methodology into a more security-conscious one. This chapter outlines some
considerations. There are also additional resources available, useful to both product
and system teams. One example is the Building Security In Maturity Model
(BSIMM) that lets you understand the security practices being implemented by
peer organizations: https://www.bsimm.com/.

Security in agile developments

When selecting a development methodology, consider that security must be built
in from the beginning of the process, to ensure that well-thought-out security,
safety, and privacy requirements are elicited and made traceable throughout

the development and update of an IoT device or system (by system, we mean a
collection of IoT devices, applications, and services that are integrated to support
a business function). There are templated approaches available that can be applied
to any development effort. One example is the Microsoft Security Development
Lifecycle (SDL), which incorporates multiple phases, including training,
requirements, design, implementation, verification, release, and response. The
Microsoft SDL can be found at https://www.microsoft.com/en-us/sdl/.

Many IoT products and systems will be developed using agile methodologies, given
the ability to quickly design/develop/field feature sets. The agile manifesto defines a
number of principles, some of which present difficulties to the integration of security
engineering approaches:

* Deliver working software frequently, from a few weeks to a few months,
with a preference to the shorter timescale

* Working software is the primary measure of progress

[73]

https://www.bsimm.com/
https://www.microsoft.com/en-us/sdl/

Security Engineering for IoT Development

Difficulties that must be addressed in an agile secure development lifecycle revolve
around the short development timescales related to agile projects. There are often
numerous security requirements that a product must satisfy. It is difficult to address
these requirements in a short development cycle. Also, a focus on security decreases
the velocity that can be applied to functional user stories in agile development.

Considering how to handle security requirements, it becomes clear that the same
thought and attention must be given to it and other nonfunctional requirements
such as reliability, performance, scalability, usability, portability, and availability.

Some argue that these nonfunctional requirements should be handled as constraints
that are pulled into the definition of done and eventually met by each user story.
However, the transformation of all security (and nonfunctional) requirements into
constraints does not scale well when the development team must deal with dozens
or hundreds of security requirements.

A few years back, Microsoft developed an approach to handling security
requirements within agile developments (https://www.microsoft.com/en-us/
SDL/discover/sdlagile.aspx). The process focuses heavily on the handling of
security requirements and introduces concepts for categorizing the requirements
in a manner that reduces the strain on the development team during each sprint.
Microsoft's methodology introduces the concept of One Time, Every Sprint, and
Bucket security requirements.

One Time requirements are applicable to the secure setup of a project and other
requirements that must be met from the start, for example:

* Establishing secure coding guidelines that must be followed throughout
the development
* Establishing an approved software list for third-party components/libraries

Every Sprint requirements are applicable to each sprint and hours are estimated for
each requirement during sprint planning, for example:

* To help identify bugs, performing peer reviews on code prior to merging into
the baseline

* Ensuring that code is run through static code analysis tools within the
continuous integration (CI) environment

Bucket requirements are requirements that can be implemented and satisfied over
the life of a project. Putting these requirements into buckets allows teams to choose
to import them into sprint planning when it makes the most sense.

[74]

https://www.microsoft.com/en-us/SDL/discover/sdlagile.aspx
https://www.microsoft.com/en-us/SDL/discover/sdlagile.aspx

Chapter 3

In addition to these requirement types, there are also functional security
requirements that should be added to the backlog. An example of a functional
security requirement for an IoT device may be to securely establish a TLS connection
to the device's gateway. These requirements can be added to the product backlog
and prioritized as needed by the product owner during grooming sessions.

Threat modeling approaches have been well documented and discussed in other
publications, including Chapter 2, Vulnerabilities, Attacks, and Countermeasures, of this
book. Once your initial threat modeling is completed, the resulting mitigations need
to be analyzed to understand where they fit within the development or operations
of the IoT system. To start, identify functional security requirements that must be
integrated into the IoT product or service. You can turn these functional security
requirements into user stories and add them to the product backlog. Examples of
functional security requirements to be added to the product backlog include

the following:

* Asauser, I want to ensure that all access passwords on my IoT device or
cloud service are strong (for example, complexity, length, composition)

* Asauser, I want to be able to track IoT device authorized usage
(for example, through entitlement tracking)

* Asauser, I want to ensure that any data stored on my IoT device
is encrypted

* Asauser, I want to ensure that any data transmitted by my IoT device
is encrypted

* Asauser, I want to ensure that any key material stored on my IoT device is
safeguarded from disclosure or other unauthorized access

* Asauser, I want to ensure that any unnecessary software and services are
disabled and removed from my IoT device

* Asauser, I want to ensure that my IoT device only collects data that is meant
to be collected

[75]

Security Engineering for IoT Development

Other examples of security user stories can be found in the SAFECode document
Practical Security Stories and Security Tasks for Agile Development Environments at
http://safecode.org/publication/SAFECode Agile Dev Security0712.pdf.
An important item to note is that just as the product backlog will include
operations-centric user stories, it should also include hardware-centric

security user stories:

* As asecurity and QA engineer, I want to ensure that the UART interface is
password protected

* Asasecurity and QA engineer, I want to disable JTAG interfaces prior to
product launch

* Asasecurity and QA engineer, I want to implement tamper response into
my loT device casing

Some of these may be user stories or epics in the parlance of agile.

Focusing on the IoT device in operation

An interesting aspect of the IoT is the quick movement towards vendor products-as-a-
service offerings — where customers pay for a certain set of entitlements on a regular
basis (for example, as in the case of expensive medical imaging systems). This model
is characterized by the leasing of IoT hardware to customers followed by tracking its
use for billing purposes.

Other types of IoT devices are sold to consumers and then linked to the vendor's
cloud infrastructure to manage their product for configuration changes as well

as account modifications. Sometimes, such products are outsourced to a third-
party ODM that manages the IoT infrastructure. The OEM then incorporates such
operational expenses in the master service agreement (MSA) between the two
companies. Additionally, many vendors will offer ancillary services that their

IoT device offerings can interact with, even when implemented in a customer
environment.

[76]

http://safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

Chapter 3

Given the reach into customer operational systems as well as the need to support
robust and scalable backend infrastructures, leveraging strong development
operations (DevOps) processes and technology is vital for operational IoT systems.
As a simplistic definition, DevOps blends agile development practices such as Scrum
or Kanban with a keen focus on operations.

A fundamental aspect of DevOps is the removal of silos between development and
operations. As such, it is important to include operational security requirements

(for example, user stories) in the product backlog as well. In order to do this, DevOps
teams must do the following;:

* Understand the potential deployment environments for the IoT device
being developed and design the security capabilities of the IoT device to
accommodate these environments.

* Evaluate the security of each component in the IoT ecosystem in addition
to the deployment environment (for example, web servers, databases, and
so on) to ensure that no security vulnerabilities are introduced at a micro or
macro level.

The IoT introduces a shift away from traditional hardware device purchases
toward sales of products-as-a-service. As such, vendors of IoT devices that plan to
lease their products to customers should strongly consider the operational security
aspects of their designs during development. This includes considerations such as
the following;:

* Compliance landscape for the operational environment(s)

* Methods for safeguarding the device given any physical exposures

* Ancillary systems required to support entitlement management in a
secure manner

* Ancillary systems required to support device firmware updates in a
secure manner

[771]

Security Engineering for IoT Development

Secure design

Secure design of IoT devices and systems is only one component in the overarching
IoT security lifecycle. The following diagram shows the design aspects of the
lifecycle which will be discussed now. Other aspects of the lifecycle will be
discussed in Chapter 4, The IoT Security Lifecycle.

Secure loT System
Implementation Life Cycle

Implement/ Integrate

Security Swareness Training
Systemn Testing
Security CONOPS Development
Establish Incident Response Procedures
Secure Configurations
Security System Integration

[78]

Chapter 3

Safety and security design

We've already introduced the need for threat modeling within IoT device and system
developments. Now we will expand on additional safety and securing engineering
processes to incorporate into your development and integration efforts.

Threat modeling

The IoT security lifecycle is bound to the systems development process. Planning for
secure operations of an IoT system should begin while the system is being designed,
and as new components of the [oT system are being considered. We therefore
consider threat modeling as a key component in any security lifecycle. This is
especially true given the iterative nature of the lifecycle, since threat models should
always be maintained and updated upon changes to the system design, operation,
or exposure. Chapter 2, Vulnerabilities, Attacks, and Countermeasures, provided an in-
depth review of the threat modeling process and even examined attack trees and
other artifacts to accompany it. Always assign someone in the security organization
with the responsibility of maintaining the threat model on at least a quarterly basis
and through key changes such as architectural modification as well as introduction
of new services, configurations, or product and supplier changes and upgrades.

Privacy impact assessment

Each IoT system should undergo a privacy impact assessment (PIA) during the
design stage. This will provide the information needed to determine mitigations
that must be included in the system design, as well as any third-party agreements
or service level agreement (SLA) details needed with technology providers to
protect information. Typically, a PIA will inform the design process in the following
ways if it is found that an IoT system collects, processes, or stores privacy protected
information (PPI):

* Provisioning of the device may require more administrative approvals

* Areview by internal audit or compliance should be conducted to determine
if it is viable to have PPI data on IoT devices

* Data stored on the device should be encrypted using sufficiently strong
cryptographic algorithms

* Data transmitted from/to the device should be encrypted using sufficiently
strong cryptographic algorithms

* Access to the device, both physical and logical, should be restricted to
authorized personnel

* End users should be made aware of the use, transfer, and disposal of PPI and
provide positive consent

[79]

Security Engineering for IoT Development

Understanding privacy impacts requires a degree of critical thinking when applied
to the IoT. There are IoT privacy concerns that are not always evident. For example,
in Security Analysis of Wearable Fitness Devices (https://courses.csail.mit.
edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-dmiao-hacking-
fitbit.pdf), researchers found that it is possible to track a Fitbit wearer based on
the Bluetooth Media Access Control (MAC) address. It is important to understand
all of the information that is being collected by an IoT device, and any manner that
the device can do the following:

* Be tracked
* Show patterns of activities

* Belinked to an individual identity or even an individual's possession

Note that simply performing a PIA is not sufficient. It is critical to link the outcome
from the PIA to your system requirements baseline and track those requirements

to closure as the IoT system is developed and fielded. These requirements will also
dictate the establishment of SLAs with IoT and infrastructure providers, as well as
the creation of privacy agreements with third parties that may handle data generated
by the IoT system.

Safety impact assessment

One of the principal differentiators of the IoT with conventional IT security is the
need to perform safety impact assessments. Given the cyber-physical characteristics
of many loT devices, some types of device vulnerabilities can be safety-of-life critical.
For example, if someone were to compromise a pacemaker via an exposed, low-
power wireless interface, obvious malicious acts could be performed. Likewise, if

a modern automobile's electronic control units (ECUs) are compromised over its
CAN Bus OBD2 interface, the new access may allow an attacker to send malicious
messages over the CAN bus to safety-critical ECUs such as those that perform the
braking function of the car. A safety impact assessment should be performed for any
IoT deployment. In the medical space, further health impact assessments should also
be performed.

In general, the following items needs to be addressed and answered in a safety
impact assessment:

* Given the intended usage of the device, is there anything harmful that
could happen if the device stopped working altogether (for example,
denial of service)?

» If the device by itself is not safety critical, are there any other devices or
services that are safety critical and depend on it?

[80]

https://courses.csail.mit.edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf
https://courses.csail.mit.edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf
https://courses.csail.mit.edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf

Chapter 3

* How could potential harm (from device failure) be minimized or avoided?
* What issues might others consider safety-related or harmful?

* Are there any other similar or related deployments that have been considered
safety relevant or have done harm?

A safety impact assessment not only examines outright stoppage of device or system
operation, but also various malfunctions or misbehaviors resulting from a device's
vulnerabilities and possible compromises. For example, could an unattended smart
thermostat malfunction or be maliciously operated such that upper and lower
temperature thresholds are violated? Without an automatic, well-protected, and
resilient temperature cutoff feature, serious safety conditions could result.

Another example would be network-connected roadside equipment (RSE) in the
connected vehicle ecosystem. Given the connectivity of a RSE device to traffic signal
controllers, backend infrastructure, connected vehicles and other systems, what
could various levels of RSE compromise result in from a safety perspective? What
type of service could a compromised RSE invoke locally at the roadside? Could

it actually cause a safety-of-life event, for example, read out an improper speed
warning so that drivers are ill prepared for an upcoming traffic condition? Or,
could it invoke a non-safety-related service in the traffic signal controller that
merely interrupts and degrades traffic flow around the signalized intersection?

The answers of the previous questions should feed back into the broader risk
management discussion when risk mitigations are being developed. Technical and
policy mitigations need to simultaneously resolve to acceptable levels the risks to
both safety and security.

Compliance

Compliance represents the security and policy requirements that are inherited

and applicable to one's IoT deployment. From a security lifecycle perspective,
compliance is wholly dependent on the specific industry regulatory environment
and whether it is commercial or government. For example, devices and systems
playing a role in credit and debit card financial transactions must adhere to the
payment card industry (PCI) series of standards for point-of-sale devices as well

as core infrastructure. Military systems typically require DITSCAP and DIACAP
types of certification and accreditation (C&A). Postal devices that perform financial
transactions in the form of package and envelope postal metering must adhere to the
postal authority's standards for such devices. Postal meters essentially print money
in the form of postage to pay for the shipping of an item.

[81]

Security Engineering for IoT Development

Unfortunately, the IoT can make compliance more difficult since there is a need

to understand new and complex data interactions between different parties and
identify where all of the data from IoT devices are transmitted (for example,
metadata regarding a device that is sent to a manufacturer but may be used to gather
information about end users). This is much easier if the IoT data is confined to a
single industry or use case; however, given the growing trend of data aggregation
and analysis, it is likely that privacy laws and rules will assert some of the most
far-reaching compliance requirements on the IoT. The broader the IoT deployment in
terms of connectivity and data sharing, the greater the probability of tripping on an
unexpected compliance or legal issue.

When determining what compliance standards apply when designing an IoT service
offering, it is critical to examine all of the physical and logical points of connection
involved in the IoT deployment. Network connections, data flows, data sources,
sinks, and organizational boundaries must be fully understood as these may require
certain trade-offs to be made in terms of information and connections made versus
compliance regimens that may apply. For example, with consumer-wearable
technology, it may not be feasible to share heart rate, blood pressure, and other
health metrics from such a device with doctors, offices, and hospitals. Why? Because
in the US, such data will typically require a variety of HIPAA compliance measures
to be in place. In addition, such devices used for actual medicine are typically subject
to oversight and compliance from the Food and Drug Administration (FDA). If there
is sufficient business value in connecting a wearable device to a hospital system,
then the device vendor may well want to explore the costs of invoking the new
compliance regimen and determine if they pay off in the long run in terms of market
penetration, profits, and so on. The following is a non-exhaustive list of various
industry-specific compliance regimens:

e PCI (Payment Card Industry): A consortium of Visa, MasterCard, American
Express, Discover Financial Services, and JCB International that directs the
PCI Security Standards Council to develop and maintain financial transaction
security standards such as the PCI Data Security Standards (DSS) and PIN
Transaction Services (PTS).

* NERC (North American Electric Reliability Corporation): This mandates
the Critical Infrastructure Protection (CIP) standards for the protection of
critical electrical generation and distribution systems. CIP standards address
identification of critical assets, security management, perimeter protection,
physical security, incident reporting and response, and system recovery.

* USPS (US Postal Service): This standard mandates security requirements
and controls for postal security devices. Postal security devices secure the
fund transfers associated with printing meter stamps and ensure the integrity
of the association between those funds and printed stamps.

[82]

Chapter 3

* SAE (Society of Automotive Engineers): This imposes a variety of safety and
security standards for the automotive industry.

* NIST (National Institutes for Standards and Technology): NIST's standards
are far-reaching, and many industries point to them to satisfy specific
requirements. NIST's standards consist of a variety of Special Publications
(SP), the Federal Information Protection Standards (FIPS), and more
recently, the NIST Risk Management Framework (RMF). NIST standards
are carefully cross-referenced to ensure scope and dependency is well
established. For example, numerous NIST standards (as well as industry-
specific ones) reference and mandate the FIPS 140-2 standard to protect
cryptographic devices.

* HIPAA: The US Department of Health and Human Services oversees HIPAA
and defines the HIPAA Security Rule as follows: The HIPAA Security Rule
establishes national standards to protect individuals' electronic personal
health information that is created, received, used, or maintained by a covered
entity. The Security Rule requires appropriate administrative, physical, and
technical safeguards to ensure the confidentiality, integrity, and security of
electronic protected health information.

Given the multitude of legacy and evolving compliance standards, it is important
for one's business use case to explore early what standards may apply, and to which
bounded organizational elements and systems. It is vitally important to integrate the
compliance needs into the IoT system design and development, product selection,
and data selection and sharing processes. In addition, many of the potential
standards require regulatory involvement to certify or accredit a system, whereas
some allow self-certification. The costs and timelines associated with these activities
can be high and impose a significant barrier to entry for an loT deployment.

Organizations that want to cost-effectively identify necessary security controls for
their IoT implementations can also turn to the popular 20 Critical Controls, which
map to many compliance standards. The 20 Critical Controls are maintained by the
Center for Internet Security (CIS); one of the authors of this book is a member of the
CIS 20 Critical Controls editorial panel and helped author a tailored IoT version of
the Critical Controls as an appendix to Version 6. Look for the appendix at the CIS
website (www.cisecurity.org).

Monitoring for compliance

Compliance monitoring is a challenging aspect of the IoT, given the need to maintain
the security state of a significant number of devices and device types within an
organization. Although there are a limited set of solutions available to address this
challenge today, there are some vendors that are building up capabilities that can be
used to begin meeting this challenge.

[83]

www.cisecurity.org

Security Engineering for IoT Development

For example, the security vendor Pwnie Express provides compliance monitoring
and vulnerability scanning capabilities for the IoT. The Pwnie Express Pwn Pulse
system provides the ability to detect and report on unauthorized, vulnerable, and
suspicious devices. This software provides security engineers with the ability to
validate security policies, configurations, and controls through the use of standard
penetration testing tools. Results of scans can be compared against regulatory
compliance requirements (http://m.marketwired.com/press-release/

pwnie express_unveills industrys first internet of everything threat
detection_ system-2010032.htm).

Security system integration

IoT secure system design addresses how implementers ensure that various loT
devices are able to be integrated into a larger security-aware enterprise. This
implies that devices can securely provision identities, credentials, undergo testing,
monitoring, audit, and be securely upgraded. Obviously, many limited IoT devices
will only be provisioned a subset of these capabilities.

Accounts and
Credentials

PKI Certificates
Certificate Status and
Lifetime
Certificate Monitoring
Account and ID
Management

Secure Bootstrapping

Initial Identity Provisioning
Default security parameters
Initial Enterprise Awareness

Patching and Updates Audit and Monitoring

HW and SW Inventory
Secure Downloads
Operational Testing

Configuration Updates

Activation

SIEM integration
Behavioral Analysis
Compliance Monitoring
Audit Maintenance

[84]

http://m.marketwired.com/press-release/pwnie-express-unveils-industrys-first-internet-of-everything-threat-detection-system-2010032.htm
http://m.marketwired.com/press-release/pwnie-express-unveils-industrys-first-internet-of-everything-threat-detection-system-2010032.htm
http://m.marketwired.com/press-release/pwnie-express-unveils-industrys-first-internet-of-everything-threat-detection-system-2010032.htm

Chapter 3

Artifacts from threat modeling, PIA, SIA, and compliance analysis should be used
as inputs into an overarching IoT security system design. For example, during
bootstrap (initial provisioning and connection) of an IoT device into a larger
enterprise or home network, there may be security-critical processes related to
treatment and handling of default passwords, technical controls to enforce the
creation of new passwords, one-time symmetric keys, and so on.

The IoT security system should include new technologies that are needed to support
the security posture of the IoT system, as well as describe the integration hooks

into existing security infrastructure. To achieve this, a recommended approach to
achieving IoT security system design is to first segregate security functionality and
controls based on directionality of threat. For example, some threats may target the
IoT device, in which case the enterprise needs to carefully monitor the device's status
and activity (that is, through an SIEM system). In other cases, the device may operate
in an insecure physical or network location, imposing a larger attack surface on the
enterprise. In this case, it may be necessary to put special network monitoring taps

at the IoT's gateway to validate messages, message formats, message authenticity,
and so on. Lastly, though it's easy to forget this issue, the enterprise may expose
certain threats to IoT devices. For example, a compromised or spoofed command and
control server may attempt to reconfigure an IoT device into an insecure or unsafe
configuration. The device needs to be self-aware of what constitutes default safety
and default security.

Incorporation into the security enterprise, based on the previous figure, incorporates
the following topics: secure bootstrap, accounts and credentials, patching and
updates, and audit and monitoring.

Secure bootstrap concerns the processes associated with initial provisioning of
passwords, credentials, network information, and other parameters to the devices
and the enterprise systems (which need to be aware of the devices). When new
devices are incorporated into a network, it is vital that they be distinguished as being
legitimate versus rogue or hostile devices. Thus, bootstrapping is a security process
that is frequently overlooked in importance. Secure bootstrapping consists of the
security processes necessary to ensure that a new (or reintroduced) device undergoes
the following:

* Receives a secure configuration that has been well vetted according to a
security policy

* Receives knowledge of its network, subnet, default gateway, and so on,
including ports and acceptable protocols

[85]

Security Engineering for IoT Development

* Receives knowledge of the network and backend system and server
identities — this will frequently be in the form of installing default
cryptographic credentials (trust anchors and trust paths)

* Registers —either directly or indirectly —its identity to the network
and/or the backend systems to which it connects

Serious security issues can ensue from an insecure bootstrap process that does not
conform to well-engineered security patterns. For example, many devices will be,
by default, in a highly insecure state after manufacture and even during shipping.
In these cases, secure bootstrap processes must frequently be performed in secure
facilities or rooms by personnel who have been well vetted. In the case of home and
other consumer IoT devices, the secure bootstrap processes may be performed by
the homeowner, for example, but should be well described and difficult to bypass or
perform incorrectly.

Accounts and credentials

Accounts and credentials consider the [oT device's identity and identity
management in the larger enterprise. Part of the bootstrap process frequently
addresses the initial provisioning of certificates or updated passwords; however,
once provisioned, the device and backend systems must maintain the identity and
update credentials on a periodic basis. For example, if the device hosts a TLS server
or performs TLS client certificate authentication to other systems, it will likely have
X.509 credentials with which it cryptographically signs TLS negotiation handshake
messages. These X.509 certificates should have an expiration date, and this date
should be closely tracked so that it does not expire and the device loses its identity.
Broader identity management must also be performed as part of maintaining
accounts and credentials, and these processes should be integrated with hardware
and software inventory management systems (frequently maintained in an

SIEM database).

[86]

Chapter 3

Patching and updates

Patching and updates concern how software and firmware binaries are provisioned
to IoT devices. Most legacy and even some new systems require direct connections
(for example, USB, console, JTAG, Ethernet, or others) to locally and manually
update a device to new versions. Given the migration to cloud-based monitoring and
management, many newer devices have the capability to update or patch software
over the network from the manufacturer or dedicated device/system manager.
Severe vulnerabilities are possible in software update and patching workflows;
therefore, in the device engineering process, it is crucial that the following be
supported in any over the air patching capability:

* End-to-end software/firmware integrity and authentication from the
build system through any staged transit to the device (in many cases,
confidentiality may also be needed)

* The software/update process should only be performed via a special access
function that is only available to a highly privileged role or identity (that is,
administrator), or it should be performed by the device (pull) based on its
authenticated queries to a secure backend software update system

Additional information on secure software provisioning is provided in the Processes
and agreements section, later in this chapter.

Audit and monitoring

Audit and monitoring concerns the enterprise security systems and their ability to
capture and analyze for anomalies. This includes both host and network anomalies
pertinent to a given IoT device. It is critical that IoT devices be allocated based on the
threat environment to specifically established security zones and that these zones
be monitored at their gateways by integrated firewall and SIEM systems. Many IoT
devices should be auditable if they are managed by an enterprise responsible for
their operation. If they are home-based appliances/devices, they should be given
the ability to provide audit and event data to a manufacturer web service to which
the device owner is given access. It is imperative, however, that privacy data is not
divulged over the audit interface without explicit permission and agreement by the
device owner or user. This type of information should be discovered and evaluated
during a privacy impact assessment.

[87]

Security Engineering for IoT Development

Processes and agreements

Security is not simply about finding technology solutions. Putting the right processes
and procedures in place is required to establish a strong security foundation.

Secure acquisition process

For an organization that is procuring many IoT devices on a regular basis, it is
important that the acquisition process itself is not used as an attack vector into the
enterprise. Lay out rules for acquiring new IoT devices from trusted vendors to
ensure that rogue devices with malicious software aren't procured and installed
within the network.

Secure update process

Design a secure update process that can be used to maintain approved patches,
software, and firmware versions for an IoT system. This requires an understanding
of the update processes of each vendor supporting your IoT device inventory. IoT
devices typically require the loading of an image onto the device, which includes the
underlying operating system (if present), and any application code. Other devices
may segregate these update functions. It is important to establish a process that
keeps all layers of the IoT device technology stack up to date.

Although keeping IoT devices updated is a critical aspect of guarding against the
exploit of software vulnerabilities, it is also important to guard against the insertion
of malicious software/firmware images during the update process. This typically
requires that a staging solution be created, where cryptographic signatures can be
validated prior to passing updates to the devices themselves.

Operational testing should also be considered as part of the update strategy.
Creating an IoT test network will aid in making sure that the introduction of updated
software does not result in negative functional behavior. Include the operational
testing of updates and patches in the approval process prior to allowing code to be
updated on an IoT device.

Establish SLAs

Mentioned earlier, IoT vendors will often lease smart hardware to organizations, a
feature that allows the setting up of entitlements. Some entitlements may comprise
thresholds, for example, a set number of transactions that can occur during a pre-
defined time period. As the IoT continues to gain traction in various industries,
enterprises will be faced with deciding whether to lease or buy smart products. It is
important that these enterprises include security objectives in the lease SLAs to help
keep the network secure.

[88]

Chapter 3

SLAs with IoT device vendors should be written to ensure that the devices introduce
minimal additional risk into the enterprise. Examples of IoT lease SLAs can include
the following;:

* The time to patch an IoT device after a new critical update is available

* The time to respond to an incident involving the device

* IoT device availability

* How the vendor handles privacy of data collected by the IoT device

* Compliance targets —ensuring that the device maintains compliance with
applicable regulations

* Incident response functions and collaboration agreements

* How the vendor handles confidentiality of the data collected by the device

Additional SLAs that should be considered involve the cloud-based infrastructures
that will support the IoT deployments. Good guides for cloud SLAs can be found by
visiting the Cloud Security Alliance (CSA) website: www.cloudsecurityalliance.
org.

Establish privacy agreements

Privacy agreements should be established between organizations that share IoT
data. This is especially important for the IoT as data is often expected to be shared
across organizational boundaries. Artifacts from the threat modeling exercise
performed for the IoT system should be used to understand the flow of data across
all organizations, and agreements should be drawn up by all organizations involved
in those data flows.

The CSA authored a Privacy Level Agreement Outline for the Sale of Cloud
Services in the European Union which can be found at https://downloads.
cloudsecurityalliance.org/initiatives/pla/Privacy Level Agreement
outline.pdf. This is a good starting point to understand the content that should be
considered within a privacy agreement. Examples include the following;:

* How the data will be processed

* What regulations the data transfers fall under

* The security measures applied to the data

* How systems processing the data will be monitoring for intrusion

* How breach notifications will occur

* Whether data will be provided to other parties and if so, what permissions or
reporting must be put in place first

[89]

www.cloudsecurityalliance.org
www.cloudsecurityalliance.org
https://downloads.cloudsecurityalliance.org/initiatives/pla/Privacy_Level_Agreement_Outline.pdf
https://downloads.cloudsecurityalliance.org/initiatives/pla/Privacy_Level_Agreement_Outline.pdf
https://downloads.cloudsecurityalliance.org/initiatives/pla/Privacy_Level_Agreement_Outline.pdf

Security Engineering for IoT Development

* How long data will be retained
¢ How and when data will be deleted

* Who is accountable for the safeguarding of data

Consider new liabilities and guard against risk
exposure

The IoT introduces concerns that haven't traditionally been relevant to enterprise
IT practitioners. Because the IoT is focused on network-enabled physical objects,
organizations must begin to consider what liability these new connected

devices introduce.

Take an extreme example of a self-driving vehicle (SDV). At the time of writing,
SDVs are just beginning to be available. Tesla provides a mode of operation

that allows a vehicle to be driven autonomously, and Freightliner was even able
to get one of its trucks a license in the state of Nevada. As SDVs become more
commonplace, organizations will begin to consider using them in their fleets. It is
important to discuss the implications of this shift from a liability perspective.

Another example is unmanned aircraft (drones). Thus far, the regulatory aspects

of commercial, unmanned aircraft in the US National Airspace System have been
dictated by Section 333 of the FAA Modernization and Reform Act of 2012. Liability
risks from drones are new, however. Thus far, drone liability risks have been offset
by private insurance companies, many of which support underwriting for today's
general aviation aircraft. Given the remarkable variety of drone operational use cases
emerging, however, new pay-per-use insurance paradigms for managing liability
are emerging in the drone industry. An example of this is Dromatics, a pay-per-use
(PPU) drone insurance solution from Transport Risk Management, Inc. (http://
www . transportrisk.com/unmaticspayperuse.html). Using this model, the
operator pays to insure each flight according to the usage model in question. Such
usage-based liability management models may gain traction in other IoT domains,
especially if their usage needs to quickly and dynamically scale. Specific monitoring
features can be integrated into IoT devices to help satisfy compliance checks needed
in such PPU schemes.

A more dominant IoT liability risk is related to the potential for misuse or disclosure
of sensitive information, however. While it is critical that privacy agreements be
drafted between all parties involved in data sharing, it is also important to consider
whether any new liability is taken on should one of these third-party partners

be breached.

[90]

http://www.transportrisk.com/unmaticspayperuse.html
http://www.transportrisk.com/unmaticspayperuse.html

Chapter 3

The networking of legacy systems such as Supervisory Acquisition and Data
Control (SCADA) systems into cyber-physical systems should also be examined
from a liability perspective. Is the risk of a breach of one of these systems greater
given the enhanced connectivity? If yes, how does that increase the risk of injury or
worse to workers or citizens?

Establish an loT physical security plan

Spend time understanding the physical security needs of an IoT implementation

to safeguard information from disclosure as well as guard against the introduction
of malicious software. Physical security safeguards impact architectural design,
policies, and procedures and even technology acquisition approaches. The output
from the threat model should guide the physical security plan creation and should
take into account whether IoT assets are placed in exposed locations. When this is so,
attempt to drive IoT device procurements that include physical tamper protections.

Also, ensure that the security team has a good understanding of the low-level
security risks associated with any particular IoT device. For example, spend time
reverse engineering a proposed IoT device to understand the safeguards that are
applied should one of your devices fall in the wrong hands. Look to understand
whether debug ports such as JTAG are password protected, and verify that no
account passwords are hardcoded into the device. As this information is found,
make updates to your threat models accordingly, or modify your technology
acquisition approach.

In addition, many IoT devices provide physical ports, including universal serial bus
(USB) ports, that support the connection of another device or computer to the asset,
or even support connecting the asset to a higher-level component. Carefully consider
whether these ports should be enabled when deployed and operational.

Finally, physical security can also mean deployment of monitoring solutions

such as cameras, which may themselves be IoT components. This introduces

a significant concept. Cisco systems has advocated making cybersecurity and
physical security systems work together to support a more holistic security view
of the environment and also allow for security systems to coordinate directly with
limited human intervention.

[91]

Security Engineering for IoT Development

Technology selection — security products and
services

This section is focused on security considerations for IoT technology selection as
well as security products and services that will aid in meeting security and privacy
requirements identified during the secure design of the IoT system.

loT device hardware

IoT device developers have many options to choose from when selecting the
technology components that will enable their device. These options typically come
with one or more security features that can be used to protect customer information
and safeguard from threats. Products that are being connected often make use of
microcontrollers (MCUs) that are paired with transceivers and optionally sensors,
and embedded within the IoT product. Each of these MCUs offers options for
security that developers should consider.

Selecting an MCU

Selection of an MCU for an IoT implementation is a typical starting point for hardware
design. The selection of an MCU is heavily based on the functional requirements of

the IoT device, as MCUs that offer support for low-power applications, performance
applications, and even wireless applications are all available. These system on chip
(S0C) solutions provide many of the core capabilities that some IoT devices require. As
an example, an SoC solution may provide an MCU with a Near Field Communication
(NFC) transponder that is tightly integrated onto a single platform.

Although some IoT devices are more complex, many sensors are significantly
limited, requiring only minimal additional technology components on top of the
chosen SoC solution. Either way, the selection of the SoC foundation for your IoT
device development is a crucial security consideration. The following should be
considered when choosing an SoC. Does the SoC offer the following?

* A cryptographic bootloader that can be leveraged to support secure
firmware updates

* Cryptographic hardware acceleration to support efficient cryptographic
processing, and what algorithms are supported by the accelerator?

* Secure memory protection

* Built-in tamper protection (for example, JTAG security fuses or a tamper-
responsive envelope)

* Protection against reverse engineering

* Secure mechanisms for cryptographic key storage in nonvolatile memory

[92]

Chapter 3

There is additional hardware security engineering work to perform after the
selection of the SoC as well. Developers must be sure to identify any test/debug
ports and lock them down. The approach depends heavily on the functionality
offered by the SoC itself. For example, some SoC solutions may offer JTAG security
fuses, while others allow for the placement of password protection to keep the debug
interface locked down.

Selecting a real-time operating system (RTOS)

In addition to micro-hardware security protections, where possible, the use of
secured operating systems is warranted. Many loT device profiles are shrinking to
small but powerful SoC units capable of running a variety of secured-boot operating
systems featuring strict access controls, trusted execution environments, high-
security microkernels, kernel separation, and other security features. Also note that
different categories of IoT devices may require different RTOS solutions, as outlined
in the following figure:

A Safety-{:ritica| May need to meet safety certifications

Industrial Requires robust reliability and security capabilities

Introduces requirements for process separation and
additional security capabilities

Often tuned more heavily for performance and

Consumer usability than safety/security features

At the top end of the spectrum (safety-critical loT devices), RTOS selection should
be based heavily on whether there is a need to meet industry-specific standards.
Examples of these include the following;:

* DO-178B: Software considerations in airborne systems and equipment
certification for avionics systems
* IEC 61508: Functional safety for industrial control systems

* IS0 62304: Medical device software — software lifecycle processes, for
medical devices

* SIL3/SIL4: Safety integrity level for transportation and nuclear systems

[93]

Security Engineering for IoT Development

There are highly robust RTOSes available, for example, from LynxOS and Green
Hills Software, that should be considered when dealing with safety-critical IoT
systems. These are commonly referred to as cyber-physical systems.

loT relationship platforms

One of the most important IoT technology considerations is whether to leverage an
IoT product relationship platform for an enterprise's IoT systems. These platforms
are becoming more prevalent; the market leaders at this time seem to be Xively and
ThingWorx. These vendors offer solutions that support security features in addition
to functional capabilities. Typically, development teams can use these platforms to
build in the following:

* Asset management functions
¢ Authentication and authorization functions

* Monitoring functions

Xively

At its core, Xively and ThingWorx are both connected product management
platforms. They allow developers to build in relationships to an organization's

IoT devices through software development kits (SDKs), APIs, and adapters.
Leveraging such platforms for in-house IoT developments removes much of the
integration burden downstream. Xively offers additional services on top of their
standard features. These include Xively Identity Manager and Xively Blueprint.
Blueprint allows devices, people, and applications to be connected through Xively's
cloud services, supporting the provisioning of identities and the mapping of those
identities to privileges in the cloud. Xively's Identity Manager supports management
of these identities.

Xively supports multiple protocols for communication, including HTTP,
WebSockets, and MQTT, and mandates the use of TLS over each of these channels
to achieve end-to-end security. The security of TLS relies heavily on the ability to
generate true random numbers, which is the basis of unique and non-guessable
secrets —a task that can be challenging for embedded devices.

ThingWorx

ThingWorx provides starter kits for popular IoT platforms such as Raspberry Pi.
ThingWorx even provides a marketplace for pre-built IoT applications. Enterprises
that are making use of third-party vendors for this type of functionality should verify
that the applications have gone through sufficient security testing; they should also
perform in-house security testing to ensure a proper security baseline.

[94]

Chapter 3

Organizations that have adopted ThingWorx for enterprise IoT development should
also leverage the platform for asset management and secure remote management
capabilities. ThingWorx recently added Federal Information Processing Standards
(FIPS) 140-2-compliant software cryptographic libraries for end devices, and

offers management utilities that support device remote management and asset
management. This includes secure remote delivery of software updates to

IoT devices.

Cryptographic security APIs

Security application programming interfaces (APIs) are typically implemented as
cryptographic libraries underlying a variety of management, networking, or data
application binaries. They may be statically linked or dynamically linked at runtime
depending on the needs of the caller and its own place in the software stack. They
may also come embedded in secure chips. Security APIs (and binaries) are called in
the following instances:

* Application data (at rest and in transit):

o

Encryption

[e]

Authentication

o

Integrity protection

* Network data/packet:

o

Encryption

[e]

Authentication
° Integrity protection

Given the variety of locations in which security can be implemented, the security
designer must take into account issues such as whether secure communications

are needed to protect all application data (that is, mask the application protocols)
end-to-end, whether intermediate systems need access to data (that is, point-to-
point protection), and whether the security protections are only for data located on
the device (internal storage), among others. In addition, it is possible to protect the
integrity and authenticity of data without encrypting it end-to-end; this may benefit
certain use cases where intermediate systems and applications need to inspect or
retrieve non-confidential data but not break an end-to-end security relationship
(protecting end-to-end data origin authentication and integrity). Application-

level cryptographic processing can accomplish this, or the use of existing secure
networking libraries that implement TLS and IPSec, among other protocols.

[95]

Security Engineering for IoT Development

The size and footprint of the library is a frequent consideration in the selection of

a security library for the IoT. Many devices are low cost and severely constrained

in memory or processing power, limiting the available resources for cryptographic
security processing. In addition, some cryptographic libraries are designed to take
advantage of lower-layer hardware acceleration, using technologies such as AES-NI
(for example, as used by Intel processors). Hardware acceleration, if available, has
the ability to reduce processor cycles, reduce memory consumption, and accelerate
cryptographic cycles on application or network data.

Security engineering and the selection of cryptographic libraries should also

take into account potential vulnerabilities in certain libraries and how sensitive
IoT application data could be impacted by those vulnerabilities. For example,

the OpenSSL Heartbleed vulnerability that was discovered in 2014 resulted in a
worldwide, catastrophic security hole exposing the majority of the Internet's web
servers: https://en.wikipedia.org/wiki/Heartbleed.

Many companies did not even know about their exposure to this vulnerability
because they did not adequately track and follow the software supply chain into

the end systems on which they depend. The role of IoT security engineering
organizations, therefore, needs to include tracking of open source and other security
library vulnerability information and ensure the vulnerabilities are mapped to the
specific devices and systems deployed in their organizations.

A variety of cryptographic security libraries are on the market today, implemented
in a variety of languages. Some are free, and some come with various commercial
licensing costs. Examples include the following:

* mbedTLS (formerly PolarSSL)

* BouncyCastle

* OpenSSL

* WolfCrypt (wolfSSL)

* Libgcrypt

* Crypto++
A deeper background into the cryptographic functionality typically offered

by libraries such as the preceding ones will be performed later in Chapter 5,
Cryptographic Fundamentals for IoT Security Engineering.

[96]

https://en.wikipedia.org/wiki/Heartbleed

Chapter 3

Authentication/authorization

As you begin to define your IoT security architecture, understanding the optimal
methods for deploying authentication and authorization capabilities is one of the
most important areas for security technology selection. The actual solution choices
will depend heavily on the deployment designs for your IoT infrastructure. As an
example, if you are making use of the Amazon Web Services (AWS) IoT cloud
offering, you should examine the built-in authentication and authorization solutions.
Amazon provides two options at the time of writing: X.509 certificates and Amazon's
own SigV4 authentication. Amazon only offers two protocol choices for IoT
deployments: MQTT and HTTP. With MQTT, security engineers must choose X.509
certificates for authentication of devices. Also note that you can map certificates to
policies, which provides fine-grained authorization support. Security engineers can
make use of AWS's Identity and Access Management (IAM) service to manage
(issue, revoke, and so on) certificates and authorizations: https://aws.amazon.
com/iot/how-it-works/.

Organizations that are not making use of a cloud-based IoT service such as AWS
IoT may also want to leverage public key infrastructure (PKI) certificates for
authentication functionality. Given the large quantities of IoT devices expected to be
deployed within a typical organization, the traditional price-points that the industry
has seen using secure sockets layer (SSL) certificates are not practical. Instead,
organizations that are deploying IoT devices should evaluate vendors advertising
IoT-specific certificate offerings that can drive the price per certificate down to
pennies per certificate. Examples of vendors that have begun to tailor IoT-specific
certificate offerings include GlobalSign and DigiCert.

X.509 certificates only provide a starting point for building an IoT authentication
and authorization capability. Consider vendors that have begun to support Identity
Relationship Management (IRM) as outlined by the Kantara Initiative. IRM is built
on pillars that focus in part on consumers and things over employees; Internet-
scale over enterprise-scale; and borderless over perimeter. Organizations such as
GlobalSign have begun to build these concepts into their IAM solutions and support
delivery of high volumes of certificates via RESTful JSON APlIs.

An alternative to procuring X.509 certificates is building your own infrastructure.
This build-your-own approach is only recommended if your organization has
considerable experience designing and securely deploying these infrastructures.
Secure PKI design is a highly specialized field. There are many opportunities to
get something wrong, from failing to safeguard the root certificates properly, to
inadvertently allowing a registration authority (RA) account to be compromised.

[97]

https://aws.amazon.com/iot/how-it-works/
https://aws.amazon.com/iot/how-it-works/

Security Engineering for IoT Development

Another consideration regarding PKI certificates is that X.509 may not continue to
be the de facto standard for the IoT. In the Connected Vehicle market, for example,
the infrastructure being stood up to support authentication certificates for cars is
based on the IEEE 1609.2 standard. These certificates are more efficient than their
X.509 cousins, when used in high-volume environments and in resource-constrained
endpoints.

Other vendors that offer loT-specific authentication and authorization solutions
include Brivo, which focuses on authenticated social interactions between
people and devices (http://www.brivo.com/), ForgeRock (https://www.
forgerock.com/solutions/devices-things/), and Nexus (https://www.
nexusgroup.com/en/solutions/internet-of-things /).

Edge

Fog Computing and protocol translation — Cisco systems has been very vocal about
the need to extend data processing infrastructure to the network edge within an IoT
architecture. Cisco refers to this concept as Fog Computing. The concept is that data
from IoT devices does not need to make the trip all the way back to cloud processing
and analytics centers, in order to be useful. Initial analytics processing can occur

in these new edge data centers, allowing useful information to be gleaned quickly
and at lower cost and even allowing positive action to be taken on that data in short
order. Security architects faced with these edge-heavy designs need to examine more
traditional security architectures, such as boundary-defense, in order to secure the
edge infrastructure equipment. Security architects must also focus on protection of
the data itself, often in many forms (pre-processed/processed) in order to safeguard
customer-, employee-, and partner-sensitive information.

More traditional IoT gateways that act as go-betweens and protocol translators are
also offered by various vendors. Products such as Lantronix's IoT gateway line have
built-in SSL encryption and SSH for management functions. AWS's IoT Gateway also
has built-in TLS encryption (http://www.lantronix.com/products-class/iot-
gateways/).

[98]

https://www.forgerock.com/solutions/devices-things/
https://www.forgerock.com/solutions/devices-things/
https://www.nexusgroup.com/en/solutions/internet-of-things/
https://www.nexusgroup.com/en/solutions/internet-of-things/
http://www.lantronix.com/products-class/iot-gateways/
http://www.lantronix.com/products-class/iot-gateways/
http://www.brivo.com/

Chapter 3

Software defined networks and IoT security — pushing a variety of IoT services and
processing to the network edge brings about other interesting considerations with
respect to IoT devices and routing. The continued growth and promulgation of
software defined networking (SDN) as a means of dynamically managing physical
and virtual network devices gives rise to a number of security issues with IoT
devices. These issues need to be considered in the security lifecycle. Implementing
SDN protocols, for example, OpenFLow, into IoT devices can provide network and
device managers with a means of conveniently configuring device routing switching,
tables, and associated policies. Such control plane manipulation of an IoT device
exposes a variety of sensitive data elements and device communication behaviors; as
a result, it is critical to adopt authenticated, integrity- and confidentiality-protected
protocols to secure 1) the SDN southbound interface (SDN protocols between IoT
devices and SDN controllers) and 2) the SDN northbound interface (SDN networking
applications providing the upstream networking business logic). In addition, the
SDN protocol business logic (that is, an SDN agent running on IoT devices) should
run as a protected process and control data structures (for example, routing tables
and policies) should be integrity protected within the IoT device. Disregarding these
types of security controls could allow attackers a means of reconfiguring and re-
routing (or multi-homing) private data to illegitimate parties.

Security monitoring

An interesting aspect of the IoT is that security monitoring now means something
different than with traditional enterprise security solutions. Traditionally, enterprises
would acquire a security information and event management (SIEM) tool that
collects data from hosts, servers, and applications. An ideal IoT monitoring solution
can collect data from each device in your inventory, which is often a challenge in and
of itself. Designing an overarching security monitoring solution for the IoT requires
an integrated mix of security products.

It is often difficult to extract appropriate security log files from the full range of IoT
devices, as constraints exist that limit the ability to do so in a timely manner. As

an example, instantiating an RF connection simply to pass security log data to an
aggregator is costly from a battery-preservation perspective. Additionally, some
devices do not even collect security-relevant data. Organizations that are looking
to build up an effective IoT security monitoring solution should begin with tools
that offer a flexible foundation for interfacing to diverse devices. Splunk is a great
example of this—and given the flexibility in protocol coverage offered by their
platforms, it is a good candidate for evaluation.

[99]

Security Engineering for IoT Development

Splunk can ingest data in many formats (for example, JSON, XML, TXT) and then
normalize it into a format that is required for further evaluation. Organizations have
already built modules for accessing data directly from IoT protocols such as MQTT,
CoAP, AMQP, and, of course, REST. Splunk also provides additional capabilities for
the IoT. As an example, Splunk offers a module that allows for indexing data from
Amazon's Kinesis, the component within AWS that collects data from IoT devices
(http://blogs.splunk.com/2015/10/08/splunk-aws-iot/).

AWS also offers a level of logging that can be used for rudimentary security analysis
in AWS IoT implementations. The AWS CloudWatch service enables event logging
from IoT devices (AWS requires IoT devices to speak either MQTT or REST).
Logging can be set to DEBUG, INFO, ERROR, and DISABLED. The AWS CloudWatch API
describes the following log entries for AWS IoT devices (http://docs.aws.amazon.
com/iot/latest/developerguide/cloud-watch-logs. html):

* Event: Description of the action

* Timestamp: Log generation time

* Traceld: Random identifier

* Principalld: Either a certificate fingerprint (HTTP) or a thing name (MQTT)
* LogLevel: The level of logging

* Topic Name: The MQTT topic name

e (Clientld: The ID of the MQTT client

* Thingld: The ID of the thing

* Ruleld: The ID of the rule that was triggered

Being able to identify anomalies within IoT devices, either individual devices or
populations of devices, will be an important security capability. Although more
research is needed to support new product development in this area, we are already
seeing some point solutions that offer behavioral-based monitoring for smaller-scale
IoT deployments. As an example, Dojo labs is about to begin sales of their Dojo
home IoT monitoring solution, which provides user-friendly security monitoring to
detect and resolve security issues in home-based IoT devices. The Dojo labs product
provides color-coded signaling to communicate to homeowners whether there is

a security issue within the home's IoT ecosystem. The product can tell whether
there is an event of concern based on an understanding of the standard behavioral
characteristics of a particular device type. As an example, according to Dojo:

[100]

http://blogs.splunk.com/2015/10/08/splunk-aws-iot/
http://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
http://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html

Chapter 3

"if an Internet-connected thermostat normally only sends small data points like
temperatures, and it suddenly starts sending a high-bandwidth stream of packets
that looks like a video transmission, that's a clue that the device may have been
compromised."

Source: http://www.networkworld.com/article/3006560/home-iot-security-
could-come-from-a-glowing-rock-next-year.html

Expect more security capabilities such as this as time moves forward. The challenge
related to behavioral analysis, however, is the need to understand the operating
patterns of the specific devices the system is monitoring for anomalies. Unlike
human behavioral analysis, where security patterns such as equipment use at certain
times of the day are monitored, IoT-based behavioral analysis is highly diverse.
Depending on the type of device —for example a self-driving vehicle (SDV) versus
a smart meter — the normal operating parameters will be completely different.

This requires an in-depth understanding of those normal operating parameters

per device, and significant analysis to determine what operations outside of those
normal parameters could signal.

The Defense Advanced Research Projects Agency (DARPA) is even looking into
ways that network defenders can identify malicious behavior based on the analog
operating characteristics of a device (for example, the sound it makes, or the power
that it draws). While these techniques are still a long way from the market, it should
be noted that security researchers such as Ang Cui have begun to show that IoT
devices can be compromised using novel techniques such as vibrating MCU pins to
establish data exfiltration channels over AM radio—a hack known as Funtenna.

Another security engineering facet relates to the use of wireless communications.
Wireless introduces new issues that affect the monitoring capabilities of an
enterprise. For example, being able to detect rogue devices within a geographic area
or building is important and requires a new approach to monitoring since there is a
need to listen in for RF communications such as Bluetooth, ZigBee, and ZWave. One
company that is leading the way towards new IoT monitoring techniques required

to solve this problem is Bastille. Bastille offers a product (C-Suite radio security
solution) that monitors the airspace and provides alerts whenever new devices attach
to an enterprise network (https://www.bastille.io/).

The complex nature of the IoT means that organizations will need to spend resources
designing a holistic security monitoring solution from multiple vendor offerings. In
the meantime, managed security service providers (MSSPs) are starting to spin up
IoT monitoring offerings as well. One example is the managed IoT security service
from Trustwave (http://betanews.com/2015/07/20/new-security-service-
helps—protect—the—internet-of—things/)

[101]

http://www.networkworld.com/article/3006560/home-iot-security-could-come-from-a-glowing-rock-next-year.html
http://www.networkworld.com/article/3006560/home-iot-security-could-come-from-a-glowing-rock-next-year.html
https://www.bastille.io/
http://betanews.com/2015/07/20/new-security-service-helps-protect-the-internet-of-things/
http://betanews.com/2015/07/20/new-security-service-helps-protect-the-internet-of-things/

Security Engineering for IoT Development

Summary

This chapter provided information on the many issues and techniques related to
securely engineering IoT systems. It also included safety, privacy, and security
designs; establishment of processes and agreements; and the selection of relevant
security products and services.

