! %

Discrete
Mathematics
for Computer

Scientists
Stein ¢ Drysdale ® Bogart

DISCRETE MATHEMATICS
FOR COMPUTER SCIENTISTS

This page intentionally left blank

DISCRETE MATHEMATICS
FOR COMPUTER SCIENTISTS

Clifford Stein

Columbia University

Robert L. Drysdale
Dartmouth College

Kenneth Bogart

Addison-Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editor in Chief:

Editorial Assistant:

Director of Marketing:
Marketing Coordinator:
Managing Editor:

Production Project Manager:
Senior Manufacturing Buyer:
Media Manufacturing Buyer:
Art Director:

Cover Designer:

Cover Art:

Media Project Manager:
Full-Service Project Management:
Composition:

Michael Hirsch
Stephanie Sellinger
Margaret Whaples
Kathryn Ferranti
Jeffrey Holcomb
Heather McNally
Carol Melville
Ginny Michaud
Linda Knowles
Elena Sidorova
Veer

Katelyn Boller
Bruce Hobart, Laserwords
Laserwords

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate
page within text.

The programs and applications presented in this book have been included for their instructional value. They have been tested with
care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations, nor does it
accept any liabilities with respect to the programs or applications.

Copyright © 2011. Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston Street, Suite 900, Boston, Massachusetts
02116. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and
permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 501 Boylston Street, Suite
900, Boston, Massachusetts 02116.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those

designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial

caps or all caps.

Library of Congress Cataloging-in-Publication Data

10987654321

Addison-Wesley
is an imprint of

PEARSON

L —————

www.pearsonhighered.com

ISBN-13: 978-0-13-212271-9
ISBN-10: 0-13-212271-5

www.pearsonhighered.com

This book is dedicated to our friend and co-author, Ken Bogart, whose
untimely death on March 30, 2005 prevented him from seeing the original
book in published form. Ken was the driving force behind the creation of
the book. We miss him and we wish that we had been able to collaborate
with him on this version.

This page intentionally left blank

Brief Contents

List of Theorems, Lemmas, and Corollaries xix
Preface xxi
CHAPTER 1 Counting 1
CHAPTER 2 Cryptography and Number Theory 59
CHAPTER 3 Reflections on Logic and Proof 117
CHAPTER 4 Induction, Recursion, and Recurrences 161
CHAPTER 5 Probability 249
CHAPTER 6 Graphs 359

APPENDIX A Derivation of the More General
Master Theorem 449

APPENDIX B Answers and Hints
to Selected Problems 461

Bibliography 477
Index 479

vii

This page intentionally left blank

Contents

List of Theorems, Lemmas, and Corollaries

Preface

CHAPTER 1 Counting

1.1

1.2

1.3

Basic Counting

The Sum Principle

Abstraction

Summing Consecutive Integers

The Product Principle

Two-Element Subsets

Important Concepts, Formulas, and Theorems
Problems

Counting Lists, Permutations, and Subsets

Using the Sum and Product Principles

Lists and Functions

The Bijection Principle

k-Element Permutations of a Set

Counting Subsets of a Set

Important Concepts, Formulas, and Theorems
Problems

Binomial Coefficients

Pascal’s Triangle

A Proof Using the Sum Principle

The Binomial Theorem

Labeling and Trinomial Coefficients
Important Concepts, Formulas, and Theorems
Problems

xix

xxi

0 N O N W W R

ST T SO R ORI TR\~ T (N S G O S O
© 00 o0 N DD N © 0o oo 1 A DD O O

— W
xX O

x Contents

1.4

1.5

Relations

What Is a Relation?

Functions as Relations

Properties of Relations

Equivalence Relations

Partial and Total Orders

Important Concepts, Formulas, and Theorems

Problems

Using Equivalence Relations in Counting
The Symmetry Principle

Equivalence Relations

The Quotient Principle

Equivalence Class Counting

Multisets

The Bookcase Arrangement Problem

The Number of k-Element Multisets
of an n-Element Set

Using the Quotient Principle to Explain a Quotient
Important Concepts, Formulas, and Theorems

Problems

CHAPTER 2 Cryptography and Number Theory

2.1

Cryptography and Modular Arithmetic
Introduction to Cryptography

Private-Key Cryptography

Public-Key Cryptosystems

Arithmetic Modulo n

Cryptography Using Addition mod n
Cryptography Using Multiplication mod n
Important Concepts, Formulas, and Theorems

Problems

32
32
33
33
36
39
41
42
43
43
45
46
46
48
50

51
52
53
54

59

59
59
60
63
65
68
69
71
72

2.2

2.3

2.4

Contents xi

Inverses and Greatest Common Divisors
Solutions to Equations and Inverses mod n
Inverses mod n

Converting Modular Equations to Normal Equations
Greatest Common Divisors

Euclid’s Division Theorem

Euclid’s GCD Algorithm

Extended GCD Algorithm

Computing Inverses

Important Concepts, Formulas, and Theorems
Problems

The RSA Cryptosystem

Exponentiation mod n

The Rules of Exponents

Fermat’s Little Theorem

The RSA Cryptosystem

The Chinese Remainder Theorem

Important Concepts, Formulas, and Theorems
Problems

Details of the RSA Cryptosystem
Practical Aspects of Exponentiation mod n
How Long Does It Take to Use the RSA Algorithm?
How Hard Is Factoring?

Finding Large Primes

Important Concepts, Formulas, and Theorems
Problems

CHAPTER 3 Reflections on Logic and Proof

3.1

Equivalence and Implication
Equivalence of Statements

Truth Tables

DeMorgan'’s Laws

75
75
76
79
80
81
84
85
88
89
90

93
93
93
96
97

101
102
104

106
106
109
110
110
113
114

117
117
117
120
123

xii

Contents

3.2

3.3

Implication
If and Only If
Important Concepts, Formulas, and Theorems

Problems

Variables and Quantifiers
Variables and Universes

Quantifiers

Standard Notation for Quantification
Statements about Variables

Rewriting Statements to Encompass Larger Universes

Proving Quantified Statements True or False
Negation of Quantified Statements

Implicit Quantification

Proof of Quantified Statements

Important Concepts, Formulas, and Theorems

Problems

Inference

Direct Inference (Modus Ponens) and Proofs
Rules of Inference for Direct Proofs
Contrapositive Rule of Inference

Proof by Contradiction

Important Concepts, Formulas, and Theorems

Problems

CHAPTER 4 Induction, Recursion,

4.1

and Recurrences

Mathematical Induction

Smallest Counterexamples

The Principle of Mathematical Induction
Strong Induction

Induction in General

A Recursive View of Induction

125
126
129
131
133
133
134
136
138
138
139
140
143
144
145
147
149
149
151
153
155
158
159

161
161
161
165
169
171
173

4.2

4.3

4.4

4.5

Structural Induction
Important Concepts, Formulas, and Theorems

Problems

Recursion, Recurrences, and Induction
Recursion

Examples of First-Order Linear Recurrences
Iterating a Recurrence

Geometric Series

First-Order Linear Recurrences

Important Concepts, Formulas, and Theorems

Problems

Growth Rates of Solutions to Recurrences

Divide and Conquer Algorithms

Recursion Trees

Three Different Behaviors

Important Concepts, Formulas, and Theorems

Problems

The Master Theorem

Master Theorem

Solving More General Kinds of Recurrences
Extending the Master Theorem

Important Concepts, Formulas, and Theorems

Problems

More General Kinds of Recurrences
Recurrence Inequalities

The Master Theorem for Inequalities

A Wrinkle with Induction

Further Wrinkles in Induction Proofs
Dealing with Functions Other Than n¢
Important Concepts, Formulas, and Theorems

Problems

Contents

xiii

176
178
180

183
183
185
187
188
191
195
197

198
198
201
209
210
212

214
214
217
218
220
221

222
222
223
225
227
230
232
233

xiv Contents

4.6

Recurrences and Selection

The Idea of Selection

A Recursive Selection Algorithm

Selection without Knowing the Median in Advance
An Algorithm to Find an Element in the Middle Half
An Analysis of the Revised Selection Algorithm
Uneven Divisions

Important Concepts, Formulas, and Theorems
Problems

CHAPTER 5 Probability

5.1

5.2

5.3

Introduction to Probability

Why Study Probability?

Some Examples of Probability Computations
Complementary Probabilities

Probability and Hashing

The Uniform Probability Distribution

Important Concepts, Formulas, and Theorems
Problems

Unions and Intersections

The Probability of a Union of Events

Principle of Inclusion and Exclusion for Probability
The Principle of Inclusion and Exclusion for Counting
Important Concepts, Formulas, and Theorems
Problems

Conditional Probability and Independence
Conditional Probability

Bayes’ Theorem

Independence

Independent Trials Processes

Tree Diagrams

Primality Testing

235
235
236
237
239
242
244
246
247

249

249
249
252
253
254
256
259
260

262
262
265
271
273
274

276
276
280
280
282
284
288

5.4

5.5

5.6

Important Concepts, Formulas, and Theorems

Problems

Random Variables

What Are Random Variables?

Binomial Probabilities

A Taste of Generating Functions

Expected Value

Expected Values of Sums and Numerical Multiples
Indicator Random Variables

The Number of Trials until the First Success
Important Concepts, Formulas, and Theorems

Problems

Probability Calculations in Hashing
Expected Number of Items per Location
Expected Number of Empty Locations
Expected Number of Collisions

Expected Maximum Number of Elements
in a Location of a Hash Table

Important Concepts, Formulas, and Theorems
Problems

Conditional Expectations, Recurrences,
and Algorithms

When Running Times Depend on More than Size
of Inputs

Conditional Expected Values

Randomized Algorithms

Selection Revisited

QuickSort

A More Careful Analysis of RandomSelect
Important Concepts, Formulas, and Theorems

Problems

Contents xv

289
290

292
292
293
295
296
299
302
304
306
307

310
310
311
312

315
320
321

325

325
327
329
331
333
336
339
340

xvi

Contents

5.7

Probability Distributions and Variance
Distributions of Random Variables

Variance

Important Concepts, Formulas, and Theorems
Problems

CHAPTER 6 Graphs

6.1

6.2

6.3

6.4

Graphs

The Degree of a Vertex

Connectivity

Cycles

Trees

Other Properties of Trees

Important Concepts, Formulas, and Theorems
Problems

Spanning Trees and Rooted Trees
Spanning Trees

Breadth-First Search

Rooted Trees

Important Concepts, Formulas, and Theorems
Problems

Eulerian and Hamiltonian Graphs
Eulerian Tours and Trails

Finding Eulerian Tours

Hamiltonian Paths and Cycles

NP-Complete Problems

Proving That Problems Are NP-Complete
Important Concepts, Formulas, and Theorems
Problems

Matching Theory
The Idea of a Matching
Making Matchings Bigger

343
343
346
354
355

359

359
363
365
367
368
368
371
373

375
375
377
382
386
387

389
389
394
395
401
403
406
407

410
410
414

Contents xvii

Matching in Bipartite Graphs 417
Searching for Augmenting Paths in Bipartite Graphs 417
The Augmentation-Cover Algorithm 420
Efficient Algorithms 426
Important Concepts, Formulas, and Theorems 427
Problems 428
6.5 Coloring and Planarity 430
The Idea of Coloring 430
Interval Graphs 433
Planarity 435
The Faces of a Planar Drawing 437
The Five-Color Theorem 441
Important Concepts, Formulas, and Theorems 444
Problems 445

APPENDIX A Derivation of the More General

Master Theorem 449
More General Recurrences 449
Recurrences for General n 451
Removing Floors and Ceilings 452
Floors and Ceilings in the Stronger Version
of the Master Theorem 453
Proofs of Theorems 453
Important Concepts, Formulas, and Theorems 457
Problems 458
APPENDIX B Answers and Hints to Selected Problems 461
Bibliography 477

Index 479

This page intentionally left blank

List of Theorems, Lemmas,
and Corollaries

Chapter 1

Theorem 1.1......................... 16
Theorem 1.2......................... 18
Theorem 1.3......................... 25
Theorem 1.4......................... 26
Theorem 1.5......................... 38
Theorem 1.6......................... 39
Theorem 1.7......................... 46
Theorem 1.8......................... 52
Chapter 2

Theorem 2.1......................... 61
Theorem 2.4 67
Theorem 2.7 78
Theorem 2.9......................... 80
Theorem 2.12...............iii.. 82
Theorem 2.14........................ 88
Theorem 2.15........................ 88
Theorem 2.21...............oiu.. 96
Theorem 2.23....................... 101
Theorem 2.24....................... 101
Lemma22.......................... 65
Lemma23.......................... 66
Lemma25...................o. ... 75
Lemma28.......................... 79
Lemma 2.11......................... 81
Lemma2.13..................... ... 83
Lemma2.19......................... 93
Lemma220......................... 96
Lemma2.25........................ 111
Corollary 2.6 ...t 77
Corollary 2.10 ...t 80
Corollary 2.16o oviii i 88
Corollary 2.17ooviiii i, 88

Corollary 2.18 ... 89
Corollary 2.22 ..., 97
Chapter 3

Theorem 3.2........................ 139
Theorem 3.3........................ 141
Lemma3.1......................... 123
Lemma35......................... 154
Corollary 3.4 ...t 141
Chapter 4

Theorem 4.1........................ 188
Theorem 4.4........................ 191
Theorem 4.5........................ 192
Theorem 4.6.................co.... 195
Theorem 4.9........................ 215
Theorem 4.10....................... 219
Theorem 4.11....................... 220
Theorem 4.12....................... 224
Theorem 4.15....................... 244
Lemmad3......................... 190
Lemmad4.7......................... 209
Lemmad4.14........................ 242
Corollary 4.2 ...t 189
Corollary 4.8 ...t 210
Corollary 4.13 ... 224
Chapter 5

Theorem 5.1........................ 253
Theorem 5.2........................ 256
Theorem 5.3........................ 266

xix

XX

List of Theorems, Lemmas, and Corollaries

Theorem 5.4........................ 272
Theorem 5.5........................ 280
Theorem 5.7........................ 282
Theorem 5.8........................ 294
Theorem 5.10....................... 300
Theorem 5.11....................... 300
Theorem 5.12....................... 301
Theorem 5.13....................... 305
Theorem 5.14....................... 311
Theorem 5.15....................... 311
Theorem 5.16....................... 312
Theorem 5.17....................... 314
Theorem 522....................... 319
Theorem 523....................... 329
Theorem 524....................... 333
Theorem 525....................... 336
Theorem 529....................... 350
Theorem 5.30....................... 353
Lemmas59......................... 298
Lemma 5.18........................ 315
Lemma 5.19........................ 316
Lemma 5.20...............ooui... 317
Lemma 521........................ 318
Lemma 526........................ 346
Lemma 5.28........................ 349
Corollary 5.6 ...t 281
Corollary 5.27 ... 346
Chapter 6

Theorem 6.2........................ 363
Theorem 6.3........................ 369
Theorem 6.5........................ 371

Theorem 6.7........................ 375

Theorem 6.9........................ 381
Theorem 6.10....................... 392
Theorem 6.11....................... 393
Theorem 6.12....................... 398
Theorem 6.13....................... 400
Theorem 6.18....................... 417
Theorem 6.20....................... 424
Theorem 6.22....................... 425
Theorem 6.24....................... 434
Theorem 6.26....................... 439
Theorem 6.29....................... 441
Lemma 6.1......................... 363
Lemma64......................... 370
Lemma 6.8......................... 380
Lemma 6.14........................ 413
Lemma 6.15........................ 413
Lemma 6.16........................ 415
Lemma 6.23........................ 432
Corollary 6.6 371
Corollary 6.17 ... 416
Corollary 6.19 417
Corollary 6.21, 425
Corollary 6.25 ... 435
Corollary 6.27 ... 440
Corollary 6.28 440
Appendix A

Theorem A.1....................... 451
Theorem A2 452
Theorem A3 453
Theorem A4 454
Theorem A5 455

Preface

OUR MOTIVATION AND VISION

Many colleges and universities offer a course in discrete mathematics. Stu-
dents taking these courses are from many disciplines, one of the largest
being computer science. As a part of the Mathematics Across the Curricu-
lum project at Dartmouth, supported by the National Science Foundation,'
we proposed to create a discrete mathematics course that directly addresses
the needs of computer science students. In analyzing what topics in discrete
mathematics we want our computer science students to know and why we
want them to know these topics, we made two observations.

First, there are a few topics we consider important to computer science that
are not always covered thoroughly, if at all, in traditional discrete mathe-
matics courses. Among these are recursion trees and the Master Theorem
for solving recurrence relations, the probability theory needed to compute
average run times and to analyze randomized algorithms, and an emphasis
on strong and structural induction.

Second, for each topic in discrete mathematics that we consider impor-
tant for computer science students, there is a motivating topic in computer
science that can be understood at the level of a first or second course in
computer science. We feel this makes it possible to answer the age-old ques-
tion students ask in applied mathematics courses: “Why do we have to learn
this?” We therefore chose to write a textbook with computer science stu-
dents in mind, with the objective of providing the necessary mathematical
foundations for a computer science major, motivated by computer science
problems that students can understand early in their study of computer
science.

In many computer science departments, discrete mathematics is one of the
first courses taken by majors. It may even be a prerequisite to the first
computer science course. In this case instructors are faced with a dilemma—
teach the concepts purely mathematically with little or no visible application
to computer science, or teach computer science examples to create a context

'Grant Number DUE-9552462

xxi

xxii

Preface

relevant to computer science students. The first leaves students complain-
ing that they are being forced to take too much “irrelevant” mathematics
before they can take their first computer science course. The second leaves
professors (who are often mathematicians) trying to explain fairly advanced
computer science topics such as hashing, binary trees, and recursive pro-
grams to students who may never have written a program. Even under the
best of circumstances, this approach significantly reduces the depth of the
mathematics that can be taught. Our analysis led to a different approach,
creating a course that appears slightly later in students’ studies. While we
do not explicitly assume students have taken calculus, we assume familiar-
ity with and make significant use of summation notation, logarithms, and
exponential functions, so that a strong understanding of precalculus mate-
rial is very helpful.? This course is meant to be taken after an introductory
computer science course where students have seen recursive programs. Ide-
ally it would be taken concurrently with or after a data structures course,
but we explain the data structures that we use as examples. Therefore a
data structures course is not a prerequisite for this course.

We feel that there are several advantages to this placement. Particular
examples include:

 Students have already had serious experience thinking about problem
solving, algorithms, and writing code.

 Students have learned or are ready to learn several important
computer science concepts such as hashing, recursion, sorting and
searching, and basic data structures.

 Students know enough computer science that they already know the
motivating examples or the examples are straightforward enough for
them to understand. For example,

— Hashing can be used to motivate the study of probability.

— Analysis of recursive programs such as mergesort and quicksort
can be used to motivate recurrence relations and their solutions.

— Analyzing how often we expect to find a new minimum in a
procedure that finds the minimum element of a list can be used
to motivate studying linearity of expectation and harmonic
numbers.

ZMost of our students have had calculus. In isolated places we make use of elementary
derivatives and in optional subsections in probability we use natural logarithm and
exponential functions and elementary power series. By ignoring the few proofs or
problems using derivatives and the optional subsections in probability, the instructor can
avoid calculus.

Preface xxiii

— Binary trees can be used to teach structural induction, and also
to motivate the study of trees as examples of graphs.

In our own teaching experiences, this class is a prerequisite to an algorithms
class, and students often take the algorithms course soon after the discrete
mathematics course. In doing so, they find themselves immediately using
the mathematics that they have just learned.

OUR EDUCATIONAL PHILOSOPHY

This text is driven by activities, presented as exercises. The material is
fleshed out through explanations and extensions of the activities. The most
effective way for students to use the book is for them to attempt seriously the
student activities before they read the explanation that follows. The activities
are primarily meant to be done in groups in class; thus for activities done
out of class we recommend that students form groups to work together. The
class and this text are designed in this way to help students develop their
own habits of mathematical thought. Our reading of the research in how
undergraduate students learn mathematics leads us to several conclusions.

 Students who actively discover what they are learning (thus engaging
in what is often called “active learning”) remember concepts far
longer than those who don’t. They are also more likely to be able to
use them outside the context in which they were learned.

 Students are more likely to ask questions until they understand a
subject when they are working in a small group of peers rather than
in a larger class with an instructor. (However, this isn’t always the
case. Many students need to feel comfortable within their group
before they ask questions that they fear will slow down the others.
We try to develop this comfort level in class by allowing students to
choose their groups and change from group to group on different
days as attendance patterns allow or require.)

* Finally, explaining ideas to someone else helps students organize
these ideas in their minds and familiarizes students with the language
of mathematics.

There is ample material in the book for a four-semester-hour course. At
Dartmouth we use the book for a fast-paced course that meets three days
a week for just over nine weeks and covers all but the last few sections of
the book and some material marked with an asterisk.

XXiv

Preface

THE ROLE OF PROOFS

One of our purposes in writing this book is to give students a background
for the kinds of proofs that they will need to understand and write in their
computer science courses. Our view is that one learns how to do proofs
by hearing, seeing, discussing, and trying to do proofs. In order to discuss
proofs, we need to have a common language that classifies the ingredients of
a proof and provides us a framework for discussion. For this reason we have
included a chapter on logic, designed both to give students this language and
to assist them in the process of reflecting on the proofs they have already
seen. In order to have something significant to talk about in this chapter,
we have introduced it after the students have seen some combinatorial and
number theoretic proofs. This way the students have concrete examples of
proofs that can be used to illustrate the logical abstractions. We realize that
this is not the usual order in a discrete mathematics book. However, we
find that dealing with concrete examples of proofs of non-trivial facts gives
some grounding to what otherwise can seem to be a long list of formal
rules of inference.

We have placed the chapter on logic before the chapter on mathematical
induction so that we can use its language in discussing and reflecting on
mathematical induction.

MATHEMATICAL INDUCTION

Inductive proofs in computer science frequently use subproblems that are
not “one smaller.” We therefore emphasize strong induction as well as weak
induction. We also introduce structural induction on trees and graphs.We
try to use students’ experiences with recursion to help them understand
induction and develop inductive proofs. In particular, when creating an
inductive proof it is usually more profitable to start with a big problem
and recursively subdivide it into smaller problems than to start with small
problems and try to “build up” to bigger problems.

THE USE OF PSEUDOCODE

We describe algorithms both in prose and by using pseudocode. The pseu-
docode should be easily readable by any one who has programmed in
Java™, C, or C++ and should be understandable to people who have pro-
grammed in other languages. We do not strive to give syntactically correct

Preface xxv

code in any language, rather we strive for clarity. For example, to say,
“Swap the values held in variables x and y,” we write, “exchange x and
y” rather than writing three lines of code. Similarly, we write, “if points
i, j, and k are not collinear” without concern for how a more detailed
computation proceeds. Here are some particular conventions we use in the
text.

* Blocks of code are denoted by indentation. There is no begin, end or
“{” “}’ as in many languages.

* For loops are written as “for i = 1 to n” to denote that the variable i
ranges from 1 to n.

* While loop bodies are repeatedly executed while the boolean
expression after the while is true.

* Repeat loops have the form: “repeat. .. until”. The code between the
repeat and until is executed at least once, and is repeatedly executed
until the boolean expression after the until is true.

o If statements have one of the following forms:
— if (expression) block of code
— if (expression) blockl of code else block2 of code

In the first form, block of code is executed if and only if the
expression is true. In the second form, blockl is executed if the
expression is true and block2 is executed if the expression is false.

* Arrays are subscripted using “[].”

* Assignment is represented with “=" and comparison for equality
with “==".
 Shorthand for incrementing and decrementing x is “x ++” and
“x __.”
* The logical operator “not” is indicated by “!,” so “Itrue” is “false,”
and !(x < y) is true when x is not less than y. Logical “and” is

indicated by “&&” and logical “or” by “| |”

WHAT HAS CHANGED IN THIS VERSION OF THE BOOK

A different book with a similar title and the same set of authors was pub-
lished by a different publisher who has since withdrawn from the college
textbook market. Ken Bogart, the lead author on that book, died short-
ly before it came out. We greatly miss his participation in preparing this
revised book.

xxvi Preface

The most significant changes between the former book and this one are:

The previous book discussed equivalence relations, but only as
partitions of a set. The reflexive, symmetric, and transitive properties
were relegated to an appendix, and partial orders and total orders
were not discussed. This book introduces relations as a concept that
connects functions, equivalence relations, partial orders, and total
orders. It shows why reflexivity, symmetry, and transitivity lead to
equivalence relations and reflexivity, antisymmetry, and transitivity
lead to partial orders.

This book includes structural induction. Also, the section on the
relationship between recursion and induction has been expanded and
uses some different examples.

Some sections in the chapter on recurrence relations have been
removed or moved to an appendix. These sections showed that
eliminating floors and ceilings in recurrences and extending the
domain of the relation to numbers other than the powers of a base do
not invalidate the Master Theorem. We decided that they interfered
with the flow of the chapter and dealt with picky details that most
students at this level do not need to know.

Bayes’ Theorem was added to the section on conditional probability.
Problems were added to cover the new topics.

There are also a number of smaller changes (e.g., introducing the “multiply
by x and subtract” approach to getting a closed form for geometric series).

INSTRUCTORS’ SUPPLEMENTS

The following supplemental material is available to qualified instructors

only.

Please visit the Instructor Resource Center (www.pearsonhighered

.com/irc), contact your local Addison-Wesley/Pearson Education sales rep-
resentative, or send email to computing@aw.com, for information about
how to access them.

e Instructor’s Manual with Solutions

* Teaching suggestions
* Solutions to homework problems
* Exercise handouts for use in class

¢ Detailed discussion of how we have students work on exercises in
groups in class to stimulate discussion

* Powerpoint Presentations

www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

Preface xxvii

ACKNOWLEDGMENTS

A number of people contributed to the original version of this book. We
would like to thank Eddie Cheng, Oakland University; Alice Dean, Skid-
more College; Ruth Hass, Smith College; and Italo Dejter, University of
Puerto Rico for their thoughtful review comments on an early version of the
manuscript. As the book was being developed, preliminary versions were
used to teach discrete mathematics at Dartmouth by the authors and by
Neal Young, Prasad Jayanti, Tom Shemanske, Rosa Orellana, April Rasala,
Amit Chakrabarti, and Carl Pomerance. Each of them had an impact on the
final product, some very substantial, and we thank them for their advice.
We offer a special thanks to Carl Pomerance for his thorough and insightful
commentary as he taught the course. Qun Li was a graduate assistant to
us as we were initially preparing the manuscript, and he had the job of
making sure that the problems we created really did have solutions! His
work still forms the core of the solutions available to the instructor. The
graduate teaching assistants from the Computer Science and Mathematics
Departments while we and others taught from the manuscript also gave us
valuable insights into what students were and were not learning and fur-
ther help with solutions to problems. In order of their service, they were
S. Agrawal, Elishiva Werner-Reiss, Robert Savell, Virgiliu Pavlu, Libo
Song, Geeta Chaudhry, King Tan, Yurong Xu, Gabriella Dumitrascu, Florin
Constantin, Alin Popescu, and Wei Zhang. Our students over the years have
provided us with valuable feedback. In particular, Eric Robinson carefully
read a near-final version, looking explicitly for passages that were hard to
understand.

We would also like to thank the people who made this version of the book
possible. The following reviewers provided many thoughtful suggestions:
Michael Rothstein, Kent State University; Ravi Janardan, University of
Minnesota, Twin Cities; Klaus Sutner, Carnegie Mellon University; Doug
Baldwin, SUNY Genesco; Stuart Reges, University of Washington; Richard
Anderson, University of Washington; Jonathan Goldstine, Penn State Uni-
versity. Sandra Hakanson, a Pearson sales representative, first suggested that
the Addison-Wesley division of Pearson might be interested in the book. She
put us in touch with Michael Hirsch, Editor-in-Chief, who agreed to publish
the book and has shepherded it through the publication process. Many of
the improvements that were made were his suggestions. Others at Addison-
Wesley who contributed directly to the publication are Stephanie Sellinger
(Editorial Assistant), Jeff Holcomb (Managing Editor), Heather McNally
(Project Editor), and Elena Sidorova (Cover Designer). Bruce Hobart at

xxviii

Preface

Laserwords was in charge of ushering the manuscript through copyediting,
composition, and proofreading.

