
KennethH.Rosen

SEVENTHEDITION

Discrete
Mathematics
andIts
Applications

Discrete
Mathematics
and Its
Applications
Seventh Edition

Kenneth H. Rosen
Monmouth University
(and formerly AT&T Laboratories)

DISCRETE MATHEMATICS AND ITS APPLICATIONS, SEVENTH EDITION

Published by McGrawHill, a business unit of The McGrawHill Companies, Inc., 1221 Avenue of the
Americas, NewYork, NY 10020. Copyright © 2012 by The McGrawHill Companies, Inc. All rights reserved.
Previous editions © 2007, 2003, and 1999. No part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written consent of
The McGrawHill Companies, Inc., including, but not limited to, in any network or other electronic storage
or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acidfree paper.

1 2 3 4 5 6 7 8 9 0 DOW/DOW 1 0 9 8 7 6 5 4 3 2 1

ISBN 9780073383095
MHID 0073383090

Vice President & EditorinChief:Marty Lange
Editorial Director:Michael Lange
Global Publisher: Raghothaman Srinivasan
Executive Editor: Bill Stenquist
Development Editors: Lorraine K. Buczek/Rose Kernan
Senior Marketing Manager: Curt Reynolds
Project Manager: Robin A. Reed
Buyer: Sandy Ludovissy
Design Coordinator: Brenda A. Rolwes
Cover painting: Jasper Johns, Between the Clock and the Bed, 1981. Oil on Canvas (72× 126 14 inches)

Collection of the artist. Photograph by Glenn Stiegelman. Cover Art © Jasper Johns/Licensed by VAGA, NewYork, NY
Cover Designer: Studio Montage, St. Louis, Missouri
Lead Photo Research Coordinator: Carrie K. Burger
Media Project Manager: Tammy Juran
Production Services/Compositor: RPK Editorial Services/PreTeX, Inc.
Typeface: 10.5/12 Times Roman
Printer: R.R. Donnelley

All credits appearing on this page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress CataloginginPublication Data

Rosen, Kenneth H.
Discrete mathematics and its applications / Kenneth H. Rosen. — 7th ed.

p. cm.
Includes index.
ISBN 0–07–338309–0

1. Mathematics. 2. Computer science—Mathematics. I. Title.
QA39.3.R67 2012
511–dc22

2011011060

www.mhhe.com

About the Author vi
Preface vii
The CompanionWebsite xvi
To the Student xvii

1 The Foundations: Logic and Proofs . 1

1.1 Propositional Logic . 1
1.2 Applications of Propositional Logic . 16
1.3 Propositional Equivalences . 25
1.4 Predicates and Quantifiers . 36
1.5 Nested Quantifiers . 57
1.6 Rules of Inference . 69
1.7 Introduction to Proofs . 80
1.8 Proof Methods and Strategy . 92

EndofChapter Material . 109

2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices . 115

2.1 Sets . 115
2.2 Set Operations . 127
2.3 Functions . 138
2.4 Sequences and Summations . 156
2.5 Cardinality of Sets . 170
2.6 Matrices . 177

EndofChapter Material . 185

3 Algorithms . 191

3.1 Algorithms . 191
3.2 The Growth of Functions . 204
3.3 Complexity of Algorithms . 218

EndofChapter Material . 232

4 Number Theory and Cryptography . 237

4.1 Divisibility and Modular Arithmetic . 237
4.2 Integer Representations and Algorithms . 245
4.3 Primes and Greatest Common Divisors . 257
4.4 Solving Congruences .274
4.5 Applications of Congruences . 287
4.6 Cryptography . 294

EndofChapter Material . 306

iii

iv Contents

5 Induction and Recursion . 311

5.1 Mathematical Induction . 311
5.2 Strong Induction and WellOrdering . 333
5.3 Recursive Definitions and Structural Induction . 344
5.4 Recursive Algorithms . 360
5.5 Program Correctness . 372

EndofChapter Material . 377

6 Counting . 385

6.1 The Basics of Counting .385
6.2 The Pigeonhole Principle . 399
6.3 Permutations and Combinations . 407
6.4 Binomial Coefficients and Identities . 415
6.5 Generalized Permutations and Combinations . 423
6.6 Generating Permutations and Combinations . 434

EndofChapter Material . 439

7 Discrete Probability . 445

7.1 An Introduction to Discrete Probability . 445
7.2 Probability Theory . 452
7.3 Bayes’ Theorem . 468
7.4 Expected Value and Variance . 477

EndofChapter Material . 494

8 Advanced Counting Techniques . 501

8.1 Applications of Recurrence Relations . 501
8.2 Solving Linear Recurrence Relations . 514
8.3 DivideandConquer Algorithms and Recurrence Relations .527
8.4 Generating Functions . 537
8.5 Inclusion–Exclusion . 552
8.6 Applications of Inclusion–Exclusion . 558

EndofChapter Material . 565

9 Relations . 573

9.1 Relations and Their Properties . 573
9.2 nary Relations and Their Applications . 583
9.3 Representing Relations . 591
9.4 Closures of Relations . 597
9.5 Equivalence Relations . 607
9.6 Partial Orderings . 618

EndofChapter Material . 633

Contents v

10 Graphs . 641

10.1 Graphs and Graph Models . 641
10.2 Graph Terminology and Special Types of Graphs .651
10.3 Representing Graphs and Graph Isomorphism . 668
10.4 Connectivity . 678
10.5 Euler and Hamilton Paths . 693
10.6 ShortestPath Problems . 707
10.7 Planar Graphs . 718
10.8 Graph Coloring . 727

EndofChapter Material . 735

11 Trees . 745

11.1 Introduction to Trees . 745
11.2 Applications of Trees . 757
11.3 Tree Traversal . 772
11.4 Spanning Trees . 785
11.5 Minimum Spanning Trees . 797

EndofChapter Material . 803

12 Boolean Algebra . 811

12.1 Boolean Functions . 811
12.2 Representing Boolean Functions . 819
12.3 Logic Gates . 822
12.4 Minimization of Circuits . 828

EndofChapter Material . 843

13 Modeling Computation . 847

13.1 Languages and Grammars . 847
13.2 FiniteState Machines with Output .858
13.3 FiniteState Machines with No Output . 865
13.4 Language Recognition . 878
13.5 Turing Machines . 888

EndofChapter Material . 899

Appendixes . A1

1 Axioms for the Real Numbers and the Positive Integers . 1
2 Exponential and Logarithmic Functions . 7
3 Pseudocode . 11

Suggested Readings B1
Answers to OddNumbered Exercises S1
Photo Credits C1
Index of Biographies I1
Index I2

Kenneth H. Rosen has had a long career as a Distinguished Member of the Technical Staff
atAT&T Laboratories inMonmouth County, New Jersey. He currently holds the position

of Visiting Research Professor at Monmouth University, where he teaches graduate courses in
computer science.

Dr. Rosen received his B.S. in Mathematics from the University of Michigan, Ann Arbor
(1972), and his Ph.D. in Mathematics from M.I.T. (1976), where he wrote his thesis in the area
of number theory under the direction of Harold Stark. Before joining Bell Laboratories in 1982,
he held positions at the University of Colorado, Boulder; The Ohio State University, Columbus;
and the University of Maine, Orono, where he was an associate professor of mathematics.
While working at AT&T Labs, he taught at Monmouth University, teaching courses in discrete
mathematics, coding theory, and data security. He currently teaches courses in algorithm design
and in computer security and cryptography.

Dr. Rosen has published numerous articles in professional journals in number theory and
in mathematical modeling. He is the author of the widely used Elementary Number Theory and
Its Applications, published by Pearson, currently in its sixth edition, which has been translated
into Chinese. He is also the author of Discrete Mathematics and Its Applications, published by
McGrawHill, currently in its seventh edition. Discrete Mathematics and Its Applications has
sold more than 350,000 copies in NorthAmerica during its lifetime, and hundreds of thousands
of copies throughout the rest of the world. This book has also been translated into Spanish,
French, Greek, Chinese, Vietnamese, and Korean. He is also coauthor of UNIX: The Complete
Reference;UNIXSystemVRelease 4:An Introduction; andBestUNIXTips Ever, all published by
Osborne McGrawHill. These books have sold more than 150,000 copies, with translations into
Chinese, German, Spanish, and Italian. Dr. Rosen is also the editor of theHandbook of Discrete
and Combinatorial Mathematics, published by CRC Press, and he is the advisory editor of the
CRC series of books in discrete mathematics, consisting of more than 55 volumes on different
aspects of discretemathematics,most ofwhich are introduced in this book.Dr.Rosen serves as an
Associate Editor for the journalDiscreteMathematics, where he works with submitted papers in
several areas of discrete mathematics, including graph theory, enumeration, and number theory.
He is also interested in integrating mathematical software into the educational and professional
environments, and worked on several projects with Waterloo Maple Inc.’s MapleTM software
in both these areas. Dr. Rosen has also worked with several publishing companies on their
homework delivery platforms.

At Bell Laboratories andAT&TLaboratories, Dr. Rosen worked on a wide range of projects,
including operations research studies, product line planning for computers and data communi
cations equipment, and technology assessment. He helped planAT&T’s products and services in
the area of multimedia, including video communications, speech recognition, speech synthesis,
and image networking. He evaluated new technology for use by AT&T and did standards work
in the area of image networking. He also invented many new services, and holds more than 55
patents. One of his more interesting projects involved helping evaluate technology for theAT&T
attraction that was part of EPCOT Center.

vi

In writing this book, I was guided by my longstanding experience and interest in teaching
discrete mathematics. For the student, my purpose was to present material in a precise,

readable manner, with the concepts and techniques of discrete mathematics clearly presented
and demonstrated. My goal was to show the relevance and practicality of discrete mathematics
to students, who are often skeptical. I wanted to give students studying computer science all of
the mathematical foundations they need for their future studies. I wanted to give mathematics
students an understanding of important mathematical concepts together with a sense of why
these concepts are important for applications. And most importantly, I wanted to accomplish
these goals without watering down the material.

For the instructor, my purpose was to design a flexible, comprehensive teaching tool using
proven pedagogical techniques in mathematics. I wanted to provide instructors with a package
of materials that they could use to teach discrete mathematics effectively and efficiently in the
most appropriate manner for their particular set of students. I hope that I have achieved these
goals.

I have been extremely gratified by the tremendous success of this text. The many improve
ments in the seventh edition have been made possible by the feedback and suggestions of a large
number of instructors and students at many of the more than 600 North American schools, and
at any many universities in parts of the world, where this book has been successfully used.

This text is designed for a one or twoterm introductory discrete mathematics course taken
by students in a wide variety of majors, includingmathematics, computer science, and engineer
ing. College algebra is the only explicit prerequisite, although a certain degree of mathematical
maturity is needed to study discrete mathematics in a meaningful way. This book has been de
signed to meet the needs of almost all types of introductory discrete mathematics courses. It is
highly flexible and extremely comprehensive. The book is designed not only to be a successful
textbook, but also to serve as valuable resource students can consult throughout their studies
and professional life.

Goals of a Discrete Mathematics Course

A discrete mathematics course has more than one purpose. Students should learn a particular
set of mathematical facts and how to apply them; more importantly, such a course should teach
students how to think logically and mathematically. To achieve these goals, this text stresses
mathematical reasoning and the different ways problems are solved. Five important themes
are interwoven in this text: mathematical reasoning, combinatorial analysis, discrete structures,
algorithmic thinking, and applications and modeling. A successful discrete mathematics course
should carefully blend and balance all five themes.

1. Mathematical Reasoning: Students must understand mathematical reasoning in order to
read, comprehend, and construct mathematical arguments. This text starts with a discussion
of mathematical logic, which serves as the foundation for the subsequent discussions of
methods of proof. Both the science and the art of constructing proofs are addressed. The
technique of mathematical induction is stressed through many different types of examples
of such proofs and a careful explanation of why mathematical induction is a valid proof
technique.

vii

viii Preface

2. Combinatorial Analysis: An important problemsolving skill is the ability to count or enu
merate objects. The discussion of enumeration in this book begins with the basic techniques
of counting. The stress is on performing combinatorial analysis to solve counting problems
and analyze algorithms, not on applying formulae.

3. Discrete Structures: A course in discrete mathematics should teach students how to work
with discrete structures, which are the abstract mathematical structures used to represent
discrete objects and relationships between these objects. These discrete structures include
sets, permutations, relations, graphs, trees, and finitestate machines.

4. Algorithmic Thinking: Certain classes of problems are solved by the specification of an
algorithm. After an algorithm has been described, a computer program can be constructed
implementing it. The mathematical portions of this activity, which include the specification
of the algorithm, the verification that it works properly, and the analysis of the computer
memory and time required to perform it, are all covered in this text.Algorithms are described
using both English and an easily understood form of pseudocode.

5. Applications and Modeling: Discrete mathematics has applications to almost every conceiv
able area of study. There are many applications to computer science and data networking
in this text, as well as applications to such diverse areas as chemistry, biology, linguistics,
geography, business, and the Internet. These applications are natural and important uses of
discrete mathematics and are not contrived. Modeling with discrete mathematics is an ex
tremely important problemsolving skill, which students have the opportunity to develop by
constructing their own models in some of the exercises.

Changes in the Seventh Edition

Although the sixth edition has been an extremely effective text, many instructors, including
longtime users, have requested changes designed to make this book more effective. I have
devoted a significant amount of time and energy to satisfy their requests and I have worked hard
to find my own ways to make the book more effective and more compelling to students.

The seventh edition is a major revision, with changes based on input from more than 40
formal reviewers, feedback from students and instructors, and author insights. The result is a
new edition that offers an improved organization of topics making the book a more effective
teaching tool. Substantial enhancements to the material devoted to logic, algorithms, number
theory, and graph theory make this book more flexible and comprehensive. Numerous changes
in the seventh edition have been designed to help students more easily learn the material.
Additional explanations and examples have been added to clarify material where students often
have difficulty. New exercises, both routine and challenging, have been added. Highly relevant
applications, including many related to the Internet, to computer science, and to mathematical
biology, have been added. The companion website has benefited from extensive development
activity and now provides tools students can use to master key concepts and explore the world
of discrete mathematics, and many new tools under development will be released in the year
following publication of this book.

I hope that instructors will closely examine this new edition to discover how it might meet
their needs. Although it is impractical to list all the changes in this edition, a brief list that
highlights some key changes, listed by the benefits they provide, may be useful.

More Flexible Organization

Applications of propositional logic are found in a new dedicated section, which briefly
introduces logic circuits.

Recurrence relations are now covered in Chapter 2.

Expanded coverage of countability is now found in a dedicated section in Chapter 2.

Preface ix

Separate chapters nowprovide expanded coverage of algorithms (Chapter 3) andnumber
theory and cryptography (Chapter 4).

More second and third level heads have been used to break sections into smaller coherent
parts.

Tools for Easier Learning

Difficult discussions andproofs havebeenmarkedwith the famousBourbaki “dangerous
bend” symbol in the margin.

New marginal notes make connections, add interesting notes, and provide advice to
students.

More details and added explanations, in both proofs and exposition, make it easier for
students to read the book.

Many new exercises, both routine and challenging, have been added, while many ex
isting exercises have been improved.

Enhanced Coverage of Logic, Sets, and Proof

The satisfiability problem is addressed in greater depth, with Sudoku modeled in terms
of satisfiability.

Hilbert’s Grand Hotel is used to help explain uncountability.

Proofs throughout the bookhave beenmademore accessible by adding steps and reasons
behind these steps.

A template for proofs by mathematical induction has been added.

The step that applies the inductive hypothesis in mathematical induction proof is now
explicitly noted.

Algorithms

The pseudocode used in the book has been updated.

Explicit coverage of algorithmic paradigms, including brute force, greedy algorithms,
and dynamic programing, is now provided.

Useful rules for bigO estimates of logarithms, powers, and exponential functions have
been added.

Number Theory and Cryptography

Expanded coverage allows instructors to include just a little or a lot of number theory
in their courses.

The relationship between the mod function and congruences has been explained more
fully.

The sieve of Eratosthenes is now introduced earlier in the book.

Linear congruences and modular inverses are now covered in more detail.

Applications of number theory, including check digits and hash functions, are covered
in great depth.

A new section on cryptography integrates previous coverage, and the notion of a cryp
tosystem has been introduced.

Cryptographic protocols, including digital signatures and key sharing, are now covered.

x Preface

Graph Theory

A structured introduction to graph theory applications has been added.

More coverage has been devoted to the notion of social networks.

Applications to the biological sciences and motivating applications for graph isomor
phism and planarity have been added.

Matchings in bipartite graphs are now covered, including Hall’s theorem and its proof.

Coverage of vertex connectivity, edge connectivity, and nconnectedness has been
added, providing more insight into the connectedness of graphs.

Enrichment Material

Many biographies have been expanded and updated, and new biographies of Bellman,
Bézout Bienyamé, Cardano, Catalan, Cocks, Cook, Dirac, Hall, Hilbert, Ore, and Tao
have been added.

Historical information has been added throughout the text.

Numerous updates for latest discoveries have been made.

Expanded Media

Extensive effort has been devoted to producing valuable web resources for this book.

Extra examples in key parts of the text have been provided on companion website.

Interactive algorithms have been developed, with tools for using them to explore topics
and for classroom use.

A new online ancillary, The Virtual Discrete Mathematics Tutor, available in fall 2012,
will help students overcome problems learning discrete mathematics.

A new homework delivery system, available in fall 2012, will provide automated home
work for both numerical and conceptual exercises.

Student assessment modules are available for key concepts.

Powerpoint transparencies for instructor use have been developed.

A supplementExploringDiscreteMathematics has been developed, providing extensive
support for using MapleTM or MathematicaTM in conjunction with the book.

An extensive collection of external web links is provided.

Features of the Book

ACCESSIBILITY This text has proved to be easily read and understood by beginning
students. There are no mathematical prerequisites beyond college algebra for almost all the
content of the text. Students needing extra help will find tools on the companion website for
bringing their mathematical maturity up to the level of the text. The few places in the book
where calculus is referred to are explicitly noted. Most students should easily understand the
pseudocode used in the text to express algorithms, regardless of whether they have formally
studied programming languages. There is no formal computer science prerequisite.

Each chapter begins at an easily understood and accessible level. Once basic mathematical
concepts have been carefully developed, more difficult material and applications to other areas
of study are presented.

Preface xi

FLEXIBILITY This text has been carefully designed for flexible use. The dependence
of chapters on previous material has been minimized. Each chapter is divided into sections of
approximately the same length, and each section is divided into subsections that form natural
blocks of material for teaching. Instructors can easily pace their lectures using these blocks.

WRITING STYLE The writing style in this book is direct and pragmatic. Precise mathe
matical language is used without excessive formalism and abstraction. Care has been taken to
balance the mix of notation and words in mathematical statements.

MATHEMATICALRIGORAND PRECISION All definitions and theorems in this text
are stated extremely carefully so that students will appreciate the precision of language and
rigor needed in mathematics. Proofs are motivated and developed slowly; their steps are all
carefully justified. The axioms used in proofs and the basic properties that follow from them
are explicitly described in an appendix, giving students a clear idea of what they can assume in
a proof. Recursive definitions are explained and used extensively.

WORKEDEXAMPLES Over 800 examples are used to illustrate concepts, relate different
topics, and introduce applications. In most examples, a question is first posed, then its solution
is presented with the appropriate amount of detail.

APPLICATIONS The applications included in this text demonstrate the utility of discrete
mathematics in the solution of realworld problems. This text includes applications to a wide va
riety of areas, including computer science, data networking, psychology, chemistry, engineering,
linguistics, biology, business, and the Internet.

ALGORITHMS Results in discrete mathematics are often expressed in terms of algo
rithms; hence, key algorithms are introduced in each chapter of the book. These algorithms
are expressed in words and in an easily understood form of structured pseudocode, which is
described and specified in Appendix 3. The computational complexity of the algorithms in the
text is also analyzed at an elementary level.

HISTORICAL INFORMATION The background of many topics is succinctly described
in the text. Brief biographies of 83 mathematicians and computer scientists are included as foot
notes. These biographies include information about the lives, careers, and accomplishments of
these important contributors to discrete mathematics and images, when available, are displayed.

In addition, numerous historical footnotes are included that supplement the historical in
formation in the main body of the text. Efforts have been made to keep the book uptodate by
reflecting the latest discoveries.

KEY TERMSAND RESULTS A list of key terms and results follows each chapter. The
key terms include only the most important that students should learn, and not every term defined
in the chapter.

EXERCISES There are over 4000 exercises in the text, with many different types of
questions posed. There is an ample supply of straightforward exercises that develop basic skills,
a large number of intermediate exercises, and many challenging exercises. Exercises are stated
clearly and unambiguously, and all are carefully graded for level of difficulty. Exercise sets
contain special discussions that develop new concepts not covered in the text, enabling students
to discover new ideas through their own work.

Exercises that are somewhat more difficult than average are marked with a single star ;
those that are much more challenging are marked with two stars . Exercises whose solutions
require calculus are explicitly noted. Exercises that develop results used in the text are clearly
identified with the right pointing hand symbol . Answers or outlined solutions to all odd

xii Preface

numbered exercises are provided at the back of the text. The solutions include proofs in which
most of the steps are clearly spelled out.

REVIEWQUESTIONS A set of review questions is provided at the end of each chapter.
These questions are designed to help students focus their study on the most important concepts
and techniques of that chapter. To answer these questions students need to write long answers,
rather than just perform calculations or give short replies.

SUPPLEMENTARY EXERCISE SETS Each chapter is followed by a rich and varied
set of supplementary exercises. These exercises are generally more difficult than those in the
exercise sets following the sections. The supplementary exercises reinforce the concepts of the
chapter and integrate different topics more effectively.

COMPUTER PROJECTS Each chapter is followed by a set of computer projects. The
approximately 150 computer projects tie together what students may have learned in computing
and in discrete mathematics. Computer projects that are more difficult than average, from both
a mathematical and a programming point of view, are marked with a star, and those that are
extremely challenging are marked with two stars.

COMPUTATIONS AND EXPLORATIONS A set of computations and explorations is
included at the conclusion of each chapter. These exercises (approximately 120 in total) are de
signed to be completed using existing software tools, such as programs that students or instruc
tors have written or mathematical computation packages such as MapleTM or MathematicaTM.
Many of these exercises give students the opportunity to uncover new facts and ideas through
computation. (Some of these exercises are discussed in the Exploring Discrete Mathematics
companion workbooks available online.)

WRITING PROJECTS Each chapter is followed by a set of writing projects. To do these
projects students need to consult themathematical literature. Some of these projects are historical
in nature and may involve looking up original sources. Others are designed to serve as gateways
to new topics and ideas. All are designed to expose students to ideas not covered in depth in
the text. These projects tie mathematical concepts together with the writing process and help
expose students to possible areas for future study. (Suggested references for these projects can
be found online or in the printed Student’s Solutions Guide.)

APPENDIXES There are three appendixes to the text. The first introduces axioms for real
numbers and the positive integers, and illustrates howfacts are proved directly from these axioms.
The second covers exponential and logarithmic functions, reviewing some basic material used
heavily in the course. The third specifies the pseudocode used to describe algorithms in this text.

SUGGESTEDREADINGS A list of suggested readings for the overall book and for each
chapter is provided after the appendices. These suggested readings include books at or below
the level of this text, more difficult books, expository articles, and articles in which discoveries
in discrete mathematics were originally published. Some of these publications are classics,
published many years ago, while others have been published in the last few years.

How to Use This Book

This text has been carefully written and constructed to support discrete mathematics courses
at several levels and with differing foci. The following table identifies the core and optional
sections. An introductory oneterm course in discrete mathematics at the sophomore level can
be based on the core sections of the text, with other sections covered at the discretion of the

Preface xiii

instructor. A twoterm introductory course can include all the optional mathematics sections in
addition to the core sections. A course with a strong computer science emphasis can be taught
by covering some or all of the optional computer science sections. Instructors can find sample
syllabi for a wide range of discrete mathematics courses and teaching suggestions for using each
section of the text can be found in the Instructor’s Resource Guide available on the website for
this book.

Chapter Core Optional CS Optional Math

1 1.1–1.8 (as needed)
2 2.1–2.4, 2.6 (as needed) 2.5
3 3.1–3.3 (as needed)
4 4.1–4.4 (as needed) 4.5, 4.6
5 5.1–5.3 5.4, 5.5
6 6.1–6.3 6.6 6.4, 6.5
7 7.1 7.4 7.2, 7.3
8 8.1, 8.5 8.3 8.2, 8.4, 8.6
9 9.1, 9.3, 9.5 9.2 9.4, 9.6

10 10.1–10.5 10.6–10.8
11 11.1 11.2, 11.3 11.4, 11.5
12 12.1–12.4
13 13.1–13.5

Instructors using this book can adjust the level of difficulty of their course by choosing
either to cover or to omit the more challenging examples at the end of sections, as well as
the more challenging exercises. The chapter dependency chart shown here displays the strong
dependencies.A star indicates that only relevant sections of the chapter are needed for study of a
later chapter.Weak dependencies have been ignored. More details can be found in the Instructor
Resource Guide.

Chapter9*

Chapter10*

Chapter11

Chapter13

Chapter12
Chapter2*

Chapter7 Chapter8

Chapter6*

Chapter3*

Chapter1

Chapter4*

Chapter5*

Ancillaries

STUDENT’S SOLUTIONS GUIDE This student manual, available separately, contains
full solutions to all oddnumbered problems in the exercise sets. These solutions explain why
a particular method is used and why it works. For some exercises, one or two other possible
approaches are described to show that a problem can be solved in several different ways. Sug
gested references for the writing projects found at the end of each chapter are also included in
this volume.Also included are a guide to writing proofs and an extensive description of common

xiv Preface

mistakes students make in discrete mathematics, plus sample tests and a sample crib sheet for
each chapter designed to help students prepare for exams.

(ISBN10: 0077353501) (ISBN13: 9780077353506)

INSTRUCTOR’S RESOURCE GUIDE This manual, available on the website and in
printed form by request for instructors, contains full solutions to evennumbered exercises in
the text. Suggestions on how to teach the material in each chapter of the book are provided,
including the points to stress in each section and how to put the material into perspective. It
also offers sample tests for each chapter and a test bank containing over 1500 exam questions to
choose from. Answers to all sample tests and test bank questions are included. Finally, several
sample syllabi are presented for courses with differing emphases and student ability levels.

(ISBN10: 0077353498) (ISBN13: 9780077353490)

Acknowledgments

I would like to thank the many instructors and students at a variety of schools who have used
this book and provided me with their valuable feedback and helpful suggestions. Their input
has made this a much better book than it would have been otherwise. I especially want to thank
Jerrold Grossman, JeanClaude Evard, and Georgia Mederer for their technical reviews of the
seventh edition and their “eagle eyes,” which have helped ensure the accuracy of this book. I
also appreciate the help provided by all those who have submitted comments via the website.

I thank the reviewers of this seventh and the six previous editions. These reviewers have
provided much helpful criticism and encouragement to me. I hope this edition lives up to their
high expectations.

Reviewers for the Seventh Edition

Philip Barry
University of Minnesota, Minneapolis

Miklos Bona
University of Florida

Kirby Brown
Queens College

John Carter
University of Toronto

Narendra Chaudhari
Nanyang Technological University

Allan Cochran
University of Arkansas

Daniel Cunningham
Buffalo State College

George Davis
Georgia State University

Andrzej Derdzinski
The Ohio State University

Ronald Dotzel
University of MissouriSt. Louis

T.J. Duda
Columbus State Community College

Bruce Elenbogen
University of Michigan, Dearborn

Norma Elias
Purdue University,
CalumetHammond

Herbert Enderton
University of California, Los Angeles

Anthony Evans
Wright State University

Kim Factor
Marquette University

Margaret Fleck
University of Illinois, Champaign

Peter Gillespie
Fayetteville State University

Johannes Hattingh
Georgia State University

Ken Holladay
University of New Orleans

Jerry Ianni
LaGuardia Community College

Ravi Janardan
University of Minnesota, Minneapolis

Norliza Katuk
University of Utara Malaysia

William Klostermeyer
University of North Florida

Przemo Kranz
University of Mississippi

Jaromy Kuhl
University of West Florida

Loredana Lanzani
University of Arkansas, Fayetteville

Steven Leonhardi
Winona State University

Xu Liutong
Beijing University of Posts and
Telecommunications

Vladimir Logvinenko
De Anza Community College

Preface xv

Darrell Minor
Columbus State Community College

Keith Olson
Utah Valley University

Yongyuth Permpoontanalarp
King Mongkut’s University of
Technology, Thonburi

Galin Piatniskaia
University of Missouri, St. Louis

Stefan Robila
Montclair State University

Chris Rodger
Auburn University

Sukhit Singh
Texas State University, San Marcos

David Snyder
Texas State University, San Marcos

Wasin So
San Jose State University

Bogdan Suceava
California State University, Fullerton

Christopher Swanson
Ashland University

Bon Sy
Queens College

MatthewWalsh
IndianaPurdue University, Fort
Wayne

Gideon Weinstein
Western Governors University

David Wilczynski
University of Southern California

I would like to thank Bill Stenquist, Executive Editor, for his advocacy, enthusiasm, and
support. His assistance with this edition has been essential. I would also like to thank the original
editor,WayneYuhasz, whose insights and skills helped ensure the book’s success, as well as all
the many other previous editors of this book.

I want to express my appreciation to the staff of RPK Editorial Services for their valuable
work on this edition, including Rose Kernan, who served as both the developmental editor and
the production editor, and the other members of the RPK team, Fred Dahl, Martha McMaster,
Erin Wagner, Harlan James, and Shelly GergerKnecthl. I thank Paul Mailhot of PreTeX, Inc.,
the compositor, for the tremendous amount to work he devoted to producing this edition, and
for his intimate knowledge of LaTeX. Thanks also to Danny Meldung of Photo Affairs, Inc.,
who was resourceful obtaining images for the new biographical footnotes.

The accuracy and quality of this new edition owe much to Jerry Grossman and JeanClaude
Evard, who checked the entire manuscript for technical accuracy and Georgia Mederer, who
checked the accuracy of the answers at the end of the book and the solutions in the Student’s
Solutions Guide and Instructor’s Resource Guide. As usual, I cannot thank Jerry Grossman
enough for all his work authoring these two essential ancillaries.

I would also express my appreciation the Science, Engineering, and Mathematics (SEM)
Division of McGrawHill Higher Education for their valuable support for this new edition and
the associated media content. In particular, thanks go to Kurt Strand: President, SEM, McGraw
Hill Higher Education, Marty Lange: EditorinChief, SEM, Michael Lange: Editorial Director,
Raghothaman Srinivasan: Global Publisher, Bill Stenquist: Executive Editor, Curt Reynolds:
Executive Marketing Manager, Robin A. Reed: Project Manager, Sandy Ludovissey: Buyer,
Lorraine Buczek: Inhouse Developmental Editor, Brenda Rowles: Design Coordinator, Carrie
K. Burger: Lead Photo Research Coordinator, and Tammy Juran: Media Project Manager.

Kenneth H. Rosen

The extensive companion website accompanying this text has been substantially enhanced
for the seventh edition This website is accessible at www.mhhe.com/rosen. The homepage

shows the Information Center, and contains login links for the site’s Student Site and Instructor
Site. Key features of each area are described below:

THE INFORMATION CENTER

The Information Center contains basic information about the book including the expanded
table of contents (including subsection heads), the preface, descriptions of the ancillaries, and
a sample chapter. It also provides a link that can be used to submit errata reports and other
feedback about the book.

STUDENT SITE

The Student site contains a wealth of resources available for student use, including the
following, tied into the text wherever the special icons displayed below are found in the text:

Extra Examples You can find a large number of additional examples on the site, covering
all chapters of the book. These examples are concentrated in areas where students often
ask for additional material. Although most of these examples amplify the basic concepts,
morechallenging examples can also be found here.

Interactive Demonstration Applets These applets enable you to interactively explore
how important algorithms work, and are tied directly to material in the text with linkages to
examples and exercises. Additional resources are provided on how to use and apply these
applets.

Self Assessments These interactive guides help you assess your understanding of 14 key
concepts, providing a question bank where each question includes a brief tutorial followed
by a multiplechoice question. If you select an incorrect answer, advice is provided to help
you understand your error. Using these Self Assessments, you should be able to diagnose
your problems and find appropriate help.

WebResourcesGuide This guide provides annotated links to hundreds of externalwebsites
containing relevant material such as historical and biographical information, puzzles and
problems, discussions, applets, programs, and more. These links are keyed to the text by page
number.

Additional resources in the Student site include:

Exploring Discrete Mathematics This ancillary provides help for using a computer alge
bra system to do a wide range of computations in discrete mathematics. Each chapter provides
a description of relevant functions in the computer algebra system and how they are used, pro
grams to carry out computations in discrete mathematics, examples, and exercises that can be
worked using this computer algebra system. Two versions, Exploring Discrete Mathematics
with MapleTM and Exploring Discrete Mathematics with MathematicaTM will be available.

Applications of Discrete Mathematics This ancillary contains 24 chapters—each with
its own set of exercises—presenting a wide variety of interesting and important applications

xvi

The Companion Website xvii

covering three general areas in discrete mathematics: discrete structures, combinatorics, and
graph theory. These applications are ideal for supplementing the text or for independent study.

A Guide to ProofWriting This guide provides additional help for writing proofs, a skill
that many students find difficult to master. By reading this guide at the beginning of the
course and periodically thereafter when proof writing is required, you will be rewarded as
your proofwriting ability grows. (Also available in the Student’s Solutions Guide.)

Common Mistakes in Discrete Mathematics This guide includes a detailed list of com
mon misconceptions that students of discrete mathematics often have and the kinds of errors
they tend to make.You are encouraged to review this list from time to time to help avoid these
common traps. (Also available in the Student’s Solutions Guide.)

Advice onWriting Projects This guide offers helpful hints and suggestions for theWriting
Projects in the text, including an extensive bibliography of helpful books and articles for
research; discussion of various resources available in print and online; tips on doing library
research; and suggestions on how to write well. (Also available in the Student’s Solutions
Guide.)

TheVirtual Discrete Mathematics Tutor This extensive ancillary provides students with
valuable assistance as they make the transition from lowerlevel courses to discrete mathemat
ics. The errors students havemadewhen studying discrete mathematics using this text has been
analyzed to design this resource. Students will be able to get many of their questions answered
and can overcomemany obstacles via this ancillaries. TheVirtual Discrete Mathematics Tutor
is expected to be available in the fall of 2012.

INSTRUCTOR SITE

This part of the website provides access to all of the resources on the Student Site, as well as
these resources for instructors:

Suggested Syllabi Detailed course outlines are shown, offering suggestions for courses
with different emphases and different student backgrounds and ability levels.

Teaching Suggestions This guide contains detailed teaching suggestions for instructors,
including chapter overviews for the entire text, detailed remarks on each section, and comments
on the exercise sets.

Printable Tests Printable tests are offered in TeX and Word format for every chapter, and
can be customized by instructors.

PowerPoints Lecture Slides andPowerPoint Figures andTables An extensive collection
of PowerPoint slides for all chapters of the text are provided for instructor use. In addition,
images of all figures and tables from the text are provided as PowerPoint slides.

Homework Delivery System An extensive homework delivery system, under development
for availability in fall 2012, will provide questions tied directly to the text, so that students
will be able to do assignments online. Moreover, they will be able to use this system in a
tutorial mode. This system will be able to automatically grade assignments, and deliver free
form student input to instructors for their own analysis. Course management capabilities will
be provided that will allow instructors to create assignments, automatically assign and grade
homework, quiz, and test questions from a bank of questions tied directly to the text, create
and edit their own questions, manage course announcements and due dates, and track student
progress.

What is discrete mathematics?Discretemathematics is the part ofmathematics devoted to
the study of discrete objects. (Here discretemeans consisting of distinct or unconnected

elements.) The kinds of problems solved using discrete mathematics include:

How many ways are there to choose a valid password on a computer system?

What is the probability of winning a lottery?

Is there a link between two computers in a network?

How can I identify spam email messages?

How can I encrypt a message so that no unintended recipient can read it?

What is the shortest path between two cities using a transportation system?

How can a list of integers be sorted so that the integers are in increasing order?

How many steps are required to do such a sorting?

How can it be proved that a sorting algorithm correctly sorts a list?

How can a circuit that adds two integers be designed?

How many valid Internet addresses are there?

You will learn the discrete structures and techniques needed to solve problems such as these.
More generally, discrete mathematics is used whenever objects are counted, when relation

ships between finite (or countable) sets are studied, andwhen processes involving a finite number
of steps are analyzed. A key reason for the growth in the importance of discrete mathematics is
that information is stored and manipulated by computing machines in a discrete fashion.

WHY STUDY DISCRETE MATHEMATICS? There are several important reasons for
studying discrete mathematics. First, through this course you can develop your mathematical
maturity: that is, your ability to understand and create mathematical arguments.You will not get
very far in your studies in the mathematical sciences without these skills.

Second, discrete mathematics is the gateway to more advanced courses in all parts of
the mathematical sciences. Discrete mathematics provides the mathematical foundations for
many computer science courses including data structures, algorithms, database theory, automata
theory, formal languages, compiler theory, computer security, and operating systems. Students
find these courses much more difficult when they have not had the appropriate mathematical
foundations from discrete math. One student has sent me an email message saying that she
used the contents of this book in every computer science course she took!

Math courses based on thematerial studied in discrete mathematics include logic, set theory,
number theory, linear algebra, abstract algebra, combinatorics, graph theory, and probability
theory (the discrete part of the subject).

Also, discrete mathematics contains the necessary mathematical background for solving
problems in operations research (including many discrete optimization techniques), chemistry,
engineering, biology, and so on. In the text, we will study applications to some of these areas.

Many students find their introductory discrete mathematics course to be significantly more
challenging than courses they have previously taken. One reason for this is that one of the
primary goals of this course is to teach mathematical reasoning and problem solving, rather
than a discrete set of skills. The exercises in this book are designed to reflect this goal.Although
there are plenty of exercises in this text similar to those addressed in the examples, a large

xviii

To the Student xix

percentage of the exercises require original thought. This is intentional. The material discussed
in the text provides the tools needed to solve these exercises, but your job is to successfully
apply these tools using your own creativity. One of the primary goals of this course is to learn
how to attack problems that may be somewhat different from any you may have previously
seen. Unfortunately, learning how to solve only particular types of exercises is not sufficient for
success in developing the problemsolving skills needed in subsequent courses and professional
work. This text addressesmany different topics, but discrete mathematics is an extremely diverse
and large area of study. One of my goals as an author is to help you develop the skills needed
to master the additional material you will need in your own future pursuits.

THEEXERCISES I would like to offer some advice about how you can best learn discrete
mathematics (and other subjects in themathematical and computing sciences).Youwill learn the
most by actively working exercises. I suggest that you solve as many as you possibly can.After
working the exercises your instructor has assigned, I encourage you to solve additional exercises
such as those in the exercise sets following each section of the text and in the supplementary
exercises at the end of each chapter. (Note the key explaining the markings preceding exercises.)

Key to the Exercises

no marking A routine exercise
 A difficult exercise
 An extremely challenging exercise

An exercise containing a result used in the book (Table 1 on the
following page shows where these exercises are used.)

(Requires calculus) An exercise whose solution requires the use of limits or concepts
from differential or integral calculus

The best approach is to try exercises yourself before you consult the answer section at the
end of this book. Note that the oddnumbered exercise answers provided in the text are answers
only and not full solutions; in particular, the reasoning required to obtain answers is omitted in
these answers. The Student’s Solutions Guide, available separately, provides complete, worked
solutions to all oddnumbered exercises in this text. When you hit an impasse trying to solve an
oddnumbered exercise, I suggest you consult the Student’s Solutions Guide and look for some
guidance as to how to solve the problem. The more work you do yourself rather than passively
reading or copying solutions, the more you will learn. The answers and solutions to the even
numbered exercises are intentionally not available from the publisher; ask your instructor if you
have trouble with these.

WEB RESOURCES You are strongly encouraged to take advantage of additional re
sources available on the Web, especially those on the companion website for this book found
at www.mhhe.com/rosen. You will find many Extra Examples designed to clarify key concepts;
Self Assessments for gauging how well you understand core topics; Interactive Demonstration
Applets exploring key algorithms and other concepts; a Web Resources Guide containing an
extensive selection of links to external sites relevant to the world of discrete mathematics; extra
explanations and practice to help you master core concepts; added instruction on writing proofs
and on avoiding common mistakes in discrete mathematics; indepth discussions of important
applications; and guidance on utilizing MapleTM software to explore the computational aspects
of discrete mathematics. Places in the text where these additional online resources are available
are identified in the margins by special icons. You will also find (after fall 2012) the Virtual
Discrete Mathematics Tutor, an online resource that provides extra support to help you make
the transition from lower level courses to discrete mathematics. This tutorial should help answer
many of your questions and correct errors that you may make, based on errors other students
using this book, have made. For more details on these and other online resources, see the
description of the companion website immediately preceding this “To the Student” message.

xx To the Student

TABLE 1 HandIcon Exercises andWhere They Are Used

Section Exercise SectionWhere Used PagesWhere Used

1.1 40 1.3 31

1.1 41 1.3 31

1.3 9 1.6 71

1.3 10 1.6 70, 71

1.3 15 1.6 71

1.3 30 1.6 71, 74

1.3 42 12.2 820

1.7 16 1.7 86

2.3 72 2.3 144

2.3 79 2.5 170

2.5 15 2.5 174

2.5 16 2.5 173

3.1 43 3.1 197

3.2 72 11.2 761

4.2 36 4.2 270

4.3 37 4.1 239

4.4 2 4.6 301

4.4 44 7.2 464

6.4 17 7.2 466

6.4 21 7.4 480

7.2 15 7.2 466

9.1 26 9.4 598

10.4 59 11.1 747

11.1 15 11.1 750

11.1 30 11.1 755

11.1 48 11.2 762

12.1 12 12.3 825

A.2 4 8.3 531

THE VALUE OF THIS BOOK My intention is to make your substantial investment in
this text an excellent value. The book, the associated ancillaries, and companion website have
taken many years of effort to develop and refine. I am confident that most of you will find that
the text and associated materials will help you master discrete mathematics, just as so many
previous students have. Even though it is likely that you will not cover some chapters in your
current course, you should find it helpful—as many other students have—to read the relevant
sections of the book as you take additional courses. Most of you will return to this book as a
useful tool throughout your future studies, especially for those of you who continue in computer
science, mathematics, and engineering. I have designed this book to be a gateway for future
studies and explorations, and to be comprehensive reference, and I wish you luck as you begin
your journey.

Kenneth H. Rosen

1.1 Propositional
Logic

1.2 Applications of
Propositional
Logic

1.3 Propositional
Equivalences

1.4 Predicates and
Quantifiers

1.5 Nested
Quantifiers

1.6 Rules of
Inference

1.7 Introduction to
Proofs

1.8 Proof Methods
and Strategy

T he rules of logic specify the meaning of mathematical statements. For instance, these rules
help us understand and reason with statements such as “There exists an integer that is

not the sum of two squares” and “For every positive integer n, the sum of the positive integers
not exceeding n is n(n + 1)/ 2.” Logic is the basis of all mathematical reasoning, and of all
automated reasoning. It has practical applications to the design of computing machines, to the
specification of systems, to artificial intelligence, to computer programming, to programming
languages, and to other areas of computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathematical
argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem.A
collection of theorems on a topic organize what we know about this topic. To learn a mathematical
topic, a person needs to actively construct mathematical arguments on this topic, and not just
read exposition. Moreover, knowing the proof of a theorem often makes it possible to modify
the result to fit new situations.

Everyone knows that proofs are important throughout mathematics, but many people find
it surprising how important proofs are in computer science. In fact, proofs are used to verify
that computer programs produce the correct output for all possible input values, to show that
algorithms always produce the correct result, to establish the security of a system, and to create
artificial intelligence. Furthermore, automated reasoning systems have been created to allow
computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and intro-
duce tools to construct these arguments. We will develop an arsenal of different proof methods
that will enable us to prove many different types of results. After introducing many different
methods of proof, we will introduce several strategies for constructing proofs. We will intro-
duce the notion of a conjecture and explain the process of developing mathematics by studying
conjectures.

1.1 Propositional Logic

In troduction

The rules of logic give precise meaning to mathematical statements. These rules are used to
distinguish between valid and invalid mathematical arguments. Because a major goal of this book
is to teach the reader how to understand and how to construct correct mathematical arguments,
we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numer-
ous applications to computer science. These rules are used in the design of computer circuits,
the construction of computer programs, the verification of the correctness of programs, and in
many other ways. Furthermore, software systems have been developed for constructing some,
but not all, types of proofs automatically. We will discuss these applications of logic in this and
later chapters.

1

2 1 / The Foundations: Logic and Proofs

Propositions

Our discussion begins with an introduction to the basic building blocks of logic—propositions.
A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true
or false, but not both.

EXAMPLE 1 All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.

2. Toronto is the capital of Canada.

3. 1 + 1 = 2.

4. 2 + 2 = 3.

Propositions 1 and 3 are true, whereas 2 and 4 are false. ▲

Some sentences that are not propositions are given in Example 2.

EXAMPLE 2 Consider the following sentences.

1. What time is it?

2. Read this carefully.

3. x + 1 = 2.

4. x + y = z.

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3
and 4 are not propositions because they are neither true nor false. Note that each of sentences 3
and 4 can be turned into a proposition if we assign values to the variables. We will also discuss
other ways to turn sentences such as these into propositions in Section 1.4. ▲

We use letters to denote propositional var iables (or statement var iables), that is, vari-
ables that represent propositions, just as letters are used to denote numerical variables. The

ARISTOTLE (384 b.c.e.–322 b.c.e.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father was
the personal physician of the King of Macedonia. Because his father died when Aristotle was young, Aristotle
could not follow the custom of following his father’s profession. Aristotle became an orphan at a young age
when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek. At the age of
17, his guardian sent him to Athens to further his education. Aristotle joined Plato’s Academy, where for 20
years he attended Plato’s lectures, later presenting his own lectures on rhetoric. When Plato died in 347 B.C.E.,
Aristotle was not chosen to succeed him because his views differed too much from those of Plato. Instead,
Aristotle joined the court of King Hermeas where he remained for three years, and married the niece of the
King. When the Persians defeated Hermeas, Aristotle moved to Mytilene and, at the invitation of King Philip

of Macedonia, he tutored Alexander, Philip’s son, who later became Alexander the Great. Aristotle tutored Alexander for five years
and after the death of King Philip, he returned to Athens and set up his own school, called the Lyceum.

Aristotle’s followers were called the peripatetics, which means “to walk about,” because Aristotle often walked around as he
discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the
morning and gave popular lectures to a broad audience in the evening. When Alexander the Great died in 323 B.C.E., a backlash against
anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution.
He only lived one year in Chalcis, dying of a stomach ailment in 322 B.C.E.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientific facts, and systematic
treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. Aristotle’s writings
were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They
were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.

1.1 Propositional Logic 3

conventional letters used for propositional variables are p, q, r, s, The truth value of a
proposition is true, denoted by T, if it is a true proposition, and the truth value of a proposition
is false, denoted by F, if it is a false proposition.

The area of logic that deals with propositions is called the propositional calculus or propo-
sitional logic. It was first developed systematically by the Greek philosopher Aristotle more
than 2300 years ago.

We now turn our attention to methods for producing new propositions from those that
we already have. These methods were discussed by the English mathematician George Boole
in 1854 in his book The Laws of Thought. Many mathematical statements are constructed by
combining one or more propositions. New propositions, called compound propositions, are
formed from existing propositions using logical operators.

DEFINITION 1 Let p be a proposition. The negation of p , denoted by¬p (also denoted byp), is the statement

“It is not the case that p .”

The proposition ¬p is read “not p .” The truth value of the negation of p , ¬p , is the opposite
of the truth value of p .

EXAMPLE 3 Find the negation of the proposition

“Michael’s PC runs Linux”

and express this in simple English.

Solution: The negation is

“It is not the case that Michael’s PC runs Linux.”

This negation can be more simply expressed as

“Michael’s PC does not run Linux.”

▲

EXAMPLE 4 Find the negation of the proposition

“Vandana’s smartphone has at least 32GB of memory”

and express this in simple English.

Solution: The negation is

“It is not the case that Vandana’s smartphone has at least 32GB of memory.”

This negation can also be expressed as

“Vandana’s smartphone does not have at least 32GB of memory”

or even more simply as

“Vandana’s smartphone has less than 32GB of memory.”

▲

4 1 / The Foundations: Logic and Proofs

TABLE 1 The
Truth Table for
the Negation of a
Proposition.

p ¬p

T F

F T

Table 1 displays the truth table for the negation of a proposition p . This table has a row
for each of the two possible truth values of a proposition p . Each row shows the truth value of
¬p corresponding to the truth value of p for this row.

The negation of a proposition can also be considered the result of the operation of the
negation operator on a proposition. The negation operator constructs a new proposition from
a single existing proposition. We will now introduce the logical operators that are used to form
new propositions from two or more existing propositions. These logical operators are also called
connectives.

DEFINITION 2 Let p and q be propositions. The conjunction of p and q, denoted by p ∧q, is the proposition
“p and q.” The conjunction p ∧q is true when both p and q are true and is false otherwise.

Table 2 displays the truth table of p ∧q. This table has a row for each of the four possible
combinations of truth values of p and q. The four rows correspond to the pairs of truth values
TT, TF, FT, and FF, where the first truth value in the pair is the truth value of p and the second
truth value is the truth value of q.

Note that in logic the word “but” sometimes is used instead of “and” in a conjunction. For
example, the statement “The sun is shining, but it is raining” is another way of saying “The sun
is shining and it is raining.” (In natural language, there is a subtle difference in meaning between
“and” and “but”; we will not be concerned with this nuance here.)

EXAMPLE 5 Find the conjunction of the propositions p and q where p is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space” and q is the proposition “The processor in Rebecca’s
PC runs faster than 1 GHz.”

Solution: The conjunction of these propositions, p ∧q, is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space, and the processor in Rebecca’s PC runs faster than 1
GHz.” This conjunction can be expressed more simply as “Rebecca’s PC has more than 16 GB
free hard disk space, and its processor runs faster than 1 GHz.” For this conjunction to be true,
both conditions given must be true. It is false, when one or both of these conditions are false. ▲

DEFINITION 3 Let p and q be propositions. The disjunction of p and q, denoted by p ∨q, is the proposition
“p or q.” The disjunction p ∨q is false when both p and q are false and is true otherwise.

Table 3 displays the truth table for p ∨q.

TABLE 2 The Truth Table for
the Conjunction of Two
Propositions.

p q p ∧q

T T T

T F F

F T F

F F F

TABLE 3 The Truth Table for
the Disjunction of Two
Propositions.

p q p ∨q

T T T

T F T

F T T

F F F

1.1 Propositional Logic 5

The use of the connective or in a disjunction corresponds to one of the two ways the word
or is used in English, namely, as an inclusive or . A disjunction is true when at least one of the
two propositions is true. For instance, the inclusive or is being used in the statement

“Students who have taken calculus or computer science can take this class.”

Here, we mean that students who have taken both calculus and computer science can take the
class, as well as the students who have taken only one of the two subjects. On the other hand,
we are using the exclusive or when we say

“Students who have taken calculus or computer science, but not both, can enroll in this
class.”

Here, we mean that students who have taken both calculus and a computer science course cannot
take the class. Only those who have taken exactly one of the two courses can take the class.

Similarly, when a menu at a restaurant states, “Soup or salad comes with an entrée,” the
restaurant almost always means that customers can have either soup or salad, but not both.
Hence, this is an exclusive, rather than an inclusive, or.

EXAMPLE 6 What is the disjunction of the propositions p and q where p and q are the same propositions as
in Example 5?

Solution: The disjunction of p and q, p ∨q, is the proposition

“Rebecca’s PC has at least 16 GB free hard disk space, or the processor in Rebecca’s PC
runs faster than 1 GHz.”

This proposition is true when Rebecca’s PC has at least 16 GB free hard disk space, when the
PC’s processor runs faster than 1 GHz, and when both conditions are true. It is false when both
of these conditions are false, that is, when Rebecca’s PC has less than 16 GB free hard disk
space and the processor in her PC runs at 1 GHz or slower. ▲

As was previously remarked, the use of the connective or in a disjunction corresponds
to one of the two ways the word or is used in English, namely, in an inclusive way. Thus, a
disjunction is true when at least one of the two propositions in it is true. Sometimes, we use or
in an exclusive sense. When the exclusive or is used to connect the propositions p and q, the
proposition “p or q (but not both)” is obtained. This proposition is true when p is true and q is
false, and when p is false and q is true. It is false when both p and q are false and when both
are true.

GEORGE BOOLE (1815–1864) George Boole, the son of a cobbler, was born in Lincoln, England, in
November 1815. Because of his family’s difficult financial situation, Boole struggled to educate himself while
supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s.Although
he considered a career as a clergyman, he decided instead to go into teaching, and soon afterward opened a
school of his own. In his preparation for teaching mathematics, Boole—unsatisfied with textbooks of his day—
decided to read the works of the great mathematicians. While reading papers of the great French mathematician
Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing with finding
curves and surfaces by optimizing certain parameters.

In 1848 Boole published The Mathematical Analysis ofLogic, the first of his contributions to symbolic logic.
In 1849 he was appointed professor of mathematics at Queen’s College in Cork, Ireland. In 1854 he published The Laws of Thought,
his most famous work. In this book, Boole introduced what is now called Boolean algebra in his honor. Boole wrote textbooks
on differential equations and on difference equations that were used in Great Britain until the end of the nineteenth century. Boole
married in 1855; his wife was the niece of the professor of Greek at Queen’s College. In 1864 Boole died from pneumonia, which
he contracted as a result of keeping a lecture engagement even though he was soaking wet from a rainstorm.

6 1 / The Foundations: Logic and Proofs

TABLE 4 The Truth Table for
the Exclusive Or of Two
Propositions.

p q p ⊕ q

T T F

T F T

F T T

F F F

TABLE 5 The Truth Table for
the Conditional Statement
p → q.

p q p → q

T T T

T F F

F T T

F F T

DEFINITION 4 Let p and q be propositions. The exclusive or of p and q, denoted by p ⊕ q, is the proposition
that is true when exactly one of p and q is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed in Table 4.

Conditional Statemen ts

We will discuss several other important ways in which propositions can be combined.

DEFINITION 5 Let p and q be propositions. The conditional statement p → q is the proposition “if p , then
q.” The conditional statement p → q is false when p is true and q is false, and true otherwise.
In the conditional statement p → q, p is called the hypothesis (or antecedent or premise)
and q is called the conclusion (or consequence).

The statement p → q is called a conditional statement because p → q asserts that q is true
on the condition that p holds. A conditional statement is also called an implication.

The truth table for the conditional statement p → q is shown in Table 5. Note that the
statement p → q is true when both p and q are true and when p is false (no matter what truth
value q has).

Because conditional statements play such an essential role in mathematical reasoning, a
variety of terminology is used to express p → q. You will encounter most if not all of the
following ways to express this conditional statement:

“if p , then q” “p implies q”
“if p , q” “p only if q”
“p is sufficient for q” “a sufficient condition for q is p”
“q if p” “q whenever p”
“q when p” “q is necessary for p”
“a necessary condition for p is q” “q follows from p”
“q unless ¬p”

A useful way to understand the truth value of a conditional statement is to think of an
obligation or a contract. For example, the pledge many politicians make when running for office
is

“If I am elected, then I will lower taxes.”

1.1 Propositional Logic 7

If the politician is elected, voters would expect this politician to lower taxes. Furthermore, if the
politician is not elected, then voters will not have any expectation that this person will lower
taxes, although the person may have sufficient influence to cause those in power to lower taxes.
It is only when the politician is elected but does not lower taxes that voters can say that the
politician has broken the campaign pledge. This last scenario corresponds to the case when p
is true but q is false in p → q.

Similarly, consider a statement that a professor might make:

“If you get 100% on the final, then you will get an A.”

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not
get 100% you may or may not receive an A depending on other factors. However, if you do get
100%, but the professor does not give you an A, you will feel cheated.

Of the various ways to express the conditional statement p → q, the two that seem to cause
the most confusion are “p only if q” and “q unless ¬p .” Consequently, we will provide some
guidance for clearing up this confusion.

To remember that “p only if q” expresses the same thing as “if p , then q,” note that “p only
if q” says that p cannot be true when q is not true. That is, the statement is false if p is true,
but q is false. When p is false, q may be either true or false, because the statement says nothing
about the truth value of q. Be careful not to use “q only if p” to express p → q because this is
incorrect. To see this, note that the true values of “q only if p” and p → q are different when
p and q have different truth values.

You might have trouble
understanding how
“unless” is used in
conditional statements
unless you read this
paragraph carefully.

To remember that “q unless ¬p” expresses the same conditional statement as “if p , then
q,” note that “q unless ¬p” means that if ¬p is false, then q must be true. That is, the statement
“q unless ¬p” is false when p is true but q is false, but it is true otherwise. Consequently,
“q unless ¬p” and p → q always have the same truth value.

We illustrate the translation between conditional statements and English statements in Ex-
ample 7.

EXAMPLE 7 Let p be the statement “Maria learns discrete mathematics” and q the statement “Maria will
find a good job.” Express the statement p → q as a statement in English.

Solution: From the definition of conditional statements, we see that when p is the statement
“Maria learns discrete mathematics” and q is the statement “Maria will find a good job,” p → q
represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”

There are many other ways to express this conditional statement in English. Among the most
natural of these are:

“Maria will find a good job when she learns discrete mathematics.”

“For Maria to get a good job, it is sufficient for her to learn discrete mathematics.”

and

“Maria will find a good job unless she does not learn discrete mathematics.”

▲

Note that the way we have defined conditional statements is more general than the meaning
attached to such statements in the English language. For instance, the conditional statement in
Example 7 and the statement

“If it is sunny, then we will go to the beach.”

are statements used in normal language where there is a relationship between the hypothesis
and the conclusion. Further, the first of these statements is true unless Maria learns discrete
mathematics, but she does not get a good job, and the second is true unless it is indeed sunny,
but we do not go to the beach. On the other hand, the statement

8 1 / The Foundations: Logic and Proofs

“If Juan has a smartphone, then 2 + 3 = 5”

is true from the definition of a conditional statement, because its conclusion is true. (The truth
value of the hypothesis does not matter then.) The conditional statement

“If Juan has a smartphone, then 2 + 3 = 6”

is true if Juan does not have a smartphone, even though 2 + 3 = 6 is false. We would not use
these last two conditional statements in natural language (except perhaps in sarcasm), because
there is no relationship between the hypothesis and the conclusion in either statement. In math-
ematical reasoning, we consider conditional statements of a more general sort than we use in
English. The mathematical concept of a conditional statement is independent of a cause-and-
effect relationship between hypothesis and conclusion. Our definition of a conditional statement
specifies its truth values; it is not based on English usage. Propositional language is an artificial
language; we only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is different from that used
in logic. Most programming languages contain statements such as if p then S, where p is a
proposition andS is a program segment (one or more statements to be executed). When execution
of a program encounters such a statement, S is executed if p is true, but S is not executed if p
is false, as illustrated in Example 8.

EXAMPLE 8 What is the value of the variable x after the statement

if 2 + 2 = 4 then x := x + 1

if x = 0 before this statement is encountered? (The symbol := stands for assignment. The
statement x := x + 1 means the assignment of the value of x + 1 to x.)

Solution: Because 2 + 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence,
x has the value 0 + 1 = 1 after this statement is encountered. ▲

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional
statements starting with a conditional statement p → q. In particular, there are three related
conditional statements that occur so often that they have special names. The proposition q → p
is called the converse of p → q. The contrapositive of p → q is the proposition ¬q → ¬p .
The proposition ¬p → ¬q is called the inverse of p → q. We will see that of these three
conditional statements formed from p → q, only the contrapositive always has the same truth
value as p → q.

We first show that the contrapositive, ¬q → ¬p , of a conditional statement p → q always
has the same truth value as p → q. To see this, note that the contrapositive is false only when
¬p is false and ¬q is true, that is, only when p is true and q is false. We now show that neither
the converse, q → p , nor the inverse, ¬p → ¬q, has the same truth value as p → q for all
possible truth values of p and q. Note that when p is true and q is false, the original conditional
statement is false, but the converse and the inverse are both true.

Remember that the
contrapositive, but neither
the converse or inverse, of
a conditional statement is
equivalent to it.

When two compound propositions always have the same truth value we call them equiv-
alent, so that a conditional statement and its contrapositive are equivalent. The converse and
the inverse of a conditional statement are also equivalent, as the reader can verify, but neither is
equivalent to the original conditional statement. (We will study equivalent propositions in Sec-
tion 1.3.) Take note that one of the most common logical errors is to assume that the converse
or the inverse of a conditional statement is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 9.

1.1 Propositional Logic 9

EXAMPLE 9 What are the contrapositive, the converse, and the inverse of the conditional statement

“The home team wins whenever it is raining?”

Solution: Because “q whenever p” is one of the ways to express the conditional statement
p → q, the original statement can be rewritten as

“If it is raining, then the home team wins.”

Consequently, the contrapositive of this conditional statement is

“If the home team does not win, then it is not raining.”

The converse is

“If the home team wins, then it is raining.”

The inverse is

“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement. ▲

BICONDITIONALS We now introduce another way to combine propositions that expresses
that two propositions have the same truth value.

DEFINITION 6 Let p and q be propositions. The biconditional statement p ↔ q is the proposition “p if
and only if q.” The biconditional statement p ↔ q is true when p and q have the same truth
values, and is false otherwise. Biconditional statements are also called bi-implications.

The truth table for p ↔ q is shown in Table 6. Note that the statement p ↔ q is true when both
the conditional statements p → q and q → p are true and is false otherwise. That is why we use
the words “if and only if” to express this logical connective and why it is symbolically written
by combining the symbols → and ← . There are some other common ways to express p ↔ q:

“p is necessary and sufficient for q”
“if p then q, and conversely”
“p iff q.”

The last way of expressing the biconditional statement p ↔ q uses the abbreviation “iff” for
“if and only if.” Note that p ↔ q has exactly the same truth value as (p → q) ∧ (q → p).

TABLE 6 The Truth Table for the
Biconditional p ↔ q.

p q p ↔ q

T T T

T F F

F T F

F F T

10 1 / The Foundations: Logic and Proofs

EXAMPLE 10 Let p be the statement “You can take the flight,” and let q be the statement “You buy a ticket.”
Then p ↔ q is the statement

“You can take the flight if and only if you buy a ticket.”

This statement is true if p and q are either both true or both false, that is, if you buy a ticket and
can take the flight or if you do not buy a ticket and you cannot take the flight. It is false when
p and q have opposite truth values, that is, when you do not buy a ticket, but you can take the
flight (such as when you get a free trip) and when you buy a ticket but you cannot take the flight
(such as when the airline bumps you). ▲

IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not
always explicit in natural language. In particular, the “if and only if” construction used in
biconditionals is rarely used in common language. Instead, biconditionals are often expressed
using an “if, then” or an “only if” construction. The other part of the “if and only if” is implicit.
That is, the converse is implied, but not stated. For example, consider the statement in English
“If you finish your meal, then you can have dessert.” What is really meant is “You can have
dessert if and only if you finish your meal.” This last statement is logically equivalent to the
two statements “If you finish your meal, then you can have dessert” and “You can have dessert
only if you finish your meal.” Because of this imprecision in natural language, we need to
make an assumption whether a conditional statement in natural language implicitly includes its
converse. Because precision is essential in mathematics and in logic, we will always distinguish
between the conditional statement p → q and the biconditional statement p ↔ q.

Tru th Tables of Compound Propositions

We have now introduced four important logical connectives—conjunctions, disjunctions, con-
ditional statements, and biconditional statements—as well as negations. We can use these con-
nectives to build up complicated compound propositions involving any number of propositional
variables. We can use truth tables to determine the truth values of these compound propositions,
as Example 11 illustrates. We use a separate column to find the truth value of each compound
expression that occurs in the compound proposition as it is built up. The truth values of the
compound proposition for each combination of truth values of the propositional variables in it
is found in the final column of the table.

EXAMPLE 11 Construct the truth table of the compound proposition

(p ∨¬q) → (p ∧q).

Solution: Because this truth table involves two propositional variables p and q, there are four
rows in this truth table, one for each of the pairs of truth values TT, TF, FT, and FF. The first
two columns are used for the truth values of p and q, respectively. In the third column we find
the truth value of ¬q, needed to find the truth value of p ∨¬q, found in the fourth column. The
fifth column gives the truth value of p ∧q. Finally, the truth value of (p ∨¬q) → (p ∧q) is
found in the last column. The resulting truth table is shown in Table 7. ▲

TABLE 7 The Truth Table of (p ∨¬ q) → (p ∧q).

p q ¬q p ∨¬q p ∧q (p ∨¬q) → (p ∧q)

T T F T T T

T F T T F F

F T F F F T

F F T T F F

1.1 Propositional Logic 11

Precedence of Logical Operators

We can construct compound propositions using the negation operator and the logical operators
defined so far. We will generally use parentheses to specify the order in which logical operators
in a compound proposition are to be applied. For instance, (p ∨q) ∧ (¬ r) is the conjunction
of p ∨q and ¬r . However, to reduce the number of parentheses, we specify that the negation
operator is applied before all other logical operators. This means that ¬p ∧q is the conjunction
of¬p andq, namely, (¬p) ∧q, not the negation of the conjunction ofp andq, namely¬(p ∧q).

Another general rule of precedence is that the conjunction operator takes precedence over
the disjunction operator, so that p ∧q∨ r means (p ∧q) ∨ r rather than p ∧ (q∨ r). Because
this rule may be difficult to remember, we will continue to use parentheses so that the order of
the disjunction and conjunction operators is clear.

TABLE 8
Precedence of
Logical Operators.

Operator Precedence

¬ 1

∧ 2
∨ 3

→ 4
↔ 5 Finally, it is an accepted rule that the conditional and biconditional operators → and ↔

have lower precedence than the conjunction and disjunction operators, ∧ and ∨. Consequently,
p ∨q → r is the same as (p ∨q) → r . We will use parentheses when the order of the con-
ditional operator and biconditional operator is at issue, although the conditional operator has
precedence over the biconditional operator. Table 8 displays the precedence levels of the logical
operators, ¬ , ∧, ∨, → , and ↔.

Logic and Bit Operations

Computers represent information using bits. A bit is a symbol with two possible values, namely,
0 (zero) and 1 (one). This meaning of the word bit comes from binary digit, because zeros and
ones are the digits used in binary representations of numbers. The well-known statistician John
Tukey introduced this terminology in 1946. A bit can be used to represent a truth value, because
there are two truth values, namely, true and false. As is customarily done, we will use a 1 bit to
represent true and a 0 bit to represent false. That is, 1 represents T (true), 0 represents F (false). A
variable is called a Boolean var iable if its value is either true or false. Consequently, a Boolean
variable can be represented using a bit.

Truth Value Bit

T 1

F 0

Computer bit operations correspond to the logical connectives. By replacing true by a one
and false by a zero in the truth tables for the operators ∧, ∨, and ⊕, the tables shown in Table 9
for the corresponding bit operations are obtained. We will also use the notation OR, AND, and
XOR for the operators ∨,∧, and ⊕, as is done in various programming languages.

JOHN WILDER TUKEY (1915–2000) Tukey, born in New Bedford, Massachusetts, was an only child. His
parents, both teachers, decided home schooling would best develop his potential. His formal education began
at Brown University, where he studied mathematics and chemistry. He received a master’s degree in chemistry
from Brown and continued his studies at Princeton University, changing his field of study from chemistry to
mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he was appointed an
instructor in mathematics at Princeton. With the start of World War II, he joined the Fire Control Research Office,
where he began working in statistics. Tukey found statistical research to his liking and impressed several leading
statisticians with his skills. In 1945, at the conclusion of the war, Tukey returned to the mathematics department
at Princeton as a professor of statistics, and he also took a position at AT&T Bell Laboratories. Tukey founded

the Statistics Department at Princeton in 1966 and was its first chairman. Tukey made significant contributions to many areas of
statistics, including the analysis of variance, the estimation of spectra of time series, inferences about the values of a set of parameters
from a single experiment, and the philosophy of statistics. However, he is best known for his invention, with J. W. Cooley, of the fast
Fourier transform. In addition to his contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining
the terms bit and software.

Tukey contributed his insight and expertise by serving on the President’s Science Advisory Committee. He chaired several
important committees dealing with the environment, education, and chemicals and health. He also served on committees working
on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE There were several other suggested words for a binary digit, including binit and bigit, that never were widely
accepted. The adoption of the word bit may be due to its meaning as a common English word. For an account of Tukey’s coining
of the word bit, see the April 1984 issue of Annals of the History of Computing.

12 1 / The Foundations: Logic and Proofs

TABLE 9 Table for the Bit Operators OR,
AND, and XOR.

x y x ∨y x ∧y x ⊕ y

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When
this is done, operations on the bit strings can be used to manipulate this information.

DEFINITION 7 A bit string is a sequence of zero or more bits. The length of this string is the number of bits
in the string.

EXAMPLE 12 101010011 is a bit string of length nine. ▲

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,
AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols
∨,∧, and⊕ to represent the bitwise OR, bitwise AND, and bitwise XORoperations, respectively.
We illustrate bitwise operations on bit strings with Example 13.

EXAMPLE 13 Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110 and
11 0001 1101. (Here, and throughout this book, bit strings will be split into blocks of four
bits to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1101

11 1011 1111 bitwise OR

01 0001 0100 bitwise AND

10 1010 1011 bitwise XOR ▲
Exercises

1. Which of these sentences are propositions? What are the
truth values of those that are propositions?

a) Boston is the capital of Massachusetts.
b) Miami is the capital of Florida.
c) 2 + 3 = 5.
d) 5 + 7 = 10.
e) x + 2 = 11.
f) Answer this question.

2. Which of these are propositions? What are the truth values
of those that are propositions?

a) Do not pass go.
b) What time is it?
c) There are no black flies in Maine.

d) 4 + x = 5.
e) The moon is made of green cheese.
f) 2n ≥ 100.

3. What is the negation of each of these propositions?

a) Mei has an MP3 player.
b) There is no pollution in New Jersey.
c) 2 + 1 = 3.
d) The summer in Maine is hot and sunny.

4. What is the negation of each of these propositions?

a) Jennifer and Teja are friends.
b) There are 13 items in a baker’s dozen.
c) Abby sent more than 100 text messages every day.
d) 121 is a perfect square.

1.1 Propositional Logic 13

5. What is the negation of each of these propositions?

a) Steve has more than 100 GB free disk space on his
laptop.

b) Zach blocks e-mails and texts from Jennifer.
c) 7 · 11 · 13 = 999.
d) Diane rode her bicycle 100 miles on Sunday.

6. Suppose that SmartphoneA has 256 MB RAM and 32 GB
ROM, and the resolution of its camera is 8 MP; Smart-
phone B has 288 MB RAM and 64 GB ROM, and the
resolution of its camera is 4 MP; and Smartphone C has
128 MB RAM and 32 GB ROM, and the resolution of
its camera is 5 MP. Determine the truth value of each of
these propositions.

a) Smartphone B has the most RAM of these three smart-
phones.

b) Smartphone C has more ROM or a higher resolution
camera than Smartphone B.

c) Smartphone B has more RAM, more ROM, and a
higher resolution camera than Smartphone A.

d) If Smartphone B has more RAM and more ROM than
Smartphone C, then it also has a higher resolution
camera.

e) Smartphone A has more RAM than Smartphone B if
and only if Smartphone B has more RAM than Smart-
phone A.

7. Suppose that during the most recent fiscal year, the an-
nual revenue of Acme Computer was 138 billion dollars
and its net profit was 8 billion dollars, the annual revenue
of Nadir Software was 87 billion dollars and its net profit
was 5 billion dollars, and the annual revenue of Quixote
Media was 111 billion dollars and its net profit was
13 billion dollars. Determine the truth value of each of
these propositions for the most recent fiscal year.

a) Quixote Media had the largest annual revenue.
b) Nadir Software had the lowest net profit and Acme

Computer had the largest annual revenue.
c) Acme Computer had the largest net profit or Quixote

Media had the largest net profit.
d) If Quixote Media had the smallest net profit, then

Acme Computer had the largest annual revenue.
e) Nadir Software had the smallest net profit if and only

if Acme Computer had the largest annual revenue.

8. Let p and q be the propositions

p : I bought a lottery ticket this week.
q : I won the million dollar jackpot.

Express each of these propositions as an English sen-
tence.

a) ¬p b) p ∨q c) p → q
d) p ∧q e) p ↔ q f) ¬p → ¬q
g) ¬p ∧¬q h) ¬p ∨ (p ∧ q)

9. Let p and q be the propositions “Swimming at the New
Jersey shore is allowed” and “Sharks have been spotted
near the shore,” respectively. Express each of these com-
pound propositions as an English sentence.

a) ¬q b) p ∧q c) ¬p ∨q
d) p → ¬q e) ¬q → p f) ¬p → ¬q
g) p ↔ ¬q h) ¬p ∧ (p ∨ ¬q)

10. Let p and q be the propositions “The election is decided”
and “The votes have been counted,” respectively. Express
each of these compound propositions as an English sen-
tence.

a) ¬p b) p ∨q
c) ¬p ∧q d) q → p
e) ¬q → ¬p f) ¬p → ¬q
g) p ↔ q h) ¬q ∨ (¬p ∧ q)

11. Let p and q be the propositions

p : It is below freezing.
q : It is snowing.

Write these propositions using p and q and logical con-
nectives (including negations).

a) It is below freezing and snowing.
b) It is below freezing but not snowing.
c) It is not below freezing and it is not snowing.
d) It is either snowing or below freezing (or both).
e) If it is below freezing, it is also snowing.
f) Either it is below freezing or it is snowing, but it is

not snowing if it is below freezing.
g) That it is below freezing is necessary and sufficient

for it to be snowing.

12. Let p , q, and r be the propositions

p :You have the flu.
q :You miss the final examination.
r :You pass the course.

Express each of these propositions as an English sen-
tence.

a) p → q b) ¬q ↔ r
c) q → ¬r d) p ∨q ∨ r
e) (p → ¬r) ∨ (q → ¬r)
f) (p ∧q) ∨ (¬ q ∧ r)

13. Let p and q be the propositions

p :You drive over 65 miles per hour.
q :You get a speeding ticket.

Write these propositions using p and q and logical con-
nectives (including negations).

a) You do not drive over 65 miles per hour.
b) You drive over 65 miles per hour, but you do not get

a speeding ticket.
c) You will get a speeding ticket if you drive over

65 miles per hour.
d) If you do not drive over 65 miles per hour, then you

will not get a speeding ticket.
e) Driving over 65 miles per hour is sufficient for getting

a speeding ticket.
f) You get a speeding ticket, but you do not drive over

65 miles per hour.
g) Whenever you get a speeding ticket, you are driving

over 65 miles per hour.

14. Let p , q, and r be the propositions

p :You get an A on the final exam.
q :You do every exercise in this book.
r :You get an A in this class.

Write these propositions using p , q, and r and logical
connectives (including negations).

14 1 / The Foundations: Logic and Proofs

a) You get an A in this class, but you do not do every
exercise in this book.

b) You get an A on the final, you do every exercise in this
book, and you get an A in this class.

c) To get an A in this class, it is necessary for you to get
an A on the final.

d) You get an A on the final, but you don’t do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the final and doing every exercise in
this book is sufficient for getting an A in this class.

f) You will get an A in this class if and only if you either
do every exercise in this book or you get an A on the
final.

15. Let p , q, and r be the propositions

p : Grizzly bears have been seen in the area.
q : Hiking is safe on the trail.
r : Berries are ripe along the trail.

Write these propositions using p , q, and r and logical
connectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have
not been seen in the area.

b) Grizzly bears have not been seen in the area and hik-
ing on the trail is safe, but berries are ripe along the
trail.

c) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) It is not safe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) For hiking on the trail to be safe, it is necessary but not
sufficient that berries not be ripe along the trail and
for grizzly bears not to have been seen in the area.

f) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

16. Determine whether these biconditionals are true or
false.

a) 2 + 2 = 4 if and only if 1 + 1 = 2.
b) 1 + 1 = 2 if and only if 2 + 3 = 4.
c) 1 + 1 = 3 if and only if monkeys can fly.
d) 0 > 1 if and only if 2 > 1.

17. Determine whether each of these conditional statements
is true or false.

a) If 1 + 1 = 2, then 2 + 2 = 5.
b) If 1 + 1 = 3, then 2 + 2 = 4.
c) If 1 + 1 = 3, then 2 + 2 = 5.
d) If monkeys can fly, then 1 + 1 = 3.

18. Determine whether each of these conditional statements
is true or false.

a) If 1 + 1 = 3, then unicorns exist.
b) If 1 + 1 = 3, then dogs can fly.
c) If 1 + 1 = 2, then dogs can fly.
d) If 2 + 2 = 4, then 1 + 2 = 3.

19. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.

a) Coffee or tea comes with dinner.

b) A password must have at least three digits or be at
least eight characters long.

c) The prerequisite for the course is a course in number
theory or a course in cryptography.

d) You can pay using U.S. dollars or euros.

20. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.

a) Experience with C+ + or Java is required.

b) Lunch includes soup or salad.

c) To enter the country you need a passport or a voter
registration card.

d) Publish or perish.

21. For each of these sentences, state what the sentence means
if the logical connective or is an inclusive or (that is, a dis-
junction) versus an exclusive or. Which of these meanings
of or do you think is intended?

a) To take discrete mathematics, you must have taken
calculus or a course in computer science.

b) When you buy a new car fromAcme Motor Company,
you get $2000 back in cash or a 2% car loan.

c) Dinner for two includes two items from column A or
three items from column B.

d) School is closed if more than 2 feet of snow falls or if
the wind chill is below − 100.

22. Write each of these statements in the form “if p , then q”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) It is necessary to wash the boss’s car to get promoted.

b) Winds from the south imply a spring thaw.

c) A sufficient condition for the warranty to be good is
that you bought the computer less than a year ago.

d) Willy gets caught whenever he cheats.

e) You can access the website only if you pay a subscrip-
tion fee.

f) Getting elected follows from knowing the right peo-
ple.

g) Carol gets seasick whenever she is on a boat.

23. Write each of these statements in the form “if p , then q”
in English. [Hint: Refer to the list of common ways to
express conditional statements.]

a) It snows whenever the wind blows from the northeast.

b) The apple trees will bloom if it stays warm for a week.

c) That the Pistons win the championship implies that
they beat the Lakers.

d) It is necessary to walk 8 miles to get to the top of
Long’s Peak.

e) To get tenure as a professor, it is sufficient to be world-
famous.

f) If you drive more than 400 miles, you will need to buy
gasoline.

g) Your guarantee is good only if you bought your CD
player less than 90 days ago.

h) Jan will go swimming unless the water is too cold.

1.1 Propositional Logic 15

24. Write each of these statements in the form “if p , then q”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) I will remember to send you the address only if you
send me an e-mail message.

b) To be a citizen of this country, it is sufficient that you
were born in the United States.

c) If you keep your textbook, it will be a useful reference
in your future courses.

d) The Red Wings will win the Stanley Cup if their goalie
plays well.

e) That you get the job implies that you had the best
credentials.

f) The beach erodes whenever there is a storm.
g) It is necessary to have a valid password to log on to

the server.
h) You will reach the summit unless you begin your climb

too late.

25. Write each of these propositions in the form “p if and
only if q” in English.

a) If it is hot outside you buy an ice cream cone, and if
you buy an ice cream cone it is hot outside.

b) For you to win the contest it is necessary and sufficient
that you have the only winning ticket.

c) You get promoted only if you have connections, and
you have connections only if you get promoted.

d) If you watch television your mind will decay, and con-
versely.

e) The trains run late on exactly those days when I take
it.

26. Write each of these propositions in the form “p if and
only if q” in English.

a) For you to get an A in this course, it is necessary and
sufficient that you learn how to solve discrete mathe-
matics problems.

b) If you read the newspaper every day, you will be in-
formed, and conversely.

c) It rains if it is a weekend day, and it is a weekend day
if it rains.

d) You can see the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.

27. State the converse, contrapositive, and inverse of each of
these conditional statements.

a) If it snows today, I will ski tomorrow.
b) I come to class whenever there is going to be a quiz.
c) A positive integer is a prime only if it has no divisors

other than 1 and itself.

28. State the converse, contrapositive, and inverse of each of
these conditional statements.

a) If it snows tonight, then I will stay at home.
b) I go to the beach whenever it is a sunny summer day.
c) When I stay up late, it is necessary that I sleep until

noon.

29. How many rows appear in a truth table for each of these
compound propositions?

a) p → ¬p
b) (p ∨¬ r) ∧ (q ∨¬s)

c) q ∨p ∨¬s∨¬ r ∨¬ t ∨u

d) (p ∧ r ∧ t) ↔ (q ∧ t)

30. How many rows appear in a truth table for each of these
compound propositions?

a) (q → ¬p) ∨ (¬p → ¬q)

b) (p ∨¬ t) ∧ (p ∨¬s)

c) (p → r) ∨ (¬s → ¬t) ∨ (¬u → v)

d) (p ∧ r ∧s) ∨ (q ∧ t) ∨ (r ∧¬ t)

31. Construct a truth table for each of these compound propo-
sitions.

a) p ∧¬p b) p ∨¬p

c) (p ∨¬q) → q d) (p ∨q) → (p ∧q)

e) (p → q) ↔ (¬q → ¬p)

f) (p → q) → (q → p)

32. Construct a truth table for each of these compound propo-
sitions.

a) p → ¬p b) p ↔ ¬p

c) p ⊕ (p ∨q) d) (p ∧q) → (p ∨q)

e) (q → ¬p) ↔ (p ↔ q)

f) (p ↔ q) ⊕ (p ↔ ¬q)

33. Construct a truth table for each of these compound propo-
sitions.

a) (p ∨q) → (p ⊕ q) b) (p ⊕ q) → (p ∧q)

c) (p ∨q) ⊕ (p ∧q) d) (p ↔ q)⊕ (¬p ↔ q)

e) (p ↔ q) ⊕ (¬p ↔ ¬r)

f) (p ⊕ q) → (p ⊕¬q)

34. Construct a truth table for each of these compound propo-
sitions.

a) p ⊕ p b) p ⊕¬p

c) p ⊕ ¬q d) ¬p ⊕¬q

e) (p ⊕ q) ∨ (p ⊕¬q) f) (p ⊕ q) ∧ (p ⊕ ¬q)

35. Construct a truth table for each of these compound propo-
sitions.

a) p → ¬q b) ¬p ↔ q

c) (p → q) ∨ (¬p → q) d) (p → q) ∧ (¬p → q)

e) (p ↔ q) ∨ (¬p ↔ q)

f) (¬p ↔ ¬q) ↔ (p ↔ q)

36. Construct a truth table for each of these compound propo-
sitions.

a) (p ∨q) ∨ r b) (p ∨q) ∧ r

c) (p ∧q) ∨ r d) (p ∧q) ∧ r

e) (p ∨q) ∧¬r f) (p ∧q) ∨¬ r

37. Construct a truth table for each of these compound propo-
sitions.

a) p → (¬q ∨ r)

b) ¬p → (q → r)

c) (p → q) ∨ (¬p → r)

d) (p → q) ∧ (¬p → r)

e) (p ↔ q) ∨ (¬q ↔ r)

f) (¬p ↔ ¬q) ↔ (q ↔ r)

38. Construct a truth table for ((p → q) → r) → s.

39. Construct a truth table for (p ↔ q) ↔ (r ↔ s).

16 1 / The Foundations: Logic and Proofs

40. Explain, without using a truth table, why (p ∨¬q) ∧
(q ∨¬r) ∧ (r ∨¬p) is true when p , q, and r have the
same truth value and it is false otherwise.

41. Explain, without using a truth table, why (p ∨q ∨ r) ∧
(¬p ∨¬q ∨¬ r) is true when at least one of p , q, and r
is true and at least one is false, but is false when all three
variables have the same truth value.

42. What is the value of x after each of these statements is
encountered in a computer program, if x = 1 before the
statement is reached?

a) if x + 2 = 3 then x := x + 1
b) if (x + 1 = 3) OR (2x + 2 = 3) then x := x + 1
c) if (2x + 3 = 5) AND (3x + 4 = 7) then x := x + 1
d) if (x + 1 = 2) XOR (x + 2 = 3) then x := x + 1
e) if x < 2 then x := x + 1

43. Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.

a) 101 1110, 010 0001
b) 1111 0000, 1010 1010
c) 00 0111 0001, 10 0100 1000
d) 11 1111 1111, 00 0000 0000

44. Evaluate each of these expressions.

a) 1 1000 ∧ (0 1011 ∨ 1 1011)
b) (0 1111 ∧ 1 0101) ∨ 0 1000
c) (0 1010 ⊕ 1 1011) ⊕ 0 1000
d) (1 1011 ∨ 0 1010) ∧ (1 0001 ∨ 1 1011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a
proposition has a truth value that is a number between 0 and 1,
inclusive.A proposition with a truth value of 0 is false and one
with a truth value of 1 is true. Truth values that are between 0
and 1 indicate varying degrees of truth. For instance, the truth
value 0.8 can be assigned to the statement “Fred is happy,”

because Fred is happy most of the time, and the truth value
0.4 can be assigned to the statement “John is happy,” because
John is happy slightly less than half the time. Use these truth
values to solve Exercises 45–47.

45. The truth value of the negation of a proposition in fuzzy
logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy?”

46. The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements
“Fred and John are happy” and “Neither Fred nor John is
happy?”

47. The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
“Fred is happy, or John is happy” and “Fred is not happy,
or John is not happy?”

∗48. Is the assertion “This statement is false” a proposition?
∗49. The nth statement in a list of 100 statements is “Exactly

n of the statements in this list are false.”

a) What conclusions can you draw from these state-
ments?

b) Answer part (a) if the nth statement is “At least n of
the statements in this list are false.”

c) Answer part (b) assuming that the list contains 99
statements.

50. An ancient Sicilian legend says that the barber in a remote
town who can be reached only by traveling a dangerous
mountain road shaves those people, and only those peo-
ple, who do not shave themselves. Can there be such a
barber?

1.2 Applications of Propositional Logic

In troduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the specification of software and hardware, because these
specifications need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to verify
the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is

1.2 Applications of Propositional Logic 17

often ambiguous. Translating sentences into compound statements (and other types of logical
expressions, which we will introduce later in this chapter) removes the ambiguity. Note that
this may involve making a set of reasonable assumptions based on the intended meaning of the
sentence. Moreover, once we have translated sentences from English into logical expressions
we can analyze these logical expressions to determine their truth values, we can manipulate
them, and we can use rules of inference (which are discussed in Section 1.6) to reason about
them.

To illustrate the process of translating an English sentence into a logical expression, consider
Examples 1 and 2.

EXAMPLE 1 How can this English sentence be translated into a logical expression?

“You can access the Internet from campus only if you are a computer science major or you
are not a freshman.”

Solution: There are many ways to translate this sentence into a logical expression. Although it is
possible to represent the sentence by a single propositional variable, such as p , this would not be
useful when analyzing its meaning or reasoning with it. Instead, we will use propositional vari-
ables to represent each sentence part and determine the appropriate logical connectives between
them. In particular, we let a, c, and f represent “You can access the Internet from campus,”
“You are a computer science major,” and “You are a freshman,” respectively. Noting that “only
if” is one way a conditional statement can be expressed, this sentence can be represented as

a → (c∨¬ f). ▲

EXAMPLE 2 How can this English sentence be translated into a logical expression?

“You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16
years old.”

Solution: Let q, r , and s represent “You can ride the roller coaster,” “You are under 4 feet tall,”
and “You are older than 16 years old,” respectively. Then the sentence can be translated to

(r ∧¬s) → ¬q.

Of course, there are other ways to represent the original sentence as a logical expression,
but the one we have used should meet our needs. ▲
System Specifications

Translating sentences in natural language (such as English) into logical expressions is an essential
part of specifying both hardware and software systems. System and software engineers take
requirements in natural language and produce precise and unambiguous specifications that can
be used as the basis for system development. Example 3 shows how compound propositions
can be used in this process.

EXAMPLE 3 Express the specification “The automated reply cannot be sent when the file system is full”
using logical connectives.

Solution: One way to translate this is to let p denote “The automated reply can be sent” and
q denote “The file system is full.” Then ¬p represents “It is not the case that the automated

18 1 / The Foundations: Logic and Proofs

reply can be sent,” which can also be expressed as “The automated reply cannot be sent.”
Consequently, our specification can be represented by the conditional statement q → ¬p . ▲

System specifications should be consistent, that is, they should not contain conflicting
requirements that could be used to derive a contradiction. When specifications are not consistent,
there would be no way to develop a system that satisfies all specifications.

EXAMPLE 4 Determine whether these system specifications are consistent:

“The diagnostic message is stored in the buffer or it is retransmitted.”
“The diagnostic message is not stored in the buffer.”
“If the diagnostic message is stored in the buffer, then it is retransmitted.”

Solution: To determine whether these specifications are consistent, we first express them using
logical expressions. Let p denote “The diagnostic message is stored in the buffer” and let q
denote “The diagnostic message is retransmitted.” The specifications can then be written as
p ∨q, ¬p , and p → q. An assignment of truth values that makes all three specifications true
must have p false to make ¬p true. Because we want p ∨q to be true but p must be false,
q must be true. Because p → q is true when p is false and q is true, we conclude that these
specifications are consistent, because they are all true when p is false and q is true. We could
come to the same conclusion by use of a truth table to examine the four possible assignments
of truth values to p and q. ▲

EXAMPLE 5 Do the system specifications in Example 4 remain consistent if the specification “The diagnostic
message is not retransmitted” is added?

Solution: By the reasoning in Example 4, the three specifications from that example are true
only in the case when p is false and q is true. However, this new specification is ¬q, which is
false when q is true. Consequently, these four specifications are inconsistent. ▲

Boolean Searches

Logical connectives are used extensively in searches of large collections of information, such
as indexes of Web pages. Because these searches employ techniques from propositional logic,
they are called Boolean searches.

In Boolean searches, the connective AND is used to match records that contain both of
two search terms, the connective OR is used to match one or both of two search terms, and the
connective NOT (sometimes written as AND NOT) is used to exclude a particular search term.
Careful planning of how logical connectives are used is often required when Boolean searches
are used to locate information of potential interest. Example 6 illustrates how Boolean searches
are carried out.

EXAMPLE 6 Web Page Searching Most Web search engines support Boolean searching techniques, which
usually can help find Web pages about particular subjects. For instance, using Boolean searching
to find Web pages about universities in New Mexico, we can look for pages matching NEW
AND MEXICO AND UNIVERSITIES. The results of this search will include those pages that
contain the three words NEW, MEXICO, and UNIVERSITIES. This will include all of the
pages of interest, together with others such as a page about new universities in Mexico. (Note
that in Google, and many other search engines, the word “AND” is not needed, although it is
understood, because all search terms are included by default. These search engines also support
the use of quotation marks to search for specific phrases. So, it may be more effective to search
for pages matching “New Mexico” AND UNIVERSITIES.)

1.2 Applications of Propositional Logic 19

Next, to find pages that deal with universities in New Mexico or Arizona, we can search
for pages matching (NEW AND MEXICO ORARIZONA) AND UNIVERSITIES. (Note: Here
the AND operator takes precedence over the OR operator. Also, in Google, the terms used for
this search would be NEW MEXICO OR ARIZONA.) The results of this search will include
all pages that contain the word UNIVERSITIES and either both the words NEW and MEXICO
or the word ARIZONA. Again, pages besides those of interest will be listed. Finally, to find
Web pages that deal with universities in Mexico (and not New Mexico), we might first look
for pages matching MEXICO AND UNIVERSITIES, but because the results of this search will
include pages about universities in New Mexico, as well as universities in Mexico, it might be
better to search for pages matching (MEXICO AND UNIVERSITIES) NOT NEW. The results
of this search include pages that contain both the words MEXICO and UNIVERSITIES but
do not contain the word NEW. (In Google, and many other search engines, the word “NOT” is
replaced by the symbol “-”. In Google, the terms used for this last search would be MEXICO
UNIVERSITIES -NEW.) ▲

Logic Puzzles

Puzzles that can be solved using logical reasoning are known as logic puzzles. Solving logic
puzzles is an excellent way to practice working with the rules of logic. Also, computer programs
designed to carry out logical reasoning often use well-known logic puzzles to illustrate their
capabilities. Many people enjoy solving logic puzzles, published in periodicals, books, and on
the Web, as a recreational activity.

We will discuss two logic puzzles here. We begin with a puzzle originally posed by Raymond
Smullyan, a master of logic puzzles, who has published more than a dozen books containing
challenging puzzles that involve logical reasoning. In Section 1.3 we will also discuss the
extremely popular logic puzzle Sudoku.

EXAMPLE 7 In [Sm78] Smullyan posed many puzzles about an island that has two kinds of inhabitants,
knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter
two people A and B . What are A and B if A says “B is a knight” and B says “The two of us are
opposite types?”

Solution: Let p and q be the statements that A is a knight and B is a knight, respectively, so that
¬p and ¬q are the statements that A is a knave and B is a knave, respectively.

We first consider the possibility that A is a knight; this is the statement that p is true. If A is
a knight, then he is telling the truth when he says thatB is a knight, so that q is true, andA andB
are the same type. However, if B is a knight, then B’s statement that A and B are of opposite
types, the statement (p ∧¬q) ∨ (¬p ∧q), would have to be true, which it is not, because A
and B are both knights. Consequently, we can conclude that A is not a knight, that is, that p is
false.

If A is a knave, then because everything a knave says is false, A’s statement that B is
a knight, that is, that q is true, is a lie. This means that q is false and B is also a knave.
Furthermore, if B is a knave, then B’s statement that A and B are opposite types is a lie,
which is consistent with both A and B being knaves. We can conclude that both A and B are
knaves. ▲

We pose more of Smullyan’s puzzles about knights and knaves in Exercises 19–23. In
Exercises 24–31 we introduce related puzzles where we have three types of people, knights and
knaves as in this puzzle together with spies who can lie.

Next, we pose a puzzle known as the muddy children puzzle for the case of two children.

20 1 / The Foundations: Logic and Proofs

EXAMPLE 8 A father tells his two children, a boy and a girl, to play in their backyard without getting dirty.
However, while playing, both children get mud on their foreheads. When the children stop
playing, the father says “At least one of you has a muddy forehead,” and then asks the children
to answer “Yes” or “No” to the question: “Do you know whether you have a muddy forehead?”
The father asks this question twice. What will the children answer each time this question is
asked, assuming that a child can see whether his or her sibling has a muddy forehead, but cannot
see his or her own forehead? Assume that both children are honest and that the children answer
each question simultaneously.

Solution: Let sbe the statement that the son has a muddy forehead and let d be the statement that
the daughter has a muddy forehead. When the father says that at least one of the two children
has a muddy forehead, he is stating that the disjunction s∨d is true. Both children will answer
“No” the first time the question is asked because each sees mud on the other child’s forehead.
That is, the son knows that d is true, but does not know whether s is true, and the daughter
knows that s is true, but does not know whether d is true.

After the son has answered “No” to the first question, the daughter can determine that d
must be true. This follows because when the first question is asked, the son knows that s∨d is
true, but cannot determine whether s is true. Using this information, the daughter can conclude
that d must be true, for if d were false, the son could have reasoned that because s∨d is true,
then smust be true, and he would have answered “Yes” to the first question. The son can reason
in a similar way to determine that smust be true. It follows that both children answer “Yes” the
second time the question is asked. ▲

Logic Circu its

Propositional logic can be applied to the design of computer hardware. This was first observed
in 1938 by Claude Shannon in his MIT master’s thesis. In Chapter 12 we will study this topic
in depth. (See that chapter for a biography of Shannon.) We give a brief introduction to this
application here.

A logic circuit (or digital circuit) receives input signals p1, p2, . . . , pn, each a bit [either
0 (off) or 1 (on)], and produces output signals s1, s2, . . . , sn, each a bit. In this section we will

In Chapter 12 we design
some useful circuits.

restrict our attention to logic circuits with a single output signal; in general, digital circuits may
have multiple outputs.

RAYMOND SMULLYAN (BORN 1919) Raymond Smullyan dropped out of high school. He wanted to study
what he was really interested in and not standard high school material. After jumping from one university to
the next, he earned an undergraduate degree in mathematics at the University of Chicago in 1955. He paid
his college expenses by performing magic tricks at parties and clubs. He obtained a Ph.D. in logic in 1959 at
Princeton, studying under Alonzo Church. After graduating from Princeton, he taught mathematics and logic at
Dartmouth College, Princeton University, Yeshiva University, and the City University of New York. He joined
the philosophy department at Indiana University in 1981 where he is now an emeritus professor.

Smullyan has written many books on recreational logic and mathematics, including Satan, Cantor, and
Infinity; What Is the Name of This Book?; The Lady or the Tiger?; Alice in Puzzleland; To Mock a Mockingbird;

Forever Undecided; and The Riddle of Scheherazade: Amazing Logic Puzzles, Ancient and Modern. Because his logic puzzles are
challenging, entertaining, and thought-provoking, he is considered to be a modern-day Lewis Carroll. Smullyan has also written
several books about the application of deductive logic to chess, three collections of philosophical essays and aphorisms, and several
advanced books on mathematical logic and set theory. He is particularly interested in self-reference and has worked on extending
some of Gödel’s results that show that it is impossible to write a computer program that can solve all mathematical problems. He is
also particularly interested in explaining ideas from mathematical logic to the public.

Smullyan is a talented musician and often plays piano with his wife, who is a concert-level pianist. Making telescopes is one
of his hobbies. He is also interested in optics and stereo photography. He states “I’ve never had a conflict between teaching and
research as some people do because when I’m teaching, I’m doing research.” Smullyan is the subject of a documentary short film
entitled This Film Needs No Title.

1.2 Applications of Propositional Logic 21

p
p ∨ q

q

p

q

p p ∧ q

Inverter OR gate AND gate

¬p

FIGURE 1 Basic logic gates.

(p ∧ ¬q) ∨ ¬ rq

p p ∧ ¬q

¬q

r
¬ r

FIGURE 2 A combinator ial circuit.

Complicated digital circuits can be constructed from three basic circuits, called gates, shown
in Figure 1. The inver ter , or NOT gate, takes an input bit p , and produces as output ¬p . The
OR gate takes two input signals p and q, each a bit, and produces as output the signal p ∨q.
Finally, the AND gate takes two input signals p and q, each a bit, and produces as output the
signal p ∧q. We use combinations of these three basic gates to build more complicated circuits,
such as that shown in Figure 2.

Given a circuit built from the basic logic gates and the inputs to the circuit, we determine
the output by tracing through the circuit, as Example 9 shows.

EXAMPLE 9 Determine the output for the combinatorial circuit in Figure 2.

Solution: In Figure 2 we display the output of each logic gate in the circuit. We see that the AND
gate takes input of p and ¬q, the output of the inverter with input q, and produces p ∧¬q.
Next, we note that the OR gate takes input p ∧¬q and ¬r , the output of the inverter with
input r , and produces the final output (p ∧¬q) ∨¬ r . ▲

Suppose that we have a formula for the output of a digital circuit in terms of negations,
disjunctions, and conjunctions. Then, we can systematically build a digital circuit with the
desired output, as illustrated in Example 10.

EXAMPLE 10 Build a digital circuit that produces the output (p ∨¬ r) ∧ (¬p ∨ (q∨¬r)) when given input
bits p , q, and r .

Solution: To construct the desired circuit, we build separate circuits for p ∨¬r and for ¬p ∨
(q∨¬r) and combine them using an AND gate. To construct a circuit for p ∨¬r , we use an
inverter to produce ¬r from the input r . Then, we use an OR gate to combine p and ¬ r . To
build a circuit for ¬p ∨ (q∨¬r), we first use an inverter to obtain ¬r . Then we use an OR gate
with inputs q and ¬ r to obtain q∨¬r . Finally, we use another inverter and an OR gate to get
¬p ∨ (q∨¬r) from the inputs p and q∨¬r .

To complete the construction, we employ a final AND gate, with inputs p ∨¬r and ¬p ∨
(q∨¬r). The resulting circuit is displayed in Figure 3. ▲

We will study logic circuits in great detail in Chapter 12 in the context of Boolean algebra,
and with different notation.

22 1 / The Foundations: Logic and Proofs

(p ∨ ¬ r) ∧ (¬p ∨ (q ∨ ¬ r))

r

p p ∨ ¬ r

¬ r

r

q

q ∨ ¬ r
¬p ∨ (q ∨ ¬ r)

¬ r

p
¬p

FIGURE 3 The circuit for (p ∨¬r) ∧ (¬p ∨ (q ∨¬r)).

Exercises

In Exercises 1–6, translate the given statement into proposi-
tional logic using the propositions provided.

1. You cannot edit a protected Wikipedia entry unless you
are an administrator. Express your answer in terms of e:
“You can edit a protected Wikipedia entry” and a: “You
are an administrator.”

2. You can see the movie only if you are over 18 years old
or you have the permission of a parent. Express your an-
swer in terms ofm: “You can see the movie,” e: “You are
over 18 years old,” and p : “You have the permission of a
parent.”

3. You can graduate only if you have completed the require-
ments of your major and you do not owe money to the
university and you do not have an overdue library book.
Express your answer in terms of g: “You can graduate,”
m: “You owe money to the university,” r : “You have com-
pleted the requirements of your major,” and b: “You have
an overdue library book.”

4. To use the wireless network in the airport you must pay
the daily fee unless you are a subscriber to the service.
Express your answer in terms of w: “You can use the wire-
less network in the airport,” d: “You pay the daily fee,”
and s: “You are a subscriber to the service.”

5. You are eligible to be President of the U.S.A. only if you
are at least 35 years old, were born in the U.S.A, or at the
time of your birth both of your parents were citizens, and
you have lived at least 14 years in the country. Express
your answer in terms of e: “You are eligible to be Pres-
ident of the U.S.A.,” a: “You are at least 35 years old,”
b: “You were born in the U.S.A,” p: “At the time of your
birth, both of your parents where citizens,” and r : “You
have lived at least 14 years in the U.S.A.”

6. You can upgrade your operating system only if you have
a 32-bit processor running at 1 GHz or faster, at least
1 GB RAM, and 16 GB free hard disk space, or a 64-
bit processor running at 2 GHz or faster, at least 2 GB
RAM, and at least 32 GB free hard disk space. Express
you answer in terms of u: “You can upgrade your oper-
ating system,” b32: “You have a 32-bit processor,” b64:

“You have a 64-bit processor,” g1: “Your processor runs
at 1 GHz or faster,” g2: “Your processor runs at 2 GHz or
faster,” r1: “Your processor has at least 1 GB RAM,” r2:
“Your processor has at least 2 GB RAM,” h16: “You have
at least 16 GB free hard disk space,” and h32: “You have
at least 32 GB free hard disk space.”

7. Express these system specifications using the proposi-
tions p “The message is scanned for viruses” and q “The
message was sent from an unknown system” together
with logical connectives (including negations).

a) “The message is scanned for viruses whenever the
message was sent from an unknown system.”

b) “The message was sent from an unknown system but
it was not scanned for viruses.”

c) “It is necessary to scan the message for viruses when-
ever it was sent from an unknown system.”

d) “When a message is not sent from an unknown system
it is not scanned for viruses.”

8. Express these system specifications using the proposi-
tions p “The user enters a valid password,” q “Access is
granted,” and r “The user has paid the subscription fee”
and logical connectives (including negations).

a) “The user has paid the subscription fee, but does not
enter a valid password.”

b) “Access is granted whenever the user has paid the
subscription fee and enters a valid password.”

c) “Access is denied if the user has not paid the subscrip-
tion fee.”

d) “If the user has not entered a valid password but has
paid the subscription fee, then access is granted.”

9. Are these system specifications consistent? “The system
is in multiuser state if and only if it is operating normally.
If the system is operating normally, the kernel is func-
tioning. The kernel is not functioning or the system is
in interrupt mode. If the system is not in multiuser state,
then it is in interrupt mode. The system is not in interrupt
mode.”

1.2 Applications of Propositional Logic 23

10. Are these system specifications consistent? “Whenever
the system software is being upgraded, users cannot ac-
cess the file system. If users can access the file system,
then they can save new files. If users cannot save new
files, then the system software is not being upgraded.”

11. Are these system specifications consistent? “The router
can send packets to the edge system only if it supports the
new address space. For the router to support the new ad-
dress space it is necessary that the latest software release
be installed. The router can send packets to the edge sys-
tem if the latest software release is installed, The router
does not support the new address space.”

12. Are these system specifications consistent? “If the file
system is not locked, then new messages will be queued.
If the file system is not locked, then the system is func-
tioning normally, and conversely. If new messages are not
queued, then they will be sent to the message buffer. If
the file system is not locked, then new messages will be
sent to the message buffer. New messages will not be sent
to the message buffer.”

13. What Boolean search would you use to look for Web
pages about beaches in New Jersey? What if you wanted
to find Web pages about beaches on the isle of Jersey (in
the English Channel)?

14. What Boolean search would you use to look for Web
pages about hiking in West Virginia? What if you wanted
to find Web pages about hiking inVirginia, but not in West
Virginia?

∗15. Each inhabitant of a remote village always tells the truth
or always lies. A villager will give only a “Yes” or a “No”
response to a question a tourist asks. Suppose you are a
tourist visiting this area and come to a fork in the road.
One branch leads to the ruins you want to visit; the other
branch leads deep into the jungle. A villager is standing
at the fork in the road. What one question can you ask the
villager to determine which branch to take?

16. An explorer is captured by a group of cannibals. There are
two types of cannibals—those who always tell the truth
and those who always lie. The cannibals will barbecue
the explorer unless he can determine whether a particu-
lar cannibal always lies or always tells the truth. He is
allowed to ask the cannibal exactly one question.

a) Explain why the question “Are you a liar?” does not
work.

b) Find a question that the explorer can use to determine
whether the cannibal always lies or always tells the
truth.

17. When three professors are seated in a restaurant, the host-
ess asks them: “Does everyone want coffee?” The first
professor says: “I do not know.” The second professor
then says: “I do not know.” Finally, the third professor
says: “No, not everyone wants coffee.” The hostess comes
back and gives coffee to the professors who want it. How
did she figure out who wanted coffee?

18. When planning a party you want to know whom to in-
vite. Among the people you would like to invite are three
touchy friends.You know that if Jasmine attends, she will

become unhappy if Samir is there, Samir will attend only
if Kanti will be there, and Kanti will not attend unless Jas-
mine also does.Which combinations of these three friends
can you invite so as not to make someone unhappy?

Exercises 19–23 relate to inhabitants of the island of knights
and knaves created by Smullyan, where knights always tell
the truth and knaves always lie. You encounter two people,
A and B . Determine, if possible, what A and B are if they
address you in the ways described. If you cannot determine
what these two people are, can you draw any conclusions?

19. A says “At least one of us is a knave” andB says nothing.

20. A says “The two of us are both knights” and B says “A
is a knave.”

21. A says “I am a knave orB is a knight” andB says nothing.

22. Both A and B say “I am a knight.”

23. A says “We are both knaves” and B says nothing.

Exercises 24–31 relate to inhabitants of an island on which
there are three kinds of people: knights who always tell the
truth, knaves who always lie, and spies (called normals by
Smullyan [Sm78]) who can either lie or tell the truth. You
encounter three people, A, B , and C. You know one of these
people is a knight, one is a knave, and one is a spy. Each of the
three people knows the type of person each of other two is. For
each of these situations, if possible, determine whether there
is a unique solution and determine who the knave, knight, and
spy are. When there is no unique solution, list all possible
solutions or state that there are no solutions.

24. A says “C is the knave,” B says, “A is the knight,” andC
says “I am the spy.”

25. A says “I am the knight,” B says “I am the knave,” and
C says “B is the knight.”

26. A says “I am the knave,” B says “I am the knave,” and C
says “I am the knave.”

27. A says “I am the knight,” B says “A is telling the truth,”
and C says “I am the spy.”

28. A says “I am the knight,” B says, “A is not the knave,”
and C says “B is not the knave.”

29. A says “I am the knight,” B says “I am the knight,” and
C says “I am the knight.”

30. A says “I am not the spy,” B says “I am not the spy,” and
C says “A is the spy.”

31. A says “I am not the spy,” B says “I am not the spy,” and
C says “I am not the spy.”

Exercises 32–38 are puzzles that can be solved by translating
statements into logical expressions and reasoning from these
expressions using truth tables.

32. The police have three suspects for the murder of Mr.
Cooper: Mr. Smith, Mr. Jones, and Mr. Williams. Smith,
Jones, and Williams each declare that they did not kill
Cooper. Smith also states that Cooper was a friend of
Jones and that Williams disliked him. Jones also states
that he did not know Cooper and that he was out of town
the day Cooper was killed. Williams also states that he

24 1 / The Foundations: Logic and Proofs

saw both Smith and Jones with Cooper the day of the
killing and that either Smith or Jones must have killed
him. Can you determine who the murderer was if

a) one of the three men is guilty, the two innocent men
are telling the truth, but the statements of the guilty
man may or may not be true?

b) innocent men do not lie?

33. Steve would like to determine the relative salaries of three
coworkers using two facts. First, he knows that if Fred
is not the highest paid of the three, then Janice is. Sec-
ond, he knows that if Janice is not the lowest paid, then
Maggie is paid the most. Is it possible to determine the
relative salaries of Fred, Maggie, and Janice from what
Steve knows? If so, who is paid the most and who the
least? Explain your reasoning.

34. Five friends have access to a chat room. Is it possible to
determine who is chatting if the following information is
known? Either Kevin or Heather, or both, are chatting.
Either Randy or Vijay, but not both, are chatting. If Abby
is chatting, so is Randy. Vijay and Kevin are either both
chatting or neither is. If Heather is chatting, then so are
Abby and Kevin. Explain your reasoning.

35. A detective has interviewed four witnesses to a crime.
From the stories of the witnesses the detective has con-
cluded that if the butler is telling the truth then so is the
cook; the cook and the gardener cannot both be telling the
truth; the gardener and the handyman are not both lying;
and if the handyman is telling the truth then the cook is
lying. For each of the four witnesses, can the detective de-
termine whether that person is telling the truth or lying?
Explain your reasoning.

36. Four friends have been identified as suspects for an unau-
thorized access into a computer system. They have made
statements to the investigating authorities. Alice said
“Carlos did it.” John said “I did not do it.” Carlos said
“Diana did it.” Diana said “Carlos lied when he said that
I did it.”

a) If the authorities also know that exactly one of the
four suspects is telling the truth, who did it? Explain
your reasoning.

b) If the authorities also know that exactly one is lying,
who did it? Explain your reasoning.

37. Suppose there are signs on the doors to two rooms. The
sign on the first door reads “In this room there is a lady,
and in the other one there is a tiger”; and the sign on the
second door reads “In one of these rooms, there is a lady,
and in one of them there is a tiger.” Suppose that you
know that one of these signs is true and the other is false.
Behind which door is the lady?

∗38. Solve this famous logic puzzle, attributed to Albert Ein-
stein, and known as the zebra puzzle. Five men with
different nationalities and with different jobs live in con-
secutive houses on a street. These houses are painted dif-
ferent colors. The men have different pets and have dif-
ferent favorite drinks. Determine who owns a zebra and

whose favorite drink is mineral water (which is one of the
favorite drinks) given these clues: The Englishman lives
in the red house. The Spaniard owns a dog. The Japanese
man is a painter. The Italian drinks tea. The Norwegian
lives in the first house on the left. The green house is
immediately to the right of the white one. The photogra-
pher breeds snails. The diplomat lives in the yellow house.
Milk is drunk in the middle house. The owner of the green
house drinks coffee. The Norwegian’s house is next to the
blue one. The violinist drinks orange juice. The fox is in
a house next to that of the physician. The horse is in a
house next to that of the diplomat. [Hint: Make a table
where the rows represent the men and columns represent
the color of their houses, their jobs, their pets, and their
favorite drinks and use logical reasoning to determine the
correct entries in the table.]

39. Freedonia has fifty senators. Each senator is either honest
or corrupt. Suppose you know that at least one of the Free-
donian senators is honest and that, given any two Free-
donian senators, at least one is corrupt. Based on these
facts, can you determine how many Freedonian senators
are honest and how many are corrupt? If so, what is the
answer?

40. Find the output of each of these combinatorial circuits.

q

p

p

q

pa)

b)

41. Find the output of each of these combinatorial circuits.

r

q

p

r

p

q

p

a)

b)

42. Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
(p ∧¬ r) ∨ (¬q ∧ r) from input bits p , q, and r .

43. Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
((¬p ∨¬ r) ∧¬q) ∨ (¬p ∧ (q ∨ r)) from input bits p ,
q, and r .

1.3 Propositional Equivalences 25

1.3 Propositional Equivalences

In troduction

An important type of step used in a mathematical argument is the replacement of a statement
with another statement with the same truth value. Because of this, methods that produce propo-
sitions with the same truth value as a given compound proposition are used extensively in the
construction of mathematical arguments. Note that we will use the term “compound proposi-
tion” to refer to an expression formed from propositional variables using logical operators, such
as p ∧q.

We begin our discussion with a classification of compound propositions according to their
possible truth values.

DEFINITION 1 A compound proposition that is always true, no matter what the truth values of the proposi-
tional variables that occur in it, is called a tautology. A compound proposition that is always
false is called a contradiction. A compound proposition that is neither a tautology nor a
contradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illus-
trates these types of compound propositions.

EXAMPLE 1 We can construct examples of tautologies and contradictions using just one propositional vari-
able. Consider the truth tables of p ∨¬p and p ∧¬p , shown in Table 1. Because p ∨¬p is
always true, it is a tautology. Because p ∧¬p is always false, it is a contradiction. ▲

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically
equivalent. We can also define this notion as follows.

DEFINITION 2 The compound propositions p and q are called logically equivalent if p ↔ q is a tautology.
The notation p ≡ q denotes that p and q are logically equivalent.

Remark: The symbol ≡ is not a logical connective, and p ≡ q is not a compound proposition
but rather is the statement that p ↔ q is a tautology. The symbol ⇔ is sometimes used instead
of ≡ to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth
table. In particular, the compound propositions p and q are equivalent if and only if the columns

TABLE 1 Examples of a Tautology
and a Contradiction.

p ¬p p ∨¬p p ∧¬p

T F T F

F T T F

26 1 / The Foundations: Logic and Proofs

TABLE 2 De
Morgan’s Laws.

¬ (p ∧q) ≡ ¬p ∨¬q

¬ (p ∨q) ≡ ¬p ∧¬q

giving their truth values agree. Example 2 illustrates this method to establish an extremely
important and useful logical equivalence, namely, that of ¬(p ∨q) with ¬p ∧¬q. This logical
equivalence is one of the two De Morgan laws, shown in Table 2, named after the English
mathematician Augustus De Morgan, of the mid-nineteenth century.

EXAMPLE 2 Show that ¬(p ∨q) and ¬p ∧¬q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because
the truth values of the compound propositions ¬ (p ∨q) and ¬p ∧¬q agree for all possible
combinations of the truth values ofp andq, it follows that¬ (p ∨q) ↔ (¬p ∧¬q) is a tautology
and that these compound propositions are logically equivalent. ▲

TABLE 3 Truth Tables for ¬ (p ∨q) and ¬p ∧¬q.

p q p ∨q ¬ (p ∨q) ¬p ¬q ¬p ∧¬q

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

EXAMPLE 3 Show that p → q and ¬p ∨q are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the
truth values of ¬p ∨q and p → q agree, they are logically equivalent. ▲

TABLE 4 Truth Tables for ¬p ∨q and
p → q.

p q ¬p ¬p ∨q p → q

T T F T T

T F F F F

F T T T T

F F T T T

We will now establish a logical equivalence of two compound propositions involving three
different propositional variables p , q, and r . To use a truth table to establish such a logical
equivalence, we need eight rows, one for each possible combination of truth values of these
three variables. We symbolically represent these combinations by listing the truth values of p ,
q, and r , respectively. These eight combinations of truth values are TTT, TTF, TFT, TFF, FTT,
FTF, FFT, and FFF; we use this order when we display the rows of the truth table. Note that we
need to double the number of rows in the truth tables we use to show that compound propositions
are equivalent for each additional propositional variable, so that 16 rows are needed to establish
the logical equivalence of two compound propositions involving four propositional variables,
and so on. In general, 2n rows are required if a compound proposition involves n propositional
variables.

1.3 Propositional Equivalences 27

TABLE 5 A Demonstr ation That p ∨ (q ∧ r) and (p ∨q) ∧ (p ∨ r) Are Logically
Equivalent.

p q r q ∧ r p ∨ (q ∧ r) p ∨q p ∨ r (p ∨q) ∧ (p ∨ r)

T T T T T T T T

T T F F T T T T

T F T F T T T T

T F F F T T T T

F T T T T T T T

F T F F F T F F

F F T F F F T F

F F F F F F F F

EXAMPLE 4 Show that p ∨ (q ∧ r) and (p ∨q) ∧ (p ∨ r) are logically equivalent. This is the distributive
law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because
the truth values of p ∨ (q ∧ r) and (p ∨q) ∧ (p ∨ r) agree, these compound propositions are
logically equivalent. ▲

The identities in Table 6
are a special case of
Boolean algebra identities
found in Table 5 of
Section 12.1. See Table 1
in Section 2.2 for
analogous set identities.

Table 6 contains some important equivalences. In these equivalences, T denotes the com-
pound proposition that is always true and F denotes the compound proposition that is always

TABLE 6 Logical Equivalences.

Equivalence Name

p ∧T ≡ p Identity laws

p ∨F ≡ p

p ∨T ≡ T Domination laws

p ∧F ≡ F

p ∨p ≡ p Idempotent laws

p ∧p ≡ p

¬ (¬p) ≡ p Double negation law

p ∨q ≡ q∨p Commutative laws

p ∧q ≡ q∧p

(p ∨q) ∨ r ≡ p ∨ (q∨ r) Associative laws

(p ∧q) ∧ r ≡ p ∧ (q∧ r)

p ∨ (q ∧ r) ≡ (p ∨q) ∧ (p ∨ r) Distributive laws

p ∧ (q ∨ r) ≡ (p ∧q) ∨ (p ∧ r)

¬ (p ∧q) ≡ ¬p ∨¬q De Morgan’s laws

¬ (p ∨q) ≡ ¬p ∧¬q

p ∨ (p ∧q) ≡ p Absorption laws

p ∧ (p ∨q) ≡ p

p ∨¬p ≡ T Negation laws

p ∧¬p ≡ F

28 1 / The Foundations: Logic and Proofs

TABLE 7 Logical Equivalences
Involving Conditional Statements.

p → q ≡ ¬p ∨q

p → q ≡ ¬q → ¬p

p ∨q ≡ ¬p → q

p ∧q ≡ ¬ (p → ¬q)

¬ (p → q) ≡ p ∧¬q

(p → q) ∧ (p → r) ≡ p → (q∧ r)

(p → r) ∧ (q → r) ≡ (p ∨q) → r

(p → q) ∨ (p → r) ≡ p → (q∨ r)

(p → r) ∨ (q → r) ≡ (p ∧q) → r

TABLE 8 Logical
Equivalences Involving
Biconditional Statements.

p ↔ q ≡ (p → q) ∧ (q → p)

p ↔ q ≡ ¬p ↔ ¬q

p ↔ q ≡ (p ∧q) ∨ (¬p ∧¬q)

¬ (p ↔ q) ≡ p ↔ ¬q

false. We also display some useful equivalences for compound propositions involving condi-
tional statements and biconditional statements in Tables 7 and 8, respectively. The reader is
asked to verify the equivalences in Tables 6–8 in the exercises.

The associative law for disjunction shows that the expression p ∨q ∨ r is well defined,
in the sense that it does not matter whether we first take the disjunction of p with q and then
the disjunction of p ∨q with r , or if we first take the disjunction of q and r and then take the
disjunction ofp withq ∨ r . Similarly, the expressionp ∧q ∧ r is well defined. By extending this
reasoning, it follows that p1 ∨p2 ∨ · · ·∨pn and p1 ∧p2 ∧ · · ·∧pn are well defined whenever
p1, p2, . . . , pn are propositions.

Furthermore, note that De Morgan’s laws extend to

¬(p1 ∨p2 ∨ · · ·∨pn) ≡ (¬p1 ∧¬p2 ∧ · · ·∧¬pn)

and

¬(p1 ∧p2 ∧ · · ·∧pn) ≡ (¬p1 ∨¬p2 ∨ · · ·∨¬pn).

We will sometimes use the notation
∨ n
j = 1 pj for p1 ∨p2 ∨ · · ·∨pn and

∧ n
j = 1 pj for

p1 ∧p2 ∧ · · ·∧pn. Using this notation, the extended version of De Morgan’s laws can be
written concisely as ¬

(∨ n
j = 1 pj

)
≡
∧ n
j = 1 ¬pj and ¬

(∧ n
j = 1 pj

)
≡
∨ n
j = 1 ¬pj . (Methods for

proving these identities will be given in Section 5.1.)

Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
When using De Morgan’s
laws, remember to change
the logical connective
after you negate.

us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence
¬(p ∨q) ≡ ¬p ∧¬q tells us that the negation of a disjunction is formed by taking the con-
junction of the negations of the component propositions. Similarly, the equivalence ¬(p ∧q) ≡
¬p ∨¬q tells us that the negation of a conjunction is formed by taking the disjunction of the
negations of the component propositions. Example 5 illustrates the use of De Morgan’s laws.

1.3 Propositional Equivalences 29

EXAMPLE 5 Use De Morgan’s laws to express the negations of “Miguel has a cellphone and he has a laptop
computer” and “Heather will go to the concert or Steve will go to the concert.”

Solution: Let p be “Miguel has a cellphone” and q be “Miguel has a laptop computer.” Then
“Miguel has a cellphone and he has a laptop computer” can be represented by p ∧q. By the
first of De Morgan’s laws, ¬ (p ∧q) is equivalent to ¬p ∨¬q. Consequently, we can express
the negation of our original statement as “Miguel does not have a cellphone or he does not have
a laptop computer.”

Let r be “Heather will go to the concert” and s be “Steve will go to the concert.” Then
“Heather will go to the concert or Steve will go to the concert” can be represented by r ∨s.
By the second of De Morgan’s laws, ¬(r ∨s) is equivalent to ¬r ∧¬s. Consequently, we can
express the negation of our original statement as “Heather will not go to the concert and Steve
will not go to the concert.” ▲

Constructing New Logical Equivalences

The logical equivalences in Table 6, as well as any others that have been established (such as
those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The
reason for this is that a proposition in a compound proposition can be replaced by a compound
proposition that is logically equivalent to it without changing the truth value of the original
compound proposition. This technique is illustrated in Examples 6–8, where we also use the
fact that if p and q are logically equivalent and q and r are logically equivalent, then p and r
are logically equivalent (see Exercise 56).

EXAMPLE 6 Show that ¬(p → q) and p ∧¬q are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are equivalent
(similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want
to illustrate how to use logical identities that we already know to establish new logical identities,
something that is of practical importance for establishing equivalences of compound propositions
with a large number of variables. So, we will establish this equivalence by developing a series of

AUGUSTUS DE MORGAN (1806–1871) Augustus De Morgan was born in India, where his father was a
colonel in the Indian army. De Morgan’s family moved to England when he was 7 months old. He attended
private schools, where in his early teens he developed a strong interest in mathematics. De Morgan studied
at Trinity College, Cambridge, graduating in 1827. Although he considered medicine or law, he decided on
mathematics for his career. He won a position at University College, London, in 1828, but resigned after the
college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when
his successor died, remaining until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students included many famous
mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles Babbage’s collaborator in his

work on computing machines (see page 31 for biographical notes on Augusta Ada). (De Morgan cautioned the countess against
studying too much mathematics, because it might interfere with her childbearing abilities!)

De Morgan was an extremely prolific writer, publishing more than 1000 articles in more than 15 periodicals. De Morgan also
wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first
clear explanation of an important proof technique known as mathematical induction (discussed in Section 5.1 of this text), a term
he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations
that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what
is considered to be the first precise definition of a limit and developed new tests for convergence of infinite series. De Morgan was
also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan’s research, writing, and teaching left
little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.

30 1 / The Foundations: Logic and Proofs

logical equivalences, using one of the equivalences in Table 6 at a time, starting with ¬ (p → q)
and ending with p ∧¬q. We have the following equivalences.

¬(p → q) ≡ ¬(¬p ∨q) by Example 3

≡ ¬(¬p) ∧¬q by the second De Morgan law

≡ p ∧¬q by the double negation law

▲

EXAMPLE 7 Show that ¬(p ∨ (¬p ∧q)) and ¬p ∧¬q are logically equivalent by developing a series of
logical equivalences.

Solution: We will use one of the equivalences in Table 6 at a time, starting with¬(p ∨ (¬p ∧q))
and ending with ¬p ∧¬q. (Note: we could also easily establish this equivalence using a truth
table.) We have the following equivalences.

¬(p ∨ (¬p ∧q)) ≡ ¬p ∧¬(¬p ∧q) by the second De Morgan law

≡ ¬p ∧ [¬ (¬p) ∨¬q] by the first De Morgan law

≡ ¬p ∧ (p ∨¬q) by the double negation law

≡ (¬p ∧p) ∨ (¬p ∧¬q) by the second distributive law

≡ F ∨ (¬p ∧¬q) because ¬p ∧p ≡ F

≡ (¬p ∧¬q) ∨F by the commutative law for disjunction

≡ ¬p ∧¬q by the identity law for F

Consequently ¬(p ∨ (¬p ∧q)) and ¬p ∧¬q are logically equivalent. ▲

EXAMPLE 8 Show that (p ∧q) → (p ∨q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demon-
strate that it is logically equivalent to T. (Note: This could also be done using a truth table.)

(p ∧q) → (p ∨q) ≡ ¬ (p ∧q) ∨ (p ∨q) by Example 3

≡ (¬p ∨¬q) ∨ (p ∨q) by the first De Morgan law

≡ (¬p ∨p) ∨ (¬q∨q) by the associative and commutative

laws for disjunction

≡ T ∨T by Example 1 and the commutative

law for disjunction

≡ T by the domination law

▲

Propositional Satisfiability

A compound proposition is satisfiable if there is an assignment of truth values to its variables that
makes it true. When no such assignments exists, that is, when the compound proposition is false
for all assignments of truth values to its variables, the compound proposition is unsatisfiable.
Note that a compound proposition is unsatisfiable if and only if its negation is true for all

assignments of truth values to the variables, that is, if and only if its negation is a tautology.
When we find a particular assignment of truth values that makes a compound proposition

true, we have shown that it is satisfiable; such an assignment is called a solution of this particular

1.3 Propositional Equivalences 31

satisfiability problem. However, to show that a compound proposition is unsatisfiable, we need
to show that every assignment of truth values to its variables makes it false. Although we can
always use a truth table to determine whether a compound proposition is satisfiable, it is often
more efficient not to, as Example 9 demonstrates.

EXAMPLE 9 Determine whether each of the compound propositions (p ∨¬q) ∧ (q∨¬ r) ∧
(r ∨¬p), (p ∨q∨ r) ∧ (¬p ∨¬q∨¬r), and (p ∨¬q) ∧ (q ∨¬r) ∧ (r ∨¬p) ∧
(p ∨q ∨ r) ∧ (¬p ∨¬q∨¬r) is satisfiable.

Solution: Instead of using truth table to solve this problem, we will reason about truth values.
Note that (p ∨¬q) ∧ (q ∨¬r) ∧ (r ∨¬p) is true when the three variable p , q, and r have
the same truth value (see Exercise 40 of Section 1.1). Hence, it is satisfiable as there is at
least one assignment of truth values for p , q, and r that makes it true. Similarly, note that
(p ∨q ∨ r) ∧ (¬p ∨¬q∨¬r) is true when at least one of p , q, and r is true and at least one
is false (see Exercise 41 of Section 1.1). Hence, (p ∨q ∨ r) ∧ (¬p ∨¬q∨¬r) is satisfiable,
as there is at least one assignment of truth values for p , q, and r that makes it true.

Finally, note that for (p ∨¬q) ∧ (q∨¬r) ∧ (r ∨¬p) ∧ (p ∨q∨ r) ∧ (¬p ∨¬q∨¬ r)
to be true, (p ∨¬q) ∧ (q∨¬r) ∧ (r ∨¬p) and (p ∨q ∨ r) ∧ (¬p ∨¬q∨¬ r) must both
be true. For the first to be true, the three variables must have the same truth values, and
for the second to be true, at least one of three variables must be true and at least one must
be false. However, these conditions are contradictory. From these observations we conclude
that no assignment of truth values to p , q, and r makes (p ∨¬q) ∧ (q ∨¬r) ∧ (r ∨¬p) ∧
(p ∨q ∨ r) ∧ (¬p ∨¬q∨¬r) true. Hence, it is unsatisfiable. ▲

AUGUSTA ADA, COUNTESS OF LOVELACE (1815–1852) Augusta Ada was the only child from the
marriage of the famous poet Lord Byron and Lady Byron, Annabella Millbanke, who separated when Ada
was 1 month old, because of Lord Byron’s scandalous affair with his half sister. The Lord Byron had quite a
reputation, being described by one of his lovers as “mad, bad, and dangerous to know.” Lady Byron was noted for
her intellect and had a passion for mathematics; she was called by Lord Byron “The Princess of Parallelograms.”
Augusta was raised by her mother, who encouraged her intellectual talents especially in music and mathematics,
to counter what Lady Byron considered dangerous poetic tendencies. At this time, women were not allowed to
attend universities and could not join learned societies. Nevertheless, Augusta pursued her mathematical studies
independently and with mathematicians, including William Frend. She was also encouraged by another female

mathematician, Mary Somerville, and in 1834 at a dinner party hosted by Mary Somerville, she learned about Charles Babbage’s
ideas for a calculating machine, called the Analytic Engine. In 1838 Augusta Ada married Lord King, later elevated to Earl of
Lovelace. Together they had three children.

Augusta Ada continued her mathematical studies after her marriage. Charles Babbage had continued work on his Analytic
Engine and lectured on this in Europe. In 1842 Babbage asked Augusta Ada to translate an article in French describing Babbage’s
invention. When Babbage saw her translation, he suggested she add her own notes, and the resulting work was three times the
length of the original. The most complete accounts of the Analytic Engine are found in Augusta Ada’s notes. In her notes, she
compared the working of the Analytic Engine to that of the Jacquard loom, with Babbage’s punch cards analogous to the cards used
to create patterns on the loom. Furthermore, she recognized the promise of the machine as a general purpose computer much better
than Babbage did. She stated that the “engine is the material expression of any indefinite function of any degree of generality and
complexity.” Her notes on the Analytic Engine anticipate many future developments, including computer-generated music. Augusta
Ada published her writings under her initials A.A.L. concealing her identity as a woman as did many women at a time when women
were not considered to be the intellectual equals of men. After 1845 she and Babbage worked toward the development of a system
to predict horse races. Unfortunately, their system did not work well, leaving Augusta Ada heavily in debt at the time of her death
at an unfortunately young age from uterine cancer.

In 1953 Augusta Ada’s notes on the Analytic Engine were republished more than 100 years after they were written, and after
they had been long forgotten. In his work in the 1950s on the capacity of computers to think (and his famous Turing Test), Alan
Turing responded to Augusta Ada’s statement that “The Analytic Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform.” This “dialogue” between Turing and Augusta Ada is still the subject of controversy.
Because of her fundamental contributions to computing, the programming language Ada is named in honor of the Countess of
Lovelace.

32 1 / The Foundations: Logic and Proofs

2 9 4

5 1

4

4 2

6 7

5

7 3 5

1 9

6

FIGURE 1 A 9 × 9 Sudoku puzzle.

Applications of Satisfiability

Many problems, in diverse areas such as robotics, software testing, computer-aided design,
machine vision, integrated circuit design, computer networking, and genetics, can be modeled
in terms of propositional satisfiability. Although most of these applications are beyond the
scope of this book, we will study one application here. In particular, we will show how to use
propositional satisfiability to model Sudoku puzzles.

SUDOKU A Sudoku puzzle is represented by a 9 × 9 grid made up of nine 3 × 3 subgrids,
known as blocks, as shown in Figure 1. For each puzzle, some of the 81 cells, called givens,
are assigned one of the numbers 1, 2, . . . , 9, and the other cells are blank. The puzzle is solved
by assigning a number to each blank cell so that every row, every column, and every one of the
nine 3 × 3 blocks contains each of the nine possible numbers. Note that instead of using a 9 × 9
grid, Sudoku puzzles can be based on n2 × n2 grids, for any positive integer n, with the n2 × n2

grid made up of n2 n × n subgrids.
The popularity of Sudoku dates back to the 1980s when it was introduced in Japan. It

took 20 years for Sudoku to spread to rest of the world, but by 2005, Sudoku puzzles were a
worldwide craze. The name Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which
means “the digits must remain single.” The modern game of Sudoku was apparently designed
in the late 1970s by an American puzzle designer. The basic ideas of Sudoku date back even
further; puzzles printed in French newspapers in the 1890s were quite similar, but not identical,
to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional important properties. First,
they have exactly one solution. Second, they can be solved using reasoning alone, that is, without
resorting to searching all possible assignments of numbers to the cells. As a Sudoku puzzle is
solved, entries in blank cells are successively determined by already known values. For instance,
in the grid in Figure 1, the number 4 must appear in exactly one cell in the second row. How
can we determine which of the seven blank cells it must appear? First, we observe that 4 cannot
appear in one of the first three cells or in one of the last three cells of this row, because it already
appears in another cell in the block each of these cells is in. We can also see that 4 cannot appear
in the fifth cell in this row, as it already appears in the fifth column in the fourth row. This means
that 4 must appear in the sixth cell of the second row.

Many strategies based on logic and mathematics have been devised for solving Sudoku
puzzles (see [Da10], for example). Here, we discuss one of the ways that have been developed
for solving Sudoku puzzles with the aid of a computer, which depends on modeling the puzzle as
a propositional satisfiability problem. Using the model we describe, particular Sudoku puzzles
can be solved using software developed to solve satisfiability problems. Currently, Sudoku
puzzles can be solved in less than 10 milliseconds this way. It should be noted that there are
many other approaches for solving Sudoku puzzles via computers using other techniques.

1.3 Propositional Equivalences 33

To encode a Sudoku puzzle, let p(i , j , n) denote the proposition that is true when the number
n is in the cell in the i th row and j th column. There are 9 × 9 × 9 = 729 such propositions, as
i , j , and n all range from 1 to 9. For example, for the puzzle in Figure 1, the number 6 is given
as the value in the fifth row and first column. Hence, we see that p(5, 1, 6) is true, but p(5, j , 6)
is false for j = 2, 3, . . . , 9.

Given a particular Sudoku puzzle, we begin by encoding each of the given values. Then,
we construct compound propositions that assert that every row contains every number, every
column contains every number, every 3 × 3 block contains every number, and each cell contains
no more than one number. It follows, as the reader should verify, that the Sudoku puzzle is solved
by finding an assignment of truth values to the 729 propositions p(i, j , n) with i , j , and n each
ranging from 1 to 9 that makes the conjunction of all these compound propositions true. After
listing these assertions, we will explain how to construct the assertion that every row contains
every integer from 1 to 9. We will leave the construction of the other assertions that every column
contains every number and each of the nine 3 × 3 blocks contains every number to the exercises.

For each cell with a given value, we assert p(i , j , n) when the cell in row i and column
j has the given value n.

We assert that every row contains every number:

9

i = 1

9

n= 1

9

j = 1

p(i , j , n)

We assert that every column contains every number:

9

j = 1

9

n= 1

9

i = 1

p(i , j , n)

It is tricky setting up the
two inner indices so that
all nine cells in each
square block are
examined.

We assert that each of the nine 3 × 3 blocks contains every number:

2

r = 0

2

s= 0

9

n= 1

3

i = 1

3

j = 1

p(3r + i , 3s + j , n)

To assert that no cell contains more than one number, we take the conjunction over all
values of n, n , i , and j where each variable ranges from 1 to 9 and n = n of p(i , j , n) →
¬p(i, j , n).

We now explain how to construct the assertion that every row contains every number.

First, to assert that row i contains the number n, we form
∨ 9
j = 1 p(i, j , n). To assert that

row i contains all n numbers, we form the conjunction of these disjunctions over all nine

possible values of n, giving us
∧ 9
n= 1

∨ 9
j = 1 p(i , j , n). Finally, to assert that every row contains

every number, we take the conjunction of
∧ 9
n= 1

∨ 9
j = 1 p(i , j , n) over all nine rows. This gives

us
∧ 9
i = 1

∧ 9
n= 1

∨ 9
j = 1 p(i , j , n). (Exercises 65 and 66 ask for explanations of the assertions that

every column contains every number and that each of the nine 3 × 3 blocks contains every
number.)

Given a particular Sudoku puzzle, to solve this puzzle we can find a solution to the satisfia-
bility problems that asks for a set of truth values for the 729 variables p(i , j , n) that makes the
conjunction of all the listed assertions true.

34 1 / The Foundations: Logic and Proofs

Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equiv-
alently, whether its negation is a tautology (see Exercise 60). This can be done by hand for
a compound proposition with a small number of variables, but when the number of variables
grows, this becomes impractical. For instance, there are 220 = 1,048,576 rows in the truth ta-
ble for a compound proposition with 20 variables. Clearly, you need a computer to help you
determine, in this way, whether a compound proposition in 20 variables is satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound
propositions with hundreds, thousands, or millions of variables arise. Note, for example, that
when there are 1000 variables, checking every one of the 21000 (a number with more than 300
decimal digits) possible combinations of truth values of the variables in a compound proposition
cannot be done by a computer in even trillions of years. No procedure is known that a com-
puter can follow to determine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However, progress has been made
developing methods for solving the satisfiability problem for the particular types of compound
propositions that arise in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability problems which have
practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this
question further. In particular, we will explain the important role the propositional satisfiability
problem plays in the study of the complexity of algorithms.

Exercises

1. Use truth tables to verify these equivalences.

a) p ∧T ≡ p b) p ∨F ≡ p

c) p ∧F ≡ F d) p ∨T ≡ T

e) p ∨p ≡ p f) p ∧p ≡ p

2. Show that ¬ (¬p) and p are logically equivalent.

3. Use truth tables to verify the commutative laws

a) p ∨q ≡ q ∨p . b) p ∧q ≡ q∧p .

4. Use truth tables to verify the associative laws

a) (p ∨q) ∨ r ≡ p ∨ (q ∨ r).

b) (p ∧q) ∧ r ≡ p ∧ (q∧ r).

5. Use a truth table to verify the distributive law

p ∧ (q ∨ r) ≡ (p ∧q) ∨ (p ∧ r).

6. Use a truth table to verify the first De Morgan law

¬(p ∧q) ≡ ¬p ∨¬q.

7. Use De Morgan’s laws to find the negation of each of the
following statements.

a) Jan is rich and happy.

b) Carlos will bicycle or run tomorrow.

HENRY MAURICE SHEFFER (1883–1964) Henry Maurice Sheffer, born to Jewish parents in the western
Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
remained at Harvard until his retirement in 1952.

Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use
in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell wrote that Sheffer had invented
a powerful method that could be used to simplify the Principia. Because of this comment, Sheffer was something of a mystery man
to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing
it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.

1.3 Propositional Equivalences 35

c) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

8. Use De Morgan’s laws to find the negation of each of the
following statements.

a) Kwame will take a job in industry or go to graduate
school.

b) Yoshiko knows Java and calculus.
c) James is young and strong.
d) Rita will move to Oregon or Washington.

9. Show that each of these conditional statements is a tau-
tology by using truth tables.

a) (p ∧q) → p b) p → (p ∨q)
c) ¬p → (p → q) d) (p ∧q) → (p → q)
e) ¬ (p → q) → p f) ¬(p → q) → ¬q

10. Show that each of these conditional statements is a tau-
tology by using truth tables.

a) [¬p ∧ (p ∨q)] → q
b) [(p → q) ∧ (q → r)] → (p → r)
c) [p ∧ (p → q)] → q
d) [(p ∨q) ∧ (p → r) ∧ (q → r)] → r

11. Show that each conditional statement in Exercise 9 is a
tautology without using truth tables.

12. Show that each conditional statement in Exercise 10 is a
tautology without using truth tables.

13. Use truth tables to verify the absorption laws.

a) p ∨ (p ∧q) ≡ p b) p ∧ (p ∨q) ≡ p

14. Determine whether (¬p ∧ (p → q)) → ¬q is a tautol-
ogy.

15. Determine whether (¬q ∧ (p → q)) → ¬p is a tautol-
ogy.

Each of Exercises 16–28 asks you to show that two compound
propositions are logically equivalent. To do this, either show
that both sides are true, or that both sides are false, for exactly
the same combinations of truth values of the propositional
variables in these expressions (whichever is easier).
16. Show thatp ↔ q and (p ∧q) ∨ (¬p ∧¬q) are logically

equivalent.
17. Show that ¬ (p ↔ q) and p ↔ ¬q are logically equiva-

lent.
18. Show thatp → q and¬q → ¬p are logically equivalent.
19. Show that¬p ↔ q andp ↔ ¬q are logically equivalent.
20. Show that ¬ (p ⊕ q) and p ↔ q are logically equivalent.
21. Show that ¬ (p ↔ q) and ¬p ↔ q are logically equiva-

lent.
22. Show that (p → q) ∧ (p → r) andp → (q ∧ r) are log-

ically equivalent.
23. Show that (p → r) ∧ (q → r) and (p ∨q) → r are log-

ically equivalent.
24. Show that (p → q) ∨ (p → r) andp → (q ∨ r) are log-

ically equivalent.
25. Show that (p → r) ∨ (q → r) and (p ∧q) → r are log-

ically equivalent.
26. Show that¬p → (q → r) andq → (p ∨ r) are logically

equivalent.
27. Show that p ↔ q and (p → q) ∧ (q → p) are logically

equivalent.
28. Show thatp ↔ q and¬p ↔ ¬q are logically equivalent.

29. Show that (p → q) ∧ (q → r) → (p → r) is a tautol-
ogy.

30. Show that (p ∨q) ∧ (¬p ∨ r) → (q∨ r) is a tautology.

31. Show that (p → q) → r and p → (q → r) are not log-
ically equivalent.

32. Show that (p ∧q) → r and (p → r) ∧ (q → r) are not
logically equivalent.

33. Show that (p → q) → (r → s) and (p → r) →
(q → s) are not logically equivalent.

The dual of a compound proposition that contains only the
logical operators ∨, ∧, and ¬ is the compound proposition
obtained by replacing each ∨ by ∧, each ∧ by ∨, each T
by F, and each F by T. The dual of s is denoted by s∗.

34. Find the dual of each of these compound propositions.

a) p ∨¬q b) p ∧ (q ∨ (r ∧T))
c) (p ∧¬q) ∨ (q ∧F)

35. Find the dual of each of these compound propositions.

a) p ∧¬q ∧¬r b) (p ∧q ∧ r) ∨s
c) (p ∨F) ∧ (q ∨T)

36. When does s∗ = s, where s is a compound proposition?

37. Show that (s∗)∗ = swhen s is a compound proposition.

38. Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

∗∗39. Why are the duals of two equivalent compound proposi-
tions also equivalent, where these compound propositions
contain only the operators ∧,∨, and ¬?

40. Find a compound proposition involving the propositional
variables p , q, and r that is true when p and q are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]

41. Find a compound proposition involving the propositional
variables p, q, and r that is true when exactly two of p, q,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations.]

42. Suppose that a truth table in n propositional variables is
specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-
mal form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent to
a compound proposition involving only these logical opera-
tors.

43. Show that ¬ ,∧, and ∨ form a functionally complete col-
lection of logical operators. [Hint: Use the fact that every
compound proposition is logically equivalent to one in
disjunctive normal form, as shown in Exercise 42.]

36 1 / The Foundations: Logic and Proofs

∗44. Show that ¬ and ∧ form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that p ∨q is logically equivalent to
¬(¬p ∧¬q).]

∗45. Show that ¬ and ∨ form a functionally complete collec-
tion of logical operators.

The following exercises involve the logical operators NAND
and NOR. The proposition p NAND q is true when either p
or q, or both, are false; and it is false when both p and q are
true. The proposition p NOR q is true when both p and q are
false, and it is false otherwise. The propositions p NAND q
and p NOR q are denoted by p | q and p ↓ q, respectively.
(The operators | and ↓ are called the Sheffer stroke and the
Peirce ar row after H. M. Sheffer and C. S. Peirce, respec-
tively.)
46. Construct a truth table for the logical operator NAND.
47. Show that p | q is logically equivalent to ¬(p ∧q).
48. Construct a truth table for the logical operator NOR.
49. Show that p ↓ q is logically equivalent to ¬ (p ∨q).
50. In this exercise we will show that {↓ } is a functionally

complete collection of logical operators.

a) Show that p ↓ p is logically equivalent to ¬p .
b) Show that (p ↓ q) ↓ (p ↓ q) is logically equivalent

to p ∨q.
c) Conclude from parts (a) and (b), and Exercise 49, that

{↓} is a functionally complete collection of logical
operators.

∗51. Find a compound proposition logically equivalent to
p → q using only the logical operator ↓ .

52. Show that {|} is a functionally complete collection of log-
ical operators.

53. Show that p | q and q | p are equivalent.
54. Show that p | (q | r) and (p | q) | r are not equivalent,

so that the logical operator | is not associative.
∗55. How many different truth tables of compound proposi-

tions are there that involve the propositional variables p
and q?

56. Show that if p , q, and r are compound propositions such
that p and q are logically equivalent and q and r are log-
ically equivalent, then p and r are logically equivalent.

57. The following sentence is taken from the specification of
a telephone system: “If the directory database is opened,
then the monitor is put in a closed state, if the system is
not in its initial state.” This specification is hard to under-

stand because it involves two conditional statements. Find
an equivalent, easier-to-understand specification that in-
volves disjunctions and negations but not conditional
statements.

58. How many of the disjunctions p ∨¬q, ¬p ∨q, q∨ r ,
q ∨¬r , and ¬q ∨¬r can be made simultaneously true
by an assignment of truth values to p , q, and r ?

59. How many of the disjunctions p ∨¬q∨s, ¬p ∨
¬r ∨s, ¬p ∨¬r ∨¬s, ¬p ∨q ∨¬s, q ∨ r ∨¬s,
q ∨¬r ∨¬s, ¬p ∨¬q∨¬s, p ∨ r ∨s, and p ∨ r ∨¬s
can be made simultaneously true by an assignment of
truth values to p , q, r , and s?

60. Show that the negation of an unsatisfiable compound
proposition is a tautology and the negation of a compound
proposition that is a tautology is unsatisfiable.

61. Determine whether each of these compound propositions
is satisfiable.

a) (p ∨¬q) ∧ (¬p ∨q) ∧ (¬p ∨¬q)
b) (p → q) ∧ (p → ¬q) ∧ (¬p → q) ∧ (¬p → ¬q)
c) (p ↔ q) ∧ (¬p ↔ q)

62. Determine whether each of these compound propositions
is satisfiable.

a) (p ∨q ∨¬ r) ∧ (p ∨¬q ∨¬s) ∧ (p ∨¬r ∨¬s) ∧
(¬p ∨¬q∨¬s) ∧ (p ∨q∨¬s)

b) (¬p ∨¬q∨ r) ∧ (¬p ∨q ∨¬s) ∧ (p ∨¬q ∨
¬s) ∧ (¬p ∨¬r ∨¬s) ∧ (p ∨q ∨¬r) ∧ (p ∨
¬r ∨¬s)

c) (p ∨q ∨ r) ∧ (p ∨¬q ∨¬s) ∧ (q ∨¬r ∨s) ∧
(¬p ∨ r ∨s) ∧ (¬p ∨q ∨¬s) ∧ (p ∨¬q ∨¬r) ∧
(¬p ∨¬q ∨s) ∧ (¬p ∨¬r ∨¬s)

63. Show how the solution of a given 4 × 4 Sudoku puzzle
can be found by solving a satisfiability problem.

64. Construct a compound proposition that asserts that ev-
ery cell of a 9 × 9 Sudoku puzzle contains at least one
number.

65. Explain the steps in the construction of the compound
proposition given in the text that asserts that every col-
umn of a 9 × 9 Sudoku puzzle contains every number.

∗66. Explain the steps in the construction of the compound
proposition given in the text that asserts that each of the
nine 3 × 3 blocks of a 9 × 9 Sudoku puzzle contains ev-
ery number.

1.4 Predicates and Quantifier s

In troduction

Propositional logic, studied in Sections 1.1–1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”

1.4 Predicates and Quantifiers 37

No rules of propositional logic allow us to conclude the truth of the statement

“MATH3 is functioning properly,”

where MATH3 is one of the computers connected to the university network. Likewise, we cannot
use the rules of propositional logic to conclude from the statement

“CS2 is under attack by an intruder,”

where CS2 is a computer on the university network, to conclude the truth of

“There is a computer on the university network that is under attack by an intruder.”

In this section we will introduce a more powerful type of logic called predicate logic. We
will see how predicate logic can be used to express the meaning of a wide range of statements
in mathematics and computer science in ways that permit us to reason and explore relationships
between objects. To understand predicate logic, we first need to introduce the concept of a
predicate. Afterward, we will introduce the notion of quantifiers, which enable us to reason with
statements that assert that a certain property holds for all objects of a certain type and with
statements that assert the existence of an object with a particular property.

Pred icates

Statements involving variables, such as

“x > 3,” “x = y + 3,” “x + y = z,”

and

“computer x is under attack by an intruder,”

and

“computer x is functioning properly,”

are often found in mathematical assertions, in computer programs, and in system specifications.
These statements are neither true nor false when the values of the variables are not specified. In
this section, we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3” has two parts. The first part, the variable x, is the subject
of the statement. The second part—the predicate, “is greater than 3”—refers to a property that
the subject of the statement can have. We can denote the statement “x is greater than 3” byP(x),
where P denotes the predicate “is greater than 3” and x is the variable. The statement P(x) is
also said to be the value of the propositional function P at x. Once a value has been assigned
to the variable x, the statement P(x) becomes a proposition and has a truth value. Consider
Examples 1 and 2.

EXAMPLE 1 Let P(x) denote the statement “x > 3.” What are the truth values of P(4) and P(2)?

Solution: We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” Hence,
P(4), which is the statement “4 > 3,” is true. However, P(2), which is the statement “2 > 3,”
is false. ▲

38 1 / The Foundations: Logic and Proofs

EXAMPLE 2 Let A(x) denote the statement “Computer x is under attack by an intruder.” Suppose that of the
computers on campus, only CS2 and MATH1 are currently under attack by intruders. What are
truth values of A(CS1), A(CS2), and A(MATH1)?

Solution: We obtain the statement A(CS1) by setting x = CS1 in the statement “Computer x
is under attack by an intruder.” Because CS1 is not on the list of computers currently under
attack, we conclude that A(CS1) is false. Similarly, because CS2 and MATH1 are on the list of
computers under attack, we know that A(CS2) and A(MATH1) are true. ▲

We can also have statements that involve more than one variable. For instance, consider the
statement “x = y + 3.” We can denote this statement by Q(x, y), where x and y are variables
andQ is the predicate. When values are assigned to the variables x and y, the statementQ(x, y)
has a truth value.

EXAMPLE 3 Let Q(x, y) denote the statement “x = y + 3.” What are the truth values of the propositions
Q(1, 2) and Q(3, 0)?

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is
the statement “1 = 2 + 3,” which is false. The statementQ(3, 0) is the proposition “3 = 0 + 3,”
which is true. ▲

CHARLES SANDERS PEIRCE (1839–1914) Many consider Charles Peirce, born in Cambridge, Mas-
sachusetts, to be the most original and versatile American intellect. He made important contributions to an
amazing number of disciplines, including mathematics, astronomy, chemistry, geodesy, metrology, engineer-
ing, psychology, philology, the history of science, and economics. Peirce was also an inventor, a lifelong student
of medicine, a book reviewer, a dramatist and an actor, a short story writer, a phenomenologist, a logician, and a
metaphysician. He is noted as the preeminent system-building philosopher competent and productive in logic,
mathematics, and a wide range of sciences. He was encouraged by his father, Benjamin Peirce, a professor of
mathematics and natural philosophy at Harvard, to pursue a career in science. Instead, he decided to study logic
and scientific methodology. Peirce attended Harvard (1855–1859) and received a Harvard master of arts degree
(1862) and an advanced degree in chemistry from the Lawrence Scientific School (1863).

In 1861, Peirce became an aide in the U.S. Coast Survey, with the goal of better understanding scientific methodology. His service
for the Survey exempted him from military service during the Civil War. While working for the Survey, Peirce did astronomical and
geodesic work. He made fundamental contributions to the design of pendulums and to map projections, applying new mathematical
developments in the theory of elliptic functions. He was the first person to use the wavelength of light as a unit of measurement.
Peirce rose to the position of Assistant for the Survey, a position he held until forced to resign in 1891 when he disagreed with the
direction taken by the Survey’s new administration.

While making his living from work in the physical sciences, Peirce developed a hierarchy of sciences, with mathematics at the
top rung, in which the methods of one science could be adapted for use by those sciences under it in the hierarchy. During this time,
he also founded the American philosophical theory of pragmatism.

The only academic position Peirce ever held was lecturer in logic at Johns Hopkins University in Baltimore (1879–1884). His
mathematical work during this time included contributions to logic, set theory, abstract algebra, and the philosophy of mathematics.
His work is still relevant today, with recent applications of this work on logic to artificial intelligence. Peirce believed that the study
of mathematics could develop the mind’s powers of imagination, abstraction, and generalization. His diverse activities after retiring
from the Survey included writing for periodicals, contributing to scholarly dictionaries, translating scientific papers, guest lecturing,
and textbook writing. Unfortunately, his income from these pursuits was insufficient to protect him and his second wife from abject
poverty. He was supported in his later years by a fund created by his many admirers and administered by the philosopher William
James, his lifelong friend. Although Peirce wrote and published voluminously in a vast range of subjects, he left more than 100,000
pages of unpublished manuscripts. Because of the difficulty of studying his unpublished writings, scholars have only recently started
to understand some of his varied contributions. A group of people is devoted to making his work available over the Internet to bring
a better appreciation of Peirce’s accomplishments to the world.

1.4 Predicates and Quantifiers 39

EXAMPLE 4 Let A(c, n) denote the statement “Computer c is connected to network n,” where c is a variable
representing a computer and n is a variable representing a network. Suppose that the computer
MATH1 is connected to network CAMPUS2, but not to network CAMPUS1. What are the
values of A(MATH1, CAMPUS1) and A(MATH1, CAMPUS2)?

Solution: Because MATH1 is not connected to the CAMPUS1 network, we see that A(MATH1,
CAMPUS1) is false. However, because MATH1 is connected to the CAMPUS2 network, we
see that A(MATH1, CAMPUS2) is true. ▲

Similarly, we can letR(x, y, z) denote the statement ‘̀x + y = z.” When values are assigned
to the variables x, y, and z, this statement has a truth value.

EXAMPLE 5 What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the
statement R(x, y, z). We see that R(1, 2, 3) is the statement “1 + 2 = 3,” which is true. Also
note that R(0, 0, 1), which is the statement “0 + 0 = 1,” is false. ▲

In general, a statement involving the n variables x1, x2, . . . , xn can be denoted by

P(x1, x2, . . . , xn).

A statement of the form P(x1, x2, . . . , xn) is the value of the propositional function P at the
n-tuple (x1, x2, . . . , xn), and P is also called an n-place predicate or a n-ary predicate.

Propositional functions occur in computer programs, as Example 6 demonstrates.

EXAMPLE 6 Consider the statement

if x > 0 then x := x + 1.

When this statement is encountered in a program, the value of the variable x at that point in the
execution of the program is inserted into P(x), which is “x > 0.” If P(x) is true for this value
of x, the assignment statement x := x + 1 is executed, so the value of x is increased by 1. If
P(x) is false for this value of x, the assignment statement is not executed, so the value of x is
not changed. ▲

PRECONDITIONS AND POSTCONDITIONS Predicates are also used to establish the
correctness of computer programs, that is, to show that computer programs always produce the
desired output when given valid input. (Note that unless the correctness of a computer program
is established, no amount of testing can show that it produces the desired output for all input
values, unless every input value is tested.) The statements that describe valid input are known
as preconditions and the conditions that the output should satisfy when the program has run
are known as postconditions. As Example 7 illustrates, we use predicates to describe both
preconditions and postconditions. We will study this process in greater detail in Section 5.5.

EXAMPLE 7 Consider the following program, designed to interchange the values of two variables x and y.

temp := x

x := y

y := temp

Find predicates that we can use as the precondition and the postcondition to verify the correctness
of this program. Then explain how to use them to verify that for all valid input the program does
what is intended.

40 1 / The Foundations: Logic and Proofs

Solution: For the precondition, we need to express that x and y have particular values before
we run the program. So, for this precondition we can use the predicate P(x, y), where P(x, y)
is the statement “x = a and y = b,” where a and b are the values of x and y before we run the
program. Because we want to verify that the program swaps the values of x and y for all input
values, for the postcondition we can use Q(x, y), where Q(x, y) is the statement “x = b and
y = a.”

To verify that the program always does what it is supposed to do, suppose that the precon-
dition P(x, y) holds. That is, we suppose that the statement “x = a and y = b” is true. This
means that x = a and y = b. The first step of the program, temp := x, assigns the value of x to
the variable temp, so after this step we know that x = a, temp = a, and y = b. After the second
step of the program, x := y, we know that x = b, temp = a, and y = b. Finally, after the third
step, we know that x = b, temp = a, and y = a. Consequently, after this program is run, the
postcondition Q(x, y) holds, that is, the statement “x = b and y = a” is true. ▲

Quantifiers

When the variables in a propositional function are assigned values, the resulting statement
becomes a proposition with a certain truth value. However, there is another important way, called
quantification, to create a proposition from a propositional function. Quantification expresses
the extent to which a predicate is true over a range of elements. In English, the words all, some,
many, none, and few are used in quantifications. We will focus on two types of quantification
here: universal quantification, which tells us that a predicate is true for every element under
consideration, and existential quantification, which tells us that there is one or more element
under consideration for which the predicate is true. The area of logic that deals with predicates
and quantifiers is called the predicate calculus.

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a property is
true for all values of a variable in a particular domain, called the domain of discourse (or
the universe of discourse), often just referred to as the domain. Such a statement is expressed
using universal quantification. The universal quantification ofP(x) for a particular domain is the
proposition that asserts that P(x) is true for all values of x in this domain. Note that the domain
specifies the possible values of the variable x. The meaning of the universal quantification
of P(x) changes when we change the domain. The domain must always be specified when a
universal quantifier is used; without it, the universal quantification of a statement is not defined.

DEFINITION 1 The universal quantification of P(x) is the statement

“P(x) for all values of x in the domain.”

The notation ∀xP(x) denotes the universal quantification of P(x). Here ∀is called the
universal quantifier. We read ∀xP(x) as “for all xP(x)” or “for every xP(x).” An element
for which P(x) is false is called a counterexample of ∀xP(x).

The meaning of the universal quantifier is summarized in the first row of Table 1. We
illustrate the use of the universal quantifier in Examples 8–13.

1.4 Predicates and Quantifiers 41

TABLE 1 Quantifiers.

Statement When True? When False?

∀xP(x) P(x) is true for every x. There is an x for which P(x) is false.

∃xP(x) There is an x for which P(x) is true. P(x) is false for every x.

EXAMPLE 8 Let P(x) be the statement “x + 1 > x.” What is the truth value of the quantification ∀xP(x),
where the domain consists of all real numbers?

Solution: Because P(x) is true for all real numbers x, the quantification

∀xP(x)

is true. ▲

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. Note that if the domain is empty, then ∀xP(x) is true for any propositional
function P(x) because there are no elements x in the domain for which P(x) is false.

Remember that the truth
value of ∀xP(x) depends
on the domain!

Besides “for all” and “for every,” universal quantification can be expressed in many other
ways, including “all of,” “for each,” “given any,” “for arbitrary,” “for each,” and “for any.”

Remark: It is best to avoid using “for any x” because it is often ambiguous as to whether “any”
means “every” or “some.” In some cases, “any” is unambiguous, such as when it is used in
negatives, for example, “there is not any reason to avoid studying.”

A statement∀xP(x) is false, whereP(x) is a propositional function, if and only ifP(x) is not
always true whenx is in the domain. One way to show thatP(x) is not always true whenx is in the
domain is to find a counterexample to the statement∀xP(x). Note that a single counterexample is
all we need to establish that∀xP(x) is false. Example 9 illustrates how counterexamples are used.

EXAMPLE 9 LetQ(x) be the statement “x < 2.” What is the truth value of the quantification∀xQ(x), where
the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is,
x = 3 is a counterexample for the statement ∀xQ(x). Thus

∀xQ(x)

is false. ▲

EXAMPLE 10 Suppose that P(x) is “x2 > 0.” To show that the statement ∀xP(x) is false where the uni-
verse of discourse consists of all integers, we give a counterexample. We see that x = 0 is a
counterexample because x2 = 0 when x = 0, so that x2 is not greater than 0 when x = 0. ▲

Looking for counterexamples to universally quantified statements is an important activity
in the study of mathematics, as we will see in subsequent sections of this book.

When all the elements in the domain can be listed—say, x1, x2, . . ., xn—it follows that the
universal quantification ∀xP(x) is the same as the conjunction

P(x1) ∧P(x2) ∧ · · ·∧P(xn),

because this conjunction is true if and only if P(x1), P(x2), . . . , P(xn) are all true.

42 1 / The Foundations: Logic and Proofs

EXAMPLE 11 What is the truth value of ∀xP(x), where P(x) is the statement “x2 < 10” and the domain
consists of the positive integers not exceeding 4?

Solution: The statement ∀xP(x) is the same as the conjunction

P(1) ∧P(2) ∧P(3) ∧P(4),

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the statement
“42 < 10,” is false, it follows that ∀xP(x) is false. ▲

EXAMPLE 12 What does the statement ∀xN(x) mean if N(x) is “Computer x is connected to the network”
and the domain consists of all computers on campus?

Solution: The statement ∀xN(x) means that for every computer x on campus, that computer x
is connected to the network. This statement can be expressed in English as “Every computer on
campus is connected to the network.” ▲

As we have pointed out, specifying the domain is mandatory when quantifiers are used. The
truth value of a quantified statement often depends on which elements are in this domain, as
Example 13 shows.

EXAMPLE 13 What is the truth value of ∀x(x2 ≥ x) if the domain consists of all real numbers? What is the
truth value of this statement if the domain consists of all integers?

Solution: The universal quantification ∀x(x2 ≥ x), where the domain consists of all real num-
bers, is false. For example, (1

2)
2 ≥ 1

2 . Note that x2 ≥ x if and only if x2 − x = x(x − 1) ≥ 0.

Consequently, x2 ≥ x if and only if x ≤ 0 or x ≥ 1. It follows that ∀x(x2 ≥ x) is false if the
domain consists of all real numbers (because the inequality is false for all real numbers x with
0 < x < 1). However, if the domain consists of the integers, ∀x(x2 ≥ x) is true, because there
are no integers x with 0 < x < 1. ▲

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there is an
element with a certain property. Such statements are expressed using existential quantification.
With existential quantification, we form a proposition that is true if and only if P(x) is true for
at least one value of x in the domain.

DEFINITION 2 The existential quantification of P(x) is the proposition

“There exists an element x in the domain such that P(x).”

We use the notation ∃xP(x) for the existential quantification of P(x). Here ∃ is called the
existential quantifier.

A domain must always be specified when a statement ∃xP(x) is used. Furthermore, the
meaning of ∃xP(x) changes when the domain changes. Without specifying the domain, the
statement ∃xP(x) has no meaning.

Besides the phrase “there exists,” we can also express existential quantification in many other
ways, such as by using the words “for some,” “for at least one,” or “there is.” The existential
quantification ∃xP(x) is read as

“There is an x such that P(x),”
“There is at least one x such that P(x),”

or

“For some xP(x).”

1.4 Predicates and Quantifiers 43

The meaning of the existential quantifier is summarized in the second row of Table 1. We
illustrate the use of the existential quantifier in Examples 14–16.

EXAMPLE 14 Let P(x) denote the statement “x > 3.” What is the truth value of the quantification ∃xP(x),
where the domain consists of all real numbers?

Solution: Because “x > 3” is sometimes true—for instance, when x = 4—the existential quan-
tification of P(x), which is ∃xP(x), is true. ▲

Observe that the statement ∃xP(x) is false if and only if there is no element x in the domain
for which P(x) is true. That is, ∃xP(x) is false if and only if P(x) is false for every element of
the domain. We illustrate this observation in Example 15.

EXAMPLE 15 LetQ(x) denote the statement “x = x + 1.” What is the truth value of the quantification∃xQ(x),
where the domain consists of all real numbers?

Solution: BecauseQ(x) is false for every real number x, the existential quantification of Q(x),
which is ∃xQ(x), is false. ▲

Remember that the truth
value of ∃xP(x) depends
on the domain! Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers

are nonempty. If the domain is empty, then ∃xQ(x) is false whenever Q(x) is a propositional
function because when the domain is empty, there can be no element x in the domain for which
Q(x) is true.

When all elements in the domain can be listed—say, x1, x2, . . . , xn— the existential quan-
tification ∃xP(x) is the same as the disjunction

P(x1) ∨P(x2) ∨ · · ·∨P(xn),

because this disjunction is true if and only if at least one of P(x1), P(x2), . . . , P(xn) is true.

EXAMPLE 16 What is the truth value of ∃xP(x), where P(x) is the statement “x2 > 10” and the universe of
discourse consists of the positive integers not exceeding 4?

Solution: Because the domain is {1, 2, 3, 4}, the proposition ∃xP(x) is the same as the disjunc-
tion

P(1) ∨P(2) ∨P(3) ∨P(4).

Because P(4), which is the statement “42 > 10,” is true, it follows that ∃xP(x) is true. ▲

It is sometimes helpful to think in terms of looping and searching when determining the
truth value of a quantification. Suppose that there are n objects in the domain for the variable x.
To determine whether ∀xP(x) is true, we can loop through all n values of x to see whether
P(x) is always true. If we encounter a value x for which P(x) is false, then we have shown that
∀xP(x) is false. Otherwise, ∀xP(x) is true. To see whether ∃xP(x) is true, we loop through
the n values of x searching for a value for which P(x) is true. If we find one, then ∃xP(x) is
true. If we never find such an x, then we have determined that ∃xP(x) is false. (Note that this
searching procedure does not apply if there are infinitely many values in the domain. However,
it is still a useful way of thinking about the truth values of quantifications.)

44 1 / The Foundations: Logic and Proofs

THE UNIQUENESS QUANTIFIER We have now introduced universal and existential quan-
tifiers. These are the most important quantifiers in mathematics and computer science. However,
there is no limitation on the number of different quantifiers we can define, such as “there are
exactly two,” “there are no more than three,” “there are at least 100,” and so on. Of these other
quantifiers, the one that is most often seen is the uniqueness quantifier , denoted by ∃! or ∃1.
The notation ∃!xP(x) [or ∃1xP(x)] states “There exists a unique x such that P(x) is true.”
(Other phrases for uniqueness quantification include “there is exactly one” and “there is one and
only one.”) For instance, ∃!x(x − 1 = 0), where the domain is the set of real numbers, states
that there is a unique real number x such that x − 1 = 0. This is a true statement, as x = 1 is the
unique real number such that x − 1 = 0. Observe that we can use quantifiers and propositional
logic to express uniqueness (see Exercise 52 in Section 1.5), so the uniqueness quantifier can
be avoided. Generally, it is best to stick with existential and universal quantifiers so that rules
of inference for these quantifiers can be used.

Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of a quantifier. In this nota-
tion, a condition a variable must satisfy is included after the quantifier. This is illustrated in
Example 17. We will also describe other forms of this notation involving set membership in
Section 2.1.

EXAMPLE 17 What do the statements ∀x < 0 (x2 > 0), ∀y = 0 (y3 = 0), and ∃z > 0 (z2 = 2) mean, where
the domain in each case consists of the real numbers?

Solution: The statement∀x < 0 (x2 > 0) states that for every real numberxwithx < 0, x2 > 0.
That is, it states “The square of a negative real number is positive.” This statement is the same
as ∀x(x < 0 → x2 > 0).

The statement ∀y = 0 (y3 = 0) states that for every real number y with y = 0, we have
y3 = 0. That is, it states “The cube of every nonzero real number is nonzero.” Note that this
statement is equivalent to ∀y(y = 0 → y3 = 0).

Finally, the statement ∃z > 0 (z2 = 2) states that there exists a real number z with z > 0
such that z2 = 2. That is, it states “There is a positive square root of 2.” This statement is
equivalent to ∃z(z > 0 ∧z2 = 2). ▲

Note that the restriction of a universal quantification is the same as the universal quantifi-
cation of a conditional statement. For instance, ∀x < 0 (x2 > 0) is another way of expressing
∀x(x < 0 → x2 > 0). On the other hand, the restriction of an existential quantification is the
same as the existential quantification of a conjunction. For instance, ∃z > 0 (z2 = 2) is another
way of expressing ∃z(z > 0 ∧z2 = 2).

Precedence of Quantifiers

The quantifiers ∀and ∃ have higher precedence than all logical operators from propositional
calculus. For example, ∀xP(x) ∨Q(x) is the disjunction of ∀xP(x) andQ(x). In other words,
it means (∀xP(x)) ∨Q(x) rather than ∀x(P(x) ∨Q(x)).

Bind ing Variab les

When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value
is said to be free. All the variables that occur in a propositional function must be bound or set
equal to a particular value to turn it into a proposition. This can be done using a combination of
universal quantifiers, existential quantifiers, and value assignments.

1.4 Predicates and Quantifiers 45

The part of a logical expression to which a quantifier is applied is called the scope of this
quantifier. Consequently, a variable is free if it is outside the scope of all quantifiers in the
formula that specify this variable.

EXAMPLE 18 In the statement ∃x(x + y = 1), the variable x is bound by the existential quantification ∃x, but
the variable y is free because it is not bound by a quantifier and no value is assigned to this
variable. This illustrates that in the statement ∃x(x + y = 1), x is bound, but y is free.

In the statement ∃x(P(x) ∧Q(x)) ∨∀xR(x), all variables are bound. The scope of the first
quantifier, ∃x, is the expression P(x) ∧Q(x) because ∃x is applied only to P(x) ∧Q(x), and
not to the rest of the statement. Similarly, the scope of the second quantifier,∀x, is the expression
R(x). That is, the existential quantifier binds the variable x in P(x) ∧Q(x) and the universal
quantifier ∀x binds the variable x in R(x). Observe that we could have written our statement
using two different variables x and y, as ∃x(P(x) ∧Q(x)) ∨∀yR(y), because the scopes of
the two quantifiers do not overlap. The reader should be aware that in common usage, the same
letter is often used to represent variables bound by different quantifiers with scopes that do not
overlap. ▲

Logical Equivalences Involving Quantifiers

In Section 1.3 we introduced the notion of logical equivalences of compound propositions. We
can extend this notion to expressions involving predicates and quantifiers.

DEFINITION 3 Statements involving predicates and quantifiers are logically equivalent if and only if they
have the same truth value no matter which predicates are substituted into these statements
and which domain of discourse is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and T involving predicates and
quantifiers are logically equivalent.

Example 19 illustrates how to show that two statements involving predicates and quantifiers
are logically equivalent.

EXAMPLE 19 Show that ∀x(P(x) ∧Q(x)) and ∀xP(x) ∧∀xQ(x) are logically equivalent (where the same
domain is used throughout). This logical equivalence shows that we can distribute a universal
quantifier over a conjunction. Furthermore, we can also distribute an existential quantifier over
a disjunction. However, we cannot distribute a universal quantifier over a disjunction, nor can
we distribute an existential quantifier over a conjunction. (See Exercises 50 and 51.)

Solution: To show that these statements are logically equivalent, we must show that they always
take the same truth value, no matter what the predicates P and Q are, and no matter which
domain of discourse is used. Suppose we have particular predicates P and Q, with a common
domain. We can show that ∀x(P(x) ∧Q(x)) and ∀xP(x) ∧∀xQ(x) are logically equivalent
by doing two things. First, we show that if ∀x(P(x) ∧Q(x)) is true, then ∀xP(x) ∧∀xQ(x)
is true. Second, we show that if ∀xP(x) ∧∀xQ(x) is true, then ∀x(P(x) ∧Q(x)) is true.

So, suppose that ∀x(P(x) ∧Q(x)) is true. This means that if a is in the domain, then
P(a) ∧Q(a) is true. Hence, P(a) is true and Q(a) is true. Because P(a) is true and Q(a) is
true for every element in the domain, we can conclude that ∀xP(x) and ∀xQ(x) are both true.
This means that ∀xP(x) ∧∀xQ(x) is true.

Next, suppose that ∀xP(x) ∧∀xQ(x) is true. It follows that ∀xP(x) is true and∀xQ(x) is
true. Hence, if a is in the domain, then P(a) is true and Q(a) is true [because P(x) and Q(x)
are both true for all elements in the domain, there is no conflict using the same value of a here].

46 1 / The Foundations: Logic and Proofs

It follows that for all a, P(a) ∧Q(a) is true. It follows that ∀x(P(x) ∧Q(x)) is true. We can
now conclude that

∀x(P(x) ∧Q(x)) ≡ ∀xP(x) ∧∀xQ(x). ▲

Negating Quantified Expressions

We will often want to consider the negation of a quantified expression. For instance, consider
the negation of the statement

“Every student in your class has taken a course in calculus.”

This statement is a universal quantification, namely,

∀xP(x),

where P(x) is the statement “x has taken a course in calculus” and the domain consists of the
students in your class. The negation of this statement is “It is not the case that every student in
your class has taken a course in calculus.” This is equivalent to “There is a student in your class
who has not taken a course in calculus.” And this is simply the existential quantification of the
negation of the original propositional function, namely,

∃x ¬P(x).

This example illustrates the following logical equivalence:

¬∀xP(x) ≡ ∃x ¬P(x).

To show that ¬∀xP(x) and ∃xP(x) are logically equivalent no matter what the propositional
functionP(x) is and what the domain is, first note that ¬∀xP(x) is true if and only if∀xP(x) is
false. Next, note that∀xP(x) is false if and only if there is an element x in the domain for which
P(x) is false. This holds if and only if there is an element x in the domain for which ¬P(x) is
true. Finally, note that there is an element x in the domain for which ¬P(x) is true if and only
if ∃x ¬P(x) is true. Putting these steps together, we can conclude that ¬∀xP(x) is true if and
only if ∃x ¬P(x) is true. It follows that ¬∀xP(x) and ∃x ¬P(x) are logically equivalent.

Suppose we wish to negate an existential quantification. For instance, consider the propo-
sition “There is a student in this class who has taken a course in calculus.” This is the existential
quantification

∃xQ(x),

where Q(x) is the statement “x has taken a course in calculus.” The negation of this statement
is the proposition “It is not the case that there is a student in this class who has taken a course in
calculus.” This is equivalent to “Every student in this class has not taken calculus,” which is just
the universal quantification of the negation of the original propositional function, or, phrased in
the language of quantifiers,

∀x ¬Q(x).

This example illustrates the equivalence

¬∃xQ(x) ≡ ∀x ¬Q(x).

To show that ¬∃xQ(x) and ∀x ¬Q(x) are logically equivalent no matter whatQ(x) is and what
the domain is, first note that ¬∃xQ(x) is true if and only if ∃xQ(x) is false. This is true if and

1.4 Predicates and Quantifiers 47

TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?

¬∃xP(x) ∀x¬P(x) For every x, P(x) is false. There is an x for which
P(x) is true.

¬∀xP(x) ∃x¬P(x) There is an x for which P(x) is true for every x.
P(x) is false.

only if no x exists in the domain for whichQ(x) is true. Next, note that no x exists in the domain
for which Q(x) is true if and only if Q(x) is false for every x in the domain. Finally, note that
Q(x) is false for every x in the domain if and only if ¬Q(x) is true for all x in the domain,
which holds if and only if ∀x¬Q(x) is true. Putting these steps together, we see that ¬∃xQ(x)
is true if and only if ∀x¬Q(x) is true. We conclude that ¬∃xQ(x) and ∀x ¬Q(x) are logically
equivalent.

The rules for negations for quantifiers are called De Morgan’s laws for quantifiers. These
rules are summarized in Table 2.

Remark: When the domain of a predicate P(x) consists of n elements, where n is a positive
integer greater than one, the rules for negating quantified statements are exactly the same as
De Morgan’s laws discussed in Section 1.3. This is why these rules are called De Morgan’s
laws for quantifiers. When the domain has n elements x1, x2, . . . , xn, it follows that ¬∀xP(x)
is the same as ¬ (P(x1) ∧P(x2) ∧ · · ·∧P(xn)), which is equivalent to ¬P(x1) ∨¬P(x2) ∨
· · ·∨¬P(xn) by De Morgan’s laws, and this is the same as ∃x¬P(x). Similarly, ¬∃xP(x)
is the same as ¬(P(x1) ∨P(x2) ∨ · · ·∨P(xn)), which by De Morgan’s laws is equivalent to
¬P(x1) ∧¬P(x2) ∧ · · ·∧¬P(xn), and this is the same as ∀x¬P(x).

We illustrate the negation of quantified statements in Examples 20 and 21.

EXAMPLE 20 What are the negations of the statements “There is an honest politician” and “All Americans eat
cheeseburgers”?

Solution: Let H (x) denote “x is honest.” Then the statement “There is an honest politician”
is represented by ∃xH (x), where the domain consists of all politicians. The negation of this
statement is ¬∃xH (x), which is equivalent to ∀x¬H (x). This negation can be expressed as
“Every politician is dishonest.” (Note: In English, the statement “All politicians are not honest”
is ambiguous. In common usage, this statement often means “Not all politicians are honest.”
Consequently, we do not use this statement to express this negation.)

Let C(x) denote “x eats cheeseburgers.” Then the statement “All Americans eat cheese-
burgers” is represented by ∀xC(x), where the domain consists of all Americans. The negation
of this statement is ¬∀xC(x), which is equivalent to ∃x¬C(x). This negation can be expressed
in several different ways, including “Some American does not eat cheeseburgers” and “There
is an American who does not eat cheeseburgers.” ▲

EXAMPLE 21 What are the negations of the statements ∀x(x2 > x) and ∃x(x2 = 2)?

Solution: The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x), which is equivalent to
∃x¬ (x2 > x). This can be rewritten as∃x(x2 ≤ x). The negation of∃x(x2 = 2) is the statement
¬∃x(x2 = 2), which is equivalent to ∀x¬ (x2 = 2). This can be rewritten as ∀x(x2 = 2). The
truth values of these statements depend on the domain. ▲

We use De Morgan’s laws for quantifiers in Example 22.

48 1 / The Foundations: Logic and Proofs

EXAMPLE 22 Show that ¬∀x(P(x) → Q(x)) and ∃x(P(x) ∧¬Q(x)) are logically equivalent.

Solution: By De Morgan’s law for universal quantifiers, we know that ¬∀x(P(x) → Q(x))
and ∃x(¬ (P(x) → Q(x))) are logically equivalent. By the fifth logical equivalence in Table 7
in Section 1.3, we know that ¬(P(x) → Q(x)) and P(x) ∧¬Q(x) are logically equivalent
for every x. Because we can substitute one logically equivalent expression for another in a
logical equivalence, it follows that ¬∀x(P(x) → Q(x)) and ∃x(P(x) ∧¬Q(x)) are logically
equivalent. ▲

Translating from English in to Logical Expressions

Translating sentences in English (or other natural languages) into logical expressions is a crucial
task in mathematics, logic programming, artificial intelligence, software engineering, and many
other disciplines. We began studying this topic in Section 1.1, where we used propositions to
express sentences in logical expressions. In that discussion, we purposely avoided sentences
whose translations required predicates and quantifiers. Translating from English to logical ex-
pressions becomes even more complex when quantifiers are needed. Furthermore, there can
be many ways to translate a particular sentence. (As a consequence, there is no “cookbook”
approach that can be followed step by step.) We will use some examples to illustrate how to
translate sentences from English into logical expressions. The goal in this translation is to pro-
duce simple and useful logical expressions. In this section, we restrict ourselves to sentences
that can be translated into logical expressions using a single quantifier; in the next section, we
will look at more complicated sentences that require multiple quantifiers.

EXAMPLE 23 Express the statement “Every student in this class has studied calculus” using predicates and
quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the appropriate quantifiers
to use. Doing so, we obtain:

“For every student in this class, that student has studied calculus.”

Next, we introduce a variable x so that our statement becomes

“For every student x in this class, x has studied calculus.”

Continuing, we introduce C(x), which is the statement “x has studied calculus.” Consequently,
if the domain for x consists of the students in the class, we can translate our statement as∀xC(x).

However, there are other correct approaches; different domains of discourse and other
predicates can be used. The approach we select depends on the subsequent reasoning we want
to carry out. For example, we may be interested in a wider group of people than only those in
this class. If we change the domain to consist of all people, we will need to express our statement
as

“For every person x, if person x is a student in this class then x has studied calculus.”

If S(x) represents the statement that person x is in this class, we see that our statement can be
expressed as ∀x(S(x) → C(x)). [Caution! Our statement cannot be expressed as ∀x(S(x) ∧
C(x)) because this statement says that all people are students in this class and have studied
calculus!]

Finally, when we are interested in the background of people in subjects besides calculus,
we may prefer to use the two-variable quantifier Q(x, y) for the statement “student x has
studied subject y.” Then we would replaceC(x) byQ(x, calculus) in both approaches to obtain
∀xQ(x, calculus) or ∀x(S(x) → Q(x, calculus)). ▲

1.4 Predicates and Quantifiers 49

In Example 23 we displayed different approaches for expressing the same statement using
predicates and quantifiers. However, we should always adopt the simplest approach that is
adequate for use in subsequent reasoning.

EXAMPLE 24 Express the statements “Some student in this class has visited Mexico” and “Every student in
this class has visited either Canada or Mexico” using predicates and quantifiers.

Solution: The statement “Some student in this class has visited Mexico” means that

“There is a student in this class with the property that the student has visited Mexico.”

We can introduce a variable x, so that our statement becomes

“There is a student x in this class having the property that x has visited Mexico.”

We introduceM(x), which is the statement “x has visited Mexico.” If the domain for x consists
of the students in this class, we can translate this first statement as ∃xM (x).

However, if we are interested in people other than those in this class, we look at the statement
a little differently. Our statement can be expressed as

“There is a person x having the properties that x is a student in this class and x has visited
Mexico.”

In this case, the domain for the variable x consists of all people. We introduce S(x) to represent
“x is a student in this class.” Our solution becomes ∃x(S(x) ∧M(x)) because the statement is
that there is a person x who is a student in this class and who has visited Mexico. [Caution! Our
statement cannot be expressed as ∃x(S(x) → M(x)), which is true when there is someone not
in the class because, in that case, for such a person x, S(x) → M(x) becomes either F → T or
F → F, both of which are true.]

Similarly, the second statement can be expressed as

“For every x in this class, x has the property that x has visited Mexico or x has visited
Canada.”

(Note that we are assuming the inclusive, rather than the exclusive, or here.) We let C(x) be “x
has visited Canada.” Following our earlier reasoning, we see that if the domain for x consists of
the students in this class, this second statement can be expressed as∀x(C(x) ∨M(x)). However,
if the domain for x consists of all people, our statement can be expressed as

“For every person x, if x is a student in this class, then x has visited Mexico or x has visited
Canada.”

In this case, the statement can be expressed as ∀x(S(x) → (C(x) ∨M(x))).
Instead of using M(x) and C(x) to represent that x has visited Mexico and x has visited

Canada, respectively, we could use a two-place predicate V(x, y) to represent “x has visited
country y.” In this case,V(x,Mexico) andV(x, Canada) would have the same meaning asM(x)
and C(x) and could replace them in our answers. If we are working with many statements that
involve people visiting different countries, we might prefer to use this two-variable approach.
Otherwise, for simplicity, we would stick with the one-variable predicates M(x) and C(x). ▲

50 1 / The Foundations: Logic and Proofs

Using Quan tifiers in System Specifications

In Section 1.2 we used propositions to represent system specifications. However, many system
specifications involve predicates and quantifications. This is illustrated in Example 25.

EXAMPLE 25 Use predicates and quantifiers to express the system specifications “Every mail message larger
than one megabyte will be compressed” and “If a user is active, at least one network link will
be available.”

Solution: LetS(m, y) be “Mail messagem is larger than y megabytes,” where the variable x has
the domain of all mail messages and the variable y is a positive real number, and letC(m) denote
“Mail messagemwill be compressed.” Then the specification “Every mail message larger than
one megabyte will be compressed” can be represented as ∀m(S(m, 1) → C(m)).

Remember the rules of
precedence for quantifiers
and logical connectives!

Let A(u) represent “User u is active,” where the variable u has the domain of all users,
let S(n, x) denote “Network link n is in state x,” where n has the domain of all network
links and x has the domain of all possible states for a network link. Then the specifica-
tion “If a user is active, at least one network link will be available” can be represented by
∃uA(u) → ∃nS(n, available). ▲

Examples from Lewis Carroll

Lewis Carroll (really C. L. Dodgson writing under a pseudonym), the author of Alice in Wonder-
land, is also the author of several works on symbolic logic. His books contain many examples
of reasoning using quantifiers. Examples 26 and 27 come from his book Symbolic Logic; other
examples from that book are given in the exercises at the end of this section. These examples
illustrate how quantifiers are used to express various types of statements.

EXAMPLE 26 Consider these statements. The first two are called premises and the third is called the conclusion.
The entire set is called an argument.

“All lions are fierce.”
“Some lions do not drink coffee.”
“Some fierce creatures do not drink coffee.”

(In Section 1.6 we will discuss the issue of determining whether the conclusion is a valid conse-
quence of the premises. In this example, it is.) Let P(x),Q(x), andR(x) be the statements “x is
a lion,” “x is fierce,” and “x drinks coffee,” respectively.Assuming that the domain consists of all
creatures, express the statements in the argument using quantifiers and P(x), Q(x), and R(x).

CHARLES LUTWIDGE DODGSON (1832–1898) We know Charles Dodgson as Lewis Carroll—the
pseudonym he used in his literary works. Dodgson, the son of a clergyman, was the third of 11 children,
all of whom stuttered. He was uncomfortable in the company of adults and is said to have spoken without
stuttering only to young girls, many of whom he entertained, corresponded with, and photographed (sometimes
in poses that today would be considered inappropriate). Although attracted to young girls, he was extremely
puritanical and religious. His friendship with the three young daughters of Dean Liddell led to his writing Alice
in Wonderland, which brought him money and fame.

Dodgson graduated from Oxford in 1854 and obtained his master of arts degree in 1857. He was appointed
lecturer in mathematics at Christ Church College, Oxford, in 1855. He was ordained in the Church of England

in 1861 but never practiced his ministry. His writings published under this real name include articles and books on geometry,
determinants, and the mathematics of tournaments and elections. (He also used the pseudonym Lewis Carroll for his many works
on recreational logic.)

1.4 Predicates and Quantifiers 51

Solution: We can express these statements as:

∀x(P(x) → Q(x)).

∃x(P(x) ∧¬R(x)).

∃x(Q(x) ∧¬R(x)).

Notice that the second statement cannot be written as ∃x(P(x) → ¬R(x)). The reason is that
P(x) → ¬R(x) is true whenever x is not a lion, so that ∃x(P(x) → ¬R(x)) is true as long as
there is at least one creature that is not a lion, even if every lion drinks coffee. Similarly, the
third statement cannot be written as

∃x(Q(x) → ¬R(x)). ▲

EXAMPLE 27 Consider these statements, of which the first three are premises and the fourth is a valid conclu-
sion.

“All hummingbirds are richly colored.”
“No large birds live on honey.”
“Birds that do not live on honey are dull in color.”
“Hummingbirds are small.”

LetP(x),Q(x),R(x), andS(x) be the statements “x is a hummingbird,” “x is large,” “x lives on
honey,” and “x is richly colored,” respectively. Assuming that the domain consists of all birds,
express the statements in the argument using quantifiers and P(x), Q(x), R(x), and S(x).

Solution: We can express the statements in the argument as

∀x(P(x) → S(x)).

¬∃x(Q(x) ∧R(x)).

∀x(¬R(x) → ¬S(x)).

∀x(P(x) → ¬Q(x)).

(Note we have assumed that “small” is the same as “not large” and that “dull in color” is the
same as “not richly colored.” To show that the fourth statement is a valid conclusion of the first
three, we need to use rules of inference that will be discussed in Section 1.6.) ▲
Logic Programming

An important type of programming language is designed to reason using the rules of predicate
logic. Prolog (from Programming in Logic), developed in the 1970s by computer scientists
working in the area of artificial intelligence, is an example of such a language. Prolog programs
include a set of declarations consisting of two types of statements, Prolog facts and Prolog
rules. Prolog facts define predicates by specifying the elements that satisfy these predicates.
Prolog rules are used to define new predicates using those already defined by Prolog facts.
Example 28 illustrates these notions.

EXAMPLE 28 Consider a Prolog program given facts telling it the instructor of each class and in which classes
students are enrolled. The program uses these facts to answer queries concerning the professors
who teach particular students. Such a program could use the predicates instructor (p, c) and

52 1 / The Foundations: Logic and Proofs

enrolled(s, c) to represent that professor p is the instructor of course c and that student s
is enrolled in course c, respectively. For example, the Prolog facts in such a program might
include:

instructor(chan,math273)

instructor(patel,ee222)

instructor(grossman,cs301)

enrolled(kevin,math273)

enrolled(juana,ee222)

enrolled(juana,cs301)

enrolled(kiko,math273)

enrolled(kiko,cs301)

(Lowercase letters have been used for entries because Prolog considers names beginning with
an uppercase letter to be variables.)

A new predicate teaches(p, s), representing that professor p teaches student s, can be
defined using the Prolog rule

teaches(P,S) :- instructor(P,C), enrolled(S,C)

which means that teaches(p, s) is true if there exists a class c such that professor p is the
instructor of class c and student s is enrolled in class c. (Note that a comma is used to represent
a conjunction of predicates in Prolog. Similarly, a semicolon is used to represent a disjunction
of predicates.)