In our next chapter, we will explore in detail the operational aspects of the IoT
security lifecycle.

[102]

The loT Security Lifecycle

Large or federated organizations will face the challenge of deploying not only
thousands of devices within a single IoT system, but potentially hundreds or thousands
of individual IoT endpoints. Increasing the complexity, each IoT implementation can
differ significantly in form and function. For example, an organization that operates
retail stores may have warehouse-based RFID systems used in inventory management,
beacons in retail establishments that support tailored customer experiences, and may
also begin to incorporate technologies such as connected vehicles, drones, and robotics
throughout various aspects of their operations.

The security engineer's job is to be able to examine and characterize each of these
disparate systems and define an appropriate lifecycle focused on maintaining a
secure state across the enterprise. This chapter discusses the IoT system security
lifecycle, which is tightly integrated into a secure development, integration, and
deployment process. The lifecycle is designed to be iterative, allowing for the secure
addition of new IoT capabilities throughout an enterprise. Technical, policy, and
procedural lifecycle topics are addressed to enable a robust enterprise IoT security
capability that is continuously updated and tailored to the unique operating needs
of the system. An IoT security lifecycle should support an enterprise IoT ecosystem
with the following:

* Privacy considerations due to the potential to leak sensitive information
or metadata through third-party relationships, requiring comprehensive
confidentiality controls.

* Large quantities of new devices and device types that must be configured
securely to guard against new attack vectors into the enterprise.

* Autonomous operations and device-to-device transactions that worsen the
impact of an intrusion.

* Safety-related risks to which IT staff have not traditionally been exposed.
These risks can result in harm to employees and customers if an adversary
compromises an IoT system with the potential to do physical harm.

[103]

The IoT Security Lifecycle

* Potential for leased (non-owned) products. This introduces confusion into the
need for lifecycle support as vendors now must be provided with the ability
to maintain their systems.

* Preprocessing and initial data analytics (application as well as security) at the
edge of the network, with transmission of log and event data to the cloud for
additional analytics.

The secure loT system implementation
lifecycle

In Chapter 3, Security Engineering for IoT Development, we addressed security design
within the overarching IoT system implementation lifecycle. This chapter focuses on
the other critical aspects of the IoT security lifecycle, to include implementation and
integration, operation and maintenance, and disposal. The following figure provides
a graphical depiction of the IoT security lifecycle that begins with the introduction of
safety, privacy, and security engineering in the system design stage, and concludes
with the secure disposal of IoT assets as their effective lifetime is reached.

Sicg

Forg,, . =€m

Secure loT System
Implementation Life Cycle

\ / Security CONOPS Development
\\ e Metwork and Security Integration //
S Systermn Security Verification & Validation -
Security Training -
.
S Secure Configurations =
i -

Chapter 4

Implementation and integration

End-user organizations will have many options for deploying functional IoT
capabilities. Some organizations will develop IoT systems themselves; however,
many options will exist for the procurement of pre-packaged IoT systems that
include IoT devices with pre-established connectivity to edge infrastructures, cloud
interfaces, backend analytics processing systems, or some combination thereof.

For example, as forthcoming regulations for Beyond Line of Sight (BLOS)
Unmanned Aircraft Systems (UAS) operations in the United States emerge, system
integrators will package drone management and control systems that can be
procured by an enterprise for surveillance, security, and a variety of other features.
These systems will be designed to capture many types of data from UAS endpoints
and transmit that data over preconfigured channels to gateway systems. Gateways
will then feed the data to backend or ground station systems that provide automated
route planning and potentially swarm coordination for certain mission types.

While such systems should ideally come pre-configured with the proper amount of
security engineering rigor during design and development, an organization planning
to integrate one must still perform a slew of activities to securely incorporate the
features into its existing enterprise.

The first step in the security lifecycle is to create a security concept of operations
(CONOPS) document reflecting the given system, its security needs, and how to
satisfy them.

loT security CONOPS document

A security CONOPS document provides organizations with a tool for methodically
detailing the security operations of the IoT system. The document should be
written and maintained by IoT system operators to provide a roadmap for system
implementers during implementation and integration. No facet of security should
be left to the imagination in the CONOPS; otherwise, implementers may encounter
confusion and take liberties they should not take. Examples of security CONOPS
templates can be found from a number of organizations. One example is NIST SP-
800-64 at http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-
64-Revision2.pdf.

[105]

http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf
http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf

The IoT Security Lifecycle

An IoT security CONOPS document should contain material covering, at a
minimum, the following;:

Security service

CONOPS coverage

Confidentiality and
integrity

How IoT devices will be provisioned with cryptographic keys,
certificates, and ciphersuites, and how those cryptographic
materials will be managed.

Are existing privacy policies sufficient to safeguard against
inadvertent leakage of sensitive information?

Authentication and
access control

Whether existing central directory service authentication systems
such as Active Directory or Kerberos will be integrated to
support the system.

The roles required for system operation and whether attribute-
based access controls, role-based controls, or both will be
implemented (for example, time of day access restrictions).

The security roles within the system and how those roles will be
provisioned.

What access controls need to be considered on a per-topic basis
(for example, to support publish/subscribe protocols).

Monitoring,
compliance, and
reporting

How security monitoring will be performed and how data

will be mined from IoT device logs. Will gateways serve as log
aggregators? What rules will need to be written for SIEM event
alerts?

Systems to which log files must be forwarded to for security
event log analysis.

What compliance regulations must be adhered to during the
lifecycle of the IoT system.

The role of big data analytics being used for enhanced security
monitoring of the IoT system.

Incident response and
forensics

Who is responsible for defining and executing incident response
activities.

Mapping of business functions to new loT systems.

Impact analysis of failed/compromised IoT systems.

[106]

Chapter 4

Security service CONOPS coverage

Operations and What additional security documentation will be required to
maintenance and support secure IoT system operation, including configuration
disposal management plans, continuous monitoring plans, and

contingency plans.

How the system will be maintained regularly to keep a sound
security posture.

What security training will be made available to stakeholders
and the frequency for completing that training.

How the disposal of IoT system assets will be securely conducted
and verified.

Network and security integration

It is difficult to characterize a typical IoT network implementation, given that there
are potentially so many different and diverse types of IoT functions. Here we take
a quick look at network and security integration considerations for wireless sensor
networks (WSNs) and connected cars.

Examining network and security integration for WSNs

Examining a typical WSN, one will find many thousands or more low-powered,
battery-operated sensors that probably communicate using a RF-based protocol such
as ZigBee. These devices may communicate at the application layer using tailored
IoT protocols such as MQTT-SN, which can be run directly over ZigBee and similar
protocols (eliminating the need for IP-based communications at the edge). In this
scenario, the implementation of MQTT-SN within each sensor would then mandate a
gateway that translates between the MQTT-SN and the MQTT protocol.

Gateways provide the ability to deploy IoT devices without IP connectivity back
to the cloud. Instead, the gateway serves as the protocol intermediary between a
network of IoT devices and the analytics systems that consume data from them.
Given that gateways aggregate data from multiple devices (and often store data at
least temporarily), it is important to make sure that each is deployed with secure
communications configurations to both the end IoT devices as well as the backend
cloud services.

[107]

The IoT Security Lifecycle

Looking at the security services required to protect these communications, one
would typically leverage the security capabilities of the underlying RF protocol
between the sensors and the gateway. One would also expect to leverage

the capabilities of a protocol such as TLS between the MQTT gateway and
backend services.

Organizations do not always need to implement the tailored MQTT-SN protocol,
however. Some IoT devices may support the ability to communicate directly
using MQTT with the gateway. Examining Amazon Web Services' recent support
of MQTT, the solution utilizes a cloud-based MQTT gateway supporting direct
connections such as this - the connection is protected using a TLS channel.

Examining network and security integration for connected
cars

Other implementations have significantly different characteristics. Imagine a fleet
of connected vehicles that each communicate using the DSRC protocol. These
vehicles send messages to each other and to roadside equipment (RSE) many times
per second, and depend on proximity to another component for consumption of
these messages. These messages are secured using the inherent capabilities of the
DSRC protocol, which include the ability to provide data origin authentication.
Organizations will often be required to configure infrastructure components that
securely communicate with connected vehicles in their fleets, using these protocols.

No matter the type of IoT deployment, these systems need to be configured to
communicate with an organization's existing technology infrastructure. From a
security lifecycle perspective, engineers should spend considerable time planning
these integration activities. Improper planning of IoT system integration within the
enterprise can introduce new weaknesses ripe for exploitation.

Planning for updates to existing network and security
infrastructures

This lifecycle activity involves the integration planning needed to incorporate

new loT services into existing infrastructures, an activity that can sometimes

lead to significant overhauls of legacy architectures. Consider that some IoT
implementations require near-real-time feedback in support of automated decision
making. Although the initial incarnations of the IoT will focus heavily on collecting
data through sensors, the focus will shift toward making that data useful in our daily
lives. Provisioning of analytics, control systems, and other functionality across an
organization will encourage this.

[108]

Chapter 4

In situations where IoT systems must process and act upon data in near real
time, it is necessary to re-evaluate the move toward centralized data processing
(http ://www.forbes.com/sites/moorinsights/2015/08/04/how-the-
internet-of-things-will-shape-the-datacenter-of-the- future/).

Cisco Systems has coined the term Fog Computing to address the need to shift to a
more decentralized model focused on enhancing reliability, scalability, and fault-
tolerance of IoT systems. The Fog Computing model places compute, storage, and
application services at the network edge or within gateways that service IoT devices
(http://blogs.cisco.com/perspectives/iot-from-cloud-to-£fog-computing).
This concept of edge computing allows near-real-time initial analytics support and
improvements in performance versus maintaining a continuous need to depend

on the most centralized systems. Data can be more locally processed and analyzed
with less need to send gargantuan amounts of it inefficiently to highly centralized
applications. Once edge-processed, the resultant data can be sent directly to the
cloud for long-term storage or ingested into additional analytics services.

Insight increases as
analytic capability & dataset size / quality increase

Storage
olly | Sensors& Private~ -~ Edge e Data
ﬁ Actuators Network(s) ~Compute - |:L:t::2l Ingress Datacenter
E% Infrastructure)
KLy v m
Analytics

Responsiveness increases as
network & analytic latencies decrease

Image courtesy of Cisco

Designing an IoT deployment that can scale and at the same time defend

against attacks such as denial of service (DoS) is important. Re-thinking the
network infrastructure and analytics architecture is an important aspect to this.
Decentralization of IoT services during the planning and upgrade of existing
infrastructure is an opportunity to both add new services also improve resilience.

[109]

http://www.forbes.com/sites/moorinsights/2015/08/04/how-the-internet-of-things-will-shape-the-datacenter-of-the-future/
http://www.forbes.com/sites/moorinsights/2015/08/04/how-the-internet-of-things-will-shape-the-datacenter-of-the-future/
http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing

The IoT Security Lifecycle

Planning for provisioning mechanisms

Engineers must also plan to provision network information required for the IoT
devices and gateways to operate properly. In some cases, this includes planning

for IP address allocation. The choice of supported IoT protocols will frequently
dictate IP addressing requirements. WSNs that use communication protocols such

as Bluetooth, ZigBee, and ZWave do not require the provisioning of an IP address;
however, protocols such as 6LoWPAN require the provisioning of an [IPv6 address
for each device. Some devices simultaneously support various wireless protocols and
IP connectivity.

Organizations choosing to provision devices with IPv6 addresses face additional
security engineering tasks as they must ensure that the IPv6 routing infrastructure is
enabled securely.

Organizations must also plan for any required domain name system (DNS)
integration. This is required for any endpoint or gateway that needs to communicate
using URLs. Consider protocols such as DNS-based Authentication of Named
Entities (DANE) for gateway to infrastructure communication and backhaul service
communication. DANE allows much tighter association of certificates to named
entities (URL) by leveraging DNSSEC, and can significantly help deter various
web-based MITM attack scenarios.

Integrating with security systems
IoT systems will also need to be integrated with existing enterprise security systems,
requiring the integration and testing of the interfaces to those systems. Ideally,
interfaces to these systems would have been created during development of the IoT
system, but in some cases, glue-code must be developed to complete the integration.
In other instances, simple configurations are required to interface with or consume
the security products of those enterprise systems. Examples of enterprise security
systems that an IoT deployment will likely integrate with include the following;:

* Directory systems

* Identity and access management (IAM) systems

* Security information and event management (SIEM) systems

* Asset management and configuration management systems

* Boundary defense systems (for example, firewalls and intrusion
detection systems)

* Cryptographic key management systems
* Wireless access control systems

* Existing analytics systems

[110]

Chapter 4

loT and data buses

Beyond IP-and wireless-based IoT systems, there are also IoT-based systems that
rely upon data buses for communication to neighboring devices. For example,
within today's automobiles, the controller area network (CAN) bus is typically

used for real-time messaging between vehicle components (electronic control

units). In the recent past, automobile manufacturers began implementing enhanced
entertainment-based functionality into vehicle platforms. In many instances, there
are connections between these new systems (for example, infotainment systems) and
the safety-critical CAN bus. Good security practice dictates that these systems be
segregated; however, even when segregation occurs, it is possible to leave the safety-
critical CAN bus open to attack.

Examining the research conducted by Charlie Miller and Chris Valasek in 2015,

you can understand some of the challenges faced in vehicles. Through improper
configuration of a carrier network, poor security design within a software
component, and reverse engineering of one of the MCUs (responsible for segmenting
the vehicle's infotainment system from the safety-critical CAN buses), the researchers
were able to effectively take control of a connected vehicle remotely (http://
illmatics.com/Remote%ZOCar%20Hacking.pdf)

In situations where IoT systems are integrated into safety-critical systems, security
domain separation is vital. This implies that segmentation techniques are used

to isolate sensitive functions from non-sensitive ones. In addition, providing

support for integrity protection, authentication, guarding against message replay,
and confidentiality is appropriate in many cases. In traditional networks, SIEM
integration is critical to inspecting traffic and ensuring adherence to rules when data
crosses established security zones. Analogous systems are needed in future, real-time
data buses as well.

System security verification and validation (V&V)

Sufficient testing needs to be conducted, both positive and negative, to verify
that functional security requirements have been satisfied. This testing should be
performed in an operational environment, after the system has been integrated
with other enterprise infrastructure components. Ideally, this testing will occur
throughout the development lifecycle as well as the implementation/integration,
deployment, and operations ones.

[111]

http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf

The IoT Security Lifecycle

Verification provides the assurances that the system operates according to a set

of requirements that appropriately meet stakeholder needs. Validation is the
assurance that an IoT system product, service, or system meets the needs of the
customer and other identified stakeholders —in an IoT system, this means that the
system definition and design is sufficient to safeguard against threats. Verification
is the evaluation of whether or not a product, service, or system complies with

a regulation, requirement, specification, or market-imposed constraint. For IoT
systems, this means that the security services and capabilities were implemented
according to the design (https://en.wikipedia.org/wiki/Verification_and_
validation).

One approach to verifying functional security requirements is to create test drivers
or emulators that exercise functionality. For example, creating an emulator that
emulates the instantiation of a secure connection (for example, TLS) and the
authentication between devices would provide implementers with confidence

that each device is operating according to defined security requirements.

System testing is required to verify that the functional security requirements of the
IoT implementation have been met during development and integration. IoT system
testing should be automated as much as possible, and should address both the
expected and unexpected behavior of the system.

Discrepancy reports (DRs) should be created whenever issues are identified; those
DRs should be tracked to closure by development teams as the system is updated
and new releases are made available. Tracking of DRs can be performed in a variety
of tracking tools from formal configuration management tools such as DOORS to
agile-based tools such as Jira in the Atlassian suite.

Security training

The 2015 OpenDNS in the Enterprise report provided an early glimpse into
challenges that security practitioners will soon face. The report identified that
employees are already bringing their own IoT devices into the enterprise, and

found that devices such as smart televisions were reaching out through enterprise
firewalls to various Internet services. This research shows one aspect of the need to
re-train employees and security administrators in what is appropriate to attach to the
network as well as how to identify inappropriately attached consumer IoT devices.

The creation of security training requires periodic review and the possible creation
of new security policies needed to support different IoT paradigms. These policies
should be used as source material for both end-user security awareness training as
well as security administration training (https://www.opendns.com/enterprise-
security/resources/research-reports/2015-internet-of-things-in-the-
enterprise-report/).

[112]

https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Verification_and_validation
https://www.opendns.com/enterprise-security/resources/research-reports/2015-internet-of-things-in-the-enterprise-report/
https://www.opendns.com/enterprise-security/resources/research-reports/2015-internet-of-things-in-the-enterprise-report/
https://www.opendns.com/enterprise-security/resources/research-reports/2015-internet-of-things-in-the-enterprise-report/

Chapter 4

Security awareness training for users
IoT systems often have unique characteristics that are not found in traditional IT
systems. Topics to consider addressing in updated user security awareness training
include the following:

* The data, network and physical risks associated with IoT devices

* Policies related to bringing personal IoT devices into the organization

* Privacy protection requirements related to data collected by IoT devices

* Procedures for interfacing (if allowable) with corporate IoT devices

Security administration training for the loT
Security administrators must be provided with the technical and procedural
information needed to keep the IoT systems operating securely. Topics to consider
addressing in updated security administration training include the following:

* Policies for allowable IoT use within an organization

* Detailed technology overview of the new IoT assets and sensitive data
supported by the new IoT systems

* Procedures for bringing a new IoT device online

* Procedures to monitor the security posture of IoT devices

* Procedures for updating IoT device and gateway firmware/software

* Approved methods for administering IoT assets

* How to detect unauthorized personal IoT devices within an organization
* Procedures for responding to incidents involving IoT devices

* Procedures for properly disposing of IoT assets

Anyone interacting with IoT systems or IoT-originated data within an organization
should be required to take the appropriate training.

Secure configurations

IoT systems involve many diverse components and each must be configured in a
secure manner. Each component must also be configured to interface with other
components securely. It is often easy to overlook the need to change default settings
and choose the right security modes for operation. Always try to leverage existing
security configuration guidance to understand how to lock down IoT system and
communication services.

[113]

The IoT Security Lifecycle

loT device configurations

Some of the more powerful IoT devices make use of a real-time operating system
(RTOS) that requires a review of configuration files and default settings. For
example, operating system bootloading features should be reviewed and updated so
that only authenticated and integrity-protected firmware updates are allowed. One
should review open ports and protocols and lock down any that are not required
for approved operation. In addition, default port settings should be managed when
possible to implement application whitelisting controls. In short, create a secure by
default baseline for each device type.

The security of the hardware configurations is equally important. As discussed in
previous chapters, lock down any open test interfaces (for example, JTAG) to combat
the ability of an attacker to gain access to devices that are stolen or left exposed. In
conjunction with designers, also make use of any physical security features that may
be included in the hardware. Such features may include active tamper detection and
response (for example, automated wiping of sensitive data upon tamper), coverage
and blocking of critical interfaces, and others.

Secure protocol configuration is crucial as well. Any protocol-related literature
providing best practices for an IoT protocol or protocol stack should be reviewed,
understood, and followed prior to the IoT system being deployed. Examples of
secure Bluetooth IoT configuration guidance include the following;:

* National Security Agency (NSA) Information Assurance Directorate
(IAD) guide to Bluetooth security (https://www.nsa.gov/ia/_files/
factsheets/i732-016r-07.pdf)

* NIST SP 800-121 NIST Guide to Bluetooth Security (http://csrc.nist.gov/
publications/nistpubs/800-121-revl/sp800-121_revl.pdf)

Often, the proverbial usability over security argument is argued by manufacturers
resulting in IoT components being shipped with insecure default configurations. For
example, the ZigBee protocol uses application profiles that support interoperability
between ZigBee implementations. These application profiles include default keys
that must be changed prior to system operation.

Tobias Zillner and Sebastian Strobl provided a useful briefing on the need to change
these default keys. The researchers noted that the default Trust Center Link keys for
both the ZigBee Light Link Profile (ZLL) and the ZigBee Home Automation Public
Application Profile (HAPAP) are both based on the passphrase ZigBeeAlliance09.
Implementing any IoT system that doesn't enforce modification of default keys can
render many of communication security controls useless within an enterprise. These
keys should always be updated prior to bringing a ZigBee-based IoT network online
(https ://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-
Exploited-The-Good-The-Bad-And-The-Ugly.pdf).

[114]

https://www.nsa.gov/ia/_files/factsheets/i732-016r-07.pdf
https://www.nsa.gov/ia/_files/factsheets/i732-016r-07.pdf
http://csrc.nist.gov/publications/nistpubs/800-121-rev1/sp800-121_rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-121-rev1/sp800-121_rev1.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf

Chapter 4

Secure gateway and network configurations

After making secure configuration updates to IoT devices, examine the configuration
of gateway devices that interact with the IoT endpoints. Gateways are aggregation
points for numerous loT devices and special attention must be paid to their secure
configuration. In some cases, these gateways are located on-premises with the

IoT devices, but in other cases, the IoT devices may communicate directly with a
gateway located in the cloud (as is the case with the AWS IoT service).

One critical aspect of gateway configuration is how they implement secure
communication with both upstream and downstream assets. Gateway
communication to backend infrastructure should always be configured to run over
a TLS or other VPN connection (for example, IPSec) and ideally require two-way
(mutual) certificate-based authentication. This requires that the communication
infrastructure that the gateway interacts with be configured with proper access
controls based on the provisioned gateway certificate. A frequently overlooked
aspect of these configurations is the strength of allowable ciphersuites supported.
Ensure that both endpoints are configured to only support the strongest ciphersuites
each mutually supports. Further, it is recommended that organizations and
developers use the latest versions of TLS. For example, at the time of writing, TLS
1.2 should be used instead of TLS 1.1 or 1.0, since the previous versions both have
published vulnerabilities. TLS 1.3 is currently in IETF draft status. As soon as it is
finalized and its implementations become widely available, they should be adopted.

In addition to ciphersuites, gateways communicating with other application servers
should ensure that the service is associated with the PKI certificate. One manner

of achieving this, mentioned earlier, was the use of the DANE, a protocol in which
DNSSEC is leveraged along with DANE records to verify correlation of a digital
certificate to a server. DANE was created to mitigate a number of real-world PKI
deployment threats related to rogue certificates in conjunction with the DNS.

[115]

The IoT Security Lifecycle

Gateway communications to downstream devices should also provide secure
communications. It is important to configure the IoT devices to communicate
using secure modes of their respective protocols. For example, [oT devices that
communicate using Bluetooth-LE to a gateway have a variety of available options
(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478807/).

Pairing Encryption | Data Integrity | Layer
Level 1 No No No
LE Security Mode 1 | Level 2 | Unauthenticated Yes Yes Link Layer
Level 3| Authenticated Yes Yes
Level 1 | Unauthenticated No Yes
LE Security Mode 2 ATT layer
Level 2 | Authenticated No Yes

Upstream databases must also be configured securely. One should consider security
lockdown procedures such as disabling anonymous access, encrypting data between
nodes (to include remote procedure calls (RPCs)), configuring daemons to not run
as root, and changing default ports.

Operations and maintenance

The secure operations and maintenance of IoT systems supports activities such
as managing credentials, roles and keys, as well as both passively and actively
monitoring the security posture of the system.

Managing identities, roles, and attributes

One of the first and most challenging issues to address within an enterprise is the
creation of a common namespace for IoT devices. In addition to naming, establish
clear registration processes. Registration processes should be broken into tiers based
on the sensitivity of the data handled by the devices and the impact of compromise.
For example, registration of security-critical devices should require an in-person
registration process that associates the device with an administrator/group of
administrators. Less critical devices may be provisioned with organizational
identities online based on some pre-configured trust anchor.

[116]

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478807/

Chapter 4

Some existing IoT implementations have suffered from improper management of
identities and role-based permissions used in device administration. For example,
there have been early connected vehicle RSE implementations that have been
deployed using default username/passwords or shared username/password
combinations. Given the geographic dispersion of these devices, it is easy to
understand why these less than secure configurations were chosen; however, to
properly lock down an IoT infrastructure, care must be taken to require appropriate
credentials and privileges for performing administrative functions.

There are a variety of security-related functions that must be allowable within an
IoT system. It is useful to examine these functions prior to mapping them to roles
within an IoT environment. Although not all IoT devices have this entire set of
capabilities, some security functions required for proper loT administration include
the following;:

* View audit logs

* Delete (rotate off) audit logs

* Add/delete/ modify device user accounts

* Add/delete/modify device privileged accounts

* Start/stop and view current device services

* Load new firmware to a device

* Access physical device interfaces/ports

* Modify device configurations (network, and so on)

* Modify device access controls

* Manage device keys

* Manage device certificates

* Pair device or update pairing configurations

Identity relationship management and context

Given the unique nature of the IoT, consider adopting identity relationship
management (IRM). The Kantara Initiative is leading efforts to define and
evangelize this new paradigm, which heavily relies on the concept of context within
authentication procedures. The Kantara Initiative has defined a set of IRM pillars
that focus in part on the following;:

* Consumers and things over employees
* Internet-scale over enterprise-scale

* Borderless over perimeter

[117]

The IoT Security Lifecycle

Attribute-based access control

Context is important to understand as it relates to the IoT and in particular how it
relates to attribute-based access control (ABAC). Context provides an authentication
and authorization system with additional input into the decision-making process on
top of the identity of the device:

* AnloT device that is outside of a geo-fenced boundary might be restricted
from establishing a connection with the infrastructure

* A connected car that is at an approved repair facility might be allowed to
upload new firmware

NIST has provided a useful resource for understanding ABAC at http://nvlpubs.
nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf.

Role-based access control

Part of secure identity management includes first identifying the pertinent identities
and privileged roles they play. These roles can of course be tailored to meet

the unique needs of any particular IoT system deployment, and in some cases,
consideration should be given to separation of duties using role-based access control
(RBAC). For example, providing a separate and distinct role for managing audit logs
decreases the threat of insider administrators manipulating those logs. Lacking any
existing, defined roles, the following table identifies an example of security-relevant
roles/services mappings that can be leveraged in an administration and identity and
access control system:

Role Responsibility

IoT Enterprise Security Administrator | Add/delete/modify device privileged
accounts

IoT Device Security Administrator View audit logs

Add/delete/ modify device user accounts
Start/stop device services

Load new firmware to a device

Access physical device interfaces/ports
Modify device access controls

Manage device keys

IoT Network Administrator Modify device configurations (network, and
so on)

Manage device certificates

Pair device or update pairing configurations

IoT Audit Administrator Delete (rotate off) audit logs

[118]

http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf

Chapter 4

There are additional service roles that may be required as well for an IoT device
to communicate either directly or indirectly with other components in the
infrastructure. It is crucial that these services be sufficiently locked down by
restricting privileges whenever possible.

Consider third-party data requirements

Device manufacturers will often require device data access for monitoring
device health, and tracking statistics and/or entitlements. Consider design
updates to your AAA systems to support secure transmission of this data to
the manufacturers when needed.

Consider also updating your AAA systems to support consumer definition of
privacy preferences consent for access to consumer profile data. This requires
management of external identities such as consumers and patients, who are allowed
to give their consent preferences for which attributes of their profile can be shared
and to whom. In many cases, this requires the integration of AAA services with
third-party services that manage consumer and business partner preferences for
handling of data.

Manage keys and certificates

In the transportation sector, the department of transportation and auto industry

are working on the creation of a new, highly robust and scalable PKI system that

is capable of issuing over 17 million certificates per year to start, and scaling up

to eventually support 350 million devices (billions of certificates), including light
vehicles, heavy vehicles, motorcycles, pedestrians, and even bicycles. The system,
called the security credential management system (SCMS), provides an interesting
reference point for understanding the complexities and scales that cryptographic
support of the IoT will require.

Keys and certificates enable secure data in transit between devices and gateways,
between multiple devices, as well as between gateways and services. Although most
organizations have existing agreements with PKI providers for secure sockets layer
(SSL) certificates, the provisioning of certificates to IoT devices frequently do not fit
the typical SSL model. There are a number of considerations when deciding which
third-party PKI provider to leverage for IoT certificates and there are also trade-off
considerations when deciding whether to use existing in-house PKI systems.

[119]

The IoT Security Lifecycle

More in-depth guidance on PKI certificates can be found in Chapter 6, Identity and
Access Management Solutions for the IoT. Considerations related to operations and
maintenance of keys and certificates for IoT devices include answering the following;:

* How will secure bootstrapping of keys/ certificates be handled with the
IoT devices?

* How IoT device identity verification will be achieved?

* How will revocation checking be handled by IoT devices and services? Will
Online Certificate Status Protocol (OCSP) responders be used and if so,
how will the devices be configured to connect with them?

* How many certificates will be required per device and what validity period
per certificate should be set? Some IoT use cases show a strong rationale for
very short validity periods.

* Are there privacy considerations that preclude binding a certificate to a
device (for example, if a device can be tied directly to a person as in the case
of a Connected Vehicle)?

* Is the price-per-certificate offered by third-party providers going to meet the
scaling needs within a deployment's cost constraints?

* Are X.509 certificates the optimal approach given any constraints of
the system (for example, communication requirements and storage
requirements)?

There are new certificate formats being introduced in support of the IoT. One
example is the IEEE 1609.2 specification format that is being used within the SCMS
for secure vehicle-to-vehicle (V2V) communications. These certificates were
designed for environments that require minimal latency and reduced bandwidth
overhead for limited devices and spectrum. They employ the same elliptic curve
cryptographic algorithms used in a variety of X.509 certificates but are significantly
smaller in overall size and are well suited for machine-to-machine communication.
The authors hope to see this certificate format adopted in other IoT realms and
eventually integrated into existing protocols such as TLS (especially given their
explicit application and permissions attributes).

Security monitoring

Operation of IoT systems requires that assets be sufficiently monitored for abnormal
behavior to mitigate potential security incidents. The IoT presents a number of
challenges that make monitoring using traditional SIEM systems alone insufficient.
This is due to the following reasons:

* Some IoT devices may not generate any security audit logs

[120]

Chapter 4

* JoT devices don't typically support formats such as syslog and may require
custom connectors

* Gaining timely access to audit logs from IoT devices may prove difficult in
various scenarios

* Confidence in the integrity of IoT device audit logs may be somewhat limited

Preparation for IoT device security monitoring should begin with an inventory of
what data is available from each IoT device, gateway, service, and how event data
can and should be correlated across the IoT system to identify suspicious events.
This ideally will include correlation with surrounding infrastructure components
and even other IoT devices/sensors. Understanding the available inputs will
provide a solid foundation for defining the rules that will be implemented

within the enterprise SIEM system.

In addition to defining traditional SIEM-based rules, consider the opportunity

to begin applying data analytics to IoT-based messaging. This can be useful for
identifying anomalies within operation of an IoT system quickly, even when
device audit logs are not readily available. For example, understanding that the
normal behavior of networked temperature sensors is that each is within a certain
percentage range of the closest neighbors allows for the creation of an alert when
a single sensor deviates from that range (based on a defined variance). This is an
example of where CPS control system monitoring needs to be integrated with
security monitoring systems. Integration of physical, logical, network, and IoT
devices (sensors, actuators, and so on) is possible using tools such as ArcSite and
developing or acquiring custom Flex Connectors.

Typical anomalies to look for within an IoT system may include the following:

* Device not reachable

* Time-based anomalies

* Spikes in activity, especially at odd times of day

* New protocols emanating or targeting an IoT device
* Variances in data collected past a threshold

* Authentication anomalies

* Attempted elevation of privilege

* Drops in velocity or activity

* Rapid changes in device physical state (for example, rapid temperature
increase, vibration, and so on)

* Communications with unexpected destinations (even within loT network)
that may indicate attempted lateral movements

[121]

The IoT Security Lifecycle

* Receipt of corrupted data

* Unexpected audit results

* Unexpected audit volume and purged audit trails (devices or gateways)
* Sweeping for topics (in case of publish/subscribe protocols)

* Repeated connection attempts

¢ Abnormal disconnections

Although these might be interesting anomalies, each IoT system should be
individually examined to understand the proper operational baseline operations
and what constitutes anomalous behavior. In a CPS, integrating and baselining the
security rules with the safety rules is crucial. Where possible, integrate security and
safety self-checks into IoT devices and systems. These can be used to verify detection
of anomalies during operation by confirming security and safety services are
operating correctly.

One platform that can provide good support for IoT monitoring is Splunk. Splunk
was created as a product designed to process machine data and as such began with
a solid foundation for supporting the IoT. Splunk supports data collection, indexing,
and search/analysis.

Splunk already supports a number of IoT protocols through add-on apps. Some of
the IoT support provided by Splunk includes message handling for MQTT, AMQP,
and REST, as well as support for indexing data from Amazon Kinesis.

Penetration testing

Assessing the organization's IoT implementations requires testing of hardware and
software, and should include regularly scheduled penetration test activities as well
as autonomous tests that occur throughout the cycle of operation.

Aside from being a good security practice, many regulations require third-party

penetration tests that in the future will include IoT devices/systems. Penetration
tests can also validate the existing security controls and identify gaps within the

implemented security controls.

Blue teams should also be used to continuously evaluate the security posture of the
enterprise as red teams are conducting their exercises. Also, it is vital to assess the
security posture of new IoT infrastructure software and hardware components prior
to introducing them into the architecture.

[122]

Chapter 4

Red and blue teams

Conducting a penetration test of an IoT system is not significantly different from pen
testing more traditional IT systems, although there are additional aspects to consider.
The end goal is to routinely find and report vulnerabilities that may eventually

be exploited. In the case of an IoT system, pen testers must have tools available

to identify security weaknesses in software, firmware, hardware, and even in the
protocol configurations that make use of the RF spectrum.

Conducting effective penetration tests requires that testers limit their efforts to the
most important aspects of an implementation. Consider what is of most business
value to the organization (for example, protection of user data privacy, continuity of
operations, and so on) and then lay out a plan to test the security of the information
assets most likely to impact those goals.

Penetration testing can be conducted as either whitebox or blackbox testing. Both
types are recommended, and while blackbox testing is used to simulate an outside
attacker, whitebox testing provides a more thorough evaluation that allows the test
team to fully engage the technology to find weaknesses.

It also helps to create attacker profiles that mimic the types of attackers that would
be interested in attempting to compromise a particular system. This is of benefit for
both cost-savings as well as providing a more realistic attack pattern based upon the
likely approaches used by adversaries with different financial resources.

Given that the goal of a penetration test is to identify weaknesses in the security
posture of a system, IoT system testers should always look for low-hanging items
that are often left open. These include things such as the following:

* Default passwords used in IoT devices or the gateways, servers, and other
hosts and networking equipment that support them

* Default cryptographic keys used in IoT devices or the gateways or services
that support them

* Default configurations that are well known that would open a system up to
enumeration if not modified (for example, default ports)

* Insecure pairing processes implemented on IoT devices
* Insecure firmware update processes on devices and within the infrastructure
* Unencrypted data streams from IoT devices to gateways

* Non-secure RF (Bluetooth, ZigBee, ZWave, and so on) configurations

[123]

The IoT Security Lifecycle

Evaluating hardware security

Hardware security must also be evaluated. This may be a challenge given the relative
lack of test tools available for this activity; however, there are security platforms that
are beginning to emerge. One example, created by researchers Julien Moinard and
Gwenole Audic, is known as Hardsploit.

Hardsploit is designed as a flexible and modular tool that can be used to interface
with various data bus types, including UART, Parallel, SPI, CAN Modbus and
others. More information about Hardsploit is available at https://hardsploit.io/.

The process for evaluating hardware security in an enterprise IoT implementation

is straightforward. Testers need to understand whether hardware devices introduce
new weaknesses in a system that detracts from the ability to protect system assets
and data. A typical IoT hardware evaluation flow during a penetration test would go
as follows:

1. Identify whether the device is in a protected or unprotected location. Can
the device be taken without someone noticing? If it is taken, is there any
reporting that it is no longer online? Can it be swapped out?

Evaluate tamper protections and break open the device.
Attempt to dump memory and try to steal sensitive information.

Attempt to download the firmware for analysis.

ARSI

Attempt to upload new firmware and make that firmware operational.

The airwaves

Another aspect of the IoT that differs from traditional IT implementations is the
increasing reliance on wireless communications. Wireless introduces a variety of
potential back doors into an enterprise that must be guarded. It is important to take
time during penetration tests to determine if it is possible to leave rogue RF devices
behind that may be able to covertly monitor or exfiltrate data from the environment.

loT penetration test tools

Many traditional pen test tools are applicable to the IoT, although there are also IoT-
specific tools now coming online. Examples of tools that may be useful during IoT
penetration testing are provided in the following table:

[124]

https://hardsploit.io/

Chapter 4

IoT test tools
Tool Description Available at
BlueMaho Suite of Bluetooth security tools. Can scan/ http://git.kali.org/
track BT devices; supports simultaneous gitweb/?p=packages/
scanning and attacking. bluemaho.
git;a=summary
Bluelog Good for long-term scanning at a location to http://www.digifail.
identify discoverable BT devices. com/software/bluelog.
shtml
crackle A tool designed to crack BLE encryption. https://github.com/
mikeryan/crackle
SecBee A ZigBee vulnerability scanner. Based on https://github.com/
KillerBee and scapy-radio. Cognosec/SecBee
KillerBee A tool for evaluating the security posture http://tools.kali.

of ZigBee networks. Supports emulation
and attack of end devices and infrastructure
equipment.

org/wireless-attacks/
killerbee

scapy-radio

A modification to the scapy tool for RF-based
testing. Includes support for Bluetooth-LE,
802.15.4-based protocols and ZWave.

https://bitbucket.
org/cybertools/scapy-
radio/src

Wireshark

An old favorite.

https://www.
wireshark.org/

Aircrack-ng

A wireless security tool for exploiting Wi-Fi
networks - supports 802.11a, 802.11b and
802.11g.

www.alrcrack-ng.org/

Chibi An MCU with integrated with an open https://github.
sourced ZigBee stack. com/freaklabs/
chibiArduino
Hardsploit A new tool aimed at providing Metasploit-like [https://hardsploit.
flexibility to IoT hardware testing. io/
HackRF Flexible and turnkey platform for RX and TX |https://
1 MHZ to 6 GHZ. greatscottgadgets.
com/hackrf/
Shikra The Shikra is a device that allows the user to | http://int3.cc/

interface (via USB) to a number of different
low-level data interfaces such as JTAG, SPI,
12C, UART, and GPIO.

products/the-shikra

[125]

http://git.kali.org/gitweb/?p=packages/bluemaho.git;a=summary
http://git.kali.org/gitweb/?p=packages/bluemaho.git;a=summary
http://git.kali.org/gitweb/?p=packages/bluemaho.git;a=summary
http://git.kali.org/gitweb/?p=packages/bluemaho.git;a=summary
http://www.digifail.com/software/bluelog.shtml
http://www.digifail.com/software/bluelog.shtml
http://www.digifail.com/software/bluelog.shtml
https://github.com/mikeryan/crackle
https://github.com/mikeryan/crackle
https://github.com/Cognosec/SecBee
https://github.com/Cognosec/SecBee
http://tools.kali.org/wireless-attacks/killerbee
http://tools.kali.org/wireless-attacks/killerbee
http://tools.kali.org/wireless-attacks/killerbee
https://bitbucket.org/cybertools/scapy-radio/src
https://bitbucket.org/cybertools/scapy-radio/src
https://bitbucket.org/cybertools/scapy-radio/src
https://www.wireshark.org/
https://www.wireshark.org/
www.aircrack-ng.org/
https://github.com/freaklabs/chibiArduino
https://github.com/freaklabs/chibiArduino
https://github.com/freaklabs/chibiArduino
https://hardsploit.io/
https://hardsploit.io/
https://greatscottgadgets.com/hackrf
https://greatscottgadgets.com/hackrf
https://greatscottgadgets.com/hackrf
http://int3.cc/products/the-shikra
http://int3.cc/products/the-shikra

The IoT Security Lifecycle

Test teams should of course also keep track of the latest vulnerabilities that can
impact IoT implementations. For example, is always useful to track the National
Vulnerability Database (NVD) at https://nvd.nist.gov/. In some cases,
vulnerabilities may not be directly in the IoT devices, but in the software and systems
to which they connect. IoT system owners should maintain a comprehensive version
tracking system for all devices and software in their enterprise. This information
should be regularly checked against vulnerability databases, and of course shared
with the whitebox penetration testing teams.

Compliance monitoring

Continuous monitoring for IoT security compliance is a challenge and will continue
to be a challenge as regulators attempt to catch up with mapping and extending
existing guidance to the IoT.

As discussed in Chapter 2, Vulnerabilities, Attacks, and Countermeasures, the Center for
Internet Security (CIS) released an addendum to the 20 Critical Controls that details
coverage of each control within the IoT. This provides a starting point as continuous
monitoring and compliance software often incorporate the 20 Critical Controls as a
component of the online monitoring capability.

Asset and configuration management

There is more to discuss related to IoT asset management than simply keeping

track of the physical location of each component. Some IoT devices can benefit

from predictive analytics to help identify when an asset requires maintenance and
also detect in real time when an asset has gone offline. By incorporating new data
analytics techniques into an IoT ecosystem, organizations can benefit from these new
capabilities and apply them to the IoT assets themselves.

Imaging a device such as an autonomous connected vehicle working on a
construction site, or perhaps a robot on a manufacturing floor, the ability to predict
failure becomes significant. Prediction is only the first step, however, as the IoT
matures with new capabilities to automatically respond to failures and even
autonomously swap out broken components for new replacements.

Consider a set of drones used in security and surveillance applications. Each drone is
essentially an IoT endpoint that must be managed by the organization like any other
asset. This means that within an asset database there is an entry for each drone that
includes various attributes such as the following;:

* Registration number

e Tail number

[126]

https://nvd.nist.gov/

Chapter 4

* Sensor payloads

* Manufacturer

* Firmware versions
* Maintenance logs

* Flight performance characteristics, including flight envelope limitations

Ideally, these drone platforms can also be self-monitoring. That is, the drones can
be outfitted with a multitude of sensors that monitor aircraft health and can feed
the data back to a system capable of performing predictive analytics. For example,
the drone may measure data such as temperature, strain, and torque, which can be
used to predict part failures within individual components of the platform. From

a security perspective, ensuring that the data is integrity protected end-to-end is
important, as is building in checks within the predictive algorithms to look for
variances that should not be included in calculations. This is just one more example
of where safety and security intersect in the same ecosystem.

Proper asset management requires having the ability to maintain a database of the
attributes related to a particular IoT device in order to properly perform routine
maintenance on each asset. IoT system deployers should consider two configuration
management models:

* JoT asset components (for example, firmware) are fully integrated and
updated by the IoT device vendor in a single update

* JoT asset is developed modularly with many different technologies that must
each be maintained and separately updated

In the first instance, updating the IoT asset is straightforward, although there

are still, of course, opportunities for vulnerability exploitation. Always ensure that
the new firmware is digitally signed at a minimum (and that the public key trust
anchor verifying the firmware signature is securely stored). Care must also be

taken to secure the firmware distribution infrastructure, including the systems that
provision the signing certificates in the first place. When new firmware is loaded into
an loT platform, the platform should verify the digital signature using a protected
trust anchor (public key) before allowing the firmware to boot and load into
executable memory.

In addition to digitally signing firmware packages, verify that the devices are
configured to only allow signed updates. Enable encrypted channels between the
firmware update server and the device, and establish policies, procedures, and
appropriate access controls for those performing the updates.

Look to vendors such as Xively and Axeda for robust IoT asset and configuration
management solutions.

[127]

The IoT Security Lifecycle

Incident management

Just as the IoT blends together the physical and electronic world, the IoT also blends
together traditional IT capabilities with business processes —business processes

that have the ability to impact the bottom line of an organization when interrupted.
Impacts can include financial loss, reputation damage, and even personnel safety and
loss of life. Managing loT-related incidents requires that security staff have better
insights into how the compromise or disruption of a particular IoT system impacts
the business. Responders should be familiar with Business Continuity Plans (which
need to be developed established with the IoT system in mind) to determine what
the appropriate remediation steps to take are during the incident response.

Microgrids provide a valuable example for incident management. Microgrids are
self-contained energy generation, distribution, and management systems that may
or may not be connected to a larger power distribution infrastructure. Identifying
an incident involving one of the programmable logic controllers (PLCs) may
require that responders first understand the impact of taking a certain PLC offline.
At a minimum, they must work very closely with the impacted business operations
during the response. This requires that for each IoT system across an organization,
the security staff maintain an up-to-date database of the emergency PLCs, as well as
a general description of critical assets and business functions.

Forensics

The IoT opens up new data-rich opportunities to facilitate forensics processes. From
a forensics perspective, keeping as much data as possible from each IoT endpoint
can aid in an investigation. Unlike traditional IT security, the assets themselves may
not be available (for example, they may be stolen), may not be capable of storing
any useful data, or may have been tampered with. Gaining access to the data

that was generated by compromised loT devices, as well as related devices in the
environment, gives a good starting point in instances such as this.

Just as IoT data can be useful in enabling and benefiting from predictive analytics,
research into the use of historical IoT data for establishing security incident root
causes should be explored.

Dispose

The disposal phase of a system can apply to the system as a whole or to individual
components of the system. IoT systems can generate significant data; however,
minimal data is typically kept on the devices themselves. This does not, however,
mean that the controls associated with IoT devices can be overlooked. Proper
disposal procedures can aid against adversaries intent on using any means to gain
physical access to IoT devices (for example, dumpster diving for old electronics).

[128]

Chapter 4

Secure device disposal and zeroization

Many IoT devices are configured with cryptographic material that allows them to
join local networks or authenticate and communicate securely with other remote
devices and systems. This cryptographic material should be deleted and wiped from
the devices prior to their disposal. Ensure that policies and procedures address how
authorized security staff should perform secure removal of keys, certificates, and
other sensitive device data when devices need to be disposed of. Accounts that have
been provisioned to IoT devices must also be scrubbed to ensure that any account
credentials used for automated transactions are not discovered and hijacked.

Data purging
Gateway devices should also be thoroughly inspected when being decommissioned

from a system. These devices may have latent data stored on them, including critical
authentication material that must be erased and rendered irretrievable.

Inventory control

Asset management is a crucial enabler of enterprise information security. Keeping
track of assets and their states is essential to maintaining a healthy security posture.
The relatively low cost of many IoT devices does not mean that they can be swapped
out and replaced without adhering to stringent processes. If possible, keep track

of all IoT assets in your inventory through an automated inventory management
system and ensure that processes are followed to remove these devices from
inventory following secure disposal. Many SIEM systems maintain device inventory
databases; keeping the communication pathways open between system operators
and SIEM operators can help ensure consistent inventory management.

Data archiving and records management

The amount of time that data must be kept depends heavily on the specific
requirements and regulations in a given industry. Satisfying such regulations
within an IoT system may be manual or may frequently require a data warehousing
capability that collects and stores data for extended periods of time. Apache and
Amazon data warehouses (S3) offer capabilities that one may want to consider for
IoT records management.

[129]

The IoT Security Lifecycle

Summary

In this chapter, we discussed the IoT security lifecycle management processes
associated with IoT device implementation, integration, operation, and disposal.
Each has vital subprocesses that must be created or adopted for use in any IoT
deployment and in just about any industry. While much attention is given in the
literature to secure device design (or lack thereof), firm attention must also be given
to secure integration and operational deployment.

In the next chapter, we will provide a background in applied cryptography as it
relates to the IoT. We provide this background because many legacy industries
new to security may struggle to correctly adopt and integrate cryptography
into their products.

[130]

Cryptographic Fundamentals
for loT Security Engineering

This chapter is directed squarely at IoT implementers, those developing IoT devices
(consumer or industrial) or integrating IoT communications into their enterprises. It
provides readers a background on establishing cryptographic security for their IoT
implementations and deployments. While most of this book is devoted to practical
application and guidance, this section diverges a bit to delve into deeper background
topics associated with applied cryptography and cryptographic implementations.
Some security practitioners may find this information common sense, but given

the myriad cryptographic implementation errors and deployment insecurities even
security-aware tech companies still deploy today, we decided this background was
needed. The risks are growing worse, evidenced by the fact that many industries
historically unfamiliar with security (for example, home appliance vendors) continue
to network-connect and IoT-enable their products. In the process, they're making
many avoidable errors that can harm their customers.

A detailed review of the use of cryptography to protect IoT communication and
messaging protocols is provided, along with guidance on how the use of certain
protocols drives the need for additional cryptographic protections at different layers
of the technology stack.

This chapter is a critical prerequisite to the following chapter on public key
infrastructures (PKIs) and their use in IoT identity and trust management. It
explains the underlying security facets and cryptographic primitives on which
PKI depends.

[131]

Cryptographic Fundamentals for IoT Security Engineering

This chapter is broken up into the following topical sections:

* Cryptography and its role in securing the IoT

* Types and uses of the cryptographic primitives in the IoT
* Cryptographic module principles

* Cryptographic key management fundamentals

* Future-proofing your organization's rollout of cryptography

Cryptography and its role in securing the
loT

Our world is witnessing unprecedented growth in machine connectivity over the
Internet and private networks. Unfortunately, on any given day, the benefits of
that connectivity are soured by yet more news reports of personal, government,
and corporate cybersecurity breaches. Hacktivists, nation-states, and organized
crime syndicates play a never-ending game of cat and mouse with the security
industry. We are all victims, either as a direct result of a cyber breach or through
the costs we incur to improve security technology services, insurance, and other
risk mitigations. The demand for more security and privacy is being recognized in
corporate boardrooms and high-level government circles alike. A significant part
of that demand is for wider adoption of cryptography to protect user and machine
data. Cryptography will play an ever growing role in securing the IoT. It is and will
continue to be used for encrypting wireless edge networks (network and point-to-
point), gateway traffic, backend cloud databases, software/firmware images, and
many other uses.

Cryptography provides an indispensable tool set for securing data, transactions, and
personal privacy in our so-called information age. Fundamentally, when properly
implemented, cryptography can provide the following security features to any data
whether in transit or at rest:

Security feature Cryptographic service(s)
Confidentiality Encryption
Authentication Digital signature or

Message authentication code (MAC)

Integrity Digital signature or MAC

Non-repudiation Digital signature

[132]

Chapter 5

Revisiting definitions from Chapter 1, A Brave New World, the previously mentioned
controls represent four out of five pillars of information assurance (IA). While the
remaining one, availability, is not provided by cryptography, poorly implemented
cryptographic instances can certainly deny availability (for example, communication
stacks with crypto-synchronization problems).