Each of the authors would like to thank the other two for the time they have
taken from other professional activities to work on this project. Because of
the time required to meld the points of view of our disciplines, it was
only with the support of the National Science Foundation (Grant DUE-
9552462) that we were able to undertake this project. We believe that the
staff of the Division of Undergraduate Education showed excellent insight
into the needs of undergraduates and the difficulties of interdisciplinary cur-
ricular development when they conceived their program of Mathematical
Sciences and their applications throughout the curriculum. We would like to
acknowledge the positive impact this program had on undergraduate mathe-
matics education and on the development of interdisciplinary collaborations
in curriculum development.

Cliff Stein
Scot Drysdale

DISCRETE MATHEMATICS
FOR COMPUTER SCIENTISTS

This page intentionally left blank

1

Counting

1.1 BASIC COUNTING

Exercise 1.1-1

The Sum Principle

In this book, we introduce ideas through exercises. Trying to figure out how
to do each exercise will help you understand the explanation that follows.
Our first exercise illustrates the sum principle.

The following loop is part of an implementation of selection sort, which sorts
a list of items chosen from an ordered set (numbers, alphabet characters,
words, etc.) into nondecreasing order.

) for 1 =1 ton—1

) for = 1+1 ton
) if (A[1] > A[7])
)

(
(
(
(exchange A[i] and A[7]

1
2
3
4
How many times is the comparison A[i] > A[j] made in Line 3?

In Exercise 1.1-1, the segment of code from Lines 2-4 is executed n —
1 times, once for each value of i between 1 and n — 1, inclusive. The
first time, it makes n — 1 comparisons. The second time, it makes n — 2
comparisons. The ith time, it makes n —i comparisons. Thus, the total
number of comparisons is

=D 4+n—2)+ +1. (1.1)

This formula is not as important as the reasoning that led to it. To put
the reasoning into a broadly applicable format, we use the language of
sets to describe what we are doing. Think about the set S containing all
comparisons made by the algorithm in Exercise 1.1-1, in which we divided
set S into n — 1 pieces (i.e., smaller sets): the set S; of comparisons made
when i = 1, the set S, of comparisons made when i = 2, and so on through

1

2 Chapter 1: Counting

the set S,_; of comparisons made when i =n — 1. We figured out the
number of comparisons in each piece and then added the sizes of all the
pieces to get the size of the set of all comparisons.

To describe a general version of this process, we now introduce some set-
theoretic terminology. Two sets are called disjoint when they have no
elements in common. Each set S; described above is disjoint from each
of the others because the comparisons made for one value of i are differ-
ent from those made for another value of i. We say that the set of sets
{S1,...,Su} (above, m was n — 1) is a family of mutually disjoint sets,
to mean that it is a family (set) of sets, any two of which are disjoint. With
this language, we can state a general principle that explains what we did
without making any specific reference to the problem we solved.

Principle 1.1 (Sum Principle)

The size of a union of a family of mutually disjoint finite sets is the
sum of the sizes of the sets.

Thus, in effect, we used the sum principle to solve Exercise 1.1-1. We can
also describe the sum principle using an algebraic notation. Let |S| denote
the size of the set S. For example, |{a, b, c}| = 3 and |{a, b, a}| = 2." Using
this notation, we can state the sum principle as follows. If Si, S», ..., S
are disjoint sets, then

[STUS U---USyl =[S1] + 1820+ + [Sul. (1.2)

We can also use the standard notation for union, as follows, to avoid writing
the dots that indicate left-out material (as was done in Equation 1.2). The
union notation is used exactly as summation notation and is read as “the
union from i equals 1 to m of S sub i.”

Usi| =D 1sil.

i=1 i=1
When we can write a set S as a union of disjoint sets Sy, S2, ..., Sk, we say
that we have partitioned S into the sets Sy, S», ..., S; and that the sets Sy,

't may look strange to have |{a, b, a}| = 2, but an element either is or is not in a set. An
element cannot be in a set multiple times. (This situation leads to the idea of multisets,
which are introduced in Section 1.5.) This example emphasizes that the notation {a, b, a}
means the same thing as {a, b}. Why would someone even contemplate the notation

{a, b, a}? Suppose we wrote S = {x|x is the first letter of Ann, Bob, or Alice}. Explicitly
following this description of S would lead us to first write down {a, b, a} and then realize
it equals {a, b}.

1.1: Basic Counting 3

S>, ..., S form a partition of S. Thus, {{1}, {3, 5}, {2, 4}} is a partition of
the set {1, 2, 3,4, 5}, and the set {1, 2, 3,4, 5} can be partitioned into the
sets {1}, {3, 5}, {2, 4}. However, it is clumsy to say we are partitioning a
set into sets; instead, we call the sets S;, into which we partition a set S, the
blocks of the partition. Thus, the sets {1}, {3, 5}, {2, 4} are the blocks of a
partition of {1, 2, 3, 4, 5}. In this language, we can restate the sum principle
as follows.

[
Principle 1.2 (Sum Principle)

If a finite set S has been partitioned into blocks, then the size of S is
the sum of the sizes of the blocks.

Abstraction

The process of figuring out a general principle that explains why a certain
computation makes sense is an example of the mathematical process of
abstraction. In this book, we don’t give a precise definition of abstraction;
instead, we provide examples of the process as we proceed. In a course in
set theory, we would further abstract our work and derive the sum principle
from the axioms of set theory. In a course in discrete mathematics, however,
this level of abstraction is unnecessary. We simply use the sum principle
as the basis of computations when it is convenient to do so. If our goal
were to solve only Exercise 1.1-1, then our abstraction would have been
almost a mindless exercise that complicated what was an “obvious” solution.
However, the sum principle will prove to be useful in a variety of problems.
Thus, the value of abstraction is that recognizing the abstract elements of
a problem often helps us solve subsequent problems.

Summing Consecutive Integers

Returning to the problem in Exercise 1.1-1, it would be nice to find a
simpler form for the sum given in Equation 1.1. We may write this sum as

n—1

Z(n —).

i=1

To avoid summing the values of n — i, we observe that the values we are
summing are n — 1,n — 2, ..., 1; so, we may write

n—1 n—1
Z(n —i) = Zi.
i=1 i=1

4 Chapter 1: Counting

Exercise 1.1-2

Exercise 1.1-3

A clever trick, usually attributed to Carl Friedrich Gauss, gives us a shorter
formula for this sum:

1 + 2 + -+ =2 + (n—-1)
+ - + =2 4+ -~ + 2 4+ 1
n + n + - + n + n

The sum below the horizontal line has n — 1 terms, each equal to n. Thus,
the sum is n(n — 1), or the sum of the two sums above the line. Because
these sums are equal (identical except for being in reverse order), the sum
below the line must be twice either sum above. Therefore, either of the
sums above the line must be n(n — 1)/2. In other words, we may write

n—

1 n—1
Z(n—i):éi:LZ_D.

i=1

This lovely trick is quite helpful in other similar situations involving a sum
of variables. There are other ways to get the formula that don’t use a trick.
At the end of this section, after we analyze Exercise 1.1-2 and abstract the
process used there, we will come back to this problem to see how we could
have discovered this formula for ourselves without any tricks.

The Product Principle

The following loop is part of a program that computes the product of two
matrices. (You don’t need to know how to find the product of two matrices
to do this exercise.)

(1) for i = 1 to r

(2) for 7 =1 to m

(3) S =0

(4) for k =1 to n

(5) S =S + A[i, k] * B[k, 7]
(6) cli,jl = S

How many multiplications (expressed in terms of r, m, and n) does this
pseudocode carry out in total among all the iterations of Line 57

Consider the following longer piece of pseudocode that sorts a list of num-
bers and then counts big gaps in the list. (For this exercise, a “big gap” is a
place where a number in the list is more than twice the previous number.)

1.1: Basic Counting 5

(1) for i =1 ton-—1

(2) minval = A[1]

(3) minindex = 1

(4) for 7 = 1 to n

(5) if (A[j] < minval)

(6) minval = A[7]

(7) minindex = Jj

(8) exchange A[i] and A[minindex]
(9) bigjump = 0

(10) for i = 2 to n

(11) if (A[1] > 2 * A[1 — 1])
(12) bigjump = bigjump + 1

How many comparisons does the pseudocode make in Lines 5 and 117

In Exercise 1.1-2, the program segment in Lines 4-5, which we call the
“inner loop,” takes exactly n steps. Thus, it makes n multiplications, regard-
less of what the variables i and j are. The program segment in Lines 2—5
repeats the inner loop exactly m times, regardless of what i is. Therefore,
this program segment makes n multiplications m times, or nm multiplica-
tions.

Why did we add in Exercise 1.1-1 but multiply here? We can answer
this question using the abstract point of view we adopted in discussing
Exercise 1.1-1. The algorithm in Exercise 1.1-2 performs a certain set of
multiplications. For any given i, the set of multiplications performed in
Lines 2-5 can be divided into the set S; of multiplications performed when
j =1, the set Sy of multiplications performed when j = 2, and, in gen-
eral, the set S; of multiplications performed for any given value of j. Each
set S; consists of those multiplications that the inner loop carries out for
a particular value of j, and there are exactly n multiplications in this set.
Let 7; be the set of multiplications that our program segment carries out
for a certain value of i. The set T; is the union of the sets S;. We use the
standard notation for unions to write

m
T,=]Js,;
j=1

By the sum principle, the size of the set 7; is the sum of the sizes of the
sets S;. A sum of m numbers, each equal to n, is mn. Stated as an equation,

m m m
1T = |JSi|=D1Sj1=) n=mn (1.3)
j=1 j=1 j=1

6 Chapter 1: Counting

Thus, we multiplied because multiplication is repeated addition.

From our solution, we extract a second principle that simply shortcuts the
use of the sum principle.

=
Principle 1.3 (Product Principle)

The size of a union of m disjoint sets, each of size n, is mn.

We now complete our discussion of Exercise 1.1-2. Lines 2-5 are executed
once for each value of i from 1 to . A different i value is used each time
those lines are executed; so, the set of multiplications in one execution is
disjoint from the set of multiplications in any other. Thus, the set of all
multiplications that the program carries out is a union of r disjoint sets 7;,
each of which consists of mn multiplications. By the product principle, the
set of all multiplications has size rmn. Therefore, the program carries out
rmn multiplications.

Exercise 1.1-3 shows us that thinking about whether the sum or product
principle is appropriate for a problem can help decompose the problem into
easily solvable pieces. If we can decompose the problem into smaller pieces
and solve the smaller pieces, then we may be able to either add or multiply
solutions to smaller problems in order to solve the larger problem. In this
exercise, the number of comparisons in the program fragment is the sum of
the number of comparisons in the first loop (Lines 1-8) and the number of
comparisons in the second loop (Lines 10-12). (What two disjoint sets are
we talking about here?) Furthermore, the first loop makes n(n 4+ 1)/2 — 1
comparisons,”> and the second loop has n — 1 comparisons. The number
of comparisons made by the fragment is n(n +1)/2 - 1+n—-1=nn+
1)/2 + n — 2 comparisons.

Two-Element Subsets

There are often several ways to solve a problem. We originally solved
Exercise 1.1-1 using the sum principle, but it is also possible to solve it
using the product principle. Solving a problem two ways not only increases
our confidence that we have found the correct solution, but it can also allow
us to make new connections and yield valuable insight.

Consider the set of comparisons made by the entire execution of the code
in Exercise 1.1-1. When i =1, variable j takes on every value from 2 to

To see why this is true, ask yourself first where the n(n + 1)/2 comes from and then why
we subtracted 1.

1.1: Basic Counting 7

n. When i = 2, variable j takes on every value from 3 to n. Thus, for
each two numbers i and j, we compare A[i] and A[j] exactly once in our
loop. (The order in which we compare them depends on whether i or j
is smaller.) Thus, the number of comparisons we make is the same as the
number of two-element subsets of the set {1,2,...,n}.> In how many ways
can we choose two elements from this set? If we choose a first and second
element, there are n ways to choose a first element, and for each choice of
the first element, there are n — 1 ways to choose a second element. Thus,
the set of all such choices is the union of n sets of size n — 1, one set for
each first element. It might appear that, by the product principle, there are
n(n — 1) ways to choose two elements from our set. However, what we
have chosen is an ordered pair, or a pair of elements in which one comes
first and the other comes second. For example, we could choose 2 first and
5 second to get the ordered pair (2,5), or we could choose 5 first and 2
second to get the ordered pair (5, 2). Because each pair of distinct elements

of {1,2,...,n} can be ordered in two ways, we get twice as many ordered
pairs as two-element sets. Thus, because the number of ordered pairs is
n(n — 1), the number of two-element subsets of {1,2,...,n}isn(n —1)/2.

Therefore, the answer to Exercise 1.1-1 is n(n — 1)/2. This number comes
up so often, it has its own name and notation: we call this number “n

choose 2” and denote it by (;) To summarize, (Z) stands for the number

of two-element subsets of an n-element set and equals n(n — 1)/2. Because
one answer to Exercise 1.1-1is 1 +2 4 ---+ (n — 1) and a second answer

to Exercise 1.1-1 is (g), we see that
n nn—1)
1+24+--- —1 :(>:7.
T2+ +-D={(, >

1. Set. A set is a collection of objects. In a set, order is not important.
Thus, the set {A, B, C} is the same as the set {A, C, B}. An element
either is or is not in a set; it cannot be in a set more than once, even
if a description of a set names that element more than once.

2. Disjoint. Two sets are disjoint if they have no elements in common.

3. Mutually disjoint sets. A set of sets {Si,..., Sy} is a family of
mutually disjoint sets if each two of the sets S; are disjoint.

4. Size of a set. Given a set S, the size of §, denoted |S|, is the number
of distinct elements in S.

3The relationship between the set of comparisons and the set of two-element subsets of
{1,2,...,n} is an example of a bijection, an idea that we examine more in Section 1.2.

8 Chapter 1: Counting

. Sum principle. The size of a union of a family of mutually disjoint

sets is the sum of the sizes of the sets. In other words, if Sy, S», ...,
S, are disjoint sets, then

[STUSU---US, | = |81+ |S2] 4+ -+ -+ |Snl.

To avoid the “dots” that indicate left-out material, we write

= ISil.
i=1

. Partition of a set. A partition of a set S is a set of mutually disjoint

subsets (sometimes called blocks) of S whose union is S.

. Sum of first n — 1 numbers.

2;: lzn(nz— 1)‘

. Product principle. The size of a union of m disjoint sets, each of size

n, is mn.

. Two-element subsets. The number of two-element subsets of an

n-element set, denoted (’;), equals n(n — 1)/2. <'§>

choose 2.”

is read as “n

All problems with blue boxes have an answer or hint available at the end
of the book.

The following segment of code is part of a program that uses

insertion sort to sort a list A.

for 1 = 2 to n
J =1
while (j > 2) and (A[j] < A[7 — 11)
exchange A[j] and A[J — 1]
j=3-1

What is the maximum number of times (considering all lists of n
items that you could be asked to sort) the program makes the
comparison A[j] < A[j — 1]? Describe as succinctly as you can
those lists that require this number of comparisons.

Five schools are going to send their baseball teams to a tournament
in which each team must play each other team exactly once. How
many games are required?

1.1: Basic Counting 9

In how many ways can you draw a first card and then a second card
from a deck of 52 cards?

n In how many ways can you draw two cards from a deck of 52 cards?

In how many ways can you draw a first, second, and third card from
a deck of 52 cards?

n In how many ways can a 10-person club select a president and a
secretary-treasurer from among its members?

In how many ways can a 10-person club select a two-person
executive committee from among its members?

E In how many ways can a 10-person club select a president and a
two-person executive advisory board from among its members
(assuming that the president is not on the advisory board)?

n Using the formula for (g), it is straightforward to show that

("2)=0)e-2

However, this proof simply uses blind substitution and simplification.
Find a more conceptual explanation of why this formula is true.
(Hint: Think in terms of officers and committees in a club.)

10. If M is an m-element set and N is an n-element set, how many
ordered pairs are there with the first member in M and the second
member in N?

11. The local ice cream shop sells ten different flavors of ice cream.
How many different two-scoop cones are there? (Following your
mother’s rule that it all goes to the same stomach, a cone with a
vanilla scoop on top of a chocolate scoop is considered the same as
a cone with chocolate on top of vanilla.)

Suppose you decide to disagree with your mother in Problem
11—the order of the scoops does matter. How many different
possible two-scoop cones are there?

13. Suppose on Day 1 you receive one penny, and, for i > 1, on Day i
you receive twice as many pennies as you did on Day i — 1. How
many pennies will you have on Day 20? How many will you have
on Day n? Can you justify your answer by using the sum or product
principle?

The Pile High Deli offers a simple sandwich, consisting of your
choice of one of five different kinds of bread; either butter,
mayonnaise, or no spread; one of three different kinds of meat; and
one of three different kinds of cheese, with the meat and cheese

10 Chapter 1: Counting

piled high on the bread. In how many ways can you choose a simple
sandwich?

15. Do you see any unnecessary steps in the pseudocode of
Exercise 1.1-3? Explain.

1.2 COUNTING LISTS, PERMUTATIONS, AND SUBSETS

Exercise 1.2-1

Using the Sum and Product Principles

A password for a certain computer system is supposed to be between four
and eight characters long and composed of lowercase and/or uppercase
letters. How many passwords are possible? What counting principles did
you use? Estimate the percentage of the possible passwords that have exactly
four letters.

A good way to attack a counting problem is to ask if we can use either
the sum principle or the product principle to simplify or completely solve
it. For this exercise, that question might lead us to think about the fact
that a password can have four, five, six, seven, or eight characters. Because
the set of all passwords is the union of those with four, five, six, seven,
and eight letters, the sum principle might help us. To write the problem
algebraically, let P; be the set of i-letter passwords and P be the set of all
possible passwords. Clearly,

P=P,UPsUPgU P; U Pg.

The P; are mutually disjoint; thus, we can apply the sum principle to obtain

8
Pl =) _|Pi.
i=4

We still need to compute | P;|. For an i-letter password, there are 52 choices
for the first letter, 52 choices for the second, and so on. By the product
principle, | P;|—the number of passwords with i letters—is 52!, Therefore,
the total number of passwords is

52% +52° 4 520 4 527 + 528,
Of these, 52* have four letters, so the percentage with four letters is

100 - 524
524 4+ 525 4526 4 527 4 528"

1.2: Counting Lists, Permutations, and Subsets 11

Although this is a nasty formula to evaluate by hand, we can get quite a
good estimate as follows: Notice that 528 is 52 times as big as 527 and even
more dramatically larger than any other term in the sum in the denominator.
The ratio is thus a bit less than

100-52*
528

which is 100/52%, or approximately 0.000014. Thus, to five decimal places,
only 0.00001% of the passwords have four letters. It is therefore much
easier to guess a password that we know has four letters than it is to
guess one that has between four and eight letters—roughly 7 million times
easier!

Our solution to Exercise 1.2-1 casually refers to the use of the product
principle in computing the number of passwords with i letters. We didn’t
write any set as a union of sets of equal size. We could have, but it would
have been clumsy and repetitive. For this reason, we now state a second
version of the product principle, which we can derive from the version for
unions of sets by using the idea of mathematical induction (see Chapter 4).

Principle 1.4 (Product Principle, Version 2)
If a set S of lists of length m has the properties that

1. there are i; different first elements of lists in S, and

2. for each j > 1 and each choice of the first j — 1 elements of a
list in S, there are i; choices of elements in position j of those
lists,

then there are i1ip - i, = [[}, ix lists in S.
|

Version 2 of the product principle introduces a new notation: the use of Il
to stand for product. This is called the product notation, and it is used just
like summation notation. In particular, [];_, it is read, “The product from
k =1 to m of i;.” Thus,]_[kmzl ir means the same thing as ijip - - - iy,.
Let’s apply this version of the product principle to compute the number
of m-letter passwords. Because an m-letter password is simply a list of
m letters and because there are 52 different first elements of the pass-
word and 52 choices for each other position of the password, we have
thati; =52, i =52, ..., i, = 52. Thus, this version of the product prin-
ciple tells us immediately that the number of passwords of length m is
iyiy iy = 52",

12 Chapter 1: Counting

Exercise 1.2-2

Exercise 1.2-3

Exercise 1.2-4

Lists and Functions

Our discussion of version 2 of the product principle left the term “list”
undefined. A list of three things chosen from a set 7 consists of a first
member #; of T, a second member #, of T, and a third member #3 of T, not
necessarily all different. If we rewrite the list in a different order, we get a
different list. A list of k things chosen from 7" consists of a first member of
T through a kth member of T. To give a more precise definition of a list,
we can use the word “function,” which you probably recall from algebra
or calculus.

Recall that a function from a set S (called the domain of the function)
to a set T (called the range of the function) is a relationship between the
elements of S and the elements of 7 that relates exactly one element of T
to each element of S. We use a letter, such as f, to stand for a function and
f(x) to stand for the element of 7T related to the element x of S. You are
probably used to thinking of functions in terms of formulas like f(x) = x2.
We use formulas like this in algebra and calculus because the functions
studied in those classes have infinite sets of numbers as their domains and
ranges. In discrete mathematics, however, functions often have finite sets as
their domains and ranges, so it is possible to describe a function by saying
exactly what it is. For example,

f(1) =Sam, f(2) = Mary, f(3) = Sarah

is a function that describes a list of three names. This suggests a precise
definition of a list of k elements from a set 7: a list of k elements from a
set T is a function from {1,2,...,k} to T.

Write down all the functions from the two-element set {1, 2} to the two-
element set {a, b}.

How many functions are there from a two-element set to a three-element set?
How many functions are there from a three-element set to a two-element set?

In Exercise 1.2-2, it is difficult to choose a notation for writing the functions.
We use f1, f2, and so on to stand for the various functions we find. To
describe a function f; from {1, 2} to {a, b}, we have to specify f;(1) and
fi(2). We can write

fill)=a fi2)=b
LM =b fr(2)=a

Exercise 1.2-5

Exercise 1.2-6

1.2: Counting Lists, Permutations, and Subsets 13

() =a f2)=a
fa()y=b fa(2) =b.

In this case, we simply wrote the functions as they occurred to us; but
how do we know we have all of them? The set of all functions from {1, 2}
to {a, b} is the union of the functions f; with f;(1) = a and those with
fi(1) = b. The set of functions with f;(1) = a has two elements, one for
each choice of f;(2). Therefore, by the product principle, the set of all
functions from {1, 2} to {a, b} has size 2-2 = 4.

To compute the number of functions from a two-element set (say {1, 2}) to
a three-element set, we can again think of using f; to stand for a typical
function. The set of all functions is the union of three sets, one for each
choice of f;(1). Each of these sets has three elements, one for each choice
of fi(2). Thus, by the product principle, we have 3 -3 =9 functions from
a two-element set to a three-element set.

To compute the number of functions from a three-element set (say {1, 2, 3})
to a two-element set, we observe that the set of functions is a union of four
sets, one for each choice of f;(1) and f;(2) (as we saw in our solution to
Exercise 1.2-2). However, each of these sets has two functions in it, one
for each choice of f;(3). Thus, by the product principle, we have 4-2 = 8§
functions from a three-element set to a two-element set.

A function f is called one-to-one, or an injection, if f(x) # f(y) when-
ever x # y.* Notice that the two functions f; and f> in our solution to
Exercise 1.2-2 are one-to-one, but f3 and fy are not.

A function f is called onto, or a surjection, if every element y in the range
is f(x) for some x in the domain. Notice that the functions f; and f> in
our solution to Exercise 1.2-2 are onto, but f3 and f; are not.

Using two- or three-element sets as domains and ranges, find an example
of a one-to-one function that is not onto.

Using two- or three-element sets as domains and ranges, find an example
of an onto function that is not one-to-one.

The function given by f(1) = ¢, f(2) = a is an example of a function from
{1,2} to {a, b, c} that is one-to-one but not onto. Also, the function given
by f(1) =a, f(2) = b, f(3) = a is an example of a function from {1, 2, 3}
to {a, b} that is onto but not one-to-one.

4To understand the concept of one-to-one, it may help to contrast “one-to-one” with
“many-to-one.”

14 Chapter 1: Counting

Exercise 1.2-7

The Bijection Principle

The following loop is part of a program to determine the number of triangles
formed by n points in the plane.

trianglecount = 0
for 1 =1 to n
for j = i+1 to n
for k = 7+1 to n
if points i, j, and k are not collinear
trianglecount = trianglecount + 1

(1)
(2)
(3)
(4)
(5)
(6)

Among all iterations of line 5 of the pseudocode, what is the total number
of times this line checks three points to see if they are collinear?

Exercise 1.2-7 has a loop embedded in a loop embedded in another loop.
Because the second loop, starting in Line 3, begins with j =i 41 and j
increases up to n and because the third loop, starting in Line 4, begins
with k = j 4+ 1 and k increases up to n, the code examines each triple of
values i, j, k, with i < j < k, exactly once. For example, if n is 4, then
the triples (7, j, k) used by the algorithm, in order, are (1,2, 3), (1,2, 4),
(1,3,4), and (2, 3,4). Thus, one way to solve Exercise 1.2-7 would be to
compute the number of such triples, which we call increasing triples. As
with the earlier case of two-element subsets, the number of such triples is
the number of three-element subsets of an n-element set. This is the second
time we have proposed counting the elements of one set (in this case, the
set of increasing triples chosen from the set {1, 2,...,n}) by saying that
the number of elements of the set is equal to the number of elements of
some other set (in this case, the set of three-element subsets of the set
{1,2,..., n}).

When are we justified in making the assertion that two sets have the same
size? There is a fundamental principle that abstracts our concept of what
it means for two sets to have the same size. Intuitively, two sets have the
same size if we can match their elements in such a way that each element of
one set corresponds to exactly one element of the other set. This description
carries with it some of the same words that appeared in the definitions of
one-to-one and onto functions. Thus, it should be no surprise that one-to-one
and onto functions are part of our abstract principle.

Principle 1.5 (Bijection Principle)

Two sets have the same size if and only if there is a one-to-one function
from one set onto the other.

1.2: Counting Lists, Permutations, and Subsets 15

This principle is called the bijection principle because a one-to-one and
onto function is called a bijection. Another name for a bijection is a one-to-
one correspondence. A bijection from a set to itself is called a permutation
of that set.

What bijection is behind our assertion that the number of increasing triples
equals the number of three-element subsets? We define the function f as
the function that takes the increasing triple (i, j, k) to the subset {i, j, k}.
Because the three elements of an increasing triple are different, the subset
is a three-element set; so, we have a function from increasing triples to
three-element sets. Because two different triples can’t be the same set in
two different orders, they must be associated with different sets. Thus, f
is one-to-one. Because each set of three integers can be listed in increasing
order, it is thus the image of an increasing triple under f. Therefore f is
onto. Thus, we have a one-to-one correspondence, or bijection, between the
set of increasing triples and the set of three-element sets.

k-Element Permutations of a Set

Because counting increasing triples is equivalent to counting three-element
subsets, we can count increasing triples by counting three-element subsets
instead. We use a method similar to the one used to compute the number
of two-element subsets of a set. Recall that the first step of that method
was to compute the number of ordered pairs of distinct elements that we
can choose from the set {1, 2,...,n}. So we now ask, in how many ways
can we choose an ordered triple of distinct elements from {1,2,...,n}?
Or more generally, in how many ways can we choose a list of k distinct
elements from {1, 2,...,n}? A list of k distinct elements chosen from a set
N is called a k-element permutation’ of N.

How many three-element permutations of {1, 2, ..., n} can we make? Recall
that a k-element permutation is a list of k distinct elements. There are n
choices for the first number in the list. For each way of choosing the first
element, there are n — 1 choices for the second. For each choice of the first
two elements, there are n — 2 ways to choose a third (distinct) number.
So, by version 2 of the product principle, there are n(n — 1)(n — 2) ways
to choose the list of numbers. For example, if n = 4, the three-element

5In particular, a k-element permutation of {1, 2, ..., k} is a list of k distinct elements of
{1,2,...,k}, which, by our definition of a list, is a function from {1, 2, ..., k} to
{1,2,...,k}. This function must be one-to-one because the elements of the list are distinct.
Because there are k distinct elements of the list, every element of {1, 2, ..., k} appears in
the list, so the function is onto. This means our function is a bijection. Thus, our definition
of a permutation of a set is consistent with our definition of a k-element permutation in the
case where the set is {1,2,...,k}.

