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his book is a practical guide to algorithmic trading strategies that can be

readily implemented by both retail and institutional traders. It is not an
academic treatise on financial theory. Rather, I hope to make accessible to
the reader some of the most useful financial research done in the past few
decades, mixing them with insights I gained from actually exploiting some
of those theories in live trading.

Because strategies take a central place in this book, we will cover a wide
array of them, broadly divided into the mean-reverting and momentum
camps, and we will lay out standard techniques for trading each category of
strategies, and equally important, the fundamental reasons why a strategy
should work. The emphasis throughout is on simple and linear strategies,
as an antidote to the overfitting and data-snooping biases that often plague
complex strategies.

In the mean-reverting camp, we will discuss the multiple statistical tech-
niques (augmented Dickey-Fuller [ADF] test, Hurst exponent, Variance Ra-
tio test, half-life) for detecting “time series” mean reversion or stationarity,
and for detecting cointegration of a portfolio of instruments (cointegrated
augmented Dickey Fuller [CADF] test, Johansen test). Beyond the mechani-
cal application of these statistical tests to time series, we strive to convey an
intuitive understanding of what they are really testing and the simple math-
ematical equations behind them.

We will explain the simplest techniques and strategies for trading mean-
reverting portfolios (linear, Bollinger band, Kalman filter), and whether us-
ing raw prices, log prices, or ratios make the most sense as inputs to these

tests and strategies. In particular, we show that the Kalman filter is useful

ix



PREFACE | ¥

to traders in multiple ways and in multiple strategies. Distinction between
time series versus cross-sectional mean reversion will be made. We will de-
bate the pros and cons of “scaling-in” and highlight the danger of data errors
in mean-reverting strategies, especially those that deal with spreads.

Examples of mean-reverting strategies will be drawn from interday and
intraday stocks models, exchange-traded fund (ETF) pairs and triplets,
ETFs versus their component stocks, currency pairs, and futures calen-
dar and intermarket spreads. We will explain what makes trading some of
these strategies quite challenging in recent years due to the rise of dark
pools and high-frequency trading. We will also illustrate how certain fun-
damental considerations can explain the temporary unhinging of a hitherto
very profitable ETF pair and how the same considerations can lead one to
construct an improved version of the strategy. When discussing currency
trading, we take care to explain why even the calculation of returns may
seem foreign to an equity trader, and where such concepts as rollover inter-
est may sometimes be important. Much emphasis will be devoted to the
study of spot returns versus roll returns in futures, and several futures trad-
ing strategies can be derived or understood from a simple mathematical
model of futures prices. The concepts of backwardation and contango will
be illustrated graphically as well as mathematically. The chapter on mean
reversion of currencies and futures cumulates in the study of a very special
future: the volatility (VX) future, and how it can form the basis of some
quite lucrative strategies.

In the momentum camp, we start by explaining a few statistical tests for
times series momentum. The main theme, though, is to explore the four
main drivers of momentum in stocks and futures and to propose strategies
that can extract time series and cross-sectional momentum. Roll returns in
futures is one of those drivers, but it turns out that forced asset sales and
purchases is the main driver of stock and ETF momentum in many diverse
circumstances. Some of the newer momentum strategies based on news
events, news sentiment, leveraged ETFs, order flow, and high-frequency
trading will be covered. Finally, we will look at the pros and cons of mo-
mentum versus mean-reverting strategies and discover their diametrically
different risk-return characteristics under different market regimes in re-
cent financial history.

I have always maintained that it is easy to find published, supposedly
profitable, strategies in the many books, magazines, or blogs out there,
but much harder to see why they may be flawed and perhaps ultimately
doomed. So, despite the emphasis on suggesting prototype strategies, we



will also discuss many common pitfalls of algorithmic trading strategies,
which may be almost as valuable to the reader as the description of the
strategies themselves. These pitfalls can cause live trading results to diverge
significantly from their backtests. As veterans of algorithmic trading will
also agree, the same theoretical strategy can result in spectacular profits and
abysmal losses, depending on the details of implementation. Hence, in this
book I have lavished attention on the nitty-gritties of backtesting and some-
times live implementation of these strategies, with discussions of concepts
such as data-snooping bias, survivorship bias, primary versus consolidated
quotes, the venue dependence of currency quotes, the nuances of short-sale
constraints, the construction of futures continuous contracts, and the use of
futures closing versus settlement prices in backtests. We also highlight some
instances of “regime shift” historically when even the most correct backtest
will fail to predict the future returns of a strategy.

[ have also paid attention to choosing the right software platform for
backtesting and automated execution, given that MATLAB®, my favorite
language, is no longer the only contender in this department. I will survey
the state of the art in technology, for every level of programming skills, and
for many different budgets. In particular, we draw attention to the “inte-
grated development environment” for traders, ranging from the industrial-
strength platforms such as Deltix to the myriad open-source versions such
as TradeLink. As we will explain, the ease of switching from backtesting
to live trading mode is the most important virtue of such platforms. The
fashionable concept of “complex event processing” will also be introduced
in this context.

I covered risk and money management in my previous book, which was
built on the Kelly formula—a formula that determines the optimal lever-
age and capital allocation while balancing returns versus risks. I once again
cover risk and money management here, still based on the Kelly formula,
but tempered with my practical experience in risk management involving
black swans, constant proportion portfolio insurance, and stop losses. (ULS.
Supreme Court Justice Robert H. Jackson could have been talking about
the application of the Kelly formula when he said we should “cemper its doc-
trinaire logic with a little practical wisdom.”) We especially focus on finding
the optimal leverage in realistic situations when we can no longer assume
Gaussian distribution of returns. Also, we consider whether “risk indicators”
might be a useful component of a comprehensive risk management scheme.

One general technique that I have overlooked previously is the use of
Monte Carlo simulations. Here, we demonstrate using simulated, as opposed
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to historical, data to test the statistical significance of a backtest as well as to
assess the tail risk of a strategy.

This book is meant as a follow-up to my previous book, Quantitative
Trading. There, I focused on basic techniques for an algorithmic trader, such
as how to find ideas for new strategies, how to backtest a strategy, basic
considerations in automating your executions, and, finally, risk management
via the Kelly formula. Yes, a few useful example strategies were sprinkled
throughout, but those were not the emphasis. If you are completely new
to trading algorithmically, that is a good book to read. Algorithmic Trading,
however, is all about strategies.

All of the examples in this book are built around MATLAB codes, and
they are all available for download from www.wiley.com/go/algotrading
or my website at www.epchan.com/book2. Readers will find the password
embedded in the first example. Readers unfamiliar with MATLAB may
want to study the tutorial in Quantitative Trading, or watch the free webi-
nars on mathworks.com. Furthermore, the MATLAB Statistics Toolbox was
occasionally used. (All MATLAB products are available as free trials from
MathWorks.)

Software and mathematics are the twin languages of algorithmic trading,
Readers will find this book involves somewhat more mathematics than my
previous one. This is because of my desire to inject more precision in dis-
cussing the concepts involved in financial markets, and also because I believe
using simple mathematical models for trading can be more advantageous
than using the usual “data-mining” approach. That is to say, instead of throw-
ing as many technical trading indicators or rules at a price series to see
which indicator or rule is profitable—a practice that invites data-snooping
bias—we try to distill the fundamental property of that price series using
a simple mathematical model. We can then exploit that model to our finan-
cial benefit. Nevertheless, the level of mathematics needed in the trading of
stocks, futures, and currencies is far lower than that needed in derivatives
trading, and anyone familiar with freshman calculus, linear algebra, and sta-
tistics should be able to follow my discussions without problems. If you find
the equations too confusing, you can just go straight to the examples and see
their concrete implementations as software codes.

When [ wrote my first book, I was an independent trader, though one
who had worked in the institutional investment management industry for
many years. In the subsequent years, I have started and managed two hedge
funds, either with a partner or by myself. I have survived the 2007 summer
quant funds meltdown, the 2008 financial crisis, the 2010 flash crash, the


http://www.wiley.com/go/algotrading
http://www.epchan.com/book2

2011 UL.S. federal debt downgrade, and the 2011-2012 European debt cri-
sis. Therefore, I am more confident than before that my initial approach to
algorithmic trading is sound, though I have certainly learned much more in
the interim. For instance, I have found that it is seldom a good idea to manu-
ally override a model no matter how treacherous the market is looking; that
it is always better to be underleveraged than overleveraged, especially when
managing other people’s money; that strategy performance often mean-
reverts; and that overconfidence in a strategy is the greatest danger to us
all. One learns much more from mistakes and near-catastrophes than from
successes. | strove to record much of what I have learned in the past four
years in this book.

My fund management experience has not changed my focus on the seri-
ous retail trader in this book. With sufficient determination, and with some
adaptations and refinements, all the strategies here can be implemented by
an independent trader, and they do not require a seven-figure brokerage ac-
count, nor do they require five-figure technology expenditure. My message
to these traders is still the same: An individual with limited resources and
computing power can still challenge powerful industry insiders at their own

game.
xiii
B The Motive =
o
2
Books written by traders for other traders need to answer one basic ques- i

tion: Why are they doing it? More specifically, if the strategies described are
any good, why would the trader publicize them, which would surely render
them less profitable in the future?

To answer the second question first: Many of the strategies I will
describe are quite well known to professional traders, so I am hardly
throwing away any family jewels. Others have such high capacities that
their profitability will not be seriously affected by a few additional trad-
ers running them. Yet others have the opposite properties: They are of
such low capacity, or have other unappealing limitations that I no longer
find them attractive for inclusion in my own fund’s portfolio, but they
may still be suitable for an individual trader’s account. Finally, I will
often be depicting strategies that at first sight are very promising, but
may contain various pitfalls that I have not fully researched and elimi-
nated. For example, I have not included transaction costs in my example
backtest codes, which are crucial for a meaningful backtest. I often use
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in-sample data to both optimize parameters and measure performance,
which would surely inflate results. I am committing all these pitfalls
in my examples because the simplified version is more illustrative and
readable. These may be called “prototype strategies.” They are not meant
to be traded “as-is,” but they are useful as illustrations of common algo-
rithmic trading techniques, and as inspirations for the reader to further
refine and improve them.

What about the basic motive question? It comes down to this:
Crowdsourcing knowledge is often more efficient than any other method
for gathering information. And so—as with my first book—I welcome your
feedback on the strategies discussed in this book.

B A Note about Sources and
Acknowledgments

Naturally, I did not invent most of the materials presented here. Besides the
traditional and commonly accessible sources of books, academic journals,
magazines, blogs, and online trader forums (such as elitetrader.com and
nuclearphynance.com), there are now new online expert networks such as
Hightable.com and Quora.com where specific questions can be posted and
often answered by true industry experts. I have personally benefited from
all these sources and am grateful to the various online experts who have
answered my questions with unexpected depth and details.

By virtue of my previous book and my blog (http://epchan.blogspot
.com), I am also fortunate to have heard from a great many insightful read-
ers, many of whom have contributed to my knowledge base.

I have also taught regular workshops in London and Singapore on various
topics in algorithmic trading that were attended by many institutional ana-
lysts and traders. They have contributed valuable insights to me that may not
be easily accessible in any public forums. Special workshops held for clients
in Canada, China, Hong Kong, India, South Africa, and the United States
have also exposed me to broad international perspectives and concerns.

I am also privileged to have collaborated with many knowledgeable fi-
nance professionals even as an independent trader and fund manager. Some
of these collaborations are short-term and informal, while others lead to
the formal formation of fund management companies. In particular, I thank
Steve Halpern and Roger Hunter for their extensive discussions and count-
less joint projects and ventures.
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I am indebted to Bryan Downing for introducing me to some of the trad-
ing technologies mentioned in Chapter 1, and to Rosario Ingargiola for
showcasing his FXOne platform to me.

Finally, many thanks to my editor Bill Falloon at John Wiley & Sons for
being always enthusiastic and supportive of my book ideas, to development
editor Meg Freeborn for her unfailingly valuable suggestions, and to pro-
duction editor Steven Kyritz for shepherding this book to its final form.
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Backtesting
and Automated
Execution

hile the focus of this book is on specific categories of strategies and

not on general techniques of backtesting, there are a number of im-
portant considerations and common pitfalls to all strategies that need to
be addressed first. If one blithely goes ahead and backtests a strategy with-
out taking care to avoid these pitfalls, the backtesting will be useless. Or
worse—it will be misleading and may cause significant financial losses.

Since backtesting typically involves the computation of an expected re-
turn and other statistical measures of the performance of a strategy, it is
reasonable to question the statistical significance of these numbers. We will
discuss various ways of estimating statistical significance using the method-
ologies of hypothesis testing and Monte Carlo simulations. In general, the
more round trip trades there are in the backtest, the higher will be the sta-
tistical significance. But even if a backtest is done correctly without pitfalls
and with high statistical significance, it doesn’t necessarily mean that it is
predictive of future returns. Regime shifts can spoil everything, and a few
important historical examples will be highlighted.

The choice of a software platform for backtesting is also an important
consideration and needs to be tackled early on. A good choice not only will
vastly increase your productivity, it will also allow you to backtest the broad-
est possible spectrum of strategies in the broadest variety of asset classes.
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And it will reduce or eliminate the chances of committing the aforemen-
tioned pitfalls. We will also explain why the choice of a good backtesting
platform is often tied to the choice of a good automated execution platform:
often, the best platform combines both functions.

B The Importance of Backtesting

Backtesting is the process of feeding historical data to your trading strategy
to see how it would have performed. The hope is that its historical perfor-
mance tells us what to expect for its future performance. The importance of
this process is obvious if you have developed a strategy from scratch, since
you would certainly want to know how it has performed. But even if you
read about a strategy from a publication, and you trust that the author did
not lie about its stated performance, it is still imperative that you indepen-
dently backtest the strategy. There are several reasons for this.

Often, the profitability of a strategy depends sensitively on the details
of implementation. For example, are the stock orders supposed to be sent
as market-on-open orders or as market orders just after the open? Are we
supposed to send in an order for the E-mini Standard & Poor’s (S&P) 500
future just before the 4:00 p.m. stock market closing time, or just before
the 4:15 p.m. futures market closing time? Are we supposed to use the bid
or ask price to trigger a trade, or are we supposed to use the last price? All
these details tend to be glossed over in a published article, often justifiably
so lest they distract from the main idea, but they can affect the profitabil-
ity of a live-traded strategy significantly. The only way to pin down these
details exactly, so as to implement them in our own automated execution
system, is to backtest the strategy ourselves. In fact, ideally, our backtest-
ing program can be transformed into an automated execution program by
the push of a button to ensure the exact implementation of details.

Once we have implemented every detail of a strategy as a backtest pro-
gram, we can then put them under the microscope and look for pitfalls in
the backtesting process or in the strategy itself. For example, in backtesting
a stock portfolio strategy with both long and short positions, have we taken
into account the fact that some stocks were hard to borrow and cannot easily
be shorted at any reasonable size? In backtesting an intermarket pair-trading
strategy in futures, have we made sure that the closing prices of the two
markets occur at the same time? The full list of pitfalls is long and tedious,
but I will highlight a few common ones in the section “Common Pitfalls of



Backtesting.” Often, each market and each strategy presents its own very
specific set of pitfalls. Usually, a pitfall tends to inflate the backtest perfor-
mance of a strategy relative to its actual performance in the past, which is
particularly dangerous.

Even if we have satisfied ourselves that we have understood and imple-
mented every detail of a strategy in a backtesting program, and that there is
no pitfall that we can discover, backtesting a published strategy can still yield
important benefits.

Backtesting a published strategy allows you to conduct true out-of-sample
testing in the period following publication. If that out-of-sample performance
proves poor, then one has to be concerned that the strategy may have worked
only on a limited data set. This is actually a more important point than people
realize. Many authors will claim in their articles that the backtest results were
“verified with out-of-sample data.” But, actually, if the out-of-sample testing
results were poor, the authors could have just changed some parameters, or
they could have tweaked the model substantially so that the results look good
with the “out-of-sample” data. Hence, true out-of-sample testing cannot re-
ally begin until a strategy is published and cast in stone.

Finally, by backtesting a strategy ourselves, we often can find ways to
refine and improve the strategy to make it more profitable or less risky.
The backtesting process in trading should follow the “scientific method.” We
should start with a hypothesis about an arbitrage opportunity, maybe based
on our own intuition about the market or from some published research.
We then confirm or refute this hypothesis by a backtest. If the results of the
backtest aren’t good enough, we can modify our hypothesis and repeat the
process.

As I emphasized earlier, performance of a strategy is often very sensitive
to details, and small changes in these details can bring about substantial im-
provements. These changes can be as simple as changing the look-back time
period for determining the moving average, or entering orders at the open
rather than at the close. Backtesting a strategy allows us to experiment with
every detail.

B Common Pitfalls of Backtesting

Although almost every strategy allows for unique opportunities in commit-
ting errors in backtesting, there are a number of common themes, some

generally applicable to all markets, others pertain to specific ones.
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Look-ahead Bias

As its name implies, look-ahead bias means that your backtest program is us-
ing tomorrow’s prices to determine today’s trading signals. Or, more gener-
ally, it is using future information to make a “prediction” at the current time.
A common example of look-ahead bias is to use a day’s high or low price to
determine the entry signal during the same day during backtesting, (Before
the close of a trading day, we can’t know what the high and low price of the
day are.) Look-ahead bias is essentially a programming error and can infect
only a backtest program but not a live trading program because there is no
way a live trading program can obtain future information. This difference
between backtesting and a live trading program also points to an obvious
way to avoid look-ahead bias. If your backtesting and live trading programs
are one and the same, and the only difference between backtesting versus
live trading is what kind of data you are feeding into the program (historical
data in the former, and live market data in the latter), then there can be no
look-ahead bias in the program. Later on in this chapter, we will see which
platforms allow the same source code to be used for both backtest and live

execution.

Data-Snooping Bias and the Beauty of Linearity

Data-snooping bias is caused by having too many free parameters that are
fitted to random ethereal market patterns in the past to make historical per-
formance look good. These random market patterns are unlikely to recur
in the future, so a model fitted to these patterns is unlikely to have much
predictive power.

The way to detect data-snooping bias is well known: We should test the
model on out-of-sample data and reject a model that doesn’t pass the out-of-
sample test. But this is easier said than done. Are we really willing to give up
on possibly weeks of work and toss out the model completely? Few of us are
blessed with such decisiveness. Many of us will instead tweak the model this
way or that so that it finally performs reasonably well on both the in-sample
and the out-of-sample result. But voila! By doing this we have just turned
the out-of-sample data into in-sample data.

If you are unwilling to toss out a model because of its performance on
a fixed out-of-sample data set (after all, poor performance on this out-of-
sample data may just be due to bad luck), or if you have a small data set
to start with and really need to tweak the model using most of this data,
you should consider the idea of cross-validation. That is, you should select a



number of different subsets of the data for training and tweaking your model
and, more important, making sure that the model performs well on these
different subsets. One reason why we prefer models with a high Sharpe ratio
and short maximum drawdown duration is that this almost automatically
ensures that the model will pass the cross-validation test: the only subsets
where the model will fail the test are those rare drawdown periods.

There is a general approach to trading strategy construction that can min-
imize data-snooping bias: make the model as simple as possible, with as few
parameters as possible. Many traders appreciate the second edict, but fail
to realize that a model with few parameters but lots of complicated trading
rules are just as susceptible to data-snooping bias. Both edicts lead to the
conclusion that nonlinear models are more susceptible to data-snooping bias
than linear models because nonlinear models not only are more complicated
but they usually have more free parameters than linear models.

Suppose we attempt to predict price by simple extrapolation of the his-
torical price series. A nonlinear model would certainly fit the historical data
better, but that’s no guarantee that it can predict a future value better. But
even if we fix the number of parameters to be the same for a nonlinear
model versus its linear contender, one has to remember that we can usually
approximate a nonlinear model by Taylor-series expansion familiar from
calculus. That means that there is usually a simpler, linear approximation
corresponding to every nonlinear model, and a good reason has to be given
why this linear model cannot be used. (The exceptions are those singular
cases where the lower-order terms vanish. But such cases seldom describe
realistic financial time series.)

An equivalent reasoning can be made in the context of what probabil-
ity distributions we should assume for returns. We have heard often that the
Gaussian distribution fails to capture extreme events in the financial market.
But the problem with going beyond the Gaussian distribution is that we will
be confronted with many choices of alternative distributions. Should it be a
Student’s ¢-distribution that allows us to capture the skew and kurtosis of the
returns, or should it be a Pareto distribution that dispenses with a finite second
moment completely? Any choice will have some element of arbitrariness, and
the decision will be based on a finite number of observations. Hence, Occam’s
razor dictates that unless there are strong theoretical and empirical reasons
to support a non-Gaussian distribution, a Gaussian form should be assumed.

Linear models imply not only a linear price prediction formula, but also
a linear capital allocation formula. Let’s say we are considering a mean-
reverting model for a price series such that the change in the price dy in
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the next time period dt is proportional to the difference between the mean
price and the current price: dy(t) = (Ay(t — 1) + w)dt + de, the so-called
“Ornstein-Uhlenbeck” formula, which is explained and examined in greater
detail in Chapter 2. Often, a trader will use a Bollinger band model to cap-
ture profits from this mean-reverting price series, so that we sell (or buy)
whenever the price exceeds (or falls below) a certain threshold. However, if
we are forced to stick to linear models, we would be forced to sell (or buy)
at every price increment, so that the total market value is approximately
proportional to the negative deviation from the mean. In common traders’
parlance, this may be called “averaging-in,” or “scaling-in,” a technique that
is discussed in Chapter 3.

You will find several examples of linear trading models in this book be-
cause the simplicity of this technique lets us illustrate the point that profits
are not derived from some subtle, complicated cleverness of the strategy
but from an intrinsic inefficiency in the market that is hidden in plain sight.
The impatient reader can look ahead to Example 4.2, which shows a linear
mean-reverting strategy between an exchange-traded fund (ETF) and its
component stocks, or Examples 4.3 and 4.4, showing two linear long-short
statistical arbitrage strategies on stocks.

The most extreme form of linear predictive models is one in which
all the coefficients are equal in magnitude (but not necessarily in sign).
For example, suppose you have identified a number of factors ( f’s) that
are useful in predicting whether tomorrow’s return of a stock index is
positive. One factor may be today’s return, with a positive today’s re-
turn predicting a positive future return. Another factor may be today’s
change in the volatility index (VIX), with a negative change predicting
positive future return. You may have several such factors. If you normal-
ize these factors by turning them first into Z-scores (using in-sample
datal):

z(i) = ( f(i) — mean( [))/std( f), (1.1)
where f(i) is the i'" factor, you can then predict tomorrow’s return R by
R =mean(R) + std(R) Y, sign(i)z(i) / n. (1.2)

The quantities mean( ) and std( f') are the historical average and standard
deviation of the various f{i), sign(i) is the sign of the historical correlation
between f(i) and R, and mean(R) and std(R) are the historical average and
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standard deviation of one-day returns, respectively. Daniel Kahneman, the
Nobel Prize-winning economist, wrote in his bestseller Thinking, Fast and
Slow that “formulas that assign equal weights to all the predictors are often
superior, because they are not affected by accidents of sampling” (Kahneman,
2011). Equation 1.2 is a simplified version of the usual factor model used in
stock return prediction. While its prediction of the absolute returns may or
may not be very accurate, its prediction of relative returns between stocks
is often good enough. This means that if we use it to rank stocks, and then
form a long-short portfolio by buying the stocks in the top decile and short-
ing those in the bottom decile, the average return of the portfolio is often
positive.

Actually, if your goal is just to rank stocks instead of coming up with an
expected return, there is an even simpler way to combine the factors f’s
without using Equations 1.1 and 1.2. We can first compute the rank(i) of a
stock s based on a factor f(i). Then we multiply these ranks by the sign of the
correlation between f(i) and the expected return of the stock. Finally, we
sum all these signed ranks to form the rank of a stock:

rank = stign(j)mnks (i). (1.3)

As an example, Joel Greenblatt has famously used a two-factor model as a
“magic formula” to rank stocks: f(1) = return on capital and f(2) = earnings
yield (Greenblatt, 2006). We are supposed to buy the top 30 ranked stocks
and hold them for a year. The annual percentage rate (APR) for this strategy
was 30.8 percent from 1988 to 2004, compared with 12.4 percent for the
S&P 500. Quite a triumph of linearity!

In the end, though, no matter how carefully you have tried to prevent
data-snooping bias in your testing process, it will somehow creep into your
model. So we must perform a walk-forward test as a final, true out-of-
sample test. This walk-forward test can be conducted in the form of pa-
per trading, but, even better, the model should be traded with real money
(albeit with minimal leverage) so as to test those aspects of the strategy that
eluded even paper trading. Most traders would be happy to find that live
trading generates a Sharpe ratio better than half of its backtest value.

Stock Splits and Dividend Adjustments

Whenever a company’s stock has an N-to-1 split, the stock price will be di-
vided by N times. However, if you own a number of shares of that company’s
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stock before the split, you will own N times as many shares after the split,
so there is in fact no change in the total market value. But in a backtest,
we typically are looking at just the price series to determine our trading
signals, not the market-value series of some hypothetical account. So unless
we back-adjust the prices before the ex-date of the split by dividing them by
N, we will see a sudden drop in price on the ex-date, and that might trigger
some erroneous trading signals. This is as true in live trading as in backtest-
ing, so you would have to divide the historical prices by N just before the
market opens on the ex-date during live trading, too. (If it is a reverse 1-to-
N split, we would have to multiply the historical prices before the ex-date
by N.)

Similarly, when a company pays a cash (or stock) dividend of $d per
share, the stock price will also go down by $d (absent other market move-
ments). That is because if you own that stock before the dividend ex-date,
you will get cash (or stock) distributions in your brokerage account, so
again there should be no change in the total market value. If you do not
back-adjust the historical price series prior to the ex-date, the sudden drop
in price may also trigger an erroneous trading signal. This adjustment, too,
should be applied to any historical data used in the live trading model just
before the market opens on an ex-date. (This discussion applies to ETFs as
well. A slightly more complicated treatment needs to be applied to options
prices.)

You can find historical split and dividend information on many websites,
but I find that earnings.com is an excellent free resource. It not only records
such historical numbers, but it shows the announced split and dividend
amounts and ex-dates in the future as well, so we can anticipate such events
in our automated trading software. If you are interested in historical stock
data that are already adjusted for stock splits and dividends, and are easy to
download, try csidata.com.

Survivorship Bias in Stock Database

If you are backtesting a stock-trading model, you will suffer from survi-
vorship bias if your historical data do not include delisted stocks. Imagine
an extreme case: suppose your model asks you to just buy the one stock
that dropped the most in the previous day and hold it forever. In actuality,
this strategy will most certainly perform poorly because in many cases the
company whose stock dropped the most in the previous day will go on to
bankruptcy, resulting in 100 percent loss of the stock position. But if your



historical data do not include delisted stocks—that is, they contain only
stocks that survive until today—then the backtest result may look excellent.
This is because you would have bought a stock when it was beaten down
badly but subsequently survived, though you could not have predicted its
eventual survival if you were live-trading the strategy.

Survivorship bias is more dangerous to mean-reverting long-only stock
strategies than to mean-reverting long-short or short-only strategies. This is
because, as we saw earlier, this bias tends to inflate the backtest performance
of a long-only strategy that first buys low and then sells high, whereas it will
deflate the backtest performance of a short-only strategy that first sells high
and then buys low. Those stocks that went to zero would have done very well
with a short-only strategy, but they would not be present in backtest data
with survivorship bias. For mean-reverting long-short strategies, the two
effects are of opposite signs, but inflation of the long strategy return tends
to outweigh the deflation of the short portfolio return, so the danger is re-
duced but not eliminated. Survivorship bias is less dangerous to momentum
models. The profitable short momentum trade will tend to be omitted in
data with survivorship bias, and thus the backtest return will be deflated.

You can buy reasonably priced historical data that are free of survivor-
ship bias from csidata.com (which provides a list of delisted stocks). Other
vendors include kibot.com, tickdata.com, and crsp.com. Or you can in fact
collect your own survivorship bias—free data by saving the historical prices
of all the stocks in an index every day. Finally, in the absence of such survi-
vorship bias—free data, you can limit yourself to backtesting only the most
recent, say, three years of historical data to reduce the damage.

Primary versus Consolidated Stock Prices

Many U.S. stocks are traded on multiple exchanges, electronic communi-
cation networks (ECNs), and dark pools: The New York Stock Exchange
(NYSE), NYSE Arca, Nasdaq, Island, BATS, Instinet, Liquidnet, Bloomberg
Tradebook, Goldman Sachs’ Sigma X, and Credit Suisse’s CrossFinder are
just some of the example markets. When you look up the historical daily
closing price of a stock, it reflects the last execution price on any one of
these venues during regular trading hours. Similarly, a historical daily open-
ing price reflects the first execution price on any one of these venues. But
when you submit a market-on-close (MOC) or market-on-open (MOO)
order, it will always be routed to the primary exchange only. For example,
an MOC order on IBM will be routed to NYSE, an MOC order on SPY
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will be routed to NYSE Arca, and an MOC order on Microsoft (MSFT) will
be routed to Nasdaq. Hence, if you have a strategy that relies on market-
on-open or market-on-close orders, you need the historical prices from
the primary exchange to accurately backtest your model. If you use the
usual consolidated historical prices for backtesting, the results can be quite
unrealistic. In particular, if you use consolidated historical prices to back-
test a mean-reverting model, you are likely to generate inflated backtest
performance because a small number of shares can be executed away from
the primary exchange at a price quite different from the auction price on
the primary exchange. The transaction prices on the next trading day will
usually mean-revert from this hard-to-achieve outlier price. (The close and
open prices on the U.S. primary exchanges are always determined by an
auction, while a transaction at the close on a secondary exchange is not the
result of an auction.)

A similar consideration applies to using high or low prices for your strat-
egy. What were recorded in the historical data are usually the consolidated
highs or lows, not that of the primary exchange. They are often unrepresen-
tative, exaggerated numbers resulting from trades of small sizes on second-
ary exchanges. Backtest performance will also be inflated if these historical
prices are used.

Where can we find historical prices from the primary exchanges? Bloom-
berg users have access to that as part of their subscription. Of course, just as
in the case of storing and using survivorship bias—free data discussed earlier,
we can also subscribe to direct live feeds from the (primary) exchanges and
store those prices into our own databases in real time. We can then use these
databases in the future as our source of primary exchange data. Subscribing
to such feeds independently can be an expensive proposition, but if your
broker has such subscriptions and it redistributes such data to its clients that
colocate within its data center, the cost can be much lower. Unfortunately,
most retail brokers do not redistribute direct feeds from the exchanges, but
institutional brokers such as Lime Brokerage often do.

If we don’t have access to such data, all we can do is to entertain a healthy
skepticism of our backtest results.

Venue Dependence of Currency Quotes

Compared to the stock market, the currency markets are even more frag-
mented and there is no rule that says a trade executed at one venue has to be
at the best bid or ask across all the different venues. Hence, a backtest will



be realistic only if we use historical data extracted from the same venue(s)
as the one(s) we expect to trade on.

There are quotes aggregators such as Streambase that consolidate data
feeds from different venues into one order book. In this case, you may use
the consolidated historical data for backtesting, as long as you can execute
on the venue that formed part of the consolidated order book.

Another feature of currency live quotes and historical data is that trade
prices and sizes, as opposed to bid and ask quotes, are not generally avail-
able, at least not without a small delay. This is because there is no regula-
tion that says the dealer or ECN must report the trade price to all market
participants. Indeed, many dealers view transaction information as propri-
etary and valuable information. (They might be smart to do that because
there are high-frequency strategies that depend on order flow informa-
tion and that require trade prices, as mentioned in Chapter 7. The banks’
forex proprietary trading desks no doubt prefer to keep this information
to themselves.) But using bid-ask quotes for backtesting forex strategies
is recommended anyway, since the bid-ask spreads for the same currency
pair can vary significantly between venues. As a result, the transaction costs
are also highly venue dependent and need to be taken into account in a
backtest.

Short-Sale Constraints

A stock-trading model that involves shorting stocks assumes that those
stocks can be shorted, but often there are difficulties in shorting some
stocks. To short a stock, your broker has to be able to “locate” a quantity of
these stocks from other customers or other institutions (typically mutual
funds or other asset managers that have large long positions in many stocks)
and arrange a stock loan to you. If there is already a large short interest out
there so that a lot of the shares of a company have already been borrowed,
or if the float of the stock is limited, then your stock can be “hard to bor-
row.” Hard to borrow may mean that you, as the short seller, will have to
pay interest to the stock lender, instead of the other way around in a normal
situation. In more extreme cases, hard to borrow may mean that you cannot
borrow the stock in the quantity you desire or at all. After Lehman Brothers
collapsed during the financial crisis of 2008—2009, the U.S. Securities and
Exchange Commission (SEC) banned short sales in all the financial indus-
try stocks for several months. So if your backtesting model shorts stocks

that were hard or impossible to borrow, it may show a wonderful return
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because no one else was able to short the stock and depress its price when
your model shorted it. But this return is completely unrealistic. This renders
short-sale constraints dangerous to backtesting. It is not easy, though, to find
a historically accurate list of hard-to-borrow stocks for your backtest, as this
list depends on which broker you use. As a general rule, small-cap stocks are
affected much more by short-sale constraint than are large-cap stocks, and
so the returns of their short positions are much more suspect. Bear in mind
also that sometimes ETFs are as hard to borrow as stocks. I have found, for
example, that I could not even borrow SPY to short in the months after the
Lehman Brothers’ collapse!

An additional short-sale constraint is the so-called “uptick rule” imposed
by the SEC. The original uptick rule was in effect from 1938 to 2007, where
the short sale had to be executed at a price higher than the last traded price,
or at the last traded price if that price was higher than the price of the trade
prior to the last. (For Nasdaq stocks, the short sale price must be higher
than the last bid rather than the last trade.) The Alternative Uptick Rule that
took effect in 2010 also requires a short sale to have a trade price higher than
the national best bid, but only when a circuit breaker has been triggered. A
circuit breaker for a stock is triggered when that stock traded at 10 percent
lower than its previous close. The circuit breaker is in effect for the follow-
ing day after the initial trigger as well. This effectively prevents any short
market orders from being filled. So, again, a really accurate backtest that
involves short sales must take into account whether these constraints were
in effect when the historical trade was supposed to occur. Otherwise, the
backtest performance will be inflated.

Futures Continuous Contracts

Futures contracts have expiry dates, so a trading strategy on, say, crude oil
futures, is really a trading strategy on many different contracts. Usually,
the strategy applies to front-month contracts. Which contract is the “front
month” depends on exactly when you plan to “roll over” to the next month;
that is, when you plan to sell the current front contract and buy the contract
with the next nearest expiration date (assuming you are long a contract to
begin with). Some people may decide to roll over 10 days before the current
front contract expires; others may decide to roll over when there is an “open
interest crossover”; that is, when the open interest of the next contract ex-
ceeds that of the current front contract. No matter how you decide your

rollover date, it is quite an extra bother to have to incorporate that in your



trading strategy, as this buying and selling is independent of the strategy and
should result in minimal additional return or profit and loss (P&L). (P&L, or
return, is certainly affected by the so-called “roll return,” but as we discuss
extensively in Chapter 5, roll return is in effect every day on every contract
and is not a consequence of rolling over.) Fortunately, most futures histori-
cal data vendors also recognize this, and they usually make available what is
known as “continuous contract” data.

We won’t discuss here how you can go about creating a continuous con-
tract yourself because you can read about that on many futures historical
data vendors’ websites. But there is a nuance to this process that you need
to be aware of. The first step in creating a continuous contract is to concat-
enate the prices of the front-month contract together, given a certain set of
rollover dates. But this results in a price series that may have significant price
gaps going from the last date before rollover to the rollover date, and it will
create a false return or P&L on the rollover date in your backtest.

To see this, let’s say the closing price of the front contract on date T is
p(T), and the closing price of this same contract on date T+ 1 is p(T + 1).
Also, let’s say the closing price of the next nearby contract (also called the
“back” contract) on date T+ 1 is (T + 1). Suppose T+ 1 is the rollover date,
so if we are long the front contract, we should sell this contract at the close
at p(T + 1), and then buy the next contract at (T + 1). What’s the P&L (in
points, not dollars) and return of this strategy on T + 1? The P&L is just
p(T+ 1) — p(T), and the return is (p(T + 1) — p(T))/p(T). But the unad-
justed continuous price series will show a price of p(T) at T, and ¢(T + 1) at
T+ 1.If you calculate P&L and return the usual way, you would have calcu-
lated the erronecous values of ¢(T+ 1) — p(T) and (¢(T + 1) — p(T))/p(T),
respectively. To prevent this error, the data vendor can typically back-adjust
the data series to eliminate the price gap, so that the P&L on T+ 1isp(T+ 1)
— p(T). This can be done by adding the number (¢(T + 1) — p(T + 1)) to
every price p(t) on every date ¢ on or before T, so that the price change and
P&L from T to T+ 1 is correctly calculated as g(T+ 1) — (p(T) + ¢(T + 1)
—p(T+ 1)) =p(T+ 1) — p(T). (Of course, to take care of every rollover,
you would have to apply this back adjustment multiple times, as you go back
further in the data series.)

Is our problem solved? Not quite. Check out what the return is at T+ 1
given this adjusted price series: (p(T+ 1) —p(T))/(p(T) + q(T+ 1) —p(T+
1)), not (p(T+ 1) — p(T))/p(T). If you back-adjust to make the P&L calcu-
lation correct, you will leave the return calculation incorrect. Conversely,
you can back-adjust the price series to make the return calculation correct
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(by multiplying every price p(t) on every date ¢ on or before T by the num-
ber ¢(T+ 1)/p(T + 1)), but then the P&L calculation will be incorrect. You
really can’t have both. As long as you want the convenience of using a con-
tinuous contract series, you have to choose one performance measurement
only, P&L or return. (If you bother to backtest your strategy on the various
individual contracts, taking care of the rollover buying and selling yourself,
then both P&L and return can be correctly calculated simultaneously.)

An additional difficulty occurs when we choose the price back-adjustment
instead of the return back-adjustment method: the prices may turn negative
in the distant past. This may create problems for your trading strategy, and
it will certainly create problems in calculating returns. A common method
to deal with this is to add a constant to all the prices so that none will be
negative.

This subtlety in picking the right back-adjustment method is more im-
portant when we have a strategy that involves trading spreads between
different contracts. If your strategy generates trading signals based on the
price difference between two contracts, then you must choose the price
back-adjustment method; otherwise, the price difference may be wrong and
generate a wrong trading signal. When a strategy involves calendar spreads
(spreads on contracts with the same underlying but different expiration
dates), this back adjustment is even more important. This is because the
calendar spread is a small number compared to the price of one leg of the
spread, so any error due to rollover will be a significant percentage of the
spread and very likely to trigger a wrong signal both in backtest and in live
trading. However, if your strategy generates trading signals based on the
ratio of prices between two contracts, then you must choose the return
back-adjustment method.

As you can see, when choosing a data vendor for historical futures prices,
you must understand exactly how they have dealt with the back-adjustment
issue, as it certainly impacts your backtest. For example, csidata.com uses
only price back adjustment, but with an optional additive constant to pre-
vent prices from going negative, while tickdata.com allows you the option
of choosing price versus return back-adjustment, but there is no option for
adding a constant to prevent negative prices.

Futures Close versus Settlement Prices

The daily closing price of a futures contract provided by a data vendor
is usually the settlement price, not the last traded price of the contract
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during that day. Note that a futures contract will have a settlement price
each day (determined by the exchange), even if the contract has not traded
at all that day. And if the contract has traded, the settlement price is in
general different from the last traded price. Most historical data vendors
provide the settlement price as the daily closing price. But some, such as
vendors that provide tick-by-tick data, may provide actual transaction price
only, and therefore the close price will be the last traded price, if there has
been a transaction on that day. Which price should we use to backtest our
strategies?

In most cases, we should use the settlement price, because if you had
traded live near the close, that would have been closest to the price of your
transaction. The last recorded trade price might have occurred several hours
earlier and bear little relation to your transaction price near the close. This
is especially important if we are constructing a pairs-trading strategy on
futures. If you use the settlement prices to determine the futures spreads,
you are guaranteed to be using two contemporaneous prices. (This is true
as long as the two futures contracts have the same underlying and therefore
have the same closing time. If you are trading intermarket spreads, see the
discussion at the end of this section.) However, if you use the last traded
prices to determine the spread, you may be using prices generated at two
very different times and therefore incorrect. This incorrectness may mean
that your backtest program will be generating erroneous trades due to an
unrealistically large spread, and these trades may be unrealistically profit-
able in backtest when the spreads return to a correct, smaller value in the
future, maybe when near-simultaneous transactions occur. As usual, an in-
flated backtest result is dangerous.

If you have an intraday spread strategy or are otherwise using intraday
futures prices for backtesting a spread strategy, you will need either histori-
cal data with bid and ask prices of both contracts or the intraday data on
the spread itself when it is native to the exchange. This is necessary because
many futures contracts are not very liquid. So if we use the last price of ev-
ery bar to form the spread, we may find that the last prices of contract A and
contract B of the same bar may actually refer to transactions that are quite
far apart in time. A spread formed by asynchronous last prices could not in
reality be bought or sold at those prices. Backtests of intraday spread strate-
gies using the last price of each leg of the spread instead of the last price
of the spread itself will again inflate the resulting returns. One vendor that
sells intraday historical calendar spread data (both quote and trade prices) is
cqgdatafactory.com.
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There is one general detail in backtesting intermarket spreads that should
not be overlooked. If the contracts are traded on different exchanges, they
are likely to have different closing times. So it would be wrong to form an
intermarket spread using their closing prices. This is true also if we try to
form a spread between a future and an ETF. The obvious remedy of this is
to obtain intraday bid-ask data so that synchronicity is assured. The other
possibility is to trade an ETF that holds a future instead of the future itself.
For example, instead of trading the gold future GC (settlement price set
at 1:30 pm. ET) against the gold-miners ETF GDX, we can trade the gold
trust GLD against GDX instead. Because both trade on Arca, their closing
prices are set at the same 4:00 pm. ET.