The security benefits provided by cryptography — confidentiality, authentication,
integrity, and non-repudiation — provide direct, one-to-one mitigations against
many host, data, and communications security risks. In the not-too-distant past,

the author (Van Duren) spent considerable time supporting the FAA in addressing
the security needed in pilot-to-drone communications (a prerequisite to safe and
secure integration of unmanned aircraft into the national airspace system). Before we
could recommend the controls needed, we first needed to understand the different
communication risks that could impact unmanned aircraft.

The point is, it is vital to understand the tenets of applied cryptography because
many security practitioners —while they may not end up designing protocol level
controls —will at least end up making high-level cryptographic selections in the
development of security embedded devices and system level security architectures.
These selections should always be based on risks.

Types and uses of cryptographic primitives in
the loT

When most people think about cryptography, it is encryption that most comes to
mind. They understand that data is "scrambled", so to speak, so that unauthorized
parties cannot decrypt and interpret it. Real-world cryptography is comprised of
a number of other primitives, however, each partially or fully satisfying one of
the previous IA objectives. Securely implementing and combining cryptographic
primitives together to achieve a larger, more complex security objective should
only be performed or overseen by security professionals well versed in applied
cryptography and protocol design. Even the most minor error can prevent the
security objective(s) from being fulfilled and result in costly vulnerabilities. There
are far more ways to mess up a cryptographic implementation than to get it right.

[133]

Cryptographic Fundamentals for IoT Security Engineering

Cryptographic primitive types fall into the following categories:

* Encryption (and decryption):
° Symmetric

° Asymmetric

* Hashing
* Digital signatures
° Symmetric: MAC used for integrity and data-origin authentication

° Asymmetric: Elliptic curve (EC) and integer factorization
cryptography (IFC). These provide integrity, identity, and data-
origin authentication as well as non-repudiation

* Random number generation: The basis of most cryptography requires very
large numbers originating from high entropy sources

Cryptography is seldom used in isolation, however. Instead, it provides the
underlying security functions used in upper layer communication and other
protocols. For example, Bluetooth, ZigBee, SSL/TLS, and a variety of other protocols
specify their own underlying cryptographic primitives and methods of integrating
them into messages, message encodings, and protocol behavior (for example, how to
handle a failed message integrity check).

Encryption and decryption

Encryption is the cryptographic service most people are familiar with as it is used

to so-called scramble or mask information so that unintended parties cannot read or
interpret it. In other words, it is used to protect the confidentiality of the information
from eavesdroppers and only allow it to be deciphered by intended parties.
Encryption algorithms can be symmetric or asymmetric (explained shortly). In both
cases, a cryptographic key and the unprotected data are given to the encryption
algorithm, which ciphers —encrypts —it. Once in this state, it is protected from
eavesdroppers. The receiving party uses a key to decrypt the data when it is needed.
The unprotected data is called plaintext and the protected data is called ciphertext.
The basic encryption process is depicted in the following diagram:

[134]

Chapter 5

Encryption - Protection from eavesdropping
c . | Ciphertext i . "
ncryption | « » H ncryption
Algorithm | Enorypted ' Algorithm
' Message '
|y (1@*&H?NS(*&N) __E___
> Encrypt ! i | Decrypt
[Plaintext ! - ' [Plaintext
Message] ! 'n| ' Message]
I I key : EVBSdmpper : key I I
10T ! | 10T
Device i i Device
A Unprotected Protected ' Unprotected B
Encrypt-decrypt.graffle

It should be clear from the preceding diagram that, if the data is ever decrypted

prior to reaching IOT Device B, it is vulnerable to the Eavesdropper. This brings into
question where in a communication stack and in what protocol the encryption is
performed, that is, what the capabilities of the endpoints are. When encrypting for
communication purposes, system security engineers need to decide between point-
to-point encryption and end-to-end encryption as evidenced in their threat modeling.
This is an area ripe for error, as many encrypted protocols operate only on a point-to-
point basis and must traverse a variety of gateways and other intermediate devices,
the paths to which may be highly insecure.

In today's Internet threat environment, end-to-end encryption at the session and
application layers is most prominent due to severe data losses that can occur when
decrypting within an intermediary. The electrical industry and the insecure SCADA
protocols commonly employed in it provide a case in point. The security fixes often
include building secure communication gateways (where newly added encryption
is performed). In others, it is to tunnel the insecure protocols through end-to-end
protected ones. System security architectures should clearly account for every
encryption security protocol in use and highlight where plaintext data is located (in
storage or transit) and where it needs to be converted (encrypted) into ciphertext.
In general, whenever possible, end-to-end data encryption should be promoted. In
other words, a secure-by-default posture should always be promoted.

[135]

Cryptographic Fundamentals for IoT Security Engineering

Symmetric encryption

Symmetric encryption simply means the sender (encryptor) and the receiver
(decryptor) use an identical cryptographic key. The algorithm, which is able to both
encrypt and decrypt—depending on the mode —is a reversible operation, as shown
in the following diagram:

Key K) A and B use
Identical Keys Used to Encrypt
l and Decrypt

Encrypt Data > Decrypt
1 1
0T 0T
Device Device
A B

Symmetric-encryption.graffle

In many protocols, a different symmetric key is used for each direction of travel. So,
for example, Device A may encrypt to Device B using key X. Both parties have key X.
The opposite direction (B to A) may use key Y which is also in the possession of
both parties.

Symmetric algorithms consist of a ciphering operation using the plaintext or
ciphertext input, combined with the shared cryptographic key. Common ciphers
include the following:

* AES—advanced encryption standard (based on Rijndael and specified in

FIPS PUB 197)
* Blowfish
* DES and triple-DES
* Twofish
e (CAST-128

e Camellia
e IDEA

[136]

Chapter 5

The source of the cryptographic keys is a subject that spans applied cryptography as
well as the topic of cryptographic key management, addressed later in this chapter.

In addition to the cryptographic key and data that is fed to the cipher, an
initialization vector (IV) is frequently needed to support certain cipher modes
(explained in a moment). Cipher modes beyond the basic cipher are simply different
methods of bootstrapping the cipher to operate on successive chunks (blocks) of
plaintext and ciphertext data. Electronic code book (ECB) is the basic cipher and
operates on one block of plaintext or ciphertext at a time. The ECB mode cipher by
itself is very rarely used because repeated blocks of identical plaintext will have an
identical ciphertext form, thus rendering encrypted data vulnerable to catastrophic
traffic analysis. No IV is necessary in ECB mode, just the symmetric key and data on
which to operate. Beyond ECB, block ciphers may operate in block chaining modes
and stream/counter modes, discussed next.

Block chaining modes

In cipher block chaining (CBC) mode, the encryption is bootstrapped by inputting
an IV that is XOR'd with the first block of plaintext. The result of the XOR operation
goes through the cipher to produce the first block of encrypted ciphertext. This
block of ciphertext is then XOR'd with the next block of plaintext, the result of
which goes through the cipher again. The process continues until all of the blocks
of plaintext have been processed. Because of the XOR operation between iterating
blocks of plaintext and ciphertext, two identical blocks of plaintext will not have the
same ciphertext representation. Thus, traffic analysis (the ability to discern what the
plaintext was from its ciphertext) is far more difficult.

Other block chaining modes include cipher-feedback chaining (CFB) and output
feedback modes (OFB), each a variation on where the IV is initially used, what
plaintext and ciphertext blocks are XOR'd, and so on.

Advantages of block chaining modes include the fact, stated previously, that
repeated blocks of identical plaintext do not have an identical ciphertext form.
This prevents the simplest traffic analysis methods such as using dictionary word
frequency to interpret encrypted data. Disadvantages of block chaining techniques
include the fact that any data errors such as bit flipping in RF communications
propagate downstream. For example, if the first block of a large message M
encrypted by AES in CBC mode were corrupted, all subsequent blocks of M would
be corrupted as well. Stream ciphers, discussed next, do not have this problem.

CBC is a common mode and is currently available as an option (among others),
for example, in the ZigBee protocol (based on IEEE 802.15.4).

[137]

Cryptographic Fundamentals for IoT Security Engineering

Counter modes

Encryption does not have to be performed on complete blocks, however; some
modes make use of a counter such as counter mode (CTR) and Galois counter
mode (GCM). In these, the plaintext data is not actually encrypted with the cipher
and key, not directly anyway. Rather, each bit of plaintext is XOR'd with a stream
of continuously produced ciphertext comprising encrypted counter values that
continuously increment. In this mode, the initial counter value is the IV. It is
encrypted by the cipher (using a key), providing a block of ciphertext. This block
of ciphertext is XOR'd with the block (or partial block) of plaintext requiring the
protection. CTR mode is frequently used in wireless communications because bit
errors that happen during transmission do not propagate beyond a single bit (versus
block chaining modes). It is also available within IEEE 802.15.4, which supports a
number of IoT protocols.

Asymmetric encryption

Asymmetric encryption simply means there are two different, pairwise keys,

one public and the other private, used to encrypt and decrypt, respectively. In

the following diagram, IoT device A uses IoT device B's public key to encrypt to
device B. Conversely, device B uses device A's public key to encrypt information to
device A. Each device's private keys are kept secret, otherwise anyone or anything
possessing them will be able to decrypt and view the information.

Device A uses Device B’s Public Device B uses its Private Key Bpriv
Key Bpub to encrypt to B to to decrynt (only B has this key)
Key Bpub\ Key Bpriv
' v
L Encrypt E ted | Decrypt | |
10T nerypte
Device Data 10T
/ \ Device
A B
Plaintext Plaintext
Data Data \

Asymmetric-Encryption.graffle

[138]

Chapter 5

The only asymmetric encryption algorithm in use today is that of RSA (Rivest,
Shamir, Adelman), an integer factorization cryptography (IFC) algorithm that is
practical for encrypting and decrypting small amounts of data (up to the modulus
size in use).

The advantage of this encryption technique is that only one party possessing the
pairwise RSA private key can decrypt the traffic. Typically, private key material is
not shared with more than one entity.

The disadvantage of asymmetric encryption (RSA), as stated earlier, is the fact

that it is limited to encrypting up to the modulus size in question (1024 bits, 2048
bits, and so on). Given this disadvantage, the most common use of RSA public key
encryption is to encrypt and transport other small keys — frequently symmetric — or
random values used as precursors to cryptographic keys. For example, in the TLS
client-server protocol, RSA is leveraged by a client to encrypt a pre-master secret
(PMS) with the server's public RSA key. After sending the encrypted PMS to the
server, each side has an exact copy from which to derive the session's symmetric key
material (needed for session encryption and so on).

Integer factorization cryptography using RSA, however, is becoming less popular
due to advances in large number factorization techniques and computing power.
Larger RSA modulus sizes (for improved computational resistance to attack)

are now recommended by NIST.

Hashes

Cryptographic hashes are used in a variety of security functions for their ability to
represent an arbitrarily large message with a small sized, unique thumbprint (the
hash). They have the following properties:

* They are designed not to disclose any information about the original data
that was hashed (this is called resistance to first pre-image attacks)

* They are designed to not allow two different messages to have the same hash
(this is called resistance to second pre-image attacks and collisions)

* They produce a very random-looking value (the hash)

[139]

Cryptographic Fundamentals for IoT Security Engineering

The following image denotes an arbitrary chunk of data D being hashed into H(D).
H(D) is a small, fixed size (depending on the algorithm in use); from it, one can not
(or should not be able to) discern what the original data D was.

Data D

Y

Hash
Function

Hash-functions.graffle

Unique
Relationship

Given these properties, hash functions are frequently used for the following
purposes:

Protecting passwords and other authenticators by hashing them (the original
password is then not revealed unless by a dictionary attack) into a random
looking digest

Checking the integrity of a large data set or file by storing the proper hash of
the data and re-computing that hash at a later time (often by another party).
Any modification of the data or its hash is detectable.

Performing asymmetric digital signatures
Providing the foundation for certain message authentication codes
Performing key derivation

Generating pseudo-random numbers

[140]

Chapter 5

Digital signatures

A digital signature is a cryptographic function that provides integrity,
authentication, data origin, and in some cases, non-repudiation protections. Just like
a hand-written signature, they are designed to be unique to the signer, the individual
or device responsible for signing the message and who possesses the signing key.
Digital signatures come in two flavors, representing the type of cryptography in use:
symmetric (secret, shared key) or asymmetric (private key is unshared).

The originator in the following diagram takes his message and signs it to produce
the signature. The signature can now accompany the message (now called the
signed message) so that anyone with the appropriate key can perform the inverse of
signature operation, called signature verification.

Digital Signatures - Protection from Spoofing & Tampering
Sionat | Signed i Sionat
ignature ' i ignature
Algorithm ! Message ! Algorithm
i [Message] + |
i , [Signature] — ; — i
> Sign : - ! Verify Pass/Fail
[Messagel] : !
N =
[I : { 10T
) | Spoofer ' Public i
loT Private ! Tamperer { key Device
Device key ! ! -
! { Receiver
Sender Unprotected i Protected E Unprotected

sign-verify.graffle
If the signature verification is successful, the following can be claimed:

* The data was, indeed, signed by a known or declared key

* The data has not been corrupted or tampered with

If the signature verification process fails, then the verifier should not trust the
data's integrity or whether it has originated from the right source. This is true
of both asymmetric and symmetric signatures, but each has unique properties,
described next.

[141]

Cryptographic Fundamentals for IoT Security Engineering

Asymmetric signature algorithms generate signatures (that is, sign) using a
private key associated with a shared public key. Being asymmetric and the

fact that private keys are generally not (nor should they typically ever be) shared,
asymmetric signatures provide a valuable means of performing both entity and
data authentication as well as protecting the integrity of the data and providing
non-repudiation capabilities.

Data D
} Hash
Algorithm

Hash Signature

(D) Algorithm
Private Key } Private Key
(Signature Key) ———» Operation on Hash
Signature
S) Append Signature to
@ Original Data
]

‘Signed’ Data Structure

Asymmetric-signature.graffle
Common asymmetric digital signature algorithms include the following:

* RSA (with PKCS1 or PSS padding schemes)
* DSA (digital signature algorithm) (FIPS 180-4)
* Elliptic curve DSA (ECDSA) (FIPS 180-4)

Asymmetric signatures are used to authenticate from one machine to another, sign
software/firmware (hence, verify source and integrity), sign arbitrary protocol
messages, sign PKI public key certificates (discussed in Chapter 6, Identity and Access
Management Solutions for the IoT) and verify each of the preceding ones. Given that
digital signatures are generated using a single private (unshared) key, no entity can
claim that it did not sign a message. The signature can only have originated from
that entity's private key, hence the property of non-repudiation.

[142]

Chapter 5

Asymmetric digital signatures are used in a variety of cryptographic-enabled
protocols such as SSL, TLS, IPSec, S/ MIME, ZigBee networks, Connected Vehicle
Systems (IEEE 1609.2), and many others.

Symmetric (MACs)

Signatures can also be generated using symmetric cryptography. Symmetric
signatures are also called MAC and, like asymmetric digital signatures, produce a
MAC of a known piece of data, D. The principal difference is that MACs (signatures)
are generated using a symmetric algorithm, hence the same key used to generate the
MAC is also used to verify it. Keep in mind that the term MAC is frequently used to
refer to the algorithm as well as the signature that it generates.

Symmetric MAC algorithms frequently rely on a hash function or symmetric cipher
to generate the message authentication code. In both cases (as shown in the following
diagram), a MAC key is used as the shared secret for both the sender (signer) and
receiver (verifier).

Keyed MAC .-~
e Algorlthm e
MAC Key —

MAC | [Message Authentication Code

Append MAC to
Original Data

Data D MAC of D

MAC’d Data Structure

Symmetric-signature.graffle

[143]

Cryptographic Fundamentals for IoT Security Engineering

Given that MAC-generating symmetric keys may be shared, MACs generally do not
claim to provide identity-based entity authentication (therefore, non-repudiation
cannot be claimed), but do provide sufficient verification of origin (especially in short
term transactions) that they are said to provide data origin authentication.

MAC:s are used in a variety of protocols, such as SSL, TLS, IPSec, and many others.
Examples of MACs include the following;:

« HMAC-SHA1
« HMAC-SHA256
* CMAC (using a block cipher like AES)

* GMAC (Galois message authentication code is the message authentication
element of the GCM mode)

MAC algorithms are frequently integrated with encryption ciphers to perform
what is known as authenticated encryption (providing both confidentiality as
well as authentication in one fell swoop). Examples of authenticated encryption
are as follows:

* Galois counter mode (GCM): This mode combines AES-CTR counter mode
with a GMAC to produce ciphertext and a message authentication code.

* Counter mode with CBC-MAC (CCM): This mode combines a 128-bit block
cipher such as AES in CTR mode with the MAC algorithm CBC-MAC. The
CBC-MAC value is included with the associated CTR-encrypted data.

Authenticated encryption is available in a variety of protocols such as TLS.

Random number generation

Randomness of numbers is a keystone of cryptography given their use in generating
a number of different cryptographic variables such as keys. Large, random numbers
are difficult to guess or iterate through (brute force), whereas highly deterministic
numbers are not. Random number generators — RNGs —come in two basic flavors,
deterministic and nondeterministic. Deterministic simply means they are algorithm-
based and for a single set of inputs they will always produce the same output. Non-
deterministic means the RNG is generating random data in some other fashion,
typically from very random physical events such as circuit noise and other low bias
sources (even semi-random interrupts occurring in operating systems). RNGs are
frequently among the most sensitive components of a cryptographic device given the
enormous impact they have on the security and source of cryptographic keys.

[144]

Chapter 5

Any method of undermining a device's RNG and discerning the cryptographic keys
it generated renders the protections of that cryptographic device completely useless.

RNGs (the newer generation are called deterministic random bit generators, or
DRBGs) are designed to produce random data for use as cryptographic keys,
initialization vectors, nonces, padding, and other purposes. RNGs require inputs
called seeds that must also be highly random, emanating from high entropy
sources. A compromise of seed or its entropy source — through poor design, bias,
or malfunction—will lead to a compromise of the RNG outputs and therefore a
compromise of the cryptographic implementation. The result: someone decrypts
your data, spoofs your messages, or worse. A generalized depiction of the RNG
entropy seeding process is shown in the following diagram:

Cryp:{ographic
eys
RNG — v

e e
(Intel?'nngSﬁate) T

Nonces, Salts,
Other Variables

Entropy
Source

In this depiction, several arbitrary entropy sources are pooled together and, when
needed, the RNG extracts a seed value from this pool. Collectively, the entropy
sources and entropy pooling processes to the left of the RNG are often called a non-
deterministic random number generator (NDRNG). NDRNG's almost always
accompany RNGs as the seeding source.

RandomNumberGeneration.graffle

Pertinent to the IoT, it is absolutely critical for those IoT devices generating
cryptographic material that [oT RNGs be seeded with high entropy sources and that
the entropy sources are well protected from disclosure, tampering, or any other type
of manipulation. For example, it is well known that random noise characteristics

of electrical circuits change with temperature; therefore, it is prudent in some cases
to establish temperature thresholds and logically stop entropy gathering functions
that depend on circuit noise when temperature thresholds are exceeded. This is a
well-known feature used in smart cards (for example, chip cards for credit/debit
transactions, and so on) to mitigate attacks on RNG input bias by changing the
temperature of the chip.

[145]

Cryptographic Fundamentals for IoT Security Engineering

Entropy quality should be checked during device design. Specifically, the min-
entropy characteristics should be evaluated and the IoT design should be resilient to
the NDRNG becoming 'stuck' and always feeding the same inputs to the RNG. While
less a deployment consideration, IoT device vendors should take extraordinary care
to incorporate high quality random number generation capabilities during the design
of a device's cryptographic architecture. This includes production of high quality
entropy, protection of the entropy state, detection of stuck RNGs, minimization of
RNG input bias, entropy pooling logic, RNG state, RNG inputs, and RNG outputs.
Note that if entropy sources are poor, engineering tradeoffs can be made to simply
collect (pool) more of the entropy within the device to feed the RNG.

NIST Special Publication 800-90B (http://csrc.nist.gov/publications/
drafts/800-90/sp800-90b_second_draft.pdf) provides an excellent resource

for understanding entropy, entropy sources, and entropy testing. Vendors can have
RNG/DRBG conformance and entropy quality tested by independent cryptographic
test laboratories or by following guidance in SP800-90B (http://csrc.nist.gov/
publications/drafts/800-90/draft-sp800-90b. pdf).

Ciphersuites

The fun part of applied cryptography is combining one or more of the above
algorithm types to achieve specifically desired security properties. In many
communication protocols, these algorithm groupings are often called ciphersuites.
Depending on the protocol at hand, a cipher-suite specifies the particular set of
algorithms, possible key lengths, and uses of each.

Ciphersuites can be specified and enumerated in different ways. For example,
transport layer security (TLS) offers a wide array of ciphersuites to protect network
sessions for web services, general HTTP traffic, real-time protocols (RTP), and
many others. An example TLS cipher-suite enumeration and their interpretation

is as follows:

TLS_RSA WITH_AES_128_ GCM_SHA256, which interprets to using:

* RSA algorithm for the server's public key certificate authentication (digital
signature). RSA is also the public key-based key transport (for passing the
client-generated pre-master secret to the server).

* AES algorithm (using 128-bit length keys) for encrypting all data through the
TLS tunnel.

* AES encryption is to be performed using the Galois counter mode (GCM);
this provides the tunnel's ciphertext as well as the MACs for each TLS
datagram.

* SHAZ256 to be used as the hashing algorithm.

[146]

http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

Chapter 5

Using each of the cryptographic algorithms indicated in the cipher-suite, the specific
security properties needed of the TLS connection and its setup are realized:

1. The client authenticates the server by validating an RSA-based signature on
its public key certificate (the RSA signature was performed over a SHA256
hash of the public key certificate, actually).

2. Now a session key is needed for tunnel encryption. The client encrypts its
large, randomly generated number (called pre-master secret) using the
server's public RSA key and sends it to the server (that is, only the server,
and no man-in-the-middle, can decrypt it).

3. Both the client and server use the pre-master secret to compute a master
secret. Key derivation is performed for both parties to generate an identical
key blob containing the AES key that will encrypt the traffic.

4. The AES-GCM algorithm is used for AES encryption/decryption— this
particular mode of AES also computes the MAC appended to teach TLS

datagram (note that some TLS ciphersuites use the HMAC algorithm for
this).

Other cryptographic protocols employ similar types of ciphersuites (for example,
IPSec), but the point is that no matter the protocol —IoT or otherwise — cryptographic
algorithms are put together in different ways to counter specific threats (for example,
MITM) in the protocol's intended usage environment.

Cryptographic module principles

So far, we have discussed cryptographic algorithms, algorithm inputs, uses, and
other important aspects of applied cryptography. Familiarity with cryptographic
algorithms is not enough, however. The proper implementation of cryptography in
what are called cryptographic modules, though a topic not for the faint of heart, is
needed for IoT security. Earlier in my (Van Duren) career, I had the opportunity not
only to test many cryptographic devices, but also manage, as laboratory director,
two of the largest NIST-accredited FIPS 140-2 cryptographic test laboratories. In
this capacity, I had the opportunity to oversee and help validate literally hundreds
of different device hardware and software implementations, smart cards, hard
drives, operating systems, hardware security modules (HSM), and many other
cryptographic devices. In this section, I will share with you some of the wisdom
gained from these experiences. But first, we must define a cryptographic module.

[147]

Cryptographic Fundamentals for IoT Security Engineering

A cryptographic implementation can come from device OEMs, ODMs, BSP
providers, security software establishments, just about anyone. A cryptographic
implementation can be realized in hardware, software, firmware, or some
combination thereof, and is responsible for processing the cryptographic algorithms
and securely storing cryptographic keys (remember, compromise of your keys
means compromise of your communications or other data). Borrowing NIST's

term from the US Government's cryptographic module standard, FIPS 140-2, a
cryptographic module is "the set of hardware, software, and/or firmware that
implements approved security functions (including cryptographic algorithms

and key generation) and is contained within the cryptographic boundary"
(http://csrc.nist.gov/publications/fips/fips140-2/£fips1402.pdf). The
cryptographic boundary, also defined in FIPS 140-2, is an explicitly defined continuous
perimeter that establishes the physical bounds of a cryptographic module and contains all the
hardware, software, and/or firmware components of a cryptographic module. A generalized
representation of a cryptographic module is shown in the following image:

Cryptographic
Module

e VAN

' Encrypt Decrypt Encrypt Decrypt ;
| e vp Keys Keys | o
Data Input ‘:> | ; _ Generate Derive >
| Sign Verify Keys Keys | T
I - IS
RNG / Store Ke Zerokl o
Data Output <::| | Hash DREE ys Keys |8
S ————— =
| Entropy MAC ' Key Key H ' o
Control Input | Pooling | | Transport || Agreement |J ; | @
| : Key Establishment N
_________________________ L] :
| | %
sawsouput (] | B0 JB S0 B I 8

| Plaintext Secret and Private Keys |

------------------ -l

I Secure Internal / External Storage
Encrypted Secret
and Private Keys

Crypto-modules.graffle

[148]

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

Chapter 5

Without creating a treatise on cryptographic modules, the security topics that pertain
to them include the following;:

Definition of the cryptographic boundary
Protecting a module's ports and other interfaces (physical and logical)

Identifying who or what connects (local or remote users) to the cryptographic
module, how they authenticate to it and what services —security-relevant or
not - the module provides them

Proper management and indication of state during self tests and error
conditions (needed by the host IoT device)

Physical security — protection against tampering and/or response to
tamper conditions

Operating system integration, if applicable

Cryptographic key management relevant to the module (key management
is discussed in much more detail from a system perspective later), including
how keys are generated, managed, accessed, and used

Cryptographic self tests (health of the implementation) and responses
to failures

Design assurance

Each of the preceding areas roughly maps to each of the 11 topic areas of security in
the FIPS 140-2 standard (note that, at this time, the standard is poised to be updated
and superseded).

One of the principal functions of the cryptographic module is to protect
cryptographic keys from compromise. Why? Simple. If keys are compromised,
there's no point encrypting, signing, or otherwise protecting the integrity of the
data using cryptography. Yes, if one doesn't properly engineer or integrate the
cryptographic module for the threat environment at hand, there may little point in
using cryptography at all.

[149]

Cryptographic Fundamentals for IoT Security Engineering

One of the most important aspects of augmenting IoT devices with cryptography
is the definition, selection, or incorporation of another device's cryptographic
boundary. Generally speaking, a device can have an internal, embedded
cryptographic module, or the device can itself be the cryptographic module

(that is, the IoT device's enclosure is the crypto boundary).

Standalone Embedded
Cryptographic Module Cryptographic Module
| loT Device | loT Device
| |
: : :_Cryptog raphic |
Module |
| |
l

Cryptographic Boundaries

crypto-module-embodiments.graffle

From an IoT perspective, the cryptographic boundary defines the cryptographic
island on which all cryptographic functions are to be performed within a given
device. Using an embedded crypto module, IoT buyers and integrators should
verify with IoT device vendors that, indeed, no cryptography whatsoever is being
performed outside of the embedded cryptographic module's boundary.

There are advantages and disadvantages to different cryptographic module
embodiments. In general, the smaller and tighter the module, 1) the less attack
surface and 2) the less software, firmware, and hardware logic there is to maintain.
The larger the boundary (as in some standalone crypto modules), the less flexibility
to alter non-cryptographic logic, something much more important to vendors and
system owners who may be required to use, for example, US Government validated
FIPS 140-2 crypto modules (discussed next).

Both product security designers and system security integrators need to be fully
aware of the implications of how devices implement cryptography. In many cases,
product vendors will procure and integrate internal cryptographic modules that
have been validated by independent FIPS testing laboratories.

[150]

Chapter 5

This is strongly advisable for the following reasons:

Algorithm selection: While algorithm selection can be a contentious

issue with regard to national sovereignty, in general, most organizations
such as the US government do not desire weak or otherwise unproven
cryptographic algorithms to be used to protect sensitive data. Yes, there

are excellent algorithms that are not approved for US government use, but
in addition to ensuring the selection and specification of good algorithms,
NIST also goes to great lengths to ensure old algorithms and key lengths are
discontinued when they become outdated from advances in cryptanalytic
and computational attacks. In other words, sticking to well established and
well-specified algorithms trusted by a large government is not a bad idea.

A number of NIST-accepted algorithms are also trusted by the National
Security Agency (NSA) for use in protecting up to top secret data—with
the caveat that the cryptographic module meets NSA type standards relevant
to assurance levels needed for classified information. Algorithms such as
AES (256-bit key lengths), ECDSA and ECDH are both allowed by NIST

(for unclassified) and the NSA (for classified) under certain conditions.

Algorithm validation: Test laboratories validate —as part of a crypto module
test suite — the correctness (using a variety of known answer and other tests)
of cryptographic algorithm implementations as they operate on the module.
This is beneficial because the slightest algorithmic or implementation error
can render the cryptography useless and lead to severe information integrity,
confidentiality, and authentication losses. Algorithm validation is NOT
cryptographic module validation; it is a subset of it.

Cryptographic module validation: Test laboratories also validate that each
and every applicable FIPS 140-2 security requirement is satisfied at or within
the defined cryptographic boundary according to its security policy. This

is performed using a variety of conformance tests, ranging from device
specification and other documentation, source code, and very importantly,
operational testing (as well as algorithm validation, mentioned previously).

[151]

Cryptographic Fundamentals for IoT Security Engineering

This brings us to identifying some of hazards of FIPS 140-2 or any other security
conformance test regimen, especially as they relate to the IoT. As a US government
standard, FIPS 140-2 is applied incredibly broadly to any number of device

types, and as such, can lose a degree of interpretive specificity (depending on the
properties of the device to which one attempts to apply the standard). In addition,
the validation only applies to a vendor-selected cryptographic boundary —and this
boundary may or may not be truly suitable for certain environments and related
risks. This is where NIST washes its hands. There were a number of instances
when consulting with device vendors where I advised vendors against defining a
cryptographic boundary that I knew was disingenuous at best, insecure at worst.
However, if the vendor was able to meet all of the FIPS 140-2 requirements at their
selected boundary, there was nothing I could do as an independent test laboratory to
deny them the strategy. Conformance requirements versus actual security obtained
by satisfying them is a never-ending struggle in standards bodies and conformance
test regimes.

Given the previous benefits (and also hazards), the following advice is given with
regard to utilization and deployment of FIPS 140-2 cryptographic modules in your
IoT implementations:

* No device should use interfaces to a cryptographic algorithm aside
from those provided by its parent crypto module (meaning outside of
the cryptographic boundary). In fact, a device should not perform any
cryptographic functions outside of a secured perimeter.

* No device should ever store a plaintext cryptographic key outside of its
crypto module's boundary (even if it is still within the device but outside its
embedded crypto module). Better yet, store all keys in encrypted form and
then apply the strictest protections to the key-encrypting key.

* System integrators, when integrating cryptographic devices, should consult
the device vendors and check the publicly available database on how
the crypto module was defined prior to integration into the device. The
definition of its cryptographic boundary, by US regulation, is identified in
the module's non-proprietary security policy (posted online). Validated FIPS
140-2 modules can be checked at the following location: http://csrc.nist.
gov/groups/STM/cmvp/documents/140-1/140val-all.htm. It is necessary
to understand the degree to which an embedded module secures itself
versus relying on its host (for example, with regard to physical security
and tampering).

[152]

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm

Chapter 5

* Select cryptographic modules whose FIPS 140-2 validation assurance levels
(1-4) are commensurate with the threat environment into which you plan to
deploy them. For example, physical security at FIPS 140-2, level 2 does not
require a tamper response mechanism (to wipe sensitive key material upon
tamper); levels 3 and 4 do, however. If deploying modules into very high
threat environments, select higher levels of assurance OR embed lower-level
assurance modules into additionally secured hosts or facilities.

* When integrating a cryptographic module, ensure that the intended
operators, host devices, or interfacing endpoints identified in the module's
Security Policy map to actual users and non-human devices in the system.
Applicable roles, services and authentication to a cryptographic module may
be external or internal to a device; integrators need to know this and ensure
the mapping is complete and secure.

* When implementing more complicated integrations, consult individuals and
organizations that have expertise not only in applied cryptography, but also
in cryptographic modules, device implementation, and integration. There are
far more ways to get the cryptography wrong than to get it right.

Using validated cryptographic implementations is an excellent practice overall, but
do it smartly and don't assume that certain cryptographic modules that would seem
to meet all of the functional and performance requirements are a good idea for

all environments.

Cryptographic key management
fundamentals

Now that we have addressed basic cryptography and cryptographic modules, it is
necessary to delve into the topic of cryptographic key management. Cryptographic
modules can be considered cryptographically secured islands in larger systems,
each module containing cryptographic algorithms, keys, and other assets needed
to protect sensitive data. Deploying cryptographic modules securely, however,
frequently requires cryptographic key management. Planning key management
for an embedded device and/or full scale IoT enterprise is essential to securing
and rolling out IoT systems. This requires organizations to normalize the types

of cryptographic material within their IoT devices and ensure they work across
systems and organizations. Key management is the art and science of protecting
cryptographic keys within devices (crypto modules) and across the enterprise. It is
an arcane technical discipline that was initially developed and evolved by the US
Department of Defense long before most commercial companies had an inkling of
what it was or had any need for cryptography in the first place. Now, more than
ever, it is a subject that organizations must get right in order to secure connected
things in our world.

[153]

Cryptographic Fundamentals for IoT Security Engineering

The fallout from the Walker spy ring led to the creation of many of the key
management systems and techniques widely used today by the Department

of Defense and NSA today. Starting in 1968, US Navy officer John Walker began
selling classified cryptographic key material to the Soviet intelligence services.
Because this internal compromise was not discovered for many years (he was not
caught until 1985), the total damage to US national security was enormous. To
prevent crypto key material compromise and maintain a highly accountable system
of tracking keys, various DoD services (the Navy and the Air Force) began creating
their own key management systems that were eventually folded into what is today
known as the NSA's Electronic Key Management System (EKMS). The EKMS

is now being modernized into the key management infrastructure (KMI)
(https://en.wikipedia.org/wiki/John Anthony Walker).

The topic of cryptographic key management is frequently misunderstood, often

more so than cryptography itself. Indeed, there are few practitioners in the discipline.
Cryptography and key management are siblings; the security provided by each
depends enormously on the other. Key management is often not implemented at all
or is implemented insecurely. Either way, unauthorized disclosure and compromise
of cryptographic keys through poor key management renders the use of cryptography
moot. Necessary privacy and assurance of information integrity and origin is lost.

It is also important to note that the standards that specify and describe PKIs

are based on secure key management principles. PKIs, by definition, are key
management systems. Regarding the IoT, it is important for organizations to
understand the basic principles of key management because not all IoT devices will
interact with and consume PKI certificates (that is, be able to benefit from third party
key management services). A variety of other cryptographic key types —symmetric
and asymmetric — will be utilized in the IoT whether it's administering devices (SSH),
providing cryptographic gateways (TLS/IPSec), or just performing simple integrity
checks on IoT messages (using MACs).

Why is key management important? Disclosure of many types of cryptographic
variables can lead to catastrophic data loss even years or decades after the
cryptographic transaction has taken place. Today's Internet is replete with people,
systems, and software performing a variety of man-in-the-middle attacks, ranging
from simple network monitoring to full-scale nation state attacks and compromises
of hosts and networks. One can collect or re-route otherwise encrypted, protected
traffic and store it for months, years, or decades. In the meantime, the collectors can
clandestinely work for long periods of time to exploit people (human intelligence,
as in John Walker) and technology (this usually requires a cryptanalyst) to

acquire the keys that were used to encrypt the collected transactions. Within IoT
devices, centralized key generation and distribution sources or storage systems,
key management systems and processes perform the dirty work of ensuring
cryptographic keys are not compromised during machine or human handling.

[154]

https://en.wikipedia.org/wiki/John_Anthony_Walker

Chapter 5

Key management addresses a number of cryptographic key handling topics
pertinent to the devices and the systems in which they operate. These topics
are indicated in the following relational diagram:

Key Management ‘

/

Key i Direct Key Input
Generation e & Output

\ (Event Tracking,

Records and
Key Transport \Ml

Data Ownership)
(Key Wrapping) m

Symmetric | | Aymmetric |

Zeroization Escrow Accounting

Key Agreement

KeyMgmt-hierarchy.graffle

Key generation

Key generation refers to how, when, and on what devices cryptographic keys

are generated and using what algorithms. Keys should be generated using a well
vetted RNG or DRBG seeded with sufficient min-entropy (discussed earlier). Key
generation can be performed directly on the device or in a more centralized system
(the latter requiring subsequent distribution to the device).

Key establishment

Much confusion exists in terms of what constitutes cryptographic key establishment.
Key establishment is simply the act of two parties either 1) agreeing on a specific
cryptographic key or 2) acting as sender and receiver roles in the transport of a key
from one to the other. More specifically, it is as follows:

* Key agreement is the act of two parties contributing algorithmically to the
creation of a shared key. In other words, generated or stored public values
from one party are sent to the other (frequently in plaintext) and input into
complementary algorithm processes to arrive at a shared secret. This shared
secret (in conventional, cryptographic best practices) is then input to a key
derivation function (frequently hash-based) to arrive at a cryptographic key
or set of keys (key blob).

[155]

Cryptographic Fundamentals for IoT Security Engineering

* Key transport is the act of one party transmitting a cryptographic key or its
precursor to another party by first encrypting it with a key encryption key
(KEK). The KEK may be symmetric (for example, an AES key) or asymmetric
(for example, a RSA public key). In the former case, the KEK must be
securely pre-shared with the recipient or also established using some type of
cryptographic scheme. In the latter case, the encrypting key is the recipient's
public key and only the recipient may decrypt the transported key using

their private key (not shared).

Key derivation

Key derivation refers to how a device or piece of software constructs cryptographic
keys from other keys and variables, including passwords (so called password-based
key derivation). NIST SP800-108 asserts "....a key derivation function (KDF) is a function
with which an input key and other input data are used to generate (that is, derive) keying
material that can be employed by cryptographic algorithms." Source: http://csrc.nist.
gov/publications/nistpubs/800-108/sp800-108.pdf.

A generalized depiction of key derivation is shown in the following image:

Key
Establishment Pre-Shared
Algorithm Value/Key
Shared Secret

l

“Other” Key Derivation Key or
Data Function (KDF) Key ‘Blob’
‘ W'Y !

Possible Iterative Calls
(NO Perfect forward secrecy!!)

Encryption or
Authentication
Algorithm

Encrypt

— Decrypt
“-_.\H‘k

Sign/Verify MAC

KDF.graffle

[156]

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

Chapter 5

Poor practices in key derivation led to the US government disallowing their use with
certain exceptions until best practices could be incorporated into the NIST special
publications. Key derivation is frequently performed in many secure communication
protocols such as TLS and IPSec by deriving the actual session keys from an
established shared secret, transported random number (for example, pre-master
secret in SSL/TLS), or current key.

Password-based key derivation (PBKDF) is the process of deriving, in part, a
cryptographic key from a unique password and is specified in NIST SP 800-132.
A generalized depiction of this process is shown in the following image:

Password P May also be used
as the Data Protection
Key (DPK)

Salt § —* PBKDF — Master Key

] !

DRBG
'

Encryption or
DPK —— Authenticated

/ Encryption \a

SENSITIVE PROTECTED
DATA DATA
PBKDEF.graffle

Source: http://csrc.nist.gov/publications/nistpubs/800-132/nist-
Sp800-132.pdf

[157]

http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf

Cryptographic Fundamentals for IoT Security Engineering

Key storage

Key storage refers to how secure storage of keys (frequently encrypted using KEKs)
is performed and in what type of device(s). Secure storage may be achieved by
encrypting a database (with excellent protection of the database encryption key) or
other types of key stores. In enterprise key escrow/storage systems, cryptographic
keys should be encrypted using a hardware security module (HSM) prior to long-
term storage. HSMs, themselves cryptographic modules, are specifically designed
to be very difficult to hack by providing extensive physical and logical security
protections. For example, most HSMs possess a tamper-responsive enclosure. If
tampered with, the HSM will automatically wipe all sensitive security parameters,
cryptographic keys, and so on. Regardless, always ensure that HSMs are stored in
secure facilities. In terms of secure HSM access, HSMs are often designed to work
with cryptographic tokens for access control and invoking sensitive services. For
example, the SafeNet token —called a PED key —allows users to securely access
sensitive HSM services (locally and even remotely).

Example HSM vendors include Thales e-Security and SafeNet.

Key escrow

Key escrow is frequently a necessary evil. Given that encrypted data cannot be
decrypted if the key is lost, many entities opt to store and backup cryptographic
keys, frequently offsite, to use at a later time. Risks associated with key escrow
are simple; making copies of keys and storing them in other locations increases
the attack surface of the data protection. A compromised, escrowed key is just as
impactful as compromise of the original copy.

Key lifetime

Key lifetime refers to how long a key should be used (actually encrypting,
decrypting, signing, MACing, and so on.) before being destroyed (zeroized).

In general, asymmetric keys (for example, PKI certificates) can be used for much
longer periods of time given their ability to be used for establishing fresh, unique
session keys (achieving perfect forward secrecy). Symmetric keys, in general, should
have much shorter key lifetimes. Upon expiration, new keys can be provisioned in
myriad ways:

* Transported by a central key management server or other host (key
transport, using algorithms such as AES-WRAP —the AES-WRAP algorithm
encrypts the key being transported and as such the AES-WRAP key makes
use of a KEK)

[158]

Chapter 5

* Securely embedded in new software or firmware
* Generated by the device (for example, by a NIST SP800-90 DRBG)

* Mutually established by the device with another entity (for example, Elliptic
Curve Diffie Hellman, Diffie Hellman, MQV)

* Manually entered into a device (for example, by typing it in or electronically
squirting it in from a secure key loading device)

Key zeroization

Unauthorized disclosure of a secret or private cryptographic key or algorithm state
effectively renders the application of cryptography useless. Encrypted sessions can
be captured, stored, then decrypted days, months, or years later if the cryptographic
key used to protect the session is acquired by a malicious entity.

Securely eradicating cryptographic keys from memory is the topic of zeroization.
Many cryptographic libraries offer both conditional and explicit zeroization routines
designed to securely wipe keys from runtime memory as well as long term static
storage. If your IoT device(s) implement cryptography, they should have well-vetted
key zeroization strategies. Depending on the memory location, different types of
zeroization need to be employed. Secure wiping, in general, does not just dereference
the cryptographic key (that is, setting a pointer or reference variable to null) in
memory; zeroization must actively overwrite the memory location either with zeroes
(hence the term zeroization) or randomly generated data. Multiple overwrites may
be necessary to sufficiently render the crypto variables irretrievable from certain
types of memory attacks (for example, freezing memory). If an IoT vendor is

making use of cryptographic libraries, it is imperative that proper use of its APIs is
followed, including zeroization of all key material after use (many libraries do this
automatically for session-based protocols such as TLS).

Disposal of IoT devices containing highly sensitive PII data may also need to
consider active destruction of memory devices. For example, hard drives containing
classified data have been degaussed in strong electromagnetic fields for years to
remove secret and top secret data and prevent it from falling into the wrong hands.
Mechanical destruction sufficient to ensure physical obliteration of memory logic
gates may also be necessary, though degaussing and mechanical destruction are
generally necessary only for devices containing the most sensitive data, or devices
simply containing massive amounts of sensitive data (for example, hard drives and
SSD memory containing thousands or millions of health records or financial data).

[159]

Cryptographic Fundamentals for IoT Security Engineering

Zeroization is a topic some readers may know more about than they think. The
recent (2016) conflict between the US Federal Bureau of Investigation and Apple
brought to light the FBI's limitation in accessing a terrorist's iPhone without its
contents (securely encrypted) being made irretrievable. Too many failed password
attempts would trigger the zeroization mechanism, rendering the data irretrievable.

Accounting and management

Identifying, tracking, and accounting for the generation, distribution, and
destruction of key material between entities is where accounting and management
functions are needed.

It is also important to balance security and performance. This is realized when
establishing cryptographic key lifetimes, for example. In general, the shorter the

key lifetime, the smaller the impact of a compromise, that is, the less data surface
dependent on the key. Shorter lifetimes, however, increase the relative overhead of
generating, establishing, distributing, and accounting for the key material. This is
where public key cryptography — that enables forward secrecy —has been invaluable.
Asymmetric keys don't need to be changed as frequently as symmetric ones. They
have the ability to establish a new, fresh set of symmetric keys on their own. Not all
systems can execute public key algorithms, however.

Secure key management also requires vendors to be very cognizant of the
cryptographic key hierarchy, especially in the device manufacturing and distribution
process. Built-in key material may emanate from the manufacturer (in which case,
the manufacturer must be diligent about protecting these keys), overwritten, and
used or possibly discarded by an end user. Each key may be a prerequisite for
transitioning a device to a new state or deploying it in the field (as in a bootstrapping
or enrollment process). Cryptographic-enabled IoT device manufacturers should
carefully design and document the key management processes, procedures, and
systems used to securely deploy products. In addition, manufacturer keys should be
securely stored in HSMs within secure facilities and access-controlled rooms.

Access controls to key management systems (for example, HSMs and HSM-
connected servers) must be severely restricted given the large ramifications of the
loss or tampering of even one single cryptographic key. One will often find key
management systems —even in the most secure facility or data center —housed
within a cage under lock and key and continuous camera surveillance.

[160]

Chapter 5

Summary of key management
recommendations

Given the above definitions and descriptions, IoT vendors and system integrators
should also consider the following recommendations with regard to key
management:

Ensure that validated cryptographic modules securely store provisioned keys
within IoT devices — physical and logical protection of keys in a secure trust
store will pay security dividends.

Ensure that cryptographic keys are sufficiently long. An excellent guide

is to refer to NIST SP 800-131A (http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-131Arl.pdf£f), which provides
guidance on appropriate key lengths to use for FIPS-approved cryptographic
algorithms. If interested in equivalent strengths (computational resistance

to brute forcing attacks), one can reference NIST SP800-57. It is important to
sunset both algorithms and key lengths when they are no longer sufficiently
strong relative to state-of-the-art attacks.

Ensure that there are technical and procedural controls in place to securely
wipe (zeroize) cryptographic keys after use or expiration. Don't keep any
key around any longer than is necessary. Plaintext cryptographic variables
are known to exist in memory for long periods after use unless actively
wiped. A well-engineered cryptographic library may zeroize keys under
certain circumstances, but some libraries leave it to the using application to
invoke the zeroization API when needed. Session based keys, for example,
the ciphering and HMAC keys used in a TLS session, should be immediately
zeroized following termination of the session.

Use cryptographic algorithms and protocol options in a manner that perfect
forward secrecy (PFS) is provided. PFS is an option in many communication
protocols that utilize key establishment algorithms such as Diffie Hellman
and Elliptic Curve Diffie Hellman. PFS has the beneficial property that

a compromise of one set of session keys doesn't compromise follow-on
generated session keys. For example, utilizing PFS in DH/ECDH will ensure
that ephemeral (one time use) private/public keys are generated for each
use. This means that there will be no backward relationship between adjacent
shared secret values (and therefore the keys derived from them) from session
to session. Compromise of today's key will not allow forward, adversarial
computation of tomorrow's key, thus tomorrow's key is better protected.

[161]

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdff
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdff

Cryptographic Fundamentals for IoT Security Engineering

Severely restrict key management system roles, services, and accesses. Access
to cryptographic key management systems must be restricted both physically
and logically. Protected buildings and access-controlled rooms (or cages) are
important for controlling physical access. User or administrator access must
also be carefully managed using principles such as separation of duties (not
giving one single role or identity full access to all services) and multi-person
integrity (requiring more than one individual to invoke sensitive services)

Use well vetted key management protocols to perform primitive key
management functions such as key transport, key establishment, and more.
Being an arcane topic, and the fact that many vendors utilize proprietary
solutions, there are few key management protocols commonly deployed
today. The OASIS group, however, maintains a relatively recently designed
industry solution called the key management interoperability protocol
(KMIP). KMIP is now in use by a number of vendors as a simple backbone
protocol for performing sender-receiver key management exchanges. It
supports a number of cryptographic key management algorithms and

was designed keeping multi-vendor interoperability in mind. KMIP is
programming language agnostic and useful in everything from large
enterprise key management software to embedded device management.

Examining cryptographic controls for loT
protocols

This section examines cryptographic controls as integrated into various IoT
protocols. Lacking these controls, IoT point-to-point and end-to-end communications
would be impossible to secure.

Cryptographic controls built into loT
communication protocols

One of the primary challenges for IoT device developers is understanding the
interactions between different types of IoT protocols and the optimal approach for
layering security across these protocols.

[162]

Chapter 5

There are many options for establishing communication capabilities for IoT devices
and often these communication protocols provide a layer of authentication and
encryption that should be applied at the link layer. IoT communication protocols
such as ZigBee, ZWave, and Bluetooth-LE all have configuration options for
applying authentication, data integrity, and confidentiality protections. Each of these
protocols supports the ability to create wireless networks of IoT devices. Wi-Fi is also
an option for supporting the wireless link required for many IoT devices and also
includes inherent cryptographic controls for maintaining confidentiality, integrity
and authentication.

Riding above the IoT communication protocols are data-centric protocols. Many of
these protocols require the services of lower layer security capabilities, such as those
provided by the IoT communication protocols or security-specific protocols such

as DTLS or SASL. IoT data centric protocols can be divided into two categories that
include REST-type protocols such as CoAP and publish/subscribe protocols such as
DDS and MQTT. These often require an underlying IP layer; however, some protocols,
such as MQTT-SN, have been tailored to operate on RF links such as ZigBee.

An interesting aspect of publish/subscribe IoT protocols is the need to provide

access controls to the topics that are published by IoT resources, as well as the need
to ensure that attackers cannot publish unauthorized information to any particular
topic. This can be handled by applying unique keys to each topic that is published.

ZigBee

ZigBee leverages the underlying security services of the IEEE 802.15.4 MAC layer.
The 802.15.4 MAC layer supports the AES algorithm with a 128-bit key for both
encryption/decryption as well as data integrity by appending a MAC to the data
frame (http://www.libelium.com/security-802-15-4-zigbee/). These security
services are optional, however, and ZigBee devices can be configured to not use
either the encryption or MAC capabilities built into the protocol. In fact, there are
multiple security options available as described in the following table:

ZigBee security Description

configuration

No security No encryption and no data authentication

AES-CBC-MAC-32 Data authentication using a 32-bit MAC; no encryption

AES-CBC-MAC-64 Data authentication using a 64-bit MAC; no encryption

AES-CBC-MAC-128 Data authentication using a 128-bit MAC; no encryption

AES-CTR Data is encrypted using AES-CTR with 128-bit key; no
authentication

[163]

http://www.libelium.com/security-802-15-4-zigbee/

Cryptographic Fundamentals for IoT Security Engineering

ZigBee security Description

configuration

AES-CCM-32 Data is encrypted and data authentication using 32-bit MAC

AES-CCM-64 Data is encrypted and data authentication using 64-bit MAC

AES-CCM-128 Data is encrypted and data authentication using 128-bit
MAC

The 802.15.4 MAC layer in the preceding table, ZigBee supports additional security
features that are integrated directly with the layer below. ZigBee consists of both

a network layer and an application layer and relies upon three types of keys for
security features:

* Master keys, which are pre-installed by the vendor and used to protect a key
exchange transaction between two ZigBee nodes

* Link keys, which are unique keys per node, allowing secure node-to-node
communications

* Network keys, which are shared across all ZigBee nodes in a network and
provisioned by the ZigBee trust center; these support secure broadcast
communications

Setting up the key management strategy for a ZigBee network can be a difficult
challenge. Implementers must weigh options that run the spectrum from
pre-installing all keys or provisioning all keys from the trust center. Note that the
trust center default network key must always be changed and that any provisioning
of keys must occur using secure processes. Key rotation must also be considered
since ZigBee keys should be refreshed on a pre-defined basis.

There are three options for ZigBee nodes to obtain keys. First, nodes can be
pre-installed with keys. Second, nodes can have keys (except for the master key)
transported to them from the ZigBee Trust Center. Finally, nodes can establish

their keys using options that include symmetric key establishment (SKKE) and
certificate-based key establishment (CBKE) (https://www.mwrinfosecurity.com/
system/assets/849/original /mwri-zigbee-overview-finalv2. pdf).

[164]

https://www.mwrinfosecurity.com/system/assets/849/original/mwri-zigbee-overview-finalv2.pdf
https://www.mwrinfosecurity.com/system/assets/849/original/mwri-zigbee-overview-finalv2.pdf

Chapter 5

Master keys support the generation of link keys on ZigBee devices using the SKKE
process. Link keys shared between a ZigBee node and the trust center are known

as trust center link keys (TCLK). These keys allow the transport of a new network
key to nodes in the network. Link and network keys can be pre-installed; however,
the more secure option is to provide for key establishment for link keys that support
node-to-node communications.

Network keys are transmitted in an encrypted APS transport command from the
trust center.

Although link keys are optimal for node-to-node secure communication, research
has shown that they are not always optimal. They require more memory resources
per device, something often not available for IoT devices (http://www.libelium.
com/security-802-15-4-zigbee/).

The CBKE process provides another mechanism for ZigBee link key establishment.
It is based on an Elliptic Curve Qu-Vanstone (ECQV) implicit certificate that

is tailored towards IoT device needs; it is much smaller than a traditional X.509
certificate. These certificates are called implicit certificates and their structure
provides a significant size reduction as compared to traditional explicit certificates
such as X.509 (this is a nice feature in constrained wireless networking)
(http://arxiv.org/ftp/arxiv/papers/1206/1206.3880.pdf).

Bluetooth-LE

Bluetooth-LE is based on the Bluetooth Core Specification Version (4.2) and
specifies a number of modes that provide options for authenticated or
unauthenticated pairing, data integrity protections, and link encryption.
Specifically, Bluetooth-LE supports the following security concepts
(reference: Bluetooth Specification, Version 4.2):

* Pairing: Devices create one or more shared secret keys

* Bonding: The act of storing the keys created during pairing for use in
subsequent connections; this forms a trusted device pair

* Device authentication: Verification that the paired devices have trusted keys
* Encryption: Scrambling of plaintext message data into ciphertext data

* Message integrity: Protects against tampering with data

[165]

http://www.libelium.com/security-802-15-4-zigbee/
http://www.libelium.com/security-802-15-4-zigbee/
http://arxiv.org/ftp/arxiv/papers/1206/1206.3880.pdf

Cryptographic Fundamentals for IoT Security Engineering

Bluetooth-LE provides four options for device association:

Model Details

Numeric The user is shown a six-digit number and enters YES if the numbers

comparison are the same on both devices. Note that with Bluetooth 4.2 the six-digit
number is not associated with the encryption operations between the two
devices.

Just works Designed for devices that do not include a display. Uses the same model
as numeric comparison however the user is not shown a number.

Out of band | Allows use of another protocol for secure pairing. Often combined with
near-field communications (NFC) to allow for secure pairing. In this
case, the NFC protocol would be used to exchange the device Bluetooth
addresses and cryptographic information.

Passkey entry | Allows a six-character passkey to be entered on one device and displayed
on another for confirmation.

Bluetooth-LE makes use of a number of keys that are used together to provide
the requested security services. The following table provides a view into the
cryptographic keys that play a role in Bluetooth-LE security.

Key type

Description

Temporary key (TK) Determined by the type of Bluetooth pairing used, the TK can

be different lengths. It is used as an input to the cipher-based
derivation of the short-term key (STK).

Short-term key (STK) STK is used for secure distribution of key material and is based

on the TK and a set of random values provided by each device
participating in the pairing process.

Long-term key (LTK) The LTK is used to generate a 128-bit key employed for link-

layer encryption.

Connection signature The CSRK is used for signing data at the ATT layer.
resolving key (CSRK)

(IRK)

Identity resolving key | The IRK is used to generate a private address based on a device

public address. This provides a mechanism for device identity
and privacy protection.

Bluetooth-LE supports cryptographically signed data through the use of the CSRK.
The CSRK is used to apply a signature to a Bluetooth-LE protocol data unit (PDU).
The signature is a MAC that is generated by the signing algorithm and a counter
that increments for each PDU sent. The addition of the counter provides additional
replay protections.

[166]

Chapter 5

Bluetooth-LE also supports the ability to provide privacy protections for devices.
This requires the use of the IRK which is used to generate a special private address
for the device. There are two options available for privacy support, one where

the device generates the private address and one where the Bluetooth controller
generates the address.

Near field communication (NFC)

NEFC does not implement native cryptographic protection; however, it is possible to
apply endpoint authentication across an NFC negotiation. NFC supports short-range
communication and is often used as a first-step protocol to establish out-of-band
pairings for use in other protocols, such as Bluetooth.

Cryptographic controls built into loT
messaging protocols

We will discuss here the various controls that are built into the messaging protocols.

MQTT

MQTT allows sending a username and password. Until recently, the specification
recommended that passwords be no longer than 12 characters. The username and
password are sent in the clear as part of the CONNECT message. As such it is
critical that TLS be employed when using MQTT to prevent MITM attacks on the
password. Ideally, end-to-end TLS connectivity between the two endpoints (vice
gateway-to-gateway) should be used along with certificates to mutually authenticate
the TLS connection.

CoAP

CoAP supports multiple authentication options for device-to-device communication.
This can be paired with Datagram TLS (D-TLS) for higher-level confidentiality and
authentication services.

[167]

Cryptographic Fundamentals for IoT Security Engineering

CoAP defines multiple security modes based on the types of cryptographic material
used: https://tools.ietf.org/html/rfc7252#section-9.

Mode Description

Nosec There is no protocol-level security as DTLS is disabled. This mode
may be sufficient if used in cases where alternate forms of security
can be enabled, for example, when IPsec is being used over a TCP
connection or when a secure link layer is enabled; however, the
authors do not recommend this configuration.

PreSharedKey DTLS is enabled and there are pre-shared keys that can be used for
nodal communication. These keys may also serve as group keys.

RawPublicKey DTLS is enabled and the device has an asymmetric key pair without
a certificate (a raw public key) that is validated using an out-of-band
mechanism. The device also has an identity calculated from the
public key and a list of identities of the nodes it can communicate
with.

Certificate DTLS is enabled and the device has an asymmetric key pair with an
X.509 certificate (RFC5280) that binds it to its subject and is signed
by some common trust root. The device also has a list of root trust
anchors that can be used for validating a certificate.

DDS

The Object Management Group's Data Distribution Standard (DDS) security
specification provides endpoint authentication and key establishment to enable
message data origin authentication (using HMAC). Both digital certificates and
various identity/authorization token types are supported.

REST

HTTP/REST typically requires the support of the TLS protocol for authentication
and confidentiality services. Although basic authentication (where credentials are
passed in the clear) can be used under the cover of TLS, this is not a recommended
practice. Instead, attempt to stand up a token-based authentication (and
authorization, if needed) approach such as OpenlD identity layer on top of OAuth2.
Additional security controls should be in place when using OAuth2, however.
References for these controls can be found at the following websites:

® http://www.ocauthsecurity.com

®* https://www.sans.org/reading-room/whitepapers/application/
attacks-oauth-secure-ocauth-implementation-33644

[168]

https://tools.ietf.org/html/rfc7252#section-9
http://www.oauthsecurity.com
https://www.sans.org/reading-room/whitepapers/application/attacks-oauth-secure-oauth-implementation-33644
https://www.sans.org/reading-room/whitepapers/application/attacks-oauth-secure-oauth-implementation-33644

Chapter 5

Future directions of the loT and
cryptography

The cryptography used in the IoT today comprises the same cryptographic trust
mechanisms used in the broader Internet. Like the Internet, however, the IoT is
scaling to unprecedented levels that require far more distributed and decentralized
trust mechanisms. Indeed, many of the large-scale, secure IoT transactions of

the future will not be made of just simple client-server or point-to-multipoint
cryptographic transactions. New or adapted cryptographic protocols must be
developed and added to provide scalable, distributed trust. While it is difficult to
predict what types of new protocols will ultimately be adopted, the distributed trust
protocols developed for today's Internet applications may provide a glimpse into
where things may be going with the IoT.

One such protocol is that of blockchain, a decentralized cryptographic trust
mechanism that underlies the Bitcoin digital currency and provides a decentralized
ledger of all legitimate transactions occurring across a system. Each node in a
blockchain system participates in the process of maintaining this ledger. This is
accomplished automatically through trusted consensus across all participants, the
results of which are all inherently auditable. A blockchain is built up over time using
cryptographic hashes from each of the previous blocks in the chain. As we discussed
earlier in this chapter, hash functions allow one to generate a one-way fingerprint
hash of an arbitrary chunk of data. A Merkle tree represents an interesting
application of hash functions, as it represents a series of parallel-computed hashes
that feed into a cryptographically strong resultant hash of the entire tree.

Transactional
Data

#AB

Final Hash is

function of all
D prior hashes and

transactions

merkle-tree.graffle

[169]

Cryptographic Fundamentals for IoT Security Engineering

Corruption or integrity loss of any one of the hashes (or data elements that were
hashed) provides an indication that integrity was lost at a given point in the Merkle
tree. In the case of blockchain, this Merkle tree pattern grows over time as new
transactions (nodes representing hashable transactions) are added to the ledger;

the ledger is available to all and is replicated across all nodes in the system.

Blockchains include a consensus mechanism that is used by nodes in the chain to
agree upon how to update the chain. Considering a distributed control system, for
example, a controller on a network may want to command an actuator to perform
some action. Nodes on the network could potentially work together to agree that the
controller is authorized to command the action and that the actuator is authorized to
perform the action.

An interesting twist on this, however, is that the blockchain can be used for more
than this base functionality. For example, if the controller typically receives data
from a set of sensors and one of the sensors begins to provide data that is not within
norms or acceptable tolerances (using variance analysis for instance), the controller
can update the blockchain to remove authorizations from the wayward sensor. The
update to the blockchain can then be hashed and combined with other updated (for
example, transactions) hashes through a Merkle tree. The resultant would then be
placed in the proposed new block's header, along with a timestamp and the hash of
the previous block.

Distributed Control System Elements

Transaction /™

C)-____‘_ :\\Transaction
J— Bus or Network_{ \‘-,‘
Controller Tl
_— \ m‘ Control System
'.\ . Transaclionb L Transactional Data
R - N Transacluon ofarmrrar)deng!h
“" Hashing of -, l Transaction A | | Transaction B | Transaction C Transaction D |

" Transaction Data A ,

i S N S N

H l Hash #A Hash #B Hash #C Hash #D
. \ / Merkle Tree x /
*., Fixed Hash Size
I Block N + [Hash #ABCD] + Timestamps/nonces l_

| Black (N-1)
| Block (N-2)

blockchain-trust.graffle

[170]

Chapter 5

This type of solution may begin to lay the groundwork for resilient and
fault-tolerant peer-to-peer networks within distributed, trusted CPS. Such
functionality can be achieved in real time and near-real time use cases with
appropriate performance requirements and engineering. Legacy systems can be
augmented by layering the transactional protocols in front of the system's control,
status, and data messages. While we don't ultimately know how such techniques
may or may not be realized in future IoT systems, they offer us ideas on how to
employ powerful cryptographic algorithms to solve the enormous challenges of
ensuring distributed trust at a large scale.

Summary

In this chapter, we touched on the enormously large and complex world of applied
cryptography, cryptographic modules, key management, cryptographic application
in IoT protocols, and possible future looks into cryptographic enablement of
distributed IoT trust in the form of blockchain technology.

Perhaps the most important message of this chapter is to take cryptography and
its methods of implementation seriously. Many IoT devices and service companies
simply do not come from a heritage of building secure cryptographic systems

and it is unwise to consider a vendor's hyper-marketed claims that their "256 bit
AES" is secure. There are just too many ways to thwart cryptography if not
properly implemented.

In the next chapter, we will dive into identity and access management (IAM)
for the IoT.

[171]

ldentity and Access
Management Solutions
for the loT

While society begins to adopt smart home and IoT wearables, IoT devices and
applications are diversifying toward broader application in professional, government,
and other environments as well. The network connectivity needed to support them

is becoming ubiquitous and to that end devices will need to be identified and access
provisioned in new and different environments and organizations. This chapter
provides an introduction to identity and access management for IoT devices. The
identity lifecycle is reviewed and a discussion on infrastructure components required
for provisioning authentication credentials is provided, with a heavy focus on PKI. We
also examine different types of authentication credentials and discuss new approaches
to providing authorization and access control for IoT devices. We address these
subjects in the following topic areas:

* Introductory discussion on identity and access management (IAM)
* Discussion of the identity lifecycle

* A primer on authentication credentials

* Background on IoT IAM infrastructure

e A discussion of IoT authorization and access control

[173]

Identity and Access Management Solutions for the IoT

An introduction to identity and access
management for the loT

Security administrators have traditionally been concerned with managing the
identities of and controlling access for the people that are part of or interact with
their technology infrastructure. Relatively recently, the concept of bring your own
device (BYOD) was introduced, which allowed authorized individuals to associate
mobile phones or laptops with their corporate account to receive network services
on their personal devices. The allowed network services were typically provided
once certain minimal security assurances were deemed to have been satisfied on the
device. This could include using strong passwords for account access, application of
virus scanners, or even mandating partial or full disk encryption to help with data
loss prevention.

The IoT introduces a much richer connectivity environment than BYOD. Many more
IoT devices are expected to be deployed throughout an organization than the usual
one or two mobile phones or laptops for each employee. IAM infrastructures must
be designed to scale to the number of devices that an organization will eventually
support, potentially orders of magnitude higher than today. New IoT subsystems
will continually be added to an organization as new capabilities arise to enable and
streamline business processes.

The IoT's matrixed nature also introduces new challenges for security administrators
in industrial and corporate deployments. Today, many IoT solutions are already
being designed to be leased rather than owned. Consider the example of a leased
radiology machine that records the number of scans and permits operations up to

a certain number of entitlements. Scans are reported online, that is, the machine
opens up a communications channel from the organization to the manufacturer.
This channel/interface must be restricted to only allow authorized users (that is, the
lessor or its agents), and only allow the specific machine(s) associated with the lessor
to connect. Access control decisions can potentially become very complex, even
restricted to specific device versions, time of day, and other constraints.

The matrixed nature of the IoT is taken further by the need to share information.
This is true not only of sharing data collected by IoT sensors with third-party
organizations, but also with sharing access to IoT sensors in the first place. Any IAM
system for the IoT must be able to support this dynamic access control environment
where sharing may need to be allowed/disallowed quickly and at a very granular
level for both devices and information.

[174]

Chapter 6

Finally, security administrators must take into account personal IoT devices that
attach to their networks. This brings about not only security concerns as new attack
vectors are introduced, but also significant privacy concerns related to safeguarding
personal information. We have, for example, begun to see organizations support
the use of personal fitness devices such as Fitbit for corporate health and wellness
programs. In 2016, Oral Roberts University introduced a program that required all
freshmen to wear a Fitbit and allow the device to report daily steps and heart rate

information to the University's computer systems: http://www.nydailynews.
com/life-style/health/fitbits-required-freshmen-oklahoma-university-
article-1.2518842.

At the other end of the spectrum, a valuable OpenDNS report (reference
https://www.opendns.com/enterprise-security/resources/research-
reports/2015-internet-of-things-in-the-enterprise-report/) showed that
in some companies, personnel were beginning to bring unauthorized IoT devices
including Smart TVs into the enterprise. These devices were often reaching out to
Internet services to share information. Smart devices are frequently designed by
manufacturers to connect with the vendor's device-specific web services and other
information infrastructure to support the device and the customer's use of it. This
typically requires an 802.1x type of connectivity. Providing 802.1x-style network
access control to IoT devices requires some thought, since there are so many of these
devices that may attach to the network. Vendors are currently working on solutions
that can fingerprint IP-based IoT devices and determine whether certain types
should be granted access through DHCP provisioning of IP addresses. One may do
this, for example, by fingerprinting the operating system or some other characteristic
of the device.

IoT IAM is one aspect of an overarching security program that must be designed to
mitigate this dynamic new environment, where:

* New devices can be securely added to the network at a rapid pace and for
diverse functions

* Data and even devices can share not only within the organization but with
other organizations

* Privacy is maintained despite consumer data being collected, stored, and
frequently shared with others

[175]

http://www.nydailynews.com/life-style/health/fitbits-required-freshmen-oklahoma-university-article-1.2518842
http://www.nydailynews.com/life-style/health/fitbits-required-freshmen-oklahoma-university-article-1.2518842
http://www.nydailynews.com/life-style/health/fitbits-required-freshmen-oklahoma-university-article-1.2518842
https://www.opendns.com/enterprise-security/resources/research-reports/2015-internet-of-things-in-the-enterprise-report/
https://www.opendns.com/enterprise-security/resources/research-reports/2015-internet-of-things-in-the-enterprise-report/

Identity and Access Management Solutions for the IoT

The following figure shows a holistic IAM program for the IoT:

Integrate the loT into the existing IAM Integration with Physical Access Control
and GRC System (PACS)
loT Identity Management loT Identity Relationship loT Device Password
(IDoT) Management Management

OAuth2.0 802.1x PKI

loT Protocols (such as CoAP, REST, DDS,..)

Security Protocols (TLS, DTLS, OSCOAPR, OSCON)

IPVX (4,6)

As noted in in the preceding figure, it is important to line up the new IoT Identity
and Access Management strategy with the existing governance models and IT
systems in your organization. It may also be worthwhile to consider integration

of authentication and authorization capabilities for your IoT devices with your
physical access control systems (PACS). PACS provide electronic means of enabling
and enforcing physical access policies throughout your organization's facilities.
Frequently, PACS systems are also integrated with logical access control systems
(LACS). LACS systems provide the technology and tools for managing identity,
authentication, and authorization access to various computer, data, and network
resources. PACS/LACS technologies represent the ideal systems for an organization
to begin incorporating new IoT devices in a relatively controlled manner.

The identity lifecycle

Before we begin to examine the technologies that support IAM for the IoT, it is useful
to lay out the lifecycle phases of what we call identity. The identity lifecycle for an
IoT device begins with defining the naming conventions for the device; it ends with
the removal of the device's identity from the system. The following figure provides a
view of the process flow:

[176]

Chapter 6

Naming Conventions &
Uniqueness Defined

Secure Bootstrap Identity and Attribute
(Registration & :> Provisioning :> Account Monitoring

Enroliment) (Operational and Control
Credentials)

b

Account Updates <:| Account Deletion <:] Account Suspension

This lifecycle procedure should be established and applied to all IoT devices that

are procured, configured, and ultimately attached to an organization's network. The
first aspect requires a coordinated understanding of the categories of IoT devices
and systems that will be introduced within your organization, both now and in the
future. Establishing a structured identity namespace will significantly help manage
the identities of the thousands or millions of devices that will eventually be added to
your organization.

Establish naming conventions and
uniqueness requirements

Uniqueness is a feature that can be randomized or deterministic (for example,
algorithmically sequenced); its only requirement is that there are no others identical
to it. The simplest unique identifier is a counter. Each value is assigned and never
repeats itself. The other is a static value in concert with a counter, for example a
device manufacturer ID plus a product line ID plus a counter. In many cases, a
random value is used in concert with static and counter fields. Non-repetition is
generally not enough from the manufacturer's perspective. Usually, something needs
a name that provides some context. To this end, manufacturer-unique fields may be
added in a variety of ways unique to the manufacturer or in conformance with an
industry convention. Uniqueness may also be fulfilled by using a globally unique
identifier (UUID) for which the UUID standard specified in RFC 4122 applies.

[177]

Identity and Access Management Solutions for the IoT

No matter the mechanism, so long as a device is able to be provisioned with an
identifier that is non-repeating, unique to its manufacturer, use, application, or a
hybrid of all the above, it should be acceptable for use in identity management.
Beyond the mechanisms, the only warning is that the combination of all possible
identifiers within a statically specified ID length cannot be exhausted prematurely if
at all possible.

Once a method for assigning uniqueness to your IoT devices is established, the next
step is to be able to logically identify the assets within their area of operation to
support authentication and access control functions.

Naming a device

Every time you access a restricted computing resource, your identity is checked to
ensure that you are authorized to access that specific resource. There are many ways
that this can occur, but the end result of a successful implementation is that someone
who does not have the right credentials is not allowed access. Although the process
sounds simple, there are a number of difficult challenges that must be overcome
when discussing identity and access management for the numerous constrained
devices that comprise the IoT.

One of the first challenges is related to identity itself. Although identity may seem
straightforward to you — your name for example — that identity must be translated
into a piece of information that the computing resource (or access management
system) understands. That identity must also not be duplicated across the
information domain. Many computer systems today rely on a username, where each
username within a domain is distinct. The username could be something as simple as
<lastname_ firstname middleiniitals.

In the case of the IoT, understanding what identities — or names — to provision to
a device can cause confusion. As discussed, in some systems devices use unique
identifiers such as UUIDs or electronic serial numbers (ESNs).

We can see a good illustration by looking at how Amazon's first implementation of
its IoT service makes use of IoT device serial numbers to identify devices. Amazon
IoT includes a Thing Registry service that allows an administrator to register IoT
devices, capturing for each the name of the thing and various attributes of the thing.
The attributes can include data items such as:

* Manufacturer

* Type

* Serial number

* Deployment date
¢ Location

[178]

Chapter 6

Note that such attributes can be used in what is called attribute-based access control
(ABAC). ABAC access approaches allow access decision policies to be defined not
just by the identity of the device, but also its properties (attributes). Rich, potentially
complex rules can be defined for the needs at hand.

The following figure provides a view of the AWS IoT service:

g s B

Create a thing
Create a thing to represent your device in the cloud o Registry a ab t for your device
Name

Attributes
Next {optionall, you can use thing atinbutes 1o describe the identity and capabiities of your device. Each attnbute 15 3 key-value par

Attribute key | Scation | Value | south_fieid || Femave |

Attribute key | | Value

Attribute kay | Valua

| Create

Even when identifiers such as UUIDs or ESNs are available for an IoT device,

these identifiers are generally not sufficient for securing authentication and access
control decisions; an identifier can easily be spoofed without enhancement through
cryptographic controls. In these instances, administrators must bind another type of
identifier to a device. This binding can be as simple as associating a password with
the identifier or, more appropriately, using credentials such as digital certificates.

IoT messaging protocols frequently include the ability to transmit a unique identifier.
For example, MQTT includes a ClientID field that can transmit a broker-unique client
identifier. In the case of MQTT, the ClientID is used to maintain state within a unique
broker-client communication session.

Secure bootstrap

Nothing is worse for security than an IoT-enabled system or network replete with
false identities used in acts of identity theft, loss of private information, spoofing, and
general mayhem. However, a difficult task in the identity lifecycle is to establish the
initial trust in the device that allows that device to bootstrap itself into the system.
Among the greatest vulnerabilities to secure identity and access management is
insecure bootstrapping.

[179]

Identity and Access Management Solutions for the IoT

Bootstrapping represents the beginning of the process of provisioning a trusted
identity for a device within a given system. Bootstrapping may begin in the
manufacturing process (for example, in the foundry manufacturing a chip) and be
complete once delivered to an end operator. It may also be completely performed

in the hands of the end user or some intermediary (such as a depot or supplier),
once delivered. The most secure bootstrapping methods start in the manufacturing
processes and implement discrete security associations throughout the supply chain.
They uniquely identify a device through:

Unique serial number(s) imprinted on the device.

Unique and unalterable identifiers stored and fused in device read-only
memory (ROM).

Manufacturer-specific cryptographic keys used only through specific
lifecycle states to securely hand off the bootstrapping process to follow-on
lifecycle states (such as shipping, distribution, hand off to an enrollment
center, and so on). Such keys (frequently delivered out-of-band) are used for
loading subsequent components by specific entities responsible for preparing
the device.

PKIs are often used to aid in the bootstrapping process. Bootstrapping from a PKI
perspective should generally involve the following processes:

Devices are securely shipped from the manufacturer (via a secure, tamper
detection capable shipping service) to a trusted facility or depot. The facility
should have robust physical security access controls, record keeping, and
audit processes, in addition to highly vetted staff.

Devices counts and batches are matched against the shipping manifest.

Once received, the steps for each device include:

1.

Authenticate uniquely to the device using a customer-specific, default
manufacturer authenticator (password or key).

Install PKI trust anchors and any intermediate public key certificates (such as
those of the registration authority, enrollment certificate authority, or other
roots, and so on).

Install minimal network reachability information so that the device knows
where to check certificate revocation lists, perform OCSP lookups, or other
security-related functions.

Provision the device PKI credentials (public key signed by CA) and private
key(s) so that other entities possessing the signing CA keys can trust the new
device.

[180]

Chapter 6

A secure bootstrapping process may not be identical to that described in the
preceding list, but should be one that mitigates the following types of threats
and vulnerabilities when provisioning devices:

* Insider threats designed to introduce new, rogue, or compromised devices
(that should not be trusted)

* Duplication (cloning) of devices, no matter where in the lifecycle

* Introduction of public key trust anchors or other key material into a device
that should NOT be trusted (rogue trust anchors and other keys)

* Compromise (including replication) of a new IoT device's private keys
during key generation or import into the device

* Gaps in device possession during the supply chain and enrolment processes

* Protection of the device when re-keying and assigning new identification
material needed for normal use (re-bootstrapping, as needed)

Given the security critical features of smart chip cards and their use in sensitive
financial operations, the smart card industry adopted rigid enrollment process
controls not unlike those described in the preceding list. Without them, severe
attacks would have the potential to cripple the financial industry. Granted, many
consumer-level IoT devices are unlikely to have secure bootstrapping processes,
but over time we believe that this will change depending on the deployment
environment and the stakeholders' appreciation of the threats. The more connected
devices become, the greater their potential to do harm.

In practice, secure bootstrapping processes need to be tailored to the threat
environment for the particular IoT device, its capabilities, and the network
environment in question. The greater the potential risks, the more strict and
thorough the bootstrapping process needs to be. The most secure processes will
generally implement strong separation of duties and multi-person integrity processes
during device bootstrap.

Credential and attribute provisioning

Once the foundation for identities within the device is established, provisioning of
operational credentials and attributes can occur. These are the credentials that
will be used within an IoT system for secure communication, authentication,

and integrity protection. We strongly recommend using certificates for
authentication and authorization whenever possible. If using certificates, an
important and security-relevant consideration is whether to generate the key
pairs on the device itself, or centrally.

[181]

Identity and Access Management Solutions for the IoT

Some IoT services allow for central (such as by a key server) generation of public/
private key pairs. While this can be an efficient method of bulk-provisioning
thousands of devices with credentials, care should be taken to address potential
vulnerabilities the process may expose (such as the sending of sensitive, private

key material through intermediary devices/systems). If centralized generation is
used, it should make use of a strongly secured key management system operated by
vetted personnel in secured facilities. Another means of provisioning certificates is
through the local generation of the key pairs (directly on the IoT device) followed by
the transmission of the public key certificate through a certificate signing request to
the PKI. Absent well-secured bootstrapping procedures, additional policy controls
will have to be established for the PKI's registration authority (RA) in order to
verify the identity of the device being provisioned. In general, the more secure the
bootstrapping process, the more automated the provisioning can be. The following
figure is a sequence diagram that depicts an overall registration, enrollment, and
provisioning flow for an IoT device:

Device Registration, Enrollment and Provisioning of Certificates.

Enrallment Autharity IoT Device Reglstration Autharity Intermediate Certificate Authority

Registration & Enroliment (Oceurs in trusted facility]

Authorize Device

Trust Material { Certific:

Key Palr Generation

Enroliment Certificate Request

Validate |dentity

nrallment Certific:

Provisioring

Key Pair Generation

——Cerlificate Signing Request [C5R|———»
Signed using enrollment key

Validate Signature

[——=Certificate Signing Request [CSR)———————»

Sign Certificate.

‘Operational Centificate

[182]

Chapter 6

Local access

There are times when local access to the device is required for administration
purposes. This may require the provisioning of SSH keys or administrative
passwords. In the past, organizations frequently made the mistake of sharing
administrative passwords to allow ease of access to devices. This is not a
recommended approach, although implementing a federated access solution for
administrators can be daunting. This is especially true when devices are spread
across wide geographic distances such various sensors, gateways, and other
unattended devices in the transportation industry.

Account monitoring and control

After accounts and credentials have been provisioned, these accounts must
continue to be monitored against defined security policies. It is also important

that organizations monitor the strength of the credentials (that is, cryptographic
ciphersuites and key lengths) provisioned to IoT devices across their infrastructure.
It is highly likely that pockets of teams will provision IoT subsystems on their own,
therefore defining, communicating, and monitoring the required security controls to
apply to those systems is vital.

Another aspect of monitoring relates to tracking the use of accounts and credentials.
Assign someone to audit local IoT device administrative credential use (passwords,
and SSH keys) on a routine basis. Also seriously consider whether privileged account
management tools can be applied to your IoT deployment. These tools allow for
features such as checking out administrative passwords to aid in audit processes.

Account updates

Credentials must be rotated on a regular basis; this is true for certificates and

keys as well as passwords. Logistical impediments have historically hampered IT
organizations' willingness to shorten certificate lifetimes and manage increasing
numbers of credentials. There is a tradeoff to consider, as short-lived credentials
have a reduced attack footprint, yet the process of changing the credentials tends to
be expensive and time consuming. Whenever possible, look for automated solutions
for these processes. Services such as Let's Encrypt (https://letsencrypt.org/) are
gaining in popularity to help improve and simplify certificate management practices
for organizations. Let's Encrypt provides PKI services along with an extremely easy-
to-use plugin-based client that supports various platforms.

[183]

https://letsencrypt.org/

Identity and Access Management Solutions for the IoT

Account suspension

Just as with user accounts, do not automatically delete IoT device accounts. Consider
maintaining those accounts in a suspended state in case data tied to the accounts is
required for forensic analysis at a later time.

Account/credential deactivation/deletion

Deleting accounts used by IoT devices and the services they interact with will help
combat the ability of an adversary to use those accounts to gain access after the
devices have been decommissioned. Keys used for encryption (whether network or
application) should also be deleted to keep adversaries from decrypting captured
data at a later point in time using those recovered keys.

Authentication credentials

IoT messaging protocols often support the ability to use different types of credentials
for authentication with external services and other IoT devices. This section examines
the typical options available for these functions.

Passwords

Some protocols, such as MQTT, only provide the ability to use a username/
password combination for native-protocol authentication purposes. Within MQTT,
the CONNECT message includes the fields for passing this information to an MQTT
Broker. In the MQTT Version 3.1.1 specification defined by OASIS, you can see these
fields within the CONNECT message (reference: http://docs.oasis-open.org/
mgtt/mgtt/v3.1.1/0s/mgtt-v3.1.1-0s. html):

MQTT CONNECT Message (V3.1.1)

Payload

Clientid
willTopic
willMessage
username

password

[184]

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Chapter 6

. Note that there are no protections applied to support the confidentiality
% of the username/ password in transit by the MQTT protocol. Instead,
K~ implementers should consider using the transport layer security (TLS)
protocol to provide cryptographic protections.

There are numerous security considerations related to using a username/ password-
based approach for IoT devices. Some of these concerns include:

* Difficulty in managing large numbers of device usernames and passwords
* Difficulty securing the passwords stored on the devices themselves

 Difficulty managing passwords throughout the device lifecycle

Though not ideal, if you do plan on implementing usernames/passwords for IoT
device authentication, consider taking these precautions:

1. Create policies and procedures for rotating passwords at least every 30
days for each device. Better yet, implement a technical control wherein the
management interface automatically prompts you when password rotation
is needed.

Establish controls for monitoring device account activity.

3. Establish controls for privileged accounts that support administrative access
to IoT devices.

4. Segregate the password-protected IoT devices onto less-trusted networks.

Symmetric keys

Symmetric key material may also be used to authenticate, as mentioned in

Chapter 5, Cryptographic Fundamentals for IoT Security Engineering. Message
authentication codes (MACs) are generated using a MAC algorithm (such as
HMAC, CMAC, and so on) with a shared key and known data (signed by the key).
On receiving side, an entity can prove the sender possessed the pre-shared key
when the its computed MAC is shown to be identical to the received MAC. Unlike
a password, symmetric keys do not require the key to be sent between the parties
(except ahead of time or agreed on using a key establishment protocol) at the time of
the authentication event. The keys will either need to be established using a public
key algorithm, input out of band, or sent to the devices ahead of time, encrypted
using key encryption keys (KEK).

[185]

Identity and Access Management Solutions for the IoT

Certificates

Digital certificates, public key-based, are a preferred method for providing
authentication functionality in the IoT. Although some implementations today may
not support the processing capabilities needed to use certificates, Moore's law for
computational power and storage is fast changing this.

X.509

Certificates come with a highly organized hierarchical naming structure that
consists of organization, organizational unit(s), and distinguished names (DN) or
common names (CN). Referencing AWS support for provisioning X.509 certificates,
we can see that AWS allows for the one-click generation of a device certificate. In
the following example, we generate a device certificate with a generic IoT Device
common name and a lifetime of 33 years. The one-click generation also (centrally)
creates the public/ private key pair. If possible, it is recommended that you generate
your certificates locally by 1) generating a key pair on the device and 2) uploading
a CSR to the AWS IoT service. This allows for customized tailoring of the certificate
policy to define the hierarchical units (OU, DN, and so on) that are useful for
additional authorization processes:

Certificate ===y

T i | [| Detsls | Coxpicanen o
(A 330 || e oo - -

[186]

Chapter 6

IEEE 1609.2

The IoT is characterized by many use cases involving machine-to-machine
communication and some of them involve communications through a congested
wireless spectrum. Take connected vehicles, for instance, an emerging technology
wherein your vehicle will possess on-board equipment (OBE) that can automatically
alert other drivers in your vicinity to your car's location in the form of basic safety
messages (BSM). The automotive industry, US Dept. of Transportation (USDOT),
and academia have been developing CV technology for many years and it will make
its commercial debut in the 2017 Cadillac. In a few years, it is likely that most new
US vehicles will be outfitted with the technology. It will not only enable vehicle-to-
vehicle communications, but also vehicle-to-infrastructure (V2I) communications
to various roadside and backhaul applications. The dedicated short range
communications (DSRC) wireless protocol (based on IEEE 802.11p) is limited to

a narrow set of channels in the 5 GHz frequency band. To accommodate so many
vehicles and maintain security, it was necessary to 1) secure the communications
using cryptography (to reduce malicious spoofing or eavesdropping attacks) and 2)
minimize the security overhead within connected vehicle BSM transmissions. The
industry resolved to use a new, slimmer and sleeker digital certificate design, the
IEEE 1609.2.

The 1609.2 certificate format is advantageous in that it is approximately half the size
of a typical X.509 certificate while still using strong, elliptic curve cryptographic
algorithms (ECDSA and ECDH). The certificate is also useful for general machine-to-
machine communication through its unique attributes, including explicit application
identifier (SSID) and credential holder permission (SSP) fields. These attributes can
allow IoT applications to make explicit access control decisions without having

to internally or externally query for the credential holder's permissions. They're
embedded right in the certificate during the secure, integrated bootstrapping and
enrollment process with the PKI. The reduced size of these credentials also makes
them attractive for other, bandwidth-constrained wireless protocols.

Biometrics

There is work being done in the industry today on new approaches that leverage
biometrics for device authentication. The FIDO alliance (www.fidoalliance.org)
has developed specifications that define the use of biometrics for both a password-
less experience and for use as a second authentication factor. Authentication can
include a range of flexible biometric types —from fingerprints to voice prints.
Biometric authentication is being added to some commercial IoT devices (such

as consumer door locks) already, and there is interesting potential in leveraging
biometrics as a second factor of authentication for IoT systems.

[187]

www.fidoalliance.org

Identity and Access Management Solutions for the IoT

For example, voice prints could be used to enable authentication across a set of
distributed IoT devices such as road side equipment (RSE) in the transportation
sector. This would allow an RSE tech to access the device through a cloud connection
to the backend authentication server. Companies such as Hypr Biometric Security
(https://www.hypr.com/) are leading the way towards using this technology to
reduce the need for passwords and enable more robust authentication techniques.

New work in authorization for the loT

Progress toward using tokens with resource-constrained IoT devices has not fully
matured; however, there are organizations working on defining the use of protocols
such as OAuth 2.0 for the IoT. One such group is the Internet Engineering Task
Force (IETF) through the Authentication and Authorization for Constrained
Environments (ACE) effort. ACE has specified RFC 7744 Use Cases for Authentication
and Authorization in Constrained Environments (reference: https://datatracker.
ietf.org/doc/rfc7744/). The RFC use cases are primarily based on IoT devices
that employ CoAP as the messaging protocol. The document provides a useful

set of use cases that clarify the need for a comprehensive loT authentication and
authorization strategy. RFC 7744 provides valuable considerations for authentication
and authorization of IoT devices, including;:

* Devices may host several resources wherein each requires its own access
control policy.

* A single device may have different access rights for different
requesting entities.

* Policy decision points must be able to evaluate the context of a transaction.
This includes the potential for understanding that a transaction is occurring
during an emergency situation.

* The ability to dynamically control authorization policies is critical to
supporting the dynamic environment of the IoT.

loT IAM infrastructure

Now that we have addressed many of the enablers of identity and access
management, it is important to elaborate how solutions are realized in infrastructure.
This section is primarily devoted to public key infrastructures (PKI) and their utility
in securing IAM deployments for the IoT.

[188]

https://www.hypr.com/
https://datatracker.ietf.org/doc/rfc7744/
https://datatracker.ietf.org/doc/rfc7744/

Chapter 6

802.1x

802.1x authentication mechanisms can be employed to limit IP-based IoT device
access to a network. Note though that not all IoT devices rely on the provisioning
of an IP address. While it cannot accommodate all IoT device types, implementing
802.1x is a component of a good access control strategy able to address many

use cases.

Enabling 802.1x authentication requires an access device and an authentication
server. The access device is typically an access point and the authentication server
can take the form of a RADIUS or some authentication, authorization, and
accounting (AAA) server.

PKI for the loT

Chapter 5, Cryptographic Fundamentals for IoT Security Engineering, provided a
technical grounding of topics related to cryptographic key management. PKIs are
nothing more than instances of key management systems that have been engineered
and standardized exclusively to provision asymmetric (public key) key material

in the form of digital credentials, most commonly X.509 certificates. PKIs may be
isolated to individual organizations, they may be public, Internet-based services,

or they may be government-operated. When needing to assert an identity, a digital
certificate is issued to a person or device to perform a variety of cryptographic
functions, such as signing messages in an application or signing data as part of an
authenticated key exchange protocol such as TLS.

There are different workflows used in generating the public and private key pair (the
public needing to be integrated into the certificate), but as we mentioned earlier, they
generally fall into two basic categories: 1) self-generated or 2) centrally generated.
When self-generated, the end IoT device requiring the digital certificate performs a
key pair generation function, for example as described in FIPS PUB 180-4. Depending
on the cryptographic library and invoked API, the public key may be raw and not
yet put into a credential data structure such as X.509 or it may be output in the form
of an unsigned certificate. Once the unsigned certificate exists, it is time to invoke the
PKI in the form of a certificate signing request (CSR). The device sends this message
to the PKI, then the PKI signs the certificate and sends it back for the device to

use operationally.

[189]

Identity and Access Management Solutions for the IoT

PKI primer

Public key infrastructures are designed to provision public key certificates to devices
and applications. PKIs provide verifiable roots of trust in our Internet-connected
world and can conform to a wide variety of architectures. Some PKIs may have very
deep trust chains, with many levels between an end entity (such as an IoT device)
and the top-most level root of trust (the root certificate authority). Others may have
shallow trust chains in which there is only the one CA at the top and a single level of
end entity devices underneath it. But how do they work?

Supposing an IoT device needs a cryptographically strong identity, it wouldn't make
sense for it to provision itself with that identity because there is nothing inherently
trustworthy about the device. This is where a trusted third party, the PKI certificate
authority, comes into play and can vouch for the identity and in some cases the

trust level of the device. Most PKIs do not allow end entities to directly interact with
the CA, the entity responsible for cryptographically signing end entity certificates;
instead they employ another subservient PKI node called a registration authority
(RA). The RA receives certificate requests (typically containing the device's self-
generated, but unsigned, public key) from end entities, verifies that they've met some
minimum criteria, then passes the certificate request to the certificate authority. The
CA signs the certificate (typically using RSA, DSA, or ECDSA signature algorithms),
sending it back to the RA and finally the end entity in a message called the certificate
response. In the certificate response message, the original certificate generated by the
end entity (or some other intermediary key management system) is fully complete
with the CA's signature and explicit identity. Now, when the IoT device presents its
certificate during authentication-related functions, other devices can trust it because
they 1) receive a valid, signed certificate from it, and 2) can validate the signature of
the CA using the CA's public key trust anchor that they also trust (securely stored in
their internal trust store).

[190]

Chapter 6

The following diagram represents a typical PKI architecture:

Signs
Root CA Intermediate
CA Certs
Sign
RA . Relay Cert RequeStS_; Intermediate | EE Certs
Relay Cert Responses CA
Cert #
Requests

@ Cert
1 Responses
= U000
Generation
(::j) End Entities (EE)

In the preceding diagram, each of the End Entities (EE) can trust the others if they
have the certificate authority keys that provide the chain of trust to them.

End entities that possess certificates signed by different PKIs can also trust each
other. There are a couple of ways they can do this:

* Explicit trust: Each supports a policy that dictates that it can trust the other.
In this case, end entities only need to have a copy of the trust anchor from
the other entity's PKI to trust it. They do this by performing certificate path
validation to those pre-installed roots. Policies can dictate the quality of the
trust chain that is acceptable to rely on during certificate path validation.
Most trust on the Internet today works like this. For example, web browsers
explicitly trust so many web servers on the Internet merely because the
browser comes pre-installed with a copy of the most common Internet root
CA trust anchors.

[191]

Identity and Access Management Solutions for the IoT

* Cross-certification: When a PKI needs stricter cohesion in the policies,
security practices, and interoperability of their domain with other PKIs,
they can either directly cross-sign (each becomes an issuer for the other) or
create a new structure called a PKI bridge to implement and allocate policy
interoperability. The US Federal government's Federal PKI is an excellent
example of this. In some cases, a PKI bridge needs to be created to provide a
transition time between old certificates' cryptographic algorithms and new
ones (for example, the Federal PKI's SHA1 bridge for accommodating older
SHAI1 cryptographic digests in digital signatures).

In terms of the IoT, many Internet-based PKIs exist today that can provision
certificates to IoT devices. Some organizations operate their own on the fly. To
become a formally recognized PKI on the Internet can be a significant endeavor. A
PKI will require significant security protections and need to meet strict assurance
requirements as implemented in various PKI assurance schemes (such as WebTrust).
In many cases, organizations obtain service contracts with PKI providers that operate
certificate authorities as a service.

Trust stores

We diverge momentarily from infrastructure to discuss where the PKI-provisioned
credentials end up being stored in devices. They are frequently stored in internal
trust stores. Trust stores are an essential IoT capability with regard to the protection
of digital credentials. From a PKI perspective, a device's trust store is a physical

or logical part of the IoT device that securely stores public and private keys, often
(and better when) encrypted. Within it, both the device's private/public keys and

its PKI roots of trust are stored. Trust stores tend to be strongly access-controlled
sections of memory, often only accessible from OS kernel-level processes, to prevent
unauthorized modification or substitution of public keys or reading/copying of
private keys. Trust stores can be implemented in hardware, as in small hardware
security modules (HSM) or other dedicated, secure processors. They can also be
implemented solely in software (such as with many instances of Windows and

other desktop operating systems). In many desktop-type deployments, credentials
can be maintained within trusted platform modules (TPMs), dedicated chips
integrated into a computer's motherboard, though TPMs have not made a large
penetration of the IoT market as of yet. Other enterprise-focused mobile solutions
exist for secure storage of sensitive security parameters. For example, Samsung Knox
provides mobile device secure storage through its Knox workspace container (secure
hardware root of trust, secure boot, and other sensitive operational parameters).

[192]

Chapter 6

IoT devices can depend on PKIs in different ways or not at all. For example, if the
device uses only a self-signed credential and is not vouched for by a PKI, it still
should securely store the self-signed credential in its trust store. Likewise, if the
device has externally provisioned an identity from a PKI, it must maintain and store
critical keys pertinent to that PKI and any other PKI that it inherently or indirectly
trusts. This is accomplished through the storing of certificate authority public key
trust anchors and often the intermediate certificates as well. When deciding to trust
an external entity, the entity will present the IoT device with a certificate signed by
a certificate authority. In some cases (and in some protocols), the entity will provide
the CA certificate or a complete trust chain, along with its own certificate so that it
can be validated to a root.

Whether or not an IoT device directly supports PKI, if it uses public key certificates
to validate another device's authenticity or presents its own certificates and trust
chains, it should do so using digital credentials and trust anchors securely stored in
its trust store. Otherwise, it will not be protected from access by malicious processes
and hackers.

PKI architecture for privacy

Privacy has many facets and is frequently not a concept directly associated with
PKIs. PKIs, by design, are there to provide trusted identities to individuals and
devices. When initiating electronic transactions, one usually wants to specifically
identify and authenticate the other party before initiating sensitive transactions
with them.

Anonymity and the general ability to operate in networks and RF environments
without being tracked, however, are becoming increasingly important. For instance,
suppose a system needs to provision anonymous trusted credentials to a device so
that other entities have the ability to trust it without explicitly knowing its identity.
Consider further that the PKI design itself needs to limit insider threats (PKI
operators) from being able to associate certificates and the entities to which

they are provisioned.

The best example of this is reflected in the emerging trend of anonymous PKIs, one
of the best known being the forthcoming security credential management system
(SCMS) designed for the automotive industry's connected vehicles initiative. The
SCMS provides a fascinating look at the future of privacy-protected IoT trust. The
SCMS, now in a Proof of Concept phase, was specifically engineered to eliminate the
ability of any single node of the PKI from being able to ascertain and associate SCMS
credentials (IEEE 1609.2 format) with the vehicles and vehicle operators to which
they are provisioned.

[193]

Identity and Access Management Solutions for the IoT

1609.2 certificates are used by OBE, embedded devices in the automobile to send
out BSM to surrounding vehicles to enable the vehicles to provide drivers with
preemptive safety messages. In addition to vehicle use, 1609.2 credentials will be
used by networked and standalone roadside units (RSU) mounted near traffic
signal controllers to provide various roadside applications. Many of the connected
vehicle applications requiring enhanced privacy protections are safety-focused,
but many are also designed to improve traffic system and mobility performance,
environmental emissions reduction, and others.

Given the versatility of so many IoT application use cases, the most sensitive
privacy-impacting IoT devices (for example, medical devices) may increasingly begin
to make use of no-backdoor, privacy-protecting PKls, especially when civil liberties
concerns are obvious.

Revocation support

When authenticating in a system using PKI credentials, devices need to know
when other devices' credentials are no longer valid, aside from expiration. PKIs
routinely revoke credentials for one reason or another, sometimes from detection
of compromise and rogue activity; in other cases, it's simply that a device has
malfunctioned or otherwise been retired. No matter the reason, a revoked device
should no longer be trusted in any application or network layer engagement.

The conventional method of doing this is for CAs to periodically generate and issue
certificate revocation lists (CRL), a cryptographically signed document listing all
revoked certificates. This requires that that end devices have the ability to reach out
through the network and frequently refresh CRLs. It also requires turnaround time
for 1) the CA to generate and publish the CRL, 2) end devices to become aware of the
update, and 3) end devices to download it. During this interval of time, untrusted
devices may yet be trusted by the wider community.

OCSP

Given the potential latency and the need to download large files, other mechanisms
have evolved to more quickly provide revocation information over networks, most
notably the online certificate status protocol (OCSP). OCSP is a simple client/
server protocol which allows clients to simply ask a server whether a given public
key credential is still valid. The OCSP server is typically responsible for the CA's
Certificate Revocation List (CRL) and using it to generate an OCSP proof set
(internally signed database of proofs). These sets are then used to generate OCSP
response messages to the requesting clients. OCSP proof sets can be generated
periodically for different time intervals.

[194]

Chapter 6

OCSP stapling

OCSP stapling resolves some of the challenges of having to perform the latency-
inducing, secondary client-server OCSP call just to obtain revocation information.
OCSP stapling simply provides a pre-generated OCSP response message, in
conjunction with the server's certificate (such as during a TLS handshake). This
way, clients can verify the digital signature on the pre-generated OCSP response (no
additional handshakes necessary) and make sure the CA still vouches for the server.

SSL pinning

This technique may apply more to IoT device developers that require their devices
to communicate with an Internet service (for example, for passing usage data or
other information). In order to protect from the potential compromise of the trust
infrastructure that provisions certificates, developers can pin the trusted server
certificate directly into the IoT device trust store. The device can then check the
server certificate explicitly against the certificate in the trust store when connecting
to the server. In essence, SSL pinning doesn't place full trust in the certificate's trust
chain; it only trusts the server if the received server certificate is identical to the
pinned (stored) certificate and the signature is valid. SSL pinning can be used in a
variety of interfaces, from web server communications to device management.