16 Chapter 1: Counting

Theorem 1.1

permutations of {1, 2, 3,4} are

L = {123,124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243,
312,314,321, 324, 341, 342, 412, 413, 421, 423,431, 432}. (1.4)

There are indeed 4 -3 -2 = 24 lists in this set. Notice that this list is in the
order that it would appear in a dictionary (assuming we treated numbers as
we treat letters). This ordering of lists is called lexicographic ordering.

A general pattern is emerging. To compute the number of k-element per-
mutations of the set {1, 2,..., n}, we first recall that those permutations are
lists. Then we note the following:

* We have n choices for the first element of the list.

* Regardless of which choice we make, we have n — 1 choices for the
second element of the list.

* More generally, given the first i — 1 elements of a list, we have
n—({—1)=n—1i+1 choices for the ith element of the list.

Thus, by version 2 of the product principle, we have n(n — 1) --- (n — k +
1) (which is the first k£ terms of n!) ways to choose a k-element permutation
of {1,2,...,n}. A very handy notation for this product, first suggested by
Donald E. Knuth, is n%, which stands for

k—1
n(n—l)---(n—k+1):l_[(n—i).

i=0

We call this the kth falling factorial power of n. We summarize our obser-
vations in a theorem.

The number of k-element permutations of an n-element set is

k—1

nkzl_[(n—i)=n(n—1)—~(n—k+1)=

i=0

|

(n—k)!"

Counting Subsets of a Set

We now return to the question of counting the number of three-element sub-
sets of {1,2,...,n}. We use ("), which we read as “n choose 3,” to stand
for the number of three-element subsets of {1, 2, ..., n}, or, more generally,
of any n-element set. We just carried out the first step of computing (g)
by counting the number of three-element permutations of {1, 2,..., n}.

Exercise 1.2-8

1.2: Counting Lists, Permutations, and Subsets 17

Let L be the set of all three-element permutations of {1, 2, 3,4}, as in
Equation 1.4. How many of the lists (permutations) in L are lists of the
three-element set {1, 3, 4}? What are these lists?

We see that this set appears in L as six different lists: 134, 143, 314, 341,
413, and 431. In general, when given three different numbers with which
to create a list, there are three ways to choose the first number in the list;
given the first, there are two ways to choose the second; and given the first
two, there is only one way to choose the third element. Thus, by version 2
of the product principle, there are 3-2-1 = 6 ways to make the list.

Because there are n(n — 1)(n — 2) three-element permutations of an n-
element set and each three-element subset appears in exactly six of these
lists, the number of three-element permutations is six times the number of
three-element subsets—that is, n(n — 1)(n — 2) = ('3’) -6. Whenever we see
that one number that counts something is the product of two other numbers
that count something, we should expect there to be an argument using the
product principle explaining why. Thus, we should be able to see how to
break the set of all three-element permutations of {1, 2, ..., n} either into six
disjoint sets of size (g) or into (’;) subsets of size six. Because we argued
that each three-element subset corresponds to six lists, we have described
how to get a set of six lists from one three-element set. Two different sub-
sets could never give us the same lists, so our sets of three-element lists
are disjoint. In other words, we have divided the set of all three-element
permutations into (’3’) mutually disjoint sets of size six. Thus, the product
principle explains why n(n — 1)(n — 2) = ('3’) - 6. By division, we find that

<§) _ n(n — lé(n —2)

is the number of three-element subsets of {1,2,...,n}. For n =4, the
number is 4(3)(2)/6 = 4, and the sets are {1, 2, 3}, {1, 2,4}, {1, 3,4}, and
{2,3,4}. It is straightforward to verify that each of these sets appears six
times in L as six different lists.

Essentially the same argument gives us the number of k-element subsets of
{1,2,...,n}. We denote this number by (), which is read as “n choose k.”
Here is the argument: The set of all k-element permutations of {1, 2, ..., n}
can be partitioned into () disjoint blocks,® with each block comprising all
k-element permutations of a k-element subset of {1, 2,...,n}. However,
the number of k-element permutations of a k-element set is k!, either by
version 2 of the product principle or by Theorem 1.1. Thus, by version 1

®Here we are using the language introduced for partitions of sets in Section 1.1.

18 Chapter 1: Counting

of the product principle, we get

nﬁ::(Z)kL

Division by k! gives us our next theorem.

Theorem 1.2 For integers n and k with 0 < k < n, the number of k-element subsets of
an n-element set is
nk n!
kK Km—k)

Proof The proof is given above, except for when k =0. However, the
only subset of our n-element set of size zero is the empty set, so we have
exactly one such subset. This is exactly what the formula gives us as well.
(Note that the cases k = 0 and k = n both use the fact’ that 0! = 1.) The
equality in the theorem comes from the definition of n¥.

Another notation for the numbers () is C(n, k). Thus, we have that

coiy=(")= " (15)
n, k) = = .

k k!'(n —k)!
These numbers are called binomial coefficients for reasons that will become

clear later.

1. List. A list of k items chosen from a set X is a function from
{1,2,...,k} to X.

2. Lists versus sets. In a list, the order in which elements appear
matters, and an element may appear more than once. In a set, the
order of the elements does not matter, and an element may appear at
most once.

3. Product principle, version 2. If a set S of lists of length m has the
properties that

a. there are i; different first elements of lists in S, and

b. for each j > 1 and each choice of the first j — 1 elements of a
list in S, there are i; choices of elements in position j of those
lists,

then there are iyis - - - i, lists in S.

n

"There are many reasons why 0! is defined to be 1. Making the formula for (t

is one of those reasons.

) work out

10.

11.

12.

13.

1.2: Counting Lists, Permutations, and Subsets 19

. Product notation. We use the Greek letter I1 to stand for “product,”

just as we use the Greek letter X to stand for “sum.” This notation,
called the product notation, is used just like summation notation. In
particular, [];_, i is read as “the product from k = 1 to m of i;.”
Thus,]_[21:1 ir means the same thing as iyip - - - i,.

. Function. A function f from a set S to a set T is a relationship

between S and T that relates exactly one element of 7 to each
element of S. We write f(x) for the element of T related to the
element x of S. The same element of 7 may be related to different
members of S.

. One-to-one, Injection. A function f from a set S to a set T is

one-to-one if, for each x € § and y € § with x # y, f(x) # f(y).
A one-to-one function is also called an injection.

. Onto, Surjection. A function f from a set S to a set T is onto if, for

each element y € T, there is at least one x € S such that f(x) = y.
An onto function is also called a surjection.

. Bijection, One-to-one correspondence. A function from a set S to a

set T is a bijection if it is both one-to-one and onto. A bijection is
sometimes called a one-to-one correspondence.

. Permutation. A one-to-one function from a set S to S is called a

permutation of S.

k-element permutation. A k-element permutation of a set S is an
ordered list of k distinct elements of S.

k-element subsets, n choose k, Binomial coefficients. For integers n
and k with 0 < k < n, the number of k-element subsets of an
n-element set is #lk), The number of k-element subsets of an

n-element set is usually denoted by (’,:) or C(n, k), both of which
are read as “n choose k.” These numbers are called binomial
coefficients.

The number of k-element permutations. The number of k-element
permutations of an n-element set is

|

nE=nn—1) - n—k+1) = ——
(n—k)!

Interpreting a product combinatorially. When we have a formula to
count something and the formula expresses the result as a product, it
is useful to try to understand whether and how we could use the
product principle to prove the formula.

20 Chapter 1: Counting

All problems with blue boxes have an answer or hint available at the end
of the book.

1.

In how many ways can we pass out k distinct pieces of fruit to n
children (with no restriction on how many pieces of fruit a child
may get)?

List all the functions from the three-element set {1, 2, 3} to the set
{a, b}. Which functions, if any, are one-to-one? Which functions, if
any, are onto?

List all the functions from the two-element set {1, 2} to the
three-element set {a, b, c}. Which functions, if any, are one-to-one?
Which functions, if any, are onto?

There are more functions from the real numbers to the real numbers
than most of us can imagine. In discrete mathematics, however, we
often work with functions from a finite set S with s elements to a
finite set 7" with ¢ elements. Thus, there are only a finite number of
functions from § to 7. How many functions are there from S to 7' in
this case?

Assuming k < n, in how many ways can we pass out k distinct pieces
of fruit to n children if each child may get at most one piece? What
if kK > n? Assume for both questions that we pass out all the fruit.

Assuming k < n, in how many ways can we pass out k identical
pieces of fruit to n children if each child may get at most one? What
if k > n? Assume for both questions that we pass out all the fruit.

How many base 10 numbers have five digits? How many five-digit
numbers have no two consecutive digits equal? How many have
at least one pair of consecutive digits equal?

Suppose you are organizing a panel discussion on allowing alcohol on
campus. You need to arrange a list of participants—four administrators
and four students—who will sit behind a table in the order listed.

In how many ways can you list them if the administrators must sit
together in a group and the students must sit together in a group? In
how many ways can you list them if you must alternate students and
administrators?

(This problem is for students who are working on the relationship
between k-element permutations and k-element subsets.) List in
lexicographic order all three-element permutations of the five-element
set {1, 2, 3,4, 5}. Underline those elements that correspond to the set
{1, 3, 5}. Draw a rectangle around those that correspond to the

set {2,4,5}. How many three-element permutations of {1, 2, 3, 4, 5}

11.

13.

15.

1.2: Counting Lists, Permutations, and Subsets 21

correspond to a given three-element set? How many three-element
subsets does the set {1, 2, 3, 4, 5} have?

In how many ways can a class of 20 students choose a group of three
students from among themselves to go to the professor to explain
that the 3-hour labs actually take 10 hours?

Suppose you are choosing participants for a panel discussion on allow-
ing alcohol on campus. You must choose four administrators from a
group of 10 and four students from a group of 20. In how many ways
can this be done?

Suppose you are organizing a panel discussion on allowing alcohol
on campus. Participants will sit behind a table in the order in which
you list them. You must choose four administrators from a group
of 10 and four students from a group of 20. If the administrators
must sit together in a group and the students must sit together in a
group, in how many ways can you choose and list the eight people?
If you must alternate students and administrators, in how many
ways can you choose and list them?

At the local ice cream shop, you may get a sundae with two scoops
of ice cream chosen from 10 flavors; any one of three flavors of
topping; and any (or all, some, or none) of whipped cream, nuts, and
a cherry. How many different sundaes are possible? (In accordance
with your mother’s rule from Problem 11 in Section 1.1, the way the
scoops sit in the dish does not matter.)

At the local ice cream shop, you may get a three-way sundae with
up to three of the 10 flavors of ice cream; any one of three flavors of
topping; and any (or all, some, or none) of whipped cream, nuts, and
a cherry. How many different sundaes are possible? (In accordance
with your mother’s rule from Problem 11 in Section 1.1, the way the
scoops sit in the dish does not matter.)

A tennis club has 2n members. We want to pair up the members

by twos for singles matches. In how many ways can we pair up all
the members of the club? Suppose that in addition to specifying who
plays whom, we also determine who serves first for each pairing. Now
in how many ways can we specify our pairs?

A basketball team has 12 players. However, only five players play
at any given time during a game. In how may ways can the coach
choose the five players? To be more realistic, the five players playing
a game normally consist of two guards, two forwards, and one center.
If there are five guards, four forwards, and three centers on the team,
in how many ways can the coach choose two guards, two forwards,
and one center? What if one of the centers is equally skilled

at playing forward?

22 Chapter 1: Counting

17. Explain why a function from an n-element set to an n-element set is
one-to-one if and only if it is onto.
18. The function g is called an inverse to the function f if the domain
of g is the range of f, if g(f(x)) = x for every x in the domain of
f» and if f(g(y)) = y for each y in the range of f.
ﬂ Explain why a function is a bijection if and only if it has an
inverse function.
m Explain why a function that has an inverse function has only
one inverse function.

1.3 BINOMIAL COEFFICIENTS

Exercise 1.3-1

Exercise 1.3-2

In this section, we explore various properties of binomial coefficients.
Remember that we defined the quantity (Z) to be the number of k-element
subsets of an n-element set.

Pascal’s Triangle

Table 1.1 contains the values of the binomial coefficients (Z forn =0 to

n = 6 and all relevant values of k. The table begins with a 1 for n = 0 and
k = 0 because the empty set, which is the set with no elements, has exactly
one zero-element subset: itself. We have not put any value into the table
for a value of k larger than n, because we haven’t directly said what we
mean by the binomial coefficient <Z> in that case. However, because there
are no subsets of an n-element set that have size larger than n, it is natural
to say that (Z) is zero when k > n. Therefore, when k > n, we define (Z)
to be zero.® Thus, although we could fill in the empty places in the table
with zeros, we leave them out to make the table easier to read.

What general properties of binomial coefficients do you see in the table of
binomial coefficients (Table 1.1)?

What is the next row in the table of binomial coefficients?

Several properties of binomial coefficients are apparent in Table 1.1. Each
row begins with a 1 because (g) is always 1. This is because there is

n

8f you are thinking “But we did define (k) to be zero when k > n by saying that it is the
number of k-element subsets of an n-element set, so of course it is zero,” then good for
you.

1.3: Binomial Coefficients 23

nk0123456
0 |1

1 |1 1

2 11 2 1

3 |1 3 3 1

4 |1 4 6 4 1

S5 |1 5 10 10 5 1
6 |1 6 15 20 15 6 1

Table 1.1: Binomial coefficients

just one subset of an n-element set with zero elements, namely, the empty
set. Similarly, each row ends with a 1 because an n-element set S has just
one n-element subset, namely, S itself. Each row increases at first and then
decreases. Furthermore, the second half of each row is the reverse of the
first half. Pascal’s triangle is an array of numbers that emphasizes this
symmetry by rearranging the rows of the table so that they line up at their
centers (see Table 1.2). When we write Pascal’s triangle, we leave out the
values of n and k.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

Table 1.2: Pascal’s triangle

You may know a method for creating Pascal’s triangle that creates each
row from the row above, rather than computing binomial coefficients. Each
entry in Table 1.2, except for the 1s, is the sum of the entry directly above
it to the left and the entry directly above it to the right. We call this the Pas-
cal relationship. This relationship gives another way to compute binomial

24 Chapter 1: Counting

coefficients without multiplying and dividing, as was done in Equation 1.5.
If we wish to compute many binomial coefficients, the Pascal relationship
often yields a more efficient way to do so. Once the coefficients in a row
have been computed, the coefficients in the next row can be computed using
only one addition per entry.

We now verify that the two methods for computing Pascal’s triangle always
yield the same result. To do so, we need an algebraic statement of the Pascal
relationship. In Table 1.1, each entry is the sum of the one above it and the
one above it and to the left. In algebraic terms, then, the Pascal relationship

says
(n)_ n—1 n n—1 (1.6)
K/ \k—1 k)’ '
whenever n > 0 and 0 < k < n. It is possible to give a purely algebraic
(and rather dreary) proof of this formula by plugging our earlier formula
for binomial coefficients into all three terms and verifying that we get an
equality. A guiding principle of discrete mathematics is that when we have

a formula relating the numbers of elements of several sets, we should find
an explanation that involves a relationship among the sets.

A Proof Using the Sum Principle

From Theorem 1.2 and Equation 1.5, we know that the expression (Z)
stands for the number of k-element subsets of an n-element set. Each of
the three terms in Equation 1.6, therefore, represents the number of subsets
of a particular size chosen from an appropriately sized set. In particular,
the three terms are the number of k-element subsets of an n-element set,
the number of (k — 1)-element subsets of an (n — 1)-element set, and the
number of k-element subsets of an (n — 1)-element set. Thus, we should
be able to use the sum principle to explain the relationship among these
three quantities. This explanation will provide a proof that is just as valid
as an algebraic derivation. Often, a proof using the sum principle will be
less tedious and will yield more insight into the problem at hand.

Before giving such a proof in Theorem 1.3, we work out a special case.
Suppose n =5 and k = 2. Equation 1.6 says that

)-()+(0)

Because the numbers are small, we could verify this simply by using the
formula for binomial coefficients. However, let us instead consider subsets
of a five-element set. Equation 1.7 says that the number of two-element
subsets of a five-element set equals the number of one-element subsets of a
four-element set plus the number of two-element subsets of a four-element

Theorem 1.3

1.3: Binomial Coefficients 25

set. But to apply the sum principle, we need to say something stronger.
Namely, we should be able to partition the set of two-element subsets of
a five-element set into two disjoint sets, one of which has size equal to
the number of one-element subsets of a four-element set and one of which
has size equal to the number of two-element subsets of a four-element set.
Such a partition provides a proof of Equation 1.7. Consider now the set
S =1{A, B,C, D, E}. The set of two-element subsets is

S1={{A, B}, {A, C}, {A, D}, {A, E}, {B, C}, {B, D}, {B, E},
{C, D}, {C, E},{D, E}}.

We now partition S; into two blocks, S and S3. S, consists of all sets in
S that do contain the element E, while S5 consists of all sets in S; that do
not contain the element E. Thus,

S2 = {{A7 E}a {Ba E}v {C7 E}a {Dv E}}

and
S3 = {{A, B}, {A, C}, {A, D}, {B, C},{B, D}, {C, D}}.

Each set in S, must contain E; thus, each set contains one other element
from S. Because there are four other elements in S that we can choose along
with E, we have |S,| = (i’) Each set in S5 contains two elements from the
set {A, B, C, D}. There are (3) ways to choose such a two-element subset
of {A, B,C, D}, but §; = S U §3 and $; and S5 are disjoint. By the sum
principle, Equation 1.7 must hold.

We now give a proof for general n and k.

If n and k are integers with n > 0 and 0 < k < n, then
(n) _(n—1 o n—1
K/ \k—1 k)

Proof The formula says that the number of k-element subsets of an n-
element set is the sum of two numbers. As in our example, we apply the
sum principle. To do so, we need to represent the set of k-element subsets
of an n-element set as a union of two other disjoint sets. Suppose our n-
element set is S = {x1, x2,...,x,}. Let us take S; to be the (})-element set
of all k-element subsets of S. To apply the sum principle, we partition S
into two disjoint blocks of k-element subsets, S> and S3. The sizes of S,
and S5 are (7_}) and ('), respectively. We do this as follows: Note that

k—1

(";1) stands for the number of k-element subsets of the first n — 1 elements

X1,X2,...,%x,—1 of §. Thus, we let S3 be the set of k-element subsets of

26 Chapter 1: Counting

Exercise 1.3-3

Theorem 1.4

S that don’t contain x,. The only possibility for S5 is the set of k-element
subsets of S that do contain x,,. We see that the number of elements of this
set S, is (2:}) by observing that removing x,, from one of the elements of
S> gives a (k — 1)-element subset of §" = {xy, x2,..., x,—1}. Furthermore,
each (k — 1)-element subset of S’ arises in this way from one, and only
one, k-element subset of S containing x,,. Thus, the number of elements of
S, is the number of (k — 1)-element subsets of S’, which is (Z:i) Because
S, and S3 are two disjoint sets whose union is S, the sum principle shows
that the number of elements of S is (Z:i) + (";1)

Notice that in this proof, we used a bijection that we did not explicitly
describe. Namely, there is a bijection f between S3 (the k-element sets of
S that contain x,) and the (k — 1)-element subsets of S’. For any subset
K in S3, we let f(K) be the set we obtain by removing x, from K. It is
immediate that this is a bijection. The bijection principle tells us that the
size of S5 is the size of the set of all (k — 1)-element subsets of S’

The Binomial Theorem

What is (x + y)3? What is (x + 1)*? What is (2 + y)*? What is (x + y)*?

The number of k-element subsets of an n-element set is called a binomial
coefficient because of the role that these numbers play in the algebraic
expansion of a binomial x + y.

(Binomial Theorem) For any integer n > 0,

n __ n n n n—1 n n—2_72
(x+y) —<O)x +<1)x y+<2)x yot-
= Xy TF y (1.8)
n—1 n

or, in summation notation,
n

x+y)'= Z <’Z)x”*"y".

i=0

Unfortunately, when most people first see this theorem, they do not have
the tools to see easily why it is true. However, armed with our new way of
using relationships among sets to prove algebraic identities, we can prove
this theorem.

1.3: Binomial Coefficients 27

Let us begin by considering the example (x + y)3, which, by the binomial
theorem, is

3 3 3 3
(x+y)3=(O)x3+<1)x2y+(2)xy2+(3)y3 (1.9)
= x> 4+ 3x%y + 3xy? 4+ y°. (1.10)

Suppose we did not know the binomial theorem but still wanted to com-
pute (x + y)3. We would write out (x 4+ y)(x + y)(x + y) and perform the
multiplication. Probably we would multiply the first two terms, obtain-
ing x> + 2xy + y?, and then we would multiply this expression by x + y.
Notice that by applying distributive laws to (x + y)?, we would get

x+yyx+y)=x+y)x+x+y)y=xx+yx+xy+yy. (1.11)

We could use the commutative law to put this into the usual form, but let us
hold off for a moment so we can see a pattern evolve. To compute (x + y)?,
we can multiply the expression on the right side of Equation 1.11 by x + y,
using the distributive laws to get

(xx+xy+yx+yy)(x+y)
=@x+xy+yx+yy)x+@xx+xy+yx+yyy (1.12)
=XXX +XYX +YyxXx +yyx +xxy+xyy+yxy-+yyy. (1.13)

Now compare Equation 1.13 with (x + y)(x 4+ y)(x + y). Each of the eight
terms that we get from the distributive law may be thought of as a product
of terms—one from the first binomial, one from the second binomial, and
one from the third binomial. Because multiplication is commutative, many
of these products are the same. In fact, we have one xxx, or x3, product;
three products with two x’s and one y, or x2y; three products with one
x and two y’s, or xy%; and one product that becomes y>. Now look at
Equation 1.9, which summarizes this process. There are (J) = 1 way to
choose a product with three x’s and zero y’s, (?) = 3 ways to choose
a product with two x’s and one y, and so on. Thus, we can understand
the binomial theorem in terms of counting subsets of binomial factors: the
coefficient of x" ¥y is the number of ways to select k of our n factors.
From each of these k factors we choose a y term to get a product of variables
in which k of the variables are y.

Essentially the same explanation gives us a proof of the binomial theorem.
Note that when we multiply three factors of x + y using the distributive
law without collecting like terms, we get a sum of eight products. Each
factor of x + y doubles the number of summands. Thus, when we apply

28 Chapter 1: Counting

Exercise 1.3-4

Exercise 1.3-5

Exercise 1.3-6

the distributive law as many times as possible (without applying the com-
mutative law and collecting like terms) to a product of n binomials all equal
to x + y, we get 2" summands. Each summand is a product of a length-n
list of x’s and y’s. In each list, the ith entry comes from the ith binomial
factor. A list that becomes x"*y* when we use the commutative law will
have a y in k of its places and an x in the remaining places. The number
of lists that have a y in k places is thus the number of ways to select k
binomial factors to contribute a y to our list. But the number of ways to
select k binomial factors from n binomial factors is simply () Therefore,
(k) is the coefficient of x"~*¥yk. This proves the binomial theorem.

Applying the binomial theorern to the remaining questions in Exercise 1.3-3
gives us

(x+ D¥=x* +4x° +6x% +4x + 1,
Q2+ y)* =16 + 32y +24y* + 8y +*, and
(x + y)* = x* +4x3y + 6x%y? 4 4xy> 4+ y*.

Labeling and Trinomial Coefficients

Suppose we have k labels of one kind and n — k labels of another. In how
many different ways can we apply these labels to n objects?

Show that if we have k; labels of one kind, k; labels of a second kind, and
k3 =n — ki — kp labels of a third kind, then there are n!/(k;!k,!k3!) ways
to apply these labels to n objects.

What is the coefficient of x1 yk22k3 in (x+y-+2)"?

We can think of Exercises 1.3-4 and 1.3-5 as immediate applications of

binomial coefficients. For Exercise 1.3-4, there are (Z) ways to choose
the k objects that get the first kind of label. The other objects get the
second kind of label, so the answer is (2’) For Exercise 1.3-5, there are
k ways to choose the k; objects that get the first kind of label and (" kk'
ways to choose the objects that get the second kind of label. After that, the
remaining k3 = n — k; — k objects get the third kind of label. Thus, by the

product principle, the total number of labelings is the product of the two

1.3: Binomial Coefficients 29

binomial coefficients, which simplifies as follows:

n n—ky B n! (n —kp)!
kl kz - k1!(n — kl)! kz! (I’l — kl — kz)!

n!
kol (n — ky — kp)!
n!
Ckilkol ks

A more elegant approach to Exercise 1.3-4, Exercise 1.3-5, and other re-
lated problems appears in Section 1.5.

Exercise 1.3-6 shows how Exercise 1.3-5 applies to computing powers of
trinomials. In expanding (x + y + z)", we think of writing n copies of the
trinomial x 4+ y 4 z side by side and applying the distributive laws until
we have a sum of terms, each of which is a product of x’s, y’s, and z’s.
How many such terms do we have with k| x’s, k» y’s, and k3 z’s? Imagine
we make our choice by choosing x from some number k; of the copies of
the trinomial, choosing y from some number k,, and z from the remaining
k3 copies; multiplying all the chosen terms together; and adding the results
over all ways of picking the k;’s. If we choose x from a copy of the
trinomial, that copy is “labeled” x. The same is true for y and z, so the
number of choices that yield x*1 y*2z%3 is the number of ways to label n
objects with k; labels of one kind, k, labels of a second kind, and k3 labels
of a third. Notice that this requires that k3 = n — k; — k. By analogy with
our notation for a binomial coefficient, we define the trinomial coefficient

kl,knz,k3) to be kl"?—Z"k?' if k1 + k> + k3 = n; otherwise we define it to be

0. Then (]q’]:;]g) is the coefficient of x¥1y*z% in (x + y + z)". This is
sometimes called the trinomial theorem.

1. Pascal relationship. The Pascal relationship says

(n)_ n—1 n n—1
k) \k—-1 k ’
whenever n > 0 and 0 < k < n.

2. Pascal’s triangle. Pascal’s triangle is the triangular array of rows of
numbers obtained by

* putting Is in position 0 and position i of row i, and,

30 Chapter 1: Counting

« for each positive integer n and each integer j between 1 and
n — 1, inclusive, putting into row n and column j the sum of
the numbers in row n — 1 and column j — 1 and row n — 1 and

column j.
3. Binomial theorem. The binomial theorem states that for any integer
n=>0,
x+y)"= (n)x” + <n>x"_1y + (n>x"_2y 4o xy" 4 (n)y",
0 1 2 n—1 n

or, in summation notation,

(x+) = Xn: (’Z)xnfiyi‘

i=0

4. Labeling. The number of ways to apply k labels of one kind and

n — k labels of another kind to n objects is <Z>

5. Trinomial coefficient. The trinomial coefficient (kl,kz,k3> 1S T if
ki + ko + k3 = n; otherwise it is 0.

6. Trinomial theorem. The coefficient of x'y/z* in (x +y +2)" is
n
ijk)

All problems with blue boxes have an answer or hint available at the end
of the book.

Fin (132> and (192). What can you say in general about (2) and

()7

2. Find the row of the Pascal triangle that corresponds to n = 8.
3. Find the following
(2. NERTRVY
b. (x+y)
c. (x+2)

(d. JEEEIE

4. Carefully explain the proof of the binomial theorem for (x + y)*.
That is, explain what each of the binomial coefficients in the

12.

1.3: Binomial Coefficients 31

theorem stands for and how it is related to the powers of x and y
that follow it.

If you have 10 distinct chairs to paint, in how many ways can you
paint three of them green, three of them blue, and four of them red?
What does this have to do with labelings?

When ny, ny, ..., n; are nonnegative integers that add to n, the
number nt o is called a multinomial coefficient and is

n

denoted by <
X1+ x2 + - -+ 4 x¢ is called a multinomial. Explain the relationship
between powers of a multinomial and multinomial coefficients. This
relationship is called the multinomial theorem.

). A polynomial of the form

Give a bijection that proves your statement about <Z> and (nf k) in
Problem 1 of this section.