B Statistical Significance of Backtesting:
Hypothesis Testing

In any backtest, we face the problem of finite sample size: Whatever statisti-
cal measures we compute, such as average returns or maximum drawdowns,
are subject to randomness. In other words, we may just be lucky that our
strategy happened to be profitable in a small data sample. Statisticians have
developed a general methodology called hypothesis testing to address this
issue.

The general framework of hypothesis testing as applied to backtesting
follows these steps:

1. Based on a backtest on some finite sample of data, we compute a cer-
tain statistical measure called the test statistic. For concreteness, let’s say
the test statistic is the average daily return of a trading strategy in that
period.

2. We suppose that the true average daily return based on an infinite data
set is actually zero. This supposition is called the null hypothesis.

3. We suppose that the probability distribution of daily returns is
known. This probability distribution has a zero mean, based on the
null hypothesis. We describe later how we determine this probability
distribution.

4. Based on this null hypothesis probability distribution, we compute the
probability p that the average daily returns will be at least as large as
the observed value in the backtest (or, for a general test statistic, as
extreme, allowing for the possibility of a negative test statistic). This

probability p is called the p-value, and if it is very small (let’s say smaller



than 0.01), that means we can “reject the null hypothesis,” and conclude
that the backtested average daily return is statistically significant.

The step in this procedure that requires most thought is step 3. How do
we determine the probability distribution under the null hypothesis? Per-
haps we can suppose that the daily returns follow a standard parametric
probability distribution such as the Gaussian distribution, with a mean of
zero and a standard deviation given by the sample standard deviation of the
daily returns. If we do this, it is clear that if the backtest has a high Sharpe
ratio, it would be very easy for us to reject the null hypothesis. This is be-
cause the standard test statistic for a Gaussian distribution is none other than
the average divided by the standard deviation and multiplied by the square
root of the number of data points (Berntson, 2002). The p-values for various
critical values are listed in Table 1.1. For example, if the daily Sharpe ratio
multiplied by the square root of the number days (\/;) in the backtest is
greater than or equal to the critical value 2.326, then the p-value is smaller
than or equal to 0.01.

This method of hypothesis testing is consistent with our belief that high-
Sharpe-ratio strategies are more statistically significant.

Another way to estimate the probability distribution of the null hy-
pothesis is to use Monte Carlo methods to generate simulated historical
price data and feed these simulated data into our strategy to determine
the empirical probability distribution of profits. Our belief is that the
profitability of the trading strategy captured some subtle patterns or
correlations of the price series, and not just because of the first few
moments of the price distributions. So if we generate many simulated
price series with the same first moments and the same length as the
actual price data, and run the trading strategy over all these simulated
price series, we can find out in what fraction p of these price series

are the average returns greater than or equal to the backtest return.

VNN  Critical Values for /n x Daily Sharpe Ratio

p-value Critical values
0.10 1.282
0.05 1.645
0.01 2.326
0.001 3.091

Source: Berntson (2002).
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Ideally, p will be small, which allows us to reject the null hypothesis.
Otherwise, the average return of the strategy may just be due to the
market returns.

A third way to estimate the probability distribution of the null hypoth-
esis is suggested by Andrew Lo and his collaborators (Lo, Mamaysky, and
Wang, 2000). In this method, instead of generating simulated price data,
we generate sets of simulated trades, with the constraint that the number
of long and short entry trades is the same as in the backtest, and with the
same average holding period for the trades. These trades are distributed
randomly over the actual historical price series. We then measure what
fraction of such sets of trades has average return greater than or equal to
the backtest average return.

In Example 1.1, I compare these three ways of testing the statistical sig-
nificance of a backtest on a strategy. We should not be surprised that they
give us different answers, since the probability distribution is different in
each case, and each assumed distribution compares our strategy against a

different benchmark of randomness.
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Example 1.1: Hypothesis Testing on a Futures
Momentum Strategy

We apply the three versions of hypothesis testing, each with

a different probability distribution for the null hypothesis, on

the backtest results of the TU momentum strategy described in
Chapter 6. That strategy buys (sells) the TU future if it has a positive
(negative) 12-month return, and holds the position for 1 month. We
pick this strategy not only because of its simplicity, but because it has
a fixed holding period. So for version 3 of the hypothesis testing, we
need to randomize only the starting days of the long and short trades,
with no need to randomize the holding periods.

The first hypothesis test is very easy. We assume the probability
distribution of the daily returns is Gaussian, with mean zero as
befitting a null hypothesis, and with the standard deviation given by
the standard deviation of the daily returns given by our backtest. So
if ret is the Tx1 MATLAB® array containing the daily returns of the
strategy, the test statistic is just

mean (ret) /std(ret) *sgrt (length (ret))
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which turns out to be 2.93 for our data set. Comparing this test
statistic with the critical values inTable 1.1 tells us that we can reject
the null hypothesis with better than 99 percent probability.

The second hypothesis test involves generating a set of random,
simulated daily returns data for the TU future (not the daily returns
of the strategy) for the same number of days as our backtest. These
random daily returns data will have the same mean, standard
deviation, skewness, and kurtosis as the observed futures returns,
but, of course, they won’t have the same correlations embedded
in them. If we find there is a good probability that the strategy can
generate an as good as or better return on this random returns series
as the observed returns series, it would mean that the momentum
strategy is not really capturing any momentum or serial correlations
in the returns at all and is profitable only because we were lucky that
the observed returns’ probability distribution has a certain mean and
a certain shape. To generate these simulated random returns with the
prescribed moments, we use the pearsrnd function from the MATLAB
Statistics Toolbox. After the simulated returns marketRet_sim are
generated, we then go on to construct a simulated price series cl_sim
using those returns. Finally, we run the strategy on these simulated
prices and calculate the average return of the strategy. We repeat
this 10,000 times and count how many times the strategy produces
an average return greater than or equal to that produced on the
observed data set.

Assuming that marketRet is the Tx1 array containing the
observed daily returns of TU, the program fragment is displayed
below. (The source codes for these tests can be downloaded as
TU_mom_hypothesisTest.m from www.wiley.com/go/algotrading.)

moments:{mean(marketRet), std (marketRet) ,
skewness (marketRet) , kurtosis(marketRet)};
numSampleAvgretBetterOrEqualObserved=0;

for sample=1:10000
marketRet_sim:pearsrnd(moments{:}, length (marketRet), 1);

cl sim=cumprod (l+marketRet sim)-1;

longs_sim=cl_sim > backshift (lookback, cl sim) ;

shorts sim=cl sim < backshift (lookback, cl_sim) ;

(Continued )
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Example 1.1 (Continued)

pos_sim=zeros (length(cl_sim), 1);

for h=0:holddays-1
long sim lag=backshift (h, longs sim);
long_sim lag(isnan(long_sim lag))=false;

long_sim lag=logical (long sim_lag) ;

short_sim lag=backshift (h, shorts_sim);
short_sim lag(isnan(short_sim lag))=false;

short_sim lag=logical (short_sim lag);

pos_sim(long sim lag)=pos_sim(long sim lag)+1;

pos_sim(short_sim_lag)=pos_sim(short_sim lag)-1;
end

ret_sim=backshift (1, pos_sim) .*marketRet sim/holddays;

ret_sim(~isfinite(ret_sim))=0;

if (mean(ret_sim)>= mean(ret))

numSampleAvgretBetterOrEqualObserved=numSampleAvgret
BetterOrEqualObserved+1;

end

end

We found that out of 10,000 random returns sets, 1,166 have
average strategy return greater than or equal to the observed average
return. So the null hypothesis can be rejected with only 88 percent
probability. Clearly, the shape of the returns distribution curve has
something to do with the success of the strategy. (It is less likely that
the success is due to the mean of the distribution since the position

can be long or short at different times.)

The third hypothesis test involves randomizing the long and short
entry dates, while keeping the same number of long trades and short
trades as the ones in the backtest, respectively. We can accomplish
this quite easily by the MATLAB function randperm:

numSampleAvgretBetterOrEqualObserved=0;

for sample=1:100000

P=randperm(length (longs)) ;



Example 1.1 (Continued)

end

longs_sim=longs (P) ;

shorts_sim=shorts (P) ;

pos_sim=zeros (length(cl), 1);

for h=0:holddays-1
long_sim lag=backshift (h, longs_sim) ;
long sim_lag(isnan(long sim_lag))=false;

long sim_lag=logical (long sim lag) ;

short_sim lag=backshift (h, shorts_sim);
short sim lag(isnan(short sim lag))=false;

short_sim lag=logical (short_sim lag) ;

pos (long _sim_lag)=pos (long_sim lag)+1;
pos (short_sim lag)=pos (short_sim lag)-1;

end

ret sim=backshift (1, pos_sim).*marketRet/holddays;

ret_sim(isnan(ret_sim))=0;

if (mean(ret_sim)>= mean(ret))

numSampleAvgretBetterOrEqualObserved=. ..
numSampleAvgretBetterOrEqualObserved+1;

end

There is not a single sample out of 100,000 where the average

strategy return is greater than or equal to the observed return.

Clearly, the third test is much weaker for this strategy.

The fact that a null hypothesis is not unique and different null hypoth-
eses can give rise to different estimates of statistical signiﬁcance is one

reason why many critics believe that hypothesis testing is a flawed meth-
odology (Gill, 1999). The other reason is that we actually want to know
the conditional probability that the null hypothesis is true given that we
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have observed the test statistic R: P(H, | R). But the procedure we outlined
previously actually just computed the conditional probability of obtaining
a test statistic R given that the null hypothesis is true: P(R| H). Rarely is
P(R| Ho) = P(Hy | R).

Even though hypothesis testing and the rejection of a null hypothesis
may not be a very satisfactory way to estimate statistical significance, the
failure to reject a null hypothesis can inspire very interesting insights. Our
Example 1.1 shows that any random returns distribution with high kurtosis
can be favorable to momentum strategies.

B When Not to Backtest a Strategy

We have spent much effort earlier convincing you that you should backtest
every strategy that comes your way before trading it. Why would we rec-
ommend against backtesting some strategies? The fact is that there are some
published strategies that are so obviously flawed it would be a waste of time
to even consider them. Given what you know now about common pitfalls of
backtesting, you are in a good position to judge whether you would want to
backtest a strategy without even knowing the details. We will look at a few
examples here.

Example 1: A strategy that has a backtest annualized return of 30 per-
cent and a Sharpe ratio of 0.3, and a maximum drawdown duration of
two years.

Very few traders (as opposed to “investors”) have the stomach for a strat-
egy that remains “under water” for two years. The low Sharpe ratio coupled
with the long drawdown duration indicates that the strategy is not consis-
tent. The high average return may be just a fluke, and it is not likely to re-
peat itself when we start to trade the strategy live. Another way to say this
is that the high return is likely the result of data-snooping bias, and the long
drawdown duration will make it unlikely that the strategy will pass a cross-
validation test. Do not bother to backtest high return but low Sharpe ratio
strategies. Also, do not bother to backtest strategies with a maximum draw-
down duration longer than what you or your investors can possibly endure.

Example 2: A long-only crude oil futures strategy returned 20 percent
in 2007, with a Sharpe ratio of 1.5.

A quick check of the total return of holding the front-month crude oil fu-

tures in 2007 reveals that it was 47 percent, with a Sharpe ratio of 1.7. Hence,
this trading strategy is not in any way superior to a simple buy-and-hold

WWW.FOREX-WAREZ.COM

ANDREYBEBRV@EMAIL.COM SKYPE: ANDREYBBRY


andrey
forex-warez big


strategy! Moral of the story: We must always choose the appropriate bench-
mark to measure a trading strategy against. The appropriate benchmark of
a long-only strategy is the return of a buy-and-hold position—the informa-
tion ratio rather than the Sharpe ratio.

Example 3: A simple “buy-low-sell-high” strategy picks the 10 lowest-

priced stocks at the beginning of the year and holds them for a year.
The backtest return in 2001 is 388 percent.

The first question that should come to mind upon reading this strategy is:
Was the strategy backtested using a survivorship-bias-free stock database?
In other words, does the stock database include those stocks that have since
been delisted? If the database includes only stocks that have survived until
today, then the strategy will most likely pick those lucky survivors that hap-
pened to be very cheap at the beginning of 2001. With the benefit of hind-
sight, the backtest can, of course, achieve a 388 percent return. In contrast,
if the database includes delisted stocks, then the strategy will most likely
pick those stocks to form the portfolio, resulting in almost 100 percent
loss. This 100 percent loss would be the realized return if we had traded
the strategy back in 2001, and the 388 percent return is an inflated backtest
return that can never be realized. If the author did not specifically mention

that the data used include delisted stocks, then we can assume the backtest

suffers from survivorship bias and the return is likely to be inflated.

Example 4: A neural net trading model that has about 100 nodes gener-
ates a backtest Sharpe ratio of 6.

My alarms always go off whenever I hear the term neural net trad-
ing model, not to mention one that has 100 nodes. All you need to
know about the nodes in a neural net is that the number of param-
eters to be fitted with in-sample training data is proportional to the
number of nodes. With at least 100 parameters, we can certainly fit the
model to any time series we want and obtain a fantastic Sharpe ratio.
Needless to say, it will have little or no predictive power going forward
due to data-snooping bias.

Example 5: A high-frequency E-mini S&P 500 futures trading strategy
has a backtest annual average return of 200 percent and a Sharpe ratio
of 6. Its average holding period is 50 seconds.

Can we really backtest a high-frequency trading strategy? The perfor-
mance of a high-frequency trading strategy depends on the order types
used and the execution method in general. Furthermore, it depends cru-
cially on the market microstructure. Even if we have historical data of the
entire order book, the profit from a high-frequency strategy is still very
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dependent on the reactions of other market participants. One has to ques-
tion whether there is a “Heisenberg uncertainty principle” at work: The
act of placing or executing an order might alter the behavior of the other
market participants. So be very skeptical of a so-called backtest of a high-
frequency strategy.

Life is too short to backtest every single strategy that we read about, so
we hope awareness of the common pitfalls of backtesting will help you se-
lect what strategies to backtest.

B Will a Backtest Be Predictive of
Future Returns?

Even if we manage to avoid all the common pitfalls outlined earlier and there
are enough trades to ensure statistical significance of the backtest, the predic-
tive power of any backtest rests on the central assumption that the statisti-
cal properties of the price series are unchanging, so that the trading rules
that were profitable in the past will be profitable in the future. This assump-
tion is, of course, invalidated often in varying degrees: A country’s economic
prospect changes, a company’s management changes, and a financial market’s
structure changes. In the past decade in the United States, we have witnessed
numerous instances of the last category of changes. Among them:

» Decimalization of U.S. stock quotes on April 9, 2001. (Prior to this date,
U.S. stocks were quoted in one-eighth or one-sixteenth of a penny.) This
caused bid-ask spreads to decrease, but also caused the “displayed liquidity”
at the best bid and ask prices to decrease (Arnuk and Saluzzi, 2012). This in
turn caused profitability of many statistical arbitrage strategies to decrease
while increasing the profitability of many high-frequency strategies.

= The 2008 financial crisis that induced a subsequent 50 percent collapse of
average daily trading volumes (Durden, 2012). Retail trading and owner-
ship of common stock is particularly reduced. This has led to decreasing
average volatility of the markets, but with increasing frequency of sudden
outbursts such as that which occurred during the flash crash in May 2010 and
the U.S. federal debt credit rating downgrade in August 2011. The overall
effect has been a general decrease in profits for mean-reverting strategies,

which thrive on a high but constant level of volatility.

» The same 2008 financial crisis, which also initiated a multiyear bear
market in momentum strategies, as discussed in Chapter 6.



» The SEC’s Regulation NMS implemented in July 2007, which also
contributed to the drastic decrease in the average trade sizes and the ob-
solescence of the NYSE block trade (Arnuk and Saluzzi, 2012).

» The removal of the old uptick rule for short sales in June 2007 and the
reinstatement of the new Alternative Uptick Rule in 2010.

Strategies that performed superbly prior to each of these “regime shifts”
may stop performing and vice versa. Backtests done using data prior to
such regime shifts may be quite worthless, while backtests done using
recent data may be no more indicative of future profits if and when a fu-
ture regime shift is to occur. The general point of this is that algorithmic
trading is not just about algorithms, programming, and mathematics: An
awareness of such fundamental market and economic issues is also needed
to inform us on whether a backtest is predictive and will continue to be

predictive.

B Choosing a Backtesting and Automated
Execution Platform

Software companies have worked very hard to provide traders with a wide
variety of backtesting and automated execution platforms that cater to ev-
ery possible level of programming skills. We are faced with two basic choices
when it comes to deciding on a trading platform:

1. Buying a special-purpose backtesting and execution platform, and
implementing your strategy using that platform’s special-purpose
graphical user interface (GUI) or programming language.

2. Writing your own backtest and execution program in a generic
programming language such as C++, either in a completely stand-
alone manner with piecemeal purchases of software libraries to make
the task easier or within an integrated development environment
(IDE) that comes with a comprehensive library catering to algorith-

mic trading,

We consider some criteria for making this choice next.

How Good Is Your Programming Skall?

If you have little skill in programming, then the only choice is to pick a
special-purpose trading platform. These platforms unburden the user from
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having to learn a programming language by presenting a graphical “drag-
and-drop” user interface for building a trading strategy. Examples of these
products are Deltix and Progress Apama. However, I have found that these
GUIs can be quite limiting in the variety of strategies that you can build,
and in the long run, it is far more efficient to become adept in a program-
ming language in order to express your strategy. (Note that Deltix and
Progress Apama also allow other ways to specify a strategy, as explained
below.)

Traders possessing the next level of programming skill should consider
implementing both backtesting and automated execution using one of the
scripting languages. These languages do not require compilation, and you
can instantly see the results the moment you finish typing in the mathe-
matical or logical expressions. Many traders’ favorite backtesting platform,
Microsoft Excel, perhaps used in conjunction with Visual Basic (VB) macros,
belongs to this category. But it is actually quite hard to build a reasonably
complicated strategy in Excel, and even harder to debug it. Excel also is not
a particularly high-performance language, so if your strategy is very compu-
tationally intensive, it is not going to work. If you use Excel for automated
executions, you may find that you have to use DDE links provided by your
brokerage for market data updates, and you will likely need to add Visual
Basic macros to handle more complicated trading logic, which is quite in-
efficient. (However, see Box 1.1 for an Excel-like trading platform that is

supercharged for efficiency.)

Excel on Steroids—The FXone Automated Execution Platform

There is a currency trading platform called FXone that looks like Excel, but the
underlying computational engine is written in a high-performance language
like C++ instead of relying on VB macros. It is a true tick-driven application:
Every tick (in the FX case, a tick is a new quote) triggers a recalculation of
all the values in all of the cells of the spreadsheet. Furthermore, it has an
internal cache for real-time data so that different cells that require the same
data to compute can simply retrieve it from the cache, instead of duplicating
subscriptions of the same data. It is also a true multithreaded platform at two
different levels. First, different strategies written on different Excel workbooks
can get market data updates and submit orders simultaneously. Second,
different cells within the same workbook can also get updates and act on
new data simultaneously. That is to say, even if the calculation in one cell
happens to take very long to complete, it will not prevent other cells from
responding to a new tick by, say, submitting an order. A screenshot of FXone
is shown in Figure 1.1.
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Many special-purpose trading platforms, including QuantHouse and
RTD Tango and the aforementioned Deltix and Progress Apama, also in-
clude ways for coding a strategy with their own proprietary programming
languages, which are usually quite simple and easy to learn, maybe as easy
as Visual Basic. Aside from the institutional platforms mentioned here,
many retail traders are familiar with MetaTrader, NinjaTrader, Trading
Blox, or TradeStation Easy Language. I have not tried all of these platforms
personally, but I have a lingering suspicion that despite the apparent ease of
use and other advantages I mention later, they all in some way place some
limitations on the type of strategies that can be backtested and executed.

Requiring just slightly more skills than programming in VB, traders will
find the scripting languages of MATLAB, R, and Python offer vastly more
case of debugging, much greater flexibility in the type of strategies that can
be backtested, and higher efficiency in backtesting large data sets. These are
what we call “REPL” languages. REPL is programmer-speak for “Read-Eval-
Print-Loop.” That is, you can type in a mathematical expression, and the
program will immediately evaluate it and print out the answer, and get ready
for you to input the next expression. It works exactly like a handheld cal-
culator, but better: You can also save all these expressions in a file, and have
the program automatically execute them sequentially. The syntax of these
languages is designed to be more intuitive and easier to understand than
conventional programming languages such as C++ and much more flexible
in terms of the type of variables that can be used in a program. Scalars, ar-
rays, and strings are all basically dealt with using a similar syntax and passed
along to functions in the same way.

MATLAB can also utilize Java, C++, or C# libraries or application pro-
gramming interfaces (APIs) and call functions implemented in those librar-
ies or APIs. This allows MATLAB to take advantage of the more efficient
implementations in those conventional languages when a task is particularly
computationally intensive. Also, there are far more libraries and APIs that
are written in those conventional languages than those written in MATLAB,
R, or Python, so this feature is often essential.

Many algorithmic traders are aware that MATLAB, R, and Python are
excellent languages for backtesting. But less well known is the fact that
they can be turned into execution platforms as well with the addition
of some toolboxes. Most brokerages have APIs written in Java, C++, or
C#; and, as I said earlier, MATLAB can call functions in APIs written in
such languages, though it does take some familiarity with these languages



to know how to call these functions. If you would prefer a solution that
obviates making “foreign-language” API calls in MATLAB, there are a
number of commercial products available. MATLAB’s own Datafeed Tool-
box can send orders to Trading Technologies’ X_TRADER. To connect
MATLAB to Interactive Brokers, undocumentedmatlab.com has devel-
oped an API called IB-Matlab. Another vendor, www.exchangeapi.com,
has a similar API called quant2ib, as well as one called quant2tt for con-
necting MATLAB to Trading Technologies. For other brokerages, www.
pracplay.com offers a bridge from MATLAB or R to 15 or more brokers
for a monthly fee. A free, open-source MATLAB API for connecting to
Interactive Brokers was developed by Jev Kuznetsov and is available for
download from MATLAB Central’s File Exchange. Meanwhile, the MAT-
FIX software from agoratron.com lets your MATLAB program send or-
ders using the Financial Information eXchange (FIX) protocol to brokers
or exchanges. You can also use MATLAB to call the Java or .NET func-
tions in QuickFIX, an open source FIX engine (Kozola, 2012). For Py-
thon users, the free, open-source software IbPy will connect your Python
trading program to Interactive Brokers. While these add-ons to MATLAB
and Python make it possible to connect to a broker, they nevertheless do
not shield you from all the complexity of such connections. And, more
important, it is cumbersome to use the same program for both backtest-
ing and execution.

If you are a hard-core programmer, you will, of course, have no prob-
lem backtesting and automating execution directly in the most flexible,
most efficient, and most robust of programming languages, such as afore-
mentioned trio of Java, C++, or C#. As I said earlier, all brokerages or
exchanges that cater to algorithmic traders provide APIs in one or more
of these languages, or they allow you to submit orders using the FIX
messages, which in turn can be created and transmitted using a program
written in one of these languages. (For example, QuickFIX, mentioned
previously, is available in C++, C#, VB, Python, and Ruby.) But even
here the software industry has come to make our strategy implementation
casier and more robust by providing IDEs designed just for backtesting.
In fact, many of the special-purpose trading platforms (Deltix, Progress
Apama, QuantHouse, RTD Tango, etc.) include ways for coding strategies
using general-purpose, advanced programming languages that make them
resemble IDEs. There are also free, open-source class libraries or IDEs
that I describe in the next section.
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Can Backtesting and Execution Use
the Same Program?

Special-purpose execution platforms typically hide the complexity of con-
necting to a brokerage or exchange, receiving live market data, sending or-
ders and receiving order confirmations, updating portfolio positions etc.
from the programmer. Meanwhile, special-purpose backtesting platforms
typically come integrated with historical data. So for many special-purpose
trading platforms, the backtest program can be made the same as the live
execution program by factoring out the pure trading logic into a function,
unencumbered with details of how to retrieve data or where to submit or-
ders, and switching between backtesting mode and live execution mode can
be done by pushing a button to switch between feeding in historical data
versus live market data.

This ease of switching between backtesting and live execution is more
than just convenience: It eliminates any possibility of discrepancies or er-
rors in transcribing a backtest strategy into a live strategy, discrepancies that
often plague strategies written in a general programming language whether
it is C++ or MATLAB. Just as importantly, it eliminates the possibility of
look-ahead bias. As explained before, look-ahead bias means mistakenly in-
corporating future, unknowable information as part of the historical data
input to the backtest engine. Special-purpose platforms feed in historical
market data into the trade generating engine one tick or one bar at a time,
just as it would feeding in live market data. So there is no possibility that
future information can be used as input. This is one major advantage of using
a special-purpose trading platform.

There is one more advantage in using a platform where the backtesting
and live execution programs are one and the same—it enables true tick-
based high-frequency trading strategies backtesting. This is because most in-
dustrial-strength live execution programs are “event-driven”; that is, a trade
is triggered by the arrival of a new tick, not the end of an arbitrary time
bar. So if the input historical data is also tick-based, we can also backtest a
high-frequency strategy that depends on the change of every tick or even
every change in the order book. (I said “in theory” assuming that your hard-
ware is powerful enough. Otherwise, see the discussion later in this chapter
in the section “What Type of Asset Classes or Strategies Does the Platform
Support?”) Of course, we can backtest tick-based strategies in MATLAB by
feeding every tick into the program as well, though that is quite a cumber-
some procedure.



VN RN WAR Comparisons of Open-Source Integrated Development Environments
(IDEs) for Backtesting and Automated Execution

Asset Tick CEP
IDE Language(s) class(es) Broker(s) based? enabled?
ActiveQuant  Java, MATLAB, R Various CTS, FIX, Trading Yes No
Technologies-

supported brokers

Algo-Trader  Java Various Interactive Brokers,  Yes Yes
FIX
Marketcetera  Java, Python, Ruby  Various Various, FIX Yes Yes
OpenQuant  .NET (C#,VB) Various Various, FIX ? No
TradeLink NET (C#, C++, Various Various, FIX Yes No
VB), Java, Pascal,
Python

If you are a competent programmer who prefers the flexibility of a general
purpose programming language, yet you want to use the same program for
both backtesting and live trading because of the preceding considerations,
you can still use the institutional-grade special-purpose platforms as IDEs,
or you can use the many open-source IDEs available: Marketcetera, Trade-
Link, Algo-Trader, ActiveQuant. I call them IDEs, but they are more than
just a trading strategy development environment: They come with libraries
that deal with the nuts and bolts of connecting to and exchanging data with
your broker, much like a special-purpose platform does. Many of them are
also integrated with historical data, which is an important time saver. As
an added bonus, these open-source IDEs are either free or quite low-cost
compared to special-purpose platforms. I display inTable 1.2 the languages,
markets, and brokers that they support. (FIX as a broker means that the
system can directly access any execution venues via the FIX protocol, re-
gardless of clearing broker.) I also indicate whether the IDE is tick based
(sometimes called event driven or stream based ).

One should note that Table 1.2 only compares features of open-source
IDEs. The institutional-grade special-purpose platforms typically have all of
these features.

What Type of Asset Classes or Strategies Does the
Platform Support?

While using a special-purpose platform for trading strategies has several
important advantages described earlier, few but the most high end of these
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platforms support all possible asset classes, including stocks, futures, cur-
rencies, and options. For example, the popular MetaTrader is for currencies
trading only. It is especially difficult for these platforms to trade strate-
gies that involve arbitrage between different asset classes, such as between
futures and stocks or currencies and futures. The open-source IDEs are bet-
ter able to handle these situations. As Table 1.2 indicates, most IDEs can
trade a variety of asset classes. But, as usual, the most flexible solution in this
respect is a stand-alone program written outside of any IDE.

Beyond asset classes, many special-purpose platforms also place restric-
tions on the type of strategies that they support even within one asset class.
Often, simple pairs trading strategies require special modules to handle. Most
lower-end platforms cannot handle common statistical arbitrage or portfolio
trading strategies that involve many symbols. Open-source IDEs do not have
such restrictions, and, of course, neither do stand-alone programs.

What about high(er)-frequency trading? What kind of platforms can sup-
port this demanding trading strategy? The surprising answer is that most
platforms can handle the execution part of high-frequency trading without
too much latency (as long as your strategy can tolerate latencies in the 1- to
10-millisecond range), and since special-purpose platforms as well as IDEs
typically use the same program for both backtesting and execution, back-
testing shouldn’t in theory be a problem either.

To understand why most platforms have no trouble handling high-
frequency executions, we have to realize that most of the latency that needs
to be overcome in high-frequency trading is due to live market data latency,

or brokerage order confirmation latency.

1. Live market data latency:
For your program to receive a new quote or trade price within 1 to
10 milliseconds (ms), you have to colocate your program at the ex-
change or in your broker’s data center (see Box 1.2); furthermore,
you have to receive a direct data feed from the exchanges involved, not
from a consolidated data feed such as SIAC’s Consolidated Tape System
(CTS). (For example, Interactive Brokers’ data feed only offers snap-
shots of market data every 250 ms.)

2. Brokerage order confirmation latency:
If a strategy submits limit orders, it will depend on a timely order sta-
tus confirmation before it can decide what to do next. For some retail
brokerages, it can take up to six seconds between the execution of an

order and your program receiving the execution confirmation, virtually
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Colocation of Trading Programs

The general term colocation can mean several ways of physically locating
your trading program outside of your desktop computer. Stretching the
definition a bit, it can mean installing your trading program in a cloud server or
VPS (virtual private server) such as Amazon’s EC2, slicehost.com, or gogrid.
com. The advantage of doing so is to prevent power or Internet outages
that are more likely to strike a private home or office than a commercial data
center, with its backup power supply and redundant network connectivity.
Colocating in a cloud server does not necessarily shorten the time data take
to travel between your brokerage or an exchange to your trading program,
since many homes or offices are now equipped with a fiber optics connection
to their Internet service provider (e.g., Verizon’s FiOS in the United States, and
Bell’s Fibe Internet in Canada). To verify whether colocating in a virtual private
server (VPS) actually reduces this latency, you would need to conduct a test
yourself by “pinging” your broker’s server to see what the average round
trip time is. Certainly, if your VPS happens to be located physically close to
your broker or exchange, and if they are directly connected to an Internet
backbone, this latency will be smaller. (For example, pinging the Interactive
Brokers’ quote server from my home desktop computer produces an average
round trip time of about 55 ms, pinging the same server from Amazon’s EC2
takes about 25 ms, and pinging it from various VPSs located near Interactive
Brokers takes about 16 to 34 ms.)

| mention VPS only because many trading programs are not so compu-
tationally intensive as to require their own dedicated servers. But if they are,
you can certainly upgrade to such services at many of the hosting companies
familiar with the requirements of the financial trading industry such as Equinix
and Telx, both of whom operate data centers in close proximity to the various
exchanges.

If your server is already in a secure location (whether that is your office
or a data center) and is immune to power outage, then all you need is a
fast connection to your broker or the exchange. You can consider using
an “extranet,” which is like the Internet but operated by a private company,
which will guarantee a minimum communication speed. BT Radianz, Sawvis,
and TNS are examples of such companies. If you have a large budget, you
can also ask these companies to build a dedicated communication line from
your server to your broker or exchange as well.

The next step up in the colocation hierarchy is colocating inside your
brokerage’s data center, so that quotes or orders confirmation generated
by your broker are transmitted to your program via an internal network,
unmolested by the noise and vagaries of the public Internet. Various brokers
that cater to professional traders have made available colocation service:
examples are Lime Brokerage and FXCM. (Because of colocation, clients

of Lime Brokerage can even receive direct data feeds from the NYSE at a
(Continued)
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relatively low rate, which, as | mentioned before, is faster than the consolidated
SIAC CTS data feed.)

The ultimate colocation is, of course, situating your trading server at the
exchange or ECN itself. This is likely to be an expensive proposition (except
for forex ECNs), and useful only if you have a prime broker relationship, which
allows you to have “sponsored access” to connect to the exchange without
going through the broker’s infrastructure (Johnson, 2010). Such prime broker
relationships can typically be established only if you can generate institutional-
level commissions or have multimillion-dollar account. The requirements as
well as expenses to establish colocation are lower for forex prime brokers and
ECNSs. Most forex ECNs including Currenex, EBS, FXall, and Hotspot operate
within large commercial data centers such as Equinix’s NY4 facility, and it is
not too expensive to colocate at that facility or sign up with a VPS that does.

Some traders have expressed concern that colocating their trading
programs on a remote server exposes them to possible theft of their
intellectual property. The simplest way is eliminate this risk is to just store
“executables” (binary computer codes that look like gibberish to humans)
on these remote servers, and not the source code of your trading algorithm.
(Even with a MATLAB program, you can convert all the .m files to .p files
before loading them to the remote server.) Without source codes, no one
can know the operating instructions of running the trading program, and no
one will be foolish enough to risk capital on trading a black-box strategy of
which they know little about. For the truly paranoid, you can also require an
ever-changing password that depends on the current time to start a program.

ensuring that no high-frequency trading can be done. Even if your bro-
kerage has order confirmation latency below 10 ms, or if they allow
you to have direct market access to the exchanges so you get your order
status confirmation directly from the exchanges, you would still need
to colocate your program with either your broker in the former case,
or with the exchange in the latter case.

Practically any software program (other than Excel running with a
VB macro) takes less than 10 ms to submit a new order after receiving
the latest market data and order status updates, so software or hardware
latency is usually not the bottleneck for high-frequency trading, unless
you are using one program to monitor thousands of symbols. (Concern-
ing this last point, see Box 1.3 for issues related to multithreading.) But
backtesting a high-frequency strategy is entirely a different matter. To do
this, you will be required to input many months of tick data (trades and
quotes), maybe on many symbols, into the backtesting platform. Worse,
sometimes you have to input level 2 quotes, too. Just the quantity of



Multithreading and High-Frequency Trading of Multiple Symbols

Multithreading for a trading platform means that it can respond to multiple
events (usually the arrival of a new tick) simultaneously. This is particularly
important if the program trades multiple symbols simultaneously, which is
often the case for a stock-trading program. You certainly don’t want your buy
order for AAPL to be delayed just because the program is deciding whether to
sell BBRY! If you write your own stand-alone trading program using a modern
programming language such as Java or Python, you won’t have any problem
with multithreading because this ability is native to such languages. However,
if you use MATLAB, you will need to purchase the Parallel Computing Toolbox
as well; otherwise, there is no multithreading. (Even if you purchase that
Toolbox, you are limited to 12 independent threads, hardly enough to trade
500 stocks simultaneously!) But do not confuse the lack of multithreading
in MATLAB with the “loss of ticks.” If you write two “listeners,” A and B, in
MATLAB to receive tick data from two separate symbols, because the fact
that listener A is busy processing a tick-triggered event doesn’t mean that
listener B is “deaf.” Once listener A has finished processing, listener B will
start to process those tick events that it has received while A was busy, with
no lost ticks (Kuznetsov, 2010).

data will overwhelm the memory of most machines, if they are not han-
dled in special ways (such as using parallel computing algorithms). Most
special-purpose backtesting platforms are not designed to be especially
intelligent when handling this quantity of data, and most of them are not
equipped at all to backtest data with all of bid/ask/last tick prices (and
sizes) nor level 2 quotes either. So backtesting a high-frequency strategy
usually requires that you write your own stand-alone program with spe-
cial customization. Actually, backtesting a high-frequency strategy may
not tell you much about its real-life profitability anyway because of the
Heisenberg uncertainty principle that I mentioned before.

Besides high-frequency trading, news-driven trading often causes all
but the top-end special-purpose platforms to stumble. News-driven
trading by definition requires as input a machine-readable news feed.
Most special-purpose platforms do not have this capability, and neither
do most open-source IDEs. Exceptions include Progress Apama, which
incorporates both Dow Jones and Reuters machine-readable news feed,
and Deltix, which integrates Ravenpack’s News Sentiment data feed.
Among IDE’s, Marketcetera offers a newsfeed from benzinga.com
(which is unlikely to match the speed of delivery of Bloomberg, Dow
Jones, and Reuters). If you are writing your own stand-alone trading
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program, you have the flexibility of connecting to these news feed ei-
ther using the news provider’s API (e.g., both Dow Jones and Thomson
Reuters have made available their machine-readable news through an
API) or simply read a news XML file ftp’ed to your hard-drive periodi-
cally by the news provider. If you are news trading at high frequency, the
former expensive solution is an absolute necessity. Otherwise, there are
much more affordable solutions from vendors such as Newsware. I will

discuss more on the topic of event-driven trading in Chapter 7.

Does the Platform Have Complex
Event Processing?

Complex event processing (CEP) is a fashionable term to describe a program
responding to an event instantaneously and taking appropriate action. The
events that concern us are usually the arrival of a new tick, or the delivery
of a news item. For an algorithmic trader, one important point is that the
program is event driven, and not bar driven. That is, the program does not
go poll prices or news items at the end of each bar and then decide what to
do. Because CEP is event driven, there is no delay between the occurrence
of an event and the response to it.

If instantaneity is the only strength of CEP, then we can just use the so-
called callback functions that almost every brokerage API provides. A call-
back function is also triggered whenever a new tick or news item arrives,
and based on this new data we can perform all kinds of computations and
determine whether to submit an order. This is easy when the rule required
is simply “moving average of the price over the last hour.”

But what if the rules are “complex,” such as “sell when the order flow in
the last half hour is positive, the price is above the moving average, the vola-
tility is low, and an important news item just arrived”?

What if the rule involves many clauses like during, between, afterwards, in
parallel when applied to the sequence of events? According to CEP aficionados,
it is much more succinct to express these complicated rules using a CEP lan-
guage than a traditional programming language. But what about the argument
that trading rules should be simple to avoid data-snooping bias? Their answer
is that they are not data mining the data to find arbitrary rules, but simply
implementing rules that seasoned traders already know are profitable. I am not
entirely convinced by their arguments, but if you are, you should know that
Progress Apama mentioned above is distinguished by their CEP technology.
Certain free, open-source IDEs have CEP, too, as you can see fromTable 1.2.



KEY POINTS

e Backtesting is useless if it is not predictive of future performance of a
strategy, but pitfalls in backtesting will decrease its predictive power.

e Eliminating pitfalls:

e A platform that uses the same program for both backtesting and live
executions can eliminate look-ahead bias.

e Qut-of-sample testing, cross-validation, and high Sharpe ratios are
all good practices for reducing data-snooping bias, but none is more
definitive than walk-forward testing.

e Simple models are a simple cure for data-snooping bias.

e “Why did my model generate a ‘short’ signal for THQI on 2012/7/9? Oh,
that’'s because | forgot to adjust its historical prices for a 1:10 reverse
stock split!”

e “Did your model just buy the stock CMC? Are you sure it didn’t forget to
adjust its historical prices because today is its ex-date for dividends?”

e “| see that your model is long only. Did you make sure your data don’t
have survivorship bias?”

® “The backtest of your mean-reverting stock-trading model using closing
prices is excellent, but expect a deflation of the results if you test it again
using primary exchange data.”

e “Your model performed brilliantly during November 2008. But did it short
a lot of financial stocks back then? Don’t forget that short sales of those
stocks were banned.”

e “This high-frequency stock-trading model looks good on backtest, but |
wonder if it incorporated uptick rules for their short trades.”

e “Your futures calendar spread model uses the differences in price to form
the spread. Why are you back-adjusting your prices using returns gap?”

e “Why is it that my mean-reverting intraday futures spread performed so
well in backtest but so poorly in live trading? Oh, | should have used tick-
based instead of bar-based data for my backtest.”

e “Your backtest of this momentum strategy seems to be without any
pitfalls. But just because it performed well before 2008 doesn’t mean it
will perform well afterward.”

e Statistical significance of backtests:

° “What do you mean by saying that the expected APR of this strategy is
10 percent and is statistically significant to within 1 percent?” Answer:
“It means by running the strategy on 10,000 simulated price series with
the same length and the same first three moments as the historical price
series, there are only 100 sample series where the APR is equal to or
greater than 10 percent.”

(Continued)
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* “What do you mean by saying that the expected APR of this strategy is
10 percent and is statistically significant to within 1 percent?” Alternative
answer: “It means by randomizing the entry dates of my trades, there is
only 1in 100 random permutations where the APR is equal to or greater
than 10 percent.”

e Which backtest platform to pick?

e “| am a brilliant mathematician starting a fund with $50 million to invest,
but | don’t know how to program. What trading platform should | use?”
Pick an institutional special-purpose platform like Deltix, QuantHouse,
Progress Apama, or RTD Tango.

e “| am an experienced, discretionary, independent trader, and | want to
automate my strategies. What trading platform should | use?” Pick a retail
special-purpose platform like MetaTrader, NinjaTrader, Trading Blox, or
TradeStation.

e “lam a quant who is great with strategy research using MATLAB.