Authorization and access control

Once a device is identified and authenticated, determining what that device can read
or write to other devices and services is required. In some cases, being a member of
a particular community of interest (COI) is sufficient, however in many instances
there are restrictions that must be put in place even upon members of a COL

OAuth 2.0

To refresh, OAuth 2.0 is a token-based authorization framework specified in IETF
RFC 6749, which allows a client to access protected, distributed resources (that is,
from different websites and organizations) without having to enter passwords for
each. As such, it was created to address the frequently cited, sad state of password
hygiene on the Internet. Many implementations of OAuth 2.0 exist, supporting a
variety of programming languages to suit. Google, Facebook, and many other large
tech companies make extensive use of this protocol.

[195]

Identity and Access Management Solutions for the IoT

The IETF ACE Working Group has created working papers that define the
application of OAuth 2.0 to the IoT. The draft document may be promoted to an
RFC in the future. The document is designed primarily for CoAP and includes
as a core component a binary encoding scheme known as concise binary object
representation (CBOR) that can be used within IoT devices when JSON is not
sufficiently compact.

Proposed extensions to OAuth 2.0 have also been discussed, for example,
extending the messaging between an AS and a client to determine how to connect
securely with a resource. This is required given that the use of TLS is expected with
typical OAuth 2.0 transactions. With constrained IoT devices that employ CoAP,
this is not a valid assumption.

The constrained device-tailored version of OAuth 2.0 also introduces a new
authorization information format. This allows for access rights to be specified as a
list of uniform resource indicators (URISs) of resources mapped with allowed actions
(for example, GET, POST, PUT, and DELETE). This is a promising development for
the IoT.

From a security implementation perspective, it's important to step back and keep in
mind that OAuth is a security framework. Security frameworks can be something
of an oxymoron; the more flexible and less specific the framework is regarding
implementation, the wider the latitude to create insecure products. It's a tradeoff
we frequently encounter in the world of public standards, where the goals of a new
security standard somehow have to be met while satisfying the interests of many
stakeholders. Typically, both interoperability and security suffer as a result.

With that in mind, we identify just a few of the many security best practices
regarding OAuth2. We encourage readers to visit IETF RFC 6819 for a more
thorough treatment of OAuth2 security considerations (https://tools.ietf.org/
html/rfcé6819#section-4.1.1):

e Use TLS for authorization server, client, and resource server interactions.
Do NOT send client credentials over an unprotected channel.

* Lock down your authorization server database and the network in
which it resides.

* Use high entropy sources when generating secrets.

* Securely store your client credentials: client_idand client_secret.
These parameters are used to identify and authenticate your client
application to the API when requesting user account access. Unfortunately,
some implementations hard-code these values or distribute them over less
protected channels, making them attractive targets for attackers.

[196]

https://tools.ietf.org/html/rfc6819#section-4.1.1
https://tools.ietf.org/html/rfc6819#section-4.1.1

Chapter 6

* Make use of the OAuth2 state parameter. This will allow you to link
the authorization requests with redirect URIs needed for delivery of the
access token.

¢ Don't follow untrusted URLs.

e If in doubt, lean toward shorter expiry times for authorization codes
and tokens.

e Servers should revoke all tokens for an authorization code that someone
is repeatedly attempting to redeem.

Future IoT implementations that make use of OAuth 2.0 and similar standards
greatly need secure by default implementations (library APIs) to reduce developers'
exposure to making critical security errors.

Authorization and access controls within
publish/subscribe protocols

The MQTT protocol provides a good exemplar for understanding the need for
finer-grained access controls. As a publish/subscribe protocol, MQTT allows clients
to write and read topics. Not all clients will have permissions to write all topics. Not
all clients will have permissions to read all topics either. Indeed, controls must be put
in place that restrict the permissions of clients at the topic level.

This can be achieved in a MQTT broker by keeping an access control list that pairs
topics with authorized publishers and authorized subscribers. The access controls
can take as input the client ID of the MQTT client, or depending on the broker
implementation, the username that is transmitted in the MQTT connect message.
The broker performs a topic lookup when applicable MQTT messages arrive to
determine if the clients are authorized to read, write, or subscribe to topics.

Alternatively, since MQTT is often implemented to operate over TLS, it is possible to
configure the MQTT broker to require certificate-based authentication of the MQTT
client. The MQTT broker can then perform a mapping of information in the MQTT
client X.509 certificate to determine the topics to which the client has permission to
subscribe or publish.

[197]

Identity and Access Management Solutions for the IoT

Access controls within communication
protocols

There are different access control configurations that can be set in other
communication protocols as well. For example, ZigBee includes the ability for each
transceiver to manage an access control list to determine whether a neighbor is
trusted or not. The ACL includes information such as the address of the neighbor
node, the security policy in use by the node, the key, and the last initialization
vector (IV) used.

Upon receiving a packet from a neighbor node, the receiver consults the ACL
and if the neighbor is trusted, then the communication is allowed. If not, the
communication is either denied or an authentication function is invoked.

Summary

This chapter provided an introduction to identity and access management for IoT
devices. The identity lifecycle was reviewed and a discussion on infrastructure
components required for provisioning authentication credentials was provided,
with a heavy focus on PKI. There was a look at different types of authentication
credentials and a discussion on new approaches to providing authorization and
access control for lIoT devices was also provided.

In the next chapter, we visit the complex ecosystem in which IoT privacy concerns
need to be addressed and mitigated. Security controls, such as effective identity and
access management discussed in this chapter, represent only one element of the IoT
privacy challenge.

[198]

Mitigating loT Privacy
Concerns

This chapter provides the reader with an understanding of privacy principles and
concerns introduced by the IoT through implementation and deployment.

An exercise and guidance in creating a privacy impact assessment (PIA) is

also provided. PIAs address the causes and fallout of leaking privacy protected
information (PPI). We will discuss privacy by design (PbD) approaches for
integrating privacy controls within the IoT engineering process. The goal of PbD
is to integrate privacy controls (in technology and processes) throughout the IoT
engineering lifecycle to enhance end-to-end security, visibility, transparency, and
respect for user privacy. Finally, we will discuss recommendations for instituting
privacy engineering activities within your organization.

This chapter examines privacy in our loT-connected world in the following sections:
* Privacy challenges introduced by the IoT
* Guide to performing an IoT PIA
* PbD principles

* Privacy engineering recommendations

[199]

Mitigating IoT Privacy Concerns

Privacy challenges introduced by the loT

As your family sits down after dinner and a long day of work, one of the children
starts up a conversation with her new connected play doll, while the other begins

to watch a movie on the new smart television. The smart thermostat is keeping

the living area a steady 22 degrees Celsius, while diverting energy from the rooms
that aren't being used at the moment. Father is making use of the home computer's
voice control features, while Mother is installing new smart light bulbs that can
change color on command or based on variations in the home environment. In the
background, the smart refrigerator is transmitting an order for the next-day delivery
of groceries.

This setting tells a great story of the consumer Internet of Things in that there are
exciting new capabilities and convenience. It also begins to make clear the soon-to-be
hyper-connected nature of our homes and environments. If we start to examine these
new smart products, we can begin to see the concern surrounding privacy within

the IoT.

The privacy challenges with the Internet of Things are enormous, given the
gargantuan quantities of data collected, distributed, stored and, ahem, sold every
day. Pundits will argue that privacy is dead today. They argue that consumers'
willingness to eagerly click through so-called end user privacy agreements
compromises their privacy with barely a notion as to what they just agreed to. The
pundits are not far off, as privacy concerns are something of a moving target given
the fickle nature of consumer sentiment.

Our ability to grasp and find ways of preserving privacy with the IoT represents

a monumental challenge. The increased volume and types of data able to be
collected and distilled through technical and business analytics systems can produce
frighteningly detailed and accurate profiles of end users. Even if the end user
carefully reads and agrees to their end user privacy agreement, they are unlikely

to imagine the downstream, multiplicative, compromising effect of accepting two,
three, or four of them, to say nothing of 30 or 40 privacy agreements. While an
improved targeted advertising experience may have been the superficial rationale
for agreeing to privacy agreements, it is no understatement that advertisers are not
the only entities procuring this data. Governments, organized crime syndicates,
potential stalkers, and others can either directly or indirectly access the information
to perform sophisticated analytical queries that ascertain patterns about end users.
Combined with other public data sources, data mining is a powerful and dangerous
tool. Privacy laws have not kept up with the data science that thwarts them.

[200]

Chapter 7

Privacy protection is a challenge no matter the organization or industry that needs

to protect it. Communications within a privacy-conscious and privacy-protecting
organization are vital to ensuring that customers' interests are addressed. Later in
this chapter, we identify corporate departments and individual qualifications needed
to address privacy policies and privacy engineering.

Some privacy challenges are unique to the IoT, but not all. One of the primary
differences between IoT and traditional IT privacy is the pervasive capture and
sharing of sensor-based data, whether medical, home energy, transportation-related,
and so on. This data may be authorized or may not. Systems must be designed to
make determinations as to whether that authorization exists for the storage and
sharing of data that is collected.

Take, for example, video captured by cameras strewn throughout a smart city. These
cameras may be set up to support local law enforcement efforts to reduce crime;
however, they capture images and video of everyone in their field of view. These
people caught on film have not given their consent to be video-recorded.

As such, policies must exist that:

* Notify people coming into view that they are being recorded

* Determine what can be done with the video captured (for example, do
people need to be blurred in images that are published?)

A complex sharing environment

The amount of data actively or passively generated by (or for) a single individual
is already large. By 2020, the amount of data generated by each of us will increase
dramatically. If we consider that our wearable devices, our vehicles, our homes,
and even our televisions are constantly collecting and transmitting data, it becomes
obvious that trying to restrict the types and amounts of data shared with others is
challenging to say the least.

Now, if we consider the lifecycle of data, we must be aware of where data is
collected, where it is sent, and how. The purposes for collecting data are diverse.
Some smart machine vendors will lease equipment to an organization and collect
data on the usage of that equipment for billing purposes. The usage data may
include time of day, duty cycle (usage patterns), number and type of operations
performed, and who was operating the machine. The data will likely be transmitted
through a customer organization's firewall to some Internet-based service application
that ingests and processes the information. Organizations in this position should
consider researching exactly what data is transmitted in addition to the usage
information, and ascertain whether any of the information is shared with

third parties.

[201]

Mitigating IoT Privacy Concerns

Wearables

Data associated with wearables is frequently sent to applications in the cloud for
storage and analysis. Such data is already being used to support corporate wellness
and similar programs, the implication being that someone other than the device
manufacturer or user is collecting and storing the data. In the future, this data may
also be passed on to healthcare providers. Will the healthcare providers pass that
data on to insurance companies as well? Are there regulations in the works that
restrict the ability of insurance companies to make use of data that has not been
explicitly shared by the originator?

Smart homes

Smart home data can be collected by many different devices and sent to many
different places. A smart meter, for example, may transmit data to a gateway that
then relays it to the utility company for billing purposes. Emergent smart grid
features such as demand response will enable the smart meter to collect and forward
information from the home's individual appliances that consume electricity from

the power grid. Absent any privacy protections, an eavesdropper could theoretically
begin to piece together a puzzle that shows when certain appliances are used within
a home, and whether homeowners are home or not. The merging of electronic data
corresponding to physical-world state and events is a serious concern related to
privacy in the IoT.

Metadata can leak private information also

A striking report by Open Effect (https://openeffect.ca/reports/Every Step_
You_Fake.pdf) documented the metadata that is collected by today's consumer
wearable devices. In one of the cases they explored, the researchers analyzed the
Bluetooth discovery features of different manufacturers' wearable products. The
researchers attempted to determine whether the vendors had enabled new privacy
features that were designed into the Bluetooth 4.2 specification. They found that
only one of the manufacturers (Apple) had implemented them, leaving open the
possibility of the exploitation of the static media access control (MAC) address for
persistent tracking of a person wearing one of the products. Absent the new privacy
feature, the MAC addresses never change, creating an opportunity for adversarial
tracking of the devices people are wearing. Frequent updates to a device's MAC
address limit an adversary's ability to track a device in space and time as its owner
goes about their day.

[202]

https://openeffect.ca/reports/Every_Step_You_Fake.pdf
https://openeffect.ca/reports/Every_Step_You_Fake.pdf

Chapter 7

New privacy approaches for credentials

Another worthy example of the need to rethink privacy for the IoT comes from
the connected vehicle market. Just as with the wearables discussed previously,
the ability to track someone's vehicle persistently is a cause for concern.

A problem arises, however, when we look at the need to digitally sign all messages
transmitted by a connected vehicle. Adding digital signatures to messages such as
basic safety messages (BSMs) or infrastructure-generated messages (for example,
traffic signal controller signal phase and timing (SPaT) messages) is essential to
ensure public safety and the performance of our surface transportation systems.
Messages must be integrity protected and verified to originate from trusted sources.
In some cases, they must also be confidentiality protected. But privacy? That's
needed, too. The transportation industry is developing interesting privacy solutions
for connected vehicles:

Traffic
Signal
Roadside Controller
Unit (RSU
t) Signal
Phase &
Timing
Basic Safety
Messages Application
(Signed) Messaging
"""""""""" (RSU
to Center)
Vehicies with Traffic Momt
Cellular . Apps
On-Board Equipment (OBE)
(3G/4G/LTE) !
ey .| Traffic Management
Center

Privacy in connected vehicles and infrastructure

[203]

Mitigating IoT Privacy Concerns

For example, when a connected vehicle transmits a message, there is concern that
using the same credentials to sigh messages over a period of time could expose the
vehicle and owner to persistent tracking. To combat this, security engineers have
specified that vehicles will be provisioned with certificates that:

* Have short lifespans

* Are provisioned in batches to allow a pool of credentials to be used for
signing operations

In the connected vehicle environment, vehicles will be provisioned with a large
pool of constantly rotated pseudonym certificates to sign messages transmitted by
on-board equipment (OBE) devices within the vehicle. This pool of certificates may
only be valid for a week, at which point another batch will take effect for the next
time period. This reduces the ability to track the location of a vehicle throughout a
day, week or any larger time period based on the certificates it has attached to its
own transmissions.

Ironically, however, a growing number of transportation departments are beginning
to take advantage of widespread vehicle and mobile device Bluetooth by deploying
Bluetooth probes along congested freeway and arterial roadways. Some traffic
agencies use the probes to measure the time it takes for a passing Bluetooth device
(indicated by its MAC address) to traverse a given distance between roadside
mounted probes. This provides data needed for adaptive traffic system control

(for example, dynamic or staged signal timing patterns). Unless traffic agencies are
careful and wipe any short- or long-term collection of Bluetooth MAC addresses,
correlative data analytics can be used potentially to discern individual vehicle

(or its owner) movement in a region. Increased use of alternating Bluetooth MAC
addresses may render useless future Bluetooth probe systems and their use by traffic
management agencies.

Privacy impacts on loT security systems

Continuing with the connected vehicle example, we can also see that infrastructure
operators should not be able to map provisioned certificates to the vehicles either.
This requires changes to the traditional PKI security design, historically engineered
to provide certificates that specifically identify and authenticate individuals and
organizations (for example, for identity and access management) through X.509
distinguished name, organization, domain, and other attribute types. In the
connected vehicle area, the PKI that will provision credentials to vehicles in the
United States is known as the security credential management system (SCMS)
and is currently being constructed for various connected vehicle pilot deployments
around the country. The SCMS has built-in privacy protections ranging from

the design of the pseudonym IEEE 1609.2 certificate to internal organizational
separations aimed at thwarting insider PKI attacks on drivers' privacy.

[204]

Chapter 7

One example of SCMS privacy protections is the introduction of a gateway
component known as a location obscurer proxy (LOP). The LOP is a proxy gateway
that vehicle OBEs can connect to instead of connecting directly to a registration
authority (RA). This process, properly implemented with request shuffling logic,
would help thwart an insider at the SCMS attempting to locate the network

or geographic source of the requests (https://www.wpi.edu/Images/CMS/
Cybersecurity/Andre V2X WPI.PDF).

New methods of surveillance

The potential for a dystopian society where everything that anyone does is
monitored is often invoked as a potential future aided by the IoT. When we bundle
things like drones (aka SUAS) into the conversation, the concerns are validated.
Drones with remarkably high resolution cameras and a variety of other pervasive
sensors all raise privacy concerns, therefore it is clear there is much work to be done
to ensure that drone operators are not sued due to lack of clear guidance on what
data can be collected, how, and what the treatment of the data needs to address.

To address these new surveillance methods, new legislation related to the collection
of imagery and other data by these platforms may be needed to provide rules, and
penalties in instances where those rules are broken. For example, even if a drone is
not directly overflying a private or otherwise controlled property, its camera may
view at slant range angles into private property due to its high vantage point and
zoom capabilities. Laws may need to be established that require immediate or 'as
soon as practical' geospatial scrubbing and filtering of raw imagery according to
defined, private-property-aligned geofences. Pixel-based georeferencing of images
is already in today's capabilities and is used in a variety of image post-processing
functions related to drone-based photogrammetry, production of orthomosaics, 3D
models, and other geospatial products. Broad pixel-based georeferencing within
video frames may not be far off. Such functionality would provide for consent-
based rules to be established so that no drone operator could preserve or post in
public online forums imagery containing any private property regions beyond a
specific per-pixel resolution. Without such technical and policy controls, there is little
other than strong penalties or lawsuits to prevent peeping Toms from peering into
backyards and posting their results on YouTube. Operators need specificity in rules
so that companies can build compliance solutions.

New technologies that allow law-abiding collectors of information to respect the
wishes of citizens who want their privacy protected are needed in our sensor-rich
Internet of Things.

[205]

https://www.wpi.edu/Images/CMS/Cybersecurity/Andre_V2X_WPI.PDF
https://www.wpi.edu/Images/CMS/Cybersecurity/Andre_V2X_WPI.PDF

Mitigating IoT Privacy Concerns

Guide to performing an loT PIA

An IoT PIA is crucial for understanding how IoT devices, within the context of
a larger system or system-of-systems, may impact end user privacy. This section
will provide you with a reference example of how to perform a PIA for your
own deployment, by walking through a hypothetical IoT system PIA. Since
consumer privacy is such a sensitive topic, we provide a consumer-level PIA

for a connected toy.

Overview

Privacy impact assessments are necessary to provide as complete a risk analysis as
possible. Beyond basic safety and security tenets, unmitigated privacy losses can
have substantial impacts and result in severe financial or legal consequences to a
manufacturer or operator of IT and IoT systems. For example, consider a child's toy
titted with Wi-Fi capabilities, smart phone management, and connectivity to backend
system servers. Assume the toy possesses a microphone and speaker, along with
voice capture and recognition capabilities. Now consider the security features of

the device, its storage of sensitive authentication parameters, and other attributes
necessary for secure communication to backend systems. If a device were physically
or logically hacked, would it expose any common or default security parameters
that could be used to compromise other toys from the same manufacturer? Are

the communications adequately protected in the first place through encryption,
authentication, and integrity controls? Should they be? What is the nature of

the data and what could it possibly contain? Is user data aggregated in backend
systems for any analytics processing? Is the overall security of the infrastructure
and development process sufficient to protect consumers?

These questions need to be asked in the context of a privacy impact assessment.
Questions must address the severity of impact from a breach of information or
misuse of the information once it enters the device and backend systems. For
example, might it be possible to capture the child's audio commands and hear
names and other private information included? Could the traffic be geolocated by
an adversary, potentially disclosing the location of the child (for example, their
address)? If so, impacts could possibly include the malicious stalking of the child
or family members. These types of problems in the IoT have precedence http://
fortune.com/2015/12/04/hello-barbie-hack/) and it is therefore vital that a
complete PIA be performed to understand the user base, types of privacy impact,
their severity, probability, and other factors to gauge overall risk.

[206]

http://fortune.com/2015/12/04/hello-barbie-hack/
http://fortune.com/2015/12/04/hello-barbie-hack/

Chapter 7

Identified privacy risks need to then be factored into the privacy engineering process
described later. While the example we provide is hypothetical, it is analogous to

one of the hacks elucidated by security researcher Marcus Richerson at RSA 2016
(https ://www.rsaconference.com/writable/presentations/file upload/
sbx1l-r08-barbie-vs-the-atm-lock. pdf).

This section will utilize a hypothetical talking doll example and make reference

to the following system architecture. The architecture will be needed to visualize

the flow and storage of private information between the IoT endpoint (the doll), a
smartphone, and connected online services. The private information, people, devices,
and systems involved will be explored in more detail later, when we discuss privacy
by design and the security properties inherent in it:

Account
Managment

Billing
Service

Doll Online
Services
(Apps, Analytics, Phone
Profiles, User Data)
e —
Storage

Collected Voice
Voice Profiles
Personalities
Usage Metrics

New Apps Home Environment

Talking doll IoT system reference architecture

[207]

https://www.rsaconference.com/writable/presentations/file_upload/sbx1-r08-barbie-vs-the-atm-lock.pdf
https://www.rsaconference.com/writable/presentations/file_upload/sbx1-r08-barbie-vs-the-atm-lock.pdf

Mitigating IoT Privacy Concerns

Authorities

Authorities deal with the entities that create and enforce laws and regulations that
may impact an organization's collection and use of private information. In the case
of the talking doll example, a variety of laws may be at work. For example, the
European Union Article 33 rules, the US Children's Online Privacy Protection
Act (COPPA), and others may come into play. Under the authorities question, an
IoT organization should identify all legal authorities, and the applicable laws and
regulations each imposes on the operation. Authorities may also have the ability
to issue waivers and allow certain information collection and use based on certain
conditions. These should be identified as well.

If your IoT organization, like many IT operations, is operating across international
borders, then your PIA should also raise the issue of how data can and might be
treated outside of your country. For example, if more lax rules are applied overseas,
some data may be more vulnerable to foreign government inspection, regardless

of your desired privacy policy in your own country. Or, the foreign rules may be
stricter than those mandated by your nation, possibly preventing you from using
certain overseas data centers. The process of privacy by design should address the
geographical architecture early and ensure that the geographical design does not
violate the privacy needed for your deployment.

Characterizing collected information

The lifecycle and scope of information pertinent to an IoT device can be narrowly
defined or quite broad. In a PIA, one of the first activities is to identify information
that will originate, terminate in or pass through the loT-enabled system. At this
point, one should create tables for the different lifecycle phases and the data relevant
to each. In addition, it is useful to use at least three different first order ratings to give
each information type based on sensitivity. For simplicity, in the following examples
we use:

* Not sensitive
* Moderately sensitive

* Very sensitive

Other rating types can be used depending on your organization, industry, or any
regulatory requirements. Keep in mind that some types of data, even if marked not
sensitive or moderately sensitive, can become very sensitive when grouped together.
Such data aggregation risks need to be evaluated whenever pulling together data
within application processing or storage environments. The eventual security
controls (for example, encryption) applied to aggregated datasets may be higher
than what may initially be determined for small sets or single data types.

[208]

Chapter 7

In the case of the talking doll, once the doll has left the manufacturing environment,
it is shipped to wholesalers or retailers awaiting purchase by end users. No end
user personally identifiable information (PII) has yet entered the system. Once
purchased by a parent, the doll is taken home to be bootstrapped, connected to a
newly created account, and connected to smartphone applications. Now, PII enters

the picture.

Assuming there is a subscription service to download new apps to the doll, we now
begin to delineate the PII. The following hypothetical data elements and the lifecycle
phases to which they apply are listed to illustrate the data identification process.
Each is listed and described; for each the source of the data (application + device)
and the consumers of the data are identified so that we understand the endpoint that
will have varying degrees of access to the information.

The following example information is identified as being created or consumed
during the creation of the doll owner's account:

Account creation
Parameter Description/Sensitivity Origin Consumer/User(s)
Login User identifier Created by user User
(not sensitive) Application server
Billing server
Smart phone app
Password User password Created by user User
(high sensitivity) (minimum password | App server
length/quality Billing server
enforced)
Smart phone app
Name, Account holder's (doll Doll owner Application server
address, owner's) name, address, and Billing server
phone number
phone
number
Age Age of child using doll Doll owner Application server
(not sensitive)
Gender Account holder's or doll Doll owner Application server
owner's gender
(not sensitive)

[209]

Mitigating IoT Privacy Concerns

Account creation

Parameter Description/Sensitivity Origin Consumer/User(s)
Account Unique account number for | Application server Doll owner
number this doll owner

Application server
Smartphone app

Billing server

The following example information is identified as being created or consumed
during the creation of the doll owner's subscription:

Subscription creation

(moderate sensitivity)

Parameter Description/Sensitivity Origin Consumer
Doll type and Doll information Packaging Application server
serial number (low sensitivity) (for subscription
profile)
Subscription Subscription type and term, Doll owner Application server
package expiration, and so on selected via web
(low sensitivity) page
Name First and last name Doll owner Billing server
(high sensitivity when
combined with financial
information)
Address Street, city, state, country Doll owner Billing server and
(moderate sensitivity) application server
Credit card Credit card number, CVV, Doll owner Billing server
information expiration date
(high sensitivity)
Phone number Phone number of doll owner | Doll owner Billing server and

application server

The following example information is identified as being created or consumed

during the pairing of the downloaded smartphone application that will connect with
the talking doll and backend application server:

[210]

Chapter 7

Attachment to smartphone application

Parameter Description/Sensitivity Origin Consumer(s)
Account Account number that was created by | Account server Smartphone
number the account server upon doll owner via doll owner application
account creation Application
(moderate sensitivity) server
Doll serial Unique identifier for the doll Doll's Doll owner
number (not sensitive) packaging from Application
manufacturer server
Smartphone
app
Doll settings | Day-to-day settings and Doll owner Doll
and configs configurations made on fche doll via Application
the smartphone application or web server

client

not sensitive, or moderate sensitivity
(depending on attributes)

The following example information is identified as being created or consumed
during the normal daily use of the talking doll:

(not sensitive)

Daily usage

Parameter Description/Sensitivity Origin Consumer
Doll speech Downloadable speech Application server | Doll user
profiles patterns and behaviors

(high sensitivity)

Doll microphone | Recorded voice Doll and Application server

data (voice communication with doll environment and doll owner via

recordings) (high sensitivity) smartphone

Transcribed Derived voice-to-text Application server | Application server

Microphone transcrlp.tlon's of voice (tI‘aI"lSCI‘lptIOl’l and doll owner via
communication with doll engine) smartphone

Data

[211]

Mitigating IoT Privacy Concerns

Uses of collected information

Acceptable use policies need to be established in accordance with national, local, and
industry regulation, as applicable.

Use of collected information refers to how different entities (that are being given
access to the IoT data) will use data collected from different sources, in accordance
with a privacy policy. In the case of the talking doll, the doll manufacturer itself
owns and operates the Internet services that interact with the doll and collect

its owner's and user's information. Therefore, it alone will be the collector of
information that may be useful for:

* Viewing the data

* Studies or analytics performed on the data for research purposes
* Analysis of the data for marketing purposes

* Reporting on the data to the end user

* Selling or onward transfer of the data

* Distillation and onward transfer of any processed metadata that originated
with the user's raw data

Ideally, the manufacturer would not provide the data (or metadata) to any third
party; the sole participants in using the data would be the doll owner and the
manufacturer. The doll is configured by its owner, collects voice data from its
environment, has its voice data converted to text for keyword interpretation by the
manufacturer's algorithms, and provides usage history, voice files, and application
updates to the doll owner.

Smart devices rely upon many parties, however. In addition to the doll
manufacturer, there are suppliers that support various functions and benefit from
analyzing portions of the data. In cases where data or transcribed data is sent to third
parties, agreements between each party must be in force to ensure the third parties
agree to not pass on or make the data available for other than agreed-upon uses.

Security

Security is privacy's step-sibling and a critical element of realizing privacy by
design. Privacy is not achievable without data, communications, applications,
device, and system level security controls. The security primitives of confidentiality
(encryption), integrity, authentication, non-repudiation, and data availability need to
be implemented to support the overarching privacy goals for the deployment.

[212]

Chapter 7

In order to specify the privacy-related security controls, the privacy data needs to be
mapped to the security controls and security parameters necessary for protection. It
is useful at this stage to identify all endpoints in the architecture in which the PII is:

* Originated

* Transmitted through
* Processed

* Stored

Each PII data element then needs to be mapped to a relevant security control that

is either implemented or satisfied by endpoints that touch it. For example, credit
card information may originate on either the doll owner's home computer or mobile
device web browser and be sent to the billing service application. Assigning the
security control of confidentiality, integrity, and server authentication, we will likely
use the common HTTPS (HTTP over TLS) protocol to maintain the encryption,
integrity, and server authentication while transmitting the credit card information
from the end user.

Once a complete picture is developed for the security-in-transit protections of all

PII throughout the system, security needs to focus on the protection of data-at-rest.
Data-at-rest protection of PII will focus on other traditional IT security controls, such
as database encryption, access controls between web servers, databases, personnel
access control, physical protection of assets, separation of duties, and so on.

Notice

Notice pertains to the notification given to the end user(s) on what scope of
information is collected, any consent that the user must provide, and the user's right
to decline to provide the information. Notice is almost exclusively handled in privacy
policies to which the end user must agree prior to obtaining services.

In the case of our talking doll, the notice is provided in two places:

* Printed product instruction sheet (provided within the packaging)

* User privacy agreement presented by the doll's application server upon
account creation

[213]

Mitigating IoT Privacy Concerns

Data retention

Data retention addresses how the service stores and retains any data from the device
or device's user(s). A data retention policy should be summarized in the overall
privacy policy, and should clearly indicate:

* What data is stored/ collected and archived

* When and how the data will be pushed or pulled from the device or
mobile application

* When and how data is destroyed

* Any metadata or derived information that may be stored (aside from the IoT
raw data)

* How long the information will be stored (both during and after the life of the
account to which it pertains)

* If any controls/services are available to the end user to scrub any data
they generate

* Any special mechanisms for data handling in the event of legal issues or law
enforcement requests

In our talking doll example, the data in question is the PII identified previously,
particularly the microphone-recorded voice, transcriptions, metadata associated
with the recorded information, and subscription information. The sensitivity of data
recorded within one's home, whether a child's musings, captured dialog between
parent and child, or a group of children at play, can be exceedingly sensitive
(indicating names, ages, location, indication of who is at home, and so on). The

type of information the system is collecting can amount to what is available using
classic eavesdropping and spying; the sensitivity of the information and its potential
for misuse is enormous. Clearly, data ownership belongs to the doll owner(s); the
company whose servers pick up, process, and record the data needs to be explicitly
clear on how the data is retained or not.

Information sharing

Information sharing, also called onward transfer in the US and European Safe
Harbor privacy principle, refers to the scope of sharing information within the
enterprise that collects it, and with organizations external to it. It is common

in business enterprises to share or sell information to other entities (https://
en.wikipedia.org/wiki/International Safe Harbor Privacy Principles).

[214]

https://en.wikipedia.org/wiki/International_Safe_Harbor_Privacy_Principles
https://en.wikipedia.org/wiki/International_Safe_Harbor_Privacy_Principles

Chapter 7

In general, the PIA should list and describe (Toward a Privacy Impact Assessment (PIA)
Companion to the CIS Critical Security Controls; Center for Internet Security, 2015) the
following;:

* Organizations with whom information is shared, and what types of
agreement either exist or need to be formed between them. Agreements can
take the form of contracted adherence to general policies and service level
agreements (SLAs).

* Types of information that are transferred to each external organization.

* Privacy risks of transferring the listed information (for example, aggregation
risks or risks of combining with publicly available sources of information).

* How sharing is in alignment with the established data use and
collection policy.

Note that at the time of writing this, the Safe Harbor agreement between the US and
Europe remains invalidated by the Court of Justice of the European Union (CJEU),
thanks to a legal complaint that ensued from Edward Snowden's leaks concerning
NSA spying. Issues related to data residency —where cloud-enabled data centers
actually store data— pose additional complications for US corporations (http://
curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cpl50117en.

pdf).

Redress

Redress addresses the policies and procedures for end users to seek redress for
possible violations and disclosure of their sensitive information. For example, if the
talking doll owner starts receiving phone messages indicating that an unwanted
person has somehow eavesdropped in on the child's conversation with the doll,
he/she should have a process to contact the manufacturer and alert them to the
problem. The data loss could be from non-adherence to the company's privacy
protections (for example, an insider threat) or a basic security flaw in the system's
design or operation.

In addition to actual privacy losses, redress should also include provisions for
addressing end users' complaints and concerns about documented and disclosed
policies affecting their data. In addition, procedures should also be available for
end users to voice concerns about how their data could be used for other purposes
without their knowledge.

Each of the policies and procedures for redress should be checked when performing
the PIA. They will need to be periodically re-evaluated and updated when

changes are made either to policies, the data types collected, or the privacy

controls implemented.

[215]

http://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf
http://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf
http://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf

Mitigating IoT Privacy Concerns

Auditing and accountability

Auditing and accountability checks within a PIA are to ascertain what safeguards
and security controls are needed, and when, from the following perspectives:

* Insider and third-party auditing addresses what organizations and/or
agencies provide oversight

* Forensics

* Technical detection of information (or information system) misuse (for
example, a host auditing tool detects database access and a large query not
emanating from the application server)

* Security awareness, training processes, and supporting policies for those
with direct or indirect access to the PII

* Modifications to information sharing processes, organizations with whom
information is shared, and approval of any changes to policy (for example, if
the doll manufacturer were to begin selling e-mail addresses and doll users'
demographics to third-party marketers)

Asking pointed questions about each of the preceding points, and determining the
sufficiency and detail of the answers, is necessary in the PIA.

PbD principles

Today's IoT-enabled businesses and infrastructures can no longer afford

to incrementally bolt on privacy enforcement mechanisms as a reactionary
afterthought. That is why privacy engineering and design has evolved as a necessity
and gained significant traction in recent years. This section discusses privacy design
and engineering related to the Internet of Things.

Privacy embedded into design

Privacy engineering is driven completely by policy. It ensures that:

* Policy leads to privacy-related requirements and controls

* Underlying system-level design, interfaces, security patterns, and business
processes support these

[216]

Chapter 7

Privacy engineering satisfies the policies (clarified by an organization's legal
department) at a technical level in every facet of technical interpretation and
implementation. Security engineering and privacy engineering are closely
intertwined. One can think of the system and security engineering as implementing
the device and system level security functions that satisfy higher-level privacy needs,
as specified by privacy policies and laws.

Privacy embedded into design means that there is a concrete mapping between the
privacy protected data and the system functions, security functions, policies, and
enforcements that enable that data to be protected.

Positive-sum, not zero-sum

The positive-sum principle of privacy engineering and design specifies that privacy
improves the functionality (provides full functionality) and security of the system,
not the other way around.

A zero-sum privacy approach would result in one of the following;:

* No improvement to security and functionality
* Some type of reduction in functionality (or lost business processes)

* Potentially a loss of some type of non-functional business or security need

In other words, a zero-sum approach necessarily means some types of trade-off are
taking place, as opposed to a win-win approach (https://www.ipc.on.ca/images/
resources/7foundationalprinciples.pdf).

End-to-end security

End-to-end security is a frequently over-used term, but in the context of privacy

it implies that data is protected throughout the lifecycle of the data— generation,
ingestion, copying, distribution, redistribution, local and remote storage, archiving,
and destruction. In other words, it is not a mere communications-level perspective
on end-to-end as in encrypting and authenticating data in transit from one network
endpoint to another. Rather, it takes into account the protected data and its treatment
in and through all business processes, applications, systems, hardware, and people
that touch it. End-to-end security addresses all of the technical and policy controls in
place to ensure that the PPI is protected.

[217]

https://www.ipc.on.ca/images/resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/images/resources/7foundationalprinciples.pdf

Mitigating IoT Privacy Concerns

Visibility and transparency

Privacy by design implies that any and all stakeholders (whether the system
operator, device manufacturer, or affiliates) are operating by the rules, processes,
procedures, and policies that they claim to be.

This principle is meant to satisfy any gaps in the auditing and accountability needs
raised by the PIA. In essence, how would an end user be able to verify that your
IoT privacy objectives or regulatory compliance goals are actually being met?
Conversely, how could you as an IoT organization verify that your own affiliate
providers' SLAs are being adhered to, especially those concerning privacy? One
manner of providing visibility and transparency is for an IoT implementation or
deployment organization to subject itself to independent third-party audits, for
example, either publishing or making results available to requesters. Industry-
specific audits may also satisfy certain facets of visibility and transparency.

The old axiom trust but verify is the principle at work in this control.

Respect for user privacy

A PbD solution will absolutely have built-in controls that allow respect for user
privacy. Respect for user privacy entails providing users with knowledge and control
with respect to privacy, notice of privacy policies and events, and the ability to opt
out. The following fair information practices (FIPs) privacy principles address this
topic in detail:

* Consent: Consent shows respect for user privacy by ensuring that end users
have the opportunity to understand how their data is being used and treated,
and provide consent for its use based on that knowledge. The specificity
of the consent given needs to be proportionate to the sensitivity of the data
being provided. For example, use of medical charts, X-rays, and blood test
data will require much greater detail and clarity in the consent notice than
just use of one's age, gender, and food preferences.

[218]

Chapter 7

* Accuracy: Accuracy refers to the private information being kept current and
accurate for whatever its intended purpose. Part of maintaining this FIP is
to ensure that strong integrity controls are being enforced throughout the
system. For example, high integrity controls may require digital signatures
to be part of the record-keeping process, whereas less sensitive or impactful
information may simply require cryptographic integrity in transit or
checksums at rest.

* Access: The access FIP addresses end users' ability to both access their
personal information and ensure its accuracy (and have the ability to correct
inaccurate information that has been detected).

* Compliance: Compliance deals with how organizations provide the controls
and mechanisms to end users to rectify problems in the accuracy or use
of their data. For example, does the smart doll manufacturer in the earlier
example have a process to:

o

Issue complaints?

[e]

Appeal any decisions made?

o

Escalate to an external organization or agency?

Privacy engineering recommendations

Privacy engineering is a relatively new discipline that seeks to ensure systems,
applications, and devices are engineered to conform to privacy policies. This section
provides some recommendations for setting up and operating a privacy engineering
capability in your IoT organization.

Whether a small start-up or a large Silicon Valley tech company, chances are you are
developing products and applications that will require PbD capabilities built in from
the ground up. It is crucial that the engineering processes are followed to engineer a
privacy-respecting IoT system from the outset and not bolt the protections on later.
The right people and processes are first needed to accomplish this.

[219]

Mitigating IoT Privacy Concerns

Privacy throughout the organization

Privacy touches a variety of professions in the corporate and government world;
attorneys and other legal professionals, engineers, QA, and other disciplines become
involved in different capacities in the creation and adoption of privacy policies, their
implementation, or their enforcement. The following diagram shows a

high-level organization and what concerns each sub-organization has from

a privacy perspective:

* Business Reputation

E i * Investor Concerns
| xecutive < “ Legal

= “=-<." Oversight

' Privacy Policy i
= Sales & * Government Policies
Technical =M af s:[-1 Legal * International Policy & Agreements
arketing * Industry-specific Regulations
* Policy deconfliction
R * Compliance / Enforcement
* Privacy Design * Gustomer Concerns
* Security Design * Communications

* Operations
* Technical Validation (privacy QA)
* Supply Chain

Privacy initiatives and working groups should be established within any
organization that develops frontline IoT products and services which collect, process,
view, or store any privacy information. The executive level should provide the
holistic direction and ensure the different sub-organizations are accountable for

their roles. Each department should have one or more privacy champions who put
themselves in the shoes of end customers to ensure their interests —not only the dry,
regulatory policies —are fully taken into account.

[220]

Chapter 7

Privacy engineering professionals

For all of the departments involved, the role of the privacy engineer is to understand
and participate in both the policy and technical lifecycle of privacy management and
implementation. Privacy engineering, a relatively new discipline, requires a different
capability set than what is typically found in a single corporate department. We
suggest the following attributes for individuals performing privacy engineering:

* They are engineers, preferably ones with a security background. Lawyers
and non-technical privacy professionals can and should be available
for reference and consulting, but privacy engineering itself is an
engineering discipline.

* They ideally have privacy-related qualifications such as an IAPP
(International Association of Privacy Professionals) certification
(https://iapp.org/certify).

* They have a strong knowledge of the following;:

o

o

o

Privacy policy
System development processes and lifecycle

Functional and nonfunctional requirements, including security
functional and security assurance requirements

Source code and software engineering practices, in the language(s)
the systems are being developed in

Interface design (APIs)
Data storage design and operations

Application of security controls to networks, software, and hardware,
as appropriate

Cryptography and proper use of cryptographic primitives and
protocols, given their importance in protecting PII throughout device
and information lifecycles

These are suggestions only; the needs of your organization may impose a number of
other minimum requirements. In general, we have found that security engineers who
have a development background and have obtained privacy professional training
tend to be individuals optimally suited for privacy engineering.

[221]

https://iapp.org/certify

Mitigating IoT Privacy Concerns

Privacy engineering activities

Privacy engineering in a larger organization should consist of a dedicated
department of individuals with the minimum qualifications listed above. Smaller
organizations may not have dedicated departments, but may need to improvise by
cross-training and adding privacy engineering duties to individuals engaged in other
facets of the engineering process. Security engineers tend to be naturally adept at
this. Regardless, depending on the size and scope of a project or program, at least
one dedicated privacy engineer should be allocated at the inception of program to
ensure that privacy needs are addressed. Ideally, this individual or set of individuals
will be associated with the project throughout its development.

The assigned privacy engineer should:

* Maintain a strong association with the development team, participating in:

¢ Design reviews

o

Code reviews

° Test activities and other validation/ verification steps

* Function as the end user advocate in the development of IoT capability.
For example, when performing code reviews with the development team,
this individual should ask probing questions about the treatment of each
identified PII element (and verify each in code).

* Where did it come from (verify in code)?

* Is the code creating any metadata using the PII that we need to add to our list
of PII?

* How was it passed from function to function (by reference, by value) and
how and where was it written to a database?

* When a function did not need it anymore, was the value destroyed in
memory? If so, how? Was it simply de-referenced or was it actively
overwritten (understandably bound to the capabilities of the programming
language)?

* What security parameters (for example, used for encryption, authentication,
or integrity) is the application or device depending on to protect the PII?

How are they being treated from a security perspective, so that they are
appropriately available to protect the PII?

[222]

Chapter 7

* If the code was inherited from another application or system, what do we
need to do to verify that the inherited libraries are treating the PII we have
identified appropriately?

* Inserver applications, what type of cookies are we dropping into end users'
web browsers? What are we tracking with them?

* Is anything in the code violating the privacy policy we established at the
beginning? If so, it needs to be re-engineered, otherwise privacy policy issues
will have to be escalated to higher levels in the organization.

This list of activities is by no means exhaustive. The most important point is that
privacy engineering activity is a dedicated function performed in conjunction

with the other engineering disciplines (software engineering, firmware, and even
hardware when necessary). The privacy engineer should absolutely be involved
with the project from inception, requirements gathering, development, testing, and
through deployment to ensure that the lifecycle of PII protection is engineered into
the system, application, or device according to a well-defined policy.

Summary

Protecting privacy is a serious endeavor made even more challenging with the IoT's
myriad forms, systems of systems, countless organizations, and the differences in
which they are addressed across international borders. In addition, the gargantuan
amount of data being collected, indexed, analyzed, redistributed, re-analyzed, and
sold provides challenges for controlling data ownership, onward transfer, and
acceptable use. In this section, we've learned about privacy principles, privacy
engineering, and how to perform privacy impact assessments in support of an

IoT deployment.

In our next chapter, we will explore starting up an IoT compliance program.

[223]

Setting Up a Compliance
Monitoring Program
for the loT

The security industry comprises an extremely broad set of communities, overarching
goals, capabilities, and day-to-day activities. The purpose of each, in one form or
another, is to better secure systems and applications and reduce risks within the
ever-changing threat landscape. Compliance represents a necessary aspect to security
risk management, but is frequently regarded as a dirty word in security. There is

a good reason for this. The term compliance invokes feelings of near-zombie-like
adherence to sets of bureaucratically derived requirements that are tailored to
mitigate a broad set of static threats. That's a mouthful of justifiable negativity.

We'll let you in on a second, dirty, not-so-much-of-a secret in our community:
compliance, by itself, fails to actually secure systems. That said, security is only one
element of risk. Lack of compliance to an industry, government, or other authority
can also increase risks in terms of exposure to fines, lawsuits, and the ever-present
negative impacts of degraded public perception within the court of public opinion.
In short, to be compliant with mandated compliance regimen, one can potentially
improve one's security posture, and certainly reduce other types of risk that are
indirectly security-related.

[225]

Setting Up a Compliance Monitoring Program for the IoT

In other words, an organization can find benefits in either case and will frequently
not have a choice anyway. With the cynicism behind us, this chapter discusses
approaches to building a compliance monitoring program for your IoT deployment
that is customized to ensure one's security posture is improved. It also recommends
best practices in achieving and maintaining compliance in adherence to applicable
cyber security regulations and other guidelines. Vendor tools that will help

in managing and maintaining your compliance regimen are also discussed. It
accomplishes these goals in the following sections:

* Describing the challenges that IoT devices introduce for compliance:
We will outline a series of steps to assist organizations with standing up a
compliant IoT system.

* Methods for continuously monitoring compliance and setting up an IoT
compliance program: In this section, we will distinguish traditional versus
IoT compliance, as well as identify tools, processes, and best practices
for continuously monitoring a system. Included are definitions of roles,
functions, schedules, and reports, as well as when and where to introduce
penetration testing (and how to go about it).

* Discussion of IoT impacts to frequently utilized compliance standards:
Here, we discuss changes that may be required to existing compliance
guidance programs.

There is never a one-size-fits-all solution for compliance and compliance monitoring,
so this section will help you to adapt, build, and tailor your own compliance
monitoring solution as the IoT landscape evolves.

loT compliance

Let's first examine what we mean when we use the term IoT compliance. What
we mean by this is that the people, processes, and technologies that make up an
integrated and deployed IoT system are compliant with some set of regulations
or best practices. There are many compliance schemes, each with a plethora of
requirements. If we were to explore what compliance means for a traditional
information technology system, for example, we would see requirements such as
the financial payment card industry (PCI) current data security standard (DSS),
an example being PCI DSS 1.4:

Install personal firewall software on any mobile and/or employee-owned devices
that connect to the Internet when outside the network (for example, laptops used by
employees), and which are also used to access the network.

[226]

Chapter 8

Even though this requirement is geared toward mobile devices, it is clear that many
IoT devices do not have the ability to implement firewall software. How then does
an JoT system show compliance when regulatory requirements do not yet take
constrained IoT devices into consideration? Today, the commercial industry has not
yet evolved a comprehensive IoT-related standards framework, mainly because the
IoT is so new, large, and diverse across industries.

Some technical challenges related to IoT systems and compliance include
the following:

* JoT systems implement a diverse array of hardware computing platforms
* IoT systems often use alternative and functionally limited operating systems

* JoT systems frequently use alternative networking/RF protocols not typically
found in existing enterprises

* Software/firmware updates to IoT components may be difficult to provision
and install

* Scanning for vulnerabilities in IoT systems is not necessarily straightforward
(again, new protocols, data elements, sensitivity, use cases, and so on)

* There is often limited documentation available for IoT system operations

Over time, existing regulatory frameworks will likely be updated to reflect the
new, unique, and emergent characteristics of the IoT. In the meantime, we should
focus on how to implement IoT systems in business networks using adaptive
compliance practices that reflect risks we know of today. First, we'll lay out a set of
recommendations for anyone integrating and deploying an IoT system into their
network, and then we will go into detail for setting up a governance, risk, and
compliance (GRC) program for your loT.

Implementing loT systems in a compliant
manner

Follow these recommendations as you begin to consider how to integrate your
IoT systems into business networks. Earlier chapters in this book described how
to securely engineer IoT systems. This section focuses on compliance-specific
considerations that will help achieve compliance-oriented risk management
benefits in whichever industry you operate.

[227]

Setting Up a Compliance Monitoring Program for the IoT

Here are some initial recommendations:

It is necessary to document the integration of each IoT system into your
network environment. Keep these diagrams ready for regular audits and
more importantly, keep them up to date. Leverage change control procedures
to ensure that they are not modified without authorization.

Documentation should include all ports, protocols used, interconnection
points to other systems, and also detail where sensitive information may be
stored or processed.

Documentation should include what parts of your enterprise the IoT devices
will be allowed to function and from what part of the enterprise (and what
portals/ gateways may be needed) any management or configuration of the
devices will be performed.

Documentation should also include additional device characterizations such
as a) configuration limitations, b) physical security, c) how a device identifies
itself (and how authenticated) and is associated to an enterprise user, and d)
how a device may or may not be upgradable. Some of these characterizations
will be useful in establishing and configuring monitoring solutions.

Implement a test bed. IoT systems should be set up in a test environment
prior to being operationally deployed. This allows rigorous security (and
functional) tests to be run against the systems to identify defects and
vulnerabilities prior to fielding. It also allows baselining how the devices
behave on the network (this may be useful in defining security incident and
event management (SIEM) detection pattern IDS signatures).

Establish solid configuration management approaches for all
IoT components.

Plan out the groups and roles that are authorized to interact with the
IoT system. Document these and keep as artifacts within your change
control system.

Obtain compliance and audit records from any third-party supplier or
partner with whom you share data.

Establish approval authorities that take responsibility for approving the IoT
systems' operation in the production environment.

Set up regular assessments (quarterly) that review configurations, operating
procedures, and documentation to ensure continued compliance. Once
scanning solutions are defined and configured, maintain all scan results for
audit preparation.

Set up incident response procedures that dictate how to respond to both
natural failure and malicious events.

[228]

Chapter 8

An loT compliance program

An IoT compliance initiative will probably be an extension of an organization's
existing compliance program. As with any compliance program, a number of
factors must be taken into consideration. The following figure provides a view

into the activities that should, at a minimum, be included in an IoT compliance
program. Each of the activities is a concurrent, ongoing function involving different
stakeholders in the organization:

Data
Remediation Planning Security

Privacy

ContinuousRisk Assessments
Safety

Internal Compliance Monitoring Reporting

Security Testing Monitoring

Governance

Trainingand Education

Policies and Procedures Documentation

Executive Oversight Standards & Regulations

loT Compliance Program

As organizations begin or continue to implement new IoT systems, ensure that each
aspect of your IoT compliance program is in order.

Executive oversight

Given its normalization as a critical business function, compliance and risk
management requires executive oversight and governance from multiple
departments. Organizations that do not have executive-level interest, policy
mandates, and monitoring, put their investors and customers at much greater risk
when easily prevented breaches occur. The following organizational functions and
departments should be included in the governance model for IoT operations:

* Legal and privacy representation
* Information technology/security
* Operations

* Safety engineering

[229]

Setting Up a Compliance Monitoring Program for the IoT

Executive governance — if not already mandated by an industry requirement (for
example, PCI DSS) —should include some type of approval authority to operate

an IoT system. Any new IoT or IoT-augmented systems should be requested and
granted from a designated approval authority within an organization. Without this
control, people may bring many potentially high-risk devices into the network. This
approval authority should be well versed in the security policies and standards

to which the system needs to comply, and have a sufficient degree of technical
understanding of the system.

The United States Federal Government implements a comprehensive compliance
program that requires packages to be created and maintained that detail the
justification for a particular system being added to a federal network. Though this
approval function in the government has failed to prevent all breaches, the overall
security posture of government systems do benefit from having a designated
individual responsible for overall security policy adherence.

US Government Approval Authorities must grant each system or subsystem the
right to be used on an agency network and must continue to grant that right each
year. Commercial organizations would be wise to adopt and tailor such an approach
for vetting and approving IoT systems that are to be added to the corporate network.
Having a designated individual responsible for approval reduces inconsistencies in
the interpretation and execution of policy. In addition, commercial organizations will
need to implement checks and balances such as periodically rotating duties among
other individuals/roles. This is particularly important for mitigating certain risks
that arise when employees leave an organization.

Policies, procedures, and documentation

Policies and procedures for the safe and secure operation of an IoT system are
needed for administrators as well as users of IoT systems. These guidance documents
should inform employees how to safeguard data and operate systems securely, in
accordance with applicable regulations. They should also provide details on the
potential penalties for non-compliance.

An activity for which organizations should consider establishing policies is the
introduction of personal IoT devices into the corporate environment. Security
engineers should evaluate the ramifications of allowing limited use of personal IoT
devices (for example, consumer IoT) in the organization and if so, what limitations
should be imposed. For example, they may find they need to restrict the installation
of IoT applications on company mobile phones but possibly allow the apps on
employee personal phones.

[230]

Chapter 8

Examples of security documentation artifacts that may be useful include system
security plans (SSPs), security CONOPS, cryptographic key and certificate
management plans, and continuity of operations policies and procedures. Well-
versed security engineers should be able to adopt and tailor these types of plans
based on best practices and identified risks.

Training and education

Many users of connected devices and systems will not initially understand the
potential impact of misuse for an IoT system. A comprehensive training program
should be created and provided to an organization's users and administrators of IoT
systems. The training program should focus on a number of details as identified in
the upcoming diagram.

Skills assessments

For system administrators and engineers, it is important to identify when there are
gaps in knowledge and skills needed to securely design, implement, and operate
IoT systems. It may be useful to perform yearly skills assessments for these staff to
determine their understanding of the following:

* IoT data security

* JoT privacy

* Safety procedures for IoT systems

* IoT-specific security tools (scanners, and so on)

Topical areas to address in skills assessment and training are indicated in the
following diagram:

-) \
2
2]
2 &
/NA SN
4
p < o \
,"/ o7 Ny B, © e |
| er"d Cf woﬂr @ 55\‘“ I|I
| Oy, P
| o 5\“\\\ ‘
I)
\ “090&“ 7 fa'l
\ W O e f
\ = 7, oey,
| pete® 2 O My |
N ®
< Z

Setting Up a Compliance Monitoring Program for the IoT

Cyber security tools

From an IoT security perspective, ensure that training is provided on the different
tools that are used to routinely scan IoT systems. This can be on-the-job training but
the end result is that security administrators understand how to effectively use the
tools that will provide regular inputs into the compliance state of IoT systems.

Data security

This is one of the most important aspects of the training needed in IoT compliance
programs. Administrators and engineers must be able to securely configure the
range of components that make up an IoT system. This includes being able to
securely configure the backend, cloud-based data storage, and analytics systems
to prevent malicious or even non-malicious leakage of sensitive information.
Understanding how to classify information as sensitive or not is also an important
part of this training. The diversity of data types and sensitivity levels possible in
different IoT devices can introduce unanticipated security and privacy risks.

Defense-in-depth

NIST SP 800-82 defines the principal of defense-in-depth: layering security
mechanisms so that the impact of a failure in any one mechanism is minimized
(http ://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.
pdf). Providing system administrators and engineers with training that reinforces
this concept will allow them to help design more secure IoT security systems and
IoT implementations.

Privacy

We've already discussed in this book the potential stumbling blocks regarding
privacy and the IoT. Incorporate privacy fundamentals and requirements into your
IoT training program to help staff safeguard sensitive customer information.

Incorporate details on the basics of IoT into your training regimen. This includes
the types of IoT systems that your organization will be adopting, the underlying
technology that drives these systems, and the manner in which data is transferred,
stored and processed within these systems.

[232]

http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf

Chapter 8

The loT, network, and cloud

IoT data is very often sent directly to the cloud for processing, and as such,
providing a basic understanding of the cloud architectures that support your

IoT systems should also be an aspect of your IoT training program. Similarly,

as new network architectures are adopted over time (that can better support
different IoT deployment paradigms), inclusion of more adaptable, scalable, and
dynamically responsive software defined networking (SDN) and network function
virtualization (NFV) capabilities should also be included. New functionality may be
needed for supporting dynamic policies with regard to IoT behavior on networks.

Threats/attacks

Keep staff up to date on how researchers and real-world adversaries have
compromised IoT devices and systems. This will help to drive responsive and
adaptable defense-in-depth approaches to system design as engineers conceptualize
the myriad ways that others have broken into these systems.

Sources of information on the latest threats and cybersecurity alerts include
the following:

* Automated Vulnerability Management from NIST: The National
Vulnerability Database (https://nvd.nist.gov/)

* General Cybersecurity Alerts: United States Computer Emergency
Readiness Team (US-CERT) (https://www.us-cert.gov/ncas)

* Industrial Control System Threat Information: The Industrial Control
System Cyber Emergency Response Team (ICS-CERT) (https://ics-

cert.us-cert.gov)

* Medical Device and Health Information Cybersecurity Sharing: National
Health Information and Analysis Center (NH-ISAC) (http://www.nhisac.
org)

* Many of the antivirus vendors provide current Internet threat data through
their respective websites

Many other sources that will vary in applicability to your organization or industry
can be found in the European Network and Information Security Agency's proactive
detection of network security incidents report: https://www.enisa.europa.eu/
activities/cert/support/proactive-detection/proactive-detection-
report.

[233]

https://nvd.nist.gov/
https://www.us-cert.gov/ncas
https://ics-cert.us-cert.gov
https://ics-cert.us-cert.gov
http://www.nhisac.org
http://www.nhisac.org
https://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-report
https://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-report
https://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-report

Setting Up a Compliance Monitoring Program for the IoT

Certifications

IoT certifications are lacking today, but for example, obtaining Cloud Security
Alliance (CSA) Certificate of Cloud Security Knowledge (CCSK) and Certified
Cloud Security Professional (CCSP) certifications may serve as a good starting
point to understanding the complex cloud environment that will power most IoT
implementations. Also consider certifications focused on data privacy, such as the
Certified Information Privacy Professional (CIPP) from International Association
of Privacy Professionals (iIAPP): https://iapp.org/certify/cipp/.

Testing

It is vital to test IoT implementations prior to deploying them into a production
environment. This requires the use of an IoT test bed.

Functional testing of IoT device deployments requires the ability to scale to the
number of devices that would typically be deployed in an enterprise. It may not be
feasible to physically implement these numbers during initial test events. As such,
a virtual test lab solution is required. Products such as Ravello (https://www.
ravellosystems.com/) provide the ability to upload and test virtual machines

in a realistic, simulated environment. When applied to the IoT, leverage the use

of containers (for example, Docker) to support the creation of baselines of the
environment that can be tested with both functional and security tools.

In addition, higher assurance IoT deployments should include rigorous safety
(failsafe) as well as security regression tests to validate proper device and system
response to sensor error conditions, security-or safety-related shutoffs, error state
recoveries, as well as basic functional behavior.

Internal compliance monitoring

Determining that your IoT systems are compliant with security regulations is an
important first start, but the value of performing the assessment activity diminishes
over time. In order to be vigilant, organizations should mandate a continuous
assessment methodology to evaluate the real-time security posture of systems. If
you haven't already begun a move towards continuous monitoring of your systems,
the adoption of IoT-integrated deployments is certainly good time to begin. Keep in
mind that continuous monitoring should not be confused with network monitoring.
Network monitoring is just one element of an automated policy-based audit
framework that should comprise a continuous monitoring solution.

The United States Department of Homeland Security (DHS) defines a six-step
process for continuous diagnostics and monitoring (https://www.dhs.gov/cdm):

[234]

https://iapp.org/certify/cipp/
https://www.ravellosystems.com/
https://www.ravellosystems.com/
https://www.dhs.gov/cdm

Chapter 8

Install/Update Automated .
Sensors Search for Flaws Collact Rasults Triage
System System Design .

. P Report: BugF
Implementation Updates rogress Reports Ug Fixes

These six steps are a good process to adopt for commercial enterprises implementing
IoT systems. They provide the means for large organizations to continuously identify
new security issues while prioritizing resources against the most pressing issues

at any given time. The adaptation for handling within an IoT system warrants
exploration.

An additional step has been added here that focuses on understanding the cause

of the failure and updating the system design and associated implementation
accordingly. A continuous feedback loop between the identification of flaws and the
potential architectural update of system designs is required for an effective security
management process.

Install/update sensors

Sensors in the traditional IT sense may be host-based monitoring agents installed on
enterprise computers (for example, that collect host logs for backend audit) or IDS/
IPS-enabled network sensors. In the IoT, putting agents on the constrained edge
things within a system is not straightforward, and in some cases may simply not be
feasible. That does not mean that you cannot instrument your IoT system, however.
Let's examine an architectural fragment:

®
002
oxe
Oo

Wireless Sensor Network

_— loT

Gateway

Patches up-to-date?
Ports, Protocols and

Devices in Inventory?
Encrypted Comms Links?
Keys managed per policy? services locked down?

= Authenticated/Integrity STIG/SNAC Compliance?
Protected Transactions? * Encrypted Comms Links

= Test Interfaces disabled? Secured Configuration?
Physicalsecurity Strong Authentication for
protections? administrators?
Monitor for anomalies?
Latest firmware?

Cloud Security Compliance?

= Application Security?

* Secured APIs?
Service
Instrumentation/Monitoring?
Privacy Controls?
Strong Authentication?
Interface Validation (e.g., for
malformed messages)?

[235]

Setting Up a Compliance Monitoring Program for the IoT

We can evaluate collected security-relevant data by considering an IoT architectural
model of WSN endpoints transmitting data to a protocol gateway, then that gateway
passing the data to the cloud. Once in the cloud, we can leverage the capabilities of
the cloud service provider (CSP) to capture data between application endpoints
supporting the IoT sensors. For example, within Amazon we can leverage AWS
CloudTrail to monitor API calls to the cloud.

The protocol gateway is likely to have the processing power and storage that is
sufficient for installing traditional IT endpoints security tools. These components
can send back data on a scheduled or on-demand basis to support continuous
system monitoring from either a cloud-based or on-premises support structure.

WSN’s (wireless sensor networks) frequently consist of highly constrained,
resource-limited IoT devices. Such devices may lack the processing, memory, or
operating system support needed to be instrumented with security and audit agents.
Even so, the wireless sensors can play an important part in the holistic security
posture of the system; therefore, it is worthwhile to examine what security features
we can leverage and derive from them.

Keep in mind that many such devices do not persistently store at all, instead passing
it on via the gateway to backend applications. We therefore need to ensure that basic
integrity protections are applied to all of the data-in-transit. Integrity will ensure
that no tampering of the data has occurred upstream of the gateway and that data
arriving at the gateway is legitimate (though not authenticated). Many wireless
protocols will support at minimum basic checksums (for example, 32-bit cyclic
redundancy check (CRC)), though hashes are more secure. Better yet, are those

that include a keyed message authentication code (MAC) as described in

Chapter 5, Cryptographic Fundamentals for IoT Security Engineering. AES-MAC,
AES-GCM, and others can provide rudimentary edge-to-gateway integrity and
data-origin authentication on both sent as well as received messages. Once at

the gateway (the IP network edge for some IoT devices), attention can focus on
capturing other data needed to monitor for IoT security anomalies.

Automated search for flaws

It's important to note that some IoT devices can exhibit much greater functionality.
Some may include components such as simple web servers to support configuration
of the device. Think of your home router, printer, and so on. Many home and
business appliances are built out of the box ready for network-based configuration.
Web interfaces can also be used for security monitoring; for example, most home
Wi-Fi routers support rudimentary email-based notification (configured through the
web interface) of security-related events pertinent to your network. Web interfaces
and notification systems can provide a capability in some IoT devices to indicate
flaws, misconfigurations, or even just out-of-date software/firmware information.

[236]

Chapter 8

Non-web interfaces may be found in other devices, for example, the myriad
endpoints that support the simple network management protocol (SNMP). SNMP-
enabled devices speak the SNMP protocol to set, get, and receive notifications on
managed data attributes that conform to device-and industry-specific management
information bases (MIBs).

If your IoT device supports SNMP, ensure that it is SNMPv3 and
. that endpoint encryption and authentication is turned on (SNMPv3
% user security model). In addition, 1) change SNMP passwords on a
L= routine basis, 2) use difficult-to-predict passphrases, 3) closely track all
snmpEngineIds and their associated network addresses, and 4) do not
use usernames on multiple devices if it can be helped.

Source:

https://smartech.gatech.edu/bitstream/handle/1853/44881/lawrence
nigel r 201208 _mast.pdf

The diverse ecosystem of IoT devices should be searched automatically for flaws
using whatever protocols are available on the endpoints. This includes mobile
applications, desktop applications, gateways, interfaces, web services hosted in the
cloud that support the growing amount of data collection, analysis, and reporting
that characterizes the IoT. Even seemingly non-security-relevant data such as
miscellaneous event times, temperatures, and other features of the device can be
exploited for improved security hygiene. Network-based tools such as Splunk are
invaluable for collecting, aggregating and automatically sifting through enormous
quantities of IoT data, whether from basic connected devices to full-scale industrial
control systems. Using software agents at gateways, protocol brokers, and other
endpoints, Splunk can ingest MQTT, COAP, AMQP, JMS, and a variety of industrial
protocols for custom analysis, visualization, reporting, and record keeping. If an
IoT edge device has the requisite OS and processing capabilities, it may also be a
candidate for running a Splunk agent. Custom rules can be designed in Splunk to
automatically identify, analyze, and report on combined non-security-, security-,
and safety-related items of interest in your deployment.

There are a number of tools that administrators can use to search for vulnerabilities
in IoT network gateways. Within the US Federal Government, the Assured
Compliance Assessment Solution (ACAS) suite of tools integrated by tenable is
used extensively. ACAS includes Nessus, Passive Vulnerability Scanner (PVS),
and a console.

[237]

https://smartech.gatech.edu/bitstream/handle/1853/44881/lawrence_nigel_r_201208_mast.pdf
https://smartech.gatech.edu/bitstream/handle/1853/44881/lawrence_nigel_r_201208_mast.pdf

Setting Up a Compliance Monitoring Program for the IoT

Other vulnerability scanning tools, some of which are open source, can be used

at different stages of the system or software development lifecycle as well as in
operational environments (as during penetration testing exercises). Examples include
the following (http://www.esecurityplanet.com/open-source-security/
slideshows/10-open-source-vulnerability-assessment-tools.html):

* OpenVAS
* Nexpose

* Retina CS community

Fostering basic risk management, organizations that are developing in-house IoT
products need to incorporate a feedback loop in the vulnerability assessment and
development lifecycle. As vulnerabilities are identified within fielded products,
development and patching backlog entries should be made that can be prioritized
for quick remediation. Organizations developing in-house smart IoT products
should also make use of tools that support static and dynamic code analysis as well
as fuzzing. These tools should be run on a regular basis, preferably as part of a fully
featured Continuous Integration (CI) environment. SAST and DAST tools are often
expensive but can now be leased on a cost-effective basis. The OWASP Firmware
Analysis Project also lists some device firmware security analysis tools that may be
useful in evaluating the firmware security of your IoT devices (https://www.owasp.
org/index.php/OWASP Internet of Things Project#tab=Firmware Analysis).

Collect results

The tools used in the search for flaws should provide reports that allow for triage.
These reports should be saved by the security team to use during compliance audits.

Triage

The severity of the findings will dictate what resources are assigned to each flaw

and in what order each flaw needs to be remediated. Assign a severity rating to each
flaw based on the security impact to the organization and prioritize the high-severity
findings to be fixed first. If your organization uses Agile development tools such as
the Atlassian suite (Jira, Confluence, and so on), you can also track these defects as
"Issues", assign specific lifecycle structures to them, and make judicious use of the
different labels you can attach to them.

[238]

http://www.esecurityplanet.com/open-source-security/slideshows/10-open-source-vulnerability-assessment-tools.html
http://www.esecurityplanet.com/open-source-security/slideshows/10-open-source-vulnerability-assessment-tools.html
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=Firmware_Analysis
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=Firmware_Analysis

Chapter 8

Bug fixes

Bug fixes should ideally be handled in the same manner that other features are
handled within the development cycle. Input DRs into the product backlog
(for example, Jira issues) and prioritize them to the next sprint. In severe cases,
exceptions can be made to stop new feature development and focus solely on
closing a critical security flaw.

Incorporate regression testing after each DR is completed to ensure that
unintentional flaws are not introduced during the fix of the DR.

Reporting
Security vendors have developed dashboards for reporting compliance. Make use of

those dashboards for providing reports to executive management. Each compliance
tool has its own reporting capabilities.

System design updates

When security flaws are discovered in IoT systems and devices, it is important

to hold retrospectives focused on determining whether there are design or
configuration changes that must be made to the systems and networks, or whether
the devices should be allowed to operate on them at all. At least quarterly, review
the flaws discovered during the preceding three months and focus on identifying
any changes to baselines and architectures that are required. In many cases, a severe
vulnerability in a particular device can be mitigated by a simple configuration
change in the network.

Periodic risk assessments

Perform periodic risk assessments, ideally using third parties to validate that the IoT
system is not only compliant but also meets its minimum security baseline. Perform
black box penetration testing least every six months and perform more focused
testing (white box) at least every year. The testing should focus on the IoT systems as
a whole and not just the devices themselves.

A comprehensive penetration test program should be established by organizations
deploying IoT solutions. This should include a mix of black box and white box
testing as well as fuzz testing against well-known IoT application protocols in use.

[239]

Setting Up a Compliance Monitoring Program for the IoT

Black box

Black box assessments can be conducted for a relatively low cost. These assessments
are aimed at attempting to break into a device with no a priori knowledge of the
technology that the device implements. As funding permits, have third parties
perform black box tests against devices as well as the infrastructure that supports
the devices. Perform these assessments at least yearly for each IoT system and more
often if systems change more frequently (for example, through updates). If your
systems wholly or partially reside in the cloud, perform at least the application
penetration testing against representative VMs that you have deployed in the cloud
containers. Even better, if you have a test infrastructure mock-up of the deployed
system, penetration testing against it can yield valuable information.

Ideally, black box assessments should include a characterization of the system
in order to help understand what details can be identified by someone without
authorization. Other aspects of black box assessments are identified in the
following table:

Activity Description
Physical security Characterize the physical security needs relative to the intended
evaluation deployment environment. For example, are there any unprotected

physical or logical interfaces? Does the sensitivity of the data
processed or stored in the device justify tamper protections such
as a tamper-evident enclosure, embedded protection (for example,
hard resin or potting around sensitive processors and memory
devices), or even a tamper response mechanism that wipes
memory in the event of physical intrusion?

Firmware/software How is firmware or software loaded into the device? Does the
update process device periodically poll a software update server, or are updates
analysis performed manually? How is initial software loaded (by whom

and where)? If factory software images are loaded over a JTAG
interface, is that interface still easily accessible in the field? How

is the software/firmware protected at rest, during download, and
loading into memory? Is it integrity protected at the file level? Is

it digitally signed (even better) and therefore authenticated? Can
software patches be downloaded in chunks, and what occurs if the
download/install process is halted for some reason?

[240]

Chapter 8

Activity

Description

Interface analysis

Interface analysis identifies all exposed and hidden physical
interfaces and maps all device application and system services
(and related protocols to each one). Once this has been
accomplished, the means of accessing each service (or function)
needs to be determined. Which function calls are authenticated?
Is the authentication on a per call basis, or is only a single
authentication required when initializing a session or otherwise
accessing the device? What services or function calls are not
authenticated? What services require additional steps (beyond
authentication) for authorization prior to performing the service?
If anything sensitive can be performed without authentication, is
the device's intended environment in a highly secure area only
accessed by authorized individuals?

Wireless security
evaluation

A wireless security evaluation first identifies what wireless
protocols are in use by the device and any known vulnerabilities
with the protocols. Does the wireless protocol use cryptography?
If so, are there default keys in use? How are keys updated?

In addition, wireless protocols frequently have default protocol
options configured. Some options may be less suited for

certain operating environments. For example, if your Bluetooth
module supports rotating MAC addresses and it is not a default
configuration in your IoT application, you may want to activate
it by default. This is especially true if your intended deployment
environment is more sensitive to device tracking and other
privacy concerns.

Configuration
security evaluation

Configuration evaluation focuses on the optimal configuration

of IoT devices within a system to ensure that no unnecessary
services are running. In addition, it will check that only authorized
protocols are enabled. Least privilege checking should also be
evaluated.

Mobile application
evaluation

Most IoT devices can communicate with either mobile devices
or gateways; therefore, an evaluation of the mobile devices
must also be conducted. During black box testing, this should
include attempts to characterize the mobile application features,
capabilities, and technologies, as well as attempts to break the
interfaces that connect with the IoT devices, either directly or
through web service gateways. Investigation of alternative
methods to override or replace trust relationships between the
mobile applications and IoT devices should also be investigated.

[241]

Setting Up a Compliance Monitoring Program for the IoT

Activity Description

Cloud security At this stage, an investigation into the communication protocols
analysis (web services | used by either an IoT device or mobile application and cloud-
security) hosted services should occur. This includes analyzing whether

secured communications (for example, TLS/DTLS) are employed
and how a device or mobile application authenticates to the

cloud service. Whether on-premises or cloud, the infrastructure
the endpoint is communicating with must be tested. Certain

web servers have known vulnerabilities, and in some cases the
management applications for these servers are public-facing (not a
good combination).

White box assessments

White box (sometimes called glass box) assessments differ from black box in that
the security testers have full access to design and configuration information about
the system of interest. The following are some activities and descriptions that can be
performed as part of white box testing;:

Activity Description

Staff interviews Evaluators should perform a series of interviews with development
and/or operational IT staff to understand the technologies used
within the implementation, integration and deployment points,
sensitive information processed, and critical data stores.

Reverse engineering | Perform reverse engineering of IoT device firmware when possible,
to identify whether new exploits can be developed based on the
current state of device firmware.

Hardware From a supply chain perspective, determine whether the hardware
component analysis | components in use can be trusted. For example, some organizations
may go so far as to fingerprint devices in proprietary ways to
ensure that hardware components are not clones or emanate from
unknown sources.

Code analysis For any software that the IoT system includes, perform both SAST
and DAST to identify vulnerabilities.

System design Review all documentation and system designs. Identify areas

and configuration of inconsistencies and gaps in documentation. Leverage the

documentation documentation review to create a security test plan.

reviews

[242]

Chapter 8

Activity

Description

Fault and attack tree
analysis

Many companies in diverse industries should develop, adopt, and
maintain comprehensive fault and attack tree models.

Fault trees provide a model-based framework from which to
analyze how a device or system can fail from a set of unrelated

leaf node conditions or events. Each time a product or system is
engineered or updated, fault tree models can be updated to provide
up-to-date visibility into the safety risk posture of the system.

Related but quite different to fault trees are attack trees, which
address device or system security. Attack trees should be created as
a normal risk management white box activity to understand how
an attacker's sequenced activities can compromise the security of an
IoT device or system.

Higher assurance communities such as those developing safety-of-
life IoT deployments (for example, avionics systems and life-critical
medical systems) should perform combined fault and failure tree
modeling to better understand the combined safety and security
posture. Note that some security controls can reduce safety,
indicating the complex trade-offs between safety and security.

Fuzz testing

Fuzz testing is a specialized, advanced field in which attackers attempt to exploit
an application through abnormal protocol usage and manipulation of its states.
The following table identifies some fuzz testing activities:

Activity

Description

Power on/power
off sequences/state
changes

Perform in-depth analysis to identify how loT devices respond
to different (and unexpected) inputs in various states. This might
include sending unexpected data to the IoT device during certain
state changes (for example, power on/power off).

Protocol tag/
length/value fields

Implant unexpected values in the protocol fields for IoT
communications. This could include non-standard lengths of field
inputs, unexpected characters, encodings, and so on.

Header processing

Implant unexpected fields in the headers or header extensions (if
applicable) of IoT communication protocols.

Data validation
attacks

Send random input or improperly formatted data to the IoT
endpoints, including its gateways. For example, if the endpoints
support ASN.1 messaging, send messages that do not conform to the
ASN.1 message syntax, or application-acceptable message structures.

[243]

Setting Up a Compliance Monitoring Program for the IoT

Activity Description
Integrate with The most efficient fuzz testing will use various automated fuzzers
analyzer that have an analysis engine on the endpoint's behavior as it's

being fuzzed. A feedback loop is created that observes the fuzzed
application's responses to various inputs; this can be used to alter
and devise new and valuable test cases that may, at the least, disable
the endpoint, and at the most, fully compromise it (for example, a
buffer overflow with subsequent, direct memory access).

A complex compliance environment

As a security professional, you are responsible for being compliant with security
standards that have been published for the industries within which you operate.
Many organizations are faced with meeting regulatory standards that span multiple
industries. For example, a pharmacy may be responsible for being compliant with
HIPAA as well as PCI regulations because it must protect both patient data as well
as financial transactions. These concepts still apply to the IoT —some of the things
are new, but the information types and protection mandates have been around for
some time.

Challenges associated with loT compliance

IT shops have traditionally had to track compliance with cybersecurity and data
privacy regulations and standards. The IoT introduces new aspects of compliance.
As embedded compute and communications capabilities are introduced into
organization's physical assets, the need to focus on compliance with safety
regulations must also come into play.

The IoT also blurs the line between many regulatory frameworks, a particular
challenge for IoT device manufacturers. In some cases, device developers may not
even realize that their products are subject to oversight from particular agencies
(http://www.lexology.com/library/detail.aspx?g=753elb07-2221-4980-
8£42-55229315b169).

[244]

http://www.lexology.com/library/detail.aspx?g=753e1b07-2221-4980-8f42-55229315b169
http://www.lexology.com/library/detail.aspx?g=753e1b07-2221-4980-8f42-55229315b169

Chapter 8

Examining existing compliance standards
support for the loT

As your organization begins to deploy new IoT capabilities, you will likely be able to
leverage existing guidance you're already familiar with to demonstrate some of the
security controls needed for the IoT. The challenge is that these guidance documents
have not kept up with the changing pace of technology, and as such some tailoring
of the controls to suit new IoT setups may be required.

In addition, there are currently gaps in coverage for various aspects of IoT standards.
The IoT Study Group and Interational Organization for Standardization (ISO)/

International ElectroTechnical Commission (IEC) Joint Technical Committee (JTC)
JTC 1 SC 27 recently detailed a set of IoT standards gaps that included the following:

* Gateway security

* Network function virtualization security

* Management and measurement of IoT security (that is, metrics)
* Open source assurance and security

* IoT risk assessment techniques

* Privacy and big data

* Application security guidance for IoT

* IoT incident response and guidance

Underwriters Laboratory loT certification

Addressing the enormous gap in loT compliance and certification, the well-known
Underwriters Laboratory (UL) has recently introduced an IoT certification regimen
(http://www.ul.com/cybersecurity/) into its Cybersecurity Assurance Program
(CAP). Based on its UL 2900 series of assurance requirements, the process involves
a thorough examination of a product's security; UL intends the process to be used
and tailored for a broad cross-section of industries, from consumer smart home
appliances all the way to critical infrastructure (for example, energy, utilities,

and healthcare).

[245]

http://www.ul.com/cybersecurity/

Setting Up a Compliance Monitoring Program for the IoT

NIST CPS efforts

NIST has been very active in the IoT security standards realm, particularly with
regard to the cyber-physical systems (CPS) subset of the IoT. In late 2015, the NIST
CPS Public Working Group (founded in mid-2014) released its first draft of its
draft framework for cyber-physical systems, a conceptual framework from which
CPS-related industries can derive development and implementation compliance
standards and requirements related to cyber-physical systems. The working group
was set up "to bring together a broad range of CPS experts in an open public forum to
help define and shape key characteristics of CPS, so as to better manage development and
implementation within and across multiple smart application domains, including smart
manufacturing, transportation, energy, and healthcare". (https://blog.npstc.
org/2015/09/22/cyber-physical-systems-framework-issued-by-nist-for-
public-comment/).

We point this out because there has been, so far, very little work in the realm

of cross-industry standardization of cyber-physical system concepts and terms.
IoT-related organizations may need to look for definitional guidance and
framework support to develop their own tailored sets of compliance regimen both
in development and deployment of new IoT paradigms. The NIST CPS framework
is valuable because it addresses three distinct facets related to development and
deployment of CPS, namely:

* Conceptualization

* Realization

* Assurance
In addition, the framework is fully cognizant of the distinctions between traditional
cybersecurity needs and those of industrial control system. For example, the stability
and control of physical system state and its dependence on timing information for
critical state estimation and control functions. The resilience of inner control system
functions depends on such attributes. Even if not for an industrial control system
usage, the IoT is replete with examples that involve physical sensors and actuation;
most of these meld the cyber and the physical domains in ways implementers
may not be fully aware of. Across the three CPS facets identified above, the draft
framework explicitly identifies and defines the following aspects of a CPS:

* Functional

* Business

* Human

e Trustworthiness

[246]

https://blog.npstc.org/2015/09/22/cyber-physical-systems-framework-issued-by-nist-for-public-comment/
https://blog.npstc.org/2015/09/22/cyber-physical-systems-framework-issued-by-nist-for-public-comment/
https://blog.npstc.org/2015/09/22/cyber-physical-systems-framework-issued-by-nist-for-public-comment/

Chapter 8

* Timing
* Data
* Boundaries
* Composability
* Lifecycle
While the NIST CPS framework is still in its infancy, it will likely become a

significant source of structure and definitional knowledge needed for cross-industry
modernization of CPS systems, standards, and risk management approaches.

NERC CIP

NERC CIP is the North American Electric Reliability Corporation's Critical
Infrastructure Protection (NERC CIP) standards series that apply to the US's
electrical generation and distribution systems. Organizations developing or
deploying CPS, IoT, and other cybersecurity-related systems in the electrical industry
should be well versed in NERC CIP. These standards address the following sub-
topics for bulk electric systems:

* Cyber system categorization

* Security management controls

* Personnel and training

* Electronic security perimeters

* Physical security of bulk electric system (BES) cyber systems

* System security management

* Incident reporting and response planning

* Recovery plans for BES cyber systems

* Configuration change management and vulnerability assessments

* Information protection
Conformance aspects related to categorizing the sensitivity of components,
integrating the correct controls, and overall assurance of the integrated electrical

system must be addressed for those organizations in the electrical industry adopting
and deploying new IoT systems.

[247]

Setting Up a Compliance Monitoring Program for the IoT

HIPAA/HITECH

Health organizations will face additional challenges associated with the transition to
connected medical devices and other smart healthcare equipment. Recent successful
attacks on health organizations (for example, ransomware attacks on hospitals and
critical patient data, http://www.latimes.com/business/technology/la-me-
1n-hollywood-hospital-bitcoin-20160217-story.html) shows that either
organizations are failing to meet compliance requirements or there are already
serious gaps in standards and practices. Ransoming critical, protected patient

data is serious; formulating and delivering real-life attacks on medical devices is
much worse, however. Evolving technologies and future attacks may make today's
problems pale in comparison.

Reference:

http://www.business.com/technology/internet-of-things-security-
compliance-risks-and-opportunities/

PCI DSS

Payment Card Industry (PCI) Data Security Standard (DSS) has been the
primary regulation to which industry stakeholders that process payments
must adhere. PCI DSS is published by the PCI Security Standards Council
(https://www.pcisecuritystandards.org/), an organization focused on
protecting financial accounts and transactional data. The latest PCI DSS is
version 3.1, published April 2015.

In order to understand the impact of the IoT on payment processors' abilities

to safeguard information, let's first examine the 12 high-level PCI DSS requirements.
The following table outlines the 12 requirements per the latest standard
(https://www.pcisecuritystandards.org/documents/PCI_DSS v3-1.pdf):

Domain Item Requirement
Build and maintain a secure 1 Install and maintain a firewall configuration to
network and systems protect cardholder data

2 Do not use vendor-supplied defaults for system

passwords and other security parameters

Protect cardholder data 1 Protect stored cardholder data

2 Encrypt transmission of cardholder data across
open, public networks

[248]

http://www.latimes.com/business/technology/la-me-ln-hollywood-hospital-bitcoin-20160217-story.html
http://www.latimes.com/business/technology/la-me-ln-hollywood-hospital-bitcoin-20160217-story.html
http://www.business.com/technology/internet-of-things-security-compliance-risks-and-opportunities/
http://www.business.com/technology/internet-of-things-security-compliance-risks-and-opportunities/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-1.pdf

Chapter 8

Domain Item Requirement
Maintain a vulnerability 1 Protect all systems against malware and
management program regularly update antivirus software or
programs
2 Develop and maintain secure systems and
applications
Implement strong access 1 Restrict access to cardholder data by business
control measures need to know
2 Identify and authenticate access to system
components
3 Restrict physical access to cardholder data
Regularly monitor and test 1 Track and monitor all access to network
networks resources and cardholder data
2 Regularly test security systems and processes
Maintain an information 1 Maintain a policy that addresses information
security policy security for all personnel

If we examine the retail industry as an exemplar for discussing possible IoT impacts
to the PCI, we have to consider the types of changes the IoT may bring about in the

retail world. We can then determine whether 1) PCI DSS applies to new IoT system

implementations in the retail environment or 2) whether other regulations apply to

IoT implementations in retail establishments.

There will be many types of IoT device implementations and system deployments in
the retail industry. Some of these include the following;:
* Mass implementation of RFID tagging for inventory control

* Consumer ordering technologies that support automated delivery of
products

* Automated checkout

* Smart fitting rooms

* Proximity advertising

* Smart vending machines
Examining such use cases, we can see that many of them (for example, automated
checkouts and smart vending machines) include some aspect of financial payment.

In these cases, the supporting IoT systems must adhere to existing PCI DSS
requirements.

[249]

Setting Up a Compliance Monitoring Program for the IoT

Consumer ordering technology is another interesting aspect of the IoT from a
compliance perspective. Technologies such as Amazon's Dash button (http://www.
networkworld.com/article/2991411/internet-of-things/hacking-amazons-
dash-button.html) allows easy, rapid ordering of products. Although the devices
do not process credit card information, they interconnect with Amazon's systems to
submit orders for products. Devices that sit on the periphery of financial transactions
will need to be evaluated to determine applicability of certain financial industry
standards.

NIST Risk Management Framework (RMF)

NIST Special Publication 800-53 is a mainstay of security risk management controls
and control categories. It is best viewed as a security control meta-standard because
it is intended to be tailored for each organization based on a comprehensive set of
system definition and risk modeling exercises. While statically defined, the controls
themselves are comprehensive and well thought-out. The continuous and iterative
steps of the RMF are depicted in the following image:

The RMF Process

Categorize
Select
Implement
Assess
Authorize
Monitor

o T B =y L I Sy S

The RMF process makes use of 800-53 security controls but takes a step back and
calls for a series of continuous risk management activities that should be followed by
all system implementations. These include the following:

* Categorizing the system based on the importance of the system to mission
operations and the sensitivity of the data processed

* Selecting the appropriate security controls

* Implementing the selected security controls

* Assessing the implementation of the security controls

* Authorizing the system for use

* Continuously monitoring the system security posture

This process is flexible and at a high level can be applied and adapted to any IoT
system implementation.

[250]

http://www.networkworld.com/article/2991411/internet-of-things/hacking-amazons-dash-button.html
http://www.networkworld.com/article/2991411/internet-of-things/hacking-amazons-dash-button.html
http://www.networkworld.com/article/2991411/internet-of-things/hacking-amazons-dash-button.html

Chapter 8

Summary

The IoT is still in its infancy, and while compliance is certainly a dicey subject, the
most important, overarching goal in setting up a compliance program is to ensure
that it is effective and cost-effective overall. In this chapter, you were introduced to
a variety of compliance programs unique to certain industries. In addition, you were
provided some important best practices for setting up your own program. While
there are still many gaps with regard to IoT standards and frameworks, there are
significant developments among standards bodies today that are beginning to close
those gaps.

In the next chapter, we will explore cloud security concepts regarding the IoT.

[251]

Cloud Security for the loT

This chapter provides a view into cloud services and security architectures designed
to support the Internet of Things. Using cloud services and security best practices,
organizations can operate and manage cross-organizational, multi-domain IoT
deployments across trust boundaries. We examine Amazon Web Services (AWS)
cloud and security offerings, components offered by Cisco (Fog Computing), as well
as Microsoft Azure.

Closely bound to cloud and cloud security are big data aspects of the IoT that require
security. We will delve into IoT data storage, data analytics, and reporting systems
along with best practices on how to secure these services. Securing the various facets
of IoT in the cloud also requires us to address what elements of security are the
responsibilities of the customer versus the cloud provider.

This chapter addresses IoT cloud services and cloud security through the
following sections:

* Cloud services and the IoT: In this section we will define the cloud as
it relates to and benefits the IoT. In addition, we will identify unique
requirements that IoT levies on the cloud. In this section, we will also identify
and review loT-related security threats both internal and external to the
cloud before delving into cloud-based security controls and other offerings.

* Exploring cloud service provider (CSP) IoT offerings: We will explore a
few CSPs and their software/security-as-a-service. We address Cisco's Fog
Computing, Amazon's AWS, and Microsoft's Azure.

* Cloud IoT security controls: We examine the security functionality needed
from the cloud to build out an effective IoT enterprise security architecture.

* Tailoring an enterprise IoT cloud security architecture: This section utilizes
available cloud security offerings to mix and match into an effective, overall
IoT cloud security architecture.

[253]

Cloud Security for the IoT

* New directions in cloud-enabled IoT computing: We step back from the
cloud security discussion here to briefly explore new computing paradigms
that the cloud is well poised to deliver.

Cloud services and the loT

In terms of B2B, consumer and industrial IoT deployments, nothing connects devices,
device data, individuals, and organizations together more than cloud-based IoT
supporting services. Gateways, applications, protocol brokers, and a variety of data
analytics and business intelligence components reside in the cloud for convenience,
cost, and scalability. In terms of supporting billions of IoT devices, cloud-based
services offer the most compelling environment for new or legacy companies to
deploy services. In response, CSPs have begun to offer more and more features to
support connecting IoT products in a secure way. Developer-friendly IoT cloud-
based starter kits are entering the stage to help IoT product and service companies
cloud deploy with minimal effort. Organizations that go the route of standardizing
on these cloud connectivity solutions should perform due diligence to ensure that
they understand the security controls built into each offering.

As an example, ARM recently worked with Freescale and IBM to create a
cloud-enabled IoT starter kit (http://www.eetimes.com/document .asp?doc_
id=1325828). The kit includes an MCU that automatically streams data to a website
on the Internet. Although the kit is geared towards training developers how to easily
weave the cloud into IoT solutions, it is important that developers understand that
doing so in production is very different and requires a security engineering process.

This section provides a discussion on some of the cloud services that are beginning
to stand up in support of IoT systems. With organizations soon to deploy millions of
IoT products across diverse systems, the cloud is the optimal mechanism for tracking
the location and state of these devices. There will be other cloud services that spring
up to support device provisioning, firmware updates, and configuration control as
well. Given the ability to directly influence the functional and security state of an IoT
device, the security of these services is paramount. Attackers will probably target
these services, which, if compromised, would offer the ability to make large-scale
changes to the state of many devices at once.

Asset/inventory management

One of the most important aspects of a secure IoT is the ability to track assets and
inventories. This includes attributes of the devices as well. The cloud is a great
solution for enabling enterprise asset/inventory management, providing a view
into all devices that have been registered and authorized to operate within the
organizations' boundaries.

[254]

http://www.eetimes.com/document.asp?doc_id=1325828
http://www.eetimes.com/document.asp?doc_id=1325828

Chapter 9

Service provisioning, billing, and entitlement
management

This is an interesting use case as many loT device vendors will offer their devices to
customers as a service. This requires the ability to track entitlements, authorize (or
remove authorization for) device operations, as well as prepare billings in response
to the amount of usage. Examples include subscription services for camera and
other sensor-based monitoring (for example, DropCam cloud recording), wearables
monitoring and tracking (for example, FitBit device services), and many others.

Real-time monitoring

Cloud applications used in support of mission-critical capabilities, such as
emergency management, industrial control, and manufacturing may provide real-
time monitoring capabilities. Where possible, many organizations are beginning to
port industrial control system, industrial monitoring and other functions to the cloud
to reduce operational costs, make the data more available and open up new B2B

and B2C services. As the number of IoT endpoints proliferates, we will see devices
such as programmable logic controllers (PLCs) and remote terminal units (RTUs)
become direct connected to the cloud, supporting the ability to monitor systems
more efficiently, and effectively.

Sensor coordination

Machine-to-machine transactions offer enhanced abilities to coordinate and even
autonomously conduct service negotiations. Over time, workflows will become more
automated, increasingly driving humans out of the transaction loop. The cloud will
play a central role in enabling these automated workflows. As an example, cloud
services will emerge that IoT devices can query to gather the latest information,
restrictions, or instructions. The publish/subscribe protocols that drive many IoT
implementations (for example, MQTT) as well as RESTful communications are both
ideal for enabling these new use cases.

[255]

Cloud Security for the IoT

Customer intelligence and marketing

One of the powerful features of the IoT is the ability to tailor marketing to customers.
Salesforce has created an IoT cloud aimed heavily at beacons and other smart
devices. The cloud includes Thunder, which introduces a new real-time event
engine. This system provides customers with the ability to automatically trigger
messaging or send alerts to sales personnel. One good example is the concept of
smart local advertisements. In these instances, customers are identified through
some mechanism as they walk through a store or shopping center, for instance. Once
identified, their purchase history, preferences or other characteristics are reviewed
and tailored messaging is provided. From a privacy perspective, it is interesting to
think through how either the tracking mechanism or the dossier collected can be
used against a customer by a malicious party.

Other types of IoT customer intelligence includes energy efficiency improvements
that benefit the environment. For example, home appliances can share usage data
with cloud backend systems as part of a smart grid approach; device usage can be
modulated based on need and price. By aggregating IoT appliance data that includes
time and frequency of use, energy consumed, and current electrical market pricing,
devices and users can respond by altering usage patterns to save energy costs and
reduce environmental impact.

Information sharing

One of the primary benefits of the IoT is that it allows the sharing of information
across many stakeholders. For example, an implantable medical device may provide
information to a medical office, and that medical office may then provide that
information to an insurance provider. The information may also be kept resident
with other information gathered on a patient.

Information sharing and interoperability services of the cloud are mandatory
prerequisites to enabling powerful IoT analytics. Given the diversity of IoT hardware
platforms, services, and data structures, providers such as wot.io aim to provide
middleware-layer data exchange services for the myriad data vendors' sources and
sinks. Many IoT applications and supporting protocols are publish/subscribe-based,
lending themselves naturally to middleware frameworks that can translate between
the various data languages. Such services are critical to enabling data B2B, B2I, and
B2C offerings.

[256]

Chapter 9

Message transport/broadcast

The cloud and its centralized, adaptable, elastic capabilities is the ideal environment
for implementing large scale IoT message transaction services. Many of the cloud
services support HTTP, MQTT, and other protocols that, in various combinations,
can transport, broadcast, publish data, subscribe to data or move data around in
other necessary ways (centrally or at the network edge). One of the enormous
hurdles with IoT data processing is the management of scale. Put plainly and
simply, the IoT requires the cloud's architectural ability to elastically scale its data
services —hence message transport/broadcast services — to meet unprecedented
and growing demands.

Examining loT threats from a cloud
perspective

Many targeted threats to cloud-based infrastructures are identical or similar to those
against non-cloud IT systems. The following threat profiles, among many others, are
important to consider:

Threat area Targets/Attacks
Cloud system administrators and | Harvesting and use of administrator passwords,
users tokens and/or SSH keys to log into and wreak

havoc on an organization's virtual private cloud
(imagine the compromise of a corporation's AWS
root account).

Web browser cross-site scripting on user/manager
host machines.

Malicious payloads (for example, JavaScript-based)
from web browsing or e-mail attachments (rooted
administrator computers offer an attractive attack
vector to compromise an organization's cloud-based
enterprise, too).

Virtual endpoints (VMs, VM and other container vulnerabilities
containers) Web application vulnerabilities
Insecure IoT gateways
Insecure IoT brokers
Misconfigured web servers

Vulnerable databases (for example, SQL injection) or
databases misconfigured for proper access controls

[257]

Cloud Security for the IoT

Threat area Targets/Attacks

Networks Virtual networking components

Denial of service flooding of any endpoint

Physical and logical threats to IoT | Insecure IoT edge gateways (not in the cloud)
devices that connect to the cloud Tampering and sniffing traffic or accessing data

Tampering and injecting malicious payloads into the
IoT communication protocol traffic between devices,
edge gateways, and cloud gateways

IoT device endpoint spoofing (communication
redirects or lack of proper authentication/
authorization)

Lack of encryption/confidentiality
Poor ciphersuites
Lack of perfect-forward-secrecy

Insecure database (plaintext or poor access control)
storage on device

Theft of IoT devices

The preceding list is just a small sample of security topics that need to be addressed
when migrating to or making use of IoT infrastructures to the cloud. Fortunately,
major cloud providers or their partners have answers to most of the above threats, at
least those that exist within the CSP's trust boundary. Cloud-based security controls
cannot, however, supplant device vendors' responsibilities for hardening IoT devices
and ensuring their virtualized applications and Virtual Machine internals are
hardened. These are challenges that deployment organizations must face.

In terms of the relative magnitude of cloud-based risks, in most cases the automated
infrastructure-as-a-service (IaaS) capabilities of the cloud can likely lower the
security risks to an organization operating IoT devices and systems. With relatively
few exceptions, the security offerings available for hosted cloud infrastructure

and services necessitate fewer cybersecurity professionals and can reduce high
maintenance, on-premises security costs. Cloud-provisioned laaS services are more
likely to have consistently applied, secure-by-default configurations to VMs and
networks, benefiting client organizations through security practice economies of
scale. Before delving into cloud security for the IoT, we will first explore some of the
IoT business offerings and benefits available in the cloud today.

[258]

Chapter 9

Exploring cloud service provider loT
offerings

Cloud-based security offerings, also called security-as-a-service (SECaaS),
represent a rapidly growing cloud-enabled business, and these offerings are ripe

for supporting the IoT. Not only are SECaa$S offerings scalable, but they also help
organizations cope with the ever-worsening, limited supply of security engineering
resources. Most companies today lack the people and knowledge needed to perform
security integration, keep up with the latest security threats, architect security
operations centers, and perform security monitoring. CSPs offer some solutions.

AWS loT

Amazon is poised to be a leading enabler of cloud-based IoT services, and
in many cases will be the IoT cloud service provider's cloud provider.
In Amazon's own words:

"AWS IoT is a managed cloud platform that lets connected devices easily and
securely interact with cloud applications and other devices. AWS IoT can support
billions of devices and trillions of messages, and can process and route those
messages to AWS endpoints and to other devices reliably and securely."

Source: http://aws.amazon.com/iot/

Amazon's AWS IoT is Amazon's framework that allows IoT devices to communicate
with the cloud using a variety of protocols (HTTP, MQTT, and so on). Once in the
cloud, IoT devices can speak with each other and services via application brokers.
AWS IoT integrates with a variety of other Amazon services. For example, you can
utilize its real-time data streaming and analytics engine, Kinesis. Kinesis Firehose
operates as the ingestion platform accepting data streams and loading it into other
Amazon domains: Simple Storage Service (S3), Redshift (data warehousing), and
Amazon Elastic Search (ES). Once in the appropriate data platform, a variety of
analytics can be performed using Kinesis Streams and the forthcoming Kinesis
Analytics. Amazon Glacier (https://aws.amazon.com/glacier/) provides
scalable, long-term data archiving and backup for less frequently accessed data.

[259]

http://aws.amazon.com/iot/
https://aws.amazon.com/glacier/

Cloud Security for the IoT

In terms of supporting IoT applications and IoT development, AWS IoT integrates
well with Amazon Lambda, Kinesis, S3, CloudWatch, DynamoDB, and a variety of
other Amazon-provisioned cloud services:

All devices have credentials
{X_509 or AWS Principals)

[
VG
N

HTTP over TLS

@

 /

L — *
Connected Equipment \\-_/\‘ Ar n
3
ThingShadaw IoT Gateway Y\\ Bucket :‘:::;nr:w
3 ¢ ————— er Lami funcrions
MQTT Client 1D can be used 1o fopenvics res
map a physical thing to the thing . {} TP O _]
o Authorizes connections Rules | 8
Engine
Cloud Lambda
LAMBDA pulls records from
- i KINESIS streams
i ——
—~ Subscribe LAMBDA function
AmSzon — to DynamoD8 stream
. Kinesis Dyiamo08
O o2
> U
Ve -
Sg — W

Sensors

. . immmﬂ"“

App App App

A variety of industries have begun to engage the Amazon IoT platform, including
healthcare. For example, Philips has partnered to make use of the AWS IoT services
as the engine for its HealthSuite Digital platform. This platform is designed to allow
medical service providers and patients to interact in transformative new ways using
IoT healthcare devices, traditional data sources, analytics, and reporting. Many
other IoT-related companies are beginning to leverage or partner with AWS in

their IoT portfolios.

CSP IoT services such as AWS IoT offer the ability to preconfigure IoT devices and
then upload the configurations to the physical devices when they are ready to bring
online. Once operational, AWS IoT offers a virtual Thing Shadow that can maintain
the state of your IoT device even when offline. The configuration state is kept in a
JSON document stored in the cloud. So, for example, if a MQTT-enabled light bulb
is offline, a MQTT command can be sent to the virtual things repository to change its
color. When the lightbulb comes back online, it will change its color appropriately:

[260]

Chapter 9

Learn more

Name
REST API endpoint

MQTT topic

Last update
Attributes

Linked certificates

Detail

Update shadow Edit X

loTSensor_1234512345

https/{AQCB8HLUVOLIRM iot us-east
-1.amazonaws.com/things/loTSensor
_1234512345/shadow

‘Saws/things/loTSensor_123451234

S/shadow/update’

Mo state
Color: Green
location: BLDG10

None

The AWS Thing Shadow is an intermediary between a controlling application and
the IoT device. Thing shadows leverage the MQTT protocol with predefined topics
that can be used to interact with the service and devices. MQTT messages that are
reserved for the Thing Shadow service begin with $aws/things/thingName/shadow.
The following are the reserved MQTT topics that can be used to interact with the
shadow (https://docs.aws.amazon.com/iot/latest/developerguide/thing-

shadow-mgtt.html):

* /update

* /update/accepted
* /update/documents
* /update/rejected
® /update/delta

* /get

* /get/accepted

* /get/rejected

* /delete

* /delete/accepted
* /delete/rejected

Things can either update or get the Thing Shadow. AWS IoT publishes a JSON
document for each update and responds to each update and get request with

status of /accepted or /rejected.

[261]

https://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-mqtt.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-mqtt.html

Cloud Security for the IoT

From a security perspective, it is important that only authorized endpoints and

applications are able to publish to these topics. It is also imperative

that the

administrative console be locked down sufficiently to keep unauthorized

actors from gaining access to directly configure IoT assets.

To illustrate some of the AWS IoT data processing workflow, let's explore an
additional use case for a connected farm that leverages the data processing

capabilities of the AWS cloud. Special thanks to Steve Csicsatka for
with this diagram:

assistance

5 Simple Storage .
: Service - 53 :
: Img. Vides, Data
= ! Upload J Download
§ 5
P U
s =
Mobile Apps 3 5 g
a g
(o) : i (P2
4 3 =
> . o
g g 5
et 519 g = g
Web Sites” - | g
g 5
: ‘r—>)

Kinesis O O
Embedded [

Il Apps

API
aleway|
et

IRy

DynamaoDB

Ly ouBogy

)

SUDNEZNGN USNd

g
Sacurily token
2k, Service - STS

Sensors Apps/Web Hosts

Video / Image
- Satellito Imageny - Walor Lovel / Soil Saturation
- Dvone kmagery / Video - Soil Fh balance

- Stand-Alone Cameras - Soil Nutrient Content

- Awrinl Phatograplny - Wind Sensors
= Rain Sensors

- Farm Equipment Rogairs

- Weathor Foeenst
- Commogies Mackat | Prices.

- Gavermnment Subsidies

- Pasticide Markat | Prices

= Mutrient Market { Prices

: \Jurn 8 Bup Markat Prices

| Mecsia :mrww‘

Identity Access Management

=
Multi Factor Auth & ==y
x

Sensers

- Underater Cameras - Barsmebic Sensors ook Foveca ting g
- Humidity Snsoms - Barometric Frossure anc1 sting Cloud Trail
= Soil Density { Content =+ Humnidity Forecasling
- 520 commodilies level Form Eauornant MafkeL/ Prices. .
- Anirmal GPS Sensors. - Shipping & Transport Mar I Cloud Walch
Equipment GPS sonsors - Woeker I Hiring Market | Frivas -
Animal Hoath Sensors L
- Anieral Food / Water lavals. } Elastic Beanstalk
SR -

AP Gateway: Create, pubiish, maintain, monitor,
and APl

CloudFrent: Creates distinulions of £100ed 4ua on
a global network of edge locations.

Kinegis: real-tims datn processing over Large,
distributed data streams.

Kinesks Emboddod Apps: Processes large data
streams

Lamda: Piatform for analyzing data on the fly and
detorrmining immad ale acliors

5Q5: Low dala messages cache

53: Storing large data

DynamoDB: Low Litency daty storage requined for
£wal tano annlysis

Quaries hadoop sze dota,
analyres, and gives reguested resulls
AN Pt fhm dirta warehouse foe eetrieval and
anatysis
Etastic Beanstalk: Code manngement, monitoring,
and depiyment
CIBHASEANEN Website applicaton seach orvice
ClouETral 5 AP calls for your account and
gaiivars ko files
R ' oitoring senvice for AWS doud
ressurces dnd apolications.
MAGIEE: £ Auckds 1ho second factor fwhal
Ehery have) with thair usarmiama and password

Aty to tiFolerrﬁ
access 10 AWS services and resources far user
RS Managarnant of authanbeition kays I‘nnlw!:
Sacurity Tokan Sorvics: Tomgarnny, lmiled-
privilege credentials for (1ARM) users

Dodicated network connection
from your promises o MNG
WS DNS sanvion

Simplo Notification Servica: Ability i push
notfications and updates 10 cuslomers.

Internet of Things
AWS
Event Data Process

In this use case, there are a number of endpoints that are injecting data into the AWS
cloud. Data enters AWS through a number of potential front doors:

¢ Kinesis
¢ Kinesis Firehose
[]

MQTT broker

Once inside AWS, the AWS IoT rules engine functions as the decision point to
determine where data should be routed and any additional actions to take on
the data. In many instances, data will be sent to a database —for example, S3 or

DynamoDB. Redshift can also be employed and should be used to
over time, as well as for long-term data storage.

preserve records

[262]

Chapter 9

Within the AWS IoT suite, one can take advantage of the integrated log management
features through CloudWatch. CloudWatch can be configured directly within

AWS IoT to log process events on messages flowing from devices to the AWS
infrastructure. Message logging can be set to errors, warnings, informational, or

debug. Although debug provides the most comprehensive messages, these also take
up additional storage space:

CloudWatch Logs
Status Enabled

Log level Debug (most verbose)

You can enable AWS loT to log helpful infoermation to CloudWatch
Logs. As messages from your devices pass through the message
broker and the rules engine, AWS loT logs process events which
can be helpful in troubleshooting. There are four levels of log
verbosity. For example, you can choose "Errors” to get only logs

about errors, or "Info" to get informational logs, warnings, and
errors. Click here to learn more about troubleshooting in AWS loT
with CloudWatch Logs.

Save

Amazon CloudTrail should also be leveraged for an AWS-based IoT deployment.
CloudTrail supports account-level AWS API calls to enable security analysis,
analytics, and compliance tracking. There are many third-party log management

systems, such as Splunk, AlertLogic, and SumoLogic that integrate directly with
CloudTrail.

[263]

Cloud Security for the IoT

Microsoft Azure loT suite

Microsoft has also taken a big leap into the IoT cloud space with its Azure IoT Hub.

Azure boasts some powerful IoT device management features for [oT implementers,
including device software/firmware updating and configuring. Beyond IoT device
management, Azure provides features that allow IoT deployers to organize and
group devices within their operational domains. In other words, it enables IoT
device-level topology management as well as per-device configuration, a prerequisite
to establishing group-level management, permissions, and access control.

Azure's group management service is provided through the device group AP],
while its device management features, software versioning, and provisioning,

and so on, are provided through its device registry management API (https://
azure.microsoft. com/en—us/documentation/art:i.cles/iot—hub—devguide/).
Centralized authentication is provided using the existing Azure Active Directory
authentication framework.

The Azure IoT Hub supports IoT-related protocols such as MQTT, HTTP, and
AMQP to enable device-to-cloud and cloud-to-device communication. Given the
inevitable variety of communication standards, Azure provides cross-protocol
fusion capabilities to developers via a generic IoT Hub message format. The
message format consists of a variety of system and application property fields. If
needed, device-to-cloud communications can leverage Azure's existing event hub
APIs, but if per-device authentication and access control are needed, the IoT Hub
will support this.

Per-device authentication and access control in Azure are enabled through the use
of IoT Hub security tokens that map to each device's access policy and credentials.
Token-based authentication allows authentication to take place without transmitting
sensitive security parameters across the wire. Tokens are based upon a unique
Azure-generated key that is generated using the accompanying manufacturer or
implementer-provided device ID.

To illustrate some of the Azure IoT data processing workflow, let's return to our
connected farm IoT system and examine the backend configuration within Azure.
As with AWS, there are various entry points into the cloud for connected devices.
Data can be ingested into Azure through the API gateway or through the IoT
services, which support REST and MQTT. Data can then be sent to blob storage or to
DocumentDB. Also note that the Azure Content Delivery Network (CDN) is a good
tool for distribution of firmware updates to your IoT device inventory:

[264]

https://azure.microsoft.com/en-us/documentation/articles/iot-hub-devguide/
https://azure.microsoft.com/en-us/documentation/articles/iot-hub-devguide/

Chapter 9

loT - Azure : g . '
Event Data : e
P 2 Img, Video, Data Network
rocess ~ : Upioad/ Download
= -
§ ¥ [
g ¢ f% i Azure Search
£ 2ol 3
g 5 5
g .@ g
w2
=
@ =
P h;«;“ :
Sensors ﬁ = Vv @
o il : 1
b 0 4ty 2
o L ;")
= =z 2l o 2 .
p-d o -lle B R o o
=1 = 3 3 @ I-QD $
= 118 P : T g 3
: E . ez : : i}
|13 3
D L= D I |
Access Control - o ’]:I] .
Sevice L.........NoificalonHibs ! . . Express Route
Video / Image Sensors Apps / Web Hosts ! 3
I ANBIHES. TS otcn e et S e s T e e
= SaleBe Imagery - Water Level/ Soil Saluration - Weather F orecast _ .
- Drone Imagery / Video - Sod Ph balance = Commodities Market /| Prices 1 I .
- Stand-Alcne Cameras - Sod Hulrient Centent - Government Subsiies : > Meda Canen PIiecilon
- Aerial Photograghy - \Wind Sensors - Pestiide Market] Prices . - +
= Tractor Cameras - Rain Sensors = Hutrisnt Market / Prices 1 I - ;)
- Silo Cameras - Farm Equipment Repairs - Worm & Bug Market / Prices . . Active Authentication % G=
- Animal Cameras - Temperalure Sensors - Faming Sodal Media / Adverlising I I
- Undenvater Cameras - Baromelric Sensors - Temperature Forecasting £
- Humidity Sensors - Baremetric Pressure Forecasting ! - l Operational Insights
- Soll Density / Conlent - Humidty Forecastng] 1
- Sdo commodilies level - Farm Equpment Markel / Price s - .
- Aaimal GPS Sensors - Shipping & Transport Markel Prices. | . j Cloud Sewvices
- Equpment GPS sensors - Worker { Hiring Market / Prices = % (Paas)
- Animal Health Sensors Liwime =1

- Animal Food 7 Waler levels

Cisco Fog Computing

Cisco's IoT strategy for the cloud addresses the fact that the vast majority of IoT
devices operate at the network edge versus in a region close to centralized cloud
processing. Hence, the term fog, visible moisture at the ground (edge) versus
central cloud (sky) represents Cisco's rebranding of the well-known concept of edge
computing. The sheer scale of the IoT, Cisco is betting, will require much more
powerful functional and security resources integrated into network and application
stacks at organizations' network edges. The benefits of keeping data and processing
as edge-central as possible include the following:

* Reduced latency: Many data-intensive edge applications for the IoT are real-
time because they involve vast amounts of sensor data, localized decision
making, and response

[265]

Cloud Security for the IoT

* Data and network efficiency: Data volumes that comprise the IoT are
enormous and there are many cases where porting the data makes no sense
in terms of clogging networks just to move it around for application and
security treatment

* Policies can be locally managed and controlled based on local
edge conditions

* Reliability, availability, and security at the IoT edge are improved based
on local needs

The preceding benefits are perhaps most tangible to the industrial IoT where
central-only cloud processing just won't do. Time-sensitive sensor streams,
controllers, and actuators, monitoring and reporting applications and
voluminous datasets associated with the industrial IoT make Fog
Computing an appealing model.

Cisco's Fog Computing, though early in its lifecycle, is already implemented in
the IOx (https://developer.cisco.com/site/iox/technical-overview/),
a middleware framework that sits between hardware and applications running
directly on edge equipment.

The basic IOx architecture consists of the following:

* Fog nodes: These represent the devices (for example, routers and
switches) that comprise edge networks and provide host resources
to the Fog framework.

* Host OS: Sitting on Fog nodes is the Host OS that supports the following:

° Cisco Application Framework (CAF) for local application
management and control

° Applications (of many possible types)

° Network and middleware services

* Fog director: Connected to the CAF's northbound APIs, the Fog director
provides the centralized application management and repositories for apps
running on all of Fog nodes. Administration via the Fog director is accessed
through the Fog portal.

IoT Fog Computing development is supported by Cisco DevNet Software
Development Kits. IoT organizations can also make use of existing Cisco
cybersecurity solutions such as Cisco NetFlow, TrustSec, and identity services
engine (ISE).

[266]

https://developer.cisco.com/site/iox/technical-overview/

Chapter 9

IBM Watson loT platform

IBM Watson barely needs an introduction. The world became intimately familiar
with its capabilities back in 2010 when the Watson cognitive computing platform
began to beat the best champions on the famous game show Jeopardy. Watson's
cognitive computing ability to learn and solve problems from gargantuan ingested
datasets is being put to good use in a variety of industries, such as healthcare.
Today, IBM is augmenting Watson's processing domain by applying it to the
Internet of Things. IBM's foundational IoT APIs are available through the IBM
Watson IoT Platform Development Center (https://developer.ibm.com/
iotfoundation/ and https://developer.ibm.com/iotfoundation/recipes/
api-documentation/) and include IoT interfacing capabilities such as the following:

* Inventory and viewing of an organization's IoT devices
* Registering, updating, and viewing devices

* Operating on historical, ingested datasets

MQTT and REST interfaces

IoT device transactions and communications are facilitated by the platform's support
of MQTT and REST communication protocols (https://docs.internetofthings.
ibmcloud.com/devices/mgtt.html), allowing IoT developers to build powerful
data ingestion, cognitive analytics, and data output capabilities.

The Watson IoT platform's MQTT API allows unencrypted connections on port
1883 and encrypted communications on ports 8883 or 443. It is good to note that the
platform requires TLS 1.2. The IBM recommended ciphersuites are as follows:

e ECDHE-RSA-AES256-GCM-SHA384

* AES256-GCM-SHA384

e ECDHE-RSA-AES128-GCM-SHA256

* AES128-GCM-SHA256

Registration of devices requires the use of the TLS connection, as the MQTT
password is transmitted back to the client protected by the TLS tunnel.

When MQTT is used for device connectivity to the cloud, the option exists to use
a token instead of an MQTT password. In this case, the value use-token-auth is
provided in place of the password.

The REST interface is secured with TLS 1.2 as well. The allowable port is 443 and the
application API key serves as the username, while an authentication token is used as
the password, in support of HTTP basic authentication.

[267]

https://docs.internetofthings.ibmcloud.com/devices/mqtt.html
https://docs.internetofthings.ibmcloud.com/devices/mqtt.html
https://developer.ibm.com/iotfoundation/
https://developer.ibm.com/iotfoundation/
https://developer.ibm.com/iotfoundation/recipes/api-documentation/
https://developer.ibm.com/iotfoundation/recipes/api-documentation/

Cloud Security for the IoT

Cloud loT security controls

Given the variety of cloud-based services that support loT deployments, each cloud
and stakeholder endpoint plays a vital role in securing the multitude of transactions.
This section provides a brief listing of recommended IoT security controls and
services that your organization should consider. Basic controls such as authentication
and encryption to the cloud are supported by all of the CSPs, but you should
carefully review and consider your CSP based on their offerings in other areas.

Most CSPs bundle the services in different ways. Your organization can either
directly or indirectly obtain and benefit from these services based on unique package
offerings. These services can be combined in different ways to build powerful,
transitive trust relationships throughout your virtualized infrastructure.

Authentication (and authorization)

Considering authentication security controls, your organization will need to handle
most or all of the following:

1. Verify administrator authenticity for individuals accessing administrative
functions and APIs (multi-factor authentication is preferred here, given
the enormous sensitivity of administrative controls on your virtual
infrastructure).

Authenticate end users to cloud applications.

Authenticate cloud applications (including IoT gateways and brokers) from
one to the other.

4. Directly authenticate IoT devices (that have the requisite security and
functional resources) to gateways and brokers.

5. Proxy-authenticate end users from application provider to another.

A variety of authentication mechanisms are supported by CSPs. Amazon AWS and
Microsoft Azure are described in the following sections.

Amazon AWS |IAM

The AWS IAM authentication service supported by the Amazon cloud is a multi-
featured authentication platform that supports federated identity, multi-factor
authentication, user/role/ permission management, and full integration with other
Amazon services.

[268]

Chapter 9

The AWS multi-factor (for example, token-based) authentication (MFA) service of
the IAM supports a variety of MFA form factors to suit either your organization's
new or existing authentication framework. Hardware tokens, key fobs, access cards,
and virtualized MFA devices (for example, those that may run on a mobile device)
are supported by Amazon. MFA can be used both by your virtual private cloud
administrators as well as by your end users.

Transitive trust authorization flows between multiple web applications (especially
from browsers) can be obtained by using OAuth2.0 (RFC6749), an open standard
for authorization that allows secure, delegated access to third-party web services.
OAuth2 provides authorization access only, however. Authentication functionality
can be obtained by utilizing an OpenID Connect (OIDC) service that is built

on OAuth2. OIDC makes use of identification tokens acquired via the OAuth2
transaction to support authorization for users.

Azure authentication

As stated earlier, Microsoft Azure provides centralized and federated identity
authentication as well through its Azure Active Directory (AD) authentication
framework.

Microsoft Azure also offers both OAuth2 and OpenID Connect identity-as-a-service
within its Azure AD offering. Amazon AWS offers this capability as well as part of
its identity and access management offering. If your chosen cloud provider does not
offer OpenID Connect but does offer OAuth2, you may also be able to integrate the
OAuth2 service from provider 1 with the OpenID Connect service (for authentication
tokens) from provider 2, though this may not be as seamless as coming from a

single provider.

Software/firmware updates

An enormous number of vulnerabilities in software and firmware execution stacks
can be mitigated by quick, easy, and highly automated patching frameworks. We
strongly recommend you implement an automated, secure firmware/software
update capability to end devices. Fresh executables or executable chunks (patches)
should be digitally signed within your DevOps environment by a hardened software
signing service. In terms of the end devices, you should ensure that software and
firmware updates propagating to end IoT devices are capable of being validated by
those end devices.

Some CSPs support software/firmware services such as Azure CDN and so on.

[269]

Cloud Security for the IoT

End-to-end security recommendations

Consider the following end-to-end security recommendations in your IoT cloud
deployment:

Ensure that security is not lost at the gateway. Ideally, end-to-end
authentication and integrity protections should persist from the CSP to the
IoT devices with the gateways simply acting as pass-throughs. Although this
is not always possible, take alternate defensive actions when deployed sensor
nodes rely upon the gateway to validate the authenticity and integrity of
firmware updates and commands.

Apply the rigor of secure software development practices to the web services
and databases that serve the IoT devices.

Sufficiently protect the cloud applications that support the analysis and
reporting workflows.

Apply secure configurations to the databases that feed the analysis and
reporting applications.

Apply integrity protections to the IoT device data. This requires the use of
integrity protections on data transmitted from the IoT device to the gateway
as well as the gateway to the cloud.

Leased devices will operate within the customer environment and service
providers will not want to inadvertently infect their customer networks with
malware (and vice versa). Segregation of these devices on customer networks
should be enforced when possible. This use case opens up potential for fraud
and/or theft from stealing services, and as such it is important to design

the devices in a manner that prevents tampering. This can be accomplished
using tamper-evident or tamper-responsive protections that are described in
resources such as NIST FIPS 140-2.

Protect against denial of service attacks by using robust, properly configured
load balancing application gateways (a number of superb industry solutions
exist for this now).

Provide assurances that the data being transmitted to the IoT devices
(or gateways) is authenticated by the devices themselves.

Encrypt the data when needed.

Transactions and messaging between devices themselves (M2M) must be
authenticated (and integrity protected)

[270]

Chapter 9

* Inall cases, service providers should be able to track the privacy controls
associated with information generated by a person or by a device that
can be tied to a person. In the case of the medical device, has the patient
been notified and authorized the use of not only the data generated while
in medical offices, but also for any data that is uploaded to the cloud by
connected devices? Notifications should also include any organization that
the data may be shared with.

* Maintaining control of data through to destruction is not possible when
the data may have been passed on to potentially many other organizations;
however, service providers should make attempts to obtain privacy
agreements with peer organizations. Additionally, assess the adequacy
of the security controls implemented by those other organizations.

* Implement flexible access controls (use attribute-based access controls for
higher resolution access decisions).

* Tag data for privacy protections.

¢ Provide notifications on data use.

Maintain data integrity

How can you assure the integrity of data that will be used for myriad purposes and
by potentially many stakeholders? In the context of an enterprise IoT system, the
ability to trust the data collected is critical. This drives a need for the following:

* Authentication and integrity controls applied to the IoT devices to ensure
rogue devices cannot transmit data into the cloud.

* Secure configuration of gateway devices. Gateway devices may be installed
on-site or operate in the cloud, but these gateways devices process large
quantities of data and as such should be secured via:

° Security logging and analysis in a SIEM.
° Secure configurations (operating system, database, application).
° Firewall protection.

° Encrypted communications on each interface. This requires the use
of encrypted communication on the cloud-facing interface. This is
typically accomplished with Transport Layer Security (TLS) and an
appropriate ciphersuite. On the sensor-facing interface, encrypted RF
communications is strongly recommended.

° Strong authentication using PKI certificates if possible.

* Software security measures for the web service that interfaces with and
collects data from the gateways or devices.

[271]

Cloud Security for the IoT

* Secure infrastructure configurations (for example, web server) supporting the
IoT web service.

Secure bootstrap and enroliment of loT
devices

In order to have confidence in the credentials used by a particular device to
authenticate to services and gateways, care must be taken during the initial
provisioning of trust to devices. Depending on the criticality of a particular device,
bootstrap can occur at the vendor, or in-person by a trusted agent. Completing
bootstrap and enrollment results in the ability to provision operational certificates to
devices in a secure manner (and over a network).

Security monitoring
IoT gateways/brokers should be configured to look for suspicious behavior of the
endpoints. As an example, MQTT brokers should capture messages from publishers
and subscribers that may signal malicious behavior. The MQTT Specification Version
3.1.1 provides examples of behaviors to report:

* Repeated connection attempts

* Repeated authentication attempts

* Abnormal termination of connections

* Topic scanning

* Sending undeliverable messages

¢ (Clients that connect but do not send data

. Note that tuning an SIEM to identify potential misuse of IoT
% systems requires thought. An understanding of how the behavior
L of a specific IoT device can be correlated with events occurring in
other parts of the overall system is required.

[272]

Chapter 9

Tailoring an enterprise loT cloud security
architecture

There are many architectural aspects and options for cloud-enabling an IoT system.
CSPs, 10T service providers, and enterprise adopters must examine the capabilities
being provided to focus the appropriate security controls in an architecturally
supportive framework.

The following diagram is a genericized virtual private cloud from a cloud service
provider that offers basic functional and security services to protect endpoint-to-
endpoint data transactions. It shows typical, virtualized services available for general
IT as well as IoT-enabled deployments. Not all IoT deployers will need to make use
of all the cloud capabilities available, but most will require a minimal cross-section of
the above services, and require them to be well protected:

Secure Storage & Access

Data Warehousing Operations Mgmt
Identity & Authentication

/ Access Mgmt Services
. API Loggin Monitorin
{Indexing Svcs} gene e

App Provisioning

Event Data Services &

Storage Search

Scaling & Dynamic Response

Large Data Set Real-Time Streaming

| |NoSQL Large

Processing Data Analytics Service
(e.g MapReduce) Table Data
Storage Services Media s Data & Notification
Upload | Download|Logs reaming ! i
l l Services Services
Content Delivery Cloud AP Key
Network & 1 Gateway
Services
----------------- DNS Services ==z----

Internet

Virtual Private
Cloud Trust
Boundary

Mobile Web Sensors || Controllers

loT Vendors

[273]

Cloud Security for the IoT

Faced with building out a security architecture against the above system, one must
remember that tailoring an enterprise IoT cloud security architecture is really about
assembling the primitive security architecture constructs and services already
available from your CSP (for your own use) than inventing or adapting everything
from scratch. That said, the following activities —some of which have been
discussed in detail in this book (thus are not listed in as much detail here) —are
strongly advised:

1. Conduct a detailed threat model by first characterizing your system and
security starting point:

1.
2.

Identify all existing IoT device types, protocols, and platforms.

Identify and categorize based on sensitivity and privacy all IoT data
originating from the IoT devices at the network edge.

Determine the nearby and distant data producers, consumers of the
sensitive data.

Identify all system endpoints, their physical and logical security
characteristics, and who controls and administers them.

Identify all organizations whose people interact with the IoT services
and datasets and/or manage, maintain, and configure devices.
Ascertain how each is enrolled into the system, obtains permissions,
accesses it, and is (as needed) tracked or audited.

Determine data storage, reuse, and protections needed at rest and in
transit.

Based on risks, determine what data types need to be protected
point-to-point (also identifying those points) and which need to
be protected end-to-end so that the end consumer or data sink
can be guaranteed of the data's origin, integrity, and (if needed)
confidentiality.

If a field gateway is required, examine the South and North
protocols required by that platform to 1) communicate with the field
devices (for example, ZigBee) and 2) coalesce and transmit those
communications to the cloud gateway (for example, HTTP coupled
with TLS).

Finalize a risk and privacy assessment against the data to ascertain
necessary controls that may currently be lacking from the CSP.

2. (Cloud-specific) Formulate a security architecture from the following;:

1.
2.

Security provisions directly available from the CSP.

Add-on cloud-based security services that are available from the
CSP's partners or through compatible, interoperable third-party
services.

[274]

Chapter 9

3. Develop and adapt policies and procedures:
1. Data security and data privacy treatment.

2. User and admin roles, services, and security requirements (for
example, identify where multi-factor authentication is needed in
protecting certain resources).

4. Adopt and implement your own security architecture into the frameworks
and APIs supported by the CSP.

5. Integrate security practices (the NIST Risk Management Framework
addresses this well).

New directions in cloud-enabled IOT
computing

Before closing out this chapter, we thought it worthwhile to list both some additional

IoT-enabling characteristics of the cloud as well as some new, potential future
directions and use cases of the cloud-connected IoT.

loT-enablers of the cloud

The cloud has many characteristics, some described above, that make it an attractive,
adaptive, and enabling technology stack from which to envision, build, and deploy
new loT services. This section provides just a few.

Software defined networking (SDN)

SDNs emerged as next-generation network management capabilities to simplify and
reduce the amount of work to reconfigure networks and manage policy-based routes.
In other words, they were created to make the network itself more programmable
and dynamic, an absolute necessity for the enormous scale and flexibility needed to
manage our world's IoT traffic. SDN architectures function by decoupling network
control from the forwarding functions. They are comprised of SDN controllers that
implement 1) a northbound API or bridge that connects to network applications, and
2) a Southbound API that connects the network controllers to the fielded network
devices that perform traffic forwarding.

[275]

Cloud Security for the IoT

IoT architectures that leverage large cloud services already benefit from SDN.

Large virtualization systems that host management servers, brokers, gateways to

the fielded IoT devices, and other IoT architectural elements are built into Amazon,
Google, and other cloud providers. Over time, we expect to see much more fine-
grained capabilities emerge in the ability to create, adapt, and dynamically customize
one's own [oT network. SDNSs are being used today by security vendors tackling
distributed denial of service (DDOS) challenges and enterprises should look to
tailor their implementations to support that functionality.

Data services

Given the gargantuan quantities of data, data sources, and data sinks in the IoT, the
cloud environment provides capable tools for managing and structuring this data.
For example, Amazon's DynamoDB offers extremely scalable, low-latency, NoSQL
database capabilities for powering various IoT data storage, sharing, and analytics
services. Through an easy-to-use web frontend, developers create and manage tables,
logs, access, and other data control features. A benefit to IoT organizations of any
size is that pricing models are proportionate to the quantity of data actually used.

Data security, authentication, and access control can be implemented on a per-table
basis in DynamoDB, leveraging the AWS identity and access management system.
This means that a single organization can perform a variety of analytics, produce
derivative data populated in distinct tables, then selectively make that data available
via an application to its many unique customers.

Container support for secure development
environments

One of the challenges faced in IoT development environments is the diverse nature
of lIoT hardware platforms. A variety of platforms come with different software
development kits, APIs, and drivers. The programming languages used across
different hardware also vary, from C to embedded C to Python and many others.
A reusable development environment that can be shared across a development
team will need to be flexible enough to support these scenarios.

One approach to supporting a highly flexible IoT development environment is
through the use of container technology. Using this technology, containers can be
built with the libraries and packages required to develop the current device type.
These containers can be replicated and shared across the development team as a
development baseline. As new types of IoT devices are developed by the team,
new baselines can be created for use that add new software library stacks.

[276]

Chapter 9

Containers for deployment support

Using Docker (http://www.docker.com/) as a development tool provides a
valuable advantage for storing, deploying, and managing the workflow of IoT device
images. Docker was designed with the capability of enabling developers and system
administrators to deploy software/firmware images directly to IoT hardware. This
approach has two additional benefits:

* Device images can be updated (not just initially deployed) through Docker.

* Docker can be integrated with a test system such as Ravello for full testing
of the IoT system. Ravello Systems (https://www.ravellosystems.com)
offers a powerful framework for deploying and testing VMWare/KVM
applications virtually in self-contained cloud capsules running in AWS or
Google cloud.

While Docker offers a powerful ability to deploy containers, another technology,
Google's open source Kubernetes, leverages Docker to allow organizations to
manage large clusters of containers. The distributed computing ability of large,
easily managed clusters of containers is an enormous IoT enabler.

Microservices

Microservices are a renewed concept of modularizing large, monolithic enterprise
applications (web UI and REST APIs, database, core business logic, and so on) into
small, bite-sized services much like a service oriented architecture (SOA). The
technology provides an approach to simplifying and mitigating the complexity of
enterprise applications that tend to grow and snowball in response to changing
requirements. While conceptually similar to SOA, microservice architectures
decompose large system needs into separately virtualized, self-contained application
VMs. Each typically comes with its own business logic, data backend, and APIs
connecting to other microservices. In the microservice architecture, each individual
microservice is virtually-instantiated into the container type (for example, Docker,
VMWare) of choice.

Microservice architectures can not only simplify long-term development and
maintenance of small- or large-scale cloud applications, they also lend themselves
naturally to cloud elasticity. If you have an enterprise consisting of a dozen
microservices and two of them (perhaps account registration or a notification service)
are in demand, the cloud architecture can spin up new microservice containers for
just the impacted services.

[277]

http://www.docker.com/
https://www.ravellosystems.com

Cloud Security for the IoT

Businesses are enabled to dream up new IoT enterprise applications that leverage
the IoT's data-rich environment; using microservices, they can quickly assemble new
services and dynamically scale them in response to data and processing ebbs and
flows. In addition, Agile development processes are much easier to maintain as

each Agile team can tightly focus on one or two individual microservices.

The move to 5G connectivity

While the US, Europe, and Asia reconcile their differences in the formulation of
the as-yet-to-be-defined 5G standard, a number of its salient features promise to
revolutionize and boost the number of things, use cases, and applications that
leverage the Internet. Ubiquitous networking through 5G will be a key enabler of
the Internet of Things in its ability to support orders of magnitude more devices
at significantly higher data rates (~10x) than LTE networks. Thus far, competing
views on the specification of 5G have agreed on the following (http://www.
techrepublic.com/article/does-the-world-really-need- 59/):

* Data rates should start at 1 GB/s, and evolve to multi-GB/s
* Latency should be brought under 1 ms

* 5G equipment should be much more energy efficient than its predecessors

Given the IP address space of IPv6 and the near-future of 5G (and beyond)
connectivity, it is no wonder that many forward-thinking companies are investing
heavily and preparing for unimaginable growth for the IoT.

Cloud-enabled directions

This section provides just a few examples, based on the above cloud enablers, of
what is possible using centralized and distributed cloud processing to push the IoT
in amazing new directions.

On-demand computing and the loT (dynamic
compute resources)

The so-called sharing economy has ushered in services such as Uber, Lyft, Airbnb,
home-based solar energy redistribution to the electric grid, and other business
paradigms that allow resource owners (of cars, apartments, solar panels, and so on)
to offer up spare cycles in exchange for something. On-demand computing (ODC) is
still relatively new and in its infancy, but it is leveraged significantly in cloud-based
elastic architectures. Compute resources are scheduled, delivered, and billed on-
demand based on a dynamically changing client demand.

[278]

http://www.techrepublic.com/article/does-the-world-really-need-5g/
http://www.techrepublic.com/article/does-the-world-really-need-5g/

Chapter 9

The enormous benefits of the cloud to the IoT may be surpassed by its inverse.
Enabled with 5G, the IoT in its sheer quantity of edge devices and available compute
resources may benefit cloud-based applications in their ability to make available
latent compute resources to various edge applications. Imagine a computing-
intensive edge application that cannot possibly process on a single device. Now
imagine that device is able to make use of the processing capacity of surrounding
edge devices owned by other users. Dynamic, on-demand local clouds that are
supported by things for things will require 5G networks and enable yet-to-be-
imagined applications. In addition to the network support, IoT-facilitated ODC will
require evolving to new application architectures such as microservices and their
fine-grained execution units described earlier.

From a security perspective, secure, trusted computing domains within IoT devices
will be a basic requirement for IoT-provisioned ODC. Imagine profiting by allowing
your vehicle to provide computing cycles to a nearby business, a remote individual
or process, or even a cloud provider itself. On-demand, executable uploads and
processing of untrusted code on your vehicle will have to be domain-separated

with a high degree of assurance, otherwise your personal applications and data
could easily be put at risk of compromise from temporary guest processes. ARM,
TrustZone, and other technologies of today represent only the beginnings of enabling
this type of cross-domain computing for the IoT.

New distributed trust models for the cloud

Addressed in earlier chapters, digital credentials and PKI are used extensively to
secure today's cloud-based client and service endpoints. Maintaining federated trust
across different trust domains is not a simple or necessarily efficient exercise today.
To that end, in May 2016, the Apache Foundation adopted into its incubator program
a new project called Milagro (http://milagro.apache.org/). Milagro is interesting
in that it leverages pairing-based cryptography and multiple, independent
distributed trust authorities (DTAs) to independently generate multiple, private
key shares to clients and servers. The consuming endpoints construct the final crypto
variables to enable mutual authentication and key agreement in or across whatever
cloud environment is needed. The basic idea is that DTAs can be operated by any
number of independent organizations, each providing a partial SECaa$S solution for
end parties. The distributed nature of this model improves upon today's monolithic
trust hierarchies by requiring attackers to compromise all of the DTAs involved in
generating an end user's key material. If Milagro succeeds through incubation, some
interesting new open source distributed trust models may very well emerge for the
cloud and dependent IoT deployments.

[279]

http://milagro.apache.org/

Cloud Security for the IoT

Cognitive loT

IBM's Watson and its new IoT interfaces are only the beginning of cognitive data
processing for our Internet of Things. In general, the IoT is too large to group all
potential cognitive processing use cases into a small set; however, the list below
represents just a small fraction of what is just around the horizon with IoT systems
and data coupled with cognitive analytics:

* Predictive health monitoring: Massive health monitoring bio-datasets
coupled with various patient metadata will allow cognitive systems to
predict with much greater clarity the probability of disease conditions or
other health maladies before they appear. Most historical studies evaluate
risk factors based on very limited information. With IoT health monitoring,
wearables, data fusion services, and other private and public data sources,
cognitive systems will have orders of magnitude greater dataset resolutions
with which to work and identify health risks. IoT systems will be the
backbone of these capabilities.

* Collaborative navigation techniques: Enabling swarms of small UAS that
are operating in GPS-denied environments to collectively understand their
environment in order to more effectively navigate.

Summary

In this chapter, we discussed the cloud, cloud service provider offerings, the cloud's
enablement of the IoT, security architectures, and how the cloud is spawning new,
powerful directions for connectivity and support of the Internet of Things. In our
final chapter, we will explore incident management and forensics for the IoT.

[280]

10

loT Incident Response

Incident management is an enormous topic and many excellent and thorough
volumes have been written about its utility and execution in the traditional IT
enterprise. At its core, incident management is a lifecycle-driven set of activities

that range from planning, detection, containment, eradication, and recovery, to
ultimately the learning process about what went wrong and how to improve one's
posture to prevent similar future incidents. This chapter provides guidance for
organizations —corporate or otherwise —who plan to integrate IoT systems into their
enterprises and who need to develop or update their incident response plans to suit.

Incident management for IoT systems follows the same frameworks that are already
familiar to us. There are simply new considerations and questions to answer when
trying to plan for effectively responding to compromised IoT-related systems. To
distinguish the IoT from conventional IT, we postulate the following incidents:

* In the near future, a utility company purchases a fleet of connected vehicles
to enhance driver safety and increase savings related to fuel consumption
and liability (for example, guarding against aggressive driving). One day,
one of the utility vehicles crashes into another car, causing damage and
injury. When speaking with the driver, it was noted that the vehicle simply
stopped responding to their controls.

* A heart patient with an implanted pacemaker and diseased heart dies
suddenly. The coroner notes that the patient had a pacemaker, but also notes
that it was supposedly operating correctly. The case is ruled a myocardial
infarction, death by natural causes.

[281]

IoT Incident Response

Both of these device types —connected vehicles and pacemakers —will be supported
by different types of enterprises, some on-premises and some in the cloud. Both
also demonstrate the blurred lines between a potential IoT security incident and
normal, everyday occurrences. This drives a need to examine incident management
in a manner that focuses on the underlying business/mission processes of the

IoT devices and systems, to understand how attackers might use the guise of
everyday happenstance to mask their malicious intent and actions. This should be
accomplished by making sure the security engineers charged with the operational
protection of IoT systems have a fundamental understanding of the threat models
that underlie those systems.

IRPs will vary for different enterprise types. For example, if your organization

has no intent to operate industrial IoT systems, but has recently adopted a bring
your own IoT device policy, your IRP may stop at the point that a compromise has
been identified, contained, and eradicated. It may not in this case extend into deep,
intrusive forensics on the nature of the IoT device vulnerability (you can simply ban
the device type from your networks going forward). If, however, your enterprise
utilizes consumer and industrial IoT devices/apps for routine business functions,
your IRP may need to include more sophisticated forensics after containing and
eradicating the compromise.

Threats both to safety and security

Ideally, misuse cases will be created during the upfront threat modeling process.
Many specific misuse patterns can then be generated for each misuse case. Misuse
patterns should be low-level enough that they can be decomposed into signature
sets applicable to the monitoring technology (for example, IDS/IPS, SIEM, and so
on) that will be used both on-premises and in your cloud environment. Patterns
can include device patterns, network patterns, service performance, and just about
anything that indicates potential misuse, malfunction or outright compromise.

[282]

Chapter 10

Develop |
Device
Misuse "
Patterns 3y [
Threat Develop | Sl
- . D | P .
Modeling Misuse Cases evelop e Develap Signatures for
Infrastructure [-7 | |Ds/IPS, SIEM,

Misuse L Endpoint Auditing,

Patterns |- Safety Monitoring and
- Threat monitoring
systems
Update from
; Threat
Intelligence, Lessons Learned Intelligence s
! Sources 7
\‘u_F'Ianning and Learning Loop ,.f‘r T
- - - P :’ L

---- mmmmmmmemmm T Deploy Incorporate or Update

f Systemsand |«— | Cloud-Based or On-

Monitor Premises Security
S ing Services
Operational Loop =
. (Faster tempo) P

In many IoT use cases, SIEMs can be telemetry-enhanced. We say telemetry-enhanced
SIEMs, because physically interacting IoT devices have many additional properties
that may be monitorable and important for detecting misbehavior or misuse.
Temperature, time of day, event correlation with other neighboring IoT device states:
almost any kind of available data can be envisioned to enable a power, detection,
containment, and forensic posture beyond traditional SIEM use.

In the case of the connected utility vehicle incident described in the introduction,
the culprit may have been a disgruntled employee who instigated a remote attack
against the connected vehicle subsystems responsible for controlling the braking
system (for example, injecting ECU communications into the network-connected
CAN bus). Without proper forensics capabilities, it may be difficult or impossible
to identify this individual. What is even more concerning is that in most cases, the
insurance investigators would not even know that they should consider exploring
the possibility of a security-compromised system!

[283]

IoT Incident Response

In the case of the pacemaker patient, the culprit may have been a former employee
trying to force the victim to pay money by adapting and packaging an attack learned
on the Internet— the delivery of ransomware to close-range medical devices that
have a specific microcontroller and interface set. Without an understanding that

this is even a possible attack vector, there is no in-depth investigation. Moreover,

the ransomware can be designed to self-wipe right after the event to destroy any
evidence of the malfeasance.

These scenarios show that IoT incident management takes a few twists and turns
from conventional IT enterprises, as follows:

The physical nature of the networked things, their locations, and who
owns or operates them. The cyber-physical aspects of incident response
may include a safety factor —even life and death —especially for medical,
transportation, and other industrial IoT use cases.

The cloud aspects of managing the physical things (as per the previous
chapter), including the fact that many of the direct incident response
activities may be out of the immediate control of one's organization.

The ease with which attackers can mask their intentions and actions by
disguising the results in the noise of everyday happenings. The timing of an
attack puts defenders at a serious disadvantage. The goals of an IoT attack,
especially against cyber-physical systems, can often be as simple as crashing
a car or causing traffic lights to stop working. A skilled attacker may be able
to pull these types of attacks off relatively quickly to meet their end goals,
leaving defenders with limited ability to stop the attacks.

The possibility that other seemingly unrelated IoT things that are connected
to common hubs and gateways in the proximity of the compromise may
provide interesting new datasets contributing to incident detection

and forensics.

The example situations also illustrate the need to be able to perform comprehensive
incident management and forensics on deployed IoT products in order to understand
and respond when there is a potential ongoing campaign against an IoT system or a
class of IoT product. Forensics can also be leveraged to determine and assign liability
for IoT product malfunctions (whether malicious or not), and bring to justice those
that would cause adverse effects within IoT systems. This is even more important in
CPS, whether medical devices, industrial control, smart home appliances, or others
that involve physical-world detection and actuation.

[284]

Chapter 10

This chapter focuses on building, maintaining, and executing an incident
response plan for your organization so that you may promote improved
situational awareness and response to the various operational IoT hazards
(ranging from low-level incidents to full-scale compromises). This is
accomplished in the following subsections:

Defining IoT incident response and management: Here we will define
and establish the goals of IoT incident response and what it needs
to accommodate.

Planning and executing IoT incident response: In this section, we will
explore how to incorporate the right facets of incident response into your
organization as a structured plan. We will detail how to categorize and

plan for different incidents/events, as well as plan for triage and forensics
operations (as per an IRP). Within forensics, we will discuss how to acquire
forensic firmware images of the IoT devices. Lastly, we will provide some
practical instruction in operationalizing and executing your incident response
plan. The IoT aspects of executing incident response may also pertain to your
cloud provider (assuming you support CSP-hosted subsystems). Using your
incident response plan addresses methods of detecting compromises and
other incidents, executing post-incident forensics, and, very importantly,
integrating lessons learned into your security lifecycle.

Planning and executing an loT incident
response

IoT incident response and management can be broken into four phases:

Planning
Detection and analysis
Containment, eradication, and recovery

Post-incident activity

[285]

IoT Incident Response

The following figure provides a view into the processes and how they relate to
each other:

Incident Response
Planning

IRT Team Composition
Communication Plan
Exercise and Training Plan
Coordination Plan

Post-Incident Activity Incident Detection & Analysis
Response
AP Plan

Root Cause Analysis

X Threat Sharing
Pl and Privacy Follow-up

24/7 SOC Operation/ Detection

Retrospective Cloud Monitoring :
Information Sharing .
N RF Analysis
Update Incident Response Plan
Xy IRT
' Q000000
WYLLWYWY
Incident Response
Team No
Yes
Containment, Eradication,
Recovery)
Quarantine

Acquire/secure evidence
Contain the incident
Eradicate the incident
Continuously monitor
Return to full operations

Any organization should have, at a minimum, these processes well documented and
tailored for its unique system(s), technologies, and deployment approaches.

[286]

Chapter 10

Incident response planning

Planning (sometimes called incident response preparation) is composed of those
activities that are, figuratively speaking, designed to keep you from behaving like
a deer in headlights when disaster strikes. If your company were to experience

a massive denial of service attack that your load balancers and gateway couldn't
keep up with, do you know what to do? Does your cloud provider handle this
automatically, or are you expected to intervene by escalating services? If you find
evidence that some of your web servers have been compromised, do you simply
take them down and refresh them with golden images? What do you do with the
compromised images? Who do you give them to, and how? What about record-
keeping, rules, who gets involved and when, how to communicate, and so on?
These and many other questions should be answered with the utmost precision
in a detailed incident response plan.

NIST SP 800-62r2 provides a template and discussion of the contents of an incident
response plan (IRP) and procedures. This template can be augmented for IoT-
specific characteristics, such as determining what additional data should be collected
(for example, physical sensor data in concert with specific message sets and times)

in response to incidents ranging from erroneous behavior to full-scale compromise.
Having a plan in place allows you to focus on critical analysis tasks during an
incident, such as identifying the types and severity of the compromise.

loT system categorization

The act of categorizing systems is strongly emphasized in the federal government
space to identify whether specific systems are mission critical and to identify the
impact of compromised data. From an enterprise IoT perspective, it is useful to
categorize your systems, when possible, in a similar manner. The categorization of
IoT systems allows for the tailoring of response procedures based on the business/
mission impact of an incident, the safety impacts of an incident, and the need for
near-real-time handling to stop imminent damage/harm.

[287]

IoT Incident Response

NIST FIPS 199 (http://csrc.nist.gov/publications/fips/£ips199/FIPS-
PUB-199-final.pdf) provides some useful approaches for the categorization of
information systems. We can borrow from and augment that framework to help
us categorize IoT systems. The following table is borrowed from FIPS 199 to
show the potential impact on the security objectives of confidentiality, integrity,

and availability:

POTENTIAL IMPACT

Security Objective

LOW

MODERATE

HIGH

Confidentinlity

including means for
protecting personal

information.

Preserving authorized
restrictions on information
access and disclosure,

privacy and proprietary

[44 U.S.C,, SEC. 3542]

The unauthorzed
disclosure of information
could be expected to have
a limited adverse effect on
organizational operations,
organizational assets, or
individuals.

The unauthorized
disclosure of information
could be expected to have
a serious adverse effect on
organizational operations,
organizational assets, or
individuals.

The unauthorized
disclosure of information
could be expected to have
asevere or catastrophic
adverse effect on
organizational operations,
organizational assets, or
individuals.

Integrity

or destruction, and
includes ensuring
information non-
repudiation and
authenticity.

Guarding against improper
information modification

[44 US.C, SEC. 3542]

The unauthorized
modification or
destruction of information
could be expected to have
a limited adverse effect on
organizational operations,
organizational assets, or
individuals.

The unauthorized
modification or
destruction of information
could be expected to have
a serious adverse effect on
organizational operations,
organizational assets, or
individuals.

The unauthorized
modification or
destruction of information
could be expected to have
a severe or catastrophic
adverse effect on
organizational operations,
organizational assets, or
individuals.

Availability
Ensuring timely and

of information.

reliable access to and use

[44 U.5.C, SEC. 3542]

The disruption of access to
of use of information or an
information svstem could
be expected to have a
limited adverse effect on
organizational operations,
organizational assets, or
individuals.

The disruption of access to
or use of information or an
information system could
be expected to have a
serious adverse effect on
organizational operations,
organizational assets, or
individuals.

The disruption of access to
or use of information or an
information system could
be expected to have a
severe or catastrophic
adverse effect on
organizational operations,
organizational assets, or
individuals.

The impact is then analyzed in terms of impact on organizations or individuals.
In FIPS 199, we can see that the impact on organizations and individuals can
be low, medium, or high depending on the effect of confidentiality, integrity,

or availability loss.

[288]

http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf

Chapter 10

With IoT systems, we can continue to use this framework; however, it is also
important to understand the impact of time and how time can drive the critical
need for a response such as in safety-impacting systems. Looking back at our earlier
examples, if we identify that someone has been attempting unsuccessfully to access
an automotive fleet's systems, some potential responses may seem overly drastic.
But given the potentially catastrophic nature of the compromise, combined with
the motivation and intent of the attacker (for example, crashing a car), drastic
responses may well be warranted. For example, the incident response plan may

call for the manufacturer to temporarily disable all of the connected vehicle systems
or comprehensively check the integrity of other electronic control units in the

entire fleet.

The question to ask is whether there is the potential for imminent danger to
employees, customers, or others if an identified attack pattern against IoT assets
becomes known. If a company's security leadership is aware that someone was
actively trying to compromise their fleet's connected IoT system, and yet the
company continued to let those systems operate with a resulting injury/death,
what are the potential liabilities and resultant legal claims against the organization?

loT incident response procedures

The European Union Agency for Network and Information Security (ENISA)
recently examined threat trends (https://www.enisa.europa.eu/publications/

strategies-for-incident-response-and-cyber-crisis-cooperation/at
download/fullReport) in emerging technology areas. The report noted growth
trends that have some bearing on the Internet of Things, namely:

* Malicious code: worms/Trojans

* Web-based attacks

* Web application attacks/injection attacks

* Denial of service

* Phishing

* Exploit kits

* Physical damage/theft/loss

* Insider threat

* Information leakage

* Identity theft/fraud

[289]

https://www.enisa.europa.eu/publications/strategies-for-incident-response-and-cyber-crisis-cooperation/at_download/fullReport
https://www.enisa.europa.eu/publications/strategies-for-incident-response-and-cyber-crisis-cooperation/at_download/fullReport
https://www.enisa.europa.eu/publications/strategies-for-incident-response-and-cyber-crisis-cooperation/at_download/fullReport

IoT Incident Response

Organizations need to be ready to respond to each of these types of threats. The
incident response plan will lay out the procedures that must be followed by various
roles within the organization. These procedures may be tailored slightly depending
on the impact of a compromise to the business or stakeholders. At a minimum, the
procedures should outline when to escalate the identification of an incident to more
senior or specialized personnel.

Procedures should also detail when to notify stakeholders of a suspected
compromise of their data and what exactly to tell them as part of that notification.
They should also specify whom to communicate with during the response, the steps
to take to reach a compromise, and how to preserve an evidence chain of custody
during the ensuing investigation. With respect to chain of custody, if there is a
third-party cloud service provider involved, the cloud service plan (or SLA) needs
to specify how that provider will support maintaining a chain of custody during
incidents (in compliance with local or national laws).