In a Cartesian coordinate system, how many paths are there from the
origin to the point with integer coordinates (m, n) if the paths are
built up of exactly m + n horizontal and vertical line segments, each
of length 1?

What formula do you get for the binomial theorem if, instead of
analyzing the number of ways to choose k distinct y’s, you analyze
the number of ways to choose k distinct x’s?

Explain the difference between choosing four disjoint three-element
sets from a 12-element set and labeling a 12-element set with three
labels of type 1, three labels of type 2, three labels of type 3, and
three labels of type 4. In how many ways can you choose four
disjoint three-element subsets from a 12-element set? In how many
ways can you choose three disjoint four-element subsets from a
12-element set?

A 20-member club must have a president, vice president, secretary,
and treasurer, as well as a three-person nominating committee. If the
officers must be different people, and if no officer may be on the
nominating committee, in how many ways could the officers and
nominating committee be chosen? Answer the same question if
officers may be on the nominating committee.

Prove Equation 1.6 by plugging in the formula for (']Z)

<Z>: (nik>

Give two proofs that

32 Chapter 1: Counting

14. Give at least two proofs that

W) -0

Give at least two proofs that

D) =007),

16. You need not compute all of rows 7, 8, and 9 of Pascal’s triangle to
use it to compute (2). Figure out which entries of Pascal’s triangle not
given in Table 1.2 you actually need, and compute them to get (2).

Explain why

S ()=o

18. Apply calculus and the binomial theorem to (1 4 x)" to show that

()25 =

True or false: (}) = (Z:g) + (Z:f) + (";2). If true, give a proof.

If false, give values of n and k that show the statement is false, find
an analogous true statement, and prove it.

1.4 RELATIONS

What Is a Relation?

The goal of this section is to define a relation and to show how this one
idea can be used to describe a number of other concepts that might at first
seem to have little to do with one another: functions, equivalence classes,
and ordered sets.

To specify a relationship, we specify what is related to what. We do so
by putting the ordered pair (x, y) into a set of ordered pairs if and only
if x and y are related. More precisely, a relation is nothing more or less
than a set of ordered pairs. Here is yet another example of abstraction; we
abstract the essence of the concept of a relationship as consisting of an
exact specification of what is related to what. A relation from a set X to
a set Y is a set of ordered pairs (x, y) with x € X and y € Y. It is often the
case that X and Y are the same set. In this case we say that a relation on
a set X is a set of ordered pairs (x;, x») that have both x; and x; in X.

Exercise 1.4-1

Exercise 1.4-2

1.4: Relations 33

Functions as Relations

Consider the functions defined on the set {1, 2, 3, 4, 5} by the rules f(x) =
x> —15x* +85x3 —224x% +268x — 111 and g(x) = x> —6x +9. Are they
the same function or different functions?

For the two functions f and g in Exercise 1.4-1, write down the set of
ordered pairs {(x f (x)) |x e{l,2,3,4, 5}} and the set of ordered pairs
{(x,g(x)) |x €{l,2,3,4, 5}}. How does this relate to your answer to
Exercise 1.4-1?

At first, Exercise 1.4-1 looks silly; the two rules are different, so aren’t the
functions different? The point to Exercise 1.4-2 is that, in fact, f and g
represent the same function on the set {1, 2, 3,4, 5}. In particular, f(i) =
g(@) for each i € {1, 2, 3,4,5}. For a function s defined on a set X, we
define the relation of # to be the set

{(xh00) 1x e x].
Thus, the relation of f is

{(1,4),2,1,3,0,41), 5,4},

and the relation of g is

{(1L4),2,1),(3,0), & 1,5, b}

Two functions defined on a set X are considered to be the same function if
they have the same relation.

Viewed this way, a function from domain S to range 7 is nothing more
than a relation R from S to T where every element in S appears as the first
element of exactly one ordered pair in R.

What additional properties must the relation have if the function is one-to-
one? If it is onto? These questions are addressed in a problem at the end
of this section.

Properties of Relations

There are many examples of relations that do not arise from functions. We
look at a few examples and then consider what properties they have in
common and how they differ.

34 Chapter 1: Counting

Exercise 1.4-3

Recall that when we derived the formula (Z) = #lk),, we saw that there
were k! different permutations of a k-element subset of an n-element set
S. Any of these permutations is equivalent for the purposes of specifying
the subset. We can define two permutations to be set-equivalent if they
are permutations of the same subset of S. This is a relation on the set of
k-element permutations of X.

Yet another example of a relation on the set of integers is the ‘“neigh-
bor ” relation: i is a neighbor of j if the absolute value of the difference
between i and j is 1. Some pairs in this relation are (—1,0), (0, —1),
0, 1), (1,0), (1,2), (2,1), and (2, 3). This is an example of an infinite
relation.

A third example of a relation is the subset relation on a collection of sets
chosen from some universe set U. If S and T are sets in the collection then
the ordered pair (S, T) is an element of the relation if and only if § is a
subset of 7. We use “collection” here to mean a set, so a collection of sets
is just a set of sets. We introduce this extra term so when we speak of a
“set” we know that we mean an element of the collection rather than the
collection.

A final example of a relation on the integers is the “less than” relation.
We put the ordered pair (i, j) in the relation if i < j. Thus, the “less than”
relation is the set

{G.)i, jeZandi < j}.

The “less than” relation brings up a good point: You have probably never
seen anyone write (x, y) € <. Instead, you would see x <y. If we want
to refer to an arbitrary relation, we might refer to it as R, as in “Let R
be a relation on the set X,” and we might want to write aRb in place of
(a, b) € R. As with so many things in mathematics, we choose the notation
that most comfortably fits the situation.

We say that a relation R defined on a set X is reflexive if for every x in X,
we have (x, x) € R, or, in other notation, xRx. For example the “less than
or equal to” relation is a reflexive relation defined on the set of integers.
Determine whether each of the following relations is reflexive.

a. The “set-equivalence” relation on the k-element permutations of an
n-element set

b. The “neighbor ” relation on the integers
c. The “subset of ” relation on a collection of sets

d. The “less than” relation on the integers

Exercise 1.4-4

Exercise 1.4-5

1.4: Relations 35

We say that a relation R, defined on a set X, is symmetric when (a, b) € R
if and only if (b,a) € R (or aRb if and only if bRa). For example, the
relation of being a sibling is a symmetric relation on the set of people, but
the relation of being a sister is not. We say that a relation R, defined on a
set X, is antisymmetric when (a,b) € R and (b, a) € R can only happen
if a = b. Another way of saying this is aRb and bRa only if a = b. For
example, the relation “is a descendant of ” on the set of people is antisym-
metric. Determine whether each of the following relations is symmetric,
antisymmetric, or neither.

a. The “set-equivalence” relation on the k-element permutations of an
n-element set

b. The “neighbor” relation on the integers
c. The “subset of ” relation on a collection of sets

d. The “less than” relation on the integers

To say that a relation R on a set X is transitive means that whenever
(x,y) € R and (y, z) € R, then (x, z) € R. In our other notation, to say R is
transitive means that whenever xRy and yRz, then xRz. The “greater than”
relation on the real numbers is an example of a transitive relation. The “is a
father of” relation on the set of people is not a transitive relation. Determine
whether each of the following relations is transitive.

a. The “set-equivalence” relation on the k-element permutations of an
n-element set

b. The “neighbor ” relation on the integers
c. The “subset of ” relation on a collection of sets

d. The “less than” relation on the integers

In Exercise 1.4-3, we see that “set-equivalence” and “subset of ”” are reflex-
ive relations, but the “neighbor” relation and the “less than” relation are
not. Set-equivalence is reflexive because, by definition, a list is a permu-
tation of itself. “Subset of” is reflexive because every set is a subset of
itself. On the other hand, the “neighbor ™ relation is not reflexive, because
la —a| # 1.

In Exercise 1.4-4, the “set-equivalence” and “neighbor ” relations are sym-
metric, while the “subset of ” and “less than” relations are antisymmetric.
For set-equivalence, if a list L of distinct elements lists the elements of a
subset K of S and the list L, of distinct elements lists the elements of the
same subset, then L; lists the same elements as L, and L, lists the same

36 Chapter 1: Counting

Exercise 1.4-6

Exercise 1.4-7

Exercise 1.4-8

elements as L;. Thus, the two lists are set-equivalent in either order, so
the relation is symmetric. “Subset of 7 is antisymmetric because S € 7" and
T C S can happen only if S =T.

LR INY3

Finally, in Exercise 1.4-5, the “set-equivalence,” “subset of,” and “less
than” relations are transitive, but the “neighbor” relation is not. To see
that the “neighbor ” relation is not transitive, note that 1 is a neighbor of 2,
and 2 is a neighbor of 3, but 1 is not a neighbor of 3.

Equivalence Relations

In this section we examine what properties a relation must have in order
to divide a set into disjoint classes, where all the items within a class are
somehow ‘“‘the same.”

Write down the set of all three-element permutations of {1, 2, 3, 4} that are
set-equivalent to

a. 243.
b. 123.
c. 142.
d. 134.

Do any of these sets have any permutations in common? Is every three-
element permutation of {1, 2, 3, 4} in one of these sets?

Write down the set of all neighbors in Z of
a. 0.
b. 1.
c. 2.
d. 3.

Do any of these sets have any elements in common?

Write down all subsets of each of the following sets.
a. {1,2,3}

b. {1, 2}

c. {L,3}

Do any of these sets of subsets have any elements in common?

Exercise 1.4-9

Exercise 1.4-10

1.4: Relations 37

Write down the set of all positive integers less than
a. 2.
b. 3.
c. 4.

Do any of these sets have any elements in common?

Consider the relation on the positive integers given by {(s, s?) | s is an integer}.
Write down the set of all integers related to the following.

a. 1.
b. 2.
c. 3.

Is every positive integer going to be in one of the sets {s | s is related to n}
for some integer n?

In Exercise 1.4-6, the set of all lists equivalent to 243 is the set {243,
234, 423, 432, 342, 324}. The set of lists equivalent to 123 is {123, 132,
213, 231, 312, 321}. Those equivalent to 142 are {142, 124, 214, 241,
412, 421}. Those equivalent to 134 are {134, 143, 314, 341, 413, 431}.
No two of these sets of lists have any elements in common, and every
three-element permutation of {1, 2, 3,4} is in one of the sets. Therefore,
these sets form a partition of the set of all three-element permutations of
{1,2,3,4}. Thus, the “set-equivalence” relation divides the three-element
permutations of {1, 2, 3,4} into disjoint classes.

In Exercise 1.4-7, the set of neighbors of 0 is {—1, 1}, of 1 is {0, 2}, of 2
is {1, 3}, and of 3 is {2,4}. Each of 1 and 2 is in two of these sets. For
example, 1 is in {—1, 1} and {1, 3}. Therefore, the “neighbor ” relation does
not divide the integers into disjoint classes.

In Exercise 1.4-8, the set of subsets of {1, 2, 3} is {{1, 2, 3}, {1, 2}, {1, 3},
{2,3), {13, {2}, {3}, {}}s of {1,2} is {{1,2}, {1}, {2}, {}}; and of {I,3} is
{{1, 3}, {1}, {3}, {}}. Note that {1} and {} are in each of these sets of subsets.
Therefore, the “subset of 7 relation does not divide the subsets of {1, 2, 3}
into disjoint classes.

In Exercise 1.4-9, the set of positive integers less than 2 is {1}, the set of
positive integers less than 3 is {1, 2}, and the set of integers less than 4 is
{1, 2, 3}. The number 1 is in each of these sets, so the “less than” relation
does not divide the positive integers into disjoint classes.

38 Chapter 1: Counting

Theorem 1.5

In Exercise 1.4-10, the set of elements related to 1 is {1}, to 2 is {4}, and
to 3 is {9}. Because the only elements related to something are squares, the
relation does not divide all the integers, or all the positive integers, into
disjoint classes.

We see that a relation on a set S gives us classes consisting of the set of
all elements related to x for each x € S. These classes might or might not
contain every element of S, and they might or might not be disjoint. What
makes a relation divide a set into disjoint classes?

You’ll notice that the only relation that divides its set into disjoint classes is
reflexive, symmetric, and transitive. The relation of set-equivalence makes
two lists equivalent if they are lists of the same set. In both of these cases,
there is an idea of sameness, and two objects are related if they are the
same in this sense. Think about how we use the word “same.” Anything
should be the same as itself. If a is the same as b, then we would expect b
to be the same as a. If a is the same as b and b is the same as ¢, then we
expect that a is the same as ¢ as well. Thus, these are three properties that
any relation we use to capture an idea of sameness must satisfy. In fact,
as we shall see, there is a sense in which these three properties abstractly
capture the idea of sameness. We define an equivalence relation on a set
S to be a relation on § that is reflexive, symmetric, and transitive.

Let R be an equivalence relation on S. Then for each pair of elements
x and y, the sets Sy = {z| (x,z) € R} and Sy = {z]| (y, z) € R} are either
equal or disjoint. Furthermore, with S, as defined here, the set

{Sx]x €S}

is a partition of the set S—that is, it is a set of disjoint sets whose union
is S.

Proof Suppose that S, and S, are as defined in the theorem, and suppose
that z € §, N S,. Then (x, z) and (y, z) are in R. By symmetry, (z, y) € R. By
transitivity, (x, y) € R. By transitivity once again, for all z with (y, z) € R, we
have that (x, z) € R as well, so that z € S,. But then, by the definitions of S,
and §,, we have that §, C §,. Exactly the same kind of argument (starting
out with Sy and S, in that order at the beginning of the first sentence of the
proof) shows that S, C §,. Therefore, if S, NS, # @, then §, = §,. Thus,
Sy and S, are either equal or disjoint.

Because x is in the set Sy by the reflexive law, the union of the sets of
{Sy|x € §}is S. According to the previous paragraph, the sets are mutually
disjoint, so {S, |x € S} is a partition of S.

Theorem 1.6

Exercise 1.4-11

1.4: Relations 39

The sets Sy in Theorem 1.5 are called equivalence classes. Theorem 1.5
tells us that when we have an equivalence relation, two elements are equiv-
alent if and only if they are in the same equivalence class. So in this sense,
the two elements are the same. Our next theorem tells us that if we accept
that the idea of sameness (for elements of a set) can be modeled by parti-
tioning our set into classes and saying that two things are the same if and
only if they are in the same class, then the defining properties of equiv-
alence relations capture exactly what we mean by sameness. (We use the
terminology for partitions introduced in Section 1.1.)

Let P be a partition of a set S. If we define the relation R by
R = {(x, y) | x and y are in the same block of P},

then the relation R is an equivalence relation whose equivalence classes
are the blocks of P,

Proof See Problem 3.

Partial and Total Orders

In this section we want to try to formalize the concept of a “smaller than”
relation and how it relates to the properties that we defined.

Which of the four examples of relations that we examined (set-equivalence,
neighbor, subset, and “less than”) seem to be ‘“smaller than™ relations?
Are these “smaller than” relations reflexive? Symmetric? Antisymmetric?
Transitive?

The “less than” relation (<) is clearly a “smaller than” relation. The set-
equivalence and neighbor relations are clearly not. What about the “subset
of ” relation (C)? We create a proper subset by removing elements, so it
makes sense to think of a proper subset as strictly smaller than its supersets.
So C is a “smaller than or equal to” relationship. Do we want ‘“smaller
than” to mean “strictly smaller than” or “smaller than or equal to”? If we
are willing to say that it means “smaller than or equal to,” then C is a
“smaller than” relation. If we choose the other way, then we could say
“proper subset of ” (C) is a “smaller than” relation.

The properties that < and € have in common is that both are antisymmetric
and transitive. Do these two ideas somehow capture the idea of “smaller
than”? If a is smaller than b then we don’t want b smaller than a, except
possibly when a = b. If a is smaller than b and b is smaller than c, then

40 Chapter 1: Counting

we expect a to be smaller than ¢. Thus these are two necessary properties
for a “smaller than” relationship.

The two relations disagree on the reflexive property; C is reflexive whereas
< is not. But this difference is not as large as it looks. As we noted above,
the C relation is closely related to the C relation, which is not reflexive.
The < relation is closely related to the < relation, which is reflexive. These
are examples of the difference between “strictly smaller than” and “smaller
than or the same.” For “smaller than or the same” we include the pairs
(a,b) where a = b in the relationship R. For “strictly smaller than” we
leave them out. So we have to decide what “smaller than” means. A case
could be made for either choice.

The standard definitions of “ordered” use “smaller than or equal to.” We
define a partial order to be a relation that is reflexive, antisymmetric, and
transitive. Thus the < and C relations are partial orders, but < and C are
not. We define a partially ordered set to be a set S with a relation R on S
that is a partial order. The phrase partially ordered set is often abbreviated
as poset.

Why do we use the word “partial”? This comes from another difference
between < and C. If we are given two integers m and n then either m < n
or n < m (or both, if m = n). Every pair of integers can be compared using
<, because given two integers one is always less than or equal to the other.
But if §={1,2} and T = {1, 3} then neither SC T nor T C § is true.
Thus § and T cannot be compared using C, because neither is a subset of
the other.

Let a and b be elements of a set S with partial order R. If either aRb or
bRa (or both) is true we say that a and b are comparable. If neither aRb
nor bRa is true we say that ¢ and b are incomparable. If a and b are
comparable for every choice of a and b in S we say that R is a total order
and that S with relation R is a totally ordered set. Thus the relation < is
a total order and the relation C is a partial order that is not a total order.

Some totally ordered sets have a smallest element. (A smallest element is
an element that is smaller than or the same as every element in the set.) An
example is the nonnegative integers with the relation <, where zero is the
smallest element. Other totally ordered sets have no smallest element. An
example is the integers with the relation <. There is no “smallest integer,”
because for any integer n that you choose, n — 1 is a smaller integer. A
well-ordered set is a totally ordered set S with the property that every
nonempty subset of S has a smallest element.

We consider two examples of totally ordered sets of numbers with the
relation <. The first is the nonnegative integers. This set is well ordered.
For any nonempty subset of the nonnegative integers you can find a smallest

1.4: Relations 41

element by starting at 0 and repeatedly adding 1 until you find an element
in the subset. This element will be the smallest element of the subset.

The second example is the nonnegative rational numbers. (A rational num-
ber is a number that can be written as an integer divided by a positive
integer.) At first glance we might think that this example is similar to the
nonnegative integers, but the nonnegative rational numbers with the relation
< are not well ordered. They have as a subset the positive rational numbers,
and this set has no smallest element. For any positive rational number r the
positive rational number r/2 is strictly smaller.

1.

Relation. A relation from a set X to a set Y is a set of ordered pairs
whose first elements are in X and whose second elements are in Y.
Relation on a set. A relation on a set X is a set of ordered pairs

(x1, x») that have both x; and x; in X.

. Relation of a function. For a function h defined on a set X, we define

the relation of h to be the set
{(e, h(x)) | x € X}

When is a relation a function? A relation R from set S to set 7 is a
function from domain S to range 7" when every element in S appears
as the first element of exactly one ordered pair in R.

. Reflexive. We say that a relation R, defined on a set X, is reflexive if

for every x in X, we have (x, x) € R, or, in other notation, xRx.

. Symmetric/antisymmetric. We say that a relation R, defined on a set

X, is symmetric when, for every a and b in X, (a, b) € R if and only
if (b, a) € R, or, in other notation, aRb if and only if bRa. We say
that a relation R, defined on a set X, is antisymmetric when

(a,b) € R and (b, a) € R can only happen if a = b. In other
notation, aRb and bRa only if a = b.

. Transitive. To say that a relation R, defined on a set X, is transitive

means that if (x, y) € R and (y, z) € R, then (x,z) € R for all x, y,
and z in X. In other notation, R is transitive means that if xRy and
YRz, then xRz for all x, y, and z in X.

. Equivalence relation. We define an equivalence relation on a set S to

be a relation on S that is reflexive, symmetric, and transitive.
Equivalence class. An equivalence relation on the set X gives a
partition of X into blocks given by S, = {z | (x, z) € R}. The blocks
of this partition are called equivalence classes. Furthermore, given a
partition of a set S into blocks Bj, B», ..., B,, the relation defined

42 Chapter 1: Counting

10.

11.

12.

13.

by “x is related to y if and only if they are both in the same block of
the partition” is an equivalence relation defined on S, and its
equivalence classes are the blocks of the partition.

Partial order. We define a partial order on a set S to be a relation R
on S that is reflexive, antisymmetric, and transitive. The set S with
the relation R is called a partially ordered set.

Comparable/incomparable. Let a and b be elements of a set S with
partial order R. If either aRb or bRa (or both) is true we say that a
and b are comparable. If neither aRb nor bRa is true we say that a
and b are incomparable.

Total order. If a and b are comparable for every choice of @ and b in
S with partial order R we say that R is a total order and that S with
relation R is a totally ordered set.

Well ordered. A well-ordered set is a totally ordered set S with the
property that every non-empty subset of S has a smallest element.

All problems with blue boxes have an answer or hint available at the end

of the book.

1.

Consider the relation R of a function f. Above we saw a property
that R must have in order for f to be a function. What additional
property or properties must R have if f is one-to-one? If f is
onto?
Determine whether the following relations are equivalence relations.
FAd “Is a brother of or is” on the set of people
[} “Is a sibling of or is” on the set of people
“x is related to y if |[x — y| < 2” on the set of integers

Explain why the relation given by x is related to y if x> = y? is an
equivalence relation on the integers, and describe the equivalence
classes.

Partially ordered set, totally ordered set, and well ordered set form
a hierarchy, in that each category is more restrictive than the ones
that come before it. For each of the following decide if the set with
the relation is not partially ordered, partially ordered but not totally
ordered, totally ordered but not well ordered, or well ordered.

a. “is ancestor of ” on the set of people, where a person is
considered to be an ancestor of him- or herself

b. “is parent of” on the set of people

1.5: Using Equivalence Relations in Counting 43

c. “is divisible by” on the set of positive integers

d. < on the set of numbers that can be expressed as a positive
integer divided by 1, 2, or 3

€. < on the rational numbers r with 1 <r <2

f. < on any finite subset of the rational numbers

1.5 USING EQUIVALENCE RELATIONS IN COUNTING

The Symmetry Principle

Consider again the example from Section 1.2 in which we wanted to count
the number of three-element subsets of a four-element set. To do so, we
first formed all possible lists of k = 3 distinct elements chosen from a set
with n = 4 elements (see Equation 1.4). The number of lists of k distinct
elements is n% = n!/(n — k)!. We then observed that two lists are equivalent
as sets if one can be obtained by rearranging (or “permuting”) the other. This
divides the lists into equivalence classes, each of size k!. In the discussion

of Exercise 1.2-8, we noted that one such equivalence class was
{134, 143, 314, 341, 413, 431}.
The other three are

{234,243, 324,342,423, 432},
{123, 132,213,231, 312, 321}, and
{124, 142, 214,241,412, 421}.
The product principle told us that if ¢ is the number of such equivalence

classes, if each equivalence class has k! elements, and if the entire set of
lists has n!/(n — k)! elements, then we must have that

n!

100 = or

Dividing, we solve for ¢ and get an expression for the number of k-element
subsets of an n-element set. In fact, our proof of Theorem 1.2 proceeded
in this manner.

A principle that helps us learn and understand mathematics is that if we
have a mathematical result showing a certain symmetry, it often helps our
understanding to find a proof that reflects this symmetry. We call this the
symmetry principle.

44 Chapter 1: Counting

=
Principle 1.6 (Symmetry Principle)
If a formula has a symmetry (i.e., interchanging two variables doesn’t
change the result), then a proof that explains this symmetry is likely
to give us additional insight into the formula.

The proof of Theorem 1.2 does not account for the symmetry of the k!
term and the (n — k)! term in the expression -7 (- This symmetry arises
because choosing a k-element subset is equivalent to choosing the (n — k)-
element subset of elements we don’t want. In Exercise 1.3-4, we saw that
the binomial coefficient <"> also counts the number of ways to label n
objects, say with the labels “in” and “out,” so that we have k “ins” and,
therefore, n — k “outs.” For each labeling, the k objects that get the label

in” are in our subset. We could have chosen this subset by choosing the
“in” objects and calling the rest out. Equivalently, we could have explicitly
chosen the “out” objects and considered the rest to be “in.” This argument
explains the symmetry in our formula, but it doesn’t prove the formula.
Here is a new proof that the number of labelings is 7r7 (that explains
the symmetry.

—k)!

Suppose we have m ways to assign k blue and n — k red labels to n ele-
ments. From each labeling, we can create a number of lists, using the
convention of listing the k blue elements first and the remaining n — k
red elements last. For example, suppose we are considering the number of
ways to label three elements blue (and two red) from a five-element set
{A, B, C, D, E}. Consider the particular labeling in which A, B, and D are
labeled blue and C and E are labeled red. Which lists correspond to this
labeling? They are

ABDCE ABDEC ADBCE ADBEC BADCE BADEC
BDACE BDAEC DABCE DABEC DBACE DBAEC,

or all lists in which A, B, and D precede C and E. Because there are 3!
ways to arrange A, B, and D and 2! ways to arrange C and E, there are,
by the product principle, 3!2! = 12 lists in which A, B, and D precede C
and E. For each of the ¢ ways to construct a labeling, we could find a
similar set of 12 lists associated with that labeling. Because every possible
list of five elements will appear exactly once via this process, and because
there are 5! = 120 five-element lists overall, we must have, by the product
principle, that

g-12 = 120,

Exercise 1.5-1

1.5: Using Equivalence Relations in Counting 45

or g = 10. This agrees with our previous calculations of (g) = 10 for the
number of ways to label five items so that three are blue and two are red.

Generalizing, we let g be the number of ways to label n objects with k blue
labels and n — k red labels. To create the lists associated with a labeling,
we list the blue elements first and then the red elements. We can mix the k&
blue elements among themselves, and we can mix the n — k red elements
among themselves, giving us k!(n — k)! lists, consisting of the elements
with a blue label first followed by the elements with a red label. Because
we can choose to label any k elements blue, each of our lists of n distinct
elements arises from some labeling in this way. Each such list arises from
only one labeling, because two different labelings will have different first
k elements. (The first £ elements listed have the blue label.) Therefore, by
the product principle, g (k!)(n — k)! is the number of lists we can form with
n distinct objects. Therefore, g (k!)(n — k)! must equal n!. This gives us

g(k)(n —k)! = n!,

and division gives us our original formula for ¢. Because the red and blue
labels must be treated identically, our formula is symmetric. Recall that our
proof of the formula in Exercise 1.3-5 did not explain why the product of
three factorials appeared in the denominator, it simply proved the formula
was correct. We can now explain why the product in the denominator of
the formula in Exercise 1.3-5 for the number of labelings with three labels
is what it is. The denominator counts the number of lists that come from a
given labeling with k; labels of a first kind, k, labels of a second kind, and
k3 labels of a third kind. With this insight, we can generalize this formula
to any number of labels.

Equivalence Relations

The preceding process divided the set of all n! lists of n distinct elements
into classes (another word for sets) of lists. In each class, all the lists are
mutually equivalent with respect to labeling with two labels. More precisely,
two lists of the n objects are equivalent for defining labelings if we get one
from the other by mixing the first k elements among themselves and mixing
the last n — k elements among themselves. Relating objects that we want to
count to sets of lists (so that each object corresponds to a set of equivalent
lists) is a technique we can use to solve a variety of counting problems.
(This is another example of abstraction.)

On the set of integers 0—12 inclusive, define two integers to be related if
they have the same remainder on division by 3. Which numbers are related
to 07 To 1?7 To 2? To 3? To 4? Is this relationship an equivalence relation?

46 Chapter 1: Counting

Theorem 1.7

In Exercise 1.5-1, the set of numbers related to O is the set {0, 3, 6,9, 12},
the set related to 1 is {1, 4, 7, 10}, the set related to 2 is {2, 5,8, 11}, the
set related to 3 is {0, 3,6,9, 12}, and the set related to 4 is {1, 4,7, 10}.
A little more precisely, a number is related to one of 0, 3, 6, 9, or 12 if
and only if it is in the set {0, 3, 6,9, 12}; a number is related to 1, 4, 7,
or 10 if and only if it is in the set {1,4,7,10}; and a number is related
to 2, 5, 8, or 11 if and only if it is in the set {2, 5,8, 11}. These are
mutually disjoint sets whose union is {0, 1,2,3,4,5,6,7,8,9, 10, 11, 12}.
Therefore, by Theorem 1.6 the relationship is an equivalence relation on
the set {0,1,2,3,4,5,6,7,8,9,10, 11, 12}.

