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Analog Electronics






Chapter 1

Resistors

1.1 Basic Definitions

Here, we're going to breeze through a few fundamental notions in electromagnetism. At the most basic level,
electronics studies the flow of “stuff,” or more specifically, charge (measured in Coulombs). The flow of
charge is current (not “amperage”), defined by

_dQ (1.1)

I= dt’ (current)

What causes charge to move around and form currents? It’s the potential associated with an electric
field. To move a charge between two points, say A and B, this requires some work (energy) W done against
the force due to the field. Then the potential difference or voltage difference is

W
Vap = —. 1.2
0 (1.2)
That is, the work is proportional to the charge and to the difference in potential between the two points:
Vap :=Va—Vs. (1.3)

For a static electric field, it turns out that Vap is independent of the path that the charge takes between
the points, so we can represent this as a simple difference between the endpoint potentials. It’s important
to note that only differences in potential matter: if we raise both V4 and Vg by the same amount, the work
to transport the charge isn’t affected. Finally, note that voltage/potential is measured in volts (V), which
is the same as joules per coulomb (J/C), as we can see from the work relation (1.2).

An electromotive force (EMF) is a special name for a voltage difference due to an energy source
(say, a battery, or a power supply).

1.2 Ohm’s Law

Since electric fields exert forces on charges, you might think that a constant electric field makes a charge move
ballistically, or like a mass moves under constant gravity. But charges (electrons) moving through a material
(metal, semiconductor), due to interactions with the material, quickly settle into a terminal velocity, like
a particle falling through air under gravity. Under these conditions, and for small voltages, the velocity of
the charges is proportional to the applied voltage, so the current is proportional to the voltage. This is
the content of Ohm’s law. Consider a resistor (essentially any conducting material, say a wire, where the
material “resists” the flow of charge), which we represent by the following schematic symbol:

R

.
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Here the resistance (measured in ohms or ) is R, and the resistor connects points A and B. Then Ohm’s

law states
(1.4)

Vap = ITt. (Ohm’s law)

That is, for a fixed voltage, the current is inversely proportional to the resistance, which is sensible.
The voltage (and hence, electric field) does work on the charges. The power is the rate of work, or

dw
P=—. 1.5
7t (1.5)
From Eq. (1.2), W = V@Q (dropping subscripts on V'), and at constant voltage,
_ ., 4Q (1.6)
P= VE = Vi (electrical power)

Of course, with Ohm’s law, we can also write

p— — 2 = —
P=VI=I"R= R (electrical power)

for a few useful alternate forms of the electrical power

1.2.1 Resistors

Essentially anything short of a superconductor has resistance. Wires that carry current have resistance,
but usually it’s desirable to keep their resistance small. But in virtually all electronic circuits, it’s useful to
introduce controlled quantities of resistance, and these are the electrical components we call resistors. A few
basic types are:

1. wirewound resistors: are just wires wrapped around a form. These are usually expensive, but can
be precise (using thin wire to make a large resistor) or able to handle high power (using thick wire
embedded in ceramic).

2. carbon film: are a thin layer of carbon deposited on some insulating form (usually a small cylinder).
They’re cheap, but not particularly accurate in value. In the type with axial leads, these are usually
recognizable by their tan color.

3. metal film: are a thin layer of metal deposited on some insulating form (again, usually a small
cylinder). They’re more expensive than carbon, but more accurate. In the type with axial leads, these
are usually recognizable by a blue or blue/green color.

1.3 Networks and Kirchoff’s Laws

A simple circuit is any network of resistors, batteries, and wires (later to include more stuff!). There are
two basic laws that govern the circuit if all we have is batteries and resistors, and these are called Kirchoff’s
laws, on for current, and one for voltage.

1. The current law states that at any junction, the current going in to the junction must exactly balance
the current going out, for charge not to accumulate there:

Zfin,j = ZIout,j' (18)
J J

We can also keep track of the sense of “in” and “out” by keeping track of the sign of the current (always
important to do!). Thus, for example, in the following junction,
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L/

13

we should write

L+, +13=0. (1.9)

On the other hand, if we draw the currents like this,

I
I

I3

then we should write
I, —I,+ 13 =0. (1.10)

2. The voltage law states that around a closed circuit or loop in a circuit, the EMFs must balance the
voltage drops, or
2.6=2V (1.11)
J J

where the &; are the EMFs, and the V; are the voltage drops. For example, in the circuit below, the
EMF is V due to the battery, so the voltage drop across the resistor must also be V.

Vv T_——_ R

1.3.1 Series Resistors

Two resistors in series are the same as a single resistor, with an effective resistance that is the sum of the

individual resistors.

R Ry Reg = Ri1+ R»

Why? (Try to work this out on your own!)
The idea is that any current I that flows through one must flow through the other. So the voltages
across the resistors are V; = IRy and Vo = I Ry. Then the total drop across both resistors is

V=V+1 :I(R1+R2) =: I Reg. (112)

Thus,
Reg = R1 + R> (113)

is the effective resistance of the series pair. Of course, this generalizes to multiple resistors.
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1.3.2 Parallel Resistors

Two resistors in parallel also behave as a single resistor, as shown below.

Reg = R1|| Ry
R’
The shorthand notation here is ] 1 ]
- = 4 —
Ri||[R; © Ri Ry’
so that more parallelism in resistors decreases resistance.
Why is this? In this case, the voltage V' is common to the two resistors. The currents are Iy = V/R;

and Iy = V/R,. But the total current through the pair must be I = I; + I, which satisfies I = V/Reg. This
means

(1.14)

v % v
= — + —, 1.15
Rex R1  Ro (1.15)
and canceling the voltage gives
1 1 1
— = 4 (1.16)

Reff E 1%727
which agrees with the shorthand above.

1.3.3 Voltage Divider

This is a useful combination of resistors that occurs all the time in circuits.
Vi

Ry
‘/out

Ry

Here at the bottom of the circuit diagram, we are drawing the ground symbol, which means we are declaring
this point to be a fized voltage (say, zero), and all other voltages are differences with respect to ground. (In
the “ground” or “earth” pin on an ac power receptacle, this is literally the ground outside. Often the case
of electrical devices is connected to ground for safety, and in cars the entire chassis is ground.)

Now due to the input voltage Vi,, some current flows in from the input. This must satisfy

Vi
= ——. 1.17
R+ Ry ( )
The same current flows through R, so
_rp. (e (1.18)
Vour = IRz = ( R, + R2> Vin (voltage divider)

The output voltage is reduced from the input by the ratio of Ry to the total resistance. This is important;
you should memorize this. Especially if this is made from an adjustable resistor (potentiometer), this
can be used to make an adjustable voltage source.

However, suppose we chain two voltage dividers, as follows.
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‘/out

Is the output voltage just divided twice, or 1/4 the input voltage? Why not?

1.4 Thévenin’s Theorem

Thévenin’s theorem is very useful in analyzing passive networks. It says that any network of resistors and
EMFs—if we interact with it only at two points—can be replaced by an equivalent circuit of a series EMF
and resistor, as shown.

AN

Vrn Ry

— ‘/out

—

The EMF and resistance are called the Thévenin equivalent voltage and Thévenin equivalent resis-
tance, respectively. This equivalent circuit is a direct consequence of the linearity of a passive network.
How do we find the Thévenin equivalent component values? A couple of observations:

1. If nothing is connected to the output, then Vit = V.
2. If the output is short-circuited,! then Voue = 0 and Viry, = Rrnlshort.

These allow you to infer the Thévenin values. The second rule is useful experimentally, provided shorting
the output does not destroy the circuit!

An alternate way to find the Thévenin resistance, especially in analyzing a circuit on paper, is
to replace all EMFs by short circuits, and compute the equivalent resistance at the output.

1.4.1 Voltage Divider
Back to the voltage divider of Section 1.3.3.

1A “short circuit” or “short” is a direct, low-resistance path between two points in a circuit, like a piece of wire. It acts like
a “shortcut” for current between the two points, compared to going through the regular, higher-resistance paths in the circuit.
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Ry

‘/out

Ry

1. We already found the Thévenin voltage as the unloaded-output voltage:

Ve = (2 (1.19)
T\ R+Ry) ™ (voltage divider, Thévenin voltage)

2. If we short the output (to ground), the current only flows through Ry, 0 Ighort = Vin/R1. Then using

Ry = Von/ Lshors, We get
R1Rs

Ry, = ——= = R4||R>.

™ = R+ Ry dle

(voltage divider, Thévenin resistance) (1.20)

That is, the equivalent circuit is as below

%—O 1/out

Vi Ry,

The equivalent voltage is the divided voltage, and the equivalent resistance is the parallel resistance of

the two resistors. This is important; you should memorize this.
Now back to the example of two cascaded voltage dividers.

Vin

‘/out

We can replace the first divider by the Thévenin equivalent:
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Ry, = R/2
VTh = ‘/in/2
R
‘/out
R
Now we are back to a simple voltage divider, so
2\ Vin _ Vin
Vou =\z ) 5 = = - 1.21
t (5) Vi (1.21)

1.4.2 Connected Circuits and Power Transfer

The idea of Thévenin equivalence is also useful when analyzing what happens when you connect two fairly
arbitrary circuits together. Suppose we take the common situation of one circuit “powering” another. That
is, two circuits interact,

1. The “supply” is some circuit with EMFs.
2. The “load” is some circuit without EMFs.

Using the Thévenin-equivalent circuits for both, we can represent the connection thusly:

supply load
This is just a voltage divider, so we can write the output as
Rload
Vout = < Vaupply- 1.22
o Rload + Rsupply PP ( )

Now a few remarks are in order.

1. If Rigad > Reupply, then Voue = Viupply, and the supply acts like an ideal voltage source. This applies
to the “unloaded” (large Rioad) and “good supply” (small Rgypply) regimes.

2. If the supply is a battery, Rgupply is the “internal resistance” of the battery. The internal resistance of
a battery is larger for smaller or “used-up” batteries. The symptom is that the voltage sags when you
try to draw current.

3. Rgypply is called the output impedance of the supply. Rioaq is called the input impedance of the
load.
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4. The impedance-matching condition answer, under what conditions is maximum power transferred
from source to load? The power in the load is

2
Vout _ Rioad 2
- supply*
Rload (Rload + Rsupply)2 PRy

d a 1 2a
da ((a+b)2) - (a+b)?2 (a+b)3 =0, (1.24)

which leads to a = b, we have the matching condition

—Pload = (123)

Maximizing this via

(1.25)

Fioaa = Rsupply- (impedance-matching condition)

This is saying, for a fixed source impedance, the most power we can get out of the source and into the
load is if the load impedance matches the supply impedance. In older tube amplifiers, this was an im-
portant consideration. For efficient matching to different speaker loads, amplifier output transformers
would often have different “taps” for 42, 82, 16 2, etc. speakers.

1.5 Matrix Solution of Resistor Networks

Have a look at the XKCD comic “Circuit Diagram,”® and enjoy (you’ll recognize more stuff here as you
learn more about electronics). Make sure to hover the cursor over the comic so you see the last joke.

Now look at part of the circuit labelled “Oh, so you think you’re such a whiz at EE 201?” (If you can’t
access the circuit for whatever reason, it is a rat’s next of resistors, and the idea is to find the equivalent
resistance.) Randall Munroe was joking, but we’ll develop a systematic way to handle this kind of problem,
which you can use to tackle that mess without much difficulty.

1.5.1 Review of Linear Algebra

First, we're going to use some linear algebra (in practice, we will want the help of a computer), so let’s
review the notation. A matrix is a group of numbers indexed by two numbers. For example, we can write

down a 2 x 2 matrix as
A A ]
. 1.26

{ A1 Ago (1:26)

We can refer to the whole matrix as A. We can also refer an element (one of the entries) of the matrix as
A;;. Note that ¢ refers to the element’s row, while j refers to the element’s column. We can write a system

of linear equations as
A A x1 by
= . 1.27
{Am A22][$2} [52} ( )

This is just another way to write down the pair of equations

Anzy 4+ Az = by

(1.28)
Ag1x1 + Agoxo = by
and the shorthand notation for the matrix form is
Ax =Db, (1.29)

where x and b are vectors (i.e., n x 1 matrices, or specifically here, 2 x 1 matrices). Under certain conditions,
it is possible to solve for the z; in terms of the b; and the A;; (we’ll let a computer help here). Make sure
you understand the pattern of the matrix-vector multiplication in the equations above before you continue.

2http://xkcd.com/730/
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1.5.2 Matrix Form of the Resistance Network and Example

To develop the method to solve general networks of resistors, we’ll apply it to the simple circuit below, to
make the method more intuitive.

The goal is to find the effective resistance between points 2 and 3.
Instead of working with resistance, we’ll work with the conductance G = 1/R, so that Ohm’s law is

I=GV. (1.30)

Why? Well, conductance is well-defined between disconnected points (G = 0), and it will turn out to add
up in the correct way for this formalism. Now between any two nodes in the network, we can write Ohm’s
law as
i = Gy (Vi = Vj), (1.31)

where Vj; is the voltage at node j, G;; is the conductance of the connection between the two points (with
Gj; = 0, so there is no “self-conductance”, and G;; = Gj;), and I;; is the current flowing from node i to
node j. Specifically, in this example problem, we have G152 = Gy = G43 = G31 = G, while Go3 = G14 = 0.

Now Kirchhoff’s current law states that the sum of currents flowing out of a node must be zero (note
that we aren’t yet considering any currents going in to a node, the way we defined I;;):

> I =o. (1.32)

i
Note that we explicitly excluded the I;; = 0 case. This means
> Gy(Vi-V;) =0. (1.33)

J#i
Separating out terms we can rewrite this as

DGy | Vit D (=G =0. (1.34)
J#i J7#i
We can interpret this as a linear system of equations as follows.

e The coefficient of V; represents the diagonal elements of a matrix, call it A. Then A;; is the sum of all
conductances connected to node 1.

o The sum in the second term gives all the off-diagonal elements of the matrix. That is, 4;; = —G;;, or
the conductance between nodes ¢ and j, with a minus sign.

To apply this to the example above, we will have a 4 x 4 matrix A, and the system (1.34) of equations
becomes

2 -1 -1 0 Vi
-1 2 0 1| W
L A (1.35)
0 -1 -1 2 Vi

or Av = 0 for short. Note that R~! multiplies every element in the matrix A. Note also that the matrix
A;; is symmetric: A;; = Aj;. This is a very good sanity check for this matrix, especially when
you set up the matrix for part (c). Go through the elements of this matrix to make sure they make sense.
The diagonal elements are all 2 because every node is connected to two identical resistors. There is a —1
representing every connection (via an identical resistor) between two nodes.
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1.5.3 Solution for the Effective Resistance

Unfortunately, the above matrix equation is not useful as is, because it is satisfied by V; = V for any constant
V. Physically, without any applied voltage, this circuit really doesn’t do much. But first, we’ll take care of
another problem: the matrix A is singular, meaning one of the equations in the linear system is redundant.
Physically, this is because the absolute voltage of the circuit is not defined (the equations, by construction,
only determine voltage differences). We can fix this by explicitly tying one of the nodes to zero voltage.
Since node 3 is one of the nodes of interest, let’s set

V3 =0, (1.36)

which means we replace one of the equations in the linear system by this one. In matrix form, we will modify
the third row of the matrix as follows:

2 -1 -1 0 Vi
—1 _1 2 0 _1 V2 _
R o o 1 o v | =0 (1.37)
o -1 -1 2 Vi

To solve the other problem (i.e., to make the circuit do something), let’s introduce a current I, which flows
into node 2. The same current I must flow out of node 3.

I
R '
2

To handle this, we will modify Eq. (1.34) to say that the sum of currents flowing out of a node is equal to
the currents flowing into a node (counting the external currents I as inputs, with minus signs to properly
reflect their direction):

Z Gij | Vi+ Z(_Gij)vj = ILini- (1.38)
J#i JFi
Here Iy, ; is the current flowing in to node ¢. In our example problem, [, 2 = I, while I;,3 = —I. Now
writing the linear system including these currents, we have

2 -1 -1 0 Vi 0
-1 2 0 -1]||VW| _ |IR
o o0 1 o nl=1% | (1.39)
0 -1 -1 2 Vi 0

Note that we kept the third row of the matrix to reflect V5 = 0, and we only introduced the current I at
node 2. This is a well-defined system of equations, which we can solve to obtain V5. The effective resistance
of the network is defined by

V-V T
Reg = T =7

When you solve the matrix equation, as you might expect, the result should be R.g = R. We will leave the
details and the application to the XKCD problem to an exercise (Problem 17).

(1.40)



1.6 CIRCUIT PRACTICE 25

1.6 Circuit Practice

Here are a few example circuits to analyze with solutions; try to work these out and test your understanding
so far. (Try before looking at the solutions!)

1.6.1 Reflection-Symmetric Network

Given that all resistors here are equal and of resistance R, what is the equivalent resistance between A and
B?

A

B
Solution. Notice that by symmetry, the voltage across the center resistance is zero, so the current flowing
through it is zero, no matter what the voltage V4p. Thus, we can remove it from the circuit. The same goes

for the two other “equatorial” resistors. Thus, we have 4 parallel resistances of 2R, for a total resistance
R/2.

1.6.2 Series and Parallel Light Bulbs

Suppose the three bulbs in the circuit below are identical.
i@
‘-
>
L B Ef;

What is the relative brightness of the bulbs? Do bulbs B and C get brighter or dimmer when you remove
A?

Solution. First, note that half the C current flows through A and B, while A and B drop half the voltage
of C. So A and B are 1/4 as bright as C.

When A is removed, then B and C' are equally bright. Less current flows overall, because the total
resistance is larger. C' drops less voltage than it used to, B drops more than it used to. Clearly C should be
dimmer, but B should be brighter, because it now has more voltage and more current (the drop in overall
current is outweighed by the factor of 2 this bulb gets by its neighbor disappearing).

To be careful, note in the original case that the voltage across C is (2/3)V, and across A and B it is
(1/3)V, where V is the battery voltage. The current through C is (2/3)V/R, and half that flows through
A and B. In the new case, each bulb drops V/2, and current (1/2)V/R flows through each. Before, the C
power was the product of voltage and current, or (4/9)V?/R, and now it is (1/2)V?/R, so this is dimmer.
Before, the B power was (1/9)V?/R, so this one gets brighter.
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1.6.3 Thévenin Circuit

Compute I3 in the circuit below, by using the Thévenin equivalent to the circuit, thinking of V5 as the “load”
for the rest of the circuit.

Ry Ry _Is

Use values Ry =1Q, Ro =2Q, R3=4Q, V;, =1V, and Vo, =2V.

Solution. To work out the Thévenin equivalent, first look at the “unloaded” circuit:

S

The output voltage (and thus Thévenin-equivalent voltage) here is just the voltage-divider result

Ry 2
Viey, = Vi=2V. 1.41
h (R1 + Rg) 173 ( )

To get the resistance, replace the EMF by a short:

1 R
\%
Ry

The Thévenin resistance is the resistance that appears at the output terminals, or

RiRy 14
Rt = Rs+ Ry||Ry = R3s + ———— = — V. 1.42
Th 3+ Ri|| Ry 3+ R+ R 3 ( )

Now going back to the original circuit, we have the equivalent

This is pretty easy to solve, just use Ohm’s law:

Vo=V (4/3)V 2
I= S = g = A (1.43)
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1.7 Exercises

Problem 1.1

Ohm’s law for the conductance G is
I =GV, (1.44)

where the conductance is related to the resistance by G = 1/R, and G is measured in mhos, or U. (An
equivalent but less entertaining unit is the siemens, or S.)

Derive expressions for the conductance GG of two conductors of conductances G; and G5 in series. Do
the same for two conductors in parallel. Use only the form of Ohm’s law above to start; do not use
the analogous results for parallel and series resistances.

Problem 1.2

Compute Voyi. This is a voltage divider, but the “bottom” end is not grounded. Put the result into
some form you can remember and then memorize it.

Va

Ry
‘/out

Ry

%

Problem 1.3

In this circuit,

show that the “center voltage” V, is given by

V. = RbRc‘/l + RcRaV2 + RaRb‘/lS
o R,Ry, + RyR. + R.R,

(1.45)

Problem 1.4

Find relations between resistances Ri, Ro, and R3 in the left-hand network, and resistances R,, Ry,
and R, in the right-hand network, that make the two networks equivalent.
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Ry Ro

What does it mean for two resistor networks to be equivalent? Label the voltages and currents, for
example, as follows.

Now it’s useful to think of some of the voltages and currents as “inputs,” and others as “outputs,” or
“responses.” For example, if the three voltages are inputs, then they cause the corresponding currents
to flow. You can also think of one or two of the currents as being inputs instead of their respective
voltages. (But not all three currents; why?) The circuits are equivalent if every set of inputs produces
the equivalent set of outputs. For the purposes of this problem, it is sufficient to show that the two
networks produce equivalent relations between currents and voltages.

To do this:

(a) Derive expressions for the currents I7, I2, and I3 in terms of the voltages for the left-hand (“Delta”)
circuit.

(b) Derive expressions for the currents I, I, and I5 in terms of the voltages for the right-hand (“star”)
circuit.

(c) Set the corresponding currents in the two circuits equal to each other, and derive expressions for
R, Ry, and R, in terms of Ry, Ry, and R3. (You may think of the voltages as “inputs,” and thus as
independent parameters.)

Problem 1.5

Consider the circuit below.
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Give the Thévenin-equivalent circuit for the circuit in the diagram, as seen between
(a) points B-D.
(b) points A-B.
(c) points B-E.
(d) points A-F.

Problem 1.6

In the circuit below, compute the current I through the top-middle resistor.

Problem 1.7

Give the Thévenin voltage Vry and resistance Ry for the Thévenin equivalent circuit of the circuit
shown below.

Problem 1.8

Consider the following circuit, consisting of an infinite cascade of voltage dividers.
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By how much does the rest of the divider chain load down the first divider? That is, in the equivalent
circuit

Vv

Vi

what is the value of Rqg?

Hint: In the original divider chain, consider the second divider, along with the rest of the chain. This
part of the circuit is also equivalent to the same effective circuit. Now you have two different, equivalent
circuits in terms of R and Reg; compute the resistance from the point V' to ground in both circuits,
equate, and solve for Reg.

Problem 1.9

Consider the circuit below, with 3 cascaded voltage dividers (not all the same).
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Vout

(a) Compute Voyus.

(b) Compute the current in each one of the resistors in the circuit, assuming no load connected to Viyt.

Problem 1.10

Consider a network of 12 identical resistors of resistance R in the shape of a cube, as shown in the
circuit below. Compute the equivalent resistance between the two terminals shown at opposite corners
of the cube.

Hint: use symmetry, and analyze a current flowing between the two terminals. It also may (or may
not) help to identify which junctions are at equivalent potentials.

Problem 1.11

Consider the network below of 8 identical resistors and 4 identical voltage sources. With the two
indicated terminals as the output, give the Thévenin equivalent circuit. Ezplain your result.
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Problem 1.12

A “schmesistor” is a device that obeys “Schmohm’s law,”
vV =1I°5, (1.46)

where S is the “schmesistance.”

(a) Show that two schmesistors S; and S; in series behave like one schmesistor with schmesistance
Sett = S1 + Sa.

(b) Show that two schmesistors S; and Sy in parallel behave like one schmesistor with schmesistance

S = (e + jsf) (1.47)

(c) Describe the difficulty in using complex notation to analyze a circuit that includes schmesistors.

Problem 1.13

Give the Thévenin equivalent circuit for the circuit below, as “seen” by the output terminals marked
by Vout~

o

=
<
|
=
<
|
=
<
|
=
<
|
=
Vout

Problem 1.14

(a) Compute the effective resistance between points A and B.

R

B

(b) Compute the effective resistance between points A and B.



1.7 EXERCISES

33

Hint: symmetry.

(¢) Compute the effective resistance between points A and B.

R R R

Problem 1.15

(a) Compute the effective resistance between points A and B.

Hint: symmetry. There are (at least) two symmetries you should be taking advantage of here.

(¢) Compute the effective resistance between points A and B.
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Hint: symmetry, but note that it is not true in general that Vo = Vp.

(d) Generalize (a)—(c) to a resistor network forming a 4 x 4 grid(!) of squares.

R R R R e B

Problem 1.16

(a) Compute the equivalent resistance between points A and B in the circuit below.

(b) Compute the equivalent resistance between points C' and D in the circuit below.
R B
wzg
R

g
E

R

Problem 1.17
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Now back to the XKCD comic “Circuit Diagram.”® The point of this problem is to apply the matrix
method of Section 1.5 to solve this problem.

(a) Solve the example linear system in Eq. (1.39), using a computer, to obtain a value for V5, and
thus for Reg. I will describe how you can do this in Mathematica as an example (which is obnoxiously
expensive but handy in that it will give ezact results using this method), but a similar procedure will
work in some other software packages as well, such as the open-source Octave.*

First in a Mathematica window, type “A=", and then under the menu Insert > Table/Matrix > New...
create a 4 x 4 matrix. Then fill in the elements as above. Do the same thing to create a vector (4 x 1
matrix) for the currents (call it “II”, and use “IR” to represent I R in the vector; Mathematica reserves
the symbol “I” for /—1). Finally, use LinearSolve[A, II] to obtain the solution vector v, and use
it to deduce the effective resistance.

(b) Modify the calculation to compute the effective resistance between nodes 3 and 4 in the same
example circuit (reproduced below).

I
R X,
2

(¢c) Finally, modify the calculation to handle the XKCD mess.

The network is reproduced below, with nodes labeled (all 1-2 resistors). You should set V3; = 0 and
let a current I flow into node 1 (and out node 11).

3http ://xkcd.com/730/
4nttp://octave.org


http://xkcd.com/730/
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Chapter 2

Capacitors and Inductors

2.1 Capacitor Basics

A capacitor (an older, equivalent term is condensor) is, at minimum, a pair of conductors separated by
vacuum or dielectric. The symbol itself depicts two parallel electrodes.

c
|
I

Generally, useful capacitors have a relatively large area to achieve a reasonably useful capacitance, so they
are something like a pair of planar conductors, with little separation. They may have stacks of many planar
conductors to increase the area even further, and the stacks may be rolled up to save space and stored in a
can or dipped in epoxy for robustness.

Capacitors act as devices to store charge, and in doing so they also store energy. The charge stored
on the plates generates an electric field and thus a potential difference between the capacitor plates. The
potential and charge are related by the capacitor law,

- (2.1)
@=CV, (capacitor law)
where C is the capacitance, measured in Farads (F), which characterizes the capacitor. Larger conductor
areas, “stronger” dielectrics, and smaller electrode spacing all result in larger capacitance. (For example, a
few twists to intertwine two pieces of insulated hookup wire makes a capacitor of a few pF.) Differentiating
this relation at constant capacitance, and using I = dQ/dt, we find

av (2.2)
I =C—-, . .
dt (capacitor charging)
which means that a current charges or discharges a capacitor, allowing it to build up or bleed off charge,
thus changing the voltage.
There are many types of capacitors, and usually the different types are named according to their
dielectrics. A few of the most important are:

1. ceramic/monolithic: these tend to be cheap, and work reasonably well at high frequencies. The
capacitances are fairly small in the overall spectrum, ranging from a ~pF to about ~0.1 uF.

2. electrolytic: generally this refers to aluminum electrolytic capacitors. In these capacitors, one
electrode is aluminum foil, and the other is a liquid electrolyte. Under normal operation, an oxide
layer grows on the aluminum and acts as a thin dielectric layer. The foil can be coiled to give large
surface area, and the dielectric is very thin, so capacitances can be large, from ~1 yF to ~1F or more,
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though these tend not to work as well at high frequencies. These are polarized, meaning they can
only sustain voltage applied in one direction; the wrong voltage polarity can cause the insulating layer
to break down, leading to failure of the capacitor.

3. tantalum: these are also electrolytic capacitors, with a sintered titanium pellet as one electrode, and
a solid electrolyte as the other. These typically have intermediate capacitances in the range of ~0.1 uF
to ~10 uF, and are fairly compact compared to aluminum electrolytics.

There are many other kinds of capacitors. Some examples include paper, mica, mylar, polystyrene, polypropy-
lene, oil, and niobium electrolytic.

Like resistors, networked capacitors can combine to form equivalent single capacitors. Two capacitors
in parallel simply add their capacitances,

i

Ceg = C1 + Oy

Gy

as resistors in series add. Two series capacitors add less straightforwardly,

— -

& Cs Cy=Crt+0,"

like two parallel resistors add.

2.2 Simple R-C Circuits

2.2.1 Integrator

Consider the simple R-C circuit below. It looks something like a voltage divider, with the lower resistor
replaced by a capacitor.

‘/in o VVYV © out

7Y

I
Q

To analyze this (unloaded) circuit, note that all of the current I going through the resistor must also pass
through the capacitor. Applying Ohm’s law to determine the current,

Vin — Vour = IR, (2.3)
and then using the capacitor-charging law (2.2) to relate the current to the output voltage,
d‘/out
I1=C . 2.4
Solving for dVgyt/dt and eliminating I,
Vo)) Vour(t) | Vinlt) (2.5)
= — + 5 . . . .
dt RC RC (differential equation for integrator)

Note that by comparing left- and right-hand sides here, we can see that RC must have the units of time for
the units to work out.
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2.2.1.1 Solution by Integrating Factor

So how do we solve this differential equation? Note that the input Vi, (¢) is arbitrary and unknown, so the
best we can do is to obtain the solution in terms of Vi, (¢). For this type of ordinary differential equation
(ODE), there is a nice trick to simplify it into something more manageable. The idea is to first set Vi, = 0,

and look at the equation.
dV:)ut (t) V:)ut (t)

TR -To R (2.6)
This ODE is easy to solve: it’s just exponential decay,
V:)ut (t) = Vout (0) e_t/RC- (27)

Now the idea is that even in the presence of Vi, we should expect more or less the same (exponential-decay)
behavior. So let’s “build this in” to the solution by assuming a solution of the form

Vour (t) = V(t) e/ B, (2.8)
where f/(t) is the “deviation” from the simple solution e /BEC which is called an integrating factor. (We
aren’t losing anything in this assumption, because V' could be anything.) Then solving for V|

V = Viu e/ FC, (2.9)

and differentiating,

4V _ dVou yrc, ! t/RC
il e RcVoute . (2.10)

Now if we multiply Eq. (2.5) by €*/%¢, and bring both Vi terms to the left,

dVout t/RC | Vout ot/RC _ Vin et/RC’ (2.11)

dt RC RC
then notice the left-hand side is the right-hand side of Eq. (2.10). Thus, we have

v Vi ot/ RC.

Integrating both sides from 0 to ¢,
- - 1/t /
V(t)—V(0) = E/0 Vin(t) et /EC at’. (2.13)
Using Eq. (2.9) to get rid of V, and multiplying through by e~*/%¢,
(2.14)

1 & /
_ —t/RC | _~ (41 (' —t)/RC 4/
Vout (t) = Vour(0) e + RC /0 Vin(t") € dt’. (integrator solution)

Thus, we have a solution as an integral to Eq. (2.5) in terms of an arbitrary input voltage.

2.2.1.2 Constant Input: Exponential Charging

Now let’s take the simple case where the capacitor is initially uncharged [Vou:(0) = 0], and some constant
voltage Vi, appears at the input. Then it comes out of the integral, and we have

. t ’
‘/out(t) _ g%eft/RC/O et /RC dt’

!
— Vi, e /RO ¢t /RC‘

t (2.15)

0
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with final solution ( )
2.16

v _ _—t/RC
Vou(t) = Vin (1 € ) " (integrator solution, constant input)
This is an exponential rise from 0 to Vi, with time constant RC. That is, looking at e ~*/%¢ when t = RC,
this falls from unity to 1/e, or about 37%. So 1 — e~ /B¢ when t = RC, rises from 0 to 1 — 1/e, or about

63%.
One important thing to note about this is that the capacitor tends to smooth the input. Here, we

can regard the problem as an input of a sudden voltage step at ¢ = 0 [which is consistent with V. (0) = 0],
and the output is now smoothed over a time scale RC' due to the exponential action of the R—-C circuit.

2.2.1.3 Integration

This R—C circuit is called a passive integrator or integrator. The reason is as follows. Going back to
Eq. (2.5), if Voue < Vin, then we can ignore the V¢ term:

d‘/out(t) ~ V; (t)
kel (2.17)

In this case, we can just integrate this equation directly from 0 to ¢:
1 t
Vo (6) = Vour(0) % =5 /O V(') dt’. (2.18)

Thus, the output is the simple integral of the input signal, up to an offset and a factor of 1/RC. In this
regime, the capacitor simply stores up the charge that comes in from the resistor. If the capacitor charge,
and hence voltage, becomes too large, then this reduces the voltage drop across the resistor, and the simple

integral approximation breaks down.

2.2.2 Differentiator

We can get the other simple R—C circuit by interchanging the resistor and capacitor in the integrator, as
shown below.

c

‘/in o | | * © out
I
R

The capacitor charging equation here gives

d
1= C% (‘/in - Vout)a (219)
while Ohm’s law gives
Vout
I = . 2.20
o (2.20)

Eliminating I, we get

Vour . d (2.21)
R C%(Vl ~ Vour). (differentiator ODE)
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which is the ODE for this circuit. This circuit is called a differentiator, for reasons analogous to what we
saw for the integrator. If V,; < Vi, then the ODE reduces to

Vou dVin
t ~ C,

% s (2.22)

and the output is approximately the derivative of the input.
Tt is possible to write down a general solution to Eq. (2.21) for the differentiator output in terms of an
arbitrary input:

o—t/RC

Vout(8) = Vin(t) + [Vout (0) — Vin 0)] =3 — S —

t
/ ‘/1 (tl) et /RC dt/
0
(differentiator solution) (2.23)
The idea is fairly similar to the integrator (the same integrating-factor trick applies); we will leave this as
an exercise.

2.3 AC Signals and Complex Notation

Suppose we have an ac signal (alternating-current signal), oscillating at a single frequency w, described by
voltage:
V(t) = Vg coswt. (2.24)

Remember to distinguish angular frequencies from “regular frequencies.” Angular frequencies are usually
represented by w, and are measured in rad/s. “Regular” frequencies are usually represented by f or v, and
are measured in Hz or cycles/s. We can write

(2.25)

w=2rf (angular frequency)

to relate the two. In physics, using the angular frequency saves writing a bunch of factors of 27, but when
quoting a physical value, it’s best to stick to regular frequencies. That, is you could quote an angular
frequency by saying “w/2m = 100 Hz” instead of quoting the direct value of w in rad/s.

As an example, let’s go back to the capacitor charging law,

av
=02 2.2
Ca (2.26)

Then with the above ac signal, we have
I(t) = —wCVy sinwt = wC'Vj cos(wt + 7/2), (2.27)

where in the last step, we changed the negative sine to a phase-shifted cosine. This makes the current easier
to compare to the original voltage. In fact, we can see that the current leads the voltage in phase, because
the current’s phase is larger by 7/2 than the voltage’s phase. The shape of the current signal is otherwise
the same as the voltage, except for amplitude and phase.

2.3.1 Complex Phase

There is a nicer way to handle this monochromatic time dependence, and that is to introduce a complex-
number notation. The idea is to represent the time dependence at frequency w by a factor e=**.! Then
define a complex voltage

V = Voe ™t (2.28)

INote that this is a common convention in physics; engineers usually use eIt where j = —i. The physics notation comes
from the time dependence of a right-going plane wave, et(Fo—wt),
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The real (physical) voltage is just the real part of this, or
V(t) = Re[V] = Re[Voe ™| = Vj coswt, (2.29)

if V4 is real. The imaginary part, ¢V sinwt, is “carried along” for mathematical convenience, and should
be dropped at the end of the calculation to get physical results. Thus, this works for linear circuits (in a
nonlinear circuit, a single frequency would be converted into other frequencies, so this analysis is best for a
capacitor or resistor, but less so for a diode).

Why is this representation convenient? First, other phases are easy to represent as the phase of the
complex coefficient Vy. For example, we can write a phase ¢ as

V = Vye Wi, (2.30)
and the real part of this is
V(t) = Vo cos(wt + o), (2.31)

as we expect for this phase. However, if we absorb the phase ¢ into the complez voltage amplitude Vj, then
V just looks like Voe™®t,
The other nice thing about this complex notation is that derivatives, integrals, and their associated

phases are very easy to handle. We are assuming all time dependence is of the form e~*?*. Then a time
derivative acts on the phase of any object like
ie_i“’t_m =, —jwe WtIP, (2.32)
dt ’

Since this always happens, we can formally identify

(2.33)
(derivative for monochromatic signals)

dt

—iw,

provided we are discussing monochromatic signals. Then the capacitor-charging rule (2.26) becomes
I = —iwCV (2.34)

in complex notation.

2.3.2 Capacitive Reactance

We can interpret the complex form of the capacitor-charging rule in a powerful way. Solving for V, we find

- ~ 1
= J—. 2.
V=I— (2.35)

In fact, this looks a lot like Ohm’s law, if we lump everything next to the I into an effective “resistance,”

i (2.36)

Xcoi=—. .
¢ W (capacitive reactance)

This is called the capacitive reactance, and has the same units as resistance. It functions as something
like a resistance in the “Ohm’s law for capacitors,”

_ (2.37)
V=1Xe, (Ohm’s law for capacitors)
which is the same as Eqgs. (2.35) and (2.26). However, because the reactance represents a derivative, it
depends on frequency. In fact, what this is saying is that capacitors have very high “resistance” at small
frequencies (a capacitor is basically a broken wire, after all, and no current flows once the capacitor is
charged), but the capacitor acts like a short circuit at high frequencies, as we will see.
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2.3.3 Inductive Reactance

The same idea applies to inductors, which satisfy the “inductive-kick law”

dl
V=L, (2.38)

in terms of the inductance L. Switching to complex notation and replacing the derivative, we have
V = —iwLlI, (2.39)

in which case we can define an inductive reactance

. (2.40)
X = —wl, (inductive reactance)

so the inductor law becomes
V= x,I (2.41)

(inductive reactance)

or just Ohm’s law with X standing in for a resistance.

2.3.4 Impedance

Since reactances and resistances “look” the same once they're stuck into Ohm’s law, we can use the more
general notion of impedance to represent any of these. To summarize the important points,

e Resistances R are always real.
e Reactances X¢, X are always purely imaginary, and they depend on frequency as well.

e An impedance can be any combination of resistances and reactances, and can be any complex value,
not necessarily purely real or purely imaginary.

« Resistances and reactances are special cases of impedances.

The point of all this: for capacitors, inductors, and resistors in ac circuits, everything we did for
resistive networks carries over to the ac case, in terms of impedances. This includes all the parallel, series,
and Thévenin stuff.

2.3.5 Low-Pass Filter

As an example, let’s return to the integrator circuit from Section 2.2.1.

R

‘/in o \/ V V © out

|
I
Q

If we think of the capacitor as being a resistor with “resistance” X¢, then this is just a voltage divider.
Using the voltage-divider formula (1.18),

Xc ~ 1 -

vou = Vvin = 3 Vvin'
‘T R+ Xco 1 — iwRC

(2.42)
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This is a linear relation between the input and output voltage amplitudes, so to simplify the discussion a
bit, let’s define the transfer function

Vo (2.43)
T(w) := Vo (transfer function)

which for the low-pass filter is
. (2.44)
T(w) = 1_iwRC (transfer function)

from Eq. (2.42). To simplify even more, we can also consider the amplitude transfer function, which
discards the phase information:

T(w) = Vout (2.45)
W (amplitude transfer function)
Then for the low-pass filter, from Eq. (2.42) we have
1

Tlw) = V1+ (WRC)?

(amplitude transfer function, low-pass filter) (2.46)
Looking at the asymptotics of the low-pass filter, note that

o Asw — 0 (w < 1/RC), note that T(w) — 1, which means that the integrator does not change the
signal at low frequencies.

+ For large w (w > 1/RC), T(w) ~ i/wRC. Note that i = ¢/™/2, and so je~™! = ¢~ ““t=7/2) This
means the output phase lags the input phase by 90°. Also, the output amplitude is reduced by a
factor w—!. This power-law behavior appears as a straight line on a log-log plot, with slope —1.

o The high-frequency scaling of w™! is usually called —6 dB/octave. Remember that decibels are
defined such that the ratio of two powers in decibels is of the form 10 log,,(P/Fy), and the ratio
of two amplitudes is 20 log,y(V/Vp). One octave means a doubling of frequency (from the musical
term), and w~! scaling means that doubling the frequency cuts the amplitude in half. In dB, this is
20 log4(1/2) = —6dB.

e The transition point between the low- and high-frequency behavior is called the 3-dB point, or
more properly, the —3-dB point. The convention is to define the transition point as the point where
T(w) drops from 1 to 1/4/2 (so that the power transferred drops to 1/2). Then 20 log(1/v/2) = —3dB.
We can find the corresponding frequency by setting T'(wsqg) = 1/v/2, which has the solution

1 (2.47)

W3dB = 5> fsa = SmRC” (3-dB frequency)

RC

All this is summarized in the plot below.
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10

—3-dB point

|V:)ut /Vin|

—6dB/octave

10-4 | | |
10 102 10° 102 10*

(27RO f

Because the integrator “passes” low frequencies without attenuation, and “rolls off” high frequencies, it is
called a low-pass filter.

2.3.6 Example Problem: Alternate Scaling
What is the scaling of —6 dB/octave, expressed in dB/decade?

Solution. This is still a scaling of w™!. A decade is a factor of 10, which means a factor of 10 reduction in

amplitude, or 20log;,(1/10) = —20dB, so —20dB/decade.

2.3.7 Example Problem: High-Pass Filter

Consider the differentiator from Section 2.2.2.

C
‘/in o I I * © out
%R

In doing this problem you should see why this is also called a high-pass filter.
(a) Compute T'(w).
(b) Compute T'(w).
(¢) Work out the low- and high-frequency asymptotics of T'(w).
(d

) Find f3ap.
Solution.
(a) Using the voltage-divider formula again,
Tlw) = 1‘/;? - R+RXC - R+]§/wC - wggiz" (2.48)
(b) Taking the modulus,
T(w) = —2FC (2.49)

V1+ (WRC)?
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(¢) Small w:
T(w) ~ —iwRC. (2.50)
Since —i = e~"/2, this advances the phase, and is a 90° phase lead, like the derivative d/dt = —iw (hence,
differentiator).
For large w:
T(w) ~ 1. (2.51)

Hence, the high-pass filter.
(d) The 3-dB point occurs where T'(w) = 1/1/2, which has the same solution

1

f3aB = RO (2.52)

as the low-pass filter.
Overall, the plot for the high-pass filter is basically a mirror image of the plot for the low-pass filter.

10'
\ \ \

—3-dB point

+6dB/octave

|V;)ut /vivn’

T

1073 —

104 \ | |
104 102 10° 10? 10*

(27RC)f

2.4 Phase

One thing that we haven’t paid much attention to yet is the phase shift due to a linear circuit. (We did
this just a bit, in looking at the low- and high-pass filters, in the asymptotic limits of low and high frequency,
where the phase shift ended up being nothing or +90°.) In general, the complex transfer function [from
Eq. (2.43)],

T(w) = —, (2.53)
gives information about both the amplitude [in 7'(w)] and phase (via the complex phase). In other words,
we can always write

T(w) == T(w) e @), (2.54)

where ¢(w) is the frequency-dependent phase shift (remember the minus sign here is because of the phase
convention in e~™*. If ¢ > 0 at some frequency, we call this a phase lead, whereas ¢ < 0 is a phase lag.
Now remember that for an arbitrary complex number z, we can write it in polar and cartesian forms

as
z=re " =rcos¢ —irsing =: x + iy, (2.55)

where 7, ¢, x, and y are all real. Equating real and imaginary parts, we get * = rcos¢ and y = —rsin ¢,

and dividing these equations gives
Y sin ¢
4 - _ = —t . 2.56
x cos @ an¢ ( )
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Solving for ¢ gives

¢ = —tan™"! % (2.57)

remembering that tanx is an odd function. Now z and y are respectively the real and imaginary parts of

T(w), so

P(w) = —tan~! (W) . (2.58)

Re[T'(w)] (phase shift of linear circuit)

Thus, we have the phase shift at any frequency in terms of the complex transfer function.

2.4.1 Example: Low-Pass Filter
In the low-pass filter, we had from Eq. (2.44)

~ 1
Tw)=——-. 2.59
() 1 —iwRC ( )
Multiplying upstairs and downstairs by 1 + iwRC, we can rewrite this as
~ 1+ iwRC
Tw)=——F—-. 2.60
) = T wrop (2:60)
Now the real and imaginary parts are more obvious, and if we put these into Eq. (2.58), we get
(2.61)

-1
$(w) = —tan™ (wRC). (phase shift, low-pass filter)

How does this behave? In the extreme limits:
o For small frequencies [w < (RC)™!], ¢ &~ —wRC, which is a small (close to 0°) phase lag.
o For large frequencies [w > (RC)7!], ¢ ~ —7/2, which is a 90° phase lag.

In between, the phase lag moves smoothly between 0 and 90°, as shown in the plot below.

0 \ \
0
Q
(&)
B a5
o T -
=
©

-90 \ \
104 1072 10° 10 10*

(27RC)f

The high-pass filter is very similar, but the phase is 90° for small frequencies (in the “stop band”), and
changes to 0° for large frequencies (in the “pass band”).
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2.5 Power

Now we arrive at the real meaning of why capacitors and inductors seem a lot like resistors, but with
“imaginary resistance.” Remember that the power dissipated in a circuit is P = I'V. This is still true in an

ac circuit, but
Pt)=I1)V(¢) (2.62)

is the instantaneous power. This can either be positive or negative; positive means dissipating energy or
perhaps storing energy in a capacitor or inductor, while negative means we are getting some stored energy
back.

What we're interested in here is the time-averaged behavior, so we know the net effect of everything
that happens over a cycle. So let’s assume a monochromatic voltage and a current, with a possible phase
shift ¢ in the current. In real notation, we have

V(t) = Vo(coswt)

(2.63)
I(t) = Iy cos(wt + ¢).
Then the power, time-averaged over one period T' = 27 /w is
1 /T
(P) = / V() I(t) dt. (2.64)
T Jo
Expanding the cosine in the current using the sum-angle formula,
I(t) = Ip[cos(wt) cos(¢) — sin(wt) sin(¢)] (2.65)
and using this with the above expression for V (t), we get
LVo [T/ . .
(P) = T [cos®(wt) cos(¢) — cos(wt) sin(wt) sin(¢)] dt. (2.66)
0
In the second term the cos(wt)sin(wt) = (1/2)sin(2wt) averages to zero. In the first term cos?(wt) =
(1/2) 4 (1/2) cos(2wt), which averages to just 1/2. Thus,
1
(P) = §I0V0 cos(¢). (2.67)

Now to simplify this a bit more, we want to compare this to time-averaged values of V'(t) and I(t) separately.
It doesn’t make sense to time average them directly, because they average to zero. But we can compute the
rms or root-mean-square values. This just means: square it, time-average it, take the square root, done.
For the voltage, if we square it,

V2(t) = Vy? cos® wt, (2.68)
then average it,

L Ve’

= Va(t)dt = — 2.69

7 | o= (2.69)

then take the square root, we get the rms voltage:

Vo (2.70)
V2 (rms voltage)

Similarly, for current,
[ 1o (2.71)
= (rms current)
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Note that these two rms expressions are valid only for sine waves. Then we can rewrite Eq. (2.67) as

(2.72)

(rms current)

<P> - Irms‘/rms COS(¢)'
It is common to define the power factor as

(P)

Irms rms

(2.73)
(power factor)

= cos(9).

power factor :=

What does this mean? Breaking this down into cases:
e cos¢ =1 (¢ =0): this occurs for a purely resistive load; the maximum power is dissipated here.

o cos¢ =0 (|]¢| =7/2): this is a purely reactive (capacitive or inductive) load, no power is dissipated (it
is only stored and retrieved over each cycle).

e 0<cosp <1 (0<|p| <m/2): there is some reactive component to the load impedance, so some power
is dissipated, but not as much as for an equivalently large but real impedance.

o cosp <0 (|| > 7/2): it’s also possible to have a negative power factor, which means the “load” is in
fact a generator or EMF source.

Light bulbs and toasters are good examples of resistive loads. An example of a capacitive load is a piezo
speaker or buzzer. Examples of inductive (reactive) loads are electric motors or lighting transformers or
ballasts for fluorescent lights (the “magnetic” kind, not the “electronic” kind). Inductive loads are important
in high-power applications, and the problem is that the power factor can be very small, so that large voltages
and currents are needed to drive a motor. This isn’t efficient, because the large voltages and currents cause
wasted power to be dissipated elsewhere. A trick to help here is to “correct” the phase of the load impedance
by connecting a parallel capacitor, which increases the power factor. It is common in air-conditioning
compressor motors to have two capacitors, a “start” capacitor and a “run” capacitor. The start capacitor
increases the parallel capacitance and hence the power factor when the motor first powers on, to give the
motor extra startup torque.

2.6 Resonant Circuits

As another example of mixed impedances, we can consider a resonant filter with a resistor, inductor, and
capacitor, as shown below.

‘/in * /666\ I Vout

Resonant LC circuits like this are also often called tank circuits. To analyze this, let’s lump the series
inductor and capacitor together into a single element, of impedance

Zic=Xp + Xo = —iwL + ——
wC

_ e L
=5 (w +LC> (2.74)
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where we have defined the resonant (LC) frequency

1 (2.75)
ok (LC frequency)
Then we can treat what is left as a voltage divider. The transfer function is
- R
Tw) = —
() R+ Zic
_ R 2.76
TR L/w) ) (270
B iwR/L
- (w? —w@) +iwR/L°
Defining the damping constant
R
Y= f, (2.77)
the transfer function becomes
T(w) = iwy (2.78)
(W? —wd) + iwy’ (transfer function, RLC circuit)

This is the same as the response function for a damped harmonic oscillator, with resonant frequency wgy and
damping rate 7.
= w
T(w) = i :
V(@2 —w2)? + w?y?
(amplitude transfer function, RLC circuit) (2.79)
Note that on resonance (w = wp), T'(w = wp) = 1 [and in fact T(w = wp) = 1, so the signal is transmitted
without amplitude reduction or any phase shift. Away from resonance, T'(w) < 1, leading to a transmission
“peak” around wyq.

2.6.1 Q Factor

A common way to quantify the width of the resonance peak is the Q factor. The idea is to find the —3 dB
points of the resonance peaks (compared to the peak) as a measure of the width. Thus, setting T'(w) = 1/v/2,

1 w
V2 B V(w? - cuog)2 + w22’ (2.80)
we can square this and rearrange to find
(w? —wi)? = w?y2 (2.81)
This is the square of a quadratic equations, with four solutions
w=E1/(7/2)2 + w? £ % (2.82)
We only want the positive solutions, because T'(w) > 0, and T'(w) has the same sign as w. Thus,
waas = 4/ (7/2)* + wi £ % (2.83)
If we define the width of the peak to be the difference between the —3-dB points,
(2.84)

dwsap = 7- (full width at half maximum)
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This is also called the full width at half maximum (FWHM) (“half” here refers to the power transmission

T'(w)?).
0 (2.85)

p— 2 =
W=ty = W (amplitude transfer function, RLC circuit)

Then we can write down the @ factor as the ratio of the resonance frequency to the FWHM:

wo wo (286)

@= dwsag vV (Q factor, RLC circuit)

The “Q7” here indicates the “quality” of the resonator: a large ) means a small v compared to wg, and thus
a narrow resonance. Actually, this is not the definition of the @ factor, but it’s the one that physicists use
when dealing with resonances—we’ll come back to the formal definition below.

Also, it is useful to write the @ factor in terms of the electronic parameters. Using Egs. (2.75) and
(2.77),
VL (2.87)

Q= RVC' (Q factor, RLC circuit)

Thus, for example, an increased capacitance not only lowers the resonance frequency, but also the @ factor
(because the @ factor depends on the resonance frequency).
The transfer function T'(w) is plotted below for three different values of Q.

10' \ \ \
—6dB/octave +6dB/octave
T=1
0
10° — e\ — _
-3 dB ’ ’j’ \\\
- / [\ \\
x;E 10! // \ ) _
~ / N
= % N
3 / N
ré // Q\\ \\
I 107 // o 7 \\ _
& / \Z \
/ ‘y .
// \\
10% £ N
10" \ \ \ |
107 1072 10° 10° 10*
(27RO f

Note that asymptotically, the filter rises/falls at 6 dB/octave, like the low- and high-pass filters.

2.6.1.1 Fundamental Definition

Now to justify the simple formula (2.86) for the @ factor that we used. The more fundamental definition
of the @ factor is defined in terms of stored energy in the oscillating circuit and the energy dissipated as
follows:

(maximum) stored energy (2.88)

energy loss per oscillation cycle’ (definition of @ factor)

Q:=2m-

The capacitor stored energy is, on average,

1 1
(Ee) = (507 ) = 5OV (2.59)
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while the inductor’s stored energy is

1

(Ep) = <;L12> = 5Lfﬁns. (2.90)

These expressions are actually the same; using I = C(dV/dt) and time-averaging gives I2 . = w?C?V,2
and so, for example,

(o) = 50V = gl = 5 Hne (291)
where we used w? = w@ = 1/LC. The power dissipated is
(P) = LimsVims, (2.92)
and so the energy lost per cycle is
T{(P) = TIimsVims, (2.93)
where T is the period. Putting this together,

in agreement with Eq. (2.86).
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2.7 Circuit Practice

2.7.1 Tesla Coil

A nice example of a resonant circuit is the Tesla coil. There are many variations, but the simplest circuit
is below. The idea is to put in a fairly “low” voltage (line voltage), and generate an output voltage as large
as possible, preferably at least hundreds of kV or even MV.

Here we will go through a basic tesla coil circuit to give you some experience in “reading” a more

complex circuit diagram.

spark gap

* L N 2
> L
120V % &Z p—

Typical designs use a neon-sign transformer in the first stage to boost the voltage to ~6kV or more. This
drives an RLC circuit (the “R” is the wire resistance), which oscillates at a tunable resonant frequency (by
tuning the variable inductor). A spark gap also interrupts the RLC circuit; the nonlinear sparking increases
dI/dt to help get a larger output voltage in the secondary transformer. The secondary coil is just a long
air-core coil with many turns, with a large electrode on top. The capacitance of the secondary circuit is
the capacitance due to the windings of the coil, as well as the output terminal (the other electrode being
ground). So the secondary circuit is also an RLC oscillator. The primary is tuned to resonate with the
secondary. On resonance, the voltage multiplier is not the ratio of turns as in a normal transformer, but
rather it turns out to be the ratio of the @ factors of the two RLC oscillators. The oscillators are generally
tuned to radio frequencies (hundreds of kHz), which makes the output (relatively) safe for humans.

secondary

primary
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2.8 Exercises

Problem 2.1

Use the capacitor law Q = CV to show that the effective capacitance of two parallel capacitors is
Cef = C1 + Cs, where C7 and Cs are the capacitances of the individual capacitors.

Problem 2.2

Show that the effective capacitance Ceg of two capacitors C7 and C5 in series is given by Ce;fl =

oyt 4yt

Problem 2.3

Consider the differentiator circuit shown below, where Vi, (t) is an arbitrary input voltage.

c

‘/in o I I * S Vout
%R

(a) Show that the differential equation for this circuit is given by

d‘/out Vout d‘/;
= — . 2.
dt RC T at (2.95)

(We did this in class.)
(b) Use the integrating-factor trick that we used for the integrator circuit (i.e., define V := Ve
simplify the equation, and integrate from 0 to ¢) to find the general solution

t/RC
b)

o—t/RC

Vous (1) = Vin () + [Vous (0) — Vin (0)] e/ FEC — ol /0 t Vi (') /5 at. (2.96)

(¢) Write down the solution in the case where Vi, is turned on suddenly to a constant value from 0,
just after t = 0. Give a brief, qualitative description of the solution (use a sketch if you need to).

Note: the reason for assuming the turn-on comes just after ¢ = 0 is a bit technical, but it’s necessary
to get the boundary terms in the general solution to come out right. Basically, the “leading edge” of
the input signal is an “interesting” part of the signal (the most interesting, actually), and so we must
make sure to capture it in our interval of integration. Equivalently, we could have taken out integration
range from —oo to ¢, taking our boundary condition to be Vi,(—o0) = 0.

Another note: From your solution here, you should see the reason why this circuit is called a “dc block.”

Problem 2.4
Consider the LR circuit below.

‘/in (t) ‘/OUt (t)
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(a) Is this a high-pass or a low-pass filter? Give a qualitative argument for your answer.
(b) Write down a differential equation relating Vi, () and Vo (t).
(

¢) Solve the equation for an arbitrary input Vi, (t) (not necessarily a single frequency!), by using the
integrating-factor method. You should end up with a solution in the form of an integral over Vin(2).
(Hint: it may help to define V := Vef/D)t for one of the voltages.

(d) Write down the solution for the case where the input voltage is turned on suddenly from 0 to Vp
just after t = 0, and then held at Vj for all ¢ > 0. You can assume the input was zero for all times in
the past. What is the time constant of your solution?

Problem 2.5

Consider the circuit shown below of two cascaded high-pass filters.

c c
‘/in D—{ Vout
R R

Find the (complex) transfer function Vout / Vin, assuming an input frequency of w. How does this scale
for large and small frequency? (Also give the scaling at small frequencies in dB/octave.)
Problem 2.6

Consider the circuit shown below of two cascaded high-pass filters, separated by a buffer amplifier.

c C
T— e
R R

The buffer amplifier has two important properties: the input (left-hand-side connection) draws no
current (and thus produces no load on the first RC' filter), and the output voltage is equal to the
voltage at the input.

(a) Find the (complex) transfer function Vi /Vin, assuming an input frequency of w. Examine the
scaling behavior for large and small frequencies, and give the scaling at small frequencies in dB/octave.

(b) Make a (log-log) plot of the amplitude transfer function T'(w) = [Vout(w)/Via(w)|. Also include on
the same plot the corresponding transfer functions from the Problem 5, and the transfer function for
a simple high-pass filter.

(¢) Make another plot of the phase of the output compared to the input for the same three circuits as
in (b). That is, if we write out the amplitude and phase of the transfer function as

T(w) =T(w)e ", (2.97)
then make a plot of ¢ vs. w. Here, use a logarithmic frequency axis, and a linear phase axis. Be clear
about the nature of the phase shift (lead vs. lag).

Note: use any program you like for plotting. For a plotting tutorial in Mathematica, see
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http://atomoptics.uoregon.edu/~dsteck/teaching/mathematica/plot-tutorial.nb
http://atomoptics.uoregon.edu/~dsteck/teaching/mathematica/plot-tutorial.pdf

In Mathematica, use LogLogPlot for a log-log plot and LogLinearPlot for a log plot in the z-direction
instead of Plot.

Problem 2.7

Consider the circuit below, consisting of a capacitor of capacitance C, and an inductor of inductance

L.
A 0o Vout (t)
L%

a) Is this a high-pass or a low-pass filter? Give a qualitative argument for your answer.

Q

Vin(t) ©

(

(b) Derive the transfer function [T'(w)] for the circuit.

(c) Derive the amplitude transfer function [T'(w)] for the circuit.
(

d) Give the scaling of the transfer function in the “stop band” of the circuit [i.e., the asymptotic region
where T'(w) is small]. Express your answer in dB/octave.

Problem 2.8

A “schmapacitor” of “schmapacitance” S is a bipolar component whose operation is defined by the
relation 3
a’v

I1=5——/—7, 2.98
where I is the schmapacitor current and V' is the voltage drop across the schmapacitor.
Derive expressions for the effective schmapacitance of two schmapacitors in series and for two schma-
pacitors in parallel.

Problem 2.9

Consider the circuit below, consisting of a resistor of resistance R, and a “schmapacitor” of “schma-

pacitance” S.
S
‘/in(t) ¢ * 0o ‘/out(t)

The schmapacitor is defined as in Problem 8 by the relation

d3
= 5%, (2.99)

where I is the schmapacitor current and V is the voltage drop across the schmapacitor.


http://atomoptics.uoregon.edu/~dsteck/teaching/mathematica/plot-tutorial.nb
http://atomoptics.uoregon.edu/~dsteck/teaching/mathematica/plot-tutorial.pdf
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a) Is this a high-pass or a low-pass filter? Give a qualitative argument for your answer.

(

(b) Derive the transfer function [T'(w)] for the circuit.

(c) Derive the amplitude transfer function [T'(w)] for the circuit.
(

d) Give the scaling of the transfer function in the “stop band” of the circuit [i.e., the asymptotic region
where T'(w) is small]. Express your answer in dB/octave.

(
(

e) What is the asymptotic phase in the stop band? Is it a phase lead or a phase lag?

f) Derive an expression for the —3-dB frequency fsqp of the circuit.

Problem 2.10
Consider the RLC circuit below.

Q

Vin(t) o——o q Vout (%)

(a) Derive the transfer function T'(w) for the circuit.
(b) Derive the amplitude transfer function [T'(w)] for the circuit.

(c) What is the behavior of T'(w) for small and large frequencies? What happens at w = 1/v/LC? Based
on your answers, give a qualitative description of how this circuit functions as a frequency-dependent
filter.

Problem 2.11

Consider the circuit below, consisting of two coupled, resonant circuits. In the resonant case that
we will analyze, this circuit is useful for boosting the amplitude of ac signals, similar to ordinary
transformer circuits. This is also the key to how the Tesla coil works.

Rl RZ
o p———O
AR !
I I -
& C, —— I Lo — 3
M
O O

The two inductors are coupled by a mutual inductance M, such that, for example, the voltage drop

across the inductor is il il
V ——L—1+M—2. 2.1
fa Yt dt (2.100)

Let ¢; and g2 be the charges on capacitors C; and Cs, respectively (we will reserve @1 and Q)2 for the
Q factors of each circuit later).

(a) Derive a coupled pair of differential equations for ¢; and ga. One of the equations should look like

wig +mG+ ¢+ 7.2 0, (2.101)
1
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where the resonant frequencies of the circuits are

1
R R— (2.102)

' VL1201 2’

and the damping rates are

R
M= (2.103)
1,2

(b) Now we will consider a sinusoidal input signal at frequency w. The differential equations from (a)
also apply to complex charges G 2(t), with time dependence of the form

qra2(t) = qrae ™" (2.104)
Use this to eliminate the derivatives in the coupled ODE’s from (a), to write a pair of algebraic

equations for the complex amplitudes ¢ 2.

(¢) Write your equations from (b) as a matrix equation, in the form

{é g} {‘qfi}_o. (2.105)

Note that for this to hold, the determinant of the 2x2 matrix must vanish; i.e., AD — BC' = 0. Use
this to derive the condition

(Wi — w? —iwy) (Wi — w? —iwy) = wik?, (2.106)

where
M

VLiLo
is the coupling coefficient for the inductor pair (satisfying 0 < k < 1). This is a quartic equation in
w; the physical solutions determine the resonant frequencies of the coupled-oscillator system. For now,
note that in the limit of small coupling k and small damping 7 » (which we will assume from now on),
the solutions to this equation are w = +wyp (note that the frequencies will appear as positive/negative
pairs; the simplest interpretation is that the positive solution is physical).

(2.107)

(d) The first regime we will analyze is the ideal-resonator limit, where Ry 2 = 0 (and thus v1,2 = 0),
for matched resonators (w; = wa =: wy). Derive the resonant frequencies from Eq. (2.106). Then use
your solution from part (b) to derive an expression for ¢2/q1, and finally derive an expression for the
transfer function Vo / Vin, which you should find to be independent of frequency. You should find
that the result involves the ratio of the number of windings on the two inductors, as expected for an
ordinary transformer (you may use L o N2, where N is the number of windings on the inductor).

(e) Finally, we will examine the case of matched resonators (w1 = ws =: wp), with small but finite
damping (y1,2 # 0, 11,2 < wo)- Assume the input is driven on resonance (w = wp), and derive an
expression for the transfer function Vou/Vin. You should find that your answer involves the ratio of

the @Q factors
w1,2

Qi2:=—=, (2.108)
V1,2

as well as the ratio of the number of turns.
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Diodes

3.1 Ideal Diode

Diodes are useful circuit elements: in the simplest sense, they act as one-way valves or “trapdoors” for
electrons and thus for electrical current. Schematically, the following symbol represents them:

I—

anode + cathode

The two terminals are called the anode and cathode. The rules that govern the ideal diode are as follows:

1. If Vinode > Viathode, then the diode acts like a short circuit: lots of current can flow. In this case,
the diode is said to be forward-biased.

2. If Vanode < Veathode, then the diode acts like an open circuit: no current flows at all. In this case,

the diode is said to be reverse-biased.

Of course, the situation with real diodes is more complicated, and we’ll get to that. For now, a good
mnemonic to remember the direction of current flow is that the diode symbol makes an “arrow” in the
direction of the current flow (towards the cathode). Also, in the lab, a typical “signal diode” (for mA-level
currents) looks schematically like this:

anode {H cathode

There is usually a band (not always dark) that marks the cathode end; you can think of the band as being
a “minus sign” that marks the cathode.

The diode is obviously a nonlinear device, since voltage is not simply proportional to current. Since
Ohm’s law V' = IR does not hold in a simple way with constant R, so a diode is an example of a non-Ohmic
device.

3.2 Vacuum Diodes

The name of the diode comes from the original vacuum-tube realization of a diode, which has two electrodes
(hence, the “di”). The cathode is a heated electrode that “boils off” electrons; whether the electrons make it
to the anode—and hence whether current flows—is determined by the relative voltage on the anode, because
the anode with either repel or attract the electrons from the cathode. (Think about it to see that the current
flows only with the correct voltage polarity.)
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3.3 Semiconductor Diodes

By far the most important realization of a diode is using semiconductor materials, so that’s what we’ll
concentrate on here. Roughly speaking, a semiconductor is a material somewhere in between a conductor
and an insulator. In an insulator, electrons, are bound in place, so they can’t move around to form a current.
In a conductor, electrons move freely, and current flows (there is little resistance). In a semiconductor, the
electrons are mostly bound, but a few are thermally activated into conducting states, so conduction can
happen.

But more important are doped semiconductors, where impurities are added to enhance conduction.
There are two types:

1. In n-type semiconductors, the semiconductor is doped with impurities that introduce excess elec-
trons (called n-type carriers, “n” for for “negatively charged”). The n-type carriers do the conducting.

2. In p-type semiconductors, the semiconductor is doped with impurities that introduce a deficit of
electrons. The absence of an electron is something like a positive charge, and is called an electron
hole, or just hole. (These are then called p-type carriers, “p” for for “positively charged”). The
p-type carriers (holes) do the conducting here.

A semiconductor diode is a junction between p-type and n-type semiconductors (called a p-n
junction). If we first consider separate p- and n-type semiconductors, we get something like this:

P-type N-type

+ —

+ F - -

Note that despite the presence of the carriers in each semiconductor, the semiconductors are electrically
neutral.

Now let’s smoosh these together and see what happens. There is now a p-n junction, the charges are
free to diffuse across due to random, thermal motion.

I—

+ +t — —
aF _

+ 7 - -

(no depletion zone)

Remember that the semiconductors were neutral before we put them together, so now that carriers are
moving across, this sets up net charges on either side of the junction, which creates an electric field. All this
is summarized in the diagram below.

FE-field

+
+

T

!

:

+ |
|

|

+

T
I
|
|
| —O
|
|
|
L

net — charge Vv net + charge
depletion zone
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Note that for any carriers that diffused across the junction, the electric field tries to “restore” them back
to their original home. So the diffusion continues until the electric field builds up to the point where just
balances the tendency for more carriers to diffuse across the junction. Meanwhile, the n-type carriers that
make it across to the p-type material will annihilate the p-type carriers (electron + hole = nothing), and
the same thing happens for p-type carriers that make it across the junction to the n-type material. So there
is a region around the junction called the depletion zone, where there are no carriers. Note that in this
equilibrium state, no net current can flow, because there are no carriers to transport charge (current) across
the depletion zone.
Now let’s argue that this p-n junction realizes the diode as shown below.

anode O—N—O cathode

First, let’s do the reverse-biased case, where no current should flow. That is, suppose we set the anode
to 0V, and bring the cathode up by +V relative to the anode. Then the situation is shown in the diagram
below.

net F-field
Y

+

0V o

T
l
: - o +V
I
I
- // \\ :
7 ~~ T

net — charge gepletion zone net + charge

In this case, the electric field due to the applied voltage adds with the electric field from the carrier diffusion.
This also pulls the p-type carriers towards the anode (the terminal on the p-type material), and n-type
carriers towards the cathode. The net effect is just to increase the width of the depletion zone.

Now let’s do the forward-biased case, where the diode should conduct. So we bring the anode to a
voltage +V relative to the cathode. Now the external field due to this potential difference points from left to
right, and cancels the electric field due to carrier diffusion, and it tries to make the carriers in each material
move towards the junction. The net effect is to shrink the depletion zone. Once a sufficiently strong voltage
is in place, the depletion zone completely disappears, and a net current can flow, as shown below.

I—

+V o—— —— 0V

(no depletion zone)

Note that the current here involves each type of carrier moving towards the junction, where it annihilates
one of the opposite type.
A few typical diodes are shown in the photo below.
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From left to right, these are: 1N914B (signal diode), 1N4001 (1-A, general-purpose rectifier), MR752 (6-A,
200-V rectifier), GI754 (6-A, 400-V rectifier). All cathodes point to the upper-right-hand corner.

3.3.1 Schottky Diodes

A variation on the semiconductor diode is the Schottky diode, which replaces the p-type material with
a conductor. The metal-semiconductor junction is called a Schottky barrier. The operation is similar,
the advantages being faster switching between forward- and reverse-biased modes, and lower forward voltage
drop (as we will discuss shortly). The Schottky diode has a modified symbol to distinguish it from a “regular”

diode, as shown below.
anode O—N—O cathode

However, it is functionally the same as a semiconductor diode.

3.4 Current-Voltage Characteristics

All these effects lead to a more complicated relation between voltage and current. Below is a schematic plot
of the VI relation for a diode.

I

forward conduction

reverse leakage

reverse breakdown

This is the forward current I plotted against the forward voltage V'; negative values of course indicate that
the voltage/current are going in the reverse-biased direction. There are a few features to notice here.

1. Forward conduction. As the diode is forward-biased, the forward current rapidly (in fact, exponen-
tially) increases. But for any forward current, there is a forward voltage drop—remember this is
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needed to squish the depletion region down to nothing so the diode can conduct. A handy number to
remember for quick calculations is 0.7V for the voltage drop, for forward-biased silicon diodes. The
drop is somewhat more for high-power diodes, somewhat less for Schottky and germanium diodes. For
example, the common 1N914 (silicon signal diode) has a forward voltage drop of 0.7V at 10 mA, drop-
ping to 0.6 V at 1 mA and going up to 0.9V at 100 mA. The IN5711 Schottky diode (small-signal diode,
rated for 15-mA maximum current) has a similar drop of about 0.7V at 10mA, but a comparatively
lower drop of 0.4V at 1 mA. These numbers are all temperature-dependent, but the values here are at
25°C, and vary from device to device.

2. Reverse leakage. When the diode is reverse-biased, the current is not completely blocked, but some
current flows. This is roughly constant over a wide range of reverse-bias voltages, and is usually labelled
I, with the “S” for saturation current. This is also called, more obviously, the reverse-leakage
current. This is typically ~10nA for silicon and Schottky diodes.

3. Reverse breakdown. If the reverse-bias voltage is sufficiently large, the insulating properties of the
diode break down (like any insulator), and the diode conducts. The voltage at which the diode starts
to conduct is the reverse-breakdown voltage, and is at least 100V for the 1IN914 and at least 70V
for the IN5711.

3.4.1 Diode Law

Neglecting the reverse breakdown, the diode VI relation is reasonably well-described by the diode law,

1 (Vv _ (3.1)
I=1 (e 1) ’ (diode law)

where Ig is the saturation current that we already discussed, Vi is the thermal voltage

Vi o= ks T (3.2)
T e (diode law)

ks = 1.381 x 10722 J/K is the Boltzmann constant, ¢ = 1.602 x 1071? C is the fundamental charge
(magnitude of the electron charge), and T is the absolute temperature. The thermal voltage is 25.69 mV at
25°C. Also, n is the ideality factor, which typically falls in the range of 1 to 2, and is a sort of “fudge
factor” for real junctions. Often this is just set to 1 for simplicity, in which case the diode law becomes the
“ideal diode law.”

Note that the diode law is only really valid below the “knee” of the V—I curve, before the current
starts to really take off. As an example, consider the plot below of two models for the 1N914 at 25°C.

100 I
B
=
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The “diode law” (dashed) curve shows the diode law with Is = 6.2229 x 1072 and n = 1.9224. The “typical”
(solid) curve shows a more complete diode model.! The simple model overestimates the conducted current
at larger forward voltages.

3.5 Zener Diodes

A Zener diode (pronounced ZEE-ner) is a regular diode with a carefully engineered reverse-breakdown
voltage, typically in the range of 3-100 V. The Zener diode has a special symbol, as shown below.

anode O—N—O cathode

The Zener diode is mainly useful as a voltage regulator. A typical circuit is shown below.

+15V

+5.1V

1N4733

The resistance R here depends on the intended load. The idea is that the Zener diode “wants” to operate at
the reverse-breakdown voltage (5.1V for the 1N4733), and it draws just the right amount of current to make
the voltage drop across R equal to the difference between the supply (+15V) and output (+5.1V) voltages.
How does the Zener diode “know” how much current to draw? You should try thinking this through: Think
of the reverse-biased diode as a variable resistor, and think of the circuit as a voltage divider. The diode has
large resistance for small currents, and small resistance for large currents. The only self-consistent point is
for the diode to drop the breakdown voltage, which is the transition between these two regimes.

The main problem with this circuit is that, as we have seen, the properties of diodes depend on
temperature. A good solution when you need a precise voltage reference is a temperature-stabilized
Zener diode, like the LM399, which has a breakdown voltage of 6.95V, and an integrated oven to keep the
Zener’s temperature constant.

+15V

R

+ +———o +51V

%

_;0

LM399

o

IThis is the SPICE (circuit-simulator) model for the 1N914 from Central Semiconductor; the Is and n values in the diode
law are the same as the parameters in the SPICE model.
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The extra two connections are the power-supply leads for the oven heater. Note that this circuit can draw
large (up to 200mA) for the first few seconds after the circuit is turned on, while the oven temperature
stabilizes. You can then obtain other reference voltages using a voltage divider or an op-amp circuit to
multiply the voltage by a known factor—something we will get to later.

3.6 Rectifier Circuits
3.6.1 Half-Wave Rectifier

One of the main uses of a diode is as a rectifier, or something that changes an alternating-current (ac)
signal into a direct-current (dc) signal. This is especially useful for changing the line voltage (120V in the
U.S.) into a dc voltage (e.g., for a power supply), after stepping the line voltage down (or up) by some factor
using a transformer. The simplest example of a rectifier circuit is the half-wave rectifier, which uses only
a single diode.

P

va Rload

=

Here, the supply (with amplitude Viy,) creates a voltage across the load (represented schematically here by a
load resistor Rjp.q); since current only flows in one direction, the supply can only impose a positive voltage
across the resistor, and the voltage during forward conduction is always a diode drop below the voltage of
the power supply.

This is not very much like a dc voltage, and not a very good dc power supply. The trick to getting a better
dc signal is to add a smoothing capacitor across the load, as in the schematic below.

P

‘/in Rload

Chiger T_

Then the circuit charges the capacitor through the diode to a maximum of Vi, less the diode drop. When
the rectified voltage falls away, the capacitor “props up” the output voltage, which decays exponentially with
a 1/e time of RjoadChiter- The net result is shown below.

T
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The resulting wave has ripple, and choosing the RC time to be as long as possible makes the ripple very
small (for good power supplies, the ripple should be of order mV or tens of mV, depending on the current and
application). Smaller load resistances (i.e., loads drawing more current) produce more ripple, while larger
smoothing capacitors reduce the ripple.

3.6.2 Full-Wave Rectifier

A major problem with the half-wave rectifier is the long time between rectified peaks, making it difficult to
get small ripple. A solution to this is the full-wave rectifier, which uses four diodes as shown below.

TONE :

L

This passes both the positive and negative peaks, as shown below. Trace the current through the diodes on
both phases of the input to convince yourself that this works out.
V.

‘/in,, TN
Vie— 14V L/

We don’t “waste” the negative peaks here, but the price is that we lose two diode drops from the input
voltage. Also, note that we are plotting the voltage difference across the load resistor; the absolute
voltages on either end are more complicated, because the output voltage is referenced to the input voltage
in a way that depends on which diodes are conducting at the moment. If the input voltage is floating (i.e.,
not referenced to ground, which is usually the case of a transformer output), we can instead ground the —
side of the load, in which case the absolute output voltage goes from 0 to V;, — 1.4 V.

Adding a capacitor to this setup, we get a decent, filtered power supply.
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v
Vil
Vin—14V4 /7

Again, we lose almost another volt compared to the half-wave rectifier, but for the same load and filter
capacitor, we get much less ripple. Yet better power supplies (with smaller ripple) can be realized by adding
a linear regulator IC.

3.7 Circuit Practice

3.7.1 Cockroft-Walton Multiplier

Explain how the circuit below, the Cockcroft-Walton multiplier, works. The multiplier is driven by an
ac source of amplitude Vi,, and each “stage” of the multiplier consists of two capacitors and two diodes.
The output after N stages is (in steady state) a dc voltage of 2NV. Three stages are shown in the example
below.

6Vi
= 2Vin 4Vi

Assume ideal capacitors and diodes (and think about why it is reasonable to ignore the forward voltage drop
of the diodes in this kind of circuit).

Solution. The idea in multiplying voltages is to get high voltages, so the input ac voltage would be of the
order of 1kV, in which case a diode drop of 0.7V makes little difference.

To analyze the circuit, we will first trace the voltages when the input voltage has swung low. Current
flows across the first diode to charge the first capacitor.

Then, on the positive-voltage phase, the absolute voltage of the first capacitor increases, but the voltage
across it stays the same. Current flows to charge the second capacitor.

+‘/in 2‘/;“

6‘4]}
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The process continues. In steady state, to balance any leakage of current from the output terminal, current
would flow as follows in the negative-input phase,

_‘/in

‘/ill
6Vin
= 2Vin 4Vin
which switches to the following during the positive-input phase:
+Vin 2V 4Vin 6Vin
Vin
6Vin
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3.8 Exercises

Problem 3.1

Consider the zener-diode voltage regulator shown below.

+15V

Vout

1N4738

Suppose you design this circuit to drive (supply) a load resistance R;..
(a) What is Vout?

(b) If R = 1k, what is the smallest R, that the circuit can handle without “sagging” the output
voltage?

(c) What should be the power rating of the resistor R? Be explicit about your assumptions.

Problem 3.2

Consider the half-wave rectifier circuit shown below. The ac input voltage to the circuit is a 60 Hz
signal from a power transformer.

MR752

V;)ut
+6.3 V (rms) 47000 pF T: % R,

=

(a) What is the peak output voltage across the load resistor, assuming R;, = 10Q? Account for the
voltage drop across the diode (look it up!).

(b) Estimate the voltage ripple, assuming the same load resistance.

Problem 3.3

Sketch the analogous full-wave-rectifier-bridge circuit to the circuit in Problem 2, and repeat the
calculations.

Problem 3.4

Consider the circuit below. Give the output voltage V,t in terms of the input voltages Vi and V5. You
can assume ideal diodes (no forward voltage, breakdown, or leakage).
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Vs

i

> © ‘/out

SV
SV

NV
=)

Problem 3.5

In each circuit, compute V; (relative to the negative battery terminals). Account for the forward-voltage
drop across the diode as needed.

5V 3V. 10V 3V. 10V
— 1kQ —_ —_ 1k — —

Problem 3.6

(a) Consider the “voltage-divider” circuit below, consisting of a resistor and a forward-biased (signal)

diode. R
‘/in %? ‘/out

Assuming Vi, > 0, use the diode law to show that
Vin + IsR = Vous + IsRe /MY, (3.3)

which determines V¢ in terms of Vi,, R, and T.

(b) Does the idea of a Thévenin-equivalent circuit make sense for this circuit? If yes, give the Thévenin-
equivalent voltage and resistance. If no, explain briefly why not.

(¢) Does Vot increase or decrease with 77 (Assume R, I, and n are independent of temperature.)

(d) Obtain an explicit solution to the relation you derived in (a) as follows. Rearrange the equation to
combine the parts that depend on V,; in the form x e®, where

‘/i - Vout + ISR
= —m—---—-mm-- mm mmm .4
T oV (3.4)

That is, you should obtain an equation of the form x e* = y, where y is independent of V,,;. Then use
the fact that the Lambert W function is defined by the relation

W(z)eW®) = 2. (3.5)

Thus, you should show that

1.
Vout = Vin + IsR — (’ﬂVT) W(Tls‘ij e(Vin-i-IsR)/nVT> ) (36)



Chapter 4

Bipolar Junction Transistors

4.1 Overview

A bipolar junction transistor (BJT) is our first example of a device that is both nonlinear and active—
active, in the sense that the device should be “powered,” or to say it another way, it uses one signal to
modify another signal. At first, it’s a bit counterintuitive to have a device with three terminals, but roughly
speaking, you can think of it functionally as having a pair of input terminals and a pair of output terminals,
but one terminal is “shared” between the input and the output.

BJTs come in two flavors: NPN and PNP, which refers to the stack of doped semiconductors that form
the transistor. The schematic construction of the NPN transistor is shown below: the name just gives the
order of the layers from top to bottom (or bottom to top).

collector

base o—— T + P

emitter

That is, the NPN transistor is a p-type semiconductor sandwiched in between two n-type semiconductors.
However, the important thing is that the inner p-type layer is thin and lightly doped. The light doping
means that there are relatively few p-type carriers in the p-type layer. The PNP transistor is pretty much
the same thing, except for interchanging p-type and n-type layers. All the analysis here will go through to
that case under this interchange, provided we also reverse all the currents and voltage differences. Thus we’ll
stick to the NPN case here (which is the more common case; usually, PNPs are only found when they are
paired in some way with an NPN, in part because NPNs are easier to make well).
The schematic symbols for NPN and PNP transistors are shown below.
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collector collector
base base
emitter emitter
NPN PNP

Note that the collector is distinguished from the emitter by the arrow, and the direction of the arrow
distinguishes NPN from PNP transistors.

Looking at the BJT as a stack of alternately doped semiconductor layers, we can see that BJTs each
have two p-n junctions, and we might expect these junctions to act like diodes. That is, you could reasonably
expect BJTs to act like two diodes tied together, as shown below.

C C

B B
E E
NPN PNP

And, in fact, if you use a multimeter to measure continuity between the various leads, you will see continuity
and voltage drops consistent with this simple “diode model.” (This is in fact a good starting point for
diagnosing a transistor that may be past its prime.) However, the difference is that the middle layer is a
single region, and its thinness and low carrier density make it behave quite differently than a Siamese-twin
pair of diodes.

4.2 Usage

The normal modus operandi of the (NPN) transistor is as shown below (again, the currents and voltage
differences are reversed for the PNP).

Note the following:
1. All current goes out the emitter.
2. The base—emitter current Iz controls the collector-emitter current /..
3. For the currents to flow in the intended directions, Vi > Vi and Vi > V.

4. The B-E junction acts like a forward-biased diode, and conducts current like a diode would (the arrow
in the transistor symbol looks like a diode).

5. The C-E junction involves a reverse-biased diode. It blocks current, unless the B-E current overrides
the blocking behavior.
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6. For any device, there are limits to how large I, I, and Vi can be, and these limits are different for
each species of transistor.

7. Under all the conditions above, the two currents are proportional:

(4.1)

I, = BI;. . .
o =Py (transistor current-control relation)

The parameter (3 is roughly constant, and as a simple value for estimating what happens in transistor
circuits, you can assume 3 ~ 100. This parameter varies among different transistor species and even
among individuals of one species. On transistor data sheets, § is often denoted by hgg.

4.3 Mechanism

To understand why the transistor works the way it does, let’s go back to the diagram of the stack of n- and p-
type materials in the NPN transistor. The two p-n junctions set up two depletion zones, with corresponding
electric fields as shown below.

collector

base o0—— T + P > depletion zones

emitter

The two depletion zones block any C—E current from flowing (in either direction). Then with voltages set
up as Vgr > 0.6V and Vey > 0 (actually Vi needs to be at least roughly 0.2V), then the B-E depletion
zone disappears, and the C—E depletion zone grows a bit.
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collector
N
LU
R2ZI 222322

base o——

ﬂl P
N

emitter

Then, basically two things happen with the carriers, as in the diagram above.

1. Since current is flowing from base to emitter, there are n-type carriers flowing from the emitter to the
base (the negative charge means they are flowing against the current). Remember the p-type region is
lightly doped, so it is mostly n-type carriers that are transporting the current.

2. Many, or possibly most of, the n-type carriers never make it to the base terminal. What happens is
that, once they are pulled into the p-type region by Vg, they can diffuse into the C—B depletion zone,
in which case the electric field in the depletion zone sweeps them into the collector’s n-type region,
leading to I > 0 (provided Ve > 0, so the swept-up n-type carriers are removed through the collector
terminal).

The transistor is a really beautiful device.

Note that from our description and diagrams, it would seem that the emitter and collector are basically
equivalent, and it is true that they are very similar. However, in a real transistor, the geometry is very
different, and the emitter material is heavily doped compared to the collector material (since it “produces”
the carriers needed to transport the current). So while it is possible to operate a transistor with emitter and
collector interchanged, it would not work nearly as well (the 3 in this configuration would be much smaller,
for example).

4.4 Packaging

Transistors come in many shapes and sizes. The common TO-92 plastic case (appropriate for low-power
signal transistors) is shown in the photograph below, with typical connections.
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Note that these connections are common with 2N-series transistors in TO-92 packages, but they are not
universal.!

4.5 Transistor Switch

Below is the first example circuit we’ll do with transistors: using a transistor as a switch, here to turn a
light-emitting diode (LED) on or off.
+5V

330Q

(red) LED

2 45V
ovI

off

Vino

This switch works as advertised (for the stated input voltages) for a resistance R around 1kQ. To learn
more about transistor operation, we will consider this resistance and a larger value for the base resistance
to see two different regimes of transistor operation. This circuit behaves the same for any of a number of
small-signal NPN transistors (2N2222A, 2N3904, 2N4401, etc.).

4.5.1 Saturation Mode

First, let’s consider the case where R = 1k{2, which would be a typical way to design this switch. The “oft”
case is pretty easy: with 0V input, Iz = 0, and thus I = 0 from Eq. (4.1), so the LED is off.

Now for the “on” case, with 5,V input. To start, the B-E junction of the transistor acts like a diode.
Usually, the base current will be low, because it will switch a current § times larger, from Eq. (4.1). So we
will assume diode drop across the B-E junction, but on the low end, say Vzi = 0.6 V. Then the 1-k{2 resistor
drops the rest of the input voltage, or 4.4 V. This gives a base-emitter current

4.4V
I = TR = 4.4mA, (4.2)
which will control the collector current I..

Before considering the transistor action, let’s consider the LED. LEDs have a higher forward voltage
than signal diodes. Typical values for “bright” operation of a “T-1%4” sized LED (the most common size,
with a plastic bulb 5mm in diameter) depend on color:

e For red, orange, yellow, green-yellow: forward current I, = 20mA; forward voltage V., = 1.8V.
e For green, blue, white, UV: Iz = 20mA; Vz = 3.3V.

“High-brightness” LEDs can have larger forward currents, but these values are good for “normal” LEDs. We
have a red LED, so Vi = 1.8 V. If we think of the transistor as a switch that connects C-E (this is not quite
true, more on this shortly), then the resistor drops 5 — 1.8 = 3.2 V; with a 330-Q resistor, this gives I as a
bit under 10 mA, which is reasonable, but hardly pushing the LED’s brightness.

Mn fact, the specific transistors in the photo should be wired backwards from this labeling. These are P2N2222A transistors
by ON Semiconductor, and for some reason they decided to wire these CBE as viewed from the front, despite all other 2N2222A’s
in this package being wired EBC.
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But what does the transistor want to do? Eq. (4.1) says that I should be § times Iy; assuming
B ~ 100, then I ~ 440mA. But, as we found out, with the LED and resistor voltage drops, I can’t
possibly be this high (the transistor can’t have a negative voltage drop, for example). In fact, the transistor
drop Ve can’t be less than about 0.2 V| so the resistor actually drops about 3.0 V. With the 330-€ resistor,
this gives I = Ir ~ 9.1 mA.

This mode of transistor operation is called saturation mode: as a switch, the transistor is “wide
open,” and the current I is limited by external elements (here, LED and 330-(2 resistor), not the transistor.
Of course, the current-limiting resistor could be reduced somewhat (say, to 150 ) for a brighter LED here.

The important thing to notice in this example is that a high-impedance source (1k{2, from the base
resistor, plus any impedance of the input voltage source) controls a higher-current load via the transistor.

4.5.2 Forward-Active Mode

Now suppose R = 100k(? in the same circuit. Then the base current is two orders of magnitude smaller, or
44 pA. The transistor tries to set I ~ 100/ = 4.4mA, and now this is certainly possible for the transistor.
Just to double check, the voltage drop across the 330-Q resistor is 3302 x 4.4mA = 1.5V. Then removing
the resistor and LED drops, Vo =5V — 1.8V — 1.5V = 1.7V. Now it is the transistor that is regulating
the current via its voltage drop. This is called the forward-active mode of the transistor, and it is in
this regime that the transistor can act as an amplifier with some gain (the saturation mode is a kind of
“infinite-gain” amplification).

4.5.3 Summary

Let’s just summarize the difference between saturation and forward-active modes in the switching circuit,
because this can be a bit confusing the first time through, and it’s important to understand the difference
intuitively.

In forward-active mode, the base current I;; controlled the collector current I (and thus the LED
current) via the relation I, = 8I;. The transistor “regulates” I by adjusting the voltage Vi to the proper
amount. We know the current is set by the voltage drop across the 330-{2 resistor: the larger the resistor
drop, the larger the current. This means that Vi is smaller for larger currents, because more of the supply
voltage must be taken up by the resistor.

In saturation mode, the transistor relation doesn’t hold. That’s because the base current makes the
transistor “want” more current than the 330-{2 resistor will allow. The transistor normally tries to drive
more current by reducing Vi, but it can’t do so below zero (or more precisely, below about 0.2V if I, > 0),
so Io < Blg.

So you can really think of the transistor relation as being more like I < SI;. Both the transistor and
an external element (resistor) will want to limit the current; whichever wants less current is the one that
wins.

4.6 Emitter Follower

As our second transistor circuit, we’ll continue with a transistor in forward-active mode. Below is the
emitter follower, where the output voltage is intended to “follow,” or match, the input voltage. It is an
amplifier in the sense of being an amplifier for current.
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+Vee

-

Vout

Note that we are introducing some new notation here. In addition to the base and collector currents in the
diagram on p. 72, we are introducing the emitter current I;;. Also, the power-supply voltage is labelled +V;
the plus denotes a positive voltage with respect to ground and the “C” subscript denotes this is intended to
power the collector terminal (two C’s distinguishes this from the voltage V at the collector, which is the
same in this circuit, but not always).

We will consider the signals to be ac signals, with some dc bias that we don’t care much about. This is
kind of a fact of life with transistors, which can only work with current flowing in one direction—if we want
to handle a bipolar signal (like an audio signal), these biases ensure that the net signal is compatible with
the way the transistor works. The bias voltage/current is typically rejected at some point near the output
of the circuit, for example using a high-pass filter.

Thus, let’s set
(4.3)

V(t) =Vo+ (), I(t) = Io + (), (dc and ac components)

where Vj and I are the dc biases, and the (small) ac signals are v(¢) and i(¢). This simplifies the analysis a
bit, because for example we can write the output voltages as

Vour = Vo = Vi — 0.6V, (4.4)

but dropping the dc offsets, this becomes
Vout = Vg = Ug. (4.5)

The ac voltage gain for the circuit is defined by

(%5}

G Vet ey (16)
Vin Vg (ac voltage gain)

so this is indeed a unity-gain circuit (voltage follower).
To compute the current gain, we can relate the emitter current to the base and collector currents by

Iy=Is+Ic=Is+ Bl =I:(f +1), (4.7
where we used Eq. (4.1). In terms of ac components, this is
ix =ig(8+1), (4.8)

so the ac current gain is (8 + 1).

4.6.1 Input and Output Impedance

Since the emitter follower has current gain, it can allow a source with high output impedance to drive a
lower-impedance load. To quantify this, let’s define Zj,aq to be the impedance at the transistor emitter,
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which is R in parallel with any other load impedance attached to the V; terminal. Then we can calculate
’I:E UE /UB

iB - B‘i‘ 1 - Zload(ﬁ‘i‘ 1) - Zload(ﬁ‘i‘ 1)

Here, we used the current gain (4.8), then v, = ix R, then vy = v;. Then we can define the input impedance
of the amplifier by

(4.9)

Z. .= Jn (4.10)
T (input impedance, definition)

Writing the input voltage and current in terms of the base voltage and current,
Tin = 2, (4.11)

ip

and then using Eq. (4.9),
(4.12)

Zin = Zioaa(B + 1). (input impedance, emitter follower)

We can interpret this as follows: Without the transistor, the input v;, would have to “drive” the load
impedance (the resistor R and other connected stuff) directly, as shown below

Vin
Zioad = R||(other loads)

The effect of the transistor is to multiply the resistor value by (8 + 1), so effectively the impedance is about
100 times larger, and thus much easier to drive—the transistor is supplying most of the current via the
collector, so the voltage source driving the resistor doesn’t have to supply much current at all. Thus, the
equivalent circuit with the transistor is shown below.

Ug
Vin

Zin = (ﬂ + 1)Zload

Of course, we can think of this (Thévenin) equivalent circuit because the transistor is acting as a linear
amplifier.
We can also define an output impedance as

7z . Yout (4.13)
out T (output impedance, definition)
Manipulating this a bit,
Vin Vin
ot = — = ————— 4.14
out ZE ZB(B‘F 1)7 ( )
and then defining the source impedance
VA .__ Uin (4.15)
souree = (impedance of input source)

(i.e., the impedance of whatever is driving the transistor base at voltage Vi, ), the output impedance becomes

Zsource (4.16)
B+1"° (output impedance, emitter follower)

Zout =
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We can interpret this as follows: Without the transistor in place, the load would be connected directly to
the source, loading it down somewhat:

ZSOHI‘CC

Usource Vout

Z load

That is, Vsource and Zgource represent the Thévenin-equivalent voltage and impedance of the signal source.
The transistor effectively divides the source impedance by (8 + 1), making the source effectively “stiffer”
(closer to an ideal voltage source) by about 100-fold, as “seen” by the load. Equivalently, the transistor is
supplying most of the load current, so the source only has to supply a small fraction of the current that it
otherwise would.

Zout - Zsource/(ﬁ + 1)

Usource Vout

Again, from this point of view, the transistor is “lumped into” the source circuit, which is appropriate
because it is acting as a linear device.

4.7 Transistor Current Source

The next circuit we will consider is the transistor current source. This is more of a prelude to the
transistor amplifier that is coming up next, but this is also useful in its own right. A current source is
a circuit that maintains a constant (programmed) current, independent of voltage, within limits of course.
In the circuit below, the goal is to maintain a constant current through the load, independent of the load
impedance.

+Vee

load

I

Ry

In this case, the transistor is maintaining the collector current I.. To see that this works, note that the base
and emitter voltages are related as usual by

Vo=V, —0.6V. (4.17)
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Then the emitter resistor Ry sets the emitter current via
Vs Ve —06V

I, = — = 4.18
Remember that the base and collector currents add to form the emitter current. Since I = Bl then
L=I.+1;=I.(1+8 Y~ I, (4.19)
provided g is large. Thus,
i Ve UEY (4.20)
o R, (transistor current source)

That is, the load current I is programmed by the input base voltage Vj, as well as the emitter resistor Ry.
Importantly, the question of the load resistance never came into the analysis, so the current is independent
of the load resistance.

4.7.1 Compliance

Well, that is, within limits. What are the limits? That is, what is the compliance of the current source?
Specifically, the compliance refers to the range of output voltages for which the transistor is properly regu-
lating the current—the output voltage here meaning the collector voltage V., which the transistor “presents”
to the load.

For proper transistor operation, we need Vi > V to switch the collector current, and we also need
the collector Vi, 2 Vi; + 0.2V. On the upper end (i.e., lower-current end), we can have Vi going all the way
up to +Vec, assuming this doesn’t exceed the breakdown voltage of the transistor. So, for a given input
voltage Vg, the range of output voltages Vo is from Vz + 0.2V = (V3 —0.6V)+0.2V =1V; — 0.4V, on up to
+Vec. This corresponds to a range of current from 0 on up to (Voe — Vs +0.4V)/Rigad, in terms of the load
resistance.

4.7.2 Bias Network

Of course, to make the current source work, we need to set the base voltage Vz. How do we do this if we
only have ground and the power-supply voltage? The answer, of course, is a voltage divider, as in the circuit
below.

+Veo

The voltage divider here could even be a potentiometer (variable resistor), so we can fine-tune the regulated
current (our treatment is only approximate, for example, because we are using the approximate Vg drop of
0.6 V). The voltage divider gives an unloaded voltage of

~ ———Voc, (4.21)
2
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but we are “loading” the divider with the transistor, so we have to be careful. Remember that the Thévenin
equivalent circuit for the voltage divider (Section 1.4.1) is as follows:

Rty = Ri||R2

— R2
Vrn = Ri+ Ry Voo ’—/\/\/\/—’ Vs

In our discussion of the emitter follower, we saw that the input impedance of the transistor is about SRg.
That is, as “seen” from the base-side of the transistor, the equivalent input circuit is

Ry Rrn = Ri|| Rz

Vin = ————V,
Th R1+R2 cc

Vs

BRe

Here, we have the input voltage divider, still connected to the transistor base, but with the transistor replaced
by its effective input impedance. Thus, V5 is determined by another voltage divider, but V; is essentially
the unloaded value above (i.e., Vy,) under the condition

(4.22)

Bry = Ra|| Rz < fRx. (design condition for bias network)

This condition ensures that the voltage divider is “stiff”—that is, it acts like an ideal voltage source. If this
condition is not fulfilled, the divider’s voltage “sags” under the load of Ry via the transistor (i.e., the input
impedance of the transistor).

Note that in designing this circuit, you might think that we can just calculate the effect of Ry on Vj,
and so we can just tweak the ratio of Ry to Ry to compensate. However, the resulting voltage depends on
B, which can vary from device to device, or with temperature, or with collector current, etc. That is, in this
circuit design (and other circuit designs), it’s important to be in the regime where we can neglect the effect
of Ry on Vz—that is, in the regime where § is large, but the particular value of 3 is not critical.

One other solution to the problem of a sagging voltage divider is to use the Zener-diode voltage
regulator (Section 3.5) to set V.

+Voo

load

P

In this case, we can get a fairly coarse choice of V; by choosing the Zener diode, and fine-tune the current
by setting Ry.
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4.8 Common-Emitter Amplifier

And now for our first voltage amplifier that has gain—the output can be larger than the input. The
basic circuit is simple: just take a transistor current source, and use a collector resistance R as the load.
Heuristically, the input voltage programs a collector current I, and R acts to convert the current back into

a voltage, which serves as the output.

+Veo

Re

Up

Ry

Vout

This amplifier only works as advertised on ac signals, so let’s consider small ac variations v(t) and i(t) with

respect to dc biases Vj and Iy, as before:

V(t) = Vo +v(t), I(t) = Iy +i(t).

The current-source result (4.20), dropping dc biases, becomes
. U
ic = —.
c R,
The voltage drop across R is
Voe = Vo = ICRC7

which, in terms of ac quantities, is

Ve = —icRe
Combining this with Eq. (4.24),
Vo = _fBe v
C RE B
Identifying these voltages with the input and output voltages,
Rc
Vout = _R7E Vin -
Defining the gain of the amplifier by
G — Vout
i Vin ’
the common-emitter gain is
Re
G=——.
Ry,

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
(common-emitter amplifier)

(4.29)
(ac amplifier gain)

(4.30)

(common-emitter gain)

Then we see that the gain is negative, meaning the input ac signal is inverted at the output, and the ratio

of collector and emitter resistors controls the gain.
For the sample-circuit numbers, we have G = —10.
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4.9 Bias Network (AC Coupling)

As in the current source, we need an input network to set the dc bias. A nonzero bias is critical for the
amplification of the ac signal: the B-E junction can only conduct in the forward direction, and so the input
signal can’t cross through zero and still be amplified without a lot of distortion.

+Voo

Vout

Here, the voltage divider sets the bias voltage, and the input capacitor only passes the ac part of the input
signal.

Let’s go through the different parts of the circuit, and work out all the relevant parameters. As a
concrete example, we will use the parameters:

Ve = 15V,
Ry = 56kQ,
Ro = 5.6kQ, (431)
C =0.1uF,
R, = 3300,
o = 3.3k

1. AC input impedance. The input circuit is a high-pass filter, with capacitance C. The Thévenin
resistance is the parallel resistance of Ry and Ry, but we must also include the input impedance SRy
of the amplifier as an additional parallel resistance. Thus, at high frequencies when the capacitor acts
as a short-circuit, the input impedance of the circuit is the Thévenin resistance, or R;||Ral|3Rg.

For this circuit, Ri||R2 = 5.1kQ. Also, SRy =~ 100k}, which is much larger than R;||Ra3, so
R1||R2||6RE ~ RlHRQ = 5.1k.

2. High-pass input. The corner frequency of the input network is

P 1 (4.32)
3B = 9 (R1||R2||BR:)C (input corner frequency)

For the circuit here, f3qp = 310 Hz.

3. Loading condition. It is good practice for the input impedance of the transistor to have negligible
effect. That is, we should have
SRy > Ri||Ra, (4.33)
in which case the input impedance and corner frequency of the input network do not depend on g8 (and
thus on temperature, etc.).

For the sample numbers here, we have already seen that we satisfy this condition.
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4. Gain. From Eq. (4.30), the gain of the amplifier is

G=-=C. (4.34)

5. Output impedance. Because the transistor acts like a current source (with I insensitive to V'), the
transistor effectively presents a very large impedance at the output—a large change in voltage causes
little change in the current. Thus the impedance at the output is the Thévenin resistance at that point,
or the parallel impedance of the the collector with R.. Thus, we can take the output impedance of the
amplifier to be approximately R.

In this example, the output impedance of the amplifier is 3.3 k().

6. Bias points. The bias at the input is just the voltage-divider voltage, including any correction from
BRy, which we usually want to ignore. In the circuit here, the 15V supply is divided down to 1.36 V.

Why does this make sense? It’s important to note that the bias at the input isn’t critical in the sense
of needing to be near the middle of the supply range. If we are doing a lot of amplification and want
to avoid clipping, though, the output should be close to the center of the supply. Let’s see if this
is the case. The emitter voltage is V; = V5 — 0.6V = 0.76 V. This programs a collector current
Io = (Vs —0.6V)/Ry = 2.3mA, from Eq. (4.20). Then the voltage drop across R is 7.6 V which is
about half of V... Notice how the matching ratios of Ry to Ry and R to Ry lead to a sensible bias
voltage here, but because the (fixed) voltage Vi enters here, this rule does not always apply.

4.10 Transistor Differential Amplifier

Now we come to a more sophisticated transistor amplifier, the transistor differential amplifier. Schemat-
ically, a differential amplifier has the following form:

‘/in+
‘/out - A(VinJr - Vvinf)
‘/1[17

That is, the output is the difference of the inputs (the signs at the inputs tell you which is subtracted from
which), and multiplied by the voltage gain factor A.
Why is a differential amplifier useful? For example:

1. In the transmission of signals, differential amplifiers give you noise immunity— if you transmit a
signal on two lines (signal and ground), the same noise appears on each line, and gets cancelled out by
a differential amplifier on the receiving end.

2. Differential amplifiers offer a straightforward way to implement negative feedback, which is a nice
way to achieve close-to-ideal behavior in nearly every respect. We will go over this in much more detail
when we get to op-amps.

The simplest realization of a differential amplifier uses two transistors. To understand this, first recall
the common-emitter amplifier.



4.10 TRANSISTOR DIFFERENTIAL AMPLIFIER 85

+Vee

R

Vout
Up

Ry,
In this amplifier, the result for the ac signal was -
R

Vout = —R—zvin. (4.35)

The differential amplifier is basically a “stack” of two common-emitter amps, sharing a common resistance
Ry at the negative end.

+Vec +Vee

_VEE
From the layout of the schematic, you can see why this circuit is also called a long-tailed pair (the “long”
here refers to the magnitude of Ry, which as we will see is typically large compared to Ry). Note also that
the emitter-end of the circuit is powered by a negative supply, so we can have positive or negative outputs.
To analyze this circuit, we will again concentrate on the ac components of the inputs, v; and vy. Now
let’s think of v; and vy as being deviations from the mean voltage v:

Av Av

’U1:’D+7, ’UQZTJ—T. (436)
Here, v is the common-mode signal,
.= 2 ‘2“)2, (4.37)
and dv is the differential signal,
Av == v — va. (4.38)

Ideally, a differential amplifier responds only to the differential signal, and is insensitive to the common-mode
signal.
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4.10.1 Differential-Only Input

We will show that the circuit responds linearly to the inputs, so we can treat the differential and common-
mode signals separately, just add them together to handle an arbitrary input signal. So first, let’s concentrate
on only the differential signal. That is, setting v = 0, we have

Av Av
_ — = — 4.
U1 9 V2 B (4.39)
Then, just as in the emitter follower,
Vg1 = Up1 = V3, (440)
and similarly
Vg2 = V. (441)

At point A in the circuit, ignoring dc offsets, we have a 50% voltage divider between vz and vy, so the

voltage is the average of these:

- ;“EQ =4 ;”2 = 0. (4.42)

We can interpret this as follows: The point A acts like the “ground” point for the two common-emitter
amplifiers in this circuit. Since this point is stable with respect to differential inputs, the common-emitter
results carry through here, and in particular for the right-hand common-emitter amp,

Re
out = — 5 U2, 4.43
L (4.43)
or in terms of the differential signal,
_ Rc (4.44)
Yout = 9 Ry Av. (differential response)

Note that the minus sign disappeared here, which is why it is sensible to take the output from the right-hand
transistor. Thus, we have

Re (4.45)
2R (differential gain factor)

Gait ==

as the differential gain factor for the amplifier.

4.10.2 Common-Mode-Only Input
Now we can focus on just the common-mode signal. That is, we take Av = 0, so that
v = vy = U. (4.46)
Then applying Kirchoff’s law to the currents at point A,
lgg = gl + ig2 =: 2ig, (4.47)

since the two emitter currents are the same. Here, in; and g2 are the (ac components of the) currents out
each emitter (both equal to ig), and igg is the current through Rgr. Then applying Ohm’s law at point A,

VA = lgpRes = 2ix Reg, (4.48)
and now Ohm’s law across either emitter resistor gives

- in — 2
i = UER va _ Y RzEREE, (4.49)
E E

after eliminating v4. Solving for iy,
Vin

fy = —————————. 4.50
" T Ry + 2Res (4.50)
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Then the output is, just as we had in the common-emitter amplifier,
Vout = —lcRc &~ —igRc, (4.51)
if we assume 3 large, and then using Eq. (4.50),

Vout = — <1%C> Vin, (452)

Ri + 2Ry (common-mode response)

such that we can define
Re (4.53)

Goun = "Rt 2R (common-mode gain factor)

as the common-mode gain factor.

4.10.3 General Input and Common-Mode Rejection

Since the circuit responds linearly to the inputs, we can take a general pair of inputs v; and ve, decompose
them into differential and common-mode components via Eqgs. (4.37) and (4.38), and then the output is

(4.54)

=] : A V. .
Vout = Gait AV + Gou® (common-mode gain factor)

Again, for a “good” differential amplifier, G, should be zero, or at least small compared to Gy;g-
One way to quantify the “goodness” of the differential amplifier is the common-mode rejection
ratio (CMRR), which we define as

Gaig

_ Ru+2Run (4.55)
GCM ’

2R, (common-mode rejection ratio)

CMRR := ‘

Thus, typical differential-amplifier designs will be such that Ryp > Rg, in which case the CMRR reduces to

the simple ratio

REE
=

Again, an ideal differential amplifier has a large CMRR. Typically the CMRR is large enough that it is

usually measured in dB.

To give an intuitive recap, a differential input signal produces an output signal by changing the currents
ig1 and ige through the emitter resistors Ry. But these currents cancel at point A, the current through Ry
stays fixed, and the two transistors act like common-emitter amplifiers. To maximize the differential gain,
we want Ry to be much smaller than Ro. A common-mode signal, however, does change igzz. However, if we
make Ry large, then the change in current ¢r, due to a common-mode signal is small. The change in the
collector current i and thus output voltage is correspondingly small for a common-mode input, making the
amplifier relatively insensitive to common-mode signals.

CMRR ~

(4.56)

4.10.4 Improving the Differential Amplifier

One problem with the differential amplifier is that it is usually desirable to have a large differential gain G g,
which means R, should be large. However, R is also the output impedance, and we usually don’t want a
large output impedance (we want the output to act more like an ideal voltage source). A simple solution to
this is to buffer the output using an emitter follower, which will reduce the effective output impedance by a
factor of f3.

Another observation is that Ry should be large for a high CMRR. An improvement is to replace
Ry with a transistor current source. This regulates a constant igg, which regulates a constant iy in the
common-mode analysis. Since iy is acting as a constant, this implies a very large effective Rpg in Eq. (4.50).

Finally, note that we can obtain a good CMRR by having R; < Rgs. In fact, why can’t we just set
Rz = 0?7 We can replace the resistors Ry by shorts, but still these resistances will not be zero. In this case,
the resistances will be the intrinsic resistance r. of the transistors, which we will return to below.
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4.11 Ebers-Moll Equation

So far, we have been understanding transistor circuits using the crude current-control model, centered
on the equation [Eq. (4.1)]
I = I, (4.57)

with 8 roughly constant. The crudeness is, of course, that § is not constant. Usually we try to design in
such a way that this doesn’t matter, but it is still useful to develop a better model of the transistor.
Recall the diode law (3.1), relating the diode current and voltage:

=1, (eV/ nVr _ 1) . (4.58)

Here, I is the saturation current (reverse leakage current), n is the ideality, V; is the thermal voltage

ks T
Vo= =, (4.59)

ks = 1.381 x 10722 J /K is the Boltzmann constant, and e = 1.602 x 1071% C is the fundamental charge. The
base—emitter junction of the transistor works much like a diode (recall that the collector current arises as a
“side effect” of the base—emitter current, since carriers headed initially towards the base are swept into the
collector), and so a similar law applies to transistor operation, the Ebers—Moll equation:

B —— (4.60)
Io = Ics (e 1) : (Ebers—Moll equation)

This relates the collector current I to the base—emitter voltage Vi = Vi — Vi, via a saturation current Is.
Unlike the current-control view of the 5 model of the transistor, the Ebers—Moll equation gives a voltage-
control view of transistor operation. The control of I via Iy is only indirect, since Iy is controlled by
Vg via diode-like conduction. Thus, the transistor is a transconductance device (meaning a device that
converts voltage to current). The Ebers—Moll model turns out to be accurate over a wide range of currents,
typically from nA-mA. Note that in what follows, we will drop the ideality factor n to simplify notation
somewhat without significantly affecting the calculations.

4.11.1 Magnitudes

To compare with what we know before, for a typical circuit analysis we assumed Vg ~ 0.6 V, which is much
bigger than the thermal voltage Vi (25.69 mV at 25°C). Thus the exponential in the Ebers—Moll equation is
large compared to the 1, and so Eq. (4.60) becomes

Io ~ Ioge/Vr (4.61)
and
Ie > I (4.62)

This also means that, as in the diode, that V5 is relatively insensitive to variations in the collector current,
if we think about the relation in a “backwards” way. That is, if I, changes by a factor of 10, and Vi changes
by AVgg, then

10 & eAVEE/VT (4.63)

so that the voltage change is
AVyy =~ Vilog 10, (4.64)

which is about 59mV at 25°.
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4.11.2 Relation to 3

Then how to we recover the current-control relation (4.57)7 If we think of the base-emitter junction as a
diode, then we simply apply the diode law (4.58) to obtain

I = 1. (eVBE/ Vr _ 1) , (4.65)

where I is the saturation current of the base—emitter junction, and we have set n =~ 1. Then solving this
for Vag,

Iy
Ver = Vi log <I + 1> ) (4.66)
S

and putting this into the Ebers—Moll equation, we find

I, = (ICS) Is. (4.67)
I

This has the form of the transistor 8 relation (4.57), with a 8 of Is/I.s. Note, however, that § is temperature
dependent and somewhat dependent on current, which is not reflected in this simple derivation (for example,
the proportionality is not exact if we do not set n =1 in the diode law).

4.11.3 Intrinsic Emitter Resistance

The Ebers—Moll equation is also useful in establishing an intrinsic emitter resistance of the transistor.
For small ac signals, the intrinsic resistance in the emitter is defined by

VUpp = ipTe. (4.68)
More generally, we can regard the resistance to be defined by the I-V slope

1 dl (4.69)

ro  dVig (intrinsic emitter resistance: definition)

thinking of the current as a response to the voltage. That is, an ac emitter current i modulates the base-
emitter voltage vgg by an amount controlled by 7r.. Given that these ac signals are small, this relation is
given by the derivative of the vyg—iy relation, or the Ebers—Moll equation. We can calculate this via

1 i i

— =t~ = (4.70)

Te Usg Usg

since we assume (3 is large, as usual. Then at some bias collector current I,

1 dI
o dv;' (4.71)
Differentiating Eq. (4.61), this becomes L
o~ 72 (4.72)
or
o % ~ @ 2 200 (intrinsic emitter resist(;lr.;i;

This gives a useful expression for the intrinsic resistance of the transistor, which depends on both current
and temperature.



90 CHAPTER 4. BIPOLAR JUNCTION TRANSISTORS

4.11.4 Current Mirror

A good example of a simple transistor circuit that can best be understood via the Ebers—Moll equation is
the current mirror. Essentially, I}, in the circuit below is the “program current,” and the mirror “copies”
the current through the load, independent of the load impedance (within limits, of course). For example,
the program current can be set with a resistor connecting the programming terminal (collector of Qi) to
ground. This circuit is shown using PNP transistors, but can also work with NPN transistors if the voltages
are reversed.

+Vee +Vee
Ic
Q1 Q2
Ipi ljload 2“"Ip

How does this work? I, ~ I, for Q; if we assume a large value of 3. Then this sets Vi via the Ebers—Moll
equation, and thus V; for Q. The transistor bases are connected, so this also sets V5 for Qo, and thus Vg for
Q2, since Q2’s emitter is connected to the same supply as Q1’s. Then, since Qo satisfies the same Ebers—Moll
equation as Qi, Q2’s collector current must be the same as QQ;’s. Note that we didn’t need the exact form
of the Ebers—Moll equation, just that it relates I to Vg, and that it is the same for both transistors. This
is only the case if the two transistors are identical and at the same temperature; if these conditions are not
true, the analysis is more complicated. In practice, to make sure the properties and temperature match, the
current mirror could be implemented using a matched transistor pair in a monolithic package.

Note that we ignored the base current in the above treatment. The base—collector connection on Qy
shunts the base current for both transistors through I,. Thus, a better expression for the load current is

(1 + 2) Toad = Ip7 (474)
g

since the program current is the load current plus two base currents. This correction leads to a 2% or less

discrepancy between the program and load currents.

This is a circuit that is used, for example, as a common building block in integrated circuits. For
example, the OPA622 op-amp uses an external resistor connected to internal current mirrors to set the
quiescent current (current when the circuit is idling)—this allows the user to set the trade off between
power efficiency and high speed.?

4.11.5 Other Refinements to the Transistor Model

We will close out our discussion of BJTs by noting some other complications that are useful to keep in mind.

4.11.5.1 Temperature Dependence of the Base-Emitter Voltage

First, remember that due to the diode-like nature of the BJT, the “input voltage” Vg depends on temper-
ature. We can get idea of the strength of this dependence by getting the temperature slope from the diode
law. For example, differentiating the diode law in the form (4.66) gives

WVow Vo (I Vas
= 71 —_— 1 = . 4.
ar T Og(Is * ) T (4.75)

2See http://www.ti.com/lit/ds/symlink/opa622.pdf. This is a good exercise: find the current mirrors in the schematic
diagram, Fig. 2 p. 10.
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Assuming Vg ~ 0.6 V| this is about 2mV /°C at 25°C. However, this is wrong! It turns out that I5 increases

exponentially with temperature, which tends to counteract the temperature dependence in V.. The net
effect is that
dVsg

dr

or different from the naive calculation by about a minus sign, and the proportionality to 7! still approxi-
mately holds.?

~ —2.1mV/°C, (4.76)

4.11.5.2 Early Effect

The Early effect says that Vi also depends on Vz. The dependence is weak, and an increase in Vg
decreases Vgy, slightly:4

AVyw ~ —1074AV,. (4.77)

4.11.5.3 Miller Effect

The Miller effect says that the collector—base junction, which normally acts like a reverse-biased diode, acts
as if it has a small parallel capacitance, on the order of a few pF. (Remember that a reverse-biased junction
has a depletion region, which acts as a thin, insulating layer.) The main problem is that if a transistor
circuit has voltage gain G, then this Miller capacitance Ccp gets “transferred” to the input as an effective
capacitance of (1 + |G|)Cqps (Problem 10). With any input impedance, this forms a low-pass filter, so for
fast circuits, either the input impedance needs to be kept small, or the gain G must be small.

4.11.5.4 Variation of 3

Finally, we have already noted that 3 is not really a constant, but this is worth reiterating. It varies between
transistors and with temperature. The only thing to rely on should be that  is large (100 or more), not
that it has any particular value. Note that in terms of gains, 8 drops out of all the circuits we analyzed; it
only appears in the impedance expressions, where its exact value is not critical.

4.12 Circuit Practice

4.12.1 Transistor Switching an Inductive Load

Consider the circuit below, where an NPN transistor switches an inductive load (electromagnet, motor, etc.).

+Vee

3Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed. (Cambridge, 1989), p. 81 (ISBN: 0521370957).
4Horowitz and Hill, op. cit., p. 75.


http://www.amazon.com/gp/search/?field-isbn=0521370957
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Explain what you need to do to switch the inductive load on and off. Also, why the diode, which is necessary
for large inductances, to protect the transistor when switching off the current?

Solution. Without any connection to the transistor base, the inductor is switched off. To run current
through the load (say a current I, limited by the resistive part of the load impedance), we need to inject
about 1/100 (1/8) of I into the base, e.g., using a voltage and a resistor as a voltage-to-current convertor.

The problem with this setup is that when switching off the current, the inductor will develop a large
EMF to try to sustain the current. This will pull the collector voltage far above +V,¢ if the inductance is
large and the switching is rapid [remember the EMF is L(dI/dt)]. This can exceed the transistor breakdown
voltage, destroying the transistor. When V. > V.., the diode shorts the collector to V.., clamping the
voltage at V.. and protecting the transistor.

4.12.2 Joule Thief

Let’s take a break from quantitative analysis of transistor circuits, and look at a fun and elegant circuit.
The circuit below is called the joule thief.? To understand the name, consider that the circuit is powered
by a 1.5V battery, but as we discussed before in Section 4.5, turning on a blue or white LED takes about
3.3V. The “thievery” comes from noting that this circuit works even with a sagging battery with an even
lower voltage—hence, we can get steal every last joule from the battery (here, for the purposes of lighting
up the LED).

transformer
(note orientation of windings)

1.5-V battery___
(can be “used up”) 1%Q .

LED
(blue or white)
2N3904

Your exercise here is to trace through the circuit and explain how it works. Just treat the transistor as a
switch; no need to do any calculations. Also, as a hint, note that inductors are fairly rare in circuits; usually
they show up either as filters (as in the outputs of switching power supplies for computers), or—as is the

5For more on this circuit, including instructions on how to build this, see http://www.evilmadscientist.com/2007/
weekend-projects-with-bre-pettis-make-a-joule-thief/. See the rest of the site for a lot more cool stuff on electronics and
other subjects.


http://www.evilmadscientist.com/2007/weekend-projects-with-bre-pettis-make-a-joule-thief/
http://www.evilmadscientist.com/2007/weekend-projects-with-bre-pettis-make-a-joule-thief/
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case here—they are around to give an inductive kick when they are interrupted (like the spark-plug coil in
gasoline-powered car engines).

Solution. Suppose we start with the transistor off. Current starts flowing from the battery, but it can’t
go into the collector. The only path it has is into the base; the resistor is there to make sure we don’t
overdo the current. This base current turns on the transistor, so a much larger current can start to flow into
the collector. As the current flows through the secondary of the transformer to the collector, the opposite
current is induced in the primary (note the primary and secondary are wound/oriented oppositely). This
induced current opposes and thus interrupts the base current, switching off the transistor. This interrupts
the collector current, interrupting the relatively large current in the transformer secondary. This leads to
an inductive kick, and the collector voltage builds up potentially far above the battery voltage (recall the
same thing happens for a transistor switching off an inductive load, as in Section 4.12.1). The collector thus
builds up to a sufficiently high voltage that the LED turns on, dumping the inductive kick. Then we are
back to the initial state, and the process repeats.

4.12.3 Solid-State Tesla Coil

Here is another good circuit to practice qualitative reading of transistor operation.

i

27Q

00000,

100k$2

HV out
12V
120V @

[ ]
8nF — E

1neon flyback
amp transformer

I+

The goal of this circuit® is to develop high voltages (of order 25kV) by using a flyback transformer from
a television (the old, cathode-ray-type, which needs large voltages to accelerate the electron beam). The
left-hand side of the circuit is basically a dc power supply to drive the right-hand side. The neon lamp (a
tiny, neon-filled glass discharge tube) is a handy way of indicating 120-V power; the lamp needs about 90 V
to “fire,” and then once the discharge starts, little current is needed to sustain it, so the voltage is regulated
by the 100-k(2 resistor.

The flyback transformer is driven through a center-tapped primary coil by an alternating pair of power
transistors, which are driven by a center-tapped “feedback” coil. Trace through the circuit to understand
how the transistor pair switches between the “on—off” and “off-on” pair states. To get started, assume that
both transistors are initially off, and pick an arbitrary path for the current from the voltage divider driving
the feedback coil.

6Robert E Tannini, Build Your Own Laser, Phaser, Ion Ray Gun and Other Working Space Age Projects (McGraw-Hill,
1983) (ISBN: 0830606041).
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4.12.4 Eric Clapton Signature Stratocaster Preamplifier

Look at the linked schematic diagram” for the Eric Clapton Signature Stratocaster from Fender Musical
Instruments Corp.® The guitar emulates Clapton’s beloved old “Blackie” guitar, but the preamp has an
unusual feature of enabling a boost in the midrange audio band. This allows electronic control of the
guitar’s tone from the traditional “Strat” sound to something more akin to a Gibson Les Paul (which
featured “humbucking” pickups, which have more midrange gain).

This schematic is somewhat awkward to read, but you can still look through it and try to spot a few
elements. In particular, look at transistors Q1-Q4 and identify what amplifiers each one makes up. Also try
to identify the bias network in each case.

"http://www.blueguitar.org/new/schem/_gtr/ec_schem_fact.jpg
8http://www.fender.com/guitars/stratocaster/eric-clapton-stratocaster/product-011760.html
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4.13 Exercises

Problem 4.1

In the circuit below, for what range of resistances R¢ will the transistor be saturated?

+15V

Rc

10k

Assume 5 = 100.

Problem 4.2

Consider the following transistor circuit. Consider Vic, Ry, and Rs to be fixed. For what range of
input voltage Vi, is the transistor saturated?

+Veo

Rc

Problem 4.3

Consider the transistor circuit below. Assume the input is biased such that the transistor works
normally, and ignore any internal resistances in the transistor. For the calculations in this problem,
you may assume [ > 1.
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+VCC

‘/out

Vin

(a) Consider small voltage changes vy, and vout at the input and output (i.e., ignore bias voltages).
Compute the voltage gain G = vout/Vin.

(b) Compute the input impedance.

(¢) Compute the output impedance.

Problem 4.4

)

Consider the common-emitter amplifier (in this case, a “grounded-emitter amplifier,” since Rg = 0)

shown below.

Re =2kQ

‘/out

R VAVAY
Ry = 20kQ ]

a) What is the minimum value of V;, that saturates the transistor? Assume 5 = 100.

(b) What is the (ac) voltage gain of the amplifier, assuming the input is biased to something above
0.6 V and below your result from (a)?

Problem 4.5

Consider the following ampifier.
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+VCC
Re
‘/out
Ve — AN\,
Ry ]

(a) If the input voltage has a dc bias Vj plus a small ac component v(¢) [i.e., Vi, = Vo +v(t)] over what
range of Vy will the circuit amplify the ac signal? [Write your answer in terms of 8, Rg, Rc, Ve, and

particular voltages (like 0.6 V).]

(b) Derive an expression for the (ac) gain as a function of Ry, and Re.

Problem 4.6
Consider the common-emitter amplifier below. This is a fairly involved problem, but the idea is to give
you a template for how to design a real transistor amplifier.

+9V

Ry

2N3904

The design criteria for this amplifier are: a large gain over a usable bandwidth of 100 Hz—20 kHz,
an input impedance of 10k, a quiescent current (dc current) of 1 mA (dominated by the collector
current), and the circuit will drive a 10k load (the last spec is typical of line-level audio circuits).
The dynamic range of the output should also be reasonably close to the maximum possible, so we will
fix the collector voltage at +Voc /2.

(a) Now we must set the gain of the circuit, and so we need to explain the function of Cg. The
idea is that at frequencies above 20 Hz, the capacitor bypasses the resistor, so that over the amplifier
bandwidth the intrinsic emitter resistance sets the voltage gain, not Rg. What collector current do we
need? Write an expression in terms of R¢, which is yet to be determined.
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(b) Use your result from (a) to show that the (ac) voltage gain in this circuit can be written

(4.78)

where Vg, is the voltage drop across Rc.
(c) Using the specified collector voltage, what is the gain at 20°C?
(d) What are Rc, 7., and Ig? Use B (hpg) from the data sheet.”

(e) For the emitter resistor, a good choice for Rg is often about 0.1 - Rc. What is this resistance,
and what is Vg7 The reason for this choice is as follows. Recall that Vg varies with slightly with
temperature. If we fix Vg, then this variation leads to a temperature dependence of Vi and thus the
bias current. To minimize this effect, Vg should be much larger than the variation in Vgg. Verify
explicitly that this is the case for this circuit, over, say, variations of 10°C (i.e., estimate the effect on
the quiescent current for this temperature change).

(f) What is Vg7 (Use the data sheet for any values you need, don’t assume standard values.) Now
choose Ry and R, accounting for the design specs and not forgetting to account for the effect of Rg
on the input impedance. A computer here is probably helpful in solving the resulting equations; ask
for help with this if you need it.

(g) Set Cg by guaranteeing that its impedance is negligible compared to 7, (not Rg) over the amplifier’s
ac bandwidth.
(h) Choose Ci, and Coy.
(i) As a sanity check, note that transistors have a parameter hqe, called the output admittance,
defined by
1
hoe = 70

= . (4.79)
Vo Ig=0

Note that this has units of conductance, and in fact 1/h. acts as an effective collector resistance that
appears in parallel with Rc. Verify from the data sheet that we are justified in ignoring this.

(j) Give an order-of-magnitude estimate for the life of a 9V battery powering this circuit. (Look at
some battery data sheets to find some useful information; cite any sources you use.)

Problem 4.7

Consider the current mirror below.

+Vee +Vee
Q1 Qo
Tioa # load
J L load

Suppose that Qp is at temperature T} and Qs is at temperature T3 (in class we assumed these were
the same). Derive an expression for the current Iioaq in terms of the program current I, and the
temperatures. Assume that the transistors are otherwise identical.

Problem 4.8

The circuit below is a variation on the transistor current mirror. Compute [jpaq, assuming that the
three transistors are identical.

9http://wuw.fairchildsemi.com/ds/2N/2N3904 . pdf
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+Veo +Veo

Qs

i Doad = ?

Problem 4.9

Consider the circuit below.

+15V

%ut

(a) What is the input impedance at high frequencies? Don’t bother computing the actual value (unless
you really want to), but give enough of an expression to make it clear how you would do this if you
had a calculator.

(b) What is the dc bias level of V7 Again, you don’t need to get the numerical result, just give
a chain of relations that shows how you could get the correct numerical answer. Nevertheless, you
may want to give a rough estimate of the answer as a sanity check and to help in the next part of the
problem.

(c) How does the intrinsic emitter resistance enter into the analysis of this circuit? For the specific
component values here, how much does it affect the quantities you calculated in (a) and (b)?

Problem 4.10
Consider the common-emitter amplifier shown below, assumed to be biased as needed for the circuit
to work normally as an amplifier. Recall that the Miller effect refers to an intrinsic capacitance
that appears across the reverse-biased base—collector junction, shown as capacitance C' in the left-hand
diagram.
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+Vee +Vee

Re
c

—e——o Uout Vout

Vin Vin

% CQH I
Ry -

The reason that the Miller capacitance is a serious problem in a high-gain circuit is that seen as an
effective input capacitance Cog as shown in the right-hand diagram, the effective capacitance is

Cor = (1+G|)C, (4.80)

where G &~ —R./ Ry, is the ac voltage gain of the amplifier.
Show that this statement is true by considering the change in the charge @) on the capacitor due to a
change v;, in the input voltage.

Problem 4.11

Compute the ac voltage gain for the transistor amplifier shown below, which is a grounded-emitter
amplifier, but with a negative-feedback path via resistor Ry from the collector to the base. Assume
the input is biased as needed to make the transistor work normally.

+Veo

Vout

Hint: first solve the circuit without resistor Ry in the circuit, then adapt your solution to the case
where Ry is present.

Why is the feedback via Ry negative? (Explain briefly.)



Chapter 5

Field-Effect Transistors and
Semiconductor Switching Devices

Field-effect transistors are three-terminal devices, like bipolar junction transistors. Although they operate
somewhat differently from BJTs, they can also be used as amplifiers and switches. By considering how they
work in basic circuits, we’ll see some of the advantages and disadvantages of FETs relative to BJTs. In
this chapter we will discuss FETs as well as some related semiconductor devices that are useful as switches,
particularly in power-switching applications.

5.1 JFET (Depletion-Mode FET)

A junction FET (JFET) is basically a p-n junction with a special geometry and three terminals. JFETs
always work as depletion-mode devices, which refers to the depletion zone at the junction, which is
responsible for the switching action of the JFET. The basic scheme for an n-channel JFET is shown below
(the p-channel counterpart is basically the same, under the exchange of p- and n-type semiconductors).

drain

gate o—

depletion zone

source

As in the semiconductor diode, a depletion zone forms at the p-n junction. In normal operation, the voltage
at the gate terminal is kept below that of the drain and source, so the junction is reverse-biased. Only
a small leakage current flows via the gate terminal. However, in the configuration shown, there is a low-
impedance path between the drain and source terminals, through the n-type region (hence, the “n-channel”).
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However, when the gate is brought to a negative voltage with respect to drain and source, the depletion zone
expands as in the reverse-biased diode. At a sufficiently negative voltage, the depletion zone “pinches off”
the n-channel, preventing current flow from drain to source.

drain

source

For intermediate gate voltages, the gate voltage acts as a control that modulates the resistance of the drain-
source path. This acts something like modulating the flow of water in a garden hose by changing the clamping
force of a pair of pliers on the hose.

Note that the convention in the n-channel JFET is that current flows from drain to source (i.e.,
the n-type carriers are flowing from the source and out the drain). The current flows from source to drain
in the p-channel JFET. These two terminals appear to be interchangeable according to the above diagrams,
and for some devices they are so in practice. However, due to geometric differences, the drain and source
are not always equivalent. For example, the drain and source often have different capacitances, so reversing
them can affect the speed of a JFET amplifier.

The symbols for n-channel and p-channel JFETS is shown below. The difference between the two
transistors is only the direction of the gate arrow, which indicates the orientation of the p-n junction (like
the arrow in the diode symbol).

drain drain
gate gate
source source
n-channel p-channel

The asymmetric placement of the gate differentiates the drain and source.
To summarize the operation of the n-channel (depletion-mode) JFET:

o If Vs = 0, then current can flow through the n channel, typically from drain to source (i.e., Ing > 0).
o If Vo < 0, the junction is reverse-biased, and the expanding depletion zone restricts current flow.

e There is some threshold voltage V.: if Vg < Vi, then the n-channel is “pinched off,” and no current
flows (Ins = 0). Typically V; ranges from —2 to —15V. Don’t confuse the threshold voltage from the
thermal voltage from diode-law and Ebers—Moll fame.

e The forward-biased case Vg > 0 doesn’t normally happen. You may as well just use a diode.
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e The JFET is thus a transconductance device, where a voltage controls a current (like the BJT,
from the standpoint of the Ebers—Moll equation).

5.2 MOSFET (Enhancement-Mode FET)

A second major class of FETs is the metal-oxide-semiconductor FET (MOSFET), also called the
insulated-gate FET (IGFET). The names refer to the gate terminal, which is connected to a metal
conducting layer, and insulated by an oxide layer from the semiconductor regions of the MOSFET. Some
MOSFETs behave as depletion-mode devices, but these are relatively rare. Here we will focus on the much
more common case of enhancement-mode MOSFETs. The basic scheme for an n-channel MOSFET
is shown below (note that the body is a p-type semiconductor, unlike the n-channel JFET; the operating
principle is quite different).

drain

|
metal layer l body

gate =14 ™ induced n-channel
oxide insulator
N

source

The drain and source terminals connect to n-type regions, which are embedded in the p-type substrate or
body. In principle MOSFETs have a separate body connection, but these are not always explicitly available
(often the body and source terminals are combined into one terminal). The idea here is that if no voltage
is applied to the gate, no drain—source current can flow because it will be blocked by one reverse-biased
p-n junction. However, when a positive control voltage (with respect to drain and source) the gate’s E-field
pulls n-type carriers out of the p-type substrate (the p-type carriers are the majority carrier in the p-type
semiconductor, but n-type carriers are also present as the minority carrier). The n-type carriers bunched
against the gate insulator form an effective n-channel, or induced n-channel, that bridges the drain and
source. The diagram shows the induced n-channel as being somewhat asymmetric, as appropriate if V55 > 0.

The symbols for n-channel and p-channel enhancement-mode MOSFETS are shown below. Again,
there are extra body connections, but often these are internally shorted to the source.

drain drain
|<— body p— body
gate }T gate }T
source source
n-channel p-channel

Also, the three short, vertical lines that represent the three semiconductor regions are sometimes drawn
as a single line. Again, the asymmetry of the gate distinguishes drain from source, and the orientation of
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the arrow distinguishes n- and p-channel types, by indicating the orientation of the p-n body-drain and
body—source junctions.
To summarize the operation of the n-channel (enhancement-mode) MOSFET:

e If Vog =0, no current I,5 can flow, because of a reverse-biased junction as in the NPN transistor.
o If Vg > 0, the gate field induces an n-channel, and current I,5 can flow, typically with I,s > 0.

e Due to the oxide insulator, there is very little gate-current leakage. However, the insulator layer is
easily damaged by static discharges.

o The switching operation is similar to the n-channel JFET, but the threshold voltage V. > 0. That is,
conduction occurs when Vgg > Vi, so the gate voltage must be positive for the MOSFET. Remember
the gate voltage is generally negative in the JFET, with conduction turning off for sufficiently negative
voltages.

MOSFETSs are very common in digital circuits, in the form of complementary MOS (CMOS) circuits,
where n- and p-channel MOSFETs are paired together.

5.3 Quantitative FET Behavior

Having established that JFETs and MOSFETs have similar behavior except for the particular value (i.e.,
sign) of the threshold Vi, we can treat both cases together, so long as we track the control voltage Vs
relative to V. For small input signals (small ac signals on a dc bias), the transconductance nature of a FET
means we can write

(5.1)

o2 = Smidiess (FET transconductance relation)

where g, is the transconductance. This has dimensions of Q~!, which is often written U and called a mho
(or siemens, abbreviated “S,” if you want to be all ST about it). The transconductance depends, however,
on the bias levels Vs and V5. This relation is the analogue of I = Iy for BJTs.

The FET current formulas can describe the current-voltage characteristics, like the Ebers—Moll equa-
tion for BJTs, but in a piecewise way.

1. Linear region: when Vs < (Vos — Vi), we have

_ Vot (5.2)
Ios =2k | (Vas — Vr)Vos — 2 (FET in linear region)

where k is a conductance parameter, which is device-dependent and scales with temperature as T3/2,
(The threshold voltage Vi also depends on temperature.) Note that due to the quadratic term in Vg,
this relation is not really “linear.” However, this term is negligible if Vg < (Vgs — Vz), or if more linear
behavior is desirable, there are tricks to compensate for this term. In the really linear case where we
can ignore the nonlinear term, we have a resistance

R_ 1 (5.3)
C 2k(Ves — Vi)' (FET resistancein linear region)
This says that the FET in this regime is useful as a voltage-controlled resistor, for example to control
variable gain or attenuation in a circuit.

Saturation region: when Vog > (Vog — Vi), In this region, I is independent of Vg, in some sense
like the saturated BJT where the transistor no longer directly modulates the collector current. In this
region,

(5.4)

_ ERTRY
Tos = k(Vos = Va)". (FET in saturation region)
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Subthreshold region: when I,¢ is small, because the control voltage is around or below the threshold.

In this region,
(5.5)

Lps = keVes—Va
ps : (FET in subthreshold region)

5.4 Basic FET Circuits

5.4.1 JFET Current Source

A simple JFET circuit is the JFET current source, show below.

+Vob

load

ijload = Ipss

The idea is to operate the JFET in the saturation region, where Ir,5 is independent of Vg, allowing the JFET
to adjust the load voltage to regulate its current. Since the gate and source are shorted (and grounded),
Ves = 0. Then using Eq. (5.4), we find the constant current

(5.6)

— 2 _.
Ins = kVy" =: Ioss, (JFET regulated current)

where Igs is the maximum JFET current.

The advantage of this circuit, compared to the BJT current source, is its simplicity. The disadvantage is
more serious: Ipss varies significantly between devices. However, it is possible to get hand-picked FETs with
particular values of Ipss, called current-regulator diodes (something like Zener diodes, but for current
instead of voltage).

5.4.2 JFET Source Follower
The next circuit is the JFET analogue of the BJT emitter follower.

+Vob

——— 0 Uout

Ry
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Ignoring offsets, Ohm'’s law for the source resistance gives

vg = ipsRs, (5.7)
while the transconductance relation (5.1) gives
ips = gmVas = gm (Vg — Vs). (5.8)
The latter equation becomes _ .
Vg = Zgir: tug = ;i; +ips Rs. (5.9)

after solving for ve and using Eq. (5.7). Then the ac voltage gain is

Gi=Yout _ Vs foofls (5.10)
Vin ! ZDs/gm + ipsRs

after using Eqgs. (5.7) and (5.9). This simplifies to

_ gmBs (5.11)
14 gmRs’ (voltage gain, JFET source follower)

Note that G =~ 1 (hence, a follower) for large resistance Rs > 1/g,,. For a typical signal JFET like the
2N5485, gm ~ 5000 uU, so 1/gm, &~ 2002, so have a larger resistance than the internal FET resistance is not
difficult.

This circuit has high input impedance, because the input is essentially a reverse-biased diode. However,
the output impedance is basically 1/gm,, which could be somewhat large compared to the emitter follower.
Another disadvantage of this circuit is the unpredictable dc offset, since Vg for a certain current is not
well-controlled in the fabrication process.

5.4.3 JFET Voltage Amplifier
Next is a JFET voltage amplifier, the FET analogue of the common-emitter amplifier.

+Voo

Vout

Here, R; maintains the dc bias of V4 at ground, but allows ac modulation of the gate via the capacitor C.
If Vs = 0, the quiescent current is Ins = Ipgs, as in the JFET current source (thus assuming that Vop
is large enough to put the JFET into saturation). Then the output is biased at

Vout = Voo — IpsRp. (5.12)

This bias level may be adjusted by introducing a source resistor, thus lowering Vs and decreasing Ips.
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For small ac signals,

Vout = Up = —ipsRp. (5.13)
Then using the transconductance relation (5.1),
ips = gmVes = JmVin, (5.14)
we have
Uout = —Jm Rovin, (5.15)
which implies a voltage gain
G = —gu Ry, (5.16)

(voltage gain, JFET voltage amplifier)

So for example, if R, = 1kQ and for the 2N5485, 1/g,, = 200€, then G = —5, which is not a huge gain.
By contrast, in the common-emitter amplifier, using the intrinsic emitter resistance r. = 25 at I = 1 mA,
the gain is about 8x larger (because 1 is eight times smaller than 1/gy,). So the advantage of the JFET is
high input impedance (good for input stages of amplifiers, especially op-amps), the advantage of the BJT is
better speed (due to lower capacitance) and amplification.

5.4.4 MOSFET Analog Switch

One nice example of a MOSFET application is as an analog switch, which passes or blocks an analog signal
based on a control voltage.

+15V on (Voutr = Vi)
‘/Con To.
frol OVIOH (Vout = 0)

U £ S
%SOI{Q

Here, the base terminal is tied to ground; the MOSFET acts as a short if Vionror is well above any input,
but acts as an open circuit if the gate drops to zero. The output resistor ensures a zero (not floating) output
when the MOSFET is off, and it suppresses any tendency of the signal to cross the transistor in the off state
due to drain—source capacitance. This circuit can be adapted to positive/negative signals by dropping the
base and the “oftf” voltage to —15V.

MOSFETSs with a separate base connection (like the obsolete 2N4351) are actually the exception, rather
than the rule. More common are MOSFETs with the base and source shorted together. The net effect of
this connection is similar to connecting a diode from source to drain. The circuit still works with this kind
of MOSFET (e.g., 2N7000), if the orientation is correct.

+15V on (‘/out = Vin)
‘/COII 10
rol ovIoﬁwvout:O)

0 < ‘/in < +].0V ‘/out

50k
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However, for a positive/negative signal, two 2N7000’s, back-to-back, are needed for the switch to function
properly.

5.5 Thyristors

Now we will move on to a few semiconductor components that are somewhat more complicated than the
basic transistors (BJT and FET). Thyristors refer to a family of devices based on a three semiconductor
junctions, though the name “thyristor” can also be used synonymously with the basic SCR component that
we will treat first. These are devices that utilize p-n junctions to produce hysteresis, which is useful in
switching circuits.

5.5.1 SCRs

The basic form of a thyristor is the semiconductor-controlled rectifier, or SCR. An SCR is constructed
from alternating four regions. The result is something like a diode, but with two p-n junctions and one n-p
junction, all in series.

P N P N

anode o—— o cathode

gate

The basic operation will be something like a diode, but there is one additional “gate” connection to the
internal p-type region. This is reflected in the schematic symbol, shown below.

anode cathode

gate

Thinking of the p-n junctions as diode-type junctions is only useful in understanding the “OFF” state; in
either direction there is a reverse-biased diode, so no current can flow. However, to understand the switching
behavior of the SCR, it helps to think of the p-n-p stack to the left as a PNP transistor, and the n-p-n stack
to the right as an NPN transistor. Since the inner two regions are common to each transistor, the transistors
are interconnected as shown in the equivalent circuit below.

anode

gate

cathode

Again, if no current is initially flowing in the circuit, then both transistors are OFF, and no current can
flow from anode to cathode, because the current would have to pass via the collector of one or the other
transistor.
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However, if a (sufficiently large) anode—cathode current is already flowing in the circuit, then the
collector current of the NPN transistor ensures the PNP transistor is ON (since the current comes via the
emitter—base junction), and the collector current of the PNP transistor flows through the base—emitter
junction of the NPN transistor, ensuring that it is ON.

As an aside, note that although this transistor model is a useful way to understand how an SCR works,
an SCR can’t necessarily be replaced by two transistors. For example, the collector leakage current of one
of the transistors could supply sufficient base current to turn the other ON, in which case this SCR OFF state
wouldn’t work as described above.

So now we see that there are two possible states, where current is flowing or not, and the states are
self-sustaining (the current-flowing state of course requiring a sufficient forward voltage). Then the question
is, how can we transition between the states? In particular, if no current is flowing, how can we get the
current started? There are two useful answers to this in practice:

1. Inject some gate current (flowing from gate to cathode). This turns on the NPN transistor, which
turns on the PNP transistor, and the SCR transitions to the conducting state.

2. Bring the forward voltage sufficiently high that the reverse-biased junction breaks down. Just before
the breakdown, the forward voltage can be quite high (hundreds of volts), but after breakdown, the
forward voltage will become much smaller, on the order of a volt. Note that a gate current will reduce
the breakdown voltage, and a gate current above a switching threshold brings the breakdown voltage
to essentially zero.

To make a transition in the other direction, or that is, to stop the conduction, the only way is to bring the
forward current to zero (or equivalently, drop the forward voltage to zero). This “resets” the SCR into the
non-conducting state, assuming there is no gate current is off.

As an example, the small-signal S401E SCR has 1-A maximum (rms) current, 400-V off voltage (in
either direction), a gate trigger current guaranteed to be in the range of 1-10mA, a 1.6-V maximum forward-
conduction voltage, and a maximum gate forward voltage of 1.5V.

SCRs are useful in switching circuits where some “memory” (latching behavior) is required, and they
are also useful in switching large currents and voltages. The key to the utility in switching high-power loads
is that the forward voltage drop is small in the conducting state, so large currents do not necessarily result
in large power dissipation. It is also possible to break down the SCR in the reverse direction (just like a
diode) with a sufficiently high voltage, but then the voltage gets clamped to the (high) breakdown voltage,
as in a zener diode. In that case, a large current could result in a large power dissipation, because both V'
and [ are large.

The name “thyristor” derives from the tube analogue of the SCR, the thyratron, which is a gas-
filled tube where a control voltage can initiate an ionization breakdown of the gas, putting the tube into a
conducting state (like the neon lamp, discussed below with DIACs). The thyristor name is then a combination
of thyratron + transistor.

5.5.1.1 Example: Latching Switch with Power-Supply Fault Protection

One example of a useful switching circuit is shown below. The idea here is that sometimes one has to switch a
delicate and/or expensive load, and the driving circuitry must include some protection against certain faults,
such as a failed power supply. (Power supplies can fail due to faulty capacitors, and capacitors elsewhere in
the circuit, such as the bypass capacitors discussed in Section 7.6.2.2, can fail to a short and effectively cause
a power-supply failure.) The circuit below is intended to switch a delicate load via a relay (magnet-controlled
switch). The diagram shows the relay, but not the load, and the relay is normally open (N.O.) when there
is no magnet current.
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S401E

SO

enable Lofo oo
(momentary) o |

I

= disable

\1—15\/

A momentary switch allows the user to toggle the relay on or off. In the “enable” position, the switch
activates the SCR, but only if the 415V power supplies are working, so that there is a path to —15V via
the transistor pair. Once the SCR is activated, current flows through the relay coil, connecting the load.
The “disable” switch position forces the PNP emitter to ground, which turns off the PNP and thus the NPN
transistor opening the relay and resetting the SCR. (The disable operation also emulates the failure of the
+15-V power supply.)

5.5.2 DIACs and TRIACs

There are two related devices in the thyristor family: DIACs and TRIACs. Since SCRs are diode-like
in their asymmetric operation, it is useful to have analogous devices to work in ac circuits. The TRIAC is
basically an SCR that can conduct (with low forward voltage) in either direction. The TRIAC symbol is
shown below.

O Hl O

gate

This component is basically equivalent to two SCRs, oppositely oriented and wired in parallel, with a common
gate, as shown below.

|

gate

The idea is similar with a DIAC, but this component has no gate; the intent is for this device to conduct by
bringing the voltage above threshold (in either direction), to break down the device into conduction.

O N O
|
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While it’s useful to think of both devices as a combination of two SCRs, they are fabricated in a simpler way
as a single stack of junctions. For example, the DIAC, because it doesn’t need a gate connection, can be
fabricated as a p-n-p stack. The symmetry of the stack allows for symmetric-breakdown operation. DIACs
are typically fabricated with breakdown voltages in the range of 32—40V. Gas-discharge lamps can also work
in a similar way to DIACs. For example, the small NE-2 neon lamp has a breakdown voltage of 90V (i.e.,
it does not conduct until the voltage exceeds 90V in either direction), and the discharge-state (i.e., lit)
voltage drops to around 60V when the lamp conducts. The nominal conduction current is about 0.5 mA,
so if used as a lamp across 120V ac, a dropping resistor of around 100k is necessary to limit the lamp
current. However, for switching applications, a neon lamp can function in place of a DIAC, for example in
the dimmer circuit to follow.

5.5.2.1 Light Dimmer

One of the most important applications of thyristor devices is in dimmers for ac lighting circuits. There are
a number of designs, but a common DIAC-TRIAC design is shown below.

bright
Ry |
dim v
O
load C ——

As each “pulse” (of either sign) from the ac source begins, the TRIAC is initially off, and the voltage begins
to charge the capacitor via Ry + Ry. Once the capacitor charges to the breakdown voltage of the DIAC
(around 30V), it conducts, and discharges the capacitor via Ry through the TRIAC gate, causing it to
conduct. The TRIAC continues to conduct until the end of the pulse, supplying current to the load during
the last part of the cycle, and the capacitor also discharges and resets before the next voltage pulse. The
net result is that the load is only on for part of each cycle; the voltage presented to the load is illustrated

below.
v

The brightness can be adjusted by changing R;: a larger R; leads to a longer charging time, which leads to
a longer delay until the load turns on each cycle. A resulting dimmer signal is illustrated in the plot below.
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The R, resistor protects against excessive capacitor charging or discharging currents.

One disadvantage of this circuit is the sudden turn-on edge in each cycle (in the voltage as well as the
current), which is largest at 50% brightness. This can be a source of electromagnetic interference, and it
can also cause buzzing in the load (for example, causing mechanical motion of the filaments in incandescent
bulbs). Good dimmer designs include inductors in series with the load to suppress the interference and
smooth the hard edges.

This circuit must also be designed with a particular load in mind (or range of loads), because the load
must draw sufficient current to keep the TRIAC on until it resets at the end of the cycle. Thus, for example,
older thyristor dimmers designed for incandescent loads can perform poorly when the lights are replaced by
lower-current LED equivalents, which draw much less current. The resulting problems typically come in the
form of flicker in the new lighting. The other problem that can crop up in this situation is that during the
charging cycle, a small current flows through the load from the voltage source. Generally Ry limits this to
something small enough that an incandescent light is effectively off. But with higher-efficiency LED lights
in an older dimming fixture, the LEDs can stay dimly lit, even in the dimmest setting (or even the “OFF”
state of the fixture).

5.6 IGBTs: Switching Very Large Voltages and Currents

The insulated-gate bipolar transistor (IGBT) is a device fabricated as shown below. It is something
like the n-channel (enhancement-mode) MOSFET (see the diagram on p. 103), but with an extra p-type
region, and different names for the conduction terminals.

collector

|

metal layer !

gate =14 ™ induced n-channel
oxide insulator
N P

emitter

The schematic symbol is shown below: it is basically the symbol for a BJT, but with a gate separation to
emphasize the insulated gate. Note that while MOSFETs and BJTs come in n- and p-flavors, the IGBT
comes in only the polarity shown (or, that is, the opposite polarity is so rare as to be effectively nonexistent).

collector

¥

emitter

Ignoring the upper p-type region, this is just a MOSFET with source and base shorted together. The extra
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p-type region then forms something like an PNP BJT with the upper n-type and lower p-type regions. The
MOSFET drain and BJT base are connected (because they are formed by the same n-type region), and the
MOSFET body/source and BJT emitter are connected. Thus, an equivalent circuit is the transistor pair as
connected below.

collector
o]

o
emitter

This circuit functions more or less as a BJT, except the C—E conduction is controlled by a voltage (Viy),
rather than a base—emitter current. When Vg, is sufficiently positive, the MOSFET turns ON, which switches
on the PNP transistor and allows current to flow from collector to emitter. Note that in principle this current
may flow via either the PNP collector (which is not the IGBT collector!) or via the MOSFET drain—source
path, but the device is fabricated such that most current flows through the collector. For large currents,
this arrangement can be efficient compared to a power BJT, which may require substantial base current to
control the transistor (around 10% of the collector current for good saturation, since power BJTs are on the
low end of the § spectrum).

For high-power switching applications, power MOSFETs are also available. However, for switching
loads with hundreds of amps and hundreds of volts, IGBTs tend to be the best choice in terms of power
dissipation. Recall that if the gate voltage is sufficiently large, the MOSFET behaves like a variable resistor.
For example, the Infineon TRF1405 power MOSFET is specified to have a typical ON resistance of 4.6 mf2,
a maximum continuous drain current of 169 A (at 25°C), and a drain—source breakdown voltage of at least
55 V.! In this case, when the MOSFET switches the power to a load, the power dissipated by the MOSFET
is P = I?Rps while the transistor is ON. Since the conduction path for an IGBT behaves like a BJT,
the collector—emitter voltage is relatively small when the transistor is saturated, and the IGBT 0N power
dissipated is P = I'V.g. A comparably sized example of an IGBT (in the sense of being available in a package
of similar size) is the Fairchild FGA60N65SMD,? which is rated to switch 120 A (at 25°C) at 650V, with
Veg = 1.9V typical.

Since the MOSFET power scales quadratically with current while the IGBT scales only linearly, the
IGBT can have a big advantage for high-power loads. For the two example devices above, we can estimate
a power dissipation of 228 W for the IGBT vs. 66 W for the MOSFET at 120 A. For these “small” currents,
the MOSFET is the clear winner (though the IGBT can of course switch much higher voltages). However,
the crossover to where the IGBT has the advantage occurs at I2Rps = IVey, or I = Vep/Rps, which comes
out to about 400 A, if we extrapolate assuming the same device parameters carry over to larger devices.
This is a typical figure, above which IGBTs are preferred, especially to stand off large voltages. Of course,
if MOSFETs are preferable for some reason, they can be used in a parallel transistor bank to reduce the
effective resistance. However, in MOSFETs capable of standing off larger voltages, the conduction path must
be longer, typically leading to larger ON Rys, and thus worse power dissipation at a particular current.

Such large IGBTs certainly exist, in “mini-brick” and “brick” packages, with screw terminals. For ex-
ample, the somewhat larger IXYNSON90OC3H1 IGBT by IXYS? comes in a SOT-227B “miniBLOC” package,
with 4 screw terminals . (Two terminals are emitter terminals, so one can function as a “Kelvin emitter.”

Thttp://www.infineon.com/dgdl/irf1405pbf . pdf?fileId=5546d462533600a4015355db084a18bb
2https://www.fairchildsemi.com /datasheets/FG/FGAB60N65SMD.pdf
3http://ixapps.ixys.com/DataSheet/DS100522A (IXYNSON9IOC3H1).pdf


http://www.infineon.com/dgdl/irf1405pbf.pdf?fileId=5546d462533600a4015355db084a18bb
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The second terminal can connect to a voltage-sensing circuit, such as a gate driver, to accurately sample
the emitter voltage without a spurious drop across a high-current contact resistance at the other emitter
connection to the current load.) This is designed to switch a pulsed current of 340 A (or 115 A continuous)
at 900V, with Ve = 2.3V. The more expensive (~ $200) CM600HA-24A by Powerex* is rated for 600 A
(de, 1200 A pulsed) at 1200V, with Vg, = 3V.

IGBTs have a reputation for being somewhat slower than MOSFETs for switching, because the main
conduction path is governed by the carriers injected into the “base” n-type region. However, the carriers
enter and leave this region only indirectly, via the neighboring p-type regions. This is in contrast to a
standard BJT, where carriers can enter or leave directly via the base connection. Especially when switching
off, excess carriers can be “stuck” in the base region, only escaping by causing collector—emitter current to
flow.®> On the other hand, in the FET-IGBT comparison above, the FGA60N65SMD IGBT happens to have
a rise/fall time of around 50 ns, while the IRF1405 MOSFET has a rise/fall time of 190/110ns, respectively.

5.6.1 Driver Circuitry

In both power MOSFET and IGBT switching circuits, the transistor is only thermally well-behaved if the
device is fully OFF (zero current, large voltage) or fully ON (large current, small resistance/voltage). In
between, the transistor may drop a substantial voltage while conducting a large current, which can be a
disaster if it carries on for long. For this reason, it is a huge advantage to switch between the ON and
OFF states as quickly as possible. However, the gate acts as a capacitive load to the input (5.5nF for the
IRF1405, 2.9 nF for the FGA60N65SMD, 4.6 nF for the IXYN8ON90C3H1), and to change the gate voltage
rapidly requires a large, transient current. Thus, such high-power devices typically require special gate-
driver circuitry, typically consisting of a pair of smaller FETs or BJTs acting as a fast push-pull buffer.
These parts are conveniently packaged in some integrated gate-driver IC’s; one example with a relatively
large current capability is the UCC37321/UCC37322 by TI,° which can drive a 9-A peak current, with the
output switching between ground and a maximum power supply voltage of +15V (the UCC37321 inverts the
input signal in the sense of a logic inversion, as in Section 9.3.1, while the UCC37322 performs no inversion).
An driver example driving up to 340 A (pulsed) current through a load at high voltage via a power IGBT is
shown below.

+340V

load
+15V

5V J O vecsraee
ov OFF

IXYN8ON90C3H1
50
Vin 1.5 KE400A

1N5819

Viore = P6KE20CA

The driver takes a TTL-compatible input (see Section 11.4), but the ON level can also be up to +15V. The
driver also has an ENABLE input, which forces the output LOW, close to 0V (this is also true on the inverting
UCC37321), independent of the input voltage.

A number of other components ensure proper operation and protection of the switching transistor.
First, the 5-( gate resistor limits the gate current to 15V/5€ = 3 A in the worst case of a short to ground,

4nttp://www.pwrx.com/pwrx/docs/cm600ha_24a. pdf

SInternational Rectifier, Application Note AN-983: IGBT Characteristics, available online at http://www.infineon.com/
dgdl/an-983.pdf7fileId=5546d462533600a40153559£8d921224

Shttp://www.ti.com/lit/ds/symlink/ucc27322.pdf


http://www.pwrx.com/pwrx/docs/cm600ha_24a.pdf
http://www.infineon.com/dgdl/an-983.pdf?fileId=5546d462533600a40153559f8d921224
http://www.infineon.com/dgdl/an-983.pdf?fileId=5546d462533600a40153559f8d921224
http://www.ti.com/lit/ds/symlink/ucc27322.pdf
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ignoring the effects of capacitance, etc. The data sheet implies a minimum value of 22 for this resistance,
and gives specifications for up to 15€). This resistance limits the current into the gate capacitance, easing
demands on the driver and helping to control against voltage overshoot. The 1N5819 Schottky diodes on
the driver output clamp the output voltage to the power-supply range, preventing output overshoot; the
Schottky diodes are fast and have a (relatively) small forward voltage. There is also a transient-voltage
suppressor (TVS) on the IGBT gate, which is basically two back-to-back Zener diodes. The P6KE20CA
TVS break down if the voltage exceeds 20 V in either direction (and is rated for 600 W), protecting agains gate
overvoltages (which can come from capacitive coupling via the IGBT as well as from the driver). Finally,
as with many IGBTs, the IXYN8S8ON9OC3H1 incorporates an internal reverse C—E diode, so that it only
stands off voltage in one direction—the device is not designed to stand off high reverse voltages, so the diode
offers protection in the event of (intentional or unintentional) reverse transient voltages. However, it is good
practice to include another (unidirectional) TVS to protect against reverse and overvoltage transients. The
1.5KE400A TVS acts as a fast Zener diode that breaks down at 400 V and can handle 1.5 kW.

5.6.2 Inverter Circuits

One important application of power MOSFET and IGBT switching circuits is the inverter, which is used
to convert dc to ac signals. An example of a half-bridge inverter is shown below, where a push—pull pair
of MOSFETs switches one side of a load between +V', giving a square-wave ac signal of amplitude V.

+V (dc)

.

V;:ontrol o *

ST

load

-V (dc)

Circuits of this type are particularly common in battery-powered applications. For example, an uninterrupt-
ible power supply (UPS) creates an ac waveform from dc battery power, after a de—dc converter boosts the
voltage to 120V (for U.S. supplies). Cheaper UPSs make a crude approximation of a sine wave by switching
to +120V for a quarter-cycle and —120V for a quarter-cycle, and to OFF for the other quarter cycles in
between; this gives both the correct peak and rms voltages, compared to the sine wave. More sophisticated
UPSs use rapid switching, pulse-width modulation, and filtering to create a clean sine wave. Other important
applications of inverter circuits is in creating ac power from solar cells, motor-driving circuits in battery-
powered electric cars, induction “burners” in kitchen stoves, and arc welders. Switching power supplies also
use inverters to convert rectified mains voltage into a high-frequency (tens of kHz) signal that can be changed
to other dc voltages by a transformer and another rectifier and filter circuit; because of the high frequency,
the transformer can be compact and inexpensive compared to traditional 60-Hz transformers. Compared to
linear power supplies, they are noisier but cheaper and more compact, and are preferred, for example, in
computer power supplies requiring high current.

A circuit that makes better use of the available voltage, at the expense of more parts and a possibly
ungrounded load is the full bridge or H-bridge (after the shape made by the switching transistors and the
load), as shown below.
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+V (de)
|
=
Veontrol ——9 ¢———o V — Veontrol
+V load +V
0 J U U J ’}% F: L U U t 0
T

This circuit is basically two MOSFET half-bridges switched out of phase. As in the half-bridge, the control
voltage swings between the power-supply rails; the pairing of complementary n-channel and p-channel devices
makes the control relatively simple. In each state of Veontrol, @ diagonally opposed pair of transistors conducts,
while the other pair is open. The result is that the voltage across the load alternates between +V, but the
—V power supply is no longer necessary, as in the half-bridge example above.

For high voltages and high currents, again, IGBTs are preferable. However, IGBTs are generally not
available in complementary pairs, which makes the gate control considerably more complicated. An example
H-bridge is shown below.

+340V

UL A - U,
Wi Va

Vi Va

" A - UL,

T

The voltages shown are appropriate for the IXYNSON9OC3H1 IGBT, for example. Note that the IGBT
gate voltage is always measured with respect to the collector. The lower two IGBT’s can thus be switched
normally, except the control voltage need not swing all the way to the upper supply rail. The tricky
part, however, is that the upper two IGBTs require similar control voltages, but referenced to their emitter
voltages, which change according to the phase of the inverter. Thus, the control circuitry for these two
IGBTs must float along with the appropriate load voltage. One solution to this is to use special driver ICs
with optocouplers that isolate the input and allow the output voltage to float with respect to the input.
Another solution is to couple the gates via gate-drive transformers, as illustrated below.
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+340V

I

0

0

load

" UL - I

In this case, two gate driver ICs drive the ends of the primary coil of a transformer with out-of phase signals,
making the primary voltage oscillate between £20V. The same drivers can drive the primaries of both
transformers, but then the primaries should be connected in antiparallel. The two antiparallel secondaries
(with a 1:1 primary:secondary ratio here) drive the gates, and there is no problem floating the gate voltages.
Note that this only works for relatively rapid switching and a symmetric drive waveform, as the transformers

cannot support a dc signal.

5.6.2.1 Inverter-Based Tesla Coil

Returning to the Tesla-coil example of Section 2.7.1, suppose that we redraw it from the version we studied
before as shown below.

. |
I I
120V % I spark gap

Again, the LC tank circuit resonates at the same frequency as the secondary, and it acts as a harmonic
oscillator. The tank circuit is ultimately powered by the 60-Hz transformer output, but because the resonant
frequency is much higher (~100kHz), we need a way to “whack” the tank circuit to get it oscillating. This
is a useful way to look at one function of the spark gap: it holds off the power-supply voltage until it builds
up, and then it suddenly lets it into the LC circuit, exciting it with a step voltage.

A more recent variation on the classic Tesla coil involves replacing the spark gap with an inverter

secondary

primary

v

circuit.”

"See, for example, http://www.stevehv.4hv.org.


http://www.stevehv.4hv.org
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+170V

primary
secondary

v

|

—-170V

In this example, a dc power supply of £170V (derived by rectifying and filtering 120-V mains voltage) is
switched by a full-wave bridge to give the same, step-function excitation to the tank circuit. This design
can be more consistent in its performance, because it does not rely on a discharge to excite the resonator.
However, the overall circuitry is generally much more complicated, involving the driver and protection
circuitry discussed above, as well as yet more control circuitry. For example, to not overload the IGBTs,
the bridge should only switch when the current in the tank circuit crosses through zero; otherwise, the
sudden change in current would lead to a large inductive-kick voltage, which can strain the IGBTs. So a
current detector is needed to feed back to the inverter inputs so that switching occurs at the correct time.
Inverter-type coils are also typically modulated, being active only a small fraction of the time, so that the
high currents involved to not thermally overload the IGBTs. This requires more control circuity which must

also turn off the inverter bridge only at the proper times.
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5.7 Circuit Practice

5.7.1 Touch Switch

Starting in the 1980’s, table lamps with a “touch base” became popular. The idea is, when you touch a
metallic base, the lamp toggles between on and off (or between off, on, and two dim states). The key to the
operation of this circuit is that the human body acts as an efficient antenna for 60-Hz radiation, which can
be coupled into a metallic plate (or even a “dangling” wire) and into a circuit. The circuit below shows how
the coupled radiation can be rectified and used as a switch.

+5V

BV touch = on

no touch = off

50k

2N4401
IN5711 2N5485
touch

lat
plate 100 k2 | 01 pF

e How does this circuit work?
¢ What is the function of the 10-MS2 resistor?

o Note that Schottky diodes have a small forward voltage (about 0.2V), to make the circuit more
sensitive.

e How would you have to modify the circuit to use a MOSFET in place of the JFET, and can you think
of an advantage of this circuit over that one?

e To add in some digital electronics, what can you add to the circuit to toggle the LED between ON and
OFF on each touch?

e How should this circuit be modified to control a 120-V incandescent lamp?

Solution. When nobody is touching the plate, there is essentially no signal at the input; then the FET is
ON (the default state), which means the npn base is at low voltage. Thus, the npn transistor is OFF, so the
connection to the LED is pulled to +5V, so the LED is off. (Strictly, the 1-k) resistor at the collector is
not necessary, but it allows the circuit to work if the LED is replaced by something else, such as a relay,
discussed below.

When touching the plate, 60-Hz radiation is coupled in, and rectified by the diode network (Schottky
diodes with small forward voltages) to pass only the negative parts of the signal. The first diode (to ground)
discards the positive half of the signal, which shouldn’t make it through the second diode anyway; so it seems
like this first diode might not really be necessary. However, this first diode gives a path to ground for the
positive part of the input signal (so the diode network is basically a charge pump, transferring charge from
the capacitor to ground via the diodes). This process charges the capacitor to negative voltage; when this
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crosses the threshold (—4V max for this JFET), the JFET turns OFF, which turns ON the npn transistor,
and lights the LED.

When the touching stops, the 10-MS2 resistor slowly (1-s 1/e time) discharges the capacitor to turn the
JFET back ON. Empirically, the LED turns off in a fraction of a second with a brief touch of the antenna,
but can take about 2 seconds to turn off with a long tough of the antenna.

To use a MOSFET, the direction of the diode would have to be reversed, because we’d want to keep
the positive parts of the signal to change the MOSFET state. This would also reverse the sense of the LED
being on/off, so the LED could be placed between the collector and ground to restore previous operation.
Note that MOSFETS are more sensitive to destruction by static discharge and overvoltage. While the 100-k2
input resistor should help in this regard, it would be safer to use a clamping diode at the gate to make sure
the MOSFET is protected. Overall, the JFET makes for a simpler design here.

To get the LED to toggle, a divide-by-2 counter (flip-flop) would help here.

To drive a heavy load like a light bulb, the output of this circuit should drive a relay (or even a small
relay that drives a large relay, which in turn drives the light bulp). It could also drive a solid-state version
of a relay, like a power-MOSFET switch.
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5.8 Exercises

Problem 5.1

Consider an n-channel (enhancement-mode) MOSFET. The standard connections are shown on the
left in the diagram below. Recall that if the G-S voltage is zero, the MOSFET is in the “pinched-oft”
state, so no D-S current flows in either direction.

drain

a a
WJW ' J%

source

Many MOSFETs have the body connected internally to the source (often to fit the MOSFET into
a cheaper, 3-pin package), as shown to the right in the diagram. In this case, when Vgg = 0, the
MOSFET will block current in one direction only, while conducting freely in the other direction.
Which direction is which? Explain why in terms of the underlying n-type and p-type semiconductor
regions.

Problem 5.2

In each circuit, does current flow due to the applied EMF? (Ignore leakage currents, e.g., in a reverse-
biased diode, and assume the applied EMF is a few volts.) Briefly explain your answer.

(a) (b) (c) ,f

Problem 5.3

In each circuit, does current flow due to the applied EMF? (Ignore leakage currents, e.g., in a reverse-
biased diode, and assume the applied EMF is a few volts.) Briefly explain your answer.

(a) (b) ? () I (d)

Problem 5.4

In each circuit, does current flow due to the applied EMF? Assume the applied EMF is enough to
cause a forward-biased p—n junction to conduct, but not enough to break down a reverse-biased p—n
junction. Also ignore any leakage currents, and assume the device was OFF when the battery was
connected. Briefly explain your answer, and indicate the paths along which current flows.

(a) (b) ’ () (d)







Chapter 6

Vacuum Tubes

Nowadays we take it for granted that there can be billions of transistors in a modern computer. But
before transistors there were vacuum tubes, which are much larger, hotter, higher-voltage, and more power-
consuming than their silicon successors. Despite the low cost and ubiquity of transistors, vacuum tubes
still have a few important applications, from audio amplifiers to circuits with very high power (e.g., for
radio-frequency and microwave applications).

This chapter is located just after FETs because they fit in logically here. However, vacuum tubes remain
something of a niche subject. They’re worth studying for fun and more circuit practice, but ultimately the
op-amps in the next chapter are much more useful: make sure to learn about them first and come back to
tubes later if you're still interested.

6.1 Vacuum Diodes

The simplest vacuum tube is the vacuum diode, so named because of the two fundamental elements, the
anode and the cathode. The main function of the cathode is to act as a source of emitted electrons. There
are two basic types. The simpler filamentary cathode or directly heated cathode is simply a filament
of wire, heated to high temperature (typically dull glowing red, typically 700°C). The wire is coated so that
electrons “boil” easily from the surface at operating temperature. The anode, often called the plate is a
conductor that attracts or repels the electrons for a positive or negative voltage, respectively, relative to the
cathode. Current only flows through the tube in the positive-voltage case where the electrons are drawn to
the anode. The symbol for the diode with directly heated cathode is shown below.

anode/plate

filament/cathode

The other type of cathode is the heated cathode indirectly heated cathode. In this case the cathode is
physically and electrically separate from the heating filament, but the cathode still becomes hot and acts as
an electron source. In this arrangement the cathode acts as a shield for any ac fields produced by the filament,
which is typically heated with a low-voltage ac current. This is an advantage in amplifier vacuum tubes to
avoid a filament-induced “hum” in the output, and the vast majority of more sophisticated tubes below have
indirectly heated cathodes. However, vacuum diodes in power-supply circuits don’t benefit greatly in this
respect, so filamentary cathodes are common. The symbol for a diode with an indirectly heated cathode is
shown below.
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anode/plate

cathode filament

6.1.1 Child-Langmuir Law

For either cathode type, as the cathode temperature increases, the density of emitted electrons increases,
leading to an increased current in forward conduction mode. However this increase does not continue
indefinitely: the electrons themselves will modify the electric field between the cathode and anode, and the

net effect is that the current is limited to
3/2
[ deod [J2e VT (6.1)
9 me d?

This expression, called the Child-Langmuir Law,! assumes parallel, identical plates for the anode and
cathode, where A is the anode (cathode) area, e is the electron-charge magnitude, m, is the electron mass,
V is the diode forward voltage, and d is the anode-cathode distance. This scaling of I o< V3/2 holds in other
geometries, but the proportionality factor is geometry-dependent.? This law can act as a rough guide to the
voltage—current characteristics of a vacuum tube, although it is not accurate enough for quantitative design
purposes. However, it is clear from this law that the turn-on of a vacuum tube with voltage is much less
“sudden” than the semiconductor diode, which turns on exponentially with forward voltage.

6.1.2 Vacuum Full-Wave Rectifier

In semiconductor full-wave rectifier circuits, it is typical to use a full-wave bridge consisting of four diodes
(see Section 3.6.2). However, vacuum diodes are more complicated and expensive, so such an arrangement
is rare. However, to economize on the number of vacuum tubes, a common variation on the vacuum diode
is the vacuum full-wave rectifier. This is the same as a vacuum diode, but with two anodes, forming a
bridge of two diodes. The schematic symbol is shown below.

anode/plate 1 anode/plate 2

filament/cathode

A common, low-power rectifier tube is the 5Y3, a directly heated full-wave rectifier. The part number in
this case has a typical numbering that is happily informative: the “5” says the filament operates at 5V, and
the trailing “3” says that there are three elements (two anodes and one cathode). The “Y” is a symbol to
differentiate the tube. The part is often listed as, for example, 5Y3GT, where the “GT” indicates a “glass
tube” envelope. The 5Y3 operates with 2 A of filament current, can stand off 1400V of reverse voltage, and
can handle 400 mA max forward current (in steady state, rising to 2.5 A max transient current). In typical

1C. D. Child, “Discharge From Hot CaO,” Physical Review (Series I), 32, 492 (1911) (doi: 10.1103/PhysRevSeriesl.32.492);
Irving Langmuir, “The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum,” Physical Review
2, 450 (1913) (doi: 10.1103/PhysRev.2.450).

2For example, for long. coaxial cylinders, the relation becomes I = (8megL/9)+/2e/meV3/2 /732, where L is the cylinder
length, V is the potential at the radius r, and § is a dimensionless factor of order unity. See Irving Langmuir and Katharine B.
Blodgett, “Currents Limited by Space Charge between Coaxial Cylinders,” Physical Review 22, 347 (1923) (doi: 10.1103/Phys-
Rev.22.347).
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operation, it would operate at a 360-V (dc) plate voltage, and 125 mA of output current, with a forward
voltage drop of 50V (well above the ~0.7V for a semiconductor diode!). To characterize the reverse leakage,
the tube is specified with a reverse resistance of around 10 M.

A typical full-wave rectifier circuit using a 6087 rectifier tube (essentially the same as the 5Y3, but

with indirect heat) appears below.
g v

-0 8.

— © out>0

6087

A transformer steps up the mains voltage to several hundred volts (a typical value is 320V rms, which
translates to 453V peak, not accounting for voltage dropped by the internal resistance of the secondary
winding). Again, the tube drops about 50V, and accounting for the secondary output impedance, the
output voltage drops to around 320V (dc peak). Note that the transformer output is center-tapped, as
needed to make a full-wave rectifier with only two diodes. A four-diode full-wave rectifier would only need
half the secondary winding, but the extra complexity of the transformer is an acceptable tradeoff to reduce
the tube count. The vacuum rectifier again acts as a diode pair, as illustrated below.

> © 1/out

[
The heater in the tube is driven by a separate, low-voltage winding on the same transformer.

6.2 Vacuum Triodes

The next tube in the hierarchy, the simplest tube intended for use as an amplifier, is the vacuum triode.
The name of course indicates that there is now a third element, the grid or control grid. The grid is
something like a fine-mesh electrode between the anode and cathode, but is often made from a fine wire
wrapped around supporting posts. The schematic symbol for a triode appears below.

anode/plate
grid

cathode

The idea is that the grid can modulate the plate current by attracting or repelling electrons, in the same
way as the anode voltage controls current. The grid area is small (i.e., the wire mesh is mostly open), so it is
intended only to modulate the plate current, not to conduct any of the electrons itself. In typical operation,
the plate—cathode voltage Vi > 0 is fixed, while the grid—cathode voltage Vi < 0 and is relatively small
in magnitude. Thus the grid tends to oppose the action of the anode, and a more negative V. reduces the
plate current. In this sense, the triode grid is analogous to the gate of an n-channel (depletion-mode) JFET,
where an increasingly negative voltage pinches off the drain—source current (see Section 5.1). However, the
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scale of the voltages is different, and, unlike for the JFET, the “pinch-off” voltage for the triode grid depends
on the plate voltage.

In the case of a diode, the Child—Langmuir Law stated that the plate—cathode current and voltage are
related by Ipe Vl;s({ 2, where the proportionality constant is geometry-dependent. We can adapt this law to
the triode by writing

Ine < (Ve + Voo)*? (Vo 4 Ve > 0), (6.2)

where p is the triode magnification factor, and represents the ratio of the two proportionality constants for
the two geometries (grid—cathode to plate—cathode). The magnification factor typically falls in the range of
10 to 100 or more. In this simple model, the current is zero if the tube is “reverse-biased” (uVac + Voe < 0).
Again, the above triode law only acts as a rough guide to triode operation; triode circuits are usually analyzed
graphically or on the computer for quantitatively accurate results.

An example of a popular triode tube is the 12AX7 dual triode (i.e., 2 triodes in one package; “12” =
12.6-V filament, center-tapped to also work with 6.3 V; “7” = 7 elements: 2 anodes, 2 grids, 2 cathodes, 1
heater). This tube is especially popular in audio preamplifiers. It typically operates with a plate voltage Ve
of 100 to 250 V. The typical grid voltage Vi is —1 to —2V; the magnification factor is p = 100; the grid
transconductance gy, is in the range of 1250 to 1600 pU; and the typical plate current is 0.5 to 1.2 mA.

6.2.1 Triode Voltage Ampifier (Common-Cathode Amplifier)

A typical circuit for using a triode as an amplifier, the common-cathode amplifier, is shown below.

+Ver

Re

———0 Uout

Again, due to the analogy with the JFET, the tube circuit is very similar to the JFET (common-source)
voltage amplifier shown below, which we analyzed before (Section 5.4.3).
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Vout

In both cases, the grid/gate is biased at 0V, and the cathode/source resistor functions to elevate the cath-
ode/source voltage so the grid gate is biased slightly negative with respect to the cathode/source. In the
vacuum-tube case, this is called a cathode-biased amplifier.

The common-cathode amplifier will generally also drive a load, which we can regard as having a
Thévenin resistance R;,. The net effect is that Ry should be replaced by Rp|| Ry, and the supply voltage Vpp
should be replaced by the appropriate linear combination of the supply voltage and the Thévenin voltage of
the load. By using Ry and Vip, the following analysis also handles a loaded amplifier if these modifications
are kept in mind.

6.2.1.1 DC Bias

As an example of tube-amplifier analysis, we will work through the analysis of the triode amplifier here. The
plate power supply +Vpp, powers the arrangement, supplies plate—cathode current, and as a result it again
sets up the bias voltage for the grid. In traditional lingo, the plate power supply is called the “B+ voltage,”
in reference to the three elements A, B, and C of the triode (“A” being the cathode and “C” being the grid),
and the A, B, and C batteries that were used to power the early circuits.

To begin, the dc current is determined by the power-supply voltage, which must be dropped across
the plate and cathode resistors as well as the tube itself along the plate—cathode path:

Vep — Voc = PC(RP + Rc)- (63)

This is called a “load-line equation,” because when written as a relation for the the plate current I as a
function of the plate-cathode voltage Vic, this becomes the equation for a line with slope —1/(Rp + Rc)
and intercept Vop/(Re + Rc):

VPP - VPC
e =——7F7—. 6.4
" Ro+ R (64)
This current then determines the grid bias point via
Voo = Vo = —IpcRe. (6.5)

Finally, the tube itself has a response current Ipc(Vgc, Vec) to the grid and plate voltages. In general, this
response function does not have a simple form, so the design is often done graphically on a plot of Ip¢ vs.
Vi for various values of V.. The load line and grid-bias relations are superimposed on this plot, and the
intersection of the two determines the operating point. However, we can do this using the Child-Langmuir
Law (6.2) to illustrate the process algebraically (at the cost of accuracy):

Lo = a(pVae + VPC)3/2~ (6.6)
Using Egs. (6.3) and (6.5) to eliminate the voltages, the result is

Lo = a[vpp — [(u+1)Re + RP]IPC} v (6.7)
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This is effectively a cubic equation in I;é?’, and thus has an analytic (but messy) solution. The point is that
it can in principle be solved for I, given the resistances and the power-supply voltage. Once this dc current
is known, this fixes the grid bias via Eq. (6.5).

6.2.1.2 Naive AC Analysis

Once the grid bias is known, the grid (ac) transconductance

_ Ole (6.8)
T Ve (tube transconductance: definition)

Gm :

is then known. In the Child-Langmuir model the transconductance is

Ol 3ap 1/2
v, 2 (WVao + Vo) /-, (6.9)

Jm

Note that even though the Child—Langmuir model is a rough approximation, the derivative still serves to
define the transconductance, and the concept hold in general (though with a different quantitative dependence
on the plate and grid voltages).

Now we will proceed with an analysis that traces along the lines of the JFET voltage amplifier.
However, it yields expressions that in general do not work well for triode amplifiers (although for pentodes
below this analysis works well). Afterwards, we will show how to improve it to handle triode amplifiers.

Given a small input ac voltage vi, (on top of a dc bias, as in the previous section), assuming a high
enough frequency that the input-capacitor impedance is negligibly small, the input voltage causes an ac plate
current (i.e., a small change in )

lpg = gm<'UG - Uc) = gm(Uin - iPCRC>~ (6'10)
Solving for ip¢,
. 9m
lpg = ——————Vin- 6.11
e (1 + ngc) ( )

Then this current determines the ac output via

Im Rp

out — —tpcRp = ————— ins 6.12
Vout tpcitp (1 +ngC)U ( )
for an ac voltage gain
Im e .
G=——"—. naive! 6.13
(0t guRe) (613)

Note that in Eq. (6.10) leading up to this, the effect of the cathode resistor was to take away some of the
gain, because an increase vy, causes increasing ipc, but this somewhat counteracts the input voltage via an
increase in ve. If desired, this effect may be counteracted by including a bypass capacitor across R, which
removes its effect for ac signals, as shown below.
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+Ver

Vin Q—{

L L.
Re ;

In this case, the gain is simply
G = —gmRy. (still naivel!) (6.14)

As in analogous transistor circuits, the input impedance is controlled mainly by Rg, and the output
impedance is set mainly by Rp.

6.2.1.3 Proper AC Analysis: Plate Resistance

The important complication that we left out of the above analysis is the plate resistance: the plate current
depends not only on the gate voltage V., but also on the plate voltage Vpc. In the JFET-amplifier analysis of
Section 5.1, we explicitly assumed the saturation regime, where the drain—source current is (approximately)
independent of the drain—source voltage. But this same assumption does not carry over in the same way in
many tube-amplifier circuits.

The plate resistance 7, is defined by the current—voltage slope

1 Bl (6.15)

b = Voo’ (plate resistance: definition)

in analogy to the intrinsic emitter resistance of the BJT [see Eq. (4.69)]. For a 12AX7 tube, 7, is typically
in the range of 60 — —80k¢2, which is usually significant on the scale of the other resistances in the circuit.

Now, to account explicitly for the ability of either the gate or plate voltage to influence the plate
current, we can write a differential change in the current as

O0lpe O0lpe
Ve dVee + Vo dVae

 dVie

Tp

dlpc =
(6.16)

+ gm dVGCa

after using Eqs. (6.8) and (6.15). Suppose that I is held constant; then the right-hand side of the above
equation vanishes, leading to the relation

. OVee
Ve

ImTp = (6.17)
To evaluate the derivative, going back to the triode Child-Langmuir relation (6.2), at constant Ipo this
relation leads to

1WVae + Voo = const. (6.18)
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if Vo and Ve change by infinitesimal amount dVg. and dVic, respectively, this relation implies that they
must cancel, and thus

Ve

b Ve

This of course holds for more general models where the current depends on the combination uVge + Vic,

but more fundamentally, we can view this partial derivative as the definition of the magnification factor,

as it expresses the relative effect of the two voltages on the current via p = —(9lpc/OVac)/(0Ipc/OVac).
Combining this relation with Eq. (6.17), this leads to the relation

(6.19)

(6.20)

= Jmie (small-signal-parameter relation)

connecting the various small-signal tube parameters
With the above development in hand, we can return to the ac gain of the common-cathode amplifier
on p. 126. Using Eqs. (6.16) in terms of biased ac signals, we have

. v
tpc = gmUcc T %
p v (6.21)
- gm(vin - UC) + ﬂ'
Tp

To evaluate vpc, note that the plate—cathode voltage drops if I rises, because voltage drops across Ry and
R increase:

Upe = —ipo(Rp + Ro). (6.22)
Putting this and ve = ipc Re into Eq. (6.21) gives
. . Ry + R¢ .
lpc = gm(vin - ZPCRC) - = C'ch, (6.23)
Tp
or after solving for ipc, we find
gmrpvin /“}in

(6.24)

lpc =

o+ (gmrp + DRo + Re  1p + (u+ 1)Re + Ry
after applying Eq. (6.20). Then using vouy = —ipcRp and G = voyt/vin, the voltage gain becomes

= — NJRP
o+ Re + (p+1)Re
(common-cathode amplifier voltage gain) (6.25)

For the amplifier on p. 128 where R is bypassed by a capacitor, we can set R = 0 in the gain expression,
which reduces to

s
I
(common-cathode amplifier voltage gain, with cathode bypass) (6.26)
It is only in the limit of large plate resistance (so Ipc is weakly affected by Vi) that the naive from the
previous section follow. Rewriting Eq. (6.25) as
- gmRe
14 Re/rp + (gmrp + 1) Re /1y’

we can see that taking the limit r, — oo leads to

G =

(6.27)

Im e
1+ ngc ’

(common-cathode amplifier voltage gain, infinite plate resistance) (6.28)
in agreement with Eq. (6.13). Bypassing the cathode capacitor then leads to the expression G = —gy, Rp,
as in Eq. (6.14). This situation with large rp, is more likely to occur in pentode and beam power tubes, as
described below, when the plate resistor (and load) are relatively small compared to the plate resistance. As
far as obtaining a large gain is concerned, a larger r, leads to larger gain.

G=—
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6.2.2 Design Example: 12AX7 Preamplifier

As a specific example, consider a preamplifier stage made from (half of) a 12AX7, with
e Ry =100k$2,
e R, =15k,

e Ro =1MQ (the grid resistor only really matters for the input impedance and to ensure a proper grid
bias),

e Vop =330V, and
« model values of a = 1.89 x 1075 A/V3/2 and p = 100 for the 12AX7 (see the next section),

a numerical solution of Eq. (6.7) yields
Ino ~ 1.04mA, (6.29)

which leads to a grid bias from Eq. (6.5) of
Vo = —1.57V, (6.30)
a tube plate—cathode voltage from Eq. (6.3) of
Vie = 224V, (6.31)
and a grid transconductance from Eq. (6.9) of
gm = 2330 nO. (6.32)

Note that the transconductance falls above the range quoted for the 12AX7 in the first part of Section 6.2.
With p = 100 by assumption and
Tp = (/gm = 43.0kQ (6.33)

from Eq. (6.20), the amplifier gain is
G =-34, (6.34)

from Eq. (6.25) [G = —52 from the naive expression (6.13)], or if the cathode resistor is bypassed, the gain
is
G=-170 (6.35)

[G = 233 from the naive expression (6.14)]. Again, these values should not be taken too seriously, given the
simple Child—Langmuir model, although we will see below that they aren’t too bad in this example.

6.2.3 Phenomenological Triode Model

It is possible to model the triode behavior more accurately than via the Child-Langmuir model. Koren, for
example, proposed the following phenomenological model for a triode:?
} (6.36)

v
ko |t — =
kVB + Vpc
Note that when V.2, >> kyn, kp(p™! + Voo /Vee) > 1, and z = 3/2, these equations reduce to the Child—
Langmuir Law (6.6) in the form Ine = (Voo/p + Vae)?/?2/ke, so that we can identify a = 2/kqpu’/2.

Vi

V= =2 log{l + exp
ke

xr

Vi
Ipc = kil [1 + Sgn(vl)]'
e}

3Norman L. Koren, “Improved vacuum tube models for SPICE simulations. Part 1: Models and example,” http://www.
normankoren. com/Audio/Tubemodspice_article.html (update 2003).
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Koren’s parameters for the 12AX7 read as follows:

w =100
ke = 1060 V® /A
kp = 600V (6.37)
kys = 300VV
= 1.4.

Then solving Egs. (6.36) numerically, along with the load-line equation (6.4) and the grid-bias equation (6.5),
we find

Ive = 1.07TmA
Voo = 221V (6.38)
Veo = —1.61V.

To “seed” the root-finding process, the Child—Langmuir results from the previous section may be used as
initial guesses. While the previous results are fairly close (they were within a few percent of these values),
it is evident that using the better model makes a difference in the design results. Now the transconductance
follows from differentiating Eqgs. (6.36),

0lpc
m = = 1880 0, 6.39
Im = Gy p (6.39)
and Eq. (6.20) gives
rp = - = 53.3kQ, (6.40)
9m

which is somewhat low compared to the RCA specification* Eq. (6.25) then leads to a circuit gain of
G=-33 (6.41)

with the feedback from R, or
G =-65 (6.42)

with Rc bypassed. The Child-Langmuir versions of the gain values were more than 10% from the correct
values.

So is this accuracy typical for the Child-Langmuir model? To see this, and to also see how to do this
calculation graphically (in case only graphical tube data are available from a data sheet), the plot below
shows the plate Irc—Vic characteristics for various gate voltages, shown as the solid curves (from the Koren
model). The accompanying dashed curves show the Child-Langmuir predictions by comparison; note that
these agree in some regions, but not in others.

4 Available at http://drtube.com/datasheets/12ax7-rca1962.pdf, see the plot on the last page.
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To solve this system, the next step is to draw in the load line (6.3), which is independent of any tube
characteristics. Then, draw in the grid-bias curve (6.5) by drawing the point on each curve of constant Vi
that satisfies Eq. (6.5) (i.e., by tracing along the curve to the proper current I = —Vic/Rc). Then the
idea is to fill in the curve; while it is not a straight line, a straight line is a reasonably good approximation
near any point. The intersection of the load line and the grid-bias curve determine the (dc) operating point
of the circuit, and the slope of the grid-bias curve at the operating point gives the transconductance g,.
Alternately, it is possible to more directly obtain the ac amplifier gain, in the case of a bypassed R.: ac
changes in the grid voltage don’t affect the bias, so one can follow the load line to find the change in I for
a change in V., and convert to a gain via Rp.

From this diagram it is evident that the circuit happens to operate in the region where the Child—
Langmuir model works reasonably well. For tubes in a push—pull circuit, which operate near zero current
when the output signal crosses through zero, the simple model makes for a much poorer approximation. Note
that the model (6.36) is not perfect either: compared to the RCA data sheet, for example,® the Vg = 0
curve has a “kink” with the opposite curvature for small V,.. However, this model is probably reasonable
for estimates in practical designs.

6.3 Vacuum Tetrodes

While the triode can work well, it has an issue, the Miller capacitance between the plate and grid. This
is analogous to the Miller effect in bipolar transistors that we mentioned before in Section 4.11.5.3, but of
course the vacuum-tube version came first. The Miller capacitance can cause a loss of bandwidth, but even
worse, it can cause instability in high-gain circuits, because it acts as a feedback coupling between the high-
current output and the sensitive input of an amplifier stage. One solution to this was to introduce a second
grid, called the screen grid (also called grid #2, with the control grid going by the cheeky alternative
grid #1). The resulting tube is the tetrode, in reference to the fourth element. The schematic symbol for
the tetrode is shown below.

anode/plate

screen grid (grid #2)
control grid (grid #1)

cathode

Shttp://www.r-type.org/pdfs/12ax7.pdf
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The screen grid sits between the plate and the control grid. The idea is to have a positive, fixed potential of
the screen grid, Vs,o > 0, but still negative with respect to the plate (Vi,c < Vo). Typically this voltage is
set via a voltage divider from the plate voltage, and is preferably also bypassed to ground with a capacitor.
The control grid is still biased negative (Vi,c < 0). Since the screen grid is at fixed potential, it acts as
a shield (hence the name “screen,” in reference to electrical screening), breaking the capacitive coupling
between plate and control grid. The new grid can reduce the control-grid—plate capacitance from several pF
to below 0.01 pF.

Since Vg, > 0, the screen grid also attracts electrons from the cathode, which we will see can be a
problem. However, this has an advantage, since the screen grid shields somewhat the effect of the anode on
the cathode electrons. The net effect is that the plate current I, is relatively insensitive to the plate voltage
Ve (for sufficiently large Vi), which can be a useful property.

6.4 Vacuum Pentodes and Beam Power Tubes

The tetrode, alas, has yet another problem, related to secondary emission, which is the emission of
electrons from the anode due to cathode electrons striking it. In diodes and triodes, secondary-emission
electrons are simply attracted back to the anode, and so don’t affect things much (except through space-
charge effects). However, in tetrodes, the secondary electrons are attracted to the screen, especially if the
screen grid is biased above the plate. The net effect is the reduce the plate current and overall gain of the
circuit, and it reduces the useful range of V.

The solution is to add yet another grid, the suppressor grid or grid #3, forming the pentode. The
suppressor grid site between the screen grid and plate; usually it is shorted to the cathode, and it functions
to repel secondary electrons. The pentode diagram is shown below.

anode/plate

suppressor grid (grid #3)

id (grid #2
control grid (grid #1) screen grid (grid #2)

cathode

The design of tetrode and pentode circuits is essentially the same as in triode circuits, with the extra
complication of the additional freedom of choosing extra grid voltages, and of more complicated mathematical
models for the tube characteristics.

An alternative solution to the suppressor grid comes in the beam power tube. This is generally; a
pentode, with grid #3 replaced by a beam-forming electrode. (Confusingly, data sheets can refer to the
same beam power tubes as tetrodes or pentodes.) The schematic symbol appears below.

anode/plate

beam-forming electrode

id id #2
control grid (grid #1) screen grid (grid #2)

cathode

Like the suppressor grid, the beam-forming electrode is typically shorted to the cathode, and serves to direct
the cathode electrons in a beam onto a particular part of the plate. Because of the controlled electron impact
on the plate, such tubes can handle high currents. It also serves to suppress secondary electrons in the same
way as the suppressor grid. Famous examples of beam power tubes are the 6V6 at lower powers and the
6L6 at somewhat higher powers (“6” = 6 elements: cathode, heater, plate, control grid, screen grid, beam-
forming electrode). For comparison to the 12AX7 preamplifier tube, the 6V6 in typical operattion has a
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plate voltage ranging from Vi = 180-315V, has a screen voltage from Vg, = 180-225V, has a control-grid
voltage from Vi, o = —8.5-13V, has a transconductance of g,, ~ 3700 nU, an output of 2-5.5W, and a plate
current Ipo = 29-34mA.

A naive model of the behavior of pentodes and beam power tubes would simply extend the Child—
Langmuir Law in the spirit of Eq. (6.2) for triodes, to include the effect of the screen bias voltage:

Ipe (/Jsvsc + NGVGC + VPC)3/2 (Nsvsc + ,UGVGC + Voe > 0)~ (643)

However, this law has a much smaller range of applicability than the analogous triode law: it does not
describe the regime where I, becomes insensitive to Vi, as we mentioned above for tetrodes. To visualize
this, we can plot characteristic curves for the typical operation of the 6V6 beam tetrode, with a fixed screen—
cathode voltage Vo = 250 V. A reasonable mathematical model for this is essentially Eq. (6.43), but with
extra factors to enforce the “knee” behavior at larger Vpo.® Compare this to the 12AX7 curves in the figure
on 132: the plate current here rises rapidly for small Vi but then levels off for larger plate voltage.

150 \ \ \

6V6
5V
Vsc=250V. +
100 .
E 5V
L
50 —10V |
—-15V
o5y 20V
0 i f [ [
0 100 200 300 400 500
Vee (V)

Note that this diagram may be somewhat deceptive, because at small Vi, the screen voltage is much
higher than the plate, and so the screen can attract electrons and develop a substantial current. The figure
below superimposes the plate-current curves I corresponding to the same gate voltages Vi (ordered with
increasing current in the same way as the plate-current curves).

6The model used here comes from D. Munro, “PSpice Model: 6V6GT,” http://www.duncanamps . com/pdf/6v6spicemod. pdf,
a PSpice-language mathematical model of the tube behavior. Another model using the same equations but different parameters
was posted by Robert McLean at http://wuw.audiobanter.com/showthread.php?t=70465, and this model gives similar results.
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The screen current can be substantial in such a tube, but the screen is a relatively delicate device compared
to the plate. For this reason, these tube circuits often employ a resistor to limit the screen current to protect
and prolong the life of the screen.

6.4.1 Design Example: 6V6 Power Output Stage

As an example of a pentode-type amplifier circuit, consider the beam-power-tube amplifier power amplifier
shown below, based on the 6V6 tube.

I+VPP

=l L

L e T"

The circuit is similar to the 12AX7 preamplifier before, but now there is a screen resistor Rg that limits
the screen current and voltage. A small current Ipreamp is also tapped at the screen to power a preamplifier
circuit and further drop the screen voltage.

Unfortunately, the analysis of this power amplifier is more complicated than the triode case because of
the extra degree of freedom of the screen voltage. Also the screen current I can be significant. Since there
are now three currents (plate, screen, cathode) in the tube that add as

Io =TI + I, (6.44)
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the load-line graphical analysis is more complicated because the voltage drops across Ry and R arise due
to different currents:
VPP - VPC = IPRP + ICRC~ (645)
This leads to a load “line” which isn’t a line anymore, because I is not simply related to Ip:
Vep —IpRp — IcRe = Ve (6.46)
Further, Iy determines the ground-referenced screen voltage via
‘/S = VPP - (IS + Ipreamp)R87 (647)
but the screen—cathode voltage is also determined by the cathode bias:
Vse = Vs — IcRe. (6.48)
We still have the plate and control-grid bias voltages, as in the triode case:
Voe =Vo — IR
PC P cttc (6.49)

Voo = —IcRe.

This leads to a relatively complicated coupled system of equations. The graphical analysis in particular is
complicated by the need to consult graphs of both the plate and cathode currents to even set the proper
bias. In practice, crude approximations such as assuming Is to be a fixed fraction of I, are sufficient for
approximate design work. But if a mathematical model of the tube is available, it is more convenient

nowadays to let a compute grind out the numerical solution of these equations.
As an example, suppose we assume the following parameter set:

o R, =284.2Q (i.e., the dc resistance of the primary coil of an output transformer),
e R, =470Q,
e Ry =1KkQ,

o Ri = 220k (again, the grid resistor only really matters for the input impedance and to tie the grid
to ground; the grid current is negligible provided it is biased negative with respect to the cathode),

e Vop =360V, and
o Ipreamp = 2mA to power a small preamplifier.

The numerical solution to the above equations, including the 6V6 model, gives

I, = 43.6mA
Is =3.75mA
I =47.3mA
Vo =325V
Vie = —22.2V
Ve =354V
Ve =347V.

To check the tube operation, these results imply power dissipations of

Pp = Vool = 142W
Po = Viels = 1.25W

(6.50)

(6.51)



138 CHAPTER 6. VAcuuM TUBES

at the plate and screen, respectively. The 6V6 has specified maximum powers of 12 W and 2 W, respectively,
so this design is pushing the limits of the plate power. (If the plate power exceeds the specification by too
much, the tube will “red plate,” or the anode will glow red with heat, dramatically shortening the tube’s
life.)

All this and more is illustrated in the plot below. The characteristic curves for this arrangement
are shown as solid curves; the dashed curves show the corresponding characteristics when Vi is held at a
constant 330V, illustrating the importance of numerically solving for the correct V¢ in the analysis.

6V6 ‘ ! L —
100 FRq=1kQ, Vpp=360V " &\ i
:1/70(2 Ipn‘,;luq)ZQInA % VGC: —10V
2\
‘?Q’ZIUG —15V
El \ perting pint g,
50 — - - — _
o grid bias
~ .r',’xs———o———o 0 \\\\+ ——— —_25\/
\ v
\\ —35V
1)) S . b oo froee oo ettt
0 100 200 300 400 500

Vee (V)

The (dc) load curve is plotted from Eq. (6.46); the dashed counterpart is the load line obtained by ignoring
the small contribution of I5. Clearly the screen current makes a difference, but here it doesn’t change much
to ignore it.

The grid-bias curve is more difficult to construct graphically here because it only intersects one char-
acteristic curve (for Vg = —20V). The plotted points are separated by AV = 0.1V, from Voo = =19V to
—22.5V, from left to right. Recall that this curve is determined by the cathode current, which is determined
by the plate and screen voltages. The intersection with the load line again gives the operation point.

A different, ac load line is also shown. Since Rp corresponds to the primary winding of an output
transformer, it has a different ac response than the dc resistance. The plotted curve assumes a nominal
ac impedance of 7k{2. This load line shows how changes to the gate voltage translate into output-current
changes. Note that if V¢ rises much above —10V, the curves bunch together, resulting in clipping of the
signal; the same is true if Vi goes below —35V or so.

Computing the ac gain directly is somewhat easier than setting the dc bias, because the bypass ca-
pacitors allow us to assume that the cathode voltage V and screen voltages Vi and V. are fixed. The
transconductance can be evaluated by numerically differentiating the tube model. The result here is

oL
Jm = Woe

= 4330 u, (6.52)

which is similar to values specified in the data sheet. The plate resistance then follows from adapting the
definition (6.15) to read

1 olp
— = . 6.53
p OMVpe ( )
This derivative can be evaluated numerically as well, and comes to
rp = 72.5kQ. (6.54)

Because of the extra dependence on the screen voltage, the relation gmr, = p of Eq. (6.20) no longer holds
exactly. For example, the 6V6 model assumes a grid p of 390 (and a screen p of 43), but gmr, = 314 from
the numerical calculations
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The ac voltage gain from Eq. (6.26) is then

w2
G=_Imle%r _ o77 (6.55)
Tp + Zp

after restoring gmrp in place of p1 and taking Ry, to be the ac impedance Z.. Note that the “naive” result
G = —gmZp from Eq. (6.14) works reasonably well here, predicting G = —30.3, because the plate resistance
is indeed substantially larger than the plate impedance, by more than a factor of 20. In any case, the gain
here is lower than in the triode preamplifier example.

6.4.2 Triode Connection

The characteristic curves in the triode-amplifier example of Section 6.2.3 appeared quite different from the
beam-power-tetrode example of Section 6.4.1. Roughly speaking the triode is operated in a regime where it
behaves like a variable resistor, controlled by the grid voltage. This is evident in the gain expressions (6.25)
and (6.26), where the plate resistance (along with the magnification) determine the tube’s contribution to
the amplifier gain. The pentode-type circuits, however, when the screen is held at a fixed potential, are
different: they typically run in a regime with large plate resistance, making the tube output behave more
like a current source (since the plate current is insensitive to V). In this regime the tube’s contribution to
the amplifier gain comes in the form of the transconductance, as in Eq. (6.28).

Pentodes (and beam power tubes) work well enough, but sometimes triode characteristics are more
desirable, for example for their distortion or low-noise properties. One common trick for achieving this with
a pentode-type tube is the triode connection, where the screen is shorted to the plate (typically this is
done via a resistor of ~ 100, which limits screen current and suppresses high-frequency instabilities).

As an example, consider the same power-amplifier stage as in the previous section, but with a triode-
connected 6V6 (with a direct plate—screen short for simplicity). The analysis is essentially the same, except
Eq. (6.47) is replaced by the condition Vi = Vi. The dc operating point turns out to be nearly the same (all
the values below are within a few percent of the previous values):

I, = 42.7mA

I. = 3.68 mA

I = 46.4mA
Vee =326V (6.56)
Vee = —21.8V

Ve =348V

Ve =348 V.

The characteristic curves are shown below, with the same load curves, and the appropriate grid-bias curve.
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As might be expected, the curves here resemble more those of the 12AX7 (in the plot on p. 132) than the
pentode-type curves (from the plot on p. 138).
For the ac analysis, the transconductance is similar to the pentode-operation case, with

Gm = 4310 pG (6.57)
(formerly gm = 4330), but the plate resistance drops dramatically to
rp = 2.1kQ (6.58)

(from a former 72.5k{)), because it measures the plate-current change caused by variation in the plate
voltage, which also varies the screen voltage (the screen voltage has a stronger effect via its magnification).
The resulting gain is then

_ mTpZp

ot 2o 6.8, (6.59)
(reduced from —27.7). This is fairly typical behavior obtained from triode-connecting a pentode-type tube:
much-decreased gain, but with (potentially) more desirable characteristics. For example, along the ac load
line, the constant-Vg. curves bunch together at the extremes, indicating distortion. In the triode case,
they appear to remain evenly spread out, which is one consequence of the lower gain. However, another
characteristic of the triode configuration is the distortion tends to turn on smoothly, which leads to a
“warmer” triode sound, compared to a “clean” and possibly “harsh” pentode sound in audio circuits.

6.5 Circuit Practice: Simple Tube Amplifier

As an example of a more complete vacuum-tube circuit, consider below an amplifier based on three tubes
for electric guitar or microphone. This amplifier design is similar to various “Champ” amplifiers made
by Fender Musical Instruments Corp., and the voltages are nominal values (with 20% stated acceptable
tolerance) reported on schematics of those instruments.”

"Gerald Weber, A Desktop Reference of Hip Vintage Guitar Amps (Kendrick Books, 1996) (ISBN: 0964106000).


http://www.amazon.com/gp/search/?field-isbn=0964106000
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6.5.1 First Preamplifier Stage

Starting with the input at the first triode amplifier, we can see that this is essentially the same triode amplifier
as in the diagram on p. 128, but with a slightly different input network. Since the intended source is a guitar
pickup or dynamic microphone, which works by induction in a sensing coil, no ac-coupling capacitor is
needed. However, the input is tied to ground by a 1-MQ) impedance in case no source is connected, and
any input current is limited by the 68-k() resistor in case some input connection tries to bring the grid
excessively positive. Because the cathode-bias resistor is bypassed with a capacitor, above about 4 Hz the
gain expression (6.26) applies, and the numerical estimate (6.42) of G = —65 from the triode example applies
here. Note that plate and cathode resistors, as well as Vpp in the triode example were chosen to match this
design. Actually, though, the 1-M¢2 resistor in the second stage gives an ac load for the amplifier, so for the
gain calculation we should use Ry = 90.9k(), leading to a better estimate G = —63. The grid-bias voltage
of —1.6V from Egs. (6.38) is in good agreement with the nominal value for the cathode voltage. The plate
voltage of Vp = Voo — Vge =221 V+1.6 V = 223V is a bit over 10% over the nominal value quoted of 200 V.
Thus the schematic implies a slightly higher plate current than the model (1.3 mA vs. 1mA).

Assuming the nominal values from the schematic, it is also possible to estimate the gain from the RCA
data sheet.® Using Ve = 200V and Voo = —1.6V yields rp = 62kQ, g = 1600 U, and p = 100. From
these values, Eq. (6.26) gives a gain of G = —65 (including the load), which is reasonably close (within 5%)
of the above estimate.

8 Available at http://drtube.com/datasheets/12ax7-rcal962.pdf, see the plot on the last page.


http://drtube.com/datasheets/12ax7-rca1962.pdf
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6.5.2 Second Preamplifier Stage

The second-stage preamplifier, after the volume control, is essentially identical to the first, except for the
addition of the 47-Q resistor and the feedback path from the output transformer. We will save the feedback
for later, but the extra resistance yields modified values of Voo =226V (vs. 225V) and Voo = —1.59V (vs.
—1.61V). Again, these are close to the nominal values. The gain expression (6.25) gives G = —54, using
Ry = 68.8kQ (including the 220-k2 input resistor of the power stage) and R, = 47). The data sheet for
these conditions gives 7, = 60k, gm = 1650 U, and p = 101, giving a gain of G = —52.

6.5.3 Power Amplifier Stage

The power-amplifier stage is intended to match the prototype power-amplifier circuit of Section section:6V6amp,
including the 1 mA of current that supplies each preamplifier stage. The output transformer acts as a load;
the transformer is a Hammond 1750C.° The primary dc resistance is specified as 284.2€, but can vary
considerably (one example measured 267 2). The transformer specifies an ac impedance ratio of 7000 : 3.2,
which means that a 3.2-Q speaker load appears as a 7-kS) load at the 6V6 plate. (The ac impedances are
nominal values, varying widely with frequency because of the frequency response of the transformer and
especially of the speaker.) The ac gain for this stage is G = —27.7.

6.5.4 Feedback Loop

The main remaining feature of the circuit, besides the power supply, is the 2.7-k() resistor connecting the
transformer secondary to the cathode resistor chain of the second premplifier stage. This provides overall
negative feedback in the circuit. That the feedback is negative is not entirely obvious, and so it’s worth
quickly tracing it through. When the input voltage on the second preamp increases; the input to power tube
goes down (owing to the negative gain of the common-cathode amp); the plate voltage on power tube goes
up; this reduces current in output-transformer primary (i.e., the change in current points towards the dot);
this increases current in secondary (i.e., the change in current again points to dot); and finally this increases
cathode voltage at the preamp, which counteracts effect of input (in a way similar to an unbypassed cathode
resistor).

To work out the feedback gain, note that the transformer voltage ratio is ny = 4/3.2/7000. (Recall
that the voltage ratio of a transformer is the same as the turns ratio, while the current ratio is the inverse of
the turns ratio; hence the impedance Z = V/I ratio is the square of the turns ratio.) Then the net open-loop
gain from the input to the second preamplifier to speaker is

Ghet = 11Gpre2Gpower = /3-2/7000 x (—54) x (—27.7) = 32, (6.60)

where Gpre2 is the voltage gain of the second preamplifier, and Gpower is the voltage gain of the power-
amplifier stage. To account for the effect of the feedback, we can replace the 47-Q2 and 2.7-kf) resistors by
the Ry = 462 parallel (Thévenin) resistance and a Thévenin voltage of vf = 7qiyGretVin, Where vy, is the
input to the second preamplifier stage, and 7g;, = 0.0171 is the voltage-divider ratio due to the 47-Q and
2.7-k€) resistors.

With this modification, Eq. (6.23) is modified to read (setting R = 0 since it is bypassed with a
capacitor

. RP + Rf .
ipc = Ym(Vin — Vc) — —,iro
p
. Ry + Re .
= gm(vin —ipc R — 'Uf) - Priflpc (6.61)
. Ry + Re .
= gm(Uin —ipc Ry — ndianetUin) - Prifzpc.
p

Solving for ipc gives
i _ gm(l - 77dianet> Vin
re 1+ gmBRe + (Rp + Rf)/’l"p '

9The transformer data sheet: http://www.hammondmfg.com/pdf/EDB1750C. pdf.

(6.62)
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Then with vyt = —ipcRp the closed-loop ac voltage gain for the preamplifier becomes

/14(1 - ndianet)RP
=24, 6.63
ro + (u+ 1)Rs + Rp (6.63)

C;(pre,Q,CL = -

again using the parameters g, = 1880 uU, naiv = 0.0171, Gpee = 32, Ry = 68.8k), Ro = 1.5kQ, r, =
5.19kQ, p = 100, and Ry = 46). The preamplifier-stage gain here is reduced from the open-loop value of
Gpre,2 = —54. The reduction in gain is of course accompanied by a slight improvement in gain flatness with
frequency and reduction in distortion (see Section 7.7). However, the improvements are not extreme, since
the change in gain is only a factor of 2.

With the negative feedback, the gain from the second preamplifier input to the speaker after the
volume control is then Ghet.cr, = N0Gpre,2,cLGpower = 14. The gain including the first preamplifier stage
(Gpre,1 = —63), when the volume control is maximized, is G = 900 (dropping the sign, which doesn’t matter
anymore). The gain from first input to the transformer primary (i.e., the 6V6 plate voltage) is 4.2 x 10%.

To give a sense of scale of this voltage, a 10-mV input signal gives a much larger signal at the input
of the power tube of (10mV) x 24 x 63 = 15V. This is comparable to the gate bias voltage of the 6V6.
Thus, at the maximum gain setting, the amplifier is already at the threshold of overdriving the input of the
power tube, leading to distortion. The distortion can be desirable for electric-guitar amplifiers, and is easily
attainable here: maagnetic pickups for electric guitars have typical maximum signal levels in the range of
100-500 mV. Dynamic microphones tend to have smaller, mV-level signals, which would lead to much less
distortion in this circuit.

6.5.5 Power Supply

The power supply is a straightforward variation of the full-wave rectifier on p. 125. However, the voltage
is not entirely obvious. The plate winding of the power transformer!® is specified at 630V, center-tapped,
for 100mA load current. This results in 315V to either anode of the 5Y3, but this is rms: the peak anode
voltage is 445 V. The rectifier tube drops 50V at 125 mA dc forward current, but this does not explain the
360 V nominal output voltage in the diagram. The transformer data sheet, however, conveniently specifies
a 363V (dc) output using a 5Y3 tube at 100mA, implying a larger voltage drop than suggested by the GE
data sheet.!! The answer to this is on page 4 of the 5Y3 data sheet, which shows the loaded, rectified output
voltage, which has more “sag” when filtered by a capacitor: the plot on the data sheet shows about 340V
dc output for a 100-mA dc output current and 315-V rms input (with a 20-uF filter capacitor), and about
380V output for a 50-mA dc output. These numbers are reasonably consistent with the nominal voltage in
the schematic, and reflect differences in characteristics of tubes available from different manufacturers.

The rectifier output is then filtered by a 20-pF capacitor, as in the 5Y3 data sheet, and this supplies
the plate voltage for the 6V6. A 1-k{) resistor feeds the screen from the same voltage, as we analyzed in
the 6V6 power-amplifier example. This drops the screen voltage down to the plate-voltage level. The screen
voltage is also bypassed by another 20-uF capacitor, decoupling the screen and plate. The screen voltage
then supplies the 2mA to the 12AX7 plates, with an appropriate voltage drop across a 10-k€Q resistor. The
preamplifier plate voltages are bypassed by yet another another 20-uF capacitor, decoupling the preamplifier
tubes from the power tube and from each other.

10Magnetic Components 40-18027, http://www.classictone.net/40-18027.pdf.
Uhttp://www.r-type.org/pdfs/5y3gt . pdf
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Chapter 7

Operational Amplifiers

7.1 Op-Amp Basics

We have already talked a bit about differential amplifiers, when we analyzed the transistor differential
amplifier. The differential amplifier is an important building block in its own right, and we will spend a fair
amount of time looking at them. In particular, the operational amplifier (op-amp) is a handy, handy
device in analog-circuit design. Recall that the differential amplifier ideally subtracts the input voltages, and
multiplies the difference by a gain factor (here, A) to produce an output signal.

‘/in—&-
‘/:)ut = A(‘/in—&- - ‘/in—)
‘/in—

The operational amplifier is basically a differential amplifier, but with large gain (with larger=better, where
op-amps are concerned). The gain A here is called the open-loop gain of the op-amp, for reasons that
will become more apparent soon. For real op-amps, gains typically range from around 46 dB on the low end
(for low-quality amplifiers, or amplifiers where other engineering considerations compromised the gain), to
around 140dB on the high end. (Remember that 20 dB corresponds to a factor of 10 in voltage, so 140 dB
means A = 107.) For more specific examples, let’s summarize the gains of a few classic op-amps:

e 741C: has BJT inputs, A = 86dB, a famous, old op-amp that is cheap, and not so great anymore
(there are better choices, even among cheap op-amps).

e LF411: has JFET inputs, A = 88dB, a cheap op-amp, which is really not bad, and a good “default
op-amp” in noncritical applications (Horowitz and Hill call this their “jelly bean”).

e OPA111B: has JFET inputs, A = 120dB, a venerable, precision, low-noise op-amp, but expensive.

7.1.1 Usage: Open-Loop

There are two basic ways to use an op-amp: in the first, we take advantage of the high gain, and in the
second, we throw away some of the high gain. The first application, where we use the full gain of the
op-amp, is called open-loop mode, and the op-amp behaves as a comparator. To explain this, note that
the op-amp is an active device, and requires a power supply; often op-amps are powered by split +15-V
power supplies, so the output can go either positive or negative. The output, of course, cannot exceed the
power-supply voltages (and can typically the output range, or output swing, of the op-amp is a volt or two
less than the supply range). Now when the output formula,

Vout = A(‘/in-‘,- - Vvin—) (71)
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predicts that Vgt should be outside the supply-voltage range, what really happens is that the output rails;
for example, if the output should be +50V, but the power supplies are £15V, the output will rail at +15V
(or more likely a bit lower, say around 14.3 V.

Then the comparator action of an op-amp is as follows:

1. If Viny > Vin— by at least a few mV, then the V,y rails at the positive supply voltage.
2. If Vipy < Vih— by at least a few mV, then the V, rails at the negative supply voltage.

That is, the op-amp compares the input voltages, and swings the output to the appropriate rail to indicate
which one is bigger. There are specialized op-amps, called comparators, that are optimized to do this, and
we will consider comparator circuits in more detail later. For now, note that regular op-amps can be used
in this way, though this is not the most common usage.

7.1.2 Usage: Closed-Loop

In closed-loop mode or negative-feedback mode, op-amps have some connection from the output to the
inverting (—) input. The net effect is to reduce the gain. Why bother to have an op-amp with extremely high
open-loop gain only to reduce it in closed-loop mode? Well, it turns out that when you do this, the resulting
circuit behaves well, in the sense that its behavior will be (mostly) independent of the device properties.
This becomes more true with increasing open-loop gain. This trick of using negative feedback is a really
nice trick, and opens up a lot of possibilities for cool circuits.

7.2 Op-Amp “Golden Rules”

In the simplest method for analyzing op-amp circuits, we will assume that we are dealing with an ideal
op-amp. This means that we will assume the following two rules:

1. No current flows into or out of the inputs. (Current can of course flow into or out of the output, as
well as the power-supply terminals, which we haven’t bothered to label thus far.)

2. Either Viy = Vi,_, or the output is railed. Basically we are assuming that the open-loop gain A is so
large, that the only way for the output to not be railed is for Vi, and Vi,_ to be basically the same,

because v
Ving = Vi = Z“ ~ 0. (7.2)

Remember that for the output not to rail, there must generally be negative feedback. In this case the
output does whatever it needs to do to make sure the input voltages are approximately equal.

Using just these two rules, we can analyze the basic behavior of most op-amp circuits.

7.3 Basic Op-Amp Circuits

7.3.1 Unity-Gain Buffer/Follower

The first circuit is simple: the unity-gain buffer, or voltage follower. Here, V,,; = Viy, and this is mostly
useful to buffer a high output impedance or a low input impedance. The improvement here on the transistor
followers is that this circuit works for dc voltages, not just biased ac voltages.

d ° out:‘/i

Vi o———+
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To analyze this, note that the output is shorted to the inverting input, providing negative feedback. Then
Vine = Vous- (73)
But the second op-amp rule says that Viy4 = Vi, so Vip4 = Vi, or

(7.4)

Vout = Vin-. (unity-gain buffer)

Hence, this circuit has unity gain for dc signals. We will return later to the question of the input and output
impedances of this circuit, but we expect the input impedance to be high, considering that ideally no current
flows into the input. But typically, we expect input impedances of ~ 10%Q for op-amps with BJT inputs,
and ~ 10'2Q for op-amps with JFET inputs. The output impedances can be in the range of m$) for good
op-amps. So this circuit is handy for buffering high-impedance sensors, for example. Another common use
is to derive reference voltages in circuits: For example, if you need a voltage of +5-V somewhere in a circuit,
you can use a voltage divider between +15-V power supplies, and buffer the output of the divider so you
don’t have to worry about loading it down.

7.3.2 Inverting Amplifier

The inverting amplifier is useful as a basic amplifier with gain, and not only because it has many useful
variations.

I(" ANNN

To analyze this circuit, assume a current I flows into the input. Golden rule 2 says that the inverting-input
voltage Vi,— must be zero, so

W
=&
Then according to the first rule, no current goes into the input, so it must all go through the feedback resistor
Ry. Then applying Ohm’s law across the feedback resistor,

I (7.5)

0V — Vou = IRy, (7.6)

or putting in the previous expression for I and solving for the output voltage,

R (7.7
Vour = 7R71Vin' (inverting amplifier)
Defining the closed-loop gain G as
G L V;ut (78)
T Vi (inverting amplifier)

Ry (7.9)
Ry (closed-loop gain, inverting amplifier)
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This must be smaller than the open-loop gain, otherwise the assumption of negative feedback breaks down.
Now it’s useful to try to get an idea of how feedback works in this circuit to maintain the advertised

output voltage. Let’s take the simple case Ry = Ra, for unity gain (G = —1). Suppose the output voltage
is initially zero, and we suddenly introduce an input V;, = 1V.

o Then the R;—R, pair acts as a voltage divider, putting the voltage V;,_ at the inverting input at 0.5V.
Since the inverting input is above the (grounded) noninverting input, the output “wants” to go down

in voltage.
= —0.5V, and the inverting input is below the

e Suppose the output overshoots to, say, —2V. Then Vi, _
noninverting input, so the output wants to go up.

e The only output that causes the inputs to be balanced is the “proper” output of —1V. Any deviation
away from this makes the op-amp want to drive the output towards this value. So not only does it
satisfy the golden rules, but it is stable, in that the op-amp will correct for deviations away from this

value.
This one of the powers of negative feedback: robustness to deviations from the proper output (e.g., due to
power-supply noise). If the feedback is not negative, then more complicated behaviors like oscillation may

result; we will return to this useful case later.

7.3.3 Noninverting Amplifier

It is also possible to build a noninverting amplifier with gain, as shown below.

Ry

Vin o0——+
Vour = (1 - | Vin
t ( + R1)

2

R
%Rl

Using that R; and R, form a voltage divider,

Ry
Vin = Ving = Vin— = Vout- 7.10
+ Rt R, o (7.10)
Thus, the closed-loop gain is
Ry + Ry Ry
G=——"=1+—".
Ry + Ry
(7.11)

(closed-loop gain, noninverting amplifier)
Note that in the inverting-amplifier case, sub-unity gains are possible if Ry < R, but here, the smallest pos-
sible gain is unity. Like the unity-gain buffer, this circuit enjoys high input impedance; the input impedance

in the inverting case is just R;.

7.3.4 Summing (Inverting) Amplifier

A useful variation on the inverting amplifier is the summing amplifier, which combines multiple input
(Note that you can’t easily add voltages in passive

voltages with different gains to obtain the output.
circuits, which makes this circuit useful.)
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R3 .
Ving e——ANAN——1
Vinz e—ANN——1
Ry I
o 7 ———o Vo = _&‘/inl - &‘/irﬂ —
. Ry Ry

The key to this circuit is that each input voltage and input resistor makes a current; at the big junction, all
these currents add and go through the feedback resistor R. That is, the total current I is

‘/inl ‘/1112 ‘/inS

I = B 7.12
Ri "Ry ' Rs (7.12)
Then the output voltage is
_ __Be Ry Ry (7.13)
Vour = —IRr = _Ewnl B R72V‘“2 B R73Vm3 - (summing amplifier)

The inverting nature of the amplifier can be inconvenient, but easily fixed by following up with another
inverting amplifier.

7.3.5 Circuit Practice: Differential Amplifier

Another classic operational amplifier is shown below. This takes the difference of two input signals, and
implements a closed-loop gain given by the ratio of resistors. Normally, we save the circuit practice for the
end of the chapter, but here you should work this circuit out right away to review the concepts thus far
before going on.

Ry
Ry
VY f
R,
4 ° out:Ri(V+_V*)
1
V+ +
Ry
Ry

This circuit relies on the resistor values being well-matched for accuracy. Show that this circuit behaves as
advertised.
Solution. First, we have a voltage divider at the noninverting input:

Ry
Viny = =—V,. 7.14
SRR (7.14)
Similarly, we have a voltage divider between two voltages at the inverting input:
R R
Vin_ Vo — Vo (7.15)

~ Rit Ry Ry + Ry
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Setting these two voltages equal, we get

RV = RoV_ 4+ Ry Vyu, (716)
or R
Vout = — (Vi — V), (7.17)
Ry
as desired.

7.4 Op-Amp Filters

When we were studying passive, linear circuits with resistors, capacitors, and inductors, we saw that the
reactive elements (capacitors and inductors) acted like frequency-dependent resistors. The resulting circuits
attenuated the input signal in a frequency-dependent way, leading to passive filters for signals. We can do
the same thing with op-amps: they open up new possibilities as well as straightforward improvements on
the passive circuits.

The most important and fundamental op-amp filters are the op-amp versions of the passive integrator
and differentiator. The op-amp versions have their own problems, but mainly because they have overall
much more ideal behavior.

7.4.1 Op-Amp Differentiator

Recall the passive differentiator (Section 2.2.2), shown below.

‘/in o I I * © out

Remember that this works intuitively as follows: The voltage across the capacitor is proportional to the
charge (Q = CV). Current I flows from the capacitor through the resistor, where current is the derivative
of charge (I = dQ/dt). The resistor converts current to voltage (V' = I'R), so the output is the derivative
of the input. But, for the output to be the derivative of the input, we had to assume here that the output
voltage is small, otherwise the voltage across the capacitor is Vi, — Vout, not merely Vi,.

We can improve this, essentially by using the op-amp to decouple the capacitor and resistor voltages
as follows.

R
1F—ANN
C
I
Ve H i d
0 Vout = _Rca V;n
+
Intuitively, the current I flows in through the input, and the voltage across the capacitor is Vi, — Vin_ = Vip,

enforced by the op-amp. This same current I gets converted to a voltage, via the feedback resistor.
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To show this quantitatively, let’s use the fact that at fixed frequency w, this is just an inverting
amplifier. The gain is G = —Ry /R, where we should replace Ry by R, and Ry by X¢ = i/wC. Then

R
Vout = _7‘/in = ZWRCVIH (718)
Xc
Now remember that at fixed frequency w, we can identify d/dt = —iw, so

B d (7.19)
Vous = —RC%VW' (op-amp differentiator)

Note that the RC time and the time derivative conspire to make the voltage units come out right. Note also

that the frequency-dependent gain
(7.20)
(gain, op-amp differentiator)

G(w) = iwRC

always increases with frequency, whereas the passive differentiator (high-pass filter) had a gain (transfer
function) that leveled off at unity for frequencies above the wsqp (Section 2.3.7).

7.4.2 Op-Amp Integrator

The passive and active (op-amp) integrators are similar. Recall the passive integrator below (Section 2.2.1).

R

Vi —AAN

7Y

I
Q

Here, the resistor converts the input voltage to a current (Viy = I'R), and the capacitor develops a voltage
proportional to charge (Q = CV'), which is the integral of current. Hence the output voltage is the integral of
the input voltage. But we had to assume small V¢, so that the voltage across the resistor is Vi, — Vour = Vin.
Again, the op-amp helps here by decoupling the capacitor and resistor voltages, while connecting their
currents, by maintaing the inverting input at virtual ground. The op-amp integrator is shown below.

t
o Vo) = Vo 0) — 5 [ Vi)
0

This works more like we said: The input resistor converts the voltage Vi, to current I (Vi, = IR, with no
need for small V), and the capacitor integrates the current to store charge, which produces an output
voltage.
For the quantitative analysis, we again use the inverting-amplifier gain G = —Ry /Ry, with Ry replaced
by X¢, and R; replaced by R. Then
Xe i

Vout = - Vin

- v 21
R wRCV (7.21)
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so that the frequency-dependent gain is

i (7.22)
Gl = WRC” (op-amp integrator gain)
Rearranging the factor of w,
1
— iwVous = ——==Vin. 7.23
iwVout RC (7.23)
Then using d/dt = —iw,
d 1
— = ———Vin. .24
dt Vout RC va (7 )

Integrating, we have

(7.25)
(op-amp integrator)

t
Vot (£) = Vo (0) — Rilc /0 dt' Vin(#)).

Like the differentiator, this amplifier gives the integral with an overall minus sign. It also depends on the
initial output state.

7.4.3 Differentiator Issues

From Eq. (7.20), the main problem with the differentiator is that it has a gain that increases as w, so the
gain becomes arbitrarily large for large frequencies. This causes potential problems in two ways. First,
differentiators suffer from bad high-frequency noise, and second, the high gain can possibly de-stabilize the
amplifier. The solution is to add an extra, small, parallel capacitance in the feedback look, and an extra,
small, series resistance in the input.

small C'

R

e
small R ¢

TR v v B

d © Vout

How do we think about this? First of all, the input network crosses over from capacitive to resistive at an
input RC frequency. Above this frequency, the resistance dominates, and in combination with the feedback
resistor, the amplifier acts like an inverting amplifier, where the gain is flat with frequency. The feedback
network also defines a second RC frequency; above this frequency, the capacitor bypasses the resistor. Then
the capacitor, in combination with the input resistor, makes the op-amp behave as an integrator, where the
gain decreases with frequency. The net effect is shown schematically in the gain plot below.
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tempered

differentiator

log G(w)

log w

The solid line is the differentiator response, and the dashed line shows the “tempered” differentiator, including
the effects of the input resistor (when the gain flattens) and the feedback capacitor (when the gain “rolls

off,” or decreases).

7.4.4 Integrator Issues

The integrator has the opposite problem: from Eq. (7.22), the gain scales as w™! over all frequencies, so the
gain at dc diverges. This essentially means that the integrator has no “natural” dc level, and any dc input
(even a spurious dc input) will eventually rail the op-amp. The fix for this is to put a large resistance in
parallel with the feedback capacitor, as shown below.

large R

NV

C

d © Vout

The feedback network then defines an RC frequency (a small frequency, since the resistance is large), below
which the resistor dominates the feedback impedance, and the op-amp acts as an inverting amplifier. This
levels the low-frequency gain to some finite value, as illustrated schematically below.
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tempered

differentiator

log G(w)

log w

This shows the normal —6-dB scaling of the integrator as the solid line, with the dashed line showing the
“tempered” behavior with the feedback resistor rolling off the low-frequency gain.

7.4.5 Sources of Integrator Error

We have mentioned that the basic integrator is very sensitive to spurious dc inputs, due to the divergent dc
gain. What are these spurious dc offsets? There are two main sources for op-amps: input bias current, and
input offset voltage.

7.4.5.1 Input Bias Current

In the ideal op-amp we stated the golden rule that no current flows into the inputs. However, this isn’t quite
true. The idea behind the input bias current is that in fact a small current flows into (or out of) the inputs,
which makes sense, as the op-amp inputs drive internal transistors, which either require current to work or
allow a bit of leakage current to flow. For BJT-input op-amps, the input bias current is ~10nA, while for
JFET-input op-amps, the input bias current is ~ 10 pA. For example, the precision OPA602C with JFET
inputs has a 1-pA input bias current (compared to the 741C with BJT inputs at 500 nA). Thus, JFET-input
op-amps are the clear winner in this regard. To some extent, it is possible to compensate for the input bias
current by injecting a small, adjustable current at the inverting input.
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Q

Vi —ANVV -

> O Vout

large R ~<——

large R

or «—/\/\/\/—b

=

V_

Here, V. are the power supplies. The idea here is essentially the same as for the summing amplifier: the
adjustable voltage and resistance (or Thévenin resistance of the potentiometer) causes a current to flow—a
small one, if the resistance is large. This can be adjusted to cancel the input bias current, for example by
adjusting it until the output is stationary when Vi, = 0. However, this isn’t perfect: the input bias current
depends on temperature, for example, so compensating at one temperature doesn’t guarantee compensation
everywhere. If this is a concern, it is far better to start with a good op-amp, rather than try to “fix” a
crappier op-amp.

Another side effect of the input bias current is that the inputs need some dc path to ground. So, for
example, it would be a bad idea to build an ac-coupled follower like this:

(bad!)

d ° out:‘/i

e

The inverting input is fine, as the path to “ground” is via the output. However, the noninverting input has
no path to ground, and the input bias current will charge the capacitors until the inputs go out of range
with respect to the power supplies, causing real problems. The fix is to use an input high-pass network, as
shown below.

(better!)

> o Vout = Vi

R I
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Now, the resistor supplies the path to ground. There is some offset voltage error given by the product of
the bias current and the resistance, but this can be made small (in the previous circuit, this error was huge
because the impedance to ground was effectively very large).

7.4.5.2 Input Offset Voltage

The other main effect is the input offset voltage. For an ideal op-amp, the output is zero when the
inputs are exactly equal. But for a real op-amp, the output is zero when the inputs are almost the same,
or said another way, when there is a small “error” voltage §V between the inputs. This is the input offset
voltage, and is due to manufacturing variation when producing op-amp devices. Typically, the input offset
voltage ranges from ~ 10 4V to a few mV, with BJT inputs faring better than FET inputs. For example,
the FET-input, precision OPA602C has 0.1 mV typical input offset voltage, and 0.25 mV max (compare to
the 741C, which is 2mV typical; this is not as much worse, when compared to the bias current). In the
integrator, the net effect is that a zero Vi, causes integration (the input should be set to the input offset
voltage for no integration to occur). The compensation circuit above can also compensate for this effect,
because it is equivalent to summing another input voltage with V;,. Most op-amps also have pin connections
for a potentiometer to allow nulling of the input offset voltage (typically, for a single op-amp in a dual-inline
package, a trim-pot is connected across pins 1 and 5). Again, while this can be trimmed, the drift will be of
the same order as the uncompensated error, so in critical applications, it’s better to choose an op-amp with
a low offset voltage, rather than try to correct for the offset voltage of a “bad” op-amp.

7.4.6 Integrator Applications

The integrator is a widely useful circuit. One example is in feedback-control circuits (circuit to generate a
stable voltage, current, temperature, etc.)—it turns out integration is useful in obtaining stable operation,
a point to which we will return later.

Literal integration of signals is also a useful task. For example, suppose we have an optical-pulse signal
from a laser pulse on a photodetector. If we integrate the signal, we can get the pulse energy (or pulse
fluence). In this case, it is useful to be able to reset the integrator just before we expect to receive each
pulse, and the circuit below takes care of this.

+15V reset
reset 15y I integrate
C
0—{ }—0

—O

out

The MOSFET here acts as an analog switch, that dumps the capacitor charge when it is necessary to reset
the integrator. Note that we are assuming a positive input voltage, and thus a negative output voltage. If
the output voltage may have either sign, a second, reversed MOSFET may be necessary to prevent dumping
the capacitor charge during integration.
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7.5 Instrumentation Amplifiers

Recall the op-amp differential amplifier, shown below, from Section 7.3.5.

Ry
Ry
VA f
Ry
4 S Vout = ﬁ(V+ - V*)
1
Vi +
Ry
Ry

This circuit works fine, but has some disadvantages:

e This circuit does not have high input impedances, especially for large gains. Specifically, you should
convince yourself that the noninverting input has an input impedance R; + Rs, while the inverting
input has an input impedance R;. But, for example, if Ry = 1kQ2 and Rs = 10k{2, so that G = 10,
the input impedance is at worst 1 k(2.

e The circuit requires accurately matched resistor pairs to achieve a high CMRR. To obtain a CMRR
of 80dB, the resistors must have a tolerance of around 0.01% at G = 1; resistors this accurate are
typically wirewound, but these don’t work well at high frequencies.

e Any source impedances add to the input R;’s. That is, the sources must act as ideal voltage sources,
otherwise the gain and CMRR may be affected. For example, if R; = 1k{2, the source impedance must
be 109 or less for 1% gain accuracy. Even worse, the source impedances must be matched to ensure
good CMRR.

The main solution to these problems, especially that of source impedances interacting with the resistances
in the op-amp circuit, is to simply buffer the inputs. A differential amplifier with buffered (high-impedance)
inputs is called an instrumentation amplifier, and the basic circuit is shown below.

R1 RQ

A AM—

w

Ry o Vouw = 5 (Vi = V)
Ry

VJr O—

\ﬂ

Ry

The point is that this entire circuit should come in a single package, with laser-trimmed (matched) resistor
networks, for good performance and to make life easy. This also guarantees that any errors in the matched
resistor pairs due to temperature drifts is kept to a minimum.
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7.5.1 “Classic” Instrumentation Amplifier

What you usually find packaged as an instrumentation amplifier is actually a bit different than the above
circuit. The inputs are still buffered for high impedance, but the input buffers are hooked up in a resistor
chain as shown below, and the resulting difference is computed by a unity-gain differential amplifier.

vV R

R,

2R
——— O Vout = (1 + R72) (V+ - V*)
1

(external resistor) Ry

R,

>—/\/\/\/TEF (external connection, usually ground)
Vi

R
+
R

The main advantage here is that the gain can be set by changing only one resistor, here R;. This resistor
is usually not included in the package, but rather the package has pins for an externally connected resistor
for a user-settable gain. (You should be able to see that when R; is omitted, the input amplifiers reduce
to buffers, and the output is just the difference of the inputs.) Another feature to note is that the ground
connection of the differential amplifier is usually given as a “reference” (REF) pin on the package. This
allows the subtraction to be referenced to another voltage besides ground, which is sometimes convenient.
We will give an example below in Section 7.5.2.3.
To analyze the circuit above, let’s focus on just the first resistor chain.

Vout—
R,
Ry T 1
R,

‘/out-‘r

We have drawn in the voltages, assuming the op amps enforce the equality of their inputs, and we are labeling
the outputs of the two input buffers as V4. No current flows into or out of the buffer-op-amp inputs, so
we will assume a current [ flows from Vg4 to Voue—. Using Ohm’s law across Ry,

V.-V
[=F—""= 7.26
7 (7.26)

Then the voltage drop across the top resistor in the chain gives

Vow— =V_ IRy =V_ — 22(V, — V), (7.27)
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and across the bottom resistor in the chain,
Vout-‘r = V + +IR2 = V+ + 7(V+ - V_) (728)

Now the differential amplifier takes the difference between Vo4 and Vous—, so

Vout = Vouts — Vour— = (V4 = V) + %Rf(V+ -V_), (7.29)
or
Vour = <1 + 2]??) (V3 = Vo). (instrumentation-amplifier otf:pi?cg
As a gain, this reads
G= (1 * 2RRlQ> ’ (instrumentation—ampliﬁer(glfi)rll;

Thus we see again if Ry is omitted (R; = 00), the gain is unity, while other values can serve to increase the
gain above unity.

A good example of an instrumentation amplifier is the INA128 from Burr-Brown, one of a family of
“INAXXX” instrumentation amplifiers. In the INA128, the internal Ry resistors are 50k}, so the external

resistor R (i.e., Ry), sets the gain via

kQ
G=1+ 523 . (7.32)

G

The CMRR is 86 dB at unity gain (Rg = o), and 125dB at G = 100. The input impedance is ~ 10! Q,
and the input bias current is 2nA. These cost ~$8 each, depending on the grade (quality) and package.

7.5.2 Instrumentation-Amplifier Applications
7.5.2.1 Thermocouple Amplifier

The instrumentation amplifier turns out to be really useful in a number of applications, particularly in
amplifying high-source-impedance sensors that require high gain. On example, shown below, is a simplistic
thermocouple amplifier.

R (set for G = 100)

‘/out

thermocouple junction <

%L 10k =

A thermocouple is a junction of two dissimilar metals that develops a voltage that is related (in an
nonlinear way) to the temperature. Typical signal levels from thermocouples range from ~ 10 xV to 100 4V,
so significant gain is useful here. Note that this circuit is simplistic in the sense that it is only useful for
measuring relative temperature changes. Absolute calibration requires computing the difference between two
thermocouples, one held at a known reference temperature (e.g., an ice bath). This is called cold-junction
compensation, and there are special amplifiers that can emulate the cold junction electronically—a good
example is the AD594.
One other thing to note is the 10-k(2 resistor, which is necessary for the circuit to function. Why?



160 CHAPTER 7. OPERATIONAL AMPLIFIERS

7.5.2.2 Differential Transmission for Noise Rejection

Another good application of the instrumentation amplifier is as a receiving input for a signal that is trans-
ferred between two instruments. For low noise, the signal is usually sent via coaxial cable—a center
conductor shielded by a cylindrical outer conductor, which is usually used as a ground connection, so the
grounded jacket protects the center (signal) conductor from external interference. The simplest way to send
a signal between instruments is just to connect it as shown below—use a jack on either instrument, with the
coaxial cable in between, the outer conductor grounded on either end.

sending circuit receiving circuit

‘/ill 77777777777777 . 77777777777_ 777777777777 V:)ut
coaxial-cable connection

This is a bad idea, though, because it introduces a ground loop: both instruments are generally grounded
via their power supplies, and the grounds are also connected via the coaxial-cable jacket. This means that
the ground has a big loop for a path, and changing electromagnetic fields can induce and EMF in this loop.
The symptoms are noise pickup, such as 60-Hz buzz in audio systems, or radio-frequency interference in
wide-bandwidth circuits.

One solution is to power one instrument from a battery, so that it “floats” (i.e., there is no ground
connection). This is not always convenient, but it is also possible to use an isolation transformer to break
the ground connection via the power supply. (Isolation transformers for this purpose are commercially
available, but usually require a safety ground connection to be defeated before it truly provides ground
isolation.) However, having instruments grounded is otherwise desirable for safety and noise immunity, so
another solution is to use an instrumentation amplifier as a differential receiver on the receiving instrument,
as shown below.

sending circuit receiving circuit R¢

Vin e . +
coaxial-cable connection INA128 Vous

1 REF
10Q —— 0.01puF =

This also breaks the ground loop, and any induced interference, which is common to the ground and signal
conductors in the cable, will be cancelled in the subtraction. (This also works for twisted-pair cable, in place
of the coaxial cable, as is usually used in Ethernet networks.) Note that the “ground” conductor on the
received is still tied to ground via a resistor and capacitor. This prevent large induced input swings, in order
to protect the amplifier (and remember we need the resistor to provide a dc path to ground).

Another useful trick is to use the instrumentation amplifier to provide variable gain on the input, which
is easy to accomplish by replacing R by a switch-selectable array of gain resistors (e.g., using a rotary switch
to select gain), as shown below.

4.99%Q (G = 10)
Re 12.1kQ (G = 5)
A —
49.9%Q (G = 2)
0 (G=1)

A logarithmic spacing of gains (1, 2, 5, 10, 20, 50, 100, ...) covers a wide gain range in a useful way.
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7.5.2.3 AC-Coupled Inputs with High Impedance

Sometimes it is useful to have an ac-coupled input, but with high input impedance. For example, we may
have a sensor with a weak signal and high source impedance that requires large amplification, but if it has
a large dc bias, a large gain would take the dc bias out of range. If we just use a capacitor to block dc on
the input, this is bad, remember, because we need a dc path to ground on each input.

An improvement is to introduce a resistor, which makes a high-pass filter. The resistor prevents problems

from input bias currents.

However, in the pass band, the input impedance is limited to R, which will not be nearly as good as a
“bare” input on a decent op-amp. A clever solution is to use an integrator to feed back the output of an
instrumentation amplifier to the reference input.

O

out

Assume for simplicity that the instrumentation amplifier is set for unity gain, so
Vout = V+ -V_+ VREF- (733)

That is, the reference voltage is the reference for ground, so the amplifier sets V4 — Vigr to the difference
Vi — V_. Note that the only steady state occurs when the integrator is at steady state, which is when the
integrator input (Vout) is zero. If Vi # 0, the integrator will build up a voltage until it cancels the steady
output voltage on a time scale RC' (with negative feedback due to the inverting nature of the integrator).
High-frequency signals are not affected by the integrator, because the integrator has no time to “catch up”
to the rapidly changing output (which is saying that the integrator gain is suppressed at high frequencies as
1/w). To make this input switchable between ac and dc, a switch can short across the capacitor to change
the instrumentation amplifier to dc mode.

7.6 Practical Considerations

In this section, we will deal some more with some deviations of op-amps from their ideal behavior, and a
few common tricks to mitigate these effects.
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7.6.1 Input-Bias Currents and Precision Amplifiers

Before, when we were dealing with integrating amplifiers (Section 7.4.4), we talked about input-bias currents
and how they can cause problems by charging up the integrating capacitor, even with a zero input voltage.
We also talked about how it is critical to have a dc path to ground for each input to prevent similar charging
problems. However, input bias currents can still cause problems (albeit usually less serious) in “regular”
op-amp circuits like inverting and noninverting amplifiers.

7.6.1.1 Inverting Amplifier

For example, let’s return to the inverting amplifier (Section 7.3.2).
Ry

A
Ry
VoA — N

> 0 Vout = — Vin

As a numerical example, consider a 741C (a crappy op-amp that will make such problems obvious), with a
worst-case input bias current of 0.5 pA. If we take R; = 10k and Ry = 1MQ (for G = —100), then the
inverting input sees a Thévenin-equivalent input resistance of Rty = R1||R2 & 10kQ. Then the input bias
current leads to a bias voltage of (0.5 #A)(10k2) = 5mV at the input. With a gain of (—100), this leads
to an output bias voltage of 5V worst-case, which is pretty bad! (That is, for Vi, = 0, it is permissible
according to the 741C’s specs to have |Vous| as much as 5V.)

How do we get around this? There are a few approaches:

e Since this is a dc-bias issue, this is no problem for ac circuits—just make sure to design for zero dc
gain in the circuit (using a blocking capacitor, for instance).

e The main problem in the example was an underwhelming performer of an op-amp. Of course, we can
do better, and recall that FET-input op-amps are superior to BJT-input op-amps in terms of bias
currents. Precision BJT-input op-amps are a good option, too. For example, the FET-input LF411
has Ipias &= 0.2nA, so the output error is only 0.2mV in the above example.

e For BJT-input op-amps, or in high-precision circuits, we can also reduce errors by balancing input
impedances, which requires a few examples.

7.6.1.2 Balanced Input-Impedances: Inverting Amplifier

To balance the input impedances of the inverting amplifier, recall that the problem came from the inverting
input “seeing” an effective source impedance of Ry ||R2. We can simply insert an equivalent source impedance
on the noninverting input as shown below.
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R,

AvavAY
A VAVAY -
Ry

+
Ri|| Ry %

This resistor does nothing for an ideal op-amp, because no current flows through the resistor (and thus the
resistor drops no voltage), but for a real op-amp, this trick reduces bias errors. Of course, all this assumes
Vin acts like an ideal voltage source (i.e., it has a source impedance much smaller than R;p), otherwise the
source impedance of V;, must also enter into the compensation scheme.

7.6.1.3 Balanced Input-Impedances: Noninverting Amplifier
Similar balancing tricks are possible for noninverting amplifiers. Recall the basic noninverting amplifier

(Section 7.3.3), shown below.

Vi o———+

Vout:<l+&)vi

2

R
%Rl

Here, the inverting input sees a source impedance of R1||Rg, due to the voltage divider. Thus, it is again a
simple matter to insert an equivalent source impedance for the other input.

Rq||Ro

Vie —ANN—

%

Balancing input impedances is a bit trickier for ac-coupled amplifiers. A good example is shown below.
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Ry
‘/ou =1 - ‘/in
! ( " Rl)

A high-pass filter is used on the input to block the dc¢ component (remember the resistor R is necessary
to provide a dc path to ground for the input bias current). We need to balance impedance at dc, so the
noninverting input sees a source impedance of R. An easy way to ensure the same impedance for the inverting
input is to insert another resistor R in the feedback loop, and simply ensure R > R;||R2, so we don’t have
to worry about Ry and Ry when setting the resistances.

7.6.1.4 Input Offset Currents

In addition to input bias current, there is input offset current, which is basically the difference between
the input bias currents for the two inputs of an op-amp. While input bias current is more or less intrinsic
to an op-amp’s design, input offset current is due to manufacturing asymmetry. Thus, even with balanced
inputs, there will be some bias signal, but much smaller than in the unbalanced case. For example, the 741C
has an input offset current of 200nA (compared to 0.5 uA for input bias current), and the LF411 has an
input offset current of 0.1nA (compared to 0.2nA for input bias current).

7.6.1.5 Common-Mode Rejection Ratio

At this point, we can return to another source of error, the common-mode rejection ratio (CMRR),
which we introduced in Section 4.10.3 for the transistor differential amplifier, and we discussed it again for
instrumentation amplifiers in Section 7.5. The typical CMRR range of op-amps is around 50-125 dB. But now
look back at the op-amp inverting and noninverting amplifiers above. The inverting amplifier is insensitive to
bad CMRR, compared to the noninverting amplifier, which is relatively sensitive to common-mode signals.
Why is this? (What are the op-amp input voltages in each case?)

So while the noninverting amplifier looks good because of its very-high-impedance input, it is not quite
as precise as the inverting amplifier. The latter is better in high-precision applications.

7.6.2 Power Supplies

So far, we haven’t talked so much about the power-supply connections of op-amps. We have talked about
the rule that no current flows in or out of the inputs (or at least there is only a very small current). Clearly,
a current must flow in or out of the output in order for interesting things to happen. This output current
must come from somewhere, and that is where the power-supply connections come in.

Op-amps have two supply connections, and they are often powered from split supplies of +15V.
More generally we will call these supply voltages Viuppiy+, and the explicit connections are shown below.
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V;upply+

‘/supplyf

There are also single-supply op-amps, where Vupp1y— can be ground. Usually these can also be powered
by split supplies, but the difference is as follows. Op-amps involve transistors, so the output can usually only
swing to within a volt or two of either power-supply rail. Single-supply op-amps are designed with outputs
that can swing all the way to the negative rail (so the output can swing to ground if in a single-supply
circuit).

7.6.2.1 Power-Supply Rejection

Ideally, the behavior of an op-amp is completely independent of the power supplies. That is, suppose the ideal
op-amp output is 5V, and the op-amp is powered from +15V. Then suppose the power supply changes to
£16 V. The output should be determined only by the circuit inputs and feedback network, and so shouldn’t
change at all, but in reality, it will change slightly, say to 5.1V, to fabricate an example.

The (in)sensitivity of an op-amp to power-supply fluctuations is characterized by the power-supply
rejection ratio (PSRR). Ideally, the PSRR is very large, meaning the op-amp effectively “rejects” fluctu-
ations in the power supply. The PSRR is defined with respect to the op-amp inputs, and is the ratio of the
change in the power supply to the corresponding effect on the op-amp, referenced to a change at the input.
(This accounts for the fact that power-supply fluctuations will have larger effects on the output for circuits
with high gain.) As an example, suppose we have a PSRR of 120 dB, which is a ratio of 10° in voltage. Then
a 1-V change in the power supply corresponds to a 1-uV change at an input to the op-amp. We must then
get into the specific connections of the op-amp circuit (i.e., the gain) to determine the change in the output
voltage. (So a unity-gain follower would also see a 1-uV change at the output.)

As a real example, the LF411 has a PSRR at dc of 100dB typical, 80 dB minimum. The PSRR is
better for the + supply than for the — supply, and the PSRR is worse at higher frequencies, dropping to
~90dB at 100Hz, and ~30dB at 100 kHz.

7.6.2.2 Power-Supply Bypass Capacitors

One common trick for improving the behavior of op-amp circuits is to use “bypass capacitors” on the power-
supply leads of op-amps. The basic connection is shown schematically below.

Vsupp1y+

H

H

‘/supply—

The values of these bypass capacitors are not critical, but typically they would be 0.01-yF (monolithic)
ceramic, 0.1-uF (monolithic) ceramic, or 1-uF tantalum (polarized) capacitors. These capacitors should also
be placed physically as close as possible to the op-amp power-supply pins.
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Why use bypass capacitors? In a circuit, for example, on a printed circuit board (PCB), there
may be long wires (or PCB traces) connecting the op-amp supply pins to the power supplies. Schematically
this is shown below, where the wires have some intrinsic resistance and inductance.

“ ”
Veupply+
‘/supp1y+

B . Vsupply -
supply—
The inductance is particularly problematic, as it means the path to the power supply has high impedance.
The capacitor acts to short-circuit, or bypass, the inductance of the power-supply lead by providing a low-
impedance path to ground at high frequencies. Otherwise, what can happen is as follows. A sudden change
in the output of an op-amp (in response to an input change) implies a quick change in the power-supply
currents. Inductance in the power-supply leads means that the voltage will drop if, for example, the op-amp
is suddenly demanding more power-supply current. As we have seen, this can lead to output inaccuracies,
because the op-amp PSRR is worse at high frequencies. In the worst case, the op-amp may even self-oscillate.

Another way to think of this is at the capacitor acts as a “charge reservoir” that tries to stabilize
the power-supply voltages, temporarily supplying extra current as necessary when the op-amp demands it.
Again, this is most effective at high frequencies, where the PSRR is bad anyway. Thus we also see the
importance of using small, ceramic or tantalum capacitors (which have low inductance and respond well
at high frequencies), and placing the capacitors very close to the op-amp (to bypass as much of the lead
inductance as possible). On a PCB, each op-amp has its own local bypass capacitors, and the connection to
ground should have very low impedance (e.g., to a ground plane, or a grounded copper layer that covers
most of one side or layer of a PCB).

For critical applications, for example for a high-current amplifier, an even better approach is to use

multiple, parallel bypass capacitors on each power-supply pin, as shown below.

Vvsupply#—

0.01 uF ceramic
10 pF tantalum
470 uF electrolytic

V;upplyf

Here the large 470-uF capacitor acts as a large charge reservoir, as appropriate for the high-current circuit,
but only responds well at relatively low frequencies due to a high intrinsic inductance. Progressively smaller
capacitors with lower inductance will help stabilize the power-supply voltage at higher frequencies. In this
case, the smallest capacitors should be located closest to the op-amp, with the location of the large capacitors

not so critical.
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Another good approach for a low-current, or low-level, precision op-amp circuit is as shown below.

‘/;Uppl.‘/+

‘/supplyf

The idea is to add extra resistance to the power-supply lines, before the bypass capacitor. Obviously, this
trick is limited to low-current circuits, so the voltage drop due to the 10-€) resistor is small. This resistor
enhances the effect of the bypass capacitor and gives improved isolation from power-supply fluctuations.
This is an especially useful technique if high- and low-current amplifiers coexist in the same circuit, where
feedback from the high-current to low-current amplifiers may cause the circuit to self-oscillate. Even better is
to make sure the high-current and low-current ICs do not share the same power-supply lines (they should use
separate lines, connected only at a point where the supply voltage is regulated, for example, by a 3-terminal
regulator).

7.7 Finite-Gain Analysis

So far, we have assumed that the open-loop gain A of the op-amp is arbitrarily large. We have mainly
made this assumption via the rule that the input voltages are the same in negative-feedback mode. In a
real op-amp, this open-loop gain is high, but finite, ranging from about ~50-146 dB. So now let’s relax the

assumption of infinite open-loop gain to (1) see what the effects are, and (2) to see why having a large gain
is a good thing in an op-amp.

7.7.1 Noninverting Amplifier
As a first example, let’s return to the noninverting-amplifier circuit of Section 7.3.3, shown below.

Vi o———+

%ut

2

R
%Rl
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Recall that the result with infinite open-loop gain was

Ry
Vou =11 e Vvin- 7.34
= (12 (.39
But now, we will use the op-amp rule
Vour = A(Viny = Vin-), (7.35)

where A is the open-loop gain, instead of just assuming Vi, = Vj,_. To simplify notation a bit, let’s define
the voltage-divider fraction

Ry
== 7.36
g Ry + Ro ( )
so that the divided output voltage V5, is fed back to the inverting input,
‘/}n— = n%uh (737)
Also, we have the input
Vin = Vin+, (7.38)
so putting these equations into the op-amp rule (7.35), we have
Vout = A(V;n - ”7%ut)~ (739)

Solving for the output voltage, we have

A
— Vi,
1+nA
(noninverting amplifier, finite open-loop gain) (7.40)

Vout =

which defines the closed-loop gain
A
C 14+nA”
(closed-loop gain, noninverting amplifier with finite open-loop gain) (7.41)
Note that in the limit nA > 1, this expression reduces to the original formula

Goo=7"'=1+Ry/Ry, (7.42)

so this analysis reproduces the ideal-op-amp limit.

7.7.1.1 Gain Limits and Error

Notice that G < A, so that the open-loop gain A limits the closed-loop gain G—negative feedback can only
reduce the gain. Additionally, G < Goo, so the ideal closed-loop gain always limits the real closed-loop gain.
More specifically, assuming A to be large (A > Gingy),

A n! Goo Goo
q— — = ~Go[1-—2). 7.43
1474 14+ (A1 14+G/A ( ) ( )

Then the fractional “error” in the gain is

o7 T (7.44)

As an example, a decent op-amp has A of 100dB, which corresponds to A = 10°. For a G, = 10 setup, the
fractional error is
oG 10
Go ~ 10°
which is pretty small. For reasonably high values of A, this error is usually negligible compared to the error
due to the feedback-resistor tolerances.

=—-107% = —0.01%, (7.45)



7.7 FINITE-GAIN ANALYSIS 169

7.7.1.2 Insensitivity to Gain Variation

Another handy result that we obtain for large A is that if A is sufficiently large, then G is insensitive to
variations in A. Starting with the closed-loop-gain expression above in terms of G, and A,

G

_ 4
¢ 1+ G /A (7.46)
then oG G ¢ G ¢ 1
7 X (—Gx /A% = — s = — ) 7.47
0A (1+GOO/A)2( /4% A2 (1+G/A) A1+ A/Gy) (7.47)
Then the variation §G in the closed-loop gain G is
0G  0G
o= ﬂ(;A’ (7.48)
SO
0G 1 0A

— = 7.49
G (1+A/Gx) A (7.49)
so the fractional error 6G/G is much smaller than the fractional open-loop variation 6A/A by a factor of
1/(1+ A/Gx) = G /A for large A. This is a nice property because, for example, feedback with large A
reduces variations of gain with frequency, for a flatter response in a closed-loop amplifier. It also reduces
nonlinearity and distortion, which you can roughly think of as variations in gain with signal amplitude.

7.7.2 Feedback and Input Impedance

Negative feedback with large open-loop gain also helps quite a bit with input and output impedance. Going
back to the noninverting amplifier, we can construct an explicit model for input impedance R; as shown
below.

Vout

The dashed line encompasses the “real” amplifier, which consists of an ideal op-amp and a resistor modeling
the input impedance. As before, the closed-loop gain (7.41) is

A
= . 7.50
14+ nA (7.50)
Since, Vipt+ = Vin, and Viy— = nV,yu, we can take the input current I to be
Vvin - Vvin— Vvin - Vou 1-nA/(1 A V;
7= Jint — WVour _ 1=nA/(1+1n v . (7.51)
R; R; R; (1 -+ ’I]A)Rl

Then the effective input impedance Zj, is

A
Zin=(1+nA)R; = (1 + G> R;,

o0

(input impedance, noninverting amplifier) (7.52)
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which is much larger than the intrinsic input impedance R; if there is large open-loop gain A > Gingy.

For example, the modest 741C has R; = 2 M2 typical, 300 k2 minimum, which is not great. The open-
loop gain A is typically 2 x 10°, minimum 1.5 x 10%, which is not bad. If G, = 10, then Z;, = 4 x 10'1°Q
typical, or 5 x 108 Q minimum. These are pretty high input impedances, and they can be much higher with
a precision op-amp.

7.7.3 Feedback and Output Impedance

To model the effects of feedback on the output impedance, we can again introduce an explicit model, including
an output resistance R,.

%

Again, the dashed box represents the “real” amplifier, with an ideal op-amp and the output resistor. We will
call the output of the ideal amplifier Vi, while the “real” output is V. There is also a current I, which we
define as flowing into the output. Then setting a null input Vi, = 0, we have Vi, = 0, and now Vi, =nV,
so the op-amp rule (7.35) gives

Vour = —nAV. (7.53)

Then the current is V(1+nA)
- ou ’rl
LV Vi . 7.54
R, R, | |

Thus, the output impedance Zou = V/I is

R, R,
1+n4 14+ A4/Gs’
(output impedance, noninverting amplifier) (7.55)
This should be much smaller than the intrinsic output impedance R,, provided we have large open-loop
gain, A > G.
For example, the modest 741C has R, = 75€). With a typical open-loop gain A of 2 x 10°, and
Goo = 10, then Zoy = (759Q)/(2 x 10%) ~ 4mQ, which is quite small.

Zout =

7.7.4 Circuit Practice: Finite Gain in the Inverting Amplifier

For practice in dealing with finite op-amp gain, consider the noninverting amplifier, with finite open-loop
gain A. (Again, it’s best to do this before continuing, so we won’t defer this until the end of the chapter.)
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Ry
Ry
Vi — ANV, -
—° Vout
X
Show the following:
(a) The finite-A gain is
_ (1-n)A . Ry
1+nA ’ " R+ Ry

(closed-loop gain, inverting amplifier with finite open-loop gain) (7.56)
(b) Take the A — oo limit of Eq. (7.56) and show that

_B
Ry’
(closed-loop gain, inverting amplifier with infinite open-loop gain) (7.57)

Goo =

(¢) The input impedance is
Ry
1+A
(input impedance, inverting amplifier with finite open-loop gain) (7.58)
(Ignore any intrinsic input impedance of the op-amp, which we will assume is much larger than R;.)
(d) The output impedance is

Zin =R+

R,
1+nA’

(input impedance, inverting amplifier with finite open-loop gain) (7.59)
where R, is the intrinsic output impedance of the op-amp, as in the noninverting case.

Zout =

Solution.
(a) First, the noninverting input has Vi,+ = 0. The inverting input has a voltage determined by a voltage
divider between Vi, and V:

‘/in— = nvout + (1 - n)‘/;n (760)

Remember n = Ry /(R1+ R2), so as a sanity check, n — 1, Vi, becomes connected to Vs, and as n — 0,
Vin— becomes connected to Vi,, which makes sense. Then using Eq. (7.35),

Vous = _nA‘/out - (1 - n)A‘/m (761)
Solving for Vi,
(1-n)A
Vout = —7+— "= Vin- 7.62
YA (7.62)

This is the result we wanted, with G the coefficient of Vj,.
(byAs A — 00,G=—-(1-n)A/(14+nA) — —(1—1n)/n=—Rs/Ry.
(c) Suppose a current I flows into the Vi, terminal. Then
po Vi Vi Via = 0Vou = (A= 0)Via _ 0(Vin = Vou) _ 00 +04) + A -mA],, _ n(0+4)
R, Ry Ry (1 + ’I7A)R1 " (1 + nA)Rl m
(7.63)

where we used the solution (7.62). Then Z;, = Vi, /I, so

(1 + ’I]A)R1 R, AR, R+ Ry AR Rs
in = e = == R . 7.64
T0+4) n0+4) 04 (044 (0+4 (x4 M (7.64)
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Note that this reduces to Ry as A — oo.
(d) Here, we set Vi, = 0 and call the output V', with a current I going into the output terminal. Vo is
the output voltage of the ideal op-amp, before the intrinsic resistor Ry, as in the noninverting case. Then
Vine =1V, and

Vout = A(VvinJr - Vrinf) =—-AV,_ = _UAV (765)
So the current is
V—Vou  1+nA

= v, (7.66)

1
R, R,

and so the output impedance Zyy, = V/I is
R,

Lowt = —.
out 1+77A

(7.67)

Note that this decreases to zero as A — oo.

7.8 Bandwidth

The bandwidth of an amplifier refers to the frequency range over which the response (gain) is reasonably
flat. For electronic amplifiers, one characteristic is that the gain must fall off above some frequency—mno
amplifier can work at arbitrarily high frequencies.

Recall that the closed-loop gain G and the open-loop gain A are related, in that the latter bounds the
former:

G<A. (7.68)

Now let’s consider the frequency dependence of the gain. In particular, the open-loop gain A(w) typically
has a “one-pole response,” like that of a low-pass filter:
A
Aw) = 0 : (7.69)
1+ (w/w3aB)?

Here, the cutoff frequency wzap = 1/RC for a low-pass filter, where R and C' are typically set by intrinsic
transistor resistance and stray or added (internal) capacitance in the-op-amp. Note that asymptotically,

Aw) ~ = (7.70)

for large w, for a scaling of —6 dB/octave.

Then the closed-loop gain is bounded by the open-loop gain, so that as the open-loop gain falls off,
so does the closed-loop gain. This is illustrated schematically below for two different dc gains G and an
open-loop gain A(w).

A
° AW
— (1'<u,)
= —
& closed loop, large G
0
S
Ag/w
G(w)
closed loop, smaller G T

log(w)
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Note that as the dc gain becomes smaller, the bandwidth (frequency range over which the gain is roughly
constant) becomes wider. Since A cuts off as w™!, the closed-loop gain G(w) meets A(w) at a frequency
that scales in the same way as w™!. That is, the bandwidth scales as 1/Gp, where Gy is the dc gain. Said
differently, the product of the dc gain Gy and the bandwidth is a constant, and this is often quoted as
the gain—bandwidth product (GBWP), or the unity-gain bandwidth. For example, the 741C has
a GBWP of 1.5 MHz. Generally speaking, op-amps tend to be slow, especially at high gains, compared to
discrete transistors.

7.8.1 Slew Rate

A concept closely related to bandwidth is the slew rate, which is the maximum rate of change of the output.
Intuitively, this should be proportional to the GBWP, but this is somewhat more complicated because the
same signal, but with different amplitudes, would involve different slew rates, even if they have the same
frequency spectrum. So for rapidly changing signals, an op-amp with a particular slew rate may be able to
follow the signal at low amplitudes, but it may be harder for the op-amp to follow the same signal at larger
amplitudes.

As a concrete example, the 741C has a modest slew rate of 0.5 V/us. Slew rates can be much high; for
example, the BUF634 unity-gain buffer has a slew rate of 2000 V/us.

Generally speaking, the speed of an op-amp (either in terms of slew rate or GBWP) is controlled by
the internal capacitance, which is usually fixed by an internal compensation capacitor, but also by intrinsic
emitter resistance. Recalling that r, o< 1/I, generally speaking, a larger quiescent current (idling current)
for an op-amp gives a higher slew rate or a wider GBWP. There is thus a trade-off between power and
speed—some op-amps, like the OPA602, have a programmable quiescent current so the user can choose
exactly where to make this trade-off.

7.8.1.1 Slew Rate and Power-Boosted Op-Amps

There are certain circuits where the slew rate of an op-amp is critical to its performance. One example is
a “power-boosted” op-amp, where transistors are used to boost the output current capacity of an op-amp.
The motivation for this circuit comes from the following “push-pull” current amplifier.

+Vee

P

‘/in Vvout

)

7VEE

This is basically a pair of emitter followers. The potential advantage is operation with input signals of either
polarity. The problem, though, is that one of the transistors will conduct, and the emitter (output) voltage
must be a diode drop closer to zero than the base (input) voltage. That is, a graph of the output voltage
responding to input voltage is schematically as in the graph below, if we assume the simple model that the
base-emitter voltage drop is a constant 0.6 V (or less).
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Vout

Z0.6V 0.6V Vin

The problem in using this as an amplifier is that it leads to crossover distortion, because the base-emitter
drop changes as the signal crosses through zero. An example is shown in the graph below of crossover
distortion of an input sine wave.

Vv

oV

One nice solution, at least in principle, is to use an op-amp, and enclose the push-pull transistor pair in the
feedback loop of the op-amp, as in the circuit below.

+Vee

> © Vout

Vi Ve

_VEE

This circuit acts as a unity-gain buffer with high current-driving capacity, because the op-amp does whatever
it needs to do to ensure that Vi, is the same as V;,. And to do this, it must “undo” the crossover distortion,
so the base voltage V3 in this circuit must respond to the input as in the graph below.

V

0.6 V -

N
B

- —0.6 V

This response combined with the crossover distortion results in, in principle, a distortion-free output.
However, the problem with this conclusion is that it assumes that the op-amp has a long time to settle
to the “correct” value. But with a rapidly changing input signal, the op-amp must jump discontinuously by
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1.2V when the input signal crosses through zero, which in practice can be problematic. This can lead to
larger distortion and “glitching” with faster input signals.

A solution to this problem is to “bias” the transistors into conduction: basically, add 0.6V to Vg at
the npn’s base, and —0.6 V to V; at the pnp’s base. Then with a 0-V input, both transistors are slightly
conducting, but in opposition so their currents cancel. This wastes a bit of power at idle, but largely removes
the problem with crossover distortion. The uncorrected amplifier is called a class-B amplifier, while the
bias-corrected amplifier is called a class-AB amplifier.

Practically, it is complicated to design a bias-corrected circuit, especially to avoid thermal problems
and proper selection and matching of bias voltages. For physicists, a simpler solution is to use a high-current
buffer amplifier, where engineers have already taken care of the effort of biasing the push-pull pair. One
example is the circuit below, which can handle 250-mA output signals via a BUF634 unity-gain buffer.

> © Vout

‘/in o———+

precision op-amp

The idea is to use a precision op-amp, and take the feedback from the output of the BUF634. This way,
we get the high-current capacity of the “slave” BUF634, combined with the precision of the “master” op-
amp. One caveat, which we will explore in more depth, is that the buffer amplifier must have a much wider
bandwidth than the master op-amp.

7.8.2 Stability and Compensation

So far, we have talked about the frequency-dependent gain, but the frequency-dependent phase is also critical.
As we have noted, for most purposes we can regard an op-amp as having a gain behavior similar to a low-pass
filter.

Recall that for an RC filter, the relative phase of the output is 0° in the limit w — 0, and changes
to a 90° phase lag as w — co. If we have multiple, cascaded filters, at high frequencies, intuitively we can
think of having a 90° phase per “pole”, or roughly speaking, per RC pair. This can pose a problem for
op-amp circuits that require negative feedback. Due to phase shifts and time delays in the feedback loop
at high frequencies can add up to a 180° phase shift. However, negative feedback in combination with a
phase shift of 180° (or in fact anything between 90° and 270°) is in fact positive feedback. This can turn
into unstable behavior (oscillation) if the gain of the circuit exceeds unity in the frequency range where the
feedback becomes positive feedback.

Thus comes the idea of compensation. Most op-amps include an internal capacitor to “roll off” the
gain, and in particular to ensure that the gain is less than unity at frequencies where large phase shifts
may cause problems. There are also uncompensated op-amps, which need an external capacitor or an
appropriate reactive load to achieve stability. An example is the inverting amplifier below, with an explicit
compensation capacitor to cut off the gain at high frequencies.
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compensation C'

Ry

T

Ry

]
out

Another example is a variation on the BUF634 buffered op-amp circuit from the previous section. If the
slave buffer amplifier is slower than the master op-amp, this may cause a problem because the phase shift
due to the slower buffer may cause the master to become unstable or oscillate. A solution to use a slow
buffer is the circuit below.

> © Vout

Vin o——

. slow buffer
precision op-amp

For small frequencies (w <« wsqp = 1/RC), the feedback comes from the buffer output, while at high fre-
quencies (w > wsgp = 1/RC), the feedback comes from the output of the master op-amp. This arrangement
avoids problems with the phase shift and maintains stability of the amplifier.

7.8.2.1 Op-Amp Output and Capacitive Loads

To examine a problematic situation in a bit more detail, let’s return to the bandwidth argument of Section 7.8,
but now keep the complex phase in the open-loop gain:

- Ag

Aw) (7.71)

- 1-— iw/w;; dB '
Again, this response has the form of a low-pass filter [Eq. (2.44)], where the op-amp response “rolls oft” due
to a single capacitor. Then, taking the example of the noninverting amplifier of Section 7.7.3, the op-amp
output impedance (7.55) becomes

. RO - Ro(l —iw/wgdB)
1 + A(w)/Goo 1 + AO/Goo = iw/wgdB'

(output impedance, noninverting amplifier) (7.72)
Since typically Ag >> G, we can consider the intermediate range of frequencies between ws gg and (Ao /G ) w3 dB,
where the impedance reduces to

Zout (CU)

Ro(—iw/wsqB) . R,Gso ( w Ay )
Zopt (W) = ——F—> = —lw———r 1« < = . 7.73
out () Ao/Goo w3 asAo wzap  Goo (7.73)
This has the form of an inductive reactance [see Eq. (2.40)], with effective inductance
R,G
Leg=—— (7.74)

w3dBAo
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This inductive regime can span a wide range. With ws4p/2m ~ 100Hz, R, ~ 1002, Ag ~ 10°, and G, = 10,
this works out to a frequency range of ~100Hz to ~10 MHz, with an effective inductance of ~1.6 uH.
Outside this frequency band, the output impedance is simply resistive. For small frequencies, we have

R, w Ao
Zoui(w) = 1< 20, .
@) =14, /an (deB << Goo> (7.75)

while for very large frequencies,

AO w
Zout(w) = Ro 1< =2 . 7.76
o (W) ( <go < wgdB) (7.76)

Note that in practice, other stray capacitances will become important in the high-frequency range.

The inductive output of the op-amp in the regime of Eq. (7.73) can give rise to problems if the output
of the op-amp drives a capacitive load. Then Leg and the capacitance form a resonant circuit. This can lead
to a resonant peak in the gain profile at frequency

_ wsapAo
vV LegC R,CG’

For the same parameters, this would lead to a resonance at w/2m ~ 100 kHz for a load capacitance C' = 1 uF.
If the effect of the resonance is sufficiently strong (i.e., sufficiently large @), the circuit can become unstable
and oscillate near this resonance frequency.

wo (7.77)

7.9 Comparators

Recall that op-amps are basically high-gain differential amplifiers.

Vin+
‘/out - A(Vin+ - ‘/inf)
Vin—

We have mostly concentrated on closed-loop operation (feedback from output to the inverting input), which
forces the inputs to have basically the same voltage. In open-loop operation (no feedback), the inputs are
not the same, and if they are different by even a small amount (~mV), the output rails one way or the
other to reflect the difference. This open-loop operation is useful in some contexts, and op-amps that are
specifically designed for this purpose are called comparators.

Specialized comparators (vs. using regular op-amps in the same role) have some advantages. For
example, stability is not a concern, because comparators are not generally used with negative feedback.
Thus, they need no compensation, and are instead optimized for very high slew rates. In fact, a common
configuration for a comparator is the open-collector output. The common LM311 comparator, with
open-collector output, is shown below, connected as in typical usage.

+5V

1k

v _[+5V, V>0
T 0V, V<0
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The usual output of the op-amp in the LM311 drives the base of an output transistor, whose collector is
connected to the output. If Vi, > 0, then the transistor acts as an open circuit, causing the output to go
high to +5V via the 1kQ pull-up resistor. If Vi, < 0, the transistor acts as a short, causing the output to
fall to zero.

Comparators are useful in interfacing analog signals to digital circuits, which only recognize two states
(HIGH voltage and LOW voltage). The comparator simply compares the analog signal to some reference
voltage, and “tells” the digital circuit whether the analog signal is above or below the reference, but using
the correct digital voltages. The states of 0 and +5V as in the LM311 example above are appropriate for
TTL logic, for example. More complex interfaces are certainly possible, and we will return to this later when
we discuss analog-to-digital conversion.

Beyond digital interfacing and analog-to-digital conversion, other applications of comparators include
oscillators and drivers for alarms or indicators (LEDs, buzzers, beepers) based on an input sensor (e.g., for
temperature or water level).

7.9.1 Schmitt Trigger

One problem with comparators arises with noisy input signals. Consider the noisy input voltage below going
into a comparator with the reference voltage shown. What we want from the comparator is a signal that
reflects when the input signal goes above or below the reference. The corresponding output is shown in the
lower graph.

V,

threshold

t
But what we see is that due to the noise, the output signal makes many (spurious) transitions whenever the
signal crosses a reference, whereas we would expect a smooth input signal to make only one transition at
each crossing.
A solution to this is positive feedback, which introduces hysteresis. The circuit below, based on the
LM311, uses feedback to the noninverting input.

+5V

1k
Vin 00—+

LM311 ————o Vout

—N\\NVN—

1kQ 100k

Again, the output swings between 0V and 5V, depending on the inputs. Now look at the two cases.
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1. If Vi, is low, then Vo4 is high (45V), and the trigger point is about 50 mV.
2. If V4, is high, then Vg is low (0V), and the trigger point is 0mV.

The trigger point depends on the output, and thus to the input; in other words, Vi, “repels” the trigger point,
and this gives the circuit immunity to noise at the level of about 50 mV or less. The schematic operation of
the Schmitt trigger, from introducing the two effective trigger points, is shown below on the same signal. The
hysteresis suppresses the spurious transitions. (Note that the output is inverted compared to the discussion
of the LM311 circuit, so it compares more closely to the comparator output in the previous graphs.)

v,

thresholds

t
Of course, other nominal trigger levels besides 0V are possible, by replacing the 1-k2 resistor with a voltage
divider. The Thévenin resistance of the divider acts in place of the 1-k{) resistor.

7.10 Positive Feedback and Oscillator Circuits

Besides the Schmitt trigger, positive feedback is useful in op-amp oscillators. We will study two examples
7.10.1 Relaxation Oscillator

of positive-feedback oscillators here: a relaxation oscillator and a phase-shift oscillator.

One good example of a positive-feedback oscillator is the relaxation oscillator, shown below.
10 k2

10k

—N\VN—

+

i

—AANN—

Va
C R

Here, the amplifier is standard op-amp, acting as a comparator in open-loop mode. We will assume the

output rails are +Vpax and —Viyax. There is a 50% voltage divider feeding the noninverting input, similar
to the Schmitt trigger above. This sets the trigger points of the comparator to +Vinax/2 and —Viax/2.
Now consider the output of the oscillator at the two points V7 and V5, shown below.
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V
‘/lll‘dX

Vmax/ 21

- Vmax/ 2+

-V

max

If the output V; is positive, the RC circuit charges V5 until the inverting-input voltage exceeds the Vipax+ /2
trigger point, at which point V7 goes negative, and the charging proceeds in the opposite direction until V5
reaches Vinax— /2, and the cycle repeats.

To treat this more quantitatively, the interval between the switching times is the time from RC decay
of Vo from +Vinax/2 to —Vinax/2. The process is (RC) exponential decay starting from +Vinax/2 t0 —Vinax,
so we are waiting for the decay to 1/3 of the initial voltage, thinking of —Vj,ax as “ground.” That is, if At
is the time interval, then

e~ At/RC é (7.78)
SO
At = RC'log3 ~ 1.1 RC. (7.79)

The period T is 2At, so we have
(7.80)

T'=RClog9~2.2 RC (relaxation-oscillator period)

for the period of the relaxation oscillator. The output can be either a quasi-triangle wave or a square wave,
depending on which point serves as the output.

7.10.2 Bulffered Phase-Shift Oscillator

Another example of an oscillator is shown below. It produces a sine wave at a frequency determined by the
RC low-pass filters. The buffers are op-amps connected as unity-gain followers.

Ry

Ry

out

Note that the first op-amp is connected as an inverting amplifier, and the output Vi, feeds back into the
inverting amplifier. There are 3 RC filters in the feedback loop. The oscillation condition is that the phase
shift of each RC filter is 60°, so the total RC phase shift is 180°. In combination with the action of the
inverting amplifier, this is a total phase of 0°, which means that we have positive feedback.
The correct phase shift only happens at one frequency, which we can find by setting the low-pass-filter
phase [Eq. (2.61)]
¢ = —tan" ' (WRC) (7.81)

to ¢ = 60°. The solution is the angular frequency

,_ tan60° V3 1732

RC ~RC T RO (782)
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This corresponds to a frequency f = w/27, or

VB 0276
= 5erc ™ Re
(oscillation frequency, phase-shift oscillator) (7.83)
For example, if R = 10k and C' = 0.01 puF, then f = 2.76 kHz.
Recall that the low-pass amplitude transfer function is [Eq. (2.45)]

Tw) = —— (7.84)

V1+ WRC)?

At the oscillation frequency, wRC = /3, T(w) = 1/2, so the transfer of 3 RC sections is 1/8. Thus, to ensure
oscillation, we should set Ry/R; = 8 or a bit higher.
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7.11 Circuit Practice

7.11.1 Analog Computers

7.11.1.1 Proportional-Integral Amplifier
As an introduction to the next problem, compute the output voltage in the op-amp circuit below. (It should
be proportional to the sum of the integral of the input signal and the input signal itself.) For simplicity,

assume Vo1 (0) = Vin(0) = 0.

R
Vin o —— AN,
‘/out
Solution. Using the inverting-amplifier result,
_ Ry + X¢ _ R 7
%ut - R ‘/m - R ‘/m wRC ‘/1n~ (785)
Multiplying through by —iw,
R 1
— WV = iwffVi ~ o Vin: (7.86)
and then changing to derivatives,
d‘/out o Rf d‘/;n 1
& ~ R a RC'™ (7.87)
Integrating,
V(1) = — Ly (t)—l/tv () dt’ (7.88)
out - R in RC 0 in . .

7.11.1.2 Damped Harmonic Oscillator
The circuit below is an example of an analog computer, in this case a computer that solves a differential
equation. In particular, show that this circuit solves the damped-harmonic-oscillator equation,

b=yt —wir. (7.89)
Give expressions for the parameters v and wg in terms of the R and C values.
o R3 o, Rs
RQ R4
_ ‘,_/\/\/\/ — »—/\/\/\/ - Vout
IC1 1C2 1C3 ———o
+ + +

Hint: think of the input to IC1 as #(¢), and start integrating from there.
Actually, this circuit only solves for &(t), while x(¢) is buried in an inaccessible way in IC2. Can you

think of a way to modify the circuit, by replacing IC2 with two other op amps, to make z(t) available?
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Note also in particular how Rz controls the damping (7) for the circuit.
Solution. Suppose the input to the IC1 integrator is &. Then the output of IC1 (and the input of IC2) is

T

Vict = — . 7.90
o=z (7.90)
Now applying the results of the first problem, the output of IC2 is
Rg X
Vice = i . 7.91
= Rl RiRaCiCs (790)
The last op amp just inverts with some gain:
R3Rs . Rs
Vies = Vour = — — . 7.92
103 = Yout = T B RoRuCh RiRoR4C1Ch (7.92)
Then Vo = &, so we have the equation
R3R R
i = Al 5 (7.93)

T RiRRiCy” T RiRyR.CiCh

This is the harmonic-oscillator equation with

R3R5 R5
__ fislts o 7.94
VT RiR,R,C, 0 RiRyR,C1Co (7.94)

Note that we set Vout to &, so this solves for the second derivative. To make x(t) available, replace IC2 by
two op amps, one an integrator and one an inverting amplifier. Then use IC3 as an inverting summer. The
z(t) signal is then available on the output of the inverting amplifier.

7.11.2 Gyrator

The circuit below is an example of a gyrator,! which presents an effective impedance based on the constituent
impedances Z1—Z5 (which are not necessarily resistors).

IPaul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed. (Cambridge, 1989), p. 291 (ISBN: 0521370957).
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AVAYA
Tt =
= 7.7

Zy

Za

Z3

;
]

(a) Show that the effective input impedance is as advertised. Begin by considering a voltage V and a
current I at the input terminal, and divide them to obtain the impedance.

Hints: to get you started, here are a few things to simplify and keep things organized. First, consider
currents I1—1I5, flowing through “resistors” Z;—Z5, all in the direction of the ground connection.

Second, assume that both op amps are operating “normally” with negative feedback (this is plausible
in this circuit, since the outputs are “closer” in the impedance chain to the negative inputs than to the
negative outputs, but strictly speaking this would need to be proven; for simplicity, just assume this is the
case).

Third, note that V' = I5Z5. (Why?)

Finally, use what you know about op amps to relate all the different currents together; you don’t need
to consider any other currents besides I and I;—I5, and obviously you want to eliminate all of them but I.

(b) One of the utilities of this circuit is to realize an effective inductor using only op amps, resistors,
and capacitors. This is useful since these components are often better behaved (i.e., closer to ideal) than
inductors. Suppose Z; is a capacitor in this circuit, with the rest resistors. Show that the result is an
effective inductor, and give the effective inductance. What set of (reasonable) components would give you a
1-H inductor? (A pretty big inductor!)

Solution.
(a) We start with
V = I:7s. (7.95)

This is because the voltage drop across the other four resistors must be zero, because they are wrapped
between the inputs of the op amps.
Now the voltage between the inputs of the right-hand op amp is zero, so

1375 = — 1,74, (7.96)



7.11 CIRCUIT PRACTICE 185

Then using Iy = I (no current into the op-amp input), we find

Z3Zs
V=12 =225, (7.97)
Zy
Repeating this argument, we have
L Z,=—1,7, (7.98)
and IQ = 13, SO
Z3Z5 212375
= — I, = 1. .
V 7, 7.7, (7.99)
Finally, I = I, so
ZnZ3Z5
=2 i [ T, 1
v 770 fF (7.100)
which establishes the effective impedance.
(b) With
YAVAYAS
Zoff = ——— 101
T 7,7, (7.101)
and setting Z, = i/wC and the other impedances to resistances,
Ri1R3Rs5C
Dot = —i—875 2 (7.102)
Ry
Comparing this to
X = —iwl, (7.103)
we have an inductance R R.R-C
Leg = 223757 (7.104)
Ry

With C' = 0.01 uF, we could pick all resistors to be 10k, which would give 1 H of inductance.

7.11.3 Guitar Preamp with Midrange Boost/Cut

The circuit on the next page is a preamplifier for an electric guitar, powered from a single 9-V battery. It
is designed for a Fender Stratocaster, and uses one of the “tone knobs” to control a midrange boost or cut
(a midrange boost gives a “fat” sound more like a Les Paul guitar, with “humbucking pickups;” a midrange
cut gives a clear, “thin” sound, more like the neck pickup on a Fender Telecaster guitar). The PCB design is
also shown, printed at actual size. (Compare this circuit to the preamplifier for the Eric Clapton Signature
Stratocaster from Section 4.12.4.)

Try to work through the circuit and understand each of the elements, noting the following;:

e Since this circuit is powered by a single 9-V battery, but the signal is bipolar, all circuits must be
referenced to the “effective ground” of 4.5V. For example, the input is ac-coupled and biased at this
effective ground.

e There are four op-amps, but all packaged in one chip. Hence the “1/4 OP462,” and the IC pin numbers
on each op-amp.

 First, convince yourself that the input op-amp (pins 1-3) is an ac-coupled, unity-gain buffer.

o Now, the upper-left op-amp (pins 5-7) functions as a noninverting amplifier. But the capacitor gives
a frequency-dependent gain. You should convince yourself that the dc gain is unity, but the ac gain is
higher. What is the ac gain? Why do we want unity gain at dc?
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The upper-right-hand op-amp is less obvious, but this is an inverting bandpass filter, as suggested
by the center frequency and @ factor. Note that the noninverting input is biased at virtual ground
(normally this input would just be grounded), and that there are two R—C pairs at the input (R7 in
parallel with R8 and R9, with C4; and R12 with C5) that together give the bandpass action, because
they act something like cascaded low-pass and high-pass filters. (See Problem 22.)

The final op-amp (pins 12-14) combines the filtered signal with the original to give the boost or cut.
Capacitor C2 rolls off the gain at high frequencies, where the combination may not be accurate due to
different delays at the inputs.

To control the amount of boost or cut, a potentiometer (with color-coded wires according to the
standard Fender convention for the tone knob) interpolates between the buffered input signal and the
inverted version produced by the last op-amp.

The output is ac-coupled and biased to ground.

Note the diode in the battery/power-supply connection, which protects the op-amp in case the battery
is accidentally connected in reverse. A single bypass capacitor stabilizes all op-amps, since they are in
a single package. The op-amp operates at low power, so the bypass capacitor value and location are
not critical; a larger capacitance is fine since the capacitor does not need to work well at very high
frequencies (audio = low frequency in circuits).
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7.11.4 Active Rectifiers

Below are two active rectifiers; that is, ideally, they realize the function

Vin, Vin 20
Vout = { 0 otherwise. (7.105)

The first one is a “simple” rectifier,

10k
MW -
Vi o———1+

and the second one is the “better” rectifier.?

10k$2

AN ’ G=11 Vour

10kQ

Note that the second circuit takes the inverted signal —Vj, instead of Vi,, which could be implemented by
another inverting amplifier that is not shown.
The questions are:

1. Why are these active rectifiers? (Note that unlike simple diodes, these circuits really make a transition
at Vi, = 0, rather than at one forward diode-drop above ground.)

2. Why is the “better” circuit better? (Hint: it has to do with the slew rate; what is the state of the
op-amps when Vi, < 07)

Solution. Tracing through the simple rectifier: Note that if Vi, > 0, then the output of the op-amp can
maintain the inverting-input voltage Vi, = Vi, by keeping its output at one forward diode drop above
Vin. However, if Vi, < 0, then the op-amp can’t pull Vi, negative through the diode, so the op-amp rails
negative. The output is taken from Vj,_, so the forward diode-drop doesn’t matter for calculating V.

Tracing through the better rectifier: If —V;, < 0 (i.e., Vi, > 0), then the output of the op-amp can
maintain the inverting-input voltage Vi, = 0 by pulling its output one diode drop above V;, and conducting
via the upper diode, and the op-amp acts like an inverting amplifier. Again, the diode drop doesn’t matter
since the output is buffered at the correct point. For —Vi, > 0 (i.e., Vi, < 0), the lower diode conducts
instead, and the upper diode disconnects—this means that Vi,; = 0 because the output buffer sees the
virtual ground at the inverting input to the op-amp. The output of the op-amp is one forward diode-drop
below ground.

The difference in these circuits is in the crossing through zero, because in the former case, the op-amp
output swings from the negative rail to +0.7V. In the latter case, the op-amp only swings from —0.7V to
+0.7V, which reduces the tendency of the op-amp to glitch when fast input signals have zero-crossings.

2Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed. (Cambridge, 1989), pp. 187-8 (ISBN: 0521370957).
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7.11.5 Pulse-Area Stabilizer

The circuit on the next page is designed for the following purpose. To take photographs with a laser pulse,
it it desirable to have the same exposure from each pulse. But the intensity of the laser drifts. Rather than
try to stabilize the intensity of the laser, we can compensate for the drift by changing the duration of each
laser pulse to compensate. By making the pulse area or integrated energy of each pulse the same, the
photographs have exactly the same exposure, independent of the laser intensity.

Try to trace through the following features in the circuit.

1. The reference IC6 provides a stable voltage to bias the photodiode. What is the voltage at pin 2?7

2. You should then convince yourself that the photodiode PD1 is reverse-biased. This helps to improve
the speed of the photodiode. The photodiode itself acts as a current source, with current flowing from
cathode to anode.

3. What kind of op-amp circuit is IC1? How is the output related to the photodiode signal? (Answer:
the op-amp output is positive and proportional to the photocurrent.)

4. IC2 is an integrator, with a MOSFET to reset the integrating capacitor.

5. IC3 is a comparator, connected as a Schmitt trigger. It detects when the integral of the laser pulse
intensity reaches a set value from input jack J3. Its output drives digital logic circuitry, to which we
will return later after we have studied digital electronics.
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7.12 Exercises

Problem 7.1

Consider the following op-amp circuit, which contains one resistor (of resistance R), and one schme-
sistor.

Vi VNV -

> © Vout

Recall (Problem 12) that a “schmesistor” is a device that obeys “Schmohm’s law,”
vV =1I°5, (7.106)

where S is the “schmesistance.” Derive an expression for V; in terms of Vi,, R, and S.
Problem 7.2

Consider the following op-amp circuit, which contains one resistor (of resistance R), and one “schme-
sistor.”

R

— A

Vvin o -

> © Vout

Recall that a “schmesistor” is a device that obeys “Shmohm’s law,”
V =128, (7.107)

where S is the “schmesistance.” Derive an expression for Vg, in terms of Vi,, R, and S.

Problem 7.3

Show that V,,; = V7 + V5 in the circuit below.

R

VoA
R

+
‘/ou:V—FV
e e | A
R
%R
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Problem 7.4

(a) Consider the following op-amp circuit, which contains one resistor (of resistance R), and one
schmapacitor (see Problem 9) of schmapacitance S.

S

—L

d © Vout

Derive an expression for Vo, (t) in terms of an arbitrary, time-dependent input Vi,(¢), R, and S.
Assume an ideal op-amp.

Recall that the schmapacitor is defined by the relation

3V

I=5——
Sdt3’

(7.108)

where I is the schmapacitor current and V is the voltage drop across the schmapacitor.

(b) Of course, schmapacitors aren’t real. Describe briefly and qualitatively how you could build an
equivalent circuit using real-world components.

Problem 7.5

(a) A photodiode produces a backwards current (i.e., current flows from cathode to anode) when
detecting light. (Think of this as the opposite of an LED, where a forward current causes light to be
emitted. In fact, an LED can work as a photodiode, though not a particularly great one.) Consider the
photodiode-amplifier (op-amp) circuit below, which acts as a transimpedance amplifier (current
input, voltage output). Write down an expression for the output voltage in terms of the photodiode
current and R. Is the output voltage positive or negative when you shine light on the photodiode?

NV

R

»

————oO
out

\\H
+

(b) The Hamamatsu S1223 is a standard, medium-area (2.4 mmx2.8 mm), general-purpose, silicon PIN
photodiode. The sensitivity is specified at 0.52 A/W. Assuming the photodiode collects all the power
from a steady, 1-uW laser beam, and the resistor is R = 10k{2, what is the output voltage?

(c) For a very sensitive circuit (i.e., to register small input powers, of the order of nW), it may be
necessary to use a very large resistor. But also recall that op-amps aren’t always happy with feedback
resistances much over 1 M), and very large resistors may be difficult to source. There is a nice trick to
get around this, however. Consider the modified transimpedance amplifier below, with a “T network”
in the feedback loop.
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R1 R2
R

~ >

© Vout

\\H
+

What is the effective feedback resistance R of this circuit (i.e., the resistance that makes this equivalent
to the original circuit)? Find a combination of 100k{2 or smaller resistors that gives an effective R of
1GQ.

Problem 7.6

Design a current source (constant-current regulator), according to the following specs:

1. The only allowed parts are: one (ideal) op-amp, one resistor, and the load.

2. The load current is controlled by an input voltage, with a 1-V input change corresponding to a
1-mA change in output current.

3. The load need not be ground-referenced (i.e., the load need not have any direct connection to
ground, or to any particular voltage).

Hint: think about how the standard inverting op-amp circuit works.

Problem 7.7

Consider the (op-amp) differential-amplifier circuit shown below. Recall that for this to behave as a
good differential amplifier (i.e., for perfect common-mode rejection), the two R1—Rs resistor pairs must
be matched perfectly (in terms of ratio), assuming ideal op-amp behavior.

NV

Ry
Ry
p—y§ f
—° Vout
Vi +
Ry

Ry

Of course, real resistors aren’t perfectly matched. As a model for this, suppose that the feedback
resistor has a resistance Rs + R, where R is a small perturbation to this resistance.

(a) Rederive an expression for Vg in terms of the input voltages and resistances. Keep only first-order
terms in 0 R.
(b) Write down an expression for the CMRR. Consider a unity-gain amplifier with Ry = Ry = 10k<Q.

Give a numerical estimate (in dB) for the expected CMRR if you use 1% resistors. Repeat for 0.01%
resistors.
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Problem 7.8

Show that the op-amp circuit below behaves approximately as a logarithmic amplifier. Under what
conditions does this circuit really function logarithmically?

> © Vout

Hint: the function of the transistor, as in the inverting amplifier, is to convert a current into a voltage,
so use an appropriate relation to describe the transistor.

Problem 7.9
For the circuit below, the Howland current source, show, provided R4/R; = R3/Ry, that I =
*‘/in/RQ-

Ry Ry

Vo e A1 AM——

R R

— 2
o I l@load
Problem 7.10

Consider the circuit below.? Show that for this circuit, Vout = |Via|-

Assume an ideal op-amp.

3Miles A. Smither, “Improved absolute-value circuit,” in Bill Furlow, Ed., Circuit Design Idea Handbook (Cahners Books,
1974), p. 13 (ISBN: 0843602058).
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R1 (20k)

10k
yo BBOON

R2 (10k) RO (20k)

IC 2 —o0 ‘/out

+
R5 (4.7K) R7 (68k)
AAAY
R6 (10k)

This circuit looks a little complicated, so here is some guidance. Note that you should be able to do
this with very little math, provided you break the circuit down into manageable parts that you have
already learned about.

(a) The IC2 op amp is connected in one of the basic op-amp circuits; what is it?

(b) Now the tricky part is understanding the diode network in the IC1 circuit. Begin by treating D1
and D2 as ideal diodes (i.e., no forward voltage drop). Now you should see that only one diode conducts
at a time, and in either case IC1 is connected as one of the basic op-amp circuits (which one?). Work
out the voltages V7, V5, and V3, and handle separately the cases where the output of IC1 is positive or
negative.

(c) Finally, consider the original circuit with real diodes, and argue that the forward voltage drops
don’t matter.

Problem 7.11

The purpose of this problem is to show that, in the circuit below, that Vo = max{Vi,Va} (i.e., it
selects the larger of the input voltages). The diodes here are real diodes (i.e., you must account properly
for any voltage drops across the diodes), and there are no restrictions on the signs of the input voltages.

—O
Vous = maX{Vb Vz}

(a) Begin by showing that the current I is given by

_V-n
=R

I (7.109)
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(The voltage labels V3 and V,, are there for a reason!)
(b) Then use the current I to show that V. = max{Vy, Va}.

Problem 7.12

The circuit below is a negative-impedance converter, composed of an op-amp (you may assume
the golden rules apply here), two identical resistors of resistance R, and a generic circuit element of
impedance Z (could be a resistor, capacitor, etc.). What is the impedance Z;, at the input terminal?

VvV

R

Zino +

Qz

The amplifier below is a multiplying amplifier, with the output voltage proportional to the product of
the input voltages.

Problem 7.13

1%
‘/out = aVl ‘/2
Vs

Using this multiplier and an op-amp, design a circuit that behaves as a square-root amplifier
(i.e., with Vot o< v/Vin). Show that your circuit behaves as advertised.

Problem 7.14

Consider the circuit below. Design an equivalent circuit using an op-amp, the same resistor R, and a
capacitor, and give the value C' of the capacitance in terms of R and L.

L

7000

> © Vout

Problem 7.15

Show that the circuit below behaves as an instrumentation amplifier with high input impedance and
gain G =14 Ry/R,.
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Ry

A Rl
" A

W :

+ R2 > °
+ Vout = G(V+ + V*)

V_

Problem 7.16

An op-amp unity-gain buffer is shown below.

. © Vout

Vvin © +

Compute the closed-loop gain of this circuit, assuming a finite, open-loop gain A.
Problem 7.17

Consider the transimpedance amplifier below. The op amp has finite open-loop gain A.

VMV

R

—— O
out

(a) Derive an expression for Vg in terms of the input current I. Also take the limit as A — co.

(b) Derive an expression for the input impedance of the circuit. Ignore any intrinsic input impedance
R; of the op-amp inputs.

(c) Derive an expression for the output impedance of the circuit.
Problem 7.18

Consider the transimpedance amplifier below with input capacitance C. This circuit acts as a model
for instability in a photodiode ampifier, where recall that a photodiode acts as a current source, and
C models the photodiode capacitance.

VMV

R

————oO
out
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(a) Derive an expression for Vo, assuming a finite open-loop op-amp gain A. (a) Derive an expression
for the frequency-dependent transimpedance Z(w) of the amplifier (i.e., such that Vo, = IZ(w) for an
input current of frequency w). Also take the limit as A — 0.

(b) Show that, if the open-loop gain falls off like a low-pass filter, A(w) = Ag/(1 — iw/wp), that the
magnitude of Z(w) is peaked at some frequency w > 0 if Ag is sufficiently large.

(c) Find the peak frequency.

Problem 7.19

Derive an expression for V;, in the circuit below, in the regime where the output is not railed (assume
that R is of the order of 10k(2). Also, you may assume Vi, > 0 (but assume Vi, is not so large that
it damages the transistor) and an ideal op amp. Finally, the op amp is powered from +Vgc. Be clear
about any assumptions you make.

+Vee

R/2 AA A

‘/in o -
d © Vout
+

Problem 7.20

In the circuit below, derive an expression for V,,;, assuming an ideal op amp.

Vin —\VVV NV

‘/out

Problem 7.21

In the circuit below, the diamond-shaped arrangement of resistors is called a Wheatstone bridge,
and can act as a sensitive measure of the mismatch of two resistors (here R and R+46R). This is useful,
for example, in sensing the value of a thermistor (semiconductor resistor whose resistance varies with

temperature).
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d © Vout

—_— Rf

A

For this circuit, derive an expression for V. To keep the algebra under control, give the answer only
to lowest order in the small perturbation 0R [i.e., give the lowest-order term in the Taylor expansion
about 6 R = 0; you will need to use (a + da)~! ~ a~! — Ja/a? for da < a.

Problem 7.22

Consider the following circuit, an active, inverting, band-pass filter. (This is the bandpass filter from
the guitar preamplifier in Section 7.11.3.)

CQ pu— R3

Via %ﬂ% -

Rl Cl —0 Vout
Ry +

(a) Derive an expression for the gain function G(w), and the amplitude gain function G(w). Note
that these are the same as the transfer function and amplitude transfer function, respectively, in the
passive-filter case.

Note: an algebra program like Mathematica will make this problem considerably simpler. Contact me
if you need help with learning how to use it for algebra or making plots.

(b) Derive asymptotic expressions for G(w) for large and small frequencies. From these expressions,
argue that this is a band-pass filter.

(¢) Find an expression for the center frequency, where G(w) is maximum. Give a numerical value
for this frequency (give the frequency in Hz, not rad/s), for the component values Ry = 35.7kQ,
RQ =28 kQ, R3 =82 kQ, Cl == CQ =0.01 ,uF

(d) Find an expression for the peak gain, i.e., the value of G(w) at the frequency you derived in part
). Again, give a numerical value for the same component values.

(c
(e) Make a log-log plot of G(w), over a reasonable range of frequencies, for the component values above.
(Keep in mind this is intended as an audio band-pass filter.)

Problem 7.23

Consider the circuit below, which is intended as a voltage-controlled current source. Assume the
“output voltage” Vot is held to a fixed voltage by an external source.

4This is the modulation input stage of the current-controller circuit in K. G. Libbrecht and J. L. Hall, “A low-noise high-speed
diode laser current controller,” Reviews of Scientific Instruments 64, 2133 (1993).
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I()ut
‘/in o * /\/\/\/ * 4»0 out
[| 1pF  1kQ
| | 1k
2k0 1»—/\/\/\/—0
1kQ +
AAN tc1
1k -

1kQ 1k

(a) First, start by identifying the basic op-amp circuits for IC1 and IC2 (i.e., these are two standard
op-amp circuits, connected via a network that includes three resistors). For IC2, first think about the
circuit at dc (i.e., ignoring the capacitor).

(b) Show that Iou = Vin/(1kQY), and is independent of Vo, for de inputs. (You may find it useful to
label the output voltages of IC1 and IC2 as V; and Vs, respectively.)

(c) Show that if V4, is disconnected (i.e., not held at any particular voltage), that I,,s = 0, independent
of Vout (for de inputs).

(d) The function of the capacitor is as follows. The above current regulation requires IC2 to generate
a signal to cancel any currents drawn by IC1. However, due to propagation delays through I1C2, the
cancellation may not be accurate at high frequencies, and in the worst case, the circuit may even
become unstable. Thus, the capacitor is there to roll off the gain of IC2, protecting against these
effects. However, the cancellation no longer works, so redo (c¢), calculating I,y in terms of V¢ at high
frequencies (i.e., assume that I,; and V¢ are the amplitudes of high-frequency, oscillating signals).

Problem 7.24

Consider the circuit below.

‘/ill

out

(a) Assuming an ideal op-amp, what kind of amplifier is this? Compute V¢ in terms of Vj,.

(b) For a real op-amp, what would the circuit do [i.e., why wouldn’t it work as in (a)], and what
spectfically is it about the op-amp that causes the circuit to misbehave?

Problem 7.25

Consider this op-amp/BJT current-source circuit.
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+Vee
Rsense
(bad circuit!)
V;n l Iload ~ (VCC - ‘/in)/Rsense
load

(a) Assuming the op-amp golden rules apply to this circuit, show that the expression for the current
is approximately correct, and give a better expression that includes the transistor 3.

(b) As drawn, the circuit does not work; rather, the op-amp just rails without regulating the current.
Explain why.

(¢) Propose two fixes for this circuit; at least one of these fixes should not involve any component
changes.

Problem 7.26

In this problem, you will analyze a schematic for a precision current source that powers a laser diode (see
p. 6 in the referenced pdf file).> You will probably need to look up data sheets for various components
in analyzing this circuit.

(a) Suppose Rymis = 10kQ. What is the maximum possible (dc) voltage at pin 3 of the AD8207?
Assume the 2N7000 is an open circuit. This is the control voltage that sets the current through the
laser diode. Note that the 20-k{2 wiper of the (course adjust) pot is bypassed by a capacitor to ensure
the control voltage has little high-frequency noise.

(b) Now look at the relay on the left-hand side of the schematic. This is the “laser enable” part
of the circuit, which either passes or overrides (i.e., sets to zero) the control voltage. Note the two
momentary switches (i.e., they are push-buttons, only connected while you are actually pushing them
but the circuit “remembers” the last one you pushed). Explain how this section of the circuit works
to enable and disable the laser. Include the operation of the status LED (why doesn’t the LED burn
out if it is powered by 15V?), and explain why this circuit has a “soft-start” feature.

(¢) Now analyze the AD820, which regulates the diode current according to the control voltage at pin
3. For the purposes of this analysis, ignore C0, C1, and R1 (i.e., replace them by open connections)
as well as RO, R2, and C2 (i.e., replace them by short circuits). These are needed for stability, but
I haven’t discussed much about this yet. Thus, the feedback loop consists of the BUF634’s, resistor
SR10, and the INA128 (assume the gain of the INA128 is 10). What is the purpose of the BUF634’s,
why are there 2 of them, and what is with the 10 resistors? What is the maximum current through
the laser diode given your answer in (a)? FEzplain.

(d) Look at the power-supply connections of the various amplifiers. Explain the differences in the
bypass circuits, and why the chips are bypassed in different ways (i.e., why not bypass them all in the
same way?).

5Designed by Todd Meyrath, http://george.ph.utexas.edu/~meyrath/informal/laser%20diode.pdf
g y Y p://george.p. Y p
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(e) Now go back to the AD820, and consider it separately from the other ICs, but this time with R0-R2,
and C0-C2. Also assume pin 3 is grounded. What is the gain at low frequencies? High frequencies?

Problem 7.27

Consider the op-amp current source shown below.

+ Vs

RSSIISE

Iload - ‘/SS - ‘/in)/Rsense
load

Vvss - Vvin
Lopa = ——10 7.110
foad Rsense ( )

(a) Show that

as advertised.

(b) Note that the MOSFET is a p-channel device. Explain why an n-channel device doesn’t work here
(consider how the output changes as Ijoaq increases).

(c) To consider stability issues in this circuit, consider the modified circuit below, with output resistor
R (modeling the intrinsic output resistance of the op-amp), and capacitor C' (modeling the gate-source
capacitance of the FET; for simplicity we are excluding the gate-drain capacitance, but this could be
modeled in the following analysis with another capacitor).

+Vss

Rsense

Iload - ‘/SS - Vin)/Rsense
load
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Consider a small ac signal vy, at frequency w at the input (and some dc bias Vg, so Vin = Vo + vin)-
Treat the FET via its transconductance g, (i.e., isp = —gm¥es) and the op-amp via the finite-gain
formula (7.35)

Vour = A(‘/;n+ - Mn7)7 (7111)

with response
_ Ao
Aw)

where w, is the cutoff frequency. Show that the ac load response i5,q t0 v, can be written

= — 7.112
1—iw/w:’ ( )

) _ _gmAO
load = (1 — ’LLURC)(I _ iw/wc) + gm(l + Ay — iOJ/UJC)Rserlse

Vin. (7.113)

(d) Note that the expression above can change sign, which we will see can lead to instability. Intuitively,
the op-amp output is inductive, forming a destabilizing resonance with the capacitive gate input of the
FET. Show that the circuit exhibits resonance behavior by finding the extreme value of |ijpaq|, as well
as the frequency at which the extremum occurs. Discuss the dependence of the peak frequency on the
FET parameters g, and C (simplify your analysis by working in the regime Ay > 1 and w. < 1/RC).
Also simplify your notation by defining the frequency wqy by

We
wf = e

(7.114)

(e) To more precisely consider stability problems in this circuit, we must consider the voltage feedback.
To do this we should consider the voltage vg at the inverting input, given by

Vs = _iloadRsense = G((U) Vin, (7115)

to be the circuit “output,” which then defines the voltage gain G of the circuit. Since this is fed back
to the inverting input, G should be positive and preferably large. The problem comes when Re[G] is
negative, because it means the feedback is positive. In particular, the circuit becomes unstable when
Re[G(w)] < —1, because perturbations at any frequency satisfying this condition will grow. Find the
extreme value of Re[G] and show that Re[G] < —1 when

AowCRC
\/ngsense(\/4A0chC + \/ngsense)

>1, (7.116)

again in the limits Ap > 1 and w. < 1/RC. Using typical parameters for a high-speed op-amp and
a power MOSFET (w./27 = 100Hz, R = 509, Rgense = 50Q, gm = 10U, Ag = 5 x 10°) solve the
equation to find the range of gate—source capacitance that destabilizes the circuit. Since typical gate
capacitances are on the order of 100 pF, you should find that the circuit is unstable (i.e., it oscillates).
More components in the feedback loop are necessary to stabilize it.

Again, to keep your calculations organized, you should use the following definitions to simplify your
calculation:

GO = gm-lﬂ?vsensefélo(*”()2
w1 = wO\/l + ngsense(l + AO) (7117)

— wc2 + (1 + ngsense) w()2
We '

M1t






Chapter 8

PID Control

A major theme in our study of op-amps is that feedback, and negative feedback in particular, is a useful tool
for improving the behavior of amplifiers. It is also useful in the realization of circuits that would otherwise
be complex or difficult to implement (the logarithmic amplifier is a good example; see Problem 8). Of course,
feedback is similarly useful beyond op-amp circuits, and we will consider feedback control more generally
as a tool for maintaining systems in a desired “target” state. As it turns out, op-amp circuits are useful in
realizing one of the popular, general-purpose control methods, PID control, which we will define shortly.!

8.1 Basics of Linear Control

Schematically, we can represent a feedback-control system as in the diagram below.

gain=1

controller “plant”

i) G(w) ()

There are several important elements that interact here.

o The plant is the system to be controlled. (That’s plant as in “chemical plant,” not a shrub.) We
assume the plant to have an input and an output. The output is some scalar quantity that we want to
control, such as temperature, position, voltage, frequency, speed, etc. The input is some other scalar
“knob” by which we can affect the plant. In linear control theory, we will assume that the plant is a
linear filter with transfer function G(w).

+ The controller is a system that analyzes the state of the plant and implements a control procedure
to the plant input. Again, we will treat this as a linear filter with transfer function K(w).

o The goal of the control is to make the output signal y(¢) follow the input signal r(¢) as closely as
possible. The control system should, however, be robust to environmental perturbations, which are
something like random changes in r(¢). In temperature stabilization, for example, the temperature
control should be robust to fluctuations in the surrounding temperature (e.g., due to the day/night
cycle).

1For a more complete, readable introduction to control theory, see John Bechhoefer, “Feedback for physicists: A tutorial
essay on control,” Reviews of Modern Physics 77, 783 (2005) (doi: http://dx.doi.org/10.1103/RevModPhys.77.783), available
at http://www.sfu.ca/chaos/papers/2005/rmp_reprint05.pdf.
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e The error is defined as the difference between the desired and actual states:

e(t) :==r(t) — y(t). (8.1)

Because of the negative sign on y(t) here, feeding this error signal into the controller amounts to
negative feedback to the plant, assuming the low-frequency transfer characteristics of the controller
and plant have no phase shift.

o The feedback signal u(t) is the error e(t), modified by the controller in frequency space.

Of course, more realistic systems may not be linear, and may have vector inputs and outputs. The
scalar case is still important both conceptually and practically, so we will focus on only this here; however,
note that the vector case can sometimes be treated well enough as several, parallel scalar loops—the nature
of feedback control is to correct for errors, and so it can often tolerate some slop in the model. The nonlinear
case is more complex in theory, but often a simple, pragmatic approach is to approximate the nonlinear
system by a linearized verison, so that linear theory applies. Again, this can sometimes work even when the
approximation is quite drastic.

8.2 Example: First-Order Plant, Proportional Control

As a simple example, suppose we take the plant to be a first-order, low-pass filter, with

~ Go

G(w) (8.2)

- 1 —iw/wg’

where Gy is the dc gain, and wq is the cutoff frequency of the filter. A more concrete example where this
model applies is temperature control of a room, where the input is a simple, electric heater, and the output
is the room temperature. The low-pass-filter nature of the room is apparent in the exponential settling of
the room temperature when the input (power setting of the heater, not a thermostat) changes.

For the controller we will implement simple proportional control, which just means that the control
signal is proportional to the error. That is, we have a constant transfer function

” _ (8.3)
o (proportional controller transfer function)

where K is the proportional gain.

8.2.0.1 General Result: Closed-Loop Transfer Function

To analyze our simple example, we will first examine a more generally useful result. To introduce some
notation, for time domain quantities like y(¢), we will denote their frequency-domain counterparts by §(w)—
that is g(w) is the amplitude of the frequency w that is present in y(t). Given the connections in the circuit
above, we have

j(w) = K(w) G(w) &w), (8.4)

where
é(w) = 7(w) = g(w). (8.5)

Eliminating the error €, we have

j(w) = K() Gw)[F(w) — §(w)]. (8.6)

Then
g(w) [1 + K (w) G(w)] = K(w) G(w) #(w), (8.7)
§(w) = % F(w). (5.5)
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This gives the output response g in terms of the input 7. Since the control system is linear, we have derived
the transfer function for the entire control system, or the closed-loop transfer function

) K(w)j(w) (8.9)

1 + K ( @(w) (closed-loop transfer function)

Relating this back to op-amps, in the limit where the gain product K G becomes large, the transfer function
approaches unity (and is otherwise less than unity).

8.2.1 Frequency-Domain Solution of the Example

Returning to our example, we have K = K, and G defined by Eq. (8.2), so the closed-loop transfer function

becomes k.G k.G )
T(w) = r10 .= Sl , . (8.10)
Ky Go+ 1 —iw/wy KrGo+1) 1—iw/we(KpGo+1)
This is still the transfer function for a low-pass filter, but now the dc gain is
- K Gy
Tw=0)=——"F— 8.11
=0 = e, (s.11)

compared to the original dc gain of Gy, and the control becomes ideal as K, — oo (at least in this simple
model; this is not true in general for real control systems). Also, the new cutoff frequency is wo(KpGo + 1),
which is larger than the original wg, particularly for large K. Since the cutoff frequency is inversely
proportional to the decay time, we can see that a larger cutoff frequency is desirable, as it means the control
system “settles” more quickly.

8.2.2 Time-Domain Solution of the Example

To examine this settling behavior more, we can also transfer the analysis for this example into the time
domain. Returning to Eq. (8.6), and putting in Eq. (8.2),

) = K(w) Gl [7w) = 7(6)] = 2= [7(e) = 0] (812)
Rearranging a bit, we find
J(w) (wo — iw) = woKpGo [F(w) — G(w)]. (8.13)

We can change this to the time domain by identifying the time-domain counterparts to each variable, and
using /0t = —iw, to find
woy(t) + (1) = woKpGo [r(t) — y(t)]. (8.14)

Solving for v,
¥ = —woy + woKpGo(r — ). (8.15)

There are two terms here. The first is a simple damping term, again with a time constant of 1/wg. The
second term is a forcing term, where the system is “driven” by the error e = r — y. The system always tries
to eliminate the error. Since it does so via simple exponential relaxation, it is always stable—it never “runs
away” from the zero-error point. Note that the drive is stronger for larger K, meaning that more control
has more effect on the system, as we should expect.

8.2.3 Constant Input and Proportional Droop

As a simpler version of this example, let’s try a constant input r(¢) = . What is the steady-state solution
(y = 0)? From Eq. (8.15), we have
WolYss = WOKPGO(T - Z/ss), (816)
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and solving for the steady-state output yss, we find

KPGO

= — 7. .].
1+WOKPGO " (8 7)

Yss

Then we see that the (proportional) control system only achieves the goal perfectly (eventually) in the limit
Ky — oo. This is the fundamental problem with proportional control: the controller only acts if there is
error, so there must be some steady-state error, or droop, for any finite proportional gain Kp.? In op-amp
circuits, the gain is large for just this reason, but for more complex, real-world control systems (electronic,
mechanical, etc.), there are usually limits on Kr to maintain loop stability.

8.3 Integral Control

One approach to fixing the problem is to introduce an infinite gain only at dc, where the time delays that
usually cause feedback-loop stability problems won’t matter much. This is precisely what an integrator does:
recall that an op-amp integrator (Section 7.4.2) has a gain of the form —i/wRC. More generally, integral
control has a transfer function of the form

i 1K (8.18)
wT (integral controller transfer function)

where 7 is a time constant and K; is the (dimensionless) integral gain (note that 7 just acts like another
gain parameter here). Then noting that 1/(—iw) is an antiderivative, the controller output is

u(t) = ? /tdt’ e(t'). (8.19)

That is, the controller has a built-in “memory” of past error in the feedback. This allows correction of the
droop, because we no longer require an error at the present moment to have a nonzero control signal wu(t).

8.3.1 Example: First-Order Plant, Integral Control

Now back to the example that we introduced in Section 8.2. In the time domain, the same steps leading up
to (8.15) now give

K:.Go [*

g = Yy - 0 / dt’ [r—y(t')], (8.20)
T T 0

where we are taking 7 = 1/wp and we are still assuming a constant control input r. It is more convenient to

handle an ordinary differential equation, rather than an integro-differential equation, so we can differentiate

this equation to obtain
. y  KeG
R Olr —y(t)]. (8.21)

T

In steady state, j = ¢y = 0, and so we have
Yss =T, (8.22)

which means that we obtain exactly the target in steady state: there is no droop with (ideal) integral control.

8.3.2 Frequency Domain

In the frequency domain, for this example with general closed-loop transfer function (8.9) and example plant
function (8.2), we have . .
- KW Gw) 1

f@=7 Kw)Gw) 1—iw/wok; —w?/wiK,’ (8.23)

2For a good story of proportional droop, see the introduction to David Sellars, “An Overview of Proportional plus Integral plus
Derivative Control and Suggestions for Its Successful Application and Implementation,” http://hdl.handle.net/1969.1/5215.
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This transfer function is second order in the denominator because of the frequency dependence of the in-
tegrator, and is qualitatively different than the first-order low-pass filter that we obtained for proportional
control.

To see this, compare this to a damped, forced harmonic oscillator, which has the form

i+ 9+ wiy = f(t), (8.24)

where v is a damping rate, and f(¢) is a forcing function (we have set the mass to 1). In the frequency
domain, this becomes y

(—w® —iyw+wi)j = flw), (8.25)
and solving for g gives ~
f(w)/wg

1 —iyw/wd —w?/wd

J= (8.26)
The transfer function here has the same form as for the integrator control of a low-pass filter in Eq. (8.23).
In the integrator control problem, a large integral gain K is equivalent to a large oscillation frequency wyq
relative to the damping rate « in the harmonic-oscillator problem. This leads to underdamped oscillations,
which means the controller is overshooting the target state.

Again, note that T(w) — 1 as w — 0. This means that there is no steady-state droop in this
integral-control example.

8.4 Proportional-Integral (PI) Control

It is, of course, possible to combine the benefits of proportional and integral control by using a controller
with both features. The simplest way to combine these is a simple linear combination:

— iK, (8.27)
) = e - wr (PI-controller transfer function)

This is the transfer function for proportional-integral (PI) control. The second term gives integral
control, which eliminates droop issues. The first term is a proportional term, which gives more high-
frequency response, and thus faster setting. In the example of the single-pole plant from Section 8.2, if we
work out the closed-loop transfer function, we obtain

- B 1—i(Kp/Kp)(w/wo)
W) = T 0 T K)w/wo K, — £2/W3KI'

(8.28)

(Again wy = 1/7 here.) Note that in the dc limit, T(w — 0) = 1, which means there is no steady-state
droop, as in the integral-control case. In the high-frequency limit,
- —i(Kp/K;) —iKp
T(w — 00) ~ = .
( ) (14+ Kp)/K, —iw/woK; (14 Kp) —iw/wo

(8.29)

In the high-frequency limit, the transfer function reduces to a first-order transfer function, in which case we
no longer expect overshoot behavior, as we did in the integral case.

8.5 Proportional-Integral-Derivative (PID) Control

In proportional-integral-derivative (PID) control, the idea is to add a derivative term to PI control,
so the transfer function is
_ _ Ky (8.30)
M) = Mo wr WT K. (PID-controller transfer function)
Here, Ky, is the derivative gain. Intuitively, this can help in cases where overshoot and ringing is a problem.
Qualitatively, consider the overshooting case below in blue, where the input is suddenly changed at the time
marked by the dashed green line.
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Qualitatively, the overshoot occurs because the slope of the error signal is too steep, due to the action of
the controller. By putting in a term proportional to the derivative, the controller “senses” the steep slope
corresponding to an impending overshoot, and reduces the control action. This can result in better settling,
as in the dashed red line. In terms of the closed-loop transfer function, the effect of the derivative gain is to
modify the damping coefficient of the feedback system, which can eliminate the ringing and promote better
settling.

Setting the parameters for a PI or PID loop is something of an art. We won’t get into this here, but
one reasonably simple method for setting the gain parameters is the Ziegler-Nichols method.?

3J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Transactions of the ASME 64, 759
(1942), copies available at http://chem.engr.utc.edu/Student-files/x2008-Fa/435-Blue/1942-paper.pdf and http://www.
driedger.ca/Z-N/Z-n.pdf. See also Allard Mosk, “Tutorial on Experimental Physics of Ultracold Gases,” in Interactions in
Ultracold Gases: From Atoms to Molecules, Matthias Weidemiiller and Claus Zimmerman, Eds. (Wiley-VCH, 2003), p. 215

(doi: 10.1002/3527603417.ch5).
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Chapter 9

Binary Logic and Logic Gates

9.1 Binary Logic

The idea behind binary logic is to represent information using only two states. You can call these states
TRUE and FALSE, or you can use the corresponding numerical values 1 and 0. We will explore in much more
detail how to represent and use information in this form, but for now, note that we call the fundamental
(abstract) element that carries these states a bit. That is, a single bit can have either the values 0 or the
value 1.

The idea behind digital logic and digital electronics is to represent the binary states by two different
electronic states, usually different voltages or voltage ranges, but sometimes different currents. For example,
the standard for transistor-transistor logic (T'TL) is to use nominal voltages of 0V for FALSE, and +5V
for TRUE. We will get into more detailed specifics later.

Changing information into a digital representation has advantages and disadvantages. The main
disadvantage of this approach is that it is necessary to sample analog signals (i.e., change continuous signals
into discrete representations). The main advantage is in robustness to noise, as long as the noise amplitude
is far below the physical separation between the logic states (e.g., TTL logic is robust to noise interference
provided the noise is smaller than 5V). Of course, for sophisticated logic systems (computers), often the
advantages far outweigh the disadvantages.

We will treat binary logic as an abstract concept for now, and learn how to manipulate binary infor-
mation. Then we will come back later to the physical implementation of binary logic.

9.2 Binary Arithmetic

In binary arithmetic—the binary analogue of the more usual arithmetic—the first thing to deal with is how
to represent numbers in binary. To keep things relatively simple, we will stick to representing integers in
binary (as opposed to rational approximations to real numbers, which are represented in either fixed-point
or floating-point notation, the latter of which is more complicated).

9.2.1 Unsigned Integers

The most basic form of a binary integer is an unsigned integer. Unsigned integers are just like decimal
integers, but instead of counting from 0-9 and then carrying a 1 to the next place, you just count from 0-1 and
then carry instead. (So the counting is 0, 1, 10, 11, 100, 101, 110, 111, ...) You can understand converting
between binary and decimal best via an example. Suppose that we have the unsigned integer 10115 (the
subscript “2” denotes binary, or base-2 arithmetic). There are four digits, which represent, from right to left,
the “ones,” “twos,” “fours,” and “eights” places (just like the ones, tens, etc. in decimal counting). Then
proceeding from the ones (rightmost) place, or the least-significant bit (LSB), to the eights (leftmost)
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place, or the most-significant bit (MSB).
1011, =1x204+1x 20 +0x22+1x22=14+2+8=11. (9.1)

Note that with N digits, we can represent 2 values with each bit, for a total of 2V numbers (i.e., ranging
from 0 to 2V —1).

9.2.1.1 Binary-Coded Decimal

Another representation of unsigned integers comes in binary-coded decimal (BCD), where the idea
is to convert each digit in a decimal number to binary, using 4 bits per decimal number. For example,
11,9 = 10115, but in BCD, this would be written 00010001. This representation is “wasteful” in that
there are 16 states for each digit but only 10 decimal digits, but this representation is very convenient for
implementations of digital numeric displays.

9.2.1.2 Hexadecimal

Hexadecimal arithmetic is just base-16 arithmetic. The 16 states are represented by 0-9 as usual, and
the “extras” by A-F for the values 10-15. Since 4 bits, or a nybble (8 bits is a byte) has 16 states, a
single hexadecimal digit is a convenient and compact representation for a binary nybble. Thus, for example,
101110102 = BAss.

9.2.2 Negative Values and Sign Conventions

Besides unsigned integers, it is useful to represent negative integers in binary. There are multiple conventions
for this, however.

9.2.2.1 Sign-Magnitude Convention

The simplest convention, the sign-magnitude convention, is to tack on an extra bit (as a new MSB) to
represent the sign, and the rest of the digits are just like an unsigned integer. For example, one nybble
ranges from 0-15 as an unsigned integer, but as a signed value, it ranges from —7 to +7 as a signed integer
(the three LSB’s range from 0-7, and the MSB gives the sign). Note that one value (1000) is “wasted” in
this convention, because it is not different from (0000). The main advantage is the simplicity of the scheme.
You can see the relatively serious disadvantage, however, by considering a couple of example numbers,

0001y = 119, 1001y = —1y. (9.2)

Unfortunately, adding these two numbers gives 10105 = —2;¢, but really we’d like these to add to zero.

9.2.2.2 Two’s Complement

Preserving this additive-inverse property of negative numbers is the idea behind the 2’s-complement rep-
resentation: if n is a positive integer, just define the number (—n) such that it satisfies n + (—n) = 0 in
binary addition. For example, suppose we have

n = 0001, = 11,. (9.3)
Then —11 in 2’s-complement notation is
—n=1111y = —140. (9.4)
To see this, first note that
n+ (—n) = 100002, (9.5)

but the important point is that we drop the MSB, because we regard addition in 4-bit binary as being modulo
16.
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The advantage, of course, is that addition works as expected with positive and negative numbers in
2’s-complement notation, and so does multiplication.

There are a couple of useful procedures for finding 2’s-complement values (i.e., for finding the negative
counterpart of a positive number):

1. Start by exchanging 0 <— 1 on each digit, then add 1 to the result. For example, in the example
above,
00015 —» 10005 + 1 = 1111,. (9.6)

2. Note also that in N-bit arithmetic, 2V~! = —2¥=1 So we just need to figure out what number to
add to —2¥~1! to get the number we want. For example, in the above example in 4-bit arithmetic,
23 = 10005 = —23 = —8. We want —1, which means we have to add 7 to —8. Since 7 = 01114, we just
say

—1=—-8+47=10002 + 01115 = 11115. (9.7)

Alternately, we are just saying that for any negative number that we want in N-bit arithmetic, add
2V and then find the unsigned binary value. (In the example, add 16 to —1 to get 15, or 11115. In
this convention, we’re just taking the unsigned range of 2V~1 4+ 1 to 2V, and shifting the whole block
to below zero.

9.3 Logic Gates

So far, we have discussed only binary-logic values and how to use them to represent numbers. But we
also need to implement transformations on logic values, which are accomplished via logic gates, which is
basically a logic-valued function of logic variables. We will talk about the simplest logic gates now, and just
mention that more complicated gates can be represented in terms of the simpler ones.

9.3.1 One-Input Gates

The simplest logic gates are the one-input gate, which takes only one logic value as input. A simple example
is the buffer gate, which simply copies its input A to the output Q. The symbol for the buffer is below.

AlQ=A
=A
A —‘ > Q 1 I
0 0
Above on the right is the truth table, a table enumerating all inputs and the corresponding output values.

The other main one-input gate is the inverter or NOT gate, which changes the state of the input. The
symbol and truth table are below.

. A|q@=17
401 55
0

1

Note the circle “o” in the diagram represents a NOT operation, which is denoted symbolically by a bar (that
is, if A =1, the A = 0). This same NOT operation may be applied to inputs as well. For example, this is a
buffer gate,

and this is another NOT gate.

oS
QO
I
|

The buffer and NOT gates are the only one-input gates. The only other possibilites (in terms of truth-table
content) have a fixed output for any input, which is usually not drawn as a gate with an input.
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9.3.2 Two-Input Gates
9.3.2.1 AND and NAND

Two-input gates are important, and easily available as electronic components. The first gate is the AND gate,
whose symbol and truth table are shown below.

A B|Q=4B
g} Q=A-B=AB=AAB L1 1

1 0 0

0 1 0

0 0 0

There are several notations for the AND operation in the diagram. Note that the output is only TRUE if both
inputs are TRUE.

Adding a NOT to the output of the AND gate gives a NAND gate (i.e., NOT AND), which is just the negation
of the AND gate.

A B|Q=AB
§:>F(%Q4B=AB:AAB 11 0

1 0 1

0 1 1

0 0 1

This gate is more important than it may seem at first glance, as we’ll return to below.

9.3.2.2 OR and NOR

The next gate is the OR gate, whose operation is symbolically represented by “+.”
A B|Q=A+B

éjj::}Q:A+B:AvB 11 1
1 0 1

0 1 1

0 0 0

The output here is TRUE if either input is TRUE (or both inputs are TRUE). Of course, we can add a NOT to
the output.

A B|Q=A+B
é%Q_A+B—AvB L1 0

10 0

0 1 0

0 O 1

Thus, we obtain the NOR gate (NOT OR).

9.3.2.3 Universal Gates

The NAND and NOR gates are special, because they are universal gates. That is, any logic operation can be
realized by connecting a bunch of NAND gates, or by connecting a bunch of NOR gates.

9.3.2.4 XOR and XNOR
We'll briefly also mention the X0R gate (“exclusive OR”),

A B|Q=A®B
e R

10 1

0 1 1

0 0 0
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which is just like the OR, but the output is FALSE if both inputs are TRUE. The complement of the XOR gate
is the XNOR gate (“exclusive NOR”), which is again like the NOR gate except for the case of two TRUE inputs.

= -

In mathematical logic, the XNOR is the same as “if and only if.”

A B|Q=40B

O = O =
—_

1
1
0
0

9.3.3 More Complex Gates

More complex gates are possible; for example, consider the 3-input AND gate below.

A B C|Q=ABC
1 1 1 1
N } 1 1 0 0
B— Q = ABC 1 0 1 0
¢ 1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

The idea is a reasonable obvious generalization of the 2-input AND: the output is TRUE only when all inputs
are TRUE.

9.4 Circuit Practice

Here are a couple of gates with negated inputs.
(a) Work out the truth table and find which 2-input gate that we introduced above is equivalent.

4 H} Q=A-B=AB=A\T

(b) Do the same for this gate.

(¢) How do you make an inverter from a NAND gate?

Solution.
(a) NOR gate.
(b) NAND gate.
(c) Tie the inputs together.

O
— o ||
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9.5 Exercises

Problem 9.1

Convert:

(a) 8919 to 8-bit, unsigned binary
(b) —89;¢ to 8-bit, signed (sign-magnitude) binary
(¢) —891p to 8-bit, signed (2’s complement) binary
(d) 8919 to hexadecimal

(e) ABCDj¢ to decimal

(f) 01100110011001105 to hex
(

(

(

(

g

) 01100110011001102 to decimal
h)

100110015 (2’s complement binary) to decimal
i) 100110015 (sign-magnitude binary) to decimal
j) 111111115 (unsigned) to decimal

Problem 9.2

Convert:

(a) 7510 to 8-bit, unsigned binary

(b) —751¢ to 8-bit, signed (sign-magnitude) binary
(¢) —7510 to 8-bit, signed (2’s complement) binary
(d) 7510 to hexadecimal

(e) ABBAjs to decimal

(f) 10101010101010102 to hex

(g) 10101010101010105 to decimal

(h)

(i) 110111015 (sign-magnitude binary) to decimal
()

110111015 (2’s complement binary) to decimal

111111015 (unsigned) to decimal

Problem 9.3

(a) Suppose z is a power of 2 (i.e., z = 2™ for some positive integer n, n € Z*). What does x “look”
like when written out in (unsigned) binary? (That is, how can you recognize powers of two, when
written in binary, just by looking at them?)

(b) In writing computer programs it is sometimes useful to check whether an integer is a power of
2. (One example is in computing numerical Fourier transforms, where the most common algorithms
operate only on arrays whose lengths are powers of 2.)

A nice trick for checking if x is a power of 2 is to compute z A (x —1). That is, subtract 1, and compute
the bitwise AND with the original. How do you tell from the result if x is a power of 27 (You might try
this on some examples to see the pattern.)

Note: “bitwise AND” means to compute the AND of corresponding binary digits. For example, 11005 A
10102 = 11005 - 10102 = 10005.
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Problem 9.4

Short-question potpourri:

(a) For any integer expressed in decimal, suppose you add the digits. The result is divisible by 3 if and
only if the original number is also divisible by 3. Does this statement also hold for binary numbers? If
so, explain why. If not, provide a counterexample.

(b) What is 10000000 in decimal? Interpret the given number as an 8-bit, signed (2’s complement)
binary number.

(c) What is 1114¢ in unsigned binary?
(d) What is 11149 in hex?
(e) Suppose 10102 & B = 11002, where the operation is bitwise. What is B in decimal?

Problem 9.5

Short-question potpourri:
(a) What is 23847 — 3 in (unsigned) binary? (I suggest describing how to write down the binary
expression, not actually writing it out.)

(b) What is 101010105 — 0101010157 (Do the calculation in binary.)
(c) What is 11015 in hex?

(d) What is 11015 + 3147 Interpret both numbers as 4-bit, 2’s complement binary numbers, and give
your answer in 4-bit, 2’s complement binary.

(e) Suppose you generalize decimal-fraction notation (e.g., 0.9 = 9/10) to binary fractions in the obvious
way (e.g., 0.15 = 1/2). What is the value of 0.1 = 0.111.. .5 (i.e., the overbar here means a repeating
digit) in decimal?






Chapter 10

Boolean Algebra

10.1 Algebras and Boolean Algebra

Intuitively, a Boolean algebra is an abstract, compact notation for logic (in which we will see that 14+1 = 1).
A Boolean algebra is defined on the set {0,1} (these are the “values” for Boolean variables), and has two
binary operations “+” and “-” defined, though not the usual addition and multiplication. The + operation
is defined by the truth table for the OR gate, while the - operation is defined by the truth table for the AND
gate. Recall that the truth tables for the AND and OR operations on Boolean variables A and B are invariant
under the exchange of A and B, so both + and - are commutative (i.e., the order of the variables don’t
matter):

A+B=B+ A, AB = BA. (10.1)

W

(We’re not bothering to write the explicitly here.) These operations are also associative, which means
that the order of two successive operations does not matter:

A+ (B+C)=(A+B)+C, A(BC) = (AB)C. (10.2)
The other usual algebraic property that holds here is the distributive property:
A(B+C) = (AB)+ (AC). (10.3)

Finally, a number of simple identities hold for the Boolean binary operators:

1.A=4A

2. A-0=0
3.A-1=4A
4. A-A=A
5. A-A=0
6. A+0=A
7.A+1=1
8. A+ A=A
9. A+A=1

Roughly speaking, the NOT operation (bar) is something like a minus sign, in which case some of these
identities seem familiar, but some seem less so (like A+ 1 =1).
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10.2 Boolean-Algebraic Theorems and Manipulations

10.2.1 De Morgan’s Theorems

Recall the circuit practice from Section 9.4, where we examined AND and OR gates, where both inputs are
negated. For example, the negated-input AND gate is equivalent to NOR gate, as shown schematically below.

b= —eem = =] e

In algebraic notation, this is

I (10.4)
A-B=A+B. (De Morgan theorem)
Similarly
1+ B-A1 B o)

(De Morgan theorem)

These are extremely useful in transforming negated expressions, as we will see.
10.2.2 Absorption Theorems

Two other useful theorems are called absorption theorems:

A+(A-B)=
A-(A+B)=

(10.6)
(absorption theorems)

A
A.
We will leave the proofs as exercises (in circuit practice).

10.2.3 Another Theorem
Here is another theorem that is often useful:

(10.7)

A+ AB = A+ B. (negated AND theorem)

We will again leave the proof as an exercise, but essentially this is saying that because of the OR with A, the
A never really matters.

10.2.4 Example: XOR Gate

As an example of Boolean algebra and implementation of algebraic expressions in gates, consider the XOR
operation, where we would like to show that

(10.8)

A® B=AB+ AB. (XOR expression)

We can first do this by working through the truth table for the right-hand side, and verifying that it matches
the truth-table results for A ® B.

A B|AB | AB | AaB
1 1] 0710 0
1 0] o0 |1 1
0 1| 1|0 1
0 0] 0 ] 0 0

Now using this expression, we can show how to implement an XOR gate, in terms of regular gates.



10.2 BOOLEAN-ALGEBRAIC THEOREMS AND MANIPULATIONS 223

B —

To trace through this, the negations A and B are realized with NOT gates, and finally two AND gates and an
OR gate to generate the correct combination.

10.2.4.1 NAND-Gate Realization

As we alluded to before, NAND and NOT gates are universal, and can be used to realize any gate. So how can
we realize an XOR gate out of only NAND gates, for example? Let’s do some algebraic transformations to see
how to do this. First, starting with the expression (10.8),

A® B=AB+ AB, (10.9)

we can add in AA = 0 and BB = 0 to obtain

A® B=DB(A+ B)+ A(A+ B). (10.10)
Then using the second De Morgan theorem (10.5), A+ B = A - B,
A® B = B(AB) + A(AB). (10.11)
Using the same theorem once more,
A® B = [B(AB)][A(AB)]. (10.12)

Now notice that every operation here is a NAND, and we need one operation to generate AB, two more to
combine it with A and B, and one more for the final combination. The circuit realizing this expression is

shown below.

Note that we can obtain a simpler but less-efficient expression by applying the De Morgan theorem only
once as follows:

A

B

A® B=AB+ AB = (AB) (AB). (10.13)

This is less efficient in terms of NAND gates: two NANDs are needed to make A and B, two more to make the
combinations AB and AB, and one more to make the final combination (a total of 5).

10.2.5 Example: Algebraic Simplification
As another example of simplifying an expression, consider the three-variable expression (4 + B) - (4 + C).
Starting out, we can distribute twice,

(A+B)- (A+C)=A-(A+C)+B-(A+0C)

(10.14)
— AA+ AC + AB + BC.
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Then AA = A, and using the first absorption theorem in Egs. (10.6) to write A + AC = A,

(A+B) - (A+C) = (A+ AC) + AB + BC

(10.15)
= A+ AB+ BC.
Then also A+ AB = A, so
(A+B)-(A+C)=A+ BC, (10.16)

a somewhat simpler expression (two operations vs. three).

10.3 Karnaugh Maps

It can often be difficult to see how to realize a particular logic function in terms of logic gates, just via
algebraic manipulations. One tool that makes this more intuitive, at least for small numbers of inputs (3 or
4), is the Karnaugh map. (The cases of 1 and 2 inputs we’ve already mostly covered with standard gates,
and it’s easy to do these exhaustively.)

The first idea behind a Karnaugh map is to make a 2D table of logic inputs and truth-table values.
The second twist is to order the inputs using a 2-bit Gray code, which means that we count as 00, 01, 11,
10, instead of the usual binary-counting order. The point is when counting this way we change only 1 bit
at a time (in regular binary, this doesn’t happen when we count from 01 to 10). The motivation for Gray
codes comes from mechanical implementations of logic, where you may get spurious transitional states if bits
don’t change synchronously (this happens in some fast logic circuits as well). That is, when counting from
01 to 10, the actual sequence may be 01 to 00 to 10 if the LSB changes before the MSB. In terms of the
Karnaugh map, the idea is to keep “related” input states grouped together.

The process of hunting for simplifications in a Karnaugh map is hard to explain, but it’s easy to get
the idea by studying a few examples.

10.3.1 Three-Input Example

Before, as a Boolean-algebraic example, we showed in Eq. (10.16) that
(A+B)-(A+C)=A+ BC. (10.17)

We will show how to obtain this and other transformations via the Karnaugh map. The first task is to write
out the diagram as a table. Notice that the four values of AB are along the top, in Gray-coded order, and
the two C values are along the side. We are also writing out each output value for each set of possible input
values, so this is just a truth table in 2D form, here for (A + B) - (A + C).

AB
00 01 11 10

Now to analyze this, the idea is to look for blocks of 1’s in square or rectangular shapes (2 x 1, 2 x 2, etc.).
One example is below.
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ABOO 01 11 10
C
0 0
A+ BC
1 0

BC A

The 2 x 2 block here corresponds to every input where A = 1, hence we have labeled it “A” Similarly,
the 2 x 1 block correponds to inputs where B = 1 and C = 1 (hence BC' = 1), so we label it “BC” The
entire group of 1’s is the union of these two, so the logical expression is the OR of these two blocks, hence an
equivalent expression is A + BC.

Generally speaking, bigger blocks correspond to simpler expressions, so the best simplifications occur
by covering the 1’s with large blocks. Also, usually it is best to look for blocks with dimensions of 2, 4, 8,
etc. As an example, note that we could have done the last covering without any overlap if we kept the 4 x 4
block and then introduced a 1 x 1 block, as below.

AB
00 01 11 10
C
o]0 o0
A+ ABC
1] o0

ABC A

The small block corresponds to ABC, since we have to restrict all three variables, and this leads to the more
complicated (but equivalent) expression A + ABC.

We can also look at some other attempts to simplify with a Karnaugh map that will yield less compact
results, just to illustrate the technique. For example, we can “overcover” the 1’s by using two 4 x 4 blocks,
A and B, and then combine them. However, we must exclude one location that has a zero; the location is
ABC.

ABC
4o 01/ 1110
C
oo [0 [1] 1
A+ BABC
10 1 1
B A

Thus, to combine these, we negate the null block and AND the result with the B block to obtain BABC. We
then OR this with A to obtain A + BABC.

Another possibility is to use a similar technique, but focusing on the 0’s. For example, we can identify
a block of mostly zeros, A. However, we must exclude the 1, which is located at ABC.

AB
00 01 11 10
C
0 1
AABC
1 1
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So to find the region of 0’s, we have to negate the 1 block and AND this with the 0 block, to obtain A ABC.

Then to get the block of 1’s we must negate the overall result, to obtain A ABC. Note that by De Morgan’s
theorems this is equivalent to A + ABC, as we showed two diagrams ago.

10.3.2 Four-Input Example

In addition to three-input problems, it is not much harder to extend the analysis to four-input problems.
For example, consider the following truth table.

2
-
o
o
|
ol
Ql

S/
Ql
_|_
w
Sl

10| O 1 1 0

1
BD

One thing to notice is that we have extended the vertical direction to cover the two variables C' and D
together, and the other is that we have put in 4 x 4 blocks that “wrap” around from top to bottom or right
to left. That is, the Karnaugh map has periodic boundary conditions for the purposes of finding blocks.

10.3.3 XOR Example

In searching for blocks, it is somewhat harder to see XOR and XNOR blocks, but it is possible. An example is
below.

(A® B)C

AeB

Due to the ordering of the horizontal axis, the A @ B block is split, but we can combine it with the C via
an AND (to intersect the blocks) to obtain a relatively simple expression.

Note that some flexibility is usually beneficial when using a Karnaugh map: it is not necessarily a
good tool for finding solutions in terms of a particular gate (e.g., all NAND gates).

10.3.4 Race Hazards

A race condition is a spurious output of a circuit if the inputs don’t change state simultaneously (i.e., a
“glitch”). This can be a big problem if this output is the input to a latch or a memory circuit that will
“trigger” on the glitch.

Intuitively, in a Karnaugh map, a glitch is possible if the changing inputs cross between disjoint blocks
of 1’s, because the output state is being controlled by transitions of two gates feeding into the same final
gate. For example, returning to the (A4 + B)(A + C) example, suppose we make a transition between 111 to
011 in ABC. In this logic realization,
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A+ BC

BC A

we stay inside the BC' block, so we don’t expect any glitches: the output stays at 1 during the transition.
However, in this realization,

AB
00 01 11 10
C

0|0 o0
A+ ABC
10 (1
ABC A

we must cross between blocks, so a glitch is possible. Specifically, when A goes from 1 — 0, a slight delay in
A going from 0 — 1 results in the output going momentarily to 0 during the input transition, even though
it should remain as 1.

As another example, let’s return to the four-input example.

14300 01 11 10
CD | |
oo [ 1) [l | oJ[[r]__
BC
0104£J 0] o0 LL, -
11lolololo BC+BD
10| 0 ﬁigq 0

I
BD
There is a similar problem here when ABCD goes from 1100 — 1000, because we cross in between blocks.

However, by adding another block, we can “protect” the circuit from glitches in this transition. Here, we
add C' D, and combine it with an OR operation.

AB
cp\ 00 01 11 10 &5
oo [(1)[[t [ t][T)]
BC
o1 | 1| o | o |[t |
BC+BD+CD
11/l 0]olo|o
10| 0 ﬁi 1]] o
[ 1
BD

Of course, the price for robustness is a more complicated expression.
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10.4 Circuit Practice

10.4.1 Boolean-Algebra Theorems

Here, you should prove two things that we only introduced earlier.

(a) Prove the first absorption theorem in Eqgs. (10.6):
A+ (A-B)=A.

Use a truth table or algebra.
(b) Prove the second absorption theorem in Egs. (10.6):

A-(A+B)=A.

Solution.
(a) First suppose B = 0. Then
A-B=A-0=0,

and so

A+(A-B)y=A+0=A.

Now take the other case, where B = 1. Then
A-B=A-1=A,

and so

A+(A-B)=A+ A=A

(b) Using the same method, first suppose B = 0. Then
A4+ B=A+0=A,

and so
A-(A+B)=A-A=A.

Now taking the other case B =1,
A+B=A+1=1,

and so

10.4.2 Karnaugh Map

(10.18)

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

(10.25)
(10.26)

(10.27)

Write down the Karnaugh map and a logic circuit for the following function: the output is 1 if and only if

the input, a 3-bit unsigned integer, is prime. (Don’t count 0, 1, or 2 as prime integers.)

Solution. The primes are 3, 5, and 7. In binary, these are 011, 101, and 111. Hence the Karnaugh

map:

AB
00 01 11 10

110 (1 1 1) (A+B)C

(A+ B)C
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The simplest solution for a logic gate is to make a 3 x 1 block, noting that the AB part is specified by
(A+ B).

ABC =(A+ B)C

AB

via De Morgan’s theorems) is shown below, by starting with the 4 x 1

—~

An alternate, and equivalent solution
block C, and then excluding the 0.
The circuit to realize this function is shown below.

ﬁ%}cg

c




230 CHAPTER 10. BOOLEAN ALGEBRA

10.5 Exercises

Problem 10.1
Simplify the expression - o -

Q=ABC+ ABC+ ABC + ABC, (10.28)
and draw a logic circuit that realizes it. (This can be done with only 3 2-input gates and 1 3-input
gate; try to at least reduce this somewhat, and it’s best if your solution reflects the symmetry of the
original expression. Also, try to use algebraic transformations rather than writing out truth tables.)

Problem 10.2

Simplify the expression L o -
Q=ABC+ABC+ ABC+ ABC, (10.29)

and draw a logic circuit that realizes it. (This is possible with only 1 3-input gate; try to at least
reduce this somewhat, and it’s best if your solution reflects the symmetry of the original expression.
Also, try to use algebraic transformations rather than writing out truth tables.)

Problem 10.3

(a) Simplify the following Boolean expression:

Q=(A+B)B+A) +AB+ A+ B+ B. (10.30)

(b) Sketch a realization of this expression (after simplifying!) using only 2-input NAND gates.

Problem 10.4

(a) Simplify the following Boolean expression:

Q=(A+B)(A+B)+ (A+ B)(A+ B). (10.31)

(b) Sketch a realization of this expression (after simplifying!) in terms of only XNOR gates.

Problem 10.5

(a) Simplify the following Boolean expression:

Q = [(ABC)(B AC)|[(AB)(ABC)]. (10.32)

(b) Sketch a realization of this expression (after simplifying!) in terms of only NOR gates.

Problem 10.6
Consider the following circuit, based on 3-input NAND gates.

]
| e

-
c{}
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(a) Write down the logic (Boolean) expression for the circuit.
(b) Write down the truth table.

Problem 10.7

Consider the following circuit, based on 3-input NOR gates.

A

B

—H
= 5 >
c@

Problem 10.8

Show how you can realize an XOR gate (A® B = A- B + A - B) using only NOR gates.
Problem 10.9

Show how you can realize an XNOR gate (A @ B = m) using only NAND gates.

Problem 10.10

Write out the Karnaugh map for a circuit where the output is true if the input (a 3-bit, unsigned
integer, 0-7) is in the Fibonacci sequence. Give a circuit implementation in terms of 2-input gates.

Problem 10.11

Write out the Karnaugh map for a circuit where the output is true if the input (a 3-bit, unsigned
integer, 0-7) is one of the first 6 digits of w. Give a circuit implementation in terms of 2-input gates.

Problem 10.12

A semiprime number is a positive integer that is the product of two prime numbers. The prime
numbers need not be distinct, 1 doesn’t count as one of the primes. For example, 0-3 are not semiprime,
but 4 is.

(a) Write down the Karnaugh map for the function of the boolean variables A, B, C, and D, which is
true when the concatenation ABC'D (when converted to decimal as an unsigned integer) is semiprime.

(b) Find a (reasonably simple) boolean expression for this 4-bit semiprime function you diagrammed
in (a).

(c) Sketch a logic implementation of this function in terms of logic gates.

Problem 10.13

(a) Write down the Karnaugh map for the function of the Boolean variables A, B, C, and D, which
is true when the concatenation ABC'D (when converted to decimal as an unsigned integer) is greater
than or equal to 6.

(b) Find a (reasonably simple) boolean expression for the logic function you diagrammed in (a).

(¢) Sketch a logic implementation of this function in terms of only 2-input NAND gates.
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Problem 10.14
Find logic to perform multiplication of two 2-bit (unsigned) integers (i.e., 0-3), with a 4-bit output.
Hint: use a separate Karnaugh map for each output bit.!
Problem 10.15
Find logic to perform addition of two 2-bit (unsigned) integers (i.e., 0-3), with a 3-bit output.
Hint: use a separate Karnaugh map for each output bit.
Problem 10.16

(a) Write down the Karnaugh map for the function of the Boolean variables A, B, C, and D, which is
true when ABC'D (when converted to decimal as an unsigned integer, D being the LSB) is odd and
greater than 4.

(b) Find a (reasonably simple) boolean expression for the logic function you diagrammed in (a).

(c) Sketch a logic implementation of this function in terms of only 2-input NAND gates.

1Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed. (Cambridge, 1989), Exercise 8.14 (ISBN: 0521370957).


http://www.amazon.com/gp/search/?field-isbn=0521370957

Chapter 11

Physical Implementation of Logic Gates

So far, we have studied logic and logic gates, but logic is much more useful if we can implement logic gates
physically. Generally speaking you can buy these as prepackaged integrated circuits, but it is still useful
to understand how to implement these, for (1) extra intuition and (2) to understand the limits and quirks
of commonly available electronic logic gates. We will start with simple examples of logic realizations and
progress to realistic (but more complicated) cases.

The material here in this chapter relies on previous material on diodes from Chapter 3 and transistors
from Chapter 4. However, we will briefly review some of the relevant material here.

11.1 Simple Mechanical Switches

Fundamentally, electronic logic gates work by involving switches. Typically these are some form of electronic
switches, but of course these can be ordinary mechanical switches (equivalent to connecting two points by
a wire or breaking the wire connection). One simple convention for a single-pole, single-throw (SPST)
switch (“single pole” = single circuit to break or connect; “single throw” = single possible connection to
make or break), as shown below, is that the closed (conducting) or ON state is TRUE,

closed = TRUE
— —>——

and the open or OFF state is FALSE.
open = FALSE

e o

This convention agrees with a common convention for logic in terms of voltage levels, where HIGH voltage is
TRUE and LOW voltage is FALSE, if we consider a relay (magnetically controlled switch), as shown below.

=V, —> TRUE

H/P Vin
‘/in © ?z Vvin =0 — FALSE

The relay is pulled closed when the voltage is HIGH (at some voltage V. ), due to the magnetic field of the
coil; when the voltage is zero, there is no field and the switch pops open (due to the action of a spring).

Using switches it is easy to see how to construct an AND gate, if two switches are in series, since both
switches must close to light the light bulb (the logical “output” here).
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JO—'/

For an OR gate, the two switches are in parallel, so only one switch needs to be closed to light the bulb.

The switch here is a single-pole, double-throw (SPDT) switch (“double throw” = two alternative
contacts for the switch), where “up” on the switch is TRUE and “down” on the switch is FALSE.

11.2 Diode Logic (DL)

The simples “purely electronic” examples of logic come in the form of diode logic (DL). Before examining
some DL gates, first let’s review how diodes work.

11.2.1 Diode Review

A diode is a two-terminal device, as shown below, and it acts as a one-way valve for current: current can
only flow from the anode to the cathode (in the direction of the “diode arrow” in the schematic symbol).

I—

anode + cathode

That is, as in the diagram below, if the anode voltage V4 is greater than the cathode voltage Vg, then
current flows; otherwise, no current flows.

I—
I1=0
AO—N—OB = AOI;OB or Ao ( ) o B
if Vy>Vp if Vy < Vg

You can think of the diode as being a short circuit in the first case (“forward-biased”), and an open circuit
in the second (“reverse-biased”). However, the real situation is a bit more complicated: a slightly better
model is that there is a forward voltage drop of around 0.6 to 0.7V when the diode is conducting current.

11.2.2 DL AND Gate

Now to see how to realize gates in DL. Below is a realization of an AND gate. The DL convention here is that
0V is FALSE, and +5V is TRUE.
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+5V
o

S

]
Bo—“—o—oQ:AB

If both inputs are at +5V then all points are at the same voltage, including the output Q. If one input is
low, say A, then the situation is as shown below.

+5V

=y

Q =0V (actually ~0.6V)

A

The diode is forward-biased, and thus shorts the output @ to ground. The power-supply voltage (+5V) is
dropped across the resistor because the diode causes sufficient current to flow through the resistor to ground
to ensure this. The state of the other input (B) is irrelevant here, because either it “agrees” with A, or if it
is HIGH, B’s diode is reverse-biased, so it is disconnected from the circuit.

Actually, the output voltage is not quite 0V in the latter case; because the diode has a forward-voltage
drop, the output FALSE state is more like 0.6 V.

11.2.3 DL OR Gate
Another DL gate, the OR gate, is shown below.

A Q=A+B

i

B

Here, if either input is at +5 V, then the corresponding diode is forward-biased, so output is at +5V [actually,
(+5 — 0.6) V if we account for the diode’s voltage drop]. If both inputs are at 0V, then the whole circuit,
including the output, is also at 0 V.

The main problem in the DL circuits is that one of the signal-voltage states “degrades” by 0.6V on
each gate, so not many gates can be cascaded while keeping the signal levels distinguishable. This motivates
the use of active devices in logic circuits that can maintain the proper voltage levels.

11.3 Resistor-Transistor Logic (RTL)

A step up in terms of sophistication is resistor-transistor logic (RTL), which is obsolete but relatively
easy to understand. Again, we first have to review how a transistor—specifically, the NPN bipolar junction
transistor (BJT)—behaves, in particular as a switch.
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11.3.1 BJT Review

Recall that a transistor is a three-terminal device, with terminals labeled as in the diagram below.

collector
base

emitter

The transistor acts as a switch for current, based on another current. We will consider two currents, I from
the base to the emitter, and I from the collector to the emitter, as shown below.

C

Then I acts as the control current, and I is the current to be switched. Simplistically, if there is some
current Iy, then I can flow, so the C—E path acts as a closed switch.

C C
4# - ﬁ
>0y

E E

C C

i

B =
I; =0 \
E E

However, if Iz = 0, then the C-E path acts as an open switch. There are some extra voltage drops to
consider here, but this simple model suffices to understand RTL-gate operation.

11.3.2 RTL NOT Gate

The RTL convention is that +3.5V is TRUE, with 0V FALSE. The simplest RTL gate is an inverter or NOT
gate, shown below.
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+3.5V

640 Q2

450

If the input is TRUE, then I; > 0, and the C-E path conducts. This pulls the output down near ground, or
FALSE. If the input is FALSE, then Iy = 0, and the C-E path is broken. The resistor pulls the output up to
the supply voltage, or TRUE.

11.3.3 RTL NOR Gate
A slightly more complicated example is the NOR gate, shown below.

+3.5V

640 Q

A
450 Q

———O =

5 Q=A+B
4502

The operation is the same as the NOT gate, but here either input can pull the output to ground; the output

is only pulled up HIGH in voltage if both inputs are FALSE or LOW.

RTL works reasonable well and doesn’t suffer from the (cumulative) degradation problems of DL,
because the output levels are set by the supply levels, not the inputs. However, DL is obsolete because the
“return” to the high state when the transistors stop conducting is via the pull-up resistor. This transition is
slow if there is a significant capacitive load on the output. (The LOW transitions when the transistors conduct
are fast because the BJT collectors have effectively a very low impedance.)

11.4 The Real Thing: Transistor-Transistor Logic (TTL)

A common standard still in modern use is transistor—transistor logic (TTL). The nominal convention
is that 45V is TRUE, and 0V is FALSE. The circuitry is somewhat more complicated, and we’ll go through
the classic TTL NAND gate, shown below, as an example.
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4M2§§ 1.6k 1306

Q1 Q3
i o
B
Q=48
1kQ o4

input stage phase splitter totem-pole output

There are three different stages: the input stage (Q1), the phase splitter (Q2), and the totem-pole output
(Q3, Q4, and the diode). An unusual feature is the double-emitter input transistor Q1. It works just like a
regular transistor, except that a base current to either emitter will switch the collector current. Let’s trace
the voltages through the circuit for two cases.

1. Suppose A or B is LOW. Then:

e Q1 is ON (collector conducts to grounded input).
e (Q2’s base is LOW, thus Q2 is OFF.
¢ Q3’s base is HIGH (pulled up by 1.6-k{ resistor), thus Q3 is ON.
e Q4’s base is LOW (pulled down by 1-k2 resistor), thus Q4 is OFF.
e The output is HIGH since it is pulled up via Q3 and the diode. The output is 5V — Q3’s voltage
drop — the diode drop, which works out to around 3.5V.
2. Suppose A and B are both HIGH. Then:

o Q1 is OFF (collector disconnected from inputs).

e Q2’s base is HIGH (pulled up via the B-C path of Q1, which acts like a diode), thus Q2 is ON.
e QQ2’s emitter is pulled LOW by Q4, which is ON.

e Q2’s collector is pulled LOW since it is ON; so Q4’s base is LOW, and Q3 is OFF.

e The output is LOW since it is pulled down via Q4. The output is 0V + Q4’s voltage drop, which
works out to around 0.4'V.

The point of all this is to generate a few useful and general observations.

1. The inputs “want” to be high, because they tend to be pulled up to the power-supply voltage via the
4-kQQ resistor and the B—E paths of Q1. Thus, the inputs source current when they are pulled LOW. In
particular, open inputs are HIGH by default in TTL, and less current flows (less power is dissipated)
when the inputs are HIGH. In particular, if you have unused inputs in TTL circuits, it is best to tie
them HIGH (i.e., connect them to +5V).

2. The output, when driving another TTL input, must sink current, roughly (5V)/(4kQ) = 1.25 mA.
One output can drive multiple inputs, but there is a limit to this, because the output has a limited
current capacity. This limit is called fanout, which is typically ~10 inputs for a standard TTL output.
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3. The output voltages don’t quite match the nominal values of 0V and 45V, so the TTL standard
defines precisely the tolerance limits on signal voltages.

o TTL circuits must recognize anything from +2.0V to +5V as HIGH.
e TTL circuits must recognize anything from 0V to +0.8 V' as LOW.

e The intermediate range of +0.8 V to +2.0V is indeterminate: TTL circuits can do anything with
inputs in this range and still conform to the TTL standard.

11.4.1 TTL Nomenclature
Standard TTL chips are most famously grouped into the 74XX (or 74XXX) family. For example, there are:
e 7400: quad, 2-input NAND (i.e., 4 NAND’s per package)
e 7402: quad, 2-input NOR
o 7404: hex inverter (i.e., 6 NOT gates)
e 7408: quad, 2-input AND

and there are hundreds more, though many are now becoming obsolete. Note that these are also labeled as
equivalent 54XX circuits, which are the military-grade versions.

These “classic” TTL circuits are now obsolete, but they still come in many popular “flavors.” These
variations are labeled by a tag between the 74 and XX, for example 74LS00, 74F00, and 74HCT00 are all
basically the same as the original 7400. The common flavors are:

o L: low-power (slow, obsolete)

o H: high-speed (high-speed, obsolete)

o S: high-speed Schottky (high-power, obsolete)

o LS: low-power Schottky (common, modern-standard chip)
o AS, ALS: “advanced” S, LS

o F: fast (gates have ~4-ns propagation delay vs. ~10ns for standard gates)

11.4.2 CMOS

Another class of devices is complementary MOSFET (CMOS)complementary MOSFET. These
devices are similar to BJT logic devices, but are switched by voltage, rather than current (remember no
current flows into the gate of a MOSFET). A side effect of CMOS designs is that they dissipate current while
switching states, but not when “holding.” This feature makes CMOS generally power-efficient compared to
TTL, and CMOS circuits take negligible steady-state input current (but of course are more susceptible to
static discharge). CMOS devices are more flexible in terms of logic level, and can operate at HIGH voltages
other than +5V. There are separate CMOS logic families, but there are also CMOS variations of standard
74XX devices. For example, the flavors are:

o C: (e.g., 74CXX) operates from +3 to +15V (compared to +5V for standard TTL), with a nominal
“trigger” point of Y2 of the supply voltage.

o HC: high-speed CMOS
o HCT: high-speed, compatible levels with TTL (+5V, and a low trigger voltage)
o AC, ACT: advanced CMOS (i.e., fast), ACT is the advanced HCT
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11.5 Circuit Practice
As circuit practice, consider the circuit below. What kind of gate is this?

+5V

¢+
¢

Solution. Due to the arrangement of diodes, the only way to turn the transistor ON is to have one input
HIGH and one LOW. In this case, the output is LOW; otherwise the output is HIGH. This, this is an XNOR gate.
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11.6 Exercises

Problem 11.1

You have two switches (two-position switches; review how switches work if you need to!), a battery,
a light bulb, and an infinite supply of wire. Devise a way to realize an XOR gate, where the switch
positions are the inputs and the light bulb is the “output.” How about an XNOR gate?

Problem 11.2

You have three switches (two-position switches; review how switches work if you need to!), a battery,
a light bulb, and an infinite supply of wire. Devise a way to realize the logic expression A - (B + C),
where the switch positions are the inputs and the light bulb is the “output.”






Chapter 12

Multiplexers and Demultiplexers

12.1 Multiplexers

Simply put, a digital multiplexer (or MUX for short) is a logic device that maps one of many (digital)
inputs to one (digital) output. You select which input to connect to the output using the “address” inputs.
The multiplexer is the logic analog of a many-to-one mechanical rotary switch.

Multiplexers are useful devices. For example, you can use them to “pack” data from multiple sources
(“parallel data”) onto a single “serial” transmission line (e.g., for phone or computer networks). They can
also be used to sample or “poll” data from multiple sources, and ultimately allow scaling of many digital
devices into modern computers. Multiplexers are examples of MSI (medium-scale integration) devices,
“medium-scale” here meaning dozens of gates on 1 chip.

12.1.1 Example: 74151

An example of a multiplexer is the 74151 (which for example, with manufacturer and TTL-flavor codes
would be something more like DM74LS151), an 8-input MUX, shown schematically below.

There are a number of features here:
e Ig—I7 are the 8 inputs.

e Ap-Ay are the 3 address lines, to select among the 23 = 8 inputs; the idea is to select input n by
setting A3 A1 Ag to n in binary.

e () is the output: the selected input is copied to the output.

e (Q is an inverted copy of the output.

o E or ENABLE 7(also called “STROBE”) is a “chip enable” line. If FE is LOW, the chip works as we have
described; if F/ is HIGH, then Q = LOW ) = HIGH, independent of the states of Iy_7 and Ag_s.

Another example of a common MUX is the 74150, a 16-input MUX (with 4-bit address).
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12.2 Demultiplexers

A demultiplexer (or DEMUX for short) is the “opposite” of the MUX, in the sense that a single input
is copied to a selected one of many possible outputs. Again, these are useful in, for example, packing and
unpacking data to and from a transmission line via a MUX-DEMUX pair. Also a variation on the DEMUX
is a decoder, which is the same as a DEMUX, but only selects the output, without copying any input (the
“data” is effectively constant HIGH).

12.2.1 Example: 74138
A good DEMUX example is the 74138, a 1-to-8 DEMUX, as shown below.

— AO QO b—
— Al Ql b—
— A2 Op P—

38 GpT
—qE; O p—
—qE- O P—
— Ej O7 p—

To go over the features here:
e 0p-O7 are the 8 outputs, Note that they are inverted (i.e., their “normal,” unselected state is HIGH).
o Ay—A, are the 3 address lines, again to select among the 23 = 8 inputs in the same way as the MUX.

e Ey, E5, and and FEj3 are chip-enable inputs. The chip is enabled if E; = E, = LOW and E3 = HIGH.
Then the operation is as follows.

— If the chip is enabled, then the selected output O; is LOW. (The others are HIGH.) In this case, the
chip acts as a decoder.
— If the chip is not enabled, then all outputs O; are HIGH.

— To operate this chip as a DEMUX instead of just a decoder, use E, or E; as a data input. In
this case, the selected output copies Ey or Eg, while the others remain HIGH. Alternately, E3 can
work as a data input, in which case the selected output copies F3 (with the others still HIGH).

Another example of a common MUX is the 74154, a 16-output decoder/DEMUX (with 4-bit address).

12.3 Making a MUX

The logic underlying a multiplexer is not difficult to understand. There are two basic elements: a decoder
and “routing” logic. As an example, let’s consider an 8-input multiplexer. The decoder, as we described,
takes address inputs Ag—Asz, and sets the corresponding one of 8 outputs Cy—C7 HIGH, with the others LOW.
We can simply use AND gates to set each output when matching the correct address combination, as below.

Co Cy Co
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To be more efficient in terms of gates, we would only use one NOT gate for each of Ay, A;, and Ay, rather
than NOT gates as shown, but the input NOT operations simplify the diagram.
The routing logic then has the algebraic form

Q= (Colo+Cila+ - )E, (12.1)

if we include an ENABLE input.

12.4 Expanding a MUX (or DEMUX)

A useful technique is to combine MUXs into larger MUXs. For example given, 8x 8-input MUXs, how do
we make a 64-input MUX? This shows the real idea behind having chip-enable inputs: we will use the F
inputs and an 8-output decoder, as shown below.

Q Q
74151 74151 <.+ ete
Io Iy Io I3 Iy Is I Iy Ao A1 A2 E I Iy Io I3 Iy Is I Iy Ao A1 A2 E
BEEEEER BEEEEERR
Io—I7 Is—1I15
Ao
Ay
A

JLHHH

00 010203040506 O
74138
Ag Ay Ay

Az Ay As

One detail that we have left out is that the @ outputs must be combined by an OR gate. An important
alternative is to use chips with three-state logiclogic!three-state. For these chips, the output is discon-
nected (high-impedance) when the chip is not enabled. In this case, you can just connect the chip outputs
directly together, since only one chip will be enabled at a time. In this example, we can use the three-state
alternative 74251 instead of the 74151.

12.5 Analog MUX/DEMUX

The same ideas behind digital MUX/DEMUX can apply to analog signals as well. An analog switch (or
CMOS switch) is an electronic switch for analog signals, controlled by a digital input. An example is the
DG412 quad SPST (normally open) analog switch. The switches are switchable electronically, e.g., from
a computer-interface output. They are even good compared to mechanical switches in terms of noise: for
example, you can run a digital control wire to the front panel from a circuit board rather than a signal line,
and the noise pickup is not critical for a digital control line (it is easier to keep low-noise, critical signals on
a well-grounded circuit board than to carry the signals on wires away from the board).

An analog MUX/DEMUX (in the analog case, these devices act as bidirectional devices, so there is no
distinction between MUX and DEMUX) is an array of analog switches, controlled by address lines. This is
really the analogue of a mechanical rotary-select switch. A good application here, for example, is to connect
many sensors to a single microcontroller. An example of an analog MUX/DEMUX is the DG407, a dual
8-channel MUX.
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12.6 Circuit Practice: Multiplexed Thermocouple Monitor

On the following pages, look over the schematic for a web-enabled thermocouple monitor.! A few things to
look over:

There are provisions for 8 thermocouple inputs.

The thermocouples are monitored by the AD594, which provides “ice point” compensation and buffers
the thermocouple signal. However, this is a relatively expensive chip, so rather than having one for
each thermocouple, we just use an analog multiplexer (IC1).

The output is converted to digital via an analog-to-digital converter (IC3).

The multiplexer address is controlled by an Ethernut microcontroller, which also reads out the ADC.
The Ethernut has an ethernet port, and thus has firmware to make a web site to display the tempera-
tures. It also controls an LCD display on the actual box.

Thttp://atomoptics-nas.uoregon.edu/~zoinks/#WebTC
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MULTIPLEXED THERMOCOUPLE MONITOR

12.6 CIRcUIT PRACTICE

TIEISVO'd MOFLS 'V 'A

1 -- 1NOAvay H1TdNODOWIIHL A9 T1dVNI-dIM

$10309UU0D
ardnodowrayy ad -

=

o

a2

a8

2

|33

oad
1ad
cad
edad
LNdLNO‘d I¥0d o
vad
<ad
9ad
Lzad
[odd
1dd
dd
€dd
LNd1NO 4 1J0d —
WaN Yysel] 10 vad
PaAIASAI F ] cad
9dd
Lsdd
(8ur38ngap 103) [odd
TETSA/ 0LV N 10}
paatasal 14 d ‘0dd Tad
dd
€dd
LNdNIH L¥Od o
$Ad |-
sdnaeur jousayze
10§ PaAIASAI :GHJ <dd
94d
ndjno
seamSyuooizgg  L44d
LIOd NOISNVIXH
AATI 1T/ V AHIO0T
LANYIHLE

=S

IIIIIIII

zaa 1a
RW 6 8 &V 60/81/% A A4
oL €dda oda 7
I vaa q 9
27l €aa M/ g
o7l %aa Sy 69 €1'e
g,
7] 44a N
A F e O ol
R S5 1se1U0D ——0O -
or] - aan A 8/ \0‘ PI'T
AXV-AT-ANI9Z02ONA
T-dIAZ0TM Mme
a1 et 58
5g €l
96
5
85
65 =
09 \NW 0°S-0P0PIN'T
21
19 Vi
£ a1
o] ANOD +mm§ y 25 Lot
- [2:s
= )52 hig
_ Zrod D08 [
g a qoa
= €L v VAL
_ 7] 18 WOD m[_
L ZHN ar| o7
15 a
5
_ <>+ or T OHO 7
s 0€12IOav
& % €21
e g/ 100 ano
ApF A ONIT
o€ 050-¥001-5D8 _
3 <1 = VAT
NAVIV w,:
v oA0T oA
& R 6|imon
& ot 5
= a VAT 1’
4
— 20 =
9 = - €1
6 Uﬁ .5 T 7
ot . Z osav £0v9a
I v — 7 (&)1 o
'y ‘O'N ano
T g
X -
<>+ ST ISdS¥¥ Ay
¥ €
& 7t rﬁﬁu T YAy
VAT o1 T
Te1poa
901




CHAPTER 12. MULTIPLEXERS AND DEMULTIPLEXERS

248

€IDA
€JDA
€ODA
SODA
ano
aNo
ano
ano
/14s3d
oa
SOOA

SODA

¢ 1NOAaviay I1dNODONITHL ddTdVNA-99M

a0 | 4110 an ot 41 100 m: o]
an o 81D L1D 9D SID- NG 11080 am o1

61D + +LD7D
JI0L JI0L JI0L

<>+ Q>+ Amm%>+ <>+

(DD DONISSVIAT ATIINSIAMOd (PO TOD DNISSVIAT HONTIIITT ANV X 1ddNS IIMOd

punoid [enSip punoid Sofeue

sauerd punoi8 [eySip

VAN pue Sojeue usamaq
uondauU0d AJurs

JLIOd NOISNVIXH
V AT 0C LONIIHLE

i ze NK X
o © / S
STAN
i V g
s
° VAY ATETS Lno NI
0T 10 jsnipe
[av-980TAT VOSTIN9d
" 201 1a
M
Tt
D> n
VI \I|/\ (o18ue yBu)
14 uwgc& EE 1C
| —— )
| — T

(yueyrodur jou bim_omv
NI YIMOd VW 0SZ ‘A 6



12.7 EXERCISES 249

12.7 Exercises

Problem 12.1
Show how to make a 4-input (digital) multiplexer from ordinary logic gates.?

Problem 12.2

Look up the 74139. What is it? Show how to hook it up, using at most an extra inverting buffer, to
make an 8-output decoder. Show how (by adding extra logic gates) to implement an 8-output DEMUX.

Problem 12.3

Suppose that you end up stuck on an isolated desert island, surrounded by sand, coconut trees, and
(oddly) a near-infinite supply of 4-bit MUXs, shown schematically below. Explain how you can, in
principle, use your treasure cache to create any logic circuit you can dream up, to use to call for help.
Make specific wiring diagrams to support your argument as necessary (you should have at least one
diagram showing a wired-up MUX.) Assume you have found some MacGyverish way to adapt coconuts
and coconut fibers to create whatever power supplies and wiring you need. However, you may not take
the MUXs apart to obtain the individual logic gates inside.

MUX

2Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed. (Cambridge, 1989), Exercise 8.17a (ISBN: 0521370957).


http://www.amazon.com/gp/search/?field-isbn=0521370957




Chapter 13

Flip Flops

13.1 Flip-Flop Construction: SR Flip Flop

A flip-flop is relatively simple logic circuit that involves feedback (i.e., such that the output of a gate drives
its own input, generally via other gates). Flip-flops are useful devices, and as we will see, they are the basis
of digital memory.

The basic flip-flop is the SR flip-flop (“SR” for “set-reset”). A realization in terms of NOR gates is
shown below.

R Q

Q|

S

To analyze this, let’s work out the truth table.

= olo |l Wn
—lo ol oy
olo o R~
ol o~ o)

A few things to notice here: First, there are two rows with inputs SR = 00, with different outputs. You
should convince yourself that both are consistent with the circuit. In the first two rows, the fact that one
input is HIGH fixes the state of the corresponding NOR gate, which then fixes the state of the other one. But in
this multivalued, or bistable state, the inputs don’t fix the state of either gate. Rather, we have to assume
that @ is in some state (i.e., it was set in this state in the past), which then fixes Q. This bistable state is
the defining characteristic of a flip-flop: it means there is hysteresis in the circuit, so that the state
of the circuit “remembers” the past state. It is in this sense that a flip-flop can act as memory.

A second feature in the truth table is that the state SR = 11 is a “bad” state, since Q = @, which
means our output notation is in some sense itself bad. However, having the complementary outputs is
convenient, even if nonessential. The more important problem with this state, however, is that the outputs
don’t match either of the two “hysteresis states,” which we want to use as memory. So if we take the inputs
from the bad state to SR = 00, it will collapse into one or the other hysteresis state in an ill-defined way,
which is not very useful. Generally speaking, the bad state is to be avoided when using a flip-flop for its
intended purpose.

Then this is how you use a flip-flop:
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e The inputs R and S are normally 0 (i.e., the flip-flop is in one of the memory states).

« Bringing S to 1 and back to 0 (the “set” operation) changes Q = 1 and @ = 0. This state is
“remembered” when R =S = 0.

« Bringing R to 1 and back to 0 (the “reset” operation) changes Q = 0 and Q = 1. This state is
“remembered” when R = S = 0.

13.1.1 Application: Debounced Switch

A simple application of the SR flip-flop is to make a debounced switch. Recall that switches are mechanical
devices that make and break electrical connections. We can use a switch as in the schematic below to toggle
between TTL HIGH and LOW.

+5V

1kQ

r/ I |1

open close
switch  switch

That is, if the switch is open, the output is pulled up by the resistor to +5 V, while a closed switch corresponds
to a 0-V output.

The problem is that the output will really look like the output shown for one open/close cycle. When
we open the switch, the output goes HIGH with no problem, because the switch cleanly breaks the connection.
However, when closing the switch, there is a problem. The contacts must close, and normally they are held
together by some spring pressure. But when they close, one contact smacks into the other and “bounces”
off of it, just like dropping a chunk of metal on a hard floor. The spring action pushes the contacts together
again, and the result is a few extra, short pulses due to the switch bounce, typically on ms time scales.! This
is a real problem, for example, if the pulse is to drive the input of a counter. For example, the switch could
be actuated by items on a manufacturing line, to count the number of items produced; it would obviously
not be a very good count if there were several extra bounces for each item to count.

A simple solution to this uses a flip-flop and a slightly more complicated switch. Before getting to
that, let’s introduce a functionally equivalent variant of the above RS flip-flop, now based on NAND gates.

S——— Q

S — Q

The operation is the same as before, but note the inputs are R and S, so their senses are inverted. That is,
the “usual” input state should be R = S = 1. Then you bring S momentarily to 0 to set the flip-flop (i.e.,
Q = 1), and you bring R momentarily to 0 to reset it (QQ = 0). We will leave the analysis of this flip-flop as
a circuit-practice exercise.

Now the debounced switch uses an SPDT switch (the “bouncy” switch used an SPST switch). The
“up” switch state sets Q = 1, and the “down” switch state sets QQ = 0.

lexample: http://www.maximintegrated.com/en/app-notes/index.mvp/id/287


http://www.maximintegrated.com/en/app-notes/index.mvp/id/287
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+5V
1kQ
S
" Q
Q=1
= Q= o |
R
1kQ
+5V

During a bounce, the switch makes no connection to either contact, so both S and R are 1. This is the
memory state, so the flip-flop holds the last switch state, which persists through the duration of the bouncing.

13.2 Clocked Flip-Flops

An important class of flip-flops, one step up in sophistication from the basic flip-flops above, is that of
clocked flip-flops. A clock is an external, typically periodic logic signal that synchronizes signals in
complex circuits. We will see some examples later, but in complex circuits, this synchronization is important
in avoiding problems with race conditions. The idea in a clocked flip-flop is that the input datum is only
accepted during a particular phase of the clock cycle, for example when the clock is HIGH. The clock then
functions as a “gate” for the input data. An example of a clocked SR flip-flop is shown below.

g— ) S
Q
CLK

Q
5

Note that when the CLK signal is LOW, this guarantees that the flip-flop is in the memory state. We can write
the truth table for this circuit as follows.

S R ‘ QnJrl
0 0| Qn
1 0 1

0 1 0

1 1| “bad”

Here, @), is the output state after the nth pulse. If S and R are LOW, then the flip-flop stays in the memory
state, and the state @,, persists to the next clock cycle. Otherwise, the clocking NAND gates act as inverters

for the S and R inputs, so the inputs set and reset as usual (with momentary HIGH action), but only when
the clock is HIGH.

13.2.1 D-Type Flip-Flop

An important class of clocked flip-flop is the D-type flip-flop, which is basically the clocked SR flip-flop,

but where the two inputs are always in opposite states, as shown below. Here, the D or “data” input drives
the S and R inputs oppositely.
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D 5 ) S 0
pom—

The idea is that there is now only one input, and the flip-flop latches the value of the data while CLK is HIGH.
This flip-flop is often called a data latch.

Ql

13.2.2 Edge-Triggered, D-Type Flip-Flop

A somewhat more sophisticated and realistic D-type flip-flop is the edge-triggered, D-type flip-flop.
Here, “realistic” means you can buy these prepackaged (e.g., the 7474 gives you two of these per chip). The
main difference is that the data-latching action happens on the rising edge of the CLK pulse. Since the edge
has a short duration compared to the HIGH phase of the clock, the timing is more precise in this convention.
Schematically, this flip-flop is shown below.

A
S

§ —>CLK QF—

—q =

Some things to notice:
e D is the data input, as in the regular D-type flip-flop.

e CLK is the clock input. Again, the datum is latched on the rising edge. Schematically, it is common
to indicate this by drawing an arrowhead on the edge of a sample clock pulse, as shown, and also to
include a “>” next to the CLK pin.

e (@ is the output as usual, and @ is an inverted output copy.

« S and R are “jam” set and reset inputs. These override the output, independent of the CLK state (so
they work just like the inputs to the SR flip-flop). These are often called PRE and CLR (for preset/clear).

This flip-flop is good, for example, for storing data until they are “passed on” to a computer (e.g., in data-
acquisition systems, when data arrive with timing determined by a physical system, but need to be loaded
into a computer with its own timing).

13.2.3 JK Flip-Flop (Edge-Triggered)

A slightly more complicated variation on the edge-triggered, D flip-flop is the edge-triggered, JK flip-flop.
This is like the D version, but there are two data inputs (J and K), with no indeterminate states for J and
K. This is available in the 74112/74112A (2 per chip), and the now-obsolete 7476/7476A (also 2 per chip).
The flip-flop is shown schematically below.
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Ul p—

—J
Qt—
% —q>CLK
o) ==
— K

R
The operation with the two new inputs is as follows.

e The CLK on this flip-flop, as drawn, triggers on the falling edge of the clock. Note the NOT circle on
the clock input, and the sample clock pulse. This is how the 74112/74112A and 7476A work (the plain
7476 triggers on the positive edge). That is, this device is negative-edge triggered.

e If J=0and K =0, then @ persists on the next CLK pulse.

e If J=1and K =0, then ) = 1 on the next CLK pulse.

e If J=0and K =1, then Q = 0 on the next CLK pulse.

o If J=1and K =1, then @Q inverts on the next CLK pulse (i.e., it “toggles”).

o S and R are still jam set and reset inputs.

13.3 Counters

One useful application of flip-flops is in realizing counters, which count input pulses by incrementing a
binary output. The basic building block of a counter is the divide-by-2 counter, shown below in terms of

a D-type flip-flop.
L D Qp—aour

b [ n—pok @

The timing diagram for this circuit is shown below. Note that transitions happen on the rising edge of the
input (clock) pulses, and essentially the output is just toggling its output on each clock cycle. Hence the
term “divide-by-2,” since the output pulse train oscillates at half the frequency of the input clock. More
specifically, the flip-flop loads D = @ to @ on each rising pulse-edge.

s LML
wrod LT L]
po L LI 1|

Since the output is just toggling, recall that we can also make a JK flip-flop do this by tying both J and K
inputs HIGH, as shown below.

+5V

J Q [— ouT

% IN >CLK
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13.3.1 Asynchronous (Ripple) Counter

Generalizing the divide-by-2 is relatively easy. For example, we can make a divide-by-4 counter by cascading 2
divide-by-2 counters, and by chaining 3 of them, we make a divide-by-8 counter. Chaining n counters realizes
a divide-by-2" counter, as shown schematically for D-type flip-flops below (first three bits are shown).

20 2! 22
[ D Q [ D Q [ D Q
% IN —>CLK Q|— ——g>CLK Q|— ——3>CLK Q[

The timing diagram is shown below. Note that we changed the convention for the flip-flops, which now
trigger on the falling edge of the clock pulse. (Why do we need to trigger on the falling edge? How would
you modify the circuit if the flip-flops triggered on a positive edge?)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IN

oL I L L

21

22

The main advantage of this circuit is that it is easy to build: it’s easy to chain together flip-flops. The main
disadvantage is the asynchronous or “ripple” operation of the circuit: since there is a finite propagation
delay of the logic signal through each flip-flop, it takes some time for each clock pulse to “ripple” through
a long chain of a many-bit counter, which can cause synchronization problems for fast input signals (i.e.,
spurious output states may be present for some or even all the time).

13.4 Memory and Registers

Flip-flops act as single-bit memory devices, as we have seen. Combining flip-flops, we can build up registers,
which act as multi-bit memories.

13.4.1 Register

The basic register is an array of D-type flip-flops, which synchronized CLK inputs, the idea being to latch all
the bits at once (to avoid timing problems, e.g., as in the ripple counter).

OO O 1 02

D Q J D Q J D Q J
T>CLK T>CLK T>CLK
§ CLK

Iy L I,
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Once latched, the register holds the output state, independent of the inputs, until the next clock pulse. One
application is where a shared set of data logic lines drives several devices; a register at the input of each
device can hold the relevant logic data for each particular device while the data lines drive other devices.

13.4.2 Shift Register

The shift register shifts the data among the outputs, shifting all bits in one direction on each clock cycle.

OO 01 02

(serial) IN——— D @ l D Q l D @ L
T>CLK T>CLK T>CLK
_ 4 Lox :

An example application is in converting serial data to parallel form (i.e., on the receiving end of a
serial transmission channel). Also, note that a bit shift corresponds to a mathematical operation on binary
data (divide/multiply by 2).

13.5 Sequential Logic and the State Machine

Recall in our discussion of asynchronous circuits (e.g., the ripple counter), we mentioned that there can be
timing problems if the signals change rapidly, such that the gate delays are comparable to the time between
transitions. The cure for this is to use synchronous circuits, where all logic transitions happen just after
each clock pulse (or, more commonly and precisely, at an edge of each clock pulse). The transitions occur
based on the logic levels present just before each clock pulse (edge). This is essentially what happens in
a microprocessor, and this system of synchronous, clocked transitions is essential for high-speed and high-
complexity logic systems.
The general scheme of sequential logic is shown in the diagram below.

Inputs Outputs
logic
gates

Dn—l Qn—l

D, Q1
Do Qo Register

>CLK

I

The first main ingredient is a register (Section 13.4.1), which is again an array of D-type flip-flops, with a
common clock input. On the rising clock edge, the inputs D; are all transferred to the outputs );, and then
held.
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The next main ingredient is a set of logic gates in some combination, which work to transform the
outputs @); into new inputs D;. These can be implemented generically using PAL (programmable array
logic) devices or PLA (programmable logic array) devices, which are basically configurable arrays of
many logic gates. Also available are registered PAL/PLA chips, which contain flip-flops and gates all on
one chip. These are usually called PLD’s (programmable logic devices).

Inputs and outputs to the logic gates also permit interaction with the outside world. The sequential
logic scheme here is the most general form of digital logic, even though the idea is schematically simple.

13.5.1 Example: Synchronous, Divide-by-3 Counter

Continuing to follow Horowitz and Hill,> we will illustrate sequential logic by constructing a synchronous,
divide-by-3 counter. We will need two flip-flops (two bits to accommodate counting to 3), clocked from the
counter input. We will call the register inputs Dy and Dy with corresponding outputs Q¢ and ;.

—1Dy Qol— — D Qif—

>CLK

>CLK

§ § CLK

(input)

To design the counter, first we will choose the sequence of states that we want. There are no external inputs
here, so this is just a simple sequence, with no conditions (which we would represent as extra bits here). The
counting sequence is thus as follows:

Qo Q1
0 0
0 1
1 0
0 0

Here, @y functions (arbitrarily) as the MSB, and @; the LSB. We have also shown the first step in the
repeat.

The next step is to find the appropriate D’s. Remember the D’s must be our desired @’s on the next
step, so we will explicitly write out the desired D’s as a function of the @’s.

Q Q1| Dy Dy
0 0 0 1
0 1
1 0
0 0

0
0
1

S O =

Finally we find a logic implementation of the functions D;(Qx), using whatever means necessary (e.g.,
Karnaugh maps). Here, by inspection we can see that

Dy = Q1, Dy = Qo+ Q1. (13.1)

Thus, the circuit implementing the counter is shown below.

2Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed. (Cambridge, 1989), p. 513 (ISBN: 0521370957).


http://www.amazon.com/gp/search/?field-isbn=0521370957
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DO QO Dl Ql L

>CLK

>CLK

§ § CLK

(input)

One more detail to worry about is the set of excluded states. For the divide-by-3 counter, we didn’t use
the state QoQ1 = 11, but what if the flip-flops end up in this state (e.g., when the circuit is turned on)?
Given our logic realization, we will then have Dy = 1 and D; = 0, so the counter will resume the normal
counting cycle on the next cycle, with @Q¢Q1 = 10. But it’s important to consider these, since the register
could end up “frozen” in an excluded state or a cycle of excluded states if the logic gates don’t handle them

properly.

13.5.2 State Diagrams

A convenient way to represent the operation of a state machine is a state diagram. For example, the
diagram (including the excluded state) for the divide-by-3 counter is shown below.

©
-

QJ

This is a directed graph of all the register states; the edges (arrows) show transitions between the states.
You can use a diagram to start the design: you just begin with n flip-flops, where 2" equals or exceeds the
number of distinct states. Then you use the procedure that we used for the divide-by-3 counter to generate
the appropriate logic.

If there are inputs, then there can be multiple possible transitions depending on the inputs. In this
case, you can modify the diagram, labeling the transitions according to the input state. For example, below
is a divide-by-3 counter with hold. That is, a “hold” bit H causes the counter to hold its state when H = 1
and counts as before when H = 0.
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This example also illustrates “transitions” where the state remains the same. We will cover the implemen-

tation of this counter in Section 13.7.1.
Another example is the 2-bit up/down counter, where an input bit U controls whether the (divide-by-4)

counter counts up or down.

13.6 Memory

When we introduced the flip-flop, we noted that it is the basic building block of memory, since it is a simple
1-bit memory device. Now we will talk about how to build up many flip flops into a memory device. First,
however, we will refer to the (non-edge-triggered) D-type flip-flop from Section 13.2.1. Recall that this is as

shown below.
D 5 S
Q
CLK {
e D R

An RS flip-flop (with momentary-low inputs) has two extra gates on the inputs and a clock signal, so that
the flip-flop only accepts input from the data line D when CLK = HIGH. The clocked version of the flip-flop
is essential in scalable memories. We will actually refer to a modified version of this circuit, shown below.

>c§:5 3 0

L oE
Here we changed notation so that the clock signal is now an “enable-low” (E), and the flip-flop now accepts
input only when £ = LOW. To keep things compact, we will refer to this circuit with the small block diagram

below.

Ql

Q|

R=D

Q*

=
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Now, modern computers can have GB of memory on the low end, easily exceeding 10*° flip flops. Obviously
it would be awkward to have 10'° connections to a processor or other device from the memory, so how do
we handle this? The answer is to go back to multiplexers and demultiplexers.

13.6.1 Example: 8 x1-bit RAM

Below is an example arrangement for a memory circuit with “8x1-bit RAM.” This means

The

There are 8 “slots” for 1 bit each of memory data (i.e., 1 flip-flop per slot).

“RAM” means random access memory, meaning we can easily write and read data to and from
any location in memory in any order (as opposed to sequential memory, as on a magnetic tape, or
shingled magnetic storage on some modern hard disks).

Flip-flop based memories like this are called static RAM (SRAM).

circuit is shown below, with external connections (larger versions of this circuit would come packaged
in a single integrated circuit with similar external connections).
D
(data in)
— D Q
E
— D Q
E
— D Q
E
— D Q
E
»—g Q L7,
§7 b— I
O p— — D Q I5 Q —‘ >——Q
5 E I ) (data out)
= MUX
Y 04 pP—— IB
DEMUX & - g Q j L
WE CE Oy p— h
(write enable) O, — D Q Iy AxAAq
A2A1Ag Ogp———d4E

RE
(read enable)

There are a few elements worth noting.

8 flip-flops here do the actual storage.
The address lines Ag—Ajy select which of the 8 flip-flops (slots) is active for either reading or writing.

For larger memories, the address lines would select a register of flip-flops so more data can be transferred
in parallel. For example, if the flip-flops were each 4-bit registers, we would have 8x4-bit RAM.

The data input D is wired to all of the flip-flop inputs; the DEMUX only enables one flip-flop to accept
data according to the address.

The DEMUX must also be enabled by an enable input here WE, or write-enable-low. If this input is
high, then no flip-flop is enabled for data input.
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On the readout side, all flip-flop outputs are fed into a single output via a single MUX, which is
addressed by the same address lines as the DEMUX (which is not necessary, but saves address lines if
we only want to read or write, but not both simultaneously).

The output @ is buffered by a three-state buffer gate, which is enabled by the RE (read-enable-low)
input. In this way, several memory chips can share the same output line(s), with only the selected chip
attempting to assert a logical value on the shared data output line.

13.6.2 Example: 6116 SRAM

In a example that is more typical than the toy example above, the data input and output lines are the same.
(Another reason to have a three-state output, so it does not conflict with incoming data.) A old classic, the
6116 SRAM chip, is still available;® this is a 2-kB memory (2kB= 2048 x 8 bits), and the connections are
shown below.

A [1] e [24] Vee
A5 3] [22] 4
] B
Ao[8] 17] 1/07
/0o [ 9] [16] 7/06
1/0; [10} [15] /05
/0, [11] [14] 1/04
GND E 1__3| 1/0;

6116 2kx8 SRAM

Most elements are similar to the toy model above.

The Ag—Ajg lines form the address bus: 11 bits are necessary to address from 0-2047.

The I/0¢—I/0O7 lines form the data bus, which can serve as inputs or outputs (i.e., reading and
writing) for the stored data, 1 byte at a time.

The chip-select-low input CS (i.e., chip enable) enables the action of the chip when LOW. Again, this
is useful when several chips share the data bus, so only the enabled chip can write to the bus.

The write-enable-low input WE enables the latching of the input data (the I/O lines act as inputs.
The output-enable-low input OE enables the data lines to act as outputs.

If CS = HIGH or WE = LOW or OE = HIGH, then the output buffers are in the high-Z state, again so the
data busses of many chips can be connected together. (The address busses are also connected, but
these need only act as inputs here.)

3For data sheet, see http: //www.idt.com/products/memory-1logic/synchronous-and-asynchronous-sram-memory-devices/
asynchronous-sram-async-sram/6116-50v-2k-x-8-asynchronous-static-ram; availability for small quantities starts around
$6 each as of May 2015.


http://www.idt.com/products/memory-logic/synchronous-and-asynchronous-sram-memory-devices/asynchronous-sram-async-sram/6116-50v-2k-x-8-asynchronous-static-ram
http://www.idt.com/products/memory-logic/synchronous-and-asynchronous-sram-memory-devices/asynchronous-sram-async-sram/6116-50v-2k-x-8-asynchronous-static-ram
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13.6.3 Other Memory Types

The SRAM above is the basic type of digital memory, but there are many other types. We will briefly review
them here.

DRAM (dynamic RAM) uses a small capacitor to store a bit of information as a charge state.
The disadvantage is that because the capacitor leaks, it must continually be “refreshed” (on ms time
scales), which greatly complicates the overhead circuitry. The advantage is that DRAM is cheap and
highly scalable; DRAM is standard for large memory modules in modern computers.

SRAM (static RAM) we have already talked about. Why do we want it? It is complicated to
fabricate relative to DRAM, and is hard to scale to very large memory. However, it can be relatively
power efficient (no refreshing is necessary), and due to the lack of refreshing overhead, it can be much
easier to use in small projects. Note that while no refresh is needed, SRAM is volatile (the stored
information vanishes when the circuit is not powered).

ROM (read-only memory) is not intended to be written, just read. The data are written during
manufacturing.

PROM (programmable ROM) is ROM that can be written (once!) using special programming
hardware, which burns fused connections inside the chip by applying relatively high currents.

EPROM (erasable PROM) is PROM that is programmed electronically, and the programming can
be erased (usually by exposing the IC to ultraviolet light, through a transparent window in the IC).

EEPROM (electronically erasable PROM) is EPROM that can be erased electronically by the
programmer (by applying high electric fields/voltages).

13.7 State Machines with Memory

Before, in Section 13.5, we covered the basic scheme of sequential logic, reproduced below.

Inputs Outputs
logic
gates

anl anl

D, Q1
Dy Qo Register

>CLK

BN N

Again, the basic idea is to use a register to hold logic values, the outputs of which are transformed and fed
back to the register inputs via a logic-array block. Here we will discuss implementing the logic-array block in
a very general way by replacing it with memory, either RAM or ROM. In the ROM case, the state machine
is suited for fixed operation (e.g., as a counter), whereas with RAM we have the possibility that the state
machine can adapt to input and even reprogram itself.

The general idea for implementing state machines with memory is:
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o We will connect the register outputs (Q’s), representing the present state of the machine, to the memory

address lines (inputs).

o We will connect the register inputs (D’s), representing the future state of the machine, to the memory

data lines (outputs).

o Any external inputs (needed for the state machine to react to anything external), correspond to extra

memory address lines.

e Any external outputs correspond to extra memory data lines.

It’s easiest to see how this works in an example.

13.7.1 Example: Divide-by-3-With-Hold Counter

As an example of a memory-driven state machine, consider the divide-by-3 counter with a hold input H,

whose state diagram we considered before in Section 13.5.2.

H=1C

In addition, as an example output bit, we will define a “zero” output bit Z to be 1 if the counter’s output

bit is 00, and is O otherwise.
The truth table is as follows.

e

H=1

=1

\H{?

H=1

(control) | (present state) | (future state) | (output)
H | Q1 Qo Dy Dy | Z
0] 0 0 0 1|1
0|0 1 1 0|0
011 0 0 010
011 1 0 0] 0
1|0 0 0 01
1|0 1 0 110
11 0 1 0] 0
11 1 1 110

In this system, there will be 3 address bits (HQ1Q)2), for 8 memory slots, and 3 data bits (D1 DyZ), so the
size of the memory is 8 x 3 = 24 bits. The circuit to implement this is shown below.

CHAPTER 13. FLIP FLOPS
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output Z (0D As input H

O Ay
Og Ag

S ROM S

S S

Il Il

N <

S <

D, Q1
{ Dy Qo }

Register

>CLK

I

All the logic in the truth table, of course, must be programmed into the ROM. Thus, for example, in
address A2 A1 Ag = 000, corresponding to HQ1(o = 000 in the truth table, we simply program in the value
D1DyZ = 011, and so on for the rest of the 8 total memory locations.

13.7.2 General Considerations: Towards a Microprocessor

A few general remarks are in order. First, if there are no input bits, then basically we have some kind
of counter (i.e., something that cycles through finitely many states, possibly with some outputs that are a
boolean function of the state bits). If there is a single input bit, then it chooses between 2 possible actions
(like the hold/count counter). If there are N input bits, then there are 2!V possible operations. This grows
quickly with the number of bits: for 8 inputs there are already 256 operations. We can also store sequences
of input bits, e.g., in RAM, for effectively many more different possible operations for the same number of
input bits (i.e., there could be a 1-bit serial input to a state machine that controls many different possible
actions by using different sequences of input bits). These stored bit sequences in RAM correspond to a
“program,” with 256 “instructions” in this 8-bit example, for a simple realization of a microprocessor. The
input/output lines are connected to the data/address busses, which are also connected to input/output
devices or interfaces. Real microprocessors often have more specific functionality, sophisticated instruction
sets (with instructions that can take multiple clock cycles to complete), and have registers organized in more
sophisticated ways than we have indicated here, but we still have the essence of a microprocessor.

13.7.3 Programmable ROM as Logic

We have talked about replacing logic blocks with ROM, but we can think of ROM itself as a general array
of gates, particularly the various forms of PROM. For example, consider the 8 x 1-bit memory shown below.
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A A Ay

Oo

JUUUL Q%JU

The main grid of lines is intended as a configurable grid, where we can make whatever connections we like.
Then there are two ways to think of this. First, because the inputs go first into AND gates and then into an
OR gate, we can realize Boolean-logic expressions if they are sum-of-product expressions. For example, we
can realize

O = AgA1 Ay + AgAi A (13.2)
by making the connections shown below.

Ao Ay As

iy

Oo

JUUUL Q%JU

The default of the unconnected inputs is 0.

The other way to think of this particular example, is that this is a memory that stores the value 1 in
the addresses AgA; A = 101 and AgA;A; = 011, and 0 in all the others. Thus we can store any value in
any location by making proper connections for all locations that store a 1. This is why we need 8 AND gates
in this example—one to “recognize” each possible set of inputs, if needed. (Of course, they are not all used
unless all the stored bits are 1.) In (“write-once”) PROM, these connections are all made at the factory,
and the undesired connections are “burned” away by flowing high current through the programable fuses at
each connection points.
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Diagrams like this get to be complicated for larger memories, so they are often abbreviated by “col-
lapsing” all the input lines for a given AND gate, as illustrated below. This circuit realizes the same example
expression as the previous one.

Ao Ay As

iy

HJU

= >—o

UL(J

In this way, we can draw out more complicated memories, like this 3 X 3 memory.

Ao Ay As

iy

Oo

02

T

13.7.4 Programmable Logic Devices

Programmable logic devices (PLDs) are chips that contain a register and PROM-type logic arrays
like the ones we have shown above. Generally speaking, they do not have sufficient gates to implement
arbitrary logic combinations (i.e., they generally have fewer than necessary AND gates), but they have enough
to program a wide range of logic possibilities. Example of simple, but currently available, PLDs are the
22V10 SPLD, or simple PLD (e.g., the ATF22V10C from Atmel), with 12 dedicated input pins, 10 pins
configurable as inputs or outputs, 10 D-type flip-flops, and a gate array (10 OR gates, with 10-16 AND gates
feeding each OR gate. The flip-flop outputs can be connected to their corresponding output pins, or the
flip-flops can be bypassed altogether for non-registered outputs. A more powerful example is the ATF750C
CPLD, or complex PLD from Atmel, which has the same pin configuration, but provides more gates, and
10 extra “internal” flip-flops that can be used as internal register variables that are not connected directly
to outputs.
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13.8 Circuit Practice

13.8.1 Basic Flip-Flops

For circuit practice, go through these three flip-flops.
(a) First, label the inputs and remaining output. This is the first one we did, but do this without
peeking! Think through the whole truth table.

i

(b) Work out the equivalence of the (a) circuit to this one (i.e., label the inputs and outputs). Try
not to use a truth table to do this, use a logic theorem to connect these.

H

(¢) Work out the equivalence of the (b) circuit to this one (i.e., label the inputs and outputs). Try not
to use a truth table to do this, use a logic theorem to connect these.

Solution.
(a) The labeled version is:

Q

1 B

S

(b) This is basically the same circuit, but with all inputs and outputs of gates negated. Thus, the flip-flop
inputs and outputs are similarly negated. The labeled version is:

=] U
Q| Q
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Note that since we kept () in the same spot, we had to swap the inputs as well.
(c) Using A+ B = AB, we simply change the negated-input OR gates to AND gates. The labeled version is:

S——— Q

=
Ql

13.8.2 Pulse-Area Stabilizer

We have seen the circuit on the next page before in Section 7.11.5. To review is designed to work as follows.
To take photographs with a laser pulse, it it desirable to have the same exposure from each pulse. But the
intensity of the laser drifts. Rather than try to stabilize the intensity of the laser, we can compensate for the
drift by changing the duration of each laser pulse to compensate. By making the pulse area or integrated
energy of each pulse the same, the photographs have exactly the same exposure, independent of the laser
intensity.

Try to trace through the following features in the digital part of the circuit.

1. At the beginning of the pulse, the “pulse start trigger” input drives the CLK input of the D-type flip-flop
(IC4a). Since the D input is tied HIGH, the @ output goes HIGH on the rising edge of this pulse, defining
the beginning of the laser pulse.

2. The @ output is OR’d with the “pulse start trigger,” mainly to allow this input to override the flip-flop
state, in case we want the laser to be on continuously for diagnostic purposes.

3. The pulse is finished when the integrated pulse area triggers the comparator IC3, when the inverting
output goes low, triggering the CLK input of the flip-flop (which triggers on the falling pulse-edge).

4. The @ output drives the MOSFET to reset the integrator after the pulse is finished, until the next
pulse starts.

5. The propagation delay of IC5a is matched by the propagation delay of the OR gate on the @ output
(IC5b). This is not critical, but we have extra OR gates around anyway, and it ensures an accurate
t = 0 for the integration.
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13.8.3 Memory: RAM vs. ROM

Explain the following statement, about connecting memory to a CPU:
With RAM you can scramble the address lines in any order; the same is true of the address lines.
With ROM, you can’t!

13.8.4 Circuit Practice: Divide-by-2-or-3 Counter

As practice with state diagrams, draw the state diagram for a divide-by-2-or-3 counter. That is, the counter
counts differently based on an input bit p, and the counter counts 00 — 01 — repeat if p = 0, and
00 —» 01 — 10 — repeat if p = 1. Make sure to handle the excluded state.

Solution. The diagram is sketched below.
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13.9 Exercises

Problem 13.1
(a) What is the essential property of a flip-flop?

(b) Does the circuit below behave as a flip-flop? If so, label the inputs and outputs in flip-flop notation.
If not, explain why not.

(¢) Does the circuit below behave as a flip-flop? If so, label the inputs and outputs in flip-flop notation.
If not, explain why not.

Problem 13.2

Show how to make an RS flip-flop (with both normal and inverted outputs) using an AND gate, an OR
gate, and an INV gate. (First try hooking up the AND and OR as in the usual flip-flop configuration,
and then it should be more obvious where the INV should go.) Analyze your circuit to show that this
behaves as a flip-flop. What is the “bad” input state?

Problem 13.3

Recall that the 74139 is a 2-bit, 4-output decoder/DEMUX, 2 per package, with 1 inverting enable
per decoder. Does the circuit below behave as an SR-type flip-flop (with respect to the labeled in-
puts/outputs A, B, C, and D)? If so, label the inputs and outputs in flip-flop notation (S, R, Q, Q).
If not, explain how to change the circuit wiring to make it operate as a flip-flop, and label the inputs
and outputs in flip-flop notation.

+5V o
T—C <O3 C
E i@F
Al Em%
A A0 2 00 p—
15V —
T—C <03 D
E 2@3*
B—— Al Eﬁ%
A0 ° 00p—
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Problem 13.4

A T flip-flop has a single (“T”) input, which causes the output @ to toggle if the T'= HIGH, and to
hold if T = LOW. The truth table and schematic diagram are shown below (Q,, is the output state Q
after the nth clock pulse).

T ‘ Qn Qn+1

0] 0 0 —r ol—
0 1 1

Lo 1 I —box

(a) Show how to connect the JK flip-flop below as a T flip-flop.

(b) Show how to connect the D flip-flop below as a T flip-flop. You will need to use one additional
gate.

§ 4>QCLK
— K § —>CLK

Problem 13.5

(a) Show how to connect 3 JK flip-flops to make a 3-bit ripple counter, and then show how to add
a single 2-input NAND gate to change this to a modulo-5 counter—that is, the counter resets to zero
when the output reaches 5, and continues counting.

(b) Show how to design a (ripple) counter that counts from 0 to 5 and then stops. Your circuit should
include a RESET input that resets the counter back to zero (and then continue counting) after a negative
pulse.

(¢) Show how to design a circuit that passes only 5 (positive) pulses and blocks subsequent other pulses,
after a negative reset pulse that “arms” the circuit.

Problem 13.6

(a) Show how to connect 3 flip-flops to make an asynchronous (ripple), 3-bit down counter. To be
specific, use 7474 flip-flops (dual D-type, positive-edge-triggered, with complementary outputs and jam
preset and clear), whose connections are shown below.

}

PRE

—Ip Ql—
1/2 7474
—>CLK Q}—

CLR
I
Recall that for the jam inputs, “preset” is the same thing as “set,” and “clear” is the same thing as

“reset.”

(b) Show how to realize an asynchronous, divide-by-5 down counter, made from the same D-type
flip flops. That is, your counter should count 4, 3, 2, 1,0, 4, 3,2, 1,0, ...

Problem 13.7

Consider the asynchronous counter circuit shown below.
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01 OO

:
]

Li>CLK
Li>CLK

§ § CLK

(input)
(a) Why is this circuit “asynchronous” and not “synchronous”?

(b) Assuming the counter starts in the state O10p = 00, give the truth table for the counter output
on subsequent clock cycles.

=

(c) Can this counter get “stuck” in any particular state? Why or why not?
(d) What kind of counter is this?

Problem 13.8

Recall that the 7490 is a decade counter, with clock inputs that trigger on falling edges. Below are
two ways to connect the 7490 as a divide-by-10 counter. However, they are not equivalent. What,
specifically, is the difference in the output waveforms? (Be quantitative.) Also, remember Qg is the
least significant bit of the divide-by-5 subcounter.

() (b)

14 R 12 14 . 12 _
clock A /2 Qa clock A /2 Q4 = output
= input ? ?
1 98 QB 1 [' g QB
clock B /5 Qc clock B /5| Qc
— 11 @p = output = input —— 1 Qb
RESET ESET
+5Ve—2 +5Ve—2
7490 7490
7] 10] 2| 3| 7| 10] 2|3

I

Problem 13.9

Design a synchronous 2-bit UP/DOWN counter: It has a clock input, and a control input (U/D); the
outputs are the two flip-flop outputs @1 and Q. If U/D is HIGH, it goes through a normal binary
counting sequence; if LOW, it counts backward—Q-Q; = 00, 11,10, 01,00,...*

Problem 13.10

Design a synchronous, 3-bit Fibonacci counter (i.e., count through the Fibonacci numbers 0, 1, 2, 3,
5, and then repeat). Use three flip-flops (of the 7474 type, as shown above) and whatever gates you

4Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed. (Cambridge, 1989), Exercise 8.25 (ISBN: 0521370957).


http://www.amazon.com/gp/search/?field-isbn=0521370957
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like. Be sure to show a state diagram, including all excluded states. Can your counter get “stuck” in
any excluded state?

Problem 13.11

Design a synchronous divide-by-3 circuit using two JK flip-flops. It can be done (in 16 different ways)
without any gates or inverters. One hint: When you construct the table of required Jy, K7 and Jy, Ky
inputs, keep in mind that there are two possibilities for J, K at each point. For instance, if a flip-flop
output is to go from 0 to 1, J, K = 1,X (X = doesn’t matter). Finally, check to see if the circuit will
get stuck in the excluded state (of the 16 distinct solutions to this problem, 4 will get stuck and 12
won’t).?

Problem 13.12

(a) (15 points) Design a synchronous circuit (state machine) using flip-flops and logic gates that
makes a 4-bit “Knight-Rider” pattern. That is, téloeocl)utput counts:

0010
0100
1000
0100
0010

repeat).
Don’t draw the circuit, just come up with the gequire logic expressions. Hint: there are 4 bits shown

here, but you will need an extra bit to keep track of the direction.

(b) (10 points) Of course, if the Knight Rider car is driving down the street with the lights stuck in
an excluded state, it would be less than awesome. Either show that your circuit doesn’t get stuck in
excluded states, or show how to modify your circuit to make sure that your circuit settles into the
above pattern for any starting state. Use whatever logic you like (again, no circuit, just the required
logic).

Problem 13.13

Analyze the circuit below by drawing a timing diagram for the outputs. Assume that the initial state
is ABCD = 0111, and analyze the circuit output for 5 clock pulses.

A B e} D
+5V +5V +5V +5V
o—1J Q o—1J Q o—J Q o—J Q
1/2 TAT6A 1/2 TAT6A 1/2 T4T6A 1/2 TAT6A
> CLK —>CLK ——>CLK —>CLK
K Q K Q K Q K Q

clock input

Problem 13.14

Design a synchronous, divide-by-16 counter. Just work out Boolean expressions for the required logic
using the design procedure for the state machine; no need to draw a circuit schematic. (Write your
output bits as Q3Q2Q1Qo from MSB to LSB.)

5Paul Horowitz and Winfield Hill, op. cit., Exercise 8.24.
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Problem 13.15

Consider the ripple-counter circuit shown below, with control inputs C; and C.

Op 01 [
Cy
J Q J Q J Q
74112 74112 74112
CLK input ————>CLK t———>CLK t——>CLK
K K K
Ck

What control-input combination C;Ck is necessary for the circuit to count, and what kind of counter
is it? Describe the operation of this circuit for all other control-input combinations C;Ck.

Problem 13.16

(a) Design a synchronous 4-bit, binary counter, using JK flip-flops (use the same 74112’s as shown in
Problem 15), by considering the following: Think about how binary counting works, and in particular,
what is the condition for a particular bit to toggle its state during the counting sequence? How do you
switch between toggling or holding in a JK flip-flop?

(b) Design a synchronous 4-bit, binary counter, as in part (a), but this time using D flip-flops. Use
the same hint from part (a). What kind of gate acts as a conditional inverter?

Problem 13.17
Design a circuit that combines 4 of the 6116 SRAM IC’s (2kx8-bit) to make a single, 4kx16-bit
memory. The resulting circuit should have the same behavior as one of the original 6116’s, just with
more address/data bits.

Problem 13.18

A 3-bit register and an 8 x 3 ROM are connected as shown below.

O Az
O Ay | P <
S Oo Ao S
3 ROM 3
S S
Il Il
N <
N <
O o
e Do Q2 =
—{ | D Q1
Dy Qo
y
3 Register
A
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The ROM is programmed as follows:

Ay A1 Ao | O O1 Og
0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 1 1 0
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 0 0 1

Assume that the initial state of the register is Q2Q1Qo = 010.
(a) Give the state of the register outputs Q2Q1Qq after each of the next three clock pulses.
(b) Even after arbitrarily many clock pulses, (at least) one possible value of Q2Q1 Qo will never occur.
Which?
Problem 13.19

Show how to connect a T flip-flop as a D flip-flop (shown below). (The operation of the T flip-flop is
defined in Problem 4.) Use whatever extra logic gates you need (simple two-input gates only).

— D Q*

§ —>CLK

Hint: if you don’t see how to get started, treat the problem as a state machine with current state Q,,
and external input D.

Problem 13.20

Show how to connect a T flip-flop as a JK flip-flop (shown below). Recall that the operation of the T
flip-flop is defined in Problem 4. You can use whatever extra logic gates you need (simple two-input
gates only).

—J Q*

§ —>CLK

— K

For this problem, follow the outline below.

(a) Begin the design as a state machine by making a truth table, with columns: J, K, and @, Qn+1,
and T. (The J, K, and @,, variables are the inputs and current state, @, 41 the future state, and T
the flip-flop input where you need to supply the appropriate logic function as input.)

(b) Make a Karnaugh map for the T variable in terms of the input variables and current state, and
use it to write down a simple logic expression for T

(c) Complete the design by making a schematic diagram that realizes the JK flip-flop in terms of the
T.

Problem 13.21

Show how to connect a T flip-flop as a JK flip-flop, but using only an extra 4-input MUX, and no
extra logic gates. The T flip-flop and MUX you should use are shown below. (The operation of the T
flip-flop is defined in Problem 4.)
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—E 4 —{>CLK Qf—

Problem 13.22

Show how to connect an 8x1 ROM (shown below) as a JK flip-flop. You will need an extra D flip-flop
(also shown below), but no other logic gates. Also specify how the ROM should be programmed to
make your circuit work properly.

] —D QI
42 8x1 Ql—

1
—{ A ROM [ o




Chapter 14

Comparators

14.1 Overview and Review

We talked before about comparators in the context of analog electronics in Section 7.9. There, comparators
were variations on the basic op-amp, which compares two analog input voltages, and outputs something like
a 1 or 0, depending on the comparison. Here, we will review and extend our discussion of comparators,
because in the context of digital electronics, comparators are the fundamental way to interface analog to
digital circuits. For example, they form the fundamental building block of the analog-to-digital converter
(ADC). They also represent a basic method for generating logic pulses (generally, the pulse timing is based
on an analog signal, such as an RC decay). Also, comparators allow you to do “level translation” between
different logic types (e.g., interfacing high-voltage logic to TTL).

14.1.1 Example: TL3016

As an example of a comparator that is really optimized for driving logic circuits, consider the TL3016 (or
LT3016) fast comparator (“fast” here means a 7.6-ns propagation delay). This comparator and its pin
connections are shown schematically below.

Veay
Vint 72+\ 1 7 0
TL3016 out
‘/in— 3 _ 4 6 8 Qout
e
LE —
Voo

This comparator has both regular and inverted outputs, and the outputs are TTL-compatible. To summarize
the regular operation:

o if Vipp > Viyp_: Q = HIGH, and Q = LOW

o if Viny < Vin_: Q = LOW, and Q = HIGH

o here, “HIGH” means nominally around 45V (actually, about +3.8V)
e and “LOW” means nominally around 0V (actually, about +0.6 V)

« for proper operation, the inputs should be in the range of the supply voltages; the positive supply Vecy
is a +5 'V, while the negative supply Vic_ is either 0V or —5V

e the “LE” pin is a “latch enable”, which latches the output when held HIGH



280 CHAPTER 14. COMPARATORS

14.2 Open-Collector Output

A common configuration for comparator outputs (and logic-gate outputs, too) is the open-collector out-
put. We discussed this before in Section 7.9, but we will review the basic idea here.

First, we should review the basic switch-type operation of the bipolar transistor. The transistor acts
as a switch for current, based on another current. The two important currents are I from the base to the
emitter, and I from the collector to the emitter.

The base current I acts as the control current, and I is the current to be switched. Simplistically, if there
is some current I, then I can flow, so the C—E path acts as a closed switch.

C C
B - ﬁ
I >?v

E E

C C
B - \
I, =0

E E

However, if Iy = 0, then the C-E path acts as an open switch. There are some extra voltage drops to
consider here, but as in RTL logic (Section 11.3), this simple model is sufficient to understand open-collector
outputs.

An inexpensive an popular comparator with open-collector output is the LM311 (also LF311, hence-
forth just the “3117). Schematically, this comparator is shown below, with a typical “pull-up resistor” to
45V on the output.

+5V

Vin+ SOE—
v AV, Vi > Vi
out 0V7 Vin+ < ‘/inf

‘/illf O

Not shown here are power-supply connections (to supplies of up to 18 V). The inputs must stay within the
supply-voltage range. To summarize the operation here:

o if Vipy > Viy_: the transistor is OFF, and Vo = +5V

o if Vipy < Vip—: the transistor is ON, and Vi, = 0V (actually, about 0.2V or higher)
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The point of the open-collector output is its flexibility: it’s not restricted to particular voltages like the

outputs of normal TTL gates. For example, the 311 can drive loads up to 40 V and 50 mA,; so it can directly

control LEDs, lamps, relays, and so on. By contrast, a TTL-gate outputs would need a buffer transistor.
Another feature of the 311 is a TTL strobe input. A typical connection for this pin is shown below.

+5V

TTL strobe in
(HIGH = disable, output is HIGH/ignore inputs)

If the strobe input is held HIGH, then the output is disabled: the output is HIGH (i.e., the output transistor
opens), and the comparator ignores the inputs. This is useful for “gated” operation, if the comparator should
only trigger during some time interval or some condition determined by other logic.

14.3 Schmitt Trigger

We also discussed the Schmitt trigger in the context of analog circuits before in Section 7.9.1. We will
review the basic idea again here, since these are so important in digital applications that many logic devices
have integrated Schmitt triggers.

The motivation for the Schmitt trigger comes from noisy inputs signals. Typically, these are slowly
changing analog signals, but even “digital” signals are fundamentally analog, and are thus similarly suscepti-
ble to noise. As illustrated below, a noisy signal that is rising and falling can cause many spurious transitions
while crossing the threshold.

V,

threshold

t

Ideally, with a noise-free signal, the output (shown in the bottom plot) would have one up transition, then
later a down transition, and then an up transition again, instead of the many clustered around the three
“ideal” trigger times.
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To analyze the fix for this, we will briefly review the voltage divider (see Section 1.3.3 and Problem 2).
Given a series pair of resistors supplied by Vi,, the output voltage at the tap point is given in terms of the
“fractional resistance” at the tap point.

Vin

Ry

Ry
‘/ou = ‘/in
i (R1 + RQ)

Ry

If there are two voltages at either end of the resistor pair, the output voltage is a linear combination of the
two voltages, given by the fractional resistances:

‘/ill

R2 Rl
Vour = | 5—5 | Vin =5 | Vie
¢ (R1+R2> (R1+R2) f

‘/;"Cf

We can deduce the second result from the first by subtracting Vier from all voltages, and applying the first
(grounded) result, to give

_fa
Ri+ Ry

Rearranging gives the result in the figure. Note: you should memorize both of these voltage-divider formulas,
and be able to quickly come up with resistor combinations that divide a voltage by 2, 3, etc.

Now consider the following circuit, which is a comparator with two added resistors. One resistor is in
series with the “trigger voltage” Vi, and another, large resistor ties the output to the noninverting input.

Vrout - V;ef - ( ) (V;n - eref)~ (141)

+5V

1kQ

311 > © Vout

1MQ
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The extra resistors introduce hysteresis into the operation of the comparator as follows.

o if Vouy = 0, Vi (the voltage at the noninverting input) is 0.99 Vie, using the first voltage-divider
formula.

o if Vouy =45V, Vi =0.99 Vier + 0.01 - 5V, using the second voltage-divider formula.
Thus, the reference voltage changes by about 50 mV, depending on the output. Notice that

o if Vi, = HIGH, the trigger point is lower

o if Vi, = LOW, the trigger point is higher

So Vin “repels” the trigger point, which gives immunity to noise. The hysteresis of the Schmitt trigger is
sketched in the output-response plot below.

‘/out
+5V|
4 Y
0V | }
Vit Viet+50mV Vi

Note that the Schmitt trigger is bistable in the 50-mV-wide region near the nominal trigger voltage Viet.
Thus, once the Schmitt trigger makes a transition, noise of less than around 50 mV will not cause another
spurious transition.

Note that the configuration above is inverting, since Vi, goes into the inverting input (i.e., large Vi,
means the output is LOW). For a noninverting comparator, you can swap the Vi, and Vi labels, but note
that the input is no longer well-isolated from the input, which may be a problem if the input source has high
impedance.

In digital circuits, many gates and logic devices are available with Schmitt-trigger inputs. An example
is the 7414, a hex Schmitt-trigger inverter. This is shown schematically below.

Note the Schmitt-trigger symbol on the gate, which suggests the hysteresis curve. Schmitt-trigger-input
gates are good for signals without well-defined edges (like a sinusoidal input), or signals from an external
source with a long cable run, which could be susceptible to noise pickup.

14.3.1 Example: Analog-to-Digital Clock-Signal Conversion

As an example application of a Schmitt trigger, consider the conversion of an analog clock signal to a digital
clock. An example of an analog clock source is a rubidium atomic clock, a relatively inexpensive (few $K)
instrument that typically provides a 10-MHz sine wave, with a stability /accuracy of better than a part in
10'°. To drive digital circuits, however, this should be converted into an appropriate square wave with
logic-level inputs. The circuit below accomplishes this, using a Schmitt trigger to avoid spurious extra clock
pulses due to noise on the clock signal.
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+5V
0.1 pF offset - threshold
EXT 50k
CLK }—0—* 50k 50kQ
in
5092 *
I T
= TL3016 — CLK out

Note the ac-coupled input, a 50-Q2-terminated input (as appropriate for a 50-§2 cable connecting the clock to
this circuit), and the Schmitt trigger, with TTL-compatible output. The clock offset and threshold voltages
are adjustable to account for different input clock amplitudes, and to adjust the duty cycle of the resulting

square wave (typically, these can both be set to 2.5V.

14.4 Circuit Practice
For practice with comparators, first note that you can light an LED with a power supply and a current-

limiting resistor as follows.
+15V

10k

Thus, an open-collector output can control the LED, since the output is either open or shorted to ground

(corresponding to an OFF or ON LED, respectively).
Now design a “TTL out-of-range alarm,” given the following components and requirements:

o two 311’s
e any resistors you like
e an LED

e £15-V power supplies (and ground)
the circuit operates as follows: if Vi, > +5V or Vi, < 0V, the LED “alarm” lights; otherwise, the LED

is off
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Solution.

+15V

+15V

10k

20 k2

10kQ2

30k

—-15V
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14.5 Exercises

Problem 14.1

(a) Show that the comparator circuit below acts as a flip-flop (“bistable multivibrator”). Label the
set and reset inputs.

100 k2 §

10kQ

10k

(b) Show how to add another (311) comparator to also produce the @ output. (Use whatever resistors
you like.)

Problem 14.2

Briefly describe how a Schmitt trigger in an input of a logic gate can improve the performance of a
circuit. Under what conditions on the input signal do you expect an improvement?



Chapter 15

Pulse and Waveform Generation

15.1 The Classic 555 Timer

The 555 timer is an old, classic workhorse for timing and pulse-signal generation, in applications that require
moderate accuracy (1%) and relatively slow signals (good performance up to a few hundred kHz, and can
be pushed up to ~1MHz. It’s a versatile chip, and can produce square waves, arbitrary-length pulses, and
can perform more complicated tasks such as pulse-width modulation—there is a lot of functionality packed
into this 8-pin chip.

15.1.1 Equivalent Circuit

The functional equivalent circuit for the 555 chip is shown below, with pin assignments for an 8-pin DIP

package.!
‘/(‘(j
8| CONT RESET

0 4
THRES + —

fit

H)M 0UT

0 x =
i

TRIG -

? 7t

1. Ve powers all the components in the chip. The output is TTL compatible when Vo = +5V, but V¢
can go up to +18 V. The minimum for the standard chip is +4.5V, but some CMOS variants can make
use of lower voltages (e.g., +2V for the ICL7555, +1V for the TLC551). The GND (ground) input sets
the ground reference for the circuit.

A few things to notice here:

lFor a nice view inside the package and discussion of the “guts” of the 555, see http://www.righto.com/2016/02/
555-timer-teardown-inside-worlds-most.html.


http://www.righto.com/2016/02/555-timer-teardown-inside-worlds-most.html
http://www.righto.com/2016/02/555-timer-teardown-inside-worlds-most.html
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Vec also drives a resistor divider chain, which sets voltage-reference points at (2/3)Vee and (1/3)Vec.
The CONT (control) input taps into the (2/3)Vic point, and can be used as an “override” for the
reference voltages.

Two comparators compare two input voltages (THRES or threshold, and TRIG or trigger) to these
reference voltages.

The comparator outputs drive the inputs of an SR flip-flop. The flip-flop also has an externally
connected, direct-reset input (RESET).

The output of the flip-flop is buffered and set to the OUT port. The standard 555 (NE555) has a lot of
“oomph,” and can handle +200 mA of current. Note that “setting” the flip-flop takes the output HIGH.

The flip-flop output also connects to the base of an open-collector, NPN transistor, whose collector is
the DISCH (discharge) output. This output is useful, for example, for dumping the charge of a timing
capacitor. In this case, “resetting” the flip-flop will turn the transistor on (i.e., capacitor charge gets
dumped), setting the flip-flop will turn the transistor off.

15.1.2 Astable Multivibrator

A typical 555 circuit is shown below. This is called an astable multivibrator, which just means that the
output is a square wave, whose timing is set by the external components.

+5V

4
R 8
Voo RESET
DISCH OuT 3 output
(TTL compatible)
Ry 555
THRES
5 optional
TRIG CONT 1
bypass
GND

CI l

=

Let’s analyze how this works:

1.

The bypass capacitor at pin 5 (CONT) helps to stabilize the reference voltages in the resistor chain. One
problem with the 555 is that it can cause large power-supply transients while switching, which can feed
into the reference chain and cause multiple (unintended) transitions and glitching, and a capacitor here
helps to fight these problems. It’s a good idea to bypass pin 8 (Vo) with a large capacitor as well.

The main timing of the square wave is controlled by charging and discharging the capacitor C'. The
capacitor charges from V. via R; + Ro, while the capacitor discharges only via Ry to pin 7, when the
transistor is on and this pin is connected to ground.

We will assume that the capacitor is initially uncharged. Note that as long as THRES (pin 6) is below
(2/3)Vee, the corresponding comparator output is LOW, which does not reset the flip-flop. The other
comparator sets the flip-flop since the capacitor voltage at pin 2 (TRIG) is below (1/3)Vec. This sets
the output HIGH and turns the transistor off, so the capacitor charges via Ry + Ro.

. When the capacitor voltage reaches (2/3)Vcc, the flip-flop gets reset by the THRES comparator, setting

the output LOW and turning the transistor on, shorting pin 7 (DISCH) to ground.

The capacitor discharges through Ry until the voltage drops to (1/3)Vec, when the flip-flop sets again,
and the process repeats.
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10.

For either phase, we can use the exponential relaxation of the RC circuit to figure out the times in each
state. For the output LOW-output phase, the capacitor voltage relaxes exponentially (with time RoC)
from (2/3) Ve towards 0 (neglecting the small collector-emitter voltage across the discharge transistor).
That is, the capacitor voltage is

V(t) = %VCC et/ R0 (15.1)
and if we set V(7ow) = (1/3) Ve, where 7oy is the LOW-cycle time, we get
Tiow = (log 2) RoC ~ 0.693 Ry C. (15.2)
Note that “log” here is the natural logarithm.

For the output HIGH-output phase, the capacitor voltage charges exponentially [with time (R; + R2)C]
from (1/3)Vec towards Veo. Note that, except for the time constant, this is the same as the LOW phase,
except for an inversion and a shift in voltage. Thus, a similar result applies, with

Thigh = (log 2)(R1 + RQ)C ~ 0.693 (Rl + Ry)C (15.3)

as the high-time dwell state. Note that Thigh > Tiow (note that we can’t have Ry = 0, otherwise the
discharge transistor would attempt to short Vs to ground—mnot a good idea.

The oscillation period is then
T = Tiow + Thigh = (log2)(R1 + 2R2)C ~ 0.693 (R + 2R,)C. (15.4)

Note that Vi dropped out of this expression, which is convenient, since it means the timing is insen-
sitive to the power-supply voltage. Of course, we assumed that the power supply is constant; if V¢
varies on the time scale of the period, such that the voltage is differs between successive transitions,
then V.o doesn’t drop out of the period. Hence, again, the importance of a bypass capacitor for the
power supply.

Of course, there are some limitations to what is possible with the above timing. Lancaster? recom-
mends: Ry + Ry < 3.3MQ, Ry, Ry > 1kQ, C' > 500 pF. The capacitor can be large, but the RC' times
may ultimately be limited by capacitor leakage, but hours-long periods are possible.

A nearly symmetric square wave results if Ry < Rg, but if the asymmetry is a problem, the oscillator
frequency can be doubled, and the output fed through a divide-by-two circuit, resulting in a symmetric
wave, independent of the initial asymmetry (why?).

15.1.2.1 Frequency Modulation

A variation on this circuit is to use the CONT input to modulate the (2/3)V, reference point, which modulates
the frequency (raising the reference voltage = longer time to trigger the comparator = lower frequency). A
coupling capacitor makes the frequency modulation more convenient, as a zero voltage corresponds to no
modulation.

2Don Lancaster, The TTL Cookbook (SAMS/Prentice Hall, 1974), p. 173.
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4
Ry
Voe RESET
DISCH OuT 3 output
(TTL compatible)
Ry ) 555
THRES -
TRIG CONT "—{ }— FM input
GND

1

15.1.2.2 Pulse-Width Modulation: LED Dimmer

=

The asymmetry of the 555 output is sometimes useful, as in pulse-width modulation. You can control
the brightness of an LED by controlling the supply current; however, if the LED is driven by a fixed-voltage,
digital output, this isn’t feasible. The solution is to blink it rapidly on and off, and vary the fraction of time
it is on (i.e., vary the duty cycle—the fraction of the period where the signal is HIGH—of the pulse). The
160 Q2 resistor here sets the LED current to 20 mA, assuming a 1.8-V drop across the LED (as appropriate
for a standard red LED), and assuming the output goes down to 0V (almost true). The component values
give a minimum frequency of about 1.3kHz (plenty fast to make the LED appear continuous—it should be
over about 50 Hz), and the duty cycle varies from a maximum of about 50% down to a minimum of about
0.4%. (Note that the LED is on when the output is LOW.) This is also an efficient dimming scheme, which is
why it is so common: restricting the current generally requires some wasted power, due to power dissipated
in a current-limiting resistance. In this circuit, the efficiency is roughly the same at any value (neglecting
power dissipated due to output transitions).

+5V
250 k2
50 160 Q2
1k 8
Voo RESET
7 DISCH OuUT 3
250 k2 555
(log taper) 6 THRES
2 5
TRIG CONT
Lo
0.001 uF aNp I

I 1

15.2 Monostable Multivibrators

A monostable multivibrator, or one-shot, is a circuit that simply supplies a single digital pulse of some
defined duration. This is the fundamental building block of timing circuits—circuits that control the timing
of sequences of events (laser pulses, data acquisition, camera triggers, etc.).
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15.2.1 555 as a One-Shot

The 555 can be conveniently hooked up as a one-shot. Recall the internals of the 555:

Vee
8| CONT RESET
5 4
THRES - ‘
o—q»—o{ H‘; 0ouT
R§
N
TRIG 2 -
R§

Z_T 7 DISCH

GND

The connection as a one-shot is shown below. Again, the timing is set by the external components.
+5V

5 4 7=11RC

R —
Voe RESET
DISCH ouT 3 output
THRES (TTL compatible)
C
555
rigger i # 5 optional
v trigger input TRIG CONT Dy pass
iy w | T
ground

Let’s see how this works:

1. The TRIG input is normally high, which is consistent with the internal flip-flop being reset, and thus
the output being LOW. In this case the transistor is on, so the capacitor is shorted to ground. We will
assume all this to be the case; if the flip-flop is indeed set, it is as if the circuit has been triggered, and
the circuit will go through the rest of the cycle and reset, and then we can proceed with the assumption
of a reset flip-flop.

2. The negative edge of a trigger pulse starts the output pulse. This happens when the TRIG input crosses
below (1/3)Vee, and the lower comparator sets the flip-flop. This takes the output HIGH, and turns
the transistor off.

3. The timing of the output pulse is controlled by charging the capacitor C. The capacitor charges from
Vee via R.

4. The capacitor is uncharged at the beginning of the pulse, and it will charge until the capacitor voltage
(and thus THRES input) rises to (2/3)Vec. At this time, the upper comparator resets the flip-flop,
ending the pulse and dumping the capacitor charge.
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5. Again, we can use the exponential relaxation of the RC circuit to figure out the pulse duration. The

capacitor voltage rises exponentially (with time RC') from 0 to (2/3)Ve towards V. This is equivalent
to an exponential decay from V. towards 0 to (1/3)Vee. Thus we can consider the decay

V(t) = Vece /1, (15.5)
and if we set V(1) = (1/3)Vec, where 7 is the pulse duration, we get
7 = (log3)RC ~ 1.1 RC. (15.6)
Again, “log” here is the natural logarithm, and note that this is independent of the supply voltage.

Note that we have assumed that by the time the flip-flop is reset, the trigger pulse at the TRIG input

is back to HIGH; otherwise the S input to the flip-flop will also be high, and we will put the flip-flop into the
“bad” state. The net effect is that the output pulse will be “stretched” beyond the RC duration until the
trigger input goes high. One workaround for this (if you're stuck with long pulses but want to trigger short
pulses) is to run the trigger input through a differentiator (with a short RC' time) and then into the 555.

15.2.1.1 The 74121

A number of other monostable multivibrators are available, more-or-less prepackaged. A good example is
the 74121, which is faster than the 555 circuit—it can be programmed for pulses down to 35ns, and up to
28s. The “guts” and some external connections of the 74121 are shown below.

Cext
Rex

?V —“—«J\/\/\,—c 5V

Some operation notes:

1. As in the 555, the internal monostable is controlled by the time for the external capacitor to charge

via a resistor. The resistor can be internal (Ry,) if pin 9 is connected to 45V, or external, if Rexs
is connected between pin 11 and +5V. (Of course, if both are connected, then we have the parallel
resistance of the two.) The pulse duration is given by

7 = (log2)RC =~ 0.693 RC. (15.7)

The internal monostable is triggered by a rising pulse edge, but there is some extra input logic to make
this more flexible. For example, suppose A1 and B are held HIGH. Then a falling edge on A2 triggers
the pulse. Of course, A1 and A2 can be exchanged here.

Similarly, if either A1 or A2 are held LOW, then a rising edge into B will trigger the flip-flop. In this case,
the B input goes into a Schmitt trigger (0.2-V hysteresis), and thus can handle slow/noisy inputs.

The 74121 is nonretriggerable; this means the device will ignore any input edges while it is generating
an output pulse. Other one-shots, like the 74123, is retriggerable, which means that a new triggering
edge will always start a new timing cycle, even if already in the middle of a timing cycle.
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15.2.1.2 Combining One-Shots: Pulse Delay

In complex timing systems, where many things must happen at the proper times, many one-shots can be
chained together to generate the proper timing sequence. As simple example, two one-shots can be chained
together to generate a delayed pulse from an initial trigger pulse. This times two events with a fixed delay,
such as launching a projectile, and then a short time later triggering a photographic flash.

input

_+—|_ meon()stablc @ TLm()nostablc @
input

@1

output

1L

Q2/output

Note the different edge triggers of the two monostables.

15.3 Circuit Practice

15.3.1 Duty-Cycle Control

What is the duty cycle of the basic astable circuit (reproduced below)?
+5V

4
Ry 8
Voe RESET
DISCH ouT 3 output
(TTL compatible)
Ry 555
THRES
5 optional
TRIG CONT 1
bypass
GND

-+ T

What is the duty cycle of the modified astable shown below? (Ignore any voltage drops across the
diodes.) How does it allow better control over the duty cycle?

I
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87*41

Voo RESET
DISCH 0uT 3 output
(TTL compatible)
555

THRES -

)
TRIG CONT ﬁ

C GND I

L

=

Solution. With this arrangement, the capacitor charges through R; and the left-hand diode, and discharges
through R, and the right-hand diode. In either case, we can work out the timing as follows. Suppose the
capacitor discharges from voltage (2/3)V towards zero, with time constant RC. We need to solve for the
time 7 when the capacitor voltage is (1/3)V:

2 v
Zye T/RC _ L 1
3Ve 3 (15.8)
The solution is
7 = (log 2)RC. (15.9)
The HIGH output cycle is the charging cycle, so the high time is
THIGH — (].Og 2)R10 (].5].0)
The LOW output cycle is the discharge cycle, so the high time is
TLow = (log Q)RQC (1511)
The period is the sum of these, or
T = (log2)(R1 + R2)C. (15.12)

15.3.2 Astable Multivibrator

Another example of combining one-shots is to combine two, in order to make an astable multivibrator. How
can you do this?

Solution. The circuit for this is shown below.

T1
output
—+‘monostable @

T2

output

—+‘monostable @
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Note that the HIGH and LOW times are controlled separately by the durations of the two one-shots, and each
one-shot triggers on the falling edge of the other.
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15.4 Exercises

Problem 15.1

Shown below is (a) the basic 555 astable multivibrator and (b) a modified version. For each circuit
compute the period and duty cycle in terms of Ry, Rs, C, and any relevant voltages.

+5V +3V
(a) (b)
4 4
Ry 8 Ry 8 l
Voe RESET Voo RESET
DISCH ouT 3 output DISCH ouT 3 output
Ry . 555 Ry 555
THRES . THRES
TRIG CONT |2 TRIG CONT 540 +4V
GND

171

=

T
Problem 15.2

Shown below is a 555-based astable multivibrator with 50% duty cycle. Show that it works as adver-
tised, and compute the oscillation period.
+‘/(}C

sl 1]

Vee RESET

|~

DISCH ouT output

CMOS 555
THRES
TRIG CONT [—

«Q

ND

=

R

'A%

L

Note: this circuit only works with CMOS variants of the 555 (like the 7555), where the output will
swing all the way from ground to +Vc.

Problem 15.3
Suppose you have a standard TTL logic gate, and you want to put a Schmitt trigger on one of the
inputs to address a problematic input signal. However, suppose that all you have is a 555; show how
to wire a 555 to act as a Schmitt trigger (actually, an inverting Schmitt trigger). Make sure to explain
why your circuit acts as a Schmitt trigger, and what are the input logic levels.

Problem 15.4
Work out the period of the basic 555 astable multivibrator circuit, but this time account for the voltage
drop V4 across the discharge transistor when it is turned on. That is, the supply voltage should no
longer drop out of the result. Assuming Vg = 0.2V, how much does this affect the period compared to
the idealized value if Voo = +5V?
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Problem 15.5

In one incarnation, the bicolor LED looks like an ordinary LED (plastic package with two leads),
but is really 2 LEDs in parallel, with one reversed. That is, if current flows “forwards,” the LED lights
green, and if it flows “backwards,” the LED lights red.

Design a circuit two 555’s to light a bicolor LED, alternating between red and green. For concreteness,
design for a ~50% duty cycle (approximately equal time in each color), with a period of 1s. Use
whatever passive components you like, but be specific about their values. Also, show all pin connections
on the 555’s.

Hint: note that it would be a bad idea to configure two 555 as independent oscillators. Why? Instead
try using one of the 555’s as a NOT gate.

Problem 15.6
Design a 10kHz square-wave oscillator (50% duty cycle) using only 74121’s and capacitors.






Chapter 16

Digital-Analog Interfaces

One of the most important concepts in digital electronics is interfacing digital circuits to analog circuits. If an
analog signal serves as the input to a digital circuit, then we need analog-to-digital conversion (ADC),
while a digital circuit generating an analog signal requires digital-to-analog conversion (DAC). We will
consider the latter first, which is simpler, and ADC often relies on DAC.

16.1 Digital-to-Analog Conversion

Digital-to-analog conversion is very common in everyday circuits. This is required to generate the audio
signals in cell phones and CD/DVD/MP3 players, and to generate the output intensity (or color) of displays
in LCD projectors or in CRT/plasma/LCD displays. Essentially, any analog signal coming out of a computer
must have gone through the DAC process.

16.1.1 Resolution

Before understanding how DAC circuitry works, let’s review some of the resolution requirements for repre-
senting analog signals. Analog signals must be sampled—that is instead of a continuous function y(t), we
must represent it via samples y; := y(t;) at sample times ¢; (typically regularly spaced), and the values of y;
must be represented with some finite precision (i.e., it must be represented with a finite number of bits). In
terms of amplitude resolution, if there are N bits of data, then there are 2 different signal levels available
within a defined range (e.g., within some voltage range). The signal levels could be positive only, represented
by unsigned integers, or positive/negative using signed integers (or unsigned integers after adding an offset
that ensures the signal is always positive). In this case, since the “real” signal must always be rounded to the
nearest available level, the fractional sampling resolution is 27V, and the absolute resolution is 27V Viange for
a voltage signal if Viange is the total voltage range available for sampling the signal. Since the rounded value
should be to the nearest sampling value, the maximum error is 1/2 of the resolution, or 2=+ maximum
fractional error for signals within Viange. So, for 16-bit sampling, the error is at worst about 8 ppm.

In terms of timing resolution, the requirement is set via the sampling theorem. Suppose we sample
a signal every At in time. Then the sampling rate is given by

1
li te = —. 16.1
sampling rate = —= (16.1)
Then we can also define the Nyquist frequency by

1 sampling rate
N ist f == 16.2
yquist frequency = o 2 ( )
It turns out that, according to the sampling theorem, the Nyquist frequency is the largest frequency that is
accurately reproduced by the sampled signal.! For example, in compact-disc (CD) audio, the sampling rate

1For details, see Daniel Adam Steck, Quantum and Atom Optics, available online at http://steck.us/teaching.
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is 44.1 kHz, since the goal is to reproduce audio frequencies up to about 20 kHz. Note that 44.1 kHz is then
a bit above the Nyquist frequency, which allows for extra tricks, like an anti-aliasing filter, to improve the
quality of the reconstructed audio. The idea here is to guard against aliasing, which is the error suffered by
frequencies above the Nyquist frequency—they are spuriously represented as lower (sub-Nyquist) frequencies
in the sampled signal. Generally, a low-pass filter is used to remove these high frequencies, but since the filter
does not have a perfectly sharp cutoff, the extra sampling rate above the Nyquist frequency accommodates
the desired audio range, while giving some bandwidth for the low-pass filter to have a significant effect before
aliasing errors occur.

16.1.2 DAC Circuitry

Now, how do we make a DAC? The basic ingredient is a summing (inverting) amplifier, which you may recall
from Section 7.3.4. Recall that this takes a number of voltage inputs Vj, Vi, ..., and has as output
Ry Ry Ry
Vowu=—>Vo——=—WV ——Vo—-- | 16.3
out RO 0 Rl 1 R2 2 ( )
which is an inverted, weighted sum, where the relative weights are controlled by the input resistors, and the
weights have the feedback resistance Ry in common.

R2 (]
oA

Ry B
e ANt [V

Ry

1 oA —
0 Re Re

o Vo= —— Vo — —Vy — -

Ry Ry

Then, for example, we can build a 4-bit DAC as in the diagram below.

Vref
R/S
I e
= R/2 B
Ay R
L B
(LSB) Ao | /\/\/\/
CMOS/analog out
switches +

Here, Ag—Aj are digital inputs, with Ag the LSB and A3 the MSB of an unsigned integer. The inputs drive
analog switches, which conduct when A; = 1 and are open when A; = 0. The voltage V;cs sets the (absolute)
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voltage resolution and the range of the conversion. Then using the summing-amp formula,

R R R R
Vout = _AO%V;ef - 2Al fFV}ef - 4142ﬁ1:‘/ref - 8143%‘/@ (]_64)
(DAC output)
= &Vref (Ap2° + A12' + A52% + A32°).

" R
So, for example, an input of 0011 corresponds to Vous = —3(Ryp/R)Vier. Of course, usually we want a positive
output, which requires another inverting amplifier.

16.1.3 R-2R Ladder

One problem with the above circuit is that it requires a series of resistors of different values to be made

to high accuracy, which is difficult, especially for a high-resolution DAC. It is much easier to make sets of
matching resistors, and there is a circuit that takes advantage of this, called the R—2R ladder, which uses

only resistors of size R and 2R. The idea is below.
Ry

V;)ut

Again, the inputs are Ag—As here, controlling analog/CMOS switches (here SPDT). To see how this works,

consider the Thévenin-equivalent circuit for the Ay input. This is a simple 50% voltage divider, so the
equivalent resistance is R, and the voltage is half the input AgVier. (Note that we consider Ag = 0 if the

switch is down, Ag = 1 if the switch is up.)
2R

VE) = AO ‘/ref

Now lumping this equivalent circuit into the next “stage” with the A, input, we have a similar voltage-divider

situation.
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2R
Vl = Al eref

_ Ww W
2R = (Z*?) —ANN—>

Vo/2

Note that the Thévenin-equivalent voltage is just the average of the two input voltages. Continuing this
process, we find that at each stage we add in half of the next input voltage and divide the remaining ones
by two. The result is

RF A() Al A2 A3

‘/ou = _ere — | == = —_— —
b R (16 + 1 + 3 + 5 > (16.5)
Viet Re (output of R—2R ladder)

== (Ap2° + A12" + Ap2% + A32%).

Thus, up to an overall factor, we obtain the same output as in Eq. (16.4).

16.2 Analog-to-Digital Conversion

The complementary process to digital-to-analog conversion is analog-to-digital conversion (ADC). We
will go through several ADC methods.

16.2.1 Flash ADC

A conceptually simple method for ADC is flash ADC or parallel-encoding ADC. The idea is to use a
voltage-divider chain to create many reference voltage, and a separate comparator is used to compare the
input voltage to each reference. Then output logic is needed to properly encode the digital output as a
binary number. As a simple example, consider the 2-bit flash ADC below.
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+4V
o]
R§
+ o,
2.5V
2R
Vin @ - Cq output Q=0
1.5V logic —
- —— Qo = C1Cs + CoCy
S
+ Co
0.5V

S

The idea is to choose digital voltage levels (“quantization level”) of 0, 1, 2, and 3 V. Then the maximum input
range is —0.5-3.5V with a maximum error of 0.5V. Then the conversion ranges with comparator outputs
are enumerated below.

voltage range

digital output

comparator output CoC1Cy

—-0.5-05V
0.5-1.5V
1.5-2.5V
2.5-3.5V

00
01
10
11

000
001
011
111

Note the logical expressions included to encode the three comparator outputs into two-bit binary.

The main advantage of a flash ADC is that it is fast: the signal just needs to propagate through the
comparators and gates, and the ADC can sample rapidly changing signals. The main disadvantage is that
for N bits, there must be 2V~! comparators, which is difficult for more than about 10 bits of resolution.

16.2.2 Successive Approximation

A slower, but more generally useful ADC method is successive approximation. This method is analogous
to the root-finding problem: Suppose f(z) is a continuous function with a single root in (a,b). That is,
f(a)f(b) < 0. Then how do we find the root; i.e., how do we find zy such that f(xg) = 07 The bisection
method for root-finding works as follows.

1. We know (a,b) brackets zg. So let g = (a + b)/2 be the initial best estimate for xg.
2. If f(a)f(Zo) <0, then (a,Zo) brackets the root.

3. Otherwise, (Zg,b) brackets the root.
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4. Redefine (a,b) to be the new, tighter bracketing interval for z(, and repeat.

This process converges exponentially, because the width of the bracketing interval is halved on each iteration.
If Az = b — a, then the initial worst-case error in the estimate g is Ax/2. After N iterations, the error is
Ag 2N+

The successive-approximation approach to ADC is the same problem, but to find what digital volt-
age V best corresponds to Vi,. This is an iterative process to a predetermined accuracy, given by the
number of digital bits. A circuit to implement this procedure is shown below. This uses the 74LS503
successive-approximation register (SAR) (now obsolete), which controls the bisection process. Most
ADCs nowadays using successive approximation have all these components integrated into a single chip, with
serial data output, which is handy for keeping pin counts low, but makes it harder to understand what is
going on inside.

+5V clock in
Vee
1kQ Y,
analog in + CLK
311 74LS503 SAR
Ve
Y * V
- CLK
- 8 8 y
AD557 D TAHCT574 Q
DAC — 8-bit
| register
)

The SAR, the “mastermind” of the conversion process, works to find 1 bit of the digital result on each clock
cycle, starting with the MSB. It does this by writing the “midpoint value” of the DAC’s range to the DAC
(as the first approximation), and reads the comparison result from the comparator, which tells the SAR
which half of the DAC range brackets Vi,. On the next cycle, the SAR writes out the new midpoint of the
smaller bracketing range, and records the comparison result as the next converted bit, and so on. The 8-bit
latch (’574) holds the completed conversion, while the SAR is performing the next conversion (and thus its
outputs are changing).

As a 2-bit example, consider the same analog range (digital levels of 0, 1, 2, and 3V). But now, we
will consider the conversion ranges to be

<0V =00
0-1V =01
(16.6)
12V =10
>2V =11,

as we will see. Note the different offset compared to the flash-ADC example. Let’s assume a 1.3-V input.
Then the process is as follows:

e During clock cycle #1, the SAR tries the midpoint of the whole range. We can take this to be 01
(more generally, 0111111. .. for N bits). The DAC voltage is then 1V, so the comparator is HIGH, and
so the MSB is 1.

o During clock cycle #2, the SAR tries the midpoint of the remaining range (10-11). The “midpoint”
is 10. The DAC voltage is then 2V, so the comparator is now LOW, and so the LSB is 0.
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Thus, the converted result is 10, in agreement with the table above.

The advantages of SA-ADC is that the timing is guaranteed (measured in clock cycles), the result can
be very accurate (if a good DAC is used), and the circuit is not too complicated. The main disadvantage are
that SA-ADC is slower than flash conversion, and thus may need a sample/hold circuit to deal with rapidly
changing input signals.

16.2.3 Single/Dual-Slope ADC

Another pair of important ADC methods goes under the name(s) of single/dual-slope ADC. The ba-
sic idea in single-slope ADC is to use a constant-current source to charge a capacitor, and then use a
counter/clock combination to measure the time for the capacitor voltage to reach the input Vi,.

Ve

— AtxVy ————— ¢

The charge time is then proportional to the voltage. The idea is that time is very easy to measure accurately
and precisely, so the method can be very accurate.

To show this mathematically, consider the capacitor-charging situation diagramed below, where a
constant-current source I charges a capacitor to voltage Vc(t).

Ve
o
(const) I L
—C
Then using @@ = C'V and differentiating,
dQ dVe
I=—=C—/— 16.7
dt dt’ (16.7)
so that for constant I,
It
Vo(t) = —=. 16.8
o) = 5 (165)

Since I/C' is a constant, this can be calibrated precisely to yield V& (and thus V4,) in terms of ¢.
In dual-slope ADC, the conversion is done in two steps.

1. C is charged for a fixed time 7 by a constant current I o« Vj,. If we let « be constant, then we can
write I = aVi,, so that
aVint

Vo(r) = C

(16.9)

2. Then, C is discharged at a constant current I’, and the discharge time 6t is measured. Then the
discharge time is fixed as in single-slope ADC by

I'st
= . 16.1
Ve () ol (16.10)
Thus,
_ CVe(r)  ClaViyt/C)  rar
ot = =0 = ST (TD) Vi (16.11)
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In this way, we are left to calibrate a7 /I’, which is a combination of the output of a current source («),
a time 7, and a current I’, all of which can be well-calibrated. Notably, the capacitance C dropped out;
capacitances are difficult to fabricate in a way that is accurate and stable. Also, note that the first stage
takes time 7, which has an averaging effect over noise in Vi,, whereas single-slope conversion is more apt to
trigger early on a downward noise fluctuation of V.

16.3 Circuit Practice

Suppose you have a 3-bit DAC, with voltage levels 0V, 0.1V, 0.2V, ..., in a successive-approximation ADC.
If Vi, =035V,

e make a plot of the DAC output vs. time

o what is the final, converted digital value?

Answer. For the converted digital value: 100. The comparison voltages will be: 0.3V, 0.5V, 0.4 V.

16.4 State-Machine Emulation of SARs

A nice example of an application of a general state machine is the emulation of classic, but obsolete, inte-
grated circuits that acts as successive-approximation registers (SARs) for ADC circuits. We will discuss the
application of two SARs, the 74LS502 and the 74LS503.2

16.4.1 74502
The 74LS502 is a 8-bit successive-approximation register (SAR) that is shown schematically below.

D 74LS502 SAR Qp [—
>CP

BRSNS

Qo Q7 Q
[3 415 [6 [11[12[13[14715
It operates as follows. There are three inputs:

o D is the input data (i.e., the output of the comparator feeds this input).

e CP is the clock-pulse input; the SAR action occurs on the rising pulse edges.

o S is the “start” input. This is normally HIGH, and brought LOW for one cycle (i.e., during one rising
edge of CP) to begin conversion.

There are also 11 outputs:
o Qo—Q7 are the (parallel) digital conversion outputs.
e Q7 is an inverted copy of Q7 (useful for signed-value ADC).
e CC is HIGH during conversion, and goes LOW when the ADC operation is complete.

e @p is a synchronized copy of D (i.e., @p latches the state of D at the last rising clock edge), which
could be used for serial data output.

Pin 8 ground and pin 16 power are not shown in the schematic diagram.
The operational rules are as follows.

?Related files and more information available at http://atomoptics.uoregon.edu/~dsteck/74503.
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e On a LOW start pulse on S, the chip sets Q7Qg - -- Qo = 01111111, and CC = 1.
e Next clock pulse: set Q7 = D, Q¢ =0, Qp = D.
e Next clock pulse: set Qs =D, Q5 =0, Qp = D

e Next clock pulse: set Q1 =D, Qo =0, Qp = D.
e Next clock pulse: set Qg = D, CC = 0.
e On subsequent clock pulses, we only care that the parallel data Qy—@Q7 and CC do not change.

We can also summarize this via the truth table (X =“don’t care”):

clock | inputs outputs
cycle | D | S | Qp Q7 Qs Qs Qi Q3 Qr Q1 Qy CC
0 X 0 X X X X X X X X X X
1 D; |1 X 0 1 1 1 1 1 1 1 1
2 Dg | 1 D; Dy 1 1 1 1 1 1 1
3 |Ds|1|Ds D; D¢ 0 1 1 1 1 1 1
4 |Dy| 1| Dy D Ds Ds o 1 1 1 1 1
5 |ps| 1| D, D, D¢ Ds Dy, 0o 1 1 1 1
6 Dy | 1| D3 Dy Dg¢ Ds Dy D3 0 1 1 1
7 Dy | 1| Dy Dy Dg Ds Dy D3 Dy 0 1 1
8 Dy|1| D1 Dy D¢ Ds Dy D3 Dy Dy O 1
9 X |1| Dy D; D¢ Ds D, D3 Dy Dy Dy O
10 | x|1| X D, D¢ Ds D, D3y Dy Dy Dy O

16.4.1.1 General Emulation Notes

Now we will review the logic to implement this chip as a synchronous state machine. We will need (flip-flop)
register outputs for Qu—Q7, @p, and CC. We will also use three extra register bits Cy, C1, and Cy, where
C3C1Cy gives (in binary) the next parallel-output bit to latch. That is, the circuit should set CoC1Cy = 111
on clock cycle 1 in the truth table, and then count backwards to 000.

To get started, first note that @, can just be implemented with an extra NOT gate at the output of Q7,
and does not require its own register output. Next, note that we can implement

Do, = S + (C2C1CoD + C3C1CoQ5)CoC Co. (16.12)

Read this as follows. If the start pulse is 0 (so S = S = 1), then force Q5 = 1, which is accomplished by
the first term. The second term has an overall multiplier that forces the expression to 0 (unless there is an
override by §) when the CoC1Cy is at 6. The D term then stores the input data D when C2CCy is at 5,
and the Q5 term allows @5 to persist for other values of CoC,Cy.

As an example of a counter bit, note that C; should change when CoC1Cy is X10 or 100 (remember
we are counting backwards in binary). In either case it simply toggles, so

De, = 5+ C1CoCi + C2Ch Co. (16.13)

The first term forces this bit to 1 on the start pulse, the last term forces the bit to 1 on CoC1Cy = 100, and
the middle term is zero on CoCCy = X10, and allows C to persist otherwise.
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The complete set of logic expressions is as follows.

Dg, = 5(C2C1CoD + C2C1CoQr)

Do, =S + (C2C1CoD + C2C1CoQs)C2C1Cy
Do, = S + (C2C1CoD + C2C1CoQs5)CaC1 Ty
Dq, = S+ (CoC1 CoD + CoC1 CpQ4)C2C1Cy
Do, =S + (C3C1CoD + C5C1CoQ3)CaC1 Co
Do, = S + (C2C1CoD + C2C1CoQ2)C2C1 Co
Do, :?+ (C3 C1CoD + Ty C1CQ1)C2C1Cy 16,14
Dg, =S5+ (CyC1 CyCCD + C2 C1 Cy CCQ0)Co C1Cy
-
D¢, = 5 + CyCy Cy Cs

D¢, = S+ C1CoCh + C2C7 Oy

D¢, = S+ C,C1 CoCy

Do, =D
Qr=(Qn)

To understand all these in some detail:

o The easiest ones to understand are the last two: Q- is just an inverted copy of Q7, and Qp just latches
D.

e On all the others, the start pulse forces the bits to 1, except for 7, which is forced to 0. Note that
the start pulse overrides all other information.

e Then @7 loads D when C2C1Cy = 111 and persists otherwise. We covered the similar logic for Qs
already; Qo—Q4 and Qg follow the same idea in persisting, except changing to 0 and storing D at the
right stages. However, Qg is slightly more complicated since we stop the counter on CyC7Cy = 000,
so we must also use the CC bit to make sure the state of Qg persists when conversion is complete.

» For CC, this should be forced to zero on C2C1Cy = 000 (i.e., after the last comparison), otherwise it
persists. The factor of CC is not strictly necessary on the second term.

e We covered the logic of the C'; counter bit already. Then Cj is simple in toggling on each clock pulse,
except that once CoC1Cy = 000, we will force it to stay at 0. For C5, the MSB should only change on
CyC1Cy = 100, so we detect

16.4.1.2 22V10 Emulation

To emulate the 74LS502, we will choose the 22V10 SPLD (e.g., the ATF22V10C from Atmel). This has a
10-bit register (i.e., 10 D-type flip-flops) and 10 outputs, plus plenty of logic for sum-of-product logic and
plenty of inputs. However, there is a problem: we have 13 registered outputs, but only 10 bits in the register.
To handle this, note that the counter-logic bits Cp—C5 are actually redundant—and-that is, although they are
conceptually useful states in writing down the state-machine logic, they are not needed as register variables
in the sense that they can be inferred from the other register variables Q9—Q7 and CC. In particular, note
that



16.4 STATE-MACHINE EMULATION OF SARS 309

e 05C1Co = 111 is determined by Q7 - -~ QoCC = 011111111
e (5C1Cy = 110 is determined by Q7 ---QoCC = X01111111
e (5C1Cy = 101 is determined by Q7 ---QoCC = XX0111111
e ctc.

Thus, Cy should trigger on an even number of ones after the leading zero:

Co = Q7QsQ5Q4Q3Q2Q1Q0CC + Q5Q4Q3Q2Q1Q0CC + Q3Q2Q1Q0CC + Q1QoCC
= (((Q7QsQs5 + Q5)QuQs + Q3)Q2Q1 + Q1) QoCC (16.15)
= (((@7Qs + Q5)Qu + @5) Q2 + Q1) QoCT.

We used A+ AB = A+ B in the last step. Similarly C; triggers when there are 8, 7, 4, or 3 ones after the
leading zero:

C1 = Q7Q6Q5Q4Q3Q2Q1Q0CC + QsQ5Q1Q3Q2Q1Q0CC + Q3Q2Q1Q0CC + Q2Q1QoCC
= (((Q7Q6 + Q6) Q5Q4Q3 + Q3) Q2 + Q2) Q1Q0CC (16.16)
= ((Q7 + Q6)Q5Q4 + Q3 + Q2) Q1QoCC.

Finally, C5 triggers when there are 8, 7, 6, or 5 ones after the leading zero:

Oy = Q7Q6Q5Q4Q3Q20Q1Q0CC + Q6 Q5Q4Q3Q20Q1Q0CC + Q5Q1Q3Q2Q1Q0CC + Q4Q3Q2Q1Q0CC
= (((@Qﬁ +@)Q5 +@)Q4 +@)Q3Q2Q1Q0@ (16.17)
= (@7 + Qs + @5 + Qu) Q3Q2Q1QuCC.
Thus, we are down to 10 registered outputs, and we may proceed.
The pinout for the original 74LS502 and the 22V 10-based emulator are shown below. Note that because

we only have 10 outputs available, we have chosen to include the Q p output but not the Q7 output, but we
could easily make the opposite choice, as we will discuss below.

cp(cLy) [1] & [24] Vee
5[2] 23] @p
D3] 22] Q7
N/C E 2__1| Qs
wi ¥ |lgw we[5] 0] 0
cec[2] [15] @- w/c[6] [19] Qs
Qo[3] [14] Q7 w/e[7] 18] @5
Qi [4] [13] Qs w/c[8] [17] Q>
Q:[5] [12] @5 w/c[9] [16] @1
Qs[6] 1] Q4 w/c [10] [15] Qo
p[7] 105 w/c[L] [14]cc
anp [ 8] [9] cp(crx) anp [12] [13]w/c

original 74LS502 74502 emulator
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The code to implement the state machine in the CUPL (Compiler for Universal Programmable Logic)
programming language® is shown below.
74502-22V10.pld

/*

* 74502 SAR emulator, on a 22v10
*/

Name 74502-22V10;
Partno 74502;

Revision 01;

Date 5/23/2015;
Designer Daniel Steck;
Company University of Oregon;
Location None;

Assembly None;

Device g22v10;

/*** inputs ***/

pin 1 = CP; /* clock pulse (trig on rising edge) */
pin 2 = !S; /* start low x*/
pin 3 = Din; /* data */

/*** outputs **x*/

pin 14 = 1CC; /* conversion complete low */
pin [15..22] = [QO..Q7]; /* 8-bit output */
pin 23 = QD; /* registered/synchronous copy of data input */

/**x intermediate counter variables **x/

CO = (((!Q7 & Q6 # 'Q5) & Q4 # !'Q3) & Q2 # !'Q1) & QO & !CC;
C1 = ((!'Q7 # 'Q6) & Q5 & Q4 # 'Q3 # !'Q2) & Q1 & QO & !CC;
C2 = (IQ7 # 'Q6 # 'Q5 # 'Q4) & Q3 & Q2 & Q1 & QO & !CC;

/*** register inputs **x/

CC.D = (S # !(!C2 & IC1 & 'CO) & !'CC);

Q7.D = 'S & (C2 & C1 & CO & Din # !(C2 & C1 & CO) & Q7);

Q6.D =S # (C2& C1 & !CO&Din# !'(C2& C1 & !CO) & Q6) & '( C2& C1 & CO);

Q5.D =S # (C2& !C1 & CO & Din # !'( C2 & !C1 & CO) & Q5) & '( C2 & C1 & !CO);

Q4.D =S # (C2& !C1 & 'CO & Din # !'( C2 & !C1 & 'CO) & Q4) & '( C2 & !C1L & CO);

Q3.0 =S # ('C2& C1 & CO & Din # !'(!C2 & C1 & CO) & Q3) & '( C2 & !C1 & !CO);

Q2.D =S # (!C2 & C1 & 'CO & Din # !'(!C2 & C1 & !'CO) & Q2) & '(!C2 & C1 & CO);

Q1.D =S # (!1C2 & !C1 & CO & Din # !(!C2 & !C1 & CO) & Q1) & '(!C2 & C1 & !CO);

QO.D =S # (!C2 & !C1 & 'CO & 'CC & Din # !'(!C2 & 'C1 & 'CO & !CC) & QO) & '(!C2 & !'C1 & CO);
QD.D = Din;

/*** handle flip-flop variables set/preset inputs ***/
CC.ar = 'b'0;

Q7.ar = 'b'0;
Q6.ar = 'b'0;
R5.ar = 'b'0;
Q4.ar = 'b'0;
Q3.ar = 'b'0;
Q2.ar = 'b'0;
Ql.ar = 'b'0;
Q0.ar = 'b'0;
QD.ar = 'b'0;

3The only compiler realistically available nowadays is WinCUPL, which is Windows-based, crash-prone, and proprietary,
but it is freely distributed by Atmel: http://www.atmel.com/tools/wincupl.aspx.
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o oo oo o oo oo

O O O O O O OO oo

CC.sp =
Q7.sp =
Q6.sp =
Q5.sp =
Q4.sp =
Q3.sp =
Q2.sp =
Ql.sp =
Q0.sp =
QD.sp =

This is a relatively straightforward translation of the equations we have already written down. Note
that

o The first block contains obligatory header information, most of which is merely informational, but the
“Device” declaration to “g22v10” means we have selected this device (which also covers the ATF22V10C
variant).

+ The next two blocks declare input and output pin assignments and variables. Note that a NOT is
denoted by “!”; for example, S is denoted !S.

o The next block gives the expressions (16.15)—(16.17) for the counter variables Cy—Cs. Note that the
OR operation is represented by a hash (#), and the AND operation is represented by an ampersand (&).

o The next block gives expressions for all the register inputs, as in Egs. (16.14) (except for counter
register variables). The CUPL notation is that the input for the register variable Q7 is Q7.D (i.e., this
is what we call Dg,).

e Finally, in the last block, we make sure to tie the other flip-flop controls to default values. Here, the
22V 10 flip-flops have asynchronous-reset (AR) and synchronous-preset (SP) inputs; we simply tie all of
them to logical O (written as “binary 0” or 'b'0 in CUPL).

« To have Q7 as an output instead of D7, we can change the “pin 23 = QD;” declaration to now read
“pin 23 = notQ7;”, and then change the line “QD.D = Din;” to “notQ7 = !Q7;” (note that this
output would then no longer be registered, but “combinatorial”).

The compiler then simplifies the logical expressions and figures out how to make the fused connections in
the configurable-logic section of the 22V10. A separate programmer is necessary to then “burn” the chip.

16.4.2 74503
The 74LS503 is basically the same as the ’502, but it dispenses with Qp and adds an enable-LOW input E.

—
(=}

74LS503 SAR

o |~
Yo @l

P
Q

o Q7 Q.
\3 \4 \5 ‘6 \11\12\13\14T15

The E operates as follows. If it is held LOW, then the chip behavior is essentially identical to the ’502. If
it is taken HIGH—the intent is for this to happen after the start operation but before any data acquisition
occurs—then Q7 is asynchronously forced HIGH, and the chip does not accept any data from D. When E = 0
again, the acquisition process proceeds as in the ’502.

The idea behind the E input in the ’503 is that two ’503’s can be “stacked” to realize a 16-bit SAR.
The idea is that the CC of the most-significant chip (byte) drives the E of the least-significant chip, so that
when the first chip is finished, acquisition continues on the second chip. The connections are shown in the
data sheet for the 74L.S503. The idea is to share the data, clock, and start lines, and chain the CC of the MS
chip to the enable of the enable of the LS chip.
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5
11— 1]
E E
% L 10 S . ED—H L 104 S . cc SR cc
7 74LS503 SAR 7418503 SAR
D D D
>CP _ >CP _
Qo Q70 Qo Q70
\3 \4 \5 ‘6 \11\12\13\14T15 \3 \4 \5 ‘6 \11\12\13\14T15
8 15 0 7
cpP

16.4.2.1 ATF750C Emulation

To emulate the 74LS503, we will choose the ATF750C CPLD (from Atmel). Note that when the C; are
eliminated as in Eqgs. (16.15)—(16.17) in the case of the ’503, the expressions for Dg,~Dg, must have “+E”
tacked on to each expression, since these variables track the counting state. However, this extra addition
appears to make the logic too complicated to fit in either the 22V10 or the ATF750C.

Fortunately, the ATF750C has 10 extra register bits that are present “internally” (i.e., they can not be
connected directly to outputs as are the other 10 register bits). Thus we can implement Cy—C5 as register
variables.

Now we need to show how to modify the ’502 logic to accommodate this new input. Note that since
the effect on Q7 is asynchronous, Q7 can’t any more be a register output. So for the sake of notation, let P;
be a register output, and let Q7 be a Boolean function of P; and E. The other outputs Qo Qg and CC can
still be register outputs. The summary of logic expressions is below.

Dp, = 8(C2C1CoD + CC1Co P E
Qr=E+PF
Dg, = 5 + (C2C1ToD + C>C1CoQs)CoCiCo
Dg, = 8+ (C2C1CoD + C2C1CoQ5)C2C1Co
Dg, = 8+ (C>C1 CoD + C2C7 CoQ4)C2C1Co
Do, =S + (C2C1CoD + C2C1CoQ3)CaC1 Cy
Dg, = ? + (C2C1Cy D + C2C1CyQ2)C2C1Cy (16.18)
Do, =5 + (G5 C1CyD + C5 C1CoQ1)C2Ch Co
Dg, = 8 + (C5 C1 o CCD + C5 Cy Gy CCQ0)Ca C1.Co
Dg =S +C;C; Gy CC
De, =5+ CCiCyCo + E
D¢, =8+ C1CoCy + CoCy Co + E
Doy =85+C2C1CoCo+ E
@7 = @

Note that we are forcing P; = 0 on a disable cycle, so that conversion happens correctly afterwards (otherwise
spurious data could be loaded). Then the expression for Q7 allows Py to be overridden by E asynchronously.
Also, although overkill, the counter bits are all forced to 1 to ensure conversion occurs correctly. (Really,
this should only be needed for Cy). We only need correct behavior if the chip is disabled right after a start
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pulse, so the other bits should be okay. However, it is okay to add “+FE” to the other register inputs if
desired. We have also dispensed with Dg,.

The pin diagrams for the original chip and emulator are shown below. Note that we can now accom-
modate every output from the original chip.

cp(cLK) [ 1] @ 24| Voo
s[2] 23] @7
p[3] [22] Qs
B[4 [21] Qo
1] b [16] Vee w/e[5] 20] Qs
ce[2] [15] @7 w/e[6] [19] Q4
Qo[ 3] [14] @ w/e[7] 18] Qs
Q[ 4] [13] Q6 w/c[3] 17] @
Q5] 12] Qs w/c[9] [16] @
Q3 E 1__1| Q4 N/C |1__0 15[ Qo
p[7] [10] 5 w/ci] 14] cc
e [ 8] [ 9] cp(crx) anp [12] [13]w/c

original 74LS503 74503 emulator

The code to implement the state machine in CUPL is shown below.
74503-F750C.pld

/*

* 74503 SAR emulator, on an ATF750C
*/

Name 74503-F750C;

Partno 74503;

Revision 01;

Date 5/23/2015;

Designer Daniel Steck;

Company University of Oregon;
Location None;

Assembly None;

Device v750c;

/*** inputs ***x/

pin 1 = CP; /* clock pulse (trig on rising edge) */
pin 2 = !S; /* start low */

pin 3 = Din; /* data */

pin 4 = 'E; /* enable low */

/*** outputs ***/

pin 14 = ICC; /* conversion complete low */
pin [15..22] [QO0..Q7]; /* 8-bit output */

pin 23 1Q7copy; /* inverted copy of Q7 */

/*** internal nodes **x/
node P7;
node [CO..C2];

/***x intermediate counter variables **x/
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CO.D =S # !(!1C2 & !C1 & !CO) & !CO # !E;
Cl1.D =S # !(Cl & !CO) & C1 # C2 & !C1 & !CO # !E;
C2.D =S # !(C2 & !C1 & !CO) & C2 # !E;

/*** register inputs **x/

CC.D = !(S# !(!1C2 & !C1 & !'CO) & !CC);

P7.D = !S & (C2 & C1 & CO & Din # !(C2 & C1 & CO) & P7) & E;

Q6.D =S # (C2& C1 & !CO &Din # !( C2& C1 & !CO) & Q6) & !'( C2 & C1 & CO);
Q5.D =S # (C2& !Cl1 & CO &Din# !'(C2& !Cl & CO) &Q5) & !'( C2 & C1 & !CO);
Q4.D =S # (C2& !C1 & !CO&Din # !'( C2& !C1 & !CO) & Q4) & '( C2 & !C1 & CO);
Q3.0 =S # (!1C2 & C1 & CO & Din # !(!1C2 & C1 & CO) & Q3) & !( C2 & !C1 & !CO);
Q2.D =S # (!1C2 & C1 & !CO & Din # !'(!1C2 & Cl1 & !CO) & Q2) & !'(!IC2 & C1 & CO);
Q1.D =S # (!1C2 & !C1 & CO & Din # !(!C2 & !C1 & CO) & Q1) & !'(!IC2 & C1 & !CO);
Q0.D =S # (!C2 & !C1 & !CO & !CC & Din # !(!C2 & !C1 & !CO & !CC) & QO) & !'(!C2 & !C1 & CO);
/*** combinatorial outputs ***/

Q7 = 'E # P7;

Q7copy = Q7;

/**x handle flip-flop variables set/preset inputs *xx*/
CC.ar = 'b'0;

C2.ar = 'b'0;

Cl.ar = 'b'0;

CO.ar = 'b'
P7.ar =
Q6.ar =
Q5.ar =
Q4.ar =
Q3.ar =
Q2.ar =
Ql.ar =
Q0.ar =

>

Ccooooooo

0
0
0
0
O.
0
0
0
0

>

o oo oo oo o oo oo

O O O OO O OO OO oo

CC.sp =
C2.sp =
Cl.sp =
CO.sp =
P7.sp =
Q6.sp =
Q5.sp =
Q4.sp =
Q3.sp =
Q2.sp =
Ql.sp =
Q0.sp =

/**x flip-flop-clock multiplexer (use input clock pin) *xx*/
CC.ckmux = CP;
C2.ckmux = CP;
C1l.ckmux = CP;
CO.ckmux = CP;
P7.ckmux = CP;
Q6.ckmux = CP;
Q5.ckmux = CP;
Q4 .ckmux = CP;
Q3.ckmux = CP;
Q2.ckmux = CP;
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Q1. ckmux
Q0. ckmux

CP;
CP;

Again, this is a relatively straightforward translation of the Boolean-algebraic equations. Note that
o In the first block, we now declare the more powerful chip (“v750c”).
« In the next two blocks, we declare E and Q7 (the latter by defining the “copy” variable Q7copy).
 In the next block, we implement the counter variables Cp—C4 as register variables, as in Eqgs. (16.18).

o The next block gives expressions for all the register inputs, as in Eqgs. (16.18) (except for the counter
register variables we already implemented). The subsequent block implements the combinatorial out-

puts Q7 and Q7.

e Finally, in the last block, the ATF750C has a “clock multiplexer” control on the flip-flop inputs. The
upshot is that we must declare the flip-flop clock inputs to be connected to the clock-input pin CP.

« To have Q7 as an output instead of D7, we can change the “pin 23 = QD;” declaration to now read
“pin 23 = notQ7;”, and then change the line “QD.D = Din;” to “notQ7 = !'Q7;” (note that this
output would then no longer be registered, but “combinatorial”).

The compiler then simplifies the logical expressions and figures out how to make the fused connections in
the configurable-logic section of the 22V10. A separate programmer is necessary to then “burn” the chip.

16.4.3 Testing the State Machines

The WinCUPL package also allows simulation tests. We define the test values in another file (i.e., define
a sequence of input and expected output values). The simulator will simulate the chip and ensure that it
passes the test values. These tests values can also be embedded in the code to be sent to the programmer,
so the programmer can test the actual chip.

Test files for both emulators are attached below; it’s a good exercise to look through and understand
these. The header block here matches that of the .pld file. The ORDER declaration gives a sequence of pins
(variables) for consideration. In the VECTOR block, we give a bunch of input/expected-output states, in the
order of the ORDER declaration. The notation for the values is:

e 0 and 1 are the logical input values.
e L and H are corresponding logical values, but used for expected outputs.

o c is equivalent to a 0, then a 1, and then a 0 (i.e., a clock pulse).

74502-22V10.si

/%

* 74502 SAR emulator, on a 22v10
*/

Name 74502-22V10;
Partno 74502;

Revision 01;

Date 5/23/2015;
Designer Daniel Steck;
Company University of Oregon;
Location None;

Assembly None;

Device g22v10;

ORDER: CP, !S, Din, QD, Q7, Q6, Q5, Q4, Q3, Q2, Q1, QO0, !CC;
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VECTORS:

00 LLHHHHHHHH
10 LLLHHHHHHH
10 LLLLHHHHHH
10 LLLLLHHHHH
10 LLLLLLHHHH
10 LLLLLLLHHH
10 LLLLLLLLHH
10 LLLLLLLLLH
10 LLLLLLLLLL

O o0 o0 o0 o0 o0 000

01 HLHHHHHHHH
11 HHLHHHHHHH
11 HHHLHHHHHH
11 HHHHLHHHHH
11 HHHHHLHHHH
11 HHHHHHLHHH
11 HHHHHHHLHH
11 HHHHHHHHLH
11 HHHHHHHHHL
11 HHHHHHHHHL

O o0 o0 o0 o0 0 o0 o0 00

01 HLHHHHHHHH
10 LLLHHHHHHH
11 HLHLHHHHHH
10 LLHLLHHHHH
11 HLHLHLHHHH
10 LLHLHLLHHH
11 HLHLHLHLHH
10 LLHLHLHLLH
11 HLHLHLHLHL
10 LLHLHLHLHL

O o0 o0 o0 o0 o0 o0 000

01 HLHHHHHHHH
11 HHLHHHHHHH
10 LHLLHHHHHH
11 HHLHLHHHHH
10 LHLHLLHHHH
11 HHLHLHLHHH
10 LHLHLHLLHH
11 HHLHLHLHLH
10 LHLHLHLHLL
11 HHLHLHLHLL

O o0 o0 o0 o0 o0 o0 o000

74503-F750C.si

/*

* 74503 SAR emulator, on an ATF750C
*/

Name 74503-F750C;

Partno 74503;

Revision 01;

Date 5/23/2015;

Designer Daniel Steck;

Company University of Oregon;
Location None;

Assembly None;

Device v750c;
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ORDER:
cp, !E, 'S, Din, C2, C1, CO, Q7, Q6, Q5, Q4, Q3, Q2, Q1, QO, !'CC;

VECTORS:

0 00 HHH LHHHHHHHH
10 HHL LLHHHHHHH
10 HLH LLLHHHHHH
10 HLL LLLLHHHHH
10 LHH LLLLLHHHH
10 LHL LLLLLLHHH
10 LLH LLLLLLLHH
10 LLL LLLLLLLLH
10 LLL LLLLLLLLL
10 LLL LLLLLLLLL

O o0 o0 o0 o0 o0 o0 o0 00
O O O O O O O OO

01 HHH LHHHHHHHH
11 HHL HLHHHHHHH
11 HLH HHLHHHHHH
11 HLL HHHLHHHHH
11 LHH HHHHLHHHH
11 LHL HHHHHLHHH
11 LLH HHHHHHLHH
11 LLL HHHHHHHLH
11 LLL HHHHHHHHL
11 LLL HHHHHHHHL

O o0 o0 o0 o0 o0 o0 000
O O O O O O OO oo

01 HHH LHHHHHHHH
10 HHL LLHHHHHHH
11 HLH LHLHHHHHH
10 HLL LHLLHHHHH
11 LHH LHLHLHHHH
10 LHL LHLHLLHHH
11 LLH LHLHLHLHH
10 LLL LHLHLHLLH
11 LLL LHLHLHLHL
10 LLL LHLHLHLHL

O o0 o0 o0 o0 o0 o0 o000
O O O O O OO O o oo

01 HHH LHHHHHHHH
11 HHL HLHHHHHHH
10 HLH HLLHHHHHH
11 HLL HLHLHHHHH
10 LHH HLHLLHHHH
11 LHL HLHLHLHHH
10 LLH HLHLHLLHH
11 LLL HLHLHLHLH
10 LLL HLHLHLHLL
11 LLL HLHLHLHLL

O o0 o0 o0 o0 o0 o0 o000
O O O O O O OO oo

11 LLL HLHLHLHLL
00 HHH LHHHHHHHH
00 HHH HHHHHHHHH
01 HHH HHHHHHHHH
10 HHH LHHHHHHHH
10 HHH LHHHHHHHH
10 HHL LLHHHHHHH
10 HLH LLLHHHHHH

O 0 O, kP = O
O O OO+ ¥ OO
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O o0 o0 o0 o0 o0 o0
O O O O O O O

O o0 o0 o0 o0 o0 o000 o,k kPO
O OO OO OO OO0+ OoOOo

oo oo o0 o0 o000 o,k P, O

O O O OO O OO0 O0OO OO

O o0 o0 o0 o0 o0 o000 o,k Pk~ Oo
[elleolN ol olNeolNeolNoNoloNoleol e e

10
10
10
10
10
10
10

00
01
01
00
11
11
11
11
11
11
11
11
11
11
11

01
01
01
00
01
11
10
11
10
11
10
11
10
11
10

00
01
01
00
01
11
11
10
11
10
11
10
11
10
11

HLL
LHH
LHL
LLH
LLL
LLL
LLL

LLL
HHH
HHH
HHH
HHH
HHH
HHL
HLH
HLL
LHH
LHL
LLH
LLL
LLL
LLL

LLL
HHH
HHH
HHH
HHH
HHH
HHL
HLH
HLL
LHH
LHL
LLH
LLL
LLL
LLL

LLL
HHH
HHH
HHH
HHH
HHH
HHL
HLH
HLL
LHH
LHL
LLH
LLL
LLL
LLL

LLLLHHHHH
LLLLLHHHH
LLLLLLHHH
LLLLLLLHH
LLLLLLLLH
LLLLLLLLL
LLLLLLLLL

LLLLLLLLL
LHHHHHHHH
HHHHHHHHH
HHHHHHHHH
LHHHHHHHH
LHHHHHHHH
HLHHHHHHH
HHLHHHHHH
HHHLHHHHH
HHHHLHHHH
HHHHHLHHH
HHHHHHLHH
HHHHHHHLH
HHHHHHHHL
HHHHHHHHL

HHHHHHHHL
LHHHHHHHH
HHHHHHHHH
HHHHHHHHH
LHHHHHHHH
LHHHHHHHH
LLHHHHHHH
LHLHHHHHH
LHLLHHHHH
LHLHLHHHH
LHLHLLHHH
LHLHLHLHH
LHLHLHLLH
LHLHLHLHL
LHLHLHLHL

LHLHLHLHL
LHHHHHHHH
HHHHHHHHH
HHHHHHHHH
LHHHHHHHH
LHHHHHHHH
HLHHHHHHH
HLLHHHHHH
HLHLHHHHH
HLHLLHHHH
HLHLHLHHH
HLHLHLLHH
HLHLHLHLH
HLHLHLHLL
HLHLHLHLL
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16.5 Circuit Practice

16.5.1 Computer-Interface DAC Controller

For circuit practice, see the DAC controller board design by Todd Meyrath and Florian Schreck.* Trace
through the circuit and note the following.

The DACT7744 chips have 4 analog outputs, for 8 total output channels per board.

An 8-bit address bus selects which DAC and output to use. The two LSBs (bits 0 and 1) select which
output on a particular chip, bit 2 selects which of the two DACs on the board to activate, and the
other bits select which (of possibly many) boards to address. Trace through the logic leading up to
and including the NAND gates to verify that it works as advertised.

This allows only one 16-bit data bus to feed all the outputs. The desired output is selected, the desired
data is presented to the data bus, and then a strobe signal causes the addressed DAC to latch the
desired output value.

Note that the strobe pulse, which just amounts to matching the proper address, must be delayed behind
the data and address signals so the inputs are settled before “load DAC” is triggered. The pulse is
delayed by a buffered, RC circuit.

Note that the NOT gates have Schmitt-trigger inputs. What part of the circuit justifies having Schmitt-
input NOTs?

16.5.2 3-Bit ADC

Suppose you have a 3-bit DAC, with voltage levels 0V, 0.1V, 0.2V, ..., in a successive-approximation ADC.
If Vi, =035V,

make a plot of the DAC output vs. time

what is the final, converted digital value?

Solution. For the converted digital value: 100. The comparison voltages will be: 0.3V, 0.5V, 0.4 V.

4nttp://strontiumbec.com/Control/DAC.pdf, in particular the schematic on p. 13.
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16.6 Exercises

Problem 16.1

(a) Derive an expression for the dynamic range (the largest vs. the smallest nonzero-amplitude signal)
of an N-bit sampled signal. Recall that when you compare two amplitudes A and Ay in dB, the
expression is
A
(ratio in dB) = 201log;, <A) (16.19)
0
(b) What is the dynamic range for CD audio (16 bits) in dB? Bluray audio (24 bits)? (For comparison,
the dynamic range of human hearing is usually quoted as 120 dB.)

Problem 16.2

Use a counter to design a simple DAC based on pulse-width modulation as follows: Your circuit should
take an 8-bit digital input, representing an 8-bit unsigned integer, and then control the brightness of
an LED to be proportional to this integer. Assume the clock signal to be given and to be as fast as you
need it to be. You may use whatever support logic you like, but you may find it useful to use a flip-flop,
and look into the binary magnitude comparator (read up on the 74688). Make sure to properly limit
the LED current.

Be specific about any ICs you use (i.e., give the model number, like 74688, and if it matters, specify
which logic family, e.g., 74HCT688). You should show all important connections, but don’t bother
with universal stuff like power supplies, grounds, chip enables, etc. Also, you don’t need to explicitly
show the clock source, just indicate the existence of the clock signal and show any connections where
it enters your circuit.

Problem 16.3

(a) Use a counter (specifically, an 8-bit up counter), a clock source (astable multivibrator), a compara-
tor, and a DAC to design a simple ADC. That is, the counter should count upwards starting from zero,
and freeze at the appropriate conversion value (i.e., the frozen counter is the output). Use whatever
support logic you like, and don’t worry about latching the output. You should include a start/reset
input that resets the counter and allows the next conversion to start.

As in Problem 2, be specific about any ICs you use; show all important connections, but don’t bother
with universal stuff; and you don’t need to explicitly show the clock source, just indicate the existence
of the clock signal and show any connections where it enters your circuit.

(b) Why is this ADC slower than a successive-approximation ADC? (And by how much is this ADC
slower on average?)

(c) What kind of “bias” does this ADC have in terms of converting a noisy input signal?

Problem 16.4

(a) In the successive-approximation ADC examples from Section 16.2.2, the convention is that the SAR
starts with the “midpoint” word 01111111 for an 8-bit ADC (as in the 74LS502 and 74LS503 SAR’s
in Section 16.4). Another possible (and reasonable) convention is to start off with the the alternate
midpoint word 10000000. Briefly describe the difference in the end result of the two schemes for an
arbitrary input.

(b) Counsider the ADC circuit shown below, where the DAC conversion levels are 0, 0.01, 0.02, ...,

2.55V. Suppose the input analog voltage of 0.45V, and as mentioned the SAR starts with 01111111
on the first clock cycle (the “start” cycle). What is the SAR output after 3 more clock cycles?
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Voe (+5V)

+5V clock in
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DAC N > LEDs

Problem 16.5
In this problem, you should design a 2-bit successive-approximation register (SAR), with data (D) and

start-LOW (S) inputs, @1 (MSB) and Q¢ (LSB) outputs, and conversion-complete-LOW (CC) output. On
start, the outputs should initialize to Q1QyCC = 011.

(a) Draw a state diagram for the SAR, enumerating all possible output states Q1QoCC as nodes. Specify
all possible transitions, and label transition arrows with the appropriate input states wherever multiple
transitions are possible. Also, make sure to handle all possible states and eliminate the possibility that
the state machine will get “stuck.” (Remember you can use “X” for “doesn’t matter” for logic states in
diagrams and truth tables.)

A suggested template for your state diagram is shown below. (That is, these are the states, you should

fill in the transitions.)

(b) Write down a truth table for register inputs D1, Dy, and Dg in terms of the other variables to
implement this SAR in sequential logic.
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Again, a suggested template for your solution is shown below.

S D Q1 Qo cC D, Dy Dy
0 X X X X
X X 1 1 1
1 0 0 1 1
1 1 0 1 1
1 0 0 0 1
1 1 0 0 1
1 0 1 0 1
1 1 1 0 1
1 X X X 0

(c) Finish the design: write down logical expressions for Dy, Dy, and Dgs.
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Phase-Locked Loops

Simply put, a phase-locked loop (PLL) is a feedback-loop circuit that compares two oscillating signals.
It attempts to adjust the frequency of the second one so that it exactly matches the first in terms of phase
(and thus also in terms of frequency).

Strictly speaking, a phase-locked loop can be implemented in an analog circuit, where, for example,
the circuit makes one sine wave copy another one. However, it is common to implement phase-locked loops
using digital gates, so we are covering these as digital circuits.

It may also sound a bit weird to use a feedback loop to make a copy of a signal, when you could
just directly make a copy of a signal, e.g., with a buffer amplifier or gate. However, the magic comes in
taking advantage of the feedback loop. As our first main example, recall that using a counter, it is relatively
straightforward to divide the frequency of a square-wave clock signal. But how do we multiply the frequency
of a signal? The answer: a phase-locked loop.

17.1 Frequency Multiplier

The idea behind a frequency multiplier is to start with the original clock signal. Suppose we want to multiply
the frequency by N. Then generate a new signal, divide it by N, and compare the divided signal to the
original (i.e., phase synchronized). Adjust the frequency of the new signal until the divided version matches
the original, and wvoila, you have a new signal with a frequency N times the original, with matching phases
of the two signals.

The block diagram of a circuit that accomplishes this is shown below.
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fin o———
Phase Low-Pass
Detector Filter

freplica

Voltage-
Controlled
Oscillator (VCO)

Counter
(Divide-by-n)

fout V;)ut

Let’s look at each of the components here.

1. The phase detector compares two oscillating signals, and the output gives some measure of the
relative phase. A general requirement is that the “in sync” state should give a “zero output”—this
need not actually be zero (i.e., it could be offset to some other voltage), but the point is that the signal
should go up if the phase is perturbed one way, and down if the phase is perturbed the other way.
There are two basic classes of digital phase detectors in PLLs.

e Type I phase detector. This is simply an XOR gate, and it can be driven by digital signals, or
also by analog signals, provided they have been converted to digital via a comparator or Schmitt
trigger. The output of the XOR gate is illustrated below.

reference J ‘ ‘ ‘ ‘ ‘
signal J ‘ ‘ ‘ ‘ ‘
xor — | [ I

The output is a sequence of pulses; the output is HIGH whenever the two input signals mismatch.
The XOR output is zero if the reference input matches the signal input, and the duty cycle of the
output increases to 100% if the signals have a 7 phase difference. Only the average signal will
matter, because the output is fed through a low-pass filter. So the average output is proportional

to the phase difference, as shown below.
Vavg

lock point

0 1 1 :
0 /2 ™ 3m/2 o @

Then we should choose a 7/2 phase shift as the lock point (i.e., the PLL will force the signal to be
a 90°-phase-shifted copy of the reference). Remember this is because we need the output signal
to vary both up and down if the phase moves away from the lock point.

o« Type II phase detector. This phase detector is sensitive to digital edges, so it is really suited to
digital signals, although in principle if analog signals are converted to digital, this would amount to



17.1 FREQUENCY MULTIPLIER 325

the detector responding to the zero-crossings of the analog signals. To see how it works, consider
the first timing diagram below.
reference J ‘ ‘ ‘ ‘ ‘

voojeopy —1 L1 L |

The “normal” state of the phase detector is a middle voltage midway between LOW and HIGH.
If the detector finds a rising edge from the reference signal first, then the output changes HIGH.
When the edge from the other signal (“VCO/copy” signal, which we will explain below), then the
output changes back to MID. If the relative phase has the opposite sign, then we have the situation

shown below.
S R N

SN e B e B B

reference

Now the VCO/copy signal presents its rising edge first, so the output goes from MID to LOW. It
goes back to MID when the reference edge arrives. Once this signal is time-averaged, the result is

shown below.
Vavg

lock point

s ) g

Now the lock point is at zero phase, and because the output can move LOW or HIGH relative to the
normal MID state, the output can vary in either direction. The advantage is that the lock point is
in perfect sync: at the lock point, the error signal is identically zero, ever before the time average.
Contrast this to the type-I case, where the output was a 50%-duty-cycle square wave. Some of
this will leak through the time average, and end up frequency-modulating the output signal. Note
that the operation of this circuit is independent of the duty cycles of the two signals, unlike the
type-I case where we assumed 50% duty cycles. (Otherwise the locked phase may differ from /2,
and it may be necessary to choose a different lock voltage.)

Note that for sine-wave analog signals, the phase detector can be as simple as a multiplying amplifier
(for rf frequencies, you would use an rf mixer, which has just this function).

2. The low-pass filter (Section 2.3.5) “keeps” low frequencies, and “removes” high frequencies. It thus
acts to time-average the phase-detector signal. It also limits the speed with which the PLL can respond
to frequency changes in the reference signal. This may be a disadvantage if you want to perfectly track
the frequency. However, this allows the PLL to act as a frequency “flywheel,” so it ignores some of
the noise in the incoming signal to “clean it up.” It also induces a phase shift, which we will return to
below.

3. The voltage-controlled oscillator (VCO) is an oscillator (clock), where the output frequency f
depends on an input control voltage. The frequency may depend nonlinearly on the control voltage,
but it should be at least monotonic.

4. The counter is here as we described for frequency-multiplier applications. This should be omitted in
other applications.
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CHAPTER 17. PHASE-LOCKED LOOPS

17.1.1 Feedback Loop

In the feedback loop here, the time-averaged output of the phase detector is fed into the VCO control input.
Recall that in PID control (Chapter 8), it is necessary to integrate the error signal in order to get zero
steady-state error. Here, this is automatic, since frequency w and phase ¢ are related by

_¥
w—dt

(17.1)

Since we detect phase and are feeding back to a frequency control, we are controlling w = [ ¢ dt, and thus

we effectively have the integral of the error signal.

If the phase is below the lock point (i.e., phase lag), then the output is positive (relative to the lock

point), and so the frequency increases. If the phase is above the lock point (i.e., phase lag), then the output
is negative (relative to the lock point), and so the frequency decreases. Then there are different options for

loops.
1. In a first-order loop, there is no low-pass filter, so there is just the 90° phase shift associated with the
phase-frequency integration. In this case, we don’t have the time averaging as in the analysis above,

but the idea is the same, because the integral VCO response makes the loop behave in essentially the

(i.e., the bandwidth) of the control signal.

same way.
In a second-order loop, there is a low-pass filter as in the diagram, so you need to be careful about
any extra phase shifts to guard against instabilities. Again, the low-pass filter limits the rate of change

17.2 Example PLL

Below is a more detailed example of a PLL circuit, based on the 4046 PLL IC. This IC includes both type
I and type II phase detectors, as well as a VCO. The circuit below is designed to multiply an input 60-Hz
signal by 2° or 2!°, depending on whether the Q5 or Q1o output of the 4040 counter is used. Note the passive

low-pass filter and the use of the type II detector, so this is a second-order feedback loop.

LED “lock”

+5V
1 Lﬁ
2 7
Type I F—
4046 470 pF r
6 4046
Phase VCO
Detector 4.7MQ
3 Type IT AN I 9
1uF
11 5| 8
+5V
330k 2.2kQ =
16
3 Q5
4040
Counter
10
141 Q1o CLK<

R
8 11

VCO out
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17.3 Other Applications

17.3.1 FM Demodulation

Another important application of PLL circuits is frequency-modulation (FM) demodulation (i.e., the demod-
ulator in an FM radio). In this case, the receiver receives an FM signal, and a PLL attempts to reproduce
this signal. The FM signal was generated by changing the frequency according to some signal to be trans-
mitted (e.g., audio). Then the control voltage to the VCO is a copy of the original signal, provided the VCO
control voltage is related to frequency in the same way as in the original FM process. Typically, this just
means that the VCO frequency should be linear in the control voltage.

17.3.2 Direct Digital Synthesis

Another application is in direct digital synthesis (DDS). The idea here is to take a precision clock input
(e.g., from an atomic clock or oven-stabilized crystal oscillator), multiply it to a high frequency, and then
use a counter to divide it to some other frequency. This can produce frequencies with high resolution over a
wide range if the frequency-multiplication factor is large. The divider is digitally programmable so the final
frequency is dynamically programmable. Then the digital counter output drives an analog “look-up table”
of voltages to get a high-quality (low-distortion), timing-accurate sine wave. An example is the AD985L
DDS IC, which can take a 10-MHz clock in, and produce a sine-wave output in the range of 0-135 MHz.

17.4 Dynamical Model

To understand the behavior of a phase-locked loop in more depth, here we will develop a simple dynamical
model. Consider a reference signal Vi.¢, given by

ercf(t) = V;O Ccos ¢rcf (t)v (172)

where the reference frequency is .
Wref = d)ref- (173)

We will take this frequency to be constant , so that ¢, = wiert. The signal that we want to phase-lock to
the reference is similarly

Vaig(t) = Vio sin ¢sig(2), (17.4)

where the signal frequency is _
wsig(t) = dsig(t), (17.5)

or inverting this relation,
t
bas®) = [ walt) at (17.6)
0

Note that we have already built in a relative phase of /2 between reference and signal, anticipating that the
two signals will prefer to lock with this phase difference. Thus, the locking condition is that ¢sig(t) = ¢res(t),
modulo 27.

The simplest phase detector for the analog signals here is a multiplier for two analog signals, which is
called a mixer for radio-frequency (rf) signals. This is the analog equivalent of the Type-I phase detector
(the XOR gate). Think of the XOR gate operating on logic state of 1 and —1. The XOR (or product) is 1 if two
input signals are the same, and the XOR (or product) is —1 if the two signals are opposite. We can write the

output of the mixer as

ref t si t r S| .
Vinix(t) = Vier i/OV 5(?) = V?/OVO COS Pref SIN Pyig. (17.7)

Then defining V0 := VioVs0/2V and using the identity sinacos S = (1/2)[sin(a — 8) + sin(a + )], the
mixer signal becomes

Vmix (t) = VmO Sin((bsig - ¢ref) + Sin((bsig + ¢ref) . (178)
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In phase-locked-loop operation, only the first term will be important here. At or near the locking condition,
Wsig A Wref, S0 the first term varies slowly (close to dc), while the second term has a frequency of weig +wrer =~
2wref, Wwhich is much faster. The effect of this fast oscillation will tend to be averaged away to zero, especially
as we will be feeding this mixer signal through a low-pass filter, which will greatly suppress the second term.
Thus, we will write

Vinix(t) = Vino Sin(¢sig — Pref), (17.9)

as far as the operation of the feedback loop is concerned.
To complete the loop, we must connect the output of the mixer to the input of the VCO, via a low-pass
filter (to make a second-order loop). Then the VCO outputs a signal at frequency

t
wsig(t) = wso — V?IO /0 Vinix (t") dt’, (17.10)

where wy is the “natural” frequency of the VCO (i.e., the frequency with zero input voltage), g; is an
“integral” gain factor, and we are modeling the low-pass filter via an integral (recalling from Section 2.2.1
that a low-pass filter acts as an integrator provided the output signal is small compared to the input). Note
that we have included a minus sign here to provide negative feedback. However, this is optional, but without
it the relative phase at the lock point will differ by 7 from the analysis here.

17.4.1 Equation of Motion

Now we can write down a dynamical equation for the phase-locked loop. Consider the phase difference

A¢(t) = ¢Sig(t) - (bref- (1711)

The first derivative gives the frequency difference

Ad)(t) = wsig(t) — Wref- (17.12)
Putting in Eq. (17.10) for wgg,
. g t
A(t) = wso — Wret — / Vinix () dt’. (17.13)
VmO 0
Differentiating this equation
Ad(t) = — T Vi 8), (17.14)
VmO
and then using Eq. (17.9), )
A(t) = —g; sin(Ag). (17.15)

This equation has the form of a mechanical pendulum, § = —(g/¢) sin#. This means that A¢ = 0 (modulo
27) is a steady state, meaning that once locked, the circuit can stay locked. However, there is no means to
become locked: if the relative phase is displaced from the lock point, it will oscillate back and forth about it
without settling. Thus, we need to introduce some damping.

17.4.2 Damping

To introduce damping, we will introduce a “proportional” term in the feedback in Eq. (17.13):

t
AD(L) = weo — twret — -2 / Vi () dt — 22V (8). (17.16)
VmO 0 VmO

Here gp is the “proportional” gain. This model corresponds to the two-resistor, one-capacitor filter in the
example PLL circuit on p. 326. At low frequencies, the filter acts as an ordinary low-pass filter (integrator),
while at high frequencies the capacitor acts as a short, so the two resistors form a divider that determine g;.
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Now putting this feedback into Eq. (17.12), the result is
Aq}’;(t) = —gsin(A¢) — g cos(Ad), (17.17)

in place of Eq. (17.15). The new equation has the form of a damping term. We should compare this equation
of motion to that of the damped pendulum,

é:—%ane—%a (17.18)
where v is the damping rate (i.e., the last term here applies a torque that opposes the angular velocity,
slowing the pendulum). The PLL equation (17.17) has a similar damping term, but modulated by the cosine
of the relative phase. It isn’t completely clear that this helps: the sign of the damping changes depending
on the phase, and a negative damping is no damping at all (it tries to speed up the rate of phase change).

If we look close to lock, then this equation works out. That is, suppose A¢ is small. Then sin(A¢) ~
A¢, and cos(A¢) ~ 1. Thus, Eq. (17.17) becomes

A¢(t) ~ —gilAp — gPA(Z.S7 (17.19)

which is the equation for a damped harmonic oscillator. Thus, A¢ will settle to zero (or a multiple of 27),
possible exhibiting damped oscillations about the lock point along the way.

If the circuit is far from lock, then A¢ varies rapidly, and it isn’t clear that the damping helps, because
cos(Ag) seems like it should average to zero. The key to understanding how the damping works is to consider
a mechanical pendulum, as shown below, rotating at high angular velocity.

slower

faster

Because the kinetic energy is lower when the pendulum is going “over the top,” the angular velocity is
lower at the top than at the bottom. In the phase-locked loop, this means |A¢| is larger when A¢ is near
0, +27, 4, ..., while it is smaller when A¢ is near +m, £37,... We can model this by writing (assuming
Ag > 0) _

A¢ = (wsig — Wref) + 0w cos(A¢), (17.20)

where we assume (wsig — wret) to be slowly varying (i.e., constant on the time scale that A¢ rotates through
27), and dw is small. Then the damping term from Eq. (17.17) becomes

— 9o AP cos(AP) = — g (Weig — Wret) cOS(AP) — gpdw cos®(Ag). (17.21)

Since A¢ changes rapidly, the first term on the right-hand side will average to zero (because the average
value of cosx is zero), while the second term on the right will average to —gpdw/2 (because the average
value of cos?x is 1/2). This leads to a net damping that opposes A¢. Recalling that A¢ is the relative
frequency wsig(t) — wref, this means that the damping pushes wgig(t) towards wyer, until it is close enough that
the phase-locked loop can “capture” the signal, and then the phase stabilizes. This damping effect becomes
smaller the further wgig is from wyer, so if the signal frequency is initially highly mismatched, it may take a
while for the loop to attain lock.
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The process is illustrated in the plot below, which shows the relative frequency A¢ plotted against
the relative phase itself, from numerical solutions of Eq. (17.17), with g- = 1 and g; = 2. The trajectories
starting far away from the correct frequency are pushed towards the correct frequency, with “bumps” in the
frequency along the way, and the capturing process is evident, where the trajectories settle down to a point

(the lock point).
6 \\V/ v v

ws1g(t) = Wref
o
&
£ h)

6 Z - = = =

—47 —27 0 2 4
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17.5 Exercises

Problem 17.1

Recall that a phase-locked loop based on a Type I detector is sensitive to the duty cycle of the input
signal.

(a) Briefly, why?

(b) Suppose you have a signal consisting of a train of (digital) pulses. The rising edges occur at
regularly, at a well-defined frequency. The falling edges, however, occur at irregular times. Show
(draw a schematic and describe your reasoning) how to use two flip-flops (pick your favorite
type) as divide-by-2 counters with a phase-locked loop to create a “cleaned” version of the same signal
(i.e., square wave, 50% duty cycle, same frequency as the rising edges, “ignores” the falling edges).
Note that the actual output may be phase-shifted compared to what is shown here.

what you've got:

what you want (up to a phase shift): Mm

You can use the following schematic symbols for the PLL components in your solution (Veons = control
voltage; fous = oscillator output signal):

phase detector: jD— VCO: — Veont  fout —

You can assume the circuit will work without a low-pass filter.







Index

LC frequency, 50

Q@ factor, 50-52

RC time, 40

0, 104

AND gate, 216
3-input, 217

NAND gate, 216

NOR gate, 216

NQOT gate, 215

OR gate, 216

XNOR gate, 217

XOR gate, 216-217, 222-223
in terms of NAND gates, 223

1.5KE400A, 115

1N4001, 62

1N4733, 64

1IN5711, 63

1N5819, 115

1N914B, 62

2’s complement convention, 214-215

22V10, 267, 308

3-dB point, 44

4046 (PLL), 326

555 timer, 287-290, 293-294, 319
astable multivibrator, 288—289
frequency modulation, 289-290
monostable multivibrator, 290-292

6116 SRAM, 262

74121 monostable multivibrator, 292

741C, 145, 154, 156, 162

74138, 244
74139, 249
74150, 243
74151, 243
74154, 244
74251, 245

absolute-value amplifier
op-amp, 194-195
absorption theorems, 222, 228
active rectifier
op-amp, 188
AD594, 246

AD985L (DDS), 327
ADC, 299, 302-306, 319
address bus, 262
aliasing, 300
amplifier
common-cathode, 126-133
analog computer
op-amp, 182-183
analog switch, 245
MOSFET, 107-108, 156
analog-to-digital conversion, 299, 302-306, 319
analog-to-digital converter, 279
anode, 59
anti-aliasing filter, 300
associative, 221
astable multivibrator, 288-289
made from one-shots, 294-295
ATF22V10C, 267, 308
ATFT750C, 267, 312

band-pass amplifier
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charge, 15
Child-Langmuir Law, 124
chip select, 262
Clapton, Eric, 93-94
class-AB amplifier, 175
class-B amplifier, 175
clipping, 84
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differential gain factor, 86
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semiconductor, 59-64
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direct digital synthesis, 327
distributive, 221
DL, 234-235
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DRAM, 263

droop, 208
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EEPROM, 263
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electronically erasable PROM, 263
emitter follower, 76-79
EPROM, 263
erasable PROM, 263
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error, 206
exponential amplifier

op-amp, 198

Farad, 37
feedback
in BJT amplifier(, 100
in BJT amplifier), 100
feedback control, 205-210
feedback signal, 206
Fender Musical Instruments, 94
FET, 101-108, 119-121
FGAG60N65SMD, 113
field-effect transistor, 101-108, 119-121
CMOS, 104
IGFET, 103
JFET, 101-103, 119-120
MOSFET, 103-104
threshold voltage, 102
filter
high-pass, 45-46
low-pass, 43-45, 47
filters
op-amp, 150-156
first-order loop, 326
fixed-point notation, 213
flip-flop, 251-255, 267270
clocked, 253
D-type, 253-254, 260
D-type, edge-triggered, 254
debounced switch, 252-253
JK, 254-255
memory, 256257
pulse-area stabilizer, 269-270
register, 256257
ripple counter, 255-256
SR, 251
floating-point notation, 213
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flyback transformer, 93
frequency, 41
frequency modulation

in 555 timer, 289-290
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full-wave rectifier, 66-67, 69
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gain, 82
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common-mode, 87
gain factor differential, 86
gain-bandwidth product (GBWP), 173
GI754, 62
goal, 205
Gray code, 224
grid, 125
control, 125
screen, 133
suppressor, 134
ground loop, 160
ground plane, 166
guitar preamp
op-amp, 185-188
gyrator
op-amp, 183-185

half-wave rectifier, 65-66, 69
harmonic oscillator
damped, forced, 209
hexagon from hell, 29
high-pass filter, 45-46
cascaded, 55-56
hole, 60
Howland current source, 194
hysteresis, 251

IGBT, 112-118

IGFET, 103

impedance, 43

impedance-matching condition, 22

inductive load
transistor switch, 91-92

input bias current, 154-156, 161-164

input impedance, 21
through transistor, 77-79

input offset current, 164

input offset voltage, 156

instrumentation amplifier
ac-coupled, hi-Z input, 160-161
differential receiver, 159-160
op-amp, 156-161
thermocouple, 159
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insulated-gate bipolar transistor, 112-118
integrating factor, 39
integrator, 3840

op-amp, 151-156
intrinsic emitter resistance, 87, 89
inverter, 115-118, 215

Tesla coil, 117-118
inverting amplifier

op-amp, 147-148, 170-172
TRF1405, 113
IXYN8ON90C3H1, 113, 115

JFET, 101-103, 119-120
current source, 105
source follower, 105-106
voltage amplifier, 106-107

joule thief, 92-93

junction, 60

Karnaugh map, 224-229
Kirchoff’s laws, 16-17

Lambert W function, 70
LF411, 145
linear algebra, 22-24, 34-35
LM311, 177, 179
LM399, 64
logarithmic amplifier
op-amp, 193-194
logic gates, 215217, 233241
long-tailed pair, 85
low-pass filter, 4345
in PLL, 325
inductor, 54-55
phase, 47
two-pole capacitor—inductor, 56

maximum-value amplifier
op-amp, 195-196
memory, 256-257, 260-263, 270-271
state machines with, 263-267
mho (U), 104
microprocessor, 265
Miller effect, 91, 99-100
mixer, 327
rf, 325
monostable multivibrator, 290-293
74121, 292
MOSFET, 103-104
MR752, 62
multiplexer, 243-249
analog, 245-248
multivibrator
astable, 288-289

monostable, 290-293
mutual inductance, 57

MUX, 243-249

n-type carrier, 60

n-type semiconductor, 60

negative feedback, 84, 146

negative-feedback mode, 146

negative-impedance converter
op-amp, 196-197

noise immunity, 84

non-Ohmic, 59

noninverting amplifier
op-amp, 148, 167-170

nonlinear, 59

notch filter, 57

Nyquist frequency, 299

octave, 44

Ohm’s law, 15-16

one-shot, 290-293

op-amp
golden rules, 146

op-amps, 145-203
stability, 202-203

OPA111B, 145

OPA602C, 154, 156

open-collector output, 177, 280

open-loop gain, 145
finite, 167-172

open-loop mode, 145

operational amplifier
absolute-value amplifier, 194-195
active rectifier, 188
analog computer, 182-183
band-pass amplifier, 199
current source, 193, 201-203
differential amplifier, 149-150, 157, 193
differentiator, 150-153
exponential amplifier, 198
filters, 150-156
guitar preamp, 185-188
gyrator, 183-185
Howland current source, 194
instrumentation amplifier, 156-161
integrator, 151-156
inverting amplifier, 147-148, 170-172
logarithmic amplifier, 193-194
maximum-value amplifier, 195-196
negative-impedance converter, 196-197
noninverting amplifier, 148, 167-170
phase-shift oscillator, 180-181
photodiode amplifier, 192-193
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pulse-area stabilizer, 188-190
relaxation oscillator, 179-180
single-supply, 165

stability, 148

summing amplifier, 148-149

transimpedance amplifier, 192-193, 197

unity-gain buffer, 146-147
operational amplifiers, 145-203
bandwidth, 172-177
comparator, 177-180
compensation, 175-177
output enable, 262
output impedance, 21
through transistor, 77-79
output swing, 145

p-n junction, 60
p-type carrier, 60
p-type semiconductor, 60
P6KE20CA, 115
PAL, 258
path to ground
dc, 155
pentode
triode connection, 139-140
phase detector, 324
type I, 324
type II, 324
phase shift, 46-47
and power, 47-49
phase-locked loop, 323-330
phase-shift oscillator
op-amp, 180-181
photodiode, 192-193
amplifier instability, 197-198
PID control, 205-210
PLA, 258
plant, 205
plate
vacuum-tube, 123
plate resistance, 129
PLD, 258, 267
PLL, 323-330
potential, 15
difference, 15
power, 16
power factor, 49

power-supply rejection ratio (PSRR), 165

printed circuit board (PCB), 166
programmable array logic, 258
programmable logic array, 258

programmable logic devices, 258, 267

programmable ROM, 263, 265267

PROM, 263, 265-267

proportional-integral (PI) control, 209

proportional-integral-derivative (PID) control, 209

pulse-area stabilizer

op-amp, 188-190, 269-270
pulse-width modulation, 290
push-pull amplifier, 173-175

quiescent current, 90

race condition, 226227
RAM, 260263
random-access memory, 260-263
reactance

capacitive, 42

inductive, 42-43
read enable, 262
read-only memory, 263
rectifier

active, 188

full-wave, 66-67, 69

half-wave, 65—66, 69
register, 256-257

shift, 257
relaxation oscillator

op-amp, 179-180
resistance

plate, 129
resistor network

matrix formalism, 22-24, 34-35

resistor-transistor logic, 235-237
resistors, 16

parallel, 17-18

series, 17

voltage divider, 18-21
resonant circuit, 49-53

coupled, 57-58
resonant frequency, 50
ripple counter, 255-256
rms, 48
ROM, 263
RTL, 235-237

S401E (SCR), 109
sample, 213

sampling rate, 299
sampling theorem, 299
saturation current, 63
schmapacitor, 56-57, 192
schmesistor, 32, 191

Schmitt trigger, 178-179, 281-284

Schmohm’s law, 32, 191
SCR, 108-110
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screen grid, 133
second-order loop, 326
secondary emission, 134
semiconductor-controlled rectifier, 108-110
sequential logic, 257-267, 271
shift register, 257
siemens, 104
sign-magntitude convention, 214
signed integer, 214-215
simple PLD, 267
slew rate, 173
source follower
JFET, 105-106
SPICE, 64
SPLD, 267
SR flip-flop, 251
SRAM, 260-263
state diagram, 259-260
state machine, 257-267, 271
static RAM, 260-263
summing amplifier
op-amp, 148-149
suppressor grid, 134
switch, 233-234
debounced, 252-253
SPDT, 234
SPST, 233

tank circuit, 49
Tesla coil, 53, 57
tesla coil

solid-state, 93
Thévenin’s theorem, 19-22, 25-26
thermal voltage, 88
thermistor, 198
thermocouple, 245-248
three-state logic, 245
thyratron, 109
thyristor, 108-112
transconductance, 88, 103, 104
transfer function

feedback-control loop, 206207
transient-voltage suppressor, 115
transimpedance amplifier

op-amp, 197
transistor

bipolar junction, 71-100, 235-236

insulated-gate bipolar, 112-118
transistor switch

inductive load, 91-92
transistor-transistor logic, 237-240
transistor-transistor logic (TTL), 213
TRIAC, 110-112

triode

vacuum, 125-133
truth table, 215
TTL, 237-240
tube, vacuum, 123-143
TVS, 115

two’s complement convention, 214-215

type I phase detector, 324
type II phase detector, 324

UCC3732x, 114

uninterruptible power supply, 115

unity-gain bandwidth, 173
unity-gain buffer

op-amp, 146-147
unsigned integer, 213-214

vacuum tube, 123-143
diode, 123-125
triode, 125-133

VCO, 325

voltage, 15

voltage amplifier
JFET, 106-107

voltage divider, 18-21, 27

voltage follower
op-amp, 146-147

voltage multiplier
Cockroft—Walton, 67-68

voltage-controlled oscillator, 325

Wheatstone bridge, 198
write enable, 261, 262

XKCD, 34-35

Zener diode, 64-65, 69, 115
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