Prolog answers queries using the facts and rules it is given. For example, using the facts
and rules listed, the query

?enrolled(kevin,math273)

produces the response

yes

because the fact enrolled(kevin, math273) was provided as input. The query

?enrolled(X,math273)

produces the response

kevin

kiko

To produce this response, Prolog determines all possible values of X for which
enrolled(X , math273) has been included as a Prolog fact. Similarly, to find all the professors
who are instructors in classes being taken by Juana, we use the query

?teaches(X,juana)

This query returns

patel

grossman

▲

1.4 Predicates and Quantifiers 53

Exercises

1. Let P(x) denote the statement “x ≤ 4.” What are these
truth values?

a) P(0) b) P(4) c) P(6)

2. Let P(x) be the statement “the word x contains the
letter a.” What are these truth values?

a) P (orange) b) P(lemon)
c) P (true) d) P(false)

3. Let Q(x, y) denote the statement “x is the capital of y.”
What are these truth values?

a) Q(Denver, Colorado)
b) Q(Detroit, Michigan)
c) Q(Massachusetts, Boston)
d) Q(New York, New York)

4. State the value ofx after the statement ifP(x) then x := 1
is executed, where P(x) is the statement “x > 1,” if the
value of x when this statement is reached is

a) x = 0. b) x = 1.
c) x = 2.

5. LetP(x) be the statement “x spends more than five hours
every weekday in class,” where the domain for x consists
of all students. Express each of these quantifications in
English.

a) ∃xP(x) b) ∀xP(x)
c) ∃x ¬P(x) d) ∀x ¬P(x)

6. Let N(x) be the statement “x has visited North Dakota,”
where the domain consists of the students in your school.
Express each of these quantifications in English.

a) ∃xN(x) b) ∀xN(x) c) ¬∃xN(x)
d) ∃x¬N(x) e) ¬∀xN(x) f) ∀x¬N(x)

7. Translate these statements into English, whereC(x) is “x
is a comedian” and F (x) is “x is funny” and the domain
consists of all people.

a) ∀x(C(x) → F (x)) b) ∀x(C(x) ∧F (x))
c) ∃x(C(x) → F (x)) d) ∃x(C(x) ∧F (x))

8. Translate these statements into English, whereR(x) is “x
is a rabbit” andH (x) is “x hops” and the domain consists
of all animals.

a) ∀x(R(x) → H (x)) b) ∀x(R(x) ∧H (x))
c) ∃x(R(x) → H (x)) d) ∃x(R(x) ∧H (x))

9. Let P(x) be the statement “x can speak Russian” and let
Q(x) be the statement “x knows the computer language
C+ + .” Express each of these sentences in terms ofP(x),
Q(x), quantifiers, and logical connectives. The domain
for quantifiers consists of all students at your school.

a) There is a student at your school who can speak Rus-
sian and who knows C+ + .

b) There is a student at your school who can speak Rus-
sian but who doesn’t know C+ + .

c) Every student at your school either can speak Russian
or knows C+ + .

d) No student at your school can speak Russian or knows
C+ + .

10. Let C(x) be the statement “x has a cat,” let D(x) be the
statement “x has a dog,” and let F (x) be the statement “x
has a ferret.” Express each of these statements in terms of
C(x), D(x), F (x), quantifiers, and logical connectives.
Let the domain consist of all students in your class.

a) A student in your class has a cat, a dog, and a ferret.

b) All students in your class have a cat, a dog, or a ferret.

c) Some student in your class has a cat and a ferret, but
not a dog.

d) No student in your class has a cat, a dog, and a ferret.

e) For each of the three animals, cats, dogs, and ferrets,
there is a student in your class who has this animal as
a pet.

11. Let P(x) be the statement “x = x2.” If the domain con-
sists of the integers, what are these truth values?

a) P(0) b) P(1) c) P(2)

d) P(− 1) e) ∃xP(x) f) ∀xP(x)

12. Let Q(x) be the statement “x + 1 > 2x.” If the domain
consists of all integers, what are these truth values?

a) Q(0) b) Q(− 1) c) Q(1)

d) ∃xQ(x) e) ∀xQ(x) f) ∃x¬Q(x)

g) ∀x¬Q(x)

13. Determine the truth value of each of these statements if
the domain consists of all integers.

a) ∀n(n + 1 > n) b) ∃n(2n = 3n)

c) ∃n(n = − n) d) ∀n(3n ≤ 4n)

14. Determine the truth value of each of these statements if
the domain consists of all real numbers.

a) ∃x(x3 = − 1) b) ∃x(x4 < x2)

c) ∀x((− x)2 = x2) d) ∀x(2x > x)

15. Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) ∀n(n2 ≥ 0) b) ∃n(n2 = 2)

c) ∀n(n2 ≥ n) d) ∃n(n2 < 0)

16. Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.

a) ∃x(x2 = 2) b) ∃x(x2 = − 1)

c) ∀x(x2 + 2 ≥ 1) d) ∀x(x2 = x)

17. Suppose that the domain of the propositional function
P(x) consists of the integers 0, 1, 2, 3, and 4. Write out
each of these propositions using disjunctions, conjunc-
tions, and negations.

a) ∃xP(x) b) ∀xP(x) c) ∃x¬P(x)

d) ∀x¬P(x) e) ¬∃xP(x) f) ¬∀xP(x)

18. Suppose that the domain of the propositional function
P(x) consists of the integers − 2, − 1, 0, 1, and 2. Write
out each of these propositions using disjunctions, con-
junctions, and negations.

a) ∃xP(x) b) ∀xP(x) c) ∃x¬P(x)

d) ∀x¬P(x) e) ¬∃xP(x) f) ¬∀xP(x)

54 1 / The Foundations: Logic and Proofs

19. Suppose that the domain of the propositional function
P(x) consists of the integers 1, 2, 3, 4, and 5. Express
these statements without using quantifiers, instead using
only negations, disjunctions, and conjunctions.

a) ∃xP(x) b) ∀xP(x)
c) ¬∃xP(x) d) ¬∀xP(x)
e) ∀x((x = 3) → P(x)) ∨∃x¬P(x)

20. Suppose that the domain of the propositional function
P(x) consists of − 5, − 3, − 1, 1, 3, and 5. Express these
statements without using quantifiers, instead using only
negations, disjunctions, and conjunctions.

a) ∃xP(x) b) ∀xP(x)
c) ∀x((x = 1) → P(x))
d) ∃x((x ≥ 0) ∧P(x))
e) ∃x(¬P(x)) ∧∀x((x < 0) → P(x))

21. For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone is studying discrete mathematics.
b) Everyone is older than 21 years.
c) Every two people have the same mother.
d) No two different people have the same grandmother.

22. For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone speaks Hindi.
b) There is someone older than 21 years.
c) Every two people have the same first name.
d) Someone knows more than two other people.

23. Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.
b) Everyone in your class is friendly.
c) There is a person in your class who was not born in

California.
d) A student in your class has been in a movie.
e) No student in your class has taken a course in logic

programming.

24. Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Everyone in your class has a cellular phone.
b) Somebody in your class has seen a foreign movie.
c) There is a person in your class who cannot swim.
d) All students in your class can solve quadratic equa-

tions.
e) Some student in your class does not want to be rich.

25. Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) No one is perfect.
b) Not everyone is perfect.
c) All your friends are perfect.
d) At least one of your friends is perfect.

e) Everyone is your friend and is perfect.

f) Not everybody is your friend or someone is not per-
fect.

26. Translate each of these statements into logical expres-
sions in three different ways by varying the domain and
by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.

b) Everyone in your class has studied calculus and C+ + .

c) No one in your school owns both a bicycle and a mo-
torcycle.

d) There is a person in your school who is not happy.

e) Everyone in your school was born in the twentieth
century.

27. Translate each of these statements into logical expres-
sions in three different ways by varying the domain and
by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) There is a student in your school who cannot speak
Hindi.

c) A student in your school knows Java, Prolog, and
C+ + .

d) Everyone in your class enjoys Thai food.

e) Someone in your class does not play hockey.

28. Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) Something is not in the correct place.

b) All tools are in the correct place and are in excellent
condition.

c) Everything is in the correct place and in excellent con-
dition.

d) Nothing is in the correct place and is in excellent con-
dition.

e) One of your tools is not in the correct place, but it is
in excellent condition.

29. Express each of these statements using logical operators,
predicates, and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

c) The disjunction of two contingencies can be a tautol-
ogy.

d) The conjunction of two tautologies is a tautology.

30. Suppose the domain of the propositional functionP(x, y)
consists of pairs x and y, where x is 1, 2, or 3 and y is
1, 2, or 3. Write out these propositions using disjunctions
and conjunctions.

a) ∃x P(x, 3) b) ∀y P(1, y)

c) ∃y¬P(2, y) d) ∀x ¬P(x, 2)

31. Suppose that the domain of Q(x, y, z) consists of triples
x, y, z, where x = 0, 1, or 2, y = 0 or 1, and z = 0 or 1.
Write out these propositions using disjunctions and con-
junctions.

a) ∀yQ(0, y, 0) b) ∃xQ(x, 1, 1)

c) ∃z¬Q(0, 0, z) d) ∃x¬Q(x, 0, 1)

1.4 Predicates and Quantifiers 55

32. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) All dogs have fleas.

b) There is a horse that can add.

c) Every koala can climb.

d) No monkey can speak French.

e) There exists a pig that can swim and catch fish.

33. Express each of these statements using quantifiers. Then
form the negation of the statement, so that no negation
is to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) Some old dogs can learn new tricks.

b) No rabbit knows calculus.

c) Every bird can fly.

d) There is no dog that can talk.

e) There is no one in this class who knows French and
Russian.

34. Express the negation of these propositions using quanti-
fiers, and then express the negation in English.

a) Some drivers do not obey the speed limit.

b) All Swedish movies are serious.

c) No one can keep a secret.

d) There is someone in this class who does not have a
good attitude.

35. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) ∀x(x2 ≥ x)

b) ∀x(x > 0 ∨x < 0)

c) ∀x(x = 1)

36. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all real numbers.

a) ∀x(x2 = x) b) ∀x(x2 = 2)

c) ∀x(|x| > 0)

37. Express each of these statements using predicates and
quantifiers.

a) A passenger on an airline qualifies as an elite flyer if
the passenger flies more than 25,000 miles in a year
or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-
ous time is less than 3 hours and a woman qualifies
for the marathon if her best previous time is less than
3.5 hours.

c) A student must take at least 60 course hours, or at least
45 course hours and write a master’s thesis, and re-
ceive a grade no lower than a B in all required courses,
to receive a master’s degree.

d) There is a student who has taken more than 21 credit
hours in a semester and received all A’s.

Exercises 38–42 deal with the translation between system
specification and logical expressions involving quantifiers.

38. Translate these system specifications into English where
the predicate S(x, y) is “x is in state y” and where the
domain for x and y consists of all systems and all possible
states, respectively.

a) ∃xS(x, open)

b) ∀x(S(x, malfunctioning) ∨S(x, diagnostic))

c) ∃xS(x, open) ∨∃xS(x, diagnostic)

d) ∃x¬S(x, available)

e) ∀x¬S(x, working)

39. Translate these specifications into English where F (p) is
“Printer p is out of service,” B(p) is “Printer p is busy,”
L(j) is “Print job j is lost,” and Q(j) is “Print job j is
queued.”

a) ∃p(F (p) ∧B(p)) → ∃j L (j)

b) ∀pB(p) → ∃j Q(j)

c) ∃j (Q(j) ∧L (j)) → ∃pF (p)

d) (∀pB(p) ∧∀j Q(j)) → ∃j L (j)

40. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) When there is less than 30 megabytes free on the hard
disk, a warning message is sent to all users.

b) No directories in the file system can be opened and
no files can be closed when system errors have been
detected.

c) The file system cannot be backed up if there is a user
currently logged on.

d) Video on demand can be delivered when there are at
least 8 megabytes of memory available and the con-
nection speed is at least 56 kilobits per second.

41. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) At least one mail message, among the nonempty set
of messages, can be saved if there is a disk with more
than 10 kilobytes of free space.

b) Whenever there is an active alert, all queued messages
are transmitted.

c) The diagnostic monitor tracks the status of all systems
except the main console.

d) Each participant on the conference call whom the host
of the call did not put on a special list was billed.

42. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in
the group if the file system is locked.

c) The firewall is in a diagnostic state only if the proxy
server is in a diagnostic state.

d) At least one router is functioning normally if the
throughput is between 100 kbps and 500 kbps and
the proxy server is not in diagnostic mode.

56 1 / The Foundations: Logic and Proofs

43. Determine whether ∀x(P(x) → Q(x)) and ∀xP(x) →
∀xQ(x) are logically equivalent. Justify your answer.

44. Determine whether ∀x(P(x) ↔ Q(x)) and ∀x P(x) ↔
∀xQ(x) are logically equivalent. Justify your answer.

45. Show that ∃x(P(x) ∨Q(x)) and ∃xP(x) ∨∃xQ(x) are
logically equivalent.

Exercises 46–49 establish rules for null quantification that
we can use when a quantified variable does not appear in part
of a statement.

46. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) (∀xP(x)) ∨A ≡ ∀x(P(x) ∨A)

b) (∃xP(x)) ∨A ≡ ∃x(P(x) ∨A)

47. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) (∀xP(x)) ∧A ≡ ∀x(P(x) ∧A)

b) (∃xP(x)) ∧A ≡ ∃x(P(x) ∧A)

48. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) ∀x(A → P(x)) ≡ A → ∀xP(x)

b) ∃x(A → P(x)) ≡ A → ∃xP(x)

49. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) ∀x(P(x) → A) ≡ ∃xP(x) → A

b) ∃x(P(x) → A) ≡ ∀xP(x) → A

50. Show that ∀xP(x) ∨∀xQ(x) and ∀x(P(x) ∨Q(x)) are
not logically equivalent.

51. Show that ∃xP(x) ∧∃xQ(x) and ∃x(P(x) ∧Q(x)) are
not logically equivalent.

52. As mentioned in the text, the notation ∃!xP(x) denotes

“There exists a unique x such that P(x) is true.”

If the domain consists of all integers, what are the truth
values of these statements?

a) ∃!x(x > 1) b) ∃!x(x2 = 1)

c) ∃!x(x + 3 = 2x) d) ∃!x(x = x + 1)

53. What are the truth values of these statements?

a) ∃!xP(x) → ∃xP(x)

b) ∀xP(x) → ∃!xP(x)

c) ∃!x¬P(x) → ¬∀xP(x)

54. Write out ∃!xP(x), where the domain consists of the in-
tegers 1, 2, and 3, in terms of negations, conjunctions,
and disjunctions.

55. Given the Prolog facts in Example 28, what would Prolog
return given these queries?

a) ?instructor(chan,math273)

b) ?instructor(patel,cs301)

c) ?enrolled(X,cs301)

d) ?enrolled(kiko,Y)

e) ?teaches(grossman,Y)

56. Given the Prolog facts in Example 28, what would Prolog
return when given these queries?

a) ?enrolled(kevin,ee222)

b) ?enrolled(kiko,math273)

c) ?instructor(grossman,X)

d) ?instructor(X,cs301)

e) ?teaches(X,kevin)

57. Suppose that Prolog facts are used to define the predicates
mother (M , Y) and father (F, X), which represent thatM
is the mother of Y and F is the father of X , respectively.
Give a Prolog rule to define the predicate sibling(X, Y),
which represents that X and Y are siblings (that is, have
the same mother and the same father).

58. Suppose that Prolog facts are used to define the predi-
cates mother(M , Y) and father (F, X), which represent
that M is the mother of Y and F is the father of X ,
respectively. Give a Prolog rule to define the predicate
grandfather (X, Y), which represents that X is the grand-
father of Y. [Hint: You can write a disjunction in Prolog
either by using a semicolon to separate predicates or by
putting these predicates on separate lines.]

Exercises 59–62 are based on questions found in the book
Symbolic Logic by Lewis Carroll.

59. Let P(x), Q(x), and R(x) be the statements “x is a
professor,” “x is ignorant,” and “x is vain,” respectively.
Express each of these statements using quantifiers; log-
ical connectives; and P(x), Q(x), and R(x), where the
domain consists of all people.

a) No professors are ignorant.

b) All ignorant people are vain.

c) No professors are vain.

d) Does (c) follow from (a) and (b)?

60. Let P(x), Q(x), and R(x) be the statements “x is a clear
explanation,” “x is satisfactory,” and “x is an excuse,”
respectively. Suppose that the domain for x consists of all
English text. Express each of these statements using quan-
tifiers, logical connectives, andP(x),Q(x), andR(x).

a) All clear explanations are satisfactory.

b) Some excuses are unsatisfactory.

c) Some excuses are not clear explanations.
∗d) Does (c) follow from (a) and (b)?

61. Let P(x), Q(x), R(x), and S(x) be the statements “x is
a baby,” “x is logical,” “x is able to manage a crocodile,”
and “x is despised,” respectively. Suppose that the domain
consists of all people. Express each of these statements
using quantifiers; logical connectives; and P(x), Q(x),
R(x), and S(x).

a) Babies are illogical.

b) Nobody is despised who can manage a crocodile.

c) Illogical persons are despised.

d) Babies cannot manage crocodiles.
∗e) Does (d) follow from (a), (b), and (c)? If not, is there

a correct conclusion?

1.5 Nested Quantifiers 57

62. Let P(x), Q(x), R(x), and S(x) be the statements “x
is a duck,” “x is one of my poultry,” “x is an officer,”
and “x is willing to waltz,” respectively. Express each of
these statements using quantifiers; logical connectives;
and P(x), Q(x), R(x), and S(x).

a) No ducks are willing to waltz.

b) No officers ever decline to waltz.

c) All my poultry are ducks.

d) My poultry are not officers.

∗e) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?

1.5 Nested Quantifiers

In troduction

In Section 1.4 we defined the existential and universal quantifiers and showed how they can
be used to represent mathematical statements. We also explained how they can be used to
translate English sentences into logical expressions. However, in Section 1.4 we avoided nested
quantifiers, where one quantifier is within the scope of another, such as

∀x∃y(x + y = 0).

Note that everything within the scope of a quantifier can be thought of as a propositional function.
For example,

∀x∃y(x + y = 0)

is the same thing as ∀xQ(x), where Q(x) is ∃yP(x, y), where P(x, y) is x + y = 0.
Nested quantifiers commonly occur in mathematics and computer science. Although nested

quantifiers can sometimes be difficult to understand, the rules we have already studied in
Section 1.4 can help us use them. In this section we will gain experience working with nested
quantifiers. We will see how to use nested quantifiers to express mathematical statements such
as “The sum of two positive integers is always positive.” We will show how nested quantifiers
can be used to translate English sentences such as “Everyone has exactly one best friend” into
logical statements. Moreover, we will gain experience working with the negations of statements
involving nested quantifiers.

Understand ing Statements Involving Nested Quantifiers

To understand statements involving nested quantifiers, we need to unravel what the quantifiers
and predicates that appear mean. This is illustrated in Examples 1 and 2.

EXAMPLE 1 Assume that the domain for the variables x and y consists of all real numbers. The statement

∀x∀y(x + y = y + x)

says that x + y = y + x for all real numbers x and y. This is the commutative law for addition
of real numbers. Likewise, the statement

∀x∃y(x + y = 0)

says that for every real number x there is a real number y such that x + y = 0. This states that
every real number has an additive inverse. Similarly, the statement

∀x∀y∀z(x + (y + z) = (x + y) + z)

is the associative law for addition of real numbers. ▲

58 1 / The Foundations: Logic and Proofs

EXAMPLE 2 Translate into English the statement

∀x∀y((x > 0) ∧ (y < 0) → (xy < 0)),

where the domain for both variables consists of all real numbers.

Solution: This statement says that for every real number x and for every real number y, if x > 0
and y < 0, then xy < 0. That is, this statement says that for real numbers x and y, if x is positive
and y is negative, then xy is negative. This can be stated more succinctly as “The product of a
positive real number and a negative real number is always a negative real number.” ▲

THINKING OF QUANTIFICATION AS LOOPS In working with quantifications of more
than one variable, it is sometimes helpful to think in terms of nested loops. (Of course, if there
are infinitely many elements in the domain of some variable, we cannot actually loop through
all values. Nevertheless, this way of thinking is helpful in understanding nested quantifiers.) For
example, to see whether ∀x∀yP(x, y) is true, we loop through the values for x, and for each x
we loop through the values for y. If we find that P(x, y) is true for all values for x and y, we
have determined that ∀x∀yP(x, y) is true. If we ever hit a value x for which we hit a value y
for which P(x, y) is false, we have shown that ∀x∀yP(x, y) is false.

Similarly, to determine whether ∀x∃yP(x, y) is true, we loop through the values for x.
For each x we loop through the values for y until we find a y for which P(x, y) is true. If for
every x we hit such a y, then ∀x∃yP(x, y) is true; if for some x we never hit such a y, then
∀x∃yP(x, y) is false.

To see whether ∃x∀yP(x, y) is true, we loop through the values for x until we find an x for
which P(x, y) is always true when we loop through all values for y. Once we find such an x, we
know that∃x∀yP(x, y) is true. If we never hit such anx, then we know that∃x∀yP(x, y) is false.

Finally, to see whether ∃x∃yP(x, y) is true, we loop through the values for x, where for
each x we loop through the values for y until we hit an x for which we hit a y for which P(x, y)
is true. The statement ∃x∃yP(x, y) is false only if we never hit an x for which we hit a y such
that P(x, y) is true.

The Order of Quantifiers

Many mathematical statements involve multiple quantifications of propositional functions in-
volving more than one variable. It is important to note that the order of the quantifiers is important,
unless all the quantifiers are universal quantifiers or all are existential quantifiers.

These remarks are illustrated by Examples 3–5.

EXAMPLE 3 Let P(x, y) be the statement “x + y = y + x.” What are the truth values of the quantifications
∀x∀yP(x, y) and∀y∀xP(x, y) where the domain for all variables consists of all real numbers?

Solution: The quantification

∀x∀yP(x, y)

denotes the proposition

“For all real numbers x, for all real numbers y, x + y = y + x.”

Because P(x, y) is true for all real numbers x and y (it is the commutative law for addition,
which is an axiom for the real numbers—see Appendix 1), the proposition ∀x∀yP(x, y) is
true. Note that the statement ∀y∀xP(x, y) says “For all real numbers y, for all real numbers x,
x + y = y + x.” This has the same meaning as the statement “For all real numbers x, for all real
numbers y, x + y = y + x.” That is, ∀x∀yP(x, y) and ∀y∀xP(x, y) have the same meaning,

1.5 Nested Quantifiers 59

and both are true. This illustrates the principle that the order of nested universal quantifiers
in a statement without other quantifiers can be changed without changing the meaning of the
quantified statement. ▲

EXAMPLE 4 Let Q(x, y) denote “x + y = 0.” What are the truth values of the quantifications ∃y∀xQ(x, y)
and ∀x∃yQ(x, y), where the domain for all variables consists of all real numbers?

Solution: The quantification

∃y∀xQ(x, y)

denotes the proposition

“There is a real number y such that for every real number x, Q(x, y).”

No matter what value of y is chosen, there is only one value of x for which x + y = 0. Because
there is no real number y such that x + y = 0 for all real numbers x, the statement∃y∀xQ(x, y)
is false.

The quantification

∀x∃yQ(x, y)

denotes the proposition

“For every real number x there is a real number y such that Q(x, y).”

Given a real number x, there is a real number y such that x + y = 0; namely, y = − x. Hence,
the statement ∀x∃yQ(x, y) is true.

Be careful with the order
of existential and
universal quantifiers!

▲

Example 4 illustrates that the order in which quantifiers appear makes a difference. The state-
ments ∃y∀xP(x, y) and∀x∃yP(x, y) are not logically equivalent. The statement ∃y∀xP(x, y)
is true if and only if there is a y that makes P(x, y) true for every x. So, for this statement to
be true, there must be a particular value of y for which P(x, y) is true regardless of the choice
of x. On the other hand, ∀x∃yP(x, y) is true if and only if for every value of x there is a value
of y for which P(x, y) is true. So, for this statement to be true, no matter which x you choose,
there must be a value of y (possibly depending on the x you choose) for which P(x, y) is true.
In other words, in the second case, y can depend on x, whereas in the first case, y is a constant
independent of x.

From these observations, it follows that if ∃y∀xP(x, y) is true, then ∀x∃yP(x, y) must
also be true. However, if ∀x∃yP(x, y) is true, it is not necessary for ∃y∀xP(x, y) to be true.
(See Supplementary Exercises 30 and 31.)

Table 1 summarizes the meanings of the different possible quantifications involving two
variables.

Quantifications of more than two variables are also common, as Example 5 illustrates.

EXAMPLE 5 Let Q(x, y, z) be the statement “x + y = z.” What are the truth values of the statements
∀x∀y∃zQ(x, y, z) and ∃z∀x∀yQ(x, y, z), where the domain of all variables consists of all
real numbers?

Solution: Suppose that x and y are assigned values. Then, there exists a real number z such that
x + y = z. Consequently, the quantification

∀x∀y∃zQ(x, y, z),

which is the statement

“For all real numbers x and for all real numbers y there is a real number z such that
x + y = z,”

60 1 / The Foundations: Logic and Proofs

TABLE 1 Quantifications of Two Var iables.

Statement When True? When False?

∀x∀yP(x, y) P(x, y) is true for every pair x, y. There is a pair x, y for
∀y∀xP(x, y) which P(x, y) is false.

∀x∃yP(x, y) For every x there is a y for There is an x such that
which P(x, y) is true. P(x, y) is false for every y.

∃x∀yP(x, y) There is an x for which P(x, y) For every x there is a y for
is true for every y. which P(x, y) is false.

∃x∃yP(x, y) There is a pair x, y for which P(x, y) is false for every
∃y∃xP(x, y) P(x, y) is true. pair x, y.

is true. The order of the quantification here is important, because the quantification

∃z∀x∀yQ(x, y, z),

which is the statement

“There is a real number z such that for all real numbers x and for all real numbers y it is
true that x + y = z,”

is false, because there is no value of z that satisfies the equation x + y = z for all values of x
and y. ▲

Translating Mathematical Statements in to Statements
Involving Nested Quan tifiers

Mathematical statements expressed in English can be translated into logical expressions, as
Examples 6–8 show.

EXAMPLE 6 Translate the statement “The sum of two positive integers is always positive” into a logical
expression.

Solution: To translate this statement into a logical expression, we first rewrite it so that the implied
quantifiers and a domain are shown: “For every two integers, if these integers are both positive,
then the sum of these integers is positive.” Next, we introduce the variables x and y to obtain “For
all positive integers x and y, x + y is positive.” Consequently, we can express this statement as

∀x∀y((x > 0) ∧ (y > 0) → (x + y > 0)),

where the domain for both variables consists of all integers. Note that we could also translate
this using the positive integers as the domain. Then the statement “The sum of two positive
integers is always positive” becomes “For every two positive integers, the sum of these integers
is positive. We can express this as

∀x∀y(x + y > 0),

where the domain for both variables consists of all positive integers. ▲

EXAMPLE 7 Translate the statement “Every real number except zero has a multiplicative inverse.” (A mul-
tiplicative inverse of a real number x is a real number y such that xy = 1.)

1.5 Nested Quantifiers 61

Solution: We first rewrite this as “For every real number x except zero, x has a multiplicative
inverse.” We can rewrite this as “For every real number x, if x = 0, then there exists a real
number y such that xy = 1.” This can be rewritten as

∀x((x = 0) → ∃y(xy = 1)). ▲

One example that you may be familiar with is the concept of limit, which is important in
calculus.

EXAMPLE 8 (Requires calculus) Use quantifiers to express the definition of the limit of a real-valued
function f (x) of a real variable x at a point a in its domain.

Solution: Recall that the definition of the statement

lim
x→a

f (x) = L

is: For every real number > 0 there exists a real number δ > 0 such that |f (x) − L | <
whenever 0 < |x − a| < δ. This definition of a limit can be phrased in terms of quantifiers by

∀∃δ∀x(0 < |x − a| < δ→ |f (x) − L | <),

where the domain for the variables δand consists of all positive real numbers and for x consists
of all real numbers.

This definition can also be expressed as

∀ > 0 ∃δ> 0 ∀x(0 < |x − a| < δ→ |f (x) − L | <)

when the domain for the variables andδconsists of all real numbers, rather than just the positive
real numbers. [Here, restricted quantifiers have been used. Recall that ∀x> 0 P(x) means that
for all x with x> 0, P(x) is true.] ▲

Translating from Nested Quantifiers in to English

Expressions with nested quantifiers expressing statements in English can be quite complicated.
The first step in translating such an expression is to write out what the quantifiers and predicates
in the expression mean. The next step is to express this meaning in a simpler sentence. This
process is illustrated in Examples 9 and 10.

EXAMPLE 9 Translate the statement

∀x(C(x) ∨∃y(C(y) ∧F (x, y)))

into English, whereC(x) is “x has a computer,” F (x, y) is “x and y are friends,” and the domain
for both x and y consists of all students in your school.

Solution: The statement says that for every student x in your school, x has a computer or there
is a student y such that y has a computer and x and y are friends. In other words, every student
in your school has a computer or has a friend who has a computer. ▲

EXAMPLE 10 Translate the statement

∃x∀y∀z((F (x, y) ∧F (x, z) ∧ (y = z)) → ¬F (y,z))

62 1 / The Foundations: Logic and Proofs

into English, where F (a,b) means a and b are friends and the domain for x, y, and z consists of
all students in your school.

Solution: We first examine the expression (F (x, y) ∧F (x, z) ∧ (y = z)) → ¬F (y, z). This
expression says that if students x and y are friends, and students x and z are friends, and
furthermore, if y and z are not the same student, then y and z are not friends. It follows that
the original statement, which is triply quantified, says that there is a student x such that for all
students y and all students z other than y, if x and y are friends and x and z are friends, then y
and z are not friends. In other words, there is a student none of whose friends are also friends
with each other. ▲

Translating English Sentences in to Logical Expressions

In Section 1.4 we showed how quantifiers can be used to translate sentences into logical expres-
sions. However, we avoided sentences whose translation into logical expressions required the
use of nested quantifiers. We now address the translation of such sentences.

EXAMPLE 11 Express the statement “If a person is female and is a parent, then this person is someone’s
mother” as a logical expression involving predicates, quantifiers with a domain consisting of all
people, and logical connectives.

Solution: The statement “If a person is female and is a parent, then this person is someone’s
mother” can be expressed as “For every person x, if person x is female and person x is a parent,
then there exists a person y such that person x is the mother of person y.” We introduce the
propositional functions F (x) to represent “x is female,” P(x) to represent “x is a parent,” and
M(x, y) to represent “x is the mother of y.” The original statement can be represented as

∀x((F (x) ∧P(x)) → ∃yM(x, y)).

Using the null quantification rule in part (b) of Exercise 47 in Section 1.4, we can move ∃y to
the left so that it appears just after ∀x, because y does not appear in F (x) ∧P(x). We obtain
the logically equivalent expression

∀x∃y((F (x) ∧P(x)) → M(x, y)). ▲

EXAMPLE 12 Express the statement “Everyone has exactly one best friend” as a logical expression involving
predicates, quantifiers with a domain consisting of all people, and logical connectives.

Solution: The statement “Everyone has exactly one best friend” can be expressed as “For every
person x, person x has exactly one best friend.” Introducing the universal quantifier, we see
that this statement is the same as “∀x(person x has exactly one best friend),” where the domain
consists of all people.

To say that x has exactly one best friend means that there is a person y who is the best friend
of x, and furthermore, that for every person z, if person z is not person y, then z is not the best
friend of x. When we introduce the predicate B(x, y) to be the statement “y is the best friend
of x,” the statement that x has exactly one best friend can be represented as

∃y(B(x, y) ∧∀z((z = y) → ¬B(x, z))).

Consequently, our original statement can be expressed as

∀x∃y(B(x, y) ∧∀z((z = y) → ¬B(x, z))).

1.5 Nested Quantifiers 63

[Note that we can write this statement as∀x∃!yB(x, y), where ∃! is the “uniqueness quantifier”
defined in Section 1.4.] ▲

EXAMPLE 13 Use quantifiers to express the statement “There is a woman who has taken a flight on every
airline in the world.”

Solution: Let P(w, f) be “w has taken f ” and Q(f , a) be “f is a flight on a.” We can express
the statement as

∃w∀a∃f (P(w, f) ∧Q(f , a)),

where the domains of discourse for w, f , and a consist of all the women in the world, all airplane
flights, and all airlines, respectively.

The statement could also be expressed as

∃w∀a∃f R(w, f , a),

whereR(w, f , a) is “w has taken f on a.” Although this is more compact, it somewhat obscures
the relationships among the variables. Consequently, the first solution is usually preferable. ▲

Negating Nested Quantifiers

Statements involving nested quantifiers can be negated by successively applying the rules for
negating statements involving a single quantifier. This is illustrated in Examples 14–16.

EXAMPLE 14 Express the negation of the statement ∀x∃y(xy = 1) so that no negation precedes a quantifier.

Solution: By successively applying De Morgan’s laws for quantifiers in Table 2 of
Section 1.4, we can move the negation in ¬∀x∃y(xy = 1) inside all the quantifiers. We find
that ¬∀x∃y(xy = 1) is equivalent to ∃x¬∃y(xy = 1), which is equivalent to ∃x∀y¬ (xy = 1).
Because ¬ (xy = 1) can be expressed more simply as xy = 1, we conclude that our negated
statement can be expressed as ∃x∀y(xy = 1). ▲

EXAMPLE 15 Use quantifiers to express the statement that “There does not exist a woman who has taken a
flight on every airline in the world.”

Solution: This statement is the negation of the statement “There is a woman who has taken a
flight on every airline in the world” from Example 13. By Example 13, our statement can be
expressed as ¬∃w∀a∃f (P(w, f) ∧Q(f , a)), where P(w, f) is “w has taken f ” and Q(f , a)
is “f is a flight on a.” By successively applying De Morgan’s laws for quantifiers in Table 2
of Section 1.4 to move the negation inside successive quantifiers and by applying De Morgan’s
law for negating a conjunction in the last step, we find that our statement is equivalent to each
of this sequence of statements:

∀w¬∀a∃f (P(w, f) ∧Q(f , a)) ≡ ∀w∃a¬∃f (P(w, f) ∧Q(f , a))

≡ ∀w∃a∀f ¬ (P(w, f) ∧Q(f , a))

≡ ∀w∃a∀f (¬P(w, f) ∨¬Q(f , a)).

This last statement states “For every woman there is an airline such that for all flights, this
woman has not taken that flight or that flight is not on this airline.” ▲

64 1 / The Foundations: Logic and Proofs

EXAMPLE 16 (Requires calculus) Use quantifiers and predicates to express the fact that limx→a f (x) does
not exist where f (x) is a real-valued function of a real variable x and a belongs to the domain
of f .

Solution: To say that limx→a f (x) does not exist means that for all real numbers L ,
limx→a f (x) = L . By using Example 8, the statement limx→a f (x) = L can be expressed as

¬∀ > 0 ∃δ> 0 ∀x(0 < |x − a| < δ→ |f (x) − L | <).

Successively applying the rules for negating quantified expressions, we construct this sequence
of equivalent statements

¬∀ > 0 ∃δ> 0 ∀x(0< |x − a|< δ→ |f (x) − L |<)

≡ ∃ > 0 ¬∃δ> 0 ∀x(0< |x − a|< δ→ |f (x) − L |<)

≡ ∃ > 0 ∀δ> 0 ¬∀x(0< |x − a|< δ→ |f (x) − L |<)

≡ ∃ > 0 ∀δ> 0 ∃x ¬ (0< |x − a|< δ→ |f (x) − L |<)

≡ ∃ > 0 ∀δ> 0 ∃x(0< |x − a|< δ∧ |f (x) − L | ≥).

In the last step we used the equivalence ¬(p → q) ≡ p ∧¬q, which follows from the fifth
equivalence in Table 7 of Section 1.3.

Because the statement “limx→a f (x) does not exist” means for all real numbers L ,
limx→a f (x) = L , this can be expressed as

∀L∃ > 0 ∀δ> 0 ∃x(0 < |x − a| < δ∧ |f (x) − L | ≥).

This last statement says that for every real number L there is a real number > 0 such that
for every real number δ > 0, there exists a real number x such that 0 < |x − a| < δ and
|f (x) − L | ≥ . ▲

Exercises

1. Translate these statements into English, where the domain
for each variable consists of all real numbers.

a) ∀x∃y(x < y)
b) ∀x∀y(((x ≥ 0) ∧ (y ≥ 0)) → (xy ≥ 0))
c) ∀x∀y∃z(xy = z)

2. Translate these statements into English, where the domain
for each variable consists of all real numbers.

a) ∃x∀y(xy = y)
b) ∀x∀y(((x ≥ 0) ∧ (y < 0)) → (x − y > 0))
c) ∀x∀y∃z(x = y + z)

3. Let Q(x, y) be the statement “x has sent an e-mail mes-
sage to y,” where the domain for both x and y consists of
all students in your class. Express each of these quantifi-
cations in English.

a) ∃x∃yQ(x, y) b) ∃x∀yQ(x, y)
c) ∀x∃yQ(x, y) d) ∃y∀xQ(x, y)
e) ∀y∃xQ(x, y) f) ∀x∀yQ(x, y)

4. Let P(x, y) be the statement “Student x has taken class
y,” where the domain for x consists of all students in your
class and for y consists of all computer science courses

at your school. Express each of these quantifications in
English.

a) ∃x∃yP(x, y) b) ∃x∀yP(x, y)

c) ∀x∃yP(x, y) d) ∃y∀xP(x, y)

e) ∀y∃xP(x, y) f) ∀x∀yP(x, y)

5. Let W(x, y) mean that student x has visited website y,
where the domain for x consists of all students in your
school and the domain for y consists of all websites. Ex-
press each of these statements by a simple English sen-
tence.

a) W(Sarah Smith, www.att.com)

b) ∃xW(x, www.imdb.org)

c) ∃yW(José Orez, y)

d) ∃y(W(Ashok Puri, y) ∧W(Cindy Yoon, y))

e) ∃y∀z(y = (David Belcher) ∧ (W(David Belcher, z)
→ W(y,z)))

f) ∃x∃y∀z((x = y) ∧ (W(x, z) ↔ W(y, z)))

6. Let C(x, y) mean that student x is enrolled in class y,
where the domain for x consists of all students in your
school and the domain for y consists of all classes being

1.5 Nested Quantifiers 65

given at your school. Express each of these statements by
a simple English sentence.

a) C(Randy Goldberg, CS 252)
b) ∃xC(x, Math 695)
c) ∃yC(Carol Sitea, y)
d) ∃x(C(x, Math 222) ∧C(x, CS 252))
e) ∃x∃y∀z((x = y) ∧ (C(x, z) → C(y, z)))
f) ∃x∃y∀z((x = y) ∧ (C(x, z) ↔ C(y, z)))

7. Let T(x, y) mean that student x likes cuisine y, where the
domain for x consists of all students at your school and
the domain for y consists of all cuisines. Express each of
these statements by a simple English sentence.

a) ¬T (Abdallah Hussein, Japanese)
b) ∃xT(x, Korean) ∧∀xT(x, Mexican)
c) ∃y(T (Monique Arsenault, y) ∨

T (Jay Johnson, y))
d) ∀x∀z∃y((x = z) → ¬(T(x, y) ∧T(z, y)))
e) ∃x∃z∀y(T(x, y) ↔ T(z, y))
f) ∀x∀z∃y(T(x, y) ↔ T(z, y))

8. Let Q(x, y) be the statement “student x has been a con-
testant on quiz show y.” Express each of these sentences
in terms of Q(x, y), quantifiers, and logical connectives,
where the domain for x consists of all students at your
school and fory consists of all quiz shows on television.

a) There is a student at your school who has been a con-
testant on a television quiz show.

b) No student at your school has ever been a contestant
on a television quiz show.

c) There is a student at your school who has been a con-
testant on Jeopardy and on Wheel of Fortune.

d) Every television quiz show has had a student from
your school as a contestant.

e) At least two students from your school have been con-
testants on Jeopardy.

9. Let L(x, y) be the statement “x loves y,” where the do-
main for both x and y consists of all people in the world.
Use quantifiers to express each of these statements.

a) Everybody loves Jerry.
b) Everybody loves somebody.
c) There is somebody whom everybody loves.
d) Nobody loves everybody.
e) There is somebody whom Lydia does not love.
f) There is somebody whom no one loves.
g) There is exactly one person whom everybody loves.
h) There are exactly two people whom Lynn loves.
i) Everyone loves himself or herself.
j) There is someone who loves no one besides himself

or herself.

10. Let F (x, y) be the statement “x can fool y,” where the
domain consists of all people in the world. Use quantifiers
to express each of these statements.

a) Everybody can fool Fred.
b) Evelyn can fool everybody.
c) Everybody can fool somebody.
d) There is no one who can fool everybody.
e) Everyone can be fooled by somebody.
f) No one can fool both Fred and Jerry.
g) Nancy can fool exactly two people.

h) There is exactly one person whom everybody can fool.

i) No one can fool himself or herself.

j) There is someone who can fool exactly one person
besides himself or herself.

11. Let S(x) be the predicate “x is a student,” F (x) the pred-
icate “x is a faculty member,” and A(x, y) the predicate
“x has asked y a question,” where the domain consists of
all people associated with your school. Use quantifiers to
express each of these statements.

a) Lois has asked Professor Michaels a question.

b) Every student has asked Professor Gross a question.

c) Every faculty member has either asked Professor
Miller a question or been asked a question by Pro-
fessor Miller.

d) Some student has not asked any faculty member a
question.

e) There is a faculty member who has never been asked
a question by a student.

f) Some student has asked every faculty member a ques-
tion.

g) There is a faculty member who has asked every other
faculty member a question.

h) Some student has never been asked a question by a
faculty member.

12. Let I (x) be the statement “x has an Internet connection”
and C(x, y) be the statement “x and y have chatted over
the Internet,” where the domain for the variables x and y
consists of all students in your class. Use quantifiers to
express each of these statements.

a) Jerry does not have an Internet connection.

b) Rachel has not chatted over the Internet with Chelsea.

c) Jan and Sharon have never chatted over the Internet.

d) No one in the class has chatted with Bob.

e) Sanjay has chatted with everyone except Joseph.

f) Someone in your class does not have an Internet con-
nection.

g) Not everyone in your class has an Internet connec-
tion.

h) Exactly one student in your class has an Internet con-
nection.

i) Everyone except one student in your class has an In-
ternet connection.

j) Everyone in your class with an Internet connection
has chatted over the Internet with at least one other
student in your class.

k) Someone in your class has an Internet connection but
has not chatted with anyone else in your class.

l) There are two students in your class who have not
chatted with each other over the Internet.

m) There is a student in your class who has chatted with
everyone in your class over the Internet.

n) There are at least two students in your class who have
not chatted with the same person in your class.

o) There are two students in the class who between them
have chatted with everyone else in the class.

66 1 / The Foundations: Logic and Proofs

13. Let M(x, y) be “x has sent y an e-mail message” and
T(x, y) be “x has telephoned y,” where the domain con-
sists of all students in your class. Use quantifiers to ex-
press each of these statements. (Assume that all e-mail
messages that were sent are received, which is not the
way things often work.)

a) Chou has never sent an e-mail message to Koko.
b) Arlene has never sent an e-mail message to or tele-

phoned Sarah.
c) José has never received an e-mail message from Deb-

orah.
d) Every student in your class has sent an e-mail mes-

sage to Ken.
e) No one in your class has telephoned Nina.
f) Everyone in your class has either telephoned Avi or

sent him an e-mail message.
g) There is a student in your class who has sent everyone

else in your class an e-mail message.
h) There is someone in your class who has either sent an

e-mail message or telephoned everyone else in your
class.

i) There are two different students in your class who
have sent each other e-mail messages.

j) There is a student who has sent himself or herself an
e-mail message.

k) There is a student in your class who has not received
an e-mail message from anyone else in the class and
who has not been called by any other student in the
class.

l) Every student in the class has either received an e-
mail message or received a telephone call from an-
other student in the class.

m) There are at least two students in your class such that
one student has sent the other e-mail and the second
student has telephoned the first student.

n) There are two different students in your class who
between them have sent an e-mail message to or tele-
phoned everyone else in the class.

14. Use quantifiers and predicates with more than one vari-
able to express these statements.

a) There is a student in this class who can speak Hindi.
b) Every student in this class plays some sport.
c) Some student in this class has visited Alaska but has

not visited Hawaii.
d) All students in this class have learned at least one pro-

gramming language.
e) There is a student in this class who has taken ev-

ery course offered by one of the departments in this
school.

f) Some student in this class grew up in the same town
as exactly one other student in this class.

g) Every student in this class has chatted with at least
one other student in at least one chat group.

15. Use quantifiers and predicates with more than one vari-
able to express these statements.

a) Every computer science student needs a course in dis-
crete mathematics.

b) There is a student in this class who owns a personal
computer.

c) Every student in this class has taken at least one com-
puter science course.

d) There is a student in this class who has taken at least
one course in computer science.

e) Every student in this class has been in every building
on campus.

f) There is a student in this class who has been in every
room of at least one building on campus.

g) Every student in this class has been in at least one
room of every building on campus.

16. A discrete mathematics class contains 1 mathematics ma-
jor who is a freshman, 12 mathematics majors who are
sophomores, 15 computer science majors who are sopho-
mores, 2 mathematics majors who are juniors, 2 computer
science majors who are juniors, and 1 computer science
major who is a senior. Express each of these statements in
terms of quantifiers and then determine its truth value.

a) There is a student in the class who is a junior.
b) Every student in the class is a computer science major.
c) There is a student in the class who is neither a math-

ematics major nor a junior.
d) Every student in the class is either a sophomore or a

computer science major.
e) There is a major such that there is a student in the class

in every year of study with that major.

17. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives, if necessary.

a) Every user has access to exactly one mailbox.
b) There is a process that continues to run during all error

conditions only if the kernel is working correctly.
c) All users on the campus network can access all web-

sites whose url has a .edu extension.
∗d) There are exactly two systems that monitor every re-

mote server.

18. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives, if necessary.

a) At least one console must be accessible during every
fault condition.

b) The e-mail address of every user can be retrieved
whenever the archive contains at least one message
sent by every user on the system.

c) For every security breach there is at least one mecha-
nism that can detect that breach if and only if there is
a process that has not been compromised.

d) There are at least two paths connecting every two dis-
tinct endpoints on the network.

e) No one knows the password of every user on the sys-
tem except for the system administrator, who knows
all passwords.[

19. Express each of these statements using mathematical and
logical operators, predicates, and quantifiers, where the
domain consists of all integers.

a) The sum of two negative integers is negative.
b) The difference of two positive integers is not neces-

sarily positive.

1.5 Nested Quantifiers 67

c) The sum of the squares of two integers is greater than
or equal to the square of their sum.

d) The absolute value of the product of two integers is
the product of their absolute values.

20. Express each of these statements using predicates, quan-
tifiers, logical connectives, and mathematical operators
where the domain consists of all integers.

a) The product of two negative integers is positive.
b) The average of two positive integers is positive.
c) The difference of two negative integers is not neces-

sarily negative.
d) The absolute value of the sum of two integers does

not exceed the sum of the absolute values of these
integers.

21. Use predicates, quantifiers, logical connectives, and
mathematical operators to express the statement that ev-
ery positive integer is the sum of the squares of four in-
tegers.

22. Use predicates, quantifiers, logical connectives, and
mathematical operators to express the statement that there
is a positive integer that is not the sum of three squares.

23. Express each of these mathematical statements using
predicates, quantifiers, logical connectives, and mathe-
matical operators.

a) The product of two negative real numbers is positive.
b) The difference of a real number and itself is zero.
c) Every positive real number has exactly two square

roots.
d) A negative real number does not have a square root

that is a real number.

24. Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) ∃x∀y(x + y = y)
b) ∀x∀y(((x ≥ 0) ∧ (y < 0)) → (x − y > 0))
c) ∃x∃y(((x ≤ 0) ∧ (y ≤ 0)) ∧ (x − y > 0))
d) ∀x∀y((x = 0) ∧ (y = 0) ↔ (xy = 0))

25. Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) ∃x∀y(xy = y)
b) ∀x∀y(((x < 0) ∧ (y < 0)) → (xy > 0))
c) ∃x∃y((x2 > y) ∧ (x < y))
d) ∀x∀y∃z(x + y = z)

26. LetQ(x, y) be the statement “x + y = x − y.” If the do-
main for both variables consists of all integers, what are
the truth values?

a) Q(1, 1) b) Q(2, 0)
c) ∀yQ(1, y) d) ∃xQ(x, 2)
e) ∃x∃yQ(x, y) f) ∀x∃yQ(x, y)
g) ∃y∀xQ(x, y) h) ∀y∃xQ(x, y)
i) ∀x∀yQ(x, y)

27. Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) ∀n∃m(n2 < m) b) ∃n∀m(n < m2)
c) ∀n∃m(n + m = 0) d) ∃n∀m(nm = m)

e) ∃n∃m(n2 + m2 = 5) f) ∃n∃m(n2 + m2 = 6)
g) ∃n∃m(n + m = 4 ∧n − m = 1)
h) ∃n∃m(n + m = 4 ∧n − m = 2)
i) ∀n∀m∃p(p = (m+ n)/ 2)

28. Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.

a) ∀x∃y(x2 = y) b) ∀x∃y(x = y2)
c) ∃x∀y(xy = 0) d) ∃x∃y(x + y = y + x)
e) ∀x(x = 0 → ∃y(xy = 1))
f) ∃x∀y(y = 0 → xy = 1)
g) ∀x∃y(x + y = 1)
h) ∃x∃y(x + 2y = 2 ∧2x + 4y = 5)
i) ∀x∃y(x + y = 2 ∧2x − y = 1)
j) ∀x∀y∃z(z = (x + y)/ 2)

29. Suppose the domain of the propositional functionP(x, y)
consists of pairs x and y, where x is 1, 2, or 3 and y is
1, 2, or 3. Write out these propositions using disjunctions
and conjunctions.

a) ∀x∀yP(x, y) b) ∃x∃yP(x, y)
c) ∃x∀yP(x, y) d) ∀y∃xP(x, y)

30. Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) ¬∃y∃xP(x, y) b) ¬∀x∃yP(x, y)
c) ¬∃y(Q(y) ∧∀x¬R(x, y))
d) ¬∃y(∃xR(x, y) ∨∀xS(x, y))
e) ¬∃y(∀x∃zT(x, y, z) ∨∃x∀zU(x, y, z))

31. Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) ∀x∃y∀zT(x, y, z)
b) ∀x∃yP(x, y) ∨∀x∃yQ(x, y)
c) ∀x∃y(P(x, y) ∧∃zR(x, y, z))
d) ∀x∃y(P(x, y) → Q(x, y))

32. Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) ∃z∀y∀xT(x, y, z)
b) ∃x∃yP(x, y) ∧∀x∀yQ(x, y)
c) ∃x∃y(Q(x, y) ↔ Q(y, x))
d) ∀y∃x∃z(T(x, y, z) ∨Q(x, y))

33. Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) ¬∀x∀yP(x, y) b) ¬∀y∃xP(x, y)
c) ¬∀y∀x(P(x, y) ∨Q(x, y))
d) ¬ (∃x∃y¬P(x, y) ∧∀x∀yQ(x, y))
e) ¬∀x(∃y∀zP(x, y, z) ∧∃z∀yP(x, y, z))

34. Find a common domain for the variables x, y, and z
for which the statement ∀x∀y((x = y) → ∀z((z = x) ∨
(z = y))) is true and another domain for which it is false.

35. Find a common domain for the variables x, y, z,
and w for which the statement ∀x∀y∀z∃w((w = x) ∧
(w = y) ∧ (w = z)) is true and another common domain
for these variables for which it is false.

68 1 / The Foundations: Logic and Proofs

36. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) No one has lost more than one thousand dollars play-
ing the lottery.

b) There is a student in this class who has chatted with
exactly one other student.

c) No student in this class has sent e-mail to exactly two
other students in this class.

d) Some student has solved every exercise in this book.
e) No student has solved at least one exercise in every

section of this book.

37. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) Every student in this class has taken exactly two math-
ematics classes at this school.

b) Someone has visited every country in the world except
Libya.

c) No one has climbed every mountain in the Himalayas.
d) Every movie actor has either been in a movie with

Kevin Bacon or has been in a movie with someone
who has been in a movie with Kevin Bacon.

38. Express the negations of these propositions using quan-
tifiers, and in English.

a) Every student in this class likes mathematics.
b) There is a student in this class who has never seen a

computer.
c) There is a student in this class who has taken every

mathematics course offered at this school.
d) There is a student in this class who has been in at least

one room of every building on campus.

39. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) ∀x∀y(x2 = y2 → x = y)
b) ∀x∃y(y2 = x)
c) ∀x∀y(xy ≥ x)

40. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) ∀x∃y(x = 1/ y)
b) ∀x∃y(y2 − x < 100)
c) ∀x∀y(x2 = y3)

41. Use quantifiers to express the associative law for multi-
plication of real numbers.

42. Use quantifiers to express the distributive laws of multi-
plication over addition for real numbers.

43. Use quantifiers and logical connectives to express the fact
that every linear polynomial (that is, polynomial of de-
gree 1) with real coefficients and where the coefficient of
x is nonzero, has exactly one real root.

44. Use quantifiers and logical connectives to express the fact
that a quadratic polynomial with real number coefficients
has at most two real roots.

45. Determine the truth value of the statement∀x∃y(xy = 1)
if the domain for the variables consists of

a) the nonzero real numbers.

b) the nonzero integers.

c) the positive real numbers.

46. Determine the truth value of the statement∃x∀y(x ≤ y2)
if the domain for the variables consists of

a) the positive real numbers.

b) the integers.

c) the nonzero real numbers.

47. Show that the two statements ¬∃x∀yP(x, y) and
∀x∃y¬P(x, y), where both quantifiers over the first vari-
able in P(x, y) have the same domain, and both quanti-
fiers over the second variable in P(x, y) have the same
domain, are logically equivalent.

∗48. Show that ∀xP(x) ∨∀xQ(x) and ∀x∀y(P(x) ∨Q(y)),
where all quantifiers have the same nonempty domain,
are logically equivalent. (The new variable y is used to
combine the quantifications correctly.)

∗49. a) Show that ∀xP(x) ∧∃xQ(x) is logically equivalent
to ∀x∃y (P(x) ∧Q(y)), where all quantifiers have
the same nonempty domain.

b) Show that ∀xP(x) ∨∃xQ(x) is equivalent to ∀x∃y
(P(x) ∨Q(y)), where all quantifiers have the same
nonempty domain.

A statement is in prenex normal form (PNF) if and only if it
is of the form

Q1x1Q2x2 · · ·QkxkP(x1, x2, . . . , xk),

where eachQi , i = 1, 2, . . . , k, is either the existential quan-
tifier or the universal quantifier, and P(x1, . . . , xk) is a pred-
icate involving no quantifiers. For example, ∃x∀y(P(x, y) ∧
Q(y)) is in prenex normal form, whereas ∃xP(x) ∨∀xQ(x)
is not (because the quantifiers do not all occur first).

Every statement formed from propositional variables,
predicates, T, and F using logical connectives and quan-
tifiers is equivalent to a statement in prenex normal form.
Exercise 51 asks for a proof of this fact.
∗50. Put these statements in prenex normal form. [Hint: Use

logical equivalence from Tables 6 and 7 in Section 1.3,
Table 2 in Section 1.4, Example 19 in Section 1.4,
Exercises 45 and 46 in Section 1.4, and Exercises 48 and
49.]

a) ∃xP(x) ∨∃xQ(x) ∨A, where A is a proposition not
involving any quantifiers.

b) ¬(∀xP(x) ∨∀xQ(x))

c) ∃xP(x) → ∃xQ(x)
∗∗51. Show how to transform an arbitrary statement to a state-

ment in prenex normal form that is equivalent to the given
statement. (Note: A formal solution of this exercise re-
quires use of structural induction, covered in Section 5.3.)

∗52. Express the quantification ∃!xP(x), introduced in Sec-
tion 1.4, using universal quantifications, existential quan-
tifications, and logical operators.

1.6 Rules of Inference 69

1.6 Rules of Inference

Introduction

Later in this chapter we will study proofs. Proofs in mathematics are valid arguments that estab-
lish the truth of mathematical statements. By an argument, we mean a sequence of statements
that end with a conclusion. By valid, we mean that the conclusion, or final statement of the
argument, must follow from the truth of the preceding statements, or premises, of the argument.
That is, an argument is valid if and only if it is impossible for all the premises to be true and
the conclusion to be false. To deduce new statements from statements we already have, we use
rules of inference which are templates for constructing valid arguments. Rules of inference are
our basic tools for establishing the truth of statements.

Before we study mathematical proofs, we will look at arguments that involve only compound
propositions. We will define what it means for an argument involving compound propositions to
be valid. Then we will introduce a collection of rules of inference in propositional logic. These
rules of inference are among the most important ingredients in producing valid arguments. After
we illustrate how rules of inference are used to produce valid arguments, we will describe some
common forms of incorrect reasoning, called fallacies, which lead to invalid arguments.

After studying rules of inference in propositional logic, we will introduce rules of inference
for quantified statements. We will describe how these rules of inference can be used to produce
valid arguments. These rules of inference for statements involving existential and universal
quantifiers play an important role in proofs in computer science and mathematics, although they
are often used without being explicitly mentioned.

Finally, we will show how rules of inference for propositions and for quantified statements
can be combined. These combinations of rule of inference are often used together in complicated
arguments.

Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by definition, is a sequence of
propositions):

“If you have a current password, then you can log onto the network.”

“You have a current password.”

Therefore,

“You can log onto the network.”

We would like to determine whether this is a valid argument. That is, we would like to
determine whether the conclusion “You can log onto the network” must be true when the
premises “If you have a current password, then you can log onto the network” and “You have a
current password” are both true.

70 1 / The Foundations: Logic and Proofs

Before we discuss the validity of this particular argument, we will look at its form. Use p
to represent “You have a current password” and q to represent “You can log onto the network.”
Then, the argument has the form

p → q
p

∴ q

where ∴ is the symbol that denotes “therefore.”
We know that when p and q are propositional variables, the statement ((p → q) ∧p) → q

is a tautology (see Exercise 10(c) in Section 1.3). In particular, when both p → q and p are
true, we know that qmust also be true. We say this form of argument is valid because whenever
all its premises (all statements in the argument other than the final one, the conclusion) are true,
the conclusion must also be true. Now suppose that both “If you have a current password, then
you can log onto the network” and “You have a current password” are true statements. When
we replace p by “You have a current password” and q by “You can log onto the network,” it
necessarily follows that the conclusion “You can log onto the network” is true. This argument
is valid because its form is valid. Note that whenever we replace p and q by propositions where
p → q and p are both true, then q must also be true.

What happens when we replace p and q in this argument form by propositions where not
both p and p → q are true? For example, suppose that p represents “You have access to the
network” and q represents “You can change your grade” and that p is true, but p → q is false.
The argument we obtain by substituting these values of p and q into the argument form is

“If you have access to the network, then you can change your grade.”
“You have access to the network.”

∴ “You can change your grade.”

The argument we obtained is a valid argument, but because one of the premises, namely the first
premise, is false, we cannot conclude that the conclusion is true. (Most likely, this conclusion
is false.)

In our discussion, to analyze an argument, we replaced propositions by propositional vari-
ables. This changed an argument to an argument form. We saw that the validity of an argument
follows from the validity of the form of the argument. We summarize the terminology used to
discuss the validity of arguments with our definition of the key notions.

DEFINITION 1 An argument in propositional logic is a sequence of propositions. All but the final proposition
in the argument are called premises and the final proposition is called the conclusion. An
argument is valid if the truth of all its premises implies that the conclusion is true.

An argument form in propositional logic is a sequence of compound propositions involv-
ing propositional variables. An argument form is valid no matter which particular proposi-
tions are substituted for the propositional variables in its premises, the conclusion is true if
the premises are all true.

From the definition of a valid argument form we see that the argument form with premises
p1, p2, . . . , pn and conclusion q is valid, when (p1 ∧p2 ∧ · · ·∧pn) → q is a tautology.

The key to showing that an argument in propositional logic is valid is to show that its
argument form is valid. Consequently, we would like techniques to show that argument forms
are valid. We will now develop methods for accomplishing this task.

1.6 Rules of Inference 71

Rules of Inference for Propositional Logic

We can always use a truth table to show that an argument form is valid. We do this by showing
that whenever the premises are true, the conclusion must also be true. However, this can be
a tedious approach. For example, when an argument form involves 10 different propositional
variables, to use a truth table to show this argument form is valid requires 210 = 1024 different
rows. Fortunately, we do not have to resort to truth tables. Instead, we can first establish the
validity of some relatively simple argument forms, called rules of inference. These rules of
inference can be used as building blocks to construct more complicated valid argument forms.
We will now introduce the most important rules of inference in propositional logic.

The tautology (p ∧ (p → q)) → q is the basis of the rule of inference called modus po-
nens, or the law of detachment. (Modus ponens is Latin for mode that affirms.) This tautology
leads to the following valid argument form, which we have already seen in our initial discussion
about arguments (where, as before, the symbol ∴ denotes “therefore”):

p
p → q

∴ q

Using this notation, the hypotheses are written in a column, followed by a horizontal bar, followed
by a line that begins with the therefore symbol and ends with the conclusion. In particular, modus
ponens tells us that if a conditional statement and the hypothesis of this conditional statement
are both true, then the conclusion must also be true. Example 1 illustrates the use of modus
ponens.

EXAMPLE 1 Suppose that the conditional statement “If it snows today, then we will go skiing” and its
hypothesis, “It is snowing today,” are true. Then, by modus ponens, it follows that the conclusion
of the conditional statement, “We will go skiing,” is true. ▲

As we mentioned earlier, a valid argument can lead to an incorrect conclusion if one or
more of its premises is false. We illustrate this again in Example 2.

EXAMPLE 2 Determine whether the argument given here is valid and determine whether its conclusion must
be true because of the validity of the argument.

“If
√

2 > 3
2 , then

(√
2
)2
>
(

3
2

)2
. We know that

√
2 > 3

2 . Consequently,
(√

2
)2
= 2 >

(
3
2

)2
= 9

4 .”

Solution: Let p be the proposition “
√

2 > 3
2 ” and q the proposition “2 > (3

2)
2.” The premises

of the argument are p → q and p , and q is its conclusion. This argument is valid because it
is constructed by using modus ponens, a valid argument form. However, one of its premises,√

2 > 3
2 , is false. Consequently, we cannot conclude that the conclusion is true. Furthermore,

note that the conclusion of this argument is false, because 2 < 9
4 . ▲

There are many useful rules of inference for propositional logic. Perhaps the most widely
used of these are listed in Table 1. Exercises 9, 10, 15, and 30 in Section 1.3 ask for the
verifications that these rules of inference are valid argument forms. We now give examples of
arguments that use these rules of inference. In each argument, we first use propositional variables
to express the propositions in the argument. We then show that the resulting argument form is
a rule of inference from Table 1.

72 1 / The Foundations: Logic and Proofs

TABLE 1 Rules of Inference.

Rule of Inference Tautology Name

p

p → q

∴ q

(p ∧ (p → q)) → q Modus ponens

¬q

p → q

∴ ¬p

(¬q ∧ (p → q)) → ¬p Modus tollens

p → q

q → r

∴ p → r

((p → q) ∧ (q → r)) → (p → r) Hypothetical syllogism

p ∨q

¬p

∴ q

((p ∨q) ∧¬p) → q Disjunctive syllogism

p

∴ p ∨q

p → (p ∨q) Addition

p ∧q

∴ p

(p ∧q) → p Simplification

p

q

∴ p ∧q

((p) ∧ (q)) → (p ∧q) Conjunction

p ∨q

¬p ∨ r

∴ q ∨ r

((p ∨q) ∧ (¬p ∨ r)) → (q∨ r) Resolution

EXAMPLE 3 State which rule of inference is the basis of the following argument: “It is below freezing now.
Therefore, it is either below freezing or raining now.”

Solution: Let p be the proposition “It is below freezing now” and q the proposition “It is raining
now.” Then this argument is of the form

p

∴ p ∨q

This is an argument that uses the addition rule. ▲

EXAMPLE 4 State which rule of inference is the basis of the following argument: “It is below freezing and
raining now. Therefore, it is below freezing now.”

Solution: Let p be the proposition “It is below freezing now,” and let q be the proposition “It is
raining now.” This argument is of the form

p ∧q

∴ p

This argument uses the simplification rule. ▲

1.6 Rules of Inference 73

EXAMPLE 5 State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today,
then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a
barbecue tomorrow.

Solution: Let p be the proposition “It is raining today,” let q be the proposition “We will not
have a barbecue today,” and let r be the proposition “We will have a barbecue tomorrow.” Then
this argument is of the form

p → q
q → r

∴ p → r

Hence, this argument is a hypothetical syllogism. ▲

Using Rules of Inference to Build Arguments

When there are many premises, several rules of inference are often needed to show that an
argument is valid. This is illustrated by Examples 6 and 7, where the steps of arguments are
displayed on separate lines, with the reason for each step explicitly stated. These examples also
show how arguments in English can be analyzed using rules of inference.

EXAMPLE 6 Show that the premises “It is not sunny this afternoon and it is colder than yesterday,” “We will
go swimming only if it is sunny,” “If we do not go swimming, then we will take a canoe trip,”
and “If we take a canoe trip, then we will be home by sunset” lead to the conclusion “We will
be home by sunset.”

Solution: Let p be the proposition “It is sunny this afternoon,” q the proposition “It is colder
than yesterday,” r the proposition “We will go swimming,” s the proposition “We will take a
canoe trip,” and t the proposition “We will be home by sunset.” Then the premises become
¬p ∧q, r → p, ¬ r → s, and s → t . The conclusion is simply t . We need to give a valid
argument with premises ¬p ∧q, r → p , ¬r → s, and s → t and conclusion t .

We construct an argument to show that our premises lead to the desired conclusion as
follows.

Step Reason

1. ¬p ∧q Premise
2. ¬p Simplification using (1)
3. r → p Premise
4. ¬r Modus tollens using (2) and (3)
5. ¬r → s Premise
6. s Modus ponens using (4) and (5)
7. s→ t Premise
8. t Modus ponens using (6) and (7)

Note that we could have used a truth table to show that whenever each of the four hypotheses
is true, the conclusion is also true. However, because we are working with five propositional
variables, p , q, r , s, and t , such a truth table would have 32 rows. ▲

74 1 / The Foundations: Logic and Proofs

EXAMPLE 7 Show that the premises “If you send me an e-mail message, then I will finish writing the
program,” “If you do not send me an e-mail message, then I will go to sleep early,” and “If I go
to sleep early, then I will wake up feeling refreshed” lead to the conclusion “If I do not finish
writing the program, then I will wake up feeling refreshed.”

Solution: Let p be the proposition “You send me an e-mail message,” q the proposition “I will
finish writing the program,” r the proposition “I will go to sleep early,” and s the proposition “I
will wake up feeling refreshed.” Then the premises are p → q,¬p → r , and r → s. The desired
conclusion is ¬q → s. We need to give a valid argument with premises p → q, ¬p → r , and
r → s and conclusion ¬q → s.

This argument form shows that the premises lead to the desired conclusion.

Step Reason

1. p → q Premise
2. ¬q → ¬p Contrapositive of (1)
3. ¬p → r Premise
4. ¬q → r Hypothetical syllogism using (2) and (3)
5. r → s Premise
6. ¬q → s Hypothetical syllogism using (4) and (5)

▲

Resolu tion

Computer programs have been developed to automate the task of reasoning and proving theo-
rems. Many of these programs make use of a rule of inference known as resolution. This rule
of inference is based on the tautology

((p ∨q) ∧ (¬p ∨ r)) → (q∨ r).

(Exercise 30 in Section 1.3 asks for the verification that this is a tautology.)The final disjunction in
the resolution rule, q∨ r , is called the resolvent. When we let q = r in this tautology, we obtain
(p ∨q) ∧ (¬p ∨q) → q. Furthermore, when we let r = F, we obtain (p ∨q) ∧ (¬p) → q
(because q∨F ≡ q), which is the tautology on which the rule of disjunctive syllogism is based.

EXAMPLE 8 Use resolution to show that the hypotheses “Jasmine is skiing or it is not snowing” and “It is
snowing or Bart is playing hockey” imply that “Jasmine is skiing or Bart is playing hockey.”

Solution: Let p be the proposition “It is snowing,” q the proposition “Jasmine is skiing,” and r
the proposition “Bart is playing hockey.” We can represent the hypotheses as ¬p ∨q and p ∨ r ,
respectively. Using resolution, the proposition q∨ r , “Jasmine is skiing or Bart is playing
hockey,” follows. ▲

Resolution plays an important role in programming languages based on the rules of logic,
such as Prolog (where resolution rules for quantified statements are applied). Furthermore, it
can be used to build automatic theorem proving systems. To construct proofs in propositional
logic using resolution as the only rule of inference, the hypotheses and the conclusion must be
expressed as clauses, where a clause is a disjunction of variables or negations of these variables.
We can replace a statement in propositional logic that is not a clause by one or more equivalent
statements that are clauses. For example, suppose we have a statement of the form p ∨ (q ∧ r).
Because p ∨ (q ∧ r) ≡ (p ∨q) ∧ (p ∨ r), we can replace the single statement p ∨ (q∧ r) by
two statements p ∨q and p ∨ r , each of which is a clause. We can replace a statement of
the form ¬ (p ∨q) by the two statements ¬p and ¬q because De Morgan’s law tells us that
¬(p ∨q) ≡ ¬p ∧¬q. We can also replace a conditional statement p → q with the equivalent
disjunction ¬p ∨q.

1.6 Rules of Inference 75

EXAMPLE 9 Show that the premises (p ∧q) ∨ r and r → s imply the conclusion p ∨s.

Solution: We can rewrite the premises (p ∧q) ∨ r as two clauses, p ∨ r and q ∨ r . We can also
replace r → sby the equivalent clause ¬ r ∨s. Using the two clauses p ∨ r and ¬r ∨s, we can
use resolution to conclude p ∨s. ▲

Fallacies

Several common fallacies arise in incorrect arguments. These fallacies resemble rules of infer-
ence, but are based on contingencies rather than tautologies. These are discussed here to show
the distinction between correct and incorrect reasoning.

The proposition ((p → q) ∧q) → p is not a tautology, because it is false when p is false
and q is true. However, there are many incorrect arguments that treat this as a tautology. In
other words, they treat the argument with premises p → q and q and conclusion p as a valid
argument form, which it is not. This type of incorrect reasoning is called the fallacy of affirming
the conclusion.

EXAMPLE 10 Is the following argument valid?

If you do every problem in this book, then you will learn discrete mathematics. You learned
discrete mathematics.

Therefore, you did every problem in this book.

Solution: Let p be the proposition “You did every problem in this book.” Let q be the proposition
“You learned discrete mathematics.” Then this argument is of the form: if p → q and q, then
p . This is an example of an incorrect argument using the fallacy of affirming the conclusion.
Indeed, it is possible for you to learn discrete mathematics in some way other than by doing every
problem in this book. (You may learn discrete mathematics by reading, listening to lectures,
doing some, but not all, the problems in this book, and so on.) ▲

The proposition ((p → q) ∧¬p) → ¬q is not a tautology, because it is false when p is
false and q is true. Many incorrect arguments use this incorrectly as a rule of inference. This
type of incorrect reasoning is called the fallacy of denying the hypothesis.

EXAMPLE 11 Let p and q be as in Example 10. If the conditional statement p → q is true, and ¬p is true,
is it correct to conclude that ¬q is true? In other words, is it correct to assume that you did not
learn discrete mathematics if you did not do every problem in the book, assuming that if you do
every problem in this book, then you will learn discrete mathematics?

Solution: It is possible that you learned discrete mathematics even if you did not do every
problem in this book. This incorrect argument is of the form p → q and ¬p imply ¬q, which
is an example of the fallacy of denying the hypothesis. ▲

Rules of Inference for Quan tified Statements

We have discussed rules of inference for propositions. We will now describe some important rules
of inference for statements involving quantifiers. These rules of inference are used extensively
in mathematical arguments, often without being explicitly mentioned.

Universal instantiation is the rule of inference used to conclude that P(c) is true, where c
is a particular member of the domain, given the premise∀xP(x). Universal instantiation is used
when we conclude from the statement “All women are wise” that “Lisa is wise,” where Lisa is
a member of the domain of all women.

76 1 / The Foundations: Logic and Proofs

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference Name

∀xP(x)
∴ P(c)

Universal instantiation

P(c) for an arbitrary c
∴ ∀xP(x)

Universal generalization

∃xP(x)
∴ P(c) for some element c

Existential instantiation

P(c) for some element c
∴ ∃xP(x)

Existential generalization

Universal generalization is the rule of inference that states that ∀xP(x) is true, given the
premise thatP(c) is true for all elements c in the domain. Universal generalization is used when
we show that∀xP(x) is true by taking an arbitrary element c from the domain and showing that
P(c) is true. The element c that we select must be an arbitrary, and not a specific, element of
the domain. That is, when we assert from ∀xP(x) the existence of an element c in the domain,
we have no control over c and cannot make any other assumptions about c other than it comes
from the domain. Universal generalization is used implicitly in many proofs in mathematics and
is seldom mentioned explicitly. However, the error of adding unwarranted assumptions about
the arbitrary element c when universal generalization is used is all too common in incorrect
reasoning.

Existential instantiation is the rule that allows us to conclude that there is an element c in
the domain for which P(c) is true if we know that ∃xP(x) is true. We cannot select an arbitrary
value of c here, but rather it must be a c for which P(c) is true. Usually we have no knowledge
of what c is, only that it exists. Because it exists, we may give it a name (c) and continue our
argument.

Existential generalization is the rule of inference that is used to conclude that ∃xP(x) is
true when a particular element cwith P(c) true is known. That is, if we know one element c in
the domain for which P(c) is true, then we know that ∃xP(x) is true.

We summarize these rules of inference in Table 2. We will illustrate how some of these rules
of inference for quantified statements are used in Examples 12 and 13.

EXAMPLE 12 Show that the premises “Everyone in this discrete mathematics class has taken a course in
computer science” and “Marla is a student in this class” imply the conclusion “Marla has taken
a course in computer science.”

Solution: Let D(x) denote “x is in this discrete mathematics class,” and let C(x) denote “x has
taken a course in computer science.” Then the premises are ∀x(D(x) → C(x)) and D (Marla).
The conclusion is C(Marla).

The following steps can be used to establish the conclusion from the premises.

Step Reason

1. ∀x(D(x) → C(x)) Premise
2. D (Marla) → C(Marla) Universal instantiation from (1)
3. D (Marla) Premise
4. C(Marla) Modus ponens from (2) and (3) ▲

1.6 Rules of Inference 77

EXAMPLE 13 Show that the premises “A student in this class has not read the book,” and “Everyone in this
class passed the first exam” imply the conclusion “Someone who passed the first exam has not
read the book.”

Solution: LetC(x) be “x is in this class,” B(x) be “x has read the book,” and P(x) be “x passed
the first exam.” The premises are ∃x(C(x) ∧¬B(x)) and ∀x(C(x) → P(x)). The conclusion
is ∃x(P(x) ∧¬B(x)). These steps can be used to establish the conclusion from the premises.

Step Reason

1. ∃x(C(x) ∧¬B(x)) Premise
2. C(a) ∧¬B(a) Existential instantiation from (1)
3. C(a) Simplification from (2)
4. ∀x(C(x) → P(x)) Premise
5. C(a) → P(a) Universal instantiation from (4)
6. P(a) Modus ponens from (3) and (5)
7. ¬B(a) Simplification from (2)
8. P(a) ∧¬B(a) Conjunction from (6) and (7)
9. ∃x(P(x) ∧¬B(x)) Existential generalization from (8) ▲

Combining Rules of Inference for Propositions
and Quantified Statemen ts

We have developed rules of inference both for propositions and for quantified statements. Note
that in our arguments in Examples 12 and 13 we used both universal instantiation, a rule of
inference for quantified statements, and modus ponens, a rule of inference for propositional logic.
We will often need to use this combination of rules of inference. Because universal instantiation
and modus ponens are used so often together, this combination of rules is sometimes called
universal modus ponens. This rule tells us that if ∀x(P(x) → Q(x)) is true, and if P(a) is
true for a particular element a in the domain of the universal quantifier, then Q(a) must also
be true. To see this, note that by universal instantiation, P(a) → Q(a) is true. Then, by modus
ponens, Q(a) must also be true. We can describe universal modus ponens as follows:

∀x(P(x) → Q(x))

P(a),where a is a particular element in the domain

∴ Q(a)

Universal modus ponens is commonly used in mathematical arguments. This is illustrated
in Example 14.

EXAMPLE 14 Assume that “For all positive integers n, if n is greater than 4, then n2 is less than 2n” is true.
Use universal modus ponens to show that 1002 < 2100.

Solution: Let P(n) denote “n > 4” andQ(n) denote “n2 < 2n.” The statement “For all positive
integersn, ifn is greater than 4, thenn2 is less than 2n” can be represented by∀n(P(n) → Q(n)),
where the domain consists of all positive integers. We are assuming that ∀n(P(n) → Q(n)) is
true. Note that P(100) is true because 100 > 4. It follows by universal modus ponens that
Q(100) is true, namely that 1002 < 2100. ▲

Another useful combination of a rule of inference from propositional logic and a rule
of inference for quantified statements is universal modus tollens. Universal modus tollens

78 1 / The Foundations: Logic and Proofs

combines universal instantiation and modus tollens and can be expressed in the following way:

∀x(P(x) → Q(x))

¬Q(a),where a is a particular element in the domain

∴ ¬P(a)

The verification of universal modus tollens is left as Exercise 25. Exercises 26–29 develop
additional combinations of rules of inference in propositional logic and quantified statements.

Exercises

1. Find the argument form for the following argument and
determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If Socrates is human, then Socrates is mortal.
Socrates is human.

∴ Socrates is mortal.

2. Find the argument form for the following argument and
determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If George does not have eight legs, then he is not a
spider.
George is a spider.

∴ George has eight legs.

3. What rule of inference is used in each of these argu-
ments?

a) Alice is a mathematics major. Therefore, Alice is ei-
ther a mathematics major or a computer science major.

b) Jerry is a mathematics major and a computer science
major. Therefore, Jerry is a mathematics major.

c) If it is rainy, then the pool will be closed. It is rainy.
Therefore, the pool is closed.

d) If it snows today, the university will close. The uni-
versity is not closed today. Therefore, it did not snow
today.

e) If I go swimming, then I will stay in the sun too long.
If I stay in the sun too long, then I will sunburn. There-
fore, if I go swimming, then I will sunburn.

4. What rule of inference is used in each of these arguments?

a) Kangaroos live inAustralia and are marsupials. There-
fore, kangaroos are marsupials.

b) It is either hotter than 100 degrees today or the pollu-
tion is dangerous. It is less than 100 degrees outside
today. Therefore, the pollution is dangerous.

c) Linda is an excellent swimmer. If Linda is an excellent
swimmer, then she can work as a lifeguard. Therefore,
Linda can work as a lifeguard.

d) Steve will work at a computer company this summer.
Therefore, this summer Steve will work at a computer
company or he will be a beach bum.

e) If I work all night on this homework, then I can an-
swer all the exercises. If I answer all the exercises, I
will understand the material. Therefore, if I work all
night on this homework, then I will understand the
material.

5. Use rules of inference to show that the hypotheses “Randy
works hard,” “If Randy works hard, then he is a dull boy,”
and “If Randy is a dull boy, then he will not get the job”
imply the conclusion “Randy will not get the job.”

6. Use rules of inference to show that the hypotheses “If it
does not rain or if it is not foggy, then the sailing race will
be held and the lifesaving demonstration will go on,” “If
the sailing race is held, then the trophy will be awarded,”
and “The trophy was not awarded” imply the conclusion
“It rained.”

7. What rules of inference are used in this famous argu-
ment? “All men are mortal. Socrates is a man. Therefore,
Socrates is mortal.”

8. What rules of inference are used in this argument? “No
man is an island. Manhattan is an island. Therefore, Man-
hattan is not a man.”

9. For each of these collections of premises, what relevant
conclusion or conclusions can be drawn? Explain the
rules of inference used to obtain each conclusion from
the premises.

a) “If I take the day off, it either rains or snows.” “I took
Tuesday off or I took Thursday off.” “It was sunny on
Tuesday.” “It did not snow on Thursday.”

b) “If I eat spicy foods, then I have strange dreams.” “I
have strange dreams if there is thunder while I sleep.”
“I did not have strange dreams.”

c) “I am either clever or lucky.” “I am not lucky.” “If I
am lucky, then I will win the lottery.”

d) “Every computer science major has a personal com-
puter.” “Ralph does not have a personal computer.”
“Ann has a personal computer.”

e) “What is good for corporations is good for the United
States.” “What is good for the United States is good
for you.” “What is good for corporations is for you to
buy lots of stuff.”

f) “All rodents gnaw their food.” “Mice are rodents.”
“Rabbits do not gnaw their food.” “Bats are not ro-
dents.”

1.6 Rules of Inference 79

10. For each of these sets of premises, what relevant conclu-
sion or conclusions can be drawn? Explain the rules of in-
ference used to obtain each conclusion from the premises.

a) “If I play hockey, then I am sore the next day.” “I
use the whirlpool if I am sore.” “I did not use the
whirlpool.”

b) “If I work, it is either sunny or partly sunny.” “I worked
last Monday or I worked last Friday.” “It was not sunny
on Tuesday.” “It was not partly sunny on Friday.”

c) “All insects have six legs.” “Dragonflies are insects.”
“Spiders do not have six legs.” “Spiders eat dragon-
flies.”

d) “Every student has an Internet account.” “Homer does
not have an Internet account.” “Maggie has an Internet
account.”

e) “All foods that are healthy to eat do not taste good.”
“Tofu is healthy to eat.” “You only eat what tastes
good.” “You do not eat tofu.” “Cheeseburgers are not
healthy to eat.”

f) “I am either dreaming or hallucinating.” “I am not
dreaming.” “If I am hallucinating, I see elephants run-
ning down the road.”

11. Show that the argument form with premises
p1, p2, . . . , pn and conclusion q → r is valid if the
argument form with premises p1, p2, . . . , pn, q, and
conclusion r is valid.

12. Show that the argument form with premises (p ∧ t) →
(r ∨s), q → (u∧ t), u → p , and ¬s and conclusion
q → r is valid by first using Exercise 11 and then us-
ing rules of inference from Table 1.

13. For each of these arguments, explain which rules of in-
ference are used for each step.

a) “Doug, a student in this class, knows how to write
programs in JAVA. Everyone who knows how to write
programs in JAVA can get a high-paying job. There-
fore, someone in this class can get a high-paying job.”

b) “Somebody in this class enjoys whale watching. Ev-
ery person who enjoys whale watching cares about
ocean pollution. Therefore, there is a person in this
class who cares about ocean pollution.”

c) “Each of the 93 students in this class owns a personal
computer. Everyone who owns a personal computer
can use a word processing program. Therefore, Zeke,
a student in this class, can use a word processing pro-
gram.”

d) “Everyone in New Jersey lives within 50 miles of the
ocean. Someone in New Jersey has never seen the
ocean. Therefore, someone who lives within 50 miles
of the ocean has never seen the ocean.”

14. For each of these arguments, explain which rules of in-
ference are used for each step.

a) “Linda, a student in this class, owns a red convertible.
Everyone who owns a red convertible has gotten at
least one speeding ticket. Therefore, someone in this
class has gotten a speeding ticket.”

b) “Each of five roommates, Melissa, Aaron, Ralph, Ve-
neesha, and Keeshawn, has taken a course in discrete
mathematics. Every student who has taken a course in
discrete mathematics can take a course in algorithms.
Therefore, all five roommates can take a course in
algorithms next year.”

c) “All movies produced by John Sayles are wonder-
ful. John Sayles produced a movie about coal miners.
Therefore, there is a wonderful movie about coal min-
ers.”

d) “There is someone in this class who has been to
France. Everyone who goes to France visits the
Louvre. Therefore, someone in this class has visited
the Louvre.”

15. For each of these arguments determine whether the argu-
ment is correct or incorrect and explain why.

a) All students in this class understand logic. Xavier is
a student in this class. Therefore, Xavier understands
logic.

b) Every computer science major takes discrete math-
ematics. Natasha is taking discrete mathematics.
Therefore, Natasha is a computer science major.

c) All parrots like fruit. My pet bird is not a parrot. There-
fore, my pet bird does not like fruit.

d) Everyone who eats granola every day is healthy. Linda
is not healthy. Therefore, Linda does not eat granola
every day.

16. For each of these arguments determine whether the argu-
ment is correct or incorrect and explain why.

a) Everyone enrolled in the university has lived in a dor-
mitory. Mia has never lived in a dormitory. Therefore,
Mia is not enrolled in the university.

b) A convertible car is fun to drive. Isaac’s car is not a
convertible. Therefore, Isaac’s car is not fun to drive.

c) Quincy likes all action movies. Quincy likes the movie
Eight Men Out. Therefore, Eight Men Out is an action
movie.

d) All lobstermen set at least a dozen traps. Hamilton is a
lobsterman. Therefore, Hamilton sets at least a dozen
traps.

17. What is wrong with this argument? Let H (x) be “x is
happy.” Given the premise ∃xH (x), we conclude that
H (Lola). Therefore, Lola is happy.

18. What is wrong with this argument? Let S(x, y) be “x is
shorter thany.” Given the premise∃sS(s,Max), it follows
that S(Max, Max). Then by existential generalization it
follows that ∃xS(x, x), so that someone is shorter than
himself.

19. Determine whether each of these arguments is valid. If an
argument is correct, what rule of inference is being used?
If it is not, what logical error occurs?

a) If n is a real number such that n > 1, then n2 > 1.
Suppose that n2 > 1. Then n > 1.

b) If n is a real number with n > 3, then n2 > 9.
Suppose that n2 ≤ 9. Then n ≤ 3.

c) If n is a real number with n > 2, then n2 > 4.
Suppose that n ≤ 2. Then n2 ≤ 4.

80 1 / The Foundations: Logic and Proofs

20. Determine whether these are valid arguments.

a) If x is a positive real number, then x2 is a positive real
number. Therefore, if a2 is positive, where a is a real
number, then a is a positive real number.

b) If x2 = 0, where x is a real number, then x = 0. Let
a be a real number with a2 = 0; then a = 0.

21. Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 26 of Section 1.4?

22. Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 27 of Section 1.4?

23. Identify the error or errors in this argument that sup-
posedly shows that if ∃xP(x) ∧∃xQ(x) is true then
∃x(P(x) ∧Q(x)) is true.

1. ∃xP(x) ∨∃xQ(x) Premise
2. ∃xP(x) Simplification from (1)
3. P(c) Existential instantiation from (2)
4. ∃xQ(x) Simplification from (1)
5. Q(c) Existential instantiation from (4)
6. P(c) ∧Q(c) Conjunction from (3) and (5)
7. ∃x(P(x) ∧Q(x)) Existential generalization

24. Identify the error or errors in this argument that sup-
posedly shows that if ∀x(P(x) ∨Q(x)) is true then
∀xP(x) ∨∀xQ(x) is true.

1. ∀x(P(x) ∨Q(x)) Premise
2. P(c) ∨Q(c) Universal instantiation from (1)
3. P(c) Simplification from (2)
4. ∀xP(x) Universal generalization from (3)
5. Q(c) Simplification from (2)
6. ∀xQ(x) Universal generalization from (5)
7. ∀x(P(x) ∨∀xQ(x)) Conjunction from (4) and (6)

25. Justify the rule of universal modus tollens by showing
that the premises ∀x(P(x) → Q(x)) and ¬Q(a) for a
particular element a in the domain, imply ¬P(a).

26. Justify the rule of universal transitivity, which states that
if ∀x(P(x) → Q(x)) and ∀x(Q(x) → R(x)) are true,
then∀x(P(x) → R(x)) is true, where the domains of all
quantifiers are the same.

27. Use rules of inference to show that if ∀x(P(x) →
(Q(x) ∧S(x))) and ∀x(P(x) ∧R(x)) are true, then
∀x(R(x) ∧S(x)) is true.

28. Use rules of inference to show that if ∀x(P(x) ∨
Q(x)) and ∀x((¬P(x) ∧Q(x)) → R(x)) are true, then
∀x(¬R(x) → P(x)) is also true, where the domains of
all quantifiers are the same.

29. Use rules of inference to show that if ∀x(P(x) ∨Q(x)),
∀x(¬Q(x) ∨S(x)), ∀x(R(x) → ¬S(x)), and ∃x¬P(x)
are true, then ∃x¬R(x) is true.

30. Use resolution to show the hypotheses “Allen is a bad
boy or Hillary is a good girl” and “Allen is a good boy or
David is happy” imply the conclusion “Hillary is a good
girl or David is happy.”

31. Use resolution to show that the hypotheses “It is not rain-
ing or Yvette has her umbrella,” “Yvette does not have
her umbrella or she does not get wet,” and “It is raining
or Yvette does not get wet” imply that “Yvette does not
get wet.”

32. Show that the equivalence p ∧¬p ≡ F can be derived
using resolution together with the fact that a condi-
tional statement with a false hypothesis is true. [Hint: Let
q = r = F in resolution.]

33. Use resolution to show that the compound propo-
sition (p ∨q) ∧ (¬p ∨q) ∧ (p ∨¬q) ∧ (¬p ∨¬q) is
not satisfiable.

∗34. The Logic Problem, taken from WFF’N PROOF, The
Game of Logic, has these two assumptions:
1. “Logic is difficult or not many students like logic.”
2. “If mathematics is easy, then logic is not difficult.”
By translating these assumptions into statements involv-
ing propositional variables and logical connectives, deter-
mine whether each of the following are valid conclusions
of these assumptions:

a) That mathematics is not easy, if many students like
logic.

b) That not many students like logic, if mathematics is
not easy.

c) That mathematics is not easy or logic is difficult.

d) That logic is not difficult or mathematics is not easy.

e) That if not many students like logic, then either math-
ematics is not easy or logic is not difficult.

∗35. Determine whether this argument, taken from Kalish and
Montague [KaMo64], is valid.

If Superman were able and willing to prevent evil,
he would do so. If Superman were unable to prevent
evil, he would be impotent; if he were unwilling
to prevent evil, he would be malevolent. Superman
does not prevent evil. If Superman exists, he is nei-
ther impotent nor malevolent. Therefore, Superman
does not exist.

1.7 Introduction to Proofs

In troduction

In this section we introduce the notion of a proof and describe methods for constructing proofs.
A proof is a valid argument that establishes the truth of a mathematical statement. A proof can
use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven

1.7 Introduction to Proofs 81

theorems. Using these ingredients and rules of inference, the final step of the proof establishes
the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward more informal proofs.
The arguments we introduced in Section 1.6 to show that statements involving propositions
and quantified statements are true were formal proofs, where all steps were supplied, and the
rules for each step in the argument were given. However, formal proofs of useful theorems can
be extremely long and hard to follow. In practice, the proofs of theorems designed for human
consumption are almost always informal proofs, where more than one rule of inference may
be used in each step, where steps may be skipped, where the axioms being assumed and the
rules of inference used are not explicitly stated. Informal proofs can often explain to humans
why theorems are true, while computers are perfectly happy producing formal proofs using
automated reasoning systems.

The methods of proof discussed in this chapter are important not only because they are used
to prove mathematical theorems, but also for their many applications to computer science. These
applications include verifying that computer programs are correct, establishing that operating
systems are secure, making inferences in artificial intelligence, showing that system specifica-
tions are consistent, and so on. Consequently, understanding the techniques used in proofs is
essential both in mathematics and in computer science.

Some Terminology

Formally, a theorem is a statement that can be shown to be true. In mathematical writing, the
term theorem is usually reserved for a statement that is considered at least somewhat important.
Less important theorems sometimes are called propositions. (Theorems can also be referred to
as facts or results.) A theorem may be the universal quantification of a conditional statement
with one or more premises and a conclusion. However, it may be some other type of logical
statement, as the examples later in this chapter will show. We demonstrate that a theorem is true
with a proof. A proof is a valid argument that establishes the truth of a theorem. The statements
used in a proof can include axioms (or postulates), which are statements we assume to be true
(for example, the axioms for the real numbers, given in Appendix 1, and the axioms of plane
geometry), the premises, if any, of the theorem, and previously proven theorems. Axioms may
be stated using primitive terms that do not require definition, but all other terms used in theorems
and their proofs must be defined. Rules of inference, together with definitions of terms, are used
to draw conclusions from other assertions, tying together the steps of a proof. In practice, the
final step of a proof is usually just the conclusion of the theorem. However, for clarity, we will
often recap the statement of the theorem as the final step of a proof.

A less important theorem that is helpful in the proof of other results is called a lemma
(plural lemmas or lemmata). Complicated proofs are usually easier to understand when they are
proved using a series of lemmas, where each lemma is proved individually. A corollary is a
theorem that can be established directly from a theorem that has been proved. A conjecture is
a statement that is being proposed to be a true statement, usually on the basis of some partial
evidence, a heuristic argument, or the intuition of an expert. When a proof of a conjecture is
found, the conjecture becomes a theorem. Many times conjectures are shown to be false, so they
are not theorems.

Understand ing How Theorems Are Stated

Before we introduce methods for proving theorems, we need to understand how many math-
ematical theorems are stated. Many theorems assert that a property holds for all elements in
a domain, such as the integers or the real numbers. Although the precise statement of such

82 1 / The Foundations: Logic and Proofs

theorems needs to include a universal quantifier, the standard convention in mathematics is to
omit it. For example, the statement

“If x > y, where x and y are positive real numbers, then x2 > y2.”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2.”

Furthermore, when theorems of this type are proved, the first step of the proof usually involves
selecting a general element of the domain. Subsequent steps show that this element has the
property in question. Finally, universal generalization implies that the theorem holds for all
members of the domain.

Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs we need all available am-
munition, including a powerful battery of different proof methods. These methods provide the
overall approach and strategy of proofs. Understanding these methods is a key component of
learning how to read and construct mathematical proofs. One we have chosen a proof method,
we use axioms, definitions of terms, previously proved results, and rules of inference to com-
plete the proof. Note that in this book we will always assume the axioms for real numbers
found in Appendix 1. We will also assume the usual axioms whenever we prove a result about
geometry. When you construct your own proofs, be careful not to use anything but these axioms,
definitions, and previously proved results as facts!

To prove a theorem of the form∀x(P(x) → Q(x)), our goal is to show that P(c) → Q(c)
is true, where c is an arbitrary element of the domain, and then apply universal generalization.
In this proof, we need to show that a conditional statement is true. Because of this, we now focus
on methods that show that conditional statements are true. Recall that p → q is true unless p is
true but q is false. Note that to prove the statement p → q, we need only show that q is true if p
is true. The following discussion will give the most common techniques for proving conditional
statements. Later we will discuss methods for proving other types of statements. In this section,
and in Section 1.8, we will develop a large arsenal of proof techniques that can be used to prove
a wide variety of theorems.

When you read proofs, you will often find the words “obviously” or “clearly.” These words
indicate that steps have been omitted that the author expects the reader to be able to fill in.
Unfortunately, this assumption is often not warranted and readers are not at all sure how to fill in
the gaps. We will assiduously try to avoid using these words and try not to omit too many steps.
However, if we included all steps in proofs, our proofs would often be excruciatingly long.

Direct Proofs

A direct proof of a conditional statement p → q is constructed when the first step is the
assumption that p is true; subsequent steps are constructed using rules of inference, with the
final step showing that q must also be true. A direct proof shows that a conditional statement
p → q is true by showing that if p is true, then q must also be true, so that the combination
p true and q false never occurs. In a direct proof, we assume that p is true and use axioms,
definitions, and previously proven theorems, together with rules of inference, to show that q
must also be true.You will find that direct proofs of many results are quite straightforward, with a
fairly obvious sequence of steps leading from the hypothesis to the conclusion. However, direct
proofs sometimes require particular insights and can be quite tricky. The first direct proofs we
present here are quite straightforward; later in the text you will see some that are less obvious.

We will provide examples of several different direct proofs. Before we give the first example,
we need to define some terminology.

1.7 Introduction to Proofs 83

DEFINITION 1 The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists
an integer k such that n = 2k + 1. (Note that every integer is either even or odd, and no
integer is both even and odd.) Two integers have the same parity when both are even or both
are odd; they have opposite parity when one is even and the other is odd.

EXAMPLE 1 Give a direct proof of the theorem “If n is an odd integer, then n2 is odd.”

Solution: Note that this theorem states∀nP((n) → Q(n)), where P(n) is “n is an odd integer”
and Q(n) is “n2 is odd.” As we have said, we will follow the usual convention in mathematical
proofs by showing that P(n) implies Q(n), and not explicitly using universal instantiation. To
begin a direct proof of this theorem, we assume that the hypothesis of this conditional statement
is true, namely, we assume that n is odd. By the definition of an odd integer, it follows that
n = 2k + 1, where k is some integer. We want to show that n2 is also odd. We can square
both sides of the equation n = 2k + 1 to obtain a new equation that expresses n2. When we do
this, we find that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. By the definition of an
odd integer, we can conclude that n2 is an odd integer (it is one more than twice an integer).
Consequently, we have proved that if n is an odd integer, then n2 is an odd integer. ▲

EXAMPLE 2 Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square.
(An integer a is a perfect square if there is an integer b such that a = b2.)

Solution: To produce a direct proof of this theorem, we assume that the hypothesis of this
conditional statement is true, namely, we assume that m and n are both perfect squares. By the
definition of a perfect square, it follows that there are integers s and t such that m = s2 and
n = t2. The goal of the proof is to show thatmnmust also be a perfect square whenm and n are;
looking ahead we see how we can show this by substituting s2 for m and t2 for n into mn. This
tells us thatmn = s2t2. Hence,mn = s2t2 = (ss)(tt) = (st)(st) = (st)2, using commutativity
and associativity of multiplication. By the definition of perfect square, it follows thatmn is also
a perfect square, because it is the square of st , which is an integer. We have proved that if m
and n are both perfect squares, then mn is also a perfect square. ▲

Proof by Contraposition

Direct proofs lead from the premises of a theorem to the conclusion. They begin with the
premises, continue with a sequence of deductions, and end with the conclusion. However, we
will see that attempts at direct proofs often reach dead ends. We need other methods of proving
theorems of the form ∀x(P(x) → Q(x)). Proofs of theorems of this type that are not direct
proofs, that is, that do not start with the premises and end with the conclusion, are called
indirect proofs.

An extremely useful type of indirect proof is known as proof by contraposition. Proofs
by contraposition make use of the fact that the conditional statement p → q is equivalent to its
contrapositive, ¬q → ¬p . This means that the conditional statement p → q can be proved by
showing that its contrapositive, ¬q → ¬p , is true. In a proof by contraposition of p → q, we
take ¬q as a premise, and using axioms, definitions, and previously proven theorems, together
with rules of inference, we show that ¬p must follow. We will illustrate proof by contraposition
with two examples. These examples show that proof by contraposition can succeed when we
cannot easily find a direct proof.

EXAMPLE 3 Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Solution: We first attempt a direct proof. To construct a direct proof, we first assume that 3n + 2
is an odd integer. This means that 3n + 2 = 2k + 1 for some integer k. Can we use this fact

84 1 / The Foundations: Logic and Proofs

to show that n is odd? We see that 3n + 1 = 2k, but there does not seem to be any direct way
to conclude that n is odd. Because our attempt at a direct proof failed, we next try a proof by
contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If 3n + 2 is odd, then n is odd” is false; namely, assume that n is even. Then, by
the definition of an even integer, n = 2k for some integer k. Substituting 2k for n, we find
that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). This tells us that 3n + 2 is even (because it
is a multiple of 2), and therefore not odd. This is the negation of the premise of the theorem.
Because the negation of the conclusion of the conditional statement implies that the hypothesis
is false, the original conditional statement is true. Our proof by contraposition succeeded; we
have proved the theorem “If 3n + 2 is odd, then n is odd.” ▲

EXAMPLE 4 Prove that if n = ab, where a and b are positive integers, then a ≤
√
n or b ≤

√
n.

Solution: Because there is no obvious way of showing that a ≤
√
n or b ≤

√
n directly from

the equation n = ab, where a and b are positive integers, we attempt a proof by contraposition.
The first step in a proof by contraposition is to assume that the conclusion of the conditional

statement “If n = ab, where a and b are positive integers, then a ≤
√
n or b ≤

√
n” is false. That

is, we assume that the statement (a ≤
√
n) ∨ (b ≤

√
n) is false. Using the meaning of disjunction

together with De Morgan’s law, we see that this implies that both a ≤
√
n and b ≤

√
n are false.

This implies that a >
√
n and b >

√
n. We can multiply these inequalities together (using the

fact that if 0 < s < t and 0 < u < v, then su < tv) to obtain ab >
√
n ·
√
n = n. This shows

that ab = n, which contradicts the statement n = ab.
Because the negation of the conclusion of the conditional statement implies that the hypoth-

esis is false, the original conditional statement is true. Our proof by contraposition succeeded;
we have proved that if n = ab, where a and b are positive integers, then a ≤

√
n or b ≤

√
n. ▲

VACUOUS AND TRIVIAL PROOFS We can quickly prove that a conditional statement
p → q is true when we know that p is false, because p → q must be true when p is false.
Consequently, if we can show that p is false, then we have a proof, called a vacuous proof, of
the conditional statement p → q. Vacuous proofs are often used to establish special cases of
theorems that state that a conditional statement is true for all positive integers [i.e., a theorem
of the kind ∀nP(n), where P(n) is a propositional function]. Proof techniques for theorems of
this kind will be discussed in Section 5.1.

EXAMPLE 5 Show that the proposition P(0) is true, where P(n) is “If n > 1, then n2 > n” and the domain
consists of all integers.

Solution: Note that P(0) is “If 0 > 1, then 02 > 0.” We can show P(0) using a vacuous
proof. Indeed, the hypothesis 0 > 1 is false. This tells us that P(0) is automatically true. ▲

Remark: The fact that the conclusion of this conditional statement, 02 > 0, is false is irrelevant
to the truth value of the conditional statement, because a conditional statement with a false
hypothesis is guaranteed to be true.

We can also quickly prove a conditional statement p → q if we know that the conclusion
q is true. By showing that q is true, it follows that p → q must also be true. A proof of p → q
that uses the fact that q is true is called a tr ivial proof. Trivial proofs are often important when
special cases of theorems are proved (see the discussion of proof by cases in Section 1.8) and
in mathematical induction, which is a proof technique discussed in Section 5.1.

1.7 Introduction to Proofs 85

EXAMPLE 6 Let P(n) be “If a and b are positive integers with a ≥ b, then an ≥ bn,” where the domain
consists of all nonnegative integers. Show that P(0) is true.

Solution: The propositionP(0) is “Ifa ≥ b, thena0 ≥ b0.” Becausea0 = b0 = 1, the conclusion
of the conditional statement “If a ≥ b, then a0 ≥ b0” is true. Hence, this conditional statement,
which is P(0), is true. This is an example of a trivial proof. Note that the hypothesis, which is
the statement “a ≥ b,” was not needed in this proof. ▲

A LITTLE PROOF STRATEGY We have described two important approaches for proving
theorems of the form ∀x(P(x) → Q(x)): direct proof and proof by contraposition. We have
also given examples that show how each is used. However, when you are presented with a
theorem of the form ∀x(P(x) → Q(x)), which method should you use to attempt to prove it?
We will provide a few rules of thumb here; in Section 1.8 we will discuss proof strategy at greater
length. When you want to prove a statement of the form ∀x(P(x) → Q(x)), first evaluate
whether a direct proof looks promising. Begin by expanding the definitions in the hypotheses.
Start to reason using these hypotheses, together with axioms and available theorems. If a direct
proof does not seem to go anywhere, try the same thing with a proof by contraposition. Recall
that in a proof by contraposition you assume that the conclusion of the conditional statement is
false and use a direct proof to show this implies that the hypothesis must be false. We illustrate
this strategy in Examples 7 and 8. Before we present our next example, we need a definition.

DEFINITION 2 The real number r is rational if there exist integers p and q with q = 0 such that r = p/ q.
A real number that is not rational is called irrational.

EXAMPLE 7 Prove that the sum of two rational numbers is rational. (Note that if we include the implicit
quantifiers here, the theorem we want to prove is “For every real number r and every real
number s, if r and s are rational numbers, then r + s is rational.)

Solution: We first attempt a direct proof. To begin, suppose that r andsare rational numbers. From
the definition of a rational number, it follows that there are integers p and q, with q = 0, such
that r = p/ q, and integers t and u, with u = 0, such that s = t/ u. Can we use this information
to show that r + s is rational? The obvious next step is to add r = p/ q and s = t/ u, to obtain

r + s =
p

q
+
t

u
=
pu + qt

qu
.

Because q = 0 and u = 0, it follows that qu = 0. Consequently, we have expressed r + s as
the ratio of two integers, pu + qt and qu, where qu = 0. This means that r + s is rational. We
have proved that the sum of two rational numbers is rational; our attempt to find a direct proof
succeeded. ▲

EXAMPLE 8 Prove that if n is an integer and n2 is odd, then n is odd.

Solution: We first attempt a direct proof. Suppose that n is an integer and n2 is odd. Then, there
exists an integer k such that n2 = 2k + 1. Can we use this information to show that n is odd?
There seems to be no obvious approach to show that n is odd because solving for n produces
the equation n = ±

√
2k + 1, which is not terribly useful.

Because this attempt to use a direct proof did not bear fruit, we next attempt a proof by
contraposition. We take as our hypothesis the statement that n is not odd. Because every integer
is odd or even, this means that n is even. This implies that there exists an integer k such that
n = 2k. To prove the theorem, we need to show that this hypothesis implies the conclusion
that n2 is not odd, that is, that n2 is even. Can we use the equation n = 2k to achieve this? By

86 1 / The Foundations: Logic and Proofs

squaring both sides of this equation, we obtain n2 = 4k2 = 2(2k2), which implies that n2 is
also even because n2 = 2t , where t = 2k2. We have proved that if n is an integer and n2 is odd,
then n is odd. Our attempt to find a proof by contraposition succeeded. ▲

Proofs by Contrad iction

Suppose we want to prove that a statement p is true. Furthermore, suppose that we can find
a contradiction q such that ¬p → q is true. Because q is false, but ¬p → q is true, we can
conclude that ¬p is false, which means that p is true. How can we find a contradiction q that
might help us prove that p is true in this way?

Because the statement r ∧¬r is a contradiction whenever r is a proposition, we can prove
that p is true if we can show that ¬p → (r ∧¬r) is true for some proposition r . Proofs of this
type are called proofs by contradiction. Because a proof by contradiction does not prove a result
directly, it is another type of indirect proof. We provide three examples of proof by contradiction.
The first is an example of an application of the pigeonhole principle, a combinatorial technique
that we will cover in depth in Section 6.2.

EXAMPLE 9 Show that at least four of any 22 days must fall on the same day of the week.

Solution: Let p be the proposition “At least four of 22 chosen days fall on the same day of the
week.” Suppose that ¬p is true. This means that at most three of the 22 days fall on the same
day of the week. Because there are seven days of the week, this implies that at most 21 days
could have been chosen, as for each of the days of the week, at most three of the chosen days
could fall on that day. This contradicts the premise that we have 22 days under consideration.
That is, if r is the statement that 22 days are chosen, then we have shown that ¬p → (r ∧¬r).
Consequently, we know that p is true. We have proved that at least four of 22 chosen days fall
on the same day of the week. ▲

EXAMPLE 10 Prove that
√

2 is irrational by giving a proof by contradiction.

Solution: Letp be the proposition “
√

2 is irrational.” To start a proof by contradiction, we suppose
that ¬p is true. Note that ¬p is the statement “It is not the case that

√
2 is irrational,” which

says that
√

2 is rational. We will show that assuming that ¬p is true leads to a contradiction.
If
√

2 is rational, there exist integers a and b with
√

2 = a/ b, where b = 0 and a and b
have no common factors (so that the fraction a/ b is in lowest terms.) (Here, we are using the
fact that every rational number can be written in lowest terms.) Because

√
2 = a/ b, when both

sides of this equation are squared, it follows that

2 =
a2

b2
.

Hence,

2b2 = a2.

By the definition of an even integer it follows that a2 is even. We next use the fact that if a2 is
even, a must also be even, which follows by Exercise 16. Furthermore, because a is even, by
the definition of an even integer, a = 2c for some integer c. Thus,

2b2 = 4c2.

Dividing both sides of this equation by 2 gives

b2 = 2c2.

By the definition of even, this means that b2 is even. Again using the fact that if the square of an
integer is even, then the integer itself must be even, we conclude that bmust be even as well.

1.7 Introduction to Proofs 87

We have now shown that the assumption of ¬p leads to the equation
√

2 = a/ b, where a
and b have no common factors, but both a and b are even, that is, 2 divides both a and b. Note
that the statement that

√
2 = a/ b, where a and b have no common factors, means, in particular,

that 2 does not divide both a and b. Because our assumption of ¬p leads to the contradiction
that 2 divides both a and b and 2 does not divide both a and b, ¬p must be false. That is, the
statement p , “

√
2 is irrational,” is true. We have proved that

√
2 is irrational. ▲

Proof by contradiction can be used to prove conditional statements. In such proofs, we first
assume the negation of the conclusion. We then use the premises of the theorem and the negation
of the conclusion to arrive at a contradiction. (The reason that such proofs are valid rests on the
logical equivalence of p → q and (p ∧¬q) → F. To see that these statements are equivalent,
simply note that each is false in exactly one case, namely when p is true and q is false.)

Note that we can rewrite a proof by contraposition of a conditional statement as a proof
by contradiction. In a proof of p → q by contraposition, we assume that ¬q is true. We then
show that ¬p must also be true. To rewrite a proof by contraposition of p → q as a proof by
contradiction, we suppose that both p and ¬q are true. Then, we use the steps from the proof
of ¬q → ¬p to show that ¬p is true. This leads to the contradiction p ∧¬p , completing the
proof. Example 11 illustrates how a proof by contraposition of a conditional statement can be
rewritten as a proof by contradiction.

EXAMPLE 11 Give a proof by contradiction of the theorem “If 3n + 2 is odd, then n is odd.”

Solution: Let p be “3n + 2 is odd” and q be “n is odd.” To construct a proof by contradiction,
assume that both p and ¬q are true. That is, assume that 3n + 2 is odd and that n is not odd.
Because n is not odd, we know that it is even. Because n is even, there is an integer k such
that n = 2k. This implies that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). Because 3n + 2 is
2t , where t = 3k + 1, 3n + 2 is even. Note that the statement “3n + 2 is even” is equivalent to
the statement ¬p , because an integer is even if and only if it is not odd. Because both p and
¬p are true, we have a contradiction. This completes the proof by contradiction, proving that if
3n + 2 is odd, then n is odd. ▲

Note that we can also prove by contradiction that p → q is true by assuming that p and
¬q are true, and showing that q must be also be true. This implies that ¬q and q are both
true, a contradiction. This observation tells us that we can turn a direct proof into a proof by
contradiction.

PROOFS OF EQUIVALENCE To prove a theorem that is a biconditional statement, that is,
a statement of the form p ↔ q, we show that p → q and q → p are both true. The validity of
this approach is based on the tautology

(p ↔ q) ↔ (p → q) ∧ (q → p).

EXAMPLE 12 Prove the theorem “If n is an integer, then n is odd if and only if n2 is odd.”

Solution: This theorem has the form “p if and only if q,” where p is “n is odd” and q is “n2

is odd.” (As usual, we do not explicitly deal with the universal quantification.) To prove this
theorem, we need to show that p → q and q → p are true.

We have already shown (in Example 1) that p → q is true and (in Example 8) that q → p
is true.

Because we have shown that both p → q and q → p are true, we have shown that the
theorem is true. ▲

88 1 / The Foundations: Logic and Proofs

Sometimes a theorem states that several propositions are equivalent. Such a theorem states
that propositions p1, p2, p3, . . . , pn are equivalent. This can be written as

p1 ↔ p2 ↔ ··· ↔ pn,

which states that all n propositions have the same truth values, and consequently, that for all i
and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n, pi and pj are equivalent. One way to prove these mutually
equivalent is to use the tautology

p1 ↔ p2 ↔ ··· ↔ pn ↔ (p1 → p2) ∧ (p2 → p3) ∧ · · ·∧ (pn → p1).

This shows that if the n conditional statements p1 → p2, p2 → p3, . . . , pn → p1 can be shown
to be true, then the propositions p1, p2, . . . , pn are all equivalent.

This is much more efficient than proving that pi → pj for all i = j with 1 ≤ i ≤ n and

1 ≤ j ≤ n. (Note that there are n2 − n such conditional statements.)
When we prove that a group of statements are equivalent, we can establish any chain of

conditional statements we choose as long as it is possible to work through the chain to go from
any one of these statements to any other statement. For example, we can show that p1, p2, and
p3 are equivalent by showing that p1 → p3, p3 → p2, and p2 → p1.

EXAMPLE 13 Show that these statements about the integer n are equivalent:

p1: n is even.

p2: n − 1 is odd.

p3: n2 is even.

Solution: We will show that these three statements are equivalent by showing that the conditional
statements p1 → p2, p2 → p3, and p3 → p1 are true.

We use a direct proof to show that p1 → p2. Suppose that n is even. Then n = 2k for some
integer k. Consequently, n − 1 = 2k − 1 = 2(k − 1) + 1. This means that n − 1 is odd because
it is of the form 2m+ 1, where m is the integer k − 1.

We also use a direct proof to show that p2 → p3. Now suppose n − 1 is odd. Then n −
1 = 2k + 1 for some integer k. Hence, n = 2k + 2 so that n2 = (2k + 2)2 = 4k2 + 8k + 4 =
2(2k2 + 4k + 2). This means that n2 is twice the integer 2k2 + 4k + 2, and hence is even.

To prove p3 → p1, we use a proof by contraposition. That is, we prove that if n is not even,
then n2 is not even. This is the same as proving that if n is odd, then n2 is odd, which we have
already done in Example 1. This completes the proof. ▲
COUNTEREXAMPLES In Section 1.4 we stated that to show that a statement of the form
∀xP(x) is false, we need only find a counterexample, that is, an example x for which P(x)
is false. When presented with a statement of the form ∀xP(x), which we believe to be false or
which has resisted all proof attempts, we look for a counterexample. We illustrate the use of
counterexamples in Example 14.

EXAMPLE 14 Show that the statement “Every positive integer is the sum of the squares of two integers” is
false.

Solution: To show that this statement is false, we look for a counterexample, which is a particular
integer that is not the sum of the squares of two integers. It does not take long to find a counterex-
ample, because 3 cannot be written as the sum of the squares of two integers. To show this is the
case, note that the only perfect squares not exceeding 3 are 02 = 0 and 12 = 1. Furthermore,
there is no way to get 3 as the sum of two terms each of which is 0 or 1. Consequently, we have
shown that “Every positive integer is the sum of the squares of two integers” is false. ▲