But how should | implement these strategies and go ‘live’?” Try
exchangeapi.com’s quant2ib API for Interactive Brokers, quant2tt for
Trading Technologies, www.pracplay.com for other brokers, or MATFIX for
FIX connections.

e “l am a good C++, C#, and Java programmer, but | hate dealing with
low-level connections to the brokerage, and | hate having to rewrite my
connections every time | change brokers.” Try one of the IDEs such as
Marketcetera, Tradelink, AlgoTrader, or ActiveQuant.

e Automating executions:

e “| want to colocate my trading program at a data center to reduce my
order confirmation latency below 10 ms.” Are you sure your broker has an
order confirmation latency shorter than 10 ms?

e “| am colocated at Amazon’s EC2. Market data fed to my trading
programs should be much more up-to-date than getting them at my
desktop PC.” Not necessarily: EC2’s server may be farther away (in
Internet distance) from your broker’s data server than your desktop PC.

e “| am using MATLAB’s Parallel Computing Toolbox, and | run my
program on a GPU. Therefore, | can trade all 500 stocks in the SPX
simultaneously.” Even with MATLAB's Parallel Computing Toolbox, you
are limited to handling 12 stocks simultaneously. Writing your own Java
or Python program will allow true multithreading on a graphics processing
unit (GPU).

e “My IDE isn’t CEP enabled. | can’t really run a tick-based trading
strategy.” Even platforms that are not CEP enabled often have callback
functions that enable your program to be triggered by ticks.


http://www.pracplay.com

The Basics of

Mean Reversion

hether we realize it or not, nature is filled with examples of mean

reversion. Figure 2.1 shows the water level of the Nile from 622 ap
to 1284 aAp, clearly a mean-reverting time series. Mean reversion is equally
prevalent in the social sciences. Daniel Kahneman cited a famous example:
the “Sports Illustrated jinx,” which is the claim that “an athlete whose picture
appears on the cover of the magazine is doomed to perform poorly the fol-
lowing season” (Kahneman, 2011). The scientific reason is that an athlete’s
performance can be thought of as randomly distributed around a mean, so
an exceptionally good performance one year (which puts the athlete on the
cover of Sports Illustrated) is very likely to be followed by performances that
are closer to the average.

Is mean reversion also prevalent in financial price series? If so, our lives as
traders would be very simple and profitable! All we need to do is to buy low
(when the price is below the mean), wait for reversion to the mean price,
and then sell at this higher price, all day long. Alas, most price series are
not mean reverting, but are geometric random walks. The returns, not the
prices, are the ones that usually randomly distribute around a mean of zero.
Unfortunately, we cannot trade on the mean reversion of returns. (One
should not confuse mean reversion of returns with anti-serial-correlation
of returns, which we can definitely trade on. But anti-serial-correlation of
returns is the same as the mean reversion of prices.) Those few price series
that are found to be mean reverting are called stationary, and in this chapter
we will describe the statistical tests (ADF test and the Hurst exponent and
Variance Ratio test) for stationarity. There are not too many prefabricated
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FIGURE 2.1 Minimum Water Levels of the Nile River, 6221284 ap

prices series that are stationary. By prefabricated I meant those price series
that represent assets traded in the public exchanges or markets.

Fortunately, we can manufacture many more mean-reverting price series
than there are traded assets because we can often combine two or more
individual price series that are not mean reverting into a portfolio whose
net market value (i.e., price) is mean reverting. Those price series that can
be combined this way are called cointegrating, and we will describe the
statistical tests (CADF test and Johansen test) for cointegration, too. Also,
as a by-product of the Johansen test, we can determine the exact weightings
of each asset in order to create a mean reverting portfolio. Because of this
possibility of artificially creating stationary portfolios, there are numerous
opportunities available for mean reversion traders.

As an illustration of how easy it is to profit from mean-reverting price
series, I will also describe a simple linear trading strategy, a strategy that is
truly “parameterless.”

One clarification: The type of mean reversion we will look at in this chap-
ter may be called time series mean reversion because the prices are supposed

to be reverting to a mean determined by its own historical prices. The tests



and trading strategies that I depict in this chapter are all tailored to time se-
ries mean reversion. There is another kind of mean reversion, called “cross-
sectional” mean reversion. Cross-sectional mean reversion means that the
cumulative returns of the instruments in a basket will revert to the cumula-
tive return of the basket. This also implies that the short-term relative re-
turns of the instruments are serially anticorrelated. (Relative return of an
instrument is the return of that instrument minus the return of the basket.)
Since this phenomenon occurs most often for stock baskets, we will discuss
how to take advantage of it in Chapter 4 when we discuss mean-reverting
strategies for stocks and ETFs.

B Mean Reversion and Stationarity

Mean reversion and stationarity are two equivalent ways of looking at the
same type of price series, but these two ways give rise to two different sta-
tistical tests for such series.

The mathematical description of a mean-reverting price series is that the
change of the price series in the next period is proportional to the difference
between the mean price and the current price. This gives rise to the ADF
test, which tests whether we can reject the null hypothesis that the propor-
tionality constant is zero.

However, the mathematical description of a stationary price series is that
the variance of the log of the prices increases slower than that of a geo-
metric random walk. That is, their variance is a sublinear function of time,
rather than a linear function, as in the case of a geometric random walk.
This sublinear function is usually approximated by " where 1 is the time
separating two price measurements, and H is the so-called Hurst exponent,
which is less than 0.5 if the price series is indeed stationary (and equal to
0.5 if the price series is a geometric random walk). The Variance Ratio test
can be used to see whether we can reject the null hypothesis that the Hurst
exponent is actually 0.5.

Note that stationarity is somewhat of a misnomer: It doesn’t mean that
the prices are necessarily range bound, with a variance that is independent
of time and thus a Hurst exponent of zero. It merely means that the variance
increases slower than normal diffusion.

A clear mathematical exposition of the ADF and Variance Ratio tests can
be found in Walter Beckert’s course notes (Beckert, 2011). Here, we are
interested only in their applications to practical trading strategies.
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Augmented Dickey—FullerTest

If a price series is mean reverting, then the current price level will tell us
something about what the price’s next move will be: If the price level is
higher than the mean, the next move will be a downward move; if the price
level is lower than the mean, the next move will be an upward move. The
ADEF test is based on just this observation.

We can describe the price changes using a linear model:

Ay(y =Myt — )+ u+ P+ oAyt — 1)+ -+ oyAy(t—k) +e,  (2.1)

where Ay(t) = y(t) — y(t— 1), Ay(t — 1) = y(t — 1) — y(t — 2), and so on. The ADF
test will find out if A = 0. If the hypothesis A = 0 can be rejected, that means the
next move Ay(t) depends on the current level y(t — 1), and therefore it is not a
random walk. The test statistic is the regression coefficient A (with y(t — 1) as
the independent variable and Ay(z) as the dependent variable) divided by the
standard error of the regression fit: A/SE(L). The statisticians Dickey and Fuller
have kindly found out for us the distribution of this test statistic and tabulated
the critical values for us, so we can look up for any value of A/SE(A) whether
the hypothesis can be rejected at, say, the 95 percent probability level.

Notice that since we expect mean regression, A/SE(A) has to be negative,
and it has to be more negative than the critical value for the hypothesis to
be rejected. The critical values themselves depend on the sample size and
whether we assume that the price series has a non-zero mean —1/A or a
steady drift —B¢/A. In practical trading, the constant drift in price, if any,
tends to be of a much smaller magnitude than the daily fluctuations in price.
So for simplicity we will assume this drift term to be zero (B = 0).

In Example 2.1, we apply the ADF test to a currency rate series
USD.CAD.

] Example 2.1: Using ADF Test for Mean Reversion [

The ADF test is available as a MATLAB Econometrics function adfftest,
or from the open-source MATLAB package spatial-econometrics.com’s
adf function. We will use adf below, and my code is available for
download as stationarity Tests.m from http://epchan.com/book2.

(After you have downloaded the spatial-econometrics.com’s jplv7
folder to your computer, remember to add all the subfolders of this
package to your MATLAB path before using it.)
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Example 2.1 (Continued) [

The adf function has three inputs. The first is the price series in
ascending order of time (chronological order is important). The
second is a parameter indicating whether we should assume the
offset p and whether the drift § in Equation 2.1 should be zero. We
should assume the offset is nonzero, since the mean price toward
which the prices revert is seldom zero. We should, however, assume
the drift is zero, because the constant drift in price tends to be of a
much smaller magnitude than the daily fluctuations in price. These
considerations mean that the second parameter should be 0 (by the
package designer’s convention). The third input is the lag k. You can
start by trying k =0, but often only by setting k=1 can we reject
the null hypothesis, meaning that the change in prices often does
have serial correlations. We will try the test on the exchange rate
USD.CAD (how many Canadian dollars in exchange for one U.S.
dollar). We assume that the daily prices at 17:00 ET are stored in
a MATLAB array 7. The data file is that of one-minute bars, but we
will just extract the end-of-day prices at 17:00 ET. Sampling the data
at intraday frequency will not increase the statistical significance of
the ADF test. We can see from Figure 2.2 that it does not look very
stationary.
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FIGURE 2.2 USD.CAD Price Series
(Continued )

~
w

NOISYdATY NVAW 40 SDISVd dH.L



~
~

ALGORITHMIC TRADING

] Example 2.1 (Continued) [

And indeed, you should find that the ADF test statistic is about
—1.84, but the critical value at the 90 percent level is —=2.594, so we
can’t reject the hypothesis that A is zero. In other words, we can’t

show that USD.CAD is stationary, which perhaps is not surprising,
given that the Canadian dollar is known as a commodity currency,
while the U.S. dollar is not. But note that A is negative, which
indicates the price series is at least not trending,

results=adf (y, 0, 1);

prt (results) ;

% Augmented DF test for unit root variable: variable 1
% ADF t-statistic # of lags AR (1) estimate
% -1.840744 1 0.994120
% 1% Crit Value 5% Crit Value 10% Crit Vvalue
% -3.458 -2.871 -2.594

Hurst Exponent and Variance Ratio Test

Intuitively speaking, a “stationary” price series means that the prices diffuse
from its initial value more slowly than a geometric random walk would. Math-
ematically, we can determine the nature of the price series by measuring this
speed of diffusion. The speed of diffusion can be characterized by the variance

Var(t) = {|z(t + 1) — z(¢) | %) (2.2)

where z is the log prices (z = log( y)), 7 is an arbitrary time lag, and {--) is
an average over all ’s. For a geometric random walk, we know that

(Jzt+1) = 2()|*) ~ © (2.3)

The ~ means that this relationship turns into an equality with some pro-
portionality constant for large 7, but it may deviate from a straight line for
small 1. But if the (log) price series is mean reverting or trending (i.e., has
positive correlations between sequential price moves), Equation 2.3 won’t
hold. Instead, we can write:

(Jzt + 1) = 2(1) | *) ~ M (2.4)



where we have defined the Hurst exponent H. For a price series exhibiting
geometric random walk, H=0.5. But for a mean-reverting series, H<0.5,
and for a trending series, H > 0.5. As H decreases toward zero, the price
series is more mean reverting, and as H increases toward 1, the price series
is increasingly trending; thus, H serves also as an indicator for the degree of
mean reversion or trendiness.

In Example 2.2, we computed the Hurst exponent for the same cur-
rency rate series USD.CAD that we used in the previous section using the
MATLAB code. It generates an H of 0.49, which suggests that the price

series is weakly mean reverting,

] Example 2.2: Computing the Hurst Exponent [

Using the same USD.CAD price series in the previous example, we
now compute the Hurst exponent using a function called genhurst we
can download from MATLAB Central (www.mathworks.com
/matlabcentral/fileexchange/30076-generalized-hurst-exponent).
This function computes a generalized version of the Hurst exponent
defined by {|z(t + 1) — 2(t) | 20) ~ 1M@ | where q is an arbitrary
number. But here we are only interested in ¢ = 2, which we specify as
the second input parameter to genhurst.

H=genhurst (log(y), 2);

If we apply this function to USD.CAD, we get H = 0.49, indicating
that it may be weakly mean reverting,

Because of finite sample size, we need to know the statistical significance
and MacKinlay of an estimated value of H to be sure whether we can reject
the null hypothesis that His really 0.5. This hypothesis test is provided by the
Variance Ratio test (Lo, 2001).

The Variance Ratio Test simply tests whether

Var(z(t)—z(t—1T))
TVar(z(t)—z(t—1))

is equal to 1. There is another ready-made MATLAB Econometrics Toolbox
function vratiotest for this, whose usage I demonstrate in Example 2.3.

~
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] Example 2.3: Using the Variance RatioTest for Stationarity [

The vratiotest from MATALB Econometric Toolbox is applied to the
same USD.CAD price series y that have been used in the previous
examples in this chapter. The outputs are h and pValue: h =1 means
rejection of the random walk hypothesis at the 90 percent confidence
level, h = 0 means it may be a random walk. plalue gives the

probability that the null (random walk) hypothesis is true.
[h,pValue]l=vratiotest (log(y)) ;
We find that h = 0 and pValue = 0.367281 for USD.CAD, indicating

that there is a 37 percent chance that it is a random walk, so we
cannot reject this hypothesis.

Half-Life of Mean Reversion

The statistical tests I described for mean reversion or stationarity are
very demanding, with their requirements of at least 90 percent certainty.
But in practical trading, we can often be profitable with much less cer-
tainty. In this section, we shall find another way to interpret the A coef-
ficient in Equation 2.1 so that we know whether it is negative enough
to make a trading strategy practical, even if we cannot reject the null
hypothesis that its actual value is zero with 90 percent certainty in an
ADF test. We shall find that A is a measure of how long it takes for a price
to mean revert.

To reveal this new interpretation, it is only necessary to transform the
discrete time series Equation 2.1 to a differential form so that the changes in
prices become infinitesimal quantities. Furthermore, if we ignore the drift
(Bt) and the lagged differences (Ay(t— 1), ..., Ay(t — k)) in Equation 2.1, then
it becomes recognizable in stochastic calculus as the Ornstein-Uhlenbeck
formula for mean-reverting process:

dy(t) = (Ay(t — 1) + w)de + de (2.5)

where de is some Gaussian noise. In the discrete form of 2.1, linear regres-
sion of Ay(t) against y(t — 1) gave us A, and once determined, this value of A
carries over to the differential form of 2.5. But the advantage of writing the
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equation in the differential form is that it allows for an analytical solution for
the expected value of y(r):

E( () = yoexp(ht) — W/A(1 = exp(Ae)) (2.6)

Remembering that A is negative for a mean-reverting process, this tells us
that the expected value of the price decays exponentially to the value —u/A
with the half-life of decay equals to —log(2)/A. This connection between a
regression coefficient A and the half-life of mean reversion is very useful
to traders. First, if we find that A is positive, this means the price series is
not at all mean reverting, and we shouldn’t even attempt to write a mean-
reverting strategy to trade it. Second, if A is very close to zero, this means
the half-life will be very long, and a mean-reverting trading strategy will not
be very profitable because we won’t be able to complete many round-trip
trades in a given time period. Third, this A also determines a natural time
scale for many parameters in our strategy. For example, if the half life is 20
days, we shouldn’t use a look-back of 5 days to compute a moving average
or standard deviation for a mean-reversion strategy. Often, setting the look-
back to equal a small multiple of the half-life is close to optimal, and doing
so will allow us to avoid brute-force optimization of a free parameter based
on the performance of a trading strategy. We will demonstrate how to com-

pute half-life in Example 2.4.

] Example 2.4: Computing Half-Life for Mean Reversion r

We concluded in the previous example that the price series
USD.CAD is not stationary with at least 90 percent probability. But
that doesn’t necessarily mean we should give up trading this price
series using a mean reversion model because most profitable trading
strategies do not require such a high level of certainty. To determine
whether USD.CAD is a good candidate for mean reversion trading,
we will now determine its half-life of mean reversion.

To determine A in Equations 2.1 and 2.5, we can run a regression
fit with y(¢) — y(t — 1) as the dependent variable and y(t — 1) as
the independent variable. The regression function ols as well as the

function lag are both part of the jplv7 package. (You can also use the

(Continued )
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] Example 2.4 (Continued) [

MATLARB Statistics Toolbox regress function for this as well.) This code
fragment is part of stationary Tests.m.

ylag=lag(y, 1); % lag is a function in the jplv7

°

% (spatial-econometrics.com) package.

delta¥Y=y-ylag;
deltaY(1l)=[]; % Regression functions cannot handle the NaN
in the first bar of the time series.

ylag(1)=I[1;
regress_results=ols(deltaY, [ylag ones(size(ylag))l);

halflife=-log(2) /regress results.beta(l) ;

The result is about 115 days. Depending on your trading horizon, this
may or may not be too long. But at least we know what look-back to use

and what holding period to expect.

A Linear Mean—Reverting Trading Strategy

Once we determine that a price series is mean reverting, and that the half-
life of mean reversion for a price series short enough for our trading ho-
rizon, we can easily trade this price series profitably using a simple linear
strategy: determine the normalized deviation of the price (moving standard
deviation divided by the moving standard deviation of the price) from its
moving average, and maintain the number of units in this asset negatively
proportional to this normalized deviation. The look-back for the moving
average and standard deviation can be set to equal the half-life. We see in
Example 2.5 how this linear mean reversion works for USD.CAD.

You might wonder why it is necessary to use a moving average or standard
deviation for a mean-reverting strategy at all. If a price series is stationary,
shouldn’t its mean and standard deviation be fixed forever? Though we usually
assume the mean of a price series to be fixed, in practice it may change slowly
due to changes in the economy or corporate management. As for the standard
deviation, recall that Equation 2.4 implies even a “stationary” price series with
0 < H < 0.5 has a variance that increases with time, though not as rapidly as a
geometric random walk. So it is appropriate to use moving average and standard
deviation to allow ourselves to adapt to an ever-evolving mean and standard de-
viation, and also to capture profit more quickly. This point will be explored more
thoroughly in Chapter 3, particularly in the context of “scaling-in.”



Example 2.5: Backtesting a Linear Mean—Reverting
Trading Strategy

In this simple strategy, we seek to own a number of units of
USD.CAD equal to the negative normalized deviation from its
moving average. The market value (in USD) of one unit of a currency
pair USD.X is nothing but the quote USD.X, so in this case the

linear mean reversion is equivalent to setting the market value of

the portfolio to be the negative of the Z-Score of USD.CAD. The
functions movingAvg and movingStd can be downloaded from my
website. (This code fragment is part of stationary Tests.m.)

lookback=round (halflife); % setting lookback to the halflife

o

% found above
mktVal=- (y-movingAvg (y, lookback)) ./movingStd(y, lookback) ;
pnl=lag (mktval, 1).*(y-lag(y, 1))./lag(y, 1); % daily P&L of

o

% the strategy

The cumulative P&L of this strategy is plotted in Figure 2.3.

Despite the long half-life, the total profit and loss (P&L) manages
to be positive, albeit with a large drawdown. As with most example
strategies in this book, we do not include transaction costs. Also,
there is a look-ahead bias involved in this particular example due to
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FIGURE 2.3 Equity Curve of Linear Trading Strategy on
AUDCAD.
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] Example 2.5 (Continued) [

the use of in-sample data to find the half-life and therefore the look-
back. Furthermore, an unlimited amount of capital may be needed
to generate the P&L because there was no maximum imposed on
the market value of the portfolio. So I certainly don’t recommend

it as a practical trading strategy. (There is a more practical version
of this mean-reverting strategy in Chapter 5.) But it does illustrate
that a nonstationary price series need not discourage us from trading
a mean reversion strategy, and that we don’t need very complicated
strategies or technical indicators to extract profits from a mean-

reverting series.

Since the goal for traders is ultimately to determine whether the ex-
pected return or Sharpe ratio of a mean-reverting trading strategy is good
enough, why do we bother to go through the stationarity tests (ADF or Vari-
ance Ratio) and the calculation of half-life at all? Can’t we just run a backtest
on the trading strategy directly and be done with it? The reason why we
went through all these preliminary tests is that their statistical significance is
usually higher than a direct backtest of a trading strategy. These preliminary
tests make use of every day’s (or, more generally, every bar’s) price data for
the test, while a backtest usually generates a significantly smaller number
of round trip trades for us to collect performance statistics. Furthermore,
the outcome of a backtest is dependent on the specifics of a trading strategy,
with a specific set of trading parameters. However, given a price series that
passed the stationarity statistical tests, or at least one with a short enough
half-life, we can be assured that we can eventually find a profitable trading
strategy, maybe just not the one that we have backtested.

B Cointegration

As we stated in the introduction of this chapter, most financial price series
are not stationary Oor mean reverting. But, fortunately, we are not confined to
trading those “prefabricated” financial price series: We can proactively cre-
ate a portfolio of individual price series so that the market value (or price)
series of this portfolio is stationary. This is the notion of cointegration: If we



can find a stationary linear combination of several nonstationary price se-
ries, then these price series are called cointegrated. The most common com-
bination is that of two price series: We long one asset and simultaneously
short another asset, with an appropriate allocation of capital to each asset.
This is the familiar “pairs trading” strategy. But the concept of cointegration
easily extends to three or more assets. And in this section, we will look at
two common cointegration tests: the CADF and the Johansen test. The for-
mer is suitable only for a pair of price series, while the latter is applicable to

any number of series.

Cointegrated Augmented Dickey-Fuller Test

An inquisitive reader may ask: Why do we need any new tests for the sta-
tionarity of the portfolio price series, when we already have the trusty ADF
and Variance Ratio tests for stationarity? The answer is that given a number
of price series, we do not know a priori what hedge ratios we should use to
combine them to form a stationary portfolio. (The hedge ratio of a particu-
lar asset is the number of units of that asset we should be long or short in a
portfolio. If the asset is a stock, then the number of units corresponds to the
number of shares. A negative hedge ratio indicates we should be short that
asset.) Just because a set of price series is cointegrating does not mean that
any random linear combination of them will form a stationary portfolio. But
pursuing this line of thought further, what if we first determine the optimal
hedge ratio by running a linear regression fit between two price series, use
this hedge ratio to form a portfolio, and then finally run a stationarity test on
this portfolio price series? This is essentially what Engle and Granger (1987)
did. For our convenience, the spatial-econometrics.com jplv7 package has
provided a cadf function that performs all these steps. Example 2.6 demon-
strates how to use this function by applying it to the two exchange-traded
funds (ETFs) EWA and EWC.

] Example 2.6: Using the CADFTest for Cointegration [

ETFs provide a fertile ground for finding cointegrating price
series—and thus good candidates for pair trading. For example, both
Canadian and Australian economies are commodity based, so they
seem likely to cointegrate. The program cointegrationTest.m can be
downloaded from my website. We assume the price series of EWA is
(Continued)
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Example 2.6 (Continued)
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FIGURE 2.4 Share Prices of EWA versus EWC

contained in the array x, and that of EWC is contained in the array y.
From Figure 2.4, we can see that they do look quite cointegrating,
A scatter plot of EWA versus EWC in Figure 2.5 is even more
convincing, as the price pairs fall on a straight line.
We can use the ols function found in the jplv7 package to find the
optimal hedge ratio.
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FIGURE 2.5 Scatter Plot of EWA versus EWC
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Example 2.6 (Continued) [

regression_result=ols(y, [x ones(size(x))]);

hedgeRatio=regression_ result.beta(1l);

As expected, the plot of the residual EW C-hedgeRatio*EWA in
Figure 2.6 does look very stationary.

We use the cadf function of the jplv7 package for our test. Other
than an extra input for the second price series, the inputs are the
same as the adf function. We again assume that there can be a nonzero
offset of the pair portfolio’s price series, but the drift is zero. Note
that in both the regression and the CADF test we have chosen EWA
to be the independent variable x, and EWC to be the dependent
variable y. If we switch the roles of EWA and EWC, will the result
for the CADF test differ? Unfortunately, the answer is “yes.” The
hedge ratio derived from picking EWC as the independent variable
will not be the exact reciprocal of the one derived from picking EWA
as the independent variable. In many cases (though not for EWA-
EWC, as we shall confirm later with Johansen test), only one of those
hedge ratios is “correct,” in the sense that only one hedge ratio will
lead to a stationary portfolio. If you use the CADF test, you would
have to try each variable as independent and see which order gives
the best (most negative) t-statistic, and use that order to obtain the
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FIGURE 2.6 Stationarity of Residuals of Linear
Regression between EWA versus EWC
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] Example 2.6 (Continued) [

hedge ratio. For brevity, we will just assume EWA to be independent,
and run the CADF test.

results=cadf(y, x, 0, 1);

% Print out results

prt (results) ;

% Output:

% Augmented DF test for co-integration variables:

o

% variable 1,variable 2

% CADF t-statistic # of lags AR (1) estimate
% -3.64346635 1 -0.020411
% 1% Crit Value % Crit Value 10% Crit Value
% -3.880 -3.359 -3.038
% -3.880 -3.359 -3.038

We find that the ADF test statistic is about —3.64, certainly more
negative than the critical value at the 95 percent level of —3.359. So
we can reject the null hypothesis that A is zero. In other words, EWA
and EWC are cointegrating with 95 percent certainty.

Johansen Test

In order to test for cointegration of more than two variables, we need to
use the Johansen test. To understand this test, let’s generalize Equation 2.1
to the case where the price variable y(t) are actually vectors representing
multiple price series, and the coefficients A and o are actually matrices.
(Because I do not think it is practical to allow for a constant drift in the
price of a stationary portfolio, we will assume Bt = 0 for simplicity.) Using
English and Greek capital letters to represent vectors and matrices respec-
tively, we can rewrite Equation 2.1 as

AY(t)= AY(t— 1) + M+ A,AY(t — 1)+ - + 4,AY(t — k) + ¢, (2.7)

Just as in the univariate case, if A =0, we do not have cointegration.
(Recall that if the next move of Y doesn’t depend on the current price level,
there can be no mean reversion.) Let’s denote the rank (remember this
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quaint linear algebraic term?) of A as r, and the number of price series n.
The number of independent portfolios that can be formed by various linear
combinations of the cointegrating price series is equal to r. The Johansen test
will calculate r for us in two different ways, both based on eigenvector de-
composition of A. One test produces the so-called trace statistic, and other
produces the eigen statistic. (A good exposition can be found in Sorensen,
2005.) We need not worry what they are exactly, since the jplv7 package
will provide critical values for each statistic to allow us to test whether we
can reject the null hypotheses that r = 0 (no cointegrating relationship),
r < 1,...,up tor<n—1.Ifall these hypotheses are rejected, then clearly
we have r = n. As a useful by-product, the eigenvectors found can be used
as our hedge ratios for the individual price series to form a stationary port-
folio. We show how to run this test on the EWA-EWC pair in Example 2.7,
where we find that the Johansen test confirms the CADF test’s conclusion
that this pair is cointegrating. But, more interestingly, we add another ETF
to the mix: IGE, an ETF consisting of natural resource stocks. We will see
how many cointegrating relations can be found from these three price se-
ries. We also use the eigenvectors to form a stationary portfolio, and find out

its half-life for mean reversion.

] Example 2.7: Using the JohansenTest for Cointegration [

We take the EWA and EWC price series that we used in Example
2.6 and apply the Johansen test to them. There are three inputs to
the johansen function of the jplv7 package: y, p, and k. y is the input
matrix, with each column vector representing one price series. As in
the ADF and CADF tests, we set p =0 to allow the Equation 2.7 to
have a constant offset (M # 0), but not a constant drift term ( = 0).
The input k is the number of lags, which we again set to 1. (This code
fragment is part of cointegration Tests.m.)

o

% Combine the two time series into a matrix y2 for input
% into Johansen test

y2=I[y, x1;

results=johansen(y2, 0, 1);

% Print out results

prt (results) ;

(Continued)
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Example 2.7 (Continued)

% Output:

d

Johansen MLE estimates

NULL: Trace Statistic Crit 90% Crit 95% Crit 99%
r <= 0 variable 1 19.983 13.429 15.494 19.935
r <= 1 variable 2 3.983 2.705 3.841 6.635
NULL: Eigen Statistic Crit 90% Crit 95% Crit 99%
r <= 0 variable 1 16.000 12.297 14.264 18.520
r <= 1 variable 2 3.983 2.705 3.841 6.635

We see that for the Trace Statistic test, the hypothesis r =0 is
rejected at the 99% level, and r < 1 is rejected at the 95 percent
level. The Eigen Statistic test concludes that hypothesis r = 0
is rejected at the 95 percent level, and r < 1 is rejected at the
95 percent as well. This means that from both tests, we conclude

that there are two cointegrating relationships between EWA and
EWC.

What does it mean to have two cointegrating relations when
we have only two price series? Isn’t there just one hedge ratio that
will allocate capital between EWA and EWC to form a stationary
portfolio? Actually, no. Remember when we discussed the CADF
test, we pointed out that it is order dependent. If we switched the
role of the EWA from the independent to dependent variable, we
may get a different conclusion. Similarly, when we use EWA as
the dependent variable in a regression against EWC, we will get a
different hedge ratio than when we use EWA as the independent
variable. These two different hedge ratios, which are not necessarily
reciprocal of each other, allow us to form two independent stationary
portfolios. With the Johansen test, we do not need to run the
regression two times to get those portfolios: Running it once will
generate all the independent cointegrating relations that exist. The
Johansen test, in other words, is independent of the order of the
price series.

Now let us introduce another ETF to the portfolio: IGE, which
consists of natural resource stocks. Assuming that its price series is
contained in an array z, we will run the Johansen test on all three
price series to find out how many cointegrating relationships we can
get out of this trio.



] Example 2.7 (Continued) [

y3=l[y2, z];
results=johansen(y3, 0, 1);

% Print out results

prt (results) ;

% Output:

% Johansen MLE estimates

% NULL: Trace Statistic Crit 90% Crit 95% Crit 99%
$ r <= 0 variable 1 34.429 27.067 29.796 35.463
$ r <= 1 variable 2 17.532 13.429 15.494 19.935
% r <= 2 variable 3 4.471 2.705 3.841 6.635
% NULL: Eigen Statistic Crit 90% Crit 95% Crit 99%
$ r <= 0 variable 1 16.897 18.893 21.131 25.865
$ r <= 1 variable 2 13.061 12.297 14.264 18.520
$ r <= 2 variable 3 4.471 2.705 3.841 6.635

Both Trace statistic and Eigen statistic tests conclude that we should
have three cointegrating relations with 95 percent certainty.

The eigenvalues and eigenvectors are contained in the arrays
results.eig and results.evec, respectively.

o

results.eig % Display the eigenvalues

% ans =

% 0.0112
% 0.0087
% 0.0030

o

results.evec % Display the eigenvectors

% ans =

% -1.0460 -0.5797 -0.2647
% 0.7600 -0.1120 -0.0790
% 0.2233 0.5316 0.0952

Notice that the eigenvectors (represented as column vectors in
results.evec) are ordered in decreasing order of their corresponding

eigenvalues. So we should expect the first cointegrating relation to be
(Continued )
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Example 2.7 (Continued) [

the “strongest”; that is, have the shortest half-life for mean reversion.

Naturally, we pick this eigenvector to form our stationary portfolio
(the eigenvector determines the shares of each ETF), and we can find
its half-life by the same method as before when we were dealing with
a stationary price series. The only difference is that we now have to
compute the T X 1 array yport, which represents the net market value
(price) of the portfolio, which is equal to the number of shares of
each ETF multiplied by the share price of each ETF, then summed
over all ETFs. yport takes the role of y in Example 2.4.

yport=smartsum(repmat (results.evec(:, 1)', [size(y3, 1)
1]) .*y3, 2);

% Find value of lambda and thus the half-life of mean
% reversion by linear regression fit

ylag=lag(yport, 1); % lag is a function in the jplv7
% (spatial-econometrics.com) package.

delta¥Y=yport-ylag;

deltaY(1l)=[]; % Regression functions cannot handle the NaN
% in the first bar of the time series.

ylag(1)=I[1;
regress_results=ols(deltaY, [ylag ones(size(ylag))l);

halflife=-log(2) /regress results.beta(l);

The half-life of 23 days is considerably shorter than the 115 days for
USD.CAD, so we expect a mean reversion trading strategy to work
better for this triplet.

Linear Mean—Reverting Trading on a Portfolio

In Example 2.7 we determined that the EWA-EW C-IGE portfolio formed
with the “best” eigenvector from the Johansen test has a short half-life. We

can now confidently proceed to backtest our simple linear mean-reverting

strategy on this portfolio. The idea is the same as before when we own a

number of units in USD.CAD proportional to their negative normalized de-

viation from its moving average (i.e., its Z-Score). Here, we also accumulate

units of the portfolio proportional to the negative Z-Score of the “unit” port-

folio’s price. A unit portfolio is one with shares determined by the Johansen

eigenvector. The share price of a unit portfolio is like the share price of a



mutual fund or ETF: it is the same as its market value. When a unit portfolio
has only a long and a short position in two instruments, it is usually called a
spread. (We express this in more mathematical form in Chapter 3.)

Note that by a “linear” strategy we mean only that the number of units
invested is proportional to the Z-Score, not that the market value of our
investment is proportional.

This linear mean-reverting strategy is obviously not a practical strategy, at
least in its simplest version, as we do not know the maximum capital required

Example 2.8: Backtesting a Linear Mean-Reverting
Strategy on a Portfolio

The yport is aTx1 array representing the net market value of the
“unit” portfolio calculated in the preceding code fragment. numUnits
is aTx1 array representing the multiples of this unit portfolio we
wish to purchase. (The multiple is a negative number if we wish

to short the unit portfolio.) All other variables are as previously
calculated. The positions is a Tx3 array representing the position
(market value) of each ETF in the portfolio we have invested in.
(This code fragment is part of cointegrationTests.m.)

o

% Apply a simple linear mean reversion strategy to EWA-EWC-
% IGE

lookback=round (halflife); % setting lookback to the halflife
% found above

numUnits =- (yport-movingAvg (yport, lookback))...
./movingStd (yport, lookback); % multiples of unit
% portfolio . movingAvg and movingStd are functions from
% epchan.com/book2

positions=repmat (numUnits, [1 size(y3, 2)1) .*repmat (results. ...
evec(:, 1)', [size(y3, 1) 1]).*y3;
% results.evec(:, 1)’ is the shares allocation, while

positions is the capital (dollar)
allocation in each ETF.

o oo

pnl=sum(lag(positions, 1).*(y3-lag(y3, 1))./lag(y3, 1), 2);
% daily P&L of the strategy

ret=pnl./sum(abs (lag(positions, 1)), 2); % return is P&L
% divided by gross market value of portfolio

Figure 2.7 displays the cumulative returns curve of this linear mean-

reverting strategy for a stationary portfolio of EWA, EWC, and IGE.
(Continued)
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FIGURE 2.7 Cumulative Returns of a Linear Trading
Strategy on EWA-EW C-IGE Stationary Portfolio

We find that APR = 12.6 percent with a Sharpe ratio of 1.4 for the
strategy.

at the outset and we cannot really enter and exit an infinitesimal number of
shares whenever the price moves by an infinitesimal amount. Despite such
impracticalities, the importance of backtesting a mean-reverting price series
with this simple linear strategy is that it shows we can extract profits with-
out any data-snooping bias, as the strategy has no parameters to optimize.
(Remember that even the look-back is set equal to the half-life, a quantity that
depends on the properties of the price series itself, not our specific trading
strategy.) Also, as the strategy continuously enters and exits positions, it is
likely to have more statistical significance than any other trading strategies that
have more complicated and selective entry and exit rules.

B Pros and Cons of Mean-Reverting Strategies

It is often fairly easy to construct mean-reverting strategies because we are
not limited to trading instruments that are intrinsically stationary. We can
pick and choose from a great variety of cointegrating stocks and ETFs to
create our own stationary, mean-reverting portofolio. The fact that every



year there are new ETFs created that may be just marginally different from
existing ones certainly helps our cause, too.

Besides the plethora of choices, there is often a good fundamental story
behind a mean-reverting pair. Why does EWA cointegrate with EW C?That’s
because both the Canadian and the Australian economies are dominated by
commodities. Why does GDX cointegrate with GLD? That’s because the
value of gold-mining companies is very much based on the value of gold.
Even when a cointegrating pair falls apart (stops cointegrating), we can of-
ten still understand the reason. For example, as we explain in Chapter 4,
the reason GDX and GLD fell apart around the early part of 2008 was high
energy prices, which caused mining gold to be abnormally expensive. We
hope that with understanding comes remedy. This availability of fundamen-
tal reasoning is in contrast to many momentum strategies whose only justi-
fication is that there are investors who are slower than we are in reacting to
the news. More bluntly, we must believe there are greater fools out there.
But those fools do eventually catch up to us, and the momentum strategy in
question may just stop working without explanation one day.

Another advantage of mean-reverting strategies is that they span a great
variety of time scales. At one extreme, market-making strategies rely on
prices that mean-revert in a matter of seconds. At the other extreme, fun-
damental investors invest in undervalued stocks for years and patiently wait
for their prices to revert to their “fair” value. The short end of the time scale
is particularly beneficial to traders like ourselves, since a short time scale
means a higher number of trades per year, which in turn translates to higher
statistical confidence and higher Sharpe ratio for our backtest and live trad-
ing, and ultimately higher compounded return of our strategy.

Unfortunately, it is because of the seemingly high consistency of mean-
reverting strategy that may lead to its eventual downfall. As Michael
Dever pointed out, this high consistency often lulls traders into over-
confidence and overleverage as a result (Dever, 2011). (Think Long Term
Capital Management.) When a mean-reverting strategy suddenly breaks
down, perhaps because of a fundamental reason that is discernible only
in hindsight, it often occurs when we are trading it at maximum leverage
after an unbroken string of successes. So the rare loss is often very painful
and sometimes catastrophic. Hence, risk management for mean reverting
is particularly important, and particularly difficult since the usual stop
losses cannot be logically deployed. In Chapter 8, I discuss why this is the
case, as well as techniques for risk management that are suitable for mean-
reverting strategies.

N
o

NOISYdATY NVAW 40 SDISVd dH.L



[N
N

ALGORITHMIC TRADING

KEY POINTS
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¢ Mean reversion means that the change in price is proportional to the

difference between the mean price and the current price.

Stationarity means that prices diffuse slower than a geometric random walk.
The ADF test is designed to test for mean reversion.

The Hurst exponent and Variance Ratio tests are designed to test for
stationarity.

Half-life of mean reversion measures how quickly a price series reverts to its
mean, and is a good predictor of the profitability or Sharpe ratio of a mean-
reverting trading strategy when applied to this price series.

A linear trading strategy here means the number of units or shares of a unit
portfolio we own is proportional to the negative Z-Score of the price series
of that portfolio.

If we can combine two or more nonstationary price series to form a
stationary portfolio, these price series are called cointegrating.
Cointegration can be measured by either CADF test or Johansen test.

The eigenvectors generated from the Johansen test can be used as hedge
ratios to form a stationary portfolio out of the input price series, and the one
with the largest eigenvalue is the one with the shortest half-life.
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Implementing
Mean Reversion
Strategies

n the previous chapter, we described the statistical tests for determining

whether a price series is stationary and therefore suitable for mean re-
version trading. This price series may be the market value of a single asset,
though it is rare that such stationary assets exist, or it may be the market
value of a portfolio of cointegrating assets, such as the familiar long-short
stock pair.

In practice, though, we should remember that we don’t necessarily
need true stationarity or cointegration in order to implement a success-
ful mean reversion strategy: If we are clever, we can capture short-term
or seasonal mean reversion, and liquidate our positions before the pric-
es go to their next equilibrium level. (Seasonal mean reversion means
that a price series will mean-revert only during specific periods of the
day or under specific conditions.) Conversely, not all stationary series
will lead to great profits—mnot if their half-life for mean reversion is
10 years long.

We also described a simple linear mean reversion strategy that sim-
ply “scales” into an asset in proportion to its price’s deviation from the
mean. It is not a very practical strategy due to the constant infinitesimal
rebalancing and the demand of unlimited buying power. In this chapter,

we discuss a more practical, but still simple, mean reversion strategy—
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the Bollinger bands. We describe variations of this technique, including
the pros and cons of using multiple entry and exit levels (“scaling-in”),
and the use of the Kalman filter to estimate the hedge ratio and mean
price. Finally, we highlight the danger data errors pose to mean-reverting
strategies.

In presenting the backtests of any strategy in this book, we do not in-
clude transaction costs. We sometimes even commit a more egregious er-
ror of introducing look-ahead bias by using the same data for parameter
optimization (such as finding the best hedge ratio) and for backtest. These
are all pitfalls that we warned about in Chapter 1. The only excuse for
doing this is that it makes the presentation and source codes simpler to
understand. [ urge readers to undertake the arduous task of cleaning up
such pitfalls when implementing their own backtests of these prototype

strategies.

B Trading Pairs Using Price Spreads, Log Price
Spreads, or Ratios

In constructing a portfolio for mean reversion trading in Chapter 2, we
simply used the market value of the “unit” portfolio as the trading signal.
This market value or price is just the weighted sums of the constituent price
series, where the weights are the hedge ratios we found from linear regres-
sion or from the eigenvectors of the Johansen test:

)/:hlyl+b2)/2+"'+hn)/n (31)

y is, by construction, a stationary time series, and the h;’s tell us the number
of shares of each constituent stock (assuming we are trading a stock portfo-
lio). In the case of just two stocks, this reduces to a spread familiar to many

pair traders:

y=y1—hy,. (3.2)

(We inserted a minus sign in Equation 3.2 to anticipate the fact that we will
usually be long one stock and short another, so that h as defined this way will
be positive.) Suppose instead of price series, we find that the log of prices
are cointegrating, such that

log(q) = hylog( y;) + hylog( y,) + -+ + h,log( y,) (3.3)



is stationary for some set of h’s derived from either a regression fit or Johan-
sen’s eigenvectors. How do we interpret this equation, since g (for “query”)
is just a name given to a stationary time series that may or may not be the
market value of a portfolio? To find out its properties, let’s take its first dif-

ference in time:

Alog(q) = hlAlog(yl) + thlog( yy) + ot hnAlog (Jn)- 3.4)

Remembering that A log (x) = log (x(t)) —log (x (t— 1)) =log (x(t)/ x(t— 1))
=~ Ax/x for small changes in x, the right hand side of Equation 3.4 be-
comes hiAy/y; + hyAy,/y, + --+ + h,Ay,/y,, which is none other than
the returns of a portfolio consisting of the n assets with weights h’s. But
unlike the hedge ratio h’s in Equation 3.1 where they referred to the
number of shares of each asset, here we can set the market value of each
asset to h. So we can interpret ¢ as the market value of a portfolio of assets
h

together with a cash component implicitly included, and this market val-

b n’

with prices yy, y,, ..., y, and with constant capital weights hy, h,, ...

ue will form a stationary time series. Note that a cash component must
be implicitly included in the portfolio g because if the capital weights
h’s are kept constant, there is no other way that the market value of the
portfolio can vary with time. This cash does not show up in Equation 3.4
because its market value, of course, doesn’t change from ¢t — 1 toras a
result of market movement, but its value will change at ¢ when the trader
rebalances the portfolio to maintain the constancy of the capital weights,
realizing some of the gains or losses, and adding to or subtracting from
the cash balance. So to keep the market value of this portfolio stationary
(but not constant!) requires a lot of work for the traders, as they need
to constantly rebalance the portfolio, which is necessitated by using the
log of prices.

The upshot of all these is that mean reversion trading using price
spreads is simpler than using log price spreads, but both can be theo-
retically justified if both price and log price series are cointegrating. But
what about the ratio of prices y;/y, that many traders favor as the signal
for a pair? If we look at Equation 3.1 in the case of just two price se-
ries, we notice that if h; = —h,, then indeed log(y,/y,) or y;/y, is sta-
tionary. But this is a special case: We normally don’t expect the hedge
ratios to be equal in magnitude, or equal to —1 if we normalize them.
So the ratio y;/y, does not necessarily form a stationary series. But as

one reader mentioned, using ratios may have an advantage when the
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underlying pair is not truly cointegrating (http://epchan.blogspot
.com/2012/02/ideas-from-psychologist.html?show Comment=132980
1874131#¢3278677864367113894). Suppose price A = $10 and price
B = §5 initially, so the ratio is 2. After some time, price A increases to
$100 and price B to $50. The spread has gone from $5 to $50, and we
will probably find that it is not stationary. But the ratio remains 2, and a
mean-reverting strategy that trades based on ratio can be equally effec-
tive whether their prices are $10 versus $5 or $100 versus $50. In other
words, if your two assets are not really cointegrating but you believe their
spread is still mean reverting on a short time frame, then using ratio as an
indicator may work better than either price spreads or log price spreads.
(This is the same idea as using moving average and standard deviation in
our linear mean-reverting strategy.)

There is another good reason to use ratio when a pair is not truly coin-
tegrating. For such pairs, we often need to use a dynamically changing
hedge ratio to construct the spread. But we can dispense with this trouble
if we use the ratio as a signal in this situation. But does a ratio work bet-
ter than an adaptive hedge ratio with price (or log price) spreads? I don’t
know a general answer to this, but we can look at Example 3.1, where
we compare the use of price spreads, log price spreads, and ratios in
the linear mean reversion strategy involving GLD and USO, the gold
and the crude oil exchange-traded funds (ETFs). You will find, in that
example at least, price spreads with an adaptive hedge ratio work much
better than ratio.

An interesting special case is currency trading. If we trade the currency
pair EUR.GBP, we are using ratio because this is exactly equal to trading
EUR.USD/GBP.USD. We already demonstrated a simple mean-reverting
strategy on trading such currency pairs in Example 2.5 for USD.CAD using
ratio as the signal. But about those pairs that have no ready-made cross rates
on many brokerages or exchanges, such as MXN.NOK? Should we use the
ratio USD.NOK/USD.MXN as the signal, or the spread USD.NOK-USD
.MXN instead? Again, because MXN.NOK is not truly stationary, using the
ratio MXN.NOK may be more effective. This is true even though we can’t
directly trade MXN.NOK, and have to trade USD.NOK and USD.MXN
instead. (Trading USD.NOK and USD.MXN will generate profit and loss
[P&L] denominated in both NOK and MXN. Trading MXN.NOK' would
have generated P&L denominated only in NOK. So the two methods are
not identical.)


http://epchan.blogspot.com/2012/02/ideas-from-psychologist.html?showComment=1329801874131#c3278677864367113894
http://epchan.blogspot.com/2012/02/ideas-from-psychologist.html?showComment=1329801874131#c3278677864367113894
http://epchan.blogspot.com/2012/02/ideas-from-psychologist.html?showComment=1329801874131#c3278677864367113894

Example 3.1: Trading Price Spread, Log Price
Spread, and Ratio

We apply the linear mean-reverting strategy from Examples 2.5 and
2.8 to the ETFs GLD and USO. But we try this strategy on the price
spread, log price spread, and ratio for comparison.

Some traders believe that when oil prices go up, so do gold prices.
The logic is that high oil price drives up inflation, and gold prices are
positively correlated with inflation. But you can verify using one of
the cointegration tests we studied in Chapter 2 that gold (represented
by the ETF GLD) and oil prices (represented by USO) are not, in
fact, cointegrated. (We will gloss over the difference between spot
oil prices versus oil futures, which actually constitute USO. We will
come back to this difference in Chapter 5). Nevertheless, we will
see if there is enough short-term mean reversion to make a mean-

reverting strategy profitable.

We will first try the price spread as the signal. But we need to
dynamically recalculate the hedge ratio every day using a short look-
back period (set to near-optimal 20 trading days with the benefit
of hindsight) in order to adapt to the changing levels of the ETFs
over time. The method we used to calculate the hedge ratio is linear
regression, using the ols function from the jplv7 package as before.
You can, of course, use the first eigenvector from the Johansen test

instead.

The MATLAB source code can be downloaded from my website as
PriceSpread.m. We assume the price series of GLD is contained in the
Tx1 array x, and that of USO is contained in the Tx1 array y. Note
that what is usually referred to as the “spread” USO-hedgeRatio*GLD
is equal to the price of the unit portfolio, which we denote as yport in
the program.

o

% lookback period for calculating the dynamically changing

o

% hedge ratio

lookback=20;
hedgeRatio=NaN(size (x, 1), 1);

for t=lookback:size (hedgeRatio, 1)

regression_result=ols(y(t-lookback+l:t),
[x (t-lookback+1l:t) ones(lookback, 1)]);

hedgeRatio(t)=regression_result.beta(l);

(Continued )
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Example 3.1 (Continued)

end
y2=[x vl;
yport=sum( [-hedgeRatio ones (size (hedgeRatio))].*y2, 2);

Plotting this spread in Figure 3.1 shows that it looks very
stationary. We will now see if we can create a profitable linear mean
reversion strategy. Once again, the number of units (shares) of the
unit portfolio we should own is set to be the negative Z-Score, and
the Tx2 positions array represents the market value (in dollars) of each
of the constituent ETFs we should be invested in.

numUnits=- (spread-movingAvg (spread, lookback))

. /movingStd (spread, lookback) ;

positions=repmat (numUnits, [1 size(y2, 2)]).*[hedgeRatio ...
-ones (size (hedgeRatio) )] .*y2; pnl=sum(lag(positions,
1) .*x(y2-lag(y2, 1))./lag(y2, 1), 2); % daily P&L of the

o

% strategy

ret=pnl./sum(abs (lag(positions, 1)), 2); % return is P&L

o

% divided by gross market value of portfolio

We obtain an annual percentage rate (APR) of about 10.9 percent
and Sharpe ratio of about 0.59 using price spread with a dynamic hedge
ratio, even though GLD and USO are by no means cointegrated.

Next, we will see if using log prices will make any difference. The
source code for this is in LogPriceSpread.m, but we will display here

the only two lines that are different from PriceSpread. m:
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FIGURE 3.1 Spread between USO and GLD Using a
Changing Hedge Ratio
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Example 3.1 (Continued) [

regression result=ols(log(y(t-lookback+l:t)),
[log(x(t-lookback+l:t)) ones(lookback, 1)1);

and

yport=sum([-hedgeRatio ones (size (hedgeRatio))].*log(y2),
2); % The net market value of the portfolio is same as
% the “spread”

The APR of 9 percent and Sharpe ratio of 0.5 are actually
lower than the ones using the price spread strategy, and this is
before accounting for the extra transactions costs associated with

rebalancing the portfolio every day to maintain the capital allocation

to each ETF.

Next, we will try using ratio as the signal. In this case, we will also
require the long and short side to have the same dollar capital. The
source code is in Ratio.m. It is interesting to look at a plot of the ratio
in Figure 3.2 first.

You can see that the ratio actually doesn’t look very stationary at
all, compared with either the price spread or adaptive hedge ratio.

So it should not surprise us if we find the mean-reverting strategy to
perform poorly, with a negative APR.
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May 24, 2006, to April 9, 2012

FIGURE 3.2 Ratio=USO/GLD
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] Example 3.1 (Continued) [

lookback=20; % Lookback is set arbitrarily
ratio=y./x;

ratio(l:lookback)=[]; % Removed to have same test set as

o

% price spread and log price spread strategies
x(1:lookback)=[];
y(1l:1lookback)=[];

% Apply a simple linear mean reversion strategy to GLD-USO

numUnits=- (ratio-movingAvg(ratio, lookback)) ...
./movingStd (ratio, lookback); positions=repmat (numUnits,

[1 2]).*[-ones(size(x, 1), 1) ones(size(x, 1), 1)1;
pnl=sum(lag(positions, 1).*([x yl-lag([x y], 1)).
/lag([x y]l, 1), 2); ret=pnl./sum(abs(lag(positions, 1)), 2);

B Bollinger Bands

The only mean-reversal strategy I have described so far is the linear strat-
egy: simply scale the number of units invested in a stationary unit portfolio
to be proportional to the deviation of the market value (price) of the unit
portfolio from a moving average. This simple strategy is chosen because it
is virtually parameterless, and therefore least subject to data-snooping bias.
While this linear strategy is useful for demonstrating whether mean rever-
sion trading can be profitable for a given portfolio, it is not practical because
we don’t know beforehand what the maximum capital deployed will be, as
there is no limit to the temporary deviation of the price from its average.
For practical trading, we can use the Bollinger band, where we enter into
a position only when the price deviates by more than entryZscore standard
deviations from the mean. entryZscore is a free parameter to be optimized in
a training set, and both standard deviation and mean are computed within
a look-back period, whose length again can be a free parameter to be op-
timized, or it can be set equal to the half-life of mean reversion. We can
exit when the price mean-reverts to exitZscore standard deviations from the
mean, where exitZscore < entryZscore. Note that if exitZscore = 0, this means
we will exit when the price mean-reverts to the current mean. If exitZscore
= —entryZscore, we will exit when the price moves beyond the opposite band
50 as to trigger a trading signal of the opposite sign. At any one time, we can
have either zero or one unit (long or short) invested, so it is very easy to

allocate capital to this strategy or to manage its risk. If we set the look-back



to a short period, and small entryZscore and exitZscore magnitude, we will get
a shorter holding period and more round trip trades and generally higher
profits. We illustrate the Bollinger band technique in Example 3.2 using the
pair GLD-USO we discussed above.

Example 3.2: Bollinger Band Mean
Reversion Strategy

We traded GLD-USO in Example 3.1 using price spread USO-
hedgeRatio*GLD as the signal with a linear mean reversion strategy.
Here, we simply switch to a Bollinger band strategy, using the
entryZscore = 1 and exitZscore = 0, with the first part of the program
identical to PriceSpread.m. The present source code is in bollinger.m.
Notice that the entry signals longsEntry and shortsEntry are Tx1 logical
arrays, as are the exit signals longsExit and shortsExit. We initialize the
number of units of the unit portfolio on the long side, numUnitsLong,
aTx1 array, and then set one of its values to 1 if we have a long entry
signal, and to 0 if we have a long exit signal; and vice versa for the
number of units on the short side. For those days that do not have
any entry or exit signals, we use the fillMissingData function to carry
forward the previous day’s units. (fillMissingData starts with the
second row of an array, and overwrites any cell’s NaN value with the
corresponding cell’s value in the previous row. It can be downloaded
from my website.) Once numUnitsLong and numUnitsShort are
computed, we can combine them to find the net number of units
denoted by numUnits. The rest of the program is the same as in
Example 3.1’s PriceSpread.m.

% Bollinger band strategy

entryZscore=1;

exitZscore=0;

zScore= (yport-movingAvg (yport, lookback)) ./movingStd (yport,
lookback) ;

o

longsEntry=zScore < -entryZscore; % a long position means we
% should buy EWC

longsExit=zScore >= -exitZscore;

shortsEntry=zScore > entryZscore;

shortsExit=zScore <= exitZscore;

numUnitsLong=NaN (length (yport), 1);
(Continued )
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] Example 3.2 (Continued) [

numUnitsShort=NaN (length (yport), 1);

numUnitsLong (1)=0;
numUnitsLong (longsEntry)=1;
numUnitsLong (longsExit)=0;

numUnitsLong =fillMissingData (numUnitsLong) ;

numUnitsShort (1)=0;
numUnitsShort (shortsEntry)=-1;
numUnitsShort (shortsExit)=0;

numUnitsShort =fillMissingData (numUnitsShort) ;

numUnits= numUnitsLong + numUnitsShort;

The Bollinger band strategy has an APR = 17.8 percent, and Sharpe
ratio of 0.96, quite an improvement from the linear mean reversal

strategy! The cumulative returns curve is shown on Figure 3.3.

1.8 T

1.6F 1

1.4 1

Cumulative Returns

0 500 1000 1500
May 24, 2006, to April 9, 2012

FIGURE 3.3 Cumulative Returns of Bollinger Band
Strategy on GLD-USO

B Does Scaling-in Work?

The notion of scaling into a position with a mean-reverting strategy is famil-
iar to many traders. (Another name for it is averaging-in.) As the price (of an

asset, a spread, or a portfolio) deviates further and further from its mean,



the potential profit to be reaped from an eventual reversal is also increas-
ing; thus, it makes sense to increase the capital invested. This is exactly what
our linear mean-reversal strategy does. Note also that this type of scaling-in
strategies also scale out gradually: We do not have to wait until the price
reverts to its mean before taking profits. The advantage of being able to exit
whenever the price reverts by a small increment is that even if the price
series is not really stationary and therefore never really reverts to its mean,
we can still be profitable by constantly realizing small profits. An added ben-
efit is that if you are trading large sizes, scaling-in and -out will reduce the
market impact of the entry and exit trades. If we want to implement scaling-
in using Bollinger bands, we can just have multiple entries and exits: for
example, entryZscore=1, 2,3, ..., N and exitZscore=0,1,2, ..., N— 1. Of
course, N is another parameter to be optimized using a training data set.

All of these seemed very commonsensical until the research by Schoen-
berg and Corwin proved that entering or exiting at two or more Bollinger
bands is never optimal; that is, you can always find a single entry/exit level
that will generate a higher average return in a backtest (Schoenberg and
Corwin, 2010). They call this optimal single entry method “all-in.”

To illustrate their point, let’s say a future contract has recently dropped to
aprice Ly, and you expect it to revert to a higher final price F> L; (we have
to assume mean reversion to compare averaging-in versus all-in), though
there is a probability p that the price will go lower to L, < L; before re-
bounding to F These possibilities are illustrated in Figure 3.4. We have just
enough buying power to invest in a total of two contracts, whether at prices
Ly, L,, or E Let’s compare the three different methods of entry:

I. All-in at L;: We invest all our capital when the price reaches L;, not car-
ing whether it will go lower to L,.

FIGURE 3.4 Two Possible Paths of Mean
Reversion. Path 1 (with probability p) has price
drops further from L, to L, before reverting to E
Path 2 (with probability 1 — p) has price imme-
diately reverts to E (Note that mean reversion is
guaranteed one way or the other in this example.)
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II. All-in at L,: We wait until the price reaches L, before investing all our
capital. (Therefore, we invest nothing and earn zero returns if the price
never reaches L,.)

III. Average-in: We invest in one contract when the price reaches L;, and in

another contract if the price reaches L,.

In all cases, we exit all contracts only when the price reaches F (so no aver-
age-out, even if there is average-in). What are the expected profits of each
alternative? The expected profits in points are:

I 2(F—1L))
. 2p(F—Ly)
IL p[(F=Ly)+(F=Ly]l+ (1 =p)(F=L)=(F= L) +p(F—1L,)

Obviously, if p = 0, method I is the most profitable. If p = 1, method Il is the
most profitable. In fact, there is a transition probability p=(F—L;) / (F—L,)
such that if p < p, method I is more profitable than II, and vice versa if p > p.
It is also easy to show that if p < p, method I is also more profitable than III,
and if p > p, method II is more profitable than IIl. So there is no situation
where the average-in strategy is the most profitable one!

So does that mean the whole idea of scaling-in/averaging-in has been
debunked? Not necessarily. Notice the implicit assumption made in my
illustration: the probability of deviating to L, before reverting to F is
constant throughout time. In real life, we may or may not find this prob-
ability to be constant. In fact, volatility is usually not constant, which
means that p will not be constant either. In this circumstance, scaling-in
is likely to result in a better realized Sharpe ratio if not profits. Another
way to put it is that even though you will find that scaling-in is never op-
timal in-sample, you may well find that it outperforms the all-in method
out-of-sample.

B Kalman Filter as Dynamic
Linear Regression

For a pair of truly cointegrating price series, determination of the hedge
ratio is quite easy: just take as much historical data as you can find, and use
ordinary least square (OLS) for a regression fit or use the Johansen test to
find the eigenvectors. But as we have emphasized before, stationarity and
cointegration are ideals that few real price series can achieve. So how best to



estimate the current hedge ratio for a pair of real price series when it can vary
with time? In all the mean-reverting strategies we have discussed so far, we
just took a moving look-back period and computed the regression coefficient
or Johansen eigenvector over data in that period only. This has the disadvan-
tage that if the look-back period is short, the deletion of the earliest bar and
the inclusion of the latest bar as time moves forward can have an abrupt and
artificial impact on the hedge ratio. We face the same problem if we use mov-
ing averages or moving standard deviations to calculate the current mean and
standard deviation of a price series. In all cases, we may be able to improve
the estimate by using a weighting scheme that gives more weight to the latest
data, and less weight to the earlier data, without an arbitrary cutoff point. The
familiar exponential moving average (EMA) is one such weighting scheme,
but it is not clear why an exponential decrease in weights is optimal either.
Here, we will describe a scheme of updating the hedge ratio using the Kal-
man filter that avoids the problem of picking a weighting scheme arbitrarily
(Montana, Triantafyllopoulos, and Tsagaris, 2009).

Kalman filter is an optimal linear algorithm that updates the expected
value of a hidden variable based on the latest value of an observable variable.
(For a good exposition of this topic, see Kleeman, 2007.) It is linear because
it assumes that the observable variable is a linear function of the hidden
variable with noise. It also assumes the hidden variable at time ¢ is a linear
function of itself at time ¢ — 1 with noise, and that the noises present in these
functions have Gaussian distributions (and hence can be specified with an
evolving covariance matrix, assuming their means to be zero.) Because of
all these linear relations, the expected value of the hidden variable at time
t is also a linear function of its expected value prior to the observation at
t, as well as a linear function of the value of the observed variable at ¢. The
Kalman filter is optimal in the sense that it is the best estimator available if
we assume that the noises are Gaussian, and it minimizes the mean square
error of the estimated variables.

For every application of Kalman filtering, we need to first figure out what
these variables and matrices are:

m Observable variable (vector)
m Hidden variable (vector)
m State transition model (matrix)

m Observation model (matrix)
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This is actually the only creative part of the application because once these
quantities are specified, the rest is just a robotic application of an existing
algorithm. As traders, we don’t need to know how to derive the relation-
ships between these quantities—we only need to know where to find a good
software package that gives us the right answer.

In our application where the focus is to find the hedge ratio and the aver-
age mean and volatility of the spread, the observable variable is one of the price
series y, and the hidden variable is the hedge ratio B. The linear function that
relates y and B is, of course,

(1) = x(t) B(r) + €(t), (“Measurement equation”) (3.5)

where x is the price series of the other asset, and € is a Gaussian noise with
variance Ve. As we typically allow the spread between x and y to have a
nonzero mean, we will use a 2 X 1 vector B to denote both the intercept u
and the slope of the linear relation between x and y, and we will augment
x(t) with a column vector of ones to create an N X 2 array to allow for the
constant offset between x and y. x actually serves as the observation model in
the Kalman filter lingo.

It may seem strange that we regard only y(t) as an observable but not x(t),
but this is just a mathematical trick, as every variable in the Kalman filter
equations is observable except for the hidden variable and the noises, and so
we have the freedom to designate which variable is the “observable” (y) and
which one is the “observation model” (x). Next, we make a crucial assump-
tion that the regression coefficient (our hidden variable) at time ¢ is the same
as that at time ¢ — 1 plus noise

Bt)=Bt—1)+ o(—1), (“State transition”) (3.6)

where ® is also a Gaussian noise but with covariance V,,. In other words, the
state transition model here is just the identity matrix.

Given the specification of the four important quantities in italics, Kalman
filtering can now iteratively generate the expected value of the hidden variable
B given an observation at . One noteworthy benefit of using the Kalman filter
to find B is that not only do we obtain a dynamic hedge ratio between the two
assets, we also simultaneously obtain what we used to call “the moving average”
of the spread. This is because, as we mentioned, B includes both the slope and
the intercept between y and x. The best current estimate of the intercept is used
in place of the moving average of the spread. But, as your telemarketer often

reminds you, that’s not all! As a by-product, it also generates an estimate of the



standard deviation of the forecast error of the observable variable, which we
can use in place of the moving standard deviation of a Bollinger band.

Despite the linearity of Kalman filtering, the matrix relations relating
various quantities may seem quite complex, so I relegate them to Box 3.1
here for the patient reader to peruse.

Actually, besides the iterative equations, we also need to specify the (co)
variances V¢ and ¥, of the measurement and state transition equations. These

specifications will be included in Box 3.1 as well.

The Iterative Equations of the Kalman Filter

We denote the expected value of B at t given observation at t — 1 by B(tl t—1),
the expected value of B given observation at ¢ by B(t|t), and the expected
value of y(t) given the observation at t — 1 by y(t|t — 1). Given the quantities

Bt — 1|t —1)and Rt — 1|t — 1) at time t — 1, we can make the one-step
predictions

Bit|t—1)=pit—1]t—1)  (“State prediction”) 3.7)

Rit|t-1)=Rt-1|t-=1)+V, (“State covariance prediction”)  (3.8)
y ()= x(t)B(t [t—1) (“Measurement prediction”) (3.9
Q(t) = x({tYR(t|t — 1)x(t) + Vo (“Measurement variance prediction”) (3.10)

where R(t|t— 1) is cov(B(t) — B(t |t — 1)), measuring the covariance of the error of
the hidden variable estimates. (It is a covariance instead of a variance because
B has two independent components.) Similarly, R(t|t) is cov(B({) — |§(t|t)).
Remembering that the hidden variable consists of both the mean of the
spread as well as the hedge ratio, R is a 2 x 2 matrix. e(t) = y(t) — X(t)B(t|t -1)
is the forecast error for y(f) given observation at t — 1, and Q(t) is var(e(t)),
measuring the variance of the forecast error.

After observing the measurement at time t, the famous Kalman filter state
estimate update and covariance update equations are

B(t|) =Pt — 1) + K@) * elt) (“State update”) (3.11)
Rt =R(t|t — 1) — K(t) * x(®) * R(t|t - 1) (“State covariance update”) (3.12)

where K(t) is called the Kalman gain and is given by

Ki(t) = Rt|t — 1) * x(t)/Q(t) (3.13)

To start off these recursions, we assume B(1]0) = 0, R0|0) = 0. But what
about V,, and V,? There is a method to estimate these variances from data
called autocovariance least squares developed by Rajamani and Rawlings
(2007, 2009). There is even a free Matlab/Octave package for implementing

(Continued)
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this method at http://jorwww.che.wisc.edu/software/als. But for simplicity,

we will follow Montana and assume v, 2%1 , Where 0 is a parameter

between 0 and 1, and / is a 2 x 2 identity matrix. If & = O, this means B(t) =
B(t — 1), which reduces the Kalman filter to ordinary least square regression
with a fixed offset and slope. If § = 1, this means the estimated B will fluctuate
wildly based on the latest observation. The optimal 9, just like the optimal
lookback in a moving linear regression, can be obtained using training data.
With the benefit of hindsight, we pick & = 0.0001. With the same hindsight,
we also pick V, = 0.001.
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In Example 3.3, we describe the actual implementation of using the
Kalman filter to estimate a dynamic B for the EWA-EWC pair we discussed
in Example 2.7.

] Example 3.3: Kalman Filter Mean Reversion Strategy [

We will now implement the Kalman filter equations 3.5 through 3.13
and apply them to the EWA-EWC pair. The code can be downloaded
as KF_beta_ EWA_EWC.m. We assume the price series of EWA is stored
in aTx1 array x, and that of EWC is stored in aTx1 array y.
% Augment x with ones to accommodate possible offset in the
% regression

% between y vs x.

x=[x ones(size(x))];

delta=0.0001; % delta=0 allows no change (like traditional
% linear regression).

% measurement prediction

yhat=NaN (size (y)

)
e=NaN(size(y)); % measurement prediction error

o°

Q=NaN(size(y)) ; measurement prediction error variance

% For clarity, we denote R(t|t) by P(t).
% initialize P and beta.

P=zeros (2) ;

beta=NaN (2, size(x, 1));

Vw=delta/ (1-delta) *diag(ones (2, 1));

Ve=0.001;

% Initialize beta(:, 1) to zero

g

beta(:, 1)=0;


http://jbrwww.che.wisc.edu/software/als

] Example 3.3 (Continued) [

for t=1:length(y)
if (£ > 1)

beta(:, t)=beta(:, t-1); % state prediction.

o

% Equation 3.7
R=P+Vw; % state covariance prediction. Equation 3.8
end

vhat (t)=x(t, :)*beta(:, t); % measurement prediction.

o

% Equation 3.9

Q(t)=x(t, :)*R*x(t, :)’+Ve; % measurement variance
% prediction. Equation 3.10

o

% Observe y(t)

e(t)=y(t)-yhat(t); % measurement prediction error
K=R*x(t, :)’/Q(t); % Kalman gain

beta(:, t)=beta(:, t)+K*e(t); % State update.

o

% Equation 3.11

P=R-K*x(t, :)*R; % State covariance update. Eugation 3.12
End

We can see from Figure 3.5 that with 8 = 0.0001, the Kalman-
updated slope B(1, ) of a linear fit between EWC (y) and EWA (x)
oscillates around 1.

1.6 ; T
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FIGURE 3.5 Kalman Filter Estimate of the Slope
between EWC (y) and EWA (x) (Continued )
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] Example 3.3 (Continued)
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FIGURE 3.6 Kalman Filter Estimate of the Intercept
between EWC (y) and EWA (x)

We can also see from Figure 3.6 that the Kalman-updated
intercept B(2, ) increases monotonically with time.

We can utilize these and other quantities computed from the
Kalman filter to create a mean-reverting strategy. The measurement
prediction error e(t) (previously called the forecast error for y(t)
given observation at ¢ — 1) is none other than the deviation of the
spread EWC-EWA from its predicted mean value, and we will buy
this spread when the deviation is very negative, and vice versa if
it is very positive. How negative or positive? That depends on the
predicted standard deviation of e(r), which is none other than /Q (t).
We can plot e(r) and /Q (t) on the same chart (Figure 3.7) to see
that \/Q (t) changes quite slowly given our small 3.

The Matlab code for determining the entry and exit signals follows.
y2=[x(:, 1) vyl;

o

longsEntry=e < -sqrt(Q); % a long position means we should
% buy EWC

longsExit=e > -sqrt (Q);

shortsEntry=e > sqgrt (Q) ;
shortsExit=e < sqgrt(Q);



1

Example 3.3 (Continued) [

Once the entry and exit signals are determined, the rest of the
code is the same as bollinger. m—just substitute beta(1, :) in place of
hedgeRatio. It has a reasonable APR of 26.2 percent and a Sharpe ratio
of 2.4 Its cumulative returns are plotted on Figure 3.8.

2
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FIGURE 3.7 Measurement Prediction Error e(t) and
Standard Deviation of e(t)
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FIGURE 3.8 Cumulative Returns of Kalman Filter Strategy on

EWA-EWC
(Continued )

o
p—

SHIDALVY.LS NOISYTIATY NVAW DNILNIWATIWI



[eld)
N

ALGORITHMIC TRADING

] Example 3.3 (Continued) [

Instead of coding the Kalman filter yourself as we demonstrated,
you can also use many free open-source MATLAB codes available.
One such package can be found at www.cs.ubc.ca/~murphyk
/Software/Kalman/kalman.html. Kalman filters are also available
from MATLAB’s Control System Toolbox.

B Kalman Filter as Market-Making Model

There is another noteworthy application of Kalman filter to a mean-
reverting strategy. In this application we are concerned with only one
mean-reverting price series; we are not concerned with finding the hedge
ratio between two cointegrating price series. However, as before, we still
want to find the mean price and the standard deviation of the price series
for our mean reversion trading. So the mean price m(t) is the hidden vari-
able here, and the price y(t) is the observable variable. The measurement
equation in this case is trivial:

(1) = m(t) + €(2), (“Measurement equation”) (3.14)
with the same state transition equation
m(t)=m(— 1)+ o —1). (“State transition”) (3.15)
So the state update equation 3.11 is just
m(t | t)=m(t | t— 1) + K(t)( y(t) —m(t | t — 1)). (“State update”) (3.16)

(This may be the time to review Box 3.1 if you skipped it on first reading.)

The variance of the forecast error is
Q(¢) = Var(m(t)) + V.. (3.17)
The Kalman gain is
Kt)=R@|t—1)/(Rt|t—1)+ 1), (3.18)

and the state variance update is

R(t | t)= (1 —K@©)R(t | = 1). (3.19)


http://www.cs.ubc.ca/~murphyk/Software/Kalman/kalman.html
http://www.cs.ubc.ca/~murphyk/Software/Kalman/kalman.html

Why are these equations worth highlighting? Because this is a favorite
model for market makers to update their estimate of the mean price of an
asset, as Euan Sinclair pointed out (Sinclair, 2010). To make these equations
more practical, practitioners make further assumptions about the measure-
ment error V,, which, as you may recall, measures the uncertainty of the ob-
served transaction price. But how can there be uncertainty in the observed
transaction price? It turns out that we can interpret the uncertainty in such
a way that if the trade size is large (compared to some benchmark), then the
uncertainty is small, and vice versa. So ¥, in this case becomes a function of ¢
as well. If we denote the trade size as T and the benchmark trade size as T

max»

then V, can have the form

T
V=R(t|t—1) | ——1 (3.20)
T

So you can see that if T =T, there is no uncertainty in the observed

ax>
price, and the Kalman gain is 1, and hence the new estimate of the mean
price m(t) is exactly equal to the observed price! But what should T, be? It
can be some fraction of the total trading volume of the previous day, for ex-
ample, where the exact fraction is to be optimized with some training data.

Note the similarity of this approach to the so-called volume-weighted
average price (VWAP) approach to determine the mean price, or fair value
of an asset. In the Kalman filter approach, not only are we giving more
weights to trades with larger trade sizes, we are also giving more weights to
more recent trade prices. So one might compare this to volume and time-

weighted average price.

B The Danger of Data Errors

Data errors have a particularly insidious effect on both backtesting and ex-
ecuting mean-reverting strategies.

If there are errors, or “outliers,” in the historical data used for back-
testing, then these errors usually inflate the backtest performance of
mean-reverting strategies. For example, if the actual trade prices of a
stock at 11:00, 11:01, and 11:02 were $100, $100, and $100, but the
historical data erroneously recorded them as $100, $110, $100, then
your mean-reverting strategy’s backtest is likely to have shorted the
stock at 11:01 ($110), and then covered the position at 11:02 ($100)
and made a tidy but fictitious profit of $10.You can see that data quality
is particularly important for intraday data, because they present much
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more numerous opportunities for such errors. That’s why reputable data
vendors took great care in incorporating the exchange-provided cancel-
and-correct codes to correct any trades that may have been canceled due
to transaction prices that are too far from “normal.” (What constitutes a
“normal” price is solely determined, sometimes on a case-by-case basis,
by the relevant exchange.) Thomas Falkenberry (2002) has written more
on data cleansing issues.

However, this type of data error will suppress the backtest performance
of momentum strategies, so it is not as dangerous. In the preceding ex-
ample, a momentum strategy will likely buy the stock at 11:01 (§110) in
backtest, and may be stopped out at a loss at 11:02 ($100).

The same kind of errors will, of course, trigger wrong trades in live trad-
ing as well, often resulting in real-life losses. In the preceding example, if the
prices were bid prices, and we have the erroneous bid at $110 at 11:02, then
our execution program may have sent a short market sell order at that time,
which unfortunately will be filled at $100 instead since there was actually
no bid at $110.

This problem with erroneous live bid/ask quotes is particularly dan-
gerous when trading pairs or other arbitrage strategies, because in these
strategies we often depend on the differences of the price quotes from
various instruments to trigger trading signals. The difference of a pair of
quotes is usually of much smaller magnitude than the quotes themselves,
so any error in the quotes results in a much bigger percentage error in the
spread. For example, if we are trading a pair of stocks X and Y, and X has
a true bid price of $100 andY has a true ask price of $105, so the spread
Y—X is $5, which may be too small to trigger an market order to buy X
and sell Y. But if data error causesY to display an ask price of $106, then
the erroneous spread becomes $6, an increase of 20 percent over the real
spread of $5, and this may be enough to trigger an erroneous order to buy
X and sell Y.

[ have seen this problem in live trading when I used a broker’s data feed
to drive an equities pair-trading strategy. That data feed quite regularly trig-
gered losing trades that I could not explain, until I switched the data feed
to a third-party provider (nothing fancier than Yahoo! real-time quotes) and
the bad trades stopped. Later on, I had access to Bloomberg’s live data feed,
and it didn’t trigger any of these bad trades either.

Bad ticks in live data will also cause momentum strategies to send
wrong orders. So they are equally loss-inducing to the execution of those
strategies.



KEY POINTS
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Do you want to construct a mean-reverting portfolio with a fixed number

of shares during the duration of a trade? Use price series to determine the
hedge ratios.

Do you want to construct a mean-reverting portfolio with fixed market
values for each constituent during the duration of a trade? Use log price
series to determine the hedge ratios.

Ratio, instead of spreads, is often a good indicator for trading currency
pairs.

Afraid that the hedge ratio, mean, and standard deviation of a spread may
vary in the future? Use a moving look-back period or the Kalman filter.

A practical implementation of a linear trading strategy is the Bollinger bands
with scaling-in.

Scaling-in may not be optimal in backtests but is often useful for live trading
where volatilities and probabilities do change.

Do you want to dynamically update the expected price of an instrument
based on its latest trade (price and size)? Use the Kalman filter.

Data errors can inflate the backtest results of mean-reverting strategies but
not momentum strategies.

Strategies based on spreads are particularly sensitive to small data errors,
whether in backtest or live trading.
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CHAPTER 4

Mean Reversion of

Stocks and ETFs

he stock market is, in a sense, the most fertile ground for finding mean-

reverting instruments and for the application of those basic mean rever-
sion trading techniques described in the previous two chapters. In theory,
we can form pairs of stocks belonging to any sector and expect them to
cointegrate due to their exposure to many common economic factors. Their
number is large, so diversification is easy. In practice, though, there are some
serious difficulties with applying these generic techniques to trading stocks
and ETFs. This chapter will examine issues specific to stocks and ETFs. I will
also demonstrate that simple mean-reverting strategies actually work better
for ETF pairs and triplets.

But we need not limit ourselves to those strategies described in Chap-
ter 3 when looking for mean reversion in stocks or ETFs. We find that
in the short term, most stocks exhibit mean-reverting properties under
normal circumstances. (Normal circumstance means there isn’t any news
on the stock, a topic that is taken up in Chapter 7.) This is despite the
fact that stock prices follow geometric random walks over the long term.
We will build a strategy to exploit this short-term, or “seasonal,” mean
reversion.

Index arbitrage is another familiar mean reversion strategy. In this

case, we are counting on the cointegration of stocks versus futures or
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stocks versus ETFs. Because little profit is left using the traditional
implementation of index arbitrage, we give an example of a modified
strategy.

As mentioned before, in addition to the familiar time series mean
reversion to which we have devoted all our attention so far, there is the
phenomenon of cross-sectional mean reversion, which is prevalent in
baskets of stocks. Recall that in time series mean reversion, the prices
are reverting to a mean determined by their own historical prices, while
cross-sectional mean reversion means that the cumulative returns of the
instruments in a basket will revert to the cumulative return of the bas-
ket. The statistical tests for time series mean reversion are largely irrel-
evant for cross-sectional mean reversion. This additional type of mean
reversion makes creating any sort of mean-reverting strategy for stocks
even easier.

Because of this ease of finding mean-reverting patterns, the stock market
attracts a large number of traders, often called statistical arbitrageurs, to ex-
ploit such patterns. As a result, the returns in such strategies have generally
decreased. We discuss a few simple tricks that can boost their otherwise
declining performances.

Once again, we emphasize that the backtesting results in this book
do not include transaction costs. One reason for this omission is that
transaction costs can depend quite sensitively on the exact execution
method used and the exact stock universe chosen for the stock models.
A more specific pitfall included in the backtesting of the stock models
is the use of data with survivorship bias, since survivorship bias-free
data is more cumbersome and expensive to assemble. The hope is that
the results are not too unrealistic, at least for results in the past year
or two. If you intend to redo the backtests with survivorship bias—free
databases, you should remember that the chosen stock index (typically
Standard & Poor’s [S&P] 500) has a changing composition throughout
its history, too. To do this properly, you would need a database contain-
ing the historical daily index compositions. Remember also the issue of
primary versus consolidated stock prices discussed in Chapter 1. The
historical prices used here are all consolidated opens and closes. But if
you implement some of these strategies using market-on-open (MOO)
or limit-on-open (LOO) orders, or similarly market-on-close (MOC)
or limit-on-close (LOC) orders, you will be filled at the primary ex-
change open or close. Usually, this means that the actual returns will be
lower than those reported here.



B The Difficulties of Trading Stock Pairs

Pair trading of stocks is the first type of algorithmic mean reversion strategy
institutional traders invented, reportedly by Gerry Bamberger at Morgan
Stanley (Patterson, 2010). Yet nowadays it can be surprisingly difficult to
squeeze profits out of it.

If we test the daily price series of individual stocks, they almost never
meet the definition of stationarity as defined in Chapter 2. The geometric
random walk describes their behaviors fairly well: once they walked away,
they seldom returned to their starting points. (Their intraday and seasonal
mean-reverting properties are special cases to be discussed later on.)

Even if you pair them up in some sensible way (e.g., Exxon versus Chev-
ron, or Citibank versus Bank of America), they are seldom cointegrating out-of-
sample. I emphasize out-of-sample because it is quite easy to find cointegrating
stock pairs in any chosen period of time, but they can just as easily lose cointe-
gration in the subsequent out-of-sample period. The reason for this difficulty
is that the fortunes of one company can change very quickly depending on
management decisions and the competition. The fact that two companies are in
the same industry sector does not guarantee that they will be subjected to the
same fortune (think AAPL versus BBRY). The upshot is that it is difficult to be
consistently profitable in trading a single pair of stocks using a mean-reverting
strategy unless you have a fundamental understanding of each of the companies
and can exit a position in time before bad news on one of them becomes public.

What if we trade a large number of pairs of stocks, so that occasional de-
railment of some pairs would not affect the profitability of the entire port-
folio? The law of large numbers will only work in our favor if the expected
return of an individual pair in the out-of-sample period is positive, but T have
not found this to be the case for stock pairs. Apparently, the small profits
gained by the “good” pairs have been completely overwhelmed by the large
losses of the pairs that have gone “bad.”

Other than these fundamental problems with stock pairs trading, there
are two additional technical difficulties.

The first difficulty is short-sale constraint. It is particularly dangerous for
a stock pair that involves shorting a hard-to-borrow stock, because even if
your position is ultimately profitable, you may be forced to liquidate it at
the most unprofitable and inopportune time. This may happen when you are
short this stock and it suddenly jumps up in value due to some unexpected
good news, and many lenders of this stock are eager to sell them. In this

case, your borrowed stock may be recalled, and you will be forced to buy
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to cover this position at a big loss, while selling the long position on the
other leg. This is called the short squeeze.

Under the same heading of short-sale constraint, the new alternative uptick
rule in effect in the U.S. stock markets since 2010 also creates uncertainty in
both backtesting and live executions of stock pairs strategy. Once the circuit
breaker is triggered, we are essentially forbidden to send short market orders.

The second difficulty arises in the intraday trading of stock pairs. Since the
profit margins in stock pairs trading have been decreasing through the years,
it becomes imperative to enter and exit positions intraday to capture the best
prices. Also, if traders refrain from taking overnight positions in stock pairs,
they may be able to avoid the changes in fundamental corporate valuations
that plague longer-term positions mentioned above. However, intraday pair
trading of stocks runs into the problem that the national best bid and offer
(NBBO) quote sizes for stocks (and for ETFs) have become very small. This
may be due to the prevalence of using dark pools or undisplayed “iceberg”
orders by institutional traders, the breaking up of large orders into very small
child orders by smart execution algorithms, the advent of high-frequency
traders submitting small orders that they can cancel and replace frequently,
and, finally, the reluctance of market makers to display large order sizes to
avoid being taken advantage of by high-frequency traders.

For example, it is not unusual for AAPL to have an NBBO size of just
100 shares! Therefore, backtesting a stock pair—trading strategy using either
trade or quote prices is not very realistic unless you trade only 100 shares
or if you include a substantial transaction cost. The same phenomenon leads
to difficulties in live execution also. If we were to submit market orders for
both sides after a trading signal was triggered by the NBBO prices, we could
have suffered a substantial slippage. We are forced to send limit orders for
one side (or for both sides with small fractions of an order and suffer tem-
porary small unhedged positions) and actively manage the possible cancella-
tions and resubmissions of this order in case they are not fully filled.

Why was pair trading stocks so profitable in the past? One general reason
is that the market was much more inefficient back then, so the normal profits
from the pairs that do mean-revert are large enough to cover those losses from
pairs that don’t. This is, of course, a common plague for any profitable strate-
gies, but it is particularly acute for such well-known strategies as pair trading
of stocks. One specific reason for the decline in profits of stock pairs trading is
the decimalization of U.S. stock prices. Decimalization caused bid-ask spreads
to dramatically narrow, so pair traders, who act as a type of market makers,
find that their market-making profits decrease also (Serge, 2008).



Of course, the fact that pair trading of stocks is not very profitable in the
highly efficient U.S. markets does not mean that they are not profitable in
other countries. But for the U.S. market, we have the alternative of profit-
ably pair trading ETFs instead.

B Trading ETF Pairs (and Triplets)

The one advantage of trading ETF pairs instead of stock pairs is that, once
found to be cointegrating, ETF pairs are less likely to fall apart in out-
of-sample data. That is because the fundamental economics of a basket of
stocks changes much more slowly than that of a single company. For ex-
ample, since both Australia and Canada are commodity-based economies,
EWA and EWC (their respective stock index ETFs) are good candidates
for cointegration tests. And, indeed, we confirmed their cointegration in
Chapter 3. I mentioned this pair back in 2009 on my blog (http://epchan
.blogspot.com/2009/11/in-praise-of-etfs.html?show Comment=125743
4002472#c1235760260813269054), and their cointegration continues as
of this writing (November 2012). The pair selection process for ETFs is
quite easy: we need to find ETFs that are exposed to common econom-
ic factors. Besides country ETFs, sector ETFs are another fertile ground
for finding cointegrated instruments. For example, the retail fund RTH
cointegrates with the consumer staples fund XLP. With the proliferation of
ETFs tracking more or less the same sector, pair—trading opportunities are
steadily increasing.

Another favorite ETF pairing of mine is between a commodity ETF and
an ETF of companies that produce that commodity. The gold fund GLD
versus the gold miners fund GDX is a good example. The rationale is that
since the main asset of a gold-mining company is gold, their values should
cointegrate with gold spot prices. And, indeed, they have done so—until
July 14, 2008, or thereabout. If we test for cointegration of GLD versus
GDX between May 23, 2006, and July 14, 2008, using the Johansen test,
we find that they cointegrate with 99 percent probability, but if we test over
the period July 15, 2008, to April 9, 2012, they have lost the cointegration.
What happened on July 14, 2008? That’s when oil (the West Texas Interme-
diate flavor) price peaked at around $145 per barrel, an all-time high. What
has oil price got to do with the cointegration between gold price and gold
miners’ share prices? A lot, apparently. It turns out that when oil prices are
expensive, it costs a lot more to mine gold, and therefore the profits of gold
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miners are reduced, leading to the underperformance of their share prices
relative to gold spot prices (“The Wacky World of Gold,” 2011).

To gather empirical support for this explanation, we can introduce the
oil fund USO into the portfolio and see if this triplet cointegrates over the
entire period from 2006 to 2012. The Johansen test shows that they do,
with a 99 percent probability that there exists one cointegrating relation-
ship. Hence, instead of just trading GLD and GDX, we can trade this port-
folio of triplets instead. Even if you find trading a triplet too cumbersome,
you should at least have a rule in place to cease trading GLD versus GDX
whenever oil price exceeds a certain threshold.

This example has particular significance. When scientists first come upon
an unexplained phenomenon, they form a hunch about its cause, and then
they find ways to test this hunch empirically. We should adopt the same
scientific process in approaching trading. When a trading strategy stops
working, we should form a hypothesis of the reason, and then test empiri-
cally whether that hypothesis is supported by data. The outcome of this pro-
cess is often a modified strategy that regains profitability.

One might think that the oil fund USO versus the energy sector fund
XLE is another example of a commodity versus commodity producer pair,
but there is a problem with this pairing. While GLD owns gold, and thus
reflects the gold spot price, USO doesn’t actually own oil. It invests in oil
futures contracts. As we will discuss in Chapter 5, futures price of a com-
modity differs from its spot price. Even if XLE cointegrates with the spot
price of oil, it may not necessarily cointegrate with USO. Of course, this
problem plagues any commodity futures fund versus commodity producer
fund. Mean reversion trading of such pairs would be much less risky if the
commodity fund holds the actual commodity rather than the futures.

The mechanics of trading ETF pairs is the same as trading stock pairs. The
old uptick rule exempted ETFs, but the new alternative uptick rule covers
all securities traded on U.S. stock exchanges. However, the NBBO sizes for
ETFs are certainly much larger than that for stocks. For example, on a typi-
cal day, the NBBO sizes for EWC can be around 5,000 shares.

B Intraday Mean Reversion: Buy-on-Gap Model

Stock prices follow geometric random walks, as many financial scholars
have tirelessly reminded us (Malkiel, 2008). But this is true only if we test
their price series for mean reversion strictly at regular intervals (such as



using their daily closes). Our job as traders is to find special conditions, or
special periods, such that mean reversion occurs with regularity, while at
the same time avoiding data-snooping bias. As the following strategy will
show, there may indeed be seasonal mean reversion occurring at the intraday
time frame even for stocks.

The rules for the strategy are:

1. Select all stocks near the market open whose returns from their
previous day’s lows to today’s opens are lower than one standard
deviation. The standard deviation is computed using the daily close-
to-close returns of the last 90 days. These are the stocks that “gapped
down.”

2. Narrow down this list of stocks by requiring their open prices to be
higher than the 20-day moving average of the closing prices.

3. Buy the 10 stocks within this list that have the lowest returns from their
previous day’s lows. If the list has fewer than 10 stocks, then buy the
entire list.

4. Liquidate all positions at the market close.

The rationale for this strategy is that on days when the stock index futures
are down before the open, certain stocks suffer disproportionately due to
panic selling at the open. But once this panic selling is over, the stock will
gradually appreciate over the course of the day.

Rule 2 is often very useful in mean-reverting strategies: it is basically a
momentum filter superimposed on a mean-reverting strategy, a technique
that we will reprise often. Usually, those stocks that dropped “just a little”
have a better chance of reversal than those that dropped “a lot” because the
latter are often the ones that have negative news such as poor earnings an-
nouncements. Drops caused by negative news are less likely to revert. We
can actually develop momentum strategies based on such breaking news
(more on this in Chapter 7). Furthermore, the fact that a stock is higher
than a long-term moving average attracts selling pressure from larger play-
ers such as long-only funds, whose trading horizons tend to be longer. This
demand for liquidity at the open may exaggerate the downward pressure
on the price, but price moves due to liquidity demands are more likely to
revert when such demands vanish than price moves due to a shift in the
fundamental economics of the stock. Therefore, this strategy can succeed
in a news-heavy environment where traditional interday stock pairs trading
will likely fail.

The MATLAB code to backtest this strategy is displayed in Example 4.1.

WWW . FOREX-WAREZ.COM
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] Example 4.1: Buy-on-Gap Model on SPX Stocks

1

This code, which backtests the Buy-on-Gap model, can be

downloaded as bog.m. It requires as input three TX N arrays, op, lo,
and cl, where T is the number of days, N is the number of stocks in
the universe, and op contains the daily open prices, lo contains the
daily lows, and cI the daily closes. The stock universe we used to

backtest is the S&P 500, but one that has survivorship bias.
topN=10; % Max number of positions
entryZscore=1;

lookback=20; % for MA

stdretC2C90d=backshift (1, smartMovingStd(calculateReturns ...

(cl, 1), 90));

buyPrice=backshift (1, lo).*(l-entryZscore*stdretC2C90d) ;

retGap=op-backshift (1, 1lo))./backshift (1, 1lo);
pnl=zeros (length(tday), 1);
positionTable=zeros (size(cl)) ;

ma=backshift (1, smartMovingAvg(cl, lookback)) ;

for t=2:size(cl, 1)

hasData=find(isfinite (retGap(t, :)) & op(t, :)
< buyPrice(t, :) & op(t, :) > ma(t, :));
[foo idxSort]=sort (retGap(t, hasData), ‘ascend’);

positionTable (t, hasData (idxSort (1:min (topN,
length (idxSort)))))=1;

end

ret02C=(cl-op) ./op;
pnl=smartsum(positionTable. * (ret02C), 2);
ret=pnl/topN;

ret (isnan(ret))=0;

This strategy has an annual percentage rate (APR) of 8.7 percent and a
Sharpe ratio of 1.5 from May 11, 2006, to April 24, 2012. The cumulative

returns curve is depicted in Figure 4.1.

I have traded a version of it quite profitably in my personal ac-

count as well as in a fund that I comanaged. Unfortunately, that version
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FIGURE 4.1 Cumulative Returns of Buy-on-Gap Model

does not include rule 2, and it suffered from diminishing returns from
2009 onward. The long-only nature of the strategy also presents some
risk management challenges. Finally, the number of stocks traded each day
is quite small, which means that the strategy does not have a large capacity.

The astute reader may wonder how we can use open prices to determine
the trading signals for entry at the open and be filled at the official open
prices. The short answer is, of course: We can’t! We can, however, use the
preopen prices (for example, at ARCA) to determine the trading signals.
The signals thus determined will not exactly match the ones determined
by the actual open prices, but the hope is that the difference will not be so
large as to wipe out the returns. We can call this difference signal noise. Also,
note the pitfall of backtesting this strategy using consolidated prices versus
primary exchange prices, as explained in Chapter 1.

What about the mirror image of this strategy? Can we short stocks
that gap up a standard deviation but are still lower than their 20-day mov-
ing average? Yes, we can. The APR is 46 percent and the Sharpe ratio is
1.27 over the same period. Despite the seemingly higher return than the
long-only strategy, the short-only one does have steeper drawdown (see
Figure 4.2), and it suffered from the same short-sale constraint pitfall
discussed before.

This strategy is actually quite well known among traders, and there are
many variations on the same theme. For example, you can obviously trade
both the long-only and short-only versions simultaneously. Or you can trade
a hedged version that is long stocks but short stock index futures. You can
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Cumulative Returns
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FIGURE 4.2 Cumulative Returns of Short-on-Gap Model

buy a larger number of stocks, but restricting the number of stocks within
the same sector. You can extend the buying period beyond the market open.
You can impose intraday proﬁt caps. But the important message is: Price
series that do not exhibit mean reversion when sampled with daily bars can
exhibit strong mean reversion during specific periods. This is seasonality at
work at a short time scale.

B Arbitrage between an ETF and Its
Component Stocks

Many readers would be familiar with the strategy of “index arbitrage,”
which trades on the difference in value between a portfolio of stocks
constituting an index and the futures on that index. If the stocks are
weighted in the same way used to construct the index, then the market
value of the portfolio will cointegrate very tightly with the index fu-
tures. Maybe too tightly—unfortunately, this is such a well-known strat-
egy that the difference in market values has become extremely small
(Reverre, 2001). All but the most sophisticated traders can profit from
this strategy, and it most certainly needs to be traded intraday, perhaps
at high frequency (see Box 4.1). In order to increase this difference, we
can select only a subset of the stocks in the index to form the portfolio.
The same concept can be applied to the arbitrage between a portfolio



High-Frequency Index Arbitrage

High-frequency traders have been able to exploit two deficiencies in the
intraday computations of the indices and arbitrage between the futures
tracking these indices versus the component stocks. The first deficiency is
that many major indices including Dow Jones, S&P, Nasdaqg, and Russell
are computed using only the primary exchange trades data (see Chapter 1
on primary versus consolidated stock prices), which represent less than
30 percent of all shares traded on those stocks (Arnuk and Saluzzi, 2012). The
second deficiency is that the index is updated only once every few seconds.
Both deficiencies lead to a discrepancy between the true, most up-to-date
market value of a basket of component stocks and the index value itself. As a
result, the index future value can be expected to lag the instantaneous market
value of the stocks. If the index future value is higher than the instantaneous
market value, we can simply short the future and vice versa. Where can we
get this true, instantaneous market value of the stocks? We would, of course,
need to subscribe to the direct data feed of every U.S. stock exchange and
ECN (and not the SIAC feed) and monitor the trade prices for all the stocks
in the index with millisecond latency in all these venues. Nobody said high-
frequency trading is easy!

of stocks constituting an ETF and the ETF itself. In this case, we choose
just a proper subset of the constituent stocks to form the portfolio. One
selection method is to just pick all the stocks that cointegrate individu-
ally with the ETF. We will demonstrate the method by using the most
famous ETF of all: SPY.

We will pick one year of data (in our example, January 1, 2007, to De-
cember 31, 2007) as a training set and look for all the stocks that cointe-
grate with SPY with at least 90 percent probability using the Johansen test.
Then we form a portfolio of these stocks with equal capital on each stock,
and confirm using the Johansen test again that this long-only portfolio still
cointegrates with SPY. This step is necessary because an arbitrary assign-
ment of equal capital weight to each stock does not necessarily produce a
portfolio price series that cointegrates with that of SPY, even if each of the
constituent stocks is cointegrating with SPY. We are using log price in this
second test because we expect to rebalance this portfolio every day so that
the capital on each stock is constant. (See the discussions in Chapter 3.)
After confirming cointegration, we can then backtest the linear mean re-
version strategy described in Chapter 2. The MATLAB source codes are
displayed in Example 4.2.

o
N
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Example 4.2: Arbitrage between SPY and Its
Component Stocks

This code can be downloaded as indexArb.m. It requires as input a TxN
array cl, where T is the number of days, N is the number of stocks in
the universe, and ¢/ the daily closes. The stock universe we used to
backtest is the same as that used in Example 4.1, and the symbols it
contains are in a cell array stocks. All these arrays are packaged in a
structure stks. In addition, we need aTx1 array cl for the daily closes
of SPY. These are packaged in a structure etf. Of course, we must
ensure that dates for stks and etf match. The common trading dates are
contained in aTx1 array tday. We will run the Johansen test on only
the first part of this data: January 1, 2007, to December 31, 2007.
This is designated as the training set.
trainDataIdx=find(tday>=20070101 & tday<=20071231) ;
testDataldx=find (tday > 20071231) ;

isCoint=false(size (stks.stocks)) ;
for s=1:length(stks.stocks)

% Combine the two time series into a matrix y2 for

o

% input into Johansen test
y2=[stks.cl(trainDatalIdx, s), etf.cl(trainDatalIdx)];
badData=any (isnan(y2), 2);

y2 (badData, :)=I[]; % remove any missing data

if (size(y2, 1) > 250)

results=johansen(y2, 0, 1); % johansen test
% with non-zero offset but zero drift, and with
% the lag k=1.

if (results.lrl(1l) > results.cvt(l, 1))
isCoint (s) =true;
end
end

end

length (find (isCoint))

Based on the Johansen test between each stock in SPX with SPY
over the training set, we find that there are 98 stocks that cointegrate
(each separately) with SPY. Now we can form a long-only portfolio
with all stocks that cointegrate with SPY, with equal capital allocation.
We must then test the cointegration of this portfolio with SPY.



] Example 4.2 (Continued) [

yN=stks.cl (trainDataldx, isCoint) ;

logMktVal long=sum(log(yN), 2); % The net market value of
the long-only portfolio is same as the “spread”

o

% Confirm that the portfolio cointegrates with SPY
ytest=[logMktVal long, log(etf.cl(trainDatalIdx))];

results=johansen(ytest, 0, 1); % johansen test with non-zero
offset but zero drift, and with the lag k=1.

prt (results) ;

% Output:

% Johansen MLE estimates

% NULL: Trace Statistic Crit 90% Crit 95% Crit 99%
% r <= 0 variable 1 15.869 13.429 15.494 19.935
% r <= 1 variable 2 6.197 2.705 3.841 6.635
% NULL Eigen Statistic Crit 90% Crit 95% Crit 99%
% r <= 0 variable 1 9.671 12.297 14.264 18.520
% r <= 1 variable 2 6.197 2.705 3.841 6.635

results.evec

N
\O

o°

o°

ans =

o°

o°

1.0939 -0.2799
-105.5600 56.0933

o°

The Johansen test indicates that the long-only portfolio does
cointegrate with SPY with better than 95 percent probability. So
we can form a long-short stationary portfolio comprising both the
stocks and SPY, using the Johansen eigenvector to determine the
weights of SPY versus that of the stock portfolio. (There are, in
fact, two cointegrating relations, but we will pick the one with the

largest eigenvalue—the first column of the eigenmatrix—to form

SAL9 ANV SADOLS 40 NOISYIATI NVAW

this stationary portfolio.) As the Johansen test was performed on
the log prices, the hedge ratios (represented by the weights array) on
the stocks or SPY represent dollar capital allocation, not number of
shares, as explained in Chapter 3. (The weight on each individual
stock is, of course, the same, due to our assumption of equal capital

allocation, but it differs from the weight on SPY.)
(Continued)



1 Example 4.2 (Con tinued)

We then apply the linear mean reversion strategy on this portfolio
over the test period January 2, 2008, to April 9, 2012, much in the
same way as Example 2.8, except that in the current program we
have fixed the look-back used for calculating the moving average and
standard deviations of the portfolio market value to be 5, with the

benefit of hindsight.

% Apply linear mean-reversion model on test set

yNplus=[stks.cl (testDataldx, isCoint), etf.cl(testDataldx)]; ...

°

% Array of stock and ETF prices
weights=[repmat (results.evec(l, 1), size(stks.cl(testDataldx,
isCoint))),

repmat (results.evec (2, 1), size(etf.cl (testDataldx)))]; ...

o

% capital allocation among the stocks and SPY.

logMktVal=smartsum(weights.*log(yNplus), 2); % Log market

o

% value of long-short portfolio

lookback=5;

numUnits=- (logMktVal-movingAvg (logMktVal, lookback))
100 . /movingStd (logMktVal, lookback) ;
positions=repmat (numUnits, [1 size(weights, 2)]).*weights;

°

% positions is the dollar capital in each stock or SPY.

pnl=smartsum(lag(positions, 1).*(log(yNplus) -
lag(log(yNplus), 1)), 2);
ret=pnl./smartsum(abs (lag(positions, 1)), 2);
ret (isnan(ret))=0;

The APR of this strategy is 4.5 percent, and the Sharpe ratio is
1.3. As you can see from the cumulative returns chart (Figure 4.3),

ALGORITHMIC TRADING

the performance decreases as time goes on, partly because we have
not retrained the model periodically to select new constituent stocks
with new hedge ratios. In a more complete backtest, we can add this
dynamic updating of the hedge ratios.

The same methodology can, of course, be applied to any ETFs,
indices, or subindices you like. Furthermore, we can use a future instead
of an ETF if such a future exists that tracks that index or subindex,
although in this case one has to be careful that the prices of the future
used in backtest are contemporaneous with the closing prices for the
stocks. (This was pointed out as a potential pitfall in Chapter 1.)



1 Example 4.2 (Con tinued) r
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FIGURE 4.3 Cumulative Returns of Arbitrage
between SPY and Its Component Stocks

You may wonder why we didn’t just directly run a Johansen cointegration
test on all 500 stocks in SPX plus SPY, and let the algorithm automatically
find an eigenvector of cointegrating instruments that include the SPY. (Not
all cointegrating relations from the stocks+SPY universe necessarily include
SPY, but we need only pick one that does.) The problem with this approach
is twofold:

1. The Johansen test implementation that I know of can accept a maximum
of 12 symbols only (LeSage, 1998).

2. The eigenvectors will usually involve both long and short stock posi-
tions. This means that we can’t have a long-only portfolio of stocks that
is hedged with a short SPY position or vice versa. This is a problem
because if we have short positions in the stock portfolio and a short SPY
position simultaneously, we would be double short on some stocks even

when we are long the stock portfolio, increasing our specific risks.

There is an alternative method of constructing a long-only portfolio of
stocks. We can still use Johansen test to individually test each stock in SPX for
cointegration with SPY. After this subset of stocks is found, we include them
in a stock portfolio and then use a constrained optimization method (e.g.,
genetic algorithm or simulated annealing) to minimize the average absolute

=1
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difference between this stock portfolio price series and the SPY price series.
The variables that we want to optimize in this case are the hedge ratios of
the stocks, and the constraints are that all hedge ratios must be positive. The
MATLAB Global Optimization Toolbox provides functions for either genetic
algorithm or simulated annealing for this constrained optimization task.

This strategy suffers from the same short-sale constraint that plagued any
strategies involving short stock positions. However, the problem is not too
serious here because the stock portfolio is quite diversified with about 98
stocks. If a few stocks have to be removed due to the short-sale constraint,
the impact should be limited.

B Cross-Sectional Mean Reversion: A Linear
Long-Short Model

In mean reversion trading based on cointegration, we form a portfolio with
a fixed set of instruments and with either a fixed number of shares or a fixed
dollar capital for each instrument. This fixed number may be determined by
fiat (as in Example 4.2), linear regression, the Johansen test, or constrained
optimization. But there is no reason why the portfolio has to consist of the
same fixed set of instruments or the same weightings over this set of in-
struments every day. For many portfolio stock-trading strategies, the edge
comes precisely from the intelligent daily selection or reweighting of stocks.

In this type of so-called “cross-sectional” mean reversion strategy, the in-
dividual stock (and this type of strategy most commonly involves stocks, not
futures or currencies) price does not necessarily revert to its own historical
mean. Rather, the focus is on their short-term relative returns, and we rely
on the serial anti-correlation of these relative returns to generate profits. In
most cases, the relative returns are computed as a stock’s return minus the
average returns of all the stocks in a particular universe. So we expect the
underperformance of a stock to be followed by overperformance, and vice
versa. Since we are measuring only relative return, it is quite possible that
we will short a stock even though its previous (absolute) return is negative,
as long as it is not as negative as the average return across all stocks in the
universe.

One interesting feature of cross-sectional strategies is that, in contrast to
“time series” strategies, we should not expect profits from every individual
stock, as some of them may serve as “hedges” on some days. Rather, profits
can be obtained only in the aggregate across all the stocks.



I described in my previous book just such a strategy proposed by Khan-
dani and Lo (Example 3.7 of Chan, 2009; original paper is Khandani and Lo,
2007). With this strategy, we invest in every stock from some favorite index
such as S&P 500, S&P 1500, or Russell 2000, but with different capital al-
location per stock. Near the market close of each day, we will determine the
long or short capital w, allocated to the i'" stock as

=== 2, = () “.1)

where r, is the daily return of the i" stock, and <r].> is the average daily return
of all the stocks in the index. In other words, if a stock has a very positive
return relative to its peers, we will short lots of it, and if it has a very nega-
tive return relative to its peers, we will buy lots of it. Note that we always
invest the same total gross capital of §1 to the portfolio every day because of
the normalization factor in the denominator. The MATLAB code fragment
for this is displayed in Example 4.3.

] Example 4.3: Linear Long-Short Model on Stocks [

The implementation of Equation 4.1 in MATLAB is very compact.
We assume an input T X N array cl of daily closing prices,

where as usual T is the number of trading days and N is the
number of stocks in the SPX. This code can be downloaded as
andrewlo_2007_2012.m.

ret=(cl-lag(cl, 1))./lag(cl, 1); % daily returns

marketRet=smartmean (ret, 2); % equal weighted market index
% return

weights=- (ret-repmat (marketRet, [1 size(ret, 2)1));

weights=weights./repmat (smartsum(abs (weights), 2),

[1 size(weights, 2)]);

dailyret=smartsum(backshift (1, weights) .*ret, 2); % Capital

o

% 1s always one

It has an APR of 13.7 percent and Sharpe ratio of 1.3 from January
2,2007, to December 30, 2011, even if we backtest on the SPX.
(Usually, backtesting on a smaller cap universe will generate even
higher returns.) The cumulative returns are plotted in Figure 4.4.

(Continued)
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] Example 4.3 (Continued) [

Cumulative Returns
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FIGURE 4.4 Cumulative Returns of Linear Long-Short Model

The notable feature of this strategy is that it is completely linear,
has no parameters, and is almost perfectly dollar neutral. What
strategy can be simpler than this? And remarkably, it achieved an APR
of 30 percent in 2008, the year of Lehman Brothers’ bankruptcy, and
an APR of 11 percent in 2011, a year filled with high anxiety about
the U.S. federal debt rating downgrade and the Greek default. (Its
performance since the beginning of 2008 is a true out-of-sample test,
as the strategy was published in 2007.)

In my previous book, I also suggested that we may enhance the returns
of this strategy by using the return from the previous close to today’s open
to determine the weights for entry at the open. All the positions will be
liquidated at the market close, thus turning it into an intraday strategy. The
modified MATLAB code fragment is displayed in Example 4.4.

There are possibly other variables (also called “factors”) that are better at
predicting cross-sectional mean reversion of stock prices than the relative
returns that we have used in Examples 4.3 and 4.4. One popular variable
that traders use to rank stocks is the price-earnings (P/E) ratio, where the
earnings may be that of the last quarter, or they may be projected earnings
estimated by the analysts or the companies themselves. The reasoning is that



I

Example 4.4: Intraday Linear Long—Short
Model on Stocks

|

In addition to the inputs required in Example 4.3, we need also the
T X N array op, which contains the daily open prices of the stocks.

ret=(op-backshift (1, cl))./backshift(1l, cl); % daily returns

marketRet=smartmean (ret, 2); % equal weighted market index
% return

weights=- (ret-repmat (marketRet, [1 size(ret, 2)]));

weights=weights./repmat (smartsum(abs (weights), 2),

[1 size(weights, 2)1);
dailyret=smartsum(weights.* (cl-op)./op, 2)
./smartsum(abs (weights), 2);

The APR and Sharpe ratio over the same period are 73 percent
and 4.7, respectively. Despite such seemly stellar performance, the
open-to-close version suffers from a few drawbacks that the close-to-
close version does not have.

First, the transaction costs (not included in our backtests) will
be doubled, because we are trading twice a day instead of just once
a day. Second, since this strategy also has to use “open” prices to
determine the trading signals for entry at the open, it is subject to the
same trading signal noise that I mentioned in the Buy-on-Gap Model
in Example 4.1.

Actually, even for the close-to-close strategy, we also can’t use
the exact closing price to determine the weights and then enter at
exactly those prices. But in that case, the prices just a few seconds
before the close are typically much closer to the actual official
(primary exchange) closing prices because these preclose prices are
printed when the primary market is open and has high liquidity.

stock prices will drift toward a new equilibrium value if there are earning

announcements or estimates changes. So a stock that experiences a pOSi-

tive change in earnings estimates will likely enjoy a positive return, and we

should not expect the price to mean-revert if this return is in line with the

percent change in its earnings estimates. We can therefore avoid shorting

such a stock if we use P/E ratio to rank the stocks.
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KEY POINTS

e Are you tempted to trade pairs of stocks because of the enormous number

of choices? Beware of changes in companies’ fundamentals that can
render out-of-sample performance quite poor despite stellar backtest
results.

Trading a portfolio of cointegrating ETFs can be better than pair-trading
stocks.

Are you pair trading ETFs that hold futures? Beware of the role of roll returns
in determining total returns of futures.

Seasonal or intraday mean reversion is hard to detect with usual stationarity
or cointegration tests, but can be very profitable.

Imposing momentum filter on mean-reversal strategies typically improves
their consistency.

Do you think that index arbitrage between stocks and futures is no longer
profitable? Try selecting only a subset of the stocks in the index.
Cross-sectional mean reversion strategies can be implemented very easily
with a linear long-short strategy.

The variable used for ranking stocks in a cross-sectional mean reversion
strategy is typically relative return, but it can be other fundamental factors
such as P/E ratio.

WWW . FOREX-WAREZ.COM

ANDREYBBRV@EMAIL.COM SKYPE: ANDREYBBRY
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Mean Reversion
of Currencies
and Futures

Conventional wisdom tells us that currencies and futures are the domain
of momentum traders, and conventional wisdom is right about this.
Indeed, most CTAs (Commodities Trading Advisors) are momentum based.
It is also true that most currency or future pairs would not cointegrate, and
most portfolios of currencies or futures do not exhibit cross-sectional mean
reversion. So opportunities for mean reversion strategies in currencies and
futures are limited, but not nonexistent. This chapter will guide the reader
toward those situations where mean reversion is the exception rather than
the rule, such as the trading of futures calendar spreads. In particular, we
will discuss a trading strategy for one unique futures intermarket spread: the
volatility future versus the stock index future.

In the course of exploring mean reversion in futures, we will also discuss
a simple mathematical model of futures prices that will illuminate concepts
such as spot versus roll returns and backwardation versus contango. Un-
derstanding this model will also help suggest new futures trading strategies
without resorting to ad hoc technical indicators.

Trading currencies has certain nuances that are foreign to stock trad-
ers. Care must be taken when testing for cointegration of currencies or
when computing the returns of a portfolio of currencies by making sure

that a point move in one currency pair has the same dollar value as a

WWW.TRADING-SOFTWARE-COLLECTION,.COM
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point move in another currency pair; otherwise, the results will not make
sense. Furthermore, rollover interests might sometimes play an impor-
tant role in determining total returns. These nuances will be covered in
this chapter.

B Trading Currency Cross-Rates

The basic idea in forming a stationary portfolio of foreign currencies is very
similar to the trading of stock index ETF pairs from different countries:
we need to find countries that have similar economic fundamentals. Since
we found, for example, that EWA (Australian stock index ETF) and EWC
(Canadian stock index ETF) cointegrate, we might expect to find AUD
(Australian dollar) to cointegrate with CAD (Canadian dollar) as well. In
addition, because both Australia and South Africa have major mining rev-
enues, we might expect AUD to cointegrate with ZAR (South African rand).
In fact, traders have called these and other currencies such as the Norwegian
krone commodity currencies.

Trading currency pairs has a number of advantages compared to trad-
ing their corresponding stock index ETF pairs. Usually, liquidity in curren-
cies is higher (especially for best bid/ask sizes), thus lowering transaction
costs. The leverage that can be employed for currencies is also much higher,
though this can be a double-edged sword of course. There are no short-sale
constraints for currencies. Finally, currency trading can be done around the
clock, at least five days a week from 5:00 pm. ET on Sunday to 5:00 pm.
ET on Friday. (ET can be either EDT or EST; i.e., it is either GMT-4 or
GMT-5.) This means that we have a lot more trading opportunities in cur-
rencies, and we can also employ stop losses in a meaningful way. (If a market
is closed for a long period, stop losses are useless as the market can gap up
or down when it reopens.)

Despite the conceptual similarity with trading ETF pairs, the mechanics
of currency trading is quite different. Let’s start with some basic terminol-
ogy. If we are trading the cross-rate AUD.ZAR, then AUD is called the base
currency, and ZAR is the quote currency. (My personal mnemonic for this:
B is ahead of Q alphabetically, so the order is B.Q.) If AUD.ZAR is quoted
at 9.58, it takes 9.58 South African rand to buy 1 Australian dollar. Buying
100,000 AUD.ZAR means buying 100,000 Australian dollars, while sell-
ing the equivalent amount (100,000 X 9.58 = 958,000 at the preceding
quote) of South African rand. However, few brokers actually offer AUD.



ZAR as a cross-rate. So usually we have to buy X units of B.ZAR and sell X
units of B.AUD to effectively buy X Australian dollar worth of AUD.ZAR,
where B is some other base currency. We usually choose a very liquid base
currency such as USD or EUR for this operation. We can denote such a
synthetic pair as USD.ZAR/USD.AUD, since the quote of AUD.ZAR will
be exactly equal to this ratio of quotes. When we actually trade this syn-
thetic pair live, the realized profit and loss (P&L) will be denominated in
both ZAR and AUD. In general, when we compute the returns of a strat-
egy trading B.Q, we are assuming that the profits are denominated in our
local currency (USD for U.S. investors), which may be neither B nor Q. So
in order for our actual realized P&L to conform to our backtest P&L, we
need to regularly convert B and Q into our local currency. For example, if
our local currency is USD, and we have realized profits of X units of AUD
and Y units of ZAR after a round trip trade, we need to buy X units of
ZAR.USD andY units of ZAR.AUD. If we don’t do this regularly, a large
accumulated P&L in AUD and ZAR may cause significant deviation from
our backtest results.

Even when a cross-rate such as AUD.CAD is ready-made for trading, we
may sometimes find it advantageous to weigh the two currencies differently
by trading AUD.USD versus USD.CAD separately. The code in Example 5.1
illustrates such a strategy. In this strategy we use the Johansen test to find out
the best hedge ratio of capital, or capital weights, between AUD.USD versus
CAD.USD. Why not use the conventional quote USD.CAD instead of CAD.
USD? That’s because in order to interpret the eigenvector from the Johan-
sen test as capital weights, the two price series must have the same quote
currency. Otherwise, the point moves of the two presumptive cointegrating
instruments would not have the same value, rendering the Johansen test
meaningless. Using CAD.USD in our backtest program doesn’t make live
trading any more difficult: Whenever the program sends an order to “Buy 1
unit of CAD.USD,” we should just “Sell 1/y of USD.CAD,” provided y is the
current quote for USD.CAD.

In Example 5.1, we focus on trading two currencies that can ultimate-
ly be reduced to a pair with a common quote currency USD: B;.USD —
B,.USD. So the returns of a portfolio with n; units of B,;.USD and n, units
of B,.USD is

n gy (OR(E+ 1)+ 0,5, (0On(+1)
|y y1y () + [0y yyp(t)

e+ 1)= (5.1)
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as displayed in the last line of the MATLAB code in the example. Here r, is
the return of B,.USD:

r(t+ 1) =u+ 1) = yu®) /5,00 (5-2)

where y, () and y, ;(t + 1) are the quotes for B,.USD at t and ¢ + 1 respec-
tively. This is because one unit of B,.USD is worth y, ;; in U.S. dollars.
However, if a portfolio has n; units of USD.Q; and nj units of USD.Q),

instead, then the return can be written more simply as

nl,r1 (1:+])+n£r2 (t+1)

r(e+1)=
|7 |+n; |

(5.3)

where

r(t+ 1) = (e + 1) = yu(0)yu (0 CR)

and yy; (t) and yy; (t + 1) are the quotes for USD.Q ; at t and ¢ + 1, respec-
tively. This is because one unit of USD.Q ; is worth exactly one U.S. dollar.
Let me immediately say that Equations 5.2 and 5.4 are not strictly cor-
rect, as we have ignored the rollover interests, which we will discuss in the
next section. But the impact of rollover interests is usually not large for
short-term strategies like the one I describe in Example 5.1, so we have

omitted them here for simplicity.

Example 5.1: Pair Trading USD.AUD versus
USD.CAD Using the Johansen Eigenvector

This is a classic linear mean-reverting strategy similar to the one in
Example 3.1 (PriceSpread.m). Previously, we used a look-back of 20
days to compute the hedge ratio, while here we use a fixed training
set of 250 days (which gives better results in hindsight), though
we are still using a look-back of 20 days for computing the moving
average and standard deviation. However, our current strategy

is very different from a typical forex strategy such as the one in
Example 2.5. Here, the hedge ratio between the two currencies is
not one, so we cannot trade it as one cross-rate AUD.CAD. Instead



] Example 5.1 (Continued) [

of running the Johansen test on USD.AUD versus USD.CAD, we
actually should run it on AUD.USD and CAD.USD, so that the dollar

value of a point move in each instrument is the same. Intuitively, this

also makes sense, since in a mean-reverting strategy we want to buy
CAD if CAD.USD is much lower than AUD.USD.

We assume the input to be two T X 1 arrays usdcad and usdaud,
both daily price series. The T X 1 array yport is the market value of a
unit portfolio of AUD.USD and CAD.USD expressed in USD, while
numUnits is the number of units of this unit portfolio our strategy asks
us to own. The T X 2 array positions denote the market values in USD
of AUD.USD and CAD.USD that we should own. Naturally, the P&L
(in USD again) is just the sum of the market value of each instrument
times their returns, and the daily return of the portfolio is the P&L
divided by the total gross market value of the portfolio at the end of
the previous day.

The code can be downloaded as AUDCAD_unequal.m.

cad=1./usdcad.cl;

aud=audusd.cl;

y=[ aud cad ];

trainlen=250;

lookback=20;

hedgeRatio=NaN(size (y)) ;

numUnits=NaN(size(y, 1), 1);

for t=trainlen+l:size(y, 1)
res=johansen(log(y(t-trainlen:t-1, :)), 0, 1);
hedgeRatio(t, :)=res.evec(:, 1)';

yport=sum(y (t-lookback+l:t, :).*
repmat (hedgeRatio(t, :), [lookback 11), 2);

ma=mean (yport) ;
mstd=std (yport) ;

zScore= (yport (end) -ma) /mstd;

numUnits (t) =- (yport (end) -ma) /mstd;
end
positions=repmat (numUnits, [1 size(y, 2)]).*hedgeRatio.*y;

pnl=sum(lag(positions, 1).*(y-lag(y, 1))./lag(y, 1), 2);
ret=pnl./sum(abs (lag(positions, 1)), 2);
(Continued)
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1 Example 5.1 (Con tinued) r

Taking care to exclude the first 250 days of rolling training
data when computing the strategy performance, the APR is 11
percent and the Sharpe ratio is 1.6, for the period December 18,
2009, to April 26, 2012. The cumulative returns curve is plotted in
Figure 5.1.

0.35

Cumulative Returns

0 1 60 2(‘)0 360 460 560 660 700
December 18, 2009, to April 26, 2012

FIGURE 5.1 Cumulative Returns of USD.AUD versus
USD.CAD Strategy

You may sometimes find profitable opportunities trading two pairs of
entirely different cross-rates against each other: B;.Q; versus B,.Q,. If the
strategy calls for a portfolio of n; units of B;.Q, and n, units of B,.Q, the
daily return (in the presumed local currency of USD) of the portfolio is
given by the same Equation 5.1. The r, there will be the return of B;.Q;, so
Equation 5.2 is replaced by

ri(t+ 1) = {log (y; ot + 1)) = log(y; oi(0) } (5-5)

where y; i(¢) is the quote for B;.Q;. The same equations, 5.1 through 5.5,
are valid if we had used EUR or any other currency instead of USD as the
local currency for computing returns.

As you can see, the key difficulty in backtesting currency arbitrage strat-
egies is not the complexity of the strategies, but the right way to prepare



the data series for cointegration tests, and the right formula to measure

returns!

B Rollover Interests in Currency Trading

A feature of trading currency cross-rate is the differential interest rate earned
or paid if the cross-rate position is held overnight. Note that “overnight” in
currency trading means holding a position untill or beyond 5:00 e.m. ET. If
we are long a pair B.Q overnight, the interest differential is iy — i, where i
and i, are the daily interest rates of currency B and Q, respectively. If i, >
ig, then this interest differential, also called a rollover interest, is actually a
debit interest (i.e., your account will be debited). Actually, for reasons that
have to do with the T + 2 day settlement system, if a position was held past
the 5 pm. ET close on dayT, and day T + 3 is a weekend or holiday for either
currency of the cross-rate, the rollover interest accrued on that position will
be multiplied by one plus the number of days the market remains closed. So
if a position was held past 5 pM. ET on Wednesday, the rollover interest is
three times the daily rate since the market is closed on Saturday and Sunday.
A further exception to this rule applies when we are trading USD.CAD or
USD.MXN, where the settlement occurs on day T + 1, so we only multiply
the rollover interest by one plus the number of nontrading days if day T + 2
is a weekend or holiday. (Thus, only if a position was held past 5:00 pm. ET
on Thursday will the rollover interest be three times the daily rate.) All these
considerations impinge on the accuracy of a backtest of strategies that hold
overnight positions.

When we calculate the Sharpe ratio for any strategy, we need to calculate
the excess return, because the Sharpe ratio is the ratio of the average excess
return divided by the standard deviation of the excess returns, suitably an-
nualized. The excess return is the return of the positions that the strategy
holds minus the financing cost of those positions. So if we have only intraday
positions, the financing cost is zero. If we are trading a long-short dollar
neutral equity portfolio, we can assume the financing cost is close to zero,
even though the credit interest is usually slightly less than the absolute value
of the debit interest. For futures positions, the financing cost is also zero,
because futures positions are just contracts, not assets that require cash to
finance. (We do not count the margin cash requirement, since that cash gen-
erates interest in the account.) In the case of currency cross-rates, we can
again set the financing cost to be zero, as long as we are careful to add the
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rollover interest to the percent change of the cross-rate. That is, we need to
modify Equation 5.5 so that the excess return r,,; from holding a cross-rate
position POS; , from day ¢ to day £ + 1 is

r(t+ 1) = {log (ypo(t + 1)) = log( yp o)) + log(1 + ig(t)) — log(1 + ig(t))}
(5.6)

where y(t) and y(t + 1) are the quotes for BQ at ¢ and ¢ + 1, respectively
(Dueker, 2006).

In Example 5.2, we see how we can take into account rollover interests in
backtesting the linear mean-reverting strategy on AUD.CAD.

Example 5.2: Pair Trading AUD.CAD
with Rollover Interests

We continue to use the linear mean-reverting strategy in this example,
but in contrast to Example 5.1 and in the interest of simplicity, we
trade the ready-made pair AUD.CAD, not USD.CAD versus AUD.
USD separately. We will take into account the overnight rollover
interest rates because this strategy holds beyond 5 pm. ET. We assume
the daily closing prices of AUD.CAD are contained ina TX 1 array
dailyCl and the corresponding trading dates in the TX 1 array tday.
The historical interest rates are taken from the Reserve Bank of
Australia website’s money market rate, www.rba.gov.au/ statistics/
tables/#interest_rates, and the Bank of Canada web site’s overnight
money market financing rates, www.bankofcanada.ca/wp-content/
uploads/2010/09/selected_historical_page33.pdf. The daily AUD
and CAD interest rates are assumed to be two T X 1 arrays aud_
dailyRates and cad_dailyRates respectively, matching the dates in tday.

The source code can be downloaded as AUDCAD_daily.m

lookback=20;

% Triple rollover interest on Wednesdays for AUD
isWednesday=weekday (datenum (num2str (tday), ‘yyyymmdd’))==4;
aud_dailyRates (isWednesday)=3*aud_dailyRates (isWednesday) ;

cad_dailyRates=zeros (size (tday)) ;
% Triple rollover interest on Thursdays for CAD


http://www.rba.gov.au/statistics/tables/#interest_rates
http://www.bankofcanada.ca/wp-content/uploads/2010/09/selected_historical_page33.pdf
http://www.rba.gov.au/statistics/tables/#interest_rates
http://www.bankofcanada.ca/wp-content/uploads/2010/09/selected_historical_page33.pdf

] Example 5.2 (Continued) [

isThursday=weekday (datenum (num2str (tday), ‘yyyymmdd’))==5;

cad_dailyRates (isThursday)=3*cad_dailyRates (isThursday) ;

ma=movingAvg (dailyCl, lookback) ;
z=(dailyCl-ma) ;

ret=lag(-sign(z), 1).*(log(dailyCl) -
lag(log(dailyCl) +log (1+aud_dailyRates) -
log(l+cad_dailyRates), 1));

This simple mean reversion strategy yields an APR of 6.2 percent, with
a Sharpe ratio of 0.54, which are much weaker results than those in
Example 5.1, which, as you may recall, use a nonunity hedge ratio. It

is also worth noting that even if we had neglected to take into account
the rollover interest in this case, the APR would increase just slightly to
6.7 percent and the Sharpe ratio to 0.58, even though the annualized

average rollover interest would amount to almost 5 percent.

B Trading Futures Calendar Spread

Futures contracts with different expiration dates (or “maturities”) have dif-
ferent prices, and they have slightly different returns. Pairing up futures con-
tracts with different maturities creates what are known as calendar spreads.
Since both legs of a calendar spread track the price of the underlying asset,
one would think that calendar spreads potentially offer good opportunities
for mean reversion trading. But in reality they do not generally mean-revert.
To understand why, we need to understand more about what drives the re-
turns of futures in general.

Roll Returns, Backwardation, and Contango

The fact that futures contracts with different maturities have different
prices implies that a futures position will have nonzero return even if the
underlying spot price remains unchanged, since eventually all their prices
have to converge toward that constant spot price. This return is called the
roll return or roll yield. Despite its name, a futures position suffers this return

whether we actually “roll forward” to the next contract. It is an intrinsic
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FIGURE 5.2 Log Prices of Futures with
Different Maturities in Backwardation as a
Function of Time

part of its total return, which can be decomposed into a spot return and a
roll return.

If the contracts are in backwardation, meaning the near (close to expir-
ing) contracts have higher prices than the far contracts, then the roll returns
will be positive; otherwise if the contracts are in contango, then the roll
returns will be negative. To see this, imagine that the spot price is unchanged
throughout time, represented by the horizontal line in Figure 5.2.

We can also pretend that the log futures prices with different maturities
conform to the same linear function of time with the same slope but with
different offsets, intersecting the spot price at expirations. The question is:
Should the slope be positive or negative? Graphically, if the nearer futures
have a higher price than the farther futures and have to intersect the hori-
zontal line earlier, they must be upward sloping and have positive roll re-
turn, as shown in Figure 5.2. At any given time, the price of the first nearby
contract Py is higher than that of the second nearby contract P,, and so on.
The opposite is true if they are in contango, as illustrated in Figure 5.3. (We
display log prices instead of raw prices so that a contract with a constant
compounded total return will appear as a straight line.)

Note that this graphical argument merely serves as a mnemonic, not a
proof, as, of course, real log futures prices are not linear functions of time,
they may even intersect (two contracts of different maturities having the



log (P3)
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FIGURE 5.3 Log Prices of Futures with Different
Maturities in Contango as a Function of Time

same price) before they expire, and finally the spot price at expiration is
unlikely to be constant throughout time. Nevertheless, Figures 5.2 and 5.3
illustrate the typical situation. A mnemonic to help us remember whether
backwardation means near contracts have higher prices than far contracts is
presented in Box 5.1.

Mnemonic for Backwardation versus Contango

| can never remember whether backwardation means near contracts have
higher or lower price. If you are like me, you can employ the mnemonic below.

This mnemonic originated with John Maynard Keynes (Hull, 1997). He and
John Hicks argued that for normal commmodities, those who actually own
the physical commodities (the “hedgers,” such as farmers or oil producers)
tend to hedge their positions by shorting futures, expecting to lose money
on their hedges. Meanwhile, the speculators are the ones who have a net
long position, and need to be compensated for taking this risk. So they will
buy only futures with positive roll return, or equivalently futures that have
lower prices than the expected future spot price; that is, the ones in “normal
backwardation.” So we should remember that “backwardation” is always
associated with “normal,” and “normal” means the futures price is always
lower than the spot price.

Of course, this argument is not completely correct, since we will see that
crude ail, a perfectly “normal” commodity, is in contango over various periods.
But this story gives us a good mnemonic.
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To calculate the spot and roll returns for a set of futures contracts, it is
helpful to have a simple model of futures prices. For many commodities, we

can write

F(t, T) = S@exp(y(e = T)) (5.7)

where ¢ is the current time, T is the expiration time, and $(t) is the spot
price (Hull, 1997). This model implies that the (compounded) roll return
Y is constant over time. But we can take a step further, and assume that the

(compounded) spot return o is also constant:
S(t)=c e (5.8)

Essentially, we want to mathematically describe those lines in Figures 5.2
and 5.3, with the slight modification that they terminate not on a horizontal
line, but one that has a nonzero slope. So the model we adopt for the price
of a future that matures at time T is

F(t, T)=ce¥exp(y(t—T)) (5.9)
where ¢, o, and 7y are constants. The total return of a contract is given by
d(log F(z, T))/dt =+ (5.10)

since T is fixed for a specific contract. Finally, the roll return of the futures

is given by
—a(log F(t, T))/dT =y (5.11)

Hence, we have mathematically captured the notion that total return = spot
return + roll return.

Based on this model, we can use linear regression to estimate the spot and
roll returns of a futures series, as is demonstrated in Example 5.3.

Roll returns can be a curse on many seemingly attractive strategies
based on knowledge or intuition informed by the underlying spot price.
For example, an ETF of commodity producers (such as XLE) usually coin-
tegrates with the spot price of that commodity. But because of the presence
of roll return, this ETF may not cointegrate with the futures price of that
commodity. Not understanding this subtlety cost me more than $100,000
in trading loss, and ruined my first year (2006) as an independent trader.



Example 5.3: Estimating Spot and Roll Returns
Using the Constant Returns Model

If we assume that spot and roll returns are truly constant throughout
time, as we did in Equation 5.9, we can use linear regression to
estimate their values. It is easy to find the spot return this way, as we
just need to regress the log of the spot prices against time. But to find
the roll return requires us to pick a fixed point in time, and regress
the prices of the various contracts against their time to maturity. In
practice, the regression coefficient will depend on that fixed time,
and also on the exact set of contracts available at that time. So despite
the assumption of constant roll returns, we will still end up with a

slowly varying estimated y.

We will apply this procedure to a few different futures in different
categories: the Brazilian Real future BR, the corn future C, the WTI
crude oil future CL, the copper future HG, and the two-year U.S.
Treasury Note future TU.

In the following program, we assume that the spot price is
contained in an 7 X 1 array spot, and the futures closing price data
are stored in a 7 X M array cl, where 7 is the number of trading days,
and M is the number of contracts. Certainly not all contracts exist
at all times, so we will denote the prices for those days when some

contracts are nonexistent as NaN.

We will first find the average annualized (compounded) spot
return with a simple regression below. (The program can be
downloaded as estimateFuturesReturns.m.)

T=[1:length(spot)]’;

T (isBadData) =[] ;

res=ols (log(spot), [T ones(size(T, 1), 1)1);

fprintf (1, ‘Average annualized spot return=%f\n’,
252*gsmartmean (res.beta(1))) ;

Next, we will fit the forward curve (the future price as a function
of maturity date) in order to obtain the values for the roll return v;
that is, we will pick one day at a time and fit the prices of futures
of five nearest maturities to their time-to-maturity T (measured
in months), as long as there are five consecutive contracts for the
fitting. (The forward curve might well change from contango to

(Continued )
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] Example 5.3 (Continued)

backwardation or vice versa beyond the nearest five contracts.) We
store the values of yina 7 X 1 array gamma.
Gamma=NaN (size (tday)) ;
for t=1:length(tday)
FT=cl(t, :)';
idx=find (isfinite (FT)) ;

idxDiff=fwdshift (1, idx)-idx; % ensure consecutive months
% futures

if (length(idx) >= 5 && all (idxDiff(1:4)==1))
FT=FT (idx(1:5)) ;
T=[1:1length(FT)]";

res=0ls(log(FT), [T ones(size(T, 1), 1)]);
gamma (t) =-12*res.beta (1) ;
end

end

To verify that Equation 5.7 is sensible, we scatter-plot the log futures
values of CL against the time to maturity at one fixed point in time in
Figure 5.4 and check that they do fall on a straight line quite neatly.
(We restrict ourselves to only five nearest contracts in this scatter plot.
Prices of contracts farther out in maturities may not fall onto the same
straight line so neatly, indicating a breakdown in Equation 5.7)

3.73r

3.725¢

372 ...

log(F)

3.715

37

3.705

1 2 3 4 5
Months to Maturity

FIGURE 5.4 Scatter Plot of Log Futures Values against
Time-to-Maturity for CL 2007 January to May Contracts.

The log prices fall neatly on a straight line.
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] Example 5.3 (Continued) [

The annualized values for y over the period November 22, 2004,
to August 13, 2012, for CL are plotted in Figure 5.5.

04 T T T T

02 =

Backwardation m
0 ‘W-W M

>~ -04F .

06 Contango 1

-1.2 .
20041122 20060628 20080204 20090903 20110406

FIGURE 5.5 Values of the Roll Return ¥ for CL. Positive values indicate
backwardation and negative values indicate contango.

[ listed the average annualized values for the spot returns o and the
roll returns v for the five futures in Table 5.1.You can see that for BR,
C, and TU, the magnitude of the roll returns is much larger than that
of the spot returns!

VRO Annualized Average Spot and Roll Returns for Various Futures

Symbol o Y

BR (CME) “2.7% 10.8%
C (CBOT) 2.8% ~12.8%
CL (NYMEX) 7.3% ~7.1%
HG (CME) 5.0% 7.7%
TU (CBOT) ~0.0% 3.2%
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Another example: Every student of finance knows that volatility is mean
reverting; more precisely, we know that the VIX index is mean reverting.
In fact, an augmented Dickey-Fuller (ADF) test will show that it is sta-
tionary with 99 percent certainty. You might think, then, that trading VX
futures would be a great mean-reverting strategy. (VX is the future that
tracks the VIX volatility index trading on the CBOE’s Futures Exchange
[CFE].) However, a look at the back-adjusted front-month futures prices
over time indicates that the mean reversion in VX only happens after vola-
tility peaked around November 20, 2008 (the credit crisis), May 20, 2010
(aftermath of flash crash), and then again on October 3, 2011. At other
times, it just inexorably declines. Indeed, the ADF test shows that the
back-adjusted front contract prices definitively do not mean-revert. You
can see the difference between VIX and the front-month VX in Figure 5.6,
a difference that is entirely due to roll return. The VX future has been in
contango around three fourths of the time, and the average roll return is a
very negative annualized —50 percent (Simon and Campasano, 2012). This
persistent contango is why we find in Chapter 6 that a momentum strategy
works pretty well with VX.

Average roll returns can be quite large compared to their average spot
returns for other futures besides VX as well. Table 5.1 shows that the an-
nualized roll return for corn is —12.8 percent compared to a spot return
of 2.8 percent, and Erb and Harvey calculated that the annualized roll
return for heating oil is 4.6 percent, compared to a spot return of 0.93
percent, over the period December 1982 to May 2004 (Erb and Harvey,
2006).
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FIGURE 5.6 VIX Index versus Back-Adjusted VX Front
Contract Prices



Do Calendar Spreads Mean-Revert?

A calendar spread is a portfolio that consists of a long position in one futures
contract, and a short position in another futures contract with the same un-
derlying but a different expiration month. Based on our previous experience
with spreads in general, calendar spreads would seem to be great candidates
for mean reversion: Aren’t both legs tracking the exact same underlying as-
set? But here again, roll returns derail our intuition. The futures price model
expressed in Equation 5.7 will make this clear.

As with any spread trading, we can choose to define the spread as the
differences of log prices of the two legs in order to generate trading signals
(see Chapter 3), assuming that we maintain the market value of the two legs
to be the same at every period. The log market value of a spread portfolio
with a long far contract and a short near contract is simply y(T; — T,) with
T, > Ty, according to Equation 5.7. (Again, this simple formula may not
hold if T, — T; is large.) The important point is that the calendar spread trad-
ing signal does not depend at all on the spot price, only on the roll return!

As we learned in Chapter 2, return series (as opposed to price series)
almost always mean-revert. Here we are considering not the total return
of a future, but the roll return component only, so things may be different.
(Though the model expressed in Equation 5.7 presupposes that the spot
and roll returns are both constant, we may nevertheless attempt to apply it
to situations where the roll return varies slowly.) We run the ADF test for
12-month log calendar spread of CL, and discovered that it is indeed station-
ary with 99 percent probability, and a half-life of 36 days. Furthermore, if
we apply our usual linear mean-reverting strategy to the log calendar spread
for CL, we do get an APR of 8.3 percent and a Sharpe ratio of 1.3 from
January 2, 2008, to August 13, 2012. The details of the backtest are de-
scribed in Example 5.4.

Example 5.4: Mean Reversion Trading of
Calendar Spreads

As we discussed in the main text, the log market value of a
calendar spread portfolio with a long far contract and a short near
contract is simply Y(Ty — T,), with T, > T,. Since T, and T, are
fixed for a particular calendar spread, we can use the (hopefully)
mean- reverting y to generate trading signals. In the program

(Continued)
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Example 5.4 (Continued) [

calendarSpdsMeanReversion.m below, we assume that the price of the
CL contracts is stored in a 7 X M array cl, where 7 is the number
of trading days, and M is the number of contracts. We compute yin
the same way as in Example 5.3, and store the resulting values yin a
T X 1 array gamma. As a first step, we find the half-life of y.

isGoodData=find(isfinite (gamma)) ;
gammalag=1lag (gamma (isGoodData), 1) ;
deltaGamma=gamma (isGoodData) -gammalag;
deltaGamma (1) =[] ;

gammalag(1)=1[];

regress_results=ols(deltaGamma, [gammalag ...
ones (size (gammalag))]) ;

halflife=-log(2)/regress_results.beta(l);

The half-life is found to be about 36 days. To apply our linear mean
reversion strategy, we need to compute the Z-Score, with the look-
back set equal to the half-life, as demonstrated in Example 2.5.

lookback=round (halflife) ;
ma=movingAvg (gamma, lookback) ;
mstd=movingStd (gamma, lookback) ;

zScore= (gamma-ma) . /mstd;

Here comes the most difficult part. We need to pick a pair of
contracts, far and near, on each historical day, based on three criteria:

1. The holding period for a pair of contracts is 3 months (61 trading
days).

2. We roll forward to the next pair of contracts 10 days before the
current near contract’s expiration.

3. The expiration dates of the near and far contracts are 1 year apart.

Once we have picked those contracts, we assume initially that we
will hold a long position in the far contract, and a short position in
the near one, subject to revisions later.

isExpireDate=false(size(cl)) ;

positions=zeros (size(cl)) ;



] Example 5.4 (Continued)

isExpireDate=isfinite(cl) & ~isfinite(fwdshift (1, cl));
holddays=3*21;
numDaysStart=holddays+10;
numDaysEnd=10;
spreadMonth=12; % No. months between far and near contracts.
for c=1:1length(contracts) -spreadMonth

expireldx=find (isExpireDate(:, c));

o

expireldx=expireldx(end); % There may be some missing

o

% data earlier on
if (c==1)
startIdx=max(1l, expirelIdx-numDaysStart) ;
endIdx=expireIdx-numDaysEnd;
else % ensure next front month contract doesn’t start
until current one ends
myStartIdx=endIdx+1;
myEndIdx=expireIdx-numDaysEnd;
if (myEndIdx-myStartIdx >= holddays)
startIdx=myStartIdx;
endIdx=myEndIdx;
else
startIdx=NaN;
end

end

if (~isempty(expireldx) & endIdx > startIdx)
positions (startIdx:endIdx, c)=-1;
positions (startIdx:endIdx, c+spreadMonth)=1;
end

end

Finally, we apply the linear mean reversion strategy to determine
the true positions and calculate the unlevered daily returns of the
portfolio. (The daily return is the daily P&L divided by 2 because we

have two contracts.)

positions (isnan(zScore), :)=0;

positions (zScore > 0, :)=-positions(zScore > 0, :);

ret=smartsum(lag(positions) .* (cl-lag(cl, 1))./lag(cl, 1),
2)/2;

ret (isnan(ret))=0;

(Continued )
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] Example 5.4 (Continued) [

This results in an attractive unlevered APR of 8.3 percent and a
Sharpe ratio of 1.3 from January 2, 2008, to August 13, 2012. The

cumulative returns curve is shown in Figure 5.7.

0.6 T T T T T

Cumulative Returns

1 1 1 1 L
0 200 400 600 800 1000 1200
January 2, 2008, to August 13, 2012

FIGURE 5.7 Cumulative Returns of the Linear Mean Reversion Strategy
Applied on CL 12-Month Calendar Spread

Students of commodities markets know that seasonality is often a promi-
nent feature. So you may find that for a particular market, only calendar
spreads of certain months (and certain months aparr) mean-revert. How-
ever, we won’t pursue these market-dependent details here.

We can try this same linear mean reversion strategy on the VX calendar
spreads. It turns out that Equation 5.7 works only for a future whose un-
derlying is a traded asset, and VIX is not one. (If you scatter-plot the log VX
futures prices as a function of time-to-maturity as we did in Figure 5.4 for
CL, you will find that they do not fall on a straight line.) Various research-
ers have suggested alternative formulae suitable for the VX future (see, for
example, Dupoyet, Daigler, and Chen, 2011), but I have found that none
can explain the mean-reverting property of VX calendar spreads in the face



Cumulative Returns
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October 27, 2008, to April 23, 2012

FIGURE 5.8 Cumulative Returns of Linear Mean
Reversion Strategy on VX Calendar Spread

of the non-mean reversion of the VX future itself. So we can rely on only
our empirical observation that an ADF test on the ratio back/ front of VX also
shows that it is stationary with a 99 percent probability. If we apply our usual
linear mean-reverting strategy using ratio as the signal (and with a 15-day
look-back for the moving average and standard deviations), VX yields an
APR of 17.7 percent and a Sharpe ratio of 1.5 from October 27, 2008, to
April 23, 2012 (see Figure 5.8 for a plot of its cumulative returns), though
it performed much more poorly prior to October 2008. In the next section,
[ will present graphic evidence that there is a regime change in the behavior
of VIX and its futures around the time of the financial crisis of 2008, so per-
haps this abrupt change in the strategy performance is related to that as well.

B Futures Intermarket Spreads

As I stated in the introduction of this chapter, it is not easy to find futures
intermarket spreads (i.e., pairs of futures from different underlyings) that
are mean reverting. Nevertheless, let’s systematically round up some of the
usual suspects.

The most obvious candidate for pair trading futures is intermarket spreads
between markets that are closely related. For example, the energy com-
plexes (WTI crude oil CL, Brent crude oil BZ, unleaded gasoline RB, and
heating oil HO, all traded on the New York Mercantile Exchange [NYMEX])
should offer rich potential opportunities.
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Before we run a Johansen test on these four contracts, we can first ex-
amine a well-known portfolio called the crack spread consisting of long three
contracts of CL, short two contracts of RB, and short one contract of HO.
This is called the crack spread because we can obtain gasoline and heating
oil by cracking the long hydrocarbon chains of crude oil molecules, and
the 3:2:1 hedge ratios come about because three barrels of CL produces
approximately two barrels of RB and one barrel of heating oil, though this
is not universally true for all refiners. One advantage of trading the crack
spread is that NYMEX offers a ready-made basket for it, with a much lower
margin requirement than if we trade them separately.

However, running an ADF test on the crack spread from May 20, 2002,
to May 4, 2012, shows that this spread is not mean reverting. The chart of
this spread (Figure 5.9) reveals a dramatic increase in value around March 9,
2007, to July 3, 2008, and then a sharp drop after that, and running the
linear mean reversion strategy on it shows negative returns for that period.
(Note that we must back-adjust the continuous contracts using prices rather
than returns in this test; otherwise, this price spread will show a discontinu-
ous jump at rollovers, as explained in Chapter 1.)

Another spread that would seem to be a good candidate is CL and BZ in a
1:1 ratio. After all, their underlyings are both crude oils. But another quick
ADF test will show that it is far from stationary. BZ has relentlessly outper-
formed CL due to a variety of factors. The likely culprits include the in-
creasing oil production in the United States (Friedman, 2012), the pipeline
bottleneck at Cushing, Oklahoma (Philips, 2012), and geopolitical concerns
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May 20, 2002, to May 4, 2012
FIGURE 5.9 The Crack Spread



such as the embargo against Iranian oil in 2012, which affected Europe and
therefore BZ more than the United States.

If you want to backtest intermarket spreads yourself, don’t forget to
make sure that their prices are synchronous, as I cautioned in Chapter 1. In
particular, before BZ started trading at the NYMEX on September 5, 2001,
it was traded at the Intercontinental Petroleum Exchange in London, which
obviously has a different closing time than NYMEX on which CL has always
been traded. So backtesting the BZ-CL spread before September 5, 2001,
using closing prices would be wrong. Also, we often need to multiply the
futures prices by a factor to convert points into USD.

Our search for mean-reverting intermarket futures spreads has not been
fruitful so far. But I will now discuss one unusual spread that will change that.

Volatility Futures versus Equity Index Futures

Many traders have observed that volatility is anti-correlated with the stock
equity market index: When the market goes down, volatility shoots up, and
to a lesser extent, vice versa. One way to visualize this inverse relationship is
to plot ES, the E-mini S&P 500 futures front-month prices, against VX, the

VIX futures front-month prices. This can be accomplished by the “scatter”

function in MATLAB, and the result is displayed in Figure 5.10.

The first obvious feature of this plot is that, indeed, the stock index has an
inverse relationship with volatility. But, more interestingly, there appeared to
be two main regimes, 2004 to May 2008 and August 2008 to 2012. The sec-
ond regime has a notably lower volatility for a given stock index level. In plain
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FIGURE 5.10 A Study of Volatility Regimes: ES versus VX

129

SHAN.LNA ANV SHIDNIYYND 40 NOISYTIATY NVAW



(O8]
(=

ALGORITHMIC TRADING

English, the market is less volatile nowadays. However, the range of volatili-
ties is greater now, meaning that we have days with more extreme volatilities
than before. (There are other, shorter periods that may represent transitional
states, but we will ignore them in our analysis.) It would be a mistake to run
a linear regression or apply the Johansen test to a mixture of both regimes, so
we focus on the second one, which extends to the time of this writing,

We choose to compute the regression coefficients only for the first 500
days of the post—August 2008 data as the training set because later we would
like to use the various statistics from this regression to build our trading
model. Before we actually run the prices through the linear regression pro-
gram, we have to remember that the futures prices of VX and ES are in dif-
ferent units: one point move in VX is $1,000, while one point move in ES is
$50. So we need to multiply the prices of VX by 1,000 and the prices of ES
by 50 in order for the hedge ratio to properly reflect the ratio in the number
of contracts.

The linear relationship is shown in Equation 5.11.

ES X 50=-0.3906 X VX X 1,000 + $77,150 (5.11)

where ES and VX are their respective futures (settlement) prices. The stan-
dard deviation of the residues is $2,047. This means that a portfolio that is
long 0.3906 contracts of VX and long one contract of ES should be stationary,
as a plot (Figure 5.11) of this portfolio’s market value would convince us.
We can construct a Bollinger band—like mean-reverting strategy by short-
ing this portfolio whenever its value deviates from one standard deviation
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FIGURE 5.11 Stationary Portfolio of ES and VX
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Cumulative Returns
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FIGURE 5.12 Cumulative Returns of VX-ES Mean

Reversion Strategy

of the residuals determined in the training set. The APR on the test set July
29,2010, to May 8, 2012, is 12.3 percent, with a Sharpe ratio of 1.4. It was
particularly profitable starting around the time of the Standard and Poor’s
downgrade of the U.S. credit rating. The cumulative returns curve is shown
in Figure 5.12.

There is a different VX versus ES strategy that we can employ, which does
not rely on the mean-reverting properties of the spread VX-ES. Because that
is a momentum strategy, I will discuss it in the next chapter.
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e “Commodity” currencies as a group offer many opportunities for
cointegration.

¢ In computing the returns of a portfolio with two currency cross-rates, did
you pay attention to whether they have the same quote currency, the same
base currency, or neither? The formulae for computing returns are not the
same for all cases.

e Futures returns consist of two components: spot returns and roll returns.

e Backwardation means roll returns are positive, and far contracts are
cheaper than near contracts. Contango means roll returns are negative, and
far contracts are more expensive than near contracts.

e Because of roll returns, mean reversion of the spot price may not induce
mean reversion of the futures price.

e Mean reversion of futures calendar spreads of traded assets depends on
mean reversion of roll returns.
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CHAPTER 6

Interday
Momentum
Strate gies

' I there are four main causes of momentum:

133

1. For futures, the persistence of roll returns, especially of their signs.
2. The slow diffusion, analysis, and acceptance of new information.

3. The forced sales or purchases of assets of various type of funds.

4. Market manipulation by high-frequency traders.

We will be discussing trading strategies that take advantage of each cause
of momentum in this and the next chapter. In particular, roll returns of fu-
tures, which featured prominently in the last chapter, will again take center
stage. Myriad futures strategies can be constructed out of the persistence of
the sign of roll returns.

Researchers sometimes classify momentum in asset prices into two types:
time series momentum and cross-sectional momentum, just as we classified
mean reversion into two corresponding types in Chapter 2 (Moskowitz,
Yao, and Pedersen, 2010). Time series momentum is very simple and in-
tuitive: past returns of a price series are positively correlated with future
returns. Cross-sectional momentum refers to the relative performance of a
price series in relation to other price series: a price series with returns that

outperformed other price series will likely keep doing so in the future and
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vice versa. We will examine examples of both types in momentum in futures
and stocks.

The strategies I describe in this chapter tend to hold positions for mul-
tiple days, which is why I call them “interday” momentum strategies. I will
consider the intraday, higher-frequency momentum strategies in the next
chapter. The reason for this distinction is that many interday momentum
strategies suffer from a recently discovered weakness, while intraday mo-
mentum strategies are less affected by it. I will highlight this weakness in
this chapter, and also discuss the very different properties of momentum
strategies versus their mean-reverting counterparts, as well as their pros

and cons.

B Tests for Time Series Momentum

Before we delve into the different causes of momentum, we should first
see how we can measure momentum, or more specifically, time series mo-
mentum. Time series momentum of a price series means that past returns
are positively correlated with future returns. It follows that we can just
calculate the correlation coefficient of the returns together with its p-value
(which represents the probability for the null hypothesis of no correla-
tion). One feature of computing the correlation coefficient is that we have
to pick a specific time lag for the returns. Sometimes, the most positive
correlations are between returns of different lags. For example, 1-day re-
turns might show negative correlations, while the correlation between past
20-day return with the future 40-day return might be very positive. We
should find the optimal pair of past and future periods that gives the highest
positive correlation and use that as our look-back and holding period for
our momentum strategy.

Alternatively, we can also test for the correlations between the signs of
past and future returns. This is appropriate when all we want to know is that
an up move will be followed by another up move, and we don’t care whether
the magnitudes of the moves are similar.

If we are interested instead in finding out whether there is long-term
trending behavior in the time series without regard to specific time frames,
we can calculate the Hurst exponent together with the Variance Ratio test
to rule out the null hypothesis of random walk. These tests were described
in Chapter 2 for the detection of mean reversion, but they can just as well
be used as momentum tests.
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FIGURE 6.1 Nonoverlapping Periods for Correlation Calculations

I will illustrate the use of these tests below using the two-year Treasury
note future TU trading on the Chicago Mercantile Exchange (CME) as an
example. The correlation coefficient and its p-value can be computed using
the MATLAB function corrcoef, while the Hurst exponent and Variance Ratio
test are, as before, given by genhurst and vratiotest.

In computing the correlations of pairs of returns resulting from different
look-back and holding periods, we must take care not to use overlapping
data. If look-back is greater than the holding period, we have to shift for-
ward by the holding period to generate a new returns pair. If the holding
period is greater than the look-back, we have to shift forward by the look-
back period. This is illustrated in Figure 6.1.

The top two bars in Figure 6.1 are for the case where look-back is greater
than the holding period. The top bar represents the data set that forms the
first returns pair, and the second bar from the top represents the data set
that forms the second independent returns pair. The bottom two bars are for
the case where the look-back is smaller than the holding. The code is listed
below (and available for download as TU_mom.m).

Finding Correlations between Returns of Different Time Frames

% Correlation tests
for lookback=[1 5 10 25 60 120 250]
for holddays=[1 5 10 25 60 120 250]

ret lag=(cl-backshift (lookback, cl))
. /backshift (lookback, cl);

ret fut=(fwdshift (holddays, cl)-cl)./cl;

BOX 6.1

badDates=any ([isnan(ret_lag) isnan(ret fut)], 2);

(Continued)
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ret lag(badDates)=1[];
ret_ fut (badDates)=1[];

if (lookback >= holddays)
indepSet=[1:lookback:length(ret lag)l];

else
indepSet=[1:holddays:length(ret_lag)];

end
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ret_lag=ret_lag(indepSet) ;
ret_fut=ret_fut (indepsSet) ;

[cc, pval]l=corrcoef (ret_lag, ret_ fut);

fprintf (1, ‘lookback=%31 holddays=%3i cc=%7.4f ...
pval=%6.4f\n’, lookback, holddays, cc(l, 2),
pval(1l, 2));

end

end

If we shift the data forward by one day, we will get a slightly different set
of returns for computing our correlations. For simplicity, I have only tested
correlation of one among many possible sets of returns, but because of the
large overlap of data between two different sets of returns, the results are
unlikely to be greatly different. Some of the more significant results are
tabulated in Table 6.1.

We see that there is a compromise between the correlation coefficient
and the p-value. The following (look-back, holding days) pairs offer some of
the best compromises: (60, 10), (60, 25), (250, 10), (250, 25), (250, 60),
(250, 120). Of course, from a trading point of view, we prefer as short a
holding period as possible as those tend to generate the best Sharpe ratios.

[ have also tested the correlations between the signs of past and future
returns instead, and the results are not very different fromTable 6.1. I found
the best pair candidates in that case are (60, 10), (250, 10), and (250, 25).

In contrast, we found that the Hurst exponent is 0.44, while the Variance
Ratio test failed to reject the hypothesis that this is a random walk.

How are these two conflicting results reconciled? As we show in the cor-
relation tests, this time series (as with many other financial time series)
exhibits momentum and mean reversion at different time frames. The Vari-
ance Ratio test is unable to test the specific time frames where the correla-

tions might be stronger than average.



IV Correlations between TU Returns of Different Time Frames

Look-back Holding days Correlation coefficient p-value
25 1 —0.0140 0.5353
25 5 0.0319 0.5276
25 10 0.1219 0.0880
25 25 0.1955 0.0863
25 60 0.2333 0.0411
25 120 0.1482 0.2045
25 250 0.2620 0.0297
60 1 0.0313 0.1686
60 5 0.0799 0.1168
60 10 0.1718 0.0169
60 25 0.2592 0.0228
60 60 0.2162 0.2346
60 120 —0.0331 0.8598
60 250 0.3137 0.0974
120 1 0.0222 0.3355
120 5 0.0565 0.2750
120 10 0.0955 0.1934
120 25 0.1456 0.2126
120 60 —0.0192 0.9182
120 120 0.2081 0.4567
120 250 0.4072 0.1484
250 1 0.0411 0.0857
250 5 0.1068 0.0462
250 10 0.1784 0.0185
250 25 0.2719 0.0238
250 60 0.4245 0.0217
250 120 0.5112 0.0617
250 250 0.4873 0.3269

B Time Series Strategies

For a certain future, if we find that the correlation coefficient between a
past return of a certain look-back and a future return of a certain holding
period is high, and the p-value is small, we can proceed to see if a profitable
momentum strategy can be found using this set of optimal time periods.

Since Table 6.1 shows us that for TU, the 250-25-days pairs of returns have

—
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a correlation coefficient of 0.27 with a p-value of 0.02, we will pick this
look-back and holding period. We take our cue for a simple time series mo-
mentum strategy from a paper by Moskowitz, Yao, and Pedersen: simply buy
(sell) the future if it has a positive (negative) 12-month return, and hold the
position for 1 month (Moskowitz,Yao, and Pedersen, 2012). We will modify
one detail of the original strategy: Instead of making a trading decision every
month, we will make it every day, each day investing only one twenty-fifth
of the total capital.

] Example 6.1: TU Momentum Strategy [

This code assumes the closing prices are contained ina T X 1 array cl.
This code is contained in TU_mom.m.

lookback=250;
holddays=25;

longs=cl > backshift (lookback, cl) ;
shorts=cl < backshift (lookback, cl) ;

pos=zeros (length(cl), 1);

—
oo

for h=0:holddays-1
long lag=backshift (h, longs);
long lag(isnan(long_lag))=false;

long lag=logical (long_lag) ;

short_ lag=backshift (h, shorts);

short lag(isnan(short lag))=false;

ALGORITHMIC TRADING | W

short_lag=logical (short_lag) ;
pos (long lag)=pos (long_lag)+1;
pos (short_lag) =pos (short_lag)-1;

end

ret=(backshift (1, pos).*(cl-lag(cl))./lag(cl)) /holddays;

From June 1, 2004, to May 11, 2012, the Sharpe ratio is a respectable
1. The annual percentage rate (APR) of 1.7 percent may seem low, but our
return is calculated based on the notional value of the contract, which is
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FIGURE 6.2 Equity Curve of TU Momentum Strategy

about $200,000. Margin requirement for this contract is only about $400.
So you can certainly employ a reasonable amount of leverage to boost re-
turn, though one must also contend with the maximum drawdown of 2.5
percent. The equity curve also looks quite attractive (see Figure 6.2).

This simple strategy can be applied to all kinds of futures contracts, with
different optimal look-back periods and the holding days. The results for
three futures we considered are listed in Table 6.2.

Why do many futures returns exhibit serial correlations? And why do
these serial correlations occur only at a fairly long time scale? The expla-
nation lies in the roll return component of the total return of futures we
discussed in Chapter 5. Typically, the sign of roll returns does not vary very
often. In other words, the futures stay in contango or backwardation over
long periods of time. The spot returns, however, can vary very rapidly in
both sign and magnitude. So if we hold a future over a long period of time,
and if the average roll returns dominate the average total returns, we will
find serial correlation of total returns. This explanation certainly makes
sense for BR, HG, and TU, since fromTable 5.1 we can see that they all have

V.V WA Time Series Momentum Strategies for Various Futures

Symbol Look-back  Holding days APR Sharpe ratio Max drawdown
BR (CME) 100 10 17.7% 1.09 —14.8%
HG (CME) 40 40 18.0% 1.05 —24.0%

TU (CBOT) 250 25 1.7% 1.04 —2.5%

—
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roll returns that are bigger in magnitude than their spot returns. (I haven’t
found the reason why it doesn’t work for C, despite its having the largest roll
return magnitude compared to its average spot return, but maybe you can!)

If we accept the explanation that the time series momentum of futures
is due to the persistence of the signs of the roll returns, then we can devise
a cleaner and potentially better momentum signal than the lagged total re-
turn. We can use the lagged roll return as a signal instead, and go long when
this return is higher than some threshold, go short when this return is lower
than the negative of that threshold, and exit any existing position otherwise.
Applying this revised strategy on TU with a threshold of an annualized roll
return of 3 percent yields a higher APR of 2.5 percent and Sharpe ratio of
2.1 from January 2, 2009, to August 13, 2012, with a reduced maximum
drawdown of 1.1 percent.

There are many other possible entry signals besides the simple “sign of re-
turn” indicator. For example, we can buy when the price reaches a new N-day
high, when the price exceeds the N-day moving average or exponential mov-
ing average, when the price exceeds the upper Bollinger band, or when the
number of up days exceeds the number of down days in a moving period.

There is also a classic momentum strategy called the Alexander Filter,
which tells us to buy when the daily return moves up at least x percent, and
then sell and go short if the price moves down at least x percent from a sub-
sequent high (Fama and Blume, 1966).

Sometimes, the combination of mean-reverting and momentum rules may
work better than each strategy by itself. One example strategy on CL is this:
buy at the market close if the price is lower than that of 30 days ago and is high-
er than that of 40 days ago; vice versa for shorts. If neither the buy nor the sell
condition is satisfied, flatten any existing position. The APR is 12 percent, with
a Sharpe ratio of 1.1. Adding a mean-reverting filter to the momentum strategy
in Example 6.1 will add IBX (MEFF), KT (NYMEX), SXF (DE), US (CBOT),
CD (CME), NG (NYMEX), and W (CME) to Table 6.2, and it will also im-
prove the returns and Sharpe ratios of the existing contracts in that table.

In fact, if you don’t want to construct your own time series momentum
strategy, there is a ready-made index that is composed of 24 futures: the Stan-
dard & Poor’s (S&P) Diversified Trends Indicator (DTI). The essential strat-
egy behind this index is that we will long a future if it is above its exponential
moving average, and short it if it is below, with monthly rebalancing. (For
details, you can visit www.standardandpoors.com.) There is a mutual fund
(RYMFX) as well as an exchange-traded fund (WDTI) that tracks this index.
Michael Dever computed that the Sharpe ratio of this index was 1.3 with


http://www.standardandpoors.com

a maximum drawdown of —16.6 percent from January 1988 to December
2010 (Dever, 2011). (This may be compared to the S&P 500 index SPX,
which has a Sharpe ratio of 0.61 and a maximum drawdown of —50.96 per-
cent over the same period, according to the author.) However, in common
with many other momentum strategies, its performance is poor since the
2008 financial crisis, a point that will be taken up later.

Since there aren’t many trades in the relatively limited amount of test
data that we used due to the substantial holding periods, there is a risk of
data-snooping bias in these results. The real test for the strategy is, as always,
in true out-of-sample testing.

B Extracting Roll Returns through
Future versus ETF Arbitrage

If futures’ total returns = spot returns + roll returns, then an obvious way
to extract roll return is buy the underlying asset and short the futures, if the
roll return is negative (i.e., under contango); and vice versa if the roll return
is positive (i.e., under backwardation). This will work as long as the sign of
the roll return does not change quickly, as it usually doesn’t. This arbitrage
strategy is also likely to result in a shorter holding period and a lower risk
than the buy-and-hold strategy discussed in the previous section, since in
that strategy we needed to hold the future for a long time before the noisy
spot return can be averaged out.

However, the logistics of buying and especially shorting the underlying
asset is not simple, unless an exchange-traded fund (ETF) exists that holds
the asset. Such ETFs can be found for many precious metals. For example,
GLD actually owns physical gold, and thus tracks the gold spot price very
closely. Gold futures have a negative roll return of —4.9 percent annualized
from December 1982 to May 2004. A backtest shows that holding a long
position in GLD and a short position in GC yields an annualized return of
1.9 percent and a maximum drawdown of 0.8 percent from August 3, 2007,
to August 2, 2010. This might seem attractive, given that one can apply a
leverage of 5 or 6 and get a decent return with reasonable risk, but in reality
it is not. Remember that in contrast to owning futures, owning GLD actu-
ally incurs financing cost, which is not very different from 1.9 percent over
the backtest period! So the excess return of this strategy is close to zero.

(The astute reader might notice another caveat of our quick backtest of
GC versus GLD: the settlement or closing prices of GC are recorded at

1
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1:30 pMm. ET, while those of GLD are recorded at 4:00 p.m. ET. This asyn-
chronicity is a pitfall that [ mentioned in Chapter 1. However, it doesn’t
matter to us in this case because the trading signals are generated based on
GC closing prices alone.)

If we try to look outside of precious metals ETFs to find such arbitrage
opportunities, we will be stumped. There are no ETFs that hold other physi-
cal commodities as opposed to commodities futures, due to the substantial
storage costs of those commodities. However, there is a less exact form of
arbitrage that allows us to extract the roll returns. ETFs containing com-
modities producing companies often cointegrate with the spot price of
those commodities, since these commodities form a substantial part of their
assets. So we can use these ETFs as proxy for the spot price and use them to
extract the roll returns of the corresponding futures.

