
www.it-ebooks.info

http://www.it-ebooks.info/

Mastering ROS for Robotics
Programming

Design, build, and simulate complex robots using
Robot Operating System and master its out-of-the-box
functionalities

Lentin Joseph

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering ROS for Robotics Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1141215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-179-8

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Lentin Joseph

Reviewers
Jonathan Cacace

Ruixiang Du

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Athira Laji

Technical Editor
Ryan Kochery

Copy Editor
Merilyn Pereira

Alpha Singh

Project Coordinator
Harshal Ved

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Lentin Joseph is an author, entrepreneur, electronics engineer, robotics enthusiast,
machine vision expert, embedded programmer, and the founder and CEO of Qbotics
Labs (http://www.qboticslabs.com) from India. He completed his bachelor's degree
in electronics and communication engineering at the Federal Institute of Science
and Technology (FISAT), Kerala. For his final year engineering project, he made a
social robot that can interact with people. The project was a huge success and was
mentioned in many forms of visual and print media. The main features of this robot
were that it can communicate with people and reply intelligently and has some image
processing capabilities such as face, motion, and color detection. The entire project was
implemented using the Python programming language. His interest in robotics, image
processing, and Python started with that project.

After his graduation, for 3 years he worked in a start-up company focusing on robotics
and image processing. In the meantime, he learned famous robotic software platforms
such as Robot Operating System (ROS), V-REP, Actin (a robotic simulation tool), and
image processing libraries such as OpenCV, OpenNI, and PCL. He also knows robot
3D designing and embedded programming on Arduino and Tiva Launchpad.

After 3 years of work experience, he started a new company called Qbotics
Labs, which mainly focuses on research to build up some great products in
domains such as robotics and machine vision. He maintains a personal website
(http://www.lentinjoseph.com) and a technology blog called technolabsz
(http://www.technolabsz.com). He publishes his works on his tech blog.
He was also a speaker at PyCon2013, India, on the topic Learning Robotics
using Python.

www.it-ebooks.info

http://www.qboticslabs.com
http://www.lentinjoseph.com
http://www.technolabsz.com
http://www.it-ebooks.info/

Lentin is the author of the book Learning Robotics Using Python (refer to http://
learn-robotics.com to know more) by Packt Publishing. The book was about
building an autonomous mobile robot using ROS and OpenCV. The book was
launched in ICRA 2015 and was featured in the ROS blog, Robohub, OpenCV,
the Python website, and various other such forums.

Lentin was a finalist in the ICRA 2015 challenge, HRATC
(http://www2.isr.uc.pt/~embedded/events/HRATC2015/Welcome.html).

I dedicate this book to my parents because they gave me the
inspiration to write this book. I also convey my regards to my friends
who helped and inspired me to write this book.

www.it-ebooks.info

http://learn-robotics.com
http://learn-robotics.com
http://www2.isr.uc.pt/~embedded/events/HRATC2015/Welcome.html
http://www.it-ebooks.info/

About the Reviewers

Jonathan Cacace was born in Naples, Italy, on December 13, 1987. He received has
a bachelor's and master's degree in computer science from the University of Naples
Federico II. Currently, he is attending a PhD Scholar Course in Information and
Automation Engineering at the Department of Electrical Engineering and Information
Technology (DIETI) in the same institution. His research is focused on autonomous
action planning and execution by mobile robots, high-level and low-level control
of UAV platforms, and human-robot interaction with humanoid robots in service
task execution. He is the author and coauthor of several scientific publications in the
robotics field, published at international conferences and scientific journals.

Jonathan is a member of the PRISMA Laboratory (http://prisma.dieti.unina.
it/) of the University of Naples Federico II. With his research group, he is involved
in different EU-funded collaborative research projects focused on several topics, such
as the use of unmanned aerial vehicles for search and rescue operations or service
task execution (http://www.sherpa-project.eu/sherpa/ and http://www.arcas-
project.eu/) and the dynamic manipulation of elastic objects using humanoid robotic
platforms (http://www.rodyman.eu/).

Ruixiang Du is currently a PhD student studying Robotics at Worcester Polytechnic
Institute (WPI). He received his bachelor's degree in Automation from North China
Electric Power University in 2011 and a master's degree in Robotics Engineering from
WPI in 2013.

Ruixiang has worked on various robotic projects with robot platforms ranging from
medical robots, UAV/UGV, to humanoid robots. He was an active member of Team
WPI-CMU for the DARPA Robotics Challenge.

Ruixiang has general interests in robotics and in real-time and embedded systems.
His research focus is on the control and motion planning of mobile robots in
cluttered and dynamic environments.

www.it-ebooks.info

http://prisma.dieti.unina.it/
http://prisma.dieti.unina.it/
http://www.sherpa-project.eu/sherpa/
http://www.arcas-project.eu/
http://www.arcas-project.eu/
http://www.rodyman.eu/
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 xi
Chapter 1: Introduction to ROS and Its Package Management	 1

Why should we learn ROS?	 2
Why we prefer ROS for robots	 2
Why some do not prefer ROS for robots	 4
Understanding the ROS file system level	 5

ROS packages	 7
ROS meta packages	 9
ROS messages	 10
The ROS services	 12

Understanding the ROS computation graph level	 12
Understanding ROS nodes	 15
ROS messages	 16
ROS topics	 16
ROS services	 17
ROS bags	 18
Understanding ROS Master	 19
Using the ROS parameter	 20

Understanding ROS community level	 22
What are the prerequisites to start with ROS?	 22
Running ROS Master and ROS parameter server	 23

Checking the roscore command output	 25
Creating a ROS package	 26

Working with ROS topics	 28
Creating ROS nodes	 28
Building the nodes	 32

Adding custom msg and srv files	 34
Working with ROS services	 37

Working with ROS actionlib	 42

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Building the ROS action server and client	 46
Creating launch files	 48
Applications of topics, services, and actionlib	 50
Maintaining the ROS package	 51
Releasing your ROS package	 51

Preparing the ROS package for the release	 52
Releasing our package	 53
Creating a Wiki page for your ROS package	 55

Questions	 57
Summary	 58

Chapter 2: Working with 3D Robot Modeling in ROS	 59
ROS packages for robot modeling	 60
Understanding robot modeling using URDF	 61
Creating the ROS package for the robot description	 64
Creating our first URDF model	 64
Explaining the URDF file	 66
Visualizing the robot 3D model in Rviz	 68

Interacting with pan and tilt joints	 69
Adding physical and collision properties to a URDF model	 70
Understanding robot modeling using xacro	 71

Using properties	 72
Using the math expression	 73
Using macros	 73

Conversion of xacro to URDF	 73
Creating the robot description for a seven DOF robot manipulator	 74

Arm specification	 75
Type of joints	 75

Explaining the xacro model of seven DOF arm 	 75
Using constants	 76
Using macros	 76
Including other xacro files	 77
Using meshes in the link	 77
Working with the robot gripper	 78
Viewing the seven DOF arm in Rviz	 79

Understanding joint state publisher	 80
Understanding the robot state publisher	 81

Creating a robot model for the differential drive mobile robot	 82
Questions	 86
Summary	 87

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 3: Simulating Robots Using ROS and Gazebo	 89
Simulating the robotic arm using Gazebo and ROS	 90

The Robotic arm simulation model for Gazebo	 91
Adding colors and textures to the Gazebo robot model	 93
Adding transmission tags to actuate the model	 93
Adding the gazebo_ros_control plugin	 94
Adding a 3D vision sensor to Gazebo	 94

Simulating the robotic arm with Xtion Pro	 96
Visualizing the 3D sensor data	 97

Moving robot joints using ROS controllers in Gazebo	 99
Understanding the ros_control packages	 99
Different types of ROS controllers and hardware interfaces	 100
How the ROS controller interacts with Gazebo	 100
Interfacing joint state controllers and joint position controllers to the arm	 102
Launching the ROS controllers with Gazebo	 103
Moving the robot joints	 105

Simulating a differential wheeled robot in Gazebo	 106
Adding the laser scanner to Gazebo	 107
Moving the mobile robot in Gazebo	 109
Adding joint state publishers in the launch file	 110

Adding the ROS teleop node	 111
Questions	 112
Summary	 113

Chapter 4: Using the ROS MoveIt! and Navigation Stack	 115
Installing MoveIt!	 116

MoveIt! architecture	 116
The move_group node	 117
Motion planning using MoveIt!	 118
Motion planning request adapters	 120
MoveIt! planning scene	 120
MoveIt! kinematics handling	 121
MoveIt! collision checking	 121

Generating MoveIt! configuration package using Setup
Assistant tool	 122
Step 1 – Launching the Setup Assistant tool	 123

Step 2 – Generating the Self-Collision matrix	 124
Step 3 – Adding virtual joints	 125
Step 4 – Adding planning groups	 126
Step 5 – Adding the robot poses	 127
Step 6 – Setup the robot end effector	 128
Step 7 – Adding passive joints	 128
Step 8 – Generating configuration files	 129

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Motion planning of robot in Rviz using MoveIt!
configuration package	 130

Using the Rviz MotionPlanning plugin	 131
Interfacing the MoveIt! configuration package to Gazebo	 134
Step 1 – Writing the controller configuration file for MoveIt!	 134
Step 2 – Creating the controller launch files	 135
Step 3 – Creating the controller configuration file for Gazebo	 136
Step 4 – Creating the launch file for Gazebo trajectory controllers	 137
Step 5 – Debugging the Gazebo- MoveIt! interface	 139

Understanding ROS Navigation stack	 140
ROS Navigation hardware requirements	 141
Working with Navigation packages	 142

Understanding the move_base node	 143
Working of Navigation stack	 144
Localizing on the map	 144
Sending a goal and path planning	 145
Collision recovery behavior	 145
Sending the command velocity	 145

Installing ROS Navigation stack	 145
Building a map using SLAM	 146

Creating a launch file for gmapping	 146
Running SLAM on the differential drive robot	 148
Implementing autonomous navigation using AMCL and a static map	 151
Creating an AMCL launch file	 152

Questions	 155
Summary	 155

Chapter 5: Working with Pluginlib, Nodelets,
and Gazebo Plugins	 157

Understanding pluginlib	 158
Creating plugins for the calculator application using pluginlib	 158

Working with pluginlib_calculator package	 159
Understanding ROS nodelets	 165
Creating a nodelet	 165

Step 1 – Creating a package for nodelet	 166
Step 2 – Creating hello_world.cpp nodelet	 166
Step 3 – Explanation of hello_world.cpp	 166
Step 4 – Creating plugin description file	 167
Step 5 – Adding the export tag in package.xml	 168
Step 6 – Editing CMakeLists.txt	 168
Step 7 – Building and running nodelets	 168
Step 8 – Creating launch files for nodelets	 170

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Understanding the Gazebo plugins	 172
Creating a basic world plugin	 173

Questions	 177
Summary	 177

Chapter 6: Writing ROS Controllers and Visualization Plugins	 179
Understanding pr2_mechanism packages	 181

pr2_controller_interface package	 181
Initialization of the controller	 182
Starting the ROS controller	 182
Updating ROS controller	 183
Stopping the controller	 183

pr2_controller_manager	 183
Writing a basic real-time joint controller in ROS	 184

Step 1 – Creating controller package	 184
Step 2 – Creating controller header file	 184

Step 3 – Creating controller source file	 185
Step 4 – Explanation of the controller source file	 187
Step 5 – Creating plugin description file	 188
Step 6 – Updating package.xml	 188
Step 7 – Updating CMakeLists.txt	 188
Step 8 – Building controller	 188
Step 9 – Writing controller configuration file	 189
Step 10 – Writing launch file for the controller	 189
Step 11 – Running controller along with PR2 simulation in Gazebo	 190

Understanding ros_control packages	 191
Understanding ROS visualization tool (RViz) and its plugins	 192

Displays panel	 193
RViz toolbar	 193
Views	 193
Time panel	 193
Dockable panels	 193

Writing a RViz plugin for teleoperation	 194
Methodology of building Rviz plugin	 194

Step 1 – Creating RViz plugin package	 195
Step 2 – Creating RViz plugin header file	 195
Step 3 – Creating RViz plugin definition	 196
Step 4 – Creating plugin description file	 198
Step 5 – Adding export tags in package.xml	 198
Step 6 – Editing CMakeLists.txt	 198
Step 7 – Building and loading plugins	 199

Questions	 200
Summary	 201

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Chapter 7: Interfacing I/O Boards, Sensors, and Actuators
to ROS	 203

Understanding the Arduino–ROS interface	 204
What is the Arduino–ROS interface?	 205

Understanding the rosserial package in ROS	 206
Installing rosserial packages on Ubuntu 14.04/15.04	 208
ROS – Arduino Publisher and Subscriber example	 213

Arduino-ROS, example – blink LED and push button	 218
Arduino-ROS, example – Accelerometer ADXL 335	 221
Arduino-ROS, example – ultrasonic distance sensor	 224

Equations to find distance using the ultrasonic range sensor	 225
Arduino-ROS, example – Odometry Publisher	 228
Interfacing Non-Arduino boards to ROS	 230
Setting ROS on Odroid–C1 and Raspberry Pi 2	 230
How to install an OS image to Odroid-C1 and Raspberry Pi 2	 233

Installation in Windows	 233
Installation in Linux	 234

Connecting to Odroid-C1 and Raspberry Pi 2 from a PC	 235
Configuring an Ethernet hotspot for Odroid-C1 and Raspberry Pi 2	 236

Installing Wiring Pi on Odroid-C1	 237
Installing Wiring Pi on Raspberry Pi 2	 238

Blinking LED using ROS on Odroid-C1 and Raspberry Pi 2	 240
Push button + blink LED using ROS on Odroid-C1 and Raspberry Pi 2	 242

Interfacing Dynamixel actuators to ROS	 246
Questions	 247
Summary	 247

Chapter 8: Programming Vision Sensors using ROS,
Open-CV, and PCL	 249

Understanding ROS – OpenCV interfacing packages	 250
Understanding ROS – PCL interfacing packages	 251

Installing ROS perception	 252
Interfacing USB webcams in ROS	 254
Working with ROS camera calibration	 256

Converting images between ROS and OpenCV using cv_bridge	 259
Image processing using ROS and OpenCV	 260

Step 1: Creating ROS package for the experiment	 260
Step 2: Creating source files	 260
Step 3: Explanation of the code	 260
Step 4: Editing the CMakeLists.txt file	 264
Step 5: Building and running example	 264

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Interfacing Kinect and Asus Xtion Pro in ROS	 265
Interfacing Intel Real Sense camera with ROS	 268

Working with point cloud to laser scan package	 270
Interfacing Hokuyo Laser in ROS	 273
Interfacing Velodyne LIDAR in ROS	 275
Working with point cloud data	 278

How to publish a point cloud	 278
How to subscribe and process the point cloud	 280
Writing a point cloud data to a PCD file	 282
Read and publish point cloud from a PCD file	 282

Streaming webcam from Odroid using ROS	 285
Questions	 288
Summary	 288

Chapter 9: Building and Interfacing Differential Drive
Mobile Robot Hardware in ROS	 289

Introduction to Chefbot- a DIY mobile robot and its hardware
configuration	 290

Flashing Chefbot firmware using Energia IDE	 293
Serial data sending protocol from LaunchPad to PC	 294
Serial data sending protocol from PC to Launchpad	 295

Discussing Chefbot interface packages on ROS	 296
Computing odometry from encoder ticks	 302
Computing motor velocities from ROS twist message	 305

Running robot stand alone launch file using C++ nodes	 306
Configuring the Navigation stack for Chefbot	 306
Configuring the gmapping node	 307
Configuring the Navigation stack packages	 308

Common configuration (local_costmap) and (global_costmap)	 310
Configuring global costmap parameters	 311
Configuring local costmap parameters	 312
Configuring base local planner parameters	 312
Configuring DWA local planner parameters	 313
Configuring move_base node parameters	 314

Understanding AMCL	 317
Understanding RViz for working with the Navigation stack	 320

2D Pose Estimate button	 320
Visualizing the particle cloud	 321
The 2D Nav Goal button	 322
Displaying the static map	 323
Displaying the robot footprint	 324
Displaying the global and local cost map	 325
Displaying the global plan, local plan, and planner plan	 326
The current goal	 327

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[viii]

Obstacle avoidance using the Navigation stack	 328
Working with Chefbot simulation	 329

Building a room in Gazebo	 329
Adding model files to the Gazebo model folder	 331

Sending a goal to the Navigation stack from a ROS node	 333
Questions	 336
Summary	 336

Chapter 10: Exploring the Advanced Capabilities
of ROS-MoveIt!	 337

Motion planning using the move_group C++ interface	 338
Motion planning a random path using MoveIt! C++ APIs	 338
Motion planning a custom path using MoveIt! C++ APIs	 340

Collision checking in robot arm using MoveIt!	 342
Adding a collision object in MoveIt!	 342
Removing a collision object from the planning scene	 346
Checking self collision using MoveIt! APIs	 347

Working with perception using MoveIt! and Gazebo	 349
Grasping using MoveIt! 	 355
Working with robot pick and place task using MoveIt!	 358

Creating Grasp Table and Grasp Object in MoveIt!	 360
Pick and place action in Gazebo and real Robot	 363

Understanding Dynamixel ROS Servo controllers for robot
hardware interfacing	 364

The Dynamixel Servos	 364
Dynamixel-ROS interface	 366

Interfacing seven DOF Dynamixel based robotic arm
to ROS MoveIt! 	 366

Creating a controller package for COOL arm robot	 368
MoveIt! configuration of the COOL Arm	 372

Questions	 373
Summary	 374

Chapter 11: ROS for Industrial Robots	 375
Understanding ROS-Industrial packages	 376

Goals of ROS-Industrial	 376
ROS-Industrial – a brief history	 377
Benefits of ROS-Industrial	 377

Installing ROS-Industrial packages	 377
Block diagram of ROS-Industrial packages	 378
Creating URDF for an industrial robot	 380
Creating MoveIt! configuration for an industrial robot	 382

Updating the MoveIt! configuration files	 385

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ix]

Testing the MoveIt! configuration	 387
Installing ROS-Industrial packages of universal robotic arm	 387

Installing the ROS interface of universal robots	 388
Understanding the Moveit! configuration of a universal robotic arm	 390
Working with MoveIt! configuration of ABB robots	 394
Understanding the ROS-Industrial robot support packages	 396

Visualizing the ABB robot model in RViz	 398
ROS-Industrial robot client package	 399

Designing industrial robot client nodes	 400
ROS-Industrial robot driver package	 401
Understanding MoveIt! IKFast plugin	 404
Creating the MoveIt! IKFast plugin for the ABB-IRB6640 robot	 404

Prerequisites for developing the MoveIt! IKFast plugin	 404
OpenRave and IK Fast Module	 405

MoveIt! IK Fast	 405
Installing MoveIt! IKFast package	 405
Installing OpenRave on Ubuntu 14.04.3	 406

Creating the COLLADA file of a robot to work with OpenRave	 408
Generating the IKFast CPP file for the IRB 6640 robot	 410

Creating the MoveIt! IKFast plugin	 411
Questions	 413
Summary	 414

Chapter 12: Troubleshooting and Best Practices in ROS	 415
Setting up Eclipse IDE on Ubuntu 14.04.3	 416
Setting ROS development environment in Eclipse IDE	 417

Global settings in Eclipse IDE	 418
ROS compile script for Eclipse IDE	 419
Adding ROS Catkin package to Eclipse	 421
Adding run configurations to run ROS nodes in Eclipse	 427

Best practices in ROS	 429
ROS C++ coding style guide	 429

Standard naming conventions used in ROS	 429
Code license agreement	 430
ROS code formatting	 431
ROS code documentation	 432
Console output	 432

Best practices in the ROS package	 432
Important troubleshooting tips in ROS	 433

Usage of roswtf	 434
Questions	 437
Summary	 437

Index	 439

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[xi]

Preface
Mastering ROS for Robotics Programming is an advanced guide of ROS that is very
suitable for readers who already have a basic knowledge in ROS. ROS is widely used
in robotics companies, universities, and robotics research institutes for designing,
building, and simulating a robot model and interfacing it into real hardware. ROS is
now an essential requirement for Robotic engineers; this guide can help you acquire
knowledge of ROS and can also help you polish your skills in ROS using interactive
examples. Even though it is an advanced guide, you can see the basics of ROS in the
first chapter to refresh the concepts. It also helps ROS beginners. The book mainly
focuses on the advanced concepts of ROS, such as ROS Navigation stack, ROS
MoveIt!, ROS plugins, nodelets, controllers, ROS Industrial, and so on.

You can work with the examples in the book without any special hardware;
however, in some sections you can see the interfacing of I/O boards, vision
sensors, and actuators to ROS. To work with this hardware, you will need
to buy it.

The book starts with an introduction to ROS and then discusses how to build a robot
model in ROS for simulating and visualizing. After the simulation of robots using
Gazebo, we can see how to connect the robot to Navigation stack and MoveIt!. In
addition to this, we can see ROS plugins, controllers, nodelets, and interfacing of
I/O boards and vision sensors. Finally, we can see more about ROS Industrial and
troubleshooting and best practices in ROS.

What this book covers
Chapter 1, Introduction to ROS and Its Package Management, gives you an understanding
of the core underlying concepts of ROS and how to work with ROS packages.

Chapter 2, Working with 3D Robot Modeling in ROS, discusses the design of two robots;
one is a seven-DOF (Degree of Freedom) manipulator and the other is a differential
drive robot.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xii]

Chapter 3, Simulating Robots Using ROS and Gazebo, discusses the simulation of
seven-DOF arms, differential wheeled robots, and ROS controllers that help control
robot joints in Gazebo.

Chapter 4, Using the ROS MoveIt! and Navigation Stack, interfaces out-of-the-box
functionalities such as robot manipulation and autonomous navigation using ROS
MoveIt! and Navigation stack.

Chapter 5, Working with Pluginlib, Nodelets, and Gazebo Plugins, shows some of the
advanced concepts in ROS, such as ROS pluginlib, nodelets, and Gazebo plugins.
We will discuss the functionalities and application of each concept and can practice
one example to demonstrate its working.

Chapter 6, Writing ROS Controllers and Visualization Plugins, shows how to write a
basic ROS controller for PR2 robots and robots similar to PR2. After creating the
controller, we will run the controller using the PR2 simulation in Gazebo. We can
also see how to create plugin for RViz.

Chapter 7, Interfacing I/O Boards, Sensors, and Actuators to ROS, discusses interfacing
some hardware components, such as sensors and actuators, with ROS. We will see
the interfacing of sensors using I/O boards, such as Arduino, Raspberry Pi, and
Odroid-C1, with ROS.

Chapter 8, Programming Vision Sensors using ROS, Open-CV, and PCL, discusses how
to interface various vision sensors with ROS and program it using libraries such as
Open Source Computer Vision (Open-CV) and Point Cloud Library (PCL).

Chapter 9, Building and Interfacing Differential Drive Mobile Robot Hardware in ROS,
helps you to build autonomous mobile robot hardware with differential drive
configuration and interface it with ROS. This chapter aims at giving you an idea
of building a custom mobile robot and interfacing it with ROS.

Chapter 10, Exploring the Advanced Capabilities of ROS-MoveIt!, discusses the
capabilities of MoveIt! such as collision avoidance, perception using 3D sensors,
grasping, picking, and placing. After that, we can see the interfacing of a robotic
manipulator hardware with MoveIt!

Chapter 11, ROS for Industrial Robots, helps you understand and install ROS-Industrial
packages in ROS. We can see how to develop an MoveIt! IKFast plugin for an
industrial robot.

Chapter 12, Troubleshooting and Best Practices in ROS, discusses how to set the ROS
development environment in Eclipse IDE, best practices in ROS, and troubleshooting
tips in ROS.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xiii]

What you need for this book
You should have a good PC running Linux distribution, preferably Ubuntu 14.04.3
or Ubuntu 15.04.

Readers can use a laptop or PC with a graphics card, and a RAM of 4 GB to 8 GB is
preferred. This is actually for running high-end simulation in Gazebo and also for
processing Point cloud and for computer vision.

The readers should have sensors, actuators, and the I/O board mentioned in the
book and should have the provision to connect them all to their PC.

The readers also need a Git tool installed to clone the packages files.

If you are a Windows user, then it will be good to download Virtual box and set up
Ubuntu in that. Working with Virtual box can have issues when we try to interface real
hardware with ROS, so it would be good if you could work with the real system itself.

Who this book is for
If you are a robotics enthusiast or a researcher who wants to learn more about
building robot applications using ROS, this book is for you. In order to learn from
this book, you should have a basic knowledge of ROS, GNU/Linux, and C++
programming concepts. The book will also be good for programmers who want to
explore the advanced features of ROS.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a folder called launch and inside this folder create the following launch file
called start_laser.launch."

A block of code is set as follows:

#include <ros/ros.h>
#include <moveit/robot_model_loader/robot_model_loader.h>
#include <moveit/planning_scene/planning_scene.h>

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xiv]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 robot_model_loader::RobotModelLoader robot_model_loader("robot_
description");
 robot_model::RobotModelPtr kinematic_model = robot_model_loader.
getModel();
 planning_scene::PlanningScene planning_scene(kinematic_model);

Any command-line input or output is written as follows:

$ sudo apt-get update

$ sudo apt-get install ros-indigo-perception

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on camera | driver and tick Color Transformer."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com or
qboticslabs@gmail.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[xv]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you. You can also download
chapter codes from https://github.com/qboticslabs/mastering_ros.git.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/B04782_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/qboticslabs/mastering_ros.git
https://www.packtpub.com/sites/default/files/downloads/B04782_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/B04782_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

[xvi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Introduction to ROS and Its
Package Management

This is an introductory chapter that gives you an understanding of the core
underlying concepts of ROS and how to work with ROS packages. We will
also go through the ROS concepts such as ROS master, nodes, parameter server,
topic, message, service, and actionlib to refresh your memory of the concepts you
already know.

The basic building blocks of the ROS software framework are ROS packages. We will
see how to create, build, and maintain a ROS package. We will also see how to create
a wiki page for our package on the ROS website to contribute to the ROS community.

In this chapter, we will cover the following topics:

•	 Why should we learn ROS?
•	 Why we prefer ROS for robot
•	 Why we do not prefer ROS for robot
•	 Understanding the ROS file system level
•	 Understanding the ROS computation graph level
•	 Understanding ROS nodes, messages, topics, services, bags
•	 Understanding ROS Master
•	 Using ROS Parameter
•	 Understanding ROS community level
•	 Running ROS Master and ROS Parameter server
•	 Creating a ROS package
•	 Working with ROS topics

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[2]

•	 Adding custom msg and srv files
•	 Working with ROS services
•	 Working with ROS actionlib
•	 Creating launch files
•	 Applications of topics, services, and actionlib
•	 Maintaining the ROS package
•	 Releasing your ROS package
•	 Creating a wiki page for your ROS package

Why should we learn ROS?
Robot Operating System (ROS) is a trending robot application development
platform that provides various features such as message passing, distributed
computing, code reusing, and so on.

The ROS project was started in 2007 with the name Switchyard by Morgan
Quigley (http://wiki.osrfoundation.org/morgan) as part of the Stanford
STAIR robot project. The main development of ROS happened at Willow Garage
(https://www.willowgarage.com/).

The ROS community is growing very fast and there are many users and developers
worldwide. Most of the high-end robotics companies are now porting their software
to ROS. This trend is also visible in industrial robotics, in which companies are
switching from proprietary robotic application to ROS.

The ROS industrial movement has gained momentum in the past few years owing
to the large amount of research done in that field. ROS Industrial can extend the
advanced capabilities of ROS to manufacturing. The increasing applications of ROS
can generate a lot of job opportunities in this field. So after some years, knowledge in
ROS will be an essential requirement for a robotics engineer.

Why we prefer ROS for robots
Imagine that we are going to build an autonomous mobile robot. Here are some of
the reasons why people choose ROS over other robotic platforms such as Player,
YARP, Orocos, MRPT, and so on:

www.it-ebooks.info

http://wiki.osrfoundation.org/morgan
https://www.willowgarage.com/
http://www.it-ebooks.info/

Chapter 1

[3]

•	 High-end capabilities: ROS comes with ready to use capabilities, for
example, SLAM (Simultaneous Localization and Mapping) and AMCL
(Adaptive Monte Carlo Localization) packages in ROS can be used for
performing autonomous navigation in mobile robots and the MoveIt package
for motion planning of robot manipulators. These capabilities can directly be
used in our robot software without any hassle. These capabilities are its best
form of implementation, so writing new code for existing capabilities are like
reinventing wheels. Also, these capabilities are highly configurable; we can
fine-tune each capability using various parameters.

•	 Tons of tools: ROS is packed with tons of tools for debugging, visualizing,
and performing simulation. The tools such as rqt_gui, RViz and Gazebo
are some of the strong open source tools for debugging, visualization, and
simulation. The software framework that has these many tools is very rare.

•	 Support high-end sensors and actuators: ROS is packed with device
drivers and interface packages of various sensors and actuators in robotics.
The high-end sensors include Velodyne-LIDAR, Laser scanners, Kinect,
and so on and actuators such as Dynamixel servos. We can interface these
components to ROS without any hassle.

•	 Inter-platform operability: The ROS message-passing middleware allows
communicating between different nodes. These nodes can be programmed
in any language that has ROS client libraries. We can write high performance
nodes in C++ or C and other nodes in Python or Java. This kind of flexibility
is not available in other frameworks.

•	 Modularity: One of the issues that can occur in most of the standalone
robotic applications are, if any of the threads of main code crash, the entire
robot application can stop. In ROS, the situation is different, we are writing
different nodes for each process and if one node crashes, the system can still
work. Also, ROS provides robust methods to resume operation even if any
sensors or motors are dead.

•	 Concurrent resource handling: Handling a hardware resource by more than
two processes is always a headache. Imagine, we want to process an image
from a camera for face detection and motion detection, we can either write
the code as a single entity that can do both, or we can write a single threaded
code for concurrency. If we want to add more than two features in threads,
the application behavior will get complex and will be difficult to debug. But
in ROS, we can access the devices using ROS topics from the ROS drivers.
Any number of ROS nodes can subscribe to the image message from the ROS
camera driver and each node can perform different functionalities. It can
reduce the complexity in computation and also increase the debug-ability of
the entire system.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[4]

•	 Active community: When we choose a library or software framework,
especially from an open source community, one of the main factors that
needs to be checked before using it is its software support and developer
community. There is no guarantee of support from an open source tool.
Some tools provide good support and some tools don't. In ROS, the support
community is active. There is a web portal to handle the support queries
from the users too (http://answers.ros.org). It seems that the ROS
community has a steady growth in developers worldwide.

There are many reasons to choose ROS other than the preceding points.

Next, we can check the various reasons why people don't use ROS. Here are some
of the existing reasons.

Why some do not prefer ROS for robots
Here are some of the reasons why people do not prefer ROS for their robotic projects:

•	 Difficulty in learning: It will be difficult to learn ROS from their default wiki
pages. Most users depend on books to start with ROS. Even this book covers
only the basics; learning ROS is going to be bit difficult.

•	 Difficulties in starting with simulation: The main simulator in ROS is
Gazebo. Even though Gazebo works well, to get started with Gazebo is not
an easy task. The simulator has no inbuilt features to program. Complete
simulation is done only through coding in ROS. When we compare Gazebo
with other simulators such as V-REP and Webots, they have inbuilt
functionalities to prototype and program the robot. They also have a rich
GUI toolset and support a wide variety of robots and have ROS interfaces
too. These tools are proprietary, but can deliver a decent job. The toughness
of learning simulation using Gazebo and ROS is a reason for not using it in
their projects.

•	 Difficulties in robot modeling: The robot modeling in ROS is performed
using URDF, which is an XML based robot description. In short, we need
to write the robot model as a description using URDF tags. In V-REP, we
can directly build the 3D robot model in the GUI itself, or we can import
the mesh. In ROS, we should write the robot model definitions using URDF
tags. There is a SolidWorks plugin to convert a 3D model from SolidWorks to
URDF. But if we use other 3D CAD tools, there are no options at all. Learning
to model a robot in ROS will take a lot of time and building using URDF tags
is also time consuming compared to other simulators.

www.it-ebooks.info

http://answers.ros.org
http://www.it-ebooks.info/

Chapter 1

[5]

•	 Need for a computer: We always need a computer to run ROS. Small
robots that work completely on microcontrollers don't require a ROS
system. ROS is only required when we want to perform high-level
functionalities such as autonomous navigation and motion planning.
In basic robots, there is no need to use ROS if you are not planning higher
level functionalities on the robot.

•	 ROS in commercial robot products: When we deploy ROS on a commercial
product, a lot of things need to be taken care of. One thing is the code
quality. ROS codes follow a standard coding style and keep best practices
for maintaining the code too. We have to check whether it satisfies the
quality level required for our product. We might have to do additional work
to improve the quality of code. Most of the code in ROS is contributed by
researchers from universities, so if we are not satisfied with the ROS code
quality, it is better to write your own code, which is specific to the robot and
only use the ROS core functionalities if required.

We now know where we have to use ROS and where we do not. If ROS is really
required for your robot, let's start discussing ROS in more detail. First, we can see the
underlying core concepts of ROS. There are mainly three levels in ROS: file system
level, computation graph level, and community level. We can have a look at each
level in short.

Understanding the ROS file system level
Similar to an operating system, ROS files are also organized on the hard disk in a
particular fashion. In this level, we can see how these files are organized on the disk.
The following graph shows how ROS files and folder are organized on the disk:

Package

Manifest
Messages Services Codes Misc

ROS File System Level

Meta Packages

Packages

Figure 1 : ROS File system level

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[6]

Here are the explanations of each block in the file system

•	 Packages: The ROS packages are the most basic unit of the ROS software.
It contains the ROS runtime process (nodes), libraries, configuration files,
and so on, which are organized together as a single unit. Packages are the
atomic build item and release item in the ROS software.

•	 Package manifest: The package manifest file is inside a package that contains
information about the package, author, license, dependencies, compilation
flags, and so on. The package.xml file inside the ROS package is the manifest
file of that package.

•	 Meta packages: The term meta package is used for a group of packages
for a special purpose. In an older version of ROS such as Electric and
Fuerte, it was called stacks, but later it was removed, as simplicity and
meta packages came to existence. One of the examples of a meta package
is the ROS navigation stack.

•	 Meta packages manifest: The meta package manifest is similar to the
package manifest; differences are that it might include packages inside
it as runtime dependencies and declare an export tag.

•	 Messages (.msg): The ROS messages are a type of information that is sent
from one ROS process to the other. We can define a custom message inside
the msg folder inside a package (my_package/msg/ MyMessageType.msg).
The extension of the message file is .msg.

•	 Services (.srv): The ROS service is a kind of request/reply interaction
between processes. The reply and request data types can be defined inside
the srv folder inside the package (my_package/srv/MyServiceType.srv).

•	 Repositories: Most of the ROS packages are maintained using a Version
Control System (VCS) such as Git, subversion (svn), mercurial (hg), and
so on. The collection of packages that share a common VCS can be called
repositories. The package in the repositories can be released using a catkin
release automation tool called bloom.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

The following screenshot gives you an idea of files and folders of a package that we
are going to make in the upcoming sections:

Figure 2 : List of files inside the exercise package

ROS packages
A typical structure of a ROS package is shown here:

config include scripts src

launch msg srv action

CMakeLists.txt

package.xml
talker.py

listener.py

talker.cpp

listener.cpp

Figure 3 : Structure of a typical ROS package

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[8]

We can discuss the use of each folder as follows:

•	 config: All configuration files that are used in this ROS package are kept
in this folder. This folder is created by the user and is a common practice to
name the folder config to keep the configuration files in it.

•	 include/package_name: This folder consists of headers and libraries that
we need to use inside the package.

•	 scripts: This folder keeps executable Python scripts. In the block diagram,
we can see two example scripts.

•	 src: This folder stores the C++ source codes. We can see two examples of
the source code in the block diagram.

•	 launch: This folder keeps the launch files that are used to launch one or more
ROS nodes.

•	 msg: This folder contains custom message definitions.
•	 srv: This folder contains the service definitions.
•	 action: This folder contains the action definition. We will see more about

actionlib in the upcoming sections.
•	 package.xml: This is the package manifest file of this package.
•	 CMakeLists.txt: This is the CMake build file of this package.

We need to know some commands to create, modify, and work with the ROS
packages. Here are some of the commands used to work with ROS packages:

•	 catkin_create_pkg: This command is used to create a new package
•	 rospack: This command is used to get information about the package

in the file system
•	 catkin_make: This command is used to build the packages in the workspace
•	 rosdep: This command will install the system dependencies required

for this package

To work with packages, ROS provides a bash-like command called rosbash
(http://wiki.ros.org/rosbash), which can be used to navigate and manipulate
the ROS package. Here are some of the rosbash commands:

•	 roscd: This command is used to change the package folder. If we give the
argument a package name, it will switch to that package folder.

•	 roscp: This command is used to copy a file from a package.
•	 rosed: This command is used to edit a file.
•	 rosrun: This command is used to run an executable inside a package.

www.it-ebooks.info

http://wiki.ros.org/rosbash
http://www.it-ebooks.info/

Chapter 1

[9]

The definition of package.xml of a typical package is shown as follows:

Figure 4 : Structure of package.xml

The package.xml file consists of the package name, version of the package, the
package description, author details, package build dependencies, and runtime
dependencies. The <build_depend></build_depend> tag includes the packages
that are necessary to build the source code of the package. The packages inside
the <run_depend></run_depend> tag are necessary during runtime of the
package node.

ROS meta packages
Meta packages are specialized packages in ROS that only contain one file, that is,
a package.xml file. It doesn't contain folders and files similar to a normal package.

Meta packages simply group a set of multiple packages as a single logical package.
In the package.xml file, the meta package contains an export tag, as shown here:

 <export>
 <metapackage/>
 </export>

Also, in meta packages, there are no <buildtool_depend> dependencies for catkin,
there are only <run_depend> dependencies, which are the packages grouped in the
meta package.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[10]

The ROS navigation stack is a good example of meta packages. If ROS is installed, we
can try the following command, by switching to the navigation meta package folder:

$ roscd navigation

Open package.xml using gedit text editor

$ gedit package.xml

This is a lengthy file; here is a stripped down version of it:

Figure 5 : Structure of meta-package package.xml

ROS messages
The ROS nodes can publish data having a particular type. The types of data are
described using a simplified message description language, also called ROS messages.
These datatype descriptions can be used to generate source code for the appropriate
message type in different target languages.

The data type description of ROS messages are stored in .msg files in the msg
subdirectory of a ROS package.

The message definition can consist of two types: fields and constants. The field is
split into field types and field name. Field types is the data type of the transmitting
message and field name is the name of it. The constants define a constant value in the
message file.

Here is an example of message definitions:

int32 number
string name
float32 speed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Here, the first part is the field type and second is the field name. The field type is
the data type and the field name can be used to access the value from the message.
For example, we can use msg.number for accessing the value of the number from
the message.

Here is a table to show some of the built-in field types that we can use in
our message:

Primitive type Serialization C++ Python
bool(1) unsigned 8-bit int uint8_t(2) bool
int8 signed 8-bit int int8_t int
uint8 unsigned 8-bit int uint8_t int (3)
int16 signed 16-bit int int16_t int
uint16 unsigned 16-bit int uint16_t int
int32 signed 32-bit int int32_t int
uint32 unsigned 32-bit int uint32_t int
int64 signed 64-bit int int64_t long
uint64 unsigned 64-bit int uint64_t long
float32 32-bit IEEE float float float
float64 64-bit IEEE float double float
string ascii string(4) std::string string
time secs/nsecs unsigned

32-bit ints
ros::Time rospy.Time

duration secs/nsecs signed
32-bit ints

ros::Duration rospy.Duration

A special type of ROS message is called message headers. Headers can carry
information such as time, frame of reference or frame_id, and sequence number.
Using headers, we will get numbered messages and more clarity in who is sending
the current message. The header information is mainly used to send data such as
robot joint transforms (TF). Here is an example of the message header:

uint32 seq
time stamp
string frame_id

The rosmsg command tool can be used to inspect the message header and the
field types. The following command helps to view the message header of a
particular message:

$ rosmsg show std_msgs/Header

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[12]

This will give you an output like the preceding example message header. We can see
more about the rosmsg command and how to work with custom message definitions
in the upcoming sections.

The ROS services
The ROS services are a type request/response communication between ROS nodes.
One node will send a request and wait until it gets a response from the other. The
request/response communication is also using the ROS message description.

Similar to the message definitions using the .msg file, we have to define the service
definition in another file called .srv, which has to be kept inside the srv sub
directory of the package. Similar to the message definition, a service description
language is used to define the ROS service types.

An example service description format is as follows:

#Request message type
string str

#Response message type
string str

The first section is the message type of request that is separated by --- and in the
next section is the message type of response. In these examples, both Request and
Response are strings.

In the upcoming sections, we can see how to work with ROS services.

Understanding the ROS computation
graph level
The computation in ROS is done using a network of process called ROS nodes.
This computation network can be called the computation graph. The main concepts
in the computation graph are ROS Nodes, Master, Parameter server, Messages,
Topics, Services, and Bags. Each concept in the graph is contributed to this graph
in different ways.

The ROS communication related packages including core client libraries such as
roscpp and rospython and the implementation of concepts such as topics, nodes,
parameters, and services are included in a stack called ros_comm (http://wiki.
ros.org/ros_comm).

www.it-ebooks.info

http://wiki.ros.org/ros_comm
http://wiki.ros.org/ros_comm
http://www.it-ebooks.info/

Chapter 1

[13]

This stack also consists of tools such as rostopic, rosparam, rosservice, and
rosnode to introspect the preceding concepts.

The ros_comm stack contains the ROS communication middleware packages and
these packages are collectively called ROS Graph layer.

Nodes Master Parameter
Server

Messages

ROS Computational Graph
Level

Topics Services Bags

Figure 6 : Structure of the ROS Graph layer

The following are abstracts of each graph's concepts:

•	 Nodes: Nodes are the process that perform computation. Each ROS node is
written using ROS client libraries such as roscpp and rospy. Using client
library APIs, we can implement different types of communication methods in
ROS nodes. In a robot, there will be many nodes to perform different kinds of
tasks. Using the ROS communication methods, it can communicate with each
other and exchange data. One of the aims of ROS nodes is to build simple
processes rather than a large process with all functionality. Being a simple
structure, ROS nodes are easy to debug too.

•	 Master: The ROS Master provides name registration and lookup to the rest
of the nodes. Nodes will not be able to find each other, exchange messages,
or invoke services without a ROS Master. In a distributed system, we should
run the master on one computer, and other remote nodes can find each other
by communicating with this master.

•	 Parameter Server: The parameter server allows you to keep the data to be
stored in a central location. All nodes can access and modify these values.
Parameter server is a part of ROS Master

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[14]

•	 Messages: Nodes communicate with each other using messages. Messages
are simply a data structure containing the typed field, which can hold a set
of data and that can be sent to another node. There are standard primitive
types (integer, floating point, Boolean, and so on) and these are supported
by ROS messages. We can also build our own message types using these
standard types.

•	 Topics: Each message in ROS is transported using named buses called
topics. When a node sends a message through a topic, then we can say the
node is publishing a topic. When a node receives a message through a topic,
then we can say that the node is subscribing to a topic. The publishing node
and subscribing node are not aware of each other's existence. We can even
subscribe a topic that might not have any publisher. In short, the production
of information and consumption of it are decoupled. Each topic has a unique
name, and any node can access this topic and send data through it as long as
they have the right message type.

•	 Services: In some robot applications, a publish/subscribe model will not be
enough if it needs a request/response interaction. The publish/subscribe
model is a kind of one-way transport system and when we work with a
distributed system, we might need a request/response kind of interaction.
ROS Services are used in these case. We can define a service definition that
contains two parts; one is for requests and the other is for responses. Using
ROS Services, we can write a server node and client node. The server node
provides the service under a name, and when the client node sends a request
message to this server, it will respond and send the result to the client.
The client might need to wait until the server responds. The ROS service
interaction is like a remote procedure call.

•	 Bags: Bags are a format for saving and playing back ROS message data.
Bags are an important mechanism for storing data, such as sensor data,
which can be difficult to collect but is necessary for developing and testing
robot algorithms. Bags are very useful features when we work with complex
robot mechanisms.

The following graph shows how the nodes communicate with each other using topics.
The topics are mentioned in a rectangle and nodes are represented in ellipses. The
messages and parameters are not included in this graph. These kinds of graphs can be
generated using a tool called rqt_graph (http://wiki.ros.org/rqt_graph).

www.it-ebooks.info

http://wiki.ros.org/rqt_graph
http://www.it-ebooks.info/

Chapter 1

[15]

/mobile_base_nodelet_manager

/gazebo

/cmd_vel_mux

/bumper2pointcloud

/camera/depth/camera_info

/camera/depth/image_raw

/joint_states /robot_state_publisher

/laserscan_nodelet_manager /laserscan_nodelet_manager/bond

/scan

/tf

/slam_gmapping

/depthimage_to_laserscan

/mobile_base_nodelet_manager/bond

/mobile_base/commands/velocity

Figure 7 : Graph of communication between nodes using topics

Understanding ROS nodes
ROS nodes are a process that perform computation using ROS client libraries such as
roscpp and rospy. One node can communicate with other nodes using ROS Topics,
Services, and Parameters.

A robot might contain many nodes, for example, one node processes camera images,
one node handles serial data from the robot, one node can be used to compute
odometry, and so on.

Using nodes can make the system fault tolerant. Even if a node crashes, an entire robot
system can still work. Nodes also reduce the complexity and increase debug-ability
compared to monolithic codes because each node is handling only a single function.

All running nodes should have a name assigned to identify them from the rest of the
system. For example, /camera_node could be a name of a node that is broadcasting
camera images.

There is a rosbash tool to introspect ROS nodes. The rosnode command can be used
to get information about a ROS node. Here are the usages of rosnode:

•	 $ rosnode info [node_name]: This will print the information about
the node

•	 $ rosnode kill [node_name]: This will kill a running node
•	 $ rosnode list: This will list the running nodes
•	 $ rosnode machine [machine_name]: This will list the nodes running

on a particular machine or a list of machines
•	 $ rosnode ping: This will check the connectivity of a node
•	 $ rosnode cleanup: This will purge the registration of unreachable nodes

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[16]

We will see example nodes using the roscpp client and will discuss the working of
ROS nodes that use functionalities such ROS Topics, Service, Messages, and actionlib.

ROS messages
ROS nodes communicate with each other by publishing messages to a topic. As we
discussed earlier, messages are a simple data structure containing field types. The
ROS message supports standard primitive datatypes and arrays of primitive types.

Nodes can also exchange information using service calls. Services are also messages,
the service message definitions are defined inside the srv file.

We can access the message definition using the following method. For example,
to access std_msgs/msg/String.msg, we can use std_msgs/String. If we are
using the roscpp client, we have to include std_msgs/String.h for the string
message definition.

In addition to message data type, ROS uses an MD5 checksum comparison
to confirm whether the publisher and subscriber exchange the same message
data types.

ROS has inbuilt tools called rosmsg to get information about ROS messages.
Here are some parameters used along with rosmsg:

•	 $ rosmsg show [message]: This shows the message description
•	 $ rosmsg list: This lists all messages
•	 $ rosmsg md5 [message]: This displays md5sum of a message
•	 $ rosmsg package [package_name]: This lists messages in a package
•	 $ rosmsg packages [package_1] [package_2]: This lists packages

that contain messages

ROS topics
ROS topics are named buses in which ROS nodes exchange messages. Topics can
anonymously publish and subscribe, which means that the production of messages is
decoupled from the consumption. The ROS nodes are not interested to know which
node is publishing the topic or subscribing topics, it only looks for the topic name
and whether the message types of publisher and subscriber are matching.

The communication using topics are unidirectional, if we want to implement
request/response such as communication, we have to switch to ROS services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

The ROS nodes communicate with topics using TCP/IP-based transport known as
TCPROS. This method is the default transport method used in ROS. Another type
of communication is UDPROS, which has low-latency, loose transport, and is only
suited for teleoperation.

The ROS topic tool can be used to get information about ROS topics. Here is the
syntax of this command:

•	 $ rostopic bw /topic: This command will display the bandwidth used by
the given topic

•	 $ rostopic echo /topic: This command will print the content of the
given topic

•	 $ rostopic find /message_type: This command will find topics using the
given message type

•	 $ rostopic hz /topic: This command will display the publishing rate of
the given topic

•	 $ rostopic info /topic: This command will print information about an
active topic

•	 $ rostopic list: This command will list all active topics in the ROS system
•	 $ rostopic pub /topic message_type args: This command can be used

to publish a value to a topic with a message type
•	 $ rostopic type /topic: This will display the message type of the

given topic

ROS services
When we need a request/response kind of communication in ROS, we have to
use the ROS services. ROS topics can't do this kind of communication because it is
unidirectional. ROS services are mainly used in a distributed system.

The ROS services is defined using a pair of messages. We have to define a request
datatype and a response datatype in a srv file. The srv files are kept in a srv folder
inside a package.

In ROS services, one node acts as a ROS server in which the service client can request
the service from the server. If the server completes the service routine, it will send
the results to the service client.

The ROS service definition can be accessed by the following method, for example,
if my_package/srv/Image.srv can be accessed by my_package/Image.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[18]

In ROS services also, there is an MD5 checksum that checks in the nodes. If the sum
is equal, then only the server responds to the client.

There are two ROS tools to get information about the ROS service. The first tool is
rossrv, which is similar to rosmsg, and is used to get information about service
types. The next command is rosservice, which is used to list and query about the
running ROS services.

The following explain how to use the rosservice tool to get information about the
running services:

•	 $ rosservice call /service args: This tool will call the service using the
given arguments

•	 $ rosservice find service_type: This command will find services in the
given service type

•	 $ rosservice info /services: This will print information about the
given service

•	 $ rosservice list: This command will list the active services running on
the system

•	 $ rosservice type /service: This command will print the service type of
a given service

•	 $ rosservice uri /service: This tool will print the service ROSRPC URI

ROS bags
A bag file in ROS is for storing ROS message data from topics and services. The .bag
extension is used to represent a bag file.

Bag files are created using the rosbag command, which will subscribe one or more
topics and store the message's data in a file as it's received. This file can play the
same topics as they are recorded from or it can remap the existing topics too.

The main application of rosbag is data logging. The robot data can be logged and
can visualize and process offline.

The rosbag command is used to work with rosbag files. Here are the commands to
record and playback a bag file:

•	 $ rosbag record [topic_1] [topic_2] -o [bag_name]: This command
will record the given topics into a bag file that is given in the command. We
can also record all topics using the -a argument.

•	 $ rosbag play [bag_name]: This will playback the existing bag file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Here are more details about this command:

http://wiki.ros.org/rosbag/Commandline

There is a GUI tool to handle record and playback of bag files called rqt_bag.
Go to the following link to know more about rqt_bag:

http://wiki.ros.org/rqt_bag

Understanding ROS Master
ROS Master is much like a DNS server. When any node starts in the ROS system,
it will start looking for ROS Master and register the name of the node in it. So ROS
Master has the details of all nodes currently running on the ROS system. When any
details of the nodes change, it will generate a call-back and update with the latest
details. These node details are useful for connecting with each node.

When a node starts publishing a topic, the node will give the details of the topic
such as name and data type to ROS Master. ROS Master will check whether any
other nodes are subscribed to the same topic. If any nodes are subscribed to the same
topic, ROS Master will share the node details of the publisher to the subscriber node.
After getting the node details, these two nodes will interconnect using the TCPROS
protocol, which is based on TCP/IP sockets. After connecting to the two nodes, ROS
Master has no role in controlling them. We might be able to stop either the publisher
node or the subscriber node according to our wish. If we stop any nodes, it will check
with ROS Master once again. This same method is for the ROS services.

The nodes are written using the ROS client libraries such as roscpp and rospy.
These clients interact with ROS Master using XMLRPC (XML Remote Procedure
Call) based APIs, which act as the backend of the ROS system APIs.

The ROS_MASTER_URI environment variable contains the IP and port of ROS Master.
Using this variable, ROS nodes can locate ROS Master. If this variable is wrong,
the communication between nodes will not take place. When we use ROS in a
single system, we can use the IP of localhost or the name localhost itself. But in a
distributed network, in which computation is on different physical computers, we
should define ROS_MASTER_URI properly, only then, the remote node could find each
other and communicate with each other. We need only one Master, in a distributed
system, and it should run on a computer in which all other computers can ping it
properly to ensure that remote ROS nodes can access the Master.

www.it-ebooks.info

http://wiki.ros.org/rosbag/Commandline
http://wiki.ros.org/rqt_bag
http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[20]

The following diagram shows an illustration of how ROS Master interacts with a
publishing and subscribing node, the publisher node publishing a string type topic
with a "Hello World" message and the subscriber node subscribes to this topic.

Publish

Hello World
Publisher

Hello World
Publisher

Hello World
Publisher

Hello World
Subscriber

Hello World
Subscriber

Hello World
Subscriber

(a)

(c)

(b)

Subscribe

"Hello World"

Master

Master Master

Figure 8: Communication between ROS Master and Hello World publisher and subscriber

When the publisher node starts publishing the "Hello World" message in a
particular topic, ROS Master gets the details of the topic and details of the node.
It will search whether any node is subscribing the same topic. If there are no nodes
subscribing the same topic at that time, both nodes remain unconnected. If the
publisher and subscriber nodes run at the same time, ROS Master exchanges the
details of the publisher to the subscriber and they will connect and can exchange
data through ROS messages.

Using the ROS parameter
While programming a robot, we might have to define robot parameters such as
robot controller gain such as P, I, and D. When the number of parameters increases,
we might need to store it as files. In some situation, these parameters have to
share between two or more programs too. In this case, ROS provides a parameter
server, which is a shared server in which all ROS nodes can access parameters from
this server. A node can read, write, modify and delete parameter values from the
parameter server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

We can store these parameters in a file and load them into the server. The server can
store a wide variety of data types and can even store dictionaries. The programmer
can also set the scope of the parameter, that is, whether it can be accessed by only
this node or all the nodes.

The parameter server supports the following XMLRPC datatypes, which include:

•	 32-bit integers
•	 Booleans
•	 strings
•	 doubles
•	 iso8601 dates
•	 lists
•	 base64-encoded binary data

We can also store dictionaries on the parameter server. If the number of parameters
is high, we can use a YAML file to save it. Here is an example of the YAML file
parameter definitions:

/camera/name : 'nikon' #string type
/camera/fps : 30 #integer
/camera/exposure : 1.2 #float
/camera/active : true #boolean

The rosparam tool used to get and set the ROS parameter from the command line.
The following are the commands to work with ROS parameters:

•	 $ rosparam set [parameter_name] [value]: This command will set a
value in the given parameter

•	 $ rosparam get [parameter_name]: This command will retrieve a value
from the given parameter

•	 $ rosparam load [YAML file]: The ROS parameters can be saved into
a YAML file and it can load to the parameter server using this command

•	 $ rosparam dump [YAML file]: This command will dump the existing ROS
parameters to a YAML file

•	 $ rosparam delete [parameter_name]: This command will delete the
given parameter

•	 $ rosparam list: This command will list existing parameter names

The parameters can be changed dynamically during the execution of the node that
uses these parameters, using the dyamic_reconfigure package (http://wiki.ros.
org/dynamic_reconfigure).

www.it-ebooks.info

http://wiki.ros.org/dynamic_reconfigure
http://wiki.ros.org/dynamic_reconfigure
http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[22]

Understanding ROS community level
These are ROS resources that enable a new community for ROS to exchange software
and knowledge. The various resources in these communities are as follows:

•	 Distributions: Similar to the Linux distribution, ROS distributions are
a collection of versioned meta packages that we can install. The ROS
distribution enables easier installation and collection of the ROS software.
The ROS distributions maintain consistent versions across a set of software.

•	 Repositories: ROS relies on a federated network of code repositories,
where different institutions can develop and release their own robot
software components.

•	 The ROS Wiki: The ROS community Wiki is the main forum for documenting
information about ROS. Anyone can sign up for an account and contribute
their own documentation, provide corrections or updates, write tutorials,
and more.

•	 Bug ticket system: If we find a bug in the existing software or need to add
a new feature, we can use this resource.

•	 Mailing lists: The ROS-users mailing list is the primary communication
channel about new updates to ROS, as well as a forum to ask questions about
the ROS software.

•	 ROS Answers: This website resource helps to ask questions related to
ROS. If we post our doubts on this site, other ROS users can see this and
give solutions.

•	 Blog: The ROS blog updates with news, photos, and videos related to the
ROS community (http://www.ros.org/news).

What are the prerequisites to start with ROS?
Before getting started with ROS and trying the code in this book, the following
prerequisites should be met:

•	 Ubuntu 14.04.2 LTS / Ubuntu 15.04: We have to use Ubuntu as the operating
system for installing ROS. We prefer to stick on to the L.T.S version of
Ubuntu, that is, Ubuntu 14.04/14.04.3, or if you want to explore new ROS
distribution you can use Ubuntu 15.04.

•	 ROS Jade/Indigo desktop full installation: Install the full desktop
installation of ROS. The version we prefer is ROS Indigo, the latest version,
Jade, is also supported. The following link gives you the installation
instruction of the latest ROS distribution: http://wiki.ros.org/indigo/
Installation/Ubuntu.

www.it-ebooks.info

http://www.ros.org/news
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/indigo/Installation/Ubuntu
http://www.it-ebooks.info/

Chapter 1

[23]

Running ROS Master and ROS parameter
server
Before running any ROS nodes, we should start ROS Master and the ROS parameter
server. We can start ROS Master and the ROS parameter server using a single
command called roscore, which will start the following programs:

•	 ROS Master
•	 ROS parameter server
•	 rosout logging nodes

The rosout node will collect log messages from other ROS nodes and store them
in a log file, and will also rebroadcast the collected log message to another topic.
The topic /rosout is published by ROS nodes working using ROS client libraries
such as roscpp and rospy and this topic is subscribed by the rosout node which
rebroadcasts the message in another topic called /rosout_agg. This topic has an
aggregate stream of log messages. The command roscore is a prerequisite before
running any ROS node. The following screenshot shows the messages printing when
we run the roscore command in a terminal.

The following is a command to run roscore on a Linux terminal:

$ roscore

Figure 9 : Terminal messages while running the roscore command

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[24]

The following are explanations of each section when executing roscore on
the terminal:

•	 In the first section, we can see a log file is creating inside the ~/.ros/log
folder for collecting logs from ROS nodes. This file can be used for debugging
purposes.

•	 In the second section, the command starts a ROS launch file called roscore.
xml. When a launch file starts, it automatically starts the rosmaster and ROS
parameter server. The roslaunch command is a Python script, which can
start rosmaster and the ROS parameter server whenever it tries to execute
a launch file. This section shows the address of the ROS parameter server
within the port.

•	 In the third section, we can see the parameters such as rosdistro and
rosversion displayed on the terminal. These parameters are displayed
when it executes roscore.xml. We can see more on roscore.xml and its
details in the next section.

•	 In the fourth section, we can see the rosmaster node is started using
ROS_MASTER_URI, which we defined earlier as an environment variable.

•	 In the fifth section, we can see the rosout node is started, which will start
subscribing the /rosout topic and rebroadcasting into /rosout_agg.

The following is the content of roscore.xml:

<launch>
 <group ns="/">
 <param name="rosversion" command="rosversion roslaunch" />
 <param name="rosdistro" command="rosversion -d" />
 <node pkg="rosout" type="rosout" name="rosout" respawn="true"/>
 </group>
</launch>

When the roscore command is executed, initially, the command checks the command
line argument for a new port number for the rosmaster. If it gets the port number, it
will start listening to the new port number, otherwise it will use the default port. This
port number and the roscore.xml launch file will pass to the roslaunch system. The
roslaunch system is implemented in a Python module, it will parse the port number
and launch the roscore.xml file.

In the roscore.xml file, we can see the ROS parameters and nodes are encapsulated
in a group XML tag with a "/" namespace. The group XML tag indicates that all the
nodes inside this tag have the same settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

The two parameters called rosversion and rosdistro store the output of the
rosversion roslaunch and rosversion -d commands using the command tag,
which is a part of the ROS param tag. The command tag will execute the command
mentioned on it and store the output of the command in these two parameters.

The rosmaster and parameter server are executed inside roslaunch modules by
using the ROS_MASTER_URI address. This is happening inside the roslaunch Python
module. The ROS_MASTER_URI is a combination of the IP address and port in which
rosmaster is going to listen. The port number can be changed according to the given
port number in the roscore command.

Checking the roscore command output
Let's check the ROS topics and ROS parameters created after running roscore.
The following command will list the active topics on the terminal:

$ rostopic list

The list of topics are as follows, as per our discussion on the rosout node subscribe
/rosout topic, which have all log messages from the ROS nodes and /rosout_agg
rebroadcast the log messages:

/rosout

/rosout_agg

The following command lists out the parameters available when running roscore.
The following is the command to list the active ROS parameter:

$ rosparam list

The parameters are mentioned here; they have the ROS distribution name, version,
address of roslaunch server and run_id, where run_id is a unique ID associated
with a particular run of roscore:

/rosdistro

/roslaunch/uris/host_robot_virtualbox__51189

/rosversion

/run_id

The list of the ROS service generated during the running roscore can be checked
using the following command:

$ rosservice list

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[26]

The list of services running is as follows:

/rosout/get_loggers

/rosout/set_logger_level

These ROS services are generated for each ROS node for setting the logging levels.

After understanding the basics of ROS Master, Parameter server, and roscore
we can go to the procedure to build a ROS package. Along with working with the
ROS package, we can refresh the concepts of ROS nodes, topics, messages, services,
and actionlib.

Creating a ROS package
The ROS packages are the basic unit of the ROS system. We can create the ROS
package, build it and release it to the public. The current distribution of ROS we are
using is Jade/Indigo. We are using the catkin build system to build ROS packages.
A build system is responsible for generating 'targets'(executable/libraries) from
a raw source code that can be used by an end user. In older distributions, such as
Electric and Fuerte, rosbuild was the build system. Because of the various flaws of
rosbuild, catkin came into existence, which is basically based on CMake (Cross
Platform Make). This has lot of advantages such as porting the package into other
operating system, such as Windows. If an OS supports CMake and Python, catkin
based packages can be easily ported into it.

The first requirement in creating ROS packages is to create a ROS catkin workspace.
Here is the procedure to build a catkin workspace.

Build a workspace folder in the home directory and create a src folder inside the
workspace folder:

$ mkdir ~/catkin_ws/src

Switch to the source folder. The packages are created inside this package:

$cd ~/catkin_ws/src

Initialize a new catkin workspace:

$ catkin_init_workspace

We can build the workspace even if there are no packages. We can use the following
command to switch to the workspace folder:

$ cd ~/catkin_ws

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

The catkin_make command will build the following workspace:
$ catkin_make

After building the empty workspace, we should set the environment of the current
workspace to be visible by the ROS system. This process is called overlaying a
workspace. We should add the package environment using the following command:

$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

This command will source a bash script called setup.bash inside the devel
workspace folder. To set the environment in all bash sessions, we need to add a
source command in the .bashrc file, which will source this script whenever a bash
session starts.

This is the link of the procedure http://wiki.ros.org/catkin/Tutorials/
create_a_workspace.

1.	 After setting the catkin workspace, we can create our own package that has
sample nodes to demonstrate the working of ROS topics, messages, services,
and actionlib.

2.	 The catkin_create_pkg command is used to create a ROS package.
This command is used to create our package in which we are going to
create demos of various ROS concepts.

3.	 Switch to the catkin workspace src folder and create the package using
the following command:
Syntax of catkin_create_pkg : catkin_create_pkg [package_name]
[dependency1] [dependency2]

4.	 Here is the command to create the sample ROS package:
$ catkin_create_pkg mastering_ros_demo_pkg roscpp std_msgs
actionlib actionlib_msgs

The dependencies in the packages are as follows:

°° roscpp: This is the C++ implementation of ROS. It is a ROS client
library which provides APIs to C++ developers to make ROS nodes
with ROS topics, services, parameters, and so on. We are including
this dependency because we are going to write a ROS C++ node. Any
ROS package which uses the C++ node must add this dependency.

°° std_msgs: This package contains basic ROS primitive data types such
as integer, float, string, array, and so on. We can directly use these
data types in our nodes without defining a new ROS message.

www.it-ebooks.info

http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[28]

°° actionlib: The actionlib meta-package provides interfaces to create
preemptable tasks in ROS nodes. We are creating actionlib based
nodes in this package. So we should include this package to build the
ROS nodes.

°° actionlib_msgs: This package contains standard message definitions
needed to interact with the action server and action client.

We will get the following message if the package is successfully created:

Figure 10 : Terminal messages while creating a ROS package

5.	 After creating this package, build the package without adding any nodes
using the catkin_make command. This command must be executed from the
catkin workspace path. The following command shows you how to build
our empty ROS package:
~/catkin_ws$ catkin_make

6.	 After a successful build, we can start adding nodes to the src folder
of this package.

The build folder in the CMake build files mainly contains executables of the nodes
that are placed inside the catkin workspace src folder. The devel folder contains
bash script, header files, and executables in different folders generated during the
build process. We can see how to make ROS nodes and build using catkin_make.

Working with ROS topics
Topics are the basic way of communicating between two nodes. In this section, we
can see how the topics works. We are going to create two ROS nodes for publishing a
topic and subscribing the same. Navigate to the chapter_1_codes/mastering_ros_
demo_package/src folder for the codes. demo_topic_publisher.cpp and demo_
topic_subscriber.cpp are the two sets of code that we are going to discuss.

Creating ROS nodes
The first node we are going to discuss is demo_topic_publisher.cpp. This node
will publish an integer value on a topic called /numbers. Copy the current code into
a new package or use this existing file from the code repository.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

Here is the complete code:

#include "ros/ros.h"
#include "std_msgs/Int32.h"
#include <iostream>
int main(int argc, char **argv)
{
 ros::init(argc, argv,"demo_topic_publisher");
 ros::NodeHandle node_obj;
 ros::Publisher number_publisher =
 node_obj.advertise<std_msgs::Int32>("/numbers",10);
 ros::Rate loop_rate(10);
 int number_count = 0;
 while (ros::ok())
 {
 std_msgs::Int32 msg;
 msg.data = number_count;
 ROS_INFO("%d",msg.data);
 number_publisher.publish(msg);
 ros::spinOnce();
 loop_rate.sleep();
 ++number_count;
 }
 return 0;
}

Here is the detailed explanation of the preceding code:

#include "ros/ros.h"
#include "std_msgs/Int32.h"
#include <iostream>

The ros/ros.h is the main header of ROS. If we want to use the roscpp client APIs
in our code, we should include this header. The std_msgs/Int32.h is the standard
message definition of integer datatype.

Here, we are sending an integer value through a topic. So we should need a message
type for handling the integer data. std_msgs contains standard message definition of
primitive datatypes. std_msgs/Int32.h contains integer message definition:

 ros::init(argc, argv,"demo_topic_publisher");

This code will initialize a ROS node with a name. It should be noted that the ROS
node should be unique. This line is mandatory for all ROS C++ nodes:

 ros::NodeHandle node_obj;

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[30]

This will create a Nodehandle object, which is used to communicate with the
ROS system:

 ros::Publisher number_publisher =
node_obj.advertise<std_msgs::Int32>("/numbers",10);

This will create a topic publisher and name the topic /numbers with a message type
std_msgs::Int32. The second argument is the buffer size. It indicates that how
many messages need to be put in a buffer before sending. It should be set to high if
the data sending rate is high:

 ros::Rate loop_rate(10);

This is used to set the frequency of sending data:

 while (ros::ok())
 {

This is an infinite while loop, and it quits when we press Ctrl+C. The ros::ok()
function returns zero when there is an interrupt; this can terminate this while loop:

 std_msgs::Int32 msg;
 msg.data = number_count;

The first line creates an integer ROS message and the second line assigns an integer
value to the message. Here, data is the field name of the msg object:

 ROS_INFO("%d",msg.data);

This will print the message data. This line is used to log the ROS information:

 number_publisher.publish(msg);

This will publish the message to the topics /numbers:

 ros::spinOnce();

This command will read and update all ROS topics. The node will not publish
without a spin() or spinOnce() function:

 loop_rate.sleep();

This line will provide the necessary delay to achieve a frequency of 10Hz.

After discussing the publisher node, we can discuss the subscriber node, which is
demo_topic_subscriber.cpp. Copy the code to a new file or use the existing file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

Here is the definition of the subscriber node:

#include "ros/ros.h"
#include "std_msgs/Int32.h"
#include <iostream>
void number_callback(const std_msgs::Int32::ConstPtr& msg)
{
 ROS_INFO("Received [%d]",msg->data);
}
int main(int argc, char **argv)
{

 ros::init(argc, argv,"demo_topic_subscriber");
 ros::NodeHandle node_obj;
 ros::Subscriber number_subscriber = node_obj.subscribe("/
numbers",10,number_callback);
 ros::spin();
 return 0;
}

Here is the code explanation:

#include "ros/ros.h"
#include "std_msgs/Int32.h"
#include <iostream>

This is the header needed for the subscribers:

void number_callback(const std_msgs::Int32::ConstPtr& msg)
{
 ROS_INFO("Recieved [%d]",msg->data);
}

This is a callback function that will execute whenever a data comes to the /numbers
topic. Whenever a data reaches this topic, the function will call and extract the value
and print it on the console:

 ros::Subscriber number_subscriber =
node_obj.subscribe("/numbers",10,number_callback);

This is the subscriber and here, we are giving the topic name needed to subscribe,
buffer size, and the callback function. We are subscribing /numbers topic and we
have already seen the callback function in the preceding section:

 ros::spin();

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[32]

This is an infinite loop in which the node will wait in this step. This code will fasten
the callbacks whenever a data reaches the topic. The node will quit only when we
press the Ctrl+C key.

Building the nodes
We have to edit the CMakeLists.txt file in the package to compile and build the
source code. Navigate to chapter_1_codes/mastering_ros_demo_package/
CMakeLists.txt to view the existing CMakeLists.txt file. The following code
snippet in this file is responsible for building these two nodes:

include_directories(
 include
 ${catkin_INCLUDE_DIRS}
 ${Boost_INCLUDE_DIRS}
)
#This will create executables of the nodes
add_executable(demo_topic_publisher src/demo_topic_publisher.cpp)
add_executable(demo_topic_subscriber src/demo_topic_subscriber.cpp)

#This will generate message header file before building the target
add_dependencies(demo_topic_publisher mastering_ros_demo_pkg_generate_
messages_cpp)
add_dependencies(demo_topic_subscriber mastering_ros_demo_pkg_
generate_messages_cpp)

#This will link executables to the appropriate libraries
target_link_libraries(demo_topic_publisher ${catkin_LIBRARIES})
target_link_libraries(demo_topic_subscriber ${catkin_LIBRARIES})

We can add the preceding snippet to create a new a CMakeLists.txt file for
compiling the two codes.

The catkin_make command is used to build the package.

We can first switch to workspace:

$ cd ~/catkin_ws

Build mastering_ros_demo_package as follows:

$ catkin_make mastering_ros_demo_package

We can either use the preceding command to build a specific package or just
caktin_make to build the entire workspace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

This will create executables in ~/catkin_ws/devel/lib/<package name>.

If the building is done, we can execute the nodes.

First start roscore:

$ roscore

Now run both commands in two shells.

In the running publisher:

$ rosrun mastering_ros_demo_package demo_topic_publisher

In the running subscriber:

$ rosrun mastering_ros_demo_package demo_topic_subscriber

We can see the output as shown here:

Figure 11 : Running topic publisher and subscriber

The following diagram shows how the nodes communicate with each other. We can
see the demo_topic_publisher node publish the /numbers topic and subscribe by
then demo_topic_subscriber node.

/demo_topic_publisher
/numbers

/demo_topic_subscriber

Figure 12 : Graph of the communication between publisher and subscriber nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[34]

We can use the rosnode and rostopic tools to debug and understand the working
of two nodes:

•	 $ rosnode list: This will list the active nodes
•	 $ rosnode info demo_topic_publisher: This will get the info of the

publisher node
•	 $ rostopic echo /numbers: This will display the value sending through

the /numbers topic
•	 $ rostopic type /numbers: This will print the message type of the

/numbers topic

Adding custom msg and srv files
In this section, we can see how to create custom messages and services definitions
in the current package. The message definitions are stored in a .msg file and service
definition are stored in a srv file. These definitions inform ROS about the type of
data and name of data to be transmitted from a ROS node. When a custom message
is added, ROS will convert the definitions into equivalent C++ codes, which we can
include in our nodes.

We can start with message definitions.

Message definitions have to be written in the .msg file and have to be kept in the msg
folder, which is inside the package.

We are going to create a message file called demo_msg.msg with the following
definition:

string greeting
int32 number

Until now, we have worked only with standard message definitions. Now, we have
created our own definitions and can see how to use them in our code.

The first step is to edit the package.xml file of the current package and uncomment
the lines <build_depend>message_generation</build_depend> and <run_
depend>message_runtime</run_depend>.

Edit the current CMakeLists.txt and add the message_generation line as follows:

find_package(catkin REQUIRED COMPONENTS
 roscpp
 rospy
 std_msgs
 actionlib

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

 actionlib_msgs
 message_generation
)

Uncomment the following line and add the custom message file:

 add_message_files(
 FILES
 demo_msg.msg
)
Generate added messages and services with any dependencies listed
here
 generate_messages(
 DEPENDENCIES
 std_msgs
 actionlib_msgs
)

After these steps, we can compile and build the package:

$ cd ~/catkin_ws/

$ catkin_make

To check whether the message is built properly, we can use the rosmsg command:

$ rosmsg show mastering_ros_demo_pkg/demo_msg

If the content shown by the command and the definition are the same, the procedure
is correct.

If we want to test the custom message, we can build a publisher and subscriber
using the custom message type named demo_msg_publisher.cpp and demo_msg_
subscriber.cpp. Navigate to the chapter_1_codes/mastering_ros_demo_pkg/
src folder for these codes.

We can test the message by adding the following lines of code in CMakeLists.txt:

add_executable(demo_msg_publisher src/demo_msg_publisher.cpp)
add_executable(demo_msg_subscriber src/demo_msg_subscriber.cpp)

add_dependencies(demo_msg_publisher mastering_ros_demo_pkg_generate_
messages_cpp)
add_dependencies(demo_msg_subscriber mastering_ros_demo_pkg_generate_
messages_cpp)

target_link_libraries(demo_msg_publisher ${catkin_LIBRARIES})
target_link_libraries(demo_msg_subscriber ${catkin_LIBRARIES})

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[36]

Build the package using catkin_make and test the node using the following
commands.

•	 Run roscore:
$ roscore

•	 Start the custom message publisher node:
$ rosrun mastering_ros_demo_pkg demo_msg_publisher

•	 Start the custom message subscriber node:
$ rosrun mastering_ros_demo_pkg demo_msg_subscriber

The publisher node publishes a string along with an integer, and the subscriber
node subscribes the topic and prints the values. The output and graph are shown
as follows:

Figure 13 : Running publisher and subscriber using custom message definitions.

The topic in which the nodes are communicating is called /demo_msg_topic.
Here is the graph view of two nodes:

/demo_msg_publisher
/demo_msg_topic

/demo_msg_subscriber

Figure 14 : Graph of the communication between message publisher and subscriber

Next, we can add srv files to the package. Create a new folder called srv in the
current package folder and add a srv file called demo_srv.srv. The definition
of this file is as follows:

string in

string out

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

Here, both the Request and Response are strings.

In the next step, we need to uncomment the following lines in package.xml as we
did for the ROS messages:

<build_depend>message_generation</build_depend>
<run_depend>message_runtime</run_depend>

Take CMakeLists.txt and add message_runtime in catkin_package():

catkin_package(
 CATKIN_DEPENDS roscpp rospy std_msgs actionlib actionlib_msgs
message_runtime
)

We need to follow the same procedure in generating services as we did for the
ROS message. Apart from that, we need additional sections to be uncommented
as shown here:

Generate services in the 'srv' folder
 add_service_files(
 FILES
 demo_srv.srv
)

After making these changes, we can build the package using catkin_make and using
the following command we can verify the procedure:

$ rossrv show mastering_ros_demo_pkg/demo_srv

If we see the same content as we defined in the file, we can confirm it's working.

Working with ROS services
In this section, we are going to create ROS nodes, which can use the services definition
that we defined already. The service nodes we are going to create can send a string
message as a request to the server and the server node will send another message
as a response.

Navigate to chapter_1_codes/mastering_ros_demo_pkg/src and find nodes
with the names demo_service_server.cpp and demo_service_client.cpp.

The demo_service_server.cpp is the server and its definition is as follows:

#include "ros/ros.h"
#include "mastering_ros_demo_pkg/demo_srv.h"
#include <iostream>

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[38]

#include <sstream>
using namespace std;

bool demo_service_callback(mastering_ros_demo_pkg::demo_srv::Request
&req,
 mastering_ros_demo_pkg::demo_srv::Response &res)
{
 std::stringstream ss;
 ss << "Received Here";
 res.out = ss.str();
 ROS_INFO("From Client [%s], Server says [%s]",req.in.c_str(),res.
out.c_str());
 return true;
}

int main(int argc, char **argv)
{
 ros::init(argc, argv, "demo_service_server");
 ros::NodeHandle n;
 ros::ServiceServer service = n.advertiseService("demo_service",
demo_service_callback);
 ROS_INFO("Ready to receive from client.");
 ros::spin();
 return 0;
}

Let's see the explanation of the code:

#include "ros/ros.h"
#include "mastering_ros_demo_pkg/demo_srv.h"
#include <iostream>
#include <sstream>

Here, we included ros/ros.h, which is a mandatory header for a ROS CPP node.
The mastering_ros_demo_pkg/demo_srv.h header is a generated header, which
contains our service definition and can use this in our code. The sstream.h is for
getting string streaming classes:

bool demo_service_callback(mastering_ros_demo_pkg::demo_srv::Request
&req,
 mastering_ros_demo_pkg::demo_srv::Response &res)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[39]

This is the server callback function executed when a request is received on the server.
The server can receive the request from clients having a message type of mastering_
ros_demo_pkg::demo_srv::Request and sends the response in the mastering_
ros_demo_pkg::demo_srv::Response type:

 std::stringstream ss;
 ss << "Received Here";
 res.out = ss.str();

In this code, the string data "Received Here" is passing to the service Response
instance. Here, out is the field name of the response that we have given in the
demo_srv.srv. This response will go to the service client node:

 ros::ServiceServer service = n.advertiseService("demo_service",
demo_service_callback);

This creates a service having a name as demo_service and a callback function
is executed when a request comes to this service. The callback function is
demo_service_callback, which we saw in the preceding section.

Next, we can see how the demo_service_client.cpp is working.

Here is the definition of this code:

#include "ros/ros.h"
#include <iostream>
#include "mastering_ros_demo_pkg/demo_srv.h"
#include <iostream>
#include <sstream>
using namespace std;

int main(int argc, char **argv)
{
 ros::init(argc, argv, "demo_service_client");
 ros::NodeHandle n;
 ros::Rate loop_rate(10);
 ros::ServiceClient client = n.serviceClient<mastering_ros_demo_
pkg::demo_srv>("demo_service");
 while (ros::ok())
 {
 mastering_ros_demo_pkg::demo_srv srv;
 std::stringstream ss;
 ss << "Sending from Here";
 srv.request.in = ss.str();
 if (client.call(srv))
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[40]

 ROS_INFO("From Client [%s], Server says [%s]",srv.request.in.c_
str(),srv.response.out.c_str());

 }
 else
 {
 ROS_ERROR("Failed to call service");
 return 1;
 }

 ros::spinOnce();
 loop_rate.sleep();

 }
 return 0;
}

Let's explain the code:

 ros::ServiceClient client =
n.serviceClient<mastering_ros_demo_pkg::demo_srv>("demo_service");

This line creates a service client that has message type mastering_ros_demo_
pkg::demo_srv and communicates to a ROS service named demo_service:

 mastering_ros_demo_pkg::demo_srv srv;

This line will create a new service object instance:

 std::stringstream ss;
 ss << "Sending from Here";
 srv.request.in = ss.str();

Fill the request instance with a string called "Sending from Here":

 if (client.call(srv))
 {

This will send the service call to the server. If it is sent successfully, it will print the
response and request, if it failed, it do nothing:

 ROS_INFO("From Client [%s], Server says [%s]",srv.request.in.c_
str(),srv.response.out.c_str());

If the response is received, then it will print the request and the response.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[41]

After discussing the two nodes, we can discuss how to build these two nodes. The
following code is added to CMakeLists.txt to compile and build the two nodes:

add_executable(demo_service_server src/demo_service_server.cpp)
add_executable(demo_service_client src/demo_service_client.cpp)

add_dependencies(demo_service_server mastering_ros_demo_pkg_generate_
messages_cpp)
add_dependencies(demo_service_client mastering_ros_demo_pkg_generate_
messages_cpp)

target_link_libraries(demo_service_server ${catkin_LIBRARIES})
target_link_libraries(demo_service_client ${catkin_LIBRARIES})

We can execute the following commands to build the code:

$ cd ~/catkin_ws

$ catkin_make

To start nodes, first execute roscore and use the following commands:
$ rosrun mastering_ros_demo_pkg demo_service_server

$ rosrun mastering_ros_demo_pkg demo_service_client

Figure 15 : Running ROS service client and server nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[42]

We can work with rosservice using the rosservice command:

•	 $ rosservice list: This will list the current ROS services
•	 $ rosservice type /demo_service: This will print the message type

of /demo_service
•	 $ rosservice info /demo_service: This will print the information

of /demo_service

Working with ROS actionlib
In ROS services, the user implements a request/reply interaction between two nodes,
but consider if the reply takes too much time or the server is not finished with the
given work, we have to wait until it completes.

There is another method in ROS in which we can preempt the running request
and start sending another one if the request is not finished on time as we expected.
Actionlib packages provide a standard way to implement these kinds of preemptive
tasks. Actionlib is highly used in robot arm navigation and mobile robot navigation.
We can see how to implement an action server and action client implementation.

Like ROS services, in actionlib, we have to specify the action specification. The action
specification is stored inside the action file having an extension of .action. This file
must be kept inside the action folder, which is inside the ROS package. The action
file has the following parts:

•	 Goal: The action client can send a goal that has to be executed by the action
server. This is similar to the request in the ROS service. For example, if a
robot arm joint wants to move from 45 degrees to 90 degrees, the goal here is
90 degrees.

•	 Feedback: When an action client sends a goal to the action server, it will start
executing a call-back function. Feedback is simply giving the progress of the
current operation inside the callback function. Using the feedback definition,
we can get the current progress. In the preceding case, the robot arm joint
has to move to 90 degrees; in this case, the feedback can be the intermediate
value between 45 and 90 degrees in which the arm is moving.

•	 Result: After completing the goal, the action server will send a final result of
completion, it can be the computational result or an acknowledgement. In the
preceding example, if the joint reaches 90 degrees it achieves the goal and the
result can be anything indicating it finished the goal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[43]

We can discuss a demo action server and action client here. The demo action client
will send a number as the goal. When an action server receives the goal, it will count
from 0 to the goal number with a step size of 1 and with a one second delay. If it
completes before the given time, it will send the result, otherwise, the task will be
preempted by the client. The feedback here is the progress of counting. The action
file of this task is as follows. The action file is named Demo_action.action:

#goal definition
int32 count

#result definition
int32 final_count

#feedback
int32 current_number

Here, the count value is the goal in which the server has to count from zero to this
number. final_count is the result, in which the final value after completion of a task
and current_number is the feedback value. It will specify how much the progress is.

Navigate to chapter_1_codes/mastering_ros_demo_pkg/src and you can
find the action server node as demo_action_server.cpp and action client node
as demo_action_client.cpp.

Creating the ROS action server
In this section, we will discuss demo_action_server.cpp. The action server receives
a goal value that is a number. When the server gets this goal value, it will start
counting from zero to this number. If the counting is complete, it will successfully
finish the action, if it is preempted before finishing, the action server will look for
another goal value.

This code is a bit lengthy, so we can discuss the important code snippet of this code.

Let's start from the header files:

#include <actionlib/server/simple_action_server.h>
#include "mastering_ros_demo_pkg/Demo_actionAction.h"

The first header is the standard action library to implement an action server node.
The second header is generated from the stored action files. It should include for
accessing our action definition:

class Demo_actionAction
{

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[44]

This class contains the action server definition:

actionlib::SimpleActionServer<mastering_ros_demo_pkg::Demo_
actionAction> as;

Create a simple action server instance with our custom action message type:

mastering_ros_demo_pkg::Demo_actionFeedback feedback;

Create a feedback instance for sending feedback during the operation:

mastering_ros_demo_pkg::Demo_actionResult result;

Create a result instance for sending the final result:

Demo_actionAction(std::string name) :
 as(nh_, name, boost::bind(&Demo_actionAction::executeCB, this,
_1), false),
 action_name(name)

This is an action constructor, and an action server is created here by taking an
argument such as Nodehandle, action_name, and executeCB, where executeCB is
the action callback where all the processing is done:

as.registerPreemptCallback(boost::bind(&Demo_actionAction::preemptCB,
this));

This line registers a callback when the action is preempted. The preemtCB is the
callback name executed when there is a preempt request from the action client:

 void executeCB(const mastering_ros_demo_pkg::Demo_actionGoalConstPtr
&goal)
 {
 if(!as.isActive() || as.isPreemptRequested()) return;

This is the callback definition which is executed when the action server receives a
goal value. It will execute callback functions only after checking whether the action
server is currently active or it is preempted already:

 for(progress = 0 ; progress < goal->count; progress++){
 //Check for ros
 if(!ros::ok()){

This loop will execute until the goal value is reached. It will continuously send the
current progress as feedback:

 if(!as.isActive() || as.isPreemptRequested()){
 return;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[45]

Inside this loop, it will check whether the action server is active or it is preempted. If
it occurs, the function will return:

 if(goal->count == progress){
 result.final_count = progress;
 as.setSucceeded(result);
 }

If the current value reaches the goal value, then it publishes the final result:

 Demo_actionAction demo_action_obj(ros::this_node::getName());

In main(),we create an instance of Demo_actionAction, which will start the
action server.

Creating the ROS action client
In this section, we will discuss the working of an action client. demo_action_
client.cpp is the action client node that will send the goal value consisting of a
number which is the goal. The client is getting the goal value from the command line
arguments. The first command line argument of the client is the goal value and the
second is the time of completion for this task.

The goal value will be sent to the server and the client will wait until the given time,
in seconds. After waiting, the client will check whether it completed or not; if it is not
complete, the client will preempt the action.

The client code is a bit lengthy, so we will discuss the important sections of the code:

#include <actionlib/client/simple_action_client.h>
#include <actionlib/client/terminal_state.h>
#include "mastering_ros_demo_pkg/Demo_actionAction.h"

In action client, we need to include actionlib/client/simple_action_client.h
to get the action client APIs which are used to implement action clients:

actionlib::SimpleActionClient<mastering_ros_demo_pkg::Demo_
actionAction> ac("demo_action", true);

This will create an action client instance:

 ac.waitForServer();

This line will wait for an infinite time if there is no action server running on the
system. It will exit only when there is an action server running on the system:

 mastering_ros_demo_pkg::Demo_actionGoal goal;
 goal.count = atoi(argv[1]);
 ac.sendGoal(goal);

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[46]

Create an instance of a goal and send the goal value from the first command
line argument:

 bool finished_before_timeout =
ac.waitForResult(ros::Duration(atoi(argv[2])));

This line will wait for the result from the server until the given seconds:

 ac.cancelGoal();

If it is not finished, it will preempt the action.

Building the ROS action server and client
After creating these two files in the src folder, we have to edit the package.xml
and CMakeLists.txt to build the nodes.

The package.xml file should contain message generation and runtime packages
as we did for ROS service and messages.

We have to include the Boost library in CMakeLists.txt to build these nodes.
Also, we have to add the action files that we wrote for this example:

find_package(catkin REQUIRED COMPONENTS
 roscpp
 rospy
 std_msgs
 actionlib
 actionlib_msgs
 message_generation
)

We should pass actionlib, actionlib_msgs, and message_generation in
find_package():

System dependencies are found with CMake's conventions
find_package(Boost REQUIRED COMPONENTS system)

We should add Boost as a system dependency:

Generate actions in the 'action' folder
 add_action_files(
 FILES
 Demo_action.action
)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[47]

We need to add our action file in add_action_files():

Generate added messages and services with any dependencies listed
here
 generate_messages(
 DEPENDENCIES
 std_msgs
 actionlib_msgs
)

We have to add actionlib_msgs in generate_messages():

catkin_package(
 CATKIN_DEPENDS roscpp rospy std_msgs actionlib actionlib_msgs
message_runtime
)

include_directories(
 include
 ${catkin_INCLUDE_DIRS}
 ${Boost_INCLUDE_DIRS}
)

We have to add Boost to include the directory:

##Building action server and action client

add_executable(demo_action_server src/demo_action_server.cpp)
add_executable(demo_action_client src/demo_action_client.cpp)

add_dependencies(demo_action_server mastering_ros_demo_pkg_generate_
messages_cpp)
add_dependencies(demo_action_client mastering_ros_demo_pkg_generate_
messages_cpp)

target_link_libraries(demo_action_server ${catkin_LIBRARIES})
target_link_libraries(demo_action_client ${catkin_LIBRARIES})

After catkin_make, we can run these nodes using the following commands:

•	 Run roscore:
$ roscore

•	 Launch the action server node:
$rosrun mastering_ros_demo_pkg demo_action_server

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[48]

•	 Launch the action client node:
$rosrun mastering_ros_demo_pkg demo_action_client 50 4

The output of these process is shown as follows:

Figure 16 : Running ROS actionlib server and client

Creating launch files
The launch files in ROS are a very useful feature for launching more than one node.
In the preceding examples, we have seen a maximum of two ROS nodes, but imagine
a scenario in which we have to launch 10 or 20Ł nodes for a robot. It will be difficult
if we run each node in a terminal one by one. Instead of that, we can write all nodes
inside a XML based file called launch files and using a command called roslaunch,
we can parse this file and launch the nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[49]

The roslaunch command will automatically start ROS Master and the parameter
server. So in essence, there is no need to start the roscore command and individual
node; if we launch the file, all operations will be done in a single command.

Let's start creating launch files. Switch to the package folder and create a new launch
file called demo_topic.launch to launch two ROS nodes that are publishing and
subscribing an integer value. We keep the launch files in a launch folder, which is
inside the package:

$ roscd mastering_ros_demo_pkg

$ mkdir launch

$ cd launch

$ gedit demo_topic.launch

Paste the following content into the file:

<launch>
 <node name="publisher_node" pkg="mastering_ros_demo_pkg" type="demo_
topic_publisher" output="screen"/>

 <node name="subscriber_node" pkg="mastering_ros_demo_pkg"
type="demo_topic_subscriber" output="screen"/>
</launch>

Let's discuss what is in the code. The <launch></launch> tags are the root element
in a launch file. All definitions will be inside these tags.

The <node> tag specifies the desired node to launch:

 <node name="publisher_node" pkg="mastering_ros_demo_pkg"
type="demo_topic_publisher" output="screen"/>

The name tag inside <node> indicates the name of the node, pkg is the name of the
package, and type is the name of executable we are going to launch.

After creating the launch file demo_topic.launch, we can launch it using the
following command:

$ roslaunch mastering_ros_demo_pkg demo_topic.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[50]

Here is the output we get if the launch is successful:

Figure 17 : Terminal messages while launching the demo_topic.launch file

We can check the list of nodes using:

$ rosnode list

We can also view the log messages and debug the nodes using a GUI tool called
rqt_console:

$ rqt_console

We can see the logs generated by two nodes in this tool as shown here:

Figure 18 : Logging using the rqt_console tool

Applications of topics, services, and actionlib
Topics, services, and actionlib are used in different scenarios. We know topics are
a unidirectional communication method, services are a bidirectional request/reply
kind of communication, and actionlib is a modified form of ROS services in which
we can cancel the executing process running on the server whenever required.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[51]

Here are some of areas where we use these methods:

•	 Topics: Robot teleoperation, publishing odometry, sending robot transform
(TF), and sending robot joint states

•	 Services: This saves camera calibration parameters to a file, saves a map of
the robot after SLAM, and loads a parameter file

•	 Actionlib: This is used in motion planners and ROS navigation stacks

The complete source code of this project can be cloned from the
following Git repository. The following command will clone the
project repo:
$ git clone
https://github.com/qboticslabs/mastering_ros_demo_
pkg.git

Maintaining the ROS package
Most of the ROS packages are released as open source with the BSD license. There
are active developers around the globe who are contributing to the ROS platform.
Maintaining packages are an important constraint in all software especially open
source application. Open source software is maintained and supported by a
community of developers. Creating a version control system for our package is
essential if we want to maintain and accept a contribution from other developers.
The preceding package is already updated in GitHub and you can view the source
code of the project at https://github.com/qboticslabs/mastering_ros_demo_pkg

After uploading the code in GitHub, we can see what the procedures are to release
our current package to ROS.

Releasing your ROS package
After creating a ROS package in GitHub, we can officially release our package.
ROS provides detailed steps to release the ROS package using a tool called bloom
(http://ros-infrastructure.github.io/bloom/). Bloom is a release automation
tool, designed to make platform-specific releases from the source projects. Bloom is
designed to work best with the catkin project.

The prerequisites before releasing the package are as follows:

•	 Install the bloom tool
•	 Create a Git repository for the current package
•	 Create an empty Git repository for the release

www.it-ebooks.info

https://github.com/qboticslabs/mastering_ros_demo_pkg
http://ros-infrastructure.github.io/bloom/
http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[52]

The following command will install bloom in Ubuntu:

$ sudo apt-get install python-bloom

Create a Git repository for the current package. The repository that has the
package is called the upstream repository. Here, we already created a repository
at https://github.com/qboticslabs/mastering_ros_demo_pkg.

Create an empty repository in Git for the release package. This repository is called
the release repository. We have created a package called demo_pkg-release.
This package is at https://github.com/qboticslabs/demo_pkg-release.

After meeting these prerequisites, we can start to create the release of the package.
Navigate to the mastering_ros_demo_pkg local repository where we push our
package code to Git. Open a terminal inside this local repository and execute the
following command:

$ catkin_generate_changelog

The purpose of this command is, it will create a CHANGELOG.rst file inside the local
repository. After executing this command it will show this option:

Continue without -all option [y/N]. Give y here

It will create a CHANGELOG.rst in the local repository.

After the creation of the log file, we can update the Git repository by committing
the changes:

$ git add -A

$ git commit -m 'Updated CHANGELOG.rst'

$ git push -u origin master

Preparing the ROS package for the release
In this step, we are checking whether the package contains change logs, versions,
and so on. The following command makes our package consistent and recommended
for a release.

This command should execute from the local repository of the package:

$ catkin_prepare_release

The command will set a version tag if there is no current version and commit the
changes in the upstream repository.

www.it-ebooks.info

https://github.com/qboticslabs/mastering_ros_demo_pkg
https://github.com/qboticslabs/demo_pkg-release
http://www.it-ebooks.info/

Chapter 1

[53]

Releasing our package
The following command starts the release. The syntax of this command is as follows:

bloom-release --rosdistro <ros_distro> --track <ros_distro> repository_
name

$ bloom-release --rosdistro indigo --track indigo mastering_ros_demo_pkg

When this command is executed, it will go to the rosdistro (https://github.
com/ros/rosdistro) package repository to get the package details. The rosdistro
package in ROS contains an index file, which contains a list of all the packages in
ROS. Currently, there is no index for our package because this is our first release, but
we can add our package details to this index file called distributions.yaml.

The following message will be displayed when there is no reference of the package in
rosdistro:

Figure 19 : Terminal messages when there is no reference of the package in rosdistro

www.it-ebooks.info

https://github.com/ros/rosdistro
https://github.com/ros/rosdistro
http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[54]

We should give the release repository in the terminal that is marked in red in
the preceding screenshot. In this case, the URL was https://github.com/
qboticslabs/demo_pkg-release.

Figure 20 : Inputting the release repository URL

In the upcoming steps, the wizard will ask for the repository name, upstream, URL,
and so on. We can give these options and finally, a pull request to rosdistro will be
submitted, which is shown in the following screenshot:

Figure 21 : Sending a pull request to rosdistro

www.it-ebooks.info

https://github.com/qboticslabs/demo_pkg-release
https://github.com/qboticslabs/demo_pkg-release
http://www.it-ebooks.info/

Chapter 1

[55]

The pull request for this package can be viewed at https://github.com/ros/
rosdistro/pull/9662.

If it is accepted, it will merge to indigo/distribution.yaml, which contains the
index of all packages in ROS.

The following screenshot displays the package as an index in indigo/
distribution.yaml:

Figure 22 : The distribution.yaml file of ROS Indigo

After this step, we can confirm that the package is released and officially added to
the ROS index.

Creating a Wiki page for your ROS package
ROS wiki allows users to create their own home pages to showcase their package,
robot, or sensors. The official wiki page of ROS is wiki.ros.org. Now, we are going
to create a wiki page for our package.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you. You can also download chapter codes from
https://github.com/qboticslabs/mastering_ros.git.

www.it-ebooks.info

https://github.com/ros/rosdistro/pull/9662
https://github.com/ros/rosdistro/pull/9662
wiki.ros.org
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/qboticslabs/mastering_ros.git
http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[56]

The first step is to register in wiki using your mail address. Go to wiki.ros.org,
and click on the login button as shown in the screenshot:

Figure 23 : Locating the login option from ROS wiki

After clicking on Login, you can register or directly login with your details if you are
already registered. After login, press the user name link on the right side of the wiki
page as shown in the screenshot:

Figure 24 : Locating the user account button from ROS wiki

www.it-ebooks.info

wiki.ros.org
http://www.it-ebooks.info/

Chapter 1

[57]

After clicking on this link, you will get a chance to create a home page for your
package; you will get a text editor with GUI to enter data into. The following
screenshot shows you the page we created for this demo package:

Figure 25 : Creating a new wiki page

The wiki page of this package can be viewed at http://wiki.ros.org/qboticslabs.

Questions
•	 Why should we learn ROS?
•	 How does ROS differ from other robotic software platforms?
•	 What is the internal working of roscore?
•	 How do ROS topic and service differ in their operations?
•	 How do ROS service and actionlib differ in their operations?

www.it-ebooks.info

http://wiki.ros.org/qboticslabs
http://www.it-ebooks.info/

Introduction to ROS and Its Package Management

[58]

Summary
ROS is now a trending software framework among roboticists. Gaining knowledge in
ROS is essential in the upcoming years if you are planning to build your career as a
robotics engineer. In this chapter, we have gone through the basics of ROS mainly to
refresh the concepts if you have already learned ROS. We discussed the necessity of
learning ROS and how it excels among the current robotics software platforms. We
went through the basic concepts such as ROS Master, Parameter server, and roscore
and saw the explanation of the working of roscore. After discussing the internal
working of roscore, we discussed each ROS concept, such as ROS topics, services,
messages, and actionlib by illustrating examples. After demonstrating the working
of each concept, we uploaded the package to GitHub and created a wiki page for the
package. In the next chapter, we will discuss ROS robot modeling using URDF and
xacro and will design some robot models.

www.it-ebooks.info

http://www.it-ebooks.info/

[59]

Working with 3D Robot
Modeling in ROS

The first phase of robot manufacturing is its design and modeling. We can design
and model the robot using CAD tools such as AutoCAD, Solid Works, Blender, and
so on. One of the main purposes of modeling robot is simulation.

The robotic simulation tool can check the critical flaws in the robot design and can
confirm the working of the robot before it goes to the manufacturing phase.

The virtual robot model must have all the characteristics of real hardware, the shape
of robot may or may not look like the actual robot but it must be an abstract, which
has all the physical characteristics of the actual robot.

In this chapter, we are going to discuss the designing of two robots. One is a seven
DOF (Degrees of Freedom) manipulator and the other is a differential drive robot.
In the upcoming chapters, we can see its simulation and how to build the real
hardware and finally, it's interfacing to ROS.

If we are planning to create the 3D model of the robot and simulate using ROS, you
need to learn about some ROS packages which helps in robot designing. ROS has
a standard meta package for designing, and creating robot models called robot_
model, which consists of a set of packages called urdf, kdl_parser, robot_state_
publisher, collada_urdf, and so on. These packages help us create the 3D robot
model description with the exact characteristics of the real hardware.

In this chapter, we will cover the following topics:

•	 ROS packages for robot modeling
•	 Understanding robot modeling using URDF
•	 Creating the ROS package for the robot description

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[60]

•	 Creating our first URDF model
•	 Explaining the URDF code
•	 Understanding robot modeling using xacro
•	 Creating our first Xacro model
•	 Explanation first Xacro model
•	 Conversion of xacro to URDF
•	 Creating a robot description for a seven DOF robot manipulator
•	 Working with the joint state publisher and robot state publisher
•	 Creating Robot description for a differential wheeled robot

ROS packages for robot modeling
ROS provides some good packages that can be used to build 3D robot models.
In this section, we will discuss some of the important ROS packages that are
commonly used to build robot models:

•	 robot_model: ROS has a meta package called robot_model, which contains
important packages that help build the 3D robot models. We can see all the
important packages inside this meta-package:

°° urdf: One of the important packages inside the robot_model meta
package is urdf. The URDF package contains a C++ parser for the
Unified Robot Description Format (URDF), which is an XML file to
represent a robot model.

•	 We can define a robot model, sensors, and a working environment using
URDF and can parse it using URDF parsers. We can only describe a robot
in URDF that has a tree-like structure in its links, that is, the robot will
have rigid links and will be connected using joints. Flexible links can't
be represented using URDF. The URDF is composed using special XML
tags and we can parse these XML tags using parser programs for further
processing. We can work on URDF modeling in the upcoming sections.

°° joint_state_publisher: This tool is very useful while designing
robot models using URDF. This package contains a node called
joint_state_publisher, which reads the robot model description,
finds all joints, and publishes joint values to all nonfixed joints using
GUI sliders. The user can interact with each robot joint using this tool
and can visualize using RViz. While designing URDF, the user can
verify the rotation and translation of each joint using this tool. We
can discuss more about the joint_state_publisher node and its
usage in the upcoming chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

°° kdl_parser: Kinematic and Dynamics Library (KDL) is an ROS
package that contains parser tools to build a KDL tree from the URDF
representation. The kinematic tree can be used to publish the joint
states and also to forward and inverse kinematics of the robot.

•	 robot_state_publisher: This package reads the current robot joint states
and publishes the 3D poses of each robot link using the kinematics tree build
from the URDF. The 3D pose of the robot is published as ROS tf (transform).
ROS tf publishes the relationship between coordinates frames of a robot.

•	 xacro: Xacro stands for (XML Macros) and we can define how xacro
is equal to URDF plus add-ons. It contains some add-ons to make URDF
shorter, readable, and can be used for building complex robot descriptions.
We can convert xacro to URDF at any time using some ROS tools. We will
see more about xacro and its usage in the upcoming sections.

Understanding robot modeling using
URDF
We have discussed the urdf package. In this section, we will look further at the
URDF XML tags, which help to model the robot. We have to create a file and write
the relationship between each link and joint in the robot and save the file with the
.urdf extension.

The URDF can represent the kinematic and dynamic description of the robot,
visual representation of the robot, and the collision model of the robot.

The following tags are the commonly used URDF tags to compose a URDF
robot model:

•	 link: The link tag represents a single link of a robot. Using this tag, we
can model a robot link and its properties. The modeling includes size, shape,
color, and can even import a 3D mesh to represent the robot link. We can also
provide dynamic properties of the link such as inertial matrix and collision
properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[62]

The syntax is as follows:
<link name="<name of the link>">
<inertial>...........</inertial>
 <visual></visual>
 <collision>..........</collision>
</link>

The following is a representation of a single link. The Visual section
represents the real link of the robot, and the area surrounding the real link
is the Collision section. The Collision section encapsulates the real link to
detect collision before hitting the real link.

Collis
ion

Link origin

Visu
al

Inertia
lJoint

Figure 1 : Visualization of a URDF link

•	 joint: The joint tag represents a robot joint. We can specify the kinematics
and dynamics of the joint and also set the limits of the joint movement and
its velocity. The joint tag supports the different types of joints such as
revolute, continuous, prismatic, fixed, floating, and planar.
The syntax is as follows:
<joint name="<name of the joint>">
 <parent link="link1"/>
 <child link="link2"/>

 <calibration />
 <dynamics damping/>
 <limit effort />
</joint>

A URDF joint is formed between two links; the first is called the Parent link
and the second is the Child link. The following is an illustration of a joint and
its link:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

Joint axis

in joint frame

Child frame

= Joint frame

Jo
in

t
o
ri
gi

n

Parent frame

Child

P
a
re

n
t

Joint

Figure 2 : Visualization of a URDF joint

•	 robot: This tag encapsulates the entire robot model that can be represented
using URDF. Inside the robot tag, we can define the name of the robot, the
links, and the joints of the robot.
The syntax is as follows:
<robot name="<name of the robot>"
 <link> </link>
 <link> </link>

 <joint> </joint>
 <joint></joint>

</robot>

A robot model consists of connected links and joints. Here is a visualization
of the robot model:

Joint
3

Joint 2 Joint
1

Link 4

Link 2

Link 1

y

x

y

y
x

x

x

y

L
in

k
3

O
ri
gi

n

Figure 3 : Visualization of a robot model having joints and links

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[64]

•	 gazebo: This tag is used when we include the simulation parameters of
the Gazebo simulator inside URDF. We can use this tag to include gazebo
plugins, gazebo material properties, and so on. The following shows an
example using gazebo tags:

 <gazebo reference="link_1">
 <material>Gazebo/Black</material>
 </gazebo>

We can find more URDF tags at http://wiki.ros.org/urdf/XML.

Creating the ROS package for the robot
description
Before creating the URDF file for the robot, let's create a ROS package in the catkin
workspace so that the robot model keeps using the following command:

$ catkin_create_pkg mastering_ros_robot_description_pkg roscpp tf
geometry_msgs urdf rviz xacro

The package mainly depends on the urdf and xacro packages, and we can create
the urdf file of the robot inside this package and create launch files to display the
created urdf in RViz. The full package is available on the following Git repository,
you can clone the repository for a reference to implement this package or you can
get the package from the book's source code:

$ git clone
https://github.com/qboticslabs/mastering_ros_robot_description_pkg.git

Before creating the urdf file for this robot, let's create three folders called urdf,
meshes, and launch inside the package folder. The urdf folder can be used to
keep the urdf/xacro files that we are going to create. The meshes folder keeps the
meshes that we need to include in the urdf file and the launch folder keeps the ROS
launch files.

Creating our first URDF model
After learning about URDF and its important tags, we can start some basic modeling
using URDF. The first robot mechanism that we are going to design is a pan and tilt
mechanism as shown in the following figure.

www.it-ebooks.info

http://wiki.ros.org/urdf/XML
http://www.it-ebooks.info/

Chapter 2

[65]

There are three links and two joints in this mechanism. The base link is static, in
which all other links are mounted. The first joint can pan on its axis and the second
link is mounted on the first link and it can tilt on its axis. The two joints in this
system are of a revolute type.

Figure 4 : Visualization of a pan and tilt mechanism in RViz

Let's see the URDF code of this mechanism. Navigate to chapter_2_code/
mastering_ros_robot_description_pkg/urdf and open pan_tilt.urdf.
The code indentation in URDF is not mandatory for URDF but it keeping
indentation can improve code readability:

<?xml version="1.0"?>
<robot name="pan_tilt">

 <link name="base_link">
 <visual>
 <geometry>
 <cylinder length="0.01" radius="0.2"/>
 </geometry>
 <origin rpy="0 0 0" xyz="0 0 0"/>
 <material name="yellow">
 <color rgba="1 1 0 1"/>
 </material>
 </visual>
 </link>

 <joint name="pan_joint" type="revolute">
 <parent link="base_link"/>
 <child link="pan_link"/>
 <origin xyz="0 0 0.1"/>
 <axis xyz="0 0 1" />

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[66]

 </joint>

 <link name="pan_link">
 <visual>
 <geometry>
 <cylinder length="0.4" radius="0.04"/>
 </geometry>
 <origin rpy="0 0 0" xyz="0 0 0.09"/>
 <material name="red">
 <color rgba="0 0 1 1"/>
 </material>
 </visual>
 </link>

 <joint name="tilt_joint" type="revolute">
 <parent link="pan_link"/>
 <child link="tilt_link"/>
 <origin xyz="0 0 0.2"/>
 <axis xyz="0 1 0" />
 </joint>

 <link name="tilt_link">
 <visual>
 <geometry>
 <cylinder length="0.4" radius="0.04"/>
 </geometry>
 <origin rpy="0 1.5 0" xyz="0 0 0"/>
 <material name="green">
 <color rgba="1 0 0 1"/>
 </material>
 </visual>
 </link>
</robot>

Explaining the URDF file
When we check the code, we can add a <robot> tag at the top of the description:

<?xml version="1.0"?>
<robot name="pan_tilt">

The <robot> tag defines the name of the robot that we are going to create.
Here, we named the robot pan_tilt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[67]

If we check the sections after the <robot> tag definition, we can see link and joint
definitions of the pan and tilt mechanism:

 <link name="base_link">
 <visual>
 <geometry>
 <cylinder length="0.01" radius="0.2"/>
 </geometry>
 <origin rpy="0 0 0" xyz="0 0 0"/>
 <material name="yellow">
 <color rgba="1 1 0 1"/>
 </material>
 </visual>
 </link>

The preceding code snippet is the base_link definition of the pan and tilt mechanism.
The <visual> tag can describe the visual appearance of the link, which is shown on
the robot simulation. We can define the link geometry (cylinder, box, sphere, or
mesh) and the material (color and texture) of the link using this tag:

 <joint name="pan_joint" type="revolute">
 <parent link="base_link"/>
 <child link="pan_link"/>
 <origin xyz="0 0 0.1"/>
 <axis xyz="0 0 1" />
 </joint>

In the preceding code snippet, we define a joint with a unique name and its joint
type. The joint type we used here is revolute and the parent link and child link are
base_link and the pan_link respectively. The joint origin is also specified inside
this tag.

Save the preceding URDF code as pan_tilt.urdf and check whether the urdf
contains errors using the following command:

$ check_urdf pan_tilt.urdf

The check_urdf command will parse urdf and show an error, if any. If everything
is OK, it will show an output as follows:

robot name is: pan_tilt

---------- Successfully Parsed XML ---------------

root Link: base_link has 1 child(ren)

 child(1): pan_link

 child(1): tilt_link

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[68]

If we want to view the structure of the robot links and joints graphically, we can use
a command tool called urdf_to_graphiz:

$ urdf_to_graphiz pan_tilt.urdf

This command will generate two files: pan_tilt.gv and pan_tilt.pdf. We can
view the structure of this robot using following command:

$ evince pan_tilt.pdf

We will get the following output:

base_link

pan_link

tilt_link

pan_joint

tilt_joint

xyz: 0 0 0.1

rpy: 0 -0 0

xyz: 0 0 0.2

rpy: 0 -0 0

Figure 5 : Graph of joint and links in pan and tilt mechanism

Visualizing the robot 3D model in RViz
After designing URDF, we can view it on RViz. We can create a view_demo.launch
launch file and put the following code into the launch folder. Navigate to chapter_2_
code/mastering_ros_robot_description_pkg/launch for the same code:

<launch>
 <arg name="model" />
 <param name="robot_description" textfile="$(find mastering_ros_
robot_description_pkg)/urdf/pan_tilt.urdf" />
 <param name="use_gui" value="true"/>

 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" />
 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find mastering_
ros_robot_description_pkg)/urdf.rviz" required="true" />

</launch>

We can launch the model using the following command:

$ roslaunch mastering_ros_robot_description_pkg view_demo.launch

If everything works fine, we will get a pan and tilt mechanism in RViz.

Figure 6 : Joint level of pan and tilt mechanism

Interacting with pan and tilt joints
We can see an extra GUI came along with RViz, which contains sliders to control
pan joints and tilt joints. This GUI is called the Joint State Publisher node from the
joint_state_publisher package:

 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" />

We can include this node in the launch file using this statement. The limits of pan
and tilt should be mentioned inside the joint tag:

 <joint name="pan_joint" type="revolute">
 <parent link="base_link"/>
 <child link="pan_link"/>
 <origin xyz="0 0 0.1"/>
 <axis xyz="0 0 1" />
 <limit effort="300" velocity="0.1" lower="-3.14" upper="3.14"/>
 <dynamics damping="50" friction="1"/>
 </joint>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[70]

The <limit effort="300" velocity="0.1" lower="-3.14" upper="3.14"/>
defines the limits of effort, velocity, and angle limits. The effort is the maximum force
supported by this joint, lower and upper indicate the lower and upper limit of the
joint in the radian for the revolute type joint, and meters for prismatic joints. The
velocity is the maximum joint velocity.

Figure 6 : Joint level of pan and tilt mechanism

The preceding screenshot shows the GUI of Joint State Publisher with sliders and
current joint values shown in the box.

Adding physical and collision properties
to a URDF model
Before simulating a robot in a robot simulator, such as Gazebo, V-REP, and so on, we
need to define the robot link's physical properties such as geometry, color, mass, and
inertia, and the collision properties of the link.

We will only get good simulation results if we define all these properties inside the
robot model. URDF provides tags to include all these parameters and code snippets
of base_link contained in theses properties as given here:

<link>
......
<collision>
 <geometry>
 <cylinder length="0.03" radius="0.2"/>
 </geometry>
 <origin rpy="0 0 0" xyz="0 0 0"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[71]

 </collision>

 <inertial>
 <mass value="1"/>
 <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0"
izz="1.0"/>
 </inertial>
...........
</link>

Here, we define the collision geometry as cylinder and the mass as 1 Kg, and we also
set the inertial matrix of the link.

The collision and inertia parameters are required in each link; otherwise,
Gazebo will not load the robot model properly.

Understanding robot modeling using
xacro
The flexibility of URDF reduces when we work with complex robot models. Some of
the main features that URDF is missing are the simplicity, reusability, modularity,
and programmability.

If someone wants to reuse a URDF block ten times in his robot description, he can
copy and paste the block ten times. If there is an option to use this code block and
make multiple copies with different settings, it will be very useful while creating the
robot description.

The URDF is single file and we can't include other URDF files inside it. This reduces
the modular nature of the code. All code should be in a single file, which reduces the
code simplicity too.

Also, if there is some programmability, such as adding variable, constants,
mathematical expressions, conditional statement, and so on, in the description
language, it will be more user friendly.

The robot modeling using xacro meets all these conditions and some of the main
features of xacro are as follows:

•	 Simplify URDF: Xacro is the cleaned up version of URDF. What it does is,
it creates macros inside the robot description and reuses the macros. This can
reduce the code length. Also, it can include macros from other files and make
the code more readable, simpler, and modular.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[72]

•	 Programmability: The xacro language support a simple programming
statement in its description. There are variables, constants, mathematical
expressions, conditional statements, and so on that make the description
more intelligent and efficient.

We can say that xacro is an updated version of URDF, and we can convert the xacro
definition to URDF whenever it is necessary, using some ROS tools.

We can discuss the same description of pan and tilt using xacro. Navigate to
chapter_2_code/mastering_ros_robot_description_pkg/urdf, and the file
name is pan_tilt.xacro. Instead of .urdf, we need to use .xacro for the xacro file
definition. Here is the explanation of the xacro code:

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="pan_tilt">

These lines specify a namespace that are needed in all xacro files for
parsing the xacro file. After specifying the namespace, we need to add the name of
the xacro file.

Using properties
Using xacro, we can declare constants or properties that are the named values
inside the xacro file, which can be used anywhere in the code. The main use of these
constant definitions are, instead of giving hard coded values on links and joints, we
can keep constants like this and it will be easier to change these values rather than
finding the hard coded values and replacing them.

An example of using properties are given here. We declare the base link and pan
link's length and radius. So, it will be easy to change the dimension here rather than
changing values in each one:

 <xacro:property name="base_link_length" value="0.01" />
 <xacro:property name="base_link_radius" value="0.2" />

 <xacro:property name="pan_link_length" value="0.4" />
 <xacro:property name="pan_link_radius" value="0.04" />

We can use the value of the variable by replacing the hard coded value by the
following definition as given here:

 <cylinder length="${pan_link_length}"
radius="${pan_link_radius}"/>

Here, the old value "0.4" is replaced with "{pan_link_length}", and "0.04" is
replaced with "{pan_link_radius}".

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[73]

Using the math expression
We can build mathematical expressions inside ${} using the basic operations such
as + , -, * , / , unary minus, and parenthesis. Exponentiation and modulus are not
supported yet. The following is a simple math expression used inside the code:

 <cylinder length="${pan_link_length}"
radius="${pan_link_radius+0.02}"/>

Using macros
One of the main features of xacro is that it supports macros. We can reduce the
length complex definition using xacro to a great extent. Here is a xacro definition
we used in our code for inertial:

<xacro:macro name="inertial_matrix" params="mass">
 <inertial>
 <mass value="${mass}" />
 <inertia ixx="0.5" ixy="0.0" ixz="0.0"
 iyy="0.5" iyz="0.0" izz="0.5" />
 </inertial>
</xacro:macro>

Here, the macro is named inertial_matrix, and its parameter is mass. The mass
parameter can be used inside the inertial definition using ${mass}. We can replace
each inertial code with a single line as given here:

 <xacro:inertial_matrix mass="1"/>

The xacro definition improved the code readability and reduced the number of lines
compared to urdf. Next, we can see how to convert xacro to the urdf file.

Conversion of xacro to URDF
After designing the xacro file, we can use the following command to convert it into
a UDRF file:

$ rosrun xacro xacro.py pan_tilt.xacro > pan_tilt_generated.urdf

We can use the following line in the ROS launch file for converting xacro to UDRF
and use it as a robot_description parameter:

 <param name="robot_description" command="$(find xacro)/xacro.py
$(find mastering_ros_robot_description_pkg)/urdf/pan_tilt.xacro"
/>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[74]

We can view the xacro of pan and tilt by making a launch file, and it can be launched
using the following command:

$ roslaunch mastering_ros_robot_description_pkg view_pan_tilt_xacro.
launch

Creating the robot description for a
seven DOF robot manipulator
Now, we can create some complex robots using URDF and xacro. The first robot we
are going to deal with is a seven DOF robotic arm, which is a serial link manipulator
having multiple serial links. The seven DOF arm is kinematically redundant, which
means it has more joints and DOF than required to achieve its goal position and
orientation. The advantage of redundant manipulators are, we can have more
joint configuration for a particular goal position and orientation. It will improve
the flexibility and versatility of the robot movement and can implement effective
collision free motion in a robotic workspace.

Let's start creating the seven DOF arm; the final output model of the robot arm is
shown here (the various joints and links in the robot are also marked on the image):

Figure 8 : Joints and Links of seven dof arm robot

The preceding robot is described using xacro. We can take the actual description
file from the cloned repository. We can navigate to the urdf folder inside the
cloned package and open the seven_dof_arm.xacro file. We will copy and paste
the description to the current package and discuss the major section of this robot
description.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[75]

Arm specification
Here is the robot arm specification of this seven DOF arm:

•	 Degrees of freedom: 7
•	 Length of arm: 50 cm
•	 Reach of the arm: 35 cm
•	 Number of links: 12
•	 Number of joints: 11

Type of joints
Here is the list of joints containing the joint name and its type of robot:

Joint number Joint name Joint type Angle limits
(in degrees)

1 bottom_joint Fixed --
2 shoulder_pan_joint Revolute -150 to 114
3 shoulder_pitch_joint Revolute -67 to 109
4 elbow_roll_joint Revolute -150 to 41
5 elbow_pitch_joint Revolute -92 to 110
6 wrist_roll_joint Revolute -150 to 150
7 wrist_pitch_joint Revolute 92 to 113
8 gripper_roll_joint Revolute -150 to 150
9 finger_joint1 Prismatic 0 to 3 cm
10 finger_joint2 Prismatic 0 to 3 cm

We design the xacro of the arm using the preceding specifications; here is the
explanation of the arm xacro file.

Explaining the xacro model of seven
DOF arm
We will define 10 links and 9 joints on this robot and 2 links and 2 joints in the
robot gripper.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[76]

Let's start by discussing the xacro definition:

<?xml version="1.0"?>

<robot name="seven_dof_arm"
xmlns:xacro="http://www.ros.org/wiki/xacro">

Because we are writing a xacro file, we should mention the xacro namespace to
parse the file.

Using constants
We use constants inside this xacro to make robot descriptions shorter and readable.
Here, we define the degree to the radian conversion factor, PI value, length, height,
and width of each of the links:

 <property name="deg_to_rad" value="0.01745329251994329577"/>
 <property name="M_PI" value="3.14159"/>

 <property name="elbow_pitch_len" value="0.22" />
 <property name="elbow_pitch_width" value="0.04" />
 <property name="elbow_pitch_height" value="0.04" />

Using macros
We define macros in this code to avoid repeatability and to make the code shorter.
Here are the macros we have used in this code:

 <xacro:macro name="inertial_matrix" params="mass">
 <inertial>
 <mass value="${mass}" />
 <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="0.5" iyz="0.0"
izz="1.0" />
 </inertial>
 </xacro:macro>

This is the definition of the inertial matrix macro in which we can use mass as
its parameter:

 <xacro:macro name="transmission_block" params="joint_name">
 <transmission name="tran1">
 <type>transmission_interface/SimpleTransmission</type>
 <joint name="${joint_name}">
 <hardwareInterface>PositionJointInterface</hardwareInterface>
 </joint>
 <actuator name="motor1">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[77]

 <hardwareInterface>PositionJointInterface</hardwareInterface>
 <mechanicalReduction>1</mechanicalReduction>
 </actuator>
 </transmission>
 </xacro:macro>

In the section of the code, we can see the definition using the transmission tag.

The transmission tag relates a joint to an actuator. It defines the type of
transmission that we are using in a particular joint and the type of motor and its
parameters. It also defines the type of hardware interface we use when we interface
with the ROS controllers.

Including other xacro files
We can extend the capabilities of the robot xacro by including the xacro definition of
sensors using the xacro:include tag. The following code snippet shows how
to include a sensor definition in the robot xacro:

 <xacro:include filename="$(find mastering_ros_robot_description_
pkg)/urdf/sensors/xtion_pro_live.urdf.xacro"/>

Here, we include a xacro definition of sensor called Asus Xtion pro, and this will be
expanded when the xacro file is parsed.

Using "$(find mastering_ros_robot_description_pkg)/urdf/sensors/xtion_
pro_live.urdf.xacro", we can access the xacro definition of the sensor, where
find is to locate the current package mastering_ros_robot_description_pkg.

We will discuss more on vision processing in Chapter 9, Building and Interfacing
Differential Drive Mobile Robot Hardware in ROS.

Using meshes in the link
We can insert a primitive shape to a link or we can insert a mesh file using the mesh
tag. The following example shows how to insert a mesh of the vision sensor:

 <visual>
 <origin xyz="0 0 0" rpy="0 0 0"/>
 <geometry>
 <mesh filename="package://mastering_ros_robot_description_
pkg/meshes/sensors/xtion_pro_live/xtion_pro_live.dae"/>
 </geometry>
 <material name="DarkGrey"/>
 </visual>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[78]

Working with the robot gripper
The gripper of the robot is designed for the picking and placing of blocks and the
gripper is on the simple linkage category. There are two joints for the gripper and
each joint is prismatic. Here is the joint definition of one gripper joint:

 <joint name="finger_joint1" type="prismatic">
 <parent link="gripper_roll_link"/>
 <child link="gripper_finger_link1"/>
 <origin xyz="0.0 0 0" />
 <axis xyz="0 1 0" />
 <limit effort="100" lower="0" upper="0.03" velocity="1.0"/>
 <safety_controller k_position="20"
 k_velocity="20"
 soft_lower_limit="${-0.15 }"
 soft_upper_limit="${ 0.0 }"/>
 <dynamics damping="50" friction="1"/>
 </joint>

Here, the first gripper joint is formed by gripper_roll_link and gripper_finger_
link1, and the second joint is formed by gripper_roll_link and gripper_finger_
link2.

The following graph shows how the gripper joints are connected in
gripper_roll_link:

wrist_pitch_link

gripper_roll_link

gripper_finger_link1 gripper_finger_link2

gripper_roll_joint

finger_joint1 finger_joint2

xyz: 0 0 0.08

rpy: -1.5708 -1.57079 -4.18385e-11

xyz: 0 0 0

rpy: 0 -0 0

xyz: 0 0 0

rpy: 0 -0 0

Figure 9 : Graph of the end effector section of seven dof arm robot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[79]

Viewing the seven DOF arm in RViz
After discussing the robot model, we can view the designed xacro file in RViz and
control each joint using the joint state publisher node and publish the robot
state using the Robot State Publisher.

The preceding task can be performed using a launch file called view_arm.launch,
which is inside the launch folder of this package:

<launch>
 <arg name="model" />

 <!-- Parsing xacro and loading robot_description parameter -->

 <param name="robot_description" command="$(find xacro)/xacro.py
$(find mastering_ros_robot_description_pkg)/urdf/ seven_dof_arm.xacro
" />

 <!-- Setting gui parameter to true for display joint slider, for
getting joint control -->
 <param name="use_gui" value="true"/>

 <!-- Starting Joint state publisher node which will publish the
joint values -->
 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" />

 <!-- Starting robot state publish which will publish current robot
joint states using tf -->
 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher" />

 <!-- Launch visualization in rviz -->
 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find mastering_
ros_robot_description_pkg)/urdf.rviz" required="true" />
</launch>

Create the following launch file inside the launch folder and build the package using
the catkin_make command. Launch the urdf using the following command:

$ roslaunch mastering_ros_robot_description_pkg view_arm.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[80]

The robot will be displayed on RViz with the joint state publisher GUI.

Figure 10 : Seven dof arm in RViz with joint_state_publisher

We can interact with the joint slider and move the joints of the robot. We can next
discuss what the joint state publisher is.

Understanding joint state publisher
Joint state publisher is one of the ROS packages that is commonly used to interact
with each joint of the robot. The package contains the joint_state_publisher
node, which will find the nonfixed joints from the URDF model and publish the joint
state values of each joint in the sensor_msgs/JointState message format.

In the preceding launch file, view_arm.launch, we started the joint_state_
publisher node and set a parameter called use_gui to true as follows:

 <param name="use_gui" value="true"/>

 <!-- Starting Joint state publisher node which will publish the
joint values -->
 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" />

If we set use_gui to true, the joint_state_publisher node displays a slider based
control window to control each joint. The lower and upper value of a joint will be
taken from the lower and upper values associated with the limit tag used inside
the joint tag. The preceding screenshot shows RViz along with GUI to publish joint
states with the use_gui parameter set to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[81]

We can find more on the joint state publisher package at http://wiki.ros.
org/joint_state_publisher.

Understanding the robot state publisher
The robot state publisher package helps to publish the state of the robot to tf.
This package subscribes to joint states of the robot and publishes the 3D pose of each
link using the kinematic representation from the URDF model. We can use the robot
state publisher node using the following line inside the launch file:

<!-- Starting robot state publish which will publish tf -->
 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher" />

In the preceding launch file, view_arm.launch, we started this node to publish the
tf of the arm. We can visualize the transformation of the robot by clicking on the tf
option on RViz shown as follows:

Figure 11 : TF view of seven dof arm in RViz

The joint state publisher and robot state publisher packages are installed
along with the ROS desktop's installations.

After creating the robot description of the seven DOF arm, we can discuss how to
make a mobile robot with differential wheeled mechanisms.

www.it-ebooks.info

http://wiki.ros.org/joint_state_publisher
http://wiki.ros.org/joint_state_publisher
http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[82]

Creating a robot model for the differential
drive mobile robot
A differential wheeled robot will have two wheels connected on opposite sides of
the robot chassis which is supported by one or two caster wheels. The wheels will
control the speed of the robot by adjusting individual velocity. If the two motors are
running at the same speed it will move forward or backward. If a wheel is running
slower than the other, the robot will turn to the side of the lower speed. If we want
to turn the robot to the left side, reduce the velocity of the left wheel compared to the
right and vice versa.

There are two supporting wheels called caster wheels that will support the robot and
freely rotate according to the movement of the main wheels.

The UDRF model of this robot is present in the cloned ROS package. The final robot
model is shown as follows:

Figure 12 : 3D model of differential drive mobile robot

The preceding robot has five joints and five links. The two main joints are two
wheel joints and the other three joints are two fixed joints by caster wheels, and one
fixed joint by base foot print to the base link of the robot. Here is the connection
graph of this robot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[83]

front_left_wheel_jointcaster_back_point caster_front_joint front_right_wheel_joint

base_footprint_joint

base_footprint

caster_back_link caster_front_link front_left_wheel front_right_wheel

base_link

xyz: 0 0 0.04

rpy: 0 -0 0

xyz: -0.135 0 0.009

rpy: -1.5708 0 0

xyz: 0. 1 15 0 0.007

rpy: -1.5708 0 0

xyz: 0 0.15 0

rpy: 0 -0 0

xyz: 0 -0.15 0

rpy: 0 -0 0

Figure 13 : Graphical representation of the links and joints in mobile robot

We can go through the important section of code in the UDRF file. The UDRF file
name called diff_wheeled_robot.xacro is placed inside the urdf folder of the
cloned ROS package.

The first section of the UDRF file is given here. The robot is named as
differential_wheeled_robot and it also includes a UDRF file called wheel.urdf.
xacro. This xacro file contains the definition of the wheel and its transmission; if we
use this xacro file, then we can avoid writing two definitions for the two wheels.
We use this xacro definition because two wheels are identical in shape and size:

<?xml version="1.0"?>
<robot name="differential_wheeled_robot" xmlns:xacro="http://www.ros.
org/wiki/xacro">

 <xacro:include filename="$(find mastering_ros_robot_description_
pkg)/urdf/wheel.urdf.xacro" />

The definition of a wheel inside wheel.urdf.xacro is given here. We can mention
whether the wheel has to be placed to the left, right, front, or back. Using this macro,
we can create a maximum of four wheels, but now we require only two:

<xacro:macro name="wheel" params="fb lr parent translateX translateY
flipY"> <!--fb : front, back ; lr: left, right -->
 <link name="${fb}_${lr}_wheel">

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[84]

We also mention the Gazebo parameters required for simulation. Mentioned here
are the Gazebo parameters associated with a wheel. We can mention the frictional
coefficient and stiffness co-efficient using the gazebo reference tag:

 <gazebo reference="${fb}_${lr}_wheel">
 <mu1 value="1.0"/>
 <mu2 value="1.0"/>
 <kp value="10000000.0" />
 <kd value="1.0" />
 <fdir1 value="1 0 0"/>
 <material>Gazebo/Grey</material>
 <turnGravityOff>false</turnGravityOff>
 </gazebo>

The joints that we define for a wheel are continuous joints because there is no limit
in the wheel joint. The parent link here is the robot base and the child link is
each wheel:

 <joint name="${fb}_${lr}_wheel_joint" type="continuous">
 <parent link="${parent}"/>
 <child link="${fb}_${lr}_wheel"/>
 <origin xyz="${translateX *

We also need to mention the transmission tag of each wheel; the macro of the
wheel is as follows:

 <!-- Transmission is important to link the joints and the
controller -->
 <transmission name="${fb}_${lr}_wheel_joint_trans">
 <type>transmission_interface/SimpleTransmission</type>
 <joint name="${fb}_${lr}_wheel_joint" />
 <actuator name="${fb}_${lr}_wheel_joint_motor">
 <hardwareInterface>EffortJointInterface</hardwareInterface>
 <mechanicalReduction>1</mechanicalReduction>
 </actuator>
 </transmission>

 </xacro:macro>
</robot>

In diff_wheeled_robot.xacro, we can use the following lines to use the macros
defined inside wheel.urdf.xacro:

 <wheel fb="front" lr="right" parent="base_link" translateX="0"
translateY="-0.5" flipY="-1"/>
 <wheel fb="front" lr="left" parent="base_link" translateX="0"
translateY="0.5" flipY="-1"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[85]

Using the preceding lines, we define the wheels on the left and right of the robot
base. The robot base is cylindrical in shape as shown in the preceding figure. The
inertia calculating macro is given here. This xacro snippet will use the mass, radius,
and height of the cylinder and calculate inertia using this equation:

 <!-- Macro for calculating inertia of cylinder -->
 <macro name="cylinder_inertia" params="m r h">
 <inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
 iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
 izz="${m*r*r/2}" />
 </macro>

The launch file definition for displaying this root model in RViz is given here.
The launch file is named view_mobile_robot.launch:

<launch>
 <arg name="model" />
 <!-- Parsing xacro and setting robot_description parameter -->
 <param name="robot_description" command="$(find xacro)/xacro.py
$(find mastering_ros_robot_description_pkg)/urdf/diff_wheeled_robot.
xacro" />
 <!-- Setting gui parameter to true for display joint slider -->
 <param name="use_gui" value="true"/>
 <!-- Starting Joint state publisher node which will publish the
joint values -->
 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" />
 <!-- Starting robot state publish which will publish tf -->
 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher" />
 <!-- Launch visualization in rviz -->
 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find mastering_
ros_robot_description_pkg)/urdf.rviz" required="true" />
</launch>

The only difference between the arm UDRF file is the change in the name; the other
sections are the same.

We can view the mobile robot using the following command:

$ roslaunch mastering_ros_robot_description_pkg
view_mobile_robot.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Working with 3D Robot Modeling in ROS

[86]

The screenshot of the robot in RViz is as follows:

Figure 14 : Visualizing mobile robot in RViz with joint state publisher.

Questions
1.	 What are the packages used for robot modeling in ROS?
2.	 What are the important URDF tags used for robot modeling?
3.	 What are the reasons for using xacro over URDF?
4.	 What is the use of the joint state publisher and robot state publisher

packages?
5.	 What is the use of the transmission tag in URDF?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[87]

Summary
In this chapter, we mainly discussed the importance of robot modeling and how we
can model a robot in ROS. We discussed more on the robot_model meta package and
the packages inside robot_model such as urdf, xacro, joint_state_publisher,
and so on. We discussed URDF, xacro, and the main URDF tags that we are going
to use. We also created a sample model in URDF and xacro and discussed the
difference between the two. After that, we created a complex robotic manipulator
with seven DOF and saw the usage of the joint state publisher and robot state
publisher packages. At the end of the chapter, we saw the designing procedure of
a differential drive mobile robot using xacro. In the next chapter, we will look at the
simulation of these robot using Gazebo.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[89]

Simulating Robots Using
ROS and Gazebo

After designing the 3D model of a robot, the next phase is its simulation.
Robot simulation will give you an idea about the working of robots in a
virtual environment.

We are going to use the Gazebo (http://www.gazebosim.org/) simulator to
simulate the seven DOF arms and the mobile robot.

Gazebo is a multirobot simulator for complex indoor and outdoor robotic simulation.
We can simulate complex robots, robot sensors, and a variety of 3D objects. Gazebo
already has simulation models of popular robots, sensors, and a variety of 3D objects
in their repository (https://bitbucket.org/osrf/gazebo_models/). We can
directly use these models without having the need to create.

Gazebo has a good interface in ROS, which exposes the whole control of Gazebo in
ROS. We can install Gazebo without ROS and we should install the ROS-Gazebo
interface to communicate from ROS to Gazebo.

In this chapter, we will discuss more on simulation of seven DOF arms and differential
wheeled robots. We will discuss ROS controllers that help to control the robot's joints
in Gazebo.

We will cover the following list of topics in this chapter:

•	 Simulating robotic arms in Gazebo
•	 Adding sensors to the robotic arm simulation
•	 Interfacing Gazebo to ROS
•	 Adding ROS controllers to robots

www.it-ebooks.info

http://www.gazebosim.org/
https://bitbucket.org/osrf/gazebo_models/
http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[90]

•	 Working with the robotic arm joint control
•	 Simulating the mobile robot in Gazebo
•	 Adding sensors to mobile robot simulation
•	 Moving the mobile robot in Gazebo using a keyboard teleop

Simulating the robotic arm using Gazebo
and ROS
In the previous chapter, we designed a seven DOF arm. In this section, we will
simulate the robot in Gazebo using ROS.

Before starting with Gazebo and ROS, we should install the following packages to
work with Gazebo and ROS.

•	 In ROS Jade:
$ sudo apt-get install ros-jade-gazebo-ros-pkgs ros-jade-gazebo-
ros ros-jade-gazebo-msgs ros-jade-gazebo-plugins

•	 In ROS Indigo:
$ sudo apt-get install ros-indigo-gazebo-ros-pkgs ros-indigo-
gazebo-msgs ros-indigo-gazebo-plugins ros-indigo-gazebo-ros-
control

The use of each package is as follows:

•	 gazebo_ros_pkgs: This contains wrappers and tools for interfacing ROS
with Gazebo

•	 gazebo-msgs: This contains messages and service data structures for
interfacing with Gazebo from ROS

•	 gazebo-plugins: This contains Gazebo plugins for sensors, actuators,
and so on.

•	 gazebo-ros-control: This contains standard controllers to communicate
between ROS and Gazebo

After installation, check whether the Gazebo is properly installed in Ubuntu using
the following command:

$ gazebo

We can check the ROS interface of Gazebo using the following command:

$ roscore & rosrun gazebo_ros gazebo

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

These two commands will open the Gazebo GUI. If we have the Gazebo simulator,
we can proceed to develop the simulation model of the seven DOF arm for Gazebo.

The Robotic arm simulation model for Gazebo
We can create the simulation model for a robotic arm by updating the existing robot
description by adding simulation parameters. You can see the complete simulation
model of the robot in the chapter_3_code/ mastering_ros_robot_description_
pkg/urdf/ seven_dof_arm.xacro file.

The file is filled with URDF tags, which are necessary for the simulation. We will
define the sections of collision, inertial, transmission, joints, links and Gazebo.

To launch the existing simulation model, we can use the chapter_3_code/seven_
dof_arm_gazebo package, which has a launch file called seven_dof_arm_world.
launch. The file definition is as follows:

<launch>

 <!-- these are the arguments you can pass this launch file, for
example paused:=true -->
 <arg name="paused" default="false"/>
 <arg name="use_sim_time" default="true"/>
 <arg name="gui" default="true"/>
 <arg name="headless" default="false"/>
 <arg name="debug" default="false"/>

 <!-- We resume the logic in empty_world.launch -->
 <include file="$(find gazebo_ros)/launch/empty_world.launch">
 <arg name="debug" value="$(arg debug)" />
 <arg name="gui" value="$(arg gui)" />
 <arg name="paused" value="$(arg paused)"/>
 <arg name="use_sim_time" value="$(arg use_sim_time)"/>
 <arg name="headless" value="$(arg headless)"/>
 </include>

 <!-- Load the URDF into the ROS Parameter Server -->
 <param name="robot_description" command="$(find xacro)/xacro.
py '$(find mastering_ros_robot_description_pkg)/urdf/seven_dof_arm.
xacro'" />

 <!-- Run a python script to the send a service call to gazebo_ros to
spawn a URDF robot -->

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[92]

 <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model"
respawn="false" output="screen"
 args="-urdf -model seven_dof_arm -param robot_description"/>
</launch>

Build the package called seven_dof_arm_gazebo from chapter_3_code in your
catkin workspace. This is the package we used for the robot arm simulation.

Launch the following command and check what you get:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_world.launch

You can see the robotic arm in Gazebo as shown in the following figure; if you get
this output, without any errors, you are done:

Figure 1 : Simulation of Seven DOF arm in Gazebo

Let's discuss the seven_dof_arm.xacro simulation model in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[93]

Adding colors and textures to the Gazebo robot
model
We can see in the simulated robot that, each link has different colors and textures.
The following tags inside the xacro file provide textures and colors to robot links:

 <gazebo reference="bottom_link">
 <material>Gazebo/White</material>
 </gazebo>
 <gazebo reference="base_link">
 <material>Gazebo/White</material>
 </gazebo>
 <gazebo reference="shoulder_pan_link">
 <material>Gazebo/Red</material>
 </gazebo>

Adding transmission tags to actuate the model
In order to actuate the robot using ROS controllers, we should define the
<transmission> element to link actuators to joints. Here is the macro defined
for transmission:

 <xacro:macro name="transmission_block" params="joint_name">
 <transmission name="tran1">
 <type>transmission_interface/SimpleTransmission</type>
 <joint name="${joint_name}">
 <hardwareInterface>PositionJointInterface</
hardwareInterface>
 </joint>
 <actuator name="motor1">
 <mechanicalReduction>1</mechanicalReduction>
 </actuator>
 </transmission>
 </xacro:macro>

Here, the <joint name = ""> is the joint in which we link the actuators. The
<type> element is the type of transmission. Currently, transmission_interface/
SimpleTransmission is only supported. The <hardwareInterface> element is
the type of hardware interface to load (position, velocity, or effort interfaces). The
hardware interface is loaded by the gazebo_ros_control plugin; we can see more
about this plugin in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[94]

Adding the gazebo_ros_control plugin
After adding the transmission tags, we should add the gazebo_ros_control
plugin in the simulation model in order to parse the transmission tags and assign
appropriate hardware interfaces and the control manager. The following code adds
the gazebo_ros_control plugin to the xacro file:

 <!-- ros_control plugin -->
 <gazebo>
 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.
so">
 <robotNamespace>/seven_dof_arm</robotNamespace>
 </plugin>
 </gazebo>

Here, the <plugin> element specifies the plugin name to be loaded, which is
libgazebo_ros_control.so. The <robotNamespace> element can be given as
the name of the robot; if we are not specifying the name, it will automatically
load the name of the robot from the URDF. We can also specify the controller
update rate (<controlPeriod>), location of robot_description (URDF) on
the parameter server (<robotParam>), and the type of robot hardware interface
(<robotSimType>). The default hardware interfaces are JointStateInterface,
EffortJointInterface, and VelocityJointInterface.

Adding a 3D vision sensor to Gazebo
In Gazebo, we can simulate the robot movement and its physics; other than that,
we can simulate sensors too.

To build a sensor in Gazebo, we have to model the behavior of that sensor in Gazebo.
There are some prebuilt sensor models in Gazebo that can be used directly in our
code without writing a new model.

Here, we are adding a 3D vision sensor called the Asus Xtion Pro model in Gazebo.
The sensor model is already implemented in the gazebo_ros_pkgs/gazebo_
plugins ROS package, which we already installed in our ROS system.

Each model in Gazebo is implemented as Gazebo-ROS plugins, which can be loaded
by inserting into the URDF file.

Here is how we include a Gazebo definition and physical robot model of Xtion Pro in
the seven_dof_arm.xacro robot xacro file:

<xacro:include filename="$(find mastering_ros_robot_description_pkg)/
urdf/sensors/xtion_pro_live.urdf.xacro"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[95]

Inside xtion_pro_live.urdf.xacro, we can see the following lines:

<?xml version="1.0"?>
<robot xmlns:xacro="http://ros.org/wiki/xacro">
 <xacro:include filename="$(find mastering_ros_robot_description_
pkg)/urdf/sensors/xtion_pro_live.gazebo.xacro"/>
...................
 <xacro:macro name="xtion_pro_live" params="name parent *origin
*optical_origin">
...................
 <link name="${name}_link">

 <visual>
 <origin xyz="0 0 0" rpy="0 0 0"/>
 <geometry>
 <mesh filename="package://mastering_ros_robot_description_
pkg/meshes/sensors/xtion_pro_live/xtion_pro_live.dae"/>
 </geometry>
 <material name="DarkGrey"/>
 </visual>
 </link>

</robot>

Here, we can see it includes another file called xtion_pro_live.gazebo.xacro,
which consists of the complete Gazebo definition of Xtion Pro.

We can also see a macro definition named xtion_pro_live, which contains the
complete model definition of Xtion Pro including links and joints:

<mesh filename="package://mastering_ros_robot_description_pkg/meshes/
sensors/xtion_pro_live/xtion_pro_live.dae"/>

In the macro definition, we are importing a mesh file of the Asus Xtion Pro, which
will be shown as the camera link in Gazebo.

In mastering_ros_robot_description_pkg/urdf/sensors/xtion_pro_live.
gazebo.xacro, we can see the Gazebo-ROS plugin of Xtion Pro. Here, we will
define the plugin as macro with RGB and depth camera support. Here is the
plugin definition:

 <plugin name="${name}_frame_controller"
filename="libgazebo_ros_openni_kinect.so">
 <alwaysOn>true</alwaysOn>
 <updateRate>6.0</updateRate>

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[96]

 <cameraName>${name}</cameraName>
 <imageTopicName>rgb/image_raw</imageTopicName>

 </plugin>

The plugin file name of Xtion Pro is libgazebo_ros_openni_kinect.so, and we
can define the plugin parameters such as camera name, image topics, and so on.

Simulating the robotic arm with Xtion Pro
After discussing the camera plugin definition in Gazebo, we can launch the complete
simulation using the following command:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_world.launch

We can see the robot model with a sensor on the top of the arm, as shown here:

Figure 2 : Simulation of seven DOF arm with Asus Xtion Pro in Gazebo

We can work with the Xtion Pro data from Gazebo and check whether it provides the
correct image output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[97]

Visualizing the 3D sensor data
We can just list out the topics generated while performing simulation, and here are
the topics generated by the sensor plugin:

$ rostopic list

Figure 3 : ROS topics generated by 3D sensor in Gazebo

Let's view the image data of a 3D vision sensor using the following tool called
image_view.

•	 View the RGB raw image:
$ rosrun image_view image_view image:=/rgbd_camera/rgb/image_raw

•	 View the IR raw image:
$ rosrun image_view image_view image:=/rgbd_camera/ir/image_raw

•	 View the depth image:

$ rosrun image_view image_view image:=/rgbd_camera/depth/image_raw

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[98]

Here is the screenshot with all these images:

Figure 4 : Viewing images of Xtion Pro in Gazebo

We can also view the point cloud data of this sensor in RViz.

Launch RViz using the following command:

$ rosrun rviz rviz -f /rgbd_camera_optical_frame

Add a PointCloud2 display type and Topic as /rgbd_camera/depth/points. Set
the Color Transformer option as RGB8. We will get a point cloud view as follows:

Figure 5 : Viewing point cloud data from Xtion Pro in RViz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[99]

Moving robot joints using ROS controllers
in Gazebo
In this section, we are going to discuss how to move each joint of the robot in Gazebo.

To move each joint, we need to assign a ROS controller. In each joint, we need to
attach a controller that is compatible with the hardware interface mentioned inside
the transmission tags.

A ROS controller mainly consists of a feedback mechanism, most probably a PID
loop, which can receive a set point, and control the output using the feedback from
the actuators.

The ROS controller will not directly communicate with the hardware, instead of
that, the robot hardware interface can talk with hardware. The main function of the
hardware interface is that it will act as a mediator between ROS controllers and the
Real Hardware/Simulator and allocate the necessary resources for the controllers
and check the resource conflicts too.

In this robot, we have defined the position controllers, velocity controllers, effort
controllers, and so on. The ROS controllers are provided by a set of packages called
ros_control.

For proper understanding of how to configure ROS controllers for the arm, we
should understand its concepts. We will discuss more on the ros_control packages,
different types of ROS controllers, and how a ROS controller interacts with the
Gazebo simulation.

Understanding the ros_control packages
The ros_control packages have the implementation of robot controllers, controller
managers, hardware interface, different transmission interface, and control toolboxes.
The ros_controls packages are composed of the following individual packages:

•	 control_toolbox: This package contains common modules (P.I.D and Sine)
that can be used by all controllers

•	 controller_interface: This package contains the interface base class for
controllers

•	 controller_manager: This package provides the infrastructure to load,
unload, start, and stop controllers

•	 controller_manager_msgs: This package provides the message and service
definition for the controller manager

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[100]

•	 hardware_interface: This contains the base class for the hardware
interfaces

•	 transmission_interface: This package contains the interface classes for the
transmission interface (differential, four bar linkage, joint state, position,
and velocity)

Different types of ROS controllers and hardware
interfaces
Let's see the list of ROS packages that contain the standard ROS controllers:

•	 joint_position_controller: This is a simple implementation of the joint
position controller

•	 joint_state_controller: This is a controller to publish joint states
•	 joint_effort_controller: This is an implementation of the joint effort

(force) controller

The following are some of the commonly used hardware interfaces in ROS:

•	 Joint Command Interfaces: This will send the commands to the hardware
°° Effort Joint Interface: This will send the effort command
°° Velocity Joint Interface: This will send the velocity command
°° Position Joint Interface: This will send the position command

•	 Joint State Interfaces: This will retrieve the joint states from the
actuators encoder

How the ROS controller interacts with Gazebo
Let's see how a ROS controller interacts with Gazebo. The following figure shows the
interconnection of the ROS controller, robot hardware interface, and simulator/real
hardware:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[101]

Figure 6 : Interacting ROS controllers with Gazebo

We can see the third-party tool such as navigation and MoveIt packages. These
packages can give the goal (set point) to the mobile robot controllers and robotic arm
controllers. These controllers can send the position, velocity, or effort to the robot
hardware interface.

The hardware interface allocates each resource for the controllers and sends values
to each resource. The detailed diagram of communications between the robot
controllers and robot hardware interfaces are shown as follows:

Figure 7 : Illustration of ROS controllers and hardware interfaces

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[102]

The hardware interface is decoupled from actual hardware and simulation. The
values from the hardware interface can be fed to Gazebo for simulation or to the
actual hardware, itself.

The hardware interface is a software representation of the robot and its abstract
hardware. The resource of the hardware interfaces are actuators, joints, and sensors.
Some resources are read-only such as joint states, IMU, force-torque sensors, and so
on and some are read and write compatible such as position, velocity, and effort joints.

Interfacing joint state controllers and joint position
controllers to the arm
Interfacing robot controllers to each joint is a simple task. The first task is to write
a configuration file for two controllers.

The joint state controllers will publish the joint states of the arm and the joint
position controllers can receive a goal position for each joint and can move each joint.

We will find the configuration file for the controller at seven_dof_arm_gazebo_
control.yaml in chapter_3_code/seven_dof_arm_gazebo/config.

Here is the configuration file definition:

seven_dof_arm:
 # Publish all joint states -----------------------------------
 joint_state_controller:
 type: joint_state_controller/JointStateController
 publish_rate: 50

 # Position Controllers ---------------------------------------
 joint1_position_controller:
 type: position_controllers/JointPositionController
 joint: shoulder_pan_joint
 pid: {p: 100.0, i: 0.01, d: 10.0}
 joint2_position_controller:
 type: position_controllers/JointPositionController
 joint: shoulder_pitch_joint
 pid: {p: 100.0, i: 0.01, d: 10.0}
 joint3_position_controller:
 type: position_controllers/JointPositionController
 joint: elbow_roll_joint
 pid: {p: 100.0, i: 0.01, d: 10.0}
 joint4_position_controller:
 type: position_controllers/JointPositionController
 joint: elbow_pitch_joint

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[103]

 pid: {p: 100.0, i: 0.01, d: 10.0}
 joint5_position_controller:
 type: position_controllers/JointPositionController
 joint: wrist_roll_joint
 pid: {p: 100.0, i: 0.01, d: 10.0}
 joint6_position_controller:
 type: position_controllers/JointPositionController
 joint: wrist_pitch_joint
 pid: {p: 100.0, i: 0.01, d: 10.0}
 joint7_position_controller:
 type: position_controllers/JointPositionController
 joint: gripper_roll_joint
 pid: {p: 100.0, i: 0.01, d: 10.0}

We can see that all the controllers are inside the namespace seven_dof_arm and the
first lines represents the joint state controllers, which will publish the joint state of
the robot at the rate of 50 Hz.

The remaining controllers are joint position controllers, which are assigned to the
first seven joints and also define the PID gains.

Launching the ROS controllers with Gazebo
If the controller configuration is ready, we can build a launch file that starts all
the controllers along with the Gazebo simulation. Navigate to chapter_3_code/
seven_dof_arm_gazebo/launch and open the seven_dof_arm_gazebo_control.
launch file:

<launch>
 <!-- Launch Gazebo -->
 <include file="$(find seven_dof_arm_gazebo)/launch/seven_dof_arm_
world.launch" />

 <!-- Load joint controller configurations from YAML file to
parameter server -->
 <rosparam file="$(find seven_dof_arm_gazebo)/config/seven_dof_arm_
gazebo_control.yaml" command="load"/>

 <!-- load the controllers -->
 <node name="controller_spawner" pkg="controller_manager"
type="spawner" respawn="false"
 output="screen" ns="/seven_dof_arm" args="joint_state_controller
 joint1_position_controller

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[104]

 joint2_position_controller
 joint3_position_controller
 joint4_position_controller
 joint5_position_controller
 joint6_position_controller
 joint7_position_controller"/>

 <!-- convert joint states to TF transforms for rviz, etc -->
 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="robot_state_publisher"
 respawn="false" output="screen">
 <remap from="/joint_states" to="/seven_dof_arm/joint_states" />
 </node>

</launch>

The launch files start the Gazebo simulation of the arm, load the controller
configuration, load the joint state controller and joint position controllers, and
at last, it runs the robot state publisher, which publishes the joint states and TF.

Let's check the controller topics generated after running this launch file:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_gazebo_control.launch

If the command is successful, we can see these messages in the terminal:

Figure 8 : Terminal messages while loading the ROS controllers of seven DOF arm

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[105]

Here are the topics generated from the controllers when we run this launch file:

$ rostopic list

Figure 9 : Position controller command topics of seven DOF arm

Moving the robot joints
After getting done with the preceding topics, we can start commanding positions to
each joint.

To move a robot joint in Gazebo, we have to publish a joint value with a message
type std_msgs/Float64 to the joint position controller command topics.

Here is an example of moving the fourth joint to 1.0 radians:

$ rostopic pub /seven_dof_arm/joint4_position_controller/command
std_msgs/Float64 1.0

Figure 10 : Moving a joint of the arm in Gazebo

We can also view the joint states of the robot by using the following command:

$ rostopic echo /seven_dof_arm/joint_states

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[106]

Simulating a differential wheeled robot in
Gazebo
We have seen the simulation of the robotic arm. In this section, we can
setup the simulation for the differential wheeled robot that we designed
in the previous chapter.

You will get the diff_wheeled_robot.xacro mobile robot description at
chapter_3_code/mastering_ros_robot_description_pkg/urdf.

Let's create a launch file to spawn the simulation model in Gazebo.

Navigate to chapter_3_code/diff_wheeled_robot_gazebo/launch and take
the diff_wheeled_gazebo.launch file. Here is the definition of this launch:

<launch>
 <!-- these are the arguments you can pass this launch file, for
example paused:=true -->
 <arg name="paused" default="false"/>
 <arg name="use_sim_time" default="true"/>
 <arg name="gui" default="true"/>
 <arg name="headless" default="false"/>
 <arg name="debug" default="false"/>

 <!-- We resume the logic in empty_world.launch -->
 <include file="$(find gazebo_ros)/launch/empty_world.launch">
 <arg name="debug" value="$(arg debug)" />
 <arg name="gui" value="$(arg gui)" />
 <arg name="paused" value="$(arg paused)"/>
 <arg name="use_sim_time" value="$(arg use_sim_time)"/>
 <arg name="headless" value="$(arg headless)"/>
 </include>

 <!-- urdf xml robot description loaded on the Parameter Server-->
 <param name="robot_description" command="$(find xacro)/xacro.py
'$(find mastering_ros_robot_description_pkg)/urdf/diff_wheeled_robot.
xacro'" />

 <!-- Run a python script to the send a service call to gazebo_ros to
spawn a URDF robot -->
 <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model"
respawn="false" output="screen"
 args="-urdf -model diff_wheeled_robot -param robot_description"/>

</launch>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[107]

To launch this file, we can use the following command:

$ roslaunch diff_wheeled_robot_gazebo diff_wheeled_robot_gazebo.launch

You will see the following robot model in Gazebo. If you got this model, you have
successfully finished the first phase of simulation:

Figure 11 : Differential wheeled robot in Gazebo

After successful simulation, let's add the laser scanner to the robot. In the preceding
figure, we can see a box on the top of the robot, which is the sensor we added to the
URDF, and here is how we do it.

Adding the laser scanner to Gazebo
We add the laser scanner on the top of Gazebo in order to perform high-end operations
such as autonomous navigation using this robot. Here, we can see that an extra code
section needed to be added in diff_wheeled_robot.xacro to have the laser scanner
on the robot:

 <link name="hokuyo_link">
 <visual>
 <origin xyz="0 0 0" rpy="0 0 0" />
 <geometry>
 <box size="${hokuyo_size} ${hokuyo_size} ${hokuyo_size}"/>
 </geometry>
 <material name="Blue" />
 </visual>
 </link>

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[108]

 <joint name="hokuyo_joint" type="fixed">
 <origin xyz="${base_radius - hokuyo_size/2} 0 ${base_
height+hokuyo_size/4}" rpy="0 0 0" />
 <parent link="base_link"/>
 <child link="hokuyo_link" />
 </joint>
 <gazebo reference="hokuyo_link">
 <material>Gazebo/Blue</material>
 <turnGravityOff>false</turnGravityOff>
 <sensor type="ray" name="head_hokuyo_sensor">
 <pose>${hokuyo_size/2} 0 0 0 0 0</pose>
 <visualize>false</visualize>
 <update_rate>40</update_rate>
 <ray>
 <scan>
 <horizontal>
 <samples>720</samples>
 <resolution>1</resolution>
 <min_angle>-1.570796</min_angle>
 <max_angle>1.570796</max_angle>
 </horizontal>
 </scan>
 <range>
 <min>0.10</min>
 <max>10.0</max>
 <resolution>0.001</resolution>
 </range>
 </ray>
 <plugin name="gazebo_ros_head_hokuyo_controller"
filename="libgazebo_ros_laser.so">
 <topicName>/scan</topicName>
 <frameName>hokuyo_link</frameName>
 </plugin>
 </sensor>
 </gazebo>

In this section, we use the Gazebo ROS plugin file called libgazebo_ros_laser.so
to simulate the laser scanner.

We can view the laser scanner data by adding some objects in the simulation
environment. Here, we add some cylinders around the robot and can see the
corresponding laser view in the next section of the figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[109]

Figure 12 : Differential drive robot in random object in Gazebo

The laser scanner plugin publishes laser data to scan a topic; we can just echo the
topic to get the laser scan data array:

$ rostopic echo /scan

Moving the mobile robot in Gazebo
The robot we are working with is a differential robot with two wheels, and two
caster wheels. The complete characteristics of the robot should model as the
Gazebo-ROS plugin for the simulation. Luckily, the plugin for a basic differential
drive is already implemented.

In order to move the robot in Gazebo, we should add a Gazebo ROS plugin file called
libgazebo_ros_diff_drive.so to get the differential drive behavior in this robot.

Here is the complete code snippet of the definition of this plugin and its parameters:

 <!-- Differential drive controller -->
 <gazebo>
 <plugin name="differential_drive_controller" filename="libgazebo_
ros_diff_drive.so">

 <rosDebugLevel>Debug</rosDebugLevel>
 <publishWheelTF>false</publishWheelTF>
 <robotNamespace>/</robotNamespace>
 <publishTf>1</publishTf>
 <publishWheelJointState>false</publishWheelJointState>
 <alwaysOn>true</alwaysOn>
 <updateRate>100.0</updateRate>

 <leftJoint>front_left_wheel_joint</leftJoint>

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[110]

 <rightJoint>front_right_wheel_joint</rightJoint>

 <wheelSeparation>${2*base_radius}</wheelSeparation>
 <wheelDiameter>${2*wheel_radius}</wheelDiameter>
 <broadcastTF>1</broadcastTF>
 <wheelTorque>30</wheelTorque>
 <wheelAcceleration>1.8</wheelAcceleration>
 <commandTopic>cmd_vel</commandTopic>
 <odometryFrame>odom</odometryFrame>
 <odometryTopic>odom</odometryTopic>
 <robotBaseFrame>base_footprint</robotBaseFrame>

 </plugin>
 </gazebo>

We can provide the parameters such as wheel joints of the robot (joints should be of
a continuous type), wheel separation, wheel diameters, odometry topic, and so on in
this plugin.

An important parameter that we need to move the robot is

<commandTopic>cmd_vel</commandTopic>

This parameter is the command velocity topic to the plugin, which is basically a
Twist message in ROS (sensor_msgs/Twist). We can publish the Twist message
into the /cmd_vel topic and we can see the robot start moving from its position.

Adding joint state publishers in the launch file
After adding the differential drive plugin, we need to joint state publishers to the
existing launch file, or we can build a new one. You can see the new final launch
file: diff_wheeled_gazebo_full.launch from chapter_3_code/diff_wheeled_
robot_gazebo/launch.

The launch file contains joint state publishers, which help to visualize in RViz. Here
are the extra lines added in this launch file for the joint state publishing:

 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" ></node>
 <!-- start robot state publisher -->
 <node pkg="robot_state_publisher" type="state_publisher"
name="robot_state_publisher" output="screen" >
 <param name="publish_frequency" type="double" value="50.0" />
 </node>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[111]

Adding the ROS teleop node
The ROS teleop node publishes the ROS Twist command by taking keyboard inputs.
From this node, we can generate both linear and angular velocity and there is already
a standard teleop node implementation available; we can simply reuse the node.

The teleop implemented in chapter_3_code/diff_wheeled_robot_control
package. The script folder contains the diff_wheeled_robot_key node, which
is the teleop node.

Here is the launch file called keyboard_teleop.launch to start the teleop node:

 <launch>
 <!-- differential_teleop_key already has its own built in velocity
smoother -->
 <node pkg="diff_wheeled_robot_control" type="diff_wheeled_robot_key"
name="diff_wheeled_robot_key" output="screen">

 <param name="scale_linear" value="0.5" type="double"/>
 <param name="scale_angular" value="1.5" type="double"/>
 <remap from="turtlebot_teleop_keyboard/cmd_vel" to="/cmd_vel"/>
 </node>
</launch>

Let's start moving the robot.

Launch the Gazebo with complete simulation settings using the following command:

$ roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo_full.launch

Start the teleop node:

$ roslaunch diff_wheeled_robot_control keyboard_teleop.launch

Start RViz to visualize the robot state and laser data:

$ rosrun rviz rviz

Add Fixed Frame : /odom, add Laser Scan and the topic as /scan to view the
laser scan data and add the Robot model to view the robot model.

In the teleop terminal, we can use some keys (U, I, O, J, K, L, M, "," , ".") for direction
adjustment and other keys (Q, Z, W, X, E, C, K, space key) for speed adjustments.
Here is the screenshot showing the robot moving in Gazebo using teleop and its
visualization in RViz.

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating Robots Using ROS and Gazebo

[112]

We can add primitive shapes from the Gazebo toolbar to the robot environment or
we can add objects from the online library, which is on the left side panel.

Figure 13 : Moving differential drive robot in Gazebo using teleoperation

The robot will only move when we press the appropriate key inside the teleop node
terminal. If this terminal is not active, pressing the key will not move the robot. If
everything works well, we can explore the area using the robot and visualizing the
laser data in RViz.

Questions
1.	 Why do we perform robotic simulation?
2.	 How can we add sensors into a Gazebo simulation?
3.	 What are the different types of ROS controllers and hardware interfaces?
4.	 How can we move the mobile robot in a Gazebo simulation?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[113]

Summary
After designing the robot, the next phase is its simulation. There are a lot of uses in
simulation. We can validate a robot design, and at the same time, we can work with
a robot without having its real hardware. There are some situations when we need to
work without having a robot hardware. Simulators are useful in all these situations.

In this chapter, we were trying to simulate two robots, one was a robotic arm with
seven DOF and the other was a differential wheeled mobile robot. We started with
the robotic arm, and discussed the additional Gazebo tags needed to launch the robot
in Gazebo. We discussed how to add a 3D vision sensor to the simulation. Later, we
created a launch file to start Gazebo with a robotic arm and discussed how to add
controllers to each joint. We added the controllers and worked with each joint.

Similar to the robotic arm, we created the URDF for Gazebo simulation and added
the necessary Gazebo ROS plugin for the laser scanner and differential drive
mechanism. After completing the simulation model, we launched the simulation
using a custom launch file. At last, we have seen how to move the robot using the
teleop node.

We will get to know more about the robotic arm and mobile robots, which are
supported by ROS, from the following link http://wiki.ros.org/Robots.

In the next chapter, we can see how to interface the robotic arm with the ROS MoveIt
package and the mobile robot with the Navigation stack.

www.it-ebooks.info

http://wiki.ros.org/Robots
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[115]

Using the ROS MoveIt!
and Navigation Stack

In the previous chapters, we have been discussing about the designing and
simulation of a robotic arm and mobile robot. We controlled each joint of the robotic
arm in Gazebo using the ROS controller and moved the mobile robot inside Gazebo
using the teleop node.

In this chapter, we are going to interface out of the box functionalities, such as
robot manipulation and autonomous navigation using the ROS MoveIt! and
Navigation stack.

MoveIt! is a set of packages and tools for doing mobile manipulation in ROS. The
official web page (http://moveit.ros.org/) contains the documentations, the
list of robots using MoveIt!, and various examples to demonstrate pick and place,
grasping, simple motion planning using inverse kinematics, and so on.

MoveIt! contains state of the art software for motion planning, manipulation, 3D
perception, kinematics, collision checking, control, and navigation. Apart from the
command line interface, MoveIt! has some good GUI to interface a new robot to
MoveIt!. Also, there is a RViz plugin which enables motion planning from RViz
itself. We will also see how to motion plan our robot using MoveIt! C++ APIs.

Next is the Navigation stack, and of course this is another set of powerful tools and
libraries to work mainly for mobile robot navigation. The Navigation stack contains
ready-to-use navigation algorithms which can be used in mobile robots, especially for
differential wheeled robots. Using these stacks, we can make the robot autonomous
and that is the final concept that we are going to see in the Navigation stack.

www.it-ebooks.info

http://moveit.ros.org/
http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[116]

The first section of this chapter will discuss more on the MoveIt! package, installation,
and architecture. After discussing the main concepts of MoveIt!, we will see how to
create a MoveIt! package for our robotic arm, which can provide collision-aware path
planning to our robot. Using this package, we can perform motion planning (inverse
kinematics) in RViz, and can interface to Gazebo or the real robot for executing
the paths.

After discussing the interfacing, we will discuss more about the Navigation stack
and see how to perform autonomous navigation using Simultaneous Localization
And Mapping (SLAM) and Adaptive Monte Carlo Localization (AMCL).

Installing MoveIt!
Let's start with installing MoveIt!. The installation procedure is very simple and is
just a single command.

Installing MoveIt! on ROS Indigo can be done using the following command.
Here we are installing MoveIt! binary packages.

$ sudo apt-get install ros-indigo-moveit-full

In ROS Jade, we can install MoveIt! using the following command:

$ sudo apt-get install ros-jade-moveit-ros ros-jade-moveit-plugins
ros-jade-moveit-planners

MoveIt! architecture
Let's start with MoveIt! and its architecture. Understanding the architecture of
MoveIt! helps to program and interface the robot to MoveIt!. We will quickly go
through the architecture and the important concepts of MoveIt!, and start interfacing
and programming our robots.

Here is the MoveIt! architecture, included in their official web page at
http://moveit.ros.org/documentation/concepts:

www.it-ebooks.info

http://moveit.ros.org/documentation/concepts
http://www.it-ebooks.info/

Chapter 4

[117]

Figure 1: MoveIt! architecture diagram

The move_group node
We can say that move_group is the heart of MoveIt! as this node acts as an integrator
of the various components of the robot and delivers actions/services according to the
user's needs.

From the architecture, it's clear that the move_group node collects robot information
such as point cloud, joint state of the robot, and transform (T.F) of the robot in the
form of topics and services.

From the parameter server, it collects the robot kinematics data, such as robot_
description (URDF), SRDF (Semantic Robot Description Format), and the
configuration files. The SRDF file and the configuration files are generated while
we generate a MoveIt! package for our robot. The configuration files contain the
parameter file for setting joint limits, perception, kinematics, end effector, and so on.
We will see the files when we discuss generating the MoveIt! package for our robot.

When MoveIt! gets all this information about the robot and its configuration, we can
say it is properly configured and we can start commanding the robot from the user
interfaces. We can either use C++ or Python MoveIt! APIs to command the move_
group node to perform actions such as pick/place, IK, FK, among others. Using the
RViz motion planning plugin, we can command the robot from the RViz GUI itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[118]

As we already discussed, the move_group node is an integrator; it does not run any
kind of motion planning algorithms but instead connects all the functionalities as
plugins. There are plugins for kinematics solvers, motion planning, and so on. We
can extend the capabilities through these plugins.

After motion planning, the generated trajectory talks to the controllers in the robot
using the FollowJointTrajectoryAction interface. This is an action interface in
which an action server is run on the robot, and move_node initiates an action client
which talks to this server and executes the trajectory on the real robot/Gazebo
simulator.

At the end of the MoveIt! discussion, we will see how to talk from MoveIt! RViz GUI
to Gazebo. Following is a screenshot showing a robotic arm that is controlling from
RViz and the trajectory is executed inside Gazebo:

Figure 2 : Trajectory from RViz GUI is executing in Gazebo

Motion planning using MoveIt!
Assume that we know the starting pose of the robot, a desired goal pose of the robot,
the geometrical description of the robot, and geometrical description of the world,
then motion planning is the technique to find an optimum path that moves the robot
gradually from the start pose to the goal pose, while never touching any obstacles in
the world and without colliding with the robot links.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

Here the geometrical description of the robot is our URDF file and the geometrical
description of the world can also be included in URDF and using laser scanner/3D
vision sensor we can generate the world in 3D, which can help to avoid dynamic
obstacles rather than static objects defined using URDF.

In the case of the robotic arm, the motion planner should find a trajectory (consisting
of joint spaces of each joint) in which the links of the robot should never collide with
the environment, avoid self-collision (collision between two robot links), and also not
violate the joint limits.

MoveIt! can talk to the motion planners through the plugin interface. We can use any
motion planner by simply changing the plugin. This method is highly extensible so
we can try our own custom motion planners using this interface. The move_group
node talks to the motion planner plugin via the ROS action/services. The default
planner for the move_group node is OMPL (http://ompl.kavrakilab.org/).

To start motion planning, we should send a motion planning request to the motion
planner which specified our planning requirements. The planning requirement
may be setting a new goal pose of the end-effector, for example, for a pick and
place operation.

We can set additional kinematic constraints for the motion planners. Given next are
some inbuilt constraints in MoveIt!:

•	 Position constraints: These restrict the position of a link
•	 Orientation constraints: These restrict the orientation of a link
•	 Visibility constraints: These restrict a point on the link to be visible

in a particular area (view of a sensor)
•	 Joint constraints: These restrict a joint within its joint limits
•	 User-specified constraints: Using these constraints, the user can define

his own constraints using the callback functions

Using these constraints, we can send a motion planning request and the planner
will generate a suitable trajectory according to the request. The move_group node
will generate the suitable trajectory from the motion planner which obeys all the
constraints. This can be sent to robot joint trajectory controllers.

www.it-ebooks.info

http://ompl.kavrakilab.org/
http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[120]

Motion planning request adapters
The planning request adapters help to pre-process the motion planning request
and post process the motion planning response. One of the uses of pre-processing
requests is that it helps to correct if there is a violation in the joints states and, for
the post processing, it can convert the path generated by the planner to a time-
parameterized trajectory. Following are some of the default planning request
adapters in MoveIt!:

•	 FixStartStateBounds: If a joint state is slightly outside the joint limits, then
this adapter can fix the initial joint limits within the limits.

•	 FixWorkspaceBounds: This specifies a workspace for planning with a cube
size of 10m x 10m x 10m.

•	 FixStartStateCollision: This adapter samples a new collision free
configuration if the existing joint configuration is in collision. It makes a new
configuration by changing the current configuration by a small factor called
jiggle_factor.

•	 FixStartStatePathConstraints: This adapter is used when the initial pose
of the robot does not obey the path constraints. In this, it finds a near pose
which satisfies the path constraints and uses that pose as the initial state.

•	 AddTimeParameterization: This adapter parameterizes the motion plan by
applying the velocity and acceleration constraints.

MoveIt! planning scene
The term planning scene is used to represent the world around the robot and also
store the state of the robot itself. The planning scene monitor inside move_group
maintains the planning scene representation. The move_group node consists
of another section called the world geometry monitor, which builds the world
geometry from the sensors of the robot and from the user input.

The planning scene monitor reads the joint_states topic from the robot, and
the sensor information and world geometry from the world geometry monitor.
The world scene monitor reads from the occupancy map monitor, which uses
3D perception to build a 3D representation of the environment, called Octomap.
The Octomap can be generated from point clouds which are handled by a point
cloud occupancy map update plugin and depth images handled by a depth
image occupancy map updater. The following image shows the representation
of the planning scene from the MoveIt! official wiki (http://moveit.ros.org/
documentation/concepts/):

www.it-ebooks.info

http://moveit.ros.org/documentation/concepts/
http://moveit.ros.org/documentation/concepts/
http://www.it-ebooks.info/

Chapter 4

[121]

Figure 3 : MoveIt! planning scene overview diagram

MoveIt! kinematics handling
MoveIt! provides a great flexibility to switch the inverse kinematics algorithms using
the robot plugins. Users can write their own IK solver as a MoveIt! plugin and switch
from the default solver plugin whenever required. The default IK solver in MoveIt! is a
numerical jacobian-based solver.

Compared to the analytic solvers, the numerical solver can take time to solve IK.
The package called IKFast can be used to generate a C++ code for solving IK using
analytical methods, which can be used for different kinds of robot manipulator and
perform better if the DOF is less than 6. This C++ code can also be converted into
the MoveIt! plugin by using some ROS tool. We will look at this procedure in the
upcoming chapters.

Forward kinematics and finding jacobians are already integrated to the MoveIt!
RobotState class, so we don't need to use plugins for solving FK.

MoveIt! collision checking
The CollisionWorld object inside MoveIt! is used to find collisions inside a planning
scene which is using the FCL (Flexible Collision Library) package as a backend.
MoveIt! supports collision checking for different types of objects, such as meshes,
primitive shapes such as boxes, cylinders, cones, spheres, and such, and Octomap.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[122]

The collision checking is one of the computationally expensive tasks during motion
planning. To reduce this computation, MoveIt! provides a matrix called ACM
(Allowed Collision Matrix). It contains a binary value corresponding to the need to
check for collision between two pairs of bodies. If the value of matrix is 1, it means
collision of the corresponding pair is not needed. We can set the value as 1 where the
bodies are always so far that they would never collide with each other. Optimizing
ACM can reduce the total computation needed for collision avoidance.

After discussing the basic concepts in MoveIt!, we can now discuss how to interface
a robotic arm into MoveIt!. For interfacing a robot arm in MoveIt!, we need to satisfy
the components that we saw in Figure 1. The move_group node essentially requires
parameters such as URDF, SRDF, config files, and joint states topics along with TF
from a robot to start with motion planning.

MoveIt! provides a GUI based tool called Setup Assistant to generate all these
elements. Following is the procedure to generate a MoveIt! configuration from the
Setup Assistant tool.

Generating MoveIt! configuration
package using Setup Assistant tool
The MoveIt! Setup Assistant is a graphical user interface for configuring any
robot to MoveIt!. Basically, this tool generates SRDF, configuration files, launch files,
and scripts generating from the robot URDF model, which is required to configure
the move_group node.

The SRDF file contains details about the arm joints, end effector joints, virtual
joints, and also the collision link pairs which are configured during the MoveIt!
configuration process using the Setup Assistant tool.

The configuration file contains details about the kinematic solvers, joint limits,
controllers, and so on, which are also configured and saved during the configuration
process.

Using the generated configuration package of the robot, we can work with motion
planning in RViz without the presence of a real robot or simulation interface.

Let's start the configuration wizard, and we can see the step by step procedure to
build the configuration package of our robotic arm.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

Step 1 – Launching the Setup Assistant
tool

•	 To start the MoveIt! Setup Assistant tool, we can use the following
command:
$ roslaunch moveit_setup_assistant setup_assistant.launch

•	 This will bring up a window with two choices: Create New MoveIt!
Configuration Package or Edit Existing MoveIt! Configuration Package.
Here we are creating a new package, so we need that option. If we have a
MoveIt! package already, then we can select the second option.

•	 Click on the button Create New MoveIt! Configuration Package, which will
bring a new screen, as shown next:

Figure 4 : MoveIt Setup Assistant

•	 In this step, the wizard asks for the URDF model of the new robot. To give
the URDF file, click on the Browse button and navigate to mastering_ros_
robot_description_pkg/urdf/ seven_dof_arm.xacro. Choose this file
and press the Load button to load the URDF. We can either give the robot
model as pure URDF or xacro, if we give xacro, the tool will convert to
URDF internally.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[124]

•	 If the robot model is successfully parsed, we can see the robot model on the
window, as shown next:

Figure 5 : Successfully parsing the robot model in the Setup Assistant tool

Step 2 – Generating the Self-Collision matrix
•	 In this step, MoveIt! searches for a pair of links on the robot which can be

safely disabled from the collision checking. These can reduce the processing
time. This tool analyses each link pair and categorizes the links as always in
collision, never in collision, default in collision, adjacent links disabled, and
sometimes in collision, and it disables the pair of links which makes any kind
of collision. The following image shows the Self-Collisions window:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

Figure 6 : Regenerating the Self-Collision matrix

•	 The sampling density is the number of random positions to check for self-
collision. If the density is large, computation will be high but self-collision
will be less. The default value is 10,000. We can see the disabled pair of links
by pressing the Regenerate Default Collision Matrix button; it will take a
few seconds to list out the disabled pair of links.

Step 3 – Adding virtual joints
•	 Virtual joints attach the robot to the world. It is not mandatory for a static

robot which does not move. We need virtual joints when the base position
of the arm is not fixed. For example, if a robot arm is fixed on a mobile robot,
we should define a virtual joint with respect to the odom frame.

•	 In the case of our robot, we are not creating virtual joints.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[126]

Step 4 – Adding planning groups
•	 A planning group is basically a group of joints/links in a robotic arm

which plans together in order to achieve a goal position of a link or the end
effector. We have to create two planning groups, one for the arm and one for
the gripper.

•	 Click on the Planning Groups tab on the left side and click on the Add
Group button. You will see the following screen, which has the settings of
the arm group:

Figure 7 : Adding the planning group of the arm

•	 Here we are giving Group Name as arm, and Kinematic Solver as kdl_
kinematics_plugin/KDLKinematicsPlugin, which is the default numerical
IK solver with MoveIt!. We can keep the other parameters as the default
values.

•	 Inside the arm group, first we have to add a kinematic Chain. We have to add
base_link as the first link to grasping_frame.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[127]

•	 Add a group called gripper and we don't need to have a kinematic solver
for the gripper group. Inside this group, we can add the joints and links of
the gripper. These settings are shown next:

Figure 8 : Adding the planning group of the arm and gripper

Step 5 – Adding the robot poses
•	 In this step, we can add certain fixed poses in the robot configuration.

For example, we can assign a home position or a pick/place position in
this step. The advantage is that while programming with MoveIt! APIs,
we can directly call these poses, which are also called group states. This has
many applications in the pick/place and grasping operation. The robot can
switch to the fixed poses without any hassle.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[128]

Step 6 – Setup the robot end effector
•	 In this step, we name the robot end effector and assign the end effector

group, the parent link, and the parent group.
•	 We can add any number of end effectors to this robot. In our case, it's a

gripper designed for pick and place operation.
•	 Click on the Add End Effector button and name the end effector as

robot_eef, planning group as gripper which we have already created,
parent link as grasping_frame, and parent group as arm.

Figure 9 : Adding end effectors

Step 7 – Adding passive joints
•	 In this step, we can specify the passive joints in the robot. Passive joints

mean that the joints do not have any actuators. Caster wheels are one of the
examples of passive joints. The planner will ignore these kind of joints during
motion planning.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[129]

Step 8 – Generating configuration files
•	 We are almost done!! We are in the final stage, that is, generating the

configuration files. In this step, the tool will generate a configuration package
which contains the file needed to interface MoveIt!.

•	 Click on the Browse button to locate a folder to save the configuration file
that is going to be generated by the Setup Assistant tool. Here we can see
the files are generating inside a folder called seven_dof_config. You can
add _config or _generated along with the robot name for the configuration
package.

•	 Click on the Generate Package button, and it will generate the files to the
given folder.

•	 If the process is successful, we can click on Exit Setup Assistant, which will
exit us from the tool.

•	 Following is the screenshot of the generation process:

Figure 10 : Generating the MoveIt! configuration package

After generating the MoveIt! configuration package, we can copy it into our catkin
workspace and build it using the catkin_make command. In the following section,
we are going to work with this package.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[130]

Motion planning of robot in RViz using
MoveIt! configuration package
MoveIt! provides a plugin for RViz which allows it to create new planning scenes
where robot works, generate motion plans, add new objects, visualize the planning
output and can directly interact with the visualized robot.

The MoveIt! configuration package consists of configuration files and launch files to
start motion planning in RViz. There is a demo launch file in the package to explore
all the functionalities of this package.

Following is the command to invoke the demo launch file:

$ roslaunch seven_dof_arm_config demo.launch

If everything works fine, we will get the following screen of RViz being loaded with
the MotionPlanning plugin provided by MoveIt!:

Figure 11 : MoveIt! - RViz motion planning interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[131]

Using the RViz MotionPlanning plugin
From the preceding Figure 11, we can see that the RViz-Motion Planning plugin is
loaded on the left side of the screen. There are several tabs on the Motion Planning
window, such as Context, Planning, and so on. The default tab is the Context tab
and we can see the default Planning Library as OMPL, which is shown in green. It
indicates that MoveIt! successfully loaded the motion planning library. If it is not
loaded, we can't perform motion planning.

Next is the Planning tab. This is one of the frequently used tabs used to assign the
Start State, Goal State Plan a path, and execute the path. Shown next is the GUI of
the Planning tab:

Figure 12 : MoveIt! -RViz Planning tab

We can assign the start state and the goal state of the robot under the Query panel.
Using the Plan button, we can plan the path from the start to the goal state, and if
the planning is successful, we can execute it. By default, execution is done on fake
controllers. We can change these controllers into trajectory controllers for executing
the planned trajectory in Gazebo or the real robot.

We can set the starting and the goal position of the robot end effector by using the
interactive marker attached on the arm gripper. We can translate and rotate the
marker pose, and if there is a planning solution, we can see an arm in orange color.
In some situations, the arm will not move even the end effector marker pose moves,
and if the arm does not come to the marker position, we can assume that there is no
IK solution in that pose. We may need more DOF to reach there or there might be
some collision between the links.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[132]

Following are the screenshots of a valid goal pose and an invalid goal pose:

Figure 13 : A valid pose and an invalid pose of the robot in RViz

The green color arm represents the starting position of the arm, and the orange color
represents the goal position. In the first figure, if we press the Plan button, MoveIt!
plans a path from start to goal. In the second image, we can observe two things.
First, one of the links of the orange arm is red which means that the goal pose is in
a self-collided state. Secondly, look at the end effector marker; it is far from the actual
end effector and it has also turned red.

We can also work with some quick motion planning using random valid options in
the Start State and the Goal State. If we select the goal state as random valid and
press the Update button, it will generate a random valid goal pose. Click on the Plan
button and we can see the motion planning.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[133]

We can customize the RViz visualization using the various options in the
MotionPlanning plugin. Shown next are some of the options of this plugin:

Figure 14 : Settings of the MotionPlanning plugin on RViz

•	 The first marked area is Scene Robot which will show the robot model; if it is
unchecked, we won't see any robot model

•	 The second marked area is the Trajectory Topic, in which RViz gets the
visualization trajectory

•	 If we want to animate the motion planning and want to display the motion
trails, we should enable this option

One of the other sections in the plugin settings is shown in the following image:

Figure 15 : Planning Request setting in MotionPlanning plugin

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[134]

In the preceding figure, we can see the Query Start State and the Query Goal
State options. These options can visualize the start pose and the goal pose of the
arm which we saw in Figure 13. Show Workspace visualizes the cubic workspace
(world geometry) around the robot. The visualization can help to debug our motion
planning algorithm and understand the robot motion behavior in detail.

In the next section, we will see how to interface the MoveIt! configuration package to
Gazebo. This will execute the trajectory generated by MoveIt! in Gazebo.

Interfacing the MoveIt! configuration package
to Gazebo
We have already worked with the Gazebo simulation of this arm and attached
controllers to it. For interfacing the arm in MoveIt! to Gazebo, we need a trajectory
controller which has the FollowJointTrajectoryAction interface, as we mentioned
in the MoveIt! architecture.

Following is the procedure to interface MoveIt! to Gazebo:

Step 1 – Writing the controller configuration
file for MoveIt!
The first step is to create a configuration file for talking with the trajectory controllers
in Gazebo from MoveIt!. The controller configuration file called controllers.yaml
has to be created inside the config folder of the seven_dof_arm_config package.

Locate the file controllers.yaml from the chapter_4_codes/seven_dof_arm_
config/config folder for getting the controller definition.

Given next is the controllers.yaml definition:

controller_manager_ns: controller_manager
controller_list:
 - name: seven_dof_arm/seven_dof_arm_joint_controller
 action_ns: follow_joint_trajectory
 type: FollowJointTrajectory
 default: true
 joints:
 - shoulder_pan_joint
 - shoulder_pitch_joint
 - elbow_roll_joint
 - elbow_pitch_joint
 - wrist_roll_joint

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[135]

 - wrist_pitch_joint
 - gripper_roll_joint

 - name: seven_dof_arm/gripper_controller
 action_ns: follow_joint_trajectory
 type: FollowJointTrajectory
 default: true
 joints:
 - finger_joint1
 - finger_joint2

The controller configuration file contains the definition of the two controller
interfaces; one is for arm and the other is for gripper. The type of action used in the
controllers is FollowJointTrajectory, and the action namespace is follow_joint_
trajectory. We have to list out the joints under each group. The default: true
indicates that it will use the default controller, which is the primary controller in
MoveIt! for communicating with the set of joints.

Step 2 – Creating the controller launch files
Next, we have to create a new launch file called seven_dof_arm_moveit_
controller_manager.launch which can start the trajectory controllers. The name
of the file starts with the robot name, which is added with _moveit_controller_
manager.

Locate the chapter_4_codes/seven_dof_arm_config/launch folder for getting
this file.

Following is the launch file definition:

<launch>
 <!-- Set the param that trajectory_execution_manager needs to find
the controller plugin -->
 <arg name="moveit_controller_manager" default="moveit_simple_
controller_manager/MoveItSimpleControllerManager" />
 <param name="moveit_controller_manager" value="$(arg moveit_
controller_manager)"/>

 <!-- load controller_list -->
 <arg name="use_controller_manager" default="true" />
 <param name="use_controller_manager" value="$(arg use_controller_
manager)" />

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[136]

 <!-- Load joint controller configurations from YAML file to
parameter server -->
 <rosparam file="$(find seven_dof_arm_config)/config/controllers.
yaml"/>
</launch>

This launch file starts the MoveItSimpleControllerManager and loads the joint
trajectory controllers defined inside controllers.yaml.

Step 3 – Creating the controller configuration
file for Gazebo
After creating the MoveIt! files, we have to create the Gazebo controller configuration
file and the launch file.

Create a new file called trajectory_control.yaml which contains the list of the
Gazebo ROS controllers that need to be loaded along with Gazebo.

You will get this file from the chapter_4_codes/seven_dof_arm_gazebo/config
folder.

Following is the definition of this file:

seven_dof_arm:
 seven_dof_arm_joint_controller:
 type: "position_controllers/JointTrajectoryController"
 joints:
 - shoulder_pan_joint
 - shoulder_pitch_joint
 - elbow_roll_joint
 - elbow_pitch_joint
 - wrist_roll_joint
 - wrist_pitch_joint
 - gripper_roll_joint

 gains:
 shoulder_pan_joint: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
 shoulder_pitch_joint: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
 elbow_roll_joint: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
 elbow_pitch_joint: {p: 1000.0, i: 0.0, d: 0.1, i_clamp:
0.0}
 wrist_roll_joint: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
 wrist_pitch_joint: {p: 1000.0, i: 0.0, d: 0.1, i_clamp:
0.0}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[137]

 gripper_roll_joint: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}

 gripper_controller:
 type: "position_controllers/JointTrajectoryController"
 joints:
 - finger_joint1
 - finger_joint2
 gains:
 finger_joint1: {p: 50.0, d: 1.0, i: 0.01, i_clamp: 1.0}
 finger_joint2: {p: 50.0, d: 1.0, i: 0.01, i_clamp: 1.0}

Here we created a position_controllers/JointTrajectoryController
which has an action interface of FollowJointTrajectory for both the arm and
the gripper. We also defined the PID gain associated with each joint which can
provide smooth motion.

Step 4 – Creating the launch file for Gazebo
trajectory controllers
After creating the configuration file, we can load the controllers along with Gazebo.
We have to create a launch file which launches Gazebo, the trajectory controllers,
and the MoveIt! interface in a single command.

The launch file seven_dof_arm_bringup_moveit.launch contains the definition to
launch all these commands:

<launch>
 <!-- Launch Gazebo -->
 <include file="$(find seven_dof_arm_gazebo)/launch/seven_dof_arm_
world.launch" />

 <!-- ros_control seven dof arm launch file -->
 <include file="$(find seven_dof_arm_gazebo)/launch/seven_dof_arm_
gazebo_states.launch" />

 <!-- ros_control position control dof arm launch file -->
 <!--<include file="$(find seven_dof_arm_gazebo)/launch/seven_dof_
arm_gazebo_position.launch" /> -->

 <!-- ros_control trajectory control dof arm launch file -->
 <include file="$(find seven_dof_arm_gazebo)/launch/seven_dof_arm_
trajectory_controller.launch" />

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[138]

 <!-- moveit launch file -->
 <include file="$(find seven_dof_arm_config)/launch/moveit_planning_
execution.launch" />

</launch>

This launch file spawns the robot model in Gazebo, publishes the joint states,
attaches the position controller, attaches the trajectory controller, and at last launches
moveit_planning_execution.launch inside the MoveIt! package for starting the
MoveIt! nodes along with RViz. We may need to load the MotionPlanning plugin in
RViz if it is not loaded by default.

We can start motion planning inside RViz and execute in Gazebo using the following
single command:

$ roslaunch seven_dof_arm_config seven_dof_arm_bringup_moveit.launch

This will launch RViz and Gazebo, and we can do motion planning inside RViz.
After motion planning, click on the Execute button to send the trajectory to the
Gazebo controllers.

Figure 16 : Gazebo trajectory controllers executing the trajectory from MoveIt!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[139]

Step 5 – Debugging the Gazebo- MoveIt!
interface
In this section, we will discuss some of the common issues and debugging techniques
in this interface.

If the trajectory is not executing on Gazebo first list the topics.

$ rostopic list

If the Gazebo controllers are started properly, we will get the following joint
trajectory topics in the list:

Figure 17 : Topics from the Gazebo-ROS trajectory controllers

We can see follow_joint_trajectory for the gripper and the arm group.
If the controllers are not ready, the trajectory will not execute in Gazebo.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[140]

Also check the terminal message while starting the launch file.

Figure 18 : The terminal message shows successful trajectory execution

In the preceding image, the first section shows that the
MoveItSimpleControllerManager was able to connect with the Gazebo controller
and if it couldn't connect to controller, it shows that it can't connect to the controller.
The second section shows a successful motion planning. If the motion planning is not
successful, MoveIt! will not send the trajectory to Gazebo.

In the next section, we will discuss the ROS Navigation stack and look at the
requirements needed to interface the Navigation stack to the Gazebo simulation.

Understanding ROS Navigation stack
The main aim of the ROS navigation package is to move a robot from the start
position to the goal position, without making any collision with the environment.
The ROS Navigation package comes with an implementation of several navigation
related algorithms which can easily help implement autonomous navigation in the
mobile robots.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[141]

The user only needs to feed the goal position of the robot and the robot odometry
data from sensors such as wheel encoders, IMU, and GPS, along with other sensor
data streams such as laser scanner data or 3D point cloud from sensors like Kinect.
The output of the Navigation package will be the velocity commands which will
drive the robot to the given goal position.

The Navigation stack contains implementation of the standard algorithms, such
as SLAM, A *(star), Dijkstra, AMCL, and so on, which can directly be used in our
application.

ROS Navigation hardware requirements
The ROS navigation stack is designed as generic. There are some hardware
requirements that should be satisfied by the robot. Following are the requirements:

•	 The Navigation package will work better in differential drive and holonomic
(total DOF of robot equals to controllable DOF of robots). Also, the mobile
robot should be controlled by sending velocity commands in the form
: x: velocity, y: velocity (linear velocity), and theta :velocity
(angular velocity).

•	 The robot should mount a planar laser somewhere around the robot.
It is used to build the map of the environment.

•	 The Navigation stack will perform better for square and circular shaped
mobile bases. It will work on an arbitrary shape but performance is not
guaranteed.

Following are the basic building blocks of the Navigational stack taken from ROS
website (http://wiki.ros.org/navigation/Tutorials/RobotSetup). We can see
what are the purposes of each block and how to configure the Navigation stack for a
custom robot.

Figure 19 : Navigation stack setup diagram

www.it-ebooks.info

http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[142]

According to the Navigation setup diagram, for configuring the Navigation package
for a custom robot, we must provide functional blocks which are interface to the
Navigation stack. Following are the explanations of all the blocks which are provided
as input to the Navigational stack:

•	 Odometry source: Odometry data of a robot gives the robot position with
respect to its starting position. Main odometry sources are wheel encoders,
IMU, and 2D/3D cameras (visual odometry). The odom value should
publish to the Navigation stack, which has a message type of nav_msgs/
Odometry. The odom message can hold the position and the velocity of the
robot. Odometry data is a mandatory input to the Navigational stack.

•	 Sensor source: We have to provide laser scan data or point cloud data to
the Navigation stack for mapping the robot environment. This data, along
with odometry, combines to build the global and local cost map of the robot.
The main sensors used here are Laser Range finders or Kinect 3D sensors.
The data should be of type sensor_msgs/LaserScan or sensor_msgs/
PointCloud.

•	 sensor transforms/tf: The robot should publish the relationship between the
robot coordinate frame using ROS tf.

•	 base_controller: The main function of the base controller is to convert the
output of the Navigation stack, which is a twist (geometry_msgs/Twist)
message, and convert it into corresponding motor velocities of the robot.

The optional nodes of the Navigation stack are amcl and map server, which allow
localization of the robot and help to save/load the robot map.

Working with Navigation packages
Before working with the Navigation stack, we were discussing MoveIt! and the
move_group node. In the Navigation stack also, there is a node similar to the move_
group node, called the move_base node. From Figure 19, it is clear that the move_
base node takes input from sensors, joint states, tf, and odometry, which is very
similar to the move_group node that we saw in MoveIt!.

Let's see more about the move_base node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[143]

Understanding the move_base node
The move_base node is from a package called move_base. The main function of
this package is to move a robot from its current position to a goal position with
the help of other Navigation nodes. The move_base node inside this package links
the global-planner and the local-planner for the path planning, connecting to the
rotate-recovery package if the robot is stuck in some obstacle and connecting global
costmap and local costmap for getting the map.

The move_base node basically is an implementation of SimpleActionServer which
takes a goal pose with message type (geometry_msgs/PoseStamped). We can send a
goal position to this node using a SimpleActionClient node.

The move_base node subscribes the goal from a topic called move_base_simple/
goal, which is the input of the Navigation stack, as shown in the previous diagram.

When this node receives a goal pose, it links to components such as global_planner,
local_planner, recovery_behavior, global_costmap, and local_costmap,
generates the output which is the command velocity (geometry_msgs/Twist),
and sends to the base controller for moving the robot for achieving the goal pose.

Following is the list of all the packages which are linked by the move_base node:

•	 global-planner: This package provides libraries and nodes for planning the
optimum path from the current position of the robot to the goal position,
with respect to the robot map. This package has implementation of path
finding algorithms such as A*, Dijkstra, and so on for finding the shortest
path from the current robot position to the goal position.

•	 local-planner: The main function of this package is to navigate the robot in a
section of the global path planned using the global planner. The local planner
will take the odometry and sensor reading, and send an appropriate velocity
command to the robot controller for completing a segment of the global path
plan. The base local planner package is the implementation of the trajectory
rollout and dynamic window algorithms.

•	 rotate-recovery: This package helps the robot to recover from a local obstacle
by performing a 360 degree rotation.

•	 clear-costmap-recovery: This package is also for recovering from a local
obstacle by clearing the costmap by reverting the current costmap used by
the Navigation stack to the static map.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[144]

•	 costmap-2D: The main use of this package is to map the robot environment.
Robot can only plan a path with respect to a map. In ROS, we create 2D or
3D occupancy grid maps, which is a representation of the environment in
a grid of cells. Each cell has a probability value which indicates whether
the cell is occupied or not. The costmap-2D package can build the grid map
of the environment by subscribing sensor values of the laser scan or point
cloud and also the odometry values. There are global cost maps for global
navigation and local cost maps for local navigations.

Following are the other packages which are interfaced to the move_base node:

•	 map-server: Map server package allows us to save and load the map
generated by the costmap-2D package.

•	 AMCL: AMCL is a method to localize the robot in map. This approach uses
particle filter to track the pose of the robot with respect to the map, with the
help of probability theory. In the ROS system, AMCL can only work with
maps which were built using laser scans.

•	 gmapping: The gmapping package is an implementation of an algorithm
called Fast SLAM which takes the laser scan data and odometry to build
a 2D occupancy grid map.

After discussing each functional block of the Navigation stack, let's see how it
really works.

Working of Navigation stack
In the previous section, we saw the functionalities of each block in the ROS
Navigation stack. Let's check how the entire system works. The robot should publish
proper odometry value, tf information, and sensor data from the laser, and have a
base controller and map of the surrounding.

If all these requirements are satisfied, we can start working with the Navigation
package.

Localizing on the map
The first step the robot is going to perform is localizing itself on the map. The AMCL
package will help to localize the robot on the map.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[145]

Sending a goal and path planning
After getting the current position of the robot, we can send a goal position to the
move_base node. The move_base node will send this goal position to a global
planner which will plan a path from the current robot position to the goal position.

This plan is with respect to the global costmap which is feeding from the map server.
The global planner will send this path to the local planner, which executes each
segment of the global plan.

The local planner gets the odometry and the sensor value from the move_base node
and finds a collision free local plan for the robot. The local planner is associated with
the local costmap, which can monitor the obstacle(s) around the robot.

Collision recovery behavior
The global and local costmap are tied with the laser scan data. If the robot is stuck
somewhere, the Navigation package will trigger the recovery behavior nodes, such
as the clear costmap recovery or rotate recovery nodes.

Sending the command velocity
The local planner generates command velocity in the form of a twist message
which contains linear and angular velocity (geometry_msgs/Twist), to the
robot base controller. The robot base controller converts the twist message
to the equivalent motor speed.

Installing ROS Navigation stack
Installing ROS desktop full installation will not install the ROS Navigation stack.
We have to install the Navigation stack separately, using the following commands:

•	 In ROS Jade
$ sudo apt-get install ros-jade-navigation

•	 In ROS Indigo

$ sudo apt-get install ros-indigo-navigation

After installing the Navigation package, let's start learning how to build a map of the
robot environment. The robot we are using here is the differential wheeled robot that
we discussed in the previous chapter. This robot satisfies all the three requirements
of the Navigation stack.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[146]

Building a map using SLAM
The ROS Gmapping package is a wrapper of open source implementation of SLAM
called OpenSLAM (https://www.openslam.org/gmapping.html). The package
contains a node called slam_gmapping, which is the implementation of SLAM which
helps to create a 2D occupancy grid map from the laser scan data and the mobile
robot pose.

The basic hardware requirement for doing SLAM is a laser scanner which is
horizontally mounted on the top of the robot, and the robot odometry data. In this
robot, we have already satisfied these requirements. We can generate the 2D map of
the environment using the gmapping package through the following procedure.

Creating a launch file for gmapping
The main task while creating a launch file for the gmapping process is to set the
parameters for the slam_gmapping node and the move_base node. The slam_
gmapping node is the core node inside the ROS gmapping package. The slam_
gmapping node subscribes the laser data (sensor_msgs/LaserScan) and the tf data,
and publishes the occupancy grid map data as output (nav_msgs/OccupancyGrid).
This node is highly configurable and we can fine tune the parameters to improve
the mapping accuracy. The parameters are mentioned at http://wiki.ros.org/
gmapping.

The next node we have to configure is the move_base node. The main parameters
needed to configure are the global and local costmap parameters, the local planner,
and the move_base parameters. The parameters list is very lengthy. We are
representing these parameters in several YAML files. Each parameter is included
in the param folder inside the diff_wheeled_robot_gazebo package.

Following is the gmapping.launch file used in this robot. The launch file is placed in
the diff_wheeled_robot_gazebo/launch folder.

<launch>
 <arg name="scan_topic" default="scan" />

<!-- Defining parameters for slam_gmapping node -->

 <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping"
output="screen">
 <param name="base_frame" value="base_footprint"/>
 <param name="odom_frame" value="odom"/>
 <param name="map_update_interval" value="5.0"/>
 <param name="maxUrange" value="6.0"/>
 <param name="maxRange" value="8.0"/>

www.it-ebooks.info

https://www.openslam.org/gmapping.html
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://www.it-ebooks.info/

Chapter 4

[147]

 <param name="sigma" value="0.05"/>
 <param name="kernelSize" value="1"/>
 <param name="lstep" value="0.05"/>
 <param name="astep" value="0.05"/>
 <param name="iterations" value="5"/>
 <param name="lsigma" value="0.075"/>
 <param name="ogain" value="3.0"/>
 <param name="lskip" value="0"/>
 <param name="minimumScore" value="100"/>
 <param name="srr" value="0.01"/>
 <param name="srt" value="0.02"/>
 <param name="str" value="0.01"/>
 <param name="stt" value="0.02"/>
 <param name="linearUpdate" value="0.5"/>
 <param name="angularUpdate" value="0.436"/>
 <param name="temporalUpdate" value="-1.0"/>
 <param name="resampleThreshold" value="0.5"/>
 <param name="particles" value="80"/>

 <param name="xmin" value="-1.0"/>
 <param name="ymin" value="-1.0"/>
 <param name="xmax" value="1.0"/>
 <param name="ymax" value="1.0"/>

 <param name="delta" value="0.05"/>
 <param name="llsamplerange" value="0.01"/>
 <param name="llsamplestep" value="0.01"/>
 <param name="lasamplerange" value="0.005"/>
 <param name="lasamplestep" value="0.005"/>
 <remap from="scan" to="$(arg scan_topic)"/>
 </node>

<!-- Defining parameters for move_base node -->

 <node pkg="move_base" type="move_base" respawn="false" name="move_
base" output="screen">
 <rosparam file="$(find diff_wheeled_robot_gazebo)/param/costmap_
common_params.yaml" command="load" ns="global_costmap" />
 <rosparam file="$(find diff_wheeled_robot_gazebo)/param/costmap_
common_params.yaml" command="load" ns="local_costmap" />
 <rosparam file="$(find diff_wheeled_robot_gazebo)/param/local_
costmap_params.yaml" command="load" />
 <rosparam file="$(find diff_wheeled_robot_gazebo)/param/global_
costmap_params.yaml" command="load" />

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[148]

 <rosparam file="$(find diff_wheeled_robot_gazebo)/param/base_
local_planner_params.yaml" command="load" />
 <rosparam file="$(find diff_wheeled_robot_gazebo)/param/dwa_local_
planner_params.yaml" command="load" />
 <rosparam file="$(find diff_wheeled_robot_gazebo)/param/move_base_
params.yaml" command="load" />

 </node>

</launch>

Running SLAM on the differential drive robot
We can build the ROS package called diff_wheeled_robot_gazebo and can run the
gmapping.launch file for building the map. Following are the commands to start
with the mapping procedure.

Start the robot simulation by using Willow Garage world:

$ roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo_full.launch

Start the gmapping launch file by using the following command:

$ roslaunch diff_wheeled_robot_gazebo gmapping.launch

If the gmapping launch file is working fine, we will get the following kind of output
on the terminal:

Figure 21 : Terminal messages during gmapping

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[149]

Start the keyboard teleoperation for manually navigating the robot around the
environment. The robot can map its environment only if it covers the entire area.

$ roslaunch diff_wheeled_robot_control keyboard_teleop.launch

The current Gazebo view of the robot and the robot environment is shown next.
The environment is with obstacle around the robot.

Figure 20 : Simulation of the robot using Willow Garage world

We can launch RViz and add a display type called Map and the topic name as /map.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[150]

We can start moving the robot inside the world by using key board teleoperation,
and we can see a map building according to the environment. The following image
shows the completed map of the environment shown in RViz:

Figure 22 : Completed map of the room in RViz

We can save the built map using the following command. This command will
listen to the map topic and save into the image. The map server package does
this operation.

$ rosrun map_server map_saver -f willo

Here willo is the name of the map file. The map file is stored as two files: one is the
YAML file which contains the map metadata and the image name, and second is
the image which has the encoded data of the occupancy grid map. Following is the
screenshot of the preceding command, running without any errors:

Figure 23 : Terminal screenshot while saving a map

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[151]

The saved encoded image of the map is shown next. If the robot gives accurate robot
odometry data, we will get this kind of precise map similar to the environment. The
accurate map improves the navigation accuracy through efficient path planning.

Figure 24 : The saved map

The next procedure is to localize and navigate in this static map.

Implementing autonomous navigation using
AMCL and a static map
The ROS AMCL package provide nodes for localizing the robot on a static map.
The amcl node subscribes the laser scan data, laser scan based maps, and the tf
information from the robot. The amcl node estimates the pose of the robot on the
map and publishes its estimated position with respect to the map.

If we create a static map from the laser scan data, the robot can autonomously
navigate from any pose of the map using AMCL and the move_base nodes. The first
step is to create a launch file for starting the amcl node. The amcl node is highly
customizable; we can configure it with a lot of parameters. The list of parameters are
available in the ROS package site (http://wiki.ros.org/amcl).

www.it-ebooks.info

http://wiki.ros.org/amcl
http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[152]

Creating an AMCL launch file
A typical amcl launch file is given next. The AMCL node is configured inside the
amcl.launch.xml file which is in the diff_wheeled_robot_gazebo/launch/
include package. The move_base node is also configured separately in the move_
base.launch.xml file. The map file we created in the gmapping process is loaded
here using the map_server node.

<launch>

 <!-- Map server -->
 <arg name="map_file" default="$(find diff_wheeled_robot_gazebo)/
maps/test1.yaml"/>
 <node name="map_server" pkg="map_server" type="map_server"
args="$(arg map_file)" />

 <include file="$(find diff_wheeled_robot_gazebo)/launch/includes/
amcl.launch.xml">

 <arg name="initial_pose_x" value="0"/>
 <arg name="initial_pose_y" value="0"/>
 <arg name="initial_pose_a" value="0"/>

 </include>

 <include file="$(find diff_wheeled_robot_gazebo)/launch/includes/
move_base.launch.xml"/>

</launch>

Following is the code snippet of amcl.launch.xml. This file is a bit lengthy as we
have to configure a lot of parameters for the amcl node.

<launch>
 <arg name="use_map_topic" default="false"/>
 <arg name="scan_topic" default="scan"/>
 <arg name="initial_pose_x" default="0.0"/>
 <arg name="initial_pose_y" default="0.0"/>
 <arg name="initial_pose_a" default="0.0"/>

 <node pkg="amcl" type="amcl" name="amcl">
 <param name="use_map_topic" value="$(arg use_map_
topic)"/>
 <!-- Publish scans from best pose at a max of 10 Hz -->
 <param name="odom_model_type" value="diff"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[153]

 <param name="odom_alpha5" value="0.1"/>
 <param name="gui_publish_rate" value="10.0"/>
 <param name="laser_max_beams" value="60"/>
 <param name="laser_max_range" value="12.0"/>

After creating this launch file, we can start the amcl node using the
following procedure:

•	 Start the simulation of robot in Gazebo:
$ roslaunch diff_wheeled_robot_gazebo
diff_wheeled_gazebo_full.launch

•	 Start the amcl launch file using the following command:
$ roslaunch diff_wheeled_robot_gazebo amcl.launch

If the amcl launch file is loaded well, the terminal shows the following message:

Figure 25 : Terminal screenshot while executing AMCL

If amcl is working fine, we can start commanding the robot to go into a particular
position on the map using RViz, as shown in the following figure. In the figure,
the arrow indicates the goal position. We have to enable LaserScan, Map, and Path
visualizing plugins in RViz for viewing the laser scan, the global/local costmap, and
the global/local paths. Using the 2D NavGoal button in RViz, we can command the
robot to go to a particular position.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the ROS MoveIt! and Navigation Stack

[154]

The robot will plan a path to that point and give velocity commands to the robot
controller to reach that point.

Figure 26 : Autonomous navigation using AMCL and the map

In the preceding image, we can see that we have placed a random obstacle in the
robot path and that the robot has planned a path to avoid the obstacle.

We can view the AMCL particle cloud around the robot by adding a Pose Array
on RViz and the topic is /particle_cloud. The following image shows the AMCL
particle around the robot:

Figure 27 : The AMCL particle cloud

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[155]

Questions
1.	 What is the main purpose of MoveIt! packages?
2.	 What is the importance of the move_group node in MoveIt!?
3.	 What is the purpose of the move_base node in the Navigation stack?
4.	 What are the functions of the SLAM and AMCL packages?

Summary
This chapter offered a brief overview of MoveIt! and the Navigation stack of ROS
and demonstrated its capabilities using Gazebo simulation of a robotic arm mobile
base. The chapter started with a MoveIt! overview and discussed detailed concepts
about MoveIt!. After discussing MoveIt!, we interfaced MoveIt! and Gazebo. After
interfacing, we executed the trajectory from MoveIt! on Gazebo.

The next section was about the ROS Navigation stack. We discussed its concepts
and workings as well. After discussing the concepts, we tried to interface our robot
in Gazebo to the Navigation stack and build a map using SLAM. After doing SLAM,
we performed autonomous navigation using AMCL and the static map.

In the next chapter, we will discuss pluginlib, nodelets, and controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[157]

Working with Pluginlib,
Nodelets, and Gazebo

Plugins
In the previous chapter, we have discussed about the interfacing and simulation
of the robotic arm mobile robot to the ROS MoveIt! and Navigation stack. In this
chapter, we will see some of the advanced concepts in ROS such as the ROS pluginlib,
nodelets, and Gazebo plugins. We will discuss the functionalities and applications of
each concept and will look at an example to demonstrate it's working. We have used
Gazebo plugins in the previous chapters to get the sensor and robot behavior inside
the Gazebo simulator. In this chapter, we are going to see how to create it. We will also
discuss an modified form of ROS nodes called ROS nodelets. These features in ROS are
implemented using a plugin architecture called pluginlib.

In this chapter, we will discuss the following topics:

•	 Understanding pluginlib
•	 Implementing a sample plugin using pluginlib
•	 Understanding ROS nodelets
•	 Implementing a sample nodelet
•	 Understanding and creating a Gazebo plugin

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[158]

Understanding pluginlib
Plugins are a commonly used term in the computer world. Plugins are modular piece
of software which can add a new feature to the existing software application. The
advantage of plugins are that we don't need to write all the features in a main software;
instead, we can make an infrastructure on the main software to accept new plugins to
it. Using this method, we can extend the capabilities of software to any level.

We need plugins for our robotics application too. When we are going to build a
complex ROS based application for a robot, plugins will be a good choice to extend
the capabilities of the application.

The ROS system provides a plugin framework called pluginlib to dynamically load/
unload plugins, which can be a library or class. pluginlib is a set of a C++ library,
which helps to write plugins and load/unload whenever we need.

Plugin files are runtime libraries such as shared objects (.so) or dynamic link
libraries (.DLL), which is built without linking to the main application code. Plugins
are separate entities which do not have any dependencies with the main software.

The main advantage of plugins is that we can expand the application capabilities
without making many changes in the main application code.

We can create a simple plugin using pluginlib and can see all the procedures
involved in creating a plugin using ROS pluginlib.

Here, we are going to create a simple calculator application using pluginlib.
We are adding each functionality of the calculator using plugins.

Creating plugins for the calculator application
using pluginlib
Creating a calculator application using plugins is a slightly tedious task compared to
writing a single code for The aim of this example is to show how to add new features
to calculator without modifying main application code.

In this example, we will see a calculator application that loads plugins to perform
each operation. Here, we only implement the main operations such as addition,
subtraction, multiplication, and division. We can expand to any level by writing
individual plugins for each operation.

Before going on to create the plugin definition, we can access the calculator code
from the chapter_5_codes/pluginlib_calculator folder for reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[159]

We are going to create a ROS package called pluginlib_calculator to build these
plugins and the main calculator application.

The following diagram shows how the calculator plugins and application are
organized inside the pluginlib_calculator ROS package:

Figure 1: Organization of plugins in the calculator application

We can see the list of plugins of the calculator and a plugin base class called calc_
functions. The plugin base class implements the common functionalities that are
required by all of these plugins.

Here is how we can create the ROS package and start developing plugins for the
main calculator application.

Working with pluginlib_calculator package
For a quick start, we can use the existing ROS plugin package (chapter_5_codes/
pluginlib_calculator).

If we want to create this package from scratch, you can use the following command:

$ catkin_create_pkg pluginlib_calculator pluginlib roscpp std_msgs

The main dependency of this package is pluginlib. We can discuss the main source
files in this package to build plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[160]

Step 1 – Creating calculator_base header file
The calculator_base.h file is present in the chapter_5_codes/pluginlib_
calculator/include/pluginlib_calculator folder and the main purpose of this
file is to declare functions/methods that are commonly used by the plugins:

namespace calculator_base
{
 class calc_functions
 {

Inside this code, we declare a class called calc_functions that encapsulate methods
used by the plugins. This class is included in a namespace called calculator_base.
We can add more classes inside this namespace to expand the functionalities of this
base class:

virtual void get_numbers(double number1, double number2) = 0;
virtual double operation() = 0;

These are the main methods implemented inside the calc_function class. The
get_number() function can retrieve two numbers as input to the calculator, and the
operation() function defines the mathematical operation we want to perform.

Step 2 – Creating calculator_plugins header file
The calculator_plugins.h file is present in the chapter_5_codes/pluginlib_
calculator/include/pluginlib_calculator folder and the main purpose of this
file is to define complete functions of the calculator plugins, which are named as Add,
Sub, Mul, and Div. Here is the explanation of this code:

#include <pluginlib_calculator/calculator_base.h>
#include <cmath>

namespace calculator_plugins
{
 class Add : public calculator_base::calc_functions
 {

This header file includes the calculator_base.h for accessing the basic functionalities
of a calculator. Each plugin is defined as a class and it inherits the calc_functions
class from the calculator_base.h class:

 public:
 Add()
 {
 number1_ = 0;
 number2_ = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[161]

 }

 void get_numbers(double number1, double number2)
 {
 try{

 number1_ = number1;
 number2_ = number2;
 }

 catch(int e)
 {
 std::cerr<<"Exception while inputting numbers"<<std::endl;
 }

 }

 double operation()
 {
 return(number1_+number2_);
 }

 private:
 double number1_;
 double number2_;
};

In this code, we can see definitions of inherited get_numbers() and operations()
functions. The get_number() retrieves two number inputs and operations()
performs the desired operation. In this case, it performs additional operations.
We can see all other plugin definitions inside this header file.

Step 3 – Exporting plugins using calculator_plugins.cpp
In order to load the class of plugins dynamically, we have to export each class using
a special macro called PLUGINLIB_EXPORT_CLASS. This macro has to put in any CPP
file that consists of plugin classes. We have already defined the plugin class, and in
this file we are going to define the macro statement only.

Locate the calculator_plugins.cpp file from the chapter_5_codes/pluginlib_
calculator/src folder, and here is how we export each plugin:

#include <pluginlib/class_list_macros.h>
#include <pluginlib_calculator/calculator_base.h>
#include <pluginlib_calculator/calculator_plugins.h>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[162]

PLUGINLIB_EXPORT_CLASS(calculator_plugins::Add, calculator_base::calc_
functions);

Inside PLUGINLIB_EXPORT_CLASS, we need to provide the class name of the plugin
and the base class.

Step 4 – Implementing plugin loader using calculator_
loader.cpp
This plugin loader node loads each plugin and inputs the number to each plugin
and fetch's the result from the plugin. We can locate the calculator_loader.cpp
file from the chapter_5_codes/pluginlib_calculator/src folder.

Here is the explanation of this code:

#include <boost/shared_ptr.hpp>
#include <pluginlib/class_loader.h>
#include <pluginlib_calculator/calculator_base.h>

These are the necessary header files to load the plugins:

pluginlib::ClassLoader<calculator_base::calc_functions>
calc_loader("pluginlib_calculator",
"calculator_base::calc_functions");

The pluginlib provides the ClassLoader class, which is inside class_loader.h, to
load classes in runtime. We need to provide a name for the loader and the calculator
base class as arguments:

 boost::shared_ptr<calculator_base::calc_functions> add =
calc_loader.createInstance("pluginlib_calculator/Add");

This will create an instance of the Add class using the ClassLoader object:

 add->get_numbers(10.0,10.0);
 double result = add->operation();

These lines give an input and perform the operations in the plugin instance.

Step 5 – Creating plugin description file: calculator_
plugins.xml
After creating the calculator loader code, next we have to describe the list of plugins
inside this package in an XML file called the Plugin Description File. The plugin
description file contains all the information about the plugins inside a package such
as the name of the classes, types of classes and base class, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[163]

The plugin description is an important file for plugin based packages, because it
helps the ROS system to automatically discover, load, and reason about the plugin.
It also holds information such as the description of the plugin.

The following code shows the plugin description file of our package called
calculator_plugins.xml, which is stored along with the CMakeLists.txt and
package.xml files. You can get this file from the chapter_5_codes/pluginlib_
calculator folder itself.

Here is the explanation of this file:

<library path="lib/libpluginlib_calculator">
 <class name="pluginlib_calculator/Add" type="calculator_
plugins::Add" base_class_type="calculator_base::calc_functions">
 <description>This is a add plugin.</description>
 </class>

This code is for the Add plugin and it defines the library path of the plugin, the class
name, the class type, the base class, and the description.

Step 6 – Registering plugin with the ROS package system
For pluginlib to find all plugins based packages in the ROS system, we should
export the plugin description file inside package.xml. If we do not include this
plugin, the ROS system won't find the plugins inside the package.

Here, we add the export tag to package.xml as follows:

<export>
 <pluginlib_calculator plugin="${prefix}/calculator_plugins.xml"
/>
</export>

In order to work this export command properly, we should insert the following lines
in package.xml:

 <build_depend>pluginlib_calculator</build_depend>
 <run_depend>pluginlib_calculator</run_depend>

The current package should directly depend on itself, both at the time of building and
also at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[164]

Step 7 – Editing the CMakeLists.txt file
In order to build the calculator plugins and loader nodes, we should add the
following lines in CMakeLists.txt:

pluginlib_tutorials library
add_library(pluginlib_calculator src/calculator_plugins.cpp)
target_link_libraries(pluginlib_calculator ${catkin_LIBRARIES})

calculator_loader executable
add_executable(calculator_loader src/calculator_loader.cpp)
target_link_libraries(calculator_loader ${catkin_LIBRARIES})

You can get the complete CMakeLists.txt from the package itself.

We are almost done with all the settings and now it's time to build the package using
the catkin_make command.

Step 8: Querying the list of plugins in a package
If the package is built properly, we can execute the loader. The following command
will query the plugins inside a package:

$ rospack plugins --attrib=plugin pluginlib_calculator

We will get the following result if everything is built properly:

Figure 2: The result of the plugin query

Step 9 – Running the plugin loader
We can run the calculator_loader using the following command:

•	 Run the roscore, as follows:
$ roscore

•	 Run the calculator_loader using the following command:
$ rosrun pluginlib_calculator calculator_loader

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[165]

The following screenshot shows the output of this command, to check whether
everything is working fine. The loader gives both inputs as 10.0 and we are getting
the proper result as shown using plugins in the screenshot:

Figure 3: Result of the plugin loader node

In the next section, we will look at a new concept called nodelets and discuss how to
implement it.

Understanding ROS nodelets
Nodelets are a type of ROS node that are designed to run multiple nodes in a single
process, with each node running as a thread. The threaded nodes can communicate
with each other efficiently without overloading the network having, zero copy
transport between two nodes. These threaded nodes can communicate with external
nodes too.

As we did using pluginlib, in nodelets also, we can dynamically load each class as a
plugin, which has a separate namespace. Each loaded class can act as separate nodes,
which are on a single process called nodelet.

Nodelets are used when the volume of data transferred between nodes are very high,
for example, in transferring data from 3D sensors or cameras.

Next, we look at how to create a nodelet.

Creating a nodelet
In this section, we are going to create a basic nodelet that can subscribe a string topic
called /msg_in and publish the same string (std_msgs/String) on the topic /msg_
out.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[166]

Step 1 – Creating a package for nodelet
We can create a package called nodelet_hello_world using the following command
to create our nodelet:

$ catkin_create_pkg nodelet_hello_world nodelet roscpp std_msgs

Otherwise, we can use the existing package from chapter_5_codes/nodelet_
hello_world.

Here, the main dependency of this package is the nodelet package, which provides
APIs to build a ROS nodelet.

Step 2 – Creating hello_world.cpp nodelet
Now, we are going to create the nodelet code. Create a folder called src inside the
package and create a file called hello_world.cpp.

You will get the existing code from the chapter_5_codes/nodelet_hello_world/
src folder.

Step 3 – Explanation of hello_world.cpp
Here is the explanation of the code:

#include <pluginlib/class_list_macros.h>
#include <nodelet/nodelet.h>
#include <ros/ros.h>
#include <std_msgs/String.h>
#include <stdio.h>

These are the header files of this code. We should include class_list_macro.h
and nodelet.h to access pluginlib APIs and nodelets APIs:

namespace nodelet_hello_world
{
 class Hello : public nodelet::Nodelet
 {

Here, we create a nodelet class called Hello, which inherits a standard nodelet
base class. All nodelet classes should inherit from the nodelet base class and be
dynamically loadable using pluginlib. Here, the Hello class is going to be used
for dynamic loading:

 virtual void onInit()
 {
 ros::NodeHandle& private_nh = getPrivateNodeHandle();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[167]

 NODELET_DEBUG("Initialized the Nodelet");
 pub = private_nh.advertise<std_msgs::String>("msg_out",5);
 sub = private_nh.subscribe("msg_in",5, &Hello::callback, this);
 }

This is the initialization function of a nodelet. This function should not block or do
significant work. Inside the function, we are creating a node handle object, topic
publisher, and subscriber on the topic msg_out and msg_in respectively. There are
macros to print debug messages while executing a nodelet. Here, we use NODELET_
DEBUG to print debug messages in the console. The subscriber is tied up with a
callback function called callback(), which is inside the Hello class:

 void callback(const std_msgs::StringConstPtr input)
 {
 std_msgs::String output;
 output.data = input->data;
 NODELET_DEBUG("Message data = %s",output.data.c_str());
 ROS_INFO("Message data = %s",output.data.c_str());
 pub.publish(output);
 }

In the callback() function, it will print the messages from the /msg_in topic and
publish to the /msg_out topic:

PLUGINLIB_EXPORT_CLASS(nodelet_hello_world::Hello,nodelet::Nodelet);

Here, we are exporting the Hello as a plugin for the dynamic loading.

Step 4 – Creating plugin description file
Similar to the pluginlib example, we have to create a plugin description file inside
the nodelet_hello_world package. The plugin description file hello_world.xml is
as follows:

<library path="libnodelet_hello_world">
 <class name="nodelet_hello_world/Hello" type="nodelet_hello_
world::Hello" base_class_type="nodelet::Nodelet">
 <description>
 A node to republish a message
 </description>
 </class>
</library>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[168]

Step 5 – Adding the export tag in package.xml
We need to add the export tag in package.xml and also add build and run
dependencies:

<export>
 <nodelet plugin="${prefix}/hello_world.xml"/>
 </export>

 <build_depend>nodelet_hello_world</build_depend>
 <run_depend>nodelet_hello_world</run_depend>

Step 6 – Editing CMakeLists.txt
We need to add additional lines of code in CMakeLists.txt to build a nodelet
package. Here are the extra lines. You will get the complete CMakeLists.txt file
from the existing package itself:

Declare a cpp library
 add_library(nodelet_hello_world
 src/hello_world.cpp
)

Specify libraries to link a library or executable target against
 target_link_libraries(nodelet_hello_world
 ${catkin_LIBRARIES}
)

Step 7 – Building and running nodelets
After following this procedure, we can build the package using catkin_make and
if the build is successful, we can generate the shared object libnodelet_hello_
world.so file, which is actually a plugin.

The first step in running nodelets is to start the nodelet manager. A nodelet manager is
a C++ executable program, which will listen to the ROS services and dynamically load
nodelets. We can run a standalone manager or can embed it within a running node.

The following commands can start the nodelet manager:

•	 Start roscore
$roscore

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[169]

•	 Start the nodelet manager using the following command
$ rosrun nodelet nodelet manager __name:=nodelet_manager

If the nodelet manager runs successfully, we will get a message as shown here:

Figure 4: Running the nodelet manager

After launching the nodelet manager, we can start the nodelet by using the following
command:

$ rosrun nodelet nodelet load nodelet_hello_world/Hello
nodelet_manager __name:=nodelet1

When we execute the preceding command, the nodelet contacts the nodelet manager
to instantiate an instance of the nodelet_hello_world/Hello nodelet with a name
of nodelet1. The following screenshot shows the message when we load the nodelet:

Figure 5: Running nodelet

The topics generated after running this nodelet and the list of nodes are shown here:

Figure 6: The list of topics of the nodelet

We can test the node by publishing a string to the /nodelet1/msg_in topic and
check whether we receive the same message in nodelet1/msg_out.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[170]

The following command publishes a string to /nodelet1/msg_in:

$ rostopic pub /nodelet1/msg_in std_msgs/String "Hello"

Figure 7: Publishing and subscribing using the Nodelet

We can echo the msg_out topic and can confirm whether the code is working good.

Here, we have seen that a single instance of the Hello() class is created as a node.
We can create multiple instances of the Hello() class with different node names
inside this nodelet.

Step 8 – Creating launch files for nodelets
We can also write launch files to load more than one instance of the nodelet class.
The following launch file will load two nodelets with the names test1 and test2,
and we can save it with a name hello_world.launch:

<launch>

<!-- Started nodelet manager -->

 <node pkg="nodelet" type="nodelet" name="standalone_nodelet"
args="manager" output="screen"/>

<!-- Starting first nodelet -->

 <node pkg="nodelet" type="nodelet" name="test1" args="load nodelet_
hello_world/Hello standalone_nodelet" output="screen">
 </node>

<!-- Starting second nodelet -->

 <node pkg="nodelet" type="nodelet" name="test2" args="load nodelet_
hello_world/Hello standalone_nodelet" output="screen">
 </node>

</launch>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[171]

The preceding launch can be launched using the following commands:

$ roslaunch nodelet_hello_world hello_world.launch

The following message will show up on the terminal if it is launched successfully:

Figure 8: Launching multiple instances of the Hello() class

The list of topics and nodes are shown here. We can see two nodelets instantiated
and we can see their topics too.

Figure 9: Topics generated by the multiple instances of Hello() class

The following diagram shows how to interconnect these nodelets:

/test1/msg_in

/test1

test1

/test2/msg_in

/test2

test2

/standalone_nodelet/bond /standalone_nodelet

standalone_nodelet

Figure 10: A two-node instance of a nodelet

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[172]

Run the rqt_graph tool to view the preceding node graph view:

$rosrun rqt_gui rqt_gui

Load the Node Graph plugin from the following option Plugins | Introspection |
Node Graph and you will get a graph as shown in the preceding figure.

Understanding the Gazebo plugins
Gazebo plugins help us to control the robot models, sensors, world properties,
and even the way Gazebo runs. Similar to pluginlib and nodelets, Gazebo plugins
are a set of C++ code, which can be dynamically loaded/unloaded from the Gazebo
simulator.

Using plugins we can access all the components of Gazebo, and also it is
independent of ROS, so that it can share with people who are not using ROS too.
We can mainly classify the plugins as follows:

•	 The world plugin: Using the world plugin, we can control the properties of
a specific world in Gazebo. We can change the physics engine, the lighting,
and other world properties using this plugin.

•	 The model plugin: The model plugin is attached to a specific model in
Gazebo and controls its properties. The parameters such as joint state of the
model, control of the joints, and so, on can be controlled using this plugin.

•	 The sensor plugin: The sensor plugins are for modeling sensors such as
camera, IMU, and so on, in Gazebo.

•	 The system plugin: The system plugin is started along with the Gazebo
startup. A user can control a system related function in Gazebo using
this plugin.

•	 The visual plugin: The visual property of any Gazebo component can be
accessed and controlled using the visual plugin.

Before starting development with Gazebo plugins, we might need to install some
packages. If you are using ROS Indigo, the package we installed in the previous
chapter is sufficient for developing Gazebo plugins. The Gazebo version installed
along with ROS Indigo is 2.2.3. But if you are working with ROS Jade, the default
Gazebo is Version 5, so you might need to install its development package in Ubuntu
using the following command:

$ sudo apt-get install libgazebo5-dev

The Gazebo plugins are independent of ROS and we don't need ROS libraries to
build the plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[173]

Creating a basic world plugin
We will look at a basic Gazebo world plugin and try to build and load it in Gazebo.

Create a folder called gazebo_basic_world_plugin in the user home folder and
create a CPP file called hello_world.cc:

$ mkdir ~/gazebo_basic_world_plugin

$ cd ~/gazebo_basic_world_plugin

$ nano hello_world.cc

The definition of hello_world.cc is as follows:

//Gazebo header for getting core gazebo functions
#include <gazebo/gazebo.hh>

//All gazebo plugins should have gazebo namespace

namespace gazebo
{

 //The custom WorldpluginTutorials is inheriting from standard
worldPlugin. Each world plugin has to inheriting from standard plugin
type.

 class WorldPluginTutorial : public WorldPlugin
 {

 public: WorldPluginTutorial() : WorldPlugin()
 {
 printf("Hello World!\n");
 }

 //The Load function can receive the SDF elements
 public: void Load(physics::WorldPtr _world, sdf::ElementPtr _sdf)
 {
 }
 };

//Registering World Plugin with Simulator
 GZ_REGISTER_WORLD_PLUGIN(WorldPluginTutorial)
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[174]

The header file used in this code is <gazebo/gazebo.hh>; the header contains core
functionalities of Gazebo. Other headers are as follows:

•	 gazebo/physics/physics.hh: This is the Gazebo header for accessing the
physics engine parameters

•	 gazebo/rendering/rendering.hh: This is the Gazebo header for handling
rendering parameters

•	 gazebo/sensors/sensors.hh: This is the header for handling sensors

At the end of the code, we have to export the plugin using the statements
mentioned below.

The GZ_REGISTER_WORLD_PLUGIN(WorldPluginTutorial) macro will register and
export the plugin as a world plugin. The following macros are used to register for
sensors, models, and so on:

•	 GZ_REGISTER_MODEL_PLUGIN: This is the export macro for Gazebo robot
model

•	 GZ_REGISTER_SENSOR_PLUGIN: This is the export macro for Gazebo sensor
model

•	 GZ_REGISTER_SYSTEM_PLUGIN: This is the export macro for Gazebo system
•	 GZ_REGISTER_VISUAL_PLUGIN: This is the export macro for Gazebo visuals

After setting the code, we can make the CMakeLists.txt for compiling the source.
The following is the source of CMakeLists.txt:

$ nano ~/ gazebo_basic_world_plugin/CMakeLists.txt

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

find_package(Boost REQUIRED COMPONENTS system)

include_directories(${Boost_INCLUDE_DIRS})

link_directories(${Boost_LIBRARY_DIRS})

include (FindPkgConfig)

if (PKG_CONFIG_FOUND)

 pkg_check_modules(GAZEBO gazebo)

endif()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[175]

include_directories(${GAZEBO_INCLUDE_DIRS})

link_directories(${GAZEBO_LIBRARY_DIRS})

add_library(hello_world SHARED hello_world.cc)

target_link_libraries(hello_world ${GAZEBO_LIBRARIES} ${Boost_LIBRARIES})

Create a build folder for storing the shared object:

$ mkdir ~/gazebo_basic_world_plugin/build

$ cd ~/gazebo_basic_world_plugin/build

After switching to the build folder, execute the following command to compile and
build the source code:

$ cmake ../

$ make

After building the code, we will get a shared object called libhello_world.so and
we have to export the path of this shared object in GAZEBO_PLUGIN_PATH and add to
the .bashrc file:

export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:~/gazebo_basic_world_
plugin/build

After setting the Gazebo plugin path, we can use it inside the URDF file or the
SDF file. The following is a sample world file called hello.world, which includes
this plugin:

$ nano ~/gazebo_basic_world_plugin/hello.world

<?xml version="1.0"?>

<sdf version="1.4">

 <world name="default">

 <plugin name="hello_world" filename="libhello_world.so"/>

 </world>

</sdf>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Pluginlib, Nodelets, and Gazebo Plugins

[176]

Run the Gazebo server and load this world file:

$ cd ~ /gazebo_basic_world_plugin

$ gzserver hello.world --verbose

Figure 11: The Gazebo world plugin printing "Hello World"

We will source the code for various Gazebo plugins from the Gazebo repository.

We can check https://bitbucket.org/osrf/gazebo

Browse for the source code. Take the examples folder and then the plugins, as shown
in the following figure:

Figure 12: The list of Gazebo plugins in the repository

www.it-ebooks.info

https://bitbucket.org/osrf/gazebo
http://www.it-ebooks.info/

Chapter 5

[177]

Questions
1.	 What is pluginlib and what are its main applications?
2.	 What is the main application of nodelets?
3.	 What are the different types of Gazebo plugins?
4.	 What is the function of the model plugin in Gazebo?

Summary
In this chapter, we covered some advanced concepts such as the pluginlib, nodelets,
and Gazebo plugins, which can be used to add more functionalities to a complex
ROS application. We discussed the basics of pluginlib and saw an example using
it. After covering pluginlib, we saw the ROS nodelets, which are widely used in
high performance applications. Also, we saw an example using the ROS nodelets.
Finally, we came to the Gazebo plugins that are used to add functionalities to Gazebo
simulators. In the next chapter, we will discuss more on the RViz plugin and the
ROS controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[179]

Writing ROS Controllers and
Visualization Plugins

In the last chapter, we have discussed about pluginlib, nodelets, and Gazebo plugins.
The base library for making plugins in ROS is pluginlib, and the same library can
be used in nodelets and Gazebo plugins. In this chapter, we will continue with
pluginlib-based concepts such as ROS controllers and RViz plugins. We have already
worked with ROS controllers and have reused some standard controllers such as
joint state, position, and trajectory controllers in Chapter 3, Simulating Robots Using
ROS and Gazebo.

In this chapter, we will see how to write a basic ROS controller for a PR2 robot
(https://www.willowgarage.com/pages/pr2/overview) and robots similar to
PR2. After creating the controller, use the controller in PR2 simulation. The RViz
plugins can add more functionality to RViz and in this chapter we can see how to
create a basic RViz plugin. The detailed topics that we are going to discuss in this
chapter are as follows:

•	 Understanding packages required for ROS controller development
•	 Setting the ROS controller development environment
•	 Understanding ros_control packages
•	 Writing and running a basic ROS controller
•	 Writing and running a RViz plugin

Let us see how to develop a ROS controller; the first step is to understand the
dependency packages required to start building custom controllers for PR2.

www.it-ebooks.info

https://www.willowgarage.com/pages/pr2/overview
http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[180]

The main set of package that helps us to write real-time robot controllers are
pr2_mechanism stacks. The following is the description of pr2_mechanism stacks:

•	 pr2_mechanism: This is a ROS stack consisting of several classes and libraries
that can be useful for writing real-time controllers. These packages are for the
robot PR2 and we can reuse the packages for other robots. Following are the
set of packages inside the pr2_mechanism stack.

•	 pr2_controller_manager: The controller manager can load and manage
multiple controllers and can work them in a real-time loop.

•	 pr2_controller_interface: This is the controller base class package in
which all custom real-time controllers should inherit the controller base class
from this package. The controller manager will only load the controller if it
inherits from this package.

•	 pr2_hardware_interface: This package consists of PR2 robot hardware
interface. There are interfaces for PR2 actuators, sensors, gripper, and so on.
Controllers can directly access the hardware components inside a hard real-
time loop.

•	 pr2_mechanism_model: This package contains the robot model that can
be used inside the controller loaded by the controller manager. The robot
model mainly consists of joints, kinematics, and the dynamic model of the
robot loaded from the URDF file. The controller mainly handles the main
components inside the robot model which need to work in real time.

•	 pr2_mechanism_msgs: This package consists of a message and service
definition that is used to communicate with the real-time control loop.
The message definition consists of the state of real-time controllers, joints,
and actuators.

We should install the above packages for starting with ROS real-time controllers.
The following command will install the pr2_mechanism stack in Ubuntu 14.04:

•	 In ROS Indigo:
$ sudo apt-get install ros-indigo-pr2-gazebo ros-indigo-pr2-
mechanism ros-indigo-pr2-bringup

•	 In ROS Jade, we can install pr2_mechanism from the source at
https://github.com/pr2/pr2_mechanism

www.it-ebooks.info

https://github.com/pr2/pr2_mechanism
http://www.it-ebooks.info/

Chapter 6

[181]

The description of other ROS packages installing along with the pr2_mechanism
stack are as follows:

•	 pr2-gazebo: The simulation package of PR2 using Gazebo. It contains the
launch file for starting the simulation of the PR2 robot in Gazebo.

•	 pr2-bringup: This has the launch files to start the PR2 hardware and
simulation.

Before writing the ROS controller, it will be good if we understand the use of each
package of the pr2_mechanism stack.

Understanding pr2_mechanism packages
The pr2_mechanism stack contain packages for writing ROS real-time controllers.
The first package that we are going to discuss is the pr2_controller_interface
package.

pr2_controller_interface package
A basic ROS real-time controller must inherit a base class called pr2_controller_
interface::Controller from this package. This base class contains four important
functions: init() , start(), update(), and stop(). The basic structure of the
Controller class is given as follows:

namespace pr2_controller_interface
{
 class Controller
 {
 public:
 virtual bool init(pr2_mechanism_model::RobotState *robot,
 ros::NodeHandle &n);
 virtual void starting();
 virtual void update();
 virtual void stopping();
 };
}

www.it-ebooks.info

http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[182]

The workflow of the controller class is shown as follows.

Figure 1: Workflow of the controller

Initialization of the controller
The first function executing when a controller is loaded is init(). The init() function
will not start running the controller. The initialization can take any amount of time
before starting the controllers. The declaration of the init function is given as follows:

 virtual bool init(pr2_mechanism_model::RobotState *robot,
ros::NodeHandle &n);

This method will not run as real time.

The function arguments are given as follows:

•	 pr2_mechanism_model:: RobotState *robot: The pr2_mechanism_
model contains the robot model that can be used by the robot controller.
The pr2_mechanism_model:: RobotState class helps us to access the
joints of the robot model and kinematic/dynamic description of robot.

•	 ros::NodeHandle &n: The controller can read the robot configuration and
even advertise topics using this Nodehandle.

The init() method only executes once while the controller is loaded by the
controller manager. If the init() method is not successful, it will unload from the
controller manager. We can write a custom message if any error occurs inside the
init() method.

Starting the ROS controller
The starting() method executes once just before running the controller. This
method will only execute once before updating/running the controller. This method
will work in a hard real-time manner. The starting() method declaration is given
as follows:

virtual void starting();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[183]

The controller can also call the starting() method when it restarts the controller
without unloading it.

Updating ROS controller
The update() function is the most important method that makes the controller alive.
The update method executes the code inside it at a rate of 1,000 Hz. It means the
controller completes one execution within 1 millisecond.

virtual void update();

Stopping the controller
This method will call when a controller is stopped. The stopping() method will
execute as the last update() call and only executes once. It is also working in
hard real time. The stopping() method will not fail and return nothing too.
The following is the declaration of the stopping() method:

virtual void stopping();

pr2_controller_manager
The pr2_controller_manager package can load/unload the controller in a hard
real-time loop. The controller manager also ensures that the controller will not set a
goal value that is less than or greater than the safety limits of the joint. The controller
manager also publishes the states of the joint in the /joint_state (sensor_msgs/
JointState) topic at a default rate of 100 Hz. The following figure shows the basic
workflow of a controller manager:

Figure 2: Working of controller manager

The controller manager can load/unload a plugin. When a controller is loaded by the
controller manager, it will first initialize it, but will not start running.

After loading the controller, we can start/stop the controller. When we start the
controller, it will run the controller, and when we stop it, it will simply stop.
Stopping doesn't means it is unloaded. But if the controller is unloaded from the
controller manager, we can't access the controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[184]

Writing a basic real-time joint controller
in ROS
The basic prerequisites for writing a ROS controller are already installed and we
have discussed the underlying concepts of controllers. Now we can start creating a
package for our own controller.

We are going to develop a controller that can access a joint of the robot and move the
robot in a sinusoidal fashion.

The procedure of building a controller is similar to other plugin development that we
have seen earlier. The list of procedures to create a ROS controller is given as follows:

•	 Create a ROS package with necessary dependencies
•	 Write controller code in C++
•	 Register or export the C++ class as plugin
•	 Define the plugin definition in an XML file
•	 Update the package.xml for exporting the plugin
•	 Write CMakeLists.txt
•	 Compile the code
•	 Writing configuration for our controller
•	 Start the PR2 simulation in Gazebo
•	 Load the controller using the controller manager

Step 1 – Creating controller package
The first step is to create the controller package with all its dependencies.
The following command can create a package for the controller called
my_controller_pkg:

$catkin_create_pkg my_controller_pkg roscpp pluginlib
pr2_controller_interface pr2_mechanism_model

We will get the existing package from the chapter_6_codes/my_controller_pkg
folder.

Step 2 – Creating controller header file
We will get the header file my_controller_file.h from the chapter_6_codes/
my_controller_pkg/include/my_controller_pkg folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[185]

Given in the following is the header file definition of my_controller_file.h. We
have discussed each line of this code while discussing pr2_controller_interface:

#include <pr2_controller_interface/controller.h>
#include <pr2_mechanism_model/joint.h>

namespace my_controller_ns{

//Inheriting Controller class inside pr2_controller_interface
class MyControllerClass: public pr2_controller_interface::Controller
{
private:
 pr2_mechanism_model::JointState* joint_state_;
 double init_pos_;

public:

 virtual bool init(pr2_mechanism_model::RobotState *robot,
 ros::NodeHandle &n);
 virtual void starting();
 virtual void update();
 virtual void stopping();
};
}

In the preceding code, we can see the controller class MyControllerClass and we
are inheriting the base class pr2_controller_interface::Controller. We can see
that each function inside the Controller class is overriding in our class.

Step 3 – Creating controller source file
Create a folder called src inside the package and create a C++ file called my_
controller_file.cpp, which is the class definition of the above header.

Given in the following is the definition of my_controller_file.cpp, which has to
be saved inside the src folder:

#include "my_controller_pkg/my_controller_file.h"
#include <pluginlib/class_list_macros.h>
namespace my_controller_ns {
/// Controller initialization in non-real-time
bool MyControllerClass::init(pr2_mechanism_model::RobotState *robot,
 ros::NodeHandle &n)
{
 std::string joint_name;

www.it-ebooks.info

http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[186]

 if (!n.getParam("joint_name", joint_name))
 {
 ROS_ERROR("No joint given in namespace: '%s')",
 n.getNamespace().c_str());
 return false;
 }
 joint_state_ = robot->getJointState(joint_name);
 if (!joint_state_)
 {
 ROS_ERROR("MyController could not find joint named '%s'",
 joint_name.c_str());
 return false;
 }
 return true;
}
/// Controller startup in realtime
void MyControllerClass::starting()
{
 init_pos_ = joint_state_->position_;
}
/// Controller update loop in real-time
void MyControllerClass::update()
{
 //Setting a desired position
 double desired_pos = init_pos_ + 15 * sin(ros::Time::now().toSec());
//Getting current joint position
 double current_pos = joint_state_->position_;
//Commanding the effort to joint to move into the desired goal
 joint_state_->commanded_effort_ = -10 * (current_pos - desired_pos);
}
/// Controller stopping in realtime
void MyControllerClass::stopping()
{}
} // namespace

// Register controller to pluginlib
PLUGINLIB_EXPORT_CLASS(my_controller_pkg,MyControllerPlugin,
 my_controller_ns::MyControllerClass,
 pr2_controller_interface::Controller)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[187]

Step 4 – Explanation of the controller
source file
In this section, we can see the explanation of each section of the code:

/// Controller initialization in non-real-time
bool MyControllerClass::init(pr2_mechanism_model::RobotState *robot,
 ros::NodeHandle &n)
{
 std::string joint_name;
 if (!n.getParam("joint_name", joint_name))
 {

The preceding is the init() function definition of the controller. This will be called
when a controller is loaded by the controller manager. Inside the init() function,
we are creating an instance of RobotState and NodeHandle, also retrieving a joint
name for attaching our controller. This joint name is defined inside the controller
configuration file. We can see the controller configuration file in the next section.

 joint_state_ = robot->getJointState(joint_name);

This is will create a joint state object for a particular joint. Here robot is an instance
of the RobotState class and joint_name is the desired joint in which we are
attaching the controller:

/// Controller startup in realtime
void MyControllerClass::starting()
{
 init_pos_ = joint_state_->position_;
}

After loading the controller, the next step is to start the controller. The preceding
function will execute when we start a controller. In this function, it will retrieve the
current state of the joint into the init_pos_ variable:

/// Controller update loop in real-time
void MyControllerClass::update()
{
 //Setting a desired position
 double desired_pos = init_pos_ + 15 * sin(ros::Time::now().toSec());
//Getting current joint position
 double current_pos = joint_state_->position_;
//Commanding the effort to joint to move into the desired goal
 joint_state_->commanded_effort_ = -10 * (current_pos - desired_pos);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[188]

This is the update function of the controller, which will continuously move the joint
in a sinusoidal fashion.

Step 5 – Creating plugin description file
We can define the plugin definition file, which is given in the following. The plugin file
is being saved inside the package folder with a name of controller_plugins.xml:

<library path="lib/libmy_controller_lib">
 <class name="my_controller_pkg/MyControllerPlugin"
 type="my_controller_ns::MyControllerClass"
 base_class_type="pr2_controller_interface::Controller" />
</library>

Step 6 – Updating package.xml
We need to update the package.xml for pointing the controller_plugins.xml file:

 <export>
 <pr2_controller_interface plugin="${prefix}/controller_plugins.
xml" />
 </export>

Step 7 – Updating CMakeLists.txt
After doing all these things, we can compose the CMakeLists.txt of the package:

my_controller_file library
add_library(my_controller_lib src/my_controller_file.cpp)
target_link_libraries(my_controller_lib ${catkin_LIBRARIES})

You will get the complete CMakeLists.txt from chapter_6_codes/my_
controller_pkg.

Step 8 – Building controller
After completing the CMakeLists.txt, we can build our controller using the
catkin_make command. After building, check that the controller is configured
as a plugin using rospack command, as given in the following:

$ rospack plugins --attrib=plugin pr2_controller_interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[189]

If everything has been performed correctly, the output may look like the following:

Figure 3: List of controllers in the system

Step 9 – Writing controller configuration file
After proper installation of the controller, we can configure and run it. The first
procedure is to create the configuration file of the controller that consists of the
controller type, joint name, joint limits, and so on. The configuration file is saved
as a YAML file that has to be saved inside the package. We are creating a YAML file
with a name of my_controller.yaml and the definition is given as follows:

 my_controller_name:
 type: my_controller_pkg/MyControllerPlugin
 joint_name: r_shoulder_pan_joint

Step 10 – Writing launch file for the controller
The joint assigned for showing the working of this controller is r_should_pan_joint
of the robot PR2. After creating the YAML file, we can create a launch file inside the
launch folder, which can load the controller configuration file and run the controller.
The launch file is called my_controller.launch, which is given as follows:

<launch>
 <rosparam file="$(find my_controller_pkg)/my_controller.yaml"
command="load" />

<!--We can use spawner tool to start running the custom controller -->
 <node pkg="pr2_controller_manager" type="spawner" args="my_
controller_name" name="my_controller_spawner" />
</launch>

www.it-ebooks.info

http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[190]

Step 11 – Running controller along with PR2
simulation in Gazebo
After creating the controller launch files, we have to test it on PR2. We can launch the
PR2 robot simulation using following command:

$roslaunch pr2_gazebo pr2_empty_world.launch

When we launch the PR2 simulation, all controllers associated with PR2 also get
started. The purpose of our controller is to move the r_shoulder_pan_joint of PR2.
If there are existing controllers handling this same joint, our controller can't work
properly. To avoid this situation, we need to stop the controller that is handling the
right arm of PR2. The following command tells you which are the controllers that are
associated with PR2:

$ rosrun pr2_controller_manager pr2_controller_manager list

The output of this command is given as follows:

Figure 4: Running status of PR2 controllers

Stop the r_arm_controller using the following command:

$ rosrun pr2_controller_manager pr2_controller_manager stop
r_arm_controller

After stopping this controller, we can start our own controller using the following
command:

$ roslaunch my_controller_pkg my_controller.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[191]

We can see the right arm of PR2 start moving, and a screenshot of the PR2 pose is
given in the following:

Figure 5: PR2 right hand joint working using our controller

Understanding ros_control packages
In the preceding section, we discussed the pr2_mechanism packages which build the
controllers for PR2. These packages are exclusively designed for PR2, but they will
work in robots that are similar to PR2.

To make these packages more generic to all the robots, the pr2_mechanism packages
rewritten and formed a new set of packages called ros_control (http://wiki.ros.
org/ros_control).

The ros_control implement standard set of generic controllers such as effort_
controllers, joint_state_controllers, position_controllers, and velocity
controllers for any kind of robots.

We have already used these ROS controllers from ros_control in Chapter 3,
Simulating Robots Using ROS and Gazebo. The ros_control is still in development.
The building procedure of the controllers is almost similar to PR2 controllers.

You can go through the available wiki page of ros_control for building new
controls at https://github.com/ros-controls/ros_control/wiki.

www.it-ebooks.info

http://wiki.ros.org/ros_control
http://wiki.ros.org/ros_control
https://github.com/ros-controls/ros_control/wiki
http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[192]

You will get a sample controller implementation using ros_control from the
chapter_6_codes/sample_ros_controller folder.

Understanding ROS visualization tool
(RViz) and its plugins
The RViz tool is an official 3D visualization tool of ROS. Almost all kinds of data from
sensors can be viewed through this tool. RViz will be installed along with the ROS
desktop full installation. Let's launch RViz and see the basic components present in
RViz:

•	 Start roscore
$roscore

•	 Start RViz
$ rosrun rviz rviz

The important sections of the RViz GUI are marked and the uses of each section are
given as follows:

Figure 6: RViz and its toolbars

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[193]

Displays panel
The panel on the left side of the RViz is called Displays panel. The Displays panel
contains a list of display plugins of RViz and its properties. The main use of display
plugins is to visualize different types of ROS messages, mainly sensor data in the
RViz 3D viewport. There are lots of display plugins already present in RViz for
viewing images from camera, for viewing 3D point cloud, LaserScan, robot model,
Tf, and so on. Plugins can be added by pressing the Add button on the left panel.
We can also write our own display plugin and add it there. The detail of tutorials for
writing a display plugin on RViz is available at http://docs.ros.org/jade/api/
rviz_plugin_tutorials/html/display_plugin_tutorial.html.

RViz toolbar
There are set of tools present in the RViz toolbar for manipulating the 3D viewport.
The toolbar is present on the top of RViz. There are tools present for interacting
with the robot model, modifying camera view, giving navigation goals, and giving
robot 2D pose estimations. We can add our own custom tools on the toolbar in the
form of plugins. One of the official tutorials for building tool plugins is available at
http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/tool_plugin_
tutorial.html.

Views
The Views panel is placed on the right side of the RViz. Using Views panel, we can
save different views of the 3D viewport and switch to each view by loading the
saved configuration.

Time panel
The Time panel displays the simulator time elapsed and is mainly useful if there is a
simulator running along with RViz. We can also reset to the RViz initial setting using
this panel.

Dockable panels
The above toolbar and panels belong to dockable panels. We can create our own
dockable panels as a RViz plugin. We are going to create a dockable panel that is
having an RViz plugin for robot teleoperation.

www.it-ebooks.info

http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/display_plugin_tutorial.html
http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/display_plugin_tutorial.html
http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/tool_plugin_tutorial.html
http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/tool_plugin_tutorial.html
http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[194]

Writing a RViz plugin for teleoperation
In this chapter, we design a teleoperation commander in which we can manually
enter the teleoperation topic, linear velocity, and angular velocity, as shown in
the following:

Figure 7: RViz teleop plugin

The following is a detailed procedure to build this plugin.

Methodology of building RViz plugin
Before starting to build this plugin, we should know how to do it. The standard
method to build a ROS plugin is applicable for this plugin too. The difference is that
the RViz plugin is GUI based. The RViz is written using a GUI framework called Qt,
so we need to create a GUI in Qt, and using Qt APIs, we have get the GUI values and
send them to the ROS system.

The following steps describe how this teleoperation RViz plugin is going to work:

•	 The dockable panel will have a Qt GUI interface and the user can input the
topic, linear velocity, and angular velocity of teleoperation from the GUI.

•	 Collect the user input from GUI using Qt signals/slots and publish the
values using the ROS subscribe and publish method. (The Qt signals and
slots are a trigger-invoke technique available in Qt. When a signal/trigger
is generated by a GUI field, it can invoke a slot or function like a callback
mechanism.)

•	 Here also, we can use the same procedure to build a plugin like we
discussed earlier.

Now we can see the step-by-step procedure to build this plugin as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[195]

Step 1 – Creating RViz plugin package
Let's create a new package for creating the teleop plugin:

$ catkin_create_pkg rviz_telop_commander roscpp rviz std_msgs

Or, you can use the existing package from the following location: chapter_6_codes/
rviz_telop_commander.

The package is mainly dependent on the rviz package. RViz is built using Qt
libraries, so we don't need to include additional Qt libraries in the package.

Step 2 – Creating RViz plugin header file
Let's create a new header inside the src folder called teleop_pad.h. You will get
this source code from the existing package. This header file consists of the class and
methods declaration for the plugin.

The following is the explanation of this header file:

#include <ros/ros.h>
#include <ros/console.h>
#include <rviz/panel.h>

The preceding is the header file required to build this plugin; we need ROS headers
for publishing teleop topic and <rviz/panel.h> for getting the base class of the
RViz panel for creating a new panel:

class TeleopPanel: public rviz::Panel
{

This is a plugin class and is inherited from the rviz::Panel base class:

Q_OBJECT
public:

This class is using Qt signal and slots, and it's also a subclass of QObject in Qt.
In that case, we should use Q_OBJECT macro:

 TeleopPanel(QWidget* parent = 0);

This is the constructor of the TeleopPanel() class and we are initializing a QWidget
class to 0. We are using the QWidget instance inside the TeleopPanel class for
implementing the GUI of the teleop plugin:

 virtual void load(const rviz::Config& config);
 virtual void save(rviz::Config config) const;

www.it-ebooks.info

http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[196]

The following is the overriding of rviz::Panel functions for saving and loading the
RViz config file:

public Q_SLOTS:

After this line, we can define some public Qt slots:

 void setTopic(const QString& topic);

When we enter the topic name in the GUI and press Enter, this slot will be called and
will create topic publisher on the given name:

protected Q_SLOTS:
 void sendVel();
 void update_Linear_Velocity();
 void update_Angular_Velocity();
 void updateTopic();

These are the protected slots for sending velocity, updating linear velocity and
angular velocity, and updating the topic name, when we change the name of the
existing topic:

 QLineEdit* output_topic_editor_;
 QLineEdit* output_topic_editor_1;
 QLineEdit* output_topic_editor_2;

We are creating Qt LineEdit object to create three text fields in the plugin to receive:
topic name, linear velocity, and angular velocity.

ros::Publisher velocity_publisher_;
ros::NodeHandle nh_;

These are the publisher object and the Nodehandle object for publishing topics and
handling a ROS node.

Step 3 – Creating RViz plugin definition
In this step, we will create the main C++ file that contains the definition of the
plugin. The file is teleop_pad.cpp, and you will get it from package src folder.

The main responsibilities of this file are as follows:

•	 It acts as a container for Qt GUI element such as QLineEdit to accept
text entries

•	 Publishes the command velocity using ROS publisher
•	 Saves and restores the RViz config files

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[197]

The following is the explanation of each section of the code:

TeleopPanel::TeleopPanel(QWidget* parent)
 : rviz::Panel(parent)
 , linear_velocity_(0)
 , angular_velocity_(0)
{

This is the constructor and initialize rviz::Panel with QWidget, setting linear and
angular velocity as 0:

 QVBoxLayout* topic_layout = new QVBoxLayout;
 topic_layout->addWidget(new QLabel("Teleop Topic:"));
 output_topic_editor_ = new QLineEdit;
 topic_layout->addWidget(output_topic_editor_);

This will add a new QLineEdit widget on the panel for handling the topic name.
Similarly, two other QLineEdit widgets handle linear velocity and angular velocity.

 QTimer* output_timer = new QTimer(this);

This will create a Qt timer object for updating a function that is publishing the
velocity topic:

connect(output_topic_editor_, SIGNAL(editingFinished()), this,
SLOT(updateTopic()));
 connect(output_topic_editor_, SIGNAL(editingFinished()), this,
SLOT(updateTopic()));

 connect(output_topic_editor_1, SIGNAL(editingFinished()), this,
SLOT(update_Linear_Velocity()));

 connect(output_topic_editor_2, SIGNAL(editingFinished()), this,
SLOT(update_Angular_Velocity()));

This will connect Qt signal to the slots. Here the signal is triggered when
editingFinished() return true and the Slot here is updateTopic(). When the
editing inside a Qt LineEdit is finished by pressing Enter key, the signal will trigger
and the corresponding slot will execute. Here this slot will set the topic name,
angular velocity, and linear velocity value from the text field of the plugin:

connect(output_timer, SIGNAL(timeout()), this, SLOT(sendVel()
));
output_timer->start(100);

www.it-ebooks.info

http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[198]

These lines generate a signal when the Qt timer timesout. The timer will timeout in
each 100 ms and execute a slot called sendVel(), which will publish the velocity topic.

We can see the definition of each slot after this section. These codes are self-
explanatory and finally we can see the following code to export it as a plugin:

#include <pluginlib/class_list_macros.h>
PLUGINLIB_EXPORT_CLASS(rviz_telop_commander::TeleopPanel,
rviz::Panel)

Step 4 – Creating plugin description file
The definition of plugin_description.xml is given as follows:

<library path="lib/librviz_telop_commander">
 <class name="rviz_telop_commander/Teleop"
 type="rviz_telop_commander::TeleopPanel"
 base_class_type="rviz::Panel">
 <description>
 A panel widget allowing simple diff-drive style robot base
control.
 </description>
 </class>
</library>

Step 5 – Adding export tags in package.xml
We have to update the package.xml file for including the plugin description.
The following is the update of package.xml:

 <export>
 <rviz plugin="${prefix}/plugin_description.xml"/>
 </export>

Step 6 – Editing CMakeLists.txt
We need to add extra lines in the CMakeLists.txt definition as given in the following:

This plugin includes Qt widgets, so we must include Qt like so:
find_package(Qt4 COMPONENTS QtCore QtGui REQUIRED)
include(${QT_USE_FILE})

I prefer the Qt signals and slots to avoid defining "emit",
"slots",
etc because they can conflict with boost signals, so define QT_NO_
KEYWORDS here.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[199]

add_definitions(-DQT_NO_KEYWORDS)

Here we specify which header files need to be run through "moc",
Qt's meta-object compiler.

qt4_wrap_cpp(MOC_FILES
 src/teleop_pad.h
)

set(SOURCE_FILES
 src/teleop_pad.cpp
 ${MOC_FILES}
)
add_library(${PROJECT_NAME} ${SOURCE_FILES})
target_link_libraries(${PROJECT_NAME} ${QT_LIBRARIES} ${catkin_
LIBRARIES})

You will get the complete CMakeLists.txt from chapter_6_codes/rviz_telop_
commander.

Step 7 – Building and loading plugins
After creating these files, build a package using catkin_make. If the build is
successful, we can load the plugin in RViz itself. Take RViz and load the panel by
going to Menu Panel | Add New Panel; we will get a panel like the following:

Figure 8: Loading teleop node from RViz

www.it-ebooks.info

http://www.it-ebooks.info/

Writing ROS Controllers and Visualization Plugins

[200]

If we load the Teleop plugin from the list, we will get a panel like the following:

Figure 9: Loading teleop node from RViz

We can put the Teleop Topic name and values inside the Linear Velocity and Angular
Velocity and we can echo the Teleop Topic and get the topic values like the following:

Figure 10: Twist commands from RViz teleop plugin

Questions
1.	 What are the list of packages needed for writing a real-time controller

in ROS?
2.	 What are the different processes happening inside a ROS controller?
3.	 What are the main functions of the PR2 mechanism model?
4.	 What are the different types of RViz plugins?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[201]

Summary
In this chapter, we discussed creating plugins for the ROS visualization tool (RViz)
and writing basic ROS controllers. We have already worked with default controllers
in ROS, and in this chapter, we developed a custom controller for moving joints.
After building and testing the controller, we looked at RViz plugins. We created a
new RViz panel for teleoperation. We can manually enter the topic name; we need
the twist messages and to enter the linear and angular velocity in the panel. This
panel is useful for controlling robots without starting another teleoperation node.
In the next chapter, we will discuss interfacing of I/O boards and running ROS in
embedded systems.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[203]

Interfacing I/O Boards,
Sensors, and Actuators

to ROS
In the last two chapters, we discussed different kinds of plugin frameworks that are
used in ROS. In this chapter, we are going to discuss interfacing of some hardware
components, such as sensors and actuators to ROS. We will see interfacing of sensors
using I/O boards such as Arduino, Raspberry Pi, and Odroid-C1 to ROS, and also
discuss interfacing of smart actuators such as Dynamixel to ROS. Following is the
detailed list of topics we are going to cover in this chapter:

•	 Understanding the Arduino-ROS interface
•	 Setting up the Arduino-ROS interface packages
•	 Arduino-ROS ,example—Chatter and Talker
•	 Arduino-ROS , example—blink LED and push button
•	 Arduino-ROS , example—Accelerometer ADXL 335
•	 Arduino-ROS, example—ultrasonic distance sensor
•	 Arduino-ROS, example—Odometry Publisher
•	 Interfacing a non-Arduino board to ROS
•	 Setting ROS on Odroid-C1 and Raspberry Pi 2
•	 Working with Raspberry Pi and Odroid GPIOs using ROS
•	 Interfacing Dynamixel actuators to ROS

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[204]

Understanding the Arduino–ROS interface
Let's see what an Arduino is first. Arduino is one of the most popular open source I/O
boards in the market. The easiness in programmability and the cost effectiveness of the
hardware have made Arduino a big success. Most of the Arduino boards are powered
by Atmel microcontrollers, which are available from 8-bit to 32-bit and clock speed
from 8 MHz to 84 MHz. Arduino can be used for quick prototyping of robots and we
can even use it for products as well. The main applications of Arduino in robotics are
interfacing sensors and actuators, and communicating with PC for receiving high level
commands and sending sensor values to PC using the UART protocol.

There are different varieties of Arduino available in the market. Selecting one board
for our purpose will be dependent on the nature of our robotic application. Let's see
some boards which we can use for beginners, intermediate, and high end users.

Figure 1 : Different versions of Arduino board

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[205]

We will look at each Arduino board specification in brief and see where it can be
deployed.

Boards Arduino UNO Arduino Mega 2560 Arduino Due
Processor ATmega328P ATmega2560 ATSAM3X8E
Operating/Input
Voltage

5V / 7-12 V 5V/ 7-12V 3.3V / 7 - 12 V

CPU Speed 16 MHz 16 MHz 84 MHz
Analog In/Out 6/0 16/0 12/2
Digital IO/PWM 14/6 54/15 54/12
EEPROM[KB] 1 4 -
SRAM [KB] 2 8 96
Flash [KB] 32 256 512
USB Regular Regular 2 Micro
UART 1 4 4
Application Basic robotics and

sensor interfacing
Intermediate robotic
application level
application

High end robotics
application

Let's see how to interface Arduino to ROS.

What is the Arduino–ROS interface?
Most of the communication between PC and I/O boards in robots will be through
UART protocol. When both the devices communicate with each other, there should
be some program in both the sides which can translate the serial commands from
each of these devices. We can implement our own logic to receive and transmit the
data from board to PC and vice versa. The interfacing code can be different in each
I/O board because there are no standard libraries to do this communication.

The Arduino-ROS interface is a standard way of communication between the
Arduino boards and PC. Currently, this interface is exclusive for Arduino.
We may need to write custom nodes to interface other I/O boards.

We can use the similar C++ APIs of ROS used in PC in Arduino IDE also, for
programming the Arduino board. Detailed information about the interfacing
package follows.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[206]

Understanding the rosserial package in ROS
The rosserial package is a set of standardized communication protocols
implemented for communicating from ROS to character devices such as serial ports,
and sockets, and vice versa. The rosserial protocol can convert the standard ROS
messages and services data types to embedded device equivalent data types. It also
implements multitopic support by multiplexing the serial data from a character
device. The serial data is sent as data packets by adding header and tail bytes on the
packet. The packet representation is shown next:

Figure 2 : rosserial packet representation

The function of each byte follows:

•	 Sync Flag: This is the first byte of the packet, which is always 0xff
•	 Sync Flag/Protocol version: This byte was 0xff on ROS Groovy and after

that it is set to 0xfe
•	 Message Length: This is the length of the packet
•	 Checksum over message length: This is the checksum of length for finding

packet corruption
•	 Topic ID: This is the ID allocated for each topic; the range 0-100 is allocated

for the system related functionalities
•	 Serialized Message data: This is the data associated with each topic
•	 Checksum of Topic ID and data: This is the checksum for topic and its serial

data for finding packet corruption

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[207]

The checksum of length is computed using the following equation:

Checksum = 255 - ((Topic ID Low Byte + Topic ID High Byte + ... data byte values) % 256)

The ROS client libraries, such as roscpp, rospy, and roslisp, enable us to develop
ROS nodes which can run from various devices. One of the ports of the ROS clients
which enables us to run a ROS node from the embedded devices such as Arduino
and embedded Linux based boards, is called the rosserial_client library. Using
the rosserial_client libraries, we can develop the ROS nodes from Arduino,
embedded Linux platforms, and windows. Following is the list of rosserial_
client libraries for each of these platforms:

•	 rosserial_arduino: This rosserial_client works on Arduino platforms
such as Arduino UNO and Leonardo, and also works in Mega series and Due
series for advance robotic projects

•	 rosserial_embeddedlinux: This client supports embedded Linux platforms
such as VEXPro, Chumby alarm clock, WRT54GL router, and so on

•	 rosserial_windows: This is a client for Windows platform

In the PC side, we need some other packages to decode the serial message and
convert to exact topics from the rosserial_client libraries. The following packages
help in decoding the serial data:

•	 rosserial_python: This is the recommended PC side node for handling
serial data from a device. The receiving node is completely written in Python.

•	 rosserial_server: This is a C++ implementation of rosserial in the PC
side. The inbuilt functionalities are less compared to rosserial_python,
but it can be used for high performance applications.

•	 rosserial_java: This is a JAVA based implementation of rosserial,
but not actively supported now. It is mainly used for communicating with
android devices.

We are mainly focusing on running the ROS nodes from Arduino. First we will see
how to setup the rosserial packages and then discuss how to setup the roserial_
arduino client in Arduino IDE.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[208]

Installing rosserial packages on Ubuntu 14.04/15.04
We can install the rosserial packages on Ubuntu using the following commands:

1.	 Installing the rosserial package binaries using apt-get:
°° In Indigo:

$ sudo apt-get install ros-indigo-rosserial ros-indigo-
rosserial-arduino ros-indigo-rosserial-server

°° In Jade:
$ sudo apt-get install ros-jade-rosserial ros-jade-
rosserial-arduino ros-jade-rosserial-server

2.	 For installing the rosserial_client library called ros_lib in Arduino, we
have to download the latest Arduino IDE for Linux 32/64 bit. Following is
the link for downloading Arduino IDE:
 https://www.arduino.cc/en/main/software
Here we download the Linux 64 bit version and copy the Arduino IDE folder
to the Ubuntu desktop.

3.	 Arduino requires JAVA runtime support to run it. If it is not installed, we can
install it using the following command:
 $ sudo apt-get install java-common

4.	 After installing JAVA runtime, we can switch the arduino folder using the
following command:
 $ cd ~/Desktop/arduino-1.6.5

5.	 Start Arduino using the following command:
 $./arduino

www.it-ebooks.info

https://www.arduino.cc/en/main/software
http://www.it-ebooks.info/

Chapter 7

[209]

Shown next is the Arduino IDE window:

Figure 3 : Arduino IDE

6.	 Go to File | Preference for configuring the sketchbook folder of Arduino.
Arduino IDE stores the sketches to this location. We created a folder called
Arduino1 in the user home folder and set this folder as the sketchbook
location.

Figure 4 : Preference of Arduino IDE

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[210]

7.	 We can see a folder called libraries inside the Arduino1 folder. Switch to this
folder using the following command:
 $ cd ~/Arduino1/libraries/

If there is no libraries folder, we can create a new one.

8.	 After switching into this folder, we can generate ros_lib using a script
called make_libraries.py, which is present inside the rosserial_arduino
package. ros_lib is rosserial_client for Arduino, which provides the
ROS client APIs inside an Arduino IDE environment.

 $ rosrun rosserial_arduino make_libraries.py .

rosserial_arduino is ROS client for arduino which can communicate using UART
and can publish topics, services, TF, and such others like a ROS node. The make_
libraries.py script will generate a wrapper of the ROS messages and services
which optimized for Arduino data types. These ROS messages and services will
convert into Arduino C/C++ code equivalent, as shown next:

•	 Conversion of ROS messages:
ros_package_name/msg/Test.msg --> ros_package_name::Test

•	 Conversion of ROS services:
ros_package_name/srv/Foo.srv --> ros_package_name::Foo

For example, if we include #include <std_msgs/UInt16.h> , we can instantiate the
std_msgs::UInt16 number.

If the script make_libraries.py works fine, a folder called ros_lib will generate
inside the libraries folder. Restart the Arduino IDE and we will see ros_lib
examples as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[211]

Figure 5 : List of Arduino - ROS examples

We can take any example and make sure that it is building properly to ensure that
the ros_lib APIs are working fine. The necessary APIs required for building ROS
Arduino nodes are discussed next.

Understanding ROS node APIs in Arduino
Following is a basic structure ROS Arduino node. We can see the function of each line
of code:.

#include <ros.h>

ros::NodeHandle nh;

void setup()
{
 nh.initNode();
}

void loop()
{
 nh.spinOnce();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[212]

Creating of NodeHandle in Arduino is done using the following line of code:

ros::NodeHandle nh;

Note that Nodehandle should be declared before the setup() function, which will
give a global scope to the NodeHandle instance called nh. The initialization of this
node is done inside the setup() function.

 nh.initNode();

The Arduino setup() function will execute only once when the device starts, and
note that we can only create one node from a serial device.

Inside the loop() function, we have to use the following line of code to execute the
ROS callback once:

 nh.spinOnce();

We can create the Subscriber and Publisher objects in Arduino, similar to the
other ROS client libraries. Following are the procedures for defining the subscriber
and the publisher.

Here is how we define a subscriber object in Arduino:

ros::Subscriber<std_msgs::String> sub("talker", callback);

Here we define a subscriber which is subscribing a String message, where callback
is the callback function executing when a String message arrives on the talker topic.
Given next is an example callback for handling the String data:

std_msgs::String str_msg;

ros::Publisher chatter("chatter", &str_msg);

void callback (const std_msgs::String& msg){
 str_msg.data = msg.data;

 chatter.publish(&str_msg);

}

Note that the callback(), Subscriber, and Publisher definition will be above the
setup() function for getting global scope. Here we are receiving String data using
const std_msgs::String& msg.

Following code shows how to define a publisher object in Arduino:

ros::Publisher chatter("chatter", &str_msg);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[213]

This next code shows how we publish the string message:

 chatter.publish(&str_msg);

After defining the publisher and the subscriber, we have to initiate this inside the
setup() function using the following lines of code:

 nh.advertise(chatter);
 nh.subscribe(sub);

There are ROS APIs for logging from Arduino. Following are the different logging
APIs supported:

nh.logdebug("Debug Statement");
nh.loginfo("Program info");
nh.logwarn("Warnings.);
nh.logerror("Errors..");
nh.logfatal("Fatalities!");

We can retrieve the current ROS time in Arduino using ROS built-in functions,
such as time and duration.

•	 Current ROS time:
ros::Time begin = nh.now();

•	 Convert ROS time in seconds:
double secs = nh.now().toSec();

•	 Creating a duration in seconds:
ros::Duration ten_seconds(10, 0);

ROS – Arduino Publisher and Subscriber example
The first example using Arduino and ROS interface is a chatter and talker interface.
Users can send a String message to the talker topic and Arduino will publish
the same message in a chatter topic. The following ROS node is implemented for
Arduino and we will discuss this example in detail:

#include <ros.h>
#include <std_msgs/String.h>

//Creating Nodehandle
ros::NodeHandle nh;

//Declaring String variable
std_msgs::String str_msg;

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[214]

//Defining Publisher
ros::Publisher chatter("chatter", &str_msg);
//Defining callback
void callback (const std_msgs::String& msg){

 str_msg.data = msg.data;
 chatter.publish(&str_msg);

}

//Defining Subscriber
ros::Subscriber<std_msgs::String> sub("talker", callback);

void setup()
{
 //Initializing node
 nh.initNode();
 //Start advertising and subscribing
 nh.advertise(chatter);
 nh.subscribe(sub);
}

void loop()
{
 nh.spinOnce();
 delay(3);
}

We can compile the above code and upload to the Arduino board. After uploading
the code, select the desired Arduino board that we are using for this example and the
device serial port of the Arduino IDE.

Take Tools | Boards to select the board and Tools | Port to select the device port
name of the board. We are using Arduino Mega for these examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[215]

After compiling and uploading the code, we can start the ROS bridge nodes in the
PC which connects Arduino and the PC using the following command. Ensure that
Arduino is already connected to the PC before executing of this command.

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

We are using the rosserial_python node here as the ROS bridging node. We have
to mention the device name and baud-rate as arguments. The default baud-rate of this
communication is 57600. We can change the baud-rate according to our application
and the usage of serial_node.py inside the rosserial_python package is given at
http://wiki.ros.org/rosserial_python. If the communication between the ROS
node and the Arduino node is correct, we will get the following message:

Figure 6 : Running the rosserial_python node

When serial_node.py starts running from the PC, it will send some serial data
packets called query packets to get the number of topics, the topic names, and the
types of topics which are received from the Arduino node. We have already seen the
structure of serial packets which is being used for Arduino ROS communication. Given
next is the structure of a query packet which is sent from serial_node.py to Arduino:

Figure 7 : Structure of Query Packet

www.it-ebooks.info

http://wiki.ros.org/rosserial_python
http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[216]

The query topic contains fields such as Sync Flag, ROS version, length of the
message, MD5 sum, Topic ID, and so on. When the query packet receives on the
Arduino, it will reply with a topic info message which contains topic name, type,
length, topic data, and so on. Following is a typical response packet from Arduino:

Figure 8 : Structure of Response Packet

If there is no response for the query packet, it will send it again. The synchronization
in communication is based on ROS time.

From Figure 6, we can see that when we run the serial_node.py, the buffer size
allocated for publish and subscribe is 512 bytes. The buffer allocation is dependent
on the amount of RAM available on each microcontroller that we are working with.
Following is a table showing the buffer allocation of each Arduino controller. We can
override these settings by changing the BUFFER_SIZE macro inside ros.h.

AVR Model Buffer Size Publishers/Subscribers
ATMEGA 168 150 bytes 6/6
ATMEGA 328P 280 bytes 25/25
All others 512 bytes 25/25

There are also some limitations in the float64 data type of ROS in Arduino, it will
truncate to 32-bit. Also, when we use string data types, use the unsigned char pointer
for saving memory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[217]

After running serial_node.py, we will get the list of topics using the
following command:

$ rostopic list

We can see that topics such as chatter and talker are being generated. We can
simply publish a message to the talker topic using the following command:

$ rostopic pub -r 5 talker std_msgs/String "Hello World"

It will publish the "Hello World" message with a rate of 5.

We can echo the chatter topic and we will get the same message as we published:

$rostopic echo /chatter

The screenshot of this command is shown next:

Figure 9 : Echoing /chatter topic

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[218]

Arduino-ROS, example – blink LED and push
button
In this example, we can interface the LED and push button to Arduino and control
using ROS. When the push button is pressed, the Arduino node sends a True value
to a topic called pushed, and at the same time, it switches on the LED which is on the
Arduino board. The following shows the circuit for doing this example:

Figure 10 : Interfacing the push button to Arduino

/*
 * Button Example for Rosserial
 */

#include <ros.h>
#include <std_msgs/Bool.h>

//Nodehandle
ros::NodeHandle nh;

//Boolean message for Push button
std_msgs::Bool pushed_msg;

//Defining Publisher in a topic called pushed
ros::Publisher pub_button("pushed", &pushed_msg);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[219]

//LED and Push button pin definitions
const int button_pin = 7;
const int led_pin = 13;

//Variables to handle debouncing
//https://www.arduino.cc/en/Tutorial/Debounce

bool last_reading;
long last_debounce_time=0;
long debounce_delay=50;
bool published = true;

void setup()
{
 nh.initNode();
 nh.advertise(pub_button);

 //initialize an LED output pin
 //and a input pin for our push button
 pinMode(led_pin, OUTPUT);
 pinMode(button_pin, INPUT);

 //Enable the pullup resistor on the button
 digitalWrite(button_pin, HIGH);

 //The button is a normally button
 last_reading = ! digitalRead(button_pin);

}

void loop()
{

 bool reading = ! digitalRead(button_pin);

 if (last_reading!= reading){
 last_debounce_time = millis();
 published = false;
 }

 //if the button value has not changed for the debounce delay, we
know its stable

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[220]

 if (!published && (millis() - last_debounce_time) > debounce_
delay) {
 digitalWrite(led_pin, reading);
 pushed_msg.data = reading;
 pub_button.publish(&pushed_msg);
 published = true;
 }

 last_reading = reading;

 nh.spinOnce();
}

The preceding code handles the key debouncing and changes the button state only
after the button release. The preceding code can upload to Arduino and can interface
to ROS using the following command:

•	 Start roscore:
$ roscore

•	 Start serial_node.py:

$ rosrun roserial_python serial_node.py /dev/ttyACM0

We can see the button press event by echoing the topic pushed:

$ rostopic echo pushed

We will get following values when a button is pressed:

Figure 11 : Output of Arduino- Push button

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[221]

Arduino-ROS, example – Accelerometer
ADXL 335
In this example, we are interfacing Accelerometer ADXL 335 to Arduino Mega
through ADC pins and plotting the values using the ROS tool called rqt_plot.

The following image shows the circuit of the connection between ADLX 335
and Arduino::

Figure 12 : Interfacing Arduino - ADXL 335

The ADLX 335 is an analog accelerometer. We can simply connect to the ADC port
and read the digital value. Following is the embedded code to interface ADLX 335
via Arduino ADC:

#if (ARDUINO >= 100)
 #include <Arduino.h>
#else
 #include <WProgram.h>
#endif
#include <ros.h>
#include <rosserial_arduino/Adc.h>

const int xpin = A2; // x-axis of the accelerometer
const int ypin = A1; // y-axis

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[222]

const int zpin = A0; // z-axis (only on 3-axis
models)

ros::NodeHandle nh;

//Creating an adc message
rosserial_arduino::Adc adc_msg;

ros::Publisher pub("adc", &adc_msg);

void setup()
{

 nh.initNode();

 nh.advertise(pub);

}

//We average the analog reading to elminate some of the noise
int averageAnalog(int pin){
 int v=0;
 for(int i=0; i<4; i++) v+= analogRead(pin);
 return v/4;
}

void loop()
{

//Inserting ADC values to ADC message
 adc_msg.adc0 = averageAnalog(xpin);
 adc_msg.adc1 = averageAnalog(ypin);
 adc_msg.adc2 = averageAnalog(zpin);

 pub.publish(&adc_msg);

 nh.spinOnce();

 delay(10);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[223]

The preceding code will publish the ADC values of X, Y, and Z axes in a topic called
/adc. The code uses the rosserial_arduino::Adc message to handle the ADC
value. We can plot the values using the rqt_plot tool.

Following is the command to plot the three axes values in a single plot:

$ rqt_plot adc/adc0 adc/adc1 adc/adc2

Next is a screenshot of the plot of the three channels of ADC:

Figure 13 : Plotting ADXL 335 values using rqt_plot

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[224]

Arduino-ROS, example – ultrasonic distance
sensor
One of the useful sensors in robots are the range sensors. One of the cheapest range
sensor is the ultrasonic distance sensor. The ultrasonic sensor has two pins for
handling input and output, called Echo and Trigger. We are using the HC-SR04
ultrasonic distance sensor and the circuit is shown in the following image:

Figure 14 : Plotting ADXL 335 values using rqt_plot

The ultrasonic sound sensor contains two sections: one is the transmitter and the
other is the receiver. The working of the ultrasonic distance sensor is, when a trigger
pulse of a short duration is applied to the trigger pin of the ultrasonic sensors, the
ultrasonic transmitter sends the sound signals to the robot environment. The sound
signal sent from the transmitter hits on some obstacles and is reflected back to the
sensor. The reflected sound waves are collected by the ultrasonic receiver, generating
an output signal which has a relation to the time required to receive the reflected
sound signals.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[225]

Equations to find distance using the ultrasonic
range sensor
Following are the equations used to compute the distance from an ultrasonic range
sensor to an obstacle:

Distance = Speed * Time/2

Speed of sound at sea level = 343 m/s or 34300 cm/s

Thus, Distance = 17150 * Time (unit cm)

We can compute the distance to the obstacle using the pulse duration of the output.
Following is the code to work with the ultrasonic sound sensor and send value
through the ultrasound topic using the range message definition in ROS:

#include <ros.h>
#include <ros/time.h>
#include <sensor_msgs/Range.h>

ros::NodeHandle nh;

#define echoPin 7 // Echo Pin
#define trigPin 8 // Trigger Pin

int maximumRange = 200; // Maximum range needed
int minimumRange = 0; // Minimum range needed
long duration, distance; // Duration used to calculate distance

sensor_msgs::Range range_msg;
ros::Publisher pub_range("/ultrasound", &range_msg);

char frameid[] = "/ultrasound";

void setup() {

 nh.initNode();
 nh.advertise(pub_range);

 range_msg.radiation_type = sensor_msgs::Range::ULTRASOUND;
 range_msg.header.frame_id = frameid;

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[226]

 range_msg.field_of_view = 0.1; // fake
 range_msg.min_range = 0.0;
 range_msg.max_range = 60;

 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);

}

float getRange_Ultrasound(){

 int val = 0;

 for(int i=0; i<4; i++) {

 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);
 duration = pulseIn(echoPin, HIGH);

 //Calculate the distance (in cm) based on the speed of sound.
 val += duration;

 }
 return val / 232.8 ;

}
long range_time;

void loop() {
/* The following trigPin/echoPin cycle is used to determine the
 distance of the nearest object by bouncing soundwaves off of it. */

 if (millis() >= range_time){
 int r =0;

 range_msg.range = getRange_Ultrasound();
 range_msg.header.stamp = nh.now();
 pub_range.publish(&range_msg);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[227]

 range_time = millis() + 50;
 }

 nh.spinOnce();

 delay(50);
}

We can plot the distance value using the following command:

•	 Start roscore:
$ roscore

•	 Start serial_node.py:
$ rosrun rosserial_python serial_node.py /dev/ttyACM0

•	 Plot values using rqt_plot:
$ rqt_plot /ultrasound

Figure 15 : Plotting ultrasonic sound sensor distance value

The center line indicates the current distance from the sensor. The upper line is the
max_range and line below is the minimum range.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[228]

Arduino-ROS, example – Odometry Publisher
In this example, we will see how to send an odom message from an Arduino node
to a PC. This example can be used in a robot for computing odom and send to ROS
Navigation stack as the input. The motor encoders can be used for computing odom
and can send to PC. In this example, we will see how to send odom for a robot which
is moving in a circle, without taking the motor encoder values.

/*
 * rosserial Planar Odometry Example
 */

#include <ros.h>
#include <ros/time.h>
#include <tf/tf.h>
#include <tf/transform_broadcaster.h>

ros::NodeHandle nh;
//Transform broadcaster object
geometry_msgs::TransformStamped t;
tf::TransformBroadcaster broadcaster;

double x = 1.0;
double y = 0.0;
double theta = 1.57;

char base_link[] = "/base_link";
char odom[] = "/odom";

void setup()
{
 nh.initNode();
 broadcaster.init(nh);
}

void loop()
{
 // drive in a circle
 double dx = 0.2;
 double dtheta = 0.18;

 x += cos(theta)*dx*0.1;
 y += sin(theta)*dx*0.1;
 theta += dtheta*0.1;

 if(theta > 3.14)
 theta=-3.14;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[229]

 // tf odom->base_link
 t.header.frame_id = odom;
 t.child_frame_id = base_link;

 t.transform.translation.x = x;
 t.transform.translation.y = y;

 t.transform.rotation = tf::createQuaternionFromYaw(theta);
 t.header.stamp = nh.now();

 broadcaster.sendTransform(t);
 nh.spinOnce();

 delay(10);
}

After uploading the code, run roscore and rosserial_node.py. We can view tf
and odom in RViz. Open RViz and view the tf as shown next. We will see the odom
pointer moving in a circle on RViz as follows:

Figure 16 : Visualizing odom data from Arduino

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[230]

Interfacing Non-Arduino boards to ROS
Arduino boards are commonly used boards in robots but what happens if we want
a board which is more powerful than Arduino. In such a case, we may want to write
our own driver for the board, which can convert the serial messages into topics.

We will see interfacing of a Non-Arduino board called Tiva C Launchpad to ROS
using a Python driver node in Chapter 9, Building and Interfacing Differential Drive
Mobile Robot Hardware in ROS. This chapter, is about interfacing a real mobile robot
to ROS and the robot using Tiva C Launchpad board for its operation.

Setting ROS on Odroid–C1 and Raspberry
Pi 2
Odroid-C1 and Raspberry Pi2 are single board computers which have low form
factor with a size of a credit card. These single board computers can be installed in
robots and we can install ROS on it.

The main specifications comparison of Odroid-C1 and Raspberry Pi2 is shown next:

Device Odroid-C1 Raspberry Pi 2
CPU 1.5 GHz quad core ARM

Cortex-A5 CPU from
Amlogic

900 MHz quad core ARM
Cortex A7 CPU from
Broadcom

GPU Mali-450 MP2 GPU VideoCore IV
Memory 1 GB 1 GB
Storage SD card slot or eMMC

module
SD card slot

Connectivity 4 x USB, micro HDMI,
Gigabit Ethernet, infra red
remote control receiver

4 x USB, HDMI, Ethernet,
3.5mm audio jack

OS Android, Ubuntu/Linux Raspbian, Ubuntu/Linux,
Windows 10

Connectors GPIO, SPI, I2C, RTC (Real
Time Clock) backup battery
connector

Camera interface (CSI),
GPIO, SPI, I2C, JTAG

Price $35 $35

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[231]

Following is an image of the Odroid-C1 board:

Figure 17 : Odroid-C1 board

The Odroid board is manufactured by a company called Hard kernel. The official
web page of the Odroid-C1 board is http://www.hardkernel.com/main/
products/prdt_info.php?g_code=G141578608433.

The Odroid-C1 is a basic model in the Odroid series. There are more powerful
boards as well, such as Odroid-XU4, XU3, and U3. All these boards support ROS.

One of the popular single board computers is Raspberry Pi. The Raspberry Pi boards
are manufactured by Raspberry Pi Foundation which is based in the UK. The latest
model of Raspberry Pi is Raspberry Pi 2. The official website of Raspberry Pi is
https://www.raspberrypi.org.

www.it-ebooks.info

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141578608433
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141578608433
https://www.raspberrypi.org
http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[232]

Following is a diagram of Raspberry Pi 2:

Figure 18 : The Raspberry Pi 2 board

The Odroid GPIO pins and its GPIO handling is much similar to Raspberry Pi 2.
We can install Ubuntu and Android on Odroid. There are also unofficial
distributions of Linux such as Debian mini, Kali Linux, Arch Linux, and Fedora,
and also support libraries such as ROS, OpenCV, PCL, and so on.

For getting ROS on Odroid, we can either install a fresh Ubuntu and install ROS
manually or install Ubuntu which is inbuilt with ROS, OpenCV, and PCL.

Installing ROS from the source code and packages will take several hours.
For a quick start, we can start with a pre-installed image of Ubuntu with ROS.

The image can be download from http://forum.odroid.com/viewtopic.
php?f=112&t=11994. This link contains pre-installed images of Ubuntu with ROS,
OpenCV, and PCL for Odroid C1.

www.it-ebooks.info

http://forum.odroid.com/viewtopic.php?f=112&t=11994
http://forum.odroid.com/viewtopic.php?f=112&t=11994
http://www.it-ebooks.info/

Chapter 7

[233]

The list of the other operating systems supported on Odroid-C1 is given on the wiki
page of Odroid-C1 at http://odroid.com/dokuwiki/doku.php?id=en:odroid-c1.

The official guide of installing ROS on Odroid and Raspberry Pi 2 into their official
OS is available at http://wiki.ros.org/indigo/Installation/UbuntuARM.

The Raspberry Pi 2 official OS images are given at https://www.raspberrypi.org/
downloads/.

The official OS supported by Raspberry Pi foundation are Raspbian and Ubuntu.
There are unofficial images based on this OS which has ROS pre-installed on
them. The following link has some of the Raspberry Pi 2 images which have
ROS preinstalled:

http://www.mauriliodicicco.com/raspberry-pi2-ros-images/

We can get ROS based images for Raspbian and Ubuntu from the preceding link.
In this book, we are using the Raspbian based ROS images for the experiments.

How to install an OS image to Odroid-C1 and
Raspberry Pi 2
We can download the Ubuntu image which is prebuilt with ROS, OpenCV, and PCL
for Odroid and the ROS built-in Raspbian image for Raspberry Pi 2 and can install
to a micro SD card, preferably 16GB. Format the micro SD card in the FAT32 file
system and we can either use the SD card adapter or the USB-memory card reader
for connecting to a PC.

We can either install OS in Windows or in Linux. The procedure for installing OS
on these boards follows.

Installation in Windows
In Windows, there is a tool called Win32diskimage which is designed specifically
for Odroid. You can download the tool from http://dn.odroid.com/DiskImager_
ODROID/Win32DiskImager-odroid-v1.3.zip.

www.it-ebooks.info

http://odroid.com/dokuwiki/doku.php?id=en:odroid-c1
http://wiki.ros.org/indigo/Installation/UbuntuARM
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
http://www.mauriliodicicco.com/raspberry-pi2-ros-images/
http://dn.odroid.com/DiskImager_ODROID/Win32DiskImager-odroid-v1.3.zip
http://dn.odroid.com/DiskImager_ODROID/Win32DiskImager-odroid-v1.3.zip
http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[234]

Run Win32 Disk Imager with the Administrator privilege. Select the downloaded
image, select the memory card drive, and write the image to the drive.

Figure 19 : Win32 Disk Imager for Odroid-C1

After completing this wizard, we can put the micro SD card in Odroid and boot up
the OS with ROS support.

The same tool can be used for Raspbian installation in Raspberry Pi 2. We can use the
actual version of Win32 Disk Imager for writing Raspbian to a micro SD card from
the following link:

http://sourceforge.net/projects/win32diskimager/

Installation in Linux
In Linux, there is a tool called disk dump (dd). This tool helps to copy the content
of the image to the SD card. dd is a command line tool which is available in all the
Ubuntu/Linux based OS. Insert the micro SD card, format to the FAT 32 file system,
and use the command mentioned later to write image to the micro SD card.

In the dd tool, there is no progress bar to indicate the copy progress. To get the
progress bar, we can install a pipe viewer tool called pv:

$ sudo apt-get install pv

www.it-ebooks.info

http://sourceforge.net/projects/win32diskimager/
http://www.it-ebooks.info/

Chapter 7

[235]

After installing pv, we can use the following command to install the image file to
the micro SD card. Note that you should have the OS image in the same path of the
terminal, and also note the micro SD card device name, for example, mmcblk0, sdb,
sdd, and so on. You will get the device name using the dmesg command.

$ dd bs=4M if=image_name.img | pv | sudo dd of=/dev/mmcblk0

image_name.img is the image name and the device name is /dev/mmcblk0. bs=4M
indicates the block size. If the block size is 4M, dd will read 4 megabytes from the
image and write 4 megabytes to the device. After completing the operation, we can
put to Odroid and Raspberry Pi and boot the OS.

Connecting to Odroid-C1 and Raspberry Pi 2
from a PC
We can work with Odroid-C1 and Raspberry Pi 2 by connecting to the HDMI display
port and connect the keyboard and mouse to the USB like a normal PC. This is the
simplest way of working with Odroid and Raspberry Pi.

In most of the projects, the boards will be placed on the robot, so we can't connect
the display and the keyboards to it. There are several methods for connecting these
boards to the PC. It will be good if we can share the Internet to these boards too. The
following methods can share the Internet to these boards, and at the same time, we
can remotely connect via SSH protocol:

•	 Remote connection using Wi-Fi router and Wi-Fi dongle through SSH:
In this method, we need a Wi-Fi router with Internet connectivity and Wi-Fi
dongle in the board for getting the Wi-Fi support. Both the PC and board
will connect to the same network, so each will have an IP address and can
communicate using that address.

•	 Direct connection using an Ethernet hotspot: We can share the Internet
connection and communicate using SSH via Dnsmasq, a free software DNS
forwarder and DHCP server using low system resources. Using this tool,
we can tether the Wi-Fi Internet connection of the laptop to the Ethernet
and we can connect the board to the Ethernet port of the PC. This kind of
communication can be used for robots which are static in operation.

The first method is very easy to configure; it's like connecting two PCs on the same
network. The second method is a direct connection of board to laptop through the
Ethernet. This method can be used when the robot is not moving. In this method,
the board and the laptop can communicate via SSH at the same time and it can share
Internet access too. We are using this method in this chapter for working with ROS.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[236]

Configuring an Ethernet hotspot for
Odroid-C1 and Raspberry Pi 2
The procedure for creating an Ethernet hotspot in Ubuntu and sharing Wi-Fi Internet
through this connection follows:

•	 Take Edit Connection... from the network settings and Add a new
connection as shown next:

Figure 20 : Configuring a network connection in Ubuntu

•	 Create an Ethernet connection and in IPv4 setting, change the method to
Shared to Other Computers and give the connection name as Share, as
shown next:

Figure 21 : Creating a new connection for sharing through the Ethernet

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[237]

•	 Plugin the micro SD card, power up the Odroid or Raspberry Pi, and connect
the Ethernet port from the board to the PC. When the board boots up, we will
see that the shared network is automatically connected to the board.

•	 The following command helps to get the board IP for communicating
using SSH:
 $ cat /var/lib/misc/dnsmasq.leases

Figure 22 : Listing IP of Raspberry connected via Dnsmasq

•	 We can communicate with the board using the following commands:
°° In Odroid:
 $ ssh odroid@ip_address

 password is odroid

°° In Raspberry Pi 2:
 $ ssh pi@ip_adress

 password is raspberry

After doing SSH into the board, we can launch roscore and most of the ROS
commands on the board similar to our PC. We will do two examples using these
boards. One is for blinking and LED, and the other is for handling a push button.
The library we are using for handling GPIO pins of Odroid and Raspberry is called
Wiring Pi.

The odroid and Raspberry pi have the same pin layout and most of the Raspberry
pi GPIO libraries are ported to Odroid, which will make the programming easier.
One of the libraries we are using in this chapter for GPIO programming is wiring Pi.
Wiring Pi is based on C++ APIs which can access the board GPIO using C++ APIs.

Following are the instructions for installing Wiring Pi on Odroid and Raspberry 2:

Installing Wiring Pi on Odroid-C1
The following procedure can be used to install Wiring Pi on Odroid-C1. This is
customized version of Wiring Pi which is used in Raspberry Pi 2.

$ git clone https://github.com/hardkernel/wiringPi.git

$ cd wiringPi

$ sudo ./build

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[238]

The Wiring Pi pin out of Odroid-C1 is given next:

Figure 23 : Pin out of Odroid - C1

Installing Wiring Pi on Raspberry Pi 2
The following procedure can be used to install Wiring Pi on Raspberry Pi 2.

$ git clone git clone git://git.drogon.net/wiringPi

$ cd wiringPi

$ sudo ./build

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[239]

The pin out of Raspberry Pi 2 and Wiring Pi is shown next:

Figure 24 : Pin out of Raspberry Pi 2

The following are the ROS examples for Odroid-C1 and Raspberry Pi 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[240]

Blinking LED using ROS on Odroid-C1 and
Raspberry Pi 2
This is a basic LED example which can blink the LED connected to the first pin
of Wiring Pi, that is the 12th pin on the board. The LED cathode is connected to
the GND pin and 12th pin as an anode. The following image shows the circuit of
Raspberry Pi with an LED. The same pin out can be used in Odroid too.

Figure 25 : Blinking an LED using Raspberry Pi 2

We can create the example ROS package using the following command:

$ catkin_create_pkg ros_wiring_example roscpp std_msgs

You will get the existing package from the chapter_7_codes/ROS_Odroid_
Examples/ ros_wiring_examples folder.

Create a src folder and create the following code called blink.cpp inside the
src folder:

#include "ros/ros.h"
#include "std_msgs/Bool.h"
#include <iostream>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[241]

//Wiring Pi header
#include "wiringPi.h"

//Wiring PI first pin

#define LED 1

//Callback to blink the LED according to the topic value
void blink_callback(const std_msgs::Bool::ConstPtr& msg)
{

 if(msg->data == 1){
 digitalWrite (LED, HIGH) ;
 ROS_INFO("LED ON");
 }
 if(msg->data == 0){
 digitalWrite (LED, LOW) ;
 ROS_INFO("LED OFF");
 }
}
int main(int argc, char** argv)
{
 ros::init(argc, argv,"blink_led");
 ROS_INFO("Started Odroid-C1 Blink Node");
 //Setting WiringPi
 wiringPiSetup ();
 //Setting LED pin as output
 pinMode(LED, OUTPUT);
 ros::NodeHandle n;
 ros::Subscriber sub = n.subscribe("led_blink",10,blink_callback);
 ros::spin();
}

This code will subscribe a topic called led_blink, which is a Boolean type. If we
publish 1 to this topic, it will switch on the LED. If we publish 0, the LED will turn off.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[242]

Push button + blink LED using ROS on
Odroid-C1 and Raspberry Pi 2
The next example is handling input from a button. When we press the button, the
code will publish to the led_blink topic and blink the LED. When the switch is off,
LED will also be OFF. The LED is connected to the 12th pin and GND, and the button
is connected to the 11th pin and GND. The following image shows the circuit of this
example. The circuit is the same for Odroid also.

Figure 26 : LED + button in Raspberry Pi 2

The code for interfacing LED and button is given next. The code can be saved with
the name button.cpp inside the src folder.

#include "ros/ros.h"
#include "std_msgs/Bool.h"

#include <iostream>
#include "wiringPi.h"

//Wiring PI 1
#define BUTTON 0
#define LED 1

void blink_callback(const std_msgs::Bool::ConstPtr& msg)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[243]

{

 if(msg->data == 1){

 digitalWrite (LED, HIGH) ;
 ROS_INFO("LED ON");
 }

 if(msg->data == 0){
 digitalWrite (LED, LOW) ;
 ROS_INFO("LED OFF");
 }

}

int main(int argc, char** argv)
{

 ros::init(argc, argv,"button_led");
 ROS_INFO("Started Odroid-C1 Button Blink Node");

 wiringPiSetup ();

 pinMode(LED, OUTPUT);
 pinMode(BUTTON, INPUT);
 pullUpDnControl(BUTTON, PUD_UP); // Enable pull-up resistor on
button

 ros::NodeHandle n;
 ros::Rate loop_rate(10);

 ros::Subscriber sub = n.subscribe("led_blink",10,blink_callback);
 ros::Publisher chatter_pub = n.advertise<std_msgs::Bool>("led_
blink", 10);

 std_msgs::Bool button_press;
 button_press.data = 1;

 std_msgs::Bool button_release;
 button_release.data = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[244]

 while (ros::ok())
 {

 if (!digitalRead(BUTTON)) // Return True if button pressed
 {

 ROS_INFO("Button Pressed");
 chatter_pub.publish(button_press);

 }
 else
 {

 ROS_INFO("Button Released");
 chatter_pub.publish(button_release);

 }

 ros::spinOnce();
 loop_rate.sleep();

 }
}

CMakeLists.txt for building these two examples is given next. The Wiring
Pi code needs to link with the Wiring Pi library. We have added this in the
CMakeLists.txt file.

cmake_minimum_required(VERSION 2.8.3)
project(ros_wiring_examples)

find_package(catkin REQUIRED COMPONENTS
 roscpp
 std_msgs
)

find_package(Boost REQUIRED COMPONENTS system)

//Include directory of wiring Pi
set(wiringPi_include "/usr/local/include")

include_directories(
 ${catkin_INCLUDE_DIRS}
 ${wiringPi_include}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[245]

)

//Link directory of wiring Pi
LINK_DIRECTORIES("/usr/local/lib")

add_executable(blink_led src/blink.cpp)

add_executable(button_led src/button.cpp)

target_link_libraries(blink_led
 ${catkin_LIBRARIES} wiringPi
)

target_link_libraries(button_led
 ${catkin_LIBRARIES} wiringPi
)

Build the project using catkin_make and we can run each example. For executing
the Wiring Pi based code, we need root permission.

Running LED blink in Odroid-C1
After building the project, first we can run the LED blink example. We have to login
to Odroid using SSH from PC in multiple terminals for running this example.

•	 Start roscore in one terminal:
$ roscore

•	 Run the executable as root in the another terminal:
$ sudo -s

cd /home/odroid/catkin_ws/build/ros_wiring_examples

#./blink_led

After starting the blink_led node, publish 1 to the led_blink topic in
another terminal.

•	 For LED to ON state:
$ rostopic pub /led_blink std_msgs/Bool 1

•	 For LED to OFF state:
$ rostopic pub /led_blink std_msgs/Bool 0

www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing I/O Boards, Sensors, and Actuators to ROS

[246]

Running button handling and LED blink in Odroid-C1
The button handling + LED Blink should have same setup in the above example.
We should login to Odroid via SSH in multiple terminal and execute each command
on each terminals.

Start roscore in one terminal:
$ roscore

Run the button LED node in another terminal:
$ sudo -s

cd /home/odroid/catkin_ws/build/ros_wiring_examples

#./button_led

Press the button and we can see the LED blinking. We can also check the button state
by echoing the topic led_blink:

$ rostopic echo /led_blink

Running LED blink in Raspberry Pi 2
The examples which work on Odroid-C1 will work on Raspberry Pi-2 too. Before
running the examples, first we should do the following setup in Raspberry Pi. You
can do this setup by login to Raspberry Pi through SSH.

We need to add the following lines to the .bashrc file of the root user. Take the
.bashrc file of the root user:

$ sudo -i

$ nano .bashrc

Add the following lines to the end of this file:

source /opt/ros/indigo/setup.sh
source /home/pi/catkin_ws/devel/setup.bash
export ROS_MASTER_URI=http://localhost:11311

After adding these lines, we can follow the same command we did in Odroid. Note
that the user name is pi, not odroid.

Interfacing Dynamixel actuators to ROS
One of the latest smart actuators available on the market is Dynamixel, which is
manufactured by a company called Robotis. The Dynamixel servos are available in
various versions and shown in the following image are some of the different versions
of Dynamixel servos:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[247]

Figure 27 : Different types of Dynamixel servos

These smart actuators have complete support in ROS and clear documentation is also
available for them.

The official ROS wiki page of Dynamixel is http://wiki.ros.org/dynamixel_
controllers/Tutorials.

Questions
1.	 What are the different rosserial packages?
2.	 What is the main function of rosserial_arduino?
3.	 How does rosserial protocol work?
4.	 What are the main differences between Odroid-C1 and Raspberry Pi?

Summary
This chapter was about interfacing I/O boards to ROS and adding sensors on it.
We have discussed interfacing of the popular I/O board called Arduino to ROS,
and interface basic components such as LEDs, buttons, accelerometers, ultrasonic
sound sensors, and so on. After seeing the interfacing of Arduino, we discussed how
to setup ROS on Raspberry Pi 2 and Odroid-C1. We also did few basic examples
in Odroid and Raspberry Pi based on ROS and Wiring Pi. In the end, we saw the
interfacing of smart actuators called Dynamixel in ROS.

www.it-ebooks.info

http://wiki.ros.org/dynamixel_controllers/Tutorials
http://wiki.ros.org/dynamixel_controllers/Tutorials
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[249]

Programming Vision Sensors
using ROS, Open-CV,

and PCL
In the last chapter, we discussed interfacing of sensors and actuators using
I/O board in ROS. In this chapter, we are going to discuss how to interface
various vision sensors in ROS and program it using libraries such as OpenCV
(Open Source Computer Vision) and PCL (Point Cloud Library). The vision in a
robot is an important aspect of the robot for manipulating object and navigation.
There are lots of 2D/3D vision sensors available in the market and most of the
sensors have an interface driver package in ROS. We will discuss interfacing of
new vision sensors to ROS and programming it using OpenCV and PCL.

We will cover the following topics in this chapter:

•	 Understanding ROS—OpenCV interfacing packages
•	 Understanding ROS—PCL interfacing packages
•	 Installing OpenCV and PCL interfaces in ROS
•	 Interfacing USB webcams in ROS
•	 Working with ROS camera calibration
•	 Converting images between ROS and OpenCV using cv_bridge
•	 Displaying images from webcam using OpenCV and cv_bridge
•	 Interfacing Kinect and Asus Xtion Pro in ROS
•	 Interfacing Intel Real Sense Camera in ROS
•	 Working with the ROS depthimage_to_laserscan package

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[250]

•	 Interfacing Hokuyo Laser in ROS
•	 Interfacing Velodyne in ROS
•	 Programming using PCL-ROS interface
•	 Streaming webcam from Odroid using ROS

Understanding ROS – OpenCV
interfacing packages
OpenCV is one of the popular open source real time computer vision libraries,
which is mainly written in C/C++. OpenCV comes with a BSD license and is free for
academic and commercial application. OpenCV can be programmed using C/C++,
Python, and Java, and it has multi-platform support such as Windows, Linux, OSX,
Android, and iOS. OpenCV has tons of computer vision APIs, which can be used
for implementing computer vision applications. The web page of OpenCV library
is http://opencv.org/.

The OpenCV library is interfaced to ROS via ROS stack called vision_opencv.
vision_opencv consists of two important packages for interfacing OpenCV to ROS.
They are:

•	 cv_bridge: The cv_bridge package contains a library that provides APIs for
converting the OpenCV image data type cv::Mat to the ROS image message
called sensor_msgs/Image and vice versa. In short, it can act as a bridge
between OpenCV and ROS. We can use OpenCV APIs to process the image
and convert to ROS image messages whenever we want to send to another
node. We will discuss how to do this conversion in the upcoming sections.

•	 image_geometry: One of the first processes that we should do before
working with cameras is its calibration. The image_geometry package
contains libraries written in C++ and Python, which helps to correct the
geometry of the image using calibration parameters. The package uses
a message types called sensor_msgs/CameraInfo for handling the
calibration parameters and feed to the OpenCV image rectification function.

www.it-ebooks.info

http://opencv.org/
http://www.it-ebooks.info/

Chapter 8

[251]

Understanding ROS – PCL interfacing
packages
The point cloud data can be defined as a group of data points in some coordinate
system. In 3D, it has X, Y, and Z coordinates. PCL library is an open source project
for handling 2D/3D image and point clouds processing.

Like OpenCV, it is under BSD license and free for academic and commercial purposes.
It is also a cross platform, which has support in Linux, Windows, Mac OS, and
Android/iOS.

The library consists of standard algorithms for filtering, segmentation, feature
estimation, and so on, which is required to implement different point cloud
applications. The main web page of point cloud library is http://pointclouds.org/.

The point cloud data can be acquired by sensors such as Kinect, Asus Xtion Pro,
Intel Real Sense, and such others. We can use this data for robotic applications such
as robot object manipulation and grasping. PCL is tightly integrated into ROS for
handling point cloud data from various sensors. The perception_pcl stack is the
ROS interface for PCL library. It consists of packages for pumping the point cloud
data from ROS to PCL data type and vice versa. perception_pcl consists of the
following packages:

•	 pcl_conversions: This package provides APIs to convert PCL data types to
ROS messages and vice versa.

•	 pcl_msgs: This package contains definition of PCL related messages in ROS.
The PCL messages are:

°° ModelCoefficients

°° PointIndices

°° PolygonMesh

°° Vertices

•	 pcl_ros: This is the PCL bridge of ROS. This package contains tools
and nodes to bridge ROS messages to PCL data types and vice versa.

•	 pointcloud_to_laserscan: The main function of this package is
to convert 3D point cloud into 2D laser Scan. This package is useful for
converting an inexpensive 3D vision sensor such as Kinect and Asus
Xtion Pro to a laser scanner. The laser scanner data is mainly used
for 2D-SLAM for the purpose of robot navigation.

www.it-ebooks.info

http://pointclouds.org/
http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[252]

Installing ROS perception
We are going to install a single package called perception, which is a meta package
of ROS containing all the perception related packages such as OpenCV, PCL, and
so on.

•	 In ROS Jade
$ sudo apt-get install ros-jade-perception

•	 In ROS Indigo
$ sudo apt-get install ros-indigo-perception

The ROS perception stack contains the following ROS packages:

•	 image-common: This meta package contains common functionalities to handle
an image in ROS. The meta package consists of the following list of packages
(http://wiki.ros.org/image_common):

°° image_transport: This package helps to compress the image
during publishing and subscribes the images to save the band
width (http://wiki.ros.org/image_transport). The various
compression methods are JPEG/PNG compression and Theora for
streaming videos. We can also add custom compression methods to
image_transport.

°° camera_calibration_parses: This package contains routine
to read/write camera calibration parameters from an XML file.
This package is mainly used by camera drivers for accessing
calibration parameters.

°° camera_info_manager: This package consists of routine to save,
restore, and load the calibration information. This is mainly used
by camera drivers.

°° polled_camera: This packages contains interface for requesting
images from a polling camera driver (for example, prosilica_
camera).

•	 image-pipeline: This meta package contains packages to process the raw
image from the camera driver. The various processing done by this meta
package are calibration, distortion removal, stereo vision processing, depth
image processing, and so on. The following packages are present in this meta
package for this processing (http://wiki.ros.org/image_pipeline):

°° camera_calibration: One of the important tools for relating the 3D
world to the 2D camera image is calibration. This package provides
tools for doing monocular and stereo image calibration in ROS.

www.it-ebooks.info

http://wiki.ros.org/image_common
http://wiki.ros.org/image_transport
http://wiki.ros.org/image_pipeline
http://www.it-ebooks.info/

Chapter 8

[253]

°° image_proc: The nodes in this package act between the camera
driver and the vision processing nodes. It can handle the calibration
parameters, correct image distortion from the raw image, and convert
to color image.

°° depth_image_proc: This package contains nodes and nodelets
for handling depth image from Kinect and 3D vision sensors.
The depth image can be processed by these nodelets to produce
point cloud data.

°° stereo_image_proc: This package has nodes to perform distortion
removal for a pair of cameras. It is same as the image_proc package,
except that it handles two cameras for stereo vision and for developing
point cloud and disparity images.

°° image_rotate: This package contains nodes to rotate the input image.
°° image_view: This is a simple ROS tool for viewing ROS message

topic. It can also view stereo and disparity images.

•	 image-transport-plugins: These are the plugins of ROS image transport
for publishing and subscribing the ROS images in different compression
levels or different video codec to reduce the bandwidth and latency.

•	 laser-pipeline: This is a set of packages that can process laser data such as
filtering and converting into 3D Cartesian points and assembling points to
form a cloud. The laser-pipeline stack contains the following packages:

°° laser_filters: This package contains nodes to filter the noise in the
raw laser data, remove the laser points inside the robot footprint, and
remove spurious values inside the laser data.

°° laser_geometry: After filtering the laser data, we have to transform
the laser ranges and angles into 3D Cartesian coordinates efficiently
by taking into account the tilt and skew angle of laser scanner.

°° laser_assembler: This package can assemble the laser scan into a
3D point cloud or 2.5 D scan.

•	 perception-pcl: This is the stack of PCL-ROS interface.
•	 vision-opencv: This is the stack of OpenCV-ROS interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[254]

Interfacing USB webcams in ROS
We can start interfacing with an ordinary webcam or a laptop cam in ROS. There
are no exact specific packages for webcam - ROS interfaces. If the camera is working
in Ubuntu/Linux, it may be supported by the ROS driver too. After plugging the
camera, check whether a /dev/videoX device file has been created, or check with
some application such as Cheese, VLC, and such others. The guide to check whether
the web cam is supported on Ubuntu is available at https://help.ubuntu.com/
community/Webcam.

We can find the video devices present on the system using the following command:

$ ls /dev/ | grep video

If you get an output of video0, you can confirm a USB cam is available for use.

After ensuring the webcam support in Ubuntu, we can install a ROS webcam driver
called usb_cam using the following command:

•	 In ROS Jade
$ sudo apt-get install ros-jade-usb-cam

•	 In ROS Indigo
$ sudo apt-get install ros-indigo-usb-cam

We can install the latest package of usb_cam from the source code. The driver is
available on GitHub at https://github.com/bosch-ros-pkg/usb_cam

The usb_cam package contains a node called usb_cam_node, which is the driver of
USB cams. There are some parameters that need to be set before running this node.
We can run the ROS node along with its parameters. The usb_cam-test.launch
launch file can launch the USB cam driver with the necessary parameters:

<launch>
 <node name="usb_cam" pkg="usb_cam" type="usb_cam_node"
output="screen" >
 <param name="video_device" value="/dev/video0" />
 <param name="image_width" value="640" />
 <param name="image_height" value="480" />
 <param name="pixel_format" value="yuyv" />
 <param name="camera_frame_id" value="usb_cam" />
 <param name="io_method" value="mmap"/>
 </node>

www.it-ebooks.info

https://help.ubuntu.com/community/Webcam
https://help.ubuntu.com/community/Webcam
https://github.com/bosch-ros-pkg/usb_cam
http://www.it-ebooks.info/

Chapter 8

[255]

<!-- Launching image_view node -->

 <node name="image_view" pkg="image_view" type="image_view"
respawn="false" output="screen">
 <remap from="image" to="/usb_cam/image_raw"/>
 <param name="autosize" value="true" />
 </node>
</launch>

This launch file will start usb_cam_node with the video device /dev/video0, with
a resolution of 640x480. The pixel format here is YUV (https://en.wikipedia.
org/wiki/YUV). After initiating usb_cam_node, it will start an image_view node for
displaying the raw image from the driver. We can launch the previous file using the
following command:

$ roslaunch usb_cam usb_cam-test.launch

We will get the following message with an image view as shown next:

Figure 1 : USB camera view using image view tool

www.it-ebooks.info

https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/YUV
http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[256]

The topics generated by the driver are shown next. There are raw, compressed, and
Theora codec topics generated by the driver.

Figure 2 : List of topics generated by the USB camera driver

We can visualize the image in another window using the following command:

$ rosrun image_view image_view image:=/usb_cam/image_raw

After getting the camera image message, the first thing we have to do is
camera calibration.

Working with ROS camera calibration
Like all sensors, cameras also need calibration for correcting the distortions in the
camera images due to the camera's internal parameters and for finding the world
coordinates from the camera coordinates.

The primary parameters that cause image distortions are radial distortions
and tangential distortions. Using camera calibration algorithm, we can model
these parameters and also calculate the real world coordinates from the camera
coordinates by computing the camera calibration matrix, which contains the focal
distance and the principle points.

Camera calibration can be done using a classic black-white chessboard, symmetrical
circle pattern, or asymmetrical circle pattern. According to each different pattern,
we use different equations to get the calibration parameters. Using the calibration
tools, we detect the patterns and each detected pattern is taken as a new equation.
When the calibration tool gets enough detected patterns, it can compute the final
parameters for the camera.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[257]

ROS provides a package named camera_calibration (http://wiki.ros.
org/camera_calibration/Tutorials/MonocularCalibration) to do camera
calibration, which is a part of the image pipeline stack. We can calibrate monocular,
stereo, and even 3D sensors such as Kinect and Asus Xtion pro.

The first thing we have to do before calibration is download the check board
pattern mentioned in the ROS Wiki page, and print it and paste it onto a card board.
This is the pattern we are going to use for calibration. This check board has 8x6 with
108mm squares.

Run the usb_cam launch file to start the camera driver. We are going to run the
camera calibration node of ROS using the raw image from the /usb_cam/image_
raw topic. Following command will run the calibration node with the necessary
parameters:

$ rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108
image:=/usb_cam/image_raw camera:=/usb_cam

A calibration window will pop up, and when we show the calibration pattern to the
camera, and the detection made, is seen in the following screenshot:

Figure 3: ROS camera calibration

www.it-ebooks.info

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[258]

Move the calibration pattern in X direction and Y direction. If the calibrator
node gets a sufficient amount of samples, a calibration button will get active on
the window. When we press the CALIBRATE button, it will compute the camera
parameters using these samples. It will take some time for calculation. After
computation, two buttons, SAVE and COMMIT, will become active inside the
window, which is shown in the following image. If we press the SAVE button,
it will save the calibration parameters to a file in the /tmp folder. If we press the
COMMIT button, it will save them to ./ros/camera_info/head_camera.yaml.

Figure 4 : Generating camera calibration file

Restart the camera driver and we will see the YAML calibration file loaded along
with the driver. The calibration file that we generated will look as follows:

image_width: 640
image_height: 480
camera_name: head_camera
camera_matrix:
 rows: 3
 cols: 3
 data: [707.1953043273086, 0, 346.4560078627374, 0,
709.5783421541863, 240.0112155124814, 0, 0, 1]
distortion_model: plumb_bob
distortion_coefficients:
 rows: 1
 cols: 5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[259]

 data: [0.1779688561999974, -0.9681558538432319,
0.004497434720139909, 0.0106588921249554, 0]
rectification_matrix:
 rows: 3
 cols: 3
 data: [1, 0, 0, 0, 1, 0, 0, 0, 1]
projection_matrix:
 rows: 3
 cols: 4
 data: [697.5267333984375, 0, 353.9677879190494, 0, 0,
714.7203979492188, 240.6829465337159, 0, 0, 0, 1, 0]

Converting images between ROS and OpenCV
using cv_bridge
In this section, we will see how to convert between ROS image message (sensor_
msgs/Image) to OpenCV image data type(cv::Mat). The main ROS package used for
this conversion is cv_bridge, which is part of the vision_opencv stack. The ROS
library inside cv_bridge called CvBridge helps to perform this conversion. We can
use the CvBridge library inside our code and perform the conversion. The following
figure shows how the conversion is performed between ROS and OpenCV:

Figure 5 : Converting images using CvBridge

Here, the CvBridge library acts as a bridge for converting the ROS messages to
OpenCV image and vice versa.

We will see how the conversion between ROS and OpenCV is performed using the
following example.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[260]

Image processing using ROS and OpenCV
In this section, we will see an example of using cv_bridge for acquiring images from
a camera driver, and converting and processing the images using OpenCV APIs.
Following is how the example works:

•	 Subscribe the images from the camera driver from the topic /usb_cam/
image_raw (sensor_msgs/Image)

•	 Convert the ROS images to OpenCV image type using CvBridge
•	 Process the OpenCV image using its APIs and find the edges on the image
•	 Convert the OpenCV image type of edge detection to ROS image messages

and publish into the topic /edge_detector/processed_image

The step by step procedure to build this example follows:

Step 1: Creating ROS package for the experiment
You can get the existing package cv_bridge_tutorial_pkg from the chapter_8_
codes folder, or you can create a new package using the following command:

$ catkin_create_pkg cv_bridge_tutorial_pkg cv_bridge image_transport
roscpp sensor_msgs std_msgs

This package is mainly dependent on cv_bridge, image_transport, and
sensor_msgs.

Step 2: Creating source files
You can get the source code of the example sample_cv_bridge_node.cpp from the
chapter_8_codes/cv_bridge_tutorial_pkg/src folder.

Step 3: Explanation of the code
Following is the explanation of the complete code:

#include <image_transport/image_transport.h>

We are using the image_transport package in this code for publishing and
subscribing to image in ROS.

#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[261]

This header includes the CvBridge class and image encoding related functions in
the code.

#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

These are main OpenCV image processing module and GUI modules which provide
image processing and GUI APIs in our code.

 image_transport::ImageTransport it_;
public:
 Edge_Detector()
 : it_(nh_)
 {
 // Subscribe to input video feed and publish output video feed
 image_sub_ = it_.subscribe("/usb_cam/image_raw", 1,
 &ImageConverter::imageCb, this);

 image_pub_ = it_.advertise("/edge_detector/processed_image", 1);

We will look in more detail at the line image_transport::ImageTransport it_
. This line creates an instance of ImageTransport which is used to publish and
subscribe the ROS image messages. More information about the ImageTransport API
is given next.

Publishing and subscribing images using image_transport
ROS image transport is very similar to ROS Publishers and Subscribers and it is used
to publish/subscribe the images along with the camera information. We can publish
the image data using ros::Publishers, but image transport is a more efficient way
of sending the image data.

The image transport APIs are provided by the image_transport package. Using
these APIs, we can transport an image in different compression formats; for example,
we can transport it as an uncompressed image, JPEG/PNG compression, or Theora
compression in separate Topics. We can also add different transport formats by
adding plugins. By default, we can see the compressed and Theora transports.

 image_transport::ImageTransport it_;

In the following line, we are creating an instance of the ImageTransport class:

 image_transport::Subscriber image_sub_;
 image_transport::Publisher image_pub_;

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[262]

After that, we declare the Subscriber and Publisher objects for subscribing and
publishing the images using the image_transport object:

image_sub_ = it_.subscribe("/usb_cam/image_raw", 1,
 &ImageConverter::imageCb, this);
image_pub_ = it_.advertise("/edge_detector/processed_image", 1);

The following is how we subscribe and publish an image:

 cv::namedWindow(OPENCV_WINDOW);
 }
 ~Edge_Detector()
 {
 cv::destroyWindow(OPENCV_WINDOW);
 }

This is how we subscribe and publish an image.cv::namedWindow() is an OpenCV
function to create a GUI for displaying an image. The argument inside this function is
the window name. Inside the class destructor, we are destroying the named window.

Converting OpenCV-ROS images using cv_bridge
This is an image callback function and it basically converts the ROS image messages
into OpenCV cv::Mat type using the CvBridge APIs. Following is how we can
convert ROS to OpenCV, and vice versa:

 void imageCb(const sensor_msgs::ImageConstPtr& msg)
 {

 cv_bridge::CvImagePtr cv_ptr;
 namespace enc = sensor_msgs::image_encodings;

 try
 {
 cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_
encodings::BGR8);
 }
 catch (cv_bridge::Exception& e)
 {
 ROS_ERROR("cv_bridge exception: %s", e.what());
 return;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[263]

To start with CvBridge, we should start with creating an instance of a CvImage.
Given next is the creation of the CvImage pointer:

 cv_bridge::CvImagePtr cv_ptr;

The CvImage type is a class provided by cv_bridge, which consists of information
such as an OpenCV image, its encoding, ROS header, and so on. Using this type,
we can easily convert an ROS image to OpenCV, and vice versa.

cv_ptr = cv_bridge::toCvCopy(msg,
sensor_msgs::image_encodings::BGR8);

We can handle the ROS image message in two ways: either we can make a copy
of the image or we can share the image data. When we copy the image, we can
process the image, but if we use shared pointer, we can't modify the data. We use
toCvCopy() for creating a copy of the ROS image, and the toCvShare() function
is used to get the pointer of the image. Inside these functions, we should mention
the ROS message and the type of encoding.

 if (cv_ptr->image.rows > 400 && cv_ptr->image.cols > 600){
 detect_edges(cv_ptr->image);
 image_pub_.publish(cv_ptr->toImageMsg());
 }

In this section, we are extracting the image and its properties from the CvImage
instance, and accessing the cv::Mat object from this instance. This code simply
checks whether the rows and columns of the image are in a particular range, and
if it is true, it will call another method called detect_edges(cv::Mat), which will
process the image given as argument and display the edge detected image.

image_pub_.publish(cv_ptr->toImageMsg());

The preceding line will publish the edge detected image after converting to ROS
image message. Here we are using the toImageMsg() function for converting the
CvImage instance to a ROS image message.

Finding edges on the image
After converting the ROS images to OpenCV type, the function detect_
edges(cv::Mat) will be called for finding the edges on the image using the
following inbuilt OpenCV functions:

cv::cvtColor(img, src_gray, CV_BGR2GRAY);
cv::blur(src_gray, detected_edges, cv::Size(3,3));
cv::Canny(detected_edges, detected_edges, lowThreshold,
lowThreshold*ratio, kernel_size);

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[264]

Here, the cvtColor() function will convert an RGB image to a GRAY color space and
cv::blur() will add blurring to the image. After that, using Canny edge detector,
we extract the edges of the image.

Visualizing raw and edge detected image
cv::imshow(OPENCV_WINDOW, img);
cv::imshow(OPENCV_WINDOW_1, dst);
cv::waitKey(3);

Here we are displaying the image data using the OpenCV function called imshow(),
which consists of the window name and the image name.

Step 4: Editing the CMakeLists.txt file
The definition of the CMakeLists.txt file is given next. In this example, we need
OpenCV support, so we should include the OpenCV header path and also link the
source code against the OpenCV library path.

include_directories(
 ${catkin_INCLUDE_DIRS}
 ${OpenCV_INCLUDE_DIRS}
)

add_executable(sample_cv_bridge_node src/sample_cv_bridge_node.cpp)

Specify libraries to link a library or executable target against
 target_link_libraries(sample_cv_bridge_node
 ${catkin_LIBRARIES}
 ${OpenCV_LIBRARIES}
)

Step 5: Building and running example
After building the package using catkin_make, we can run the node using the
following command:

•	 Launch webcam driver:
$ roslaunch usb_cam usb_cam-test.launch

•	 Run the cv_bridge sample node:
$ rosrun cv_bridge_tutorial_pkg sample_cv_bridge_node

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[265]

If everything works fine, we will get two windows, as shown in the following
image. The first window shows the raw image and the second is the processed
edge detected image.

Figure 6 : Raw image and edge detected image

Interfacing Kinect and Asus Xtion Pro
in ROS
The web cams that we have worked with till now can only provide 2D visual
information of the surroundings. For getting 3D information about the surroundings,
we have to use 3D vision sensors or range finders such as laser finders. Some of the
3D vision sensors that we are discussing in this chapter are Kinect, Asus Xtion Pro,
Intel Real sense, Velodyne, and Hokuyo laser scanner.

Figure 7 : Top: Kinect , Bottom: Asus Xtion Pro

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[266]

The first two sensors we are going to discuss are Kinect and Asus Xtion Pro. Both
of these devices need OpenNI (Open source Natural Interaction) driver library for
operating in Linux system. OpenNI acts as a middleware between the 3D vision
devices and the application software. The OpenNI driver is integrated to ROS and
we can install these drivers using the following commands. These packages help to
interface the OpenNI complaint device, such as Kinect and Asus Xtion Pro.

•	 In Jade:
$ sudo apt-get install ros-jade-openni-launch

•	 In Indigo:
$ sudo apt-get install ros-indigo-openni-launch

The preceding command will install OpenNI drivers and launch files for starting the
RGB/Depth streams. After successful installation of these packages, we can launch
the driver using the following command:

$ roslaunch openni_launch openni.launch

This launch file will convert the raw data from the devices into useful data,
such as 3D point cloud, disparity images, and depth, and the RGB images
using ROS nodelets.

Other than the OpenNI drivers, there is another driver available called lib-
freenect. The common launch files of the drivers are organized into a package
called rgbd_launch. This package consists of common launch files that are used
for the freenect and openni drivers.

We can visualize the point cloud generated by the OpenNI ROS driver using RViz.

Run RViz using the following command:

$ rosrun rviz rviz

Set Fixed frame to /camera_depth_optical_frame, add a PointCloud2 display
and set topic as /camera/depth/points. This is the unregistered point cloud from
IR camera, that is, it may have complete match with the RGB camera and it only
uses depth camera for generating point cloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[267]

Figure 8: Unregistered point cloud view in RViz

We can enable the registered point cloud by using Dynamic Reconfigure GUI,
by using the following command:

$ rosrun rqt_reconfigure rqt_reconfigure

Figure 9: Dynamic Reconfigure GUI

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[268]

Click on camera | driver and tick depth_registration. Change the point cloud
to /camera/depth_registered/points and Color Transformer to RGB8 in RViz.
We will see the registered point cloud in RViz as it appears in the following image.
Registered point cloud takes information from the depth and the RGB camera to
generate the point cloud.

Figure 10: The registered point cloud

Interfacing Intel Real Sense camera
with ROS
One of the new 3D depth sensors from Intel is Real Sense. The following link is the
ROS interface of Intel Real Sense: https://github.com/BlazingForests/
realsense_camera

Figure 11: Intel Real Sense

www.it-ebooks.info

https://github.com/BlazingForests/realsense_camera
https://github.com/BlazingForests/realsense_camera
http://www.it-ebooks.info/

Chapter 8

[269]

Before installing the ROS driver, we have to install the following packages for
building the source code:

$ sudo apt-get install libudev-dev libv4l-dev

After installing, clone the ROS package to the src folder of catkin workspace:

$ cd ~/catkin_ws/src

$ git clone https://github.com/BlazingForests/realsense_camera.git

$ catkin_make

Launch the Real Sense camera driver and RViz using the following command:

$ roslaunch realsense_camera realsense_rviz.launch

Launch Real Sense camera driver only:

$ roslaunch realsense_camera realsense_camera.launch

Figure 12: Intel Real Sense view in RViz

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[270]

Following are the topics generated by the Real Sense driver:

sensor_msgs::PointCloud2
/camera/depth/points point cloud without RGB
/camera/depth_registered/points point cloud with RGB

sensor_msgs::Image
/camera/image/rgb_raw raw image for RGB sensor
/camera/image/depth_raw raw image for depth sensor
/camera/image/ir_raw raw image for infrared sensor

Working with point cloud to laser scan
package
One of the important applications of 3D vision sensors is mimicking the
functionalities of a laser scanner. We need the laser scanner data for working
with autonomous navigation algorithms such as SLAM. We can make a fake laser
scanner using a 3D vision sensor. We can take a slice of point cloud data/depth
image and convert it to laser range data. In ROS, we have a set of packages to
convert the point cloud to laser scans:

•	 depthimage_to_laserscan: This package contains nodes that take the
depth image from the vision sensor and generate 2D laser scan based on the
provided parameters. The input of the node are depth image and camera
info parameters, which include calibration parameters. After conversion
to laser scan data, it will publish laser scanner data in the /scan topic. The
node parameters are scan_height, scan_time, range_min, range_max, and
output frame ID. The official ROS wiki page of this package is http://wiki.
ros.org/depthimage_to_laserscan.

•	 pointcloud_to_laserscan: This package converts the real point cloud
data into 2D laser scan, instead of taking depth image as the previous
package. The official wiki page of this package is http://wiki.ros.org/
pointcloud_to_laserscan.

The first package is suitable for normal applications; however, if the sensor is placed
in an angle, it is better to use the second package. Also, the first package takes less
processing than the second one. Here we are using the depthimage_to_laserscan
package to convert laser scan. We can install depthimage_to_laserscan using the
following commands:

•	 In Jade:
$ sudo apt-get install ros-jade-depthimage-to-laserscan

www.it-ebooks.info

http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/pointcloud_to_laserscan
http://wiki.ros.org/pointcloud_to_laserscan
http://www.it-ebooks.info/

Chapter 8

[271]

•	 In Indigo:
$ sudo apt-get install ros-indigo-depthimage-to-laserscan

We can install the pointcloud_to_laser scanner package using the
following commands:

•	 In Jade:
$ sudo apt-get install ros-jade-pointcloud-to-laserscan

•	 In Indigo:
$ sudo apt-get install ros-indigo-pointcloud-to-laserscan

We can start converting from the depth image of OpenNI device to 2D laser scanner
using the following package.

Creating a package for performing the conversion:

$ catkin_create_pkg fake_laser_pkg depthimage_to_laserscan nodelet
roscpp

Create a folder called launch and inside this folder create the following launch file
called start_laser.launch. You will get this package and file from the chapter_8_
codes/fake_laser_pkg/launch folder.

<launch>
 <!-- "camera" should uniquely identify the device. All topics
 are pushed down
 into the "camera" namespace, and it is prepended to tf
 frame ids. -->
 <arg name="camera" default="camera"/>
 <arg name="publish_tf" default="true"/>

 <group if="$(arg scan_processing)">
 <node pkg="nodelet" type="nodelet"
 name="depthimage_to_laserscan" args="load
 depthimage_to_laserscan/DepthImageToLaserScanNodelet $(arg
 camera)/$(arg camera)_nodelet_manager">
 <!-- Pixel rows to use to generate the laserscan. For each
 column, the scan willreturn the minimum value for those
 pixels centered vertically in the image. -->
 <param name="scan_height" value="10"/>
 <param name="output_frame_id" value="/$(arg
 camera)_depth_frame"/>
 <param name="range_min" value="0.45"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[272]

 <remap from="image" to="$(arg camera)/$(arg
 depth)/image_raw"/>
 <remap from="scan" to="$(arg scan_topic)"/>

</launch>

The following code snippet will launch the nodelet for converting the depth image
to laser scanner:

 <node pkg="nodelet" type="nodelet"
name="depthimage_to_laserscan" args="load
depthimage_to_laserscan/DepthImageToLaserScanNodelet $(arg
camera)/$(arg camera)_nodelet_manager">

Launch this file and we can view the laser scanner in RViz.

Launch this file using the following command:

$ roslaunch fake_laser_pkg start_laser.launch

We will see the data in RViz, as shown in the following image:

Figure 13: Laser scan in RViz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[273]

Set Fixed Frame as camera_depth_frame and Add the LaserScan in topic /scan.
We can see the laser data in the view port.

Interfacing Hokuyo Laser in ROS
We can interface different ranges of laser scanners in ROS. One of the popular laser
scanner available in the market is Hokuyo Laser scanner (http://www.robotshop.
com/en/hokuyo-utm-03lx-laser-scanning-rangefinder.html).

Figure 14: Different series of Hokuyo laser scanner

One of the commonly used Hokuyo laser scanner models is UTM-30LX. This sensor is
fast and accurate, suitable for robotic applications. The device has USB 2.0 interface
for communication, and has up to 30 meter range with millimeter resolution. The arc
range of the scan is about 270 degrees.

Figure 15 : Hokuyo UTM-30LX

www.it-ebooks.info

http://www.robotshop.com/en/hokuyo-utm-03lx-laser-scanning-rangefinder.html
http://www.robotshop.com/en/hokuyo-utm-03lx-laser-scanning-rangefinder.html
http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[274]

There is already a driver available in ROS for interfacing these scanners. One of the
interfaces is called hokuyo_node (http://wiki.ros.org/hokuyo_node).

We can install this package using the following command:

•	 In Jade:
$ sudo apt-get install ros-jade-hokuyo-node

•	 In Indigo:
$ sudo apt-get install ros-indigo-hokuyo-node

When the device connects to the Ubuntu system, it will create a device called ttyACMx.
Check the device name by entering the dmesg command in the terminal. Change the
USB device permission by using the following command:

$ sudo chmod a+rw /dev/ttyACMx

Start the laser scan device using the following launch file called hokuyo_start.
launch:

<launch>
 <node name="hokuyo" pkg="hokuyo_node" type="hokuyo_node"
 respawn="false" output="screen">

 <!-- Starts up faster, but timestamps will be inaccurate. -->
 <param name="calibrate_time" type="bool" value="false"/>

 <param name="min_ang" type="double" value="-0.7854"/>
 <param name="max_ang" type="double" value="0.7854"/>

 <!-- Set the port to connect to here -->
 <param name="port" type="string" value="/dev/ttyACM0"/>

 <param name="intensity" type="bool" value="false"/>
 </node>

 <node name="rviz" pkg="rviz" type="rviz" respawn="false"
 output="screen" args="-d $(find hokuyo_node)/hokuyo_test.vcg"/>

</launch>

www.it-ebooks.info

http://wiki.ros.org/hokuyo_node
http://www.it-ebooks.info/

Chapter 8

[275]

This launch file starts a hokuyo node for getting the laser data from the device /dev/
ttyACM0. The laser data can be viewed inside the RViz window, as shown in the
following image:

Figure 16: Hokuyo Laser scan data in RViz

Interfacing Velodyne LIDAR in ROS
One of the trending areas in robotics is autonomous cars or driverless cars. One
of the essential ingredients in this robot is a Light Detection and Ranging (LIDAR).
One of the commonly used LIDARs is Velodyne LIDAR. Velodyne LIDARs are used
in Google driverless cars and also in most of the research in driver less cars. There
are three models of Velodyne LIDAR available in the market. Following are the
three models and their diagrams:

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[276]

Velodyne HDL-64E, Velodyne HDL-32E, and Velodyne VLP-16/Puck.

Figure 17: Different series of Velodyne

Velodyne can interface to ROS and can generate point cloud data from its raw data.
The link for the velodyne ROS package for model HDL-32E is http://wiki.ros.
org/velodyne.

We can install the velodyne driver in Ubuntu using the following command:

•	 In Jade:
$ sudo apt-get install ros-jade-velodyne

•	 In Indigo:
$ sudo apt-get install ros-indigo-velodyne

After installing these packages, connect the LIDAR power supply and connect
Ethernet cable from the PC to Velodyne.

Assign a static IP of the PC in the range 192.168.3.x using the following command:

$ sudo ifconfig eth0 192.168.3.100

After setting the static IP of the PC, assign a route to Velodyne. The IP of LIDAR will
be present on the CD gotten along with the Velodyne.

$ sudo route add 192.168.XX.YY eth0

www.it-ebooks.info

http://wiki.ros.org/velodyne
http://wiki.ros.org/velodyne
http://www.it-ebooks.info/

Chapter 8

[277]

After setting the network, we need to calibrate generate calibration data in YAML
file. The following command will generate the calibration data in a YAML file from
the standard Velodyne XML file:

$ rosrun velodyne_pointcloud gen_calibration.py 32db.xml

Launch the point cloud generation nodes from the raw data of LIDAR. We have to
mention the generated calibration YAML file along with the launch file:

$ roslaunch velodyne_pointcloud 32e_points.launch
calibration:=/home/robot/32db.yaml

After launching the converter nodes, we can start RViz to view the point cloud
data generated from LIDAR using the following command. Set the Fixed Frame as
Velodyne and Add display Point Cloud 2 and set Topic as /velodyne_points:

$ rosrun rviz rviz -f velodyne

Figure 18: Velodyne point cloud view in RViz

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[278]

Working with point cloud data
We can handle the point cloud data from Kinect or the other 3D sensors for
performing wide variety of tasks such as 3D object detection and recognition,
obstacle avoidance, 3D modeling, and so on. In this section, we will see some
basic functionalities using the PCL library and its ROS interface. We will discuss
the following examples:

•	 How to publish a point cloud in ROS
•	 How to subscribe and process point cloud
•	 How to write point cloud data to a PCD file
•	 How to read and publish point cloud from a PCD file

How to publish a point cloud
In this example, we will see how to publish a point cloud data using the sensor_
msgs/PointCloud2 message. The code will use PCL APIs for handling and creating
the point cloud, and converting the PCL cloud data to PointCloud2 message type.
You will get the example code pcl_publisher.cpp from the chapter_8_codes/
pcl_ros_tutorial/src folder.

#include <ros/ros.h>

// point cloud headers
#include <pcl/point_cloud.h>
//Header which contain PCL to ROS and ROS to PCL conversion functions
#include <pcl_conversions/pcl_conversions.h>

//sensor_msgs header for point cloud2
#include <sensor_msgs/PointCloud2.h>

main (int argc, char **argv)
{
 ros::init (argc, argv, "pcl_create");

 ROS_INFO("Started PCL publishing node");

 ros::NodeHandle nh;

//Creating publisher object for point cloud

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[279]

 ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2>
("pcl_output", 1);

//Creating a cloud object
 pcl::PointCloud<pcl::PointXYZ> cloud;

//Creating a sensor_msg of point cloud

 sensor_msgs::PointCloud2 output;

 //Insert cloud data
 cloud.width = 50000;
 cloud.height = 2;
 cloud.points.resize(cloud.width * cloud.height);

//Insert random points on the clouds

 for (size_t i = 0; i < cloud.points.size (); ++i)
 {
 cloud.points[i].x = 512 * rand () / (RAND_MAX + 1.0f);
 cloud.points[i].y = 512 * rand () / (RAND_MAX + 1.0f);
 cloud.points[i].z = 512 * rand () / (RAND_MAX + 1.0f);
 }

 //Convert the cloud to ROS message
 pcl::toROSMsg(cloud, output);
 output.header.frame_id = "point_cloud";

 ros::Rate loop_rate(1);
 while (ros::ok())
 {
 //publishing point cloud data
 pcl_pub.publish(output);
 ros::spinOnce();
 loop_rate.sleep();
 }

 return 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[280]

The creation of PCL cloud is done as follows:

//Creating a cloud object
pcl::PointCloud<pcl::PointXYZ> cloud;

After creating this cloud, we insert random points to the clouds. We convert the PCL
cloud to a ROS message using the following function:

//Convert the cloud to ROS message
pcl::toROSMsg(cloud, output);

After converting to ROS messages, we can simply publish the data on the topic /
pcl_output.

How to subscribe and process the point cloud
In this example, we will see how to subscribe the generated point cloud on the
topic pcl_output. After subscribing the point cloud, we apply a filter called the
VoxelGrid class in PCL to down sample the input cloud by keeping the same
centroid of the input cloud. You will get the example code pcl_filter.cpp
from the src folder of the package.

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
//Vortex filter header
#include <pcl/filters/voxel_grid.h>

//Creating a class for handling cloud data
class cloudHandler
{
public:
 cloudHandler()
 {

//Subscribing pcl_output topics from the publisher
//This topic can change according to the source of point cloud

 pcl_sub = nh.subscribe("pcl_output", 10, &cloudHandler::cloudCB,
this);
//Creating publisher for filtered cloud data
 pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_
filtered", 1);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[281]

//Creating cloud callback
 void cloudCB(const sensor_msgs::PointCloud2& input)
 {
 pcl::PointCloud<pcl::PointXYZ> cloud;
 pcl::PointCloud<pcl::PointXYZ> cloud_filtered;

 sensor_msgs::PointCloud2 output;
 pcl::fromROSMsg(input, cloud);

 //Creating VoxelGrid object
 pcl::VoxelGrid<pcl::PointXYZ> vox_obj;
 //Set input to voxel object
 vox_obj.setInputCloud (cloud.makeShared());

 //Setting parameters of filter such as leaf size
 vox_obj.setLeafSize (0.1f, 0.1f, 0.1f);

 //Performing filtering and copy to cloud_filtered variable
 vox_obj.filter(cloud_filtered);
 pcl::toROSMsg(cloud_filtered, output);
 output.header.frame_id = "point_cloud";
 pcl_pub.publish(output);
 }

protected:
 ros::NodeHandle nh;
 ros::Subscriber pcl_sub;
 ros::Publisher pcl_pub;
};
main(int argc, char** argv)
{
 ros::init(argc, argv, "pcl_filter");
 ROS_INFO("Started Filter Node");
 cloudHandler handler;
 ros::spin();
 return 0;
}

This code subscribes the point cloud topic called /pcl_output, filters using
VoxelGrid, and publishes the filtered cloud through the /cloud_filtered topic.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[282]

Writing a point cloud data to a PCD file
We can save the point cloud to a PCD (Point Cloud Data) file by using the following
code. The file name is pcl_write.cpp inside the src folder.

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
//Header file for writing PCD file
#include <pcl/io/pcd_io.h>

void cloudCB(const sensor_msgs::PointCloud2 &input)
{
 pcl::PointCloud<pcl::PointXYZ> cloud;
 pcl::fromROSMsg(input, cloud);

//Save data as test.pcd file
 pcl::io::savePCDFileASCII ("test.pcd", cloud);
}

main (int argc, char **argv)
{
 ros::init (argc, argv, "pcl_write");

 ROS_INFO("Started PCL write node");

 ros::NodeHandle nh;
 ros::Subscriber bat_sub = nh.subscribe("pcl_output", 10, cloudCB);

 ros::spin();

 return 0;
}

Read and publish point cloud from a PCD file
This code can read a PCD file and publish the point cloud in the /pcl_output topic.
The code pcl_read.cpp is available in the src folder.

#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[283]

#include <pcl/io/pcd_io.h>

main(int argc, char **argv)
{
 ros::init (argc, argv, "pcl_read");

 ROS_INFO("Started PCL read node");

 ros::NodeHandle nh;
 ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2>
("pcl_output", 1);

 sensor_msgs::PointCloud2 output;
 pcl::PointCloud<pcl::PointXYZ> cloud;

//Load test.pcd file
 pcl::io::loadPCDFile ("test.pcd", cloud);

 pcl::toROSMsg(cloud, output);
 output.header.frame_id = "point_cloud";

 ros::Rate loop_rate(1);
 while (ros::ok())
 {
//Publishing the cloud inside pcd file
 pcl_pub.publish(output);
 ros::spinOnce();
 loop_rate.sleep();
 }

 return 0;
}

We can create a ROS package called pcl_ros_tutorial for compiling these examples:

$ catkin_create_pkg pcl_ros_tutorial pcl pcl_ros roscpp sensor_msgs

Otherwise, we can use the existing package.

Create the preceding examples inside src as pcl_publisher.cpp, pcl_filter.cpp,
pcl_write.cpp, and pcl_read.cpp.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[284]

Create CMakeLists.txt for compiling all the sources:

Declare a cpp executable
add_executable(pcl_publisher_node src/pcl_publisher.cpp)
add_executable(pcl_filter src/pcl_filter.cpp)
add_executable(pcl_write src/pcl_write.cpp)
add_executable(pcl_read src/pcl_read.cpp)

target_link_libraries(pcl_publisher_node
 ${catkin_LIBRARIES}
)
target_link_libraries(pcl_filter
 ${catkin_LIBRARIES}
)
target_link_libraries(pcl_write
 ${catkin_LIBRARIES}
)
target_link_libraries(pcl_read
 ${catkin_LIBRARIES}
)

Build this package using catkin_make, and we can run pcl_publisher_node and
view point cloud inside RViz using the following command:

$ rosrun rviz rviz -f point_cloud

A screenshot of the point cloud from pcl_output is shown in the following image:

Figure 19: PCL cloud in RViz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[285]

We can run the pcl_filter node to subscribe this same cloud and do voxel grid
filtering. The following screenshot shows the output from /pcl_filtered topic,
which is the resultant down sampled cloud:

Figure 20 : Filtered PCL cloud in RViz

We can write the pcl_output cloud using the pcl_write node and read/publish
using the pcl_read nodes.

Streaming webcam from Odroid
using ROS
ROS system is designed mainly for distributive computing. We can write and
run the ROS nodes on multiple machines and communicate each node to a single
master. For communicating between two devices using ROS, we should follow
the following rules:

•	 Only single ROS master should run; we can decide which machine should
run the master

•	 All machines should be configured to use the same master URI through
ROS_MASTER_URI

•	 Bi-directional connectivity should be ensured between all the pairs of machines
•	 Each machine should have a name that can be identified by the

other machines

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[286]

In this section, we will see how to run the ROS master in Odroid and stream the
camera images to a PC. First, we will look at the setup required for the distributing
computing between Odroid and PC.

Connect Odroid to the PC directly using the LAN cable and create a Ethernet hotspot,
as we mentioned in the previous chapter. Find the IPs of Odroid and the PC and set
the following lines of command in their .bashrc files. We are going to run the Odroid
board as the ROS master and the PC as a computing node. Following is a sample
configuration of Odroid and PC:

•	 Configuring Odroid as ROS master:
#Setting MY_IP as Odroid IP
export MY_IP=10.42.0.94
#Setting ROS_IP variable as MY_IP
export ROS_IP=$MY_IP
#Setting ROS_MASTER_URI as Odroid IP
export ROS_MASTER_URI="http://10.42.0.94:11311"

•	 Configuring PC as ROS computing node:
#Setting MY_IP as P.C IP
export MY_IP=10.42.0.1
#Setting ROS_IP variable as MY_IP
export ROS_IP=$MY_IP
#Setting ROS_MASTER_URI as Odroid IP
export ROS_MASTER_URI="http://10.42.0.94:11311"

Install a usb_cam ROS package in Odroid, connect a USB web cam to it, and start
running usb_cam on it using the following command:

$ roslaunch usb_cam usb_cam-test.launch

Figure 21: Terminal message generated by usb_cam node

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[287]

In the PC terminal, we can access the camera topics and display the image data
in RViz.

Following are the camera topics in the PC that are running on Odroid:

$ rostopic list

Figure 22: Topics generated by Odroid, which is viewed on PC terminal

We can view the image from the Odroid cam on the PC using RViz or the
image_view tool. Following is an image of Odroid camera stream in RViz:

Figure 21 : Odroid camera view in RViz running on PC

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Vision Sensors using ROS, Open-CV, and PCL

[288]

Questions
1.	 What are the packages in the vision_opencv stack?
2.	 What are the packages in the perception_pcl stack?
3.	 What are the functions of cv_bridge?
4.	 How do we convert PCL cloud to ROS message?
5.	 How do we do distributive computing using ROS?

Summary
This chapter was about vision sensors and its programming in ROS. We saw
the interfacing packages to interface the cameras and 3D vision sensors such as
vision_opencv and perception_pcl. We looked at each package and its functions
on these stacks. We saw interfacing of basic webcam and processing image using
ROS cv_bridge. After discussing cv_bridge, we looked at the interfacing of various
3D vision sensors and laser scanners with ROS. After interfacing, we learned how to
process the data from these sensors using PCL library and ROS. At the end
of the chapter, we understood how to stream a camera from an embedded device
called Odroid to the PC. In the next chapter, we will see the interfacing of robotic
hardware in ROS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[289]

Building and Interfacing
Differential Drive Mobile
Robot Hardware in ROS

In the previous chapter, we have discussed about robotic vision using ROS. In this
chapter, we can see discuss how to build an autonomous mobile robot hardware
with differential drive configuration and how to interface it into ROS. We will see
how to configure ROS Navigation stack for this robot and perform SLAM and
AMCL to move the robot autonomously. This chapter aims to give you an idea
about building a custom mobile robot and interfacing it on ROS.

You will see the following topics in this chapter:

•	 Introduction to Chefbot: a DIY autonomous mobile robot
•	 Flashing Chefbot firmware using Energia IDE
•	 Discussing Chefbot interface package in ROS
•	 Developing base controller and odometry node for Chefbot in ROS
•	 Configuring Navigation stack for Chefbot
•	 Understanding AMCL
•	 Understanding RViz for working with Navigation stack
•	 Obstacle avoidance using Navigation stack
•	 Working with Chefbot simulation
•	 Sending a goal to the Navigation stack from a ROS node

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[290]

The first topic we are going to discuss in this chapter is how to build a DIY (Do It
Yourself) autonomous mobile robot, developing its firmware, and interface it to ROS
Navigation stack. The robot called Chefbot was built as a part of my first book called
Learning Robotics using Python for PACKT (http://learn-robotics.com). This book
discusses step by step procedure to build this robot and its interfacing to ROS.

In this chapter, we will cover abstract information about this robot hardware and
we will learn more about configuring ROS Navigation stack and its fine tuning for
performing autonomous navigation using SLAM and AMCL. We have already
discussed about ROS Navigation stack in Chapter 4, Using the ROS MoveIt! and
Navigation Stack and we have simulated a differential robot using Gazebo and
performed SLAM and AMCL. In this chapter, we will see how to interface a real
differential drive robot hardware to navigation package.

Introduction to Chefbot- a DIY mobile
robot and its hardware configuration
In Chapter 4, Using the ROS MoveIt! and Navigation Stack we have discussed some
mandatory requirements for interfacing a mobile robot with ROS navigation
package. The following are the mandatory requirements:

•	 Odometry source: Robot should publish its odometry/position data with
respect to the starting position. The necessary hardware components that
provide odometry information are wheel encoders, IMU, and 2D/3D
cameras (visual odometry).

•	 Sensor source: There should be a laser scanner or a 3D vision sensor sensor,
which can act as a laser scanner. The laser scanner data is essential for map
building process using SLAM.

•	 Sensor transform using tf: The robot should publish the transform of the
sensors and other robot components using ROS transform.

•	 Base controller: The base controller is a ROS node, which can convert a
twist message from Navigation stack to corresponding motor velocities.

www.it-ebooks.info

http://learn-robotics.com
http://www.it-ebooks.info/

Chapter 9

[291]

Figure 1: Chefbot prototype

We can check the components present in the robot and determine whether they
satisfy the Navigation stack requirements. The following components are present in
the robot:

•	 Pololu DC Gear motor with Quadrature encoder (https://www.pololu.
com/product/1447): The motor is operated in 12 V, 80 RPM, and 18 kg-cm
torque. It takes current of 300 mA in free run and 5 A in stall condition. The
motor shaft is attached to a quadrature encoder, which can deliver a maximum
count of 8400 counts per revolution of the gearbox's output shaft. Motor
encoders are one source of odometry of robot.

•	 Pololu motor drivers (https://www.pololu.com/product/708): These are
dual motor controllers for Pololu motors that can support up to 30 A and
motor voltage from 5.5 V to 16 V.

•	 Tiva C Launchpad Controller (http://www.ti.com/tool/ek-tm4c123gxl):
This robot has a Tiva C LaunchPad controller for interfacing motors,
encoders, sensors, and so on. Also, it can receive control commands from
the PC and can send appropriate signals to the motors according to the
command. This board can act as a embedded controller board of the robot.
Tiva C LaunchPad board runs on 80 MHz.

www.it-ebooks.info

https://www.pololu.com/product/1447
https://www.pololu.com/product/1447
https://www.pololu.com/product/708
http://www.ti.com/tool/ek-tm4c123gxl
http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[292]

•	 MPU 6050 IMU: The IMU used in this robot is MPU 6050, which is a
combination of accelerometer, gyroscope, and Digital Motion Processer
(DMP). This motion processor can run sensor fusion algorithm onboard and
can provide accurate results of roll, pitch, and yaw. The IMU values can be
taken to calculate the odometry along with the wheel encoders.

•	 Xbox Kinect/Asus Xtion Pro: These are 3D vision sensors and we can use these
sensors to mock a laser scanner. The point cloud generated from these sensors
can be converted into laser scan data and used in the Navigation stack.

•	 Intel NUC PC: This is a mini PC from Intel, and we have to load this with
Ubuntu and ROS. The PC is connected to Kinect and LaunchPad to retrieve
the sensor values and the odometry details. The program running on the PC
can compute TF of the robot and can run the Navigation stack and associated
packages such as SLAM and AMCL. This PC is placed in the robot itself.

From the robot components lists, it is clear that it satisfies the requirements of the ROS
navigation packages. The following figure shows the block diagram of this robot:

Figure 2: Block diagram of Chefbot

In this robot, the embedded controller board is the Tiva C LaunchPad. All the sensors
and actuators are connected to the controller board and it is connected to Intel NUC
PC for receiving higher level commands. The board and the PC communicate in
UART protocol, IMU and the board communicate using I2C, Kinect is interfaced to
PC via USB, and all the other sensors are interfaced through GPIO pins. A detailed
connection diagram of the robot components follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[293]

Figure 3: Connection diagram of Chefbot

Flashing Chefbot firmware using Energia IDE
After developing the preceding connections, we can program the Launchpad using
Energia IDE (http://energia.nu/). After setting Energia IDE on the PC (Ubuntu
is preferred), we can flash the robot firmware to the board. We will get the firmware
code and the ROS interface package by using the following command:

$ git clone https://github.com/qboticslabs/Chefbot_ROS_pkg

The folder contains a folder called tiva_c_energia_code, which has the firmware
code that flashes to the board after compilation in Energia IDE.

The firmware can read the encoder, ultrasonic sensor, and IMU values, and can
receive values of the motor velocity command.

The important section of the firmware is discussed here. The programming language
in the LaunchPad is the same as Arduino. Here we are using Energia IDE to program
the controller, which is built from Arduino IDE.

www.it-ebooks.info

http://energia.nu/
http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[294]

The following code snippet is the setup() function definition of the code. This
function starts serial communication with a baud rate of 115200. It also configures
pins of motor encoder, motor driver pins, ultrasonic distance sensor, and IMU.
Also, through this code, we are configuring a pin to reset the LaunchPad.

void setup()
{

 //Init Serial port with 115200 baud rate
 Serial.begin(115200);

 //Setup Encoders
 SetupEncoders();
 //Setup Motors
 SetupMotors();
 //Setup Ultrasonic
 SetupUltrasonic();
 //Setup MPU 6050
 Setup_MPU6050();
 //Setup Reset pins
 SetupReset();
 //Set up Messenger
 Messenger_Handler.attach(OnMssageCompleted);
 }

In the loop() function, the sensor values are continuously polled and the data is sent
through serial port and incoming serial data are continuously polled for getting the
robot commands. The following convention protocols are used to send each sensor
value from the LaunchPad to the PC using serial communication (UART).

Serial data sending protocol from LaunchPad to PC
For the encoder, the protocol will be as follows:

 e<space><left_encoder_ticks><space><right_encoder_ticks>

For the ultrasonic sensor, the protocol will be as follows:

 u<space><distance_in_centimeter>

For IMU, the protocol will be as follows:

 i<space><value_of_x_quaternion><space><value_of_y_quaternion>
 <space><value_of_z_quaternion><space><value_of_w_quaternion>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[295]

Serial data sending protocol from PC to Launchpad
For the motor, the protocol will be as follows:

 s<space><pwm_value_of_motor_1><space><pwm_value_of_motor_2>

For resetting the device, the protocol will be as follows:

r<space>

We can check the serial values from the LaunchPad using a command line tool called
miniterm.py. This tool can view the serial data coming from a device. This script is
already installed with the python-serial package, which is installed along with the
rosserial-python Debian package. The following command will display the serial
values from the robot controller:

$ miniterm.py /dev/ttyACM0 115200

We will get values like the following screenshot:

Figure 4: Checking serial data using miniterm.py

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[296]

Discussing Chefbot interface packages
on ROS
After confirming the serial values from the board, we can install the Chefbot ROS
package. The Chefbot package contains the following files and folders:

•	 chefbot_bringup: This package contains python scripts, C++ nodes, and
launch files to start publishing robot odometry and tf, and performing
gmapping and AMCL. It contains the python/C++ nodes to read/write
values from the LaunchPad, convert the encoder ticks to tf, and twist
message to motor commands. It also has the PID node for handling velocity
commands from the motor commands.

•	 chefbot_description: This package contains the Chefbot URDF model.
•	 chefbot_simulator: This package contains launch files to simulate the robot

in Gazebo.
•	 chefbot_navig_cpp: This package contains C++ implementation of

few nodes which are already implemented in chefbot_bringup as the
python node.

The following launch file will start the robot odometry and tf publishing nodes:

$ roslaunch chefbot_bringup robot_standalone.launch

The following figure shows the nodes started by this launch file and how they are
interconnected:

Figure 5: Interconnection of each nodes in Chefbot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[297]

The nodes run by this launch file and their working are described next:

•	 launchpad_node.py: We know that this robot uses Tiva C LaunchPad board
as its controller. This node acts as a bridge between the robot controller and
ROS. The basic functionality of this node is to receive serial values from the
LaunchPad and convert each sensor data into ROS topics. This acts as the
ROS driver for the LaunchPad board.

•	 twist_to_motors.py: This node converts the geometry_msgs/Twist
message to motor velocity targets. It subscribes the command velocity, which
is either from a teleop node or from a ROS Navigation stack, and publishes
lwheel_vtarget and rwheel_vtarget.

•	 pid_velocity.py: This node subscribes wheel_vtarget from the twist_
to_motors node and the wheel topic, which is the encoder ticks from
launchpad_node. We have to start two PID nodes for each wheel of the
robot, as shown in the previous figure. This node finally generates the motor
speed commands for each motor.

•	 diff_tf.py: This node subscribes the encoder ticks from the two motors and
computes odometry, and publishes tf for the Navigation stack.

The list of topics generated after running robot_standalone.launch are shown in
the following image:

Figure 6: List of topic generated when executing robot_standalone.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[298]

The following is the content of the robot_standalone.launch file:

<launch>
 <arg name="simulation" default="$(optenv TURTLEBOT_SIMULATION
false)"/>
 <param name="/use_sim_time" value="$(arg simulation)"/>

<!-- URDF robot model -->
 <arg name="urdf_file" default="$(find xacro)/xacro.py '$(find
chefbot_description)/urdf/chefbot_base.xacro'" />
 <param name="robot_description" command="$(arg urdf_file)" />

 <!-- important generally, but specifically utilised by the current
app manager -->
 <param name="robot/name" value="$(optenv ROBOT turtlebot)"/>
 <param name="robot/type" value="turtlebot"/>

<!-- Starting robot state publisher -->
 <node pkg="robot_state_publisher" type="robot_state_publisher"
name="robot_state_publisher">
 <param name="publish_frequency" type="double" value="5.0" />
 </node>

<!-- Robot parameters -->
 <rosparam param="base_width">0.3</rosparam>
 <rosparam param="ticks_meter">14865</rosparam>

<!-- Starting launchpad_node -->
 <node name="launchpad_node" pkg="chefbot_bringup" type="launchpad_
node.py">
 <rosparam file="$(find chefbot_bringup)/param/serial.yaml"
command="load" />
 </node>

<!-- PID node for left motor , setting PID parameters -->
 <node name="lpid_velocity" pkg="chefbot_bringup" type="pid_velocity.
py" output="screen">
 <remap from="wheel" to="lwheel"/>
 <remap from="motor_cmd" to="left_wheel_speed"/>
 <remap from="wheel_vtarget" to="lwheel_vtarget"/>
 <remap from="wheel_vel" to="lwheel_vel"/>

 <rosparam param="Kp">400</rosparam>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[299]

 <rosparam param="Ki">100</rosparam>
 <rosparam param="Kd">0</rosparam>
 <rosparam param="out_min">-1023</rosparam>
 <rosparam param="out_max">1023</rosparam>
 <rosparam param="rate">30</rosparam>
 <rosparam param="timeout_ticks">4</rosparam>
 <rosparam param="rolling_pts">5</rosparam>
 </node>

<!-- PID node for right motor, setting PID parameters -->
 <node name="rpid_velocity" pkg="chefbot_bringup" type="pid_velocity.
py" output="screen">
 <remap from="wheel" to="rwheel"/>
 <remap from="motor_cmd" to="right_wheel_speed"/>
 <remap from="wheel_vtarget" to="rwheel_vtarget"/>
 <remap from="wheel_vel" to="rwheel_vel"/>
 <rosparam param="Kp">400</rosparam>
 <rosparam param="Ki">100</rosparam>
 <rosparam param="Kd">0</rosparam>
 <rosparam param="out_min">-1023</rosparam>
 <rosparam param="out_max">1023</rosparam>
 <rosparam param="rate">30</rosparam>
 <rosparam param="timeout_ticks">4</rosparam>
 <rosparam param="rolling_pts">5</rosparam>
 </node>

<!-- Starting twist to motor and diff_tf nodes -->

 <node pkg="chefbot_bringup" type="twist_to_motors.py" name="twist_
to_motors" output="screen"/>
 <node pkg="chefbot_bringup" type="diff_tf.py" name="diff_tf"
output="screen"/>

</launch>

After running robot_standalone.launch, we can visualize the robot in RViz using
the following command:

$ roslaunch chefbot_bringup view_robot.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[300]

We will see the robot model as shown in this next screenshot:

Figure 7: Visualization of robot model using real robot values.

Launch the keyboard teleop node and we can start moving the robot:

$ roslaunch chefbot_bringup keyboard_teleop.launch

Move the robot using the keys and we will see that the robot is moving around.
If we enable TF of the robot in RViz, we can view the odometry as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[301]

Figure 8: Visualizing robot odometry

The graph of the connection between each node is given next. We can view it using
the rqt_graph tool.

$ rqt_graph

/cmd_vel_mux/input/teleop/chefbot_teleop_keyboard /twist_to_motors

/lwheel

/lwheel_vtarget

/lpid_velocity

/rwheel_vtarget

/lwheel_vel

/left_wheel_speed

/launchpad_node

/joint_states /robot_state_publisher /tf

/odom/diff_tf

/rpid_velocity /rwheel_vel

/right_wheel_speed

/rwheel

/serial

/ultrasonic_distance

/battery_level

/qw

/qy

/qz

/imu/data

/qx

Figure 9: Interconnection of nodes in Chefbot

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[302]

Till now we have discussed the Chefbot interfacing on ROS. The coding of Chefbot
is completely done in Python. There are some nodes implemented in C++ for
computing odometry from the encoder ticks and generating motor speed commands
from the twist messages.

Computing odometry from encoder ticks
In this section, we will see the C++ interpretation of the diff_tf.py node,
which subscribes the encoder data and computes the odometry, and publishes
the odometry and tf of the robot. We can see the C++ interpretation of this node,
called diff_tf.cpp, which can be found in the src folder of a package named
chefbot_navig_cpp.

Discussed next are the important code snippets of this code and their explanations.
The following code snippet is the constructor of the class Odometry_calc. This class
contains the definition of computing odometry. The following code declares the
subscriber for the left and right wheel encoders along with the publisher for odom
value:

Odometry_calc::Odometry_calc(){

 //Initialize variables used in the node
 init_variables();

 ROS_INFO("Started odometry computing node");

 //Subscribing left and right wheel encoder values
 l_wheel_sub = n.subscribe("/lwheel",10, &Odometry_
calc::leftencoderCb, this);

 r_wheel_sub = n.subscribe("/rwheel",10, &Odometry_
calc::rightencoderCb, this);

 //Creating a publisher for odom
 odom_pub = n.advertise<nav_msgs::Odometry>("odom", 50);

 //Retrieving parameters of this node
 get_node_params();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[303]

The following code is the update loop of computing odometry. It computes the delta
distance moved and the angle rotated by the robot using the encoder values, base
width of the robot, and ticks per meter of the encoder. After calculating the delta
distance and the delta theta, we can compute the final x, y, and theta using the
standard differential drive robot equations.

 if (now > t_next) {

 elapsed = now.toSec() - then.toSec();

 if(enc_left == 0){
 d_left = 0;
 d_right = 0;
 }
 else{
 d_left = (left - enc_left) / (ticks_meter);
 d_right = (right - enc_right) / (ticks_meter);
 }

 enc_left = left;
 enc_right = right;

 d = (d_left + d_right) / 2.0;

 th = (d_right - d_left) / base_width;

 dx = d /elapsed;

 dr = th / elapsed;

 if (d != 0){

 x = cos(th) * d;
 y = -sin(th) * d;

 // calculate the final position of the robot
 x_final = x_final + (cos(theta_final) * x - sin(
theta_final) * y);
 y_final = y_final + (sin(theta_final) * x + cos(
theta_final) * y);

 }
 if(th != 0)
 theta_final = theta_final + th;

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[304]

After computing the robot position and the orientation from the preceding code
snippet, we can feed the odom values to the odom message header and in the tf
header, which will publish the topics in /odom and /tf.

 geometry_msgs::Quaternion odom_quat ;

 odom_quat.x = 0.0;
 odom_quat.y = 0.0;
 odom_quat.z = 0.0;

 odom_quat.z = sin(theta_final / 2);
 odom_quat.w = cos(theta_final / 2);

 //first, we'll publish the transform over tf
 geometry_msgs::TransformStamped odom_trans;
 odom_trans.header.stamp = now;
 odom_trans.header.frame_id = "odom";
 odom_trans.child_frame_id = "base_footprint";

 odom_trans.transform.translation.x = x_final;
 odom_trans.transform.translation.y = y_final;
 odom_trans.transform.translation.z = 0.0;
 odom_trans.transform.rotation = odom_quat;

 //send the transform
 odom_broadcaster.sendTransform(odom_trans);

 //next, we'll publish the odometry message over ROS
 nav_msgs::Odometry odom;
 odom.header.stamp = now;
 odom.header.frame_id = "odom";

 //set the position
 odom.pose.pose.position.x = x_final;
 odom.pose.pose.position.y = y_final;
 odom.pose.pose.position.z = 0.0;
 odom.pose.pose.orientation = odom_quat;

 //set the velocity
 odom.child_frame_id = "base_footprint";
 odom.twist.twist.linear.x = dx;
 odom.twist.twist.linear.y = 0;
 odom.twist.twist.angular.z = dr;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[305]

 //publish the message
 odom_pub.publish(odom);

Computing motor velocities from ROS twist
message
The C++ implementation of twist_to_motor.py is discussed in this section.
This node will convert the twist message (geometry_msgs/Twist) to motor target
velocities. The topics subscribing by this node is the twist message from teleop node
or Navigation stack and it publishes the target velocities for the two motors. The
target velocities are fed into the PID nodes, which will send appropriate commands
to each motor. The CPP file name is twist_to_motor.cpp and you can get it from
the chapter_9_codes/chefbot_navig_cpp/src folder.

TwistToMotors::TwistToMotors()
{
 init_variables();
 get_parameters();

 ROS_INFO("Started Twist to Motor node");

 cmd_vel_sub = n.subscribe("cmd_vel_mux/input/teleop",10,
&TwistToMotors::twistCallback, this);

 pub_lmotor = n.advertise<std_msgs::Float32>("lwheel_vtarget", 50);

 pub_rmotor = n.advertise<std_msgs::Float32>("rwheel_vtarget", 50);

}

The following code snippet is the callback function of the twist message. The linear
velocity X is assigned as dx, Y as dy, and angular velocity Z as dr.

void TwistToMotors::twistCallback(const geometry_msgs::Twist &msg)
{

 ticks_since_target = 0;

 dx = msg.linear.x;
 dy = msg.linear.y;
 dr = msg.angular.z;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[306]

After getting dx, dy, and dr, we can compute the motor velocities using the
following equations:

 dx = (l + r) / 2

 dr = (r - l) / w

Here r and l are the right and left wheel velocities, and w is the base width. The
preceding equations are implemented in the following code snippet. After computing
the wheel velocities, it is published to the lwheel_vtarget and rwheel_vtarget
topics.

 right = (1.0 * dx) + (dr * w /2);
 left = (1.0 * dx) - (dr * w /2);

 std_msgs::Float32 left_;
 std_msgs::Float32 right_;

 left_.data = left;
 right_.data = right;

 pub_lmotor.publish(left_);
 pub_rmotor.publish(right_);

 ticks_since_target += 1;

 ros::spinOnce();

Running robot stand alone launch file using
C++ nodes
The following command can launch robot_stand_alone.launch, which uses the
C++ nodes:

$ roslaunch chefbot_navig_cpp robot_standalone.launch

Configuring the Navigation stack for Chefbot
After setting the odometry nodes, the base controller node, and the PID nodes, we
need to configure the Navigation stack to perform SLAM and Adaptive Monte Carlo
Localization (AMCL) for building the map, localizing the robot, and performing
autonomous navigation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[307]

In Chapter 4, Using the ROS MoveIt! and Navigation Stack, we saw the basic packages
in the Navigation stack. To build the map of the environment, we need to configure
mainly two nodes: the gmapping node for performing SLAM and the move_base
node. We also need to configure the global planner, the local planner, the global cost
map, and the local cost map inside the Navigation stack. Let's see the configuration
of the gmapping node first.

Configuring the gmapping node
The gmapping node is the package to perform SLAM (http://wiki.ros.org/
gmapping).

The gmapping node inside this package mainly subscribes and publishes the
following topics:

The following are the subscribed topics:

•	 tf (tf/tfMessage): Robot transform that relates to Kinect, robot base
and odometry

•	 scan (sensor_msgs/LaserScan): Laser scan data that is required to create
the map

The following are the published topics:

•	 map (nav_msgs/OccupancyGrid): Publishes the occupancy grid map data
•	 map_metadata (nav_msgs/MapMetaData): Basic information about the

occupancy grid

The gmapping node is highly configurable using various parameters. The gmapping
node parameters are defined inside the chapter_9_codes/chefbot/chefbot_
bringup/launch/include/gmapping.launch.xml file. Following is a code snippet
of this file and its uses:

<launch>
 <arg name="scan_topic" default="scan" />

<!-- Starting gmapping node -->
 <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping"
output="screen">

<!-- Frame of mobile base -->
 <param name="base_frame" value="base_footprint"/>
 <param name="odom_frame" value="odom"/>
<!-- The interval of map updation, reducing this value will speed of
map generation but increase computation load -->

www.it-ebooks.info

http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[308]

 <param name="map_update_interval" value="5.0"/>
<!-- Maximum usable range of laser/kinect -->
 <param name="maxUrange" value="6.0"/>
<!-- Maximum range of sensor, max range should be > maxUrange -->
 <param name="maxRange" value="8.0"/>
 <param name="sigma" value="0.05"/>
 <param name="kernelSize" value="1"/>
</node>
</launch>

By fine tuning these parameters, we improve the accuracy of the gmapping node.

The main gmapping launch file is given next. It is placed in chefbot_bringup/
launch/includes/gmapping_demo.launch. This launch file launches the openni_
launch file and the depth_to_laserscan node to convert the depth image to laser
scan. After launching the Kinect nodes, it launches the gmapping node and the move_
base configurations.

<launch>
<!-- Launches 3D sensor nodes -->
 <include file="$(find chefbot_bringup)/launch/3dsensor.launch">
 <arg name="rgb_processing" value="false" />
 <arg name="depth_registration" value="false" />
 <arg name="depth_processing" value="false" />
 <arg name="scan_topic" value="/scan" />
 </include>

<!-- Start gmapping nodes and its configurations -->
 <include file="$(find chefbot_bringup)/launch/includes/gmapping.
launch.xml"/>

<!-- Start move_base node and its configuration -->
 <include file="$(find chefbot_bringup)/launch/includes/move_base.
launch.xml"/>
</launch>

Configuring the Navigation stack packages
The next node we need to configure is move_base. Along with the move_base node,
we need to configure the global and the local planners, and also the global and the
local cost maps. We will first look at the launch file to load all these configuration
files. The following launch file chefbot_bringup/launch/includes/move_base.
launch.xml will load all the parameters of move_base, planners, and costmaps:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[309]

<launch>
 <arg name="odom_topic" default="odom" />
<!-- Starting move_base node -->
 <node pkg="move_base" type="move_base" respawn="false" name="move_
base" output="screen">

<!-- common parameters of global costmap -->
 <rosparam file="$(find chefbot_bringup)/param/costmap_common_
params.yaml" command="load" ns="global_costmap" />

<!-- common parameters of local costmap -->
 <rosparam file="$(find chefbot_bringup)/param/costmap_common_
params.yaml" command="load" ns="local_costmap" />

<!-- local cost map parameters -->
 <rosparam file="$(find chefbot_bringup)/param/local_costmap_
params.yaml" command="load" />

<!-- global cost map parameters -->
 <rosparam file="$(find chefbot_bringup)/param/global_costmap_
params.yaml" command="load" />

<!-- base local planner parameters -->
 <rosparam file="$(find chefbot_bringup)/param/base_local_planner_
params.yaml" command="load" />

<!-- dwa local planner parameters -->
 <rosparam file="$(find chefbot_bringup)/param/dwa_local_planner_
params.yaml" command="load" />

<!-- move_base node parameters -->
 <rosparam file="$(find chefbot_bringup)/param/move_base_params.
yaml" command="load" />

 <remap from="cmd_vel" to="/cmd_vel_mux/input/navi"/>
 <remap from="odom" to="$(arg odom_topic)"/>
 </node>
</launch>

We will now take a look at each configuration file and its parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[310]

Common configuration (local_costmap) and
(global_costmap)
The common parameters of the local and global costmaps are discussed in this
section. The costmap is created using the obstacles present around the robot. Fine
tuning the parameters of the costmap can increase the accuracy of map generation.
The customized file costmap_common_params.yaml of Chefbot follows. This
configuration file contains the common parameters of both the global and the local
cost maps. It is present in the chefbot_bringup/param folder. For more about
costmap common parameters, check http://wiki.ros.org/costmap_2d/flat.

#The maximum value of height which has to be taken as an obstacle
max_obstacle_height: 0.60

#This parameters set the maximum obstacle range. In this case, the
robot will only look at obstacles within 2.5 meters in front of robot
obstacle_range: 2.5

#This parameter helps robot to clear out space in front of it upto 3.0
meters away given a sensor reading
raytrace_range: 3.0

#If the robot is circular, we can define the robot radius, otherwise
we need to mention the robot footprint

robot_radius: 0.45
#footprint: [[-0.,-0.1],[-0.1,0.1], [0.1, 0.1], [0.1,-0.1]]

#This parameter will actually inflate the obstacle up to this distance
from the actual obstacle. This can be taken as a tolerance value of
obstacle. The cost of map will be same as the actual obstacle up to
the inflated value.

inflation_radius: 0.50

#This factor is used for computing cost during inflation
cost_scaling_factor: 5

#We can either choose map type as voxel which will give a 3D view of
the world, or the other type, costmap which is a 2D view of the map.
Here we are opting voxel.
map_type: voxel

#This is the z_origin of the map if it voxel
origin_z: 0.0

www.it-ebooks.info

http://wiki.ros.org/costmap_2d/flat
http://www.it-ebooks.info/

Chapter 9

[311]

#z resolution of map in meters
z_resolution: 0.2

#No of voxel in a vertical column
z_voxels: 2

#This flag set whether we need map for visualization purpose
publish_voxel_map: false

#A list of observation source in which we get scan data and its
parameters
observation_sources: scan

#The list of scan, which mention, data type of scan as LaserScan,
marking and clearing indicate whether the laser data is used for
marking and clearing costmap.

scan: {data_type: LaserScan, topic: scan, marking: true, clearing:
true, min_obstacle_height: 0.0, max_obstacle_height: 3}

After discussing the common parameters, we will now look at the global costmap
configuration.

Configuring global costmap parameters
The following are the main configurations required for building a global costmap.
The definition of the costmap parameters are dumped in chefbot_bringup/param/
global_costmap_params.yaml. The following is the definition of this file and its uses:

global_costmap:
 global_frame: /map
 robot_base_frame: /base_footprint
 update_frequency: 1.0
 publish_frequency: 0.5
 static_map: true
 transform_tolerance: 0.5

The global_frame here is /map, which is the coordinate frame of the costmap.
The robot_base_frame parameter is /base_footprint; it is the coordinate frame
in which the costmap should reference as the robot base. The update_frequency
is frequency at which the cost map runs its main update loop. The publishing_
frequency of the cost map is given as publish_frequency, which is 0.5. If we are
using an existing map, we have to set static_map as true, otherwise as false. The
transform_tolerance is the rate at which the transform has to perform. The robot
would stop if the transforms are not updated at this rate.

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[312]

Configuring local costmap parameters
Following is the local costmap configuration of this robot. The configuration of
this file is located in chefbot_bringup/param/local_costmap_params.yaml.

local_costmap:
 global_frame: odom
 robot_base_frame: /base_footprint
 update_frequency: 5.0
 publish_frequency: 2.0
 static_map: false
 rolling_window: true
 width: 4.0
 height: 4.0
 resolution: 0.05
 transform_tolerance: 0.5

The global_frame, robot_base_frame, publish_frequency, and static_map are
the same as the global costmap. The rolling_window parameter makes the costmap
centered around the robot. If we set this parameter to true, we will get a costmap
that is built centered around the robot. The width , height, and resolution
parameters are the width, height, and resolution of the costmap.

The next step is to configure the base local planner.

Configuring base local planner parameters
The main function of the base local planner is to compute the velocity commands
from the goal sent from the ROS nodes. This file mainly contains the configurations
related to velocity, acceleration, and so on. The base local planner configuration file
of this robot is in chefbot_bringup/param/base_local_planner_params.yaml.
The definition of this file is as follows:

TrajectoryPlannerROS:

Robot Configuration Parameters, these are the velocity limit of the
robot
 max_vel_x: 0.3
 min_vel_x: 0.1

#Angular velocity limit
 max_vel_theta: 1.0
 min_vel_theta: -1.0
 min_in_place_vel_theta: 0.6

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[313]

#These are the acceleration limits of the robot
 acc_lim_x: 0.5
 acc_lim_theta: 1.0

Goal Tolerance Parameters: The tolerance of robot when it reach the
goal position

 yaw_goal_tolerance: 0.3
 xy_goal_tolerance: 0.15

Forward Simulation Parameters
 sim_time: 3.0
 vx_samples: 6
 vtheta_samples: 20

Trajectory Scoring Parameters
 meter_scoring: true
 pdist_scale: 0.6
 gdist_scale: 0.8
 occdist_scale: 0.01
 heading_lookahead: 0.325
 dwa: true

Oscillation Prevention Parameters
 oscillation_reset_dist: 0.05

Differential-drive robot configuration : If the robot is holonomic
configuration, set to true other vice set to false. Chefbot is a non
holonomic robot.

 holonomic_robot: false
 max_vel_y: 0.0
 min_vel_y: 0.0
 acc_lim_y: 0.0
 vy_samples: 1

Configuring DWA local planner parameters
The DWA planner is another local planner in ROS. Its configuration is almost the
same as the base local planner. It is located in chefbot_bringup/param/ dwa_
local_planner_params.yaml. We can either use the base local planner or the DWA
local planner for our robot.

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[314]

Configuring move_base node parameters
There are some configurations to the move_base node too. The move_base node
configuration is placed in the param folder. Following is the definition of move_base_
params.yaml:

#This parameter determine whether the cost map need to shutdown when
move_base in inactive state
shutdown_costmaps: false

#The rate at which move base run the update loop and send the velocity
commands
controller_frequency: 5.0

#Controller wait time for a valid command before a space-clearing
operations
controller_patience: 3.0

#The rate at which the global planning loop is running, if it is 0,
planner only plan when a new goal is received
planner_frequency: 1.0

#Planner wait time for finding a valid path befire the space-clearing
operations

planner_patience: 5.0

#Time allowed for oscillation before starting robot recovery
operations
oscillation_timeout: 10.0

#Distance that robot should move to be considered which not be
oscillating. Moving above this distance will reset the oscillation_
timeout

oscillation_distance: 0.2

local planner - default is trajectory rollout
base_local_planner: "dwa_local_planner/DWAPlannerROS"

We have discussed most of the parameters used in the Navigation stack, the
gmapping node, and the move_base node. Now we can start running a gmapping
demo for building the map.

Start the robot's tf nodes and base controller nodes:

$ roslaunch chefbot_bringup robot_standalone.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[315]

Start the gmapping nodes using the following command:

$ roslaunch chefbot_bringup gmapping_demo.launch

This gmapping_demo.launch will launch the 3Dsensor, which launches the OpenNI
drivers and depth to the laser scan node, and launches gmapping node and movebase
node with necessary parameters.

We can launch a teleop node for moving the robot to build the map of environment.
The following command will launch the teleop node for moving the robot:

$ roslaunch chefbot_bringup keyboard_teleop.launch

We can see the map building in RViz, which can be invoked using the following
command:

$ roslaunch chefbot_bringup view_navigation.launch

We are testing this robot in a plane room; we can move robot in all areas inside
the room. If we move the robot in all the areas, we will get a map as shown in the
following screenshot:

Figure 10: Creating a map using gmapping is shown in RViz

After completing the mapping process, we can save the map using the following
command:

$ rosrun map_server map_saver -f /home/lentin/room

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[316]

The map_server package in ROS contains the map_server node, which provides the
current map data as an ROS service. It provides a command utility called map_saver,
which helps to save the map.

It will save the current map as two files: room.pgm and room.yaml. The first one is
the map data and the next is its meta data which contains the map file's name and its
parameters. The following screenshot shows map generation using the map_server
tool, which is saved in the home folder:

Figure 11: Terminal messages while saving a map

The following is the room.yaml:

image: room.pgm
resolution: 0.010000
origin: [-11.560000, -11.240000, 0.000000]
negate: 0
occupied_thresh: 0.65
free_thresh: 0.196

The definition of each parameter follows:

•	 image: The image contains the occupancy data. The data can be absolute
or relative to the origin mentioned in the YAML file.

•	 resolution: This parameter is the resolution of the map, which is
meters/pixels.

•	 origin: This is the 2D pose of the lower left pixel in the map as (x, y, yaw)
in which yaw as counter clockwise(yaw = 0 means no rotation).

•	 negate: This parameter can reverse the semantics of white/black in the map
and the free space/occupied space representation.

•	 occupied_thresh: This is the threshold deciding whether the pixel is
occupied or not. If the occupancy probability is greater than this threshold,
it is considered as free space.

•	 free_thresh: The map pixel with occupancy probability less than this
threshold is considered completely occupied.

After mapping the environment, we can quit all the terminals and rerun the
following commands to start AMCL. Before starting the amcl nodes, we will
look at the configuration and main application of AMCL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[317]

Understanding AMCL
After building a map of the environment, the next thing we need to implement is
localization. The robot should localize itself on the generated map. We have worked
with AMCL in Chapter 4, Using the ROS MoveIt! and Navigation Stack. In this section,
we will see a detailed study of the amcl package and the amcl launch files used
in Chefbot.

AMCL is probabilistic localization technique for robot working in 2D. This algorithm
uses particle filter for tracking the pose of the robot with respect to the known map.
To know more about this localization technique, you can refer to a book called
Probabilistic Robotics by Thrun (http://www.probabilistic-robotics.org/).

The AMCL algorithm is implemented in the AMCL ROS package (http://
wiki.ros.org/amcl), which has an amcl node that subscribes the scan (sensor_
msgs/LaserScan), the tf (tf/tfMessage), the initial pose (geometry_msgs/
PoseWithCovarianceStamped), and the map (nav_msgs/OccupancyGrid).

After processing the sensor data, it publishes amcl_pose (geometry_msgs/
PoseWithCovarianceStamped), particlecloud(geometry_msgs/PoseArray)
and tf (tf/Message).

The amcl_pose is the estimated pose of the robot after processing, where the particle
cloud is the set of pose estimates maintained by the filter.

If the initial pose of the robot is not mentioned, the particle will be around the origin.
We can set the initial pose of the robot in RViz using the 2D Pose estimate button.
We can see the amcl launch file used in this robot. Following is the main launch file
for starting amcl, called amcl_demo.launch:

<launch>
 <rosparam command="delete" ns="move_base" />
 <include file="$(find chefbot_bringup)/launch/3dsensor.launch">
 <arg name="rgb_processing" value="false" />
 <arg name="depth_registration" value="false" />
 <arg name="depth_processing" value="false" />

 <!-- We must specify an absolute topic name because if not it will
be prefixed by "$(arg camera)".
 <arg name="scan_topic" value="/scan" />
 </include>

 <!-- Map server -->

www.it-ebooks.info

http://www.probabilistic-robotics.org/
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[318]

 <arg name="map_file" default="$(find turtlebot_navigation)/maps/
willow-2010-02-18-0.10.yaml"/>
 <node name="map_server" pkg="map_server" type="map_server"
args="$(arg map_file)" />

 <arg name="initial_pose_x" default="0.0"/> <!-- Use 17.0 for
willow's map in simulation -->
 <arg name="initial_pose_y" default="0.0"/> <!-- Use 17.0 for
willow's map in simulation -->
 <arg name="initial_pose_a" default="0.0"/>

 <include file="$(find chefbot_bringup)/launch/includes/amcl.launch.
xml">
 <arg name="initial_pose_x" value="$(arg initial_pose_x)"/>
 <arg name="initial_pose_y" value="$(arg initial_pose_y)"/>
 <arg name="initial_pose_a" value="$(arg initial_pose_a)"/>
 </include>

 <include file="$(find chefbot_bringup)/launch/includes/move_base.
launch.xml"/>

</launch>

The preceding launch file starts the 3D sensors related nodes, the map server
for providing the map data, the amcl node for performing localization, and the
move_base node to move the robot from the commands getting from higher level.

The complete amcl launch parameters are mentioned inside another sub file called
amcl.launch.xml. It is placed in chefbot_bringup/launch/include. Following is
the definition of this file:

<launch>
 <arg name="use_map_topic" default="false"/>
 <arg name="scan_topic" default="scan"/>
 <arg name="initial_pose_x" default="0.0"/>
 <arg name="initial_pose_y" default="0.0"/>
 <arg name="initial_pose_a" default="0.0"/>

 <node pkg="amcl" type="amcl" name="amcl">
 <param name="use_map_topic" value="$(arg use_map_
topic)"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[319]

 <!-- Increase tolerance because the computer can get quite busy
-->
 <param name="transform_tolerance" value="1.0"/>
 <param name="recovery_alpha_slow" value="0.0"/>
 <param name="recovery_alpha_fast" value="0.0"/>
 <param name="initial_pose_x" value="$(arg initial_
pose_x)"/>
 <param name="initial_pose_y" value="$(arg initial_
pose_y)"/>
 <param name="initial_pose_a" value="$(arg initial_
pose_a)"/>
 <remap from="scan" to="$(arg scan_topic)"/>
 </node>
</launch>

We can refer the ROS amcl package wiki for getting more details about each
parameter.

We will see how to localize and path plan the robot using the existing map.

Rerun the robot hardware nodes using the following command:

$ roslaunch chefbot_bringup robot_standalone.launch

Run the amcl launch file using the following command:

$ roslaunch chefbot_bringup amcl_demo.launch map_file:=/home/lentin/room.
yaml

We can launch RViz for commanding the robot to move to a particular pose on
the map.

We can launch RViz for navigation using the following command:

$ roslaunch chefbot_bringup view_navigation.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[320]

The following is the screenshot of RViz:

Figure 12: Robot autonomous navigation using AMCL

We will see more about each option in RViz and how to command the robot in the
map in the following section.

Understanding RViz for working with the
Navigation stack
We will explore various GUI options inside RViz to visualize each parameter in the
Navigation stack.

2D Pose Estimate button
The first step in RViz is to set the initial position of the robot on the map. If the robot
is able to localize on the map by itself, there is no need to set the initial position.
Otherwise, we have to set the initial position using the 2D Pose Estimate button in
RViz, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[321]

Figure 13: RViz 2D Pose Estimate button

Press the 2D Pose Estimate button and select a pose of the robot using the left
mouse button, as shown in the preceding figure. Check if the actual pose of the
robot and the robot model in RViz are the same. After setting the pose, we can
start path plan the robot.

The green color cloud around the robot is the particle cloud of amcl. If the particle
amount is high, it means the uncertainty in the robot position is high, and if the
cloud is less, it means that uncertainty is low and the robot is almost sure about its
position. The topic handling the robot's initial pose is:

•	 Topic Name: initialpose
•	 Topic Type: geometry_msgs/PoseWithCovarianceStamped

Visualizing the particle cloud
The particle cloud around the robot can be enabled using the PoseArray display
topic. Here the PoseArray topic is /particlecloud displayed in RViz. The
PoseArray type is renamed as Amcl Particles.

•	 Topic: /particlecloud

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[322]

•	 Type: geometry_msgs/PoseArray

Figure 14: Visualizing AMCL particles

The 2D Nav Goal button
The 2D Nav Goal button is used to give a goal position to the move_base node in the
ROS Navigation stack through RViz. We can select this button from the top panel of
RViz and can give the goal position inside the map by left clicking the map using the
mouse. The goal position will send to the move_base node for moving the robot to
that location.

•	 Topic: move_base_simple/goal
•	 Topic Type: geometry_msgs/PoseStamped

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[323]

Figure 15 []:Setting robot goal position in RViz using 2D Nav Goal

Displaying the static map
The static map is the map that we feed into the map_server node. The map_server
node serves the static map in the /map topic.

•	 Topic: /map
•	 Type: nav_msgs/GetMap

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[324]

The following is the static map in RViz:

Figure 16: Visualizing static map in RViz

Displaying the robot footprint
We have defined the robot footprint in the configuration file called costmap_
common_params.yaml. This robot has a circular shape, and we have given the radius
as 0.45 meters. It can visualize using the Polygon display type in RViz. The following
is the circular footprint of the robot around the robot model and its topics:

•	 Topic: /move_base/global_costmap/obstacle_layer_footprint/
footprint_stamped

•	 Topic: /move_base/local_costmap/obstacle_layer_footprint/
footprint_stamped

•	 Type: geometry_msgs/Polygon

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[325]

Figure 17: global and local robot footprint in RViz

Displaying the global and local cost map
The following RViz screenshot shows the local cost map, the global cost map,
the real obstacles, and the inflated obstacles. The display type of each of these
maps is map itself.

•	 Local cost map topic: /move_base/local_costmap/costmap
•	 Local cost map topic type: nav_msgs/OccupancyGrid
•	 Global cost map topic: /move_base/global_costmap/costmap

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[326]

•	 Global cost map topic type: nav_msgs/OccupancyGrid

Figure 18 : Visualizing global and local map, and real and inflated obstacle in RViz

To avoid collision with the real obstacles, it is inflated to some distance from real
obstacles called inflated obstacle as per the values in the configuration files. The
robot only plans a path beyond the inflated obstacle; inflation is a technique to
avoid collision with the real obstacles.

Displaying the global plan, local plan, and planner
plan
The global plan from the global planner is shown as green in the next screenshot.
The local plan is shown as red and the planner plan as black. The local plan is each
section of the global plan and the planner plan is the complete plan to the goal. The
global plan and the planner plan can be changed if there are any obstacles. The plans
can be displayed using the Path display type in RViz.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[327]

•	 Global plan topic: /move_base/DWAPlannerROS/global_plan
•	 Global plan topic type: nav_msgs/Path
•	 Local plan topic: /move_base/DWAPlannerROS/local_plan
•	 Local plan topic type: nav_msgs/Path
•	 Planner plan topic: /move_base/NavfnROS/plan
•	 Planner plan topic type: nav_msgs/Path

Figure 19: Visualizing global, local, and planner plan in RViz

The current goal
The current goal is the commanded position of the robot using the 2D Nav Goal
button or using the ROS client nodes. The red arrow indicates the current goal of
the robot.

•	 Topic: /move_base/current_goal

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[328]

•	 Topic type: geometry_msgs/PoseStamped

Figure 20: Visualizing robot goal position

Obstacle avoidance using the Navigation
stack
The Navigation stack can avoid a random obstacle in the path. The following is a
scenario where we have placed a dynamic obstacle in the planned path of the robot.

The first figure shows a path planning without any obstacle on the path. When
we place a dynamic obstacle on the robot path, we can see it planning a path by
avoiding the obstacle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[329]

Figure 21: Visualizing obstacle avoidance capabilities in RViz

Working with Chefbot simulation
The chefbot_gazebo simulator package is available along with the chefbot_bringup
package, and we can simulate the robot in Gazebo. We will see how to build a room
similar to the room we tested with hardware. First we will check how to build a virtual
room in Gazebo.

Building a room in Gazebo
We will start building the room in Gazebo, save into Semantic Description Format
(SDF), and insert in the Gazebo environment.

Launch Gazebo with Chefbot robot in an empty world:

$ roslaunch chefbot_gazebo chefbot_empty_world.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[330]

It will open the Chefbot model in an empty world on Gazebo. We can build the room
using walls, windows, doors, and stairs.

There is a Building Editor in Gazebo. We can take this editor from the menu
Edit | Building Editor. We will get an editor in Gazebo viewport.

Figure 22: Building walls in Gazebo

We can add walls by clicking the Add Wall option on the left side pane of Gazebo.
In the Building Editor, we can draw the walls by clicking the left mouse button.
We can see adding walls in editor will build real 3D walls in Gazebo. We are
building a similar layout of the room that we tested for the real robot.

Save the room through the Save As option, or press the Done button; a box will
pop up to save the file. The file will get saved in the .sdf format. We can save this
example as final_room.

After saving the room file, we can add the model of this room in the gazebo model
folder, so that we can access the model in any simulation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[331]

Adding model files to the Gazebo model folder
The following procedure is to add a model to the gazebo folder:

1.	 Locate the default model folder of Gazebo, which is located in the folder
~/.gazebo/models.

2.	 Create a folder called final_room and copy final_room.sdf inside this
folder. Also, create a file called model.config, which contains the details
of the model file. The definition of this file follows:
<?xml version="1.0"?>

<model>
<!-- Name of model which is displaying in Gazebo -->
 <name>Test Room</name>
 <version>1.0</version>
<!-- Model file name -->
 <sdf version="1.2">final_room.sdf</sdf>

 <author>
 <name>Lentin Joseph</name>
 <email>qboticslabs@gmail.com</email>
 </author>

 <description>
 A test room for performing SLAM
 </description>
</model>

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[332]

After adding this model in the model folder, restart the Gazebo and we can see
the model named Test Room in the entry in the Insert tab, as shown in the next
screenshot. We have named this model as Test Room in the model.config file;
that name will show on this list. We can select this file and add to the viewport,
as shown next:

Figure 23: Inserting the walls in Chefbot simulation

After adding to the viewport, we can save the current world configuration. Take File
from the Gazebo menu and Save World As option. Save the file as test_room.sdf
in the worlds folder of the chefbot_gazebo ROS package.

After saving the world file, we can add it into the chefbot_empty_world.launch
file and save this launch file as the chefbot_room_world.launch file, which is
shown next:

 <include file="$(find gazebo_ros)/launch/empty_world.launch">
 <arg name="use_sim_time" value="true"/>
 <arg name="debug" value="false"/>

<!-- Adding world test_room.sdf as argument -->
 <arg name="world_name" value="$(find chefbot_gazebo)/worlds/test_
room.sdf"/>
 </include>

After saving this launch file, we can start the launch file chefbot_room_world.
launch for simulating the same environment as the hardware robot. We can add
obstacles in Gazebo using the primitive shapes available in it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[333]

Instead of launching the robot_standalone.launch file from chefbot_bringup
for hardware, we can start chefbot_room_world.launch for getting the same
environment of the robot, and the odom and tf data in simulation.

$ roslaunch chefbot_gazebo chefbot_room_world.launch

Other operations, such as SLAM and AMCL, have the same procedure as we followed
for the hardware. The following launch files are used to perform SLAM and AMCL in
simulation:

Running SLAM in simulation:

$ roslaunch chefbot_gazebo gmapping_demo.launch

Running the Teleop node:

$ roslaunch chefbot_brinup keyboard keyboard_teleop.launch

Running AMCL in simulation:

$ roslaunch chefbot_gazebo amcl_demo.launch

Sending a goal to the Navigation stack from a
ROS node
We have seen how to send a goal position to a robot for moving it from point A to
B, using the RViz 2D Nav Goal button. Now we will see how to command the robot
using actionlib client and ROS C++ APIs. Following is a sample package and node
for communicating with Navigation stack move_base node.

The move_base node is SimpleActionServer. We can send and cancel the goals to
the robot if the task takes a lot of time to complete.

The following code is SimpleActionClient for the move_base node, which can send
the x, y, and theta from the command line arguments. The following code is in the
chefbot_bringup/src folder with the name of send_robot_goal.cpp:

#include <ros/ros.h>
#include <move_base_msgs/MoveBaseAction.h>
#include <actionlib/client/simple_action_client.h>
#include <tf/transform_broadcaster.h>
#include <sstream>
#include <iostream>
//Declaring a new SimpleActionClient with action of move_base_
msgs::MoveBaseAction
typedef

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[334]

actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction>
MoveBaseClient;

int main(int argc, char** argv){
 ros::init(argc, argv, "navigation_goals");
//Initiating move_base client
 MoveBaseClient ac("move_base", true);
//Waiting for server to start
 while(!ac.waitForServer(ros::Duration(5.0))){
 ROS_INFO("Waiting for the move_base action server");
 }
//Declaring move base goal
 move_base_msgs::MoveBaseGoal goal;

//Setting target frame id and time in the goal action
 goal.target_pose.header.frame_id = "map";
 goal.target_pose.header.stamp = ros::Time::now();

//Retrieving pose from command line other vice execute a default value
 try{
 goal.target_pose.pose.position.x = atof(argv[1]);
 goal.target_pose.pose.position.y = atof(argv[2]);
 goal.target_pose.pose.orientation.w = atof(argv[3]);
 }
 catch(int e){
 goal.target_pose.pose.position.x = 1.0;
 goal.target_pose.pose.position.y = 1.0;
 goal.target_pose.pose.orientation.w = 1.0;
 }
 ROS_INFO("Sending move base goal");

//Sending goal
 ac.sendGoal(goal);

 ac.waitForResult();

 if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
 ROS_INFO("Robot has arrived to the goal position");
 else{
 ROS_INFO("The base failed for some reason");
 }
 return 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[335]

The following lines are added to CMakeLists.txt for building this node:

add_executable(send_goal src/send_robot_goal.cpp)
target_link_libraries(send_goal ${catkin_LIBRARIES})

Build the package using catkin_make and test the working of the client using the
following set of commands using Gazebo.

Start Gazebo simulation in a room:

$ roslaunch chefbot_gazebo chefbot_room_world.launch

Start the amcl node with the generated map:

$ roslaunch chefbot_gazebo amcl_demo.launch map_file:=final_room.yaml

Start RViz for navigation:

$ roslaunch chefbot_bringup view_navigation.launch

Run the send goal node for sending the move base goal:

$ rosrun chefbot_bringup send_goal 1 0 1

We will see the red arrow appear when this node runs, which shows that the pose is
set on RViz.

Figure 24: Sending a goal to move_base node from C++ APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

[336]

After completing the operation, we will see the following messages in the send
goal terminal:

Figure 25: Terminal messages printing when a goal is send from action client

We will get the desired pose of the robot in the map by using the RViz 2D Nav
goal button. Simply echoing the topic /move_base/goal will print the pose that we
commanded through RViz. We can use these values as command line arguments in
the send_goal node.

Questions
1.	 What are the basic requirements for working with ROS Navigation stack?
2.	 What are the main configuration files for working with ROS Navigation stack?
3.	 How does AMCL package in ROS work?
4.	 What are the methods to send a goal pose to Navigation stack?

Summary
In this chapter, we mainly covered interfacing a DIY autonomous mobile robot to
ROS and navigation package. We saw an introduction of this robot and the necessary
components and connection diagrams of the same. We saw the robot firmware
and how to flash it into the real robot. After flashing the firmware, we learned how
to interface it to ROS and saw the Python nodes for interfacing the LaunchPad
controller in the robot and the nodes for converting twist message to motor
velocities and encoder ticks to odom and tf.

After discussing the interconnection of the Chefbot nodes, we covered the C++ port
of some important nodes for odometry calculation and the base controller node.
After discussing these nodes, we saw detailed configurations of the ROS Navigation
stack. We also did gmapping. AMCL and came into detail description of each options
in RViz for working with Navigation stack. We also covered the obstacle avoidance
using the Navigation stack and worked with Chefbot simulation. We set up a similar
environment in Gazebo like the environment of the real robot and went through the
steps to perform SLAM and AMCL. At the end of this chapter, we saw how we can
send a goal pose to the Navigation stack using actionlib.

www.it-ebooks.info

http://www.it-ebooks.info/

[337]

Exploring the Advanced
Capabilities of ROS-MoveIt!

In the previous chapter, we covered ROS navigation stack and interfacing a mobile
robotic hardware to the navigation stack. Similarly, in this chapter, we are going to
cover the capabilities of MoveIt!, such as collision avoidance, perception using 3D
sensors, grasping, picking, and placing. After this, we will see the interfacing of a
robotic manipulator hardware to MoveIt!.

The following are the main topics discussed in this chapter:

•	 Motion planning of arm using MoveIt! C++ APIs
•	 Working with collision checking in robot arm using MoveIt!
•	 Working with perception in MoveIt! and Gazebo
•	 Understanding grasping using the moveit_simple_grasps ROS package
•	 Simple robot pick and place using MoveIt!
•	 Understanding Dynamixel ROS servo controllers for robot hardware

interfacing
•	 Interfacing 7-DOF Dynamixel based robotic arm to ROS MoveIt!

In Chapter 3, Simulating Robots Using ROS and Gazebo and Chapter 4, Using the ROS
MoveIt! and Navigation Stack, we discussed MoveIt! and how to simulate an arm
in Gazebo and motion plan using MoveIt!. In this chapter, we can see some of the
advanced capabilities of MoveIt! and how to interface a real robotic manipulator
to ROS MoveIt!.

The first topic that we are going to discuss is how to motion plan our robot using
MoveIt! C++ APIs.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[338]

Motion planning using the move_group
C++ interface
In Chapter 4, Using the ROS MoveIt! and Navigation Stack, we discussed about how
to interact with a robot arm and how to plan its path using MoveIt! RViz motion
planning plugin. In this section, we will see how to program the robot motion
using the move_group C++ APIs. Motion planning using RViz can also be done
programmatically through the move_group C++ APIs.

The first step to start working with C++ APIs is to create another ROS package
that has the MoveIt! packages as dependencies. You can get an existing package
seven_dof_arm_test from chapter_10_codes/. We can create this same package
using the following command:

$ catkin_create_pkg seven_dof_arm_test catkin cmake_modules
interactive_markers moveit_core moveit_ros_perception
moveit_ros_planning_interface pluginlib roscpp std_msgs

Motion planning a random path using MoveIt!
C++ APIs
The first example that we are going to see is random motion planning using MoveIt!
C++ APIs. You will get the code named test_random.cpp from the src folder. The
code and the description of each line follows. When we execute this node, it will plan
a random path and execute it:

//MoveIt! header file
#include <moveit/move_group_interface/move_group.h>
int main(int argc, char **argv)
{
 ros::init(argc, argv, "test_random_node",
 ros::init_options::AnonymousName);
 // start a ROS spinning thread
 ros::AsyncSpinner spinner(1);
 spinner.start();
 // this connects to a running instance of the move_group node
 // Here the Planning group is "arm"
 move_group_interface::MoveGroup group("arm");
 // specify that our target will be a random one
 group.setRandomTarget();
 // plan the motion and then move the group to the sampled target
 group.move();
 ros::waitForShutdown();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[339]

To build the source code, we should add the following lines of code to CMakeLists.
txt. You will get the complete CMakeLists.txt file from the existing package itself:

add_executable(test_random_node src/test_random.cpp)

add_dependencies(test_random_node
seven_dof_arm_test_generate_messages_cpp)

target_link_libraries(test_random_node

${catkin_LIBRARIES})

We can build the package using the catkin_make command. Check whether
test_random.cpp is built properly or not. If the code is built properly, we can
start testing the code.

The following command will start the RViz with 7-DOF arm with motion
planning plugin:

$ roslaunch seven_dof_arm_config demo.launch

Move the end-effector to check whether everything is working properly in RViz.

Run the C++ node for planning to a random position using the following command:

$ rosrun seven_dof_arm_test test_random_node

The output of RViz is shown next. The arm will select a random position that has a
valid IK and motion plan from the current position:

Figure 1: Random motion planning using move_group APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[340]

Motion planning a custom path using MoveIt!
C++ APIs
We saw random motion planning in the preceding example. In this section, we will
check how to command the robot end-effector to move to a custom goal position.
The following example test_custom.cpp will do that job:

//Move It header files
#include <moveit/move_group_interface/move_group.h>
#include <moveit/planning_scene_interface/planning_scene_interface.h>
#include <moveit_msgs/DisplayRobotState.h>
#include <moveit_msgs/DisplayTrajectory.h>
#include <moveit_msgs/AttachedCollisionObject.h>
#include <moveit_msgs/CollisionObject.h>
int main(int argc, char **argv)
{
 ros::init(argc, argv, "test_custom_node");
 ros::NodeHandle node_handle;
 ros::AsyncSpinner spinner(1);
 spinner.start();
 moveit::planning_interface::MoveGroup group("arm");
 moveit::planning_interface::PlanningSceneInterface
planning_scene_interface;
 ros::Publisher display_publisher =
node_handle.advertise<moveit_msgs::DisplayTrajectory>("/move_group/
display_planned_path", 1, true);
 moveit_msgs::DisplayTrajectory display_trajectory;

 ///Setting custom goal position
 geometry_msgs::Pose target_pose1;
 target_pose1.orientation.w = 0.726282;
 target_pose1.orientation.x= 4.04423e-07;
 target_pose1.orientation.y = -0.687396;
 target_pose1.orientation.z = 4.81813e-07;
 target_pose1.position.x = 0.0261186;
 target_pose1.position.y = 4.50972e-07;
 target_pose1.position.z = 0.573659;
 group.setPoseTarget(target_pose1);

 ///Motion plan from current location to custom position
 moveit::planning_interface::MoveGroup::Plan my_plan;
 bool success = group.plan(my_plan);
 ROS_INFO("Visualizing plan 1 (pose goal)
%s",success?"":"FAILED");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[341]

 /* Sleep to give RViz time to visualize the plan. */
 sleep(5.0);
 ros::shutdown();
 return 0;
}

The following are the extra lines of code added on CMakeLists.txt for building
the source code:

add_executable(test_custom_node src/test_custom.cpp)

add_dependencies(test_custom_node
seven_dof_arm_test_generate_messages_cpp)

target_link_libraries(test_custom_node

${catkin_LIBRARIES})

Following is the command to execute the custom node:

$ rosrun seven_dof_arm_test test_custom_node

The following screenshot shows the result of test_custom_node:

Figure 2: Custom motion planning using MoveIt! C++ APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[342]

Collision checking in robot arm using
MoveIt!
Along with motion planning and IK solving algorithm, one of the important tasks
that is done in parallel in MoveIt! is collision checking and its avoidance. The
collision can be self collision or environmental collision. MoveIt! can handle both
the environment collision and the self collision. The MoveIt! package is inbuilt
with FCL (Flexible Collision Library) (http://gamma.cs.unc.edu/FCL/fcl_
docs/webpage/generated/index.html), which is an open source project that
implements various collision detection and avoidance algorithms. MoveIt! takes
the power of FCL and handles collision inside planning scene using a collision_
detection::CollisionWorld class. The MoveIt! collision checking includes objects
such as meshes, primitives shapes such as boxes and cylinders, and OctoMap. The
OctoMap (http://octomap.github.io/) library implements a 3D occupancy
grid called octree that consists of probabilistic information of obstacles in the
environment. The MoveIt! package can build an OctoMap using 3D point cloud
information and can directly feed the OctoMap to FCL for collision checking.

Similar to motion planning, collision checking is also very computationally intensive.
We can fine tune the collision checking between two bodies, say a robot link or
with the environment, using a parameter called ACM (Allowed Collision Matrix).
If the value of a collision between two links is set to 1 in ACM, there will not be
any collision checks. We may set this for links that are far from each other. We can
optimize the collision checking process by optimizing this matrix.

Adding a collision object in MoveIt!
We can add a collision object to the MoveIt! planning scene and can see how
the motion planning works. For adding a collision object, we can use mesh files,
which can directly be imported from the MoveIt! interface, and also can be added
by writing a ROS node using MoveIt! APIs.

We will first discuss how to add a collision object using the ROS node:

1.	 In the node add_collision_objct.cpp which is inside the seven_dof_
arm_test/src folder, we are starting an ROS node and creating an object
of moveit::planning_interface::PlanningSceneInterface, which
can access the planning scene of MoveIt! and can perform any action
on the current scene. We are adding a sleep of 5 seconds to wait for the
planningSceneIntertface object instantiation:
moveit::planning_interface::PlanningSceneInterface
current_scene;

sleep(5.0);

www.it-ebooks.info

http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html
http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html
http://octomap.github.io/
http://www.it-ebooks.info/

Chapter 10

[343]

2.	 In the next step, we need to create an instance of the collision object message
moveit_msgs::CollisionObject. This message is going to be sent to the
current planning scene. Here we are making a collision object message for a
cylinder shape and the message is given as seven_dof_arm_cylinder. When
we add this object to the planning scene, the name of the object is its ID:
moveit_msgs::CollisionObject cylinder;

cylinder.id = "seven_dof_arm_cylinder";

3.	 After making the collision object message, we have to define another message
of type shape_msgs::SolidPrimitive, which is used to define what kind
of primitive shape we are using and its properties. In this example, we are
creating a cylinder object as shown next. We have to define the type of shape,
the resizing factor, the width, and the height of the cylinder:
shape_msgs::SolidPrimitive primitive;
primitive.type = primitive.CYLINDER;
primitive.dimensions.resize(3);
primitive.dimensions[0] = 0.6;
primitive.dimensions[1] = 0.2;

4.	 After creating the shape message, we have to create a geometry_msgs::Pose
message to define the pose of this object. We define a pose which may be
closer to robot. We can change the pose after the creation of the object in
the planning scene:
geometry_msgs::Pose pose;
pose.orientation.w = 1.0;
pose.position.x = 0.0;
pose.position.y = -0.4;
pose.position.z = -0.4;

5.	 After defining the pose of the collision object, we need to add the defined
primitive object and the pose to the cylinder collision object. The operation
we need to perform is adding the planning scene:
cylinder.primitives.push_back(primitive);
cylinder.primitive_poses.push_back(pose);
cylinder.operation = cylinder.ADD;

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[344]

6.	 In the next step, we create a vector called collision_objects of type
moveit_msgs::CollisionObject. After creating the vector, we push
the collision object to this vector:
std::vector<moveit_msgs::CollisionObject>
collision_objects;
collision_objects.push_back(cylinder);

7.	 After pushing the collision object, we will add this vector to the current
planning scene using the following line of code. addCollisionObjects()
inside the PlanningSceneInterface class is used to add the object to the
planning scene:

current_scene.addCollisionObjects(collision_objects);

Following are the compile and build lines of the code in CMakeLists.txt:

add_executable(add_collision_objct src/add_collision_objct.cpp)
add_dependencies(add_collision_objct
seven_dof_arm_test_generate_messages_cpp)
target_link_libraries(add_collision_objct
${catkin_LIBRARIES})

Let's see how this node works in RViz with MoveIt! motion planning Plugin:

1.	 We will start demo.launch inside the seven_dof_arm_config package for
testing this node:
$ roslaunch seven_dof_arm_config demo.launch

2.	 Next, add the following collision object:
$ rosrun seven_dof_arm_test add_collision_objct

When we run the add_collision_objct node, a green cylinder will pop up and
we can move the collision object as shown in the following screenshot. When the
collision object is successfully added to the planning scene, it will list out in the
Scene Objects tab. We can click on the object and modify its pose. We can also
attach the new model in any links of robots too. There is a Scale option to scale
down the collision model:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[345]

Figure 3 : Adding collision objects to RViz using MoveIt!! C++ APIs

The RViz Motion Planning plugin also gives an option to import a 3D mesh to the
planning scene. Click the Import File button for importing the meshes. The following
image shows our importing a cube mesh DAE file, which is imported along with the
cylinder in the planning scene:

Figure 4: Adding collision objects by importing meshes

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[346]

We can scale up the collision object using the Scale slider and set the desired pose
using the Manage Pose option. When we move the arm end effector to any of these
collision objects, MoveIt! detects it as collision. The MoveIt! collision detection can
detect environment collision as well as self collision. Following is a snapshot of a
collision with the environment:

Figure 5: Visualizing collided link.

The collided link will turn red when the arm touches the object. In self collision also,
the collided link will turn red. We can change the color setting of the collision in the
Motion Planning plugin settings.

Removing a collision object from the
planning scene
Removing the collision object from the planning scene is pretty easy. We have to
create an object of moveit::planning_interface::PlanningSceneInterface,
like we did in the previous example, along with some delay:

moveit::planning_interface::PlanningSceneInterface current_scene;
sleep(5.0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[347]

Next, create a vector of the string that contains the collision object IDs. Here our
collision object ID is seven_dof_arm_cylinder. After pushing the string to this
vector, we will call removeCollisionObjects(object_ids), which will remove
the collision objects from the planning scene:

std::vector<std::string> object_ids;
object_ids.push_back("seven_dof_arm_cylinder");
current_scene.removeCollisionObjects(object_ids);

This code is placed in seven_dof_arm_test/src/remove_collision_objct.cpp.

Checking self collision using MoveIt! APIs
We have seen how to detect collision in RViz, but what do we have to do if we want
to get collision information in our ROS node. In this section, we will discuss how to
get the collision information of our robot in an ROS code. This example can check
self collision and environment collision, and also tell which links were collided.
The example called check_collision.cpp is placed in the seven_dof_arm_test/
src folder. This code is a modified version of the collision checking example of PR2
MoveIt! robot tutorials (https://github.com/ros-planning/moveit_pr2/tree/
indigo-devel/pr2_moveit_tutorials).

In this code, the following snippet loads the kinematic model of the robot to the
planning scene:

robot_model_loader::RobotModelLoader
robot_model_loader("robot_description");
robot_model::RobotModelPtr kinematic_model =
robot_model_loader.getModel();
planning_scene::PlanningScene planning_scene(kinematic_model);

To test self collision in the robot's current state, we can create two instances
of class collision_detection::CollisionRequest and collision_
detection::CollisionResult, which have the name of collision_request and
collision_result. After creating these objects, pass it MoveIt! collision checking
function, planning_scene.checkSelfCollision(), which can give the collision
result in collision_result object and we can print the details, which are shown next:

planning_scene.checkSelfCollision(collision_request,
collision_result);
ROS_INFO_STREAM("1. Self collision Test: "<<
(collision_result.collision ? "in" : "not in")
<< " self collision");

www.it-ebooks.info

https://github.com/ros-planning/moveit_pr2/tree/indigo-devel/pr2_moveit_tutorials
https://github.com/ros-planning/moveit_pr2/tree/indigo-devel/pr2_moveit_tutorials
http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[348]

If we want to test collision in a particular group, we can do that by mentioning
group_name as shown next. Here group_name is arm:

collision_request.group_name = "arm";
current_state.setToRandomPositions();
//Previous results should be cleared
collision_result.clear();
planning_scene.checkSelfCollision(collision_request,
collision_result);
ROS_INFO_STREAM("3. Self collision Test(In a group): "<<
(collision_result.collision ? "in" : "not in"));

For performing a full collision check, we have to use the following function called
planning_scene.checkCollision(). We need to mention the current robot state
and the ACM matrix in this function.

The following is the code snippet to perform full collision checking using this function:

collision_detection::AllowedCollisionMatrix acm =
planning_scene.getAllowedCollisionMatrix();
robot_state::RobotState copied_state =
planning_scene.getCurrentState();
planning_scene.checkCollision(collision_request, collision_result,
copied_state, acm);
ROS_INFO_STREAM("6. Full collision Test: "<<
(collision_result.collision ? "in" : "not in")
<< " collision");

We can launch the demo of motion planning and run this node using the
following command:

$ roslaunch seven_dof_arm_config demo.launch

Run the collision checking node:

$ roslaunch seven_dof_arm_test check_collision

You will get a report such as the one shown in the following image. The robot is now
not in collision; if it is in collision, it will send a report of it:

Figure 6: Collision information messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[349]

Working with perception using MoveIt!
and Gazebo
Till now, in MoveIt!, we have worked with arm only. In this section, we will see how
to interface a 3D vision sensor data to MoveIt!. The sensor can be either simulated
using Gazebo or you can directly interface an RGB-D sensor such as Kinect or Xtion
Pro using the openni_launch package. Here we will work using Gazebo simulation.

We will add sensors to MoveIt! for vision assisted pick and place. We will create a
grasp table and a grasp object in gazebo for the pick and place operation. We will
add two custom models called grasp_table and grasp_object. The sample models
are located along with the chapter codes and it should copy to the ~/.gazebo/models
folder for accessing the models from gazebo.

The following command will launch the robot arm and the Asus Xtion pro
simulation in gazebo:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_bringup_grasping

This command will open up gazebo with arm joint controllers and gazebo plugin
for 3D vision sensor. We can add a grasp table and grasp objects to the simulation,
as shown in the following image, by simply clicking and dragging them to the
workspace. We can create any kind of table or object. The objects shown in the
following image are only for demonstration purposes. We can edit the model
SDF file for changing the size and shape of the model:

Figure 7: Robot arm with grasp table and object in Gazebo

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[350]

Check the topics generated after starting the simulation:

$ rostopic list

Make sure that we are getting the RGB-D camera topics, as shown next:

Figure 8: Listing RGB-D sensor topics

We can view the point cloud in RViz using the following command:

$ rosrun rviz rviz -f base_link

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[351]

The following is the output generated:

Figure 9: Visualizing point cloud data in RViz

After confirming the point cloud data from the Gazebo plugins, we have to add some
files to the MoveIt! configuration package of this arm, that is, seven_dof_arm_config,
for bringing the point cloud data from Gazebo into the MoveIt! planning scene.

The robot environment is mapped as octree representation (https://
en.wikipedia.org/wiki/Octree), which can be built using a library called
OctoMap, which we have already seen in the previous section. The OctoMap is
incorporated as a plugin in MoveIt!, called the Occupany Map Updator plugin,
which can update octree from different kinds of sensor inputs such as point cloud
and depth images from 3D vision sensors. Currently, there are following plugins
for handling 3D data:

•	 PointCloud Occupancy Map Updater: This plugin can take input in the
form of point clouds (sensor_msgs/PointCloud2)

•	 Depth Image Occupancy Map Updater: This plugin can take input in the
form of input depth images (sensor_msgs/Image)

www.it-ebooks.info

https://en.wikipedia.org/wiki/Octree
https://en.wikipedia.org/wiki/Octree
http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[352]

The first step is to write a configuration file for these plugins. This file contains
information about which plugin are we using in this robot and what are its properties.
We are using point cloud data and the configuration is saved in sensors_rgbd.yaml,
which is included in the seven_dof_arm_config/config folder. The definition of this
file follows:

sensors:
- sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater
 point_cloud_topic: /rgbd_camera/depth/points
 max_range: 10
 padding_offset: 0.01
 padding_scale: 1.0
 point_subsample: 1
 filtered_cloud_topic: output_cloud

The explanation of a general parameter is:

•	 sensor_plugin: This parameter specifies the name of the plugin we are
using in the robot

Following are the parameters of the given sensor_plugin:

•	 point_cloud_topic: The plugin will listen to this topic for point cloud data.
•	 max_range: This is the distance limit in meters in which points above the

range will not be used for processing.
•	 padding_offset: This value will be taken into account for robot links

and attached objects when filtering clouds containing the robot links
(self-filtering).

•	 padding_scale: This value will also be taken into account while self-filtering.
•	 point_subsample: If the update process is slow, points can be subsampled.

If we make this value greater than 1, the points will be skipped instead of
processed.

•	 filtered_cloud_topic: This is the final filtered cloud topic. We will get
the processed point cloud through this topic. It can be used mainly for
debugging.

If we are using the DepthImageUpdater plugin, we can have a different configuration
file. We are not using this plugin in this robot, but we can see its usage and properties.

sensors:
 - sensor_plugin: occupancy_map_monitor/DepthImageOctomapUpdater
 image_topic: /head_mount_kinect/depth_registered/image_raw
 queue_size: 5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[353]

 near_clipping_plane_distance: 0.3
 far_clipping_plane_distance: 5.0
 skip_vertical_pixels: 1
 skip_horizontal_pixels: 1
 shadow_threshold: 0.2
 padding_scale: 4.0
 padding_offset: 0.03
 filtered_cloud_topic: output_cloud

•	 queue_size: This is the queue size for the depth image transport subscriber.
•	 near_clipping_plane_distance: This is the minimum valid distance from

the sensor.
•	 far_clipping_plane_distance: This is the maximum valid distance from

the sensor.
•	 skip_vertical_pixels: This is the number of pixels have to skip from top

and bottom of the image. If we give a value of 5, it will skip five columns
from first and last of the image.

•	 skip_horizontal_pixels: Skipping pixels in horizontal direction.
•	 shadow_threshold: In some situations, points can appear below the robot

links. This happens because of padding. shadow_threshold removes those
points whose distance is greater than shadow_threshold.

After discussing about the OctoMap update plugin and its properties, we can switch
to the launch files, necessary to initiate this plugin and parameters.

The first file we need to create is inside the seven_dof_arm_config/launch folder
with the name seven_dof_arm_moveit_sensor_manager.launch.

Following is the definition of this file. This launch file basically loads the plugin
parameters:

<launch>
 <rosparam command="load" file="$(find seven_dof_arm_config)/config/
sensors_rgbd.yaml" />
</launch>

The next file that we need an editing is sensor_manager.launch, which is located
inside the launch folder. The definition of this file follows:

<launch>
 <!-- This file makes it easy to include the settings for sensor
managers -->

 <!-- Params for the octomap monitor -->

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[354]

 <!-- <param name="octomap_frame" type="string" value="some frame in
which the robot moves" /> -->
 <param name="octomap_resolution" type="double" value="0.015" />
 <param name="max_range" type="double" value="5.0" />

 <!-- Load the robot specific sensor manager; this sets the moveit_
sensor_manager ROS parameter -->

 <arg name="moveit_sensor_manager" default="seven_dof_arm" />
 <include file="$(find seven_dof_arm_config)/launch/$(arg moveit_
sensor_manager)_moveit_sensor_manager.launch.xml" />

</launch>

The following line is commented because it can be used if the robot is mobile. In our
case, our robot is static. If it is a fixed on a mobile robot, we can give the frame value
as odom or odom_combined of the robot:

<param name="octomap_frame" type="string" value="some frame in which
the robot moves" />

The following parameter is the resolution of OctoMap, which is visualizing in RViz
measured in meters. The rays beyond the max_range value will be truncated.

 <param name="octomap_resolution" type="double" value="0.015" />
 <param name="max_range" type="double" value="5.0" />

The interfacing is now complete. We can test the MoveIt! interface using the
following command.

Launch Gazebo for perception using the following command, and add the desired
grasp table and grasp object model:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_bringup_grasping.launch

Start the MoveIt! planner with sensor support:

$ roslaunch seven_dof_arm_config moveit_planning_execution.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[355]

Now RViz has sensor support. We can see the OctoMap in front of the robot in the
following screenshot:

Figure 10 : Visualizing octomap in RViz

Grasping using MoveIt!
One of the main applications of robot manipulators is picking an object and placing
it. Grasping is the process of picking the object by the robot end-effector. It is actually
a complex process because lot of constraints are required in picking an object.

We humans handle our grasping using our intelligence, but in the robot we have to
create rules for it. One of the constraints in grasping is force; the gripper/end-effector
should adjust the grasping force for picking the object but not make any deformation
on the object while grasping.

One of the ROS packages for generating the grasp poses for simple objects such as
blocks and cylinders, which can work along with the MoveIt! pick and place pipeline,
is moveit_simple_grasps. It's a simple grasp generator. It takes the pose of grasping
object as input and generates the grasping sequences for picking the object. It filters
and removes kinematically infeasible grasps via threaded IK solvers. The package
provides grasp generators, grasp filters, and visualization tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[356]

This package already supports robots such as Baxter, REEM, and Clam arm. We can
interface a custom arm to this package with a minor tweak of the package code. The
package used for this experiment is inside the chapter codes. The main package code
is on GitHub, and we can find it at:

https://github.com/davetcoleman/moveit_simple_grasps

It is also available as a Debian package as moveit-simple-grasps, but it will be
better to use our own customized package to work with this experiment. Copy
the moveit_simple_grasps package from chapter_10_codes/ to your catkin
workspace and build it using the catkin_make command

After building the package, we have to check whether the following launch file
is working:

$ roslaunch seven_dof_arm_gazebo grasp_generator_server.launch

If it is working well, we will get log messages as in the following screenshot:

Figure 11 : Launching grasp generator server.

The definition of this launch file follows. Basically, it starts a grasp server that provides
grasp combination to a grasp client node. We have to provide the planning group and
the end-effector group inside this launch file, which is needed by the grasp server.
The grasp server will execute feasible motion plan on the arm. It needs detailed
configuration of the gripper:

<launch>
 <arg name="robot" default="seven_dof_arm"/>
 <arg name="group" default="arm"/>
 <arg name="end_effector" default="gripper"/>

www.it-ebooks.info

https://github.com/davetcoleman/moveit_simple_grasps
http://www.it-ebooks.info/

Chapter 10

[357]

 <node pkg="moveit_simple_grasps" type="moveit_simple_grasps_server"
name="moveit_simple_grasps_server">
 <param name="group" value="$(arg group)"/>
 <param name="end_effector" value="$(arg end_effector)"/>

 <rosparam command="load" file="$(find seven_dof_arm_gazebo)/
config/$(arg robot)_grasp_data.yaml"/>

 </node>

</launch>

Next is the definition of seven_dof_arm_grasp_data.yaml and its explanation:

base_link: 'base_link'

gripper:

 #The end effector name for grasping
 end_effector_name: 'gripper'

 # Gripper joints
 joints: ['finger_joint1', 'finger_joint2']

 #Posture of grippers before grasping
 pregrasp_posture: [0.0, 0.0]

 pregrasp_time_from_start: 4.0

 grasp_posture: [1.0, 1.0]

 grasp_time_from_start: 4.0

 postplace_time_from_start: 4.0

 # Desired pose from end effector to grasp [x, y, z] + [R, P, Y]
 grasp_pose_to_eef: [0.0, 0.0, 0.0]
 grasp_pose_to_eef_rotation: [0.0, 0.0, 0.0]

 end_effector_parent_link: 'gripper_roll_link'

These parameters are all related to the grasping task. We can fine tune these
parameters for better grasping.

Next, we will see how to do a pick and place task using this grasp server and a
custom client.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[358]

Working with robot pick and place task
using MoveIt!
We can do pick and place in various ways. One is by using pre defined sequences
of joint values; in this case, we put the object in a predefined position and move
the robot into that position by providing direct joint values or forward kinematics.
Another method of pick and place is by using inverse kinematics without any visual
feedback; in this case, we command the robot to go to an X,Y, and Z position with
respect to the robot, and by solving IK, the robot can reach that position and pickup
that object. One more method is vision assisted pick and place; in this case, a vision
sensor is used to identify the object's position and the arm goes to that location by
solving IK and picks the object.

In this section, we will demonstrate a pick and place in which we will give the
grasping object position and the robot will move to that coordinate and pick the
object. It can be tied up with vision in such a way that we need to tell the object
position, which is seen by the sensor in robot coordinate system. Here we are not
performing object recognition and finding position of the object. Instead of that,
we are directly giving the object position.

We can work with this example along with Gazebo or simply use the MoveIt! demo
interface. First, we will look at a direct pick and place mechanism by giving the grasp
object position in MoveIt! using the python grasp client.

Launch MoveIt! demo:

$ roslaunch seven_dof_config demo.launch

Launch MoveIt! Grasp server:

$ roslaunch seven_dof_arm_gazebo grasp_generator_server

Run the Grasp client:

$ rosrun seven_dof_arm_gazebo pick_and_place.py

This will do a basic pick and place routine with a grasp object inserted in the
planning scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[359]

Following is the screenshot of the grasping process:

Figure 12 : Pick and place sequences using MoveIt!.

The various steps in the grasping process are explained next:

•	 Step 1- Grasp Pose: In the first step, we can see a green block, which is the
object that is going to be grasped by the robot gripper. We have created this
object inside the planning scene using the pick_and_place.py node and it
gives the block position to the grasp server. When the pick and place starts,
we can see a Pose Array of values from the /grasp topic, indicating that this
is the grasp object position.

•	 Step 2 - Pick Action: After getting the grasp object position, this grasp
client sends this position of pick and place to the grasp server to generate IK
and check whether any feasible IK for this object position. If it is a valid IK,
the arm gripper will come to pick the object.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[360]

•	 Step 3,4,5,6 Place Action - After picking the block, the grasp server checks
for the valid IK pose in the place pose. If there is a valid IK in the place pose,
the gripper holds the object in a trajectory and places it in the appropriate
position. The place Pose Array is shown as blue color from the topic /place.

We can have a look on to the pick_and_place.py code, this is a modified version
of sample code mentioned in the following Git repository.(https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming_2nd_edition.git)

Creating Grasp Table and Grasp Object in MoveIt!
We have to create a table and a grasp object similar to the robot environment.
Here we are creating a table almost the same as in the gazebo simulation. If the table
size and the pose of gazebo and MoveIt! are same, we can set the position of the
grasping object:

 def _add_table(self, name):
 p = PoseStamped()
 p.header.frame_id = self._robot.get_planning_frame()
 p.header.stamp = rospy.Time.now()

 #Table position
 p.pose.position.x = 0.45
 p.pose.position.y = 0.0
 p.pose.position.z = 0.22

 q = quaternion_from_euler(0.0, 0.0, numpy.deg2rad(90.0))
 p.pose.orientation = Quaternion(*q)

 # Table size from ~/.gazebo/models/grasp_table/model.sdf,
using the values
 # for the surface link.
 self._scene.add_box(name, p, (0.5, 0.4, 0.02))

 return p.pose

Following is the creation of the grasp object. We are creating a random grasp object
here. You can change the pose and size of it according to your environment:

 def _add_grasp_block_(self, name):
 p = PoseStamped()
 p.header.frame_id = self._robot.get_planning_frame()
 p.header.stamp = rospy.Time.now()

www.it-ebooks.info

https://github.com/AaronMR/Learning_ROS_for_Robotics_Programming_2nd_edition.git)
https://github.com/AaronMR/Learning_ROS_for_Robotics_Programming_2nd_edition.git)
http://www.it-ebooks.info/

Chapter 10

[361]

 p.pose.position.x = 0.25
 p.pose.position.y = 0.05
 p.pose.position.z = 0.32

 q = quaternion_from_euler(0.0, 0.0, 0.0)
 p.pose.orientation = Quaternion(*q)

 # Grasp Object can size from ~/.gazebo/models/grasp_object/
model.sdf,
 self._scene.add_box(name, p, (0.03, 0.03, 0.09))

 return p.pose

After creating the grasp object and the grasp table, we will see how to set the pick
position and the place position from the following code snippet. Here the pose of the
grasp object created in the planning scene is retrieved and fed into the place pose in
which the Y axis of the place pose is subtracted by 0.06. So when the pick and place
happens, the object will place into 0.06 away from the object in the Y direction.

 # Add table and grap object to the planning scene:

 self._pose_table = self._add_table(self._table_object_name)
 self._pose_grasp_obj = self._add_grasp_block_(self._grasp_
object_name)

 rospy.sleep(1.0)

 # Define target place pose:
 self._pose_place = Pose()

 self._pose_place.position.x = self._pose_grasp_obj.position.x
 self._pose_place.position.y = self._pose_grasp_obj.position.y
- 0.06
 self._pose_place.position.z = self._pose_grasp_obj.position.z

 self._pose_place.orientation = Quaternion(*quaternion_from_
euler(0.0, 0.0, 0.0))

The next step is to generate the grasp Pose Array data for visualization and then send
the grasp goal to the grasp server. If there is a grasp sequence, it will be published,
else it will show as an error.

def _generate_grasps(self, pose, width):

 # Create goal:
 goal = GenerateGraspsGoal()

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[362]

 goal.pose = pose
 goal.width = width

 state = self._grasps_ac.send_goal_and_wait(goal)
 if state != GoalStatus.SUCCEEDED:
 rospy.logerr('Grasp goal failed!: %s' % self._grasps_
ac.get_goal_status_text())
 return None

 grasps = self._grasps_ac.get_result().grasps

 # Publish grasps (for debugging/visualization purposes):
 self._publish_grasps(grasps)

 return grasps

This function will create a Pose Array data for the pose of the place.

 def _generate_places(self, target):

 # Generate places:
 places = []
 now = rospy.Time.now()
 for angle in numpy.arange(0.0, numpy.deg2rad(360.0), numpy.
deg2rad(1.0)):
 # Create place location:
 place = PlaceLocation()

	 ..
.......................................
 # Add place:
 places.append(place)

 # Publish places (for debugging/visualization purposes):
 self._publish_places(places)

The following function will create a goal object for picking the object, which has to
send into MoveIt!.

def _create_pickup_goal(self, group, target, grasps):
 """
 Create a MoveIt!! PickupGoal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[363]

 """

 # Create goal:
 goal = PickupGoal()

 goal.group_name = group
 goal.target_name = target

 		
 return goal

Also, there is the def _create_place_goal(self, group, target, places)
function to create place goal for MoveIt!.

The important functions which are performing picking and placing are given below.

These functions will generate a pick and place sequence, which will be sent to MoveIt!
and print the result of the motion planning, whether it is succeeded or not:

def _pickup(self, group, target, width)
def _place(self, group, target, place)

Pick and place action in Gazebo and real
Robot
The grasping sequence executed in the MoveIt! demo uses fake controllers.
We can send the trajectory to the actual robot or Gazebo. In Gazebo, we can
launch the grasping world to perform this action. The following commands
will perform pick and place in Gazebo.

Launch Gazebo for grasping:

$ roslaunch seven_dof_arm_gazebo seven_dof_arm_bringup_grasping.launch

Start MoveIt! motion planning:

$ roslaunch seven_dof_arm_config moveit_planning_execution.launch

Launch MoveIt! Grasp server:

$ roslaunch seven_dof_arm_gazebo grasp_generator_server

Run the Grasp client:

$ rosrun seven_dof_arm_gazebo pick_and_place.py

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[364]

In the real hardware, the only difference is that we need to create joint Trajectory
controllers for the arm. One of the commonly used hardware controllers is Dynamixel
controller. We will learn more about the Dynamixel controllers in the next section.

Understanding Dynamixel ROS Servo
controllers for robot hardware interfacing
Till now, we have learned about MoveIt! interfacing using Gazebo simulation. In this
section, we will see how to replace Gazebo and put a real robot interface to MoveIt!.
Let's discuss the Dynamixel Servos and the ROS controllers.

The Dynamixel Servos
The Dynamixel Servos are smart, high performance networked actuators for high
end robotics applications. These servos are manufactured by a Korean company
called ROBOTIS (http://en.robotis.com/). These servos are very popular among
robotics enthusiasts because they can provide excellent position and torque control,
and also provide variety of feedback, such as position, speed, temperature, voltage,
and so on.

One of their useful features is that they can be networked as a daisy chain manner.
This feature is very useful in multijoint systems such as a robotic arm, humanoid
robots, robotic snakes, and such others.

The servos can be directly connected to PCs using a USB to Dynamixel controller,
which is provided from ROBOTIS. This controller has a USB interface and when it is
plugged into the PC, it acts as a virtual COM port. We can send data to this port and
internally it will convert the RS 232 protocol to TTL (Transistor-Transistor Logic)
and in RS 485 standards. The Dynamixel can be powered and connect the USB to
dynamixel controller to start working with it. Dynamixel servos support both TTL
and RS 485 level standards. The following figure shows the Dynamixel servos called
MX-106 and USB To Dynamixel controller.

www.it-ebooks.info

http://en.robotis.com/
http://www.it-ebooks.info/

Chapter 10

[365]

Figure 13 : Dynamixel Servo and USB to Dynamixel controller.

There are different series of Dynamixel available in the market. Some of the series
are MX - 28, 64 and 106, RX - 28,64, 106, and so on. The following is the connection
diagram of Dynamixel, USB to Dynamixel to PC:

Figure 14 : Dynamixel Servos connected to PC using USB To Dynamixel controller.

The Dynamixel can be connected as daisy chain, as shown in the preceding figure.
Each Dynamixel has a firmware setting inside its controller. We can assign the ID of
servo, the joint limits, the position limits, the position commands, the PID values, the
voltage limits, and so on, inside the controller. There are ROS drivers and controllers
for Dynamixel which are available at:

http://wiki.ros.org/dynamixel_motor.

www.it-ebooks.info

http://wiki.ros.org/dynamixel_motor.
http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[366]

Dynamixel-ROS interface
The ROS stack for interfacing the Dynamixel motor is dynamixel_motor. This stack
contains interface for Dynamixel motors such as MX-28, MX64, MX-106, RX-28,
RX64, EX106, AX-12, and AX-18. The stack consists of the following packages:

•	 dynamixel_driver: This package is the driver package of Dynamixel, which
can do low level IO communication with Dynamixel from PC. This driver has
hardware interface for the previously mentioned series of servos and can do
the read /write operation to Dynamixel through this package. This package
is used by high level packages such as dynamixel_controllers. There are
only few cases when the user directly interacts with this package.

•	 dynamixel_controllers: This is a higher level package that works using
the dynamixel_motor package. Using this package, we can create a ROS
controller for each Dynamixel joint of the robot. The package contains a
configurable node, services, and spawner script to start, stop, and restart
one or more controller plugins. In each controller, we can set the speed and
the torque. Each Dynamixel controller can be configured using the ROS
parameters or can be loaded by a YAML file. The dynamixel_controllers
packages support the following kinds of controllers:

°° Joint Position controllers
°° Joint Torque controllers
°° Joint Trajectory Action controller

•	 dynamixel_msgs: These are the message definitions which are used inside
the dynamixel_motor stack.

Interfacing seven DOF Dynamixel based
robotic arm to ROS MoveIt!
In this section, we will discuss a 7 DOF robot manipulator called COOL
arm-5000, which is manufactured by a company called ASIMOV Robotics
(http://asimovrobotics.com/). The robot is built using Dynamixel servos
(http://www.robotis.com/xe/dynamixel_en). We will see how to interface
a Dynamixel-based robotic arm to ROS using dynamixel_controllers.

www.it-ebooks.info

http://asimovrobotics.com
http://www.robotis.com/xe/dynamixel_en
http://www.it-ebooks.info/

Chapter 10

[367]

The following is a diagram of a COOL arm-5000:

Figure 15 : COOL Arm illustration.

COOL arm robots are fully compatible with ROS and MoveIt! and are mainly used in
education and research. The price range is between 5K - 10K USD.

Following are the details of the arms:

•	 Degree of Freedom: 7 DOF
•	 Types of Actuators: Dynamixel MX-64 and MX-28
•	 List of Joints: Shoulder Roll, Shoulder Pitch, Elbow Roll, Elbow Pitch,

Wrist Yaw, Wrist Pitch, and Wrist Roll
•	 Payload: 5K
•	 Reach: 1 meter
•	 Work Volume: 2.09 m3
•	 Repeatability: +/- 0.05 mm
•	 Gripper with 3 fingers
•	 ROS support

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[368]

Creating a controller package for COOL
arm robot
The first step is to create a controller package for COOL arm for interfacing to
ROS. The cool arm controller package is available for download along with the
book codes.

The following command will create the controller package with necessary
dependencies. The important dependency of this package is the dynamixel_
controller package.

$ catkin_create_pkg cool5000_controller roscpp rospy dynamixel_controller
std_msgs sensor_msgs

The next step is to create configuration file for each joint. The configuration file is
called cool5000.yaml, which contains definition of each controller name, its type,
and its parameters. We can see this file in the cool5000_controller/config folder.
We have to create parameters for the seven joints in this arm. Following is a
snippet of this config file:

joint1_controller:
 controller:
 package: dynamixel_controllers
 module: joint_position_controller
 type: JointPositionController
 joint_name: joint1
 joint_speed: 0.1
 motor:
 id: 0
 init: 2048
 min: 320
 max: 3823

joint2_controller:
 controller:
 package: dynamixel_controllers
 module: joint_position_controller
 type: JointPositionController
 joint_name: joint2
 joint_speed: 0.1
 motor:
 id: 1
 init: 2048
 min: 957
 max: 3106

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[369]

The controller configuration file mentions the joint name, package of the controller,
controller type, joint speed, motor ID, initial position, and minimum and maximum
limits of the joint. We can connect as many motors as we want and can create a
controller parameters by including in this configuration file.

Next configuration file is to create a Joint Trajectory controller configuration.
MoveIt! can only interface if the robot has the FollowJointTrajectory action
server. The file called cool5000_trajectory_controller.yaml is put in the
cool5000_controller/config folder and its definition is given next:

cool5000_trajectory_controller:
 controller:
 package: dynamixel_controllers
 module: joint_trajectory_action_controller
 type: JointTrajectoryActionController
 joint_trajectory_action_node:
 min_velocity: 0.0
 constraints:
 goal_time: 0.01

 After creating the JointTrajectory controller, we need to create a joint_state_
aggregator node for combining and publishing the joint states of the robotic arm.
You can find this node from the cool5000_controller/src folder named joint_
state_aggregator.cpp. The function of this node is to subscribe controller states
of each controller having message type of dynamixel::JointState and combine
each message of the controller into the sensor_msgs::JointState messages and
publish in the /joint_states topic. This message will be the aggregate of the joint
states of all the dynamixel controllers.

The definition of joint_state_aggregator.launch, which runs the joint_
state_aggregator node with its parameters, follows. It is placed in the cool5000_
controller/launch folder:

<launch>
 <node name="joint_state_aggregator" pkg="cool5000_controller"
type="joint_state_aggregator" output="screen">
 <rosparam>
 rate: 50
 controllers:
 - joint1_controller
 - joint2_controller
 - joint3_controller
 - joint4_controller
 - joint5_controller

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[370]

 - joint6_controller
 - joint7_controller
 - gripper_controller
 </rosparam>
 </node>
</launch>

We can launch the entire controller using the following launch file called
cool5000_controller.launch, which is inside the launch folder.

The code inside this launch file will start communication between the PC and
the Dynamixel servos and start the controller manager. The controller manager
parameters are serial port, baud rate, servo ID range, and update rate.

<launch>

 <!-- Start the Dynamixel motor manager to control all cool5000
servos -->

 <node name="dynamixel_manager" pkg="dynamixel_controllers"
type="controller_manager.py" required="true" output="screen">
 <rosparam>
 namespace: dxl_manager
 serial_ports:
 dynamixel_port:
 port_name: "/dev/ttyUSB0"
 baud_rate: 1000000
 min_motor_id: 0
 max_motor_id: 6
 update_rate: 20
 </rosparam>
 </node>

In the next step, it should launch the controller spawner by reading the controller
config file:

 <!-- Load joint controller configuration from YAML file to
parameter server -->
 <rosparam file="$(find cool5000_controller)/config/cool5000.yaml"
command="load"/>

 <!-- Start all Cool Arm joint controllers -->
 <node name="controller_spawner" pkg="dynamixel_controllers"
type="controller_spawner.py"
 args="--manager=dxl_manager

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[371]

 --port dynamixel_port
 joint1_controller
 joint2_controller			
				 joint3_controller
				 joint4_controller
				 joint5_controller
				 joint6_controller
 joint7_controller
				 gripper_controller"
		 output="screen"/>

In the next section of the code, it will launch the JointTrajectory controller from
the controller configuration file:

 <!-- Start the cool5000 arm trajectory controller -->
	 <rosparam file="$(find cool5000_controller)/config/cool5000_
trajectory_controller.yaml" command="load"/>
 <node name="controller_spawner_meta" pkg="dynamixel_controllers"
type="controller_spawner.py"
 args="--manager=dxl_manager
 --type=meta
 cool5000_trajectory_controller
 joint1_controller
 joint2_controller
 joint3_controller
 joint4_controller
 joint5_controller
 joint6_controller"
 output="screen"/>

The following section will launch the joint state aggregator node and the robot
description from the cool5000_description package:

 <!-- Publish combined joint info -->
 <include file="$(find cool5000_controller)/launch/joint_state_
aggregator.launch" />

 <param name="robot_description" command="$(find xacro)/xacro.py
'$(find cool5000_description)/robots/cool5000.xacro'" />
 <node name="joint_state_publisher" pkg="joint_state_publisher"
type="joint_state_publisher" output="screen">
 <rosparam param="source_list">[joint_states]</rosparam>
 <rosparam param="use_gui">FALSE</rosparam>
 </node>

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[372]

 This is all about the cool arm controller package. Next, we need to setup the
controllers configuration inside the MoveIt! configuration package of cool arm
called cool5000_moveit_config.

MoveIt! configuration of the COOL Arm
The first step is to configure controllers.yaml, which is inside the cool5000_
moveit_config/config folder. The definition of this file follows. We are only
focusing on moving the arm and not on handling the gripper control for now.
So the configuration only contains the arm group joints:

controller_list:
 - name: cool5000_trajectory_controller
 action_ns: follow_joint_trajectory
 type: FollowJointTrajectory
 default: true
 joints:
 - joint1
 - joint2
 - joint3
 - joint4
 - joint5
 - joint6
 - joint7

The following is the definition of cool5000_description_moveit_controller_
manager.launch.xml inside cool5000_moveit_config/launch:

<launch>
<!--
 Set the param that trajectory_execution_manager needs to find the
controller plugin
-->
<arg name="moveit_controller_manager" default="MoveIt_simple_
controller_manager/MoveItSimpleControllerManager"/>

<param name="MoveIt_controller_manager" value="$(arg MoveIt_
controller_manager)"/>

<!-- load controller_list -->

<rosparam file="$(find cool5000_moveit_config)/config/controllers.
yaml"/>
</launch>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[373]

After configuring MoveIt!, we can start working on the arm. Apply proper power
supply on the arm and connect it to USB To Dynamixel. Plug the USB TO Dynamixel
to a PC. We will see a serial device generate; it may be either /dev/ttyUSB0 or /dev/
ttyACM0. According to the device, change the port name inside the controller
launch file.

Start the cool5000 arm controller using the following command:

$ roslaunch cool5000_controller cool5000_controller.launch

Start the RViz demo and start path, planning. If we press the Execute button,
the trajectory will execute on the hardware arm:

$ roslaunch cool5000_moveit_config demo.launch

A random pose, which is shown in RViz, and the cool arm is shown in the
following image:

Figure 16 : COOL-Arm-5000 prototype with MoveIt! visualization

Questions
1.	 What is the role of the FCL library in MoveIt!?
2.	 How does MoveIt! build OctoMap of the environment?
3.	 What is the main function of grasp server?
4.	 What are the main features of dynamixel servos?

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Advanced Capabilities of ROS-MoveIt!

[374]

Summary
In this chapter, we explored some advanced features of MoveIt! and how we can
interface it into a real hardware. The chapter started with a discussion on collision
checking using MoveIt!. We saw how to add a collision object using MoveIt! APIs
and also saw the direct importing of mesh to the planning scene. We discussed a
ROS node to check collision using MoveIt! APIs. After learning about collisions, we
moved to perception using MoveIt!. We connected the simulated point cloud data
to MoveIt! and created an OctoMap in MoveIt!. The next topic we discussed was
grasping, using the moveit_simple_grasp package. We saw the grasp generator
using this package and we made a simple pick and place task using the grasp server
and the pick and place node. After discussing these things, we switched to hardware
interfacing of MoveIt! using dynamixel servos and its ROS controllers. In the end, we
saw a real robotic arm called COOL arm and its interfacing to MoveIt!, which was
completely built using dynamixel controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[375]

ROS for Industrial Robots
In the previous chapter, we have seen some advanced concepts in ROS-MoveIt!
Until now, we have been discussing mainly about interfacing personal and research
robots with ROS, but one of the main areas where robots are extensively used are
industries. Does ROS support industrial robots? Do any of the companies use ROS
for the manufacturing process? The ROS-Industrial packages comes with a solution
to interface industrial robot manipulators to ROS and controlling it using the power
of ROS, such as MoveIt!, Gazebo, RViz, and so on.

In this chapter, we will discuss the following topics:

•	 Understanding ROS-Industrial packages
•	 Installing ROS-Industrial packages in ROS
•	 Block diagram of ROS-Industrial packages
•	 Creating URDF for an industrial robot
•	 Creating the MoveIt! interface for an industrial robot
•	 Installing ROS-Industrial packages of Universal robotic arms
•	 Understanding MoveIt! configuration of a universal robotic arm
•	 Working with MoveIt! configuration of ABB robots
•	 Understanding ROS-Industrial robot support packages
•	 ROS-Industrial robot client package
•	 ROS-Industrial robot driver package
•	 Understanding MoveIt! IKFast plugin
•	 Creating the MoveIt! IKFast plugin for an ABB-IRB6640 robot

Let's start with a brief overview of ROS-Industrial.

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[376]

Understanding ROS-Industrial packages
ROS-Industrial basically extends the advanced capabilities of ROS software to
industrial robots working in the production process. ROS-Industrial consists of many
software packages, which can be used for interfacing industrial robots. These packages
are BSD (legacy) / Apache 2.0 (preferred) licensed program, which contain libraries,
drivers, and tools for industrial hardware. The ROS-Industrial is now guided by the
ROS-Industrial Consortium. The official website of ROS-I is http://rosindustrial.
org/. The following diagram is the logo of ROS-I:

Figure 1: Logo of ROS-Industrial

Goals of ROS-Industrial
The main goals behind developing ROS-Industrial are given as follows:

•	 Combine strengths of ROS to the existing industrial technologies for
exploring advanced capabilities of ROS in the manufacturing process

•	 Developing a reliable and robust software for industrial robots application.
•	 Provide an easy way for doing research and development in industrial

robotics
•	 Create a wide community supported by researchers and professionals for

industrial robotics
•	 Provide industrial grade ROS application and become a one-stop location of

industry-related applications

www.it-ebooks.info

http://rosindustrial.org/
http://rosindustrial.org/
http://www.it-ebooks.info/

Chapter 11

[377]

ROS-Industrial – a brief history
In 2012, the ROS-Industrial open source project started as the collaboration of
Yaskawa Motoman Robotics (http://www.motoman.com/), Willow Garage
(https://www.willowgarage.com/) and Southwest Research Institute (SwRI)
at http://www.swri.org/ for using ROS research and development in Industrial
manufacturing. The ROS-I was founded by Shaun Edwards in January 2012.

In 2013, the ROS-I Consortium Americas launched in March 2013 led by SwRI and
ROS-I Consortium Europe led by Fraunhofer IPA in Germany.

Benefits of ROS-Industrial
Let's see the benefits ROS-I provides to the community:

•	 Explore the features in ROS: The ROS-Industrial packages are tied to the
ROS framework so that we can use all ROS features in industrial robots
too. Using ROS, we can create custom IK solvers for each robot, object
manipulation using 2D/3D perception. ROS also provides a rich toolset, such
as RViz, Gazebo, and rqt_gui for visualization, simulation, and debugging

•	 Out-of-the-box applications: The ROS interface enables advanced perception
in robots for working with picking and placing complex objects.

•	 Simplifies robotic programming: ROS-I eliminates teaching and planning
paths of robots and instead of it, automatically calculates a collision-free
optimal path for the given points.

•	 Low Cost: Instead of costly proprietary robotic simulators, ROS-I is an open
source software that allows commercial use without any restrictions.

Installing ROS-Industrial packages
Installing ROS-I packages can be done using package managers or building from
the source code. If we have installed the ros-desktop-full installation, we can use
the following command to install ROS-Industrial packages on Ubuntu 14.04.3. The
following command will install ROS-Industrial packages on ROS Indigo:

$ sudo apt-get install ros-indigo-industrial-core ros-indigo-open-
industrial-ros-controllers

www.it-ebooks.info

http://www.motoman.com/
https://www.willowgarage.com/
http://www.swri.org/
http://www.it-ebooks.info/

ROS for Industrial Robots

[378]

The preceding command will install the core packages of ROS-Industrial packages.
The industrial-core stack includes the following set of ROS packages:

•	 industrial-core: This stack contains packages and libraries for supporting
industrial robotic systems. The stack consists of nodes for communicating
with industrial robot controllers, industrial robot simulators, and also
provides ROS controllers for industrial robots.

•	 industrial_deprecated: This package contains nodes, launch files, and so
on that are going to be deprecated. The files inside this package will delete
soon from the repository, so we should look for the replacement of these files
before the content is going to be deleted.

•	 industrial_msgs: This package contains message definitions, which are
specific to the ROS-Industrial packages.

•	 simple_message: This is a part of ROS-Industrial stacks, which is a
standard message protocol containing a simple messaging framework
for communicating with industrial robot controllers.

•	 industrial_robot_client: This package contains a generic robot client
for connecting to industrial robot controllers, which is running an industrial
robot server and can communicate using a simple message protocol.

•	 industrial_robot_simulator: This package simulates the industrial robot
controller, which follows the ROS-Industrial driver standard. Using this
simulator, we can simulate and visualize the industrial robot.

•	 industrial_trajectory_filters: This package contains libraries and
plugins for filtering the trajectories, which is sent to the robot controller.

Block diagram of ROS-Industrial
packages
The following diagram a simple block diagram representation of ROS-I packages,
which are organized on top of ROS. We can see the ROS-I layer on top of the ROS
layers. We can see a brief description of each of the layers for better understanding.
The following diagram is taken from ROS-I wiki page (http://wiki.ros.org/
Industrial).

www.it-ebooks.info

http://wiki.ros.org/Industrial
http://wiki.ros.org/Industrial
http://www.it-ebooks.info/

Chapter 11

[379]

ROS GUI
• Plugin base GUI toolkit

• Rviz, Introspection, Web-browser

ROS

Layer
• Anything in the

ecosystem

ROS-I Interface

Layer
Package: industrial_robot_client

ROS-I Simple Message

Layer
Package: simple_message

ROS-I Controller

Layer
Package: vendor specific

ROS-I GUI (Future)
• Generic Pendant

• Standard Industrial UI

Movelt

Layer
• Planning

• Kinematics

• Pick & Place

• State

ROS-I Application

Layer(Future)
• Process Planner

• State Machines

ROS-I Configuration
• urdf

• parameters

• ROS-I conventions

JOINT

TRAJECTORY

ACTION

MOTION

STREAMER/

DOWNLOADER

ROBOT STATE
ROBOT

SIMULATOR

ROBOT

CONTROLLER

ROS-Industrial High Level Architecture - Rev 0.02.vsd

Figure 2: The block diagram of ROS-Industrial

•	 The ROS GUI: This layer includes the ROS plugin-based GUI tools layer,
which consists of tools such as RViz, rqt_gui, and so on

•	 The ROS-I GUI: These GUIs are standard industrial UI for working with
industrial robots which may be implemented in the future

•	 The ROS Layer: This is the base layer in which all communications are
taking place

•	 The MoveIt! Layer: The MoveIt! layer provides a direct solution to industrial
manipulators in planning, kinematics, and pick and place

•	 The ROS-I Application Layer: This layer consists of an industrial process
planner, which is used to plan what is to be manufactured, how it will be
manufactured, and what resources are needed for the manufacturing process

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[380]

•	 The ROS-I Interface Layer: This layer consists of the industrial robot
client, which can connect to the industrial robot controller using the simple
message protocol

•	 The ROS-I- Simple Message Layer: This is the communication layer of the
industrial robot, which is a standard set of protocol that will send data from
the robot client to the controller and vice versa.

•	 The ROS-I Controller Layer: This layer has vendor-specific industrial
robot controllers.

After discussing the basic concepts, we can start working on interfacing an industrial
robot to ROS using ROS-I. The following are the major issues we need to address:

•	 How to create a URDF model for an industrial manipulator
•	 How to create MoveIt! interface for an industrial manipulator
•	 What are industrial robot driver packages?
•	 What are support packages in ROS-I and how are created?
•	 How to create IKFast MoveIt! plugins for Industrial robots

We can see each issue and its solutions with an example

Creating URDF for an industrial robot
Creating the URDF file for an ordinary robot and industrial robot are the same, but
in industrial robots, there are some standards that should be strictly followed during
its URDF modeling, which are as follows:

•	 Simplify the URDF design: The URDF file should be simple and readable
and only need the important tags

•	 Common design: Developing a common design formula for all industrial
robots by various vendors

•	 Modularizing URDF: The URDF needs to modularize using XACRO macros
and it can be included in a large URDF file without much hassle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[381]

The following points are the main difference in the URDF design followed by ROS-I.

•	 Collision-Aware: The industrial robot IK planners are collision aware so
the URDF should contain accurate collision 3D mesh for each link. Every
link in the robot should export to STL or DAE with a proper coordinate
system. The coordinate system which ROS-I is following are X-axis pointing
forward and Z-axis pointing up when each joint is in zero position. It is also
to be noted that if the joint's origin coincides with the base of the robot, the
transformation will be simpler. It will be good if we are putting robot-based
joints in zero position (origin), which can simplify the robot design.

•	 In ROS-I, the mesh file used for visual purpose is highly detailed, but the
mesh file used for collision will not be detailed, because it takes more time
to perform collision checking. In order to remove the mesh details, we can
use tools such as MeshLab (http://meshlab.sourceforge.net/) using its
option (Filters -> Remeshing, Simplification and Reconstruction
-> Convex Hull).

•	 URDF Joint conventions: The orientation value of each robot joint is limited
to single rotation, that is, out of the two orientation (roll, pitch, and yaw)
values, only one value will be there.

•	 Xacro Macros: In ROS-I, the entire manipulator section is written as a macro
using xacro. We can add an instance of this macro in another macro file,
which can be used for generating a URDF file. We can also include additional
end effector definitions on this same file.

•	 Standards Frames: In ROS-I, the base_link frame should be the first link
and tool0 (tool-zero) should be the end effector link. Also, the base frame
should match with the base of the robot controller. In most cases, transform
from base to base_link is treated as fixed.

After building the xacro file for the industrial robot, we can convert to URDF and
verify it using the following command:

$ rosrun xacro xacro.py -o <urdf_file> <xacro_file>

$ check_urdf <urdf_file>

Next, we can discuss the differences in creating the MoveIt! configuration for an
industrial robot.

www.it-ebooks.info

http://meshlab.sourceforge.net/
http://www.it-ebooks.info/

ROS for Industrial Robots

[382]

Creating MoveIt! configuration for an
industrial robot
The procedure for creating the MoveIt! interface for industrial robots are same
as the other ordinary robot manipulators except in some standard conventions.
The following procedures give a clear idea about these standard conventions:

•	 Launch the MoveIt! setup assistant using the following command:
$ roslaunch moveit_setup_assistant setup_assistant.launch

•	 Load the URDF from the robot description folder or convert xacro to URDF
and load to the setup assistant

•	 Create a Self-Collision matrix with Sampling Density about ~ 80,000.
This value can increase the collision checking in the arm

•	 Add a Virtual Joint matrix as shown in the following screenshot. Here the
virtual and parent frame names are arbitrary.

Figure 3: Adding MoveIt! - Virtual joints

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[383]

•	 In the next step, we are adding Planning Groups for manipulator and End
Effector, here also the group names are arbitrary. The default plugin is KDL,
we can change it even after creating the MoveIt! configuration.

Figure 4: Creating Planning Groups in MoveIt!

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[384]

The planning groups, that is, the manipulator plus the end effector configuration,
will be shown like this:

Figure 5: Planning groups of manipulator + end effector in MoveIt!

•	 We can assign Robot Poses, such as home position, up position, and so on.
This setting is an optional one.

•	 We can assign End Effectors as shown in the following screenshot; this is
also an optional setting:

Figure 6: Setting End Effectors in MoveIt! Setup Assistant

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[385]

•	 After setting the end effector, we can directly generate the configuration files.
It should be noted that the moveit-config package should be named as
<robot_name>_moveit_config, where robot_name is the name of the URDF
file. Also, if we want to move this generated config package to another
PC, we need to edit the .setup_assistant file which is inside the moveit
package. We should change the absolute path to the relative path. Here is an
example of the abb_irb2400 robot. We should mention the relative path of
URDF and SRDF in this file, as follows:

moveit_setup_assistant_config:
 URDF:
 package: abb_irb2400_support
 relative_path: urdf/irb2400.urdf
 SRDF:
 relative_path: config/abb_irb2400.srdf
 CONFIG:
 generated_timestamp: 1402076252

Updating the MoveIt! configuration files
After creating the MoveIt! configuration, we should update the controllers.yaml
file inside the config folder of the MoveIt! package. Here is an example of
controllers.yaml:

controller_list:
 - name: ""
 action_ns: follow_joint_trajectory
 type: FollowJointTrajectory
 joints:
 - shoulder_pan_joint
 - shoulder_lift_joint
 - elbow_joint
 - wrist_1_joint
 - wrist_2_joint
 - wrist_3_joint

We should also update joint_limits.yaml about the joint information. Here is a
code snippet of joint_limits.yaml:

joint_limits:
 shoulder_pan_joint:
 has_velocity_limits: true
 max_velocity: 2.16
 has_acceleration_limits: true
 max_acceleration: 2.16

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[386]

We can also change the Kinematic solver plugin by editing the kinematics.
yaml file. After editing all the configuration files, we need to edit the controller
manager launch file (<robot>_moveit_config/launch/<robot>_moveit_
controller_manager.launch).

Here is an example of the controller manager.launch file:

<launch>

 <rosparam file="$(find ur10_moveit_config)/config/
 controllers.yaml"/>

 <param name="use_controller_manager" value="false"/>

 <param name="trajectory_execution/execution_duration_monitoring"
 value="false"/>

 <param name="moveit_controller_manager" value=
 "moveit_simple_controller_manager/
 MoveItSimpleControllerManager"/>
</launch>

After creating the controller manger, we need to create the <robot>_moveit_
planning_execution.launch file. Here is an example of this file:

<launch>
 <arg name="sim" default="false" />
 <arg name="limited" default="false"/>
 <arg name="debug" default="false" />

 <!-- Remap follow_joint_trajectory -->
 <remap if="$(arg sim)" from="/follow_joint_trajectory" to="/arm_
controller/follow_joint_trajectory"/>

 <!-- Launch moveit -->
 <include file="$(find ur10_moveit_config)/launch/move_group.launch">
 <arg name="limited" default="$(arg limited)"/>
 <arg name="debug" default="$(arg debug)" />
 </include>
</launch>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[387]

Testing the MoveIt! configuration
After editing the configuration and launch files in the MoveIt! configuration, we can
start running the robot simulation and can check whether the MoveIt! configuration
is working well or not. Ensure the ros-industrial-simulator package is installed
properly. Here are the steps to test an industrial robot.

•	 Start the robot simulator
•	 Start the MoveIt! planning execution launch file using the following

command line:
$ roslaunch <robot>_moveit_config moveit_planning_execution.launch

•	 Open RViz and load RViz Motion planning plugin using the Plan and
Execute button. We can plan and execute the trajectory on the simulated robot.

Installing ROS-Industrial packages of
universal robotic arm
The Universal Robots (http://www.universal-robots.com/) is an industrial robot
manufacturer based in Denmark. The company mainly manufactures three arms
UR3, UR5, and UR10. The robots are shown in the following screenshot:

Figure 7: UR-3, UR-5, and UR-10 robots

www.it-ebooks.info

http://www.universal-robots.com/
http://www.it-ebooks.info/

ROS for Industrial Robots

[388]

The smaller one is UR-3, UR-5 is the one in the center, and the big one is UR-10.
The specifications of these robots are given in the following table:

Robot UR-3 UR-5 UR-10
Working radius 500 mm 850 mm 1300 mm
Payload 3 kg 5 kg 10 kg
Weight 11 kg 18.4 kg 28.9 kg
Footprint 118 mm 149 mm 190 mm

We are mainly discussing ROS interfacing of UR-5 and UR-10 using ROS-I packages.

We can install the packages of these robots and can work with the MoveIt! interface
and simulation interface of these robots in Gazebo.

Installing the ROS interface of universal
robots
We can install the latest packages of the universal robot using the source installation.

Create a workspace for the industrial robot packages called ros_industrial_ws and
clone the universal robot code to the src folder as follows:

ros_industrial_ws/src$ git clone https://github.com/ros-industrial/
universal_robot.git

We can also install its Ubuntu binary packages using the following command:

$ sudo apt-get install ros-indigo-universal-robot

The universal robot stack consists of the following packages:

•	 ur_description: This package consists of the robot description and gazebo
description of UR-5 and UR-10.

•	 ur_driver: This package contains client nodes, which can communicate to
the UR-5 and UR-10 robot hardware controllers.

•	 ur_bringup: This package consists of launch files to start communication
with the robot hardware controllers to start working with the real robot.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[389]

•	 ur_gazebo: This package consists of gazebo simulations of both UR-5
and UR-10.

•	 ur_msgs: This package contains ROS messages used for communication
between various UR nodes.

•	 ur10_moveit_config/ur5_moveit_config: These are the moveit config
files of UR-5 and UR-10 robots.

•	 ur_kinematics: This package contains kinematic solver plugins for UR-5
and UR-10. We can use this solver plugin in MoveIt!.

Build the packages using the catkin_make command and add the following line to
the .bashrc file for accessing the preceding packages:

source ~/ros_industrial_ws/devel/setup.bash

We can launch the simulation in Gazebo of UR-10 robot using the following command:

$ roslaunch ur_gazebo ur10.launch

Figure 8: Universal robot, UR-10 model simulation in Gazebo

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[390]

We can see the robot controller configuration file for interfacing into the MoveIt!
package. The following YAML file defines the JointTrajectory controller. It is
placed in the ur_gazebo/controller folder with a name arm_controller_ur10.
yaml:

arm_controller:
 type: position_controllers/JointTrajectoryController
 joints:
 - shoulder_pan_joint
 - shoulder_lift_joint
 - elbow_joint
 - wrist_1_joint
 - wrist_2_joint
 - wrist_3_joint
 constraints:
 goal_time: 0.6
 stopped_velocity_tolerance: 0.05
 shoulder_pan_joint: {trajectory: 0.1, goal: 0.1}
 shoulder_lift_joint: {trajectory: 0.1, goal: 0.1}
 elbow_joint: {trajectory: 0.1, goal: 0.1}
 wrist_1_joint: {trajectory: 0.1, goal: 0.1}
 wrist_2_joint: {trajectory: 0.1, goal: 0.1}
 wrist_3_joint: {trajectory: 0.1, goal: 0.1}
 stop_trajectory_duration: 0.5
 state_publish_rate: 25
 action_monitor_rate: 10

We can see the necessary settings which have to be done in the robot Moveit! config
package for interfacing the Gazebo controller.

Understanding the Moveit! configuration
of a universal robotic arm
The changes that we need to make in the industrial MoveIt! configuration are almost
the same as the arm we already worked with.

First, we have to define the controller.yaml file, which has to create inside ur10_
moveit_config/config. Here is the definition of the controller.yaml of UR-10:

controller_list:
 - name: ""
 action_ns: follow_joint_trajectory

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[391]

 type: FollowJointTrajectory
 joints:
 - shoulder_pan_joint
 - shoulder_lift_joint
 - elbow_joint
 - wrist_1_joint
 - wrist_2_joint
 - wrist_3_joint

The kinematics.yaml file inside the config folder contains the IK solvers used
for this arm; we can use the following IK solvers. The contents of this file are given
as follows:

#manipulator:
kinematics_solver: ur_kinematics/UR10KinematicsPlugin
kinematics_solver_search_resolution: 0.005
kinematics_solver_timeout: 0.005
kinematics_solver_attempts: 3
manipulator:
 kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin
 kinematics_solver_search_resolution: 0.005
 kinematics_solver_timeout: 0.005
 kinematics_solver_attempts: 3

The UR-10 and UR-5 have their custom IK solver plugins and we can switch from
the default KDL kinematics plugins to the robot specific solver.

The definition of ur10_moveit_controller_manager.launch inside the
launch folder is given as follows. This launch file loads the trajectory controller
configuration and starts the trajectory controller manager:

<launch>
 <rosparam file="$(find ur10_moveit_config)/config/controllers.
yaml"/>
 <param name="use_controller_manager" value="false"/>
 <param name="trajectory_execution/execution_duration_monitoring"
value="false"/>
 <param name="moveit_controller_manager" value="moveit_simple_
controller_manager/MoveItSimpleControllerManager"/>
</launch>

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[392]

After discussing these files, let's see how to execute motion planning in MoveIt! and
executing in Gazebo:

1.	 Start the simulation of UR-10 with joint trajectory controllers:
$ roslaunch ur_gazebo ur10.launch

2.	 Start the MoveIt! nodes for motion planning. We need to use sim:=true,
if we are trying MoveIt! along with the simulation:
$ roslaunch ur10_moveit_config ur10_moveit_planning_execution.
launch sim:=true

3.	 Launch RViz with the MoveIt! visualization plugin:
$ roslaunch ur10_moveit_config moveit_rviz.launch config:=true

Figure 9: Motion planning in UR-10 model in RViz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[393]

We can move the end effector position of the robot and plan the path using the
Plan button. When we press the Execute button or the Plan and Execute button,
the trajectory should send to the simulated robot, which is shown as follows.

Figure 10 : Motion planned trajectory from MoveIt! executing in Gazebo

We have seen a universal robot and its simulation in Gazebo. Next, we can work
with ABB robots.

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[394]

Working with MoveIt! configuration of
ABB robots
We will work with the motion planning of the popular ABB industrial robot models
such as IRB 2400 and IRB 6640. The following are the images of these two robots and
their specifications.

Figure 11: ABB IRB 2400 and IRB 6640

The arm specification of the IRB 2400-10 and 6640-130 models are given in the
following table:

Robot IRB 2400-10 IRB 6640-130
Working radius 1.55 m 3.2 m
Payload 12 kg 130 kg
Weight 380 kg 1310-1405 kg
Footprint 723x600 mm 1107 x 720 mm

To work with ABB packages, clone the ROS packages of the robot into the catkin
workspace. We can use the following command to do this task:

$ git clone https://github.com/ros-industrial/abb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[395]

We can also install packages using the Ubuntu binary packages. The following
package will install a complete set of ABB robot packages:

$ sudo apt-get install ros-<distro>-abb

Build the source packages using catkin_make and the following command will
launch ABB IRB 6640 in RViz for motion planning:

$ roslaunch abb_irb6640_moveit_config demo.launch

The following RViz window will appear and we can start motion planning the robot
in RViz:

Figure 12: Motion planning of ABB IRB 6640

One of the other ABB robot model is IRB 2400. We can launch the robot in RViz using
the following command:

$ roslaunch abb_irb2400_moveit_config demo.launch

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[396]

The following is a screenshot of motion planning this robot:

Figure 13: Motion planning of ABB IRB 2400

Understanding the ROS-Industrial robot
support packages
The ROS-I robot support packages are a new convention followed for industrial
robots. The aim of these support packages are to standardize the ways of
maintaining ROS packages for a wide variety of industrial robot types of different
vendors. Because of a standardized way of keeping files inside support packages,
we don't have any confusion in accessing the files inside it. We can demonstrate a
support package of an ABB robot and can see the folders and files and its uses.

We have already cloned the ABB robot packages and inside this folder we can see
three support packages that support three variety of ABB robots. Here we are taking
the ABB IRB 2,400 model support package: abb_irb2400_support. This is the
support package of the ABB industrial robot model called IRB 2400. The following
list shows the folders and files inside this package:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[397]

•	 config: As the name of the folder, this contains the configuration files of joint
names, RViz configuration, and robot model specific configuration

°° joint_names_irb2400: Inside the config folder, there is a
configuration file, which contains the joint names of the robot
which is used by the ROS controller.

•	 launch: This folder contains the launch file definitions of this robot.
These files are following a common convention in all industrial robots.

°° load_irb2400.launch: This file simply loads robot_description
on the parameter server. According to the complexity of the robot
the number of xacro files can be increased. This file loads all xacro
in a single launch file. Instead of writing separate code for adding
robot_description in other launch files, we can simply include
this launch file.

°° test_irb2400.launch: This launch file can visualize the loaded
URDF. We can inspect and verify the URDF in RViz. This launch
file includes the preceding launch files and starts joint_state_
publisher and robot_state_publisher nodes, which helps to
interact with the user on RViz. This will work without the need for
real hardware.

°° robot_state_visualize_irb2400.launch: This launch file
visualizes the current state of the real robot by running nodes from
the ROS-Industrial driver package with appropriate parameters.
The current state of the robot is visualized by running RViz and the
robot_state_publisher node. This launch file needs a real robot or
simulation interface. One of the main arguments provided along with
this launch file is the IP address of the industrial controller. Also note
that the controller should run a ROS-Industrial server node.

°° robot_interface_download_irb2400.launch: This launch file
starts bi-directional communication with the industrial robot
controller to ROS and vice versa. There are industrial robot client
nodes for reporting the state of robot (robot_state node) and
subscribing the joint command topic and issuing the joint position
to the controller (joint_trajectory node). This launch file also
requires access to the simulation or real robot controller and needs
to mention the IP address of the industrial controllers. The controller
should run the ROS-Industrial server programs too.

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[398]

•	 urdf: This folder contains the set of standardized xacro files of the
robot model:

°° irb2400_macro.xacro: This is the xacro definition of a specific
robot. It is not a complete URDF, but it's a macro definition of the
manipulator section. We can include this file inside another file and
create an instance of this macro.

°° irb2400.xacro: This is the top level xacro file, which creates an
instance of the macro, which is discussed in the preceding section.
This file doesn't include any other files other than the macro of the
robot. This xacro file will be loading inside the load_irb2400.
launch file that we have already discussed.

°° irb2400.urdf: This is the URDF generated from the preceding
xacro file using the xacro tool. This file is used when the tools
or packages can't load xacro directly. This is the top-level URDF
for this robot

•	 meshes: This contains meshes for visualization and collision checking
•	 irb2400: This folder contains mesh files for a specific robot
•	 visual: This folder contains STL files used for visualization
•	 collision: This folder contains STL files used for collision checking
•	 tests: The folder contains the test launch file to test all the preceding

launch files
•	 roslaunch_test.xml: This launch file tests all the launch files.

Visualizing the ABB robot model in RViz
After creating the robot model, we can test it using the test_irb2400.launch file.
The following command will launch the test interface of the ABB IRB 2400 robot:

$ roslaunch abb_irb2400_support test_irb2400.launch

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[399]

It will show the robot model in RViz with a joint state publisher node as shown in
the following screenshot:

Figure 14: ABB IRB 2400 with joint state publisher on RViz

We can adjust the robot joints by adjusting the joint state publisher sliders' values.
Using this testing interface, we can confirm whether the URDF design is correct
or not.

ROS-Industrial robot client package
The industrial robot client nodes are responsible for sending robot position/trajectory
data from ROS MoveIt! to the industrial robot controller. The industrial robot client
converts the trajectory data to simple_message and communicates to the robot
controller using the simple_message protocol. The industrial robot controller running
a server and industrial robot client nodes are connecting to this server and start
communicating with this server.

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[400]

Designing industrial robot client nodes
The industrial_robot_client package contains various classes to implement
industrial robot client nodes. The main functionalities that a client should have is,
it can update the robot current state from the robot controller, and also it can send
joint trajectories/joint position message to the controller.

There are two main nodes that are responsible for getting robot state and sending
joint trajectory/position values.

•	 The robot_state node: This node is responsible for publishing the robot's
current position, status, and so on

•	 The joint_trajectory node: This node subscribes the robot's command
topic and sends the joint position commands to the robot controller via the
simple message protocol

The following screenshot gives the list of APIs provided by the industrial robot client:

Figure 15: A list of the industrial robot client APIs

We can briefly go through these APIs and their functionalities as follows:

•	 RobotStateInterface: This class contains methods to publish the current
robot position and status at regular intervals after receiving the position data
from the robot controller.

•	 JointRelayHandler: The RobotStateInterface class is a wrapper
around a class called MessageManager. What it does is, it listens to the
simple_ message robot connection and processes each message handling
using Messagehandlers. The JointRelayHandler functionality is a
MessageHandler and its function is to publish the joint position in the
joint_states topic.

•	 RobotStatusRelayHandler: This is another MessageHandler, which can
publish the current robot status info in the robot_status topic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[401]

•	 JointTrajectoryInterface: This class contains methods to send the robot's
joint position to the controller when it receives a ROS trajectory command.

•	 JointTrajectoryDownloader: This class is derived from the
JointTrajectoryInterface class, and it implements a method called
send_to_robot(). This method sends an entire trajectory as a sequence
of messages to the robot controller. The robot controller will execute the
trajectory in the robot only after getting all sequences sent from the client.

•	 JointTrajectoryStreamer: This class is the same as the preceding class
except in the implementation of the send_to_robot() method. This method
sends independent joint values to the controller in separate threads. Each
position command is sent only after the execution of the existing command.
In the robot side, there will be a small buffer for receiving the position to
make the motion smoother.

The list of nodes inside the industrial robot client are as follows:

•	 robot_state: This node is running based on RobotStateInterface,
which can publish the current robot states

•	 motion_download_interface: This node runs
JointTrajectoryDownloader, which will download trajectory in sequence
to the controller

•	 motion_streaming_interface: This node runs JointTrajectoryStreamer,
which will send the joint position in parallel using threading

•	 joint_trajectory_action: This node provides a basic actionlib interface

ROS-Industrial robot driver package
In this section, we can discuss the industrial robot driver package. If we take the ABB
robot as an example, it has a package called abb_driver. This package is responsible
for communicating with the industrial robot controller. The package contains
industrial robot clients and launches the file to start communicating with the controller.

We can check what's inside the abb_driver/launch folder. The following is a
definition of a launch file called robot_interface.launch:

<launch>

 <!-- robot_ip: IP-address of the robot's socket-messaging server -->
 <arg name="robot_ip" />

 <!-- J23_coupled: set TRUE to apply correction for J2/J3 parallel
linkage -->

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[402]

 <arg name="J23_coupled" default="false" />

 <!-- copy the specified arguments to the Parameter Server, for use
by nodes below -->
 <param name="robot_ip_address" type="str" value="$(arg robot_ip)"/>
 <param name="J23_coupled" type="bool" value="$(arg J23_coupled)"/>

 <!-- robot_state: publishes joint positions and robot-state data
 (from socket connection to robot) -->
 <node pkg="abb_driver" type="robot_state" name="robot_state"/>

 <!-- motion_download_interface: sends robot motion commands by
DOWNLOADING path to robot
 (using socket connection to robot)
-->

<node pkg="abb_driver" type="motion_download_interface" name="motion_
download_interface"/>

 <!-- joint_trajectory_action: provides actionlib interface for high-
level robot control -->
 <node pkg="industrial_robot_client" type="joint_trajectory_action"
name="joint_trajectory_action"/>

</launch>

This launch file provides a socket-based connection to ABB robots using the standard
ROS-Industrial simple_message protocol.

Several nodes are started to supply both low-level robot communication and
high-level actionlib support:

•	 robot_state: This publishes the current joint positions and robot state data
•	 motion_download_interface: This commands the robot motion by sending

motion points to the robot
•	 joint_trajectory_action: This is the actionlib interface to control the

robot motion

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[403]

Their usage is as follows:

robot_interface.launch robot_ip:=<value> [J23_coupled:=false]

We can see the abb_irb6600_support/launch/ robot_interface_download_
irb6640.launch file and this is the driver for the ABB IRB 6640 model. This definition
of launch is given in the following code. The preceding driver launch file is included
in this launch file. In other support packages of other ABB models, use the same driver
with different joint configuration parameter files:

<launch>
 <arg name="robot_ip" />
 <arg name="J23_coupled" default="true" />

 <rosparam command="load" file="$(find abb_irb2400_support)/config/
joint_names_irb2400.yaml" />

 <include file="$(find abb_driver)/launch/robot_interface.launch">
 <arg name="robot_ip" value="$(arg robot_ip)" />
 <arg name="J23_coupled" value="$(arg J23_coupled)" />
 </include>
</launch>

The preceding file is the manipulator-specific version of 'robot_interface.launch'
(of abb_driver).

•	 Defaults provided for IRB 2400: - J23_coupled = true
•	 Usage: robot_interface_download_irb2400.launch robot_ip:=<value>

We should run the driver launch file to start communicating with the real robot
controller. For ABB robot IRB 2,400, we can use the following command to start
bi-directional communication with the robot controller and the ROS client:

$ roslaunch abb_irb2400_support robot_interface_download_irb2400.launch
robot_ip:=<value>

After launching the driver, we can start planning using the MoveIt! interface.
It should also be noted that the ABB robot should be configured and the IP of
the robot controller should be found before starting the robot driver.

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[404]

Understanding MoveIt! IKFast plugin
One of the default numerical IK solvers in ROS is KDL. KDL is mainly using DOF
> 6. In robots DOF <= 6, we can use analytic solvers, which is much faster than
numerical solvers such as KDL. Most of the industrial arms are having DOF <= 6,
so it will be good if we make an analytical solver plugin for each arm.

The robot will work on the KDL solver too, but if we want fast IK solution, we can
choose something such as the IKFast module to generate analytical solver-based
plugins for MoveIt!. We can check which all are the IKFast plugin packages present
in the robot, for example, universal robots and ABB.

•	 ur_kinematics: This package contains IKFast solver plugins of UR-5 and
UR-10 robots from universal robotics

•	 abb_irb2400_moveit_plugins/irb2400_kinematics: This package
contains IKFast solver plugins for the ABB robot model IRB 2400

We can go through the procedures to build an IKFast plugin for MoveIt!. It will be
useful when we create an IK solver plugin for a custom industrial robotics arm. Let's
see how to create a MoveIt! IKFast plugin for the industrial robot ABB-IRB6640.

Creating the MoveIt! IKFast plugin for the
ABB-IRB6640 robot
We have seen the MoveIt! package for the ABB robot IRB 6640 model. But the robot
is working using the KDL plugin, which is a default numerical solver. For generating
IK solver plugin using IKFast, we can follow the procedure mentioned in this
section. At the end of this section, we can run the MoveIt! demo of this robot using
our custom moveit-ikfast plugin.

In short, we will build an IKFast MoveIt! plugin for robot ABB -IRB 66400. This
plugin can be selected during the MoveIt! setup wizard or we can mention it in the
config/kinematics.yaml file of the moveit-config package

Prerequisites for developing the MoveIt!
IKFast plugin
The following is the configuration we have used for developing the MoveIt!
IKFast plugin:

•	 Ubuntu 14.04.3 LTS x86_64 bit

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[405]

•	 ROS-Indigo desktop-full, Version 1.11.13
•	 Open-Rave 0.9

OpenRave and IK Fast Module
OpenRave is a set of command line and GUI tools for developing, testing, and
deploying motion planning algorithms in real-world applications. One of the
OpenRave modules is IKFast, which is a robot kinematics compiler. OpenRave
was created by a Robotic researcher called Rosen Diankov.

The IKFast compiler analytically solves the inverse kinematics of a robot and
generates optimized and independent C++ files, which can be deployed in our code
for solving IK. The IKFast compiler generates analytic solutions of IK, which is much
faster than numerical solutions provided by KDL. The IK Fast compiler can handle
any number of DOF, but practically it is well suited for DOF <= 6.

The IKFast is a Python script that takes arguments such as IK types, robot model,
joint position of base link, and end effector.

The following are the main IK types supported by IKFast:

•	 Transform6D: This end effector should reach the commanded 6D
transformation

•	 Rotation 3D: This end effector should reach the commanded 3D rotation
•	 Translation 3D: This end effector origin should reach the desired 3D

translation

MoveIt! IK Fast
The moveit-ikfast ROS package contains tools to generate a kinematic solver
plugin for MoveIt! using the OpenRave generated CPP file. We will use this tool to
generate a IK Fast plugin for MoveIt!.

Installing MoveIt! IKFast package
The following command will install the moveit-ikfast package in ROS Indigo:

$ sudo apt-get install ros-indigo-moveit-ikfast

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[406]

Installing OpenRave on Ubuntu 14.04.3
Installing OpenRave on the latest Ubuntu is a tedious task. We can install OpenRave
from its repository or from the source itself. The repository installation has some
issues so we have installed this application on Ubuntu 14.04.3 from the source code
using the following procedure:

1.	 Clone the source code in the home folder. The file size is in the range of
300-400 MB.
$ git clone --branch latest_stable https://github.com/rdiankov/
openrave.git

2.	 For compiling the source code, we need to install some packages:
°° Installing boost, Python development packages and NumPy:

$ sudo apt-get install libboost-python-dev python python-dev
python-numpy ipython

°° Installing scientific Python and its package to handle symbolic
mathematics:
$ sudo apt-get install python-scipy python-sympy

°° Installing open asset import library to handle 3D file formats:
$ sudo apt-get install libassimp-dev assimp-utils python-
pyassimp

3.	 Add the following lines on /etc/apt/source.list:
deb http://ppa.launchpad.net/openrave/testing/ubuntu trusty main

deb-src http://ppa.launchpad.net/openrave/testing/ubuntu trusty
main

4.	 Then, update the package list using the following command:
$ sudo apt-get update

5.	 Install the following packages from the preceding repository using the
following commands. It will install the collada file handling package
and Qt4 GUI toolkit for the inventor app.

$ sudo apt-get install collada-dom2.4-dp*

$ sudo apt-get install libsoqt4-dev

Now, we'll see how to install cmake-gui for configuring and generating Makefiles
from CMakeLists.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[407]

The OpenRave project is based on CMake, so we need this tool for generating
Makefiles.

$ sudo apt-get install cmake-qt-gui

Then, we'll perform the following steps:

1.	 The first procedure of installing OpenRave is to generate the UNIX Makefiles
from CMakeLists.txt file.

2.	 Create a build folder inside the OpenRave cloned folder and open cmake-
gui for configuring and building Makefiles.

3.	 Browse the source code and the build folder, as shown in the following
screenshot, and after configuring uncheck support for Matlab and Octave
interfaces:

Figure 15: Configuring OpenRave with cmake-gui

4.	 Click on the Generate button to generate the Makefiles in the build folder.
5.	 Switch to the build folder and build the code and install using the

following command:
$ make

$ sudo make install

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[408]

6.	 After installing OpenRave, execute the following command to check
OpenRave is working:
$ openrave

If everything works fine, it will open a 3D view port.

Creating the COLLADA file of a robot to
work with OpenRave
In this section, we can discuss how to convert the robot URDF model to the collada
file (.dae) format to work with OpenRave. There is a ROS package called collada_
urdf, which contains nodes to convert URDF into collada files. The URDF file of
ABB-IRB 6640 model is on abb_irb6600_support/urdf folder named irb6640.
urdf. Copy this file into your working folder and run the following command for
the conversion:

Start roscore

$ roscore

Run the conversion command. We need to mention the URDF file and the output
DAE file:

$ rosrun collada_urdf urdf_to_collada irb6640.urdf irb6640.dae

In most of the cases, this command fails because most of the URDF file
contains STL meshes and it may not convert into DAE as we expected.
If the robot meshes in, in DAE format, it will work fine. If it happens,
follow this procedure:

•	 Install Meshlab tool for viewing and editing meshes using the
following command:
$ sudo apt-get install meshlab

•	 Open meshes present at abb_irb6600_support/meshes/
irb6640/visual in Meshlab and export the file into DAE
with the same name.

•	 Edit the irb6640.urdf file and change the visual meshes in
STL extension to DAE. This tool only process meshes for visual
purpose only, so we will get a final DAE model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[409]

We can open the irb6640.dae file using OpenRave with the following command:

$ openrave irb6640.dae

We will get the model in OpenRave as shown in the following screenshot:

Figure 16: Viewing the ABB 6640 model on OpenRave

We can check the link information of the robot using the following command:

$ /usr/bin/openrave-robot.py irb6640.dae --info links

We can get link info about the robot in the following format:

name index parents

base_link 0

base 1 base_link

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[410]

link_1 2 base_link

link_2 3 link_1

link_4 5 link_3

link_5 6 link_4

link_6 7 link_5

tool0 8 link_6

link_cylinder 9 link_1

link_piston 10 link_cylinder

name index parents

Generating the IKFast CPP file for the IRB
6640 robot
After getting the link info, we can start generating the IK solver CPP file for handling
the IK of this robot.

Use the following command to generate the IK solver for the IRB 6640 robot:

$ python `openrave-config --python-dir`/openravepy/_openravepy_/ikfast.
py --robot=irb6640.dae --iktype=transform6d --baselink=1 --eelink=8
--savefile=output_ikfast61.cpp

The preceding command generates a CPP file called output_ikfast61.cpp in which
the IK type is transform6d, the position of the baselink is 1, and the end effector
link is 8. We need to mention the robot DAE file as the robot argument.

We can test this file using the following procedure:

1.	 Download the IKFast demo code file from http://kaist-ros-pkg.
googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/
ikfastdemo.cpp.

2.	 Also, copy IKFast.h to the current folder. This file is present in the cloned
file of OpenRave. We will get this header from openrave/python.

3.	 After getting output_ikfast61.cpp, ikfastdemo.cpp, and ikfast.h on
the same folder, we need to edit ikfastdemo.cpp and change the following
portion. Here, we are commenting a header, and instead of that, we add the
CPP file that we have generated, that is output_ikfast61.cpp.
#define IK_VERSION 61
#include "output_ikfast61.cpp"
//#include "ikfast61.Transform6D.0_1_2_3_4_5.cpp"

www.it-ebooks.info

http://kaist-ros-pkg.googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/ikfastdemo.cpp
http://kaist-ros-pkg.googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/ikfastdemo.cpp
http://kaist-ros-pkg.googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/ikfastdemo.cpp
http://www.it-ebooks.info/

Chapter 11

[411]

4.	 Compile the edited file and check whether you are getting any errors. Here is
the command to compile and execute this code:
$ g++ ikfastdemo.cpp -lstdc++ -llapack -o compute -lrt

$./compute

If the demo is working, we can go to the next step. Now, we have successfully
created the IK solver CPP file; the next step is to create a MoveIt! IK Fast plugin
using this source code.

Creating the MoveIt! IKFast plugin
Creating a MoveIt! IKFast plugin is easy. There is no need to write code; everything
can be generated using some tools. The only thing we need to do is to create an
empty ROS package. The following are the procedures to create a plugin:

1.	 Switch to the ros_industrial workspace in the src folder:
$ cd ~/ros_industrial_ws/src

2.	 Create an empty package in which the name should contain the robot name
and model number. This package is going to convert into the final plugin
package using the plugin generation tool:
$ catkin_create_pkg abb_irb6640_moveit_plugins

3.	 Build the workspace using the catkin_make command.
4.	 After building the workspace, copy ikfast.h to abb_irb6640_moveit_

plugins/include

5.	 Switch to the folder where we created the output_ikfast61.cpp file and
the robot DAE file. Rename the output_ikfast61.cpp file to abb_irb6640_
manipulator_ikfast_solver.cpp. This filename consists of robot name,
model number, type of robot, and so on. This kind of naming is necessary for
the generating tool.

After performing these steps, open two terminals in the current path where the IK
solver CPP file exists. In one terminal, start the roscore command.

In the next terminal, we can enter the plugin creation command as follows:

$ rosrun moveit_ikfast create_ikfast_moveit_plugin.py abb_irb6640
manipulator abb_irb6640_moveit_plugins
abb_irb6640_manipulator_ikfast_solver.cpp

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[412]

The moveit_ikfast ROS package consists of the create_ikfast_moveit_plugin.
py script for the plugin generation. The first parameter is the robot name with the
model number, the second argument is the type of robot, the third argument is the
package name we have created earlier, and the fourth argument is the name of the
IK solver CPP file. This tool needs the abb_irb6640_moveit_config package for
its working. It will search this package using the given name of the robot. So, if the
name of the robot is wrong, the tool for raising an error will say that it couldn't find
the robot moveit package.

If the creation is successful, the messages in the following screenshot will be displayed:

Figure 17: Terminal messages of successful creation of IKFast plugin for MoveIt!

Note the possible errors that are discussed at https://github.com/
ros-planning/moveit_ikfast/pull/48.

Build ros_industrial_ws again, and we can see that a new plugin is building
properly. If it is built, we can replace the default KDL IK solver in the abb_irb6640_
moveit_config/config/ kinematics.yaml file to the new solver as follows:

manipulator:
 kinematics_solver:
 abb_irb6640_manipulator_kinematics/IKFastKinematicsPlugin
 kinematics_solver_search_resolution: 0.005
 kinematics_solver_timeout: 0.005
 kinematics_solver_attempts: 3

#manipulator:
kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin
kinematics_solver_search_resolution: 0.005

www.it-ebooks.info

https://github.com/ros-planning/moveit_ikfast/pull/48
https://github.com/ros-planning/moveit_ikfast/pull/48
http://www.it-ebooks.info/

Chapter 11

[413]

kinematics_solver_timeout: 0.005
kinematics_solver_attempts: 3

After changing this kinematics solver, we can start working on the robot using the
following command:

$ roslaunch abb_irb6640_moveit_config demo.launch

We will get the planning window with a new IK solver as follows:

Figure 18: Motion planning of ABB 6640 using custom IKFast Plugin

Questions
Here are some common questions that will help you better learn and understand
this chapter:

•	 What are the main benefits in using ROS-Industrial packages?
•	 What are the conventions followed by ROS-I in designing URDF for

industrial robots?
•	 What is the purpose of ROS's support packages?
•	 What is the purpose of ROS's driver packages?
•	 Why we need an IKFast plugin for our industrial robot rather than the

default KDL plugin?

www.it-ebooks.info

http://www.it-ebooks.info/

ROS for Industrial Robots

[414]

Summary
In this chapter, we have been discussing a new interface of ROS for industrial robots
called ROS-Industrial. We have seen the basic concepts in developing the industrial
packages and installed it on Ubuntu. After installation, we have seen the block
diagram of this stack and started discussing about developing the URDF model
for industrial robots and also about creating the MoveIt! interface for an industrial
robot. After discussing a lot on these topics, we have installed some industrial
robot packages of universal robots and ABB. We have learned the structure of the
MoveIt! package and then shifted to the ROS-Industrial support packages. We have
discussed in detail and switched onto concepts such as the industrial robot client and
about how to create MoveIt! IKFast plugin. In the end, we have used the developed
plugin in the ABB robot.

In the next chapter, we look at the troubleshooting and best practices in ROS
software development.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[415]

Troubleshooting and Best
Practices in ROS

In the previous chapter, we discussed about ROS-Industrial and worked with motion
planning of some industrial robots. In this chapter, we will discuss setting the ROS
development environment in Eclipse IDE, best practices in ROS, and troubleshooting
tips in ROS. This is the last chapter of this book, so before we start development in
ROS, it will be good if we know the standard methods for writing code using ROS.
Following are the topics that we are going to discuss in this chapter:

•	 Setting the ROS development environment in Eclipse IDE
•	 Best practices in ROS
•	 Best coding practices in ROS using C++
•	 Important troubleshooting tips in ROS

Before start coding in ROS, it will be good if we set ROS development environment
in an IDE. Setting an IDE for ROS is not mandatory but it can save developer time.
IDEs can provide auto completion features that can make programming easy. We
can use any editors such as Sublime and VIM or simply gedit for coding in ROS.
It will be good if you choose IDEs when you are planning a big project in ROS.

In this chapter, we will demonstrate how to set up the ROS development environment
in Eclipse IDE. Let's see how to download, install, and the setting of ROS on the latest
Eclipse IDE on Ubuntu 14.04.3.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[416]

Setting up Eclipse IDE on Ubuntu 14.04.3
Eclipse needs Java Runtime Environment (JRE) in order to work. The following
command can install JRE in Ubuntu:

$ sudo apt-get install default-jre

The first step is to download the latest eclipse IDE. We can get the latest version of
Eclipse at https://www.eclipse.org/downloads/?osType=linux.

Figure 1: Eclipse IDE download page

www.it-ebooks.info

https://www.eclipse.org/downloads/?osType=linux
http://www.it-ebooks.info/

Chapter 12

[417]

Download and extract the Eclipse IDE for C/C++ Developers that is marked on
the preceding image. Extract the Eclipse archive file using the following command.
Here we are using Eclipse mars for Linux 64 bit:

$ tar -xvzf eclipse-cpp-<name_version>-linux-gtk-x86_64.tar.gz

We will get a folder called eclipse after extraction. Copy the eclipse folder to the
/opt folder using the following command:

$ sudo cp -r eclipse /opt/

Create a desktop file for the eclipse for accessing from the Ubuntu search bar:

$ sudo nano /usr/share/applications/eclipse.desktop

Copy and paste the following content to this file. This file consists of the location of
the eclipse executable and its icon:

[Desktop Entry]
Version=4.4.1
Name=Eclipse Mars Java EE
GenericName=IDE
Comment=Eclipse IDE for Java C++ Developers
Exec=/opt/eclipse/eclipse
Terminal=false
Icon=/opt/eclipse/icon.xpm
Type=Application
Categories=Utility;Application;

After saving this file, you can access Eclipse from the search bar itself.

Setting ROS development environment in
Eclipse IDE
In this section, we can see the necessary settings that we need to do for compiling
ROS C++ nodes in Eclipse. There are several methods available to configure ROS
development environment in Eclipse. We are going to see one of the tested methods
that is used to set the ROS environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[418]

Global settings in Eclipse IDE
Following are the global settings that we have to do in Eclipse IDE. We don't need to
do these settings for each project. These are only one-time settings.

•	 Launch Eclipse IDE from the Ubuntu search bar.
•	 Go to Window | Preferences. from the Preferences Window, choose C/C++

| Build | Settings and then choose the Discovery tab. Select CDT GCC
Build Output Parser [Shared]. Select the Compiler command pattern to
(.*gcc)|(.*[gc]\+\+)|(.*clang). Also check the Project option that is
a part of Container to keep discovered entries. Click on the Apply button
and then on the OK button to confirm the settings. These settings enable
eclipse to find C++ 11 traits inside the package. The settings are shown in the
following screenshot:

Figure 2: Settings inside Eclipse Preferences

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[419]

•	 In the next step, click on the CDT GCC Built-in Compiler Settings [Shared
] option from the Discovery tab and change the entry under Command to get
compiler specs to ${COMMAND} -E -P -v -dD -std=c++11 "${INPUTS}".

Figure 3: Eclipse Compiler settings

ROS compile script for Eclipse IDE
Compiling ROS nodes needs the ROS environment. We have to source /opt/ros/
indigo/setup.bash to access the ROS environment in the current terminal. We can
work from the system terminal because we already added this line to the .bashrc
file, but when we work using Eclipse, we have to make a script to do this.

Create a file called eclipsemake in /usr/local/bin using the following command:

$ sudo nano /usr/local/bin/eclipsemake

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[420]

Enter the following commands in this file:

#!/bin/bash

source /opt/ros/indigo/setup.bash

make "$@" VERBOSE=1 -j8

Figure 4: Script to source the ROS environment

Create another file called eclipsemake-tests for testing the purpose on the same
path. Create a file using the following command:

$ sudo nano /usr/local/bin/eclipsemake-tests

Enter the following content into the file:

#!/bin/bash

source /opt/ros/indigo/setup.bash

make "$@" VERBOSE=1 -j8 run_tests

Figure 5: Script to source the ROS environment and running test

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[421]

If you are using Eclipse in Virtual Box, use -j1 instead of -j8.

After creating these two files, change the permission of these two using the
following command:

$ sudo chmod +x /usr/local/bin/eclipsemake*

Adding ROS Catkin package to Eclipse
After doing the preceding configuration, we can start adding ROS packages to
Eclipse IDE. Click on File Menu | Project... from the New Project wizard, select
C/C++ | MakeFile Project with Existing Code:

Figure 6: Open the ROS package from the catkin workspace

There was a hello_world ROS package in ros_catkin_ws; we are opening this
project. This package consists of two ROS nodes, talker.cpp and listener.cpp.
You can open any packages on your workspace.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[422]

Give a name for this project as hello_world and browse the ROS package from the
catkin workspace as shown in the following screenshot:

Figure 7: Giving project and location

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[423]

After opening the project, right-click on the project and go to Properties of the project.
From the Properties, click on the C/C++ Build option, and from the Builder Settings
tab, change the Build command to the custom command called eclipsemake. Browse
Build location of the ROS package by clicking on the File System button, as shown in
the following screenshot:

Figure 8: Eclipse build settings for ROS

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[424]

In C/C++ Build | Environment, add a new variable called VERBOSE and set the value
as 1, as shown in the following screenshot:

Figure 9: Setting VERBOSE in ROS project properties

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[425]

In C/C++ General, select Path and Symbols, choose the Symbols tab, and add a
symbol called __GXX_EXPERIMENTAL_CXX0X__ in GNU C++ with no values.
Click on Apply | OK to confirm the settings, as shown in the following screenshot:

Figure 10: Setting path and symbols for the ROS project

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[426]

In C/C++ General, choose Preprocessor Includes Paths, Macros etc. from the
Providers tab, check the options CDT GCC Build Output Parser [Shared] and GCC
Built-in Compiler Settings [Shared]. We should also verify the Use global provider
shared between projects option in both. Click on Apply and then click on OK, as
shown in the following screenshot:

Figure 11: Setting Pre-processor in the project properties

After doing these all settings, we should clean the project by right-clicking on the
Project | Clean Project. After cleaning, build the project (Ctrl+B).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[427]

Adding run configurations to run ROS nodes in
Eclipse
After building the project, we may can run the node from Eclipse or from a terminal.
For running the node inside Eclipse, right-click on the project and go to Run as |
Run Configurations.

Create a New Launch Configuration under C/C++ Application. In the Main tab,
browse the executable path in C/C++ Application. While we build the nodes in Eclipse,
we can see the executable generating path. Browse the path of the executables here.

Here we are creating a launcher for the talker node, as shown in the following
screenshot:

Figure 12: Creating the launcher for the talker node

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[428]

After the preceding settings, click on the Environment tab and insert two variables:

ROS_MASTER_URI : http://localhost:11311
ROS_ROOT : /opt/ros/indigo/share/ros

Figure 13: Setting the ROS environment variable inside the launcher configuration

After doing these setting, we can run the talker node by performing the
following steps:

•	 Start roscore in one terminal.
•	 Start the talker node by pressing the Run key on the Eclipse, as shown in

the following screenshot:

Figure 14: Launching the talker node

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[429]

We can see the output in the Eclipse console, as shown in the following screenshot:

Figure 15: Talker node running on the Eclipse terminal

In the next section, we will look at some of the best practices that should be followed
when working with ROS.

Best practices in ROS
This section gives you a brief idea of the best practices that can be followed when
we develop something with ROS. ROS provides detailed tutorials about its QA
(Quality Assurance) process. QA process provides a detailed developers guide
which mentions C++ and Python code style guides, naming conventions, and so on.

First we can discuss the ROS C++ coding styles.

ROS C++ coding style guide
ROS C++ nodes are following a coding style to make the code more readable,
debuggable, and maintainable. If the code is properly styled, it will be very easy
to re-use and contribute to the current code. In this section, we can quickly go
through some commonly used coding styles.

Standard naming conventions used in ROS
Here we are using the text Helloworld to demonstrate the naming patterns we are
using in ROS:

•	 HelloWorld: This name starts with an uppercase letter, and each new word
starts with an uppercase letter with no space or underscores.

•	 helloWorld: In this naming method, the first letter will be lowercase but new
words will be in uppercase letters without spaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[430]

•	 hello_world: This only contains lowercase letters. Words are separated
with underscores.

•	 HELLO_WORLD: All are uppercase letters. Words are separated by
an underscore.

The following are the naming conventions followed by each component in ROS:

•	 Packages, Topics/Services, Files, Libraries: These ROS components are
following the hello_world pattern.

•	 Classes/Types: These classes are following the HelloWorld kind of naming
conventions, for example, class ExampleClass.

•	 Functions/Methods: Functions follow helloWorld naming conventions and
function arguments are following the hello_world pattern, for example,
void exampleMethod(int sample_arg);.

•	 Variables: Generally, variables follow the hello_world pattern.
•	 Constants: Constants follow the HELLO_WORLD pattern.
•	 Member variables: The member variable inside a class follows the

hello_world pattern, with a trailing underscore added, for example,
int sample_int_.

•	 Global variables: Global variables follow hello_world, with a leading
g_, for example, int g_samplevar;.

•	 Namespace: This follows the hello_world naming pattern.

Code license agreement
We should add a license statement on the top of code. ROS is an open source software
framework and it's in the BSD license. The following is a code snippet of LICENSE,
which has to be inserted on the top of the code. You will get the license agreement
from any of the ROS nodes from the main repository. You can check the source code
from the following ROS tutorial at https://github.com/ros/ros_tutorials.

/***

 * Software License Agreement (BSD License)

 *

 * Copyright (c) 2012, Willow Garage, Inc.

 * All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

www.it-ebooks.info

https://github.com/ros/ros_tutorials
http://www.it-ebooks.info/

Chapter 12

[431]

 * are met:

***/

/* Author: Lentin Joseph */

For more information about various licensing schemes in ROS, refer to
http://wiki.ros.org/DevelopersGuide#Licensing.

ROS code formatting
One thing that needs to be taken care of while developing code is its formatting.
One of the basic things in formatting is that each code blocks in ROS separated
by two spaces. Given in the following is a code snippet showing the formatting:

if(a < b)
{
 // do stuff
}
else
{
 // do other stuff
}

Given in the following is an example code snippet in the ROS standard
formatting style:

#include <boost/tokenizer.hpp>
#include <moveit/macros/console_colors.h>
#include <moveit/move_group/node_name.h>

static const std::string ROBOT_DESCRIPTION = "robot_description";
// name of the robot description (a param name, so it can be changed
externally)

namespace move_group
{

class MoveGroupExe
{
public:

 MoveGroupExe(const planning_scene_monitor::PlanningSceneMonitorPtr&
psm, bool debug) :

www.it-ebooks.info

http://wiki.ros.org/DevelopersGuide#Licensing
http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[432]

 node_handle_("~")
 {
 // if the user wants to be able to disable execution of paths,
they can just set this ROS param to false
 bool allow_trajectory_execution;
 node_handle_.param("allow_trajectory_execution", allow_trajectory_
execution, true);

 context_.reset(new MoveGroupContext(psm, allow_trajectory_
execution, debug));

 // start the capabilities
 configureCapabilities();
 }

 ~MoveGroupExe()
 {

ROS code documentation
The developer should be documented inside the code and should provide API
documentation using tools such as Doxygen (www.doxygen.org/). The following is
the method to generate documentation using Doxygen for a ROS package:

http://wiki.ros.org/PackageDocumentation

Console output
Avoid printf / cout statements for printing debug messages inside ROS nodes.
We can use rosconsole (http://wiki.ros.org/rosconsole) for debugging, which
provides five verbosity levels.

For detailed coding styles, refer to http://wiki.ros.org/CppStyleGuide.

Best practices in the ROS package
Following are the key points while creating and maintaining a package:

•	 Version Control: ROS supports version control using Git, Mercurial, and
Subversion. We can host our code in GitHub and Bit bucket. Most of the
ROS packages are in GitHub.

www.it-ebooks.info

www.doxygen.org/
http://wiki.ros.org/PackageDocumentation
http://wiki.ros.org/rosconsole
http://wiki.ros.org/CppStyleGuide
http://www.it-ebooks.info/

Chapter 12

[433]

•	 Packaging: Inside a ROS catkin package, there will be a package.xml,
and this file should contain the author name, description, and license.
The following is an example of a package.xml:
<?xml version="1.0"?>
<package>
 <name>roscpp_tutorials</name>

 <version>0.6.1</version>

 <description>
 This package attempts to show the features of ROS step-by-
step,
 including using messages, servers, parameters, etc.
 </description>

 <maintainer email="dthomas@osrfoundation.org">Dirk Thomas</
maintainer>

 <license>BSD</license>

 <url type="website">http://www.ros.org/wiki/roscpp_tutorials</
url>
 <url type="bugtracker">https://github.com/ros/ros_tutorials/
issues</url>
 <url type="repository">https://github.com/ros/ros_tutorials</
url>
 <author>Morgan Quigley</author>

Important troubleshooting tips in ROS
We will look at some of the common issues when working with ROS as well as tips
to solve them.

One of the ROS inbuilt tools to find issues in a ROS system is roswtf. roswtf,
which checks issues in following areas of ROS:

•	 Environment variables and configuration issues
•	 It can scan a package or meta-package to report potential issues
•	 It can check a launch file for its potential issues
•	 It can check system issues and online graph issues
•	 It can report warnings and errors—warnings can be avoided but are not

necessary, errors should be addressed

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[434]

Usage of roswtf
We can check the issues inside a ROS package by simply entering the package
and entering roswtf. We can also check issues in the launch file using the
following command:

$ roswtf <file_name>.launch

We may get a report if there are issues associated with the package.

Figure 16: roswtf command output for a ROS package

The wiki page of roswtf is available at http://wiki.ros.org/roswtf.

The following are some of the common issues faced when working with ROS:

•	 Issue 1:
Error message: Failed to contact master at [localhost:11311]. Retrying...

Figure 17: Failed to contact master error message

Solution: This message comes when the ROS node executes without running
the roscore command.

www.it-ebooks.info

http://wiki.ros.org/roswtf
http://www.it-ebooks.info/

Chapter 12

[435]

•	 Issue 2:
Error message: Could not process inbound connection: topic types do
not match

Figure 18: Inbound connection warning messages

Solution: This happens when there is a topic message mismatch, when we
publish and subscribe a topic with different ROS message type.

•	 Issue 3:
Error message: Couldn't find executables

Figure 19: Couldn't fine executables

Solution: One of the reasons for this error is if we are not including
catkin_package() inside CMakeLists.txt. In this situation, the
executable will not build on the expected location, so rosrun will not
find the executable. We can generate this error by commenting this line
in CMakeLists.txt, as shown in the following:

Figure 20: CMakeLists.txt without catkin_package()

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting and Best Practices in ROS

[436]

•	 Issue 4:
Error message: roscore command is not working

Figure 21: roscore command is not running properly

Solution: One of the reasons that can hang the roscore command is the
definition of ROS_IP and ROS_MASTER_URI. When we run ROS in multiple
computers, each computer has to assign its own IP as ROS_IP, and ROS_
MASTER_URI as the IP of the computer, which is running roscore. If this IP
is incorrect, roscore will not run. This error can be generated by assigning
an incorrect IP on these variables.

Figure 22: Incorrect ROS_MASTER_URI

•	 Issue 5:
Error message: Compiling and Linking Errors

Figure 23: Compiling and linking errors

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[437]

Solution: If the CMakeLists.txt has no dependencies, which are required to
compile the ROS nodes, it can show this error. We have to check the package
dependencies in package.xml and CMakeLists.txt. Here we are generating
this error by commenting roscpp dependencies.

Figure 24: CMakeLists.txt without package dependency

Some of the troubleshooting tips from ROS wiki are given at http://wiki.ros.org/
ROS/Troubleshooting.

Questions
1.	 Why do we need an IDE to work with ROS?
2.	 What are the common naming conventions used in ROS?
3.	 Why is documentation important when we create a package?
4.	 What is the use of the roswtf command?

Summary
In this chapter, we discussed working with an Eclipse IDE and setting the ROS
development environment inside IDE. After setting ROS in Eclipse, we discussed
some of the best practices in ROS that consist of naming conventions, coding styles,
best practices while creating a ROS package, and so on. After discussing best
practices, we switched to ROS troubleshooting. In the troubleshooting section, we
discussed various troubleshooting tips which can occur when we work with ROS.

www.it-ebooks.info

http://wiki.ros.org/ROS/Troubleshooting
http://wiki.ros.org/ROS/Troubleshooting
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[439]

Index
Symbol
3D sensor data

visualizing 97

A
ABB-IRB6640 robot

MoveIt! IK-Fast plugin, creating for 404
ABB robot model

visualizing, in RViz 398, 399
Accelerometer ADXL 335

interfacing 221-223
Adaptive Monte Carlo Localization

(AMCL)
about 3, 116, 306
defining 317-319
used, for implementing autonomous

navigation 151
Allowed Collision Matrix (ACM) 122, 342
AMCL launch file

creating 152-154
AMCL ROS package

URL 317
Apache 2.0 376
Arduino 204, 205
Arduino Publisher

example 213-217
Arduino Subscriber

example 213-217
arm

joint position controllers,
interfacing to 102, 103

joint state controllers,
interfacing to 102, 103

ASIMOV Robotics
URL 366

Asus Xtion Pro
interfacing, in ROS 265-268

autonomous navigation
implementing, AMCL used 151
implementing, static map used 151

B
basic real-time Joint controller,

writing in ROS
about 184
CMakeLists.txt, updating 188
controller, building 188
controller configuration file, writing 189
controller header file, creating 184, 185
controller package, creating 184
controller, running with PR2

simulation 190
controller source file 187
controller source file, creating 185
launch file, writing for controller 189
package.xml, updating 188
plugin description file, creating 188

basic world plugin
creating 173-176

best practices, in ROS package
about 432
packaging 433
version control 432

blink LED
interfacing 218-220

bloom
reference link 51

www.it-ebooks.info

http://www.it-ebooks.info/

[440]

Boost library 46
BSD (legacy) 376
button handling

running, in Odroid-C1 246

C
calculator application

plugins, creating for 158, 159
camera_calibration package 252
camera_calibration_parses package 252
camera_info_manager package 252
Chefbot

defining 290-292
Navigation stack, configuring for 306

Chefbot firmware
flashing, Energia IDE used 293

Chefbot interface packages
defining, on ROS 296-302
files and folders 296

Chefbot simulation
model files, adding in Gazebo model

folder 331, 332
room, building in Gazebo 329, 330
working with 329

CMake (Cross Platform Make) 26
C++ nodes

used, for running robot stand alone
launch file 306

COLLADA file of robot
creating, for OpenRave 408, 409

collision checking, MoveIt!
about 122
collision object, adding 342-346
collision object, removing from

planning scene 346
performing 342
self collision, checking 347, 348

collision properties
adding, to URDF model 70

commands, ROS packages
catkin_create_pkg 8
catkin_make 8
rosdep 8
rospack 8

COOL arm robot
about 367
controller package, creating 368-372
MoveIt! configuration 372, 373

custom messages
creating, in ROS package 34-37

cv_bridge
used, for converting between ROS

and OpenCV 259
used, for converting OpenCV-ROS

images 262, 263

D
dependencies, ROS package

actionlib 28
actionlib_msgs 28
roscpp 27
std_msgs 27

Depth Image Occupancy Map Updater
plugin 351

depth_image_proc package 253
depthimage_to_laserscan package

about 270
reference link 270

differential drive mobile robot
robot model, creating for 82-86

differential drive robot
SLAM, running on 148-151

differential wheeled robot
simulating, in Gazebo 106, 107

Digital Motion Processer (DMP) 292
disk dump (dd) 234
Displays panel, RViz tool

about 193
reference link 193

DIY mobile robot
defining 290-292
hardware configuration 290-292

Dockable panels, RViz tool 193
Do It Yourself (DIY) 290
dyamic_reconfigure package

reference link 21
dynamic link libraries (.DLL) 158
Dynamixel

about 246
URL 247

www.it-ebooks.info

http://www.it-ebooks.info/

[441]

Dynamixel actuators
interfacing, to ROS 246

Dynamixel-ROS interface
about 366
dynamixel_controllers 366
dynamixel_driver 366
dynamixel_msgs 366

Dynamixel Servos
about 364, 365
ROS controllers 364
URL 366

E
Eclipse

ROS Catkin package, adding to 421-426
run configurations, adding to 427-429

Eclipse IDE
global settings 418, 419
ROS development environment,

setting in 417
setting, on Ubuntu 14.04.3 416, 417
URL, for downloading 416

edge detected image
visualizing 264

edges
finding, on image 263

encoder ticks
odometry, computing from 302-304

Energia IDE
URL 293
used, for flashing Chefbot firmware 293

Ethernet hotspot
configuring, for Odroid-C1 236, 237
configuring, for Raspberry Pi 2 236, 237

F
Fast SLAM 144
FCL (Flexible Collision Library)

reference 342
filtered_cloud_topic parameter 352
first URDF model

creating 64
folders, ROS packages

action 8
CMakeLists.txt 8
config 8

include/package_name 8
launch 8
msg 8
package.xml 8
scripts 8
src 8
srv 8

G
Gazebo

about 89
differential wheeled robot,

simulating in 106, 107
laser scanner, adding to 107-109
mobile robot, adding in 109, 110
robot joints, moving with ROS

controllers 99
ROS controller, interacting with 100-102
ROS controllers, launching with 103, 104
URL 89
used, for simulating robotic arm 90

gazebo_models
reference link 89

gazebo-msgs package 90
Gazebo plugins

about 172
model plugin 172
sensor plugin 172
system plugin 172
visual plugin 172
world plugin 172

gazebo-plugins package 90
gazebo-ros-control package 90
gazebo_ros_pkgs package 90
global settings, Eclipse IDE 418, 419
gmapping

Launch file, creating for 146
reference link 146

gmapping node
configuring 307, 308
URL 307

grasping
with MoveIt! 355-357

grasp object
creating, in MoveIt! 360-363

www.it-ebooks.info

http://www.it-ebooks.info/

[442]

grasp table
creating, in MoveIt! 360-363

H
Hard kernel 231
hardware interfaces, ROS

Joint Command Interfaces 100
Joint State Interfaces 100

Hokuyo Laser
interfacing, in ROS 273-275

I
IK-Fast CPP file

generating, for IRB 6640 robot 410
IK Fast Module 405
image-common meta package

about 252
camera_calibration_parses 252
camera_info_manager 252
image_transport 252
polled_camera 252

image_geometry package 250
image-pipeline meta package

about 252
camera_calibration 252
depth_image_proc 253
image_proc 253
image_rotate 253
image_view 253
stereo_image_proc 253

image processing, with OpenCV 260
image processing, with ROS 260
image_proc package 253
image_rotate package 253
images

edges, finding on 263
publishing, image_transport used 261
subscribing, image_transport used 261

image_transport package
about 252
reference link 252

image-transport-plugins 253
image_view package 253
industrial-core stack

industrial-core 378

industrial_deprecated 378
industrial_msgs 378
industrial_robot_client 378
industrial_robot_simulator 378
industrial_trajectory_filters 378
simple_message 378

industrial robot
MoveIt! configuration, creating for 382-385
URDF, creating for 380

industrial robot client nodes
designing 400, 401

installation instruction, ROS distribution
reference link 22

installation
MoveIt! 116
ROS-Industrial packages 377, 378
ROS Navigation stack 145

installation, rosserial packages
on Ubuntu 14.04/15.04 208-211

installation, Wiring Pi
on Odroid-C1 238
on Raspberry Pi 2 239

Intel Real Sense camera
interfacing, on ROS 268-270

interfacing packages, OpenCV
cv_bridge 250
image_geometry 250

interfacing packages, PCL
about 251
pcl_conversions 251
pcl_msgs 251
pcl_ros 251
pointcloud_to_laserscan 251

IRB 6640 robot
IK-Fast CPP file, generating for 410

J
Java Runtime Environment (JRE) 416
joint position controllers

interfacing, to arm 102, 103
joint state controllers

interfacing, to arm 102, 103
joint state publisher

about 80
adding, in launch file 110
reference link 81

www.it-ebooks.info

http://www.it-ebooks.info/

[443]

K
Kinect

about 141
interfacing, in ROS 265-268

Kinematic and Dynamics Library (KDL) 61
kinematics handling, MoveIt! 121

L
laser-pipeline package

about 253
laser_assembler 253
laser_filter 253
laser_filters 253
laser_geometry 253

laser scanner
adding, to Gazebo 107-109

laser scans
point cloud, converting to 270-273

launch file
creating 48, 50
creating, for gmapping 146
creating, for nodelets 170-172
joint state publishers, adding in 110

LED blink
running, in Odroid-C1 246
running, in Raspberry Pi 2 246

Light Detection and Ranging (LIDAR) 275
Linux

OS Image, installing in 234

M
map

building, SLAM used 146
MeshLab

URL 381
methodology, in building RViz plugin

about 194
CMakeLists.txt, editing 198, 199
export tags, adding in package.xml 198
plugin, building 199, 200
plugin description file, creating 198
plugin, loading 199, 200
RViz plugin definition, creating 196, 197
RViz plugin header file, creating 195, 196
RViz plugin package, creating 195

mobile robot
moving, in Gazebo 109, 110

model plugin 172
motion planning, MoveIt!

about 118, 119
custom path, MoveIt! C++ APIs

used 340, 341
random path, MoveIt! C++ APIs

used 338, 339
with move_group C++ interface 338

motion planning request adapters,
MoveIt! 120

motor velocities
computing, from ROS twist

message 305, 306
move_base node

about 143
packages 143, 144

move_group node 117, 118
MoveIt!

about 115
installing 116
URL 115

MoveIt! architecture
about 116
collision checking 121, 122
kinematics handling 121
motion planning 118, 119
motion planning request adapters 120
move_group node 117, 118
planning scene 120
reference link 116

MoveIt! configuration
creating, for Industrial robot 382-385
configuration files, updating 385, 386
testing 387

MoveIt! configuration, of ABB robots
working with 394-396

Moveit! configuration, of universal
robotic arm 390-393

MoveIt! configuration package
used, for motion planning of robot 130

MoveIt! configuration package, generating
with Setup Assistant tool

about 122
configuration files, generating 129
passive joints, adding 128

www.it-ebooks.info

http://www.it-ebooks.info/

[444]

planning groups, adding 126
robot end effector, setting up 128
robot poses, adding 127
Self-Collision matrix, generating 124, 125
Setup Assistant tool, launching 123
virtual joints, adding 125

MoveIt! configuration package,
interfacing to Gazebo

about 134
controller configuration file, creating for

Gazebo 136, 137
controller configuration file, writing for

MoveIt! 134, 135
controller launch files, creating 135, 136
Gazebo- MoveIt! interface,

debugging 139, 140
launch file, creating for Gazebo trajectory

controllers 137, 138
MoveIt! IK-Fast plugin

about 404
creating 411, 412
creating, for ABB-IRB6640 robot 404
developing, prerequisites 404
installing 405

MoveIt! Layer 379
MoveIt! package 342
MPU 6050 IMU 292

N
Navigation packages

Collision Recovery behaviour 145
Command Velocity, sending 145
goal, sending 145
localizing, on map 144
path planning, sending 145
working with 142

Navigation stack
about 115, 140
base_controller 142
configuring, for Chefbot 306
hardware requisites 141, 142
goal, sending to 333-336
odometry data 142
sensor source 142
sensor transforms/tf 142
used, for avoiding obstacle 328

working with 144
Navigation stack packages

base local planner parameter,
configuring 312

common configuration 310, 311
configuring 308, 309
DWA local planner parameters,

configuring 313
global costmap parameters,

 configuring 311
local costmap parameters, configuring 312
move_base node parameters,

configuring 314-316
parameters 316

nodelet manager 168
nodelets

about 165
building 168-170
CMakeLists.txt, editing 168
creating 165
explanation, of hello_world.cpp 166, 167
export, adding in package.xml 168
hello_world.cpp nodelet, creating 166
launch file, creating for 170-172
package, creating for 166
plugin description file, creating 167
running 168-170

Non-Arduino boards
interfacing, to ROS 230

O
OctoMap

about 342
URL 342

odometry
computing, from encoder ticks 302-304

Odometry Publisher
example 228, 229

Odroid
webcam, streaming from 285-287

Odroid-C1
Button handling, running in 246
Ethernet hotspot, configuring for 236
LED Blink, running in 246
ROS, setting on 230-233
Wiring Pi, installing on 238

www.it-ebooks.info

http://www.it-ebooks.info/

[445]

Odroid-C1 connection, from PC 235
official OS images, Raspberry Pi 2

reference link 233
OMPL

URL 119
OpenCV

about 249, 250
interfacing packages 250
URL 250
used, for image processing 260

OpenCV-ROS images
converting, cv_bridge used 262, 263

OpenRave
about 405
COLLADA file of robot, creating

for 408, 409
installing, on Ubuntu 14.04.3 406, 407

OpenSLAM
URL 146

Open Source Computer Vision. See
OpenCV

operating system, supported on Odroid-C1
reference link 233

OS Image
installing, in Linux 234
installing, in Windows 233, 234

P
package

creating, for nodelets 166
packages, move_base node

amcl 144
clear-costmap-recovery 143
costmap-2D 144
global-planner 143
gmapping 144
local-planner 143
map-server 144
rotate-recovery 143

packet representation, rosserial protocol
Checksum of Topic ID and data 206
Checksum over message length 206
Message Length 206
Serialized Message data 206
Sync Flag 206

Sync Flag/Protocol version 206
Topic ID 206

PCD file
point cloud data, writing to 282
point cloud, reading from 282-285

PCL
about 249
interfacing packages 251

pcl_conversions package 251
pcl_msgs package 251
pcl_ros package 251
perception

working with, MoveIt! and Gazebo
used 349-354

perception-pcl stack 253
physical properties

adding, to URDF model 70
pick and place

performing, in Gazebo 363, 364
planning request adapters, MoveIt!

AddTimeParameterization 120
FixStartStateBounds 120
FixStartStateCollision 120
FixStartStatePathConstraints 120
FixWorkspaceBounds 120

planning scene, MoveIt!
about 120
reference link 120

pluginlib
about 158
used, for creating plugins for calculator

application 158, 159
pluginlib_calculator package

calculator_base header file, creating 160
calculator_plugins header file,

creating 160, 161
CMakeLists.txt file, editing 164
list of plugins, querying in package 164
plugin description file, creating 162, 163
plugin loader, implementing with

calculator_loader.cpp 162
plugin loader, running 164
plugin, registering with ROS package

system 163
plugins, exporting with calculator_plugins.

cpp 161, 162
working with 159

www.it-ebooks.info

http://www.it-ebooks.info/

[446]

plugins
about 158
calculator application, creating for 158, 159

point cloud
converting, to laser scans 270-273
processing 280, 281
publishing 278-285
reading, from PCD file 282-285
subscribing 280, 281

point cloud data
working with 278
writing, to PCD file 282

PointCloud Occupancy Map Updater
plugin 351

pointcloud_to_laserscan package
about 270
reference link 270

polled_camera package 252
Pololu DC Gear motor with Quadrature

encoder
URL 291

Pololu motor drivers
URL 291

pr2_controller_interface package
about 181
Controller, stopping 183
initialization of Controller 182
ROS Controller, starting 182
ROS Controller, updating 183

pr2_controller_manager package 183
pr2_mechanism packages 181
pr2_mechanism stacks

pr2_controller_interface 180
pr2_controller_manager 180
pr2_hardware_interface 180
pr2_mechanism 180
pr2_mechanism_model 180
pr2_mechanism_msgs 180

prerequisites, ROS
about 22
ROS Jade/Indigo desktop full

installation 22
Ubuntu 14.04.2 LTS / Ubuntu 15.04 22

probabilistic robotics
URL 317

Push Button
interfacing 218-220

Q
Qt 194

R
Raspberry Pi

reference link 231
Raspberry Pi 2

Ethernet hotspot, configuring for 236, 237
LED Blink, running in 246
ROS, setting on 230-233
Wiring Pi, installing on 239

Raspberry Pi 2 connection, from PC 235
raw image

visualizing 264
release

ROS package, preparing for 52
robot

components 291
robot 3D model

pan 69
tilt joints 69
visualizing, in RViz 68

robot arm specification, of seven DOF arm
about 75
joints 75

robot description
creating, for seven DOF robot

manipulator 74
ROS package, creating for 64

robotic arm, simulating
Gazebo used 90
ROS used 90
Xtion Pro used 96

robotic arm simulation model, for Gazebo
3D vision, adding to Gazebo 94, 95
about 91, 92
colors, adding to Gazebo robot model 93
gazebo_ros_plugin, adding 94
textures, adding to Gazebo robot model 93
transmission tags, adding 93

robot joints
moving 105
moving, ROS controllers used 99

robot model
creating, for differential drive mobile

 robot 82-85

www.it-ebooks.info

http://www.it-ebooks.info/

[447]

robot modeling, with URDF
about 61
gazebo tag 64
joint tag 62
link tag 61
robot tag 63

robot modeling, with xacro
about 71
macros, using 73
math expression, using 73
programmability 72
properties, using 72
simplify URDF 71

Robot Operating System. See ROS
robot pick and place task

working with, MoveIt! used 358, 359
robot stand alone launch file

running, C++ nodes used 306
robot state publisher 81
robot, with ROS navigation package

requirements 290-292
ROS

about 2
Asus Xtion Pro, interfacing in 265-268
benefits 2-4
best practices 429
Dynamixel Actuators, interfacing to 246
Hokuyo Laser, interfacing in 273-275
Intel Real Sense camera, interfacing

on 268-270
Kinect, interfacing in 265-268
limitations 4, 5
Non-Arduino boards, interfacing to 230
prerequisites 22
setting, on Odroid-C1 230-233
setting, on Raspberry Pi2 230-233
troubleshooting tips 433
USB webcams, interfacing in 254-256
used, for image processing 260
used, for simulating robotic arm 90
Velodyne LIDAR, interfacing in 275-277
webcam, starting from Odroid 285-287

ROS action client
building 46-48
creating 46

ROS actionlib
applications 50, 51

feedback 42
goal 42
result 42
working with 42, 43

ROS action server
building 46-48
creating 43-45

rosbag command
commands 18
reference links 19

ROS bags 12, 18
rosbash commands

reference link 8
rorun 8
roscd 8
roscp 8
rosed 8

ROS Camera Calibration
working with 256-258

ROS Catkin package
adding, to Eclipse 421-426

ROS C++ coding style guide
about 429
code documentation 432
code formatting 431
code license agreement 430
console output 432
standard naming conventions 429, 430

ros_comm
reference link 12

ROS Community Level
about 22
blog 22
bug ticket system 22
distributions 22
mailing lists 22
repositories 22
ROS Answers 22
ROS Wiki 22

ROS compile script, for Eclipse IDE 419-421
ROS Computation Graph Level

about 12
bags 14
master 13
messages 14
nodes 13
parameter server 13

www.it-ebooks.info

http://www.it-ebooks.info/

[448]

services 14
topics 14

ROS controller
interacting, with Gazebo 100, 102
joint_effort_controller 100
joint_position_controller 100
joint_state_controller 100
launching, with Gazebo 103, 104
used, for moving robot joints 99

ROS controller, for PR2 robot
reference link 179

ros_control packages
about 99, 191
controller_interface 99
controller_manager 99
controller_manager_msgs 99
control_toolbox 99
hardware_interface 100
reference link 191
transmission_interface 100

roscore command output
checking 25, 26

ROS development environment
setting, in Eclipse IDE 417

rosdistro
reference link 53

ROS file system level
about 5
messages 6
meta packages 6
meta packages manifest 6
package manifest 6
packages 6
repositories 6
services 6

ROS Graph layer 13
ROS GUI layer 379
ROS-I Application Layer 379
ROS-I Controller Layer 380
ROS-I GUI 379
ROS-I Interface Layer 380
ROS-Industrial

benefits 377
goals 376
history 377

ROS-Industrial packages
about 376
block diagram 378
installing 377, 378
installing, of universal robotic arm 387, 388

ROS-Industrial robot driver
package 401-403

ROS-Industrial robot support
packages 396-398

ROS interface
installing, of universal robots 388-390

ROS-I- Simple message Layer 380
ROS-I wiki page

URL 378
roslaunch 48
ROS Layer 379
ROS Master

about 12, 19, 20
running 23-25

ROS messages 10-16
ROS meta packages 9
rosmsg

parameters 16
ROS Navigation stack

installing 145
rosnode

usage 15
ROS Node APIs, in Arduino 211-213
ROS nodes

about 12-16
building 32-34
creating 28-32

ROS package
about 7
best practices 432
commands 8
creating 26, 27, 260
creating, for robot description 64
custom messages, creating in 34-37
dependencies 27, 28
folders 8
maintaining 51
preparing, for release 52
releasing 51-55
service definitions, creating in 34-37
URL, for source code 51

www.it-ebooks.info

http://www.it-ebooks.info/

[449]

Wiki page, creating for 55, 57
ROS packages, for robot modeling

about 60
joint_state_publisher 60
kdl_parser 61
robot_model 60
robot_state_publisher 61
urdf 60
xacro 61

ROS Parameter
using 20, 21

ROS Parameter Server
running 23, 24

rosparam tool
commands 21

ROS perception
installing 252

ROS perception stack
image-common 252
image-pipeline 252
image-transport-plugins 253
laser-pipeline 253
perception-pcl 253
vision-opencv 253

ROS project
references 2

rosserial 206
rosserial_client libraries

rosserial_arduino 207
rosserial_embeddedlinux 207
rosserial_java 207
rosserial_python 207
rosserial_server 207
rosserial_windows 207

rosserial packages
installing, on Ubuntu 14.04/15.04 208-211

rosserial_python package
reference link 215

ROS services
about 12-18
applications 50, 51
working with 37-42

rosservice tool
usage 18

ROS Teleop node
adding 111, 112

ROS topics
about 12, 16
applications 50, 51
syntax 17
working with 28

ROS Visualization Tool. See RViz tool
roswtf

reference link 434
using 434-436

rqt_bag
reference link 19

rqt_graph tool
reference link 14

run configurations
adding, to Eclipse 427-429

RViz
ABB robot model, visualizing in 398, 399
robot 3D model, visualizing in 68

RViz Motion Planning plugin 345
RViz plugin

writing, for teleoperation 194
RViz tool

about 192
Displays panels 193
Dockable panels 193
Time panel 193
Views panel 193

RViz toolbar
about 193
reference link 193

RViz, with Navigation stack
2D Nav Goal button 322
2D Pose Estimate button 320
defining 320
global and local cost map,

displaying 325, 326
global plan, displaying 326
goal 327
local plan, displaying 326
particle cloud, visualizing 321
planner plan, displaying 326
robot footprint, displaying 324
static map, displaying 323

www.it-ebooks.info

http://www.it-ebooks.info/

[450]

S
Semantic Description Format (SDF) 329
sensor plugin 172
serial communication (UART)

used, for sending data from LaunchPad
to PC 294

used, for sending data from PC to
Launchpad 295

services definitions
creating, in ROS package 34-37

seven DOF Dynamixel based robotic arm
interfacing, to ROS MoveIt! 366, 367

seven DOF arm, viewing in RViz
about 79
join state publisher 80
robot state publisher 81

seven DOF robot manipulator
robot description, creating for 74

shared objects (.so) 158
Simultaneous Localization And Mapping

(SLAM)
about 3, 116
running, on differential drive

robot 148-151
used, for building map 146

Southwest Research Institute (SwRI)
URL 377

static map
used, for implementing autonomous

navigation 151
stereo_image_proc package 253
support queries, ROS

reference link 4
system plugins 172

T
TCPROS 17
teleoperation

RViz plugin, writing for 194
time panel, RViz tool 193
Tiva C Launchpad Controller

URL 291
troubleshooting tips, ROS

about 433
reference link 437

TTL (Transistor-Transistor Logic) 364

U
Ubuntu 14.04.3

Eclipse IDE, setting on 416, 417
OpenRave, installing on 406, 407

Ubuntu 14.04/15.04
rosserial packages, installing on 208-211

UDPROS 17
ultrasonic distance sensor 224
ultrasonic range sensor

using 225-227
Unified Robot Description Format

(URDF)
about 60
creating, for Industrial robot 380
Xacro, converting to 73

universal robotic arm
ROS-Industrial packages, installing

of 387, 388
universal robots

ROS interface, installing of 388-390
universal robot stack, packages

ur10_moveit_config/ur5_moveit_config
389

ur_bringup 388
ur_description 388
ur_driver 388
ur_gazebo 389
ur_kinematics 389
ur_msgs 389

URDF design, followed by ROS-I
Collision-Aware 381
Standards Frames 381
URDF Joint conventions 381
Xacro Macros 381

URDF file 66-68
URDF model

collision properties, adding to 70
physical properties, adding to 70

URDF tags
reference link 64

USB webcams
interfacing, in ROS 254-256

www.it-ebooks.info

http://www.it-ebooks.info/

[451]

V
Velodyne LIDAR

interfacing, in ROS 275, 276
Version Control System (VCS) 6
view panel, RViz tool 193
vision-opencv stack 253
visual plugin 172

W
webcam

streaming, from Odroid 285-287
Wiki page

creating, for ROS package 55-57
Win32diskimage tool

about 233
reference link 233

Windows
OS Image, installing in 233, 234

Wiring Pi, installing
on Odroid-C1 238
on Raspberry Pi 2 239

world plugin 172

X
Xacro

converting, to URDF 73
xacro model, of seven-DOF arm

about 75
constants, using 76
macros, using 76
meshes, using in links 77
other xacro files, using 77
robot gripper 78

XMLRPC (XML Remote Procedure Call) 19
Xtion Pro

robotic arm, simulating with 96

Y
Yaskawa Motoman Robotics

URL 377
YUV

URL 255

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Mastering ROS for Robotics Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Learning Robotics Using Python
ISBN: 978-1-78328-753-6 Paperback: 330 pages

Design, simulate, program, and prototype an
interactive autonomous mobile robot from scratch
with the help of Python, ROS, and Open-CV!

1.	 Design, simulate, build and program an
interactive autonomous mobile robot.

2.	 Program Robot Operating System using
Python.

3.	 Get a grip on the hands-on guide to robotics for
learning various robotics concepts and build an
advanced robot from scratch.

Raspberry Pi Robotics Projects
Second Edition
ISBN: 978-1-78528-014-6 Paperback: 300 pages

Get the most out of Raspberry Pi to build enthralling
robotics projects

1.	 Make your projects talk and understand speech
with the Raspberry Pi.

2.	 Use a standard webcam to make your projects
see and enhance vision capabilities.

3.	 Full of simple, easy-to-understand instructions
to bring your Raspberry Pi online to develop
robotics projects.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Raspberry Pi Robotics Essentials
ISBN: 978-1-78528-484-7 Paperback: 158 pages

Harness the power of Raspberry Pi with Six Degrees of
Freedom (6DoF) to create an amazing walking robot

1.	 Construct a two-legged robot that can walk,
turn, and dance.

2.	 Add vision and sensors to your robot so that it
can "see" the environment and avoid barriers.

3.	 A fast-paced, practical guide with plenty of
screenshots to develop a fully functional robot.

Mastering BeagleBone Robotics
ISBN: 978-1-78398-890-7 Paperback: 234 pages

Master the power of the BeagleBone Black to
maximize your robot-building skills and create
awesome projects

1.	 Create complex robots to explore land, sea,
and the skies.

2.	 Control your robots through a wireless
interface, or make them autonomous and
self-directed.

3.	 This is a step-by-step guide to advancing
your robotics skills through the power of the
BeagleBone.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to ROS and Its Package Management
	Why should we learn ROS?
	Why we prefer ROS for robots
	Why some do not prefer ROS for robots
	Understanding the ROS file system level
	ROS packages
	ROS meta packages
	ROS messages
	The ROS services

	Understanding the ROS computation graph level
	Understanding ROS nodes
	ROS messages
	ROS topics
	ROS services
	ROS bags
	Understanding ROS Master
	Using the ROS parameter

	Understanding ROS community level
	What are the prerequisites to start with ROS?
	Running ROS Master and ROS parameter server
	Checking the roscore command output

	Creating a ROS package
	Working with ROS topics
	Creating ROS nodes
	Building the nodes

	Adding custom msg and srv files
	Working with ROS services
	Working with ROS actionlib
	Building the ROS action server and client

	Creating launch files
	Applications of topics, services, and actionlib
	Maintaining the ROS package
	Releasing your ROS package
	Preparing the ROS package for the release
	Releasing our package
	Creating a Wiki page for your ROS package

	Questions
	Summary

	Chapter 2: Working with 3D Robot Modeling in ROS
	ROS packages for robot modeling
	Understanding robot modeling using URDF
	Creating the ROS package for the robot description
	Creating our first URDF model
	Explaining the URDF file
	Visualizing the robot 3D model in Rviz
	Interacting with pan and tilt joints

	Adding physical and collision properties to a URDF model
	Understanding robot modeling using xacro
	Using properties
	Using the math expression
	Using macros

	Conversion of xacro to URDF
	Creating the robot description for a seven DOF robot manipulator
	Arm specification
	Type of joints

	Explaining the xacro model of seven
DOF arm
	Using constants
	Using macros
	Including other xacro files
	Using meshes in the link
	Working with the robot gripper
	Viewing the seven DOF arm in Rviz
	Understanding joint state publisher
	Understanding the robot state publisher

	Creating a robot model for the differential drive mobile robot
	Questions
	Summary

	Chapter 3: Simulating Robots Using ROS and Gazebo
	Simulating the robotic arm using Gazebo and ROS
	The Robotic arm simulation model for Gazebo
	Adding colors and textures to the Gazebo robot model
	Adding transmission tags to actuate the model
	Adding the gazebo_ros_control plugin
	Adding a 3D vision sensor to Gazebo

	Simulating the robotic arm with Xtion Pro
	Visualizing the 3D sensor data

	Moving robot joints using ROS controllers in Gazebo
	Understanding the ros_control packages
	Different types of ROS controllers and hardware interfaces
	How the ROS controller interacts with Gazebo
	Interfacing joint state controllers and joint position controllers to the arm
	Launching the ROS controllers with Gazebo
	Moving the robot joints

	Simulating a differential wheeled robot in Gazebo
	Adding the laser scanner to Gazebo
	Moving the mobile robot in Gazebo
	Adding joint state publishers in the launch file

	Adding the ROS teleop node

	Questions
	Summary

	Chapter 4: Using the ROS MoveIt!
and Navigation Stack
	Installing MoveIt!
	MoveIt! architecture
	The move_group node
	Motion planning using MoveIt!
	Motion planning request adapters
	MoveIt! planning scene
	MoveIt! kinematics handling
	MoveIt! collision checking

	Generating MoveIt! configuration package using Setup Assistant tool
	Step 1 – Launching the Setup Assistant tool
	Step 2 – Generating the Self-Collision matrix
	Step 3 – Adding virtual joints
	Step 4 – Adding planning groups
	Step 5 – Adding the robot poses
	Step 6 – Setup the robot end effector
	Step 7 – Adding passive joints
	Step 8 – Generating configuration files

	Motion planning of robot in Rviz using MoveIt! configuration package
	Using the Rviz MotionPlanning plugin
	Interfacing the MoveIt! configuration package to Gazebo
	Step 1 – Writing the controller configuration file for MoveIt!
	Step 2 – Creating the controller launch files
	Step 3 – Creating the controller configuration file for Gazebo
	Step 4 – Creating the launch file for Gazebo trajectory controllers
	Step 5 – Debugging the Gazebo- MoveIt! interface

	Understanding ROS Navigation stack
	ROS Navigation hardware requirements
	Working with Navigation packages
	Understanding the move_base node
	Working of Navigation stack
	Localizing on the map
	Sending a goal and path planning
	Collision recovery behavior
	Sending the command velocity

	Installing ROS Navigation stack

	Building a map using SLAM
	Creating a launch file for gmapping
	Running SLAM on the differential drive robot
	Implementing autonomous navigation using AMCL and a static map
	Creating an AMCL launch file

	Questions
	Summary

	Chapter 5: Working with Pluginlib, Nodelets, and Gazebo Plugins
	Understanding pluginlib
	Creating plugins for the calculator application using pluginlib
	Working with pluginlib_calculator package

	Understanding ROS nodelets
	Creating a nodelet
	Step 1 – Creating a package for nodelet
	Step 2 – Creating hello_world.cpp nodelet
	Step 3 – Explanation of hello_world.cpp
	Step 4 – Creating plugin description file
	Step 5 – Adding the export tag in package.xml
	Step 6 – Editing CMakeLists.txt
	Step 7 – Building and running nodelets
	Step 8 – Creating launch files for nodelets

	Understanding the Gazebo plugins
	Creating a basic world plugin

	Questions
	Summary

	Chapter 6: Writing ROS Controllers and Visualization Plugins
	Understanding pr2_mechanism packages
	pr2_controller_interface package
	Initialization of the controller
	Starting the ROS controller
	Updating ROS controller
	Stopping the controller

	pr2_controller_manager

	Writing a basic real-time joint controller in ROS
	Step 1 – Creating controller package
	Step 2 – Creating controller header file
	Step 3 – Creating controller source file

	Step 4 – Explanation of the controller
source file
	Step 5 – Creating plugin description file
	Step 6 – Updating package.xml
	Step 7 – Updating CMakeLists.txt
	Step 8 – Building controller
	Step 9 – Writing controller configuration file
	Step 10 – Writing launch file for the controller
	Step 11 – Running controller along with PR2 simulation in Gazebo

	Understanding ros_control packages
	Understanding ROS visualization tool (RViz) and its plugins
	Displays panel
	RViz toolbar
	Views
	Time panel
	Dockable panels

	Writing a RViz plugin for teleoperation
	Methodology of building Rviz plugin
	Step 1 – Creating RViz plugin package
	Step 2 – Creating RViz plugin header file
	Step 3 – Creating RViz plugin definition
	Step 4 – Creating plugin description file
	Step 5 – Adding export tags in package.xml
	Step 6 – Editing CMakeLists.txt
	Step 7 – Building and loading plugins

	Questions
	Summary

	Chapter 7: Interfacing I/O Boards, Sensors, and Actuators
to ROS
	Understanding the Arduino–ROS interface
	What is the Arduino–ROS interface?
	Understanding the rosserial package in ROS
	Installing rosserial packages on Ubuntu 14.04/15.04
	ROS – Arduino Publisher and Subscriber example

	Arduino-ROS, example – blink LED and push button
	Arduino-ROS, example – Accelerometer
ADXL 335
	Arduino-ROS, example – ultrasonic distance sensor
	Equations to find distance using the ultrasonic range sensor

	Arduino-ROS, example – Odometry Publisher
	Interfacing Non-Arduino boards to ROS
	Setting ROS on Odroid–C1 and Raspberry
Pi 2
	How to install an OS image to Odroid-C1 and Raspberry Pi 2
	Installation in Windows
	Installation in Linux

	Connecting to Odroid-C1 and Raspberry Pi 2 from a PC
	Configuring an Ethernet hotspot for Odroid-C1 and Raspberry Pi 2
	Installing Wiring Pi on Odroid-C1
	Installing Wiring Pi on Raspberry Pi 2

	Blinking LED using ROS on Odroid-C1 and Raspberry Pi 2
	Push button + blink LED using ROS on Odroid-C1 and Raspberry Pi 2

	Interfacing Dynamixel actuators to ROS
	Questions
	Summary

	Chapter 8: Programming Vision Sensors using ROS, Open-CV,
and PCL
	Understanding ROS – OpenCV interfacing packages
	Understanding ROS – PCL interfacing packages
	Installing ROS perception

	Interfacing USB webcams in ROS
	Working with ROS camera calibration
	Converting images between ROS and OpenCV using cv_bridge
	Image processing using ROS and OpenCV
	Step 1: Creating ROS package for the experiment
	Step 2: Creating source files
	Step 3: Explanation of the code
	Step 4: Editing the CMakeLists.txt file
	Step 5: Building and running example

	Interfacing Kinect and Asus Xtion Pro
in ROS
	Interfacing Intel Real Sense camera
with ROS
	Working with point cloud to laser scan package

	Interfacing Hokuyo Laser in ROS
	Interfacing Velodyne LIDAR in ROS
	Working with point cloud data
	How to publish a point cloud
	How to subscribe and process the point cloud
	Writing a point cloud data to a PCD file
	Read and publish point cloud from a PCD file

	Streaming webcam from Odroid
using ROS
	Questions
	Summary

	Chapter 9: Building and Interfacing Differential Drive Mobile Robot Hardware in ROS
	Introduction to Chefbot- a DIY mobile robot and its hardware configuration
	Flashing Chefbot firmware using Energia IDE
	Serial data sending protocol from LaunchPad to PC
	Serial data sending protocol from PC to Launchpad

	Discussing Chefbot interface packages on ROS
	Computing odometry from encoder ticks
	Computing motor velocities from ROS twist message
	Running robot stand alone launch file using C++ nodes

	Configuring the Navigation stack for Chefbot
	Configuring the gmapping node
	Configuring the Navigation stack packages
	Common configuration (local_costmap) and (global_costmap)
	Configuring global costmap parameters
	Configuring local costmap parameters
	Configuring base local planner parameters
	Configuring DWA local planner parameters
	Configuring move_base node parameters

	Understanding AMCL
	Understanding RViz for working with the Navigation stack
	2D Pose Estimate button
	Visualizing the particle cloud
	The 2D Nav Goal button
	Displaying the static map
	Displaying the robot footprint
	Displaying the global and local cost map
	Displaying the global plan, local plan, and planner plan
	The current goal

	Obstacle avoidance using the Navigation stack
	Working with Chefbot simulation
	Building a room in Gazebo
	Adding model files to the Gazebo model folder

	Sending a goal to the Navigation stack from a ROS node

	Questions
	Summary

	Chapter 10: Exploring the Advanced Capabilities of ROS-MoveIt!
	Motion planning using the move_group C++ interface
	Motion planning a random path using MoveIt! C++ APIs
	Motion planning a custom path using MoveIt! C++ APIs

	Collision checking in robot arm using MoveIt!
	Adding a collision object in MoveIt!
	Removing a collision object from the planning scene
	Checking self collision using MoveIt! APIs

	Working with perception using MoveIt! and Gazebo
	Grasping using MoveIt!
	Working with robot pick and place task using MoveIt!
	Creating Grasp Table and Grasp Object in MoveIt!
	Pick and place action in Gazebo and real Robot

	Understanding Dynamixel ROS Servo controllers for robot hardware interfacing
	The Dynamixel Servos
	Dynamixel-ROS interface

	Interfacing seven DOF Dynamixel based robotic arm to ROS MoveIt!
	Creating a controller package for COOL
arm robot
	MoveIt! configuration of the COOL Arm

	Questions
	Summary

	Chapter 11: ROS for Industrial Robots
	Understanding ROS-Industrial packages
	Goals of ROS-Industrial
	ROS-Industrial – a brief history
	Benefits of ROS-Industrial

	Installing ROS-Industrial packages
	Block diagram of ROS-Industrial packages
	Creating URDF for an industrial robot
	Creating MoveIt! configuration for an industrial robot
	Updating the MoveIt! configuration files
	Testing the MoveIt! configuration

	Installing ROS-Industrial packages of universal robotic arm
	Installing the ROS interface of universal robots

	Understanding the Moveit! configuration of a universal robotic arm
	Working with MoveIt! configuration of ABB robots
	Understanding the ROS-Industrial robot support packages
	Visualizing the ABB robot model in RViz

	ROS-Industrial robot client package
	Designing industrial robot client nodes

	ROS-Industrial robot driver package
	Understanding MoveIt! IKFast plugin
	Creating the MoveIt! IKFast plugin for the ABB-IRB6640 robot
	Prerequisites for developing the MoveIt!
IKFast plugin
	OpenRave and IK Fast Module
	MoveIt! IK Fast
	Installing MoveIt! IKFast package
	Installing OpenRave on Ubuntu 14.04.3

	Creating the COLLADA file of a robot to work with OpenRave
	Generating the IKFast CPP file for the IRB 6640 robot
	Creating the MoveIt! IKFast plugin

	Questions
	Summary

	Chapter 12: Troubleshooting and Best Practices in ROS
	Setting up Eclipse IDE on Ubuntu 14.04.3
	Setting ROS development environment in Eclipse IDE
	Global settings in Eclipse IDE
	ROS compile script for Eclipse IDE
	Adding ROS Catkin package to Eclipse
	Adding run configurations to run ROS nodes in Eclipse

	Best practices in ROS
	ROS C++ coding style guide
	Standard naming conventions used in ROS
	Code license agreement
	ROS code formatting
	ROS code documentation
	Console output

	Best practices in the ROS package
	Important troubleshooting tips in ROS
	Usage of roswtf

	Questions
	Summary

	Index