The Quotient Principle

In Exercise 1.5-1, the equivalence classes had two different sizes. In the
examples of counting labelings and subsets that we have seen so far, all the
equivalence classes had the same size. The principle we have been using
to count subsets and labelings is given in the following theorem, which we
call the quotient principle.

(Quotient Principle) If an equivalence relation on a p-element set S has
q classes each of size r, then g = p/r.

Proof By the product principle, p = gr; therefore, g = p/r.

Another statement of the quotient principle that uses the idea of a partition
is as follows.

Principle 1.7 (Quotient Principle, Version 2)

If we can partition a set of size p into g blocks of size r, then g = p/r.

Returning to our example of three blue and two red labels, p = 5! = 120,
r = 12, and, therefore, by Theorem 1.7,

p 120
=—=—=10.
=5 2
Equivalence Class Counting

We now give several examples of the use of Theorem 1.7.

Exercise 1.5-2

Exercise 1.5-3

1.5: Using Equivalence Relations in Counting 47

When four people sit down at a round table to play cards, two lists of their
four names are equivalent as seating charts if each person has the same
person to the right in both lists.” (The person to the right of the person in
Position 4 of the list is the person in Position 1.) We use Theorem 1.7 to
count the number of possible ways to seat the players. We take our set S to
be the set of all four-element permutations of the four people, that is, the
set of all lists of the four people.

a. How many lists are equivalent to a given one?

b. What are the lists equivalent to ABCD?

c. Is the relationship of equivalence an equivalence relation?
d

. Use the quotient principle to compute the number of equivalence
classes and, hence, the number of possible ways to seat the players.

We wish to count the number of ways to attach n > 2 distinct beads to
the corners of a regular n-gon (or string them on a necklace). We say that
two lists of the n beads are equivalent if each bead is adjacent to exactly
the same beads in both lists. (The first bead in the list is considered to be
adjacent to the last.)

* How does this exercise differ from the previous exercise?
* How many lists are in an equivalence class?

* How many equivalence classes are there?

In Exercise 1.5-2, suppose we named the places at the table north, east,
south, and west. Given a list, we get an equivalent one in two steps. First,
we observe that we have four choices of people to sit in the north position.
There is then one person who can sit to this person’s right, one who can
be next on the right, and one who can be the following on the right, all
determined by the original list. Thus, there are exactly four lists equivalent
to a given one (including that given one). The lists equivalent to ABCD are
ABCD, BCDA, CDAB, and DABC. This shows that two lists are equivalent
if and only if we can get one from the other by moving everyone the same
number of places to the right around the table (or we can get one from
the other moving everyone the same number of places to the left around
the table). From this we see that we have an equivalence relation, because

9Think of the four places at the table as being called north, east, south, and west or as
numbered 1-4. You would get a list by starting with the person in the north position
(Position 1), then the person in the east position (Position 2), and so on, clockwise around
the table.

48 Chapter 1: Counting

each list is in one, and only one, of these sets of four equivalent lists. This
means our relationship divides the set of all lists of the four names into
equivalence classes each of size four. There are a total of 4! = 24 lists of
four distinct names; so, by Theorem 1.7, we have 4!/4 = 3! = 6 seating
arrangements.

Exercise 1.5-3 is similar in many ways to Exercise 1.5-2. However, there
is one significant difference. We can visualize Exercise 1.5-3 as one of
dividing lists of n distinct beads into equivalence classes, but now two
lists are equivalent if each bead is adjacent to exactly the same beads in
both lists. Suppose we number the vertices of our polygon 1 — n, clockwise.
Given a list, we can count the equivalent lists as follows: we have n choices
for which bead to put in Position 1. For Position 2, we can use either of
the two beads adjacent to Position 1 in the given list.'® But now, only one
bead can go in Position 3, because the other bead adjacent to Position 2
is already in Position 1. We can continue in this way to fill in the rest of
the list. For example, with n = 4, the lists ABCD, ADCB, BCDA, BADC,
CDAB, CBAD, DABC, and DCBA are all equivalent. Notice the first,
third, fifth, and seventh lists are obtained by shifting the beads around the
polygon, as are the second, fourth, sixth, and eighth lists (though in the
opposite direction). Also note that the eighth list is the reverse of the first,
the third is the reverse of the second, and so on. Rotating a necklace in
space corresponds to shifting the letters in the list. Flipping a necklace over
in space corresponds to reversing the order of a list. We can always get
2n lists by shifting and reversing shifts of a list. The lists equivalent to a
given one consist of everything we can get from the given list by rotations
and reversals. Thus, the relationship of every bead being adjacent to the
same beads divides the set of lists of beads into disjoint sets. These sets,
which have size 2n, are the equivalence classes of our equivalence relation.
Because there are n! lists, Theorem 1.7 says there are

n! _(n— 1!
2n 2
bead arrangements.

Multisets

Sometimes when we think about choosing elements from a set, we want to
be able to choose an element more than once. For example, the set of letters
of the word “roof” is { f, o, r}. However, it is often more useful to think of

19Remember that the first and last beads are considered adjacent, so they each have two
beads adjacent to them.

Exercise 1.5-4

1.5: Using Equivalence Relations in Counting 49

the multiset of letters, which, in this case, is {(f, 0, o, r)). We use the double
angle brackets to distinguish a multiset from a set. We specify a multiset
chosen from a set S by saying how many times each of its elements occurs.
If S is the set of English letters, the “multiplicity” function for roof is given
by m(f) =1, m(o) =2, m(r) = 1, and m(letter) = 0 for every other letter.
In a multiset, order is not important (the multiset (r, o, f, o)) is the same as
the multiset ((f, o0, 0, r))), because the multisets have the same multiplicity
function. We would like to say that the size of ((f, 0, o, r)) is 4, so we define
the size of a multiset to be the sum of the multiplicities of its elements.

Explain how placing k identical books onto the n shelves of a bookcase
can be thought of as giving us a k-element multiset of the shelves of the
bookcase. Explain how distributing k identical apples to n children can be
thought of as giving us a k-element multiset of the children.

In Exercise 1.5-4, we can think of the multiplicity of a bookshelf as the
number of books it gets and the multiplicity of a child as the number of
apples the child gets. In fact, this idea of distribution of identical objects
to distinct recipients gives a great mental model for a multiset chosen from
a set §. That is, to determine a k-element multiset chosen from S, we
“distribute” k identical objects to the elements of S. The number of objects
an element x gets is the multiplicity of x.

Notice that it makes no sense to ask for the number of multisets we may
choose from a set with n elements, because ((A)), (A, A), (A, A, A)), and
so on are infinitely many multisets chosen from the set {A}. However, it
does make sense to ask for the number of k-element multisets we can choose
from an n-element set. What strategy could we employ to figure out this
number? To count k-element subsets, we first count k-element permutations
and then divide by the number of different permutations of the same set.
Here we need an analog of permutations that allows repeats. A natural idea
is to consider lists with repeats. After all, one way to describe a multiset
is to list it, and there could be many different orders for listing a multiset.
However, the two-element multiset (A, A)) can be listed in just one way,
while the two-element multiset ((A, B)) can be listed in two ways. When
we counted k-element subsets of an n-element set by using the quotient
principle, it was essential that each k-element subset corresponded to the
same number (namely, k!) of permutations (lists), because we were using
the reasoning behind the quotient principle to do our counting. So, if we
hope to use similar reasoning, we can’t apply the quotient principle to
lists with repeats because different k-element multisets can correspond to
different numbers of lists.

50 Chapter 1: Counting

Exercise 1.5-5

Suppose, however, that we could count the number of ways to arrange k
distinct books on the n shelves of a bookcase. We can still think of the
multiplicity of a shelf as being the number of books on it. However, many
different arrangements of distinct books will give us the same multiplicity
function. In fact, any way of mixing the books among themselves that
does not change the number of books on each shelf will give us the same
multiplicities. But the number of ways to mix the books among themselves
is the number of permutations of the books—namely, k!. Thus, it looks like
we have an equivalence relation on the arrangements of distinct books on
a bookshelf such that

1. each equivalence class has k! elements, and

2. there is a bijection between the equivalence classes and k-element
multisets of the n shelves.

Therefore, if we can compute the number of ways to arrange k distinct books
on the n shelves of a bookcase, we should be able to apply the quotient
principle to compute the number of k-element multisets of an n-element set.

The Bookcase Arrangement Problem

We have k books to arrange on the n shelves of a bookcase. The order in
which the books appear on a shelf matters, and each shelf can hold all the
books. We will assume that as the books are placed on the shelves, they
are pushed as far to the left as they will go. Thus, all that matters is the
order in which the books appear. When book i is placed on a shelf, it can
go between two books already there or to the left or right of all the books
on that shelf.

a. Because the books are distinct, we may think of a first, second,
third, ... book. In how many ways can we place the first book on
the shelves?

b. Once the first book has been placed, in how many ways can we
place the second book?

c. Once the first two books have been placed, in how many ways can
we place the third book?

d. Once we have placed i — 1 books, we may place book i on any of
the shelves to the left of any of the books already there. But there
are also some additional ways we may place it. In how many
ways, in total, can we place book i?

e. In how many ways can we place k distinct books on n shelves in
accordance with the constraints above?

Exercise 1.5-6

1.5: Using Equivalence Relations in Counting 51
How many k-element multisets can we choose from an n-element set?

In Exercise 1.5-5, there are n places where the first book can go—namely,
on the left side of any shelf. The next book can then go in any of the n
places on the far left side of any shelf, or it can go to the right of Book 1.
Thus, there are n 4 1 places where Book 2 can go. At first, placing Book
3 appears to be more complicated, because we could create two different
patterns by placing the first two books. However, Book 3 could go on the
far left of any shelf or to the immediate right of any of the books already
there. (Notice that if Book 2 and Book 1 are on Shelf 7 in that order, putting
Book 3 to the immediate right of Book 2 means putting it between Book
2 and Book 1.) Thus, in any case, there are n + 2 ways to place Book 3.
Similarly, once i — 1 books have been placed, there are n +i — 1 places
to place Book i: it can go on the far left side of any of the n shelves or to
the immediate right of any of the i — 1 books that we have already placed.
Thus, the number of ways to place k distinct books is

k
nn+ D0 +2)-+k—D=[]+i-D
i=1

The specific product that arose in Equation 1.14 is the product of k succes-
sive numbers beginning with n and is called a rising factorial power. It
has a notation (also introduced by Donald E. Knuth) analogous to that for
the falling factorial notation; namely, we write

k
nk:n(n+1)---(n+k—1):1_[(n+i—1).
i=1

The Number of k-Element Multisets of an n-Element Set

We can apply the formula from Exercise 1.5-5 to solve Exercise 1.5-6. We
define two bookcase arrangements of k books on n shelves to be equivalent
if we get one from the other by permuting the books among themselves.
Thus, if two arrangements put the same number of books on each shelf,
then they are put into the same class by this relationship. On the other hand,
if two arrangements put a different number of books on at least one shelf,
then they are not equivalent, and therefore they are put into different classes

52 Chapter 1: Counting

Theorem 1.8

by this relationship. Thus, the classes into which this relationship divides
the arrangements are disjoint. Because every arrangement is in a class, the
classes partition the set of all arrangements. Each class has k! arrangements
in it. The set of all arrangements has n* arrangements in it. This leads to
the following theorem.

The number of k-element multisets chosen from an n-element set is

nk n+k—1

[T (k) '
Proof In terms of bookcase arrangements, the relationship that two
arrangements are equivalent if and only if we get one from the other by
permuting the books is an equivalence relation. The set of all arrangements
has n* elements, and the number of elements in an equivalence class is
k!. By the quotient principle, the number of equivalence classes is n¥/k!.
There is a bijection between equivalence classes of bookcase arrangements

with k books and multisets with k elements. The equality follows from the
definition of binomial coefficients.

The number of k-element multisets chosen from an n-element set is some-
times called “the number of combinations with repetitions of n elements
taken k at a time.”

The right side of the formula is a binomial coefficient, so it is natural
to ask whether there is a way to interpret choosing a k-element multiset
from an n-element set as choosing a k-element subset of some different
(n + k — 1)-element set. This illustrates an important principle. When we
have a quantity that turns out to be equal to a binomial coefficient, it helps
our understanding to interpret it as counting the number of ways to choose
a subset of an appropriate size from a set of an appropriate size. We explore
this idea for multisets in Problem 8.

Using the Quotient Principle to Explain a Quotient

Because the last expression in Equation 1.14 is a quotient of two factorials, it
is natural to ask whether it is counting equivalence classes of an equivalence
relation. If so, the set on which the relation is defined has size (n +k — 1)!.
Thus, it might be all lists or permutations of n + k — 1 distinct objects.
The size of an equivalence class is (n — 1)!. Thus, what makes two lists
equivalent might be permuting n — 1 of the objects among themselves. Said
differently, the quotient principle suggests that we look for an explanation
of the formula involving lists of n + k — 1 objects, of which n — 1 are

Exercise 1.5-7

Exercise 1.5-8

1.5: Using Equivalence Relations in Counting 53

identical, so that the remaining k elements are distinct. Can we find such
an interpretation?

In how many ways can we arrange k distinct books and n — 1 identical
blocks of wood in a straight line?

How does Exercise 1.5-7 relate to arranging books on the shelves of a
bookcase?

In Exercise 1.5-7, if we tape numbers to the wood so that the pieces of
wood are distinguishable, there are (n 4k — 1)! arrangements of the books
and wood. But because the pieces of wood are actually indistinguishable,
(n — 1)! of these arrangements are equivalent. Thus, by the quotient prin-
ciple, there are (n +k — 1)!/(n — 1)! arrangements. Such an arrangement
allows us to put the books on the shelves as follows: put all the books before
the first piece of wood on Shelf 1, all the books between the first and sec-
ond on Shelf 2, and so on, until you put all the books after the last piece
of wood on Shelf n. This explains why there are (n +k — 1)!/(n — 1)!
arrangements of k distinct books on n shelves in a bookcase. Problem 8
explores a similar relationship for multisets.

1. Symmetry principle. If a mathematical result shows a certain
symmetry, finding a proof that reflects this symmetry often helps our
understanding.

2. Partition. Given a set S of items, a partition of S consists of m sets

S1, 82, ..., 8, sometimes called blocks, so that
StUSHU---US, =8, and for each i and j with i # j,
NS =40.

3. Quotient principle. If a set of p objects can be partitioned into ¢
classes of size r, then ¢ = p/r. Equivalently, if an equivalence
relation on a set of size p has g equivalence classes of size r, then
q = p/r. The quotient principle is frequently used for counting the
number of equivalence classes of an equivalence relation. If a
quantity is a quotient of two others, it is often helpful to our
understanding to find a way to use the quotient principle to explain
why we have this quotient.

54 Chapter 1: Counting

4. Multiset. A multiset is similar to a set, except each item can appear

multiple times. We can specify a multiset chosen from a set S by
saying how many times each of its elements occurs.

. Choosing k-element multisets. The number of k-element multisets

that can be chosen from an n-element set is

n+k—1)! _<n+k—1)
Kmn—1D! k '

This is sometimes called the formula for combinations with
repetitions.

6. Interpreting binomial coefficients. When a quantity turns out to be a

binomial coefficient (or some other formula we recognize), it is often
useful to try to interpret the quantity as the result of choosing a
subset of a set (or creating objects that the formula we recognize
counts).

All problems with blue boxes have an answer or hint available at the end
of the book.

In how many ways can n people be seated around a round table?

(Remember that two seating arrangements around a round table are
equivalent if everyone is in the same position relative to everyone
else in both arrangements.)

In how many ways can you embroider n circles of different colors in
a row (lengthwise, equally spaced, and centered halfway between the
top and bottom edges) on a scarf, as shown?

O O O O O O

Figure 1.1: The placement of circles on a scarf.

Use binomial coefficients to determine the number of ways in which

you can line up three identical red apples and two identical golden
apples. Use equivalence class counting (in particular, the quotient
principle) to determine the same number.

Use multisets to determine the number of ways to pass out k
identical apples to n children. Assume that a child may get more
than one apple.

10.

12.

1.5: Using Equivalence Relations in Counting 55

In how many ways can n men and n women be seated around a
table (as in Problem 1), alternating gender? (Use equivalence class
counting!)

In how many ways can you pass out k identical apples to n children
if each child must get at least one apple?

In how many ways can you place k distinct books on n shelves of a
bookcase (all books pushed to the left as far as possible) if there
must be at least one book on each shelf?

The formula for the number of multisets is (n + k — 1)! divided by a
product of two other factorials. We want to use the quotient principle
to explain why this formula counts multisets. The formula for the
number of multisets is also a binomial coefficient, so it should have
an interpretation that involves choosing k items from n + k — 1
items. The parts of the problem that follow lead us to these
explanations.

a. In how many ways can you place k red checkers and n — 1
black checkers in a row?

b. How can you relate the number of ways of placing k red
checkers and n — 1 black checkers in a row to the number of
k-element multisets of an n-element set (the set {1,2,...,n} to
be specific)?

¢. How can you relate the choice of k items out of n + k — 1
items to the placement of red and black checkers, as in parts a
and b? Think about how this relates to placing k identical
books and n — k identical blocks of wood in a row.

How many solutions to the equation x| + x + - -+ 4+ x,, = k are
there with each x; a nonnegative integer?

How many solutions to the equation x| + x + - -+ 4+ x,, = k are
there with each x; a positive integer?

In how many ways can n red checkers and n + 1 black checkers be
arranged in a circle? (This number is a famous number called a
Catalan number. While it is not particularly difficult to find the
answer to this question, one detail in the proof that the answer is
correct is somewhat sophisticated.)

A standard notation for the number of partitions of an n-element set
into k classes is S(n, k). Because the empty family of subsets of the
empty set is a partition of the empty set, S(0, 0) is 1. In addition,
S(n, 0) is 0 for n > 0, because there are no partitions of a nonempty
set into no parts. S(1, 1) is 1.

56 Chapter 1: Counting

a. Explain why S(n,n) is 1 for all n > 0. Explain why S(n, 1) is
1 for all n > 0.

b. Explain why S(n,k) = S(n — 1,k — 1)+ kS(n — 1, k) for
1 <k<n.

c. Make a table like Table 1.1 that shows the values of S(n, k) for
values of n and k ranging from 1 to 6.

You are given a square that can be rotated 90 degrees at a time (i.e.,

14.

15.

the square has four orientations). You are also given two red
checkers and two black checkers, each to be placed on one corner of
the square. How many lists of four letters, two of which are R and
two of which are B, are there? Once you choose a starting place on
the square, each list represents placing checkers on the square in
clockwise order. Consider two lists to be equivalent if they represent
the same arrangement of checkers at the corners of the square—that
is, if one arrangement can be rotated to create the other. Write the
equivalence classes of this equivalence relation. Why can’t you
apply Theorem 1.7 to compute the number of equivalence classes?

Consider the following C++ function to compute (Z)

int pascal (int n, int k)

{

if (n < k)
{
cout << "error: n<k" << endl;
exit (1) ;
}
if ((k==0) || (n==k))
return 1;

return pascal(n— 1,k — 1) + pascal(n— 1,k);

}

Enter this code, compile it, and run it (you will need to create a
simple main program that calls it). Run it on larger and larger
values of n and k, and observe the running time of the program.

It should be surprisingly slow. (For example, try computing (ig))
Why is it so slow? Can you write a different function to compute
(Z) that is significantly faster? Why is your new version faster?
(Note: An exact analysis of this might be difficult at this point in the
course; it will be easier later. However, you should be able to figure

out roughly why the original version is so much slower.)

Answer the following questions with either n*, n¥, <Z), or ("+]]§_1>.

1.5: Using Equivalence Relations in Counting 57

n In how many ways can k different candy bars be distributed to

n people (with any person allowed to receive more than one
bar)?

In how many ways can k different candy bars be distributed to
n people (with nobody receiving more than one bar)?

In how many ways can k identical candy bars be distributed to
n people (with any person allowed to receive more than one
bar)?

In how many ways can k identical candy bars be distributed to
n people (with nobody receiving more than one bar)?

How many one-to-one functions f are there from {1, 2, ..., k}
to {1,2,...,n}?

How many functions f are there from {1, 2,...,k} to
{1,2,...,n}?

In how many ways can you choose a k-element subset from an

n-element set?

How many k-element multisets can be formed from an
n-element set?

In how many ways can the top k-ranking officials in the U.S.

government be chosen from a group of n people? (We want an
ordered list of the people, not a set.)

In how many ways can k pieces of candy (not necessarily of
different types) be chosen from among n different types?

In how many ways can k children each choose one piece of
candy (all of different types) from among n different types of
candy?

This page intentionally left blank

2

Cryptography and
Number Theory

2.1

CRYPTOGRAPHY AND MODULAR ARITHMETIC

Introduction to Cryptography

For thousands of years, people have searched for ways to send messages
secretly. There is a story that in ancient times a king needed to send a
secret message to his general in battle. The king shaved a servant’s head
and wrote the message on it. The king waited for the servant’s hair to grow
back and then sent the servant to the general. The general then shaved the
servant’s head and read the message. If the enemy had captured the servant,
they presumably would not have known to shave his head, and the message
would have been safe.

Cryptography is the study of methods for sending and receiving secret
messages. In general, there is a sender who is trying to send a message
to a receiver. There is also an adversary who wants to steal the message.
The method used is deemed successful if the sender is able to commu-
nicate a message to the receiver without the adversary learning what that
message was.

Cryptography has been used for military and diplomatic purposes over the
centuries. Recently, with the advent of the Internet and electronic com-
merce, cryptography has become vital for the global economy and is used
daily by millions of people. Sensitive information, such as bank records,
credit card reports, passwords, or private communication, is (and should be)
encrypted—modified in such a way that it should be understandable only
to people who are allowed to have access to it and undecipherable to others.

Undecipherability by an adversary is, of course, a difficult goal. No code is
completely undecipherable. If there is a printed codebook, then the adver-
sary can always steal it. No amount of mathematical sophistication can
prevent this possibility. More likely, an adversary may have extremely large
amounts of computing power and human resources devoted to trying to

59

60 Chapter 2: Cryptography and Number Theory

crack a code. Thus, our notion of security is tied to computing power—a
code is only as safe as the amount of computing power needed to break it.
If we design codes that seem to need exceptionally large amounts of com-
puting power to break them, then we can be relatively confident in their
security.

Private-Key Cryptography

Traditional cryptography is known as private-key cryptography. The
sender and receiver agree in advance on a secret code and then send
messages using that code. For example, one of the oldest codes is a Caesar
cipher. In this code, the letters of the alphabet are shifted by some fixed
amount. Typically, the original message is called the plaintext. and the
encoded text is called the ciphertext. The code

plaintext A BCDEVFGHTIUJ
ciphertext E F GH I JKLMN

KLMNO
OPQRS
is an example of a Caesar cipher. Thus, if we wanted to send the plaintext
message

ONE IF BY LAND AND TWO IF BY SEA,
we would send the ciphertext

SRI MJ FC PERH ERH XAS MJ FC WIE.

A Caesar cipher is especially easy to implement on a computer using a
scheme known as arithmetic mod 26. The symbolism

m mod n

means the remainder we get when we divide m by n. To be more precise,
we give the following definition.

Definition 2.1

For an integer m and a positive integer n, m mod n is the smallest
nonnegative integer r such that

m=nq-+r (2.1)

for some integer gq.

Theorem 2.1

Exercise 2.1-1

Exercise 2.1-2

Exercise 2.1-3

2.1: Cryptography and Modular Arithmetic 61

A theorem we call Euclid’s division theorem' tells us that there is always
such an r. We prove this theorem in Section 2.2.

(Euclid’s Division Theorem) Let n be a positive integer. Then for every
integer m, there exist unique integers g and r such that m =nqg +r and
0<r<n.

Use the definition of m mod n to compute 10 mod 7 and —10 mod 7. What
are ¢ and r in each case? Does (—m) mod n = —(m mod n)?

Using O for A, 1 for B, and so on, let the numbers from 0 to 25 stand for
the letters of the alphabet. In this way, convert a message to a sequence
of strings of numbers. For example, SEA becomes 18 4 0. What does the
numerical representation of this word become if we shift every letter two
places to the right? What if we shift every letter 13 places to the right? How
can we use the idea of m mod n to implement a Caesar cipher?

Have someone use a Caesar cipher to encode a message of a few words in
your favorite natural language without telling you how far they are shifting
the letters of the alphabet. How can you figure out what the message is? Is
this something a computer could do quickly?

In Exercise 2.1-1, 10 =7(1) + 3. Thus, 10 mod 7 is 3. Also, —10 =
7(—2) + 4. Therefore, —10 mod 7 is 4. These two calculations show that
(—m) mod n does not necessarily equal —(m mod n). (In fact, they are
unequal unless m mod n = 0.) Note that —3 mod 7 is also 4. Furthermore,
(=104 3) mod 7 = 0, suggesting that —10 is essentially the same as —3
when we are considering integers mod 7.

In Exercise 2.1-2, to shift each letter two places to the right, we replace
each number n in our message by (n 4+ 2) mod 26, so that SEA becomes
20 6 2. To shift 13 places to the right, we replace each number n in our
message with (n + 13) mod 26, so that SEA becomes 5 17 13. Similarly,
to implement a shift of s places, we replace each number n in our message

'Tn an unfortunate historical evolution of terminology, the statement we call Euclid’s
division theorem is often called the “division algorithm” and occasionally “Euclid’s
division algorithm.” Because the theorem is not a computational procedure, we have
chosen not to call it an algorithm.

62 Chapter 2: Cryptography and Number Theory

plaintext ABCDEFGHIJKLMNO
ciphertextt HD I ETJKLMXNYOPF

plaintext:

by (n 4+ s) mod 26. Because most computer languages give us simple ways
to handle strings of numbers and a mod function, it is easy to implement a
Caesar cipher on a computer.

Exercise 2.1-3 considers the complexity of encoding, decoding, and crack-
ing a Caesar cipher. Even by hand, it is easy for the sender to encode the
message and for the receiver to decode the message. The disadvantage of
this scheme is that it is also easy for the adversary to try the 26 different
possible Caesar ciphers to decode the message. (It is very likely that only
one will decode the message into plain English.) Of course, there is no
reason to use such a simple code; we can use any arbitrary permutation of
the alphabet as the ciphertext. For example,

PORSTUVWXY2Z
QRUVWGZASIBC
shows one arbitrary permutation we could use. If we encode a short mes-
sage with a code like this, it would be hard for the adversary to decode
it. However, with a message of any reasonable length (greater than about
50 letters), an adversary with a knowledge of the relative frequency of
alphabet letters in the English language can easily crack the code. (These
codes appear in many newspapers and puzzle books under the name “cryp-
tograms.” The fact that many people are able to solve these puzzles is

compelling evidence of the lack of security in such a code.)
We do not have to use simple mappings of letters to letters. For example,
our coding algorithm could be to do the following:
Step 1: Take three consecutive letters.
Step 2: Reverse their order.
Step 3: Interpret each triple as a base 26 integer (with A =0; B =1;
etc.) and then convert that base 26 integer to base 10.
Step 4: Multiply that number by 37 (in base 10).
Step 5: Add 95.

Step 6: Convert that number to base 8.

We continue this processing with each block of three consecutive letters.
We append the blocks, using either an 8 or a 9 to separate them. When we
are done, we reverse the number and replace each digit 5 with two 5s. Here
is an example of this method:

ONEIFBYLANDTWOIFBYSEA

block and reverse: ENO BFI ALY TDN IOW YBF AES
base 26 integer converted to base 10: 3056 814 310 12935 5794 16255 122

2.1: Cryptography and Modular Arithmetic 63

*37 +95 converted to base 8: 335017 73005 26455 1646742 642711 2226672 11001
appended: 33501787300592645591646742964271182226672811001
reverse, 5Srep: 100118276622281172469247646195555462955003787105533

As Problem 19 shows, a receiver who knows the code can decode this
message. However, a casual reader of the message, without knowledge of
the encryption algorithm, would have no hope of decoding the message.
So it seems that with a complicated enough code, we can have secure
cryptography. Unfortunately, there are at least two flaws with this method.
The first is that if the adversary somehow learns what the code is, she can
easily decode it. Second, if this coding scheme is repeated often enough,
and if the adversary has enough time, money, and computing power, she
could break this code. In the field of cryptography, some entities, such
as a government or a large corporation, have all these resources. The
infamous German Enigma code is an example of a much more compli-
cated coding scheme; yet successive versions of it were broken, which
helped the Allies win World War II. (Breaking the code was aided by the
Enigma machine recreated by Polish code breakers and later by machines
from captured German ships. However, even with the machines, it was not
easy to break the code.) In general, any scheme that uses a codebook—
a secretly agreed-upon (possibly complicated) code—suffers from these
drawbacks.

Public-Key Cryptosystems

A public-key cryptosystem overcomes the problems associated with using
a codebook. In a public-key cryptosystem, the sender and receiver (often
called Alice and Bob, respectively) don’t have to agree in advance on
a secret code. In fact, they each publish part of their code in a public
directory. Yet, an adversary with access to the encoded message and the
public directory still cannot decode the message.

More precisely, Alice and Bob each have two keys, a public key and a
secret key. We denote Alice’s public and secret keys by KP4 and KS4 and
Bob’s by KPg and KSg. They each keep their secret keys to themselves but
can publish their public keys and make them available to anyone, including
the adversary. Although the published key is likely to be a symbol string of
some sort, the key is used in some standardized way (we shall see examples
soon) to create a function from the set £ of possible messages onto itself.
(In complicated cases, the key might be the actual function.) We denote
the functions associated with KSs, KP4, KSp, and KPp by Sa, P4, Sp, and
Pg, respectively. We require that the public and secret keys be chosen so

64 Chapter 2: Cryptography and Number Theory

that the corresponding functions are inverses of each other, that is, for any
message M € D, we have that

M = Ss(P4(M)) = P(Sa(M)), and

2.2
M = Sp(Pp(M)) = Pp(Sp(M)). (&)
We also assume that for Alice, S4 and P4 are easily computable. However,
it is essential that Sy is hard for everyone except Alice to compute, even
if P4 is known. At first glance, this may seem an impossible task: Alice
must create a function, Py, that is public and easy for everyone to compute,
yet this function has an inverse, Sy4, that is hard for everyone except Alice
to compute. It is not at all clear how to design such a function. In fact,
when the idea for public-key cryptography was proposed (by Diffie and
Hellman [15]), no one knew of any such functions. The first complete
public-key cryptosystem is the now-famous RSA cryptosystem, which is
widely used in many contexts. This system was developed by Ronald Rivest,
Adi Shamir, and Leonard Adleman [28], hence its name. To understand how
such a cryptosystem is possible requires some knowledge of number theory
and computational complexity. We develop the necessary number theory
in the next few sections. Before doing so, however, let us assume that we
have a function that is easily computed but that can be inverted only by
Alice. This will show us how to make use of it.

If Bob wants to send Alice a message M, he takes the following steps:

1. Bob obtains Alice’s public key Py.

2. Bob applies Alice’s public key to M to create ciphertext
C = Ps(M).

Bob then sends C to Alice. Alice can decode the message by using her
secret key to compute S4(C), which is identical to Sq(P4(M)), which by
Equation 2.2 is identical to the original message M. The beauty of the
scheme is that even if the adversary has C and knows P4, she cannot
decode the message without S4, because Sy is a secret that only Alice has.
Even though the adversary knows that S4 is the inverse of P4, she cannot
easily compute this inverse.

Because it is difficult, at this point, to describe an example of a public-key
cryptosystem that is hard to decode, we now give an example of one that is
easy to decode. Imagine our messages are numbers in the range 1 to 999.
We can then imagine that Bob’s public key yields the function Pz given
by Pg(M) = rev(1000 — M), where rev() is a function that reverses the
digits of a number. So, to encrypt the message 167, Alice would compute
1000 — 167 = 833, reverse the digits, and send Bob C = 338. In this case,

Exercise 2.1-4

Exercise 2.1-5

Lemma 2.2

2.1: Cryptography and Modular Arithmetic 65

Sp(C) = 1000 — rev(C), so Bob can easily decode the message. This code
is not secure, because if you know Py, you can figure out Sp. The challenge
is to design a function P so that even if you know Pp and C = Pp(M), it
is exceptionally difficult to figure out what M is.

Arithmetic Modulo n

The RSA encryption scheme is built on the idea of arithmetic mod n, which
we now introduce. Our goal is to understand how the basic arithmetic oper-
ations of addition, subtraction, multiplication, division, and exponentiation
behave when all arithmetic is done mod n. As we shall see, some of the
operations, such as addition, subtraction, and multiplication, are straightfor-
ward. Others, such as division and exponentiation, behave very differently
from how they behave for normal arithmetic.

Compute 21 mod 9, 38 mod 9, (21-38) mod 9, (21 mod 9) - (38 mod 9),
(21 + 38) mod 9, (21 mod 9) + (38 mod 9).

True or false: i mod n = (i + 2n) mod n; i mod n = (i — 3n) mod n.

In Exercise 2.1-4, the point to notice is that
(21-38) mod 9 = (21 mod 9) - (38 mod 9)

and
(21 +38) mod 9 = (21 mod 9) + (38 mod 9).

These equations are very suggestive, though the general equations they first
suggest aren’t true! As we shall soon see, some closely related equations
are true.

Exercise 2.1-5 is true in both cases, because adding multiples of n to i does
not change the value of i mod n. In general, we have the following:

i mod n = (i + kn) mod n for any integer k.

Proof By Theorem 2.1, for unique integers ¢ and r, with 0 < r < n, we
have
i=nq-+r. (2.3)

66 Chapter 2: Cryptography and Number Theory

Lemma 2.3

Adding kn to both sides of Equation 2.3, we obtain
i+kn=n(g+k) +r. (2.4)

Applying the definition of i mod n to Equation 2.3, we have that » =i mod
n; applying the same definition to Equation 2.4 we have that r = (i +
kn) mod n. The lemma follows.

Now we can go back to the equations of Exercise 2.1-4; the correct versions
are stated below. Informally, we are showing that if we have a compu-
tation involving addition and multiplication and if we plan to take the
end result mod n, then we are free to take any of the intermediate results
mod n also.

(i+ j)modn

i+ (j modn)) mod n

(i mod n) + j) mod n
(i mod n) + (j mod n)) mod n

(i - j) mod n = (i - (j mod n)) mod n

—_~~ —_~~

(i mod n) -j) mod n

(i mod n) - (j mod n)) mod n.

Proof

We prove that the first and last terms in the sequence of equations for sums
are equal; the other equalities for sums follow by similar computations. The
proofs of the equalities for products are similar.

By Theorem 2.1, we have that for unique integers ¢; and g,
i = (i modn)+¢gn and j = (j mod n) + gon.

Adding these two equations together mod n and using Lemma 2.2, we
obtain
(i + j) mod n = ((i mod n) 4+ gin + (j mod n) + gon)) mod n
= ((i mod n) + (j mod n) 4+ n(q + ¢2)) mod n
= ((i mod n) + (j mod n)) mod n.

Theorem 2.4

2.1: Cryptography and Modular Arithmetic 67

We now introduce a convenient notation for modular arithmetic. We use the
notation Z, to represent the integers 0, 1, ..., n — 1 together with a redefi-
nition of addition, which we denote +,,, and a redefinition of multiplication,
which we denote -,. The redefinitions are

i+, j= ({4 j)modn
(2.5)
inj= (-j)modn.

The expression x € Z, means that x is a variable that can take on any of
the integral values between 0 and n — 1. In addition, x € Z, is a signal that
if we do algebraic operations with x, we will use +, and -, rather than the
usual addition and multiplication. In ordinary algebra, it is traditional to use
letters near the beginning of the alphabet to stand for constants—numbers
that are fixed throughout a problem and that would be known in advance in
any one instance of that problem. This allows us to describe the solution to
many different variations of a problem all at once. Thus, we might say, “For
all integers a and b, there is one and only one integer x that is a solution to
the equation a + x = b, namely, x = b — a.” We adopt the same system for
Z,. When we say, “Let a be a member of Z,,” we mean the same thing as,
“Let a be an integer between 0 and n — 1,” but we are also signaling that
the value of a does not change during the problem and that in equations
involving a, we will use +, and -,

We call these new operations addition mod »n and multiplication mod n.
We must now verify that all the “usual” rules of arithmetic that nor-
mally apply to addition and multiplication still apply with +, and -, In
particular, we wish to verify the commutative, associative, and distribu-
tive laws.

Addition and multiplication mod »n satisfy the commutative and associa-
tive laws, and multiplication distributes over addition.

Proof = Commutativity of +, and ., follows immediately from the com-
mutativity of ordinary addition and multiplication. We prove the associa-
tive law for addition in the following equations; the other laws follow
similarly.

a+p(b+y0) = (a+(b+,c)) modn (Equation 2.5)
= (a+(b+c)modn)) modn (Equation 2.5)
= (a+ (b+c)) modn (Lemma 2.3)
= ((@+b)+c)modn (Associative law for

ordinary sums)

68 Chapter 2: Cryptography and Number Theory

= (((a + b) mod n) + c) mod n (Lemma 2.3)

= ((@+nb)+c)modn (Equation 2.5)
= (@+,b)+,c (Equation 2.5).

Notice that 0+, i =i and 1 -, i =i (these equations are called the addi-
tive identity properties and the multiplicative identity properties). Also,
0 -, i = 0. Thus, we can use 0 and 1 in algebraic expressions in Z, (which
we may also refer to as algebraic expressions mod n) the same way we
use them in ordinary algebraic expressions. We use a —, b to stand for
a—+, (—b).

We conclude this section by observing that repeated applications of
Lemma 2.3 and Theorem 2.4 are useful when computing sums or products
mod n in which the numbers are large. For example, suppose you had m
integers xi, ..., x,; and you wanted to compute (ZTZI x,-) mod n. One
natural way to do so would be to compute the sum and then take the
result modulo n. It is possible, however, that on the computer you are
using, even though (Z'};l x,-) mod n is a number that can be stored in
an integer, and each x; can be stored in an integer, Z'J": | Xi might be too
large to be stored in an integer. (Recall that integers are typically stored as
four or eight bytes and thus have a maximum value of roughly 2-10° or
9-10'8.) Lemma 2.3 tells us that if we are computing a result mod n, we
may do all our calculations in Z, using 4, and -, Thus, we never have
to compute an integer that has significantly more digits than any of the
numbers with which we are working.

Cryptography Using Addition mod n

One natural way to use addition of a number a mod n in encryption is first
to convert the message to a sequence of digits—say, concatenating all the
ASCII codes for all the symbols in the message—and then to add a to the
message mod n. Thus,

PM)=M+,a and S(C)=C+,(—a)=C —,a.

If n happens to be larger in numerical value than the message, then it
is simple for someone who knows a to decode the encrypted message.
However, an adversary who sees the encrypted message has no special
knowledge. Therefore, unless a was ill-chosen (for example, having all or
most of the digits be 0 would be a silly choice), an adversary who knows
what system you are using, even including the value of n, but who does

2.1: Cryptography and Modular Arithmetic 69

not know q, is essentially reduced to trying all possible a values. (In effect,
adding a appears to the adversary much like changing digits at random.)
Because you use a only once, there is virtually no way for the adversary
to collect any data that will aid in guessing a. Thus, if only you and your
intended recipient know a, this kind of encryption is quite secure: guessing
a is just as hard as guessing the message.

It is possible that once n has been chosen, you will find you have a message
that translates to a number larger than n. Normally you would then break
the message into segments, each with no more digits than #, and send the
segments individually. It might seem that as long as you were not sending
a large number of segments, it would still be quite difficult for your adver-
sary to guess a by observing the encrypted information. However, if your
adversary knew n but not a and knew you were adding @ mod n, he could
take two messages and subtract them in Z,, thus getting the difference of
two unencrypted messages. (Problem 12 asks you to explain why, even if
your adversary didn’t know n but believed you were adding some secret
number a mod some other secret number 7n, he could use three encoded
messages to find three differences in the integers, instead of in Z,, one of
which was the difference of two messages.) This difference could contain
valuable information for your adversary.> Even worse, if your adversary
could trick you into sending just one message z that he knows, intercept-
ing the message and subtracting z would give your adversary a. Thus,
adding @ mod n is not an encoding method you would want to use more
than once.

Cryptography Using Multiplication mod n

We now explore whether multiplication is a good method for encryption.
In particular, we could encrypt by multiplying a message mod n by a
prechosen value a. We would then expect to decrypt by dividing by a,
except that we have not yet defined division in this context. What exactly
does division mod a mean? Informally, we think of division as the inverse
of multiplication—that is, if we take a number x, multiply by a, and then
divide by a, we should get back to x. Clearly, with normal arithmetic, this
is the case. However, with modular arithmetic, division is trickier.

2If each segment of a message were equally likely to be any number between 0 and n, and
if any second (or third, etc.) segment were equally likely to follow any first segment, then
knowing the difference between two segments would yield no information about the two
segments. However, because language is structured and most information is structured,
these two conditions are highly unlikely to hold, in which case your adversary could apply
structural knowledge to deduce information about your two messages from their difference.

70 Chapter 2: Cryptography and Number Theory

Exercise 2.1-6

One possibility for encryption is to take a message x and compute a -, x for
some value a that the sender and receiver both know. You could then decrypt
by dividing by a in Z,, if you knew how to divide in Z,. How well does
this work? In particular, consider the following three cases. First, consider
n=12, a =4, and x = 3. Second, consider n = 12, a =3, and x = 6.
Third, consider n = 12, a =5, and x = 7. In each case, if your recipient
knows a, could he or she figure out the message x? For this question, you
don’t need to know what dividing means. There is at least one other way
to try to figure out the message.

When we encoded a message by adding a in Z,, we could decode the
message simply by subtracting a in Z,. By analogy, if we encode by mul-
tiplying by a in Z,, we would expect to decode by dividing by a in Z,.
However, Exercise 2.1-6 shows that division in Z, doesn’t always make
much sense. Suppose your value of n is 12 and the value of a is 4. You
send the message 3 as 4 -, 3 =0. Thus, you send the encoded message
0. Your recipient sees 0 and says the message might have been O; after
all, 4 -, 0 =0. On the other hand, 4 -, 3=0,4-,6=0,and 4 -, 9=0.
Therefore, your recipient has four different choices for the original mes-
sage, which is almost as bad as having to guess the original message
itself!

It might appear that special problems arose only because the encoded mes-
sage was 0. The second case in Exercise 2.1-6 gives an encoded message
that is not 0. Suppose a = 3 and n = 12. You encode the message 6 by
computing 3 -, 6 = 6. Straightforward calculation shows that 3 -, 2 = 6,
3.,6=06,and 3 -, 10 = 6. Thus, the message 6 can be decoded in three
possible ways: 2, 6, or 10.

The final case in Exercise 2.1-6 provides some hope. Let a =5 and
n = 12. The message 7 is encoded as 5 -, 7 = 11. Simple checking of
5-,1,5-,2,5-, 3, and so on shows that 7 is the unique solution in Zj,
to the equation 5 -, x = 11. Thus, in this case, the recipient can correctly
decode the message.

One key point that this exercise shows is that our system of encrypting
messages must be one-to-one. That is, each unencrypted message must
correspond to a different encrypted message.

As we shall see in Section 2.2, the kinds of problems in Exercise 2.1-6
happen only when a and n have a common divisor that is greater than
1. Thus, when a and n have no common factors greater than 1, all our

2.1: Cryptography and Modular Arithmetic 71

receiver needs to know to decrypt the message is how to divide by a in
Z,. If you don’t know how to divide by a in Z,, then you can begin to
understand the idea of public-key cryptography. The message is there to
find for anyone who knows how to divide by a. However, if nobody but
our receiver can divide by a, we can tell everyone what a and n are and our
messages will still be secret. This is the second point our system illustrates:
If we have some knowledge that nobody else has, such as how to divide
by a mod n, then we have a possible public-key cryptosystem. As we shall
soon see, however, dividing by a is not particularly difficult, so a better
trick is needed for public-key cryptography to work.

1. Cryptography. Cryptography is the study of methods for sending and
receiving secret messages.

a. The sender wants to send a message to a receiver.
b. The adversary wants to steal the message.

c. In private-key cryptography, the sender and receiver agree in
advance on a secret code and then send messages using that
code.

d. In public-key cryptography, the encoding method can be
published. Each person has a public key used to encrypt
messages and a secret key used to decode an encrypted
message.

e. The original message is called the plaintext.
f. The encoded text is called the ciphertext.

2. A Caesar cipher is a code in which each letter of the alphabet is
shifted by a fixed amount.

3. Euclid’s division theorem. Let n be a positive integer. Then for every
integer m, there exist unique integers g and r such that m = ng +r
and 0 < r < n. By definition, r is equal to m mod n.

4. Adding multiples of n does not change values mod n. This means that
i mod n = (i + kn) mod n for any integer k.

72 Chapter 2: Cryptography and Number Theory

5. Mods (by n) can be taken anywhere in calculation involving only
addition and multiplication, as long as we take the final result mod n.

(i + j) mod n = (i + (j mod n)) mod n
= ((i mod n) +j) mod n
= ((i mod n) + (j mod n)) mod n
(i-j)modn = (i - (j mod n)) mod n

((i mod n) - j) mod n
= ((i mod n) - (j mod n)) mod n

6. Commutative, associative, and distributive laws. Addition and
multiplication mod »n satisfy the commutative and associative laws,
and multiplication distributes over addition.

7. Z,. Use the notation Z, to represent the integers 0,1, ..., n — 1
together with a redefinition of addition, which we denote +,, and a
redefinition of multiplication, which we denote -, The redefini-
tions are

i+, j=(++j) modn and
inj=(@-j)modn.

The expression x € Z, means that x is a variable that can take on
any of the integral values between 0 and n — 1 and that, in algebraic
expressions involving x, we will use +, and -,. We use the expres-
sion a € Z, to mean that a is a constant between 0 and n — 1 and
that in algebraic expressions involving a, we will use +, and -,

All problems with blue boxes have an answer or hint available at the end
of the book.

What is 14 mod 92 What is —1 mod 92 What is —11 mod 9?

2. Encrypt the message HERE IS A MESSAGE using a Caesar cipher
in which each letter is shifted three places to the right.

Encrypt the message HERE IS A MESSAGE using a Caesar cipher
in which each letter is shifted three places to the left.

2.1: Cryptography and Modular Arithmetic 73

4. How many places has each letter been shifted in the Caesar cipher
used to encode the message XNQQD RJXXFLJ?

What is 16 423 18? What is 16 -2 18?

6. A short message was encoded by converting it to an integer by
replacing each “a” with 1, each “b” with 2, and so on, and then
concatenating the integers. The result had six or fewer digits. An
unknown number a was added to the message mod 913,647, giving
618,232. Without knowledge of a, what can you say about the
message? With knowledge of a, what could you say about the
message?

What would it mean to say there is an integer x equal to
(1/4) mod 9?7 If it is meaningful to say there is such an integer, what
is it? Is there an integer equal to (1/3) mod 97 If so, what is it?

8. Multiplying a number x by 487 in Z3gp3; gives 13,008. If you know
how to find the number x, do so. If not, explain why the problem
seems difficult to do by hand.

n Write the addition table for +, addition. Why is the table
symmetric? Why does every number appear in every row?

10. It is straightforward to solve for x any equation of the form
X+,a="»>b

in Z, and to see that the result will be a unique value of x.
However, in the discussion of Exercise 2.1-6, we saw that 0, 3, 6,
and 9 are all solutions to the equation

x=0.

a. Are there any integral values of a and b, with 1 less than or
equal to a and b, which are both less than 12, for which the
equation a -, x = b does not have any solutions in Z;,? If
there are, give one set of values for a and b. If there are not,
explain how you know this.

b. Are there any integers a, with 1 < a < 12, such that for every
integral value of b, with 1 < b < 12, the equation a -, x =b
has a solution? If so, give one and explain why it works. If not,
explain how you know this.

Does every equation of the form a -, x = b, with a, b € Z, and
a # 0, have a solution in Zs5? In Z7? In Z9? In Z1,?

74 Chapter 2: Cryptography and Number Theory

12.

14.
15.

17.

18.

19.

Recall that if a prime number divides a product of two integers, then
it divides one of the factors.

a. Use this to show that as b runs though the integers from 0 to
p — 1, with p prime, the products a -, b are all different (for
each fixed choice of a between 1 and p — 1).

b. Explain why every integer greater than O and less than p has a
unique multiplicative inverse in Z, if p is prime.

Explain why, if you were encoding messages xi, xz, and x3 to obtain
Y1, y2, and y3 by adding an arbitrary number a and taking the sum
mod 7, your adversary would know that at least one of the differ-
ences y; — y2, Y1 — Y3, Oor y» — y3 taken in the integers, not in Z,,
would be the difference of two unencoded messages. (Note: We are
not saying that your adversary would know which of the three was
such a difference.)

Write the -, multiplication table for Z7.
Prove the equalities for multiplication in Lemma 2.3.
State and prove the associative law for -, multiplication.

State and prove the distributive laws for -, multiplication over +,
addition.

Write pseudocode to take m integers xi, x2, ..., X, and an integer n
and return (IT}"x;) mod n. Be careful about overflow; in this context,

being careful about overflow means that at no point should you ever

compute a value that is greater than n?.

Write pseudocode to decode a message that has been encoded using
the following algorithm.

Step 1: Take three consecutive letters.
Step 2: Reverse their order.

Step 3: Interpret each as a base 26 integer (with A =0, B =1,
etc.) and convert back to base 10.

Step 4: Multiply that number by 37 (in base 10).
Step 5: Add 95.
Step 6: Convert that number to base 8.

Continue this process with each block of three consecutive letters.
Append the blocks, using either an 8 or a 9 to separate them.
Finally, reverse the number, and replace each digit 5 with two 5s.

2.2: Inverses and Greatest Common Divisors 75

2.2 INVERSES AND GREATEST COMMON DIVISORS

Lemma 2.5

Solutions to Equations and Inverses mod n

In Section 2.1, we explored multiplication in Z,. In the special case of n =
12 and a = 4, if we used multiplication by a in Z, to encrypt a message,
then our receiver would need to be able to solve the equation 4 -, x = b for
x to decode a received message b. We saw that if the encrypted message was
0, then there were four possible values for x. More generally, Exercise 2.1-6
and some of the problems in Section 2.1 showed that for certain values of
n, a, and b, equations of the form a -, x = b have a unique solution, while
for other values of n, a, and b, the equation could have no solutions or more
than one solution.

To decide whether an equation of the form a -, x = b has a unique solution
in Z,, it helps to know whether ¢ has a multiplicative inverse in Z,, that
is, whether there is another number a’ such that a’ -, a = 1. For example,
in Zg, the inverse of 2 is 5 because 2 -, 5 = 1. On the other hand, 3 does
not have an inverse in Zy, because the equation 3 -y x = 1 does not have a
solution. (This can be verified by checking the nine possible values for x.)
If a does have an inverse a’, then we can find a solution to the equation

a-,x=>ob.
To do so, we multiply both sides of the equation by a’, obtaining
a-,(an,x)=d -, b.
By the associative law, this gives us
@ pa),x=d-,b.
But a’ -, a = 1 by definition, so we have that
x=da -, b.

Because this computation is valid for any x that satisfies the equation, we
conclude that the only x that satisfies the equation is @’ -, b. We summarize
this discussion in the following lemma.

Suppose a has a multiplicative inverse @’ in Z,. Then for any b € Z,, the

equation
a-,x=25b

has the unique solution
x=da -, b.

76 Chapter 2: Cryptography and Number Theory

Exercise 2.2-1

Exercise 2.2-2

Note that this lemma holds for any value of b € Z,,.

Lemma 2.5 tells us that whether or not a number has an inverse mod n
is important for the solution of modular equations. We therefore wish to
understand exactly when a member of Z, has an inverse.

Inverses mod n

We now consider some of the examples related to Problem 11 from
Section 2.1.

Determine whether every nonzero element a of Z, has an inverse for n =
5,6,7, 8, and 9.

If an element of Z, has a multiplicative inverse, can it have two different
multiplicative inverses?

The following table gives multiplicative inverses for each nonzero element a
of Zs5. We created the table by multiplying each number in the top row by all
nonzero members of Zs. For example, the products 2 -, 1 =2, 2,2 =4,
2-.3=1, and 2 -; 4 = 3 tell us that 3 is the unique multiplicative inverse
for 2 in Zs, which is why we put 3 below 2 in the table. We could make
the same kinds of computations with 3 or 4 instead of 2 on the left side of
the products to get the rest of the table.

a 1 2 3 4

a 1 3 2 4

Similarly, for Z;, we have the following table.

a 1 2 3 4 5 6

a 1 4 5 2 3 6

For Zo, we have already said that 3 -) x = 1 does not have a solution, so
by Lemma 2.5, the number 3 does not have an inverse. (Notice how we are
using the lemma: Lemma 2.5 says that if 3 had an inverse, then the equation
3.y x =1 would have a solution, and this would contradict the fact that
3 -y x = 1 does not have a solution. Thus, assuming that 3 had an inverse
would lead us to a contradiction. Therefore, 3 has no multiplicative inverse.)

2.2: Inverses and Greatest Common Divisors 77

This computation is a special case of the following corollary® to
Lemma 2.5.

Corollary 2.6 Suppose there is a b in Z, such that the equation

a-,x=>b

does not have a solution. Then a does not have a multiplicative inverse
in Z,.

Proof Suppose that a -, x = b has no solution. Suppose further that a
does have a multiplicative inverse ¢’ in Z,. By Lemma 2.5, x = a’b is a
solution to the equation a -, x = b. This contradicts the hypothesis given
in the corollary that the equation does not have a solution. Thus, some
supposition we made must be incorrect. One of the assumptions—namely,
that a -, x = b has no solution—was the hypothesis given in the corollary’s
statement. The only other supposition we made was that @ has an inverse
a’ in Z,. This supposition must be incorrect, because it led to the contra-
diction. Therefore, it must be the case that a does not have a multiplicative
inverse in Z,,.

Our proof of the corollary is a classical example of the use of the principle
of proof by contradiction.

Principle 2.1 (Proof by Contradiction)

If by assuming a statement we want to prove is false we are led to a
contradiction, then the statement we are trying to prove must be true.

We now complete our discussion of Exercise 2.2-1. The following table
shows an X for the nonzero elements of Zg that do not have inverses and
gives an inverse for each element that has one.

5 6 7
2 - 4

1 2 3 4 8
a 1 5 7 8

In Zg, the number 1 has an inverse—namely, 1—but the equations

2=4, 2.,3=0, 2. 4=2 and 2. 5=4

3In Section 2.3, we show that this corollary is actually equivalent to part of Lemma 2.5.

78 Chapter 2: Cryptography and Number Theory

Theorem 2.7

tell us that 2 does not have an inverse. Less directly, but with less work,
we see that the equation 2 -, x = 3 has no solution because 2x will always
be even, so 2x mod 6 will always be even. Corollary 2.6 tells us that 2 has
no inverse. Once again, we give a table that shows exactly which nonzero
elements of Zg have inverses.

A similar set of equations shows that 2 does not have an inverse in Zg. The
following table shows which nonzero elements of Zg have inverses.

1 2
a 1 -

4

6 7
— 7

3 5
3 5
We see that every nonzero element in Zs and Z7 does have a multiplicative
inverse, but in Zg, Zg, and Zg, some elements do not have a multiplicative
inverse. Notice that 5 and 7 are prime, while 6, 8, and 9 are not. Fur-
thermore, notice that, in all our examples, the elements in Z, that do not

have a multiplicative inverse are exactly those that share a common factor
with n.

We showed that 2 has exactly one inverse in Zs by checking each multiple
of 2 in Zs and showing that exactly one multiple of 2 equals 1. In fact, for
any element that has an inverse in Zs, Zg, Z7, Zg, and Zg, you can check
in the same way that it has exactly one inverse. The following theorem
explains why.

If an element of Z, has a multiplicative inverse, then it has exactly one
inverse.

Proof Suppose an element a of Z, has an inverse a’. Suppose that a*
is also an inverse of a. Then a’ is a solution to a -, x = 1, and a* is a
solution to a -, x = 1. By Lemma 2.5, however, the equation a -, x =1
has a unique solution. Therefore, a’ = a*.

Just as we use a~! to denote the inverse of a in the real numbers, we use
a~! to denote the unique inverse of ¢ in Z, when a has an inverse. We
define what we mean by dividing a member of Z, by a in the case that a has
an inverse a~' mod n. If a has a multiplicative inverse, we define dividing
b by a in Z, to be the same as multiplying » by a~! mod n. We were led

Lemma 2.8

2.2: Inverses and Greatest Common Divisors 79

to our discussion of inverses because of their role in solving equations. We
observed that in our examples, an element of Z, that has an inverse mod n
has no factors greater than 1 in common with n. This is a statement about
a and n as integers with ordinary multiplication rather than multiplication
mod n. Thus, to prove that a has an inverse mod » if and only if a and
n have no common factors other than 1 and —1, we have to convert the
equation a -, x = 1 into an equation involving ordinary multiplication.

Converting Modular Equations to Normal Equations

We can reexpress the equation
a,x=1

as
ax modn = 1.

But ax mod n is defined as the remainder r that we get when we write
ax = gn +r, with 0 < r < n. This means that ax mod n = 1 if and only if
there is an integer ¢ with ax =¢gn + 1, or

ax —gn = 1.
Thus, we have shown the following:

The equation
a,x=1

has a solution in Z, if and only if there exist integers x and y such that
ax +ny = 1. (2.6)

Proof We simply take y = —¢ in the equation ax — gn = 1.

We make the change from —g to y for two reasons. First, if you read a
book on number theory, you are more likely to see the equation with y in
this context. Second, to solve this equation, we must find both x and y.
Using a letter near the end of the alphabet in place of —g emphasizes that
this is a variable for which we need to solve.

It appears that we have made our work harder, not easier. We have converted
the problem of solving the equation a -, x = 1 in Z,, an equation with just
one variable x that could only have n — 1 different values, to a problem

80 Chapter 2: Cryptography and Number Theory

Exercise 2.2-3

Exercise 2.2-4

Theorem 2.9

Corollary 2.10

of solving Equation 2.6, which has two variables, x and y. Furthermore, in
this second equation, x and y can take on any integer values, even negative
values.

However, we will see that this equation is exactly what we need in order to
prove that a has an inverse mod » if and only if @ and n have no common
factors larger than 1.

Greatest Common Divisors

Suppose a and n are integers such that n is positive and ax +ny = 1 for
some integers x and y. What does that tell us about being able to find a
multiplicative inverse for a (mod n)? In this situation, if a has an inverse
in Z,, what is the inverse?

If ax + ny = 1 for integers x and y, can a and n have any common divisors
other than 1 and —1?

In Exercise 2.2-3, because Lemma 2.8 tells us that the equation a -, x =1
has a solution in Z, if and only if there exist integers x and y such that
ax +ny = 1, we conclude the following theorem.

A number a has a multiplicative inverse in Z, if and only if there are
integers x and y such that ax +ny = 1.

We answer the rest of Exercise 2.2-3 with a corollary.

If a € Z, and x and y are integers such that ax +ny = 1, then the mul-
tiplicative inverse of a in Z, is x mod n.

Proof Becausen -, y=0in Z,, we have a -, x = 1 in Z,. Therefore, x
is the inverse of a in Z,.

Now let’s consider Exercise 2.2-4. If a and n have a common divisor %,
then there must exist integers s and ¢ such that

and

Lemma 2.11

2.2: Inverses and Greatest Common Divisors 81

Substituting these into ax 4+ ny = 1, we obtain

1 =ax +ny
= skx + gky
=k(sx +qy).

But then £ is a divisor of 1. Because the only integer divisors of 1 are +1,
we must have k = £1. Therefore, a and n can have no common divisors
other than 1 and —1.

In general, the greatest common divisor (GCD) of two numbers j and k
is the largest number d that is a factor of both j and k.* We denote the
greatest common divisor of j and k by ged(j, k). When two integers j and
k have gcd(j, k) = 1, we say that j and k are relatively prime.

We can now restate Exercise 2.2-4 as the following lemma.

Given a and n, if there exist integers x and y such that ax 4+ ny = 1, then
gcd(a, n) = 1—that is, @ and n are relatively prime.

If we combine Theorem 2.9 and Lemma 2.11, we see that if a has a mul-
tiplicative inverse mod n, then gcd(a, n) = 1. It is natural to ask whether
the statement “If gcd(a, n) = 1, then a has a multiplicative inverse” is true
as well.> If it were, this would give a way to test whether ¢ has a mul-
tiplicative inverse mod n by computing the greatest common divisor of a
and n. For this purpose, we would need an algorithm to find ged(a, n). It
turns out that there is such an algorithm, and a byproduct of the algorithm
is a proof of our conjectured converse statement.

Euclid’s Division Theorem

One of the important tools in understanding greatest common divisors is
Euclid’s division theorem, a result that has already been important to us in
defining what we mean by m mod n. Although it appears obvious, Euclid’s
division theorem follows from one simple principle, and the proof of it helps
us understand how the greatest common divisor algorithm works. Thus, we

4There is one common factor of j and k for sure—namely, 1. No common factor can be
larger than |j| or |k|, so there are finitely many factors. Therefore, there must be a largest
common factor.

Notice that this statement is not equivalent to the statement in the lemma. This statement
is called the “converse” of the lemma; we explain the idea of converse statements more in
Chapter 3.

82 Chapter 2: Cryptography and Number Theory

Theorem 2.12

restate the theorem and present a proof of it here. Our proof uses the method
of proof by contradiction, which you first saw in Corollary 2.6. Notice that
we are assuming m is nonnegative, which we didn’t assume in our earlier
statement of Euclid’s division theorem (Theorem 2.1). Problem 16 explores
how we can remove this additional assumption. By definition, the r in the
following theorem is equal to m mod n.

(Euclid’s Division Theorem, Restricted Version) Let n be a positive
integer. Then for every nonnegative integer m, there exist unique integers
q and r such that m =ng +r and 0 <r < n.

Proof First we show that for each m, there is at least one pair of integers
q and r with 0 <r <n so that m = gn + r. Assume, for the sake of proof
by contradiction, that there is a nonnegative integer m for which no such
g and r exist. Choose the smallest® such nonnegative integer m. If m < n,
then m =n-0+m with 0 <m <n, so m > n. Thus, m — n is a nonnega-
tive integer smaller than m. Therefore, there exist integers ¢’ and r’ such
that m —n=nq' +r" with 0 <r’ <n. But then m = n(q¢’ + 1) +r. So, by
taking ¢ = ¢’ + 1 and r = r/, we obtain m = gn + r with 0 <r <n. This
is a contradiction to the assumption that there are not integers g and r
with 0 <r <n such that m = gn + r. Thus, by the principle of proof by
contradiction, such integers ¢ and r exist.

Next, we show that the integers g and r are unique by showing that any two
pairs (g, r) satisfying the theorem are identical. For this purpose, we sup-
pose that m = ng +r and m = ng* +r* with 0 <r <n and 0 <r* <n. By
subtraction, 0 = n(q — q¢*) +r — r*, sothat n(q¢ — ¢*) = r* — r. Because r*
and r are both between 0 and n — 1 (inclusive), the absolute value of their
difference is less than n, giving us

In(qg — g™ =r*—r| <n.
Because 7 is a factor of the left side, the only way the inequality can hold

isif |[n(¢ — q*)| = |r* — r| = 0. Therefore, ¢ = ¢* and r = r*, proving that
g and r are unique.

Here we have used a special case of proof by contradiction that we call
proof by smallest counterexample. In this method, we assume, as in all

6Because the nonnegative integers are well-ordered, any set of nonnegative integers has a
smallest element. Thus, for any given positive integer n, the set of numbers m that make
the statement of the theorem false has a smallest element.

Exercise 2.2-5

Lemma 2.13

2.2: Inverses and Greatest Common Divisors 83

proofs by contradiction, that the theorem is false, which implies that there
must be a counterexample that does not satisfy the theorem’s conditions.
For a given n, the counterexample would consist of a nonnegative integer m
such that there are not unique integers ¢ and r, with 0 < r < n, that satisfy
m = gn + r. Furthermore, if there are counterexamples, then there must be
one having the smallest m. We assume we have chosen a counterexample
with such a smallest m. Then we reason that if such an m exists, then every
example with a smaller m satisfies the theorem’s conclusion. If we can
then use a smaller true example to show that our supposedly false example
is true as well, then we have created a contradiction. The only thing this
can contradict is our assumption that the theorem was false. Therefore, this
assumption has to be invalid, and the theorem has to be true. As we will see
in Section 4.1, this method is closely related both to a proof method called
proof by induction and to recursive algorithms. In essence, the proof of
Theorem 2.12 describes a recursive program to find ¢ and r in Theorem 2.12
sothat 0 <r < n.

Suppose that k = jg +r, as in Euclid’s division theorem. Is there a rela-
tionship between gcd(j, k) and ged(r, j)?

In this exercise, if » = 0, then ged(r, j) is j, because any number is a divisor
of 0. But this is also the GCD of k and j, because, in this case, k = jgq. The
answer to the remainder of Exercise 2.2-5 appears in the following lemma.

If j, k, g, and r are positive integers such that k = jg + r, then

gcd(j, k) = ged(r, j). (2.7)

Proof To prove that both sides of Equation 2.7 are equal, we will show
that j and k have exactly the same common factors as r and j. That is, we
will first show that if d is a factor j and k, then it is a factor of » and j.
Second, we will show that if d is a factor of both » and j, then it is a factor
of both j and k.

If d is a factor of j and k, then there must be integers i; and i> so that
k =i1d and j = ird. Thus, d is also a factor of
r=k—jq
= ild - iqu
= (i1 —i2q)d. (2.8)

84 Chapter 2: Cryptography and Number Theory

Exercise 2.2-6

Because d is a factor of j (by supposition) and r (by Equation 2.8), it is a
common factor of r and j.

Similarly, if d is a factor of r and j, then we can write j = izd and r = isd.
Therefore,

k=jg+r
=i3dq + isd
= (i3q + i4)d,

and d is a factor of k and, therefore, a common factor of j and k.

Because j and k have the same common factors as r and j, their greatest
common factors (their GCDs) must be equal.

Although we did not need to assume r < j to prove the lemma, Theorem
2.1 tells us we may assume r < j. The assumption in the lemma that j, ¢,
and r are positive implies that j < k. Thus, this lemma reduces our problem
of finding gcd(j, k) to the simpler problem (in a recursive sense) of finding
ged(r, j).

Euclid’s GCD Algorithm

Using Lemma 2.13, write a recursive algorithm to find ged(j, k), given that
0 < j < k. Use it to find, by hand, the GCD of 24 and 14 and the GCD of
252 and 189.

Our algorithm for Exercise 2.2-6 is based on Lemma 2.13 and the observa-
tion that if k = jq for any ¢, then j = gcd(j, k). Notice from the statement
of the exercise that we are assuming that j and k are both positive and
Jj < k. We first write k = jg + r in the usual way. If r = 0, then we return
j as the greatest common divisor. Otherwise, j and r are both positive with
r < j, and we apply our algorithm to find the GCD of j and r. Finally, we
return the result as the GCD of j and k. This is called Euclid’s GCD
algorithm.

To find ged(14, 24), we write

24 = 14(1) + 10.

2.2: Inverses and Greatest Common Divisors 85

In this case, k =24, j =14, ¢ =1, and r = 10. Thus, we can apply
Lemma 2.13 and conclude that

ocd(14,24) = ged(10, 14).

We therefore continue our computation of gecd(10, 14) by writing 14 =
10-1 44 and have that

gcd(10, 14) = ged(4, 10).

Because
10=4-2+2,

we have that
gcd(4, 10) = ged(2, 4).

Because
4=2-2+0,

we know that k =4, j =2, g =2, and r = 0. In this case, our algorithm
tells us that our current value of j is the GCD of the original j and k. This
step is the base case of our recursive algorithm.

Thus,
gcd(14,24) = ged(2,4) = 2.

It turns out to be even easier to find the GCD of 252 and 189, even though
the numbers are larger.

We write
252 =189-1 + 63,

so that ged (189, 252) = ged(63, 189), and
189 =63-3+40.
This tells us that gcd(189, 252) = gcd(189, 63) = 63.

Extended GCD Algorithm

By analyzing our process in a bit more detail, we can return not only the
greatest common divisor but also numbers x and y such that ged(j, k) =
jx + ky. This solves the problem we have been working on, because it
proves that if gcd(a,n) = 1, then there are integers x and y such that

86 Chapter 2: Cryptography and Number Theory

ax + ny = 1. Furthermore, it tells us how to find x and, therefore, the
multiplicative inverse of a.

In the case that k = jg and we want to return j as our greatest common
divisor, we also want to return 1 for the value of x and O for the value of
y. Suppose we are now in the case that k = jg + r, with 0 < r < j (that is,
the case that k # jq). We recursively compute gcd(r, j) and, in the process,
get an x” and a y’ such that gcd(r, j) = rx’ + jy'. Because r = k — jg, we
get by substitution that

ged(r, j) = (k — jo)x' + jy = kx' + j(y' — gx').

Thus, when we return ged(r, j) as ged(j, k), we want to return the value
of x” as y and the value of y’ — gx’ as x.

We refer to this process as Euclid’s extended GCD algorithm.

Exercise 2.2-7 Apply Euclid’s extended GCD algorithm to find numbers x and y such that
the GCD of 14 and 24 is 14x + 24y.

For Exercise 2.2-7, we give pseudocode for the extended GCD algorithm.
We expressed the algorithm more concisely earlier by using recursion; we
now give an iterative version that is longer but that can make the computa-
tional process clearer. Instead of using the variables ¢, j, &, r, x, and y, we
use six arrays, where g[i] is the value of ¢ computed on the ith iteration
and so forth. We use the index O for the input values—that is, j[0] and k[0]
will be the numbers whose GCD we wish to compute. Eventually, x[0] and
y[0] will become the x and y we want. (In Line 8, the notation |x | stands
for the floor of x, the largest integer less than or equal to x.)

gcd (7, k)

// Assume that j < k and that j and k are positive
// integers.

(1) if (7 ==k)
(2) return j as gcd
(3) return 1 as x
(4) return 0 as y
(5) else
(6) i =0; k[i] = k; Jli]l = 7
(7) repeat
(8) glil = |k[i1/71i]]
(9) rli]l = kil — qlil j[i]
// Now r[i] = k[i] mod JjI[i].
(10) ki + 11 = F[i1; i + 1] = rli]

2.2: Inverses and Greatest Common Divisors 87

) i =1+1

) until (r[i — 1] = 0)

) 1 =1-—1

) ged = jli]

// we have found the value of the gcd, now we compute
// the x and y

ylil = 0; x[i] =1

return gcd
return x[0] as x
return y[0] as y

S N R e =
W N R OWOW-Io U

Table 2.1 shows the details of how this algorithm applies to gcd(24, 14).
In a row, the ¢g[i] and r[i] values are computed from the j[i] and k[i]
values. Then the j[i] and r[i] are passed down to the next row as k[i + 1]
and j[i 4+ 1], respectively. This process continues until we finally reach a
case where k[i] = ¢[i]jli], and we can answer j[i] for the GCD. We can
then begin computing x[i] and y[i]. In the row of Table 2.1 with i = 3, we
have that x[i] = 1 and y[i] = 0. As i decreases, we compute x[i] and y[i]
for a row by setting y[i] to x[i + 1] and x[i] to y[i + 1] — g[i]lx[i + 1].
We note that in every row, we have the property that j[i]x[i] + k[i]y[i] =
gcd(j, k).

~.

JUl kil qlil rli]l x[i] yli]
0 14 24 1 10

1 10 14 1 4
2 4 10 2 2
3 2 4 2 0 1 0
2 4 10 2 2 =2 1
1 10 14 1 4 3 =2

0 14 24 1 10 -5 3
Results: gcd =2, x = -5, y = 3.
Table 2.1: The computation of gcd(14,24) by algorithm gcd(j, k)

88 Chapter 2: Cryptography and Number Theory

Theorem 2.14

Theorem 2.15

Corollary 2.16

Corollary 2.17

We summarize Euclid’s extended GCD algorithm in the following theorem.

Given two integers j and k, Euclid’s extended GCD algorithm computes
gcd(j, k) and two integers x and y such that gcd(j, k) = jx + ky.

We now use Eculid’s extended GCD algorithm to extend Lemma 2.11.

Two positive integers j and k& have greatest common divisor 1 (and thus
are relatively prime) if and only if there are integers x and y such that
jx+ky =1.

Proof The statement that if there are integers x and y such that jx 4+ ky =
1, then gcd(j, k) = 1 is proved in Lemma 2.11. In other words, gcd(j, k) =
1 if there are integers x and y such that jx +ky = 1.

On the other hand, we just showed, by Euclid’s extended GCD algorithm,
that given positive integers j and k, there are integers x and y such that
gcd(j, k) = jx + ky. Therefore, gcd(j, k) = 1 only if there are integers x
and y such that jx + ky = 1.

Combining Lemma 2.8 and Theorem 2.15, we obtain the following
corollary.

For any positive integer n, an element a of Z,, has a multiplicative inverse
if and only if ged(a,n) = 1.

Using the fact that if n is prime, then gcd(a, n) = 1 for all nonzero a € Z,,
we obtain the following corollary.

For any prime p, every nonzero element a of Z, has an inverse.

Computing Inverses

Not only does Euclid’s extended GCD algorithm tell us whether an inverse
exists, but it also computes it for us, as we saw in Exercise 2.2-3. Combining
Exercise 2.2-3 with Theorem 2.15, we get the following:

Corollary 2.18

—~ o~~~ —~

U w N

2.2: Inverses and Greatest Common Divisors 89

If an element a of Z, has an inverse, we can compute it by running Euclid’s
extended GCD algorithm to determine integers x and y so thatax + ny = 1.
The inverse of a in Z, is x mod n.

For completeness, we now give pseudocode that determines whether
an element @ in Z, has an inverse and that computes the inverse if it
exists.

inverse(a, n)

Run procedure gcd(a,n) to obtain gcd(a,n), x, and y

if

(gcd(a,n) == 1)
return x mod n

else

print "no inverse exists"

The correctness of the algorithm follows immediately from the fact
that ged(a, n) = ax + ny; so, if ged(a,n) = 1, then ax mod n must be
equal to 1.

1. Multiplicative inverse. The element a’ of Z, is a multiplicative

inverse of a in Z, if a -, @’ = 1. If a has a multiplicative inverse,
then it has a unique multiplicative inverse, which we denote a .

An important way to solve modular equations. Suppose a has a
multiplicative inverse mod 7, and this inverse is a~'. Then for any
b € Z,, the unique solution to the equation

a,x=2>b

is
_ -1
x=a -, b.

. Converting modular to regular equations. The equation

a,x=1

has a solution in Z,, if and only if there exist integers x and y such
that

ax +ny =1.

90 Chapter 2: Cryptography and Number Theory

4,

10.

11.

12.

13.

14.

When do inverses exist in Z,? A number a has a multiplicative
inverse in Z, if and only if there are integers x and y such that
ax +ny = 1.

. Greatest common divisor (GCD). The greatest common divisor of

two numbers j and k is the largest number d that is a factor of both
j and k.

Relatively prime. When two numbers j and k have gcd(j, k) = 1, we
say that j and k are relatively prime.

. Connecting inverses to GCD. Given a and n, if there exist integers x

and y such that ax +ny =1, then ged(a,n) = 1.

. GCD recursion lemma. If j, k, g, and r are positive integers such

that k = jg + r, then ged(j, k) = ged(r, j).

Euclid’s GCD algorithm. Given two numbers j and ., Euclid’s GCD
algorithm returns ged(j, k).

Euclid’s extended GCD algorithm. Given two numbers j and k,
Euclid’s extended GCD algorithm returns ged(j, k) and two integers
x and y such that ged(j, k) = jx + ky.

Relating GCD of 1 to Euclid’s extended GCD algorithm. Two
positive integers j and k have greatest common divisor 1 if and only
if there are integers x and y such that jx + ky = 1. One of the
integers x and y could be negative.

Condition for multiplicative inverse in Z,. For any positive integer n,
an element a of Z, has an inverse if and only if gcd(a, n) = 1.

Multiplicative inverses in Z,, with p prime. For any prime p, every
nonzero element a of Z, has a multiplicative inverse.

A way to solve some modular equations a -, x = b. Use Euclid’s
extended GCD algorithm to compute a~! (if it exists), and multiply
both sides of the equation by a~!. (If a has no inverse, the equation
might or might not have a solution.)

All problems with blue boxes have an answer or hint available at the end
of the book.

2.

If a-133 —m-277 = 1, does this guarantee that a has an inverse
mod m? If so, what is it? If not, why not?

If a-133 —2m -277 =1, does this guarantee that a has an inverse
mod m? If so, what is it? If not, why not?

2.2: Inverses and Greatest Common Divisors 91

Determine whether every nonzero element of Z, has a multiplicative
inverse for n = 10 and n = 11.

4. How many elements a are there such that a -,; 22 = 1?7 How many
elements a are there such thata -, 2 =17

Given an element b in Z,, what can you say in general about the
possible number of elements a such thata -, b =1 in Z,?

6. Ifa-133 —m-277 = 1, what can you say about all possible
common divisors of a and m?

Compute the GCD of 210 and 126 by using Euclid’s GCD
algorithm.

8. If k = jg + r, as in Euclid’s division theorem, is there a relationship
between gcd(q, k) and ged(r, ¢)? If so, what is it?

n Bob and Alice want to choose a key that they can use for
cryptography, but all they have to communicate is a bugged phone
line. Bob proposes that they each choose a secret number, a for
Alice and b for Bob. They also choose, over the phone, a prime
number p, with more digits than any key they want to use, and one
more number g. Bob will send Alice hg mod p, and Alice will send
Bob ag mod p. Their key (which they will keep secret) will then be
abg mod p. (In this case, don’t worry about the details of how they
use their key; only worry about how they choose it.) As Bob
explains, their wiretapper will know p, g, ag mod p, and bg mod p
but will not know a or b, so their key should be safe.

Is this scheme safe—that is, can the wiretapper compute

abg mod p? If so, how?

Alice says, “You know, the scheme sounds good, but wouldn’t it be
more complicated for the wiretapper if I send you ¢“ mod p, you
send me ¢® mod p, and we use ¢g“” mod p as our key?” In this case,
can you think of a way for the wiretapper to compute ¢“* mod p? If
so, how? If not, what is the stumbling block? (It is fine for the
stumbling block to be that you don’t know how to compute
something; you don’t need to prove that you can’t compute it.)

10. Write pseudocode for a recursive version of the extended GCD
algorithm.

Run Euclid’s extended GCD algorithm to compute gcd(576, 486).
Show all the steps.

12. Use Euclid’s extended GCD algorithm to compute the multiplicative
inverse of 16 mod 103.

Solve the equation 16 -, x = 21 in Zjg3.

103

92 Chapter 2: Cryptography and Number Theory

14.

16.

18.

20.

Which elements of Z3s do not have multiplicative inverses in Z3s?

If k = jgq +r, as in Euclid’s division theorem, is there a relationship
between gcd(j, k) and ged(r, k)? If so, what is it?

Notice that if m is negative, then —m is positive. Thus, by

Theorem 2.12, —m = gn + r for 0 < r < n. This gives
m=—qgn—r.If r =0,then m =¢g'n+r’ for 0 <r’ <n and

q' = —q. However, if r > 0, then you cannot take r’ = —r and have
0 < r’ < n. Notice, though, that because you have already finished
the case in which r = 0, you may assume that 0 < n — r < n. This
suggests that if you were to take r’ to be n — r, you might be able to
find a ¢’ so that m = ¢’n + r/, with 0 <’ < n, which would let you
conclude that Euclid’s division theorem is valid for negative values
m as well as for nonnegative values m. Find a ¢’ that works, and
explain how you have extended Euclid’s division theorem from the
version in Theorem 2.12 to the version in Theorem 2.1.

The Fibonacci numbers F; are defined as follows:

P 1 ifiis1 or?2,
"7 | Fi_y + F,_, otherwise.
What happens when you run Euclid’s extended GCD algorithm on
F; and F;11? (This problem is asking not only for the answer but
also about the execution of the algorithm.)

Write (and run on several different inputs) a program to implement
Euclid’s extended GCD algorithm. Be sure to return x and y in
addition to the GCD. About how many times does your program
have to make a recursive call to itself? What does that say about
how long you should expect the program to run as you increase the
size of the j and k£ whose GCD you are computing?

The least common multiple (LCM) of two positive integers x and y
is the smallest positive integer z such that z is an integer multiple of
both x and y. Give a formula for the least common multiple that
involves the GCD.

Write pseudocode that, given integers a, b, and n in Z,, either
computes an x such that a -, x = b or concludes that no such x
exists.

Give an example of an equation of the form a -, x = b that has a
solution even though a and n are not relatively prime, or show that
no such equation exists.

2.3: The RSA Cryptosystem 93

22. FEither find an equation of the form a -, x = b in Z,, that has a
unique solution even though a and n are not relatively prime, or
prove that no such equation exists. In other words, either prove the
statement that if a -, x = b has a unique solution in Z,, then a and n
are relatively prime, or find a counterexample.

9A5 Prove Theorem 2.14.

2.3 THE RSA CRYPTOSYSTEM

Lemma 2.19

Exercise 2.3-1

Exercise 2.3-2

Exponentiation mod n

In the previous sections, we considered encryption using modular addition
and multiplication and saw the shortcomings of both. In this section, we
consider using exponentiation for encryption and see that it can provide a
much greater level of security.

The idea behind RSA encryption is exponentiation in Z,. By Lemma 2.3,
if a € Z,, then ‘
a/modn=a-,a-, - pa. (2.9)
[

j factors
In other words, a/ mod 7 is the product in Z, of j factors, each equal to a.

The Rules of Exponents

From Lemma 2.3 and the rules of exponents for the integers, we have
Lemma 2.19.

For any a € Z, and any nonnegative integers i and j,
(@' mod n) -, (@’ mod n) = a'*/ mod n (2.10)
and

(a' mod n)j mod n = a"/ mod n. (2.11)

Compute the powers of 2 mod 7. What do you observe? Now compute the
powers of 3 mod 7. What do you observe?

Compute the sixth powers of the nonzero elements of Z;. What do you
observe?

94 Chapter 2: Cryptography and Number Theory

Exercise 2.3-3

Exercise 2.3-4

Compute the numbers 1-,2,2-,2,3-,2,4-,2,5-
you observe? Now compute the numbers 1 -, 3, 2 -
and 6 -, 3. What do you observe?

;2,and 6 -, 2. What do
;3,3 3,

N

Suppose we choose an arbitrary nonzero number a between 1 and 6. Are
the numbers 1-,a, 2-,a, 3-,a, 4-5a, 5-,a, and 6 -, a all different?
Why or why not?

In Exercise 2.3-1, we have that

2mod 7 =1
2! mod7=2
22 mod 7 = 4
22 mod 7 =1
2*mod7 =2
2’ mod7 =4
2°mod 7 =1
2" mod7=2
28 mod 7 = 4.

Continuing, we see that the powers of 2 will cycle through the list of three
values—1, 2, and 4—again and again. Performing the same computation
for 3, we have

3 mod7=1
3 mod7=3
32 mod 7 =2
3¥mod7=6
3*mod7 =4
3*mod7 =5
3¥mod7=1
37 mod 7 =3

3% mod 7 = 2.

2.3: The RSA Cryptosystem 95

In this case, we cycle through the list of six values—I1, 3, 2, 6, 4, and
5—again and again.
Now observe that in Z7, we have 2° =1 and 3°® = 1. This suggests an

answer to Exercise 2.3-2. Is it the case that ¢® mod 7 =1 for all a € Z;?
We can compute that 1 mod 7 = 1, and

45mod 7 = (2 -,2)% mod 7
6 6
=(2"-,2°) mod 7
=(1-,1)mod7
=1.

What about 5°? Notice that 3% = 5 in Z7 by the computations made above.
Using Equation 2.11 twice gives us

5% mod 7 = (3°)® mod 7
=350 mod 7
=353 mod 7
—39=1"=1

in Z7. Finally, because —1 mod 7 = 6, Lemma 2.3 tells us that 6° mod 7 =
(—1)® mod 7 = 1. Thus, the sixth power of each element of Z7 is 1.

In Exercise 2.3-3, we see that

1,2=1-2mod7 =2
2.,2=2-2mod7 =4
3,2=3-2mod7=6
4..2=4-2mod7 =1
54,2=5-2mod7=3
6-,2=6-2mod7 =35.

These numbers are a permutation of the set {1, 2, 3,4, 5, 6}. Similarly,

1-,3=1-3mod7=23
2.,3=2-3mod7=6
3,3=3-3mod7=2

96 Chapter 2: Cryptography and Number Theory

Lemma 2.20

Theorem 2.21

4..3=4.-3mod7=>5

7
5,3=5-3mod7=1
6-,3=6-3mod7=4.

Again, we get a permutation of {1, 2, 3,4, 5, 6}.

In Exercise 2.3-4, we are asked whether this is always the case. Notice
that because 7 is a prime, Corollary 2.17 tells us that each nonzero number
between 1 and 6 has a mod 7 multiplicative inverse a~'. Thus, if i and j
are integers in Z7, with i -, a = j -, a, we multiply mod 7 on the right by
a~! to get

- a)- a”l = (Jj - a)- a'.
After using the associative law, we get
i (a- aHy=j -~ (a - a h. (2.12)

Because a -, a~! = 1, Equation 2.12 simply becomes i = j. Thus, we have
shown that the only way for i -, a to equal j -, a is for i to equal j. There-
fore, all the valuesi -, a fori =1, 2, 3,4, 5, 6 must be different. Because we
have six different values that must be integers between 1 and 6, we have that
the values i -, a fori = 1,2, 3,4, 5, 6 are a permutation of {1, 2, 3,4, 5, 6}.
As you can see, the only fact we used in our analysis of Exercise 2.3-4
is that if p is a prime, then any number between 1 and p — 1 has a mul-
tiplicative inverse in Z,. In other words, we have proved the following
lemma.

Let p be a prime number. For any fixed nonzero number a in Z, the num-

bers (1-a)modp, (2-a)modp, ..., ((p —1)- a)modp are a permutation
of the set {1,2,..., p — 1}.

With this lemma in hand, we can prove a famous theorem that explains the
phenomenon we saw in Exercise 2.3-2.

Fermat’'s Little Theorem

(Fermat’s Little Theorem) Let p be a prime number. Then a?~! mod
p = 1in Z, for each nonzero a in Z,.

Corollary 2.22

2.3: The RSA Cryptosystem 97

Proof Because p is a prime, Lemma 2.20 tells us that the numbers 1 -, a,
2-pa,...,(p—1)-,a are a permutation of the set {1,2,..., p — 1}. But
then

12 pp=—D=Upa)p2pa),- - ((p—l) -pa).

Using Equation 2.9 and the commutative and associative laws for
multiplication in Z,, we get

g2y (p=1)=1-p2p - (p—1)-p (@’ mod p).

Now we multiply both sides of the equation by the multiplicative inverses in
Z,of2,3,..., p— 1 the left side of our equation becomes 1, and the right
side becomes a”~! mod p, which is exactly the conclusion of our theorem.

(Fermat’s Little Theorem, Version 2) For every positive integer @ and
prime p, if a is not a multiple of p, then

a? ''mod p = 1.

Proof This is a direct application of Lemma 2.3, because if we replace a
with @ mod p, then Theorem 2.21 applies.

The RSA Cryptosystem

Fermat’s Little Theorem is at the heart of the RSA cryptosystem, a system
that allows Bob to tell the world how to encode a message to send to him
so that he, and only he, can read it. In other words, even though he tells
everyone how to encode the message, nobody except Bob has a significant
chance of figuring out what the message is from looking at the encoded
message. What Bob is giving out is called a one-way function—a function
f that has an inverse f~!; but even though y = f(x) is reasonably easy to
compute, nobody but Bob (who has some extra information that he keeps
secret) can compute f _1(y). Thus, when Alice wants to send a message
x to Bob, she computes f(x) and sends it to Bob, who uses his secret
information to compute f~! (f (x)) =x.

In the RSA cryptosystem, Bob chooses two prime numbers p and g (which,
in practice, each have at least 150 digits) and computes the number n = pq.
He also chooses a number e # 1, which need not have a large number
of digits but which is relatively prime to (p — 1)(¢ — 1). Thus, e has an
inverse d in Z,—1)4—1), and Bob computes d = e~ mod (p — 1)(g — 1).
Bob publishes e and n. The number e is called his public key. The number

98 Chapter 2: Cryptography and Number Theory

—~ e~ o~ o~~~

o Ul i W N

d is called his private key. To summarize what we just said, here is a
pseudocode outline of what Bob does:

Bob’s RSA Key Choice Algorithm

Choose 2 large prime numbers p and g

n=p=*gqg

Choose e # 1 so that e is relatively prime to (p—1)(g—1)
Compute d = e ! moa (p—1)(g—1)

Publish e and n

Keep d secret

People who want to send a message x to Bob compute y = x° mod n and
send that to him instead. (We assume x has fewer digits than n so that it is
in Z,. If not, the sender has to break the message into blocks of a size less
than the number of digits of » and send each block individually.)

To decode the message, Bob will compute z = y¢ mod n. The following
pseudocode summarizes this process.

Alice-send-message-to-Bob(x)

Alice does the following:

Read the public directory for Bob’s keys e and n
Compute y = x € mod n

Send y to Bob

Bob does the following:
Receive y from Alice

Compute z = y 9 mod n, using secret key d

Read =z

Each step in these algorithms can be computed using methods from this
chapter. Section 2.4 deals with computational issues in more detail.

To show that the RSA cryptosystem works—that is, it allows us to encode
and then correctly decode messages—we must show that z = x. In other
words, we must show that when Bob decodes, he gets back the original
message. To show that the RSA cryptosystem is secure, we must argue that
an eavesdropper, who knows n, e, and y but does not know p, g, or d,
cannot easily compute x.

Exercise 2.3-5 To show that the RSA cryptosystem works, we first show a simpler fact.

Why is
y*mod p = x mod p ?

Does this equation tell us what x is?

2.3: The RSA Cryptosystem 99

Plugging in the value of y, we have
d _ ed
y* mod p = x°“ mod p. (2.13)

But, in Lines 3 and 4 of Bob’s key choice algorithm, we chose e and d so
that e -, d = 1, where m = (p — 1)(¢ — 1). In other words,

edmod (p—1)(g—1) =1.
Therefore, for some integer k,
ed=k(p—1)(@q—1) +1.

Plugging this into Equation 2.13, we obtain

ed

x4 mod p = xk(P=D@-D+1

mod p
= x*@=DP=Dx mod p. (2.14)

For any number « that is not a multiple of p, however, a”?~! mod p = 1,
by Fermat’s Little Theorem (Corollary 2.22). We could simplify Equation
2.14 by applying Fermat’s Little Theorem to x*(~D as you will see below.
However, we can do this only when x¥@~D is not a multiple of p. This
gives us two cases: the case in which x*@~1 is not a multiple of p (we’ll
call this Case 1) and the case in which x¥@=1 is a multiple of p (we’ll
call this Case 2). In Case 1, we apply Equation 2.11 and Fermat’s Little
Theorem, with a = x*@~D_ We have that

x®@=D)P=D 6q p = (xk(q—l))(P—l) mod p (2.15)
1.

Combining Equations 2.13, 2.14, and 2.15, we have that

y? mod p = x¥4=DP=Dyx mod p
=1-xmod p

=x mod p ;

hence, y¢ mod p = x mod p.

We still have to deal with Case 2. In this case, x is a multiple of p as well
because x is an integer and p is prime. Thus, x mod p = 0. Combining

100 Chapter 2: Cryptography and Number Theory

Exercise 2.3-6

Exercise 2.3-7

Exercise 2.3-8

Equations 2.13 and 2.14 with Lemma 2.3, we get
y? mod p = (xk(q_l)(p_l) mod p)(x mod p) =0 = x mod p.

Hence, in this case as well, we have y¢ mod p = x mod p.

Although this will turn out to be useful information, it does not tell us what
x is, because x may or may not equal x mod p. The same reasoning shows
us that y¢ mod ¢ = x mod g. What remains to show is what these two facts
tell us about y? mod pg = y mod n, which is what Bob computes.

Notice that by Lemma 2.3, we have proved that

(y'—x)mod p=0 (2.16)

and
(y* = x) mod g = 0. (2.17)

Equation 2.16 says that (y¢ — x) mod p =0. Write an equivalent equation,
using only integers and addition, subtraction, and multiplication in the inte-
gers but perhaps additional variables. (Do not use mods.)

Equation 2.17 says that (y¢ — x) mod ¢ =0. Write an equivalent equation,
using only integers and addition, subtraction, and multiplication in the inte-
gers but perhaps additional variables. (Do not use mods.)

If a number is a multiple of a prime p and a different prime ¢, then what
else is it a multiple of? What does this tell us about y¢ and x?

The statement “y¢ — x mod p = 0” is equivalent to the statement “y¢ —

x = ip for some integer i.” The statement “y“ — x mod ¢ = 0” is equiva-
lent to the statement “y¢ — x = jg for some integer j.” If something is a
multiple of the prime p and of the prime ¢, then it is a multiple of pgq.
Thus, (y¢ — x) mod pg = 0. Lemma 2.3 tells us that (y¢ — x) mod pg =
((yd mod pg) — x) mod pg = 0. But x and y¢ mod pq are both integers
between 0 and pg — 1, so their difference is between —(pg — 1) and
pq — 1. The only integer between these two values that is 0 mod pgq is

0 itself. Thus, (y¢ mod pg) — x = 0. In other words,

X =yd mod pgq

= yd mod 7,

which means that Bob will, in fact, get the correct answer.

Theorem 2.23

Exercise 2.3-9

Theorem 2.24

2.3: The RSA Cryptosystem 101

(Rivest, Shamir, and Adleman) The RSA procedure for encoding and
decoding messages works correctly.

Proof Proved above.

One might ask, given that Bob published e and n and messages are en-
crypted by computing x° mod n, why can’t any adversary who learns
x¢ mod n simply compute eth roots mod n and break the code? At present,
nobody knows a quick scheme for computing eth roots mod n for an
arbitrary n. Someone who does not know p and ¢ cannot duplicate Bob’s
work and discover x. Thus, as far as we know, modular exponentiation is
an example of a one-way function.

The Chinese Remainder Theorem

The method we used to do the last step of the proof of Theorem 2.23 also
proves a theorem known as the Chinese remainder theorem.

For each number in x € Z;5, write x mod 3 and x mod 5. Is x uniquely
determined by these values? If so, explain why.

As we see from Table 2.2, each of the 3-5 = 15 pairs (i, j) of integers
i and j, with 0 <i <2 and 0 < j <4, occurs exactly once as x ranges
through the 15 integers from O to 14. Thus, the function f given by
f(x) = (x mod 3, x mod 5) is a one-to-one function from a 15-element set
to a 15-element set; thus, each x is uniquely determined by its pair of
remainders.

The Chinese remainder theorem tells us that this observation always
holds.

(Chinese Remainder Theorem) If m and n are relatively prime integers
and a € Z,, and b € Z,, then the equations

xmodm =a (2.18)

xmodn=>b (2.19)

have one and only one solution for an integer x between 0 and mn — 1.

102 Chapter 2: Cryptography and Number Theory

Proof If we show that as x ranges over the integers from O to mn — 1,
the ordered pairs (x mod m, x mod n) are all different, then we will have
shown that the function given by f(x) = (x mod m, x mod n) is a one-to-
one function from an mn-element set to an mn-element set; thus, it is onto as
well.” In other words, we will have shown that each pair of Equations 2.18
and 2.19 has one and only one solution.

To show that f is one-to-one, we must show that if x and y are different
numbers between 0 and mn — 1, then f(x) and f(y) are different. To do
so, assume instead that we have an x and a y with f(x) = f(y). Then
x mod m = y mod m and x mod n = y mod n, so that (x —y) mod m =0
and (x — y) mod n = 0. That is, x — y is a multiple of both m and n. Then,
as Problem 11 shows, x — y is a multiple of mn; that is, x — y = dmn for
some integer d. We assumed x and y were different, which means x and
y cannot both be between 0 and mn — 1, because their difference is mn or
more. This contradicts our hypothesis that x and y were different numbers
between 0 and mn — 1, so our assumption must be incorrect; that is, f must
be one-to-one. This completes the proof of the theorem.

1. Exponentiation in Z,. For each a € Z, and each positive integer j,
al modn=a-,a-y- - a.
—_—
j factors

2. Rules of exponents. For each a € Z, and any nonnegative integers i
and j,
(@' mod n) -, (¢’ mod n) = a'*/ mod n

(a' mod n)’ mod n = a"/ mod n.

3. Multiplication by a fixed nonzero a in Z, is a permutation. Let p be
a prime number. For any fixed nonzero number a in Z,, the numbers
(1-a) mod p, (2-a) mod p, ..., ((p— 1)-a) mod p are a
permutation of the set {1,2,..., p —1}.

7If the function weren’t onto, then two values of x would have to map to the same pair,
because the number of pairs is the same as the number of possible values of x. So, the
function wouldn’t be one-to-one after all.

2.3: The RSA Cryptosystem 103

x xmod3 x modS5

0 0 0
1 1 1
2 2 2
3 0 3
4 1 4
5 2 0
6 0 1
7 1 2
8 2 3
9 0 4
10 1 0
11 2 1
12 0 2
13 1 3
14 2 4

Table 2.2: The values of x mod 3 and x mod 5 for each
x between 0 and 14

4. Fermat’s Little Theorem. If we let p be a prime number, then
a?P~! 'mod p = 1 for each nonzero a in Z,,.

5. Fermat’s Little Theorem, version 2. For every positive integer a and
prime p, if a is not a multiple of p, then

a’ ' mod p = 1.

6. RSA cryptosystem (the first implementation of a public-key
cryptosystem). In the RSA cryptosystem, Bob chooses two prime
numbers p and g (which, in practice, each have at least 150 digits)
and computes the number n = pgq. He also chooses a number e # 1,
which need not have a large number of digits but which is relatively
prime to (p — 1)(g — 1). Thus, e has an inverse d, and Bob
computes d = e "mod (p — 1)(g — 1). Bob publishes e and n.

104 Chapter 2: Cryptography and Number Theory

To send a message x to Bob, Alice sends y = x° mod n. Bob
decodes by computing y¢ mod .

7. Chinese remainder theorem. If m and n are relatively prime integers
and a € Z,, and b € Z,, then the equations

xmodm=a

xmodn=>

have one and only one solution for an integer x between O and
mn — 1.

All problems with blue boxes have an answer or hint available at the end
of the book.

Compute the positive powers of 4 in Z;7. Compute the positive
powers of 4 in Zjo. What is the most striking similarity? What is
the most striking difference?

2. Compute the numbers 1 -, 5, 2,5, 3-,5,..., 10, 5. Do
you get a permutation of the set {1,2,3,4,5,6,7,8,9, 10}? Would
you get a permutation of the set {1,2,3,4,5,6,7,8,9, 10} if you
used another nonzero member of Z;; in place of 5?

Compute the fourth power mod 5 of each element of Zs. What do
you observe? What general principle explains this observation?

4. The numbers 29 and 43 are primes. What is (29 — 1)(43 — 1)?
What is 199 - 1111 in Z1176? What is (2311119 in Z59? In Z43? In
Z12477

The numbers 29 and 43 are primes. What is (29 — 1)(43 — 1)?
What is 199- 1111 in Z;176? What is (105'"11)19% in Z59? In Z43?

In Z12477 How does this answer the second question in
Exercise 2.3-57?

6. How many solutions with x between 0 and 34 are there to the
system of equations

xmod5 =4

xmod7=5?7

What are these solutions?

2.3: The RSA Cryptosystem 105

Compute each of the following. Show or explain your work. Do
not use a calculator or computer.

a. 15% in Zo7.

b. 677 in Z7.
c. 677 in Zqs.

n mod i

8. Show thatin Z,, if a’ mod p =1, then a” mod p =a mod p.

Show that there are p?> — p elements with multiplicative inverses in
Z When p is prime. If x has a multiplicative inverse in Z ,, what
is xf’ P mod p>? Is the same statement true for an element Wlthout
an inverse? (Working out an example might help here.) Can you
find something interesting that is true about xP*=P when x does not
have an inverse?

10. How many elements have multiplicative inverses in Z,, when p
and ¢ are primes?

11. The paragraph preceding the proof of Theorem 2.23 says that if a
number is a multiple of the prime p and the prime ¢, then it is a
multiple of pg. This is proved here.

E What equation in the integers does Euclid’s extended GCD
algorithm solve for when m and n are relatively prime?

m Suppose that m and n are relatively prime and that & is a
multiple of each—that is, k = bm and k = cn for integers b
and c. If you multiply both sides of the equation in part a by
k, you get an equation expressing k as a sum of two products.
By making appropriate substitutions in these terms, you can
show that & is a multiple of mn. Do so. Does this justify the
assertion made in the paragraph preceding the proof of
Theorem 2.23?

12. The relation of “congruence modulo »n” is denoted by = and

defined by x = y(mod n) if and only if x mod n = y mod n.

a. Show that congruence modulo 7 is an equivalence relation by
showing that it defines a partition of the integers into
equivalence classes.

b. Show that congruence modulo » is an equivalence relation
by showing that it is reflexive, symmetric, and transitive.

c. Express the Chinese remainder theorem in the notation of
congruence modulo n.

13. Write and implement code to do RSA encryption and decryption.
Use it to send a message to someone else in class. (For the sake of

106 Chapter 2: Cryptography and Number Theory

efficiency, you may use smaller numbers than are usually used in
implementing the RSA algorithm. In other words, you may choose
your numbers so that your computer can multiply them without
overflow.)

Show that if x"~! mod n = 1 for all integers x that are not
multiples of n, then n is prime. (The slightly weaker statement
“x"~!'mod n = 1 for all x relatively prime to n” does not imply
that n is prime. There is a famous infinite family of numbers called
Carmichael numbers that are counterexamples. [2], [13])

2.4 DETAILS OF THE RSA CRYPTOSYSTEM

Exercise 2.4-1

Exercise 2.4-2

Exercise 2.4-3

This section deals with some issues related to implementing the RSA cryp-
tosystem: exponentiating large numbers, finding primes, and factoring.

Practical Aspects of Exponentiation mod n

Suppose you are going to raise a 150-digit number a to the 10'?°th
power modulo a 300-digit integer n. Note that the exponent is a 121-digit
number.

Propose an algorithm to compute a'%"” mod n, where a is a 150-digit num-
ber and n is a 300-digit number.

What can we say about how long the algorithm in Exercise 2.4-1 would
take on a computer that can do one infinite precision arithmetic operation
in constant time?

What can we say about how long the algorithm in Exercise 2.4-1 would
take on a computer that can multiply integers in time proportional to the
product of the number of digits in the two numbers, that is, multiplying an
x-digit number by a y-digit number takes roughly xy time?

Notice that if we form the sequence a, a?, @, a*, @, a®, a’, a8, a°, a'?, and

a'!, we are modeling the process of forming a'! by successively multiplying
by a. If, on the other hand, we form the sequence a, a?, a*, a®, a'®, a*?, a®*,
al?, g2 512 41024 we are modeling the process of successive squaring,
and in the same number of multiplications, we are able to get a raised to

2.4: Details of the RSA Cryptosystem 107

a four-digit number. Each time we square, we double the exponent; so,
every 10 steps or so we will increase the number of digits in the exlgonent
by three. Thus, in a bit under 400 multiplications, we will get a'""”". This
suggests that our algorithm should be to square @ some number of times
until the result is almost ' and then multiply by some smaller powers
of a until we get exactly what we want. More precisely, we square a and
continue squaring the result until we get the largest a?" such that 241 is less
than 10'2. Then we multiply a2 by the largest a> such that 261 + 2% is
less than 10'?°. We continue until we have

1020 =2k 2k 4.y ok

for some integer r. (Can you connect this with the binary representation of
10'20?) Then we get

120 ki oky k
alO :612 aZ .”aZ’.

Notice that all these powers of a have been computed in the process of
discovering k. Thus, it makes sense to save them as you compute them.

To be more concrete, let’s see how to compute a*’. We may write 43 =
32+ 8+ 2+ 1, and thus

5 3 1 0
a¥ =a>a¥d* d* . (2.20)

20 2% 20 2% 2

0 1 2 3 4 5 . . 1. .
So, we first compute a?,a?, a% a% a%, a?, using five multiplications. Then
we can compute a** via Equation 2.20, using three additional multiplica-
tions. This saves a large number of multiplications.

On a machine that could do infinite precision arithmetic in constant time,
we would need about log,(10'?) steps to compute all the powers a% and
perhaps equally many steps to do the multiplications of the appropriate
powers. At the end, we could take the result mod n. Thus, the length
of time it would take to do these computations would be more or less
21o0g,(10'?%) = 2401log, 10 times the time needed to do one operation.
Because log, 10 is about 3.32, it will take at most 800 times the amount of
time for one operation to compute al®”

You may not be used to thinking about how large the numbers get when
you are doing computation. Computers hold fairly large numbers (4-byte
integers in the range roughly —23! to 23! are typical). This suffices for most
purposes. Because of the way computer hardware works, as long as numbers
fit into one 4-byte integer, the time to do simple arithmetic operations

108 Chapter 2: Cryptography and Number Theory

doesn’t depend on the value of the numbers involved. (A standard way to
say this is that the time to do a simple arithmetic operation is constant.)
However, when we talk about numbers that are much larger than 23!, we
have to take special care to implement our arithmetic operations correctly;
we also have to be aware that operations are slower.

Because 2'0 = 1024, we have that 23! is twice as big as 230 = (210y3 =
(1024)3; thus, it is somewhat more than two billion, or 2 - 10° In particular,
it is less than 10'°. Because 10'?° is a 1 followed by 120 zeros, raising
a positive integer other than 1 to the 10'?°th power takes us completely
out of the realm of the numbers with which we are used to making exact
computations. For example, the decimal representation of 1019 has 119
more zeros following the 1 in the exponent than does 10'°.

It is accurate to assume that when multiplying large numbers, the time it
takes is roughly proportional to the product of the number of digits in each.
If we computed our 150-digit number to the 10'?°th power, we would be
computing a number with more than 10'?° digits. We clearly do not want
to compute with such numbers, as no computer can store such a number,
even using all its memory (including disks)!

Fortunately, because the number we are computing will ultimately be taken
modulo some 300-digit number, we can make all our multiplications mod-
ulo that number (see Lemma 2.3). By doing so, we ensure that the two
numbers we are multiplying have at most 300 digits, and so the time
needed for the problem proposed in Exercise 2.4-1 would be a propor-
tionality constant multiplied by 90,000 multiplied by log,(10'?*) multiplied
by the time needed for a basic operation plus the time needed to figure out
which powers of a are multiplied together, which would be quite small in
comparison.

This algorithm on 300-digit numbers could be on the order of a million
times slower than an algorithm on simple integers.® This is a noticeable
effect, and if you use or write an encryption program, you can see this
effect when you run it. However, we can still typically do this calculation
in less than a second—a small price to pay for secure communication.

8Let us assume that our computer can multiply four-digit integers, but not five-digit
numbers, exactly. Then efficiently multiplying two 300-digit numbers is like multiplying
75 integers times 75 integers, or 5,625 products. Also, log,(10'%%) ~ log, (2'0)4

= log, (2*%) = 400. Because each of the approximately 400 computations we need to do
to compute 101" s Tike 5,625 integer multiplications, we would have something like two
million steps, each equivalent to multiplying two integers, in executing our algorithm.

2.4: Details of the RSA Cryptosystem 109

How Long Does It Take to Use the RSA Algorithm?

Encoding and decoding messages according to the RSA algorithm requires
many calculations. How long will all this arithmetic take? Let’s assume for
now that Bob has already chosen p, ¢, e, and d; so he knows n as well.
When Alice wants to send Bob the message x, she sends x¢ mod n. By
our analyses in Exercises 2.4-2 and 2.4-3, we see that the amount of time
needed to compute this number is more or less proportional to log, e, which
is itself proportional to the number of digits of e, though the first constant
of proportionality depends on the method our computer uses to multiply
numbers. Because e has no more than 300 digits, this should not be too
time consuming for Alice if she has a reasonable computer. (On the other
hand, if she wants to send a message consisting of many segments of 300
digits each, she might want to use the RSA system to send a key for another
simpler secret key system and then use that simpler system for the message.)

It takes Bob a similar amount of time to decode, as he has to take the
message to the dth power mod n.

We commented already that nobody knows a fast way to find x from x¢ mod
n. In fact, nobody knows that there isn’t a fast way either, which means
that it is possible that the RSA cryptosystem could be broken some time in
the future. You may have heard about the family of NP-complete problems
(see Chapter 6). These are a family of problems that people believe to
be reasonably difficult; that is, no one has yet come up with an efficient
algorithm for any problem in the class, and the set of problems in the
class are all roughly equivalent. We would be happy if cryptography were
based on an NP-complete problem; unfortunately, it is not. The problem of
extracting eth roots mod n is not an NP-complete problem, although it is
known to be no more difficult than the NP-complete problems. It is also
true that no one has yet designed an efficient algorithm for eth roots; the
security of our cryptosystems rests on the hope that no one will develop
such an algorithm.

To get around the RSA system, however, someone is not restricted to
extracting roots to discover x. Someone who knows n and knows that Bob
is using the RSA system could presumably factor n, discover p and g, use
the extended GCD algorithm to compute d, and then decode all of Bob’s
messages. But nobody knows how to factor integers quickly either. In fact,
we don’t know if factoring is as hard as NP-complete problems, but we do
know that it is no harder than the NP-complete problems. However, enough
people have worked on the factoring problem that most computer scientists
are confident that it is in fact difficult. In this case, the RSA system is safe,
as long as we use keys that are long enough.

110 Chapter 2: Cryptography and Number Theory

Exercise 2.4-4

How Hard Is Factoring?

Factor 225,413. (The idea is to try to do this without resorting to computers;
but if you give up by hand and calculator, using a computer is fine.)

Unless you know some special factoring techniques, it probably took you a
while to discover that 225,413 is 431 times 523. In other words, factoring
is real work. With current technology, keys with roughly 100 digits are
not that hard to crack. In other words, people can factor numbers that are
roughly 100 digits long using methods that are a little more sophisticated
than the obvious approach of trying all possible divisors. However, when
the numbers get longer, say more than 300 digits, they become very hard to
factor. As of the year 2010, the largest RSA key that has been factored has
232 digits. Factoring this number took two and a half years using hundreds
of computers, and would have taken about 1500 years on a single processor.
Given the current technology, RSA with a 300-digit key seems to be fairly
secure.

Finding Large Primes

There is one more issue to consider in implementing the RSA system for
Bob. We said that Bob chose two primes of about 150 digits each. But how
did he choose them? A theorem called the prime number theorem tells us
that if we choose a number m at random and check about log, m numbers
around m for primality, we would expect one of these numbers to be prime.
Thus, we shouldn’t have to guess many numbers, even with hundreds of
digits, before we find a prime. So, if we have a quick way to check if a
number is prime, finding one shouldn’t take too long.

However, we have just mentioned that nobody knows a quick way to find
any or all factors of a number. The standard way to prove a number is prime
is to show that its only factors are the number and 1. For the same reasons
that factoring is hard, the simple approach to primality testing—testing all
possible divisors—is much too slow. If we did not have a faster way to
check whether a number is prime, the RSA system would be useless.

In 2002, Agrawal, Kayal, and Saxena [1] announced an algorithm for testing
whether an integer n is prime. They showed that the algorithm takes no more
than the 12th power of the number of digits of n to determine whether n
is prime. Lenstra and Pomerