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Guest Editorial Preface

Special Issue on Pattern Recognition for
IT Security

Graphical data, such as images or video streams, are of growing importance
in several disciplines of IT security. Examples range from biometric authenti-
cation over digital image forensics to visual passwords and CAPTCHAs. Con-
sequently, methods of image analysis and pattern recognition are increasingly
used in security-critical applications. Still, there is a significant gap between the
methods developed by the pattern recognition community and their uptake by
security researchers.

In an attempt to close this gap, a workshop on Pattern Recognition for I'T Secu-
rity was held on September 21, 2010, in Darmstadt, Germany, in conjunction with
the 324 Annual Symposium of the German Association for Pattern Recognition
(DAGM 2010). The session was chaired by Jana Dittmann (Otto-von-Guericke
Universitat Magdeburg), Claus Vielhauer (Fachhochschule Brandenburg) and Ste-
fan Katzenbeisser (Technische Universitdt Darmstadt).

This special issue contains five selected papers that were presented at the
workshop and that demonstrate the broad range of security-related topics that
utilize graphical data. Contributions explore the security and reliability of bio-
metric data, the power of machine learning methods to differentiate forged
images from originals, the effectiveness of modern watermark embedding schemes
and the use of information fusion in steganalysis.

We hope that the papers in this special issue are of interest and inspire future
interdisciplinary research between the security and graphics communities.

March 2012 Stefan Katzenbeisser
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1

Biometrics are physiological and behavioural characteristics that can be used to auto-
matically identify a person. Face is one of the most desired biometrics for uncon-
strained and unsupervised person identification. A vital process of a face biometric
system is the extraction of discriminatory features from a given face image that can be
used to identify the person in the given face image or verify a claimed identity. The
most common approaches to face recognition consider the entire face image for fea-
ture extraction. Typical methods include Eigenfaces [1] and Fisherfaces [2] which use
statistical techniques to find an optimal representation in a lower-dimensional face
space for a given set of face images. However, the accuracy of these approaches is

Exploiting Relative Entropy and Quality Analysis
in Cumulative Partial Biometric Fusion

Hisham Al-Assam, Ali Abboud, Harin Sellahewa, and Sabah Jassim

Department of Applied Computing, University of Buckingham, United Kingdom
{hisham.al-assam, ali.abboud,harin.sellahewa,
sabah.jassim}@buckingham.ac.uk

Abstract. Relative Entropy (RE) of individual’s biometric features is the
amount of information that distinguishes the individual from a given popula-
tion. This paper presents an analysis of RE measures for face biometric in rela-
tion to accuracy of face-based authentication, and proposes a RE-based partial
face recognition scheme that fuses face regions according to their RE-ranks. We
establish that different facial feature extraction techniques (FET) result in dif-
ferent RE values, and compare RE values in PCA features with those for a
number of wavelet subband features at different levels of decomposition. We
demonstrate that for each of the FETs there is a strong positive correlation be-
tween RE and authentication accuracy, and that increased image quality results
in increased RE and increased authentication accuracy for all FETs. In fact, se-
vere image quality degradation may result in more than 75% drop in RE values.
We also present a regional version of these investigations in order to determine
the facial regions that have more influence on accuracy and RE values, and
propose a partial face recognition that fuses in a cumulative manner horizontal
face regions according to their RE-ranks. We argue that the proposed approach
is not only useful when parts of facial images are unavailable but also it outper-
forms the use of the full face images. Our experiments show that the required
percentage of facial images for achieving the optimal performance of face rec-
ognition varies from just over 1% to 45% of the face image depending on image
quality whereas authentication accuracy improves significantly especially for
low quality face images.

Introduction

Y.Q. Shi (Ed.): Transactions on DHMS VIII, LNCS 7228, pp. 1-18] 2012.
© Springer-Verlag Berlin Heidelberg 2012



2 H. Al-Assam et al.

affected by global phenomena such as varying lighting conditions in unconstrained
environments. Local feature based approaches [3] aim to extract discriminating fea-
tures from regions/patches surrounding facial features such as eyes, nose and mouth.
Local feature based approaches are invariant to global changes and leads to better
recognition accuracy under varying conditions compared to global approaches, but
they rely on the accurate location of the specified facial feature. For a variety of ap-
plications, interest is growing in expanding these local-feature based face recognition
into cases where parts of the face could be occluded or of severely degraded quality.
The term partial face recognition refers to such cases, and it is of great interest to
forensics, when only parts of the face are available after some accidents such as fire
or explosion, and in surveillance applications where only partial faces are recorded.
Recently few approaches have been proposed for recognizing faces from partial face
images. In [4], radial basis function networks were used to extract and recognize par-
tial face images while the authors in [5] proposed the use of heterogeneous face rec-
ognition in which near infrared face videos containing partial faces (probe images) are
matched against the visual images of full faces (target images).

Moreover, attention has been given recently to local window based approaches
where the entire face image is first partitioned into a set of overlapping/non-
overlapping regions and features are extracted from each local region, which are then
combined into a single feature representation. Local Binary Patterns [6] and Local
Ternary Patterns [7] are two such examples. However, these techniques give equal
consideration for each local region in terms of their contribution to the overall recog-
nition, irrespective of the amount of discriminative information in each region.

In information theory, Shannon entropy measures the uncertainty of a random vari-
able. Biometric Entropy, as a special case, describes the inherent differences of popu-
lation biometric samples, and quantifies their information content [8]. Biometric data
is typically represented by a feature vector extracted by one or more Feature Extrac-
tion Techniques (FETs). Two factors that should be taken into consideration when
measuring biometric entropy are: 1) similarity of samples across different individuals
e.g. all human faces have two eyes, a nose and a mouth and 2) the correlation among
the biometric features of the same individual. Relative Entropy (RE) of a user’s bio-
metric features [9] quantifies the amount of information that distinguishes the user
from a given population (discussed further in section 2.1). Quantifying biometric
feature’s information content (randomness or uncertainty) can address several
questions. For example, are fingerprints, faces, or irises really unique? What are the
inherent limits of biometric template size requirements and biometric matcher’s per-
formance? In terms of biometric system security and cryptosystem evaluations, how
much information does an imposter need to guess to fool the system?

There are several factors that influence the performance of biometric systems, such
as face sample’s image quality, FETSs, pre-processing, and the underlying template
protection schemes if used [10], [11]. In this paper, we shall confine our attention to
the first two factors: biometric image quality and the underlying FET to investigate
their influence on the relationship between face feature vector relative entropy and the
authentication accuracy.
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Factors affecting biometric sample quality can be classified into four groups [12]
[13]: (1) user-related factors: these include physiological (e.g. age) and behavioural
factors (e.g. pose) which are difficult to control, (2) user-sensor interaction factors:
these include the environmental (e.g. lighting) and operational factors (e.g. user fami-
liarity) which are easier to control than user related factors, (3) acquisition sensor
factors: these include the sensor characteristics that affect the biometric sample quali-
ty (e.g. resolution), and (4) processing system factors: these include factors related to
the biometric processing system after the biometric sample is acquired by a sensor
such as (e.g. processing algorithms, data format) and these are the easiest to control.
The quality of biometric sample can be considered from three points of view: (1)
character: an indicator of inherent physical features, (2) fidelity: a measure of the
degree of similarity to reference biometric sample, (3) utility: a reference to the im-

pact on the biometric system performance [12].

Little or no work is reported in the literature on the relation between biometric
sample quality and biometric entropy. Youmaran and Adler, [14], introduced a theo-
retical framework which is somewhat restricted to measure the loss of information
due to sample quality degradation. It would be essential to extend such a framework
to investigate the relationship between information content extracted by different
FETs, accuracy rates, and biometric sample’s quality. Moreover, different regions of
face images are of different structures but have great deal of similarities across indi-
viduals. Hence extending these investigations to include regional structures and dif-
ferent entropy concepts would be beneficial.

In this paper, we investigate the use of relative entropy as a measure to rank blocks
or patches of face images in terms of their relevance to authentication accuracy. We
shall use different FETs and facial images of different qualities in our evaluation. We
shall present a comparative analysis of Relative Entropy, illumination-based image
quality and authentication accuracy. Existing partial face recognition schemes use the
whole (available) part(s) of the images for recognition while our approach just uses
the most discriminative blocks (or features) within each part of face images. Finally,
we propose a partial face recognition scheme that fuses in a cumulative manner hori-
zontal face regions according to their RE-ranks. This paper is an extension of the
work presented at the Pattern Recognition for IT Security workshop, Darmstadt,
Germany. A detail analysis of RE, authentication accuracy and image quality and the
RE-based partial face recognition scheme form the main extension of this paper.

The rest of this paper is organized as follows: Section 2 provides is a brief review
of background material. In Section 3, we analyse the relationships between REs, sam-
ple quality, and biometric authentication accuracy. Section 4 investigates the effect of
regional variation of features on relative entropy. Section 5 proposes a new RE-based
partial face recognition scheme that fuses face regions according to their RE-ranks
and Section 6 is devoted for conclusions and future work.

2 Background

In this section, we briefly describe the three main concepts investigated in this paper
(i.e. Relative Entropy, Face Recognition, and Image Quality measures), and review
related work and techniques in each case.
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2.1 Biometric Entropy Measures

The level of randomness of biometric features is an important factor in determining
the uniqueness of one’s biometric identity. Therefore, measuring information content
of biometric systems has a significant impact on accuracy and security. Daugman in
[15] proposed the concept of Discrimination entropy to quantify the correlation
among the bits of iris templates (degrees of freedom). Given a specific setting, Daug-
man found that the randomness/uncertainty in the 2048-bit iris template is 249 uncor-
related bits. Matching the bits of two iris codes of length m is equivalent to running
m Bernoulli trials whose probability of success (two aligned bits being the same) is
0.5. Hence the Hamming distance between iris codes is a random variable whose
probability density function (PDF) has a binomial distribution. If the m Bernoulli
trials are independent, then the PDF would be much sharper and the standard devia-
tion will be small. This is due to the correlation among iris’s bits [15]. Discrimination
entropy of iris codes can be modeled in terms of the degrees of freedom calculated by
the following formula:

N=Pd=p) (1)

0_2

where p and @ are the mean and standard deviation of Binomial Distribution of

IrisCode Hamming distances.

Unfortunately, Discriminative Entropy does not account for the amount of infor-
mation needed to distinguish a user from a population, i.e. it gives no consideration
for inter-class variations. To address this problem, a measure between the two distri-
butions i.e. the inter-class and intra-class variation is needed. In statistics, the distance
between two distributions can be quantified using a number of different approaches.
One interesting measure is the f-divergence, more specifically the Kullback—Leibler
(KL) divergence [16] which is also known as relative entropy, or information for
discrimination. KL divergence, D(UIIP), is the distance between two distributions P
and U which measures the inefficiency of assuming that the distribution is P when it
should be U, [17], and is defined as follows:

DU Il P) = j U(x)log, P(( ; @)

Alder [9] has extended this definition to be applied to measure entropy of Biometric
data. If the population distribution of a certain biometric trait is assumed to be P and a
user distribution is U then D(U Il P) is the amount of information that distinguishes
the user U from the population. Unlike discriminative entropy, relative entropy can be
calculated for each individual user.

To estimate the relative entropy D(UIIP), there is a need to estimate the two distri-
butions p(U) and p(P). In our experiments, we need to estimate the distribution of
biometrics features across different samples of a user p(U) and across samples of the
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population p(P). By approximating the two distributions by two Gaussian distribu-
tions, the relative entropy is given by [9]:

DWUIP)=k ln|§7I—§P|+tmce((ZP +T)Z{,l —1) 3)

|”U|

where, (1,2, ),({p,2p): The mean and the covariance matrix of p(U) and p(P)

respectively, and
T =t — 1) (X, —%,) and k =log, Je

2.2 Face Recognition

Face recognition remains one of the most challenging tasks in comparison to other
biometric-based recognition, and several face recognition schemes have been devel-
oped and their performances have been tested. An important part of face recognition
is the feature extraction procedure. Here we briefly describe two commonly used
feature extraction schemes: PCA and wavelet-based schemes.

Typically, feature extraction schemes transform the face image into a “significant-
ly” lower dimensional subspace from which a feature vector is extracted. The most
commonly used dimension reduction method is the Principal Component Analysis
(PCA), In [1], Turk and Pentland used the PCA technique to develop the Eigenface
recognition scheme, simply by using the “most significant” eigenvalues (i.e. of largest
absolute values) of the covariance matrix corresponding to a training set of face
images.

Frequency transforms provide valuable tools for signal processing and analysis.
Frequency information content conveys richer knowledge about features in sig-
nals/images that should be exploited to complement the spatial information. Fourier
and wavelet transforms are two examples that have been used with significant success
in image processing and analysis tasks including face recognition [18], [19], [20]. The
discrete wavelet transform (DWT) is a multi-resolution signal analysis tool that
hierarchically decomposes a signal into its low- and high-frequency components al-
lowing one to view the signal's regular patterns as well as its anomalies, [18]. At a
resolution level of k, the pyramid scheme decomposes an image I into 3k + 1 sub-

band. The subbands LH; and HL; contain finest scale wavelet coefficients that get
coarser with LLy being the coarsest. The LL; subband is considered as the k-level
approximation of I, while HL,, LHy, and HHy captures vertical, horizontal and di-
agonal features of the image.

Different wavelet decomposition levels and/or wavelet filters yield different face
feature vectors and FETs. Each subband of a wavelet transformed face image can be
used individually as face feature descriptor. Throughout this paper, the Euclidean
distance is used for matching, and the Haar wavelet filter is used for the DWT.
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2.3  Universal Image Quality Index (UIQI)

It is a well-known fact that face-biometric verification suffers from significant intra-
class variation as a result of variation in recording environment, pose, aging ... etc.
To understand the relationship between accuracy rates and relative entropy contents
of face feature vectors, we need to evaluate accuracy and relative entropy in face
biometric authentication under varying recording conditions. The extended Yale-B
database provides an excellent testing platform for extreme variation in illumination.

The universal image quality index (UIQI) proposed by Wang and Bovik [21]
measures the distortion between original signal and reference image by modelling
distortion as combination of three main components: correlation distortion, illumina-
tion distortion and contrast distortion. Let

X={xli=12....N} and Y={y,1i=12..N}

be the original and the test images respectively. UIQI is defined as:

4 Oyy Xy
UIQI = 5 5 4)
(0 xto Yx) +(() 1]
1 1 1 N
Where, 7c=—zl.]\=l X, §=—Zi]\=]1yl, 0'x2=—.2(xl—x) , and
N N N-1i=1
1 N

Oy = E El(x,' —)?)(yl-— ¥)

In fact, UIQI is the product of three quality measures reflecting these components,
respectively as given in equation (5).

o 2 Xy

0-"2 .. . 5)

! 2 2 2
Y X + ) O xto y

Here, we only consider the luminance distortion component as given in equation (6).

2Xy
1] =——
0 A ©6)

x) +

In practice, the LQI of an image with respect to another reference image is calculated
for each window of size 8x8 pixels in the two images, and the average of these entire
blocks defines the LQI of the entire image. Based on Extended Yale B face database
[22] described below, the reference image used to calculate LQI index is the average
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face image of all 38 individuals (i.e. the average of the frontal pose and in direct illu-
mination image (POOA+000E+00) of each subject) [23].

2.4  Experimental Dataset and Testing Protocol

The Extended Yale B database, [22], has 38 subjects and each one, in frontal pose,
has 64 images captured under different illumination conditions. The total number of
images in the database is 2414 images. The images in the database are divided into
five subsets according to the direction of the light-source from the camera axis. Sam-
ples of images taken from the database are shown in Figure 1.

Set Subset 1 Subset 2 Subset 3 Subset 4 Subset 5
Angle 0<12 20<0<25|135<60<50|160<0<77|85<60<130
No. of 263 456 455 526 714
Images

Fig. 1. Sample of images for the same person in different illumination subset

To test the proposed RE-based cumulative partial face recognition scheme, the 38
users are divided into two separate portions (18 users each): one is used for develop-
ment (i.e. creating RE-based ranks), and the other is used for testing (i.e. authentica-
tion accuracy evaluation using the RE-based ranks from the development stage). In all
experiments, the first three images per user from subset 1 (the extended Yale-B data-
base) were selected as reference images to form the gallery set and all the remaining
images were used for matching which is based on the Euclidean distances. For a sub-
set 1, if Ni is the number of testing images, then the number of client tests= Ni x 38,
and the number of imposter tests= (Ni x 37 x 38) /2. All face images were used with-
out pre-processing.

3 Entropy, Accuracy, and Quality of Whole Face Samples

In this section, facial feature vectors are extracted from the whole face image using
five FETs: 4 wavelets subbands (LL4, LH4, HL4, and HH4) and PCA in the spatial
domain. The output of applying each of the FETs is a feature vector of size (132),
which makes the results of the five FETs comparable.
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Table 1 shows the relationship between the biometric Relative Entropies (REs), au-
thentication accuracy represented by the Equal Error Rates (EERs), and biometric
sample quality (in terms of LQI). It provides a comparison of the performance of the
five FETs for the different subsets of the database.

Table 1. Comparison of authentication accuracy vs. relative entropy for different illumination
quality levels

Quality Entropy & Authentication Accuracy

LL4(132) | LH4(132) | HL4(132) | HH4(132) | PCA(132)
Avg | Std | Min |Max |EER | RE |EER | RE |EER | RE |EER | RE |EER | RE
(%) |[(bits) | (%) |(bits)| (%) |(bits)| (%) |(bits) | (%) |(bits)
S1 [0.97 [0.02|0.90 |0.99 |5.06 |138.5|0.00 |196.6| 0.69 [189.5|0.00 [201.1|1.70 {101.3
S2 [0.96 [0.02 | 0.88 |0.99 |21.58]|79.90| 1.42 |144.7|3.47 {132.0]{ 0.08 {150.8|4.07 |77.86
S3 [0.91 [0.04 | 0.78 | 0.97 |34.08|36.46| 5.70 |92.87(18.11|77.79| 4.40 [91.88|21.80|43.85
S4 [0.79 [ 0.07 | 0.60 | 0.89 |44.39|14.98|14.20|68.43(39.70(41.45[19.98|59.24|38.65|24.64
S5 (0.49 10.09 | 0.26 | 0.64 |43.43]|22.02(12.76|82.94|44.15|49.16{23.98|66.01|36.17|32.23

Subsets

This table reveals a number of clear patterns that confirm a strong correlation
between image quality, verification accuracy and relative entropy. For each feature
extraction scheme, except for subset 5, increased image quality results in higher
accuracy and higher relative entropy. For subset 5, where the average quality is the
lowest, the pattern is not a clear one. All the wavelet-based schemes significantly
outperform the PCA scheme in terms of both accuracy rate and relative entropy.
Among the wavelet based schemes the HH4 has the best performance when the image
quality average is > 0.6 which excludes most of subsets 4 and 5, otherwise the LH4
has best performance if image quality < 0.6. The latter observation can be attributed
to the fact that the most significant facial features (i.e. eyes and mouth) have elliptical
shapes but predominantly in the horizontal direction, and worsening illumination
indices have less effect on horizontal features. Note that, LH4 does highlight
horizontal features.

4 Entropy, Accuracy, and Quality of Regional Face Samples

The fact that different facial features (i.e. eyes, nose, mouth, chin, cheeks, and eye-
brows) have different structures and are in relatively known locations within the face
image, it is necessary to investigate the regional contribution to authentication
accuracy and RE values. Here we analyze the face sample quality and entropy across
different regions of facial images, and discuss the relationship with authentication
accuracy. Since facial features are mostly horizontal, we confine our investigation to
vertical regions. Such analysis addresses the question: Is relative entropy distributed
uniformly over all regions of the biometric data or do some face regions have higher
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RE compared to others? Understanding the distribution of REs across different face
regions might help in a number of applications such as adaptive fusion, biometric key
generation, and adaptive quality assessment.

Overlapping horizontal windows of size is 8x168 are used for the regional RE
analysis of the 192x168 pixel face images. The use of overlapping widows reduces
the chance of cutting discriminating features and facilitates reasonable alignment of
facial features for all person images. In order to use wavelet-based feature extraction
schemes, individual window height must be at least 2k for k™ level decomposition.
We observed that most individual facial features are contained within 8 rows in the
spatial domain, while windows of height 16 would certainly cover more parts or all of
two facial features. Hence, the selected window size is (8x168) pixels and the overlap
between two successive windows is (6x168) pixels. Hence, 93 overlapped horizontal
windows cover the whole face image. This choice limits the level of wavelet decom-
position to 3.

First we used LQI to measure the image quality of each window to get a better un-
derstanding of the distribution of quality across different regions of face images (i.e.
illumination distribution for this database). Figure 2 shows the regional quality varia-
tions for each subset of the extended Yale B database. Remarkably this chart illu-
strates that the quality of each window is affected in the same way in the 5 different
subsets of the database even though in each subset these qualities fluctuate across the
regions.

====Subsetl === Subset2 Subset3 ====Subset4 ====Subset5
1
. mm— e —_—
ERSS — —
0.8
0.7 =SS
>0.6
= ———
s T~ —
304 \ /
03 \ //—\_/—\ e
0.2
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1 11 21 31 41 51 61 71 81 91

Window ID

Fig. 2. Quality variations across different overlapped regions in the spatial domain

Figure 3 illustrates the regional relative entropies and authentication accuracy (in
terms of EER (%)). Figure 3A and 3B present regional RE and accuracy distributions
of LH3 across the different five subsets. The average Equal Error Rates (EER) of all
individuals is reported. The regional RE chart of the LH3 shows that the upper part
features of the face image has the highest discriminative information (RE), the bottom
part face features comes second, and the middle part face features has the lowest in-
formation content. This claim is supported by the general trend of authentication
accuracy (in terms of EER %) where the upper windows tend to outperform other
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regions. In other words, the upper part features of the face image contribute more in
recognizing different individuals. Moreover, the regional REs decrease sharply as a
result to image quality degradations. It can also be seen that detecting the most infor-
mative regions is dependent on the underlying FET. For example, (LL3, LH3, and
PCA) include more information content in the upper region windows compared to
(HL3 and HH4) whereas the latter two include more information content in the bot-
tom region windows as well as in the upper regions. This observation about the RE
distribution can be used to improve adaptive fusion of FETs for enhanced accuracy.
In adaptive fusion, different weights are given to different components of the fused
system and here we should be having a strategy that exploits the regional variations
and quality values to dynamically selecting the weights. For brevity of space, we
chose to present one detailed regional RE chart of one FET only (i.e. LH3). The other
four FETs exhibit a similar pattern.

Figure 3C,3D, and 3E summarise the results by showing EER verses median, max-
imum, minimum of regional RE respectively of the five FETs (LL3, LH3, HL3, HH3,
and PCA), across the five subsets. The median is used instead of the mean for exact
mapping to the corresponding EER. The figures show how RE decreases and EER
increases when biometric image quality decreases (i.e. moving from subsetl to sub-
set5). The figures also illustrate how different FETs capture different amount of in-
formation, and achieve different recognition accuracy at different regions of face
biometric.

5 Relative Entropy-Based Cumulative Fusion of Biometric
Information

The RE distributions and quality analysis in different quality conditions presented in
the previous section are exploited to develop a novel adaptive fusion scheme to en-
hance the accuracy of biometric system. The proposed scheme investigates the optim-
al ratio of face regions required to recognize an individual accurately. It is important
to mention that the proposed approach is not only useful when only parts of face im-
ages are available but also it can be applied to significantly enhance authentication
accuracy when using full face images, especially for low quality biometric samples.

In the proposed approach, face images are divided into a number of horizontal
windows (regions) as mentioned in the previous section. These face windows are then
ranked in descending order according to their information content (RE) to be used in
cumulative way at the recognition stage. In other words, our approach first selects the
region with the highest RE and then the region with the next highest RE is fused with
first one at the feature level, and so on.

Here, we investigate the use of the proposed RE-based fusion on wavelet subbands
in two ways: within a subband fusion and among different multi-subbands fusion. The
proposed method can be equally applied to facial feature vectors extracted by any
other FETs. For simplicity, non-overlapped horizontal windows are used to avoid the
possibility of having redundant representation when applying the feature level fusion.
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Fig. 3. A and B present Regional RE and accuracy distributions for LH3 across different sub-
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median, maximum, minimum of regional RE respectively for the five FETs across the five
subsets

0 10

Figure 4(A) shows the horizontal non-overlapped windowing process. The original
facial image size is (192x168) pixels and each window is (8x168) pixels which results
in a total of 24 windows. Figure 4(B) presents an example of a top-down RE-based
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X=168

Y=192

(A) (B)

Fig. 4. (A)Windowing of face images, (B) Example of top-down RE-based ranking

ranking. It can be noticed that eyes regions have the highest discriminating informa-
tion compared to other facial regions.

5.1 RE-Based within Subband Cumulative Fusion

Here, we illustrate the use of RE-based fusion of the facial windows to determine the
optimal partial face recognition for each wavelet subband. The 24 facial windows are
ranked descending based on their RE values as shown in Figure 5. The RE ranking is
based on the average REs for all individuals in the same subset. These windows are
then incrementally fused according to their RE rank at the feature level. The fused
features are used to evaluate authentication accuracy in terms of EER. The fusion
process starts by fusing the highest RE-ranked facial widow with the second RE-
ranked window, and the process continues until fusing all the 24 facial windows. Let
{W1, W2,.., W24} be the ordered set of RE- ranked windows, the cumulative feature
vector Vi at stage i, i=2 to 24, is given by equation (7)

Vi=[Vi Wil (N

Figure 5 shows authentication accuracy in terms of EER (%) of the proposed ap-
proach on each of the four subbands separately at the third level of wavelet decompo-
sition. One can notice that all EER curves have almost the same trend where EER
drops sharply when fusing the first few windows (i.e. the accuracy enhances signifi-
cantly). Then the optimal performance (the lowest EER using less biometric informa-
tion) is achieved somewhere in middle i.e. when using half of the facial windows. It
can also be noticed that the optimal performance is different among subbands and
subsets. Moreover, once achieving the best performance, EER either stays the same,
for example the LH3, HL3, and HH3 subands of first three subsets, or increases mo-
notonically (worse accuracy) in all other cases. In other words, fusing more regions of
facial images does not help in improving accuracy, but it might impair recognition
accuracy in some cases such as the LL3 suband of all subsets except subset].
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To highlight the benefits of the proposed scheme, the performance of the proposed
approach is compared with the performance of the approach that uses whole face
images. For brevity of space, Figure 6 only presents the results for LL3 suband across
the five subsets. However, the same trend is observed for all other subbands. It can be
seen that in all scenarios, using only the most informative regions of face images out-
perform the use of whole face image in terms of authentication accuracy. Apart from
subsetl, the optimal performance can be achieved using less than 7 windows out of
the 24 (i.e. less than 30% of the whole face image). For subsetl, with best image qual-
ity, more regions are required to obtain the best performance however RE-based fu-
sion approach still outperforms the whole face image-based scheme.
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Fig. 5. Face recognition accuracy in terms of Equal Error Rates (EER %) of using RE-based
cumulative fusion for the four subbands {LL3, LH3, HL3, and HH3}

5.2 RE-Based Multi-subbands Cumulative Fusion

Here, we propose another scheme for cumulative biometric information fusion which
uses all four subbands of a specific wavelet decomposition level (level 3 in this pa-
per). The 96 windows from the four subbands (24x4) are ranked instead of the 24
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Fig. 6. Accuracy comparison (EER %) between the RE-based within subband fusion and the
whole face

windows in each subband. Then these ranked windows are fused together at the fea-
ture level in the same way described earlier. In this ranking, consecutive windows
may or may not be from different subbands, and also different individuals may have
different ranking.

Figure 7 depicts the EER (%) of the proposed RE-based multi-subbands approach
for each of the five subsets. It can be seen that EER drops sharply after fusing the first
few windows.

To gain a better insight into the effectiveness of the proposed multi-subbands RE-
based fusion approach, we compare the authentication accuracy (in terms of EER) of
the proposed approach with the authentication accuracy of the whole face images as
illustrated in Figure 8. One can observe that in all subsets, using only the most infor-
mative regions outperform the use of whole face image in terms of authentication
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accuracy. In fact, adopting the proposed approach may lead to significant improve-
ment in authentication accuracy in subset 3, subset 4, and subset 5 where the image
quality is significantly poor. Table 2 summarizes the results of the multi-subbands
RE-based fusion and whole face image schemes.
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Equal Error Rates (%)

Fig. 7. Multi-subband RE-based fusion

Table 2. Comparing EERs of the proposed RE-based fusion with EERs of the whole face for
different subsets of extended Yale-B

Subset]l | Subset2 | Subset3 | Subset4 | Subset5S | Average

EER(whole face) 0.00 0.15 1.46 17.79 19.17 7.71

Optimal EER (multi-

subbands fusion) 0.00 0.00 0.00 3.43 4.44 1.57

Optimal Percentage

of the face needed to 1.04% 1042% | 44.79% | 32.29% | 20.83% 21.21%
recognize individuals

The table shows that the proposed approach significantly enhances the authenti-
caion accuracy in terms of EER. In fact, the proposed RE-based fusion scheme out-
performs the use of full facial image especiaally for low quality face images.The EER
for drops from (1.46%) to (0%), from (17.79%) to (3.43%), and from (19.17%) to
(4.44%) for subset 3, subset 4 and subset 5 respectively. The table also shows that the
average percentage of the face regions required to recognize each individual is around
21% (ranging from just over 1% to around 45% according to the quality of the under-

lying facial images) and the average EER might drop from (7.71%) to (1.57%) when
adopting the proposed approach.
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6 Conclusions

We have investigated the relationship between the level of randomness in face biome-
tric as represented by relative entropy (RE), and the accuracy rates for a number of
face recognition schemes under variant illumination conditions. We have demonstrat-
ed a strong correlation between RE values and accuracy rates that holds for different
image quality levels and different recognition schemes. The RE values are dependent
on the recognition scheme with wavelet based ones all outperforming the PCA
scheme. Except for the lowest quality level, the RE value increases as image quality
improves. Similar patterns have been revealed when regional RE’s and accuracy rates
were investigated, and the results demonstrate that the middle region of the face has
less randomness than the upper or the lower part of the face. Furthermore, we pro-
posed a RE-based partial face recognition that fuses, in a cumulative manner, horizon-
tal face regions according to their RE-ranks. We have demonstrated that the proposed
approach is not only useful when parts of facial images are available but also it
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outperforms the use of the full face images. Our experiments show that the percentage
of face area needed to achieve the optimal performance varies from just over 1% to
45% of the face image depending on the quality of the underlying facial image. Also,
the authentication accuracy significantly improves, especially for low quality images,
e.g. EERs drop from 1.46 %, 17.79 %, and 19.17% based on the whole face images to
0.0%, 3.43%, 4.44% for subset 3, subset4 and subset 5 respectively using the pro-
posed partial face recognition scheme when only the highest ranked face areas are
used for authentication. This paper has focused on one type of quality factor, the illu-
mination factor. In our future work, we shall consider other biometric quality factors
such as pose and resolution to create multiple ranking indices where the ranking index
is adaptively selected at the authentication stage by assessing the quality vector of the
presented biometric sample.
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Abstract. The feature extraction, which is the most critical part of biometric
recognition systems, is solely done based on expert knowledge or rather
intuitively. Thus, no guaranty could be given that extracted features are suitable
for biometric user authentication. Moreover, the expert knowledge could be
only applied for a particular quality of raw data or only defined for a particular
database. Therefore, the feature analysis is required to estimate the
discrimination power of extracted features and automatically eliminate all
irrelevant or redundant ones. In order to provide a feature ranking and
consequent filtering, authors suggest several heuristics and compare these to
each other and to several wrapper approaches. The experiments were done on
features extracted from dynamic handwriting data. The comparison of feature
subsets is provided based on hash generation performance of quantization based
secure sketch algorithm. The experiments show a significant increase of
reproduction rates (RR) and decrease of collision rates (CR). After feature
selection the CR for the most appropriate written content ‘symbol’ reduced
from 5.04% to 3.44% and the RR grows from 70.57% to 93.59%. Furthermore,
the lower number of features ensures the reduction of computational complexity
and, thus, classification speed-up.

Keywords: Feature selection, handwriting, biometrics, biometric hashing,
fuzzy extractor, secure sketch.

1 Introduction

Apart from the human voice the handwriting is the most commonly used behavioural
biometric modality. Handwriting is widely used in forensic science, namely in court
cases, to check if an individual is the author of a certain handwritten document.
Another well known domain of handwriting-based applications is handwriting
recognition, which could be designated as an automatic retrieval of the ground truth
of a handwritten document and often associated with optical character recognition
(OCR) systems. However, in this work the focus is laid on the third major group of
handwriting-based applications — biometric user authentication. The main objective
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here is to identify or to verify a person based on predefined handwritten content
through comparison of reference and test samples.

In a biometric context, the handwriting is usually associated with the signature
recognition. However, the signature as a written content has several disadvantages. The
names of the user are usually publicly known, and even an uninformed attacker can
guess the signature’s shape. Moreover, once the personal signature is compromised, it
cannot be changed in an easy way. It will be shown, that other written contents could be
more appropriate for user verification.

The most known practical applications, which make use of handwriting-based user
verification, are signing of bank documents on digital tablets and signature based
login scenarios on tablet PCs or for building entrance.

In contrast to static handwriting data, which is either continuous trajectory of a pen
movement on a paper or a digitalized set of points with x/y-coordinates, the dynamic
handwriting data contains a time sequence of points. Each point has at least an order,
a sampling time and relative x/y-coordinates on the writing surface. Depending on the
digital sampling device, characteristics of points can be extended by pressure and pen
angles, namely pen azimuth and pen altitude (see figure 1). There are other signals
such as height of pen above digitizer, tilt along the x/y-axis, rotation around pen axis,
which could be potentially captured, but the appropriate tablets are seldom used in
academic research as well as in commercial applications. Practically, x/y-coordinates,
pressure, altitude and azimuth are considered as functions of time (x(t), y(t), p(t), ¢(t),
0(t)) and can be qualified as the basic input data for further processing.

i ;tp(t)

o)

x(t)

p(t)
y(®)

Fig. 1. Basic handwriting signals: x(t) — horizontal pen position, y(t) — vertical pen position,
p(t) — pressure, (t) — altitude, 6(t) — azimuth (taken from [25])

As well as every other behavioural biometric modality, the handwriting is
characterized by very high variations of acquired signals in genuine samples.
Pressure, writing angles and shape change under the influence of donor’s mood,
physical condition and other factors, which are almost unpredictable. This leads to
insufficient authentication rates. In order to reduce these variations, stable individual
characteristics (further called features) should be derived from acquired signals.
Moreover, the features need to be independent from environmental conditions.

Unfortunately, there is no common methodology to define and extract features,
which are surely suitable for user authentication. Usually the extraction is done based
on formerly collected expert knowledge or rather intuitively. The expert knowledge is
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usually valid for some domain specific features and could be incomplete or erroneous.
In certain cases the resulting features will be completely unsuitable for user
authentication. In this sense, the feature extraction could be denoted as a “blind”
process and therefore a subsequent feature relevance analysis is essential. There are
131 features considered in this work. The feature extraction is based on empirical
research and intuition. Table 1 gives an overview of features and characterizes them
depending on signals needed for meaningful extraction.

Table 1. Handwriting features

Feature type Description Number
Time-based statistics: t total time 1,
number of (valid) sampling points 2,30
Static spatial statistics: X, y (time x/y aspect ratios, 3, 18,
and order independent) (normalized) centroid of horizontal/vertical pen position, 11, 12,
15, 16,
(normalized) distance between centroid and origin, 13,17
normalized average velocity in x/y-direction, 26, 27,
path length, 31,
number of points in special regions (left/right half, top/middle/ 32-43,
bottom third etc.), 59-61,
68, 69,
accumulated points’ offsets from the left bottom corner in
particular time slots, 44-55,
angle between linear regression line and baseline, 58,
ratio between area/perimeter of convex hull and area/perimeter
of bounding box, 62, 65,
number of local x/y-minima/maxima, 70-73,
ratio between the numbers of local x/y-minima and local
x/y-maxima, 74,75,
total number of self crossings, and numbers of self crossings 76,
sorted by angels, 98-103,
number of intersections with horizontal, vertical and diagonal
lines, 77-85,
ratio between the path length and start-end 86-88,
distance/width/height,
ratio between the start-centroid distance and centroid-end 89,
distance, 90-92,
linearly mapped and accumulated x/y-extremes,
average/minimum/maximum number of points within the circle 95-97,
around each sample point, 107,
number of the closed areas inside the path,
x/y-coordinates of cluster centrionds of signature 108-119
points
Dynamic spatial statistics: x(t), y(t) | average/minimum/maximum velocity in x/y direction, 4,5,
7-10,
linearly mapped and accumulated pen acceleration, 93,
speed at the inflection points 130
Pressure-based statistics: p(t) number of segments, 6,
average/maximum pressure, 14, 23,
pen up time, 28,
ratio between pen up and pen down time, 29,
ratio between accumulated pressure and maximum pressure in
pen up/down positions, 56, 57,
ratio between area/perimeter of convex hulls around the path 63, 64,
segments and area/perimeter of global bounding box, 66, 67,
average/minimum/maximum length of contact less movement, 94,
104-106,
average pressure in different pressure clusters, 120-125,
pressure standard deviation 131
Angles-based statistics: ¢(t), 0(t) average/minimum/maximum altitude/azimuth, 19-22,
24,25,
average altitude in different pressure clusters 126-129




22 A. Makrushin, T. Scheidat, and C. Vielhauer

Obviously, not all features are appropriate in each situation. Taking into account
digital sampling device and written content, it could be clearly seen that some features
do not have any variation through the samples of all users. Therefore, the feature
analysis and subsequent selection of the subset of relevant features is a central issue
addressed here. It is shown that selection of the features with low intra-class variance
and high inter-class variance results in lower user authentication errors.

Another issue considered in this work is the comparison of written contents
regarding the user authentication or more precisely hash generation performance. In
contrast to physiological biometric traits, the behavioral traits can contain secret
knowledge, which means that biometric information is presented in some secret way.
Hence, unauthorized verification attempts can be split into random and intentional
forgeries, according to the awareness of the attacker about the secret. In order to
demonstrate how the secret knowledge and uniqueness of the written content
influence verification performance, five different written contents are evaluated in this
work. First, the public PIN is proposed. This is a combination of five predefined digits
“77993”, which are written in a similar manner among people of all nationalities. In
this regard, any sample could be considered as an intentional forgery. Next, the secret
PIN is proposed. This is a combination of five arbitrary digits from zero to nine. Here,
the variability of the written shape between users is evident. Nevertheless, the
variance is not high enough, because most donors are used to write digits in a similar
way and to provide a short pause and lift the pen after each digit. More variance and
uniqueness are contained in the third written content — pseudonym. This one is very
similar to the signature. People have been asked to train and to provide a new
signature, different to the personal one. This can contain any fictional name. It has
been intentionally refrained from capturing personal signatures due to privacy
reasons. The amount of uniqueness increases in the fourth written content — symbol. It
does not necessarily have to be a text symbol. It could be any kind of drawing. It is
very hard for an attacker to reproduce this one correctly, even if the shape of the
writing is presented on the tablet. The last written content is an answer to the question
“Where are you from?” The text here is usually the name of a city or of a country and
can be easily guessed. The variance of the samples is poor, because most donors
descent from the same region. Obviously, any other personal question, even with the
higher variability of possible answer, can be picked instead of the one mentioned
before. Figure 2 shows examples of the considered written contents. Following the
[25], the written contents will be referred to as semantics.

- @%%M// M”

(a) (b) (©

Fig. 2. Examples of semantics: (a) public PIN, (b) secret PIN, (c) pseudonym, (d) symbol,
(e) answer to the question “Where are you from?”
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The next important issue discussed in this paper is secure template preservation. A
reference database consisting of personal biometric data is of very high interest for
criminals. The stolen identity could be used by forgers in a crime scene to cover up
the traces or to gain unauthorized access to a secret. From technical point of view, the
biometric system designer should guarantee that the templates, stored in the reference
database, are irreversible. This means that it is impossible to reconstruct original
biometric data from biometric templates.

In order to provide secure template preservation the biometric hashing procedure is
proposed. The main idea of biometric hashing is a generation of the individual stable
hash value for each user from varying biometric data. Furthermore, the concept of
biometric hashing implies a robust hash generation, which means that the same hash
should be produced for all biometric samples of a person and clearly dissimilar hashes
should be produced for biometric samples of different persons. This fact offers the
challenge of combining biometrics and cryptography, because the robust hash can be
used as a seed for generation of a personal cryptographic key. As a practical
realization of biometric hashing, a secure sketch algorithm for dynamic handwriting
proposed in [21] is selected.

To sum up, we would like to emphasize that the focus of this work is laid on
improvement of biometric user authentication based on dynamic handwriting, through
the selection of relevant handwriting features. The feature selection is examined in
conjunction with the specific realization of secure sketch algorithm, proposed in the
third section. The authors have investigated the influence of the intelligent feature
reduction on the hash generation performance and found out that a reduced feature set
leads not only to computational speed-up but also to lower collision and higher
reproduction rates.

2 Related Works

The idea of secure preservation of biometric templates and combining of biometrics
and cryptography has been one of the topics most discussed in biometric research
society during the last years [10]. It is a very attractive perspective for a biometric
system to be able to generate cryptographic keys from biometric characteristics. In
fact, people do not need to memorize a password phrase or possess a dongle to obtain
secured access to a system. However, it is a great challenge to stabilize fuzzy
biometric signals providing high reproduction and low collision rates during the
biometric hash generation and at the same time to guarantee the perfect secrecy of
privacy sensitive data. The theoretical aspects of authentication reliability and secrecy
warranty are addressed in [2, 24].

2.1 Biometric Hashing

The general terminology in domain of cryptographic keys generation from noisy data
is proposed by Dodis in [4]. The authors introduce the term fuzzy extractor as a
primary primitive for the solving of the mentioned problem. The fuzzy extractor
comprises two procedures: secure sketch algorithm and strong extractor. Secure
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sketch algorithm is used for the generation of helper data (sketch) from reference
samples in the enrollment stage and for the reconstruction of reference data from a
test sample in the authentication stage, making use of helper data. Strong extractor
creates the secret key from the original or reproduced reference data. Helper data is
considered as public information and can be available for attackers. Strong extractor
can be presented by any cryptographic one-way function. Following the notations
from [4] the fuzzy extractor is schematically illustrated in figure 3. Here P is the
helper data, w is the reference vector, w’ is the test vector similar to w in a certain
degree and R is the secret key generated from the reference vector w or from the test
vector w’.

Reproduction
. W‘_
Generation s Sec.Sketch Rec. [T— W
Sec.Sketch Gen. (+—— s

w

v
Strong Extractor -—— R Strong Extractor —— R

Fig. 3. Fuzzy extractor: generation und reproduction procedures

The secure sketch algorithm alone allows user authentication, but does not
guarantee secure preservation of biometric templates.

One of the practical implementation of this idea was given by Vielhauer in [25].
He introduced interval matrix as a helper information and interval mapping procedure
as one-way transformation of a fuzzy feature vector to a stable hash vector. In fact,
the interval matrix contains feature variances (interval lengths) and zero offset of the
first interval for all users individually. The interval mapping comprises the zero offset
subtraction and the integer division to the interval length. Thus, this concept can be
designated as user-based quantization. Nevertheless, originally it was called biometric
hashing. This term will be also used in our work as a general description of the
addressed process.

Juels and Wattenberg in [12] suggested error-correcting codes and linear shift of
reference vectors to the codeword space for creation of helper data. The process was
called “fuzzy commitment scheme”. The idea is shown in figure 4. Firstly, the set of

¢4

@ . .
Ci_1- . .
® «

Fig. 4. Codeword mapping in accordance with the fuzzy commitment scheme
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codewords {c;, ¢y, ..., ¢,} is selected based on distribution of biometric data. The
helper data s is built as a difference between reference vector w and corresponding
codeword c;. In order to reproduce the codeword c¢; from the test vector w’, the sketch
value s is subtracted and the nearest neighbor in the codeword space is returned. The
reference vector w can be reconstructed by addition of s.

In order to show the direct conformity of the fuzzy extractor and the fuzzy
commitment scheme, the generation procedure of the fuzzy extractor is given as
following, whereby SS corresponds to the Secure Sketch Generation procedure, Ext is
the Strong Extractor, Rec is the Reconstruction procedure and & refers to an arbitrary
cryptographic hash function:

Randomly choose i:
s=8S(w)y=w-c,
R = Ext(w) = h(w)

The Reproduction procedure can be presented as following:

R = Ext(Rec(w',s)) = h(Rec(w', s)) = h((arg min , ((w'=s),c, )+ )= h(c, + 5) = h(w)

The fuzzy extractor was originally introduced for discrete signals. The feature vectors
extracted from biometric data usually contain continuous values. Sutcu et al. in [24]
propose practical realization of the secure sketch algorithm, based on fuzzy
commitment scheme with double quantization, which is applied to continuous feature
vectors. The first quantization with the global quantization step transforms feature
data from continuous to integer domain. During the second quantization the integer
feature values are mapped to the individual hash values based on user-based
quantization step. The difference between hash values and feature values is used as
helper data. This scheme was applied to face modality and has shown impressive
results regarding the improvement of authentication performance.

Scheidat et al. in [21] adapted the scheme of Sutcu for handwriting features. They
compared the authentication as well as hash generation results to the scheme of
Vielhauer [25] and figured out that the scheme of Suztu has superior hash generation
performance but inferior user authentication performance [21]. This research extends
the aforementioned work through the selection of relevant handwriting features in
order to enhance the performance of the secure sketch algorithm based on double
quantization.

2.2  Feature Selection in Biometrics

Unfortunately, the feature selection problem has been neglected in many biometric
studies. Developers probably rely on the ability of a classification algorithm to model
user distribution independently from the quality of features. Indeed, some classifiers
such as decision trees, adaptive boosting or support vector machine already contain a
feature selection mechanism. In literature e.g. [20] this kind of feature selection is
called embedded, because of its inherent relation to the classifier. However, the
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selection of features based on the additional extrinsic analysis can lead to superior
results. This was shown e.g. in work of Kira et al. [13]. The authors proposed the
Relief algorithm to determine the relevance of each feature for the decision tree
relying on instance-based learning. Another example is the FOCUS algorithm of
Almuallim et al. [1]. Both algorithms were used together with the ID3 algorithm to
induce a decision tree from the training data using only selected features. The
resulting classification performance was significantly higher compared to the intrinsic
ID3 feature selection, which is based on feature’s information gain. In later studies
John et al. [11] formally defined the terms relevance and redundancy of features.
They originally introduced the division of feature selection approaches to filters and
wrappers. One of the main results of their work was the assertion that the feature
selection should rely on the relation between features and targets as well as on the
classification algorithm [14]. In other words, the wrapper model should be preferred.

The truth is that the feature selection is a general problem of pattern recognition.
Comprehensive studies and very detailed surveys can be found [3, 8, 16, 18, 20]. Our
investigation relies on the work of Guyon et al. [7]. Both filter and wrapper
approaches are studied. For filter-based selection, the feature ranking is done using
the correlation coefficient or mutual information. The wrappers are represented by
nested subset selection with forward or backward selection or with multiplicative
updates and subsequent classification.

Several works bring up a feature selection issue in biometric domain. For instance,
Kumar et al. in [15] used the Correlation Based Feature Selection (CFS) swiped from
Hall et al. [9] for the bimodal biometric system and investigated the classification
performance. In addition, the feature level fusion used in combination with feature
selection is studied.

A selection of handwriting features was done in [6]. For feature ranking authors
propose the heuristic, which is based on calculation of the scalar Mahalanobis
distance between the mean feature value of user’s training signatures and the mean
feature value of all training signatures. Finally, they suggest 40 features from 100
proposed.

Makrushin et al. in [17] investigated several heuristics-based as well as wrapper-
based subset selection approaches and applied them to the biometric hashing
algorithm of Vielhauer [25]. Both user authentication and hash generation
performances of the algorithm were significantly improved.

3 Secure Sketch Algorithm

The biometric hashing is a concept of the creation of an individual stable value from
variable biometric data of a user. This concept is based on the assumption that the
intra-class variations of biometric signals are significantly smaller than inter-class
variations. Consequently, the variations in user’s samples can be reduced through an
intelligent quantization or an error-correcting coding. At the same time samples of the
different users, which are significantly different, can not be mapped to the same hash
value through the quantization, nor properly corrected by error-correcting codes.



Improving Reliability of Biometric Hash Generation 27

However, the error-correcting codes are capable of correcting only a limited number
of bits. For instance, the BCH code tolerates errors of up to almost 17% of the
component bits [12]. Due to this fact and the high alterability of feature values, it is
hard to adapt any standard error-correcting scheme for handwriting features in order
to exactly reproduce the reference vectors. Therefore, the smart employment of error-
correcting codes leads to sufficient user authentication rates, but reproduction rates
remain deficient. Hence, in our experiments, the double quantization algorithm
originally proposed in [23] and modified for handwriting features in [21] is used. This
scheme seems to be more appropriate for the considered task.

In the description of algorithm the following notations are used: M denotes the
number of user, N denotes the number of features, index j defines a particular user,
index i refers to a certain feature and f; is the feature value. The features are
considered independently, so that the equations are presented for the fixed index i.

The first quantization with a fixed uniform quantization step transforms continuous
feature values to integer format and at the same time strongly reduces the variance of
feature values. The global quantization step o, is calculated as follows, whereby S; is
the number of trainings samples of user j:

var :E?-gi(fuk)_{gl?/(fuk) (1)

8, = max( Igl/\r} (var;),1) ()

The value var; is used to provide the individual quantization step. Firstly, in order to
generate the reference value, the average feature value for each user j is calculated:

avg; =0.5 -(gﬁg(ﬁjk )+ min (£, )j (3)

Next, these values are quantized in accordance with global quantization step ¢,
whereby e is the expansion factor of the individual quantization interval o;;:
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By modifying the expansion factor, one can an achieve increase of RR and decrease
of CR or vice versa. The expansion factor can be selected for each feature
individually. Vector w; is stored as the user template. The value oy is called codebook
condition. The scalar codeword c; is provided by quantization of w;; in accordance
with g; and back projection to templates space.

¢y = rouna{2 s 1] : (20'1./. + 1) (6)

ij
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The helper data (sketch) s is the difference between the quantized average value and
the corresponding codeword.

Si =Wy —C @)

Since the sketch s; is available, the codeword c;; can be reconstructed from any test
vector #; of the user j, which is similar enough to the reference vector avg;. First, for
each feature i, the quantization of the corresponding component of the test vector # is
done with the global quantization step

C |
"3 @

Then the sketch is subtracted and the user-based quantization is provided:
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Taking into account that vectors w; and w’; are similar to a certain degree, the vectors
¢;j and ¢’; must be equal after this transformation. The template w; of the user j can be
reproduced from the reconstructed codeword by addition of the sketch value.

Wy =Cytsy (10)

Finally, the proposed process is illustrated in figure 5.
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Fig. 5. General scheme of sketch generation and reconstruction processes

How it can be seen in figure 5, no cryptographic hashing of the user’s template is
provided. In spite of the fact that the strong extractor has to be used in practical
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applications, the absence of it does not have any influence to the template
reconstruction or more precisely to reproduction and collision rates. Indeed, the
quantized codeword c; can be alternatively stored as the user template. This vector
cannot be reproduced without an appropriate test sample of the same user and taken
alone does not provide any information about w;. Thus, regarding the definition given
in [25] this vector can be designated as the biometric hash vector. The reproduction as
well as collision rates in both cases, the reconstruction of the reference vector and the
reconstruction of the codeword, are equal.

4 Feature Selection

Kira in [13] gives the following definition of feature selection: “Feature selection is
the problem of choosing a small subset of features that ideally is necessary and
sufficient to describe the target concept.” Regarding this definition, the irrelevant and
redundant features should be removed during the feature selection. Therefore a
reasonable question arises: “How it could be possible to find out, which features are
irrelevant or redundant and what is exactly ‘relevant’ in this scope?” John and Kohavi
in [11, 14] give the strict definition of feature relevance. They also define a redundant
feature as a feature, which linearly depends on another feature, or on a combination of
other features.

A further question to be considered is: “Why are irrelevant or redundant features
disturbing for a classification?” Actually, a good classifier should automatically use
only useful features and ignore any other ones. Indeed, only a small number of
classification schemes comprise embedded feature selection. Kumar et al. in [15] point
out some types of negative impact of irrelevant and redundant features to three
classification schemes: nearest neighbor rule, naive Bayes classifier and decision trees.
Another reason for feature reduction is that the high dimension of feature space leads to
classification errors. Experts refer to it as “curse of dimensionality” [5]. Furthermore,
the computational resources are always limited and therefore low-dimensional vectors
are preferred. Hence, the need of a feature reduction becomes clear.

However, the feature reduction can be done by classic subspace projection methods
like principal component analysis [5]. These techniques are beyond the scope of this
work, because after the subspace projection the new features do not possess any
comprehensible semantic.

4.1  Wrappers vs. Filters

According to the common terminology originally provided by John et al. in [11] the
feature selection approaches are divided into wrappers and filters. In order to
emphasize the difference, the approaches are schematically illustrated in figure 6.
Wrappers select the feature subset based on particular classifier performance.
Hence, the feature selection is inherently connected to the applied classifier. On the
one hand, the optimal feature subset can be found through the repetition of
classification trials with different feature subsets. Optimality is the most notable
advantage here. On the other hand, an exhaustive search is required to find out the
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optimal subset. Given N features there are 2" feature subsets possible. This
exponential relationship between the number of features and the number of possible
subsets makes an exhaustive search applicable only for small number of features.
Moreover, the single evaluation trial implies the classification of the whole test set
and, therefore, the computational complexity depends from the number of test
samples as well.

Filters, on the contrary, select the feature subset based on the predefined ranking of
features. The ranking is provided based on some quality criterion, which is
completely independent of the classification method. Therefore, filters can be
considered as a pre-processing step in signal processing workflow. The quality
criteria are selected rather intuitively or based on extrinsic expert knowledge.
Obviously, until the classification method is known, the feature selection process is
never optimal. Anyhow, in particular cases a filter-based feature selection can lead to
the optimal feature subset in terms of classification performance. According to Guyon
in [7] “Fisher’s criterion to rank variables in a classification problem where the
covariance matrix is diagonal is optimum for Fisher’s linear discriminant classifier”.
Even though filters do not usually lead to optimal classification performance, they are
preferred due to their computational efficiency. Clearly, the quality criterion choice
(in other words the appropriate heuristic) is the most critical issue.

In this work several heuristics for filter-based feature selection are evaluated, as
well as three editions of wrapper-based feature selection.

» Fea‘“.'e > Featu_re » Classification » Evaluation
extraction selection
(@)
’ Featu_re g Featqre | Classification "| Evaluation
extraction selection
T b
Expert ®)
Knowledge

Fig. 6. Comparison of wrappers (a) and filters (b), applied to feature selection

4.2  Exemplary Selected Wrappers

There are several strategies to avoid exhaustive search. In the simplest approach the
feature ranking is provided by means of classification with each single feature. Then
the best ranked features are included to the target optimal feature subset. Other
famous approaches are sequential forward and backward selections (SFS, SBS). The
forward selection starts with an empty set and adds the most relevant features one by
one at each step. The most relevant feature, in combination with already selected
features, has the highest classification error decrease. The iterative process stops when
the addition of a new feature does not decrease the classification error. The backward
selection starts with the whole feature set and removes the least relevant features one
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by one at each step. The removal of the least relevant feature leads to the highest
classification error decrease (or might even slightly increase it). The iterative process
stops when the next removal increases the classification error significantly.

In order to overcome the nesting problem of sequential forward and backward
selection, more sophisticated search strategies such as sequential floating forward/
backward search [19] or fast branch and bound algorithm [22] can be applied.
However, this research is not aimed at comparing all possible approaches. First and
foremost, we aim at showing that feature selection can significantly improve the
performance of biometric systems and that a time-consuming subset search often has
superior results compared to heuristic-based feature ranking.

4.3  Exemplary Selected Filters

In order to avoid the computationally expensive exhaustive search and to be
independent from classification algorithm, several heuristics are suggested to define
the quality of features. First and foremost, this work aims at proposing quality
measures, which reflect the discrimination power of features. The heuristics facilitate
the ranking of features through the calculation of quality values. The actual filtering is
done by low ranked features cut.

Henceforth some formal notations and terms are provided to avoid any ambiguities
and obscurities. The test set of feature vectors X’ with corresponding labels y' (targets)
is given. In biometric context, the labels refer to user identities. The index j refers to
the number of test vector. Given that m features are extracted from the raw data, each
feature vectors x’ can be then introduced as x' = (x/, xzj,..., x,,,j). Considering all
features independently, for each feature i the following notations are used: x; = (x;,
x,-z,..., x;") is the vector of feature values and y = (y] R yZ,..., y") is the vector of targets,
thereby n is the number of vectors in the test set. The aim of the filter is to provide the
scalar rank R(7) based on the tuple (x;, y).

ANOVA. Analysis of variance (ANOVA) is a set of statistical models for evaluation
of the relationship between within-class scatters and between-class scatter. In order to
provide better user discrimination a feature variation o inside of each user should be
as small as possible. Nonetheless, a feature variation between different users should
be high. The second value can be defined, for instance, by the difference between
mean values ¢ of users. Equation 11 gives feature quality defined by ANOVA test
for the case of two users. Here N; and N, denote the numbers of test samples of first
and second users correspondingly.

Nl ~N2-(ﬂl—ﬂ2)2

R() =
@ N,-0;+N, 0,

Y

If more than two users are presented, there are two principal ways to calculate the
feature quality (F-value). In the first case, we call it ANOVA-2class, for each user k&
all other users are considered as only one non-user class and the value F) can be
calculated through the application of equation 11. The final F-value is given by the
sum of F; values.
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In the second case the multivariate ANOVA test is applied. The feature variation
inside of a user is presented by the sum of deviations of user samples x;; from a user
mean value . The feature variation between different users is presented by the sum
of deviations of user mean values g from the global mean value . The feature rank
(F-value) is given by equation 12. Here K is the number of users and N is the number
of test samples of the user k.

LS N -y
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R() = (12)

Correlation. The use of the correlation between feature values and labels, as the
quality criterion of a feature, is described in [7]. Equation 13 provides the Pearson
correlation coefficient R(i), whereby the 4, and #, designate mean values of feature i
and labels correspondingly.
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R(i) becomes zero if no correlation between feature and labels is established. This
means complete irrelevance of the feature i for user authentication. Contrariwise,
R(i)=1 designates maximal correlation and therefore absolute relevance of the feature
i for the user authentication. It should be noted that the correlation criterion detects
only linear dependency between features and labels.

Joint-Entropy. Alternatively, the information theoretic ranking criteria could be used
instead of correlation coefficient. The empirical estimation of the mutual information
between features and labels gives the quality of the particular feature. Given that the
feature values are discrete, the mutual information is given by equation 14.

P(X=x,Y=Yy)
P(X=x,)-PY=Yy)

R@)=).> P(X =x,Y =y)-log (14)
It is difficult to estimate the real values for the distribution P(X=x;) of the feature x;,
the prior class probability P(Y=y) and the probability of the joint observation
P(X=x;,Y=y). In case of discrete features, the frequencies calculated from the
evaluation data can be used instead.

Entropy-2Class. Another way to build an entropy-based quality criterion relies on
the comparison of user and non-user distributions of the particular feature x;. In case
of discrete features the probability distribution can be substituted by the histograms
built from the evaluation data. The higher distance between user and non-user
histograms designates better discrimination power of the feature. The final quality
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coefficient is the sum over all users. Four histogram-based distance measures are
discussed in this work. These are Kullback-Liebler divergence (KL), Jensen-Shannon
distance (JS, also called Jeffrey divergence) and Bhattacharyya distance (Bha).
Suppose H(A) = H;(A),Hx(A),....Hy(A) is the histogram of feature values from the
user A and H( Z) = H/( X),HZ( Z),...,HN( X) is the histogram of feature values from
the remaining users. N is the maximal feature value and K is the number of users. The
aforementioned divergences are given by equations 15-17.

Kullback-Liebler:

K N H . (k)
R(i) = H . (k)1 I
(i) kZZ S (k) ogz(Hj(k)] (15)
Jensen-Shannon:
K N 2-H (k) _ 2-H (k)
R(G) = H.(k)-log,—— " +H (k)-log, — 21—~
0) ;Z[ ; (k) -log, Hj(k)+Hj(k)+ ;(k)-log, H_f(k)+Hj(k)] (16)

Bhattacharyya:
R(i):Z(—ln ZHj(k)-Hj(k)J (17)

Entropy. The same assumption as for the variances in ANOVA could be used for
the entropies. The criterion contradistinguishes the inter-class entropy, which is the
entropy of the user means u = (4, tb,...,44) and the intra-class entropy, which is the
sum of the entropies of the feature values x;. The assumption is that for a relevant
feature the inter-class entropy is high and intra-class entropy is low. It could be
formally given by equation 18. Here N, is the maximal value of the user means, Ny is
the maximal feature value for user k, whereas K is the number of users.

N, 1
H (u)-log, ——
. ; s (-log: H, (1)
R()=— (18)
ZZH,’(xk)'IOgZ
k=

1 j=1 Hj(xk)

5 Evaluation

The experimental database was collected from 53 donors in laboratory conditions.
The tablet PC Toshiba M200 Portege was applied for capturing of handwriting
samples. This device is not able to acquire pen altitude and pen azimuth, thus only
three signals x(t), y(t) and pressure(t) are exploited to extract the features.

The acquisition was done in three sessions with the interval of at least one month
between two sessions in a period of less than 6 months. For each of five written
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contents, described in the introduction (public PIN, secret PIN, pseudonym, symbol
and place), each donor provided 10 instances, which results in a total of 30 instances
per user per semantic.

Due to the low number of donors the separation into client and impostor groups
was not done. All donors were considered as clients and the experiments were
provided in a random attack mode. Any attempt of one client to be verified as another
client is interpreted as an impostor trial. In order to be in conformity with a real-life
scenario, the samples from the first session were used for enrollment. The samples
from the second session were used for the tuning of the verification system and
feature selection. The samples from the third session were used for verification test.
Regarding the mentioned division of samples the verification test contains 530
genuine trials, corresponding to 53 users times 10 test samples, and 27560 impostor
trials, corresponding to 53 users times 52 user claims times 10 test samples.

5.1 Performance Measures

The hash generation scenario implies exact reconstruction of a biometric hash vector.
The usual threshold based evaluation used in the user authentication scenario is not
appropriate in this case. While a traditional methodology estimates false accept rate
(FAR) and false reject rate (FRR) as functions of decision threshold T: FAR(T), FRR(T)
the hash generation scenario requires the error estimation in zero point: T=0. In the hash
generation scenario the reproduction rate (RR) and collision rate (CR) are used as
performance indices [21]. These values are relative sums of identically reproduced
hashes in genuine and impostor trials correspondingly. The identical hash reproduction in
impostor trial means false acceptance with zero decision threshold and, thus, CR can be
denoted as FAR(0). The identical hash reproduction in genuine trial means the correct
acceptance with zero decision threshold and, thus, RR can be denoted as 1-FRR(0).
Therefore CR and RR have the same nature as FAR and FRR values. In a user
authentication scenario the equal error rate (EER) is usually used instead of both curves
in order to represent the algorithm performance in an easier way. Similarly, the collision-
reproduction rate (CRR) is proposed as a performance index for the hash generation
scenario. The CRR is given by equation 19 and can be interpreted as half total error rate
in zero point HTER(0). In this consideration CR and RR are weighted equally.

CRR = %(CR+(1—RR)) (19)

5.2  Expansion Level of Individual Quantization Interval

The selection of expansion factor e, proposed in section 3 is a very important issue for
managing the ratio between CR and RR. The selection of a relatively low value of e
leads to compact user intervals and therefore to low CR and low RR. On the contrary,
the selection of a high value of e leads to very wide user intervals and consequently to
high CR and high RR. In marginal cases RR as well as CR is equal to zero or equal to
one, resulting in CRR of 0.5. Figure 7 shows the dependency between performance
indices and the expansion factor obtained in the tests with 131 features.
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Fig. 7. Dynamics of performance indices (RR, CR, EER, CRR) depending on expansion factor
for the complete feature set of 131 features

It is not a good idea to look for the optimal CRR with all 131 features, because it is
obvious that with reduction of features RR as well as CR will grow. Since the optimal
CRR implies relatively high RR, the RR does not have space to grow. CR at the same
time will grow rapidly. Hence, the significant improvement of CRR can not be
achieved through feature elimination. We select the expansion factor so that RR is at
least 50%. In this case the RR will probably grow faster than CR, so that CRR also
grows. The following expansion factors are specified: 4.25 for public PIN and secret
PIN, 5 for pseudonym, 5.5 for symbol and place. The corresponding CR values for
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the complete feature set are 6.49%, 2.22%, 1.32%, 0.45% and 1.69% for public PIN,
secret PIN, pseudonym, symbol and place correspondingly.

5.3

Results

In order to illustrate the ability of proposed feature selection approaches to determine
the feature relevance, figure 8 illustrates the relationship between CRR and the
number of selected features. The curves of all feature selection methods are firstly
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falling and afterwards growing. However, global minima are attained in very different
positions according to the number of selected features. The black solid curve, called
‘raw’, is the random ranking of features based on the features’ implementation order.
There are 13 features without any variance. They do not have any influence on CRR.
All feature selection strategies rate these features with zero and therefore put at the
end of the ranking list. Thus, the CRR values between 118 and 131 are equal, except
the case of a random ranking. It can be clearly seen that not all curves have superior
dynamics compared to the raw curve, which means that filter-based feature selection
generally does not guarantee an improvement of CRR. However, the global minima
of the ANOVA curve are in all cases significantly lower than the global minima of the
raw curve. Consequently, it can be asserted that the ANOVA-based feature selection
invariably improves the hash generation rates.

Table 2 shows the best results provided by different feature selection methods
with a corresponding number of selected features for each semantic class. The first
row of the table contains the optimal CRR values, which can be achieved with the
complete set of 131 features by modifying the expansion factor of an individual
quantization step. Regarding the feature selection methods, these performance
values can be considered as reference ones. Table 2 shows that ANOVA is clearly
the best heuristic with 20.39%, 12.98%, 11.87%, 7.41% and 12.34% of CRR.
Exceptionally, for the place semantic, the joint-entropy heuristic has superior
performance, namely 12.29%, which is marginally lower than in the case of
ANOVA. It is also interesting to observe that ANOVA has in most cases the better
performance than simple wrapper.

The CRR provided by SFS and SBS methods are significantly lower compared to
heuristics, even though feature selection and evaluation were provided based on
completely different sample sets.

Table 2. The best achieved collision/reproduction rates (in %) with corresponding number of
selected features

public pin (77993) secret pin pseudonym symbol place
RR CR CRR__n.feat|RR CR CRR__n.feat/RR CR CRR__n.feat|RR CR CRR__n.feat|RR CR CRR__ n.feat,
all features 58.87 10.56 25.85 131| 70.38 11.11 20.37 131| 67.556 8.58 20.52 131 70.57 504 17.24 131| 69.43 7.38 18.98 131
raw 76.23 20.53 22.15 39| 79.06  9.04 14.99 42| 8359 9.23 12.83 38 90.19 892 937 27| 77.93 8.04 15.06 39
anova 78.68 19.39 20.35 33( 8340 9.32 12.96 31| 83.02 6.75 11.87 39( 9264 746 7.41 24( 89.62 14.30 12.34 23
anova-2class 75.28 19.45 22.08 49| 81.70 14.73 16.52 44| 77.74 922 1574 34| 88.49 11.10 11.30 7| 79.25 9.51 15.13 39
correlation 83.59 25.18 20.80 36| 70.76 7.32 18.28 53| 86.42 13.41 13.50 38| 86.23 10.11 11.94 23| 72.83 6.19 16.68 52
entropy 62.83 13.96 25.57 49| 76.60 19.07 21.23 26| 72.64 6.97 17.17 26| 86.42 9.11 11.35 8| 81.13 17.41 18.14 20
entropy-2class-k| 71.70 14.44 21.37 77| 72.64 9.84 18.60 68| 85.47 10.89 1271 35| 86.42 5.38 9.48 36| 96.04 23.18 13.57 13
entropy-2class-js 71.70 1474 21.52 74 72.64 9.84 18.60 68| 85.28 10.64 12.68 36| 85.09 524 10.07 39( 87.17 15.41 14.12 21
entropy-2class-bha [ 71.70 14.70 21.50 72 70.19 820 19.01 83| 81.13 7.38 13.12 52( 88.87 6.77 8.95 23| 76.42 6.32 14.95 63
joint-entroj 69.81 15.99 23.09 62| 8245 1254 15.04 33| 76.79 8.62 15.91 48| 83.02 727 12.12 32| 87.17 11.74 12.29 39
simple wrapper 73.02 16.28 21.63 32| 85.47 16.76 15.64 14| 86.42 10.40 11.99 18| 89.43 6.06 8.31 17 89.25 11.60 11.18 20
sfs 74.91 12.64 18.87 66| 81.70 7.57 12.94 27| 86.60 7.07 10.23 26( 93.59 344 4.93 13| 88.30 5.62 8.66 45
sbs 86.42 19.28 16.43 43| 90.38 10.45 10.03 34| 89.81 844 9.32 48| 93.77 476 5.49 15] 91.89 8.32 8.22 33
Comparing the best result from table 2, which is 4.93% CRR (CR 3.44%/RR

93.59%) for the symbol, to the results from [17], in can be noticed that double
quantization based biometric hashing has clearly higher performance according to the
CRR. In [17], the best CRR, achieved for symbol with 60 features, was 6.32% (CR
6.23%/RR 93.59%).
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Table 3. The collision/reproduction rates (in %) obtained with subset of 30 features

public pin (77993) secret pin pseudonym symbol place

RR CR CRR__n.feat RR CR CRR__n.feat|RR CR CRR __ n.feat.|RR CR CRR_n.feat RR CR CRR__n.feat,
all features 58.87 10.56 25.85 131| 70.38 11.11 20.37 131 67.55 858 20.52 131| 70.57 5.04 17.24 131| 69.43 7.38 18.98 131
raw 78.30 23.37 22.53 30| 82.08 13.93 15.93 30| 84.72 12.89 14.08 30| 88.11 8.31 10.10 30| 80.00 14.76 17.38 30|
anova 78.87 20.91 21.02 30| 83.40 9.70 13.15 30| 83.77 8.16 12.19 30| 89.43 572 8.14 30| 80.00 10.15 15.07 30|
anova-2class 79.62 31.26 25.82 30| 83.40 19.53 18.06 30[ 77.93 10.19 16.13 30( 74.53 1.84 13.65 30| 80.94 12.80 15.93 30
correlation 83.77 26.97 21.60 30| 81.51 20.52 19.50 30( 87.93 18.07 15.07 30( 81.89 887 13.49 30| 76.60 14.28 18.84 30
entropy 68.87 23.19 27.16 30| 73.40 1629 21.45 30| 67.55 522 18.84 30( 68.11 261 17.25 30| 68.49 7.89 19.70 30
entropy-2class-kl 76.60 23.04 23.22 30| 75.47 17.23 20.88 30| 85.66 12.37 13.36 30| 86.42 887 11.23 30| 77.93 1149 16.78 30|
entropy-2class-js 76.60 23.04 23.22 30| 75.09 16.43 20.67 30| 85.66 12.28 13.31 30| 86.79 850 10.85 30| 78.30 11.49 16.59 30|
entropy-2class-bha [ 77.55 22.95 22.70 30| 75.09 16.69 20.80 30| 84.91 14.49 14.79 30| 85.66 574 10.04 30| 80.57 1250 15.97 30|

77.36 15.61 19.13 30| 80.57 7.23 13.33 30| 8585 6.74 1045 30| 89.62 202 620 30 88.68 628 880 30
87.55 22.07 17.26 30| 90.57 11.00 10.22 30| 90.76 10.07 9.66 30| 8943 299 6.78 30| 9189 862 837 30|

joint-entroy 81.51 3543 26.96 30| 83.96 26.76 21.40 30| 87.93 23.22 17.65 30| 83.02 7.88 12.43 30| 90.00 23.71 16.85 30
simple wrapper 73.02 16.69 21.84 30( 70.38 6.57 18.10 30[ 77.55 6.34 14.40 30( 76.79 225 1273 30[ 75.09 6.06 15.48 30
sfs
sbs

The number of features in table 2 was defined a-posteriori for the best CRR
obtained from the test. In a real-life scenario the number of features should be defined
a-priori as a system parameter. The estimation of the optimal subset size can be done
empirically, based on the results of preliminary tests or intuitively. The constant
number of used features is also required for adequate generation of a cryptographic
key, since the key size depends on the length of the biometric hash vector. In order to
illustrate results, which can be obtained in real-life application, the number of features
was limited to 30. The corresponding performance values are given in table 3.

Finally, table 4 gives an overview of the most relevant features selected by the
best feature selection approach for each semantic class and shows corresponding
performance indices: CR, RR, CRR and EER. As it can be seen, the features were
selected differently regarding the written content. However, the feature 27
(normalized average velocity in y-direction) is presented in all five subsets. There
are several features presented in four subsets. These are 26 (normalized average
velocity in x-direction), 67 (ratio between accumulated perimeters of convex hulls
around the path segments and the perimeter of the global bounding box), 68
(normalized number of points in left half region), 86 (ratio between the path length
and start-end distance), 122 (average pressure in the third points cluster) and 131
(standard deviation of pressure). These features are considered to be invariably
relevant. However, the vast majority of features is not presented in optimal subsets.
These could be denoted as moderately irrelevant and should be very discreetly used
in further works.

Table 4. The subsets of most relevant features

semantic RR CR CRR EER FS method |no.feat. |features

2,3,5,6, 12, 18, 23, 26, 27, 30, 32, 34, 41, 43, 44, 53, 61,
62, 63, 64, 65, 66, 67, 68, 69, 72, 74, 76, 83, 86, 89, 90, 94,
public pin (77993) | 86,42% | 19,28% | 16,43% | 18,24% SBS 43 |96, 99, 100, 104, 113, 119, 121, 122, 124, 131

1,2,5,6, 10, 16, 18, 23, 26, 27, 30, 32, 36, 38, 39, 40, 54,
60, 61, 65, 67, 68, 70, 76, 81, 85, 86, 89, 97, 104, 113, 122,
secret pin 90,38% | 10,45% | 10,03% | 10,36% SBS 34 |125, 131

3, 8, 14, 16, 17, 18, 26, 27, 31, 33, 34, 35, 37, 41, 44, 49,
51, 52, 53, 55, 56, 59, 61, 64, 66, 67, 68, 69, 72, 73, 74, 76,
87, 91, 94, 95, 96, 97, 98, 99, 105, 107, 111, 118, 121, 122,
pseudonym 89,81% | 8,44% 9,32% 9,61% SBS 48 |125, 131

symbol 93,59% | 3,44% 4,93% 5,53% SFS 13[4, 6, 26, 27, 49, 50, 52, 54, 55, 78, 80, 82, 86

3, 5, 13, 27, 30, 35, 36, 39, 42, 44, 46, 51, 59, 60, 63, 67,
68, 69, 71, 73, 74, 79, 82, 83, 86, 87, 89, 91, 95, 97, 122,
place 91,89% | 8,32% 8,22% 8,30% SBS 33 123, 131
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6 Conclusion and Further Work

The experimental results shown that the reduction of the feature set by elimination of
less relevant features significantly improves the hash generation performance of the
considered secure sketch based biometric system.

The filter-based and wrapper-based approaches to feature selection were
investigated and several examples of both were experimentally evaluated on
handwriting features. It has been shown that filter-based feature selection does not
guarantee the improvement of collision/reproduction rates, even though it can be very
useful in some cases. Indeed, the ANOVA test is identified as the best heuristic and
often demonstrates better performance than ranking based on the classification with
each single feature. The greedy search approaches such as sequential forward or
backward search invariably lead to improvement of collision/reproduction rates and
generally show better results than filters. However, the wrapper-based feature subset
selection is a time-consuming process, even if an exhaustive search is not carried out.
Furthermore, wrappers are intrinsically associated with classifier performance. Thus,
the selected feature subset should not be necessarily an optimal one for another
classifier. Consequently, once the classifier is known and the test set is given,
wrappers are preferable in any other cases we suggest to use ANOVA test for feature
selection.

It is rather difficult to point out features, which are universally suitable for all
written contents. The optimal subsets for each semantic is presented individually and
seven features (normalized average velocity in x/y-direction, ratio between
accumulated perimeters of convex hulls around the path segments and the perimeter
of the global bounding box, normalized number of points in left half region, ratio
between the path length and start-end distance, average pressure in the third points
cluster and standard deviation of pressure) are specified as suitable independently
from written content.

Before feature selection, the most appropriate handwriting content (symbol) has a
CR of 5.04% and a RR of 70.57%. After sequential forward selection the optimal
subset of 13 features is found. The CR is reduced to 3.44% and the RR is increased to
93.59%.

Future research will be dedicated to more sophisticated wrapper approaches such
as sequential floating forward/backward search and branch and bound algorithm.
Furthermore, we have been continuously working on enlargement of our handwriting
database and development of evaluation protocols. The further crucial issue to be
investigated is the hash entropy and security analysis of the resulting biometric
system.
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Abstract. State-of-the-art digital forensic techniques for camera model
identification draw attention on different sets of features to assign an
image to the employed source model. This paper complements existing
work, by a comprehensive evaluation of known feature sets employing a
large set of 26 camera models with altogether 74 devices. We achieved
the highest accuracies using the extended colour feature set and present
several detail experiments to validate the ability of the features to sep-
arate between camera models and not between devices. Analysing more
than 16,000 images, we present a comprehensive evaluation on 1) the
number of required images and devices for training, 2) the influence of
the number of camera models and camera settings on the detection re-
sults and 3) possibilities to handle unknown camera models when not
all models coming into question are available or are even known. All
experiments in this paper suggest: feature-based forensic camera model
identification works in practice and provides reliable results even if only
one device for each camera model under investigation is available to the
forensic investigator.

1 Introduction

The abundance of digital photographs in everyday life and the trust placed into
them as pieces of evidence raises a need for reliable forensic techniques to test the
authenticity of digital images. The increasing number of available techniques can
be broadly divided into image source identification and manipulation detection
[1]. This paper concentrates on the former, and, more specifically, on camera
model identification. Camera model identification is relevant in practice if the
forensic investigator . ..

— knows that a given image has been taken with a digital camera (otherwise
she would use a scheme targeted to distinguish between types of acquisition
devices, e.g., scanner, digital camera, or computer-generated [213]),

— but does not have a set of independent images unequivocally shot with ex-
actly the same device as the suspect image (otherwise she would use a method
for camera device identification based on the intrinsic fingerprint embedded
in each sensors’ pattern noise [4J56I7I8]).

Y.Q. Shi (Ed.): Transactions on DHMS VIII, LNCS 7228, pp. 42-J622012.
© Springer-Verlag Berlin Heidelberg 2012
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Forensic investigators typically have to find answers to the following questions
related to camera model identification: “which camera model was (most likely)
used to shoot this given image?”, for the identification scenario; or, if prior
beliefs prevail, “has this image been shot with a Canon Ixus 70 camera?”, for
the validation scenario.

Techniques trying to answer these questions require characteristics covering
differences between camera models, while occurring very similar between devices
of one model. Common ingredients are depicted in Fig.[Il in the simplified ac-
quisition pipeline of a digital camera. For example, aberrations introduced by
the lens, are specific to models sharing the same optical system, e.g. [9J10]. Es-
timating the configuration of the colour filter array (CFA) or determining the
employed method for colour interpolation allows a basic discrimination between
groups of camera models, e.g. [I1IT2]. Furthermore, compression parameters [13],
meta data [14] and the employed file structure can help to isolate questionable
models.

This paper belongs to feature-based camera model identification based on
characteristics covering coarse noise properties, colour reproduction and image
quality. This approach has been first proposed by Kharrazi, Sencar and Memon
[15] for the identification of digital camera models and was further investigated
by Celiktutan, Avcibas and Sankur for low resolution mobile-phone cameras
[16/17]. Using small sets of digital cameras or mobile-phone cameras, reliable
results for both camera and mobile-phone model identification were reported.

In our previous work [I8], we started to explore the influence of the cardinal-
ity and between-model variance of the training set on the overall classification
performance employing a subset of 12 camera models of the ‘Dresden Image
Database’ [19]. The reported results with average success rates above 90% are
promising and indicate the possibility to apply this scheme in practice. However,
the scalability in scenarios with even more camera models, the influence of the
different sets of features [IBII7/I8] as well as the handling of unknown camera
models require further attention.

Based on all natural images in the ‘Dresden Image Database’ including 26
camera models with altogether 74 devices, we compare different sets of features
and investigate the influence of feature selection under practical relevant condi-
tions. We extend our previous analysis in [I8] on the determined best feature set
and evaluate the ability to separate between different models and not between
different devices. A discussion on the influence of the number of images, devices
and camera models on the detection results gives valuable clues for creating
appropriate training data sets. Finally, we draw attention to handle unknown
cameras in open sets of camera models and deepen our investigations presented
at DAGM 2011 [20]. We believe that this paper contains valuable information
for forensic investigators with typically limited resource and limited budgets to
correctly train a feature-based forensic camera model identification scheme.

The remainder of the paper is organised as follows: Section 2] introduces the
general scheme for camera model identification and discusses the different feature
sets. Section 3 describes the employed data set and basic test settings used in our
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Fig. 1. Simplified image acquisition pipeline of a digital camera and possible sources
of model-dependent characteristics

investigations. An detailed analysis of feature-based camera model identification
employing closed model sets, where all questioned camera models are considered
known, is presented in Sec.Ml Section Bl considers the problem of unknown camera
models and possible false accusation in so called open sets. Finally, the paper
concludes with a discussion in Sec.[Gl

2 Camera Model Identification

Feature-based forensic camera model identification is motivated by differences in
the internal image acquisition pipeline of digital camera models [I5]. To create
visually pleasant images, the manufacturers specifically fine-tune the components
and algorithms for each digital camera model. Details on this fine-tuning are
usually considered trade secrets. Nevertheless we can capture some variation with
specific features. These features are required to be stable for all devices of one
model to capture characteristics inherent in each image acquired with the same
model. For instance, we can try to characterise the camera model-dependent
combination of colour filter array and colour interpolation algorithm, or the
algorithms implemented in the internal signal processing pipeline including, for
example, the white-point correction.

The first step in feature-based forensic camera model identification is the
estimation of a set of features in images taken with all camera models coming
into question. Employing the estimated features, second, a machine learning
algorithm can be trained to, third, determine or to validate the probable source
of an image. In literature, a support vector machine (SVM) is used for machine
learning and the major difference between previously proposed schemes relies
in the set of employed features. The features are broadly classified into four
main groups: Colour characteristics (Fco1) [15] describing the colour reproduction
of a camera model, wavelet statistics (Fway) [21] coarsely quantifying noise,
image quality metrics (Fiqm) [22] measuring noise and sharpness (quality of scene
reproduction by the optical system), and binary similarity measures (Fosm ) [23]
characterising relations between different bit planes of one colour channel as well
as between different colour channels.

Kharrazi, Sencar, and Memon introduced feature-based camera model identi-
fication employing a set of 34 features Finar including Feor, Figm and Fyay [15].



Feature-Based Forensic Camera Model Identification 45

Another set of features Fcen; was proposed by Celiktutan et al. [I7] containing a
similar group of wavelet statistics Fyay and image quality metrics Figm, comple-
mented with binary similarity measures Fi,sm. Contrary to Kharrazi et al. , Figm
are analysed for each colour channel separately and an extended set of Fy,y is
calculated for up to 4 wavelet sub bands. Altogether, the feature set consists of
592 characteristics.

In our earlier work [I8], we used an extended version Feyxt of the original
Kharrazi et al. feature set, consisting of 46 features. We added some new colour
features and, motivated by the work of Farid and Lyu [2I] as well as Celiktutan
et al., calculated an extended set of wavelet features. Furthermore, we inves-
tigated the combination of the 46 features with characteristics of lateral chro-
matic aberration [L0J20] with little success. Lateral chromatic aberration as well
as aberrations in general are dependent on focal length and focus settings. The
resulting variance makes it very difficult to generate a comprehensive measure-
ment of all possible settings necessary for reliable feature-based camera model
identification.

Additionally to the three mentioned feature sets, within this paper, we in-
vestigate an extended colour feature set Fexte, including the features of our
extended set for each colour channel separately (82 features), and a complete
feature set Foomp joining all features of the four basic feature groups: Feo1, Fwav,
-/_'.iqm and -Fbsm~

3 Test Setup

A key factor in designing and evaluating techniques for camera model identifi-
cation is in the composition of a suitable benchmark database. To assure that
arbitrary features capture characteristics of the model rather than of the device
or image contents, a database of images with comparable contents shot with
multiple models and multiple devices per model is required. Only recently, we
compiled the ‘Dresden Image Database’ for this very purpose [19].

Table [ lists the 26 employed camera models, the number of corresponding
devices and images, as well as basic camera specifications. The database includes
both, typical consumer digital camera models and semi-professional digital SLR,
cameras. In some investigations the computational complexity was quite de-
manding and a reduced set of camera models similar to our previous work was
employed [I8]. We abbreviate the complete and reduced sets of camera models
with symbols M, and Meq.

To provide images with similar content, all images in the database are created
employing a specific image acquisition procedure. A tripod was fixed for each
motif and using each device three or more scenes have been taken with different
focal length settings. For logistical reasons all camera models were split into set
A and B, both covering different motifs (cf. [I9] for a more detailed description).
Identifiers of the employed model, device id, camera settings and the acquired
motif are stored together with each image and enable to analyse features under
selected constraints.
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Altogether, 16,958 original images stored in the JPEG format at full resolution
were analysed. Compared to previous work, where a small set of digital cameras
(5 camera models) [I5] or a small set of low resolution mobile-phone cameras
(13 mobile-phone models with altogether 16 devices) [I7] was investigated, the
employed data set allows the evaluation of feature-based camera model identifi-
cation under comprehensive settings. Another difference is the variation in focal
length and flash settings.

Analysing feature-based camera model identification requires a set Ziyaim C Z
of images to train and a set Zies of images to optimise the detection performance
of the employed machine learning algorithm. An independent validation set Z,
is required to report practical relevant detection results. In real scenarios, we ex-
pect different devices employed for acquiring the image under investigation and
the images available for machine learning. Consequently, we partition the set of
available devices D) of each camera model m in a set of devices for machine
learning DE:Zi)n,test and a disjoint set of devices for validating the detection re-

sults DiZf) = pm) / DE:Zi)n,test' The expected difference of image content between
images available during machine learning and images provided for classification
makes a reasonable separation of the set of available motifs P necessary. To
report detection results independently of the image content, requires images of
the same motifs for each device. Ideally, a large number of different motifs for
training, testing and validating feature-based camera model identification ex-
ists. However, due to the limited number of images in our database, we decided
to separate P in a set of training Pirain and a disjoint set of test and valida-
tion Phest,var motifs. The stored device (d) and motif (p) identifiers enable the
assignment of each image i € Z to its corresponding set:

Lirain = {Z|dz S Dtrain,test Ap; € 73train}
Tiest = {Z|dz S Dtrain,test Ap; € 73test,val}
Ival - {Z|dz S Dval /\Pi S Ptest,val}

~ o~
w N =
~— ~— ~—

Experimental results in this paper are based on cross-validation using a fixed set
of 100 different partitionings of Z unless otherwise stated. We assigned devices
and motifs to the corresponding training, test and validation sets randomly with
preset cardinalities (|D£:Zi)n_test| =1, |Ptrain| = 26). All available camera models
are included to make the identification task challenging and realistic. For some
camera models only 1 device is available (e.g., models of make Agfa) and detec-
tion results are only computed for the test images. The fixed partitionings make
the experiments repeatable and we present average results balancing between
best and worst results.

Besides the public available set of images in the ‘Dresden Image Database’,
we employed an additional set of snapshot images created only for some selected
camera models. These images form another validation set with scene content and
camera settings independent to the structured design of the official database.
Due to the lack of a tripod during image acquisition, the quality is not always
convincing and also blurred images are included.
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All investigations in this paper make use of a support vector machine im-
plementation developed by Chang and Lin with a radial based kernel function
[24] provided through the interface of the R package e1071. More precisely, we
employed the multi-class classification scheme of LIBSVM to separate between
different camera models. The implementation of the library solves the multi-
class problem by creating single binary SVMs for all pairs of different classes
(one-versus-one) and a voting scheme determines the most probable class.

Table 1. List of digital camera models included in this study; number of devices
per model, basic camera specifications and number of available images. (*) indicates
models included in the reduced set M,.q necessary to investigate the large feature sets
(-FQeli,]:comp)~

make model no. devices resolution sensor size focal length no. images (flash released)

[pixel] [inch or mm] [mm] set A set B > snapshots
Agfa DC-504 1 4032x3024 - 7.1 78 (14) 91 (10) 169 (24)
Agfa DC-733s 1 3072x2304 - 6.2-18.6 150 (21) 128 (3) 278 (24)
Agfa DC-830i 1 3264x2448 - 6.2-18.6 176 (50) 187 (31) 363 (81)
Agfa Sensor505-X 1 2592x1944 - 7.5 87 (11) 85 (9) 172 (20)
Agfa Sensor530s 1 4032 %3024 - 6.1-18.3 195 (50) 177 (35) 372 (85)
Canon Ixus55 1 2592x1944 1/2.57 58-17.4 224 (52) 224 (52)
Canon  Ixus70 (*) 3 3072x2304 1/2.57 5.8-17.4 567 (119) 567 (119)
Canon  PowerShot A640 1 3648 %2736 1/1.8" 7.3-29.2 188 (23) 188 (23)
Casio EX-2150 (*) 5 3264 x2448 1/2.57 4.65—18.6 924 (178) 924 (178)
FujiFilm  FinePix J50 3 3264 %2448 1/2.5 6.2-31.0 630 (99) 630 (99) 503 (210)
Kodak  M1063 (*) 5 2748 %3664 1/2.33" 5.7-17.1 1070 (330) 1321 (289) 2391 (619)
Nikon CoolPix S710 (*) 5 4352x3264 1/1.72” 6.0-21.6 925 (173) 925 (173)
Nikon D200 (*) 2 3872%2592 23.6x15.8 mm 18 — 135/17 — 55 752 (79) 752 (79)
Nikon  D70/D70s 2/2 3008%2000 23.7x15.6 mm 18200 736 (78) 736 (78)
Olympus  ©1050SW (*) 5 3648 %2736 1/2.33” 6.7-20.1 1040 (342) 1040 (342)
Panasonic DMC-FZ50 3 36482736 1/1.8” 74-888 931 (115) 931 (115) 832 (426)
Pentax  Optio A40 4 4000x3000 /17 7.9-23.7 638 (90) 638 (90) 574 (445)
Pentax  Optio W60 1 3648 %2736 1/2.3” 5.0-25.0 192 (23) 192 (23) 308 (290)
Praktica DCZ5.9 (¥) 5 2560% 1920 1/2.5” 54-162 1019 (273) 1019 (273)
Ricoh GX100 5 3648 %2736 1/1.75” 5.1-15.3 854 (112) 854 (112) 1794 (1106)
Rollei RCP-7325XS (*) 3 3072x2304 1/2.57 5.8-17.4 589 (148) 589 (148)
Samsung L74wide (*) 3 3072x2304 1/2.5 4.7-16.7 686 (144) 686 (144)
Samsung NV15 (*) 3 3648 %2736 1/1.8” 7.3-21.9 645 (110) 645 (110)
Sony DSC-H50 2 3456 x 2592 1/2.3” 5.2-78.0 541 (57) 541 (57) 375 (45)
Sony DSC-T77 4 3648 %2736 1/2.37 6.18-24.7 725 (88) 725 (88) 863 (346)
Sony DSC-W170 2 3648 2736 1/2.3” 5.0-25.0 405 (52) 405 (52) 244 (38)
> 74 9863 (2172) 7093 (1036) 16956 (3208) 5493 (2906)

4 Camera-Model Identification in Closed Sets

In the first part of our investigations, we assume that all camera models coming
into question are known. We call sets including only known camera models closed
sets. In practice, it might be difficult to consider all possibly employed camera
models during image acquisition and unknown camera models might cause false
accusations. This problem is an inherent property of multi-class SVMs, which
always assign a sample to one of the trained classes. We discuss this problem in
Sec.Bl and present first solutions to cover unknown models in open sets.

4.1 Benchmarking Feature Sets

Before we will take a closer look at the ability of the features to separate between
different camera models and not between different devices, we will first analyse
the performance of the five feature sets described in Sec.2
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Therefore, we optimised the basic parameters of a SVM with a radial based
kernel function using grid-search with + in the range of 232+~ and C in
the range of 275415 The optimisation was done separately for each of the
fixed 100 partitionings to report average and standard deviation of the accuracies
(i.e., the average detection rate over all camera models) under optimal parameter
settings in Tab.[2l The required computational time increased exceptionally when
we tried to optimise a SVM for M) in combination with the large feature sets
(Fcelis Feomp) and we decided to calculate the results only for Meq.

Table 2. Average accuracies for five different feature sets over 100 fixed partitionings
(standard deviation is enclosed in brackets). Best accuracies are in bold for Mau, Myed
in combination with Ziest, Zval-

feature set
model set FKhar Fext Fexte Feli Feomp

Miued (Wihar,grey) 95.62% (1.60) 97.45% (1.27) 97.94% (1.10) 94.07% (1.61) 94.00% (1.61)
Miea (WKnar,col) - 98.06% (1.02) 95.32% (1.55) 95.30% (1.49)
Mied (WDBS grey) 95. 57% (1.60) 97.13% (1.34) 97.73% (1.18) 94.29% (1.45) 94.29% (1.42)
3 Mied (WDBS col) - - 97.83% (1.03) 95.23% (1.27) 95.24% (1.26)
M
M

red

all (Wkhar grey) 89.29% (2.46) 91.69% (2.33) 92.71% (2.25) - -

all (WKhar,col) - 93.08% (1.95)

Man (WpBs,grey) 89. 26% (2.51) 91.51% (2.32) 92.85% (2.20) - -
( (1.

WDBS, col) - - 93.12% (1.94) - -

M (Wihar,grey) 93.14% (1.93) 95.27% (1.70) 96.12% (1.49) 91.50% (1.79
& Mied (Wihar,co1) - 96.36% (1.32) 92.80% (1.66
= Mica (wBs,grey) 93. 18% (1.94) 94.96% (1.80) 96.01% (1.56) 92.66% (1.73
£ Mied (WDBS,c0l) - - 96.18% (1.40) 93.75% (1.58

test data Zest

91.47% (1.76)
92.70% (1.67)
92.65% (1.74)
93.69% (1.63)

T E2=2=

WDB8,grey) 85.79% (2.86) 88.70% (2.85) 90.41%

)
)
Wihar,grey) 85.62% (2.94) 88.60% (2.87) 89.98% (2.63) - -
)
)
WDBS, col ) - - 90.93% (2.48)

( (2.63
(WKhar,col) - - 90.67% (2.42
( (2.59
(

We also experimented with the influence of the selected wavelet filter to calcu-
late the wavelet statistics. Namely, we tested a wavelet filter originally employed
by Kharrazi et al. (wknar) and a Daubechies 8 filter (wpps) commonly used for
the estimation of sensor noise [4]. For the feature sets Foxtc, Fgeli and Feomp,
we included also tests with and without averaging the wavelet statistics of each
colour channel (Wgyrey, Weol)-

It can be expected, that increasing the number of known camera models in-
creases also the chance, that different models share similar characteristics. The
decrease of accuracy in case of M) compared to M,eq demonstrates this effect
and might result in less accurate decisions when using sets with considerably
more than 26 models. Furthermore, the results employing Ziest (images acquired
with the same device as the training data) are always better than the results for
a1 (images acquired with other devices). This indicates small variations in the
analysed characteristics between devices of one model.

We obtained the best results in this scenario employing Fexic for both sets
of camera models M, and M,eq. Differences in the results related to the two
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employed wavelet filters are negligible and depend on the employed feature set. In
contrast, using the wavelet statistics for each colour channel separately, increases
the accuracy slightly in all cases. Contrary to our expectations, adding binary
similarity measures JFpsm did not increase the identification performance for
camera models available in the ‘Dresden Image Database’. In fact, the larger
number of features seem to complicate the training of the SVM. Celiktutan et
al. therefore applied feature selection to reduce the number of features and to
increase the identification performance.

4.2 Feature Selection

Based on the previous tests, we decided to try feature selection to investigate
the possibility to improve the accuracy. We employed sequential forward float-
ing search (SFFS) [25] on Fextc and Feomp. Features in Feye were analysed
using M;.q and M,y and, again due to the computational constraints, Feomp
was tested only with M,eq resulting in altogether three test configurations. Fur-
thermore, we restricted all following experiments to wavelet statistics based on
WDBS,col. Knowing that the selection of motifs and devices employed for training
might influence feature selection, we applied SFF'S to the first 10 of the 100 fixed
partitionings of Z.

Figure2depicts the relation between accuracy and number of selected features
for two partitionings with the best and worst achieved maximum accuracy for
Tiest- In this example, we used Foxie together with M .q and it was possible to
obtain an accuracy above 98% for Zies for all 10 partitionings of Z. In contrast,
the results for Z,,; are worse and are only above 98% in the best case.

SFFS tries to select features according to their importance on the overall
classification accuracy and we would expect a similar order of selected features

100 |- i
98 |- ]
S 96 |- |
95 |
2 94 N
g
=}
3
=0 g — Tiest (best case)
il —— Tiest (worst case)
9ol [ case) |
i ==~ Tya (best case)
38 i === Tya (worst case)
I~ U

T T T T T T T T
1 10 20 30 40 50 60 70 80
no. of features
Fig. 2. Number of selected features of Fextc in relation to the achieved accuracy using
Mied- 2 partitionings with the best and worst accuracy for Ziesr after feature selection

are depicted (both above 98%). Symbols + mark the highest accuracy obtained in both
cases.
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for all 10 partitionings depending on the employed feature set. While there are
indeed some features always in the range of the first 30 most important features,
the concrete partitioning of devices and motifs employed for training made the
ordering of most features more variable than expected. Considering the worst
case in Fig.[2 the increase in accuracy is not always continuous and makes the
selection of an universal set of features even more difficult.

Therefore, we used all 30 sets of the best selected features (3 test configura-
tions x 10 partitionings of Z) and calculated accuracies in combination with all
100 fixed partitionings. For each of the 3 test configurations we determined the
set of selected features maximising the average accuracies of Zi.s; over all parti-
tionings and report the results in Table[l Note that in case of Feomp the feature
selection was computationally demanding and we aborted the calculation after
48h for each of the 10 partitionings. At that time the first 40 best features were
selected, explaining the slightly lower accuracies. Even if we directly compare
the accuracies between the best 40 features of Foxtc and Foomp, the results are
very similar. Furthermore, a comparison of the accuracies in Tab.Bl with the re-
sults in Tab.[2] shows only small differences and negligible changes in the overall
performance.

Table 3. Best average accuracies obtained after feature selection in Fexte and Feomp.
The employed set of camera models during feature selection is indicated in brackets
after each feature set and the depicted accuracies are calculated in combination with
both sets of camera models.

SFF'S on feature set
model set I Fexte (Mred) Foxte (Man) Feomp (Mred

)

Miea (wpBs,cot) Ziest 97.72% (1.27) 97.79% (0.95) 97.05% (1.17)

Man (wpBs,co1) Trest 92.89% (1.93) 93.59% (1.96) 91.49% (2.13)
(

(
Miea (WpBs,co1) Zvar 96.08% (1.60) 95.97% (1.11) 96.16% (1.20)
Moan (wpBs,col) Zvar 90.77% (2.50) 91.68% (2.31) 90.47% (2.08)

o= 2o
—

Feature selection might help to increase the overall performance in case of a
specific partitioning of Z, but it is difficult to find a universally valid reduced
set of features. For the following tests only results employing Fexi. are reported.
Table [ gives an example of the average detection rate for each camera model
employing Zya1 (Ziest is used in cases where only one camera model is available).
The concrete detection rate depends on the camera model and, for example,
images acquired with a Nikon S710 or a Ricoh GX 100 can be reliably identified
with low false acceptance rate. For cameras like the Sony T77 the accuracy drops
to 84.9% due to a higher similarity to camera models of the same manufacturer
W170 and H50 as well as as a higher similarity to the Panasonic DMC-FZ50.

The next Section presents a detailed analysis of the similarity between differ-
ent camera models and between devices of one camera model. Using Fexte we
determined v = 272 and C' = 2% as appropriate parameters for all 100 partition-
ings to decrease computational requirements.
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4.3 Intra- and Inter-camera Model Similarity

The ability to separate between different camera models and not between differ-
ent devices is a basic requirement for all camera model identification schemes.
Therefore, characteristics should be chosen in a way that the intra-camera model
similarity is high, i.e., feature values of devices of the same model are similar.
In contrast, the inter-camera model similarity between different camera models
should be minimised.

To give a visualisation of intra- and inter-camera model similarity between all
employed 74 devices for Fextc, we calculated for each device the centroid over all
corresponding feature values. Applying multi-dimensional scaling the centroids
mapped to 2D are depicted in Fig.[l The visualisation clearly shows a spatial
grouping of devices of the same camera model and supports the assumption,
that the employed features are able to separate between camera models.

In a more detailed plot in Fig.[l we illustrate the dissimilarity between feature
values of single images of different camera models together with the similarity be-
tween devices of the same model. In Figure[Zalthe separation between the two cam-
era models Nikon S710 and Sony T77 is clearly possible, while it is not possible to
separate between different devices. In contrast, the dissimilarity of images made
with camera models of the same manufacturer is sometimes lower and makes a sep-
aration more difficult. Figure[dhl depicts an example for this case.

To investigate intra- and inter-camera model similarity in more detail, we
trained the feature-based camera model identification scheme for each device of
one camera model — contrary to its original purpose. We calculated average re-
sults iterating over the fixed set of 100 partitionings. Table[Bl shows the results for
separating between all devices of Nikon S710, Sony T77 and Sony W170. Similar
to the observations in Fig.[d] a clear separation between Nikon and Sony camera
models is possible. Furthermore, discriminating between the camera models T77
and W170 both manufactured by Sony are slightly worse and indicate possible
manufacturer-specific dependencies. In all cases it is not possible to separate
between devices of the same camera model with acceptable accuracy.

The two devices of the SLR camera model Nikon D200 are a noteworthy
exception. In case of these two devices, device identification using feature-based
camera model identification is indeed possible with high accuracy (see Tab.[d]). In
contrast, the four devices of the SLR model D70/D70s are indistinguishable from
each other. Reconsidering the detailed results in Tab.dl the low intra-camera
model similarity between the D200 devices might explain the low detection rate
of 80% in detecting the correct camera model.

4.4 Influence of the Number of Images, Devices and Models

The available resources during a forensic investigation are limited in terms of
time and money. Consequently, it is important to know how many images and
devices have to be considered to train a feature-based camera model scheme for a
specific set of models reliably. Furthermore, it is important to consider relations
between the number of questioned camera models and the accuracy in detecting
the correct camera model.
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@ Agfa 505-X X Agfa 530s
* o — Agfa DC-504 | Agfa DC-733s
O Agfa DC-830i % Canon A640
4 ¢ ++ 00 % Canon Ixus 55 @ Canon Ixus 70
° o O B n 0%0 @ Casio Z150 ® Fuji J50
® A A &> ® Kodak M1063 [J Nikon D200
| A 6 <& Nikon D70/D70s A Nikon S710
7‘% 0o A Olympus p1050 ¢ Panasonic FZ50
0 ¢ ® ¢ Pentax A40 O Pentax W60
o0 PN @ Praktica DCZ5.9 © Ricoh GX100
X Rollei 7325XS @ Samsung L74
X 4+ Samsung NV15 < Sony H50
< Sony T77 ® Sony W170

Fig. 3. Visualisation of intra- and inter-camera model similarity. The centroid of all
feature values of all images of each device is mapped to 2D using multi-dimensional
scaling and different devices of one camera model are depicted by the same symbol.
Devices of the same camera model are closer to each other whereas devices of different
models are farther apart.

OSony T77id 69 2id 700id 710id 72
+Sony W170 id 73 *id 74

(b) Sony T77 (4x) and W170 (2x)

+ Nikon S710 id 24%id 25 +id 26 xid 27 xid 28
OSony T77id 69 4id 700id 710id 72

(a) Nikon S710 (5x) and Sony T77 (4x)

Fig. 4. Visualisation of the similarity of feature values between all images of pairs of
camera models using the two most distinctive principal components. Different symbols
of the same colour indicate different devices of one camera model. Camera models
are visually separable, but a differentiation between devices of the same model is not
possible.
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Table 5. Intra- and inter-camera similarity between devices of three different camera
models averaged over all 100 fixed partitionings (overall accuracy 43.76%, accuracy
S710 32.23%, accuracy T77 49.92%, accuracy W170 60.27%).

identified as
device id 24 id 25 id 26 id 27 id 28 id 69 id 70 id 71 id 72 id 73 id 74

S710 id 24 42.8 15.0 12.1 20.2 98 - - - - - -
S710 id 25 24.1 21.5 17.9 20.7 159 - - - - - -
S710 id 26 19.8 20.6 26.4 14.6 185 - - - - - -
S710 id 27 26.7 17.3 12.6 33.1 10.3 - - - - - -
S710 id 28 15.3 16.0 16.6 14.7 374 - - - - - -

T77 id69 03 02 01 - 0.4 55.1 176 128 10.3 2.2 0.8
T77 id70 04 - 03 - 0.3 23.6 509 149 7.7 1.0 038
T77 id71 01 - 01 - 0.1 21.4 248 393 11.8 1.8 0.6
T77 id72 02 - 01 - 0.4 16.4 10.5 11.6 54.4 3.8 2.6
W170 id 73 - - - - - 08 02 02 1.0 556 422
W170 id 74 - - - - - 1.0 01 03 14 322 649

Table 6. Intra- and inter-camera similarity between devices of camera models
D70/D70s and D200 averaged over all 100 fixed partitionings (overall accuracy 60.35%,
accuracy D200 95.82%, accuracy D70/D70s 42.61%).

identified as
device id 29 id 30 id 31 id 32 id 33 id 34

D200 id29 954 4.5 - - - -
D200 id 30 3.8 96.2 - - - -
D70/D70s id 31 - 02 342 253 220 183

D70/D70s id 32 - 01 23.0 445 168 15.6
D70/D70s id 33 - 01 201 16.6 476 15.6

D70/D70sid 34 0.1 0.2 17.1 20.7 17.8 44.1

No. of Images and Devices for Training. Pictures taken from different mo-
tifs differ significantly in image content compared to images capturing different
scenes of the same motif with different focal length settings. Based on the stored
identifiers in the database, we investigate the number of images for training
each camera model under consideration of the number of motifs |Pirain| and the
number of images |It(i:f;) | per motif p and device d. More precisely, we created
a specific set of 225 fixed partitionings of Z similar to the procedure in Sec.[3}
First, we selected randomly one device per model for training (|Dt(gi)n7test| =1)
and, second, we varied the number of motifs for training |Pirain| in the range
from 1 to 45. We repeated both steps 5 times resulting in 225 partitionings. To
investigate the influence of the number of images per motif p and device d, we
varied |It(;la;ipn)| in the range from 1 to the maximum number available. Note that
there are 47 motifs for camera models in set A available, whereas set B only
holds 30 or 36 motifs, depending on the camera model. To keep distinct motifs
for training and testing, we left always a minimum of 3 testing motifs for each
camera model (|Piest,val| > 3).

Figure Bl illustrates the relation between the accuracy and the number of im-

ages for training for M, and M.q. The depicted accuracy is averaged over all
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Fig. 5. Relation between the number of motifs available for training |Pirain| and the

accuracy for Z,.1. Additionally, the influence of the number of images per motif p (and
z‘(d@)

train

per device d) | | is depicted.

5 fixed sets of training devices Diyain test- Employing the smaller set of camera
models M,eq results in a faster increase of accuracy compared to M. The
influence of the number of different motifs is higher than the influence of the
number of images per motif. Nevertheless, adding images with different cam-
era settings is still important to achieve the maximum possible accuracy. After
adding 30 motifs in case of M, and 20 motifs in case of M,eq, we observe
only a minor increase in accuracy. Nonetheless, it is important to employ a no-
table number of images capturing different motifs to get best detection rates.
Depending on the number of camera models considered during an investigation,
we suggest |It(iipn) | > 3 acquired with different camera settings for a minimum of
| Ptrain| = 30 motifs to get reasonable accuracies. Whenever possible, the number
of motifs should be increased.

In another experiment, we investigated the relation between the number of
devices |Dt($i)n’test| and motifs | Pipain| for training. We used the previously intro-
duced set of 225 fixed partitionings and selected randomly 1 up to 4 devices for
training, where available. In case of camera models with more than one device
in the database, we always left a minimum of one distinct device for validation
(1D > 1).

The average results are depicted in Fig.[6 for M, and a set of 15 camera
models including 3 or more devices per model. Different to the previous results
on the influence of the number of motifs and images per motif, increasing the
number of devices has a negligible influence on the accuracy. Consequently, prac-
tical investigation should focus available resources on the acquisition of enough
images per camera model covering different motifs and camera settings. Bor-
rowing or purchasing more than one device per camera model is less important
regarding the average case. Reconsidering the results on intra- and inter-camera
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accuracy for Za. Increasing the number of devices per camera model has a negligible
influence on the accuracy.

model similarity of the Nikon D200 in Sec.[43] it might be still necessary to
employ more than one device in some cases.

No. of Camera Models. Comparing the results depicted in Fig.[Gal and [0
clearly indicates a decrease in accuracy when a larger set of camera models is
considered. To investigate the influence of the number of camera models in more
detail, we conducted two experiments employing the 100 fixed partitionings in-
troduced in Sec.Bl Starting with My, in the first experiment we removed models
one by one in order to maximise the accuracy on the reduced set. In the second
experiment we did the opposite and removed models in order to minimise the
accuracy. With both experiments we try to gauge the range of correct identifi-
cation results in relation to the number of employed camera models in a good
and bad scenario.

Figure [0 depicts the average accuracy for Zies; and Zy, in relation to the
number of removed camera models for the two experiments over 100 fixed par-
titionings. Furthermore, we determined the number of occurrences each camera
model was removed first, second and so on, and specified the camera models
with the highest count on the x-axis of the two plots. Reducing the number of
camera models considered during an investigation does not necessarily increase
the accuracy in detecting the correct camera model. In fact, an inconvenient
combination of camera models can even for small sets result in low detection
rates. It might be contradictory at first glance, that removing a camera model
results in a lower accuracy, but by doing this only worse separable camera models
remain and the average accuracy decreases.

We plotted also the accuracy of correctly identifying the set of snapshot im-
ages mentioned in Sec.[8l These images are photographed freechand employing
many different focal length settings, and were acquired in several cases in dark
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Fig. 7. Relation between number of camera models considered during an investiga-
tion and accuracy. Depending on the combination of camera models in question, the
accuracy can be also low for small sets of models.

environments with active flash. The depicted accuracy is considerably less com-
pared to Ziest and Zya. To study the cause of this bad result, we trained the
feature-based camera model identification scheme for all 8 camera models where
snapshot images are available. We either employed the standard motifs or the
snapshot images of one device of each camera model for training. Similar to Fig.[1]
the average accuracy for correctly identifying the employed model to acquire a
snapshot image is quite low (78.4%) when we employ our standard motifs for
training. However, if we flip training and validation data and use all snapshot
images of one device of each camera model for training, we get a high accuracy
(93.1%) for correctly assigning standard motifs to the corresponding camera
model. The results emphasise the importance of using different camera settings
during the preparation of images for training feature-based camera model iden-
tification.

5 Camera-Model Identification in Open Sets

Although forensic investigators may put considerable effort into the creation of
a large reference database for training, it is very unlikely that this database will
ever be comprehensive. Therefore a residual risk remains that the camera model
of a given image is not in the database. For critical forensic applications (i.e.,
in criminal court), this case should be detected with almost certainty to avoid
potential false accusations under all circumstances.
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We started to investigate two different approaches in [20] based on one-class
SVMs and binary SVMs to handle this task:

One-Class SVM. The idea of one-class classification is to transform the feature
vectors of one single class via a kernel to find a small region that captures most
vectors. The concept was proposed in the seminal work of Scholkopf, Platt,
Shawe-Taylor, Smola and Williamson [26]. In order to apply one-class SVMs to
camera model identification, we train one SVM for each known camera model
Miknown USING Tirain Of the fixed 100 partitionings (cf., Sec.B]).

The absence of negative information (i.e., feature vectors of unknown camera
models) comes with a price, and one should not expect as good results as when
they are available. The average detection rates using Zya (and Ziest for models
m with [D™)| = 1) for unknown muunown (real) and known models mypnown are
depicted in Fig.[Bal in relation to the one-class SVM parameter v. We iterated
v in the range 0.01,0.02,...,0.6. Depending on the parameter setting we can
either obtain higher detection rates for unknown or for known camera models
and reach a trade-off between both with v = 0.17 and 76% average accuracy.

An alternative approach is to optimise v for each camera model separately.
Figure visualises the performance for selected models using ROC curves.
Here, true and false positive rates indicate the percentage of images assigned to a
known model correctly or incorrectly. The results for models Casio EX-Z150 and
Agfa DC-830i show the best and worst case for our employed set of camera mod-
els (M) and ROC curves of all other camera models are in between. Ideally, we
want very low false positive rates (high probability to identify munknown (real))
and high true positive rates (high probability to identify mynown). However,
the figure indicates that not all observed results are convincing with respect to
practical scenarios in this regard.
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Fig. 8. Averaged results using one-class SVMs and 100 fixed partitionings of Z
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Binary SVM. In addition to one-class SVMs, also binary SVMs can be ex-
ploited in the open-set problem. In Section M the multi-class problem is solved
by creating single binary SVMs for all pairs of different classes (one-versus-one)
and a voting scheme determines the most probable class (cf. Sec.B]). The gen-
eral lack of training data for unknown camera models makes the application of
the standard multi-class classification scheme difficult. One solution to find an
approximation of unknown models could be to use known models as samples of
unknown models.

To experimentally investigate this approach, we iterate over all combinations
of each one known and one unknown camera model, Mynown and Mynknown (real)
respectively. Depending on the combination, we sample training data for un-
known models from all remaining models Mynknown (train) € Man/{Mknown,
Munknown (real)} and employ the fixed set of 100 partitionings of Z. Figure
summarises average detection rates for correctly identifying our two trained
classes Mknowns Munknown (train) and the ‘real’ unknown models Munknown (real)
in relation to the selected known camera model Mmypown. Depending on the
known camera model, detecting trained models Mynown, Munknown (train) WOTks
well. Compared to the results in Sec.d], the detection rates for known camera
models are lower because of the differences in the implementation. On aver-
age also a reliable detection of M yuknown (real) 18 POssible, but in practice espe-
cially worst cases need attention. Depending on the combination of mynown and
Munknown (real) the correct identification of unknown models is sometimes much
more difficult and the detection results are not always convincing. For exam-
ple, detecting Mmunknown (real) = Nikon S710 results in the lowest detection rate
(7.33%) in our test scenario when we trained a binary SVM with Minown =
Pentax A40. In the opposite combination the detection rate for the unknown
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Fig. 9. Averaged results using binary SVMs and 100 fixed partitionings of 7
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model is considerably better (70.74%, Munknown (real) = Pentax A40, Minown =
Nikon S710). Note, detection rates for known models remain stable even in the
worst case scenario and do not decrease by more than 3 percentage points.

Overall, the experiments considering open sets reveal the difficulties to han-
dle unknown camera models in practice. While average detection rates of binary
SVMs for known and unknown camera models are promising, detailed inves-
tigations illustrate that the approximation of unknown models with samples
of known models is prone to be incomplete. Hence, worst case detection rates
might be considerably lower. Similarly, the absence of training data for unknown
models in case of one-class SVMs results in unsatisfactory identification results.
In summary, we see both approaches as very first attempts to handle unknown
camera models. Further research is necessary to improve the prevention of false
accusations.

6 Concluding Remarks

This paper complements existing work on feature-based forensic camera model
identification by an experimental in-depth analysis on a large set of 26 cam-
era models and altogether 74 devices. We investigated different sets of features
known from the literature and achieved the best results using the 82 features of
the extended colour feature set Fexte. While the improvement by adding binary
similarity measures BSM was negligible in our test scenario, the computational
requirements increased considerably for the set of all 26 camera models. In prac-
tice, the optimal feature set depends on the employed set of models and maybe
also on the type of cameras (digital still camera or mobile phone camera). Fur-
thermore, our investigations on feature selection show, that finding a set of op-
timal features is difficult due to dependencies on the selected devices and motifs
for training. Hence, we decided to continue with all features in Feytc.

Our analysis of intra- and inter-camera model similarity gives empirical evi-
dence, that the employed features are appropriate to differentiate between cam-
era models and not between devices. The influence of the number of images,
devices and models on the correct identification was investigated and our results
emphasise the importance to employ many images of different motifs together
with different acquisition settings to train each considered model optimally. Em-
ploying more than one device per model is only necessary in exceptional cases
like the Nikon D200, where it was indeed possible to separate between devices.

The last part of the paper deals with the practically relevant case of incomplete
training data in open sets of camera models and presents results using one-class
and binary SVMs. The detection rates depend clearly on the combination of
known and unknown camera models. While binary SVMs enable to reliably
separate known and unknown models in most cases, finding a broad enough
training set for all cases is difficult and further investigations are necessary.

The presented results provide important clues for forensic investigators to
select appropriate parameters for training a specific set of camera models as
well as to assess detection results in a real case. A direction for future work
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is a detailed analysis of the influence of image processing on the identification
results. First investigations presented at DAGM 2010 [20] are worse compared
to the results known from previous literature [I6/17] and need further attention
to identify robust subsets of features. Also different JPEG compression settings
implemented in digital cameras may obscure a correct model identification and
call for a careful investigation under controlled settings.

Calculating and analysing the features for all employed images required more
than 15,000 hours of computation time. Therefore, supplementary material is
made available via ‘Dresden Image Database’ website (https://forensics.inf.
tu-dresden.de/ddimgdb/publications/modelid ). We hope this not only saves
ressources in the development of new forensic techniques but als provides a good
starting point for introducing students to image forensics research.
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Abstract. Digital watermarking is a common technique in multimedia security
for copyright protection and data authentication. Embedding a digital
watermark into a media file is often computationally demanding as multiple
operations take place within the process to ensure a high level of perceived
quality of the marked copy and a high robustness of the embedded watermark.
State of the art watermarking algorithms require time consuming spectral
transformation operations as well as windowing and perceptual models for
masking the embedded watermark. Our new concept is to set up a collection of
pre-computed watermarking signals and mix them with the cover signal for fast
and simple embedding. To ensure that the watermark signal is well suited for
the embedding position with respect to masking, we suggest using audio
fingerprinting technology as matching mechanism. Test results show that our
approach in able to watermark content using such proposed lookup collection.

Keywords: Digital watermarking, audio fingerprinting, perceptual hashing.

1 Motivation

Digital watermarking has become a common procedure in commercial media
applications, be it audio, video, single image or e-book. Some of these applications
require the watermarking algorithm to work in real-time with minimal delay; many
demand even faster embedding (e.g. in video-on-demand or mp3 download shops).

This challenge can be addressed with different mechanisms depending on the use
case. While least significant bit embedding algorithms are fast and simple to
implement and require almost no computational power, their usability for most
watermarking applications is minimal. Here the only way to speed up the embedding
process is either to provide more computational power or to design more efficient
watermarking strategies. The latter approach is not trivial, as watermarking often
relies on computational demanding transformations and complex perceptual models.

In this work, we describe a novel alternative path to watermark embedding,
providing a hybrid approach between container pre-processing and efficient
watermarking. The basic idea is to create a container with pre-calculated watermarked
signals from content which can be expected to be similar to that found in the media
stream to be watermarked and use this container as a lookup collection.

Y.Q. Shi (Ed.): Transactions on DHMS VIII, LNCS 7228, pp. 63-79] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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2 Background and State of the Art

In this section we introduce the two main mechanisms utilized and combined in our
work, namely digital watermarking and fingerprinting. For both, we provide a general
overview as well as a more detailed discussion of challenges and known solutions
relevant for our work.

2.1 Digital Watermarking

Digital watermarking is a technique for embedding information in multimedia
data [CMB2002]. It is based on information hiding techniques similar to
steganographic approaches with the overall goal to embed information into a cover
signal, usually multimedia data. The term digital watermarking was used for the first
time by Tirkel et al in [OST1994], actually written in two words: “water mark”.

2.1.1 Basic Watermarking Principles
A digital watermark is a perceptually transparent pattern inserted in digital data using
an embedding algorithm and an embedding key. A detection algorithm using the
appropriate detection key can retrieve the watermark information. In most approaches
the embedding and detection keys are secret.

Typical watermarking applications are copyright protection, data authentication,
broadcast monitoring, or enabling innovative multimedia services. Dependent on the
application, the embedded watermark represents information about

- the protected media itself (e.g. “This mp3 contains song X”), or

- its copyright owner (e.g. “Copyright owned by music label Y”), or

- the recipient of an individual copy (e.g. “This mp3 file purchased and
downloaded by user Z”), or

- arbitrary data annotation (e.g. meta data, time codes, advertisement info or
authentication codes).

Digital watermarking algorithms use a number of assisting technologies for
embedding information into media files, for example:

- Perceptual models are used for ensuring the resulting quality of the marked
cover by identifying areas in the cover where information can be hidden
without degrading the perceived quality of the cover. Usage of a perceptual
model enables transparent embedding for most covers, but may lead to a
disability of embedding watermarks in certain material with problematic
characteristics.

- Signal transformations like Fourier transformation or Wavelet transformation
are applied if the cover signal is not provided in a domain suitable for
watermark embedding. Then, a transformation is needed to calculate the
spectrum of the cover. This spectrum is then modified by the watermarking
algorithm and re-transformed to the original domain. Signal transformations
often have the highest computational cost within the different steps of a
watermarking algorithm.
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Both perceptual model and signal transformation lead to a high computational
complexity of the watermarking algorithm. This can become problematic if on-the-fly
embedding, for example during online sales or video conferencing, is required.
Therefore a number of strategies for speeding up the embedding process have been
introduced.

2.1.2 Speeding up Watermarking Embedding

In transaction watermarking at online stores, confainer strategies can be applied to
speed up the embedding process [SZF2006]. Here, for every media, a slow one-time
pre-processing step takes place, creating a so-called watermarking container. From
the container individual copies can be rendered by assembling the pre-processed data
in the container in a copy-and-paste-manner very quickly, e.g. 3,000 times faster than
playback speed in the case of mp3.

But if watermarking is applied at live content streams, watermarking based on pre-
processing may be the inappropriate strategy, especially if there is only need for one
watermarking message to be embedded into the stream. This could be the case in
telephone or video communication, in surveillance camera streams or in copyright
watermarking for broadcast signals. In that case, one approach for improving the
speed of watermark embedding are so-called “bit stream embedders” [KCLI +2007]
where transformation operations are saved by working on already transformed
compressed media data.

Other known strategies are not based on speeding up the core embedder, but using
an environment, for example a Grid or Cloud architecture, for distributing the
computational cost on multiple computers or a Client-Server strategy where the
embedding process is divided an a computational complex public stage at the Client
and a computational simple stage at the Server [SHW2007].

2.2 Fingerprinting

Fingerprinting is a content-based retrieval method, often based on modeling human
perception. For example, audio fingerprinting algorithms map an audio data segment
of arbitrary length to a short message digest or content identifier. Similar approaches
are known under the name robust hashing or perceptional hashing for audio (and
video or image data, resp.). The term audio fingerprinting here shall not be confused
with so-called fingerprint watermarking or collusion-secure fingerprint coding
approaches that are resistant to security attacks on watermarking by a collusion of
several attackers.

Unlike cryptographic hashes, fingerprints show certain robustness to moderate
transformations of the audio data. That is, two audio segments that are acoustically
similar to a Human, should have identical or similar fingerprints, even if the audio
segments are not binary identical.

Content-based matching of audio data by fingerprinting can also be seen a pattern
recognition challenge:

- The audio data is first acquired using a recording device, e.g. microphone,
analog-to-digital conversion.
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Then, pre-processing is applied to the data, e.g. windowing, spectral
transformation (DCT, DFT), data reduction.

An appropriate feature extraction is done by extracting acoustically relevant
features and pruning irrelevant features. Examples are statistical properties
from the audio in the time or spectral domain.

The extracted features are subject to further post-processing, e.g. to obtain a
binary fingerprint identifier from continuous feature values.

At a later point, one fingerprint is matched against a set of fingerprints
derived from a set of audio files to test if the source of the fingerprint is an
element of this set. This matching process is fuzzy and requires an estimation
of similarity.

Usually, these algorithms in use in commercial systems for broadcast
monitoring, music recommendation and to prevent that copyright protected
audio material is uploaded to websites or peer-to-peer networks. One application
is identifying the title of an unknown music song that is recorded from a
loudspeaker using a microphone or cell phone, e.g. provided by the Shazam' or
Gracenote/Sony’ service. For example, the fingerprint algorithm presented by
Haitsma et al. [HaKa2001, HaOK2001] features a 256 bit fingerprint from every
three second audio segment. That fingerprint can be used for matching a given
audio segment against a fingerprint database from music songs for music
recommendation.

2.3 Fingerprinting-Based Support for Digital Watermarking

Besides the application fields mentioned in the previous chapter, audio fingerprinting
has a number of applications also in the context of digital watermarking for different
purposes [FG2000]:

Indexing for informed/non-blind watermarking: When a watermarking
algorithm requires the original medium to be available to detect the
watermark from a marked copy, the audio fingerprint can help to identify the
required original

Payload for integrity protection: Here the audio fingerprint is stored as the
watermark information to provide a content-based description of the original
content.

Key generator: The audio fingerprint of the original is used as the secret
watermark key during embedding. If the original is changed, the audio
fingerprint also changes and the watermark cannot be detected due to the
wrong key given by the audio fingerprint. This can be used for integrity
verification.

Synchronization: The audio fingerprint is used as an index to identify
positions within the marked content where the watermark has been

! www . shazam. com (URL verified January 2012).
2 www . gracenote . com (URL verified January 2012).
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embedded [HKM?2005]. The audio fingerprints are often stored within a
separate database. Approaches without the need of an external database are
also known [SZN2006].

Beyond the applications listed before, we will show how fingerprinting can act as
another supporting mechanism for watermarking.

3 Concept for Watermark Embedding Controlled by
Fingerprinting

One can assume that watermark embedding and masking are controlled by perceptual
models which provide a high degree of abstraction from the actual audio content.
Thus, acoustically similar sections of a media signal will be marked with a similar
watermark. Now our approach is to calculate a sufficient number of individual
watermarks suited for a given media section which is then are matched and selected
by an audio fingerprint.

The embedding of the watermark with the help of the audio fingerprint is described
in the following sections.

3.1 Preprocessing the Lookup Collection

This processing step features fingerprinting and watermark on the media data.
It should be noted that the generic concept is independent from the actual
watermarking algorithm involved. It can be applied with any watermarking algorithm
that allows calculating a difference signal between the original cover and a marked
audio segment in a suitable data domain in a meaningful way. A typical example for
audio data would be the sample-wise difference in the PCM domain between cover
and marked segment. We furthermore require that adding such difference signal to
new media data other than the initial cover imprints the watermark in that data, too.

The watermark lookup collection is created using an arbitrarily predefined set of
cover audio content, as follows:

a) At first, the audio content is divided into short sections (less than a second in
practice) and each section will provide the payload for one bit of the
watermark message. All audio sections are watermarked with both the “one”
and the “zero” message symbol. Here, the embedding is controlled by an
appropriate psycho-acoustic model and it is dependent on the predefined
individual watermark key of the user.

b) Then, the difference signal between the watermarked audio sections and the
corresponding cover audio sections is calculated, sample-by-sample, in the
time-domain and saved to the lookup collection. For later adjustment to the
volume of the audio to be watermarked, also the power level ratio of this
difference signal relative to the original cover is saved to the lookup collection.

c) Finally, for each audio section, its audio fingerprint of the cover data is
calculated and saved to the lookup collection serving as an index for later
access.
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Audio Data

l Add to signal

Robust Audio Hash Bit Value

to
E1

Watermark Lookup

Fig. 1. Embedding concept for audio data. The audio fingerprint (denoted as “Robust Audio
Hash”) is derived from the audio data. It is matched within watermark lookup collection.
Depending on the bit value to be embedded, the watermark signal “0” or “1” is added to the
audio data at the position of the corresponding fingerprint.

3.2 Embedding the Watermark Message

Using the lookup collection, an arbitrary audio file is watermarked as follows
(see Figure 1):

a) Media parsing: When the user wants to embed a watermark in a media file, he
needs the watermark lookup collection as explained before. He first calculates
the audio fingerprint of the first section of the media file. The audio fingerprint
can be seen as an index to find the best match in the lookup collection of
difference signals with respect to similarity of the psycho-acoustic properties.

b) Matching to lookup collection: The audio fingerprint is used to access the
watermark lookup collection. The entry with the best match in terms of the
Hamming distance is selected. Then, depending on the value of the current
watermarking bit to be embedded at the current media file position, the
algorithm accesses the pre-generated watermark difference signal for message
symbol “1” or “0” in the collection.

¢) Watermark embedding: The difference signal retrieved from the watermark
lookup collection is added sample-by-sample to the current media data section.
As its audio fingerprint is related to the masking curve used to pre-generate the
watermark, the transparency of the embedded watermark and therefore the
quality of the marked cover is ensured. The volume of the difference signal is
adjusted to the volume of the given audio cover based on the power level
information which is available in the lookup collection. Although the level
dependence in the psycho acoustic model is non-linear, this approach can be
seen as a sufficient adaption to the sound pressure level. In fact, closer analysis
showed that this volume adjustment could avoid audible distortions caused by
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difference signals in the lookup collection that were obtained from audio
segments with high volume. Additionally, the difference signal can be
multiplied with a global factor to evaluate different levels of embedding
strength.

d) The addition of the watermark can be done with minimal computational effort,
e.g. by adding the watermark directly in the time-domain to the media
information, avoiding costly spectral transformation during the embedding
process and several steps of overlap-adding including fading.

e) Loop: The algorithm proceeds in the sequence of media data sections and
embedded additional watermarking bits as described in steps a) to c) as long as
there is media data to be marked.

An alternative approach for volume adjustment in step c) could be to use a lookup
collection from audio content which was specially prepared in the pre-processing
stage (see section 3.1 above): Prior to embedding, one could apply compression of the
dynamics (difference of volume between loud and silent segments) and amplification
of the (now almost constant) volume to a defined value. Then, lookup collections for
different volumes could be used to obtain an even better matching.

It must be noted that the pre-processing is done only once for each user and media
data type as long as the user’s secret key is not changed. The reason an individual
collection needs to be generated only once lies within the security requirements. If no
key-based security is needed, all users of the algorithm could use the same watermark
lookup collection. In that case, pre-processing (step 1) would not be necessary for
individual users, but they would access a global pre-generated collection provided
together with the algorithm.

4 Implementation of Fingerprint Extraction

This chapter describes the fingerprint extraction we use for psychoacoustic-based
matching and for the creation of the lookup-table. It features several content-based
analysis methods from the literature, for example, psychoacoustic
modeling [ISO1993], MPEG-7 low level audio features [AHHF+2001], audio
fingerprinting [HaOK2001] and adaptive quantization as published by us in an earlier
work [ZmSt2008].

The calculation requires several processing steps as follows:

- Segmentation of the audio stream: at first, the cover, a PCM audio file is
divided in frames of appropriate length, e.g. 512, 1024 or 2048 samples and
the FFT spectrum is calculated before further processing frame-by-frame. For
synchronizing the watermark embedding and the audio feature extraction, as
described in the following, the correspondent frames show no overlap. That is,
the fingerprints are extracted from separate audio frames, independently.

- Fingerprinting from psycho-acoustic modeling: Based on the MPEG
psychoacoustic model, from the FFT spectrum the instantaneous masking
threshold of each frame is calculated [ISO1993]. This is the curve of minimum
sound pressure level that is required to add an additional sound sensation to the
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present audio signal. Its calculation is based on models for human perception of
sound, namely frequency and temporal masking. It provides an abstracted
representation that is nevertheless significant with respect to Human perception
of the sound in the audio fragment. Thus, analyzing the masking curve in each
time-step is a promising approach to match audio content based on human
perception. Here, the signal-to-mask ratio is analyzed and the psychoacoustic
status fingerprint HI of length N Bit is defined as follows: First, the cover FFT
spectrum and the masking curve are divided into N subbands. Then, for each
subband, the i-th bit in H/ is set to “1” (or “0”, respectively) if the mean of the
given cover FFT spectrum is above (or below, respectively) the mean of the
masking threshold in that subband. It should be noted that in practice, while
creating the lookup collection, this requires no significant extra computational
effort as the psycho acoustic modeling needs and the FFT spectrum need to be
available for the embedding, anyway.

Fingerprinting from adaptively quantized spectrum: As an intermediate
processing step, the FFT spectrum is quantized depending on H/: Inaudible
areas, i.e. those parts in the spectrum which are below the masking threshold,
are represented coarsely with 1-bit quantization. Audible areas above the
masking threshold are represented up to 7-bit quantization. As shown
in [ZmSt2008] this increases the robustness of the following fingerprint
extraction because acoustically irrelevant signal changes will contribute less
to the result or will be even ignored. Then we compare the spectral
coefficients in two consecutive time-steps among the N subbands according
to the audio fingerprinting approach presented in [HaOK2001]. We define
the frequency frame fingerprint H2 as follows: we assign a “1” if the mean
of the coefficients increases from first to second time step, and vice versa.
Fingerprinting from spectrum flatness analysis: Another feature used is the
spectrum flatness calculated from the N subbands in two consecutive frames.
The flatness measure is defined as the ratio between the geometric and
arithmetic mean of the spectral coefficients [AHHF+2001]. Spectrum
flatness is a measure that indicates if a spectrum or subband contains
dominant peaks or if the spectrum is rather “flat”. Thus, it can identify, if a
certain audio spectrum contains dominant single tones or not. Calculated
among a number of subbands, it can be seen as another approach to identify
similar audio content [AHHF+2001]. From the flatness measure, the
spectrum flatness fingerprint H3 of length N Bit is defined similar to HI by
comparing the flatness values between two adjacent time steps among all
subbands similar to [HaKa2001, HaOK2001].

Experimental Evaluation

To evaluate the performance of the proposed scheme, we performed tests on synthetic
and real-world audios of different genre. Here, the suitability of the proposed
fingerprinting algorithms, the sound quality and the overall watermark detection
success were of special interest.
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5.1 Test Set and Creation of Lookup Collection

We created a lookup collection using different fingerprinting schemes HI, H2 and H3
and different combinations thereof, respectively. The fingerprints were of 12 bit
length. The lookup collection was created from a 261 seconds rock music audio file.
Here, a spread-spectrum Patchwork [BGML1996] watermarking approach from our
earlier work [Stei2003] was used. That audio watermarking approach features an
embedding and detection in the Fourier domain while the transparency is maintained
by a psycho acoustic model similar to the model used in lossy encoding of mp2 and
mp3 files [ISO1993]. The difference signals between the cover audio and the
temporary watermarked copies with message symbols “0” and “1” were obtained
from the PCM audio data in the time-domain.

5.2 Comparison of Different Fingerprint Approaches

To give a proof that suitable pre-watermarked audio segments can be recognized
using fingerprinting, several audio files from several genre (pop, rock, movie score,
synthetic white noise) of 773 seconds total length were used for later embedding. In
total, 75 watermark messages of 8 bit net length (approx. ten seconds play time per
message) were embedded using our proposed approach. A CRC-12 checksum was
appended to every watermark message to be able to verify the integrity of arbitrary
messages at detection time. That message of length 8+12=20 Bit was subject to
forward error correction (FEC). We use a convolutional encoding / Viterbi decoding
to improve the robustness and to cope with bit errors during transmission. The FEC
encoding increases the message length, again, to a gross length of 2*20+4=44 Bit
total. To increase the robustness, each bit was embedded several times in consecutive
frames.

Every message was prefixed by a synchronization template of 40 bit,
i.e. approximately two seconds. That is, before the beginning of any arbitrary
watermark message, a static watermark message pattern is embedded that is fixed and
known for any message. This enables the watermark detector to synchronize to the
precise embedding position and allows watermark detection even when the audio files
were trimmed.

Global factors of 1.0 and 2.0 were used for embedding. A factor greater that one
means that the selected difference signal will be added to the new cover data with a
higher volume than it was originally present when the lookup collection was created.

For further analysis, the three fingerprints are combined with the XOR operation.
That allows providing a combined fingerprint to which all three individual
fingerprinting schemes contribute while maintaining its total bit length. Seven
different combinations of hashes are performed, namely the three individual hashes
and all XOR combinations thereof.

We finally obtain an N Bit audio fingerprint which we will use for matching the
audio content to the appropriate lookup collection entry. In practice, fingerprint
lengths N from 10 to 12 are used in order to keep the size of the lookup collection
compact.
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The detection results are obtained without any attacks applied to the watermarked
content. From the detection results given in Table 1 the following can be seen:

- The overall detection success is rather moderate as 47% of the embedded
messages can be retrieved at best (35 out of 75 for global factor of 2.0 when
HI+H3 is used).

- It can be seen that a global factor of 2.0 during embedding provides much
more detected watermark messages compared to a global factor of 1.0 (total
152 instead of 71), as can be expected.

- Itis obvious that fingerprint H3 outperforms the other two fingerprints when
a single fingerprint is used: almost no message was detected when only H/
or only H2 was used.

- Surprisingly, an XOR combination H/ with H2 again provided a significant
number of successful detections while they individually provide poor results.

Closer analysis showed that many of the incorrectly retrieved messages were
actually almost correct but one the eight bits. Closer look at the single message bits
showed that the bit error rate was at best 0.192 for fingerprint H3 and global factor
of 2x and detection threshold of 0.2. That explains why only 31 out of 75 messages
could be successfully and completely decoded in the Viterbi decoder, in that
best case.

Table 1. Correctly detected watermark messages; the “+” symbol denotes XOR operation

fingerprint combination used
|HI H2 H3 | HI4H2 HI+H3  H2+H3 | HI+H2+H3 | Total

global 1.0
factor

0 0 23 6 12 21 9 71
1 0 31 33 35 26 26 152

Table 2. Correctly detected sync templates; the “+” symbol denotes XOR operation

fingerprint combination used

‘ 11{ H2 H3 ‘ H1+H2 HI1+H3  H2+H3 ‘ H1+H2+H3 ‘ Total
global 4 35 38 32 47 31 189
factor 20| 0 o0 59 66 58 55 48 286

Thus, to verify if it is plausible to use even shorter message lengths, we also
analyzed, how many of the synchronization templates (only two seconds each) can be
detected correctly From Table 2 we can see that, indeed, the detection success for the
sync templates is two to three times higher than for the full watermark message
payload. That is, shorter watermark messages (or splitting the watermarking message,
resp.) will be useful. Again, fingerprint H3 outperforms all other approaches by far, if
single algorithms are compared.
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5.3 Assessment of Sound Quality

We also analyzed the sound quality of embedded audio. For this purpose, the
embedded and original audios were compared using the OPERA
Audio Quality Analysis® system. In contrast to simple quality measures like PSNR, it
simulates and considers Human perception of sound. It features an artificial neural
network which simulates Human perception of quality degradation as perceived by an
average listener. The artificial neural network was trained with large sets of listening
tests during the development of the lossy mp3 audio compression. The OPERA
system allows efficient and reproducible comparison of audio data before and after
processing while avoiding elaborate listening tests.

The sound quality is expressed in terms of the Objective Difference Grade (ODG)
which ranges from 0.0 (“no audible difference”) to -4.0 (“very annoying”), see
definition in Table 3. For example, closer analysis shows that the quality loss caused
by mp3 encoding of typical music files at 128kBit/s, stereo, is assessed with
approximately -1.0 on the ODG scale, which is according to common user
acceptance.

Table 3. Definition of Objective Difference Grades

ODG Sound sensation
0 no audible difference
-1 slightly different, not annoying
-2 little annoying
-3 annoying
-4 very annoying

The plot of number of successful detections versus the sound quality loss under
different global factor values is expressed in Figures 2a and 2b: For a low embedding
strength (global factor 1.0) it can be see that the results on the sound quality are
clearly divided: most of the marked files feature ODG values between -0.5 and 0.0
which means that the distortions introduced by our embedding approach are almost
inaudible. Unfortunately, only a few watermark messages could be detected in that
case, no matter which fingerprinting strategy was used. On the opposite, there are a
few samples that feature a large number of correct detections. But they suffer from an
extremely low ODG near -4.0 which indicates very annoying distortions.

The results look more promising if a higher embedding strength is selected
(see Figure 2b). For global factor of 2.0 a number of test runs showed successful
detections greater than zero while the ODG values remains greater than -1.0, i.e. the
sound quality is not annoyingly distorted.

The detailed results for a selection of individual files for fingerprint H3 are given
in Table 4. There, it can be seen again, how the results are dependent on the different
files. For example, the “Rockl” music song (“Black Ice” by AC/DC) could be

3 www . opticom.de (URL verified January 2012).
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watermarked with 1 to 8 messages. But the sound quality was very poor, no matter
which global factor (embedding strength) was used. For the “Rock2” song
(“T'll give you money (live)” by Peter Frampton), at least four messages could be
detected correctly while the sound quality loss was “slightly annoying”.
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Fig. 2a. Detection success and quality loss for different audio files and different strategies of
fingerprints (denoted as “hash”); global factor = 1.0
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Fig. 2b. Detection success and quality loss for different audio files and different strategies of
fingerprints (“hash”); global factor = 2.0
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Table 4. Results on detection and sound quality among different files

OoDG Number of detections
File Name
Global factor 1.0 Global factor 2.0 Global factor 1.0 | Global factor 2.0
Rock1l -3.60 -3.60 1 8
Movie Score -3.98 -3.98 22 19
Rock2 -0.27 -1.87 0 4
Noise -0.06 -0.55

5.4 Distribution of Fingerprints

We further investigated, why the results were so different among different files.
One reason might be that the lookup collection we used was created from only one
music file (i.e. one musical genre) of a few minutes play length. From Figure 3 we
can see that most of the possible 4096 values of the 12-bit fingerprint actually were
not used. Closer analysis showed that during embedding, the best matches still
have a Hamming distance significantly greater than zero, i.e. exact matches were
very rare.

Cistribution function for hash-3 for black ice.wav
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Fig. 3. Distribution of the 2'? possible fingerprint values; Lookup collection obtained from a
261 second rock music song

One solution is to create a larger lookup collection in the preparation stage. First
test results from a 30 minute test file containing different kinds of musical genre and
speech data showed a distribution that is much less sparse (see Figure 4). Closer
analysis showed that only approximately 100 out of 4096 possible fingerprint values
were missing in the lookup collection displayed in Figure 4.
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Distribution function for hagh-3 for Combined 30 ming audio.way
4000 T T T T T T T

300 B

3000 B

2600 - bl

2000 - T

1800 E

1000 E

o, of times hash occuring in the file

00+ E

Dleiini.lulmuu.. [ T N RO NS P |,JH¢|\.J .\h.”i
0 500 1000 1500 2000 2500 3000 3500 4000
hash number in decimal

Fig. 4. Distribution of the 2'? possible fingerprint values; Lookup collection obtained from a 30
minutes music compilation

5.5 Discussion of Results

With respect to robustness and transparency, it can be said that the proposed
implementation shows good results for some audio files while moderate results for
other files. The results showed that using a larger lookup collection in the preparation
stage can be one promising approach to overcome these issues: Closer matching using
a more completed lookup collection which will provide closer matches. In contrast,
increasing the fingerprint length considerably beyond twelve bit will not be a suitable
solution to improve the matching performance as this accordingly will increase the
processing time for fingerprint matching and will rapidly increase the file size of the
lookup table exponentially to unmanageable size.

With respect to processing speed, it is obvious, that trading a FFT-based embedder
with a FFT-based feature extraction and selection process will not remove the
computational cost of the FFT from the embedding chain. Still, even with FFT-based
fingerprints a certain gain in processing speed can be achieved in our approach
because no inverted FFTs are required as the embedding is done in the time-domain.
Furthermore, smaller FFT windows can be used for fingerprinting and less overlap-
adding is required.

For example, given by the implementation that was used for the experimental
section [Stei2006], the embedding of each message bit in a frame requires several
internal steps of FFT and inverted FFT calculation (frame size 2048 samples),
fading and overlap-adding to obtain optimal transparency. Instead, the proposed
approach requires one FFT of frame size 1024 for fingerprinting-based matching
plus adding in the time-domain the 2048 samples difference signal to the cover
audio.
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In summary, it must be said that the fingerprinting methods applied above are only
current examples used to implement a proof of concept. Nevertheless, the above
implementation, in which fingerprinting controls the embedding process, shows to be
an alternative embedding strategy in principle.

6 Summary and Outlook

In this work we present a concept and its proof for efficient embedding of digital
watermarks in audio data. It is based on creating a lookup collection of watermarking
difference signals and corresponding audio fingerprints from an arbitrary set of audio
files during a pre-processing step. Here, the Fingerprints are used as a supporting
audio pattern recognition mechanism to increase the processing speed of digital
watermarking.

When a media file is to be watermarked, its audio frames are matched against the
lookup collection. Here, an audio fingerprint is calculated for each frame and used for
audio pattern recognition. Only the pre-processed watermark message bit with the
best match with respect to perceptual properties is taken from the lookup collection.
This watermark is then added to the signal by simply mixing both signals. Then, the
algorithm proceeds to the next frame and so on. That is, the lookup collection can be
used at any later date with arbitrary PCM files to create watermarked at very high
processing speed and low computational effort.

It should be noted that the concept is independent from the media type of audio
data as discussed here. The concept of perceptual matching can be applied to image or
video watermarking, for example, as visual models provide an assessment of
perceptual similarity of visual content.

In extension to our previous conceptual work, here, real-world test results proof
that the concept is performing successfully in principle. Approximately one half of
the embedded watermark can be retrieved under optimal conditions. Nevertheless, the
results for sound quality show room for improvement before applying the approach
for real-world applications. Using larger lookup collections or introducing different
volume adjustment seems to be promising approaches for improving the transparency
and/or robustness of the embedding.

In our future work, further fingerprinting approaches shall be investigated that
provide a better match in terms of acoustic similarity and watermark transparency. To
improve the computational costs, one focus will be on extracting fingerprints in the
time-domain for avoiding time-consuming spectral transformation in the future.

We will also proof that this approach can enable a fast embedding. Therefore, the
current MATLAB implementation will be ported to Java or C/C++ and compared to
current audio watermarking solutions with respect to computational costs.
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Abstract. Most publications on steganography and steganalysis trivialize the
latter into a simple two-class decision problem: either a data object is an
unmodified cover or a stego object. The normal way in literature to tackle this
decision problem is to use supervised classification, first, to train classifiers
and, second, to compute the classification accuracies on known good (cover)
and known bad (stego) samples in artificially constructed evaluation sets with
known classes for all objects. It is true that such statistical pattern recognition
(SPR) based approaches might be efficient for solving the steganalysis problem,
but in practical application it is less trivial and to achieve plausible results is
much harder. The scientific contribution of this paper is to address the lack in
investigation methodologies and metrics for steganalysis benchmarking and
plausibility considerations. We consider the state-of-the-art in this field and
enhance it by new considerations on steganalyser throughput and plausibility.
The work presented here includes a recommendation for an advanced metric to
measure the throughput of a steganalyser.

Keywords: Steganalysis as a security service, audio steganalysis, throughput,
plausibility.

1 Motivation and Introduction

Steganalysis, as the technique to detect hidden communication channels in media files
or streams, is one of a number of important techniques to establish trust in media data.
The most common solution used to implement steganalysis to detect steganography
by cover modification is statistical pattern recognition (SPR).

A first interesting point to be mentioned in the context of this paper is the
mismatch between research and development/application in the field of steganalysis.
For other communication based threat scenarios in IT-security, like viruses/malware
or email spam, a large range of commercial detectors is available. But in steganalysis,
it contrast to the hundreds or even thousands of research publications focussing on
this topic, only few open source or research demonstrator steganalysers are found
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together with an even smaller number of commercial steganalysis detectors. Also, for
those few commercial tools available the focus of application is in many cases not
statistical analysis of potential cover objects’.

Most publications on steganography and steganalysis trivialize the latter into a
simple two-class decision problem: either a data object is an unmodified cover or a
stego object. The normal way in literature to tackle this decision problem is to use
supervised classification, first, to train classifiers and, second, to compute the
classification accuracies on known good (cover) and known bad (stego) samples in
artificially constructed evaluation sets with known classes for all objects. It is true that
such statistical pattern recognition (SPR) based approaches might be efficient for
solving the steganalysis problem, but in practical application it is less trivial and to
achieve plausible results is much harder.

Kodovsky and Fridrich conclude in [14] that there are three main factors that can
negatively influence the performance of machine learning tools: small number of
training samples, low class distinguishability and high dimensionality of the feature
space. They declare that weak steganographic methods are easily detectable because
they disturb some elementary cover properties that can be captured by a low-
dimensional feature vector with high distinguishability. A fairly small training dataset
is then usually sufficient to train a classifier with an excellent performance. While on
the other hand, more advanced steganographic methods require high-dimensional
feature spaces capable of capturing more complex dependencies among individual
cover elements, which in turn necessitates more training samples. A seemingly
straightforward strategy to improve the performance of existing steganalysers may be
to increase the size of the training set. This way we allow the machine learning tool to
better utilise the given feature space and we may use feature spaces of higher
dimensions without degradation of performance. However, sooner or later one will
likely encounter technical problems with data or memory management, or the training
would be unacceptably long. Furthermore, in many practical scenarios, the steganalyst
lacks information about the cover source (only a limited number of cover examples
are available). Here, training the classifier on a different cover source may result in a
serious drop in testing performance (see e.g. [7], [8]).

The main points of the statements from Kodovsky and Fridrich can be restated as:
statistical relevance (with an implicit threat of overfitting), class distinguishability,
curse of high dimensionality (complexity) and missing context information problems.
From a scientific point of view this list is identifying the major problems known in
pattern recognition research since decades. Nevertheless, we want to show that those
considerations in [14] are far from being complete — especially if it is intended to
implement a steganalyser as a field-deployable security mechanism (like e.g. an anti-
malware scanner, an intrusion detection system or a firewall).

This paper summarises and extends the considerations found in [14] as well as our
previous considerations from [24], [3] and [27] on audio steganalysis, by addressing

! The SARC steganalyser (see http://www.sarc-wv.com/products/stegalyzeras/learn_more.aspx)
claims to detect the download and installation of over 925 steganography applications on MS
Windows machines.
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the following six important aspects on the plausibility of practically applied
steganalysis:

a) considering the detection performance (or classification accuracy) of the
steganalysers as initial/naive trust assumption
b) the differentiation between the different error classes encountered (i.e. if

steganalysis is considered a two-class classification problem then between
the statistical Type I and Type II errors — false positives and false
negatives)

c) the statistical generalisability of the results at hand considering known
problems from classification (like overfitting) and required evaluation set
sizes — this includes considerations on the correlation between the training
context and the application context (i.e. context dependent and
independent training and testing)

d) the influence of other (non-malicious) audio signal processing operations
on the steganalyser has to be investigated

e) the plausibility of the features used for classification actually being
relevant for the classification problem at hand

f) the possibilities for increasing and estimating the decision performance in

case of information fusion by multiple steganalysers

For a security mechanism that aims at the detection of malicious behaviour (here the
construction of hidden communication channels) the question of the throughput
and/or detector response time are imminent. In the field application of a steganalysis
performing security mechanism, the preferred throughput would obviously be a real-
time system with a very short detector response time, which would allow for the
implementation of detection and prevention systems. Nevertheless, it is hard to
generalize the real-time requirements because the cover channels can be of different
nature: they could be rather low data-rate audio-based communication channels (e.g.
GSM, VolIP, radio broadcasts) or high data-rate audio material transmitted via data
transfer protocols (e.g. MP3 files via file sharing networks). Furthermore, all publicly
available / known audio steganalysis tools (which would form the core of a
steganalysis security mechanism) are right now rather slow, due to the complex
analysis task at hand (see section 2). Nevertheless, a methodology and designs for the
throughput analysis for steganalysers are required in this field, for performance
evaluations on single steganalysis algorithms as well as for complex fusion
information systems combining multiple steganalysers.

Next to the throughput, another important point is the plausibility of decisions
made by a steganalysis performing security mechanism. The notion of plausibility
used within this paper combines different aspects: first, the initial detection
performance (or classification accuracy) of the steganalysers, second, the
differentiation between the different error classes encountered (i.e. if steganalysis is
considered a two-class classification problem then between the statistical Type I and
Type II errors — false positives and false negatives), third, the statistical
generalisability of the results at hand considering known problems from classification,
required evaluation set sizes and the correlation between the training context and the
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application context has to be considered (i.e. context dependent and independent
training and testing), fourth, the influence of other (non-malicious) audio signal
processing operations on the steganalyser has to be investigated, fifth, the plausibility
of the features used for classification actually being relevant for the classification
problem at hand, and sixth, the possibilities for increasing and estimating the decision
performance in case of information fusion by multiple steganalysers.

If a steganalysis performing security mechanism detects the presence of hidden
channels in the cover data under observation, further information to characterize
the steganographic channel might be derived from by the detector, including the
used embedding domain and an algorithm identification, key scenario considerations
as well as payload estimation.

In some scenarios it might be possible to apply countermeasures in case a
steganographic channel is detected. In the simplest case, the countermeasure might be
a disruption of the cover channel. More sophisticated measures might be found in
filtering operations on the cover data to eliminate the embedded steganographic
information without disrupting the entire cover channel.

The scientific contribution of this paper is to address the lack in investigation
methodologies and metrics for steganalysis benchmarking. We consider the state-of-
the-art in this field and enhance it by new considerations on steganalyser throughput
and plausibility. The work presented here includes a recommendation for an advanced
metric to measure the throughput of a steganalyser.

The rest of this paper is structured as follows: section 2 summarises briefly the
state-of-the-art in the fields of plausibility considerations in steganalysis and on
steganalyser benchmarking, section 3 introduces our methodologies, concepts and
new metrics for practical steganalysis. In section 4 the benefit of the application of
our methodology and concepts in practice is demonstrated briefly. Section 5
summarises the paper and discusses perspectives for future work.

2 State-of-the-Art in Plausibility Considerations for
Steganalysis and in Steganalyser Benchmarking

One of the rare examples where steganalysis is applied in large scale field evaluations
is the work of Niels Provos and Peter Honeyman in [16]. In their paper, the authors
criticise current state-of-the-art in steganalytical approaches at this point of time
(like [18] and [19]) as being practically infeasible, due to faulty basic assumptions
(two-class problem description and statistical overfitting to the training sets). In
contrast to these publications Provos and Honeyman construct a multi-class SPR-
based image steganalysis detector called Stegdetect. Each candidate image is
considered to be member of one of four classes, either it is an unmodified cover
image or it is the result of the application of one out of three different steganographic
tools (JSteg, JPHide and OutGuess 0.13b) which have been amongst the state-of-the-
art at this point of time. Stegdetect is then applied blindly (without knowledge about
the true class) to two million images downloaded from eBay auctions and one million
images obtained from USENET archives. As a result, Stegdetect implies that over 1%
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of all images seem to have been steganographically altered (mostly by JPHide) and
therefore contain hidden messages. Based on these findings, Provos and Honeyman
describe in [16] also a second tool called Stegbreak for plausibility considerations, i.e.
for verifying the existence of messages hidden by JPHide in the images identified by
Stegdetect. Their verification approach is based on the assumption that at least some
of the passwords used as embedding key for the steganographic embedding are weak
passwords®. Based on this assumption, they implement for Stegbreak a dictionary
attack using JPHide’s retrieval function and large (about 1,800,000 words) multi-
language dictionaries. This attack is applied to all images that have been flagged as
stego-objects by the statistical analyses in Stegdetect.

To verify the correctness of their tools, Provos and Honeyman insert tracer images
into every Stegbreak job. As expected the dictionary attack finds the correct
passwords for these tracer images. However, they do not find any single genuine
hidden message. In their paper, they offer four possible interpretations of this result,
either: a) there is no significant use of steganography on the internet, b) they have
been analyzing images from sources that are not used to carry steganographic content,
¢) nobody uses steganographic systems that we can find, or d) all users of
steganographic systems carefully choose passwords that are not susceptible to
dictionary attacks. Even though the result of this large scale investigation is negative,
the methodology and concepts behind the work in [16] are remarkable. Even more so,
since they also perform throughput considerations (throughput for Stegdetect is given
in Kilobit of images per seconds; the throughput for Stegbreak is given in words per
second for the dictionary attack) for their analysis tool-chain, something that is also
strongly amiss in most steganalysis publications.

While, as mentioned above, most scientific publications trivialize steganalysis into
a simple two-class decision problem and focus on reporting classification accuracies
for supervised classification obtained under certain evaluation setups, some authors
include considerations that aim directly or indirectly at the verification of the
plausibility of the their detection approaches. A good example for this class of
publications is [22]. In this paper the authors perform a feature selection in a SPR-
based steganalysis approach to reduce the complexity of the classification task.

A completely different view on the plausibility of stenography and steganalysis is
presented in [20]. In this document instructions are given for potential end-users how
to evaluate the actual security of existing steganographic tools. Following the
instructions it is simple to identify all tools that are not compliant with Kerckhoffs
principle [21]. Furthermore, basic statistical techniques are explained that allow
estimating the statistical impact of steganography by modification for steganographic
tools. Also, the influence of strong encryption prior to embedding and other basic
considerations are discussed.

Summarising the state-of-the-art in plausibility considerations in steganalysis and
steganalyser benchmarking, it has to be said that most of the work found in literature
so far is limited to investigations on the performance against individual
steganographic algorithms, not on considerations as a global security mechanism that

2 A study conducted by Klein found nearly 25% of all passwords are weak passwords [17].
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could be implemented and applied as a tool like e.g. a malware scanner. Especially
the lack of appropriate metrics, as required for sophisticated performance evaluation
and steganalysis benchmarking, is a strong problem for this domain. So far the most
often found concept for classifier/detector comparison in this field is the usage of the
classification accuracy as the one and only metric for performance estimations. Many
publications consider a steganalysis algorithm to be better than another one simply if
its classification accuracy on the same test set is higher. Such a statement is not taking
the whole complexity of the steganalysis problem into account. Important further
considerations, like the throughput of the detector, the distribution of error classes
(Type I errors or False Positives vs. Type II error or False Negatives), etc are most
often completely neglected.

3 Methodologies, Concepts and Metrics for Practical
Steganalysis

The open research problem identified in section 2, the lack of appropriate metrics
for the evaluation of the performance of a steganalysis detector to be implemented
into real world application scenarios, is addressed in this section. Here, in
section 3.1, first a metric for a throughput analysis for a steganographic detector is
discussed because such a cost function would be a necessary condition or sine qua
non for every possible field application. Second, trustworthy decisions in an SPR-
based steganalysis setup also have to fulfil the plausibility requirements identified
in section 1 as sufficient conditions. These are discussed in detail in section 3.2.
Sections 3.3 and 3.4 address, very briefly and just for the sake of completeness, two
further topics that would have to be considered prior to field application of a
steganalysis system. These two topics, which are outside the primary focus of this
paper, are: Detector-based steganographic channel characterisation in section 3.3
and the role of countermeasures (i.e. modifications on the cover channel) in
section 3.4.

3.1  Throughput Analysis — Runtime and Accuracy Considerations

In the field-application of a steganalysis-performing security mechanism the
preferred throughput would obviously be a reliable (in terms of detector accuracy)
real-time system with a very short detector response time. This would allow, in the
application domain chosen here, for the implementation of detection and prevention
systems observing audio communication channels or audio file transfers. To our
knowledge, all currently publicly available audio steganalysis tools (which would
form the core of a steganalysis security mechanism) are far from being close to this
preferred throughput, due to the complex analysis task at hand (see section 2.).
Nevertheless, a methodology and concepts to allow for the throughput analysis for
steganalysers are required in this field, for performance evaluations on single
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steganalysis algorithms as well as for complex fusion information systems
combining multiple steganalysers.

We introduce an initial methodology for such a throughput analysis in [27] where
we compare the performance of three selected information hiding (IH) algorithms.
The introduced concept models this problem as the gain to cost ratio between
detection performance (as gain) and run-time required (run-time complexity as cost).
The initial design used in [27] expresses this ratio for a classical two-class
consideration on the steganalysis problem as shown in equation 1.

accuracy ir accuracy > 50%

7= mn(t)ime if accuracy=50% 0

If the accuracy (the ratio between true classifications and all classification attempts in
a supervised classification) of the classifier used for steganalysis is better than
guessing (i.e. 50% in this two-class problem), then its classifier throughput
performance ¢ is determined by the accuracy achieved on a fixed sized classification
problem divided by the classifiers runtime (combined training and testing times) on
this problem for a selected test computer. The measurement unit of this computation
would be percentage of true (positive and negative) classifications per second, which
is, for the standardised set sizes used here, a simplified version of the more intuitive
“percentage of correctly classified files per second” ratio. The results presented in
[27] for an analysis of 74 single classifiers show that this concept can indeed be used
to distinguish between suitable and unsuitable classifiers based on the computed
throughput performance.

Nevertheless, it has to be admitted that this simple analysis concept is unfair and its
result hard to interpret. From a scientific point it is unfair, because it does not
compare the classification algorithms but instead compares their implementations.
Therefore, a rather well suited algorithm implemented in an interpreted language
might be ranked lower than a less suitable algorithm implemented directly in machine
code, only because the latter can be executed much faster. For the same reason, results
achieved on different computers would not be directly comparable. From the practical
point of view these two points, which would be considered as unfair by scientists,
would be a desired characteristic of the detection system. The person wanting to
install a steganographic channel detector to observe communications or data
exchanges would exactly look for the fastest implementation as well as the most
suitable (in most cases the fastest) computer to run the detector.

Another point, which makes this concept not exactly unfair but instead inept to
handle certain benchmarking problems, is the fact that the accuracy, if used directly,
is not suitable for comparisons between different classification problem classes. For
example the direct comparison of the classification performance in a two-class
classification problem (i.e. the classical hypothesis testing for a assumable
steganographically modified channel) and a 4-class problem (e.g. steganographic
algorithm identification on a set of three algorithms (plus unmodified covers) that
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might have been applied, see e.g. the work of Provos and Honeyman summarised in
section 2.) would lead to completely misleading results, because in the two-class
problem the probability of guessing correctly is two times higher (i.e. 50%, while in
the 4-class problem an accuracy of 50% would already be a rather good indicator,
being 25% away from the probability of guessing correctly in this case). This point
basically implies a strong need for normalization of results.

For the interpretability of the results, the accuracy is expressed as a percentage
between 0 and 100% and the runtime is given in seconds and is not bounded.
Therefore the result is not normalized in any way so that the actual distance from an
“optimal” performance is hard to figure out. Also, the notion of the runtime used here
combines the training and the testing times (while in a field application the models
would be in many cases assumed to have been trained in advance) of a classifier.
Since the ratio between training and testing times varies strongly between individual
classifiers, the usage of this combined time might be enormously unfair for
application scenarios where the classifier can be trained in advance, i.e. where the
characteristics of the expected cover objects and steganographic embedding
techniques are known a priori and appropriate training material can be supplied for
training. In other application scenarios, where the models could not be trained in
advance (due to a lack of knowledge regarding the cover material and/or techniques to
be expected or if appropriate training material is missing — see e.g. [4] where the
“unmarked” version of an audio file is estimated/predicted by using de-noising on the
assumed stego object), this modelling of the runtime would be the only suitable
approach.

The points mentioned above led to a redesign of our quality function for the
throughput analysis. In the modified version we still use for the runtime the real time
required for the classifier (because the ultimate goal would be the practical
application in tools and in this case a faster implementation of an algorithm is better
than a slower implementation) additionally we introduce a fixed timeout boundary,
after which a classifier working on a problem is automatically considered unfit for
this problem independent of the classification accuracy he might have achieved in the
end. This timeout serves two purposes: first, it makes practical evaluations more
feasible by faster removing candidates which would in any case unsuitable for
practical application, and second, it allows to generate a normalised runtime
description.

. runtime
time = ——— 2)
timeout

Equation 2 shows the normalised runtime description used for an improvement of the
quality function for the throughput analysis. The runtime is the execution time of the
classifier on a given classification problem (training and testing) measured in seconds
(using the UNIX time() command [31]). The timeout is the timeout-boundary
predefined for this investigation. Since the execution of the classifier is terminated at
timeout, the resulting time is a unit-less variable in the range [0,1].
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For the accuracy investigations on a classifier, we assume for the further
considerations that the accuracy (the ratio between the number of all true
classifications and all classifications in an test) is expressed in the range of [0,1]
instead of a percentage. For n equally distributed classes the probability of guessing
correctly is: probGuess = 1/n. For not equally distributed classes the probability of
guessing correctly has to reflect the ratios between the classes’ individual
probabilities. To simplify the considerations here, we assume that all training sets for
the evaluations are build with equally distributed classes. With the accuracy and
probGuess we can construct for classification-based investigations a degree of
closeness of measurements of a quantity to its actual (true) value that is exempt from
the influence of the probability of guessing correctly. Such a metric would allow for
direct comparison between the classification performances of classifiers on problems
of different classes (e.g. a two-class classification problem like the classical
hypothesis testing for an assumable steganographically modified channel and a four-
class problem like steganographic algorithm identification on a set of three algorithms
(plus unmarked covers) that might have been applied).

1

=—————/(accuracy — probGuess
1— probGuess ( yop ) )

c8

Equation 3 gives the metric cg to be used within this paper for the closeness of
measurements of a quantity to its true value. It is basically a single-rater version of
Cohen’s Kappa (see [33], [34] for multi-rater considerations and [35] for single-rater
considerations derived from Cohen’s Kappa) in the range [0,1]. To construct our new
quality metric for the throughput analysis g,,,, we compute the (normalised) Euclidean
distance between time and an inverted cg. This inversion has to be performed since
the time, as introduced in equation 2, is a “the-bigger-the-worse” metric and the cg
would be a “the-bigger-the-better” metric. The metric g,,., would therefore be
computed as:

new =%\mme2 +(1—cg)2 4)

Since time and cg are bounded in the range [0,1] the Euclidean distance has to be
normalised with the square root of 2. The result of this computation g,,,, is, like time,
a “bigger-the-worse” metric in the range [0,1]. It describes the distance of a current
performance from the “optimal” point, which would be a decision machine that gives
a perfect classification (cg=1) in an extremely short time-span (time=0). Therefore a
classification result which is very bad (equal to the probability of guessing, cg=0) and
finishes only shortly before the timeout-boundary (time=1) would be as far as possible
from this optimal point with g,,,, = 1 in this case.

The threshold for suitable classifiers is moved by the normalisation performed to

the value of 1/ V2 , i.e. classifiers that only guess at the result but do so very fast are
located exactly at this boundary.
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Summarising the benefits of this our new performance metric g,,,, we can say that:

e It takes the runtimes of the classifier/detector implementations into account,
which is closer to the practical requirements for such a system (i.e. faster
implementations would be preferred over slower implementations with the
same detection power).

e It efficiently removes classifiers that are per definition unsuitable from the list
of candidates by defining a timeout boundary for the execution time. Therefore
evaluations are speed up.

e It allows for an intuitive performance description by using as a metric a
normalised distance from an easy to understand “optimal” operation point.

e It allows for a direct comparison between classifications of different class-sizes
(e.g. two-class problems and 4-class problems).

The drawbacks of this metric can be summarised as follows:

e It is dependent of the machine it is run on. This drawback could easily be
compensated by computing a time correction factor between different
machines to make their runtime results directly comparable.

e For the selection of methods for the implementation of a security mechanism, it
would have to be accompanied by another value or set of values for precise
throughput description (e.g. the processing speed in feature vectors per second
— which could be given separately for training and testing in case the training
can be performed a priori).

e [t assumes (in the modelling of probGuess) that the classes in training are
equally distributed.

All considerations have so far been made under the assumption that a single classifier
is used to perform the steganalysis. For complex fusion information systems
combining multiple classifiers into one steganalyser the considerations have to be
extended. For the runtime consideration here the question arises whether the
classifications are run in parallel or in sequence. In the first case, obviously the
runtime of the slowest classifier in the fusion set defines the runtimes for the whole
system. In the latter case the runtimes add up to the overall figure. Regarding the
confidence/reliability of the fused decision the considerations are more complex. An
accuracy of 100% in supervised classification does not tell much about the
applicability of fused classifiers in real world investigations. Here, not only the
accuracy of the involved classifiers have to be considered, but also a confidence has
to be determined as a measure how far the fusion decision is away from the complex
decision boundary of the overall fusion-based decision. In [29] some preliminary
considerations on the modelling of such confidence estimation in a different context
are made but in general this topic is still an open question for future research.

3.2  Plausibility of Decisions in an SPR-Based Steganalysis Setup

The throughput analysis introduced in section 3.1. acts as sine qua non for all further
plausibility considerations. If no suitable classifier (or more precisely feature extractor
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and classifier combination) can be found — and suitable here implies a g,
significantly larger than 1/ \/E — all further considerations are pointless. But if at least

one such a suitable classifier is found, further questions have to answered to establish
trust in the decisions of this/these classifier(s). Here six of these further questions are
considered, as already summarised in section 1.:

The initial (or naive) trust assumption in our work is based on the detection
performance of a classifier that fulfils the sine qua non — the requirement of a
classification accuracy significantly larger than zero. In many publications (like e.g.
[18] or [14]) this is done by (implicitly) using classification accuracies established in
controlled evaluations as a means to specify the trust in the steganalyser. In
section 3.1. of this paper we express our concerns against using the accuracy as a
metric and introduce with the c¢g and g,., two new metrics that seem to be more
appropriate to model an initial (or naive) trust assumption. Actually, we would prefer
using the g,,,, over the cg, due to the fact that it also considers the response time of the
mechanism.

In many practical application fields, the different error classes that might be
encountered have different consequences. For example, a biometric user
authentication system run in verification mode has two distinct error cases: a false
rejection rate (FRR) and a false acceptance rate (FAR). The significances for these
two error classes are completely different: the false rejections are of concern for the
usability of the system while the false acceptations are a security issue. Since
biometric authentication systems are in the majority distance based template
matching engines, here the decision threshold is directly influencing both error
classes. If it is set very low (which is the case for high-security application
scenarios), then the system shows a high false rejection rate but also a low false
acceptance rate. If the decision threshold is very high, then we usually see a low
false rejection rate but a high false acceptance rate. A typical system requirement
specification in this field gives a relationship between these two error rates, like
“must be better than 10° FAR at 10~ FRR” (see e.g. the so called horizontal and
vertical averaging in [32]).

The statistical pattern recognition based approaches used for most steganalysis
approaches are to some extend similar to the biometric verification example used
above. They are also a pattern recognition based security mechanism and they are also
(in most cases) considered to be a two-class problem. Nevertheless, they lack such a
parameterisable decision threshold that directly influences both error classes. Instead
both error classes (statistical Type I and Type II errors — false positives and false
negatives) have to be considered here as being independent. One trained classifier
model is therefore assumed to display a fixed error ratio regarding the two possible
classes. If multiple steganalysers (i.e. feature extractor, classifier and classifier model
combinations) are considered for field application, it depends of the requirements for
the application scenario which of these alternative steganalysers would be chosen.
These requirements would include considerations on the throughput but also on the
allowed false positives and false negatives — with high security scenarios strongly
trying to minimise the number of false negatives.
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In case the steganalysis problem at hand is not formulated as the typical two-class
problem but instead aims at algorithm identification in an n-class problem the
situation might become even more complex. In this case different levels of severity
might be assigned to the different classes, e.g. based on the capacity that a different
steganographic algorithms offer.

Another important question to be addressed here is the question about the
statistical generalisability of the results at hand, considering known problems from
classification (like overfitting) and required evaluation set sizes. The property of
performing well on real-world data — which can be considered in this context to be
equivalent to statistical generalisability — is commonly referred in the machine
learning field as generalization [10]. A classifier which performs well on data outside
of its training set is said to “generalize” well. This ability is an important goal to
accomplish when designing a classifier.

It is important to supply the classifier with training data that is representative for
the total possible space of inputs which it could encounter in real world situations. If
the training data has been chosen poorly, it is likely that the classifiers will rely on
features that only occur frequently in the training set and which are not useful in real
world applications. Poorly chosen material can be distinguished into two classes:
either the training samples are chosen from the range of values to be expected in real
world application but there are not enough samples chosen to describe this domain
completely (i.e. the training set size is not statistically significant), or, the training
samples come (completely or partially) from outside the range of values to be
expected in the real world application or do not present the representation of the target
classes in this range appropriately.

It has to be understood that the complexity for training and application of classifier
models is strongly dependent on the number of training samples used. Therefore it
would be beneficial to keep the number of training samples as low as possible, which
leads to the risk of choosing a too small set of training candidates in this optimisation
problem. Here, investigations have to be made for each SPR-based security
mechanism wow large the training set sizes have to be to allow for a suitable
description of the problem domain while on the other hand preventing the model to
become to large (high complexity in training and field application).

The other class of poorly chosen training material is describing the over-fitting
problem. In over-fitting situations (which are the exact opposite of generalisation) the
classifier is trained wrongly and is in practice only able to correctly recognise data
from its training set [11]. The most important considerations to be performed here
should focus between the correlation between the training context and the
application context. The question behind these considerations is trying to address
whether the steganalyser will only perform properly on material identical in its
statistics to the statistics of the training context or whether the mechanism is capable
of making successful decisions in a wider range of application contexts. In [9] we
introduced the concepts of context dependent and content independent training and
testing. In the cover signal specific steganalysis performed in [9] the classification
results achieved for nine different information hiding algorithms show a rather strong
impact of the correlation between the training and test set material for the considered
SPR-based steganalyser.
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In case signal operations of non-malicious nature have to be allowed for on the
digital media objects under evaluation (which is a rather likely scenario in media-based
communication, where much of the data undergoes a post processing prior to
distribution) the generalisability considerations are made even more complicated. In the
case where the influence of non-malicious audio signal processing operations on the
steganalyser has to be considered, the range of the values representing “harmless” (non-
stego objects) becomes statistically more complex by every additional allowed
operation and also the distance between non-stego and stego objects assumably
decreases, which makes the classification problem harder. The only option seems to be
here to include such non-malicious signal processing operations into the evaluation of
the steganalyser prior of its roll-out as a security mechanism.

One further point to consider is the relevance of the features used for the
classification problem at hand. A classifier tends to learn the easiest features it can. A
rather renowned story in the data mining community to illustrate this fact tells of
scientists in a military project trying to train a neural network to classify images as
containing either tanks or trees. Sometimes this possibly apocryphal story is told
claiming to aim at the distinction between American and Russian tanks. The story is
summarised in [12] as follows: scientists present pictures of trees and pictures of
tanks to the neural network to train it. After sophisticated pre-processing of the
images, these are fed in the neural network and, after considerable training, the
network is able to classify each image correctly. However, when it is tested on other
images, the network seems to classify every image as trees, even when it contains a
tank. After careful study, the scientists finally resolve the mystery: in all the images
used in the training, those containing trees were always taken in broad daylight, while
those containing trees were always taken in a darker setting! Thus, the network had
learned to distinguish the (trivial matter of) differences in overall light intensity rather
than recognising the presence of tanks. Therefore the relevance of features looks for
exactly these features that as precisely as possible divide the individual classes in the
classification problem. Also, an optimal set of features would contain no redundancy,
so the correlation between the features in such a set would be zero, to reduce the
dimensionality of the classification problem and thereby enhance the throughput.

Relevance considerations on the features should also look into different feature
types, which have a strong impact on the throughput. The two general types that are
most commonly considered in this context in literature (e.g. [13]) are local and global
features. Local as well as global features are either determined content based or
without higher-level content analysis. A good example for content based local
features is the determination of minutiae in fingerprint images; an example for local
features computed without higher-level content analysis could be the colour-value
distance between one pixel and the next in a row in an image. For content based
global features an example could be the existence of a specific object (e.g. a tank) in
an image; an example for global features computed without higher-level content
analysis could be the entropy of a complete signal. It is obvious that the global
features perform the strongest information reduction, while especially the local
features computed without higher-level content analysis provide very little
information reduction.
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As an in-between for local and global features a third class, the segment-wise
computed features (also known as segmental features or intra-window features) can
be determined. They could be considered as being a global feature (e.g. entropy)
applied only to a segment of the whole signal or as the evaluation of local features for
a whole segment (e.g. the number of colour-value changes in and image block). Also
this segmental approach to feature computation is often employed when features are
extracted in a transform domain representation of the original signal (e.g. in frequency
domain representations of audio or image signals) since many established domain
transforms are working segment-wise (a.k.a. window-wise). Local features might be
of use in media formats with a small number of data points (e.g. digital images, which
are usually not larger than 10,000,000 data points or pixels) but their usage in high
data rate media formats like audio or video is unfeasible, therefore they are removed
from considerations within this paper focussed on audio steganalysis, although it has
to be acknowledged here that local features are successfully used in image
steganalysis [14].

Information fusion (sometimes also called ensemble methods) is trying to increase
the decision performance of pattern recognitions mechanisms. The fusion or
combination of experts can be done in two general ways: either by combining experts
of different types (e.g. [1], [3]) or by using the same expert on different subsets of the
feature space (e.g. [14]). While the first approach assumes that the classification
problem can be represented and solved in low-dimensional feature spaces, the second
approach assumes that the repeated, random dimensionality reduction and application
of a base learner on different subspaces of the original space together with a decision
based on the aggregation of the base learner outputs can solve an high dimensional
classification problem efficiently [15]. The literature mentioned above (and further
publications) have shown that information fusion can improve the detection accuracy
of (ensemble) steganalysers, given suitable fusion operators and individual experts (or
a suitable base learner in an appropriate high-dimensional feature space).
Nevertheless, current research is still lacking an answer to the question how to model
the trust in a decision generated by such an ensemble steganalyser.

3.3 Detector-Based Steganographic Channel Characterisation

If a steganalysis performing security mechanism would detect the presence of hidden
channels in the data under observation, the statistical characteristics that lead to the
detection could be used to characterise the steganographic channel. Information like
the used embedding domain (e.g. [24]) and -strategy might be deduced and an
algorithm identification (e.g. [16]) as well as key scenario considerations (e.g. [3])
and payload estimation (e.g. [23]) operations might be performed.

3.4  Countermeasures (i.e. Modifications on the Cover Channel)

Assuming a suitable steganalysis performing security mechanism could be
implemented for a given cover channel, the next question to be addressed would be:
How to react if the usage of steganography is detected?
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In some application scenarios we might only have the possibility to disrupt the
complete cover channel (passive warden scenario). In an active warden scenario more
sophisticated measures might be found in filtering operations on the cover data to
eliminate the embedded steganographic information (e.g. [26]).

Nevertheless, since steganography and steganalysis can be considered to constitute
an each other influencing set of counter-sciences, it has to be assumed that
steganographers are aware of possible countermeasures (see e.g. [25] on this topic).

4 Application of the Methodology and Concepts

This section briefly demonstrates the benefit of the application of our methodology
and concepts in practice. The first part of the presented results shows in section 4.1
how the throughput of different supervised classifiers used for steganalysis can be
compared using the g, metric introduced in section 3.1. In section 4.2 selected
considerations on the plausibility of our work on audio steganalysis are discussed.

4.1 Applied throughput Analysis

If we use our own evaluation results from [27] as input for the throughput analysis
described in section 3.1., the performance of 74 different supervised classifiers (from
the WEKA data mining suite [6]) on three different audio data hiding algorithms
(called ASI, AWI and AW3 — see [27] for details) can be visualised as shown in
figures 1 and 2.
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Fig. 1. Throughput analysis: training and testing with all 74 supervised classifiers in WEKA
v.3.6.1 and three data hiding algorithms; classification gain over time - linear scale for the x-
axis (diagram based on the classifier benchmarking results presented in [27])
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Fig. 2. Throughput analysis: training and testing with all 74 supervised classifiers in WEKA
v.3.6.1 and three data hiding algorithms; classification gain over time - logarithmic scaling for
the x-axis (diagram based on the classifier benchmarking results presented in [27])

In figure 1 the throughput is shown in a classification gain over time diagram. The
“optimal” point, which would be a decision machine that gives a perfect classification
(cg=1) in an extremely short time-span (time=0), is here the upper left corner of this
diagram. Therefore the metric g,,, introduced within this paper would be the absolute
distance from this optimal point. As can be seen in figure 1 the three data hiding
algorithms evaluated in [27] achieve extremely different throughput performances.
The best results (with a smallest g, of 0.1488 (accuracy=89.48% and
runtime=230.1s) achieved by weka.classifiers.functions.Logistic) the best result is
achieved for AWI.

The worst result in this diagram is achieved by a classifier that takes 19695s
seconds for the training and classification for AS1 with weka.classifiers.rules.NNge to
come up with a classification accuracy of 50% in this 2-class problem (cg=0).

Since figure 1 does not allow for an easy comparison of the distribution of the
results within the clusters representing the three evaluated data hiding algorithms, a
logarithmically scaled version of this diagram is presented in figure 2.

4.2  Applied Plausibility Investigations

The six different aspects of the plausibility of steganalysis identified in section 1.
for practical investigations are considered here and illustrated using our own
research work in audio steganalysis.
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The first of these aspects are the basic considerations on the detection
performance (or classification accuracy) of the steganalysers as initial/naive trust
assumption. As stated in section 3.2., a classification accuracy significantly better
then the probability of guessing correctly is the necessary condition for steganalysers.
This necessary condition is fulfilled for audio steganalysis, as shown with our results
presented in section O or the results achieved by others (e.g. [4] or [5]) on that matter.

Regarding the differentiation between the different error classes encountered
(i.e. here between the statistical Type I and Type II errors — false positives and false
negatives for a consideration of steganalysis as a two-class classification problem) we
show in [28] that a specific setup for a steganalyser might lead to an unbalanced
distribution of false positives and false negatives. Furthermore in this paper it is
shown that the choice of features used to implement the steganalyser has a strong
influence on the error rates and their distribution.

The question about the statistical generalisability of steganalysis results is a tough
problem. This is very good illustrated in [16] (see section 2 of this paper where a short
summary of the work of Provos and Honeyman is given). In general it requires
answers to such questions like: “Is the chosen cover material for an investigation
typical/representative in composition for an application scenario?” and “Is enough
training and test material available/used?”

To answer the question about the representative context, we try to model the
application context as closely as possible in the training of the classifiers as well as in
the composition of the evaluation test sets. E.g. for analyses on VoIP steganalysis,
where the typical cover data is human speech, we use speech data for training and
evaluation. For general purpose audio steganalysis we generated a large multi-genre
audio training set and a test set of similar composure (see e.g. [27] for details). To
investigate whether the classifier shows overfitting tendencies, we compare in [27]
results for 10-fold stratified cross-validation and training and testing on completely
different sets of audio files, with the result that the discrepancies between the
classification accuracies achieved imply how much overfitting takes place.

Regarding the question whether enough training and test material was used, our
solution so far has been to increase the training set sizes until a stable level for the
classification accuracy is reached.

The plausibility of steganalysis also has to look into the influence of other (non-
malicious) audio signal processing operations on the classification behaviour of the
steganalyser. The motivation for this consideration in found in the fact that especially
pieces of music undergo rather dramatic modifications between their recording and
the roll-out on a CD. One example for such modification is the custom to ‘improve’
singers voices with artificial reverberation. Table 1 shows the results of an experiment
from [27] where we train classifiers for three different data hiding algorithms (AS/,
AWI and AW3) and then apply these classifiers onto a completely unmarked audio
material after non-malicious signal modifications (MP3 conversion and de-noising).
For a complete description of the used evaluation setup we refer to [27].
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Table 1. Classification accuracies (in %) for the global- (left column) and segmental features
(right) and the best 5 classifiers from the classifier benchmarking in [27] for each algorithm (for
a description of the used evaluation setup we refer to [27])

Mod. Class. AS1 AWI AW3
MP3 best 56.82 53.64 77.27 51.14 63.64 16.82
encoding 2nd 56.82 9.09 70.45 76.93 95.45 71.14
3rd 100 46.48 63.64 56.48 0 0
4th 95.45 6.93 77.27 76.14 56.82 0
5th 100 0 20.45 75.57 72.73 0
de- best 29.55 53.97 100 99.88 79.55 96.14
noising 2nd 29.55 10.51 95.45 83.76 100 43.34
3rd 100 50 84.09 65.07 100 0
4th 100 1.75 90.91 71.03 100 0
5th 100 0 100 77.57 100 0

A value of 100% in table 1 indicates that the complete test material was rightfully
classified as unmarked by the corresponding feature extractor and classifier
combination. A value of 0% means that the classifier produced false alarms on every
input sample. Summarising these evaluation results it can be stated the de-noising
operation output is in nine out of 15 test cases with the global features found 100%
correct to be “not marked”, in four other cases this value is above 80%, while for two
cases are down to 29.55% equal to a rate of false alarms of 70.45%. For the MP3
encoding the picture is worse, with only two classifiers achieving 100% preciseness
while all others show less than perfect results. One of the classifiers (the 3" best for
AW3) even shows a 100% false alarm rate.

It has to be stated that the segmental features perform significantly worse in these
tests if it comes to plausibility against common signal modification operations. None
of the 30 segmental test cases summarized in table 5 shows 100% preciseness, while
eight cases show a false alarm rate of 100%.

In this investigation two different types of features are compared: global and
segmental audio features. The choice which features to use influences, besides the
classification accuracy achieved and the computational complexities of the feature
extraction as well as the classification, also other questions, e.g. the localisation of
modification/embeddings. While global features (which can be computed faster and
which allow for faster classifications - see e.g. [27]), can only give an indication
whether an audio signal is a stego object or not, segmental features could be used to
identify which part of the file was modified and which was kept unchanged in case a
low embedding strength (and a sequential embedding strategy) was used.

In general such considerations on features can be extended to investigations on
whether the features used for classification actually being relevant for the
classification problem at hand. Considering once more the work of Provos and
Honeyman in [16], they notice from their investigations that Stegdetect shows a
general tendency to classify unmarked drawings as stego objects generated with JSteg
and images showing oil paints as output of Outguess 0.13b. To eliminate such
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wrongful global tendencies in our work we perform feature selection analyses under
the assumption that these, if applied on the output of different steganographic tools,
will allow us to estimate whether they are significant for steganographic embedding
by certain algorithms or whether they are representing other content influences. For
details see [24]. As additional benefits these feature selection investigations also
allow us to group ‘similar’ algorithms, e.g. by their working domain, and decrease the
dimensionality of the feature space used for classification and therefore increase the
throughput.

Regarding investigations on the possibilities for increasing and estimating the
decision performance by usage of information fusion by multiple steganalysers, it
has to be stated that the few publications in this field for steganalysis show uniformly
a rather non-satisfying picture. If the fusion considerations are only focussed on the
feature spaces (e.g. [2] or [14]) then in nearly all cases a increase of the classification
accuracies achieved is reported. If also other fusion levels are considered, like in the
initial paper on this matter ([30]) or in our work on different fusion levels (e.g. [27]),
then examples for increased as well as decreased classification accuracies are
reported. A further remark for this topic has to be made on the increase in the
computational complexity of the steganalysis task imposed by information fusion.
Depending on the fusion level and fusion operator used, the increase in complexity
can be either linear (on the number of fused steganalysers and observed material) or
higher.

5 Summary and Conclusion

In this paper we on one hand introduce a throughput benchmarking scheme for
steganalyser benchmarking and on the other hand we discuss plausibility
considerations for steganalysers that aim to establish the trust that would be required
in such a mechanism if it should ever be deployed for the detection of hidden
communication channels in real world communication scenarios. The theoretical
considerations presented here are accompanied with a brief practical demonstration
on the applicability of our new benchmarking metric and the plausibility
considerations in audio steganalysis research.

The next steps that will be considered in future work are extension of the
considerations on benchmarking metrics into a fully developed and fair benchmarking
scheme for practical steganalysis. We think that such benchmarking would be a
necessity basis for large-scale usage in communication security. Similar fields of
research on communication security already have benchmarking methods in place.
Two examples for such initiatives to be mentioned here are the National Institute of
Standards and Technology’s (NIST, see http://www.nist.gov/itl/biometrics/index.cfm)
work on Biometrics as well as the European Institute for Computer Antivirus
Research (EICAR, see e.g. www.eicar.org/) with its work on malware detection.

Furthermore, additional plausibility related issues in this context have to be
identified and considered in future work to further complete the picture considered.
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