The cloud provider's role

Chances are you are leveraging at least one cloud service provider to support your
IoT services. Cloud SLAs are extremely important in your incident response plan;
unfortunately, Cloud SLA objectives and contents are not well streamlined across
the industry. In other words, be aware that some CSPs may not provide adequate IR
support when it's most needed.

The Cloud Security Alliance's Security Guidance for Critical Areas of Focus in Cloud
Computing V3.0 (https://cloudsecurityalliance.org/guidance/csaguide.
v3.0.pdf, Section 9.3.1) states that the following aspects of IR should be addressed
in your cloud provider's SLA:

* Points of contact, communication channels, and availability of IR teams for
each party

* Incident definitions and notification criteria, both from provider to customer
and to any external parties

* CSP support to customers for incident detection (for example, available event
data, notification about suspicious events, and so on)

* Definition of roles/responsibilities during a security incident, explicitly
specifying support for incident handling provided by the CSP (for example,
forensic support via collection of incident data/artifacts, participation/
support in incident analysis, and so on)

[290]

https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf

Chapter 10

* Specification of regular IR testing carried out by the parties to the contract
and whether results will be shared

* Scope of post-mortem activities (for example, root cause analysis, IR report,
integration of lessons learned into security management, and so on)

* Clear identification of responsibilities around IR between provider and
consumer as part of the SLA

loT incident response team composition

Finding the right technical resources to staff an incident response team is always a
challenge. Carnegie Mellon's CERT organization (http://www.cert.org/incident-
management/csirt-development/csirt-staffing.cfm) notes that team Staffing
depends on a number of factors, including;:

* Mission and goals

* Auvailable staff expertise

* Anticipated incident load

* Constituency size and technology base

* Funding

Typically, an incident manager will be chosen to bring together a number of team
members, based on the scope of the incident and the response required. It is crucial
to keep a cadre of staff well trained in incident response and ready to assist as
necessary when an incident does occur. The incident manager must be fully
versed in the local IR procedures, as well as the cloud provider's SLAs.

Proper planning up front will enable the right pairing of staff with the specifically
required roles needed for each incident. Teams responding to IoT-related

incidents will need to include some unique skill sets driven by the specific IoT
implementations and deployment use cases involved. In addition, staff need to have
a deep understanding of the underlying business purpose of the compromised IoT
system. Keep an emergency point of contact (POC) list for each type of incident
within your organization.

[291]

http://www.cert.org/incident-management/csirt-development/csirt-staffing.cfm
http://www.cert.org/incident-management/csirt-development/csirt-staffing.cfm

IoT Incident Response

Communication planning

The act of responding to an incident is often confusing and fast-paced; details can
quite easily be overlooked in the fog of war. Teams need a pre-created communication
plan to remember to involve the appropriate stakeholders and even partners.

The communication plan should detail when to elevate the incident to higher-tier
engineering staff, management, or executive leadership. The plan should also detail
what should be communicated, by whom, and when, to outside stakeholders such

as customers, government, law enforcement, and even the press when necessary.
Finally, the communication plan should detail what information can be shared with
different information-sharing services and social media (for example, if making
announcements via Twitter, Facebook, and others).

From an internal response perspective, the communication plan should include
POCs and alternatives for each IoT system in the organization, as well as POCs

at suppliers, such as CSPs or other partners with whom you share IoT data. For
example, if you support data-sharing APIs with analytics companies, it is possible
that an IoT data breach could result in privacy-protected data unknowingly
traversing those APIs, that is, unwanted onward transfer of PII.

Exercises and operationalizing an IRP in your

organization

All potential IRT members should learn the incident response plan. The plan should
be integrated into the organization with executive buy-in and oversight. Roles and
responsibilities should be established and exercises should be conducted that include
engagement with third parties, such as CSPs. Training should be provided, not only
on the technical aspects of the systems being supported, but also on the business and
mission objectives of the systems.

Regular exercises should be conducted to validate not only the plan but the
organization's efficiency and skill in executing it. These exercises will also help
ensure that the incident response plan is kept up to date and that the staff involved
are well versed and can act competently in a real incident. Finally, make sure that
systems are fully documented. Knowing where sensitive data resides (and when it
resides there) will substantially improve the reliability and confidence in findings
from the incident response team.

[292]

Chapter 10

Detection and analysis

Today's security information and event management (SIEM) systems are
powerful tools that allow correlation between any type of observable event to flag
possible incidents. These same systems can of course be configured to monitor the
infrastructure that supports loT devices; however, there are considerations that will
affect the ability to maintain a sufficient degree of situational awareness across a
deployed IoT system:

* IoT systems are heavily dependent on cloud-hosted infrastructures

* IoT systems may include highly constrained (that is, limited processing,
storage, or communication ability) devices that often lack the ability to
capture and forward event logs

These considerations drive a need to architect the monitoring infrastructure to
capture instrumentation data from CSPs that support the system, as well as
anything that is possible from the devices themselves.

Although there are limited options available in this regard, some small start-up
companies are attempting to close the gap. Bastille (https://www.bastille.net/)
is an example of a company that is working toward a comprehensive RF-monitoring
solution for the IoT. Their product monitors the RF spectrum from 60 MHz to

6 GHz, covering all of the major IoT communication protocols. Most importantly,
Bastille's wireless monitoring solution integrates with SIEM systems to allow proper
situational awareness in a wireless, connected IoT deployment.

Routine scanning (along with SIEM event correlations) should also be employed,
as well as cloud-based or edge-situated behavioral analytics (appropriate for
device gateways, for example). Solutions such as Splunk are good for these
types of activities.

Any discussion on the types of tools needed for loT-specific digital forensics and
incident response (DFIR) needs to begin with an understanding of the types of
incidents that can be encountered by an organization. Again, tools such as Splunk
are effective in looking for such patterns and indicators. Possible indicators may
include the following:

* We may see rogue sensor data injected to try and cause confusion within
analytics systems

* We may see attempts at using rogue loT devices to exfiltrate data from
enterprise networks in which they are situated

[293]

https://www.bastille.net/

IoT Incident Response

We may see attempts at compromising privacy controls to determine where
individuals are located and what they are doing at any given time

We may see attempts at injecting malware into control systems by exploiting
trust relationships between individuals and organizations, or between
connected devices and control system networks

We may see attempts to disrupt business operations by launching denial of
service attacks against IoT infrastructure

We may see attempts at causing damage through unauthorized access to IoT
devices (physical or logical)

We may see attempts at compromising the confidentiality of data that
flows across the entire IoT system by compromising device, gateway,
and cloud-hosted cryptographic modules and key material

We may see attempts to take advantage of trusted autonomous transactions
for financial gain

It becomes clear when responding to possible incidents in an IoT deployment that
the ability to understand whether an IoT device has been compromised becomes
vitally important. These devices often possess trusted credentials that support
interactions with upstream infrastructure, and in many cases interactions with other
devices. The compromise of a trusted relationship such as this can lead to horizontal,
pivoted movement throughout a system, as well as the ability to access virtualized,
supporting infrastructure in the data center/cloud. Absent sophisticated monitoring
capabilities for relevant system endpoints, these movements can be accomplished
very quietly.

This tells us that by the time an analyst detects an incident underway, the perpetrator
may have already established widespread hooks into important subsystems
throughout the enterprise. This understanding should drive the incident response
process to focus heavily on immediately analyzing other devices, compute resources,
and even other systems to determine whether they are still operating according to an
established secure baseline. Unfortunately, today's tools for quickly determining the
security status of thousands or even millions of connected devices during an incident
response is lacking.

Although there are gaps in the tools available for an optimal IoT-based incident
response action, there are still standard tools that teams should have available
to them.

[294]

Chapter 10

Analyzing the compromised system

The first step toward being able to successfully analyze an incident is having good,
current knowledge of the latest threats and indicators. Effective threat intelligence
tools and processes are capabilities that responders should have in their arsenal. As
enterprise IoT systems become increasingly attractive targets, these platforms will
undoubtedly share indicators and defensive patterns with their membership. Some
examples of today's threat-sharing platforms include:

* DHS Automated Indicator Sharing (AIS) initiative: Today, this focuses on
the energy and technology sectors (https://www.us-cert.gov/ais)

* Alienvault Open Threat Exchange (OTX) (https://www.alienvault.com/
open-threat- exchange)

* IBM X-Force Exchange: This is a cloud-based threat intelligence service
(http://www-03.1ibm.com/software/products/en/xforce-exchange)

* Information technology Information Sharing and Analysis Center (ISAC)

ISACs that lean more toward mission-specific threat intelligence exist as well.
Examples include:

* Industrial Control System (ICS) ISAC (http://ics-isac.org/blog/home/
about/)

* Electricity sector ISAC
* Public transportation/surface transportation ISAC
* Water ISAC

Once a possible incident is identified, additional analysis is performed to begin
determining the scope and activity of the suspected compromise. Analysts should
begin to assemble a timeline of activities. Keep this timeline handy and update it

as new information is found. The timeline should include the presumed start time,
and document any other significant times in the investigation. One can use audit/
log data to correlate the activities that occurred. Something to consider in this regard
is the need to keep and propagate an accurate source of time. Utilization of the
network time protocol (NTP), when available for IoT systems, can help. The timeline
is created and elaborated as the team identifies the actions that the adversary may
have performed.

[295]

https://www.us-cert.gov/ais
https://www.alienvault.com/open-threat-exchange
https://www.alienvault.com/open-threat-exchange
http://www-03.ibm.com/software/products/en/xforce-exchange
http://ics-isac.org/blog/home/about/
http://ics-isac.org/blog/home/about/

IoT Incident Response

Analysis can also entail activities that include attempts at attribution (that is,
identifying who is attacking us). Tools that are useful for these activities would
usually include the WHOIS databases from the various Internet registries that
provide the ability to look up owners of IP address blocks. Unfortunately, there are
easy-to-use methods that can be employed against IoT and any other IT systems,
which provide anonymity for attackers. If one inserts a rogue IoT device into

a network to transmit bogus readings, identifying the IP address of the device

does little to help the analysis, because the device rides on the victim network.
Even worse, the device may not have an IP address. Attacks from outside the
organization can make use of command and control servers, botnets and just about
any compromised host, VPN, Tor network, or some combination of mechanisms to
mask the true source and source address of the attacker. Dynamic pivoting and rapid
clearing of one's tracks is the norm whether it's a nation state, criminal organization
(or both), or script kiddie that is attacking. The latter just may not be quite as skilled
in how to thwart the forensics capabilities of their adversary.

A more thorough examination of the compromised device is in order to try and
determine the characteristics of the attacker based on the files loaded, or even lifting
fingerprints from the device itself. In addition, IoT Incident response may include
forensic analysis of device gateways — gateways may be located at the network edge,
or centrally within a CSP. Typically, a response team would capture images of the
compromised systems for offline evaluation. This is where infrastructure tools that
can be adapted and applied to IoT systems can become very useful.

Comparison between good behavioral and security baselines and compromised
systems is valuable for identifying malicious artifacts and aiding in investigations.
Tools that support the offline configuration of IoT devices can be used for this. For
example, Docker images, when used to deploy IoT devices, can provide the good
baseline example needed for a comparison.

If authentication services are set up for IoT device authentication, the logs from
those authentication servers should also provide a valuable data source for an
investigation. One should be diligent in looking for failed logins to systems and
devices, as well as suspicious successful logins and authorizations from abnormal
source IPs, times of day, and so on. Enterprise SIEM correlation rules will
provide this functionality based on the use of threat intelligence feeds and
reputational databases.

[296]

Chapter 10

Another aspect of an investigation is determining what data has actually been
compromised. Identifying exfiltrated data is the first step, but then you also must
understand whether that exfiltrated data has been protected (at rest) using strong
cryptographic measures. Exfiltration of gigabytes of ciphertext doesn't benefit

the attacker unless he also acquires the cryptographic private key needed for the
decryption. If your organization is unable to know the state of data (plaintext or
ciphertext) at every point in the system, every host, every network, application,
gateway, and so on, you will have a difficult time ascertaining the extent of the data
breach. An accurate characterization of the data breach is crucial for informing the
investigation as to whether data breach notifications need to be made, as per legal
and regulatory mandates.

Forensic tools are also needed to help piece together information on the attack.
There are a number of tools available that can be leveraged, such as:

* GRR

* Bit9

* Mastiff
* Encase
e FTK

e Norman Shark G2
¢ Cuckoo Sandbox

Although these tools are often used in terms of a traditional forensics effort, they
have some gaps when dealing with actual IoT devices. Researchers (Oriwoh, et al.
Internet of Things Forensics: Challenges and Approaches, https://www.researchgate.
net/publication/259332114 Internet of Things Forensics Challenges
and_Approaches) outline a Next Best Thing approach to IoT forensics evidence
collection. They argue convincingly that often the devices themselves will not
provide sufficiently useful information and that instead one must look to the devices
and servers to which data is sent within a system. For example, an MQTT client may
not actually store any data, but instead may automatically send data to upstream
MQTT servers. In this case, the server will most likely provide the next best thing

to analyze.

[297]

https://www.researchgate.net/publication/259332114_Internet_of_Things_Forensics_Challenges_and_Approaches
https://www.researchgate.net/publication/259332114_Internet_of_Things_Forensics_Challenges_and_Approaches
https://www.researchgate.net/publication/259332114_Internet_of_Things_Forensics_Challenges_and_Approaches

IoT Incident Response

Analyzing the loT devices involved

In cases where the devices themselves may yield critical data in the investigation,
IoT devices may need to be reversed to extract firmware for analysis. Given the
enormous variety of potential IoT devices, the specific tools and processes will vary.
This section provides some example methods of extracting and analyzing firmware
images of devices that may have been compromised or were otherwise involved in
an incident and may yet yield clues by analyzing memory. In practice, organizations
may need to outsource these activities to a reputable security firm; if this is the

case, find firms that have a firm background in forensics and have a good working
knowledge of, and policies regarding, chain of custody and chain of evidence
(should the data become necessary in courts of law).

Embedded devices can be challenging to analyze. Many commercial vendors provide
USB interfaces to memory, but frequently restrict what areas of memory can be
accessed. If the embedded device does support a *nix type of OS kernel, and the
analyst is able to get a command line to the device, a simple dd command may be all
that is necessary to extract the device's image, specific volumes, partitions, or master
boot record to a remote location.

Absent a convenient interface, you'll likely need to extract memory directly, and
that's typically through a JTAG or UART interface. In many cases, security-conscious
vendors go to great lengths to mask or disable JTAG interfaces. To get physical
access, it might be necessary to cut, grind or find some other method of removing

a physical layer from the connector. If the JTAG test access ports are accessible and
there's a JTAG connector already there, tools such as Open On-Chip Debugger
(http://openocd.org/) or UrJTAG (http://urjtag.org/) can be useful in
communicating with flash chips, CPUs and other embedded architectures and
memory types. It may also be necessary to solder a connector to the ports to

gain access.

Absent an accessible JTAG or UART interface, more advanced chip-off (also called
chip de-capping) techniques may be in order to extract data. Chip-off forensics is
generally destructive in nature, because the analyst has to physically remove the
chip by de-soldering or chemically removing adhesives, whatever the manufacturer
used to attach the chip in the first place. Once removed, chip programmers can be
used to extract the binary data from the memory type that was employed. Chip-off is
generally an advanced process performed by specifically outfitted laboratories.

[298]

http://openocd.org/
http://urjtag.org/

Chapter 10

Whatever procedure was used to access and extract the full memory of the

device, the next step involves the analysis of the binary. Depending on the chip or
architecture in question, a number of tools are available for performing raw binary
analysis. Examples include:

* Binwalk (http://binwalk.org): Very useful for scanning a binary for
specific signatures related to files, filesystems, and so on. Once identified,
files can be extracted for downstream inspection and analysis.

* IDA-Pro (https://www.hex-rays.com/products/ida/index.shtml):
Used by many security researchers (and anyone looking to find and
exploit vulnerabilities in well-known OS architectures), IDA is a powerful
disassembly and debugging tool that can target a variety of operating
systems for reverse engineering.

* Firmwalker (https://github.com/craigz28/firmwalker): A script-based
tool for searching files and filesystems in firmware.

Escalate and monitor

Know how and when to perform incident escalation. This is where good threat
intelligence becomes especially valuable. Compromises are usually not single events,
but rather small pieces of a larger campaign. As new information is learned, the
methods of detection and response need to escalate and adapt to handle the incident.

Finally, something to consider is that cybersecurity staff deploying IoT systems

in industries such as transportation and utilities should keep an eye on national

and international threats above and beyond the local organization. This is the
normal course of business for US and other national intelligence-related agencies.
Nation-state, terrorist, organized crime and other international-related security
considerations can have direct bearing on IoT systems in terms of nationalistic or
criminal attack motivations, desired impacts, and the possible actors who may carry
out the actions. This type of awareness tends to be more applicable to critical energy,
utilities, and transportation infrastructure, but targeted attacks can come from
anywhere and target just about anything.

There is a significant need for information to be shared between operational and
technology teams even within organizations. In terms of public/private partnerships
that facilitate such information sharing, one is InfraGard:

"InfraGard is a partnership between the FBI and the private sector. It is an
association of persons who represent businesses, academic institutions, state
and local law enforcement agencies, and other participants dedicated to sharing
information and intelligence to prevent hostile acts against the UL.S."

Source: https://www.infragard.org/

[299]

http://binwalk.org
https://www.hex-rays.com/products/ida/index.shtml
https://github.com/craigz28/firmwalker
https://www.infragard.org/

IoT Incident Response

Another valuable information-sharing resource is the High Tech Crime
Investigation Association (HTCIA). HTCIA is a non-profit that hosts yearly
international conferences and promotes partnerships with public and private entities.
Regional chapters exist in many parts of the world.

Other more sensitive partnerships, such as the US Department of Homeland
Security's (DHS) Enhanced Cybersecurity Services (ECS), exist between
government and industry to improve threat intelligence and sharing across
commercial and government boundaries. These types of programs typically

invoke access to classified information outside the realm of most non-government
contracting organizations today. We may very well see such programs undergo
significant enhancement over the years to better accommodate IoT-related threat
intelligence, given the large government and military interest in IoT-enabled systems
and CPS.

Containment, eradication, and recovery

One of the most important questions to answer during an incident response is the
level at which systems can be taken offline without disrupting critical business/
mission processes. Often within IoT systems, the process of swapping out a new
device for an old device is relatively trivial; this needs to be taken into account when
determining the right course of action. This is not always the case, of course, but if it
is feasible to quickly swap out infected devices then that path should be taken.

In any case, compromised devices should be removed from the operational network
as quickly as possible. The state of those devices should be strictly preserved so that
the devices can be further analyzed using traditional forensics tools and processes.
Even here though, there are challenges, as some constrained devices may overwrite
data important to the analysis (https://www.cscan.org/openaccess/?1d=231).

More complicated issues arise when an IoT gateway has been compromised.
Organizations should keep on hand preconfigured spare gateways ready to be
deployed should a gateway be compromised. If possible, a re-flashing of all IoT
devices may also be in order if the gateway is compromised. Today, this can be quite
a challenge, unfortunately. Automated software/firmware provisioning services
(not unlike the Microsoft Windows Server Update Services (WSUS) application)
represent an enormous gap in today's IoT. The ability to patch any device, anywhere,
over the wire or over the air, is definitely needed, and it's a capability that needs to
function regardless of who owns a device and whether or how it is transferred to
other owners, other cloud-based provider services, and so on.

[300]

https://www.cscan.org/openaccess/?id=231

Chapter 10

Infrastructure compute platforms must also be considered. Remove servers or
server images (cloud) from the operational network and replace them with new,
baselined images to keep services up and running (much easier and faster in a
cloud deployment). An incident response plan should include each of the discrete
steps to do this. If you utilize a cloud management interface, include the specific
management URI at which to perform the action, the specific steps (button presses),
everything. Determine by what means IoT images in your system can be acquired.
Isolate the infected images to begin forensics analysis, where you will attempt to
identify the malware and the vulnerability/ vulnerabilities that the malware is
attempting to exploit.

One thing to note is that it is always desirable to track what an adversary is doing
on your network. If the required resources are available, it would be beneficial to

set up logical rules gateway devices that, upon command or pattern, segment off
compromised IoT devices to make an attacker or malware unaware of the discovery.
Dynamically reconfiguring these devices to talk to a parallel dummy infrastructure
(either at the gateway or in the cloud) can allow for closer observation and study

of the actions being taken by the malicious actor(s). Alternatively, you can re-route
traffic for the affected device(s) to a sandbox environment for further analysis.

Post-incident activities

Sometimes called recovery, this phase includes steps for performing root cause
analysis, after-incident forensics, privacy health checks, and a determination of
which PII items, if any, were compromised.

Root cause analysis should be used to understand exactly how the defensive posture
failed and determine what steps should be taken in order to keep the incident from
reoccurring. Active scanning of related IoT devices and systems should also occur
post-incident, to proactively hunt for the same or similar intruders.

It is important to employ retrospective meetings for sharing lessons learned among
team members. This can be explicitly stated in your incident response plan by calling
for one-day, one-week, and one-month follow-up meetings with the entire IR team.
Over the course of that time, many details from follow-up forensics and analysis will
shed new light on the source of the incident, its actors, the vulnerabilities exploited,
and, equally important, how well your team did in the response. Retrospective
meetings should be handled like group therapy —no pointing fingers, blame, or
harsh criticism of individuals or processes, just an honest assessment of 1) what
happened, 2) how it happened, 3) how well or poorly your response went (and
why), and 4) how you can respond better next time. The retrospectives should have
a moderator to ensure that things flow well, time is not wasted, and that the most
salient lessons learned are captured.

[301]

IoT Incident Response

Finally, all of the lessons learned should be evaluated for:

* Necessary changes to the IRP plan
* Necessary changes to the network access control (NAC) plan

* Any need for new tools, resources, or training required to safeguard
the enterprise

* Any deficiencies in the cloud service provider's IR plan that would have
helped in the incident response (indeed, you may need to determine if you
need to migrate to a different cloud provider, or add additional services with
your current one)

Summary

This chapter provided guidance on building, maintaining, and executing an incident
response plan. We defined IoT incident response and management, and discussed
the unique details related to executing IoT incident response activities.

The safe and secure implementation of IoT systems is a difficult challenge to
undertake given the unique characteristics of these systems, their ability to impact
events in the physical world, and the diverse nature of IoT implementations. This
book has attempted to provide practical advice for designing and deploying many
types of complex IoT system. We hope that you are able to tailor this guidance to
your own unique environments, even as the pace of change in this high-potential
technology area continues to increase.

[302]

A

access control
about 195
within communication protocols 198
ActiveDirectory (AD) 269
Advanced Message Queuing Protocol
(AMQP) 23
AES (advanced encryption standard) 136
agile developments
security 73-76
Amazon Glacier
reference link 259
Amazon Web Services (AWS) 17, 30, 253
Amenaza
URL 42
application programming interface (API) 16
Assured Compliance Assessment Solution
(ACAS) 237
asymmetric encryption
defining 138, 139
attacks
and countermeasures, defining 39
attack tree
building 42-45
defining 41
URL 42
versus fault tree 47
attribute-based access control (ABAC)
about 118,179
reference 118
authenticated encryption
examples 144
authentication, authorization,
and accounting (AAA) 189

Index

authentication credentials
biometrics 187
certificates 186
defining 184
OAuth 2.0, using 188
passwords 184, 185
symmetric keys 185
authentication security controls
about 268
Amazon AWS IAM 268, 269
Azure authentication 269
authorization 195
authorization and access controls
within publish/subscribe protocols 197
AWS IoT
about 259
reference link 259

B

basic safety messages (BSM) 187
Bastille
about 101, 293
URL 101
Beyond Line of Sight (BLOS) unmanned air
system (UAS) 105
binary analysis
examples 299
black box 240-242
block chaining modes 137
Bluetooth-LE
keys, defining 166
Bluetooth Media Access Control
(MAC) address 80
brain-computer interfaces (BCI) 31

[303]

brain-machine interfaces (BMI) 31
bring your own device (BYOD) 174
Brivo

URL 98
BSP (Board Support Package) vendors 18
Building Security In Maturity Model

(BSIMM)

URL 73

bulk electric system (BES) 247

C

Center for Internet Security (CIS) 126
about 83
URL 83
certificate-based key
establishment (CBKE) 164
Certificate of Cloud Security Knowledge
(CCSK) 234
certificate response 190
Certificate Revocation List (CRL) 194
certificates
defining 186
IEEE 1609.2 187
X.509 186
certificate signing request (CSR) 189
certification and accreditation (C&A) 81
Certified Cloud Security Professional
(CCSP) 234
Certified Information Privacy Professional
(CIPP) 234
Chief Information Officer (CIO) 13
chip de-capping 298
cipher block chaining (CBC) 137
cipher-feedback chaining (CFB) 137
ciphersuites
defining 146, 147
ciphertext
defining 134
Cisco Application Framework (CAF) 266
Cisco Fog Computing
reference link 266
cloud-enabled directions
about 278
cognitive IoT 280
new distributed trust models 279
on-demand computing (ODC) 278

cloud-enabled IOT computing
characteristics 275
cloud-enabled directions 278
IoT-enablers of cloud 275
cloud-enabled IoT starter kit
reference link 254
cloud IoT security controls
about 268
authentication (and authorization) 268
data integrity, maintaining 271
end-to-end security
recommendations 270, 271
IoT devices enrollment 272
secure bootstrap implementation 272
security monitoring 272
software/firmware updates 269
Cloud Security Alliance (CSA)
about 72, 234
URL 89
cloud service provider (CSP) 236
cloud service provider IoT offerings
AWS IoT 259-262
Cisco Fog computing 265, 266
exploring 259
IBM Watson IoT platform 267
Microsoft Azure loT suite 264
Cloud Service Providers (CSP) 18
cloud services
and IoT 254
asset/inventory management 254
billing 255
customer intelligence 256
entitlements management 255
information sharing 256
IoT threats, examining 257, 258
marketing 256
message transport/broadcast 257
real-time monitoring 255
sensor coordination 255
service provisioning 255
CoAP
URL 168
cognitive IoT
collaborative navigation techniques 280
predictive health monitoring 280
common names (CN) 186
community of interest (COI) 195

[304]

complex compliance environment
defining 244
complex sharing environment
about 201
smart homes 202
wearables 202
compliance
about 81, 82, 225
industry-specific compliance regimens 82
monitoring for 83
concept of operations (CONOPS) 105
concise binary object representation
(CBOR) 196
Constrained Application
Protocol (CoAP) 23
Content Delivery Network (CDN) 264
Continuity of Operations (COOP) 67
controller area network (CAN) 52
controls, OAuth2
references 168
counter modes 138
Court of Justice of the European Union
(CJEU) 215
CPS attack
prerequisites 49
credential and attribute provisioning
about 181, 182
local access 183
Critical Infrastructure Protection (CIP) 82
cross-industry collaboration
defining 7-10
cryptographic controls, into IoT
communication protocols
Bluetooth-LE 165-167
defining 162-165
examining 162
Near field communication (NFC) 167
cryptographic controls, into IoT messaging
protocols
CoAP 167,168
DDS 168
defining 167
MQTT 167
REST 168
cryptographic key management
accounting 160
defining 153-155, 161, 162

key derivation 156, 157
key escrow 158
key establishment 155, 156
key generation 155
key lifetime 158
key storage 158
key zeroization 159
management 160
cryptographic module principles
defining 147-153
cryptographic security APIs 95, 96
cryptography
defining, in securing IoT 132, 133
implementing 150, 151
cyber-physical systems (CPS)
about 6, 46, 246
reference 6
cybersecurity
versus loT security 5-7
Cybersecurity Assurance
Program (CAP) 245
cyclic redundancy check (CRC) 51, 236

D

Data Distribution Standard (DDS) 168
Datagram TLS (DTLS) 28
data link and physical protocols
about 28
cellular communications 29
IEEE 802.15.4 28
Power Line Communications (PLC) 29
ZWave 29
decryption
defining 134, 135
dedicated short range communications
(DSRC) 187
Defense Advanced Research Projects
Agency (DARPA) 101
denial of service (DoS) 67,109
Department of Homeland Security (DHS)
about 234
URL 234
detection and analysis
about 293, 294
compromised system, analyzing 295-297
escalation 299, 300

[305]

IoT devices, analyzing 298
monitoring 299, 300
deterministic random bit
generators (DRBGs) 145
digital forensics and incident response
(DFIR) 293
digital signature
defining 141-143
symmetric (MACs) 143, 144
Discrepancy Reports (DRs) 112
disposal phase, IoT system lifecycle 128
data archival 129
data purging 129
inventory control 129
records management 129
secure device disposal and zeroization 129
distinguished names (DN) 186
distributed denial of service (DDOS) 276
distributed trust authorities (DTA) 279
DNS-based Authentication of Named
Entities (DANE) 110
Docker
reference link 277
domain name system (DNS) integration 110
DSA (digital signature algorithm) 142

E

Elastic Search (ES) 259
Electronic code book (ECB) 137
electronic control units (ECU) 80
Electronic Key Management System
(EKMS) 154

electronic serial numbers (ESNs) 178
Elliptic curve DSA (ECDSA) 142
Elliptic curve (EC) 134
Elliptic Curve Qu-Vanstone (ECQV) 165
encryption

advantages 139

asymmetric encryption 138, 139

defining 134, 135

symmetric encryption 136, 137
End Entities (EE)

about 191

Cross-certification 192

Explicit trust 191

enterprise IoT cloud security architecture
tailoring 273-274
Extensible Markup Language (XML) 25

F

fault and attack tree analysis
merging 47, 48
fault tree
versus attack tree 47
fault tree analysis (FTA)
about 46
URL 46
Federal Information Processing
Standards (FIPS) 95
FIDO
URL 187
FIPS 140-2
reference 148
Fitbit
URL 175
Fog Computing 98
Food and Drug Administration (FDA) 82
ForgeRock
URL 98
Funtenna 101
Fuzz testing 243, 244

G

Galois counter mode (GCM) 138, 144, 146
Gartner
reference 9
General Purpose Input/Output (GPIO)
pins 19
Geographic Information System (GIS) 43
GMAC (Galois message
authentication code) 144
governance, risk,
and compliance (GRC) 227

H

Hardsploit

URL 124
hardware security modules (HSM) 147, 192
hashes

defining 139, 140

[306]

High Tech Crime Investigation Association

(HTCIA) 300
HIPAA/HITECH
about 248
references 248
Hypr Biometric Security
URL 188

IAM
defining, for IoT 174-176
IBM Watson IoT platform
about 267
MQTT and REST interfaces 267
reference link 267
identify and access management. See IAM
identity lifecycle
account, deactivating 184
account monitoring and control 183
account suspension 184
account updates 183
credential and attribute
provisioning 181, 182
defining 176, 177
device, naming 178, 179
naming conventions, establishing 177, 178
secure bootstrap 179-181
identity relationship management
and context
about 117
attribute-based access control (ABAC) 118
keys and certificates, managing 119, 120
role-based access control (RBAC) 118, 119
third-party data requirements 119
Identity Relationship
Management (IRM) 97
identity services engine (ISE) 266
implementation and integration,
IoT system lifecycle
about 105
IoT security CONOPS document 105, 106
network and security integration 107
secure configurations 113
security training 112
system security verification
and validation (V&V) 111,112

incident management 281
incident response planning
about 287
cloud provider's role 290
containment 300
detection and analysis 293
eradication 300
IoT incident response procedures 289, 290
IoT incident response team
composition 291
IoT system categorization 287-289
post-incident activities 301
recovery 300
incident response preparation 287
industry-specific compliance regimens,
compliance
HIPAA 83
NERC (North American Electric Reliability
Corporation) 82
NIST (National Institutes for Standards and
Technology) 83
PCI (Payment Card Industry) 82
SAE (Society of Automotive Engineers) 83
USPS (US Postal Service) 82
information assurance (IA)
about 133
components 34, 35
defining 34
information practices (FIPs) privacy
principles
access 219
accuracy 219
compliance 219
consent 218
infrastructure-as-a-service (IaaS) 258
initialization vector (IV) 137,198
integer factorization
cryptography (IFC) 134, 139
integrated circuits (IC) 20
integrated modular avionics (IMA) 50
International Association of Privacy
Professionals (IAPP)
reference link 221
Internet Engineering Task Force (IETF) 188
Internet of Things (IoT)
and cognitive systems 31, 32
and cryptography, future 169-171

[307]

communications 21, 23
connected vehicles and transportation 11
cryptographic primitives, types 133, 134
cryptographic primitives, uses 133, 134
data collection 30
data link and physical protocols 28
defining 3, 4, 17
energy industry 11
hardware 19
IAM infrastructure 188
implantables 12
integration platforms and solutions 30
manufacturing 11
medical devices 12
messaging protocols 23
need for securing 31
network protocols 28
operating systems 20
privacy challenges 200
references 4
smart grid 11
storage and analytics 30
transport protocols 27
using 10
wearables 12
IoT attacks
application security attacks 54
defining 52, 53
physical security attacks 54
security protocol attacks 54
wireless reconnaissance and mapping 53
IoT attack, types
about 39, 41
attack trees 41
CPS 46, 47
cyber-physical attack, example 49-51
fault (failure) trees 46, 47
IoT compliance
challenges 244
defining 226, 227
existing compliance standards support,
examining 245-250
IoT compliance program
defining 229
documentation 230
executive oversight 229, 230
internal compliance monitoring 234-239

periodic risk assessments 239-243
policies and procedures 230
references 232
testing 234
training and education 231-233
IoT device
and service deployment 18
implementation 18
in operation 76, 77
lifecycle 17
references 165
IoT-enablers, cloud
containers, for deployment support 277
container support, for secure development
environments 276
data services 276
microservices 277
Move to 5G connectivity 278
software defined networking (SDN) 275
IoT IAM infrastructure
802.1x 189
PKI, for IoT 189
IoT incident response
defining 285
executing 285
planning 285, 286
threats, to safety and security 282-284
IoT incident response team composition
about 291
communications planning 292
IRP exercises 292
IRP, operationalizing 292
IoT, in enterprise
defining 13-16
IoT penetration test tools
about 124
Aircrack-ng 125
Bluelog 125
BlueMaho 125
Chibi 125
crackle 125
HackRF 125
Hardsploit 125
KillerBee 125
scapy-radio 125
SecBee 125
Shikra 125

[308]

Wireshark 125
IoT Privacy Impact Assessment (PIA)
about 206
auditing and accountability 216
authorities 208
collected information,
characterizing 208-211
collected information, uses 212
data retention 214
information sharing (onward transfer) 214
issues, reference link 206
notice 213
overview 206
performing, guidelines 206
redress 215
reference link 207
security 212
IoT relationship platforms
about 94
ThingWorx 94
Xively 94
IoT security 2
IoT security and cyber-physical systems
versus cybersecurity 5-7
IoT security CONOPS document 106, 107
IoT security service
reference 101
IoT service
attributes 178
implementation 18, 19
IoT system
assets, identifying 58, 59
decomposing 62-64
example 57
implementing 55, 227, 228
system/architecture overview,
creating 59-62
threats, documenting 68
threats, identifying 65-68
threats, rating 69, 70
threat modeling 56, 57
IoT systems and compliance
challenges 227
IOx architecture
fog director 266
fog nodes 266
host OS 266

ITU-T Y.2060
Device 17
Thing 17

J

Jabber Instant Messaging (IM) 25

K

key encryption key (KEK) 156
key management infrastructure (KMI) 154
key management interoperability

protocol (KMIP) 162

L

leaf node 43
Let's Encrypt
URL 183
location obscurer proxy (LOP) 205
logical access control systems (LACS) 176
Low Rate Wireless Personal Area
Networks (LRWPAN) 28

managed security service
providers (MSSPs) 101
management information bases (MIBs) 237
master service agreement (MSA) 76
message authentication code (MAC) 236
message queuing telemetry transport
(MQTT)

about 21

reference link 267
messaging protocols

about 23

AMQP 27

CoAP 25

DDS 26

gateways 27

MQTT 24

XMPP 25, 26
microcontrollers (MCUs) 92
Microsoft Azure IoT suite

reference link 264

[309]

Microsoft Security Development
Lifecycle (SDL)

about 73
UEL 73

Milagro
reference link 279

Move to 5G connectivity
reference link 278

MQTT For Sensor Networks (MQTT-SN)
about 24
URL 25

N

National Security Agency (NSA) 151
National Vulnerability Database (NVD)
URL 126
Near Field Communication (NFC)
transponder 92
network and security integration
about 107
examining, for connected cars 108
examining, for WSNs 107
IoT and data buses 111
provisioning mechanisms, planning for 110
security systems, integrating with 110
updates to network and security
infrastructures, planning 108, 109
network function virtualization (NFV) 233
network protocols
references 28
network time protocol (NTP) 295
Nexus
URL 98
NIST Risk Management
Framework (RMF) 250
NIST SP 800-131A
URL 161
NIST Special Publication 800-90B
URL 146
non-deterministic random number
generator (NDRNG) 145

O

OAuth 2.0
about 195, 196
references 196

Office of Personnel and Management
(OPM) 1
on-board equipment (OBE) 204 187
on-demand computing (ODC) 278
online certificate status protocol (OCSP) 194
Online Certificate Status
Protocol (OCSP) 120
onward transfer 214
OpenDNS report
URL 175
OpenlD Connect (OIDC) 269
OpenSSL Heartbleed
reference 96
operations and maintenance, IoT system
lifecycle
about 116
asset management 126, 127
attributes, managing 117
compliance monitoring 126
configuration management 126, 127
forensics 128
identities, managing 116
identity relationship management and
context 117
incident management 128
penetration testing 122
roles, managing 117
security monitoring 120-122
Original Design Manufacturers (ODM) 18
Original Equipment
Manufacturer (OEM) 18

P

Passive Vulnerability Scanner (PVS) 238
Password-based key
derivation (PBKDF) 157
payment card industry (PCI) 81, 226
pay-per-use (PPU)
reference 90
PCI DSS (Payment Card Industry
Data Security Standard) 82, 248
PCI Security Standards Council
URL 248
penetration testing
about 122
airwaves 124

[310]

blue teams 123
hardware security, evaluating 124
IoT penetration test tools 124-126
red teams 123
perfect forward secrecy (PFS) 161
personally identifiable
information (PII) 209
physical access control systems (PACS) 176
PIN Transaction Services (PTS) 82
PKI, for IoT
PKI architecture 193, 194
PKI primer 190-192
revocation support 194
trust stores 192,193
point of contact (PoC) 291
Power Line Communications (PLC) 29
pre-master secret (PMS) 139, 147
privacy by design (PbD) principles
about 216
end-to-end security 217
positive-sum principle 217
privacy embedded, into design 216
user privacy, respecting 218
visibility and transparency 218
zero-sum privacy approach 217
privacy challenges, IoT
about 200, 201
complex sharing environment 201
privacy approaches, for credentials 203, 204
privacy impacts 204
private information leakage,
by metadata 202
reference link 202
surveillance, methods 205
privacy engineering
activities 222
privacy throughout organization 220
professionals 221
recommendations 219
privacy impact assessment (PIA) 199
privacy protected information (PPI) 79,199
processes and agreements, security
about 88
IoT physical security plan, establishing 91
new liabilities and guard, against risk
exposure 90
privacy agreements, establishing 89

secure acquisition process 88
secure update process 88
service level agreements, establishing 88
programmable logic
controllers (PLCs) 128, 255
protocol data unit (PDU) 166
Public Key Infrastructure (PKI) 16

Q

Quality of Service (QoS) 27
R

radio frequency (RF) 12,21
random number generation

defining 144-146
Ravello Systems

reference link 277
Read Only Memory (ROM) 20
real-time operating system (RTOS) 114
real-time protocols (RTP) 146
registration authority (RA) 97,182, 190, 205
remote procedure calls (RPCs) 116
remote terminal units (RTUs) 255
representational state transfer (REST) 21
reserved MQTT

reference link 261
return-on-investment (ROI) 37
revocation support

about 194

OCSP 194

OCSP stapling 195

SSL pinning 195
risk

defining 38
roadside equipment (RSE) 81, 108
roadside units (RSU) 194
RSA (Rivest, Shamir, Adelman) 139

S

safety
defining 35

safety and security design
about 79
compliance 81-83

[311]

privacy impact assessment (PIA) 79, 80
safety impact assessment 80, 81
security system integration 84, 85
threat modeling 79
Samsung SmartThings hub
URL 21
secure bootstrap 85
secure configurations
about 113
IoT device configurations 114
secure gateway and network
configurations 115
secure design, IoT devices
about 78
processes and agreements 88
safety and security design 79
technology selection 92
secure IoT system implementation lifecycle
about 104
disposal phase 128
implementation and integration 105
operations and maintenance 116
secure sockets layer (SSL) 97
SecurITree tool
defining 44
security
building, into design and development 72
in agile developments 73-76
security-as-a-service (SECaaS) 279
security credential management system
(SCMS) 119, 193, 204
security engineering
about 71
reference 71
security information event management
(SIEM) systems 293
security monitoring 99-101
security system integration
about 84-86
accounts and credentials 86
audit and monitoring 87
patching and updates 87
security training
about 112
security administration training,
for IoT 113
security awareness training, for users 113

seeds 145
self-driving vehicle (SDV) 90, 101
service level agreement (SLA) 79
service oriented architecture (SOA) 277
short-term key (STK) 166
signal phase and timing (SPaT) 203
signature verification 141
simple network management protocol
(SNMP) 237

Simple Storage Service (S3) 259
smart grid 11
smart meter 11
software defined networking (SDN) 233
software development kits (SDKs) 94
SP800-90B

URL 146
Special Publications (SP) 83
Supervisory Control and Data Acquisition

(SCADA) 55

symmetric encryption

block chaining modes 137

counter modes 138

defining 136, 137
symmetric key establishment (SKKE) 164
symmetric (MACs) 143,144
system-of-systems 13
system on chip (SoC)

about 92

considerations 92
system security plans (SSPs) 231

T

technology selection
about 92
authentication 97
authorization 97
cryptographic security APIs 95, 96
Fog Computing 98
IoT device hardware 92
IoT relationship platforms 94
MCU, selecting 92, 93
real-time operating system (RTOS),
selecting 93
security monitoring 99
Texas Instruments (TI) 20
thing shadows 17

[312]

ThingWorx 94
threats
defining 36
threats/attacks
defining 233
references 233
threat-sharing platforms
examples 295
threats, vulnerability and risks (TVR)
defining 34
Transmission Control Protocol (TCP) 27
transport layer security (TLS) 146, 185
trust center link keys (TCLK) 165
trusted platform modules (TPMs) 192

U

Uniform Resource Indicators (URIs) 25
universal serial bus (USB) ports 91
University of San Diego,

California (UCSD) 52
Unmanned Aerial Systems (UAS) 16
unmanned aircraft systems (UAS) 17

US Dept. of Transportation (USDOT) 187

User Datagram Protocol (UDP) 28

\"

vehicle-to-infrastructure (V2I)
communications 187
vehicle-to-vehicle (V2V)
communications 120
vulnerability
defining 36, 37

w

White box
assessments 242, 243
Windows Server Update
Services (WSUS) 300
WSNss (wireless sensor networks) 236

X

Xively 94

XMPP
URL 26

XMPP-IoT
URL 26

Y4

zeroization 159, 160
zero-sum approach
reference link 217
ZigBee
about 163
URL 163
ZigBeeAlliance09 114
ZigBee-based IoT network online
reference 114
ZigBee Home Automation Public
Application Profile (HAPAP) 114
ZigBee Light Link Profile (ZLL) 114
ZWave
references 29

[313]

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	A Brave New World
	Defining the IoT
	Cybersecurity versus IoT security and cyber-physical systems

	Why cross-industry collaboration is vital
	IoT uses today
	Energy industry and smart grid
	Connected vehicles and transportation
	Manufacturing
	Wearables
	Implantables and medical devices

	The IoT in the enterprise
	The things in the IoT
	The IoT device lifecycle
	The hardware
	Operating systems
	IoT communications
	Messaging protocols
	Transport protocols
	Network protocols
	Data link and physical protocols
	IoT data collection, storage and analytics

	IoT integration platforms and solutions

	The IoT of the future and the need to secure
	The future – cognitive systems and the IoT

	Summary

	Vulnerabilities, Attacks, and Countermeasures
	Primer on threats, vulnerability, and risks (TVR)
	The classic pillars of information assurance
	Threats
	Vulnerability
	Risk

	Primer on attacks and countermeasures
	Common IoT attack types
	Attack trees
	Building an attack tree

	Fault (failure) trees and CPS
	Fault tree and attack tree differences
	Merging fault and attack tree analysis

	Example anatomy of a deadly cyber-physical attack

	Today's IoT attacks
	Attacks
	Wireless reconnaissance and mapping
	Security protocol attacks
	Physical security attacks
	Application security attacks

	Lessons learned and systematic approaches
	Threat modeling an IoT system
	Step 1 – identify the assets
	Step 2 – create a system/architecture overview
	Step 3 – decompose the IoT system
	Step 4 – identify threats
	Step 5 – document the threats
	Step 6 – rate the threats

	Summary

	Security Engineering for IoT Development
	Building security in to design and development
	Security in agile developments
	Focusing on the IoT device in operation

	Secure design
	Safety and security design
	Threat modeling
	Privacy impact assessment
	Safety impact assessment
	Compliance
	Security system integration

	Processes and agreements
	Secure acquisition process
	Secure update process
	Establish SLAs
	Establish privacy agreements
	Consider new liabilities and guard against risk exposure
	Establish an IoT physical security plan

	Technology selection – security products and services
	IoT device hardware
	Selecting an MCU
	Selecting a real-time operating system (RTOS)
	IoT relationship platforms
	Cryptographic security APIs
	Authentication/authorization
	Edge
	Security monitoring

	Summary

	The IoT Security Lifecycle
	The secure IoT system implementation lifecycle
	Implementation and integration
	IoT security CONOPS document
	Network and security integration
	System security verification and validation (V&V)
	Security training
	Secure configurations

	Operations and maintenance
	Managing identities, roles, and attributes
	Security monitoring
	Penetration testing
	Compliance monitoring
	Asset and configuration management
	Incident management
	Forensics

	Dispose
	Secure device disposal and zeroization
	Data purging
	Inventory control
	Data archiving and records management

	Summary

	Cryptographic Fundamentals for IoT Security Engineering
	Cryptography and its role in securing the IoT
	Types and uses of cryptographic primitives in the IoT
	Encryption and decryption
	Symmetric encryption
	Asymmetric encryption

	Hashes
	Digital signatures
	Symmetric (MACs)

	Random number generation
	Ciphersuites

	Cryptographic module principles
	Cryptographic key management fundamentals
	Key generation
	Key establishment
	Key derivation
	Key storage
	Key escrow
	Key lifetime
	Key zeroization
	Accounting and management
	Summary of key management recommendations

	Examining cryptographic controls for IoT protocols
	Cryptographic controls built into IoT communication protocols
	ZigBee
	Bluetooth-LE
	Near field communication (NFC)

	Cryptographic controls built into IoT messaging protocols
	MQTT
	CoAP
	DDS
	REST

	Future directions of the IoT and cryptography
	Summary

	Identity and Access Management Solutions
for the IoT
	An introduction to identity and access management for the IoT
	The identity lifecycle
	Establish naming conventions and uniqueness requirements
	Naming a device

	Secure bootstrap
	Credential and attribute provisioning
	Local access

	Account monitoring and control
	Account updates
	Account suspension
	Account/credential deactivation/deletion

	Authentication credentials
	Passwords
	Symmetric keys
	Certificates
	X.509
	IEEE 1609.2

	Biometrics
	New work in authorization for the IoT

	IoT IAM infrastructure
	802.1x
	PKI for the IoT
	PKI primer
	Trust stores
	PKI architecture for privacy
	Revocation support

	Authorization and access control
	OAuth 2.0
	Authorization and access controls within publish/subscribe protocols
	Access controls within communication protocols

	Summary

	Mitigating IoT Privacy Concerns
	Privacy challenges introduced by the IoT
	A complex sharing environment
	Wearables
	Smart homes

	Metadata can leak private information also
	New privacy approaches for credentials
	Privacy impacts on IoT security systems
	New methods of surveillance

	Guide to performing an IoT PIA
	Overview
	Authorities
	Characterizing collected information
	Uses of collected information
	Security
	Notice
	Data retention
	Information sharing
	Redress
	Auditing and accountability

	PbD principles
	Privacy embedded into design
	Positive-sum, not zero-sum
	End-to-end security
	Visibility and transparency
	Respect for user privacy

	Privacy engineering recommendations
	Privacy throughout the organization
	Privacy engineering professionals
	Privacy engineering activities

	Summary

	Setting Up a Compliance Monitoring Program
for the IoT
	IoT compliance
	Implementing IoT systems in a compliant manner
	An IoT compliance program
	Executive oversight
	Policies, procedures, and documentation
	Training and education
	Testing
	Internal compliance monitoring
	Periodic risk assessments

	A complex compliance environment
	Challenges associated with IoT compliance
	Examining existing compliance standards support for the IoT
	Underwriters Laboratory IoT certification
	NIST CPS efforts
	NERC CIP
	HIPAA/HITECH
	PCI DSS
	NIST Risk Management Framework (RMF)

	Summary

	Cloud Security for the IoT
	Cloud services and the IoT
	Asset/inventory management
	Service provisioning, billing, and entitlement management
	Real-time monitoring
	Sensor coordination
	Customer intelligence and marketing
	Information sharing
	Message transport/broadcast
	Examining IoT threats from a cloud perspective

	Exploring cloud service provider IoT offerings
	AWS IoT
	Microsoft Azure IoT suite
	Cisco Fog Computing
	IBM Watson IoT platform
	MQTT and REST interfaces

	Cloud IoT security controls
	Authentication (and authorization)
	Amazon AWS IAM
	Azure authentication

	Software/firmware updates
	End-to-end security recommendations
	Maintain data integrity
	Secure bootstrap and enrollment of IoT devices
	Security monitoring

	Tailoring an enterprise IoT cloud security architecture
	New directions in cloud-enabled IOT computing
	IoT-enablers of the cloud
	Software defined networking (SDN)
	Data services
	Container support for secure development environments
	Containers for deployment support
	Microservices
	The move to 5G connectivity

	Cloud-enabled directions
	On-demand computing and the IoT (dynamic compute resources)
	New distributed trust models for the cloud
	Cognitive IoT

	Summary

	IoT Incident Response
	Threats both to safety and security
	Planning and executing an IoT incident response
	Incident response planning
	IoT system categorization
	IoT incident response procedures
	The cloud provider's role

	IoT incident response team composition
	Communication planning
	Exercises and operationalizing an IRP in your organization

	Detection and analysis
	Analyzing the compromised system
	Analyzing the IoT devices involved
	Escalate and monitor

	Containment, eradication, and recovery
	Post-incident activities

	Summary

	Index