One good example is the arbitrage between the energy sector ETF XLE and
the WTI crude oil futures CL. Since XLE and CL have different closing times, it
is easier to study the arbitrage between XLE and the ETF USO instead, which
contains nothing but front month contracts of CL.The strategy is simple:

= Short USO and long XLE whenever CL is in contango.
= Long USO and short XLE whenever CL is in backwardation.

The APR is a very respectable 16 percent from April 26, 2006, to April 9,
2012, with a Sharpe ratio of about 1. I have plotted the cumulative returns
curve in Figure 6.3.
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FIGURE 6.3 Cumulative Returns of XLE-USO Arbitrage



What about a future whose underlying is not a traded commodity? VX
is an example of such a future: It is very expensive to maintain a basket of
options that replicate the underlying VIX index, and no ETF sponsors have
been foolish enough to do that. But, again, we do not need to find an instru-
ment that tracks the spot price exactly—we just need to find one that has
a high correlation (or anti-correlation) with the spot return. In the case of
VIX, the familiar ETF SPY fits the bill. Because the S&P E-mini future ES has
insignificant roll return (about 1 percent annualized), it has almost the same
returns as the underlying asset. Because it is certainly easier to trade futures
than an ETF, we will investigate the performance of our earlier arbitrage

strategy using ES instead.

Volatility Futures versus Equity Index Futures:
Redux

VX is a natural choice if we want to extract roll returns: its roll returns
can be as low as —50 percent annualized. At the same time, it is highly anti-
correlated with ES, with a correlation coefficient of daily returns reaching
—75 percent. In Chapter 5, we used the cointegration between VX and ES
to develop a profitable mean-reverting strategy. Here, we will make use of
the large roll return magnitude of VX, the small roll return magnitude of
ES, and the anticorrelation of VX and ES to develop a momentum strategy.
This strategy was proposed by Simon and Campasano (2012):

1. If the price of the front contract of VX is higher than that of VIX by 0.1
point (contango) times the number of trading days untill settlement,
short 0.3906 front contracts of VX and short 1 front contract of ES.
Hold for one day.

2. If the price of the front contract of VX is lower than that of VIX by 0.1
point (backwardation) times the number of trading days untill settle-
ment, buy 0.3906 front contracts of VX and buy 1 front contract of ES.
Hold for one day.

Recall that if the front contract price is higher than the spot price, the roll
return is negative (see Figure 5.3). So the difference in price between VIX and
VX divided by the time to maturity is the roll return, and we buy VX if the
roll return is positive. Why didn’t we use the procedure in Example 5.3 where
we use the slope of the futures log forward curve to compute the roll return
here?That is because Equation 5.7 doesn’t work for VX, and therefore the VX
forward prices do not fall on a straight line, as explained in Chapter 5.
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Cumulative Returns
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FIGURE 6.4 Cumulative Returns of VX-ES Roll Returns Strategy

Notice that the hedge ratio of this strategy is slightly different from that
reported by Simon and Campasano: It is based on the regression fit between
the VX versus ES prices in Equation 5.11, not between their returns as in
the original paper. The settlement is the day after the contracts expire. The
APR for July 29, 2010, to May 7, 2012 (this period was not used for hedge
ratio determination) is 6.9 percent, with a Sharpe ratio of 1. The cumulative
return chart is displayed in Figure 6.4.You can find the MATLAB code for
this strategy in VX_ES_rollreturn.m on my website.

B Cross-Sectional Strategies

There is a third way to extract the often large roll returns in futures besides
buying and holding or arbitraging against the underlying asset (or against an
instrument correlated with the underlying asset). This third way is a cross-
sectional strategy: We can just buy a portfolio of futures in backwardation,
and simultaneously short a portfolio of futures in contango. The hope is that
the returns of the spot prices cancel each other out (a not unreasonable
expectation if we believe commodities’ spot prices are positively correlated
with economic growth or some other macroeconomic indices), and we are
left with the favorable roll returns. Daniel and Moskowitz described just
such a simple “cross-sectional” momentum strategy that is almost a mir-
ror image of the linear long-short mean-reverting stock model proposed
by Khandani and Lo described in Chapter 3, albeit one with a much longer
look-back and holding period (Daniel and Moskowitz, 2011).
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FIGURE 6.5 Cumulative Returns of Cross-Sectional
Futures Momentum Strategy

A simplified version of the strategy is to rank the 12-month return (or 252
trading days in our program below) of a group of 52 physical commodities
every day, and buy and hold the future with the highest return for 1 month (or
25 trading days) while short and hold the future with the lowest return for the
same period. I tested this strategy from June 1, 2005, to December 31, 2007,
and the APR is an excellent 18 percent with a Sharpe ratio of 1.37.The cumu-
lative returns are plotted in Figure 6.5. Unfortunately, this model performed
very negatively from January 2, 2008, to December 31, 2009, with an APR of
—33 percent, though its performance recovered afterwards. The financial crisis
of 20082009 ruined this momentum strategy, just like it did many others,
including the S&P DTl indicator mentioned before.

Daniel and Moskowitz have also found that this same strategy worked for
the universe of world stock indices, currencies, international stocks, and
U.S. stocks—in other words, practically everything under the sun. Obvi-
ously, cross-sectional momentum in currencies and stocks can no longer be
explained by the persistence of the sign of roll returns. We might attribute
that to the serial correlation in world economic or interest rate growth in
the currency case, and the slow diffusion, analysis, and acceptance of new
information in the stock case.

Applying this strategy to U.S. stocks, we can buy and hold stocks within
the top decile of 12-month lagged returns for a month, and vice versa for
the bottom decile. I illustrate the strategy in Example 6.2.
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Example 6.2: Cross-Sectional Momentum
Strategy for Stocks

This code assumes the close prices are contained in T X N array c,
where T is the number of trading days, and N is the number of the
stocks in S&P 500. It makes use of utilities functions smartsum and
backshift, available from http://epchan.com/book2. The code itself
can be downloaded as kentdaniel. m.

lookback=252;

holddays=25;

topN=50;

ret=(cl- backshift (lookback,cl)) ./backshift (lookback,cl) ;

o

% daily returns
longs=false(size(ret)) ;

shorts=false (size(ret));

positions=zeros (size(ret));

for t=lookback+l:length (tday)
[foo idx]=sort(ret(t, :), ‘ascend’);
nodata=find (isnan(ret(t, :)));
idx=setdiff (idx, nodata, ‘stable’);
longs (t, idx(end-topN+1l:end))=true;
shorts (t, idx(1l:topN))=true;

end

for h=0:holddays-1
long lag=backshift (h, longs) ;
long lag(isnan(long_lag))=false;

long lag=logical (long_lag) ;

short_lag=backshift (h, shorts);
short lag(isnan(short lag))=false;

short_lag=logical (short_lag) ;

positions (long lag)=positions(long lag)+1;
positions (short_ lag)=positions (short_lag)-1;

end

dailyret=smartsum(backshift (1, positions).* (cl-lag(cl))
./ lag(cl), 2)/(2*topN)/holddays;

dailyret (isnan(dailyret))=0;


http://epchan.com/book2

] Example 6.2 (Continued) [

The APR from May 15, 2007, to December 31, 2007, is 37
percent with a Sharpe ratio of 4.1. The cumulative returns are shown

in Figure 6.6. (Daniel and Moskowitz found an annualized average
return of 16.7 percent and a Sharpe ratio of 0.83 from 1947 to
2007.) However, the APR from January 2, 2008, to December 31,
2009, is a miserable —30 percent. The financial crisis of 2008—2009
also ruined this momentum strategy. The return after 2009 did
stabilize, though it hasn’t returned to its former high level yet.

Just as in the case of the cross-sectional mean reversion strategy discussed
in Chapter 4, instead of ranking stocks by their lagged returns, we can rank
them by many other variables, or “factors,” as they are usually called. While
we wrote total return = spot return + roll return for futures, we can write
total return = market return + factor returns for stocks. A cross-sectional portfo-
lio of stocks, whether mean reverting or momentum based, will eliminate

the market return component, and its returns will be driven solely by the

N

factors. These factors may be fundamental, such as earnings growth or book- 147
to-price ratio, or some linear combination thereof. Or they may be statisti-
cal factors that are derived from, for example, Principal Component Analy-

sis (PCA) as described in Quantitative Trading (Chan, 2009). All these factors
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with the possible exception of PCA tend to change slowly, so using them
to rank stocks will result in as long holding periods as the cross-sectional
models I discussed in this section.

While we are on the subject of factors, it bears mentioning that a factor
model can be applied to a cross-sectional portfolio of futures as well. In this
case, we can find macroeconomic factors such as gross domestic product
(GDP) growth or inflation rate and correlate them with the returns of each
futures instrument, or we can again employ PCA.

In recent years, with the advance of computer natural language process-
ing and understanding capability, there is one other factor that has come into
use. This is the so-called news sentiment score, our next topic.

News Sentiment as a Fundamental Factor

With the advent of machine-readable, or “elementized,” newsfeeds, it is now
possible to programmatically capture all the news items on a company, not
just those that fit neatly into one of the narrow categories such as earnings
announcements or merger and acquisition (M&A) activities. Furthermore,
natural language processing algorithms are now advanced enough to analyze
the textual information contained in these news items, and assign a “senti-
ment score” to each news article that is indicative of its price impact on a
stock, and an aggregation of these sentiment scores from multiple news ar-
ticles from a certain period was found to be predictive of its future return.
For example, Hafez and Xie, using RavenPack’s Sentiment Index, found that
buying a portfolio of stocks with positive sentiment change and shorting
one with negative sentiment change results in an APR from 52 percent to
156 percent and Sharpe ratios from 3.9 to 5.3 before transaction costs, de-
pending on how many stocks are included in the portfolios (Hafez and Xie,
2012).The success of these cross-sectional strategies also demonstrates very
neatly that the slow diffusion of news is the cause of stock momentum.
There are other vendors besides RavenPack that provide news senti-
ments on stocks. Examples include Recorded Future, thestocksonar.com,
and Thomson Reuters News Analytics. They differ on the scope of their
news coverage and also on the algorithm they use to generate the senti-
ment score. If you believe your own sentiment algorithm is better than
theirs, you can subscribe directly to an elementized news feed instead
and apply your algorithm to it. I mentioned before that Newsware offers
a low-cost version of this type of news feeds, but offerings with lower
latency and better coverage are provided by Bloomberg Event-Driven



Trading, Dow Jones Elementized News Feeds, and Thomson Reuters Ma-
chine Readable News.

Beyond such very reasonable use of news sentiment as a factor for cross-
sectional momentum trading, there has also been research that suggested
the general “mood” of society as revealed in the content of Twitter feeds is
predictive of the market index itself (Bollen, Mao, and Zeng, 2010). In fact,
a multimillion-dollar hedge fund was launched to implement this outland-
ish idea (Bryant, 2010), though the validity of the research itself was under
attack (Buy the Hype, 2012).

Mutual Funds Asset Fire Sale and
Forced Purchases

Researchers Coval and Stafford (2007) found that mutual funds experienc-
ing large redemptions are likely to reduce or eliminate their existing stock
positions. This is no surprise since mutual funds are typically close to fully
invested, with very little cash reserves. More interestingly, funds experienc-
ing large capital inflows tend to increase their existing stock positions rather
than using the additional capital to invest in other stocks, perhaps because
new investment ideas do not come by easily. Stocks disproportionately held
by poorly performing mutual funds facing redemptions therefore experi-
ence negative returns. Furthermore, this asset “fire sale” by poorly perform-
ing mutual funds is contagious. Since the fire sale depresses the stock prices,
they suppress the performance of other funds holding those stocks, too,
causing further redemptions at those funds. The same situation occurs in
reverse for stocks disproportionately held by superbly performing mutual
funds with large capital inflows. Hence, momentum in both directions for
the commonly held stocks can be ignited.

(This ignition of price momentum due to order flow is actually a rather
general phenomenon, and it happens at even the shortest time scale. We find
more details on that in the context of high-frequency trading in Chapter 7.)

A factor can be constructed to measure the selling (buying) pressure on
a stock based on the net percentage of funds holding them that experienced
redemptions (inflows). More precisely,

PRESSURE(i, )
Zj(Buy( i,i,0)| flow( j,£) > 5%) —Zj(Se]]( 7i,0)| flow( j,£) <—5%)
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where PRESSURE(I, t) is the factor for stock i at the end of quarter ¢,
Buy(j, i, t) = 1 if fund j increased its holding in stock i during the quarter ¢
and if the fund experienced inflows greater than 5 percent of its net asset
value (NAV) (“flow(j, t) > 5%”), and zero otherwise. Sell(j, i, t) is similarly
defined for decreases in holdings, and lewn( j, i, t = 1) is the total number
of mutual funds holding stock i the beginning of quarter .

Note that the PRESSURE variable does not take into account the size
(NAV) of the fund, as Buy is a binary variable. One wonders whether weigh-
ing Buy by NAV will give better results.

Coval and Stafford found that a market-neutral portfolio formed based
on shorting stocks with highest selling pressure (bottom decile of PRESSURE
ranking) and buying stocks with the highest (top decile of PRESSURE rank-
ing) buying pressure generates annualized returns of about 17 percent be-
fore transaction costs. (Since data on stock holdings are available generally
on a quarterly basis only, our portfolio is updated quarterly as well.)

Furthermore, capital flows into and out of mutual funds can be predicted
with good accuracy based on their past performance and capital flows, a
reflection of the herdlike behavior of retail investors. Based on this predic-
tion, we can also predict the future value of the pressure factor noted above.
In other words, we can front-run the mutual funds in our selling (buying)
of the stocks they currently own. This front-running strategy generates an-
other 17 percent annualized return before transaction costs.

Finally, since these stocks experience such selling and buying pressures due
to liquidity-driven reasons, and suffer suppression or elevation of their prices
through no fault or merit on their own, their stock prices often mean-revert
after the mutual fund selling or buying pressure is over. Indeed, buying stocks
that experienced the most selling pressure in the t — 4 up to the t — 1 quarters,
and vice versa, generates another 7 percent annualized returns.

Combining all three strategies (momentum, front running, and mean
reverting) generates a total return of about 41 percent before transaction
costs. However, the slippage component of the transaction costs is likely
to be significant because we may experience delays in getting mutual fund
holdings information at the end of a quarter. In addition, the implementa-
tion of this strategy is not for the faint-of-heart: clean and accurate mu-
tual holdings and returns data have to be purchased from the Center for
Research in Security Prices (CRSP) at a cost of about $10,000 per year
of data.

Mutual funds are not the only type of funds that can induce momentum
in stocks due to forced asset sales and purchases. In Chapter 7, we will



discover that index funds and levered ETFs ignite similar momentum as
well. In fact, forced asset sales and purchases by hedge funds can also lead
to momentum in stocks, and that caused the August 2007 quant funds melt-
down, as I explain in Chapter 8.

B Pros and Cons of Momentum Strategies

Momentum strategies, especially interday momentum strategies, often have
diametrically opposite reward and risk characteristics in comparison to mean
reverting strategies. We will compare their pros and cons in this section.

Let’s start with the cons. In my own trading experience, I have often
found that it is harder to create profitable momentum strategies, and those
that are profitable tend to have lower Sharpe ratios than mean-reversal strat-
egies. There are two reasons for this.

First, as we have seen so far, many established momentum strategies have
long look-back and holding periods. So clearly the number of independent
trading signals is few and far in between. (We may rebalance a momen-
tum portfolio every day, but that doesn’t make the trading signals more
independent.) Fewer trading signals naturally lead to lower Sharpe ratio.
Example: The linear mean reversion model for S&P 500 stocks described in
Chapter 4 relies on the short-term cross-sectional mean reversion proper-
ties of stocks, and the holding period is less than a day. It has a high Sharpe
ratio of 4.7. For the same universe of stocks, the opposite cross-sectional
momentum strategy described earlier in this chapter has a holding period of
25 days, and though it performed similarly well pre-2008, the performance
collapsed during the financial crisis years.

Secondly, research by Daniel and Moskowitz on “momentum crashes”
indicates that momentum strategies for futures or stocks tend to perform
miserably for several years after a financial crisis (Daniel and Moskowitz,
2011). We can see that easily from a plot of the S&P DTl index (Figure 6.7).
As of this writing, it has suffered a drawdown of —25.9 percent since
December 5, 2008. Similarly, cross-sectional momentum in stocks also van-
ished during the aftermath of the stock market crash in 20082009, and is
replaced by strong mean reversion. We still don’t know how long this mean
reversion regime will last: After the stock market crash of 1929, a represen-
tative momentum strategy did not return to its high watermark for more
than 30 years! The cause of this crash is mainly due to the strong rebound of
short positions following a market crisis.
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Third, and this relates mostly to the shorter-term news-driven momentum
that we will talk about in the next chapter, the duration over which momen-
tum remains in force gets progressively shorter as more traders catch on to
it. For example, price momentum driven by earnings announcements used to
last several days. Now it lasts barely until the market closes. This is quite un-
derstandable if we view price momentum as generated by the slow diffusion
of information. As more traders learn about the information faster and earlier,
the diffusion—and thus, momentum—also ends sooner. This of course cre-
ates a problem for the momentum trader, since we may have to constantly
shorten our holding period, yet there is no predictable schedule for doing so.

Lest you think that we should just give up on momentum strategies, let’s
look at the list of pros for momentum strategies. Such lists usually start with
the ease of risk management. To see why, we observe that there are two com-
mon types of exit strategies for momentum strategies: time-based and stop
loss. All the momentum strategies I have discussed so far involve only time-
based exits. We specify a holding period, and we exit a position when we
reached that holding period. But we can also impose a stop loss as the exit
condition, or maybe as an additional exit condition. Stop losses are perfectly
consistent with momentum strategies. If momentum has changed direction,
we should enter into the opposite position. Since the original position would
have been losing, and now we have exited it, this new entry signal effectively
served as a stop loss. In contrast, stop losses are not consistent with mean-
reverting strategies, because they contradict mean reversion strategies’ entry
signals. (This point will be taken up again in Chapter 8.) Because of either a
time-based exit or a stop loss, the loss of a momentum position is always lim-
ited. In contrast, we can incur an enormous drawdown with just one position
due to a mean-reverting strategy. (This is not to say that the cumulative loss of
successive losing positions due to a momentum strategy won’t bankrupt us!)

Not only do momentum strategies survive risks well, they can thrive in
them (though we have seen how poorly they did in the aftermath of risky
events). For mean-reverting strategies, their upside is limited by their natu-
ral profit cap (set as the “mean” to which the prices revert), but their down-
side can be unlimited. For momentum strategies, their upside is unlimited
(unless one arbitrarily imposes a profit cap, which is ill-advised), while their
downside is limited. The more often “black swan” events occur, the more
likely that a momentum strategy will benefit from them. The thicker the
tails of the returns distribution curve, or the higher its kurtosis, the bet-
ter that market is for momentum strategies. (Remember the simulation in
Example 1.1? We simulated a returns series with the same kurtosis as the

—
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futures series for TU but with no serial autocorrelations. We found that it
can still generate the same returns as our TU momentum strategy in 12 per-
cent of the random realizations!)

Finally, as most futures and currencies exhibit momentum, momentum
strategies allow us to truly diversify our risks across different asset class-
es and countries. Adding momentum strategies to a portfolio of mean-
reverting strategies allows us to achieve higher Sharpe ratios and smaller
drawdowns than either type of strategy alone.

~F A L R

KEY POINTS $ar ot N

e Time-series momentum refers to the positive correlation of a price series’
past and future returns.

e Cross-sectional momentum refers to the positive correlation of a price
series’ past and future relative returns, in relation to that of other price series
in a portfolio.

e Futures exhibit time series momentum mainly because of the persistence of
the sign of roll returns.

e |f you are able to find an instrument (e.g., an ETF or another future) that

cointegrates or correlates with the spot price or return of a commodity,

you can extract the roll return of the commaodity future by shorting that

instrument during backwardation, or buying that instrument during

contango.

Portfolios of futures or stocks often exhibit cross-sectional momentum: a

simple ranking algorithm based on returns would work.

Profitable strategies on news sentiment momentum show that the slow
diffusion of news is a cause for stock price momentum.

The contagion of forced asset sales and purchases among mutual funds
contributes to stock price momentum.

e Momentum models thrive on “black swan” events and the positive kurtosis
of the returns distribution curve.




Intraday
Momentum
Strate gies

n the preceding chapter we saw that most instruments, be they stocks or
futures, exhibit cross-sectional momentum, and often time-series momen- 155
tum as well. Unfortunately, the time horizon of this momentum behavior tends
to be long—typically a month or longer. Long holding periods present two
problems: They result in lower Sharpe ratios and backtest statistical significance
because of the infrequent independent trading signals, and they suffer from un-
derperformance in the aftermath of financial crises. In this chapter, we describe
short-term, intraday momentum strategies that do not suffer these drawbacks.

We previously enumerated four main causes of momentum. We will see
that all but one of them also operate at the intraday time frame. (The only
exception is the persistence of roll return, since its magnitude and volatility
are too small to be relevant intraday.)

There is an additional cause of momentum that is mainly applicable to
the short time frame: the triggering of stops. Such triggers often lead to the
so-called breakout strategies. We’ll see one example that involves an entry
at the market open, and another one that involves intraday entry at various
support or resistance levels.

Intraday momentum can be triggered by specific events beyond just price
actions. These events include corporate news such as earnings announcements

or analyst recommendation changes, as well as macro-economic news. That
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these events generate time series momentum has long been known, but I
present some new research on the effects of each specific category of events.

Intraday momentum can also be triggered by the actions of large funds.
I examine how the daily rebalancing of leveraged ETFs leads to short-term
momentum.

Finally, at the shortest possible time scale, the imbalance of the bid and
ask sizes, the changes in order flow, or the aforementioned nonuniform dis-
tribution of stop orders can all induce momentum in prices. Some of the
common high-frequency trading tactics that take advantage of such momen-
tum will be presented in this chapter.

B Opening Gap Strategy

In Chapter 4, we discussed a mean-reverting buy-on-gap strategy for stocks.
The opposite momentum strategy will sometimes work on futures and cur-
rencies: buying when the instrument gaps up, and shorting when it gaps down.

After being tested on a number of futures, this strategy proved to work
best on the Dow Jones STOXX 50 index futures (FSTX) trading on Eurex,
which generates an annual percentage rate (APR) of 13 percent and a Sharpe
ratio of 1.4 from July 16, 2004, to May 17, 2012. Example 7.1 shows the
gap momentum code (available for download as gapFutures_FSTX.m).

] Example 7.1: Opening Gap Strategy for FSTX [

This code assumes the open, high, low, and close prices are
contained in T X 1 arrays op, hi, Io, cI. It makes use of utilities function
smartMovingStd and backshift available from epchan.com/book?2.

entryZscore=0.1;

stdretC2C90d=backshift (1, smartMovingStd(calculateReturns ...
(cl, 1), 90));

longs=op > backshift (1, hi).* (l+entryZscore*stdretC2C90d) ;
shorts=op < backshift (1, lo).*(l-entryZscore*stdretC2C90d) ;

positions=zeros (size(cl)) ;

positions (longs)=1;

positions (shorts)=-1;

ret=positions.* (op-cl)./op;

The equity curve is depicted in Figure 7.1.
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FIGURE 7.1 Equity Curve of FSTX Opening Gap Strategy

The same strategy works on some currencies, too. However, the daily
“open” and “close” need to be defined differently. If we define the close to
be 5:00 e.m. ET, and the open to be 5:00 a.m. ET (corresponding to the
London open), then applying this strategy to GBPUSD yields an APR of
7.2 percent and a Sharpe ratio of 1.3 from July 23, 2007, to February 20,
2012. Naturally, you can experiment with different definitions of opening
and closing times for different currencies. Most currency markets are closed
from 5:00 p.m. on Friday to 5:00 p.m. on Sunday, so that’s a natural “gap” for
these strategies.

What’s special about the overnight or weekend gap that sometimes trig-
gers momentum? The extended period without any trading means that the
opening price is often quite different from the closing price. Hence, stop
orders set at different prices may get triggered all at once at the open. The
execution of these stop orders often leads to momentum because a cascad-
ing effect may trigger stop orders placed further away from the open price
as well. Alternatively, there may be significant events that occurred over-
night. As discussed in the next section, many types of news events generate

momentum.

B News-Driven Momentum Strategy

If, as many people believe, momentum is driven by the slow diffusion of news,
surely we can benefit from the first few days, hours, or even seconds after

a newsworthy event. This is the rationale behind traditional post—earnings
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announcement drift (PEAD) models, as well as other models based on vari-

ous corporate Or Macroeconomic news.

Post—Earnings Announcement Drift

There is no surprise that an earnings announcement will move stock price.
It is, however, surprising that this move will persist for some time after the
announcement, and in the same direction, allowing momentum traders to
benefit. Even more surprising is that though this fact has been known and
studied since 1968 (Bernard and Thomas, 1989), the effect still has not been
arbitraged away, though the duration of the drift may have shortened. What
[ will show in this section is that as recently as 2011 this strategy is still prof-
itable if we enter at the market open after the earnings announcement was
made after the previous close, buying the stock if the return is very positive
and shorting if the return is very negative, and liquidate the position at the
same day’s close. Notice that this strategy does not require the trader to
interpret whether the earnings announcement is “good” or “bad.” It does not
even require the trader to know whether the earnings are above or below
analysts’ expectations. We let the market tell us whether it thinks the earn-
ings are good or bad.

Before we backtest this strategy, it is necessary to have historical data of
the times of earnings annoucements. You can use the function parseEarnings
CalendarFromEarningsDotcom.m displayed in the box to retrieve one year or
so of such data from earnings.com given a certain stock universe specified
by the stock symbols array allsyms. The important feature of this program
is that it carefully selects only earnings announcements occurring after the
previous trading day’s market close and before today’s market open. Earn-
ings announcements occurring at other times should not be triggers for our
entry trades as they occur at today’s market open.

Function for Retrieving Earnings Calendar from earnings.com

This function takes an input 1xN stock symbols cell array allsyms and creates
a1 x N logical array earnann, which tells us whether (with values true or false)
the corresponding stock has an earnings announcement after the previous
day’s 4:00 p.m. ET (U.S. market closing time) and before today’s 9:30 a.m. ET
(U.S. market opening time). The inputs prevDate and todayDate should be in
yyyymmdd format.

function [earnann]= ...
parseEarningsCalendarFromEarningsDotCom (prevDate,
todayDate, allsyms)
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% [earnann] ==parseEaringsCalendarFromEarningsDotCom
% (prevDate, todayDate, allsyms)

earnann=zeros (size (allsyms)) ;

prevEarningsFile=urlread ([‘http://www.earnings.com/earning . ..

.asp?date=’, num2str (prevDate), ‘&client=cb’]);
todayEarningsFile=urlread ([ ‘http://www.earnings.com
/earning.asp?date=', num2str (todayDate), ‘&client=cb’]);
prevd=day (datenum (num2str (prevDate) , ‘yyyymmdd’)) ;
todayd=day (datenum (num2str (todayDate), ‘yyyymmdd’)) ;
prevmmm=datestr (datenum (num2str (prevDate), ‘yyyymmdd’),
‘mmm’ ) ;
todaymmm=datestr (datenum (num2str (todayDate) , ‘yyyymmdd’),
‘mmm’ ) ;

patternSym='<a\s+href="company.asp\?ticker=([$\*\w\.
/-1+) &coid’ ;

% prevDate

patternPrevDateTime=['<td align="center”s<nobr>’', ...

num2str (prevd), ‘-’, num2str (prevmmm), ‘([ :\dABPMCO] *)
</nobr>'1;
symA=regexp (prevEarningsFile, patternSym , ‘tokens’);

timeA=regexp (prevEarningsFile, patternPrevDateTime,
‘tokens'’) ;

symsA= [symA{:}];
timeA=[timeA{:}];

assert (length (symsA) ==length (timed)) ;
isAMC=~cellfun(‘isempty’, regexp (timeA, ‘AMC’));
patternPM='[ 1+\d:\d\d[ ]+PM’'; % e.g. ' 6:00 PM’
isAMC2=~cellfun (‘isempty’, regexp(timeA, patternPM)) ;
symsA=symsA (1sAMC | 1isAMC2) ;

[foo, idxA, idxALL]=intersect (symsA, allsyms);
earnann (1dxALL) =1;

% today
patternTodayDateTime=['<td align="center”><nobr>’,
num2str (todayd), ‘-’, num2str (todaymmm) ,

‘([ :\dABPMCO] *) </nobr>'];

(Continued)

—
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symA=regexp (todayEarningsFile, patternSym , ‘tokens’);

timeA=regexp (todayEarningsFile, patternTodayDateTime,
‘tokens’) ;

symsA=[symA{:}];
timeA=[timeA{:}];

symsA=symsA (l:length(timea)) ;

assert (length (symsA) ==length (timed)) ;

<
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isBMO=~cellfun(‘isempty’, regexp(timeA, ‘BMO’)) ;
patternAM='[ 1+\d:\d\d[ ]+AM’'; % e.g. ' 8:00 AM’
isBMO2=~cellfun (‘isempty’, regexp(timeA, patternaAM)) ;
symsA=symsA (1isBMO | isBMO2) ;

[foo, idxA, idxALL]=intersect (symsA, allsyms);
earnann (1dxALL) =1;

end

P
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We need to call this program for each day in the backtest for the PEAD
strategy. We can then concatenate the resulting 1 X N earnann arrays into
one big historical T X N earnann array for the T days in the backtest.
Assuming that we have compiled the historical earnings announcement
logical array, whether using our function above or through other means,
the actual backtest program for the PEAD strategy is very simple, as shown
in Example 7.2. We just need to compute the 90-day moving standard de-
viation of previous-close-to-next day’s-open return as the benchmark for
deciding whether the announcement is “surprising” enough to generate the

post announcement drift.

Example 7.2: Backtest of Post-Earnings
Annoucement Drift Strategy

We assume the historical open and close prices are stored in the

T X N arrays op and cl. The input T X N logical array earnann indicates
whether there is an earnings announcement for a stock on a given day
prior to that day’s market open but after the previous trading day’s
market close. The utility functions backshift, smartMovingStd and



] Example 7.2 (Continued) [

smartsum are available for download from epchan.com/book2. The
backtest program itself is named pead.m.

lookback=90;

retC20= (op-backshift (1, cl))./backshift (1, cl);
stdC20=smartMovingStd (retC20, lookback) ;

positions=zeros(size(cl)) ;

longs=retC20 >= 0.5*stdC20 & earnann;
shorts=retC20 <= -0.5*%stdC20 & earnann;

positions (longs)=1;

positions (shorts)=-1;

ret=smartsum(positions.* (cl-op)./op, 2)/30;

For a universe of S&P 500 stocks, the APR from January 3, 2011, to April
24,2012, is 6.7 percent, while the Sharpe ratio is a very respectable 1.5.
The cumulative returns curve is displayed in Figure 7.2. Note that we have
used 30 as the denominator in calculating returns, since there is a maximum
of 30 positions in one day during that backtest period. Of course, there is a
certain degree of look-ahead bias in using this number, since we don’t know

exactly what the maximum will be. But given that the maximum number of
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FIGURE 7.2 Cumulative Returns Curve of PEAD Strategy
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announcements per day is quite predictable, this is not a very grievous bias.
Since this is an intraday strategy, it is possible to lever it up by at least four
times, giving an annualized average return of close to 27 percent.

You might wonder whether holding these positions overnight will gener-
ate additional profits. The answer is no: the overnight returns are negative
on average. On the contrary, many published results from 10 or 20 years
ago have shown that PEAD lasted more than a day. This may be an example
where the duration of momentum is shortened due to increased awareness
of the existence of such momentum. It remains to be tested whether an even
shorter holding period may generate better returns.

Drift Due to Other Events

Besides earnings announcements, there are other corporate events that
may exhibit post-announcement drift: An incomplete list includes earn-
ings guidance, analyst ratings and recommendation changes, same store
sales, and airline load factors. (A reasonable daily provider of such data is
the Dow Jones newswire delivered by Newsware because it has the code
specific to the type of event attached to each story and is machine read-
able.) In theory, any announcements that prompt a reevaluation of the
fair market value of a company should induce a change in its share price
toward a new equilibrium price. (For a recent comprehensive study of all
these events and their impact on the stock’s post-event returns, see Hafez,
2011.) Among these events, mergers and acquisitions, of course, draw
the attention of specialized hedge funds that possess in-depth fundamental
knowledge of the acquirer and acquiree corporations. Yet a purely techni-
cal model like the one described earlier for PEAD can still extract an APR
of about 3 percent for mergers and acquisitions (M&As). (It is interesting
to note that contrary to common beliefs, Hafez found that the acquiree’s
stock price falls more than the acquirer’s after the initial announcement
of the acquisition.)

In Chapter 6, we described how momentum in a stock’s price is gener-
ated by large funds’ forced buying or selling of the stock. For index funds
(whether mutual or exchange traded), there is one type of forced buying
and selling that is well known: index composition changes. When a stock
is added to an index, expect buying pressure, and vice versa when a stock
is deleted from an index. These index rebalancing trades also generate mo-
mentum immediately following the announced changes. Though some re-

searchers have reported that such momentum used to last many days, my



own testing with more recent data suggests that the drift horizon has also
been reduced to intraday (Shankar and Miller, 2006).

While we are on the subject of momentum due to scheduled announce-
ments, what about the impact of macroeconomic events such as Federal
Open Market Committee’s rate decisions or the release of the latest con-
sumer price index? I have tested their effects on EURUSD, but unfortu-
nately have found no significant momentum. However, Clare and Courtenay
reported that U.K. macroeconomic data releases as well as Bank of England
interest rate announcements induced momentum in GBPUSD for up to at
least 10 minutes after the announcements (Clare and Courtnenay, 2001).
These results were based on data up to 1999, so we should expect that the
duration of this momentum to be shorter in recent years, if the momentum

continues to exist at all.

B Leveraged ETF Strategy

Imagine that you have a portfolio of stocks that is supposed to track the
MSCI US REIT index (RMZ), except that you want to keep the leverage
of the portfolio at 3, especially at the market close. As I demonstrate in
Example 8.1, this constant leverage requirement has some counterintuitive
and important consequences. Suppose the RMZ dropped precipitously one
day. That would imply that you would need to substantially reduce the posi-
tions in your portfolio by selling stocks across the board in order to keep the
leverage constant. Conversely, if the RMZ rose that day, you would need to
increase the positions by buying stocks.

Now suppose you are actually the sponsor of an ETF, and that portfolio
of yours is none other than a 3X leveraged ETF such as DRN (a real estate
ETF), and its equity is over a hundred million dollars. If you think that this
rebalancing procedure (selling the component stocks when the portfolio’s
return is negative, and vice versa) near the market close would generate
momentum in the market value of the portfolio, you would be right.

(A large change in the market index generates momentum in the same
direction for both leveraged long or short ETFs. If the change is positive,
a short ETF would experience a decrease in equity, and its sponsor would
need to reduce its short positions. Therefore, it would also need to buy
stocks, just as the long ETF would.)

We can test this hypothesis by constructing a very simple momentum
strategy: buy DRN if the return from previous day’s close to 15 minutes

163

SHIDALVY.LS WNLNIWOW AVAVY.LNI



164

ALGORITHMIC TRADING

before market close is greater than 2 percent, and sell if the return is smaller
than —2 percent. Exit the position at the market close. Note that this mo-
mentum strategy is based on the momentum of the underlying stocks, so
it should be affecting the near-market-close returns of the unlevered ETFs
such as SPY as well. We use the leveraged ETFs as trading instruments sim-
ply to magnify the effect. The APR of trading DRN is 15 percent with a
Sharpe ratio of 1.8 from October 12, 2011, to October 25, 2012.

Naturally, the return of this strategy should increase as the aggregate assets
of all leveraged ETFs increase. It was reported that the total AUM of lever-
aged ETFs (including both long and short funds) at the end of January 2009 is
$19 billion (Cheng and Madhavan, 2009). These authors also estimated that a
1 percent move of SPX will necessitate a buying or selling of stocks constitut-
ing about 17 percent of the market-on-close volume. This is obviously going
to have significant market impact, which is momentum inducing. (A more up-
dated analysis was published by Rodier, Haryanto, Shum, and Hejazi, 2012.)

There is of course another event that will affect the equity of an ETF, lev-
eraged or not: the flow of investors’ cash. A large inflow into long leveraged
ETFs will cause positive momentum on the underlying stocks’ prices, while
a large inflow into short leveraged (“inverse”) ETFs will cause negative mo-
mentum. So it is theoretically possible that on the same day when the market
index had a large positive return many investors sold the long leveraged ETFs
(perhaps as part of a mean-reverting strategy). This would have neutralized
the momentum. But our backtests show that this did not happen often.

B High-Frequency Strategies

Most high-frequency momentum strategies involve extracting information
from the order book, and the basic idea is simple: If the bid size is much
bigger than the ask size, expect the price to tick up and vice versa. This
idea is backed by academic research. For example, an approximately linear
relationship between the imbalance of bid versus ask sizes and short-term
price changes in the Nasdaq market was found (Maslov and Mills, 2001). As
expected, the effect is stronger for lower volume stocks. The effect is not
limited to just the national best bid offer (NBBO) prices: an imbalance of the
entire order book also induces price changes for a stock on the Stockholm
stock market (Hellstrém and Simonsen, 2006).

There are a number of high-frequency momentum strategies based on

this phenomenon. Many of those were described in books about market



microstructure or high-frequency trading (Arnuk and Saluzzi, 2012; Durbin,
2010; Harris, 2003; and Sinclair, 2010). (In my descriptions that follow, I
focus on making an initial long trade, but, of course, there is a symmetrical
opportunity on the short side.)

In markets that fill orders on a pro-rata basis such as the Eurodollar fu-
tures trading on CME, the simplest way to benefit from this expectation is
just to “join the bid” immediately, so that whenever there is a fill on the bid
side, we will get allocated part of that fill. To ensure that the bid and ask
prices are more likely to move higher rather than lower after we are filled,
we join the bid only when the original bid size is much larger than the ask
size. This is called the ratio trade, because we expect the proportion of the
original order to be filled is equal to the ratio between our own order size
and the aggregate order size at the bid price. Once the buying pressure caus-
es the bid price to move up one or more ticks, then we can sell at a profit,
or we can simply place a sell order at the best ask (if the bid-ask spread is
larger than the round trip commission per share). If the bid price doesn’t
move up or our sell limit order doesn’t get filled, we can probably still sell
at the original best bid price because of the large bid size, with the loss of
commissions only.

In markets where the bid-ask spread is bigger than two ticks, there is
another simple trade to benefit from the expectation of an uptick. Simply
place the buy order at the best bid plus one tick. If this is filled, then we
place a sell order at the best ask minus one tick and hope that it is filled. But
if it is not, we can probably still sell it at the original best bid, with the loss
of commissions plus one tick. This is called ticking or quote matching. For this
trade to be profitable, we need to make sure that the round trip commission
per share is less than the bid-ask spread minus two ticks. This strategy is il-
lustrated in Figure 7.3.

Best Ask
s i 1 tick
> 2 ticks
B
& 1 1 tick
Best Bid

FIGURE 7.3 Ticking Strategy. The original spread must be greater than two ticks.
After the buy order is filled at B, we will try to sell it at S for a profit of at least one tick.
But if the sell order cannot be filled, then we will sell it at S at a loss of one tick.
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(Ticking is not a foolproof strategy, of course. The original best bid be-
fore it was front-run may be cancelled if the trader knows that he has been
front-run, leaving us with a lower bid price to unload our inventory. Or the
whole situation could be set up as a trap for us: the trader who placed the
original best bid actually wanted to sell us stocks at a price better than her
own bid. So once we bought her stocks plus one tick, she would immedi-
ately cancel the bid.)

Even when there is no preexisting buying pressure or bid-ask size imbal-
ance, we can create the illusion of one (often called momentum ignition). This
works for markets with time priority for orders instead of using pro-rata
fills. Let’s assume we start with very similar best bid and ask sizes. We will
place a large buy limit order at the best bid to create the impression of buy-
ing pressure, and simultaneously place a small sell limit order at the best
ask. This would trick traders to buy at the ask price since they anticipate
an uptick, filling our small sell order. At this point, we immediately cancel
the large buy order. The best bid and ask sizes are now roughly equal again.
Many of those traders who bought earlier expecting a large buying pressure
may now sell back their holdings at a loss, and we can then buy them at the
original best bid. This is called flipping.

There is a danger to creating the illusion of buying pressure—somebody
just might call our bluff and actually fill our large buy order. In this case, we
might have to sell it at a loss. Conversely, if we suspect a large buy order is
due to flippers, then we can sell to the flippers and drive down the bid price.
We hope that the flippers will capitulate and sell their new inventory, driv-
ing the ask price down as well, so that we can then cover our short position
below the original bid price. How do we know that the large buy order is due
to flippers in the first place? We may have to record how often a large bid gets
canceled instead of getting filled. If you subscribe to the private data feeds
from the exchanges such as ITCH from Nasdaq, EDGX Book Feed from
Direct Edge, or the PITCH feed from BATS, you will receive the detailed
life history of an order including any modifications or partial fills (Arnuk and
Saluzzi, 2012). Such information may help you detect flippers as well.

All these strategies and their defenses, bluffs, and counterbluffs illustrate
the general point that high-frequency traders can profit only from slower
traders. If only high-frequency traders are left in the market, the net average
profit for everyone will be zero. Indeed, because of the prevalence of these
types of high-frequency strategies that “front-run” large bid or ask orders,
many traditional market makers no longer quote large sizes. This has led to
a general decrease of the NBBO sizes across many markets. For example,



even in highly liquid stocks such as AAPL, the NBBO sizes are often just
a few hundred shares. And even for the most liquid ETFs such as SPY on
ARCA, the NBBO sizes are often fewer than 10,000 shares. Only after these
small orders are filled will the market maker go back to requote at the same
prices to avoid being taken advantage of by the high-frequency traders. (Of
course, there are other reasons for avoiding displaying large quotes: market
makers do not like to keep large inventories that can result from having their
large quotes filled.) Similarly, large institutional orders that were formerly
executed as block trades are now broken up into tiny child orders to be scat-
tered around the different market venues and executed throughout the day.

Stop hunting is another favorite high-frequency momentum strategy. Research
in the currencies markets indicated that once support (resistance) levels are
breached, prices will go further down (up) for a while (Osler, 2000, 2001).
These support and resistance levels can be those reported daily by banks or
brokerages, or they can just be round numbers in the proximity of the cur-
rent price levels. This short-term price momentum occurs because of the large
number of stop orders placed at or near the support and resistance levels.

To understand this further, let’s just look at the support levels, as the situ-
ation with resistance levels is symmetrical. Once the price drops enough to
breach a support level, those sell stop orders are triggered and thereby drive
the prices down further. Given this knowledge, high-frequency traders can,
of course, create artificial selling pressure by submitting large sell orders
when the price is close enough to a support level, hoping to drive the next
tick down. Once the stop orders are triggered and a downward momentum
is in force, these high-frequency traders can cover their short positions for
a quick profit.

If we have access to the order flow information of a market, then we have a
highly valuable information stream that goes beyond the usual bid/ask/last
price stream. As Lyons discussed in the context of currencies trading, “order
flow” is signed transaction volume (Lyons, 2001). If a trader buys 100 units
from a dealer/market maker/order book, the order flow is 100, and it is
—100 if the trader sells 100 units instead. What “buying” from an order book
means is that a trader buys at the ask price, or, equivalently, the trader submits
a market order to buy. Empirical research indicates that order flow informa-
tion is a good predictor of price movements. This is because market makers
can distill important fundamental information from order flow information,
and set the bid-ask prices accordingly. For example, if a major hedge fund just
learns about a major piece of breaking news, their algorithms will submit large
market orders of the same sign in a split second. A market maker monitoring
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the order flow will deduce, quite correctly, that such large one-directional
demands indicate the presence of informed traders, and they will immediately
adjust their bid-ask prices to protect themselves. The urgency of using market
orders indicates that the information is new and not widely known.

Since most of us are not large market makers or operators of an exchange,
how can we access such order flow information? For stocks and futures mar-
kets, we can monitor and record every tick (i.e., changes in best bid, ask, and
transaction price and size), and thus determine whether a transaction took
place at the bid (negative order flow) or at the ask (positive order flow). For
the currencies market, this is difficult because most dealers do not report
transaction prices. We may have to resort to trading currency futures for
this strategy. Once the order flow per transaction is computed, we can easily
compute the cumulative or average order flow over some look-back period

and use that to predict whether the price will move up or down.

KEY POINTS & > * -‘ AR

e Intraday momentum strategies do not suffer from many of the
disadvantages of interday momentum strategies, but they retain some key
advantages.

e “Breakout” momentum strategies involve a price exceeding a trading range.

e The opening gap strategy is a breakout strategy that works for some futures
and currencies.

e Breakout momentum may be caused by the triggering of stop orders.

e Many kinds of corporate and macroeconomic news induce short-term price
momentum.

e |Index composition changes induce momentum in stocks that are added to
or deleted from the index.

¢ Rebalancing of leveraged ETFs near the market close causes momentum
in the underlying index in the same direction as the market return from the
previous close.

¢ Many high-frequency momentum strategies involve imbalance between
bid and ask sizes, an imbalance that is sometimes artificially created by the
high-frequency traders themselves.

e Stop hunting is a high-frequency trading strategy that relies on triggering
stop orders that typically populate round numbers near the current market
price.

e Order flow can predict short-term price movement in the same direction.




CHAPTER 8

Risk Management

Risk management means different things to different people. To nov-
ice traders, risk management is driven by “loss aversion”: we simply
don’t like the feeling of losing money. In fact, research has suggested
that the average human being needs to have the potential for making $2
to compensate for the risk of losing $1, which may explain why a Sharpe
ratio of 2 is so emotionally appealing (Kahneman, 2011). However, this
dislike of risk in itself is not rational. Our goal should be the maximi-
zation of long-term equity growth, and we avoid risk only insofar as it
interferes with this goal. Risk management in this chapter is based on
this objective.

The key concept in risk management is the prudent use of leverage,
which we can optimize via the Kelly formula or some numerical methods
that maximize compounded growth rate. But sometimes reality forces us
to limit the maximum drawdown of an account. One obvious way of ac-
complishing this is the use of stop loss, but it is often problematic. The other
way is constant proportion portfolio insurance, which tries to maximize the
upside of the account in addition to preventing large drawdowns. Both will
be discussed here. Finally, it may be wise to avoid trading altogether during
times when the risk of loss is high. We will investigate whether the use of

certain leading indicators of risk is an effective loss-avoidance technique.
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B Optimal Leverage

It is easy to say that we need to be prudent when using leverage, but much
harder to decide what constitutes a prudent, or optimal, leverage for a par-
ticular strategy or portfolio because, obviously, if we set leverage to zero, we
will suffer no risks but will generate no returns, either.

To some portfolio managers, especially those who are managing their own
money and answerable to no one but themselves, the sole goal of trading is the
maximization of net worth over the long term. They pay no mind to draw-
downs and volatilities of returns. So the optimal leverage to them means one
that can maximize the net worth or, equivalently, the compounded growth rate.

We’ll discuss here three methods of computing the optimal leverage
that maximizes the compounded growth rate. Each method has its own as-
sumptions and drawbacks, and we try to be agnostic as to which method
you should adopt. But, in all cases, we have to make the assumption that
the future probability distribution of returns of the market is the same as
in the past. This is usually an incorrect assumption, but this is the best that
quantitative models can do. Even more restrictive, many risk management
techniques assume further that the probability distribution of returns of the
strategy itself is the same as in the past. And finally, the most restrictive of all
assumes that the probability distribution of returns of the strategy is Gauss-
ian. As is often the case in mathematical modeling, the most restrictive as-
sumptions give rise to the most elegant and simple solution, so I will start
this survey with the Kelly formula under the Gaussian assumption.

If the maximum drawdown of an account with a certain leverage is =100
percent, this leverage cannot be optimal because the compounded growth

rate will also be =100 percent. So an optimal leverage implies that we must
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not be ruined (equity reaching zero) at any point in history, rather self-
evidently! But sometimes our risk managers (perhaps it is a spouse for in-
dependent traders) tell us that we are allowed to have a much smaller mag-
nitude of drawdown than 1. In this case, the maximum drawdown allowed
forms an additional constraint in the leverage optimization problem.

No matter how the optimal leverage is determined, the one central
theme is that the leverage should be kept constant. This is necessary to opti-
mize the growth rate whether or not we have the maximum drawdown con-
straint. Keeping a constant leverage may sound rather mundane, but can be
counterintuitive when put into action. For example, if you have a long stock
portfolio, and your profit and loss (P&L) was positive in the last trading pe-
riod, the constant leverage requirement forces you to buy more stocks for
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] Example 8.1: The Implications of the [

Constant Leverage Requirement

The central requirement for all ways of optimizing leverage described
in this chapter is that the leverage be kept constant at all times. This
can have some counterintuitive consequences.

If you started with $100K equity in your account, and your
strategy’s optimal leverage was determined to be 5, then you should
have a portfolio with market value of $500K.

If, however, you lost $10K in one day and your equity was reduced
to $90K, with a portfolio market value of $490K, then you need to
liquidate a further $40K of your portfolio so that its updated market
value became 5 X $90K = $450K. This selling into the loss may make
some people uncomfortable, but it is a necessary part of many risk

management schemes.

Suppose you then gained $20K the next day. What should your
portfolio market value be? And what should you do to achieve that
market value?

The new portfolio market value should be 5 X ($§90K + $20K) =
$550K. Since your current portfolio market value was just $450K +
$20K = $470K, this means you need to add $80K worth of (long or
short) securities to the portfolio. Hopefully, your broker will lend
you the cash to buy all these extra securities!

this period. However, if your P&L was negative in the last period, it forces
you to sell stocks into the loss. Example 8.1 illustrates this.

Many analysts believe that this “selling into losses” feature of the risk
management techniques causes contagion in financial crises. (In particular,
this was cited as a cause of the August 2007 meltdown of quant funds; see
Khandani and Lo, 2007). This is because often many funds are holding similar
positions in their portfolios. If one fund suffers losses, perhaps due to some
unrelated strategies, it is prone to liquidate positions across all its portfolios
due to the constant leverage requirement, causing losses for all other funds
that hold those positions. The losses force all these other funds to also lig-
uidate their positions and thus exacerbate the losses for everyone: a vicious
cycle. One might think of this as a tragedy of the commons: self-preservation
(“risk management”) for one fund can lead to catastrophe for all.
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Kelly Formula

If one assumes that the probability distribution of returns is Gaussian, the

Kelly formula gives us a very simple answer for optimal leverage f:

f=m/s, (8.1)

where m is the mean excess return, and s° is the variance of the excess
returns.

One of the best expositions of this formula can be found in Edward
Thorp’s (1997) paper, and I also devoted an entire chapter in Quantitative
Trading (Chan, 2009) to it. It can be proven that if the Gaussian assumption
is a good approximation, then the Kelly leverage f will generate the highest
compounded growth rate of equity, assuming that all profits are reinvested.
However, even if the Gaussian assumption is really valid, we will inevitably
suffer estimation errors when we try to estimate what the “true” mean and
variance of the excess return are. And no matter how good one’s estima-
tion method is, there is no guarantee that the future mean and variance will
be the same as the historical ones. The consequence of using an overesti-
mated mean or an underestimated variance is dire: Either case will lead to
an overestimated optimal leverage, and if this overestimated leverage is high
enough, it will eventually lead to ruin: equity going to zero. However, the
consequence of using an underestimated leverage is merely a submaximal
compounded growth rate. Many traders justifiably prefer the later scenario,
and they routinely deploy a leverage equal to half of what the Kelly formula
recommends: the so-called half-Kelly leverage.

My actual experience using Kelly’s optimal leverage is that it is best
viewed as an upper bound rather than as the leverage that must be used.
Often, the Kelly leverage given by the backtest (or a short period of walk-
forward test) is so high that it far exceeds the maximum leverage allowed by
our brokers. At other times, the Kelly leverage would have bankrupted us
even in backtest, due to the non-Gaussian distributions of returns. In other
words, the maximum drawdown in backtest is —1 using the Kelly leverage,
which implies setting the leverage by numerically optimizing the growth
rate using a more realistic non-Gaussian distribution might be more practi-
cal. Alternatively, we may just optimize on the empirical, historical returns.
These two methods will be discussed in the next sections.

But just using Kelly optimal leverage as an upper bound can some-

times provide interesting insights. For example, I once calculated that both

the Russell 1000 and 2000 indices have Kelly leverage at about 1.8. But



exchange-traded fund (ETF) sponsor Direxion has been marketing triple
leveraged ETFs BGU and TNA tracking these indices. By design, they have a
leverage of 3. Clearly, there is a real danger that the net asset value (NAV) of
these ETFs will go to zero. Equally clearly, no investors should buy and hold
these ETFs, as the sponsor itself readily agrees.

There is another usage of the Kelly formula besides setting the optimal
leverage: it also tells us how to optimally allocate our buying power to dif-
ferent portfolios or strategies. Let’s denote F as a column vector of optimal
leverages that we should apply to the different portfolios based on a com-
mon pool of equity. (For example, if we have $1 equity, then F=[3.2 1.5]"
means the first portfolio should have a market value of $3.2 while the sec-
ond portfolio should have a market value of $1.5. The T signifies matrix
transpose.) The Kelly formula says

F=C"'M (8.2)

where Cis the covariance matrix of the returns of the portfolios and M is the
mean excess returns of these portfolios.

There is an extensive example on how to use this formula in Quantitative
Trading. But what should we do if our broker has set a maximum leverage
F,., that is smaller than the total gross leverage 27| F,|? (We are concerned
with the gross leverage, which is equal to the absolute sum of the long and
short market values divided by our equity, not the net leverage, which is the
net of the long and short market values divided by our equity.) The usual
/Y| F;| so that the to-
The problem with this approach is that the

recommendation is to multiply all F; by the factor F,

max
tal gross leverage is equal to F,,,.
compounded growth rate will no longer be optimal under this maximum
leverage constraint. I have constructed Example 8.2 to demonstrate this.
The upshot of that example is that when F,,,, is much smaller than Z?| F|,it
is often optimal (with respect to maximizing the growth rate) to just invest
most or all our buying power into the portfolio or strategy with the highest

mean excess return.

Optimization of Expected Growth Rate Using
Simulated Returns
If one relaxes the Gaussian assumption and substitutes another analytic

form (e.g., Student’s ¢) for the returns distribution to take into account the
fat tails, we can still follow the derivations of the Kelly formula in Thorp’s
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Example 8.2: Optimal Capital Allocation Under a
Maximum Leverage Constraint

|

When we have multiple portfolios or strategies, the Kelly formula
says that we should invest in each portfolio i with leverage F,
determined by Equation 8.2. But often, the total gross leverage
ZI:| F;| computed this way exceeds the maximum leverage F,,,,
imposed on us by our brokerage or our risk manager. With this
constraint, it is often not optimal to just multiply all these F; by the
factor F,, /27| F;|, as I will demonstrate here.

Suppose we have two strategies, 1 and 2. Strategy 1 has annualized
mean excess return and volatility of 30 percent and 26 percent,
respectively. Strategy 2 has annualized mean excess return and
volatility of 60 percent and 35 percent, respectively. Suppose further
that their returns distributions are Gaussian, and that there is zero
correlation between the returns of 1 and 2. So the Kelly leverages for
them are 4.4 and 4.9, respectively, with a total gross leverage of 9.3.
The annualized compounded growth rate is (Thorp, 1997)

g=F'CF/2=21, (8.3)

where we have also assumed that the risk-free rate is 0. Now, let’s say
our brokerage tells us that we are allowed a maximum leverage of 2.

0 05 1 1.5 2
FB

FIGURE 8.1 Constrained Growth Rate g as Function of F,



] Example 8.2 (Continued) [

So the leverages for the strategies have to be reduced to 0.95 and
1.05, respectively. The growth rate is now reduced to

g =Zf=1(5ﬂ.11. —F’s] /2)=0.82. (8.4)

(Equation 8.3 for g applies only when the leverages used are
optimal.)

But do these leverages really generate the maximum g under our
maximum leverage constraint? We can find out by setting F to F,,,,
— F,, and plot g as a function of F, over the allowed range O to F,,, = F,.

It is obvious that the growth rate is optimized when F, = F,,, = 2.
The optimized g is 0.96, which is higher than the 0.82 given in
Equation 8.4. This shows that when we have two or more strategies
with very different independent growth rates, and when we have
a maximum leverage constraint that is much lower than the Kelly
leverage, it is often optimal to just apply all of our buying power on
the strategy that has the highest growth rate.

paper and arrive at another optimal leverage, though the formula won’t be
as simple as Equation 8.1. (This is true as long as the distribution has a finite
number of moments, unlike, for example, the Pareto Levy distribution.)
For some distributions, it may not even be possible to arrive at an analytic
answer. This is where Monte Carlo simulations can help.

The expected value of the compounded growth rate as a function of the
leverage f'is (assuming for simplicity that the risk-free rate is zero)

g(f) = (log(1 + fR)), (8.5)

where (---) indicates an average over some random sampling of the unle-
vered return-per-bar R(z) of the strategy (not of the market prices) based on
some probability distribution of R. (We typically use daily bars for R(z), but
the bar can be as long or short as we please.) If this probability distribution
is Gaussian, then g( ) can be analytically reduced to g( f') = fm —f2m2/2,
which is the same as Equation 8.4 in the single strategy case. Furthermore,
the maxima of g( f') can of course be analytically determined by taking the
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derivative of g( ') with respect to fand setting it to zero. This will reproduce
the Kelly formula in Equation 8.1 and will reproduce the maximum growth
rate indicated by Equation 8.3 in the single strategy case. But this is not our
interest here. We would like to compute Equation 8.5 using a non-Gaussian
distribution of R.

Even though we do not know the true distribution of R, we can use the
so-called Pearson system (see www.mathworks.com/help/toolbox/stats
/br5k833-1.html or mathworld.wolfram.com/PearsonSystem.html) to
model it. The Pearson system takes as input the mean, standard deviation,
skewness, and kurtosis of the empirical distribution of R, and models it as
one of seven probability distributions expressible analytically encompassing
Gaussian, beta, gamma, Student’s ¢, and so on. Of course, these are not the
most general distributions possible. The empirical distribution might have
nonzero higher moments that are not captured by the Pearson system and
might, in fact, have infinite higher moments, as in the case of the Pareto Levy
distribution. But to capture all the higher moments invites data-snooping
bias due to the limited amount of empirical data usually available. So, for
all practical purposes, we use the Pearson system for our Monte Carlo
sampling

We illustrate this Monte Carlo technique by using the mean reversion
strategy described in Example 5.1. But first, we can use the daily returns in
the test set to easily calculate that the Kelly leverage is 18.4. We should keep
this number in mind when comparing with the Monte Carlo results. Next,
we use the first four moments of these daily returns to construct a Pearson
system and generate 100,000 random returns from this system. We can use
the pearsrnd function from the MATLAB Statistics Toolbox for this. (The
complete code is in monteCarloOptimLeverage.m.)

We assume that the strategy daily returns are contained in the Nx1 array
ret. We will use the first four moments of ret to generate a Pearson system
distribution, from which any number of simulated returns ret_sim can be
generated.

BOX 8.1

moments:{mean(ret), std(ret), skewness(ret), kurtosis(ret)};

[ret _sim, typel]=pearsrnd(moments{:}, 100000, 1);

In the code, ret contains the daily returns from the backtest of the strat-
egy, whereas ret_sim are 100,000 randomly generated daily returns with
the same four moments as ret. The pearsrnd function also returns type, which


http://www.mathworks.com/help/toolbox/stats/br5k833-1.html
http://www.mathworks.com/help/toolbox/stats/br5k833-1.html
http://mathworld.wolfram.com/PearsonSystem.html

indicates which type of distribution fits our data best. In this example, type
is 4, indicating that the distribution is not one of the standard ones such as
Student’s t. (But we aren’t at all concerned whether it has a name.) Now we
can use ret_sim to compute the average of g( f). In our code, g( f') is an inline
function with leverage f'and a return series R as inputs.

An inline function for calculating the compounded growth rate based on
leverage f and return per bar of R.
g=inline (‘sum(log (1+£f*R))/length(R)’, ‘£’, ‘R’);

Plotting g( f') for f=0 to f= 23 reveals that g( f') does in fact have a maxi-
mum somewhere near 19 (see Figure 8.2), and a numerical optimization
using the fminbnd function of the MATLAB Optimization Toolbox yields an
optimal f of 19, strikingly close to the Kelly’s optimal f of 18.4!

Finding the minimum of the negative of the growth rate based on leverage
f and the simulated returns ret_sim (same as finding the maximum of the
positive growth rate).

BOX 8.3

minusGsim=e (f) -g(f, ret sim);

optimalF=fminbnd (minusGsim, 0, 24);

Of course, if you run this program with a different random seed and
therefore different series of simulated returns, you will find a somewhat
different value for the optimal f, but ideally it won’t be too different from
my value. (As a side note, the only reason we minimized —g instead of maxi-
mized g is that MATLAB does not have a fmaxbnd function.)

There is another interesting result from running this Monte Carlo opti-
mization. If we try fof 31, we shall find that the growth rate is —1; that is,
ruin. This is because the most negative return per period is —0.0331, so any
leverage higher than 1 / 0.0331 = 30.2 will result in total loss during that
period.

Optimization of Historical Growth Rate

Instead of optimizing the expected value of the growth rate using our ana-

lytical probability distribution of returns as we did in the previous section,
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FIGURE 8.2 Expected Growth Rate g as Function of f.

one can of course just optimize the historical growth rate in the backtest
with respect to the leverage. We just need one particular realized set of
returns: that which actually occurred in the backtest. This method suffers
the usual drawback of parameter optimization in backtest: data-snooping
bias. In general, the optimal leverage for this particular historical realization
of the strategy returns won’t be optimal for a different realization that will
occur in the future. Unlike Monte Carlo optimization, the historical returns
offer insufficient data to determine an optimal leverage that works well for
many realizations.

Despite these caveats, brute force optimization over the backtest returns
sometimes does give a very similar answer to both the Kelly leverage and
Monte Carlo optimization. Using the same strategy as in the previous sec-
tion, and altering the optimization program slightly to feed in the historical
returns ret instead of the simulated returns ret_sim.

Finding the minimum of the negative of the growth rate based on leverage f
and the historical returns ret.
minusG=@ (f) -g(f, ret);

optimalF=£fminbnd (minusG, 0, 21);

we obtain the optimal f of 18.4, which is again the same as the Kelly optimal f.




Maximum Drawdown

For those portfolio managers who manage other people’s assets, maximiz-
ing the long-term growth rate is not the only objective. Often, their clients
(or employers) will insist that the absolute value of the drawdown (return
calculated from the historic high watermark) should never exceed a certain
maximum. That is to say, they dictate what the maximum drawdown can be.
This requirement translates into an additional constraint into our leverage
optimization problem.

Unfortunately, this translation is not as simple as multiplying the uncon-
strained optimal leverage by the ratio of the maximum drawdown allowed
and the original unconstrained maximum drawdown. Using the example in
the section on optimization of expected growth rate with simulated returns
ret_sim, the maximum drawdown is a frightening —0.999. This is with an
unconstrained optimal f of 19.2. Suppose our risk manager allows a maxi-
mum drawdown of only half this amount. Using half the optimal f of 9.6
still generates a maximum drawdown of —0.963. By trial and error, we find
that we have to lower the leverage by a factor of 7, to 2.7 or so, in order to
reduce the magnitude of the maximum drawdown to about 0.5. (Again, all
these numbers depend on the exact series of simulated returns, and so are
not exactly reproducible.)

Using my function calculateMaxDD (available on http://epchan.com/book?2)
to compute maximum drawdowns with different leverages on the same
simulated returns series ret_sim.

BOX 8.5

maxDD=calculateMaxDD (cumprod (l+optimalF/7*ret_sim)-1);

Of course, setting the leverage equal to this upper bound will only pre-
vent the simulated drawdown from exceeding the maximum allowed, but it
will not prevent our future drawdown from doing so. The only way to guar-
antee that the future drawdown will not exceed this maximum is to either
use constant proportion insurance or to impose a stop loss. We will discuss
these techniques in the next two sections.

It is worth noting that this method of estimating the maximum draw-
down is based on a simulated series of strategy returns, not the historical
strategy returns generated in a backtest. We can, of course, use the historical
strategy returns to calculate the maximum drawdown and use that to deter-

mine the optimal leverage instead. In this case, we will find that we just need
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to decrease the unconstrained optimal fby a factor of 1.5 (to 13) in order to
reduce the maximum drawdown to below —0.49.

Which method should we use? The advantage of using simulated returns
is that they have much better statistical significance. They are akin to the
value-at-risk (VaR) methodology used by major banks or hedge funds to
determine the likelihood that they will lose a certain amount of money over
a certain period. The disadvantage is the maximum drawdown that occurs
in the simulation may be so rare that it really won’t happen more than once
in a million years (a favorite excuse for fund managers when they come to
grief). Furthermore, the simulated returns inevitably miss some crucial se-
rial correlations that may be present in the historical returns and that may
persist into the future. These correlations may be reducing the maximum
drawdown in the real world. The advantage of using the historical strategy
returns is that they fully capture these correlations, and furthermore the
drawdown would cover a realistic life span of a strategy, not a million years.
The disadvantage is, of course, that the data are far too limited for capturing
a worst-case scenario. A good compromise may be a leverage somewhere in
between those generated by the two methods.

B Constant Proportion Portfolio Insurance

The often conflicting goals of wishing to maximize compounded growth
rate while limiting the maximum drawdown have been discussed already.
There is one method that allows us to fulfill both wishes: constant propor-
tion portfolio insurance (CPPI).

Suppose the optimal Kelly leverage of our strategy is determined to be f.
And suppose we are allowed a maximum drawdown of —D. We can simply set
aside D of our initial total account equity for trading, and apply a leverage of f
to this subaccount to determine our portfolio market value. The other 1 —D
of the account will be sitting in cash. We can then be assured that we won’t
lose all of the equity of this subaccount, or, equivalently, we won’t suffer a
drawdown of more than —D in our total account. If our trading strategy is
profitable and the total account equity reaches a new high water mark, then
we can reset our subaccount equity so that it is again D of the total equity,
moving some cash back to the “cash” account. However, if the strategy suffers
losses, we will not transfer any cash between the cash and the trading subac-
count. Of course, if the losses continue and we lose all the equity in the trad-
ing subaccount, we have to abandon the strategy because it has reached our



maximum allowed drawdown of —D. Therefore, in addition to limiting our
drawdown, this scheme serves as a graceful, principled way to wind down a
losing strategy. (The more common, less optimal, way to wind down a strat-
egy is driven by the emotional breakdown of the portfolio manager.)

Notice that because of this separation of accounts, this scheme is not
equivalent to just using a leverage of I = fD in our total account equity.
There is no guarantee that the maximum drawdown will not exceed —D
even with a lowered leverage of fD. Even if we were to further impose a stop
loss of =D, or if the drawdown never went below —D, applying the leverage
of fD to the full account still won’t generate the exact same compounded
return as CPPI, unless every period’s returns are positive (i.e., maximum
drawdown is zero). As long as we have a drawdown, CPPI will decrease or-
der size much faster than the alternative, thus making it almost impossible
(due to the use of Kelly leverage on the subaccount) that the account would
approach the maximum drawdown —D.

I don’t know if there is a mathematical proof that CPPI will be the same
as using a leverage of fD in terms of the long-run growth rate, but we can
use the same simulated returns in the previous sections to demonstrate that
after 100,000 days, the growth rate of CPPlis very similar to the alternative
scheme: 0.002484 versus 0.002525 per day in one simulation with D =0.5.
The main advantage of CPPlis apparent only when we look at the maximum
drawdown. By design, the magnitude of the drawdown in CPPI is less than
0.5, while that of the alternative scheme without using stop loss is a painful
0.9 even with just half of the optimal leverage. The code for computing the
growth rate using CPPI is shown in Box 8.6.

Computing Growth Rate Using CPPI
Assume the return series is ret_sim and the optimal leverage is optimalF, both
from previous calculations. Also assume the maximum drawdown allowed is
-D=-0.5.

g_cppi=0;

drawdown=0;

BOX 8.6

D=0.5;

for t=1l:length(ret_sim)
g _cppi=g_cppi+log(l+ ret sim (t) *D*optimalF* (1+drawdown)) ;
drawdown=min (0, (l+drawdown)* (1+ ret_sim (t))-1);

end

g_cppi=g_cppi/length(ret_sim) ;
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Note that this scheme should only be applied to an account with one
strategy only. If it is a multistrategy account, it is quite possible that the
profitable strategies are “subsidizing” the nonprofitable ones such that the
drawdown is never large enough to shut down the complete slate of strate-
gies. This is obviously not an ideal situation unless you think that the losing
strategy will somehow return to health at some point.

There is one problem with using CPPI, a problem that it shares with the
use of stop loss: It can’t prevent a big drawdown from occurring during
the overnight gap or whenever trading in a market has been suspended.
The purchases of out-of-the-money options prior to an expected market

close can eliminate some of this risk.

B Stop Loss

There are two ways to use stop losses. The common usage is to use stop
loss to exit an existing position whenever its unrealized P&L drops below a
threshold. But after we exit this position, we are free to reenter into a new
position, perhaps even one of the same sign, sometime later. In other words,
we are not concerned about the cumulative P&L or the drawdown of the
strategy.

The less common usage is to use stop loss to exit the strategy completely
when our drawdown drops below a threshold. This usage of stop loss is awk-
ward—it can happen only once during the lifetime of a strategy, and ideally
we would never have to use it. That is the reason why CPPI is preferred over
using stop loss for the same protection. The rest of this section is concerned
with the first, more common usage of stop loss.

Stop loss can only prevent the unrealized P&L from exceeding our self-
imposed limit if the market is always open whenever we are holding a posi-
tion. For example, it is effective if we do not hold positions after the market
closes or if we are trading in currencies or some futures where the elec-
tronic market is always open except for weekends and holidays. Otherwise,
if the prices “gap” down or up when the market reopens, the stop loss may
be executed at a price much worse than what our maximum allowable loss
dictates. As we said earlier, the purchases of options will be necessary to
eliminate this risk, but that may be expensive to implement and is valuable
only for expected market downtime.

In some extreme circumstances, stop loss is useless even if the market

is open but when all liquidity providers decide to withdraw their liquidity



simultaneously. This happened during the flash crash of May 6, 2010, since
modern-day market makers merely need to maintain a bid of $0.01 (the
infamous “stub quote”) in times of market stress (Arnuk and Saluzzi, 2012).
This is why an unfortunate sell stop order on Accenture, a company with
multibillion-dollar revenue, was executed at $0.01 per share that day.

But even if the market is open and there is normal liquidity, it is a mat-
ter of controversy whether we should impose stop loss for mean-reverting
strategies. At first blush, stop loss seems to contradict the central assump-
tion of mean reversion. For example, if prices drop and we enter into a
long position, and prices drop some more and thus induce a loss, we should
expect the prices to rise eventually if we believe in mean reversion of this
price series. So it is not sensible to “stop loss” and exit this position when the
price is so low. Indeed, I have never backtested any mean-reverting strategy
whose APR or Sharpe ratio is increased by imposing a stop loss.

There is just one problem with this argument: What happens if the mean
reversion model has permanently stopped working while we are in a posi-
tion? In finance, unlike in physics, laws are not immutable. As I have been
repeating, what was true of a price series before may not be true in the
future. So a mean-reverting price series can undergo a regime change and
become a trending price series for an extended period of time, maybe for-
ever. In this case, a stop loss will be very effective in preventing catastrophic
losses, and it will allow us time to consider the possibility that we should just
shut down the strategy before incurring a 100 percent loss. Furthermore,
these kinds of “turncoat” price series that regime-change from mean rever-
sion to momentum would never show up in our catalog of profitable mean
reversion strategies because our catalog would not have included mean-
reverting strategies that failed in their backtests. Survivorship bias was in
action when I claimed earlier that stop loss always lowers the performance
of mean-reverting strategies. It is more accurate to say that stop loss always
lowers the performance of mean-reverting strategies when the prices remain
mean reverting, but it certainly improves the performance of those strategies
when the prices suffer a regime change and start to trend!

Given this consideration of regime change and survivorship bias, how
should we impose a stop loss on a mean-reverting strategy, since any suc-
cessfully backtested mean-reverting strategy suffers survivorship bias and
will always show lowered performance if we impose a stop loss? Clearly, we
should impose a stop loss that is greater than the backtest maximum intra-
day drawdown. In this case, the stop loss would never have been triggered in
the backtest period and could not have affected the backtest performance,

—
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yet it can still effectively prevent a black swan event in the future from lead-
ing to ruin.

In contrast to mean—reverting strategies, momentum strategies benefit
from stop loss in a very logical and straightforward way. If a momentum
strategy is losing, it means that momentum has reversed, so logically we
should be exiting the position and maybe even reversing the position. Thus,
a continuously updated momentum trading signal serves as a de facto stop
loss. This is the reason momentum models do not present the same kind of
tail risk that mean-reverting models do.

B Risk Indicators

Many of the risk management measures we discussed above are reactive:
We lower the order size when we incur a loss, or we stop trading altogether
when a maximum drawdown has been reached. But it would be much more
advantageous if we could proactively avoid those periods of time when the
strategy is likely to incur loss. This is the role of leading risk indicators.

The obvious distinction between leading risk indicators and the more
general notion of risk indicators is that leading risk indicators let us predict
whether the next period will be risky for our investment, while general risk
indicators are just contemporaneous with a risky period.

There is no one risk indicator that is applicable to all strategies: What is a
risky period to one strategy may be a highly profitable period for another. For
example, we might try using the VIX, the implied volatility index, as the lead-
ing risk indicator to predict the risk of the next-day return of the buy-on-gap
stock strategy described in Chapter 4. That strategy had an annualized average
return of around 8.7 percent and a Sharpe ratio of 1.5 from May 11, 2006, to
April 24, 2012. But if the preceding day’s VIX is over 35, a common threshold
for highly risky periods, then the day’s annualized average return will be 17.2
percent with a Sharpe ratio of 1.4. Clearly, this strategy benefits from the so-
called risk! However, VIX > 35 is a very good leading risk indicator for the
FSTX opening gap strategy depicted in Chapter 7. That strategy had an annual-
ized average return of around 13 percent and a Sharpe ratio of 1.4 from July
16,2004, to May 17, 2012. If the preceding day’s VIX is over 35, then the day’s
annualized average return drops to 2.6 percent and the Sharpe ratio to 0.16.
Clearly, VIX tells us to avoid trading on the following day.

Besides VIX, another commonly used leading risk indicator is the TED
spread. It is the difference between the three-month London Interbank



Offered Rate (LIBOR) and the three-month T-bill interest rate, and it mea-
sures the risk of bank defaults. In the credit crisis of 2008, TED spread rose
to a record 457 basis points. Since the credit market is dominated by large
institutional players, presumably they are more informed than those indica-
tors based on the stock market where the herd-like instinct of retail inves-
tors contributes to its valuation. (The TED spread is useful notwithstanding
the fraudulent manipulation of LIBOR rates by the banks to make them
appear lower, as discovered by Snider and Youle, 2010. What matters is the
relative value of the TED spread over time, not its absolute value.)

There are other risky assets that at different times have served as risk indi-
cators, though we would have to test them carefully to see if they are leading
indicators. These assets include high yield bonds (as represented, for exam-
ple, by the ETF HYG) and emerging market currencies such as the Mexican
peso (MXN). During the European debt crisis of 2011, the MXN became
particularly sensitive to bad news, even though the Mexican economy re-
mained healthy throughout. Commentators attributed this sensitivity to the
fact that traders are using the MXN as a proxy for all risky assets in general.

More recently, traders can also watch the ETF’s ONN and OFF. ONN
goes up when the market is in a “risk-on” mood; that is, when the prices of
risky assets are bid up. ONN basically holds a basket of risky assets. OFF is
just the mirror image of ONN. So a high value of OFF may be a good leading
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risk indicator. At the time of this writing, these ETFs have only about seven
months of history, so there is not enough evidence to confirm that they have
predictive value.

As we mentioned in the section on high-frequency trading in Chapter 7, at
short time scales, those who have access to order flow information can detect

LINAWADVNVIN MSTY

a sudden and large change in order flow, which often indicates that important
information has come into the possession of institutional traders. This large
change in order flow is negative if the asset in question is risky, such as stocks,
commodities, or risky currencies; it is positive if the asset is low risk, such as
U.S. treasuries or USD, JPY, or CHF. As we learned before, order flow is a
predictor of future price change (Lyons, 2001). Thus, order flow can be used
as a short-term leading indicator of risk before that information becomes
more widely dispersed in the market and causes the price to change more.
There are also risk indicators that are very specific to a strategy. We men-
tioned in Chapter 4 that oil price is a good leading risk indicator for the
pair trading of GLD versus GDX. Other commodity prices such as that of
gold may also be good leading risk indicators for pair trading of ETFs for
countries or companies that produce them. Similarly, the Baltic Dry Index
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may be a good leading indicator for the ETFs or currencies of export-ori-
ented countries.

I should conclude, though, with one problem with the backtesting of lead-
ing risk indicators. Since the occurrence of financial panic or crises is relatively
rare, it is very easy to fall victim to data-snooping bias when we try to decide
whether an indicator is useful. And, of course, no financial indicators can pre-
dict natural and other nonfinancial disasters. As the order flow indicator works
at higher frequency, it may turn out to be the most useful of them all.

i § FOIWR 3 DN B ERING

......

e Maximization of long-term growth rate:

e |s your goal the maximization of your net worth over the long term? If so,
consider using the half-Kelly optimal leverage.

e Are your strategy returns fat-tailed? You may want to use Monte Carlo
simulations to optimize the growth rate instead of relying on Kelly’s
formula.

e Keeping data-snooping bias in mind, sometimes you can just directly
optimize the leverage based on your backtest returns’ compounded

186 growth rate.

e Do you want to ensure that your drawdown will not exceed a preset
maximum, yet enjoy the highest possible growth rate? Use constant
proportion portfolio insurance.

e Stop loss:

e Stop loss will usually lower the backtest performance of mean-reverting
strategies because of survivorship bias, but it can prevent black swan
events.

ALGORITHMIC TRADING

e Stop loss for mean-reverting strategies should be set so that they are
never triggered in backtests.

e Stop loss for momentum strategies forms a natural and logical part of
such strategies.

¢ Risk indicators:

e Do you want to avoid risky periods? You can consider one of these
possible leading indicators of risk: VIX, TED spread, HYG, ONN/OFF,
MXN.

e Be careful of data-snooping bias when testing the efficacy of leading risk
indicators.

¢ Increasingly negative order flow of a risky asset can be a short-term
leading risk indicator.




Even though this book contains an abundance of strategies that should be
interesting and attractive to independent or even institutional traders,
it has not been a recipe of strategies, or a step-by-step guide to implement-
ing them. The strategies described in this book serve only to illustrate the
general technique or concept, but they are not guaranteed to be without
those very pitfalls that I detailed in Chapter 1. Even if I were to carefully
scrub them of pitfalls, good strategies can still be victims of regime changes.
Readers are invited and encouraged to perform out-of-sample testing on the
strategies in this book to see for themselves.

Instead of recipes, what I hope to convey is the deeper reasons, the basic
principles, why certain strategies should work and why others shouldn’t.
Once we grasp the basic inefficiencies of certain markets (e.g., regression
to the mean, the presence of roll returns in futures, the need for end-of-day
rebalancing in leveraged exchange-traded funds [ETFs]), it is actually quite
easy to come up with a strategy to exploit them. This notion of understand-
ing the inefficiency first and constructing a strategy later is why I empha-
sized simple and linear strategies. Why create all kinds of arbitrary rules
when the inefficiency can be exploited by a simple model?

The other notion I wanted to convey is that the approach to algorithmic
trading can be rather scientific. In science, we form a hypothesis, express it
as a quantitative model, and then test it against new, unseen data to see if
the model is predictive. If the model failed with certain data, we try to find
out the reasons for the failures, perhaps add certain variables to the model,
and try again. This is a very similar process to how we should approach
algorithmic trading. Recall the ETF pair GLD versus GDX that stopped
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cointegrating in 2008 (see Chapter 4). A hypothesis was formed that had
to do with the high crude oil price. When oil price was added to the input
variables, the cointegration model started to work again. This scientific pro-
cess is most helpful when a strategy underperforms the backtest, and we
wanted to know why. Instead of blindly adding more rules, more indicators,
to the model and hoping that they miraculously improve the model perfor-
mance, we should look for a fundamental reason and then quantitatively test
whether this fundamental reason is valid.

Despite the efforts to make the trading process scientific and rule based,
there are still areas where subjective judgment is important. For example,
when there is a major event looming, do you trust that your model will be-
have as your backtest predicted, or do you lower your leverage or even tem-
porarily shut down the model in anticipation? Another example is offered
by the application of the Kelly formula to a portfolio of strategies. Should
we allocate capital among these strategies based on the equity of the whole
portfolio, so that the good performance of some strategies is subsidizing
the poor performance of others in the short term? Or should we apply the
Kelly formula to each strategy on its own, so that we quickly deleverage
those strategies that perform poorly recently? Mathematics tells us that the
former solution is optimal, but that’s assuming the expected returns and
volatilities of the strategies are unchanging. Can one really say that such ex-
pectations are unchanged given a recent period of severe drawdown?

(On the first judgment call, my experience has been that if your model
has survived the backtest during prior stressful periods, there is no reason
to lower its leverage in the face of coming crisis. It is much better to start off
with a more conservative leverage during good times than to have to lower
it in bad ones. As Donald Rumsfeld once said, it is the “unknown unknowns”
that will harm us, not the “known unknowns.” Unfortunately, we can’t shut
down our models before the unknown unknowns strike. On the second
judgment call, my experience has been that applying Kelly to each strategy
independently so as to allow each one to wither and die quickly when it
underperforms is more practical than applying Kelly asset allocation across
all strategies.)

As these examples show, subjective judgment is often needed because
the statistical properties of financial time series are not stationary, and sci-
ence can really only deal with stationary statistics. (I am using stationary in
a sense different from the stationarity of time series in Chapter 2. Here, it
means the probability distribution of prices remains unchanged through-
out time.) Often, when we find that our live trading experience diverges



from the backtest, it is not because we committed any of the pitfalls during
backtesting. It is because there has been a fundamental change in the market
structure, a regime shift, due to government regulatory or macroeconomic
changes. So the fund managers still have an active ongoing role even if the
strategy is supposedly algorithmic and automated—their role is to make ju-
dicious high-level judgment calls based on their fundamental understanding
of the markets on whether the models are still valid.

However, the fact that judgment is sometimes needed doesn’t mean
that developing quantitative rules is useless or algorithmic traders are less
“smart” than discretionary traders. As the oft-quoted Daniel Kahneman
wrote, experts are uniformly inferior to algorithms in every domain that has a
significant degree of uncertainty or unpredictability, ranging from deciding
winners of football games to predicting longevity of cancer patients. One
can hope that the financial market is no exception to this rule.

—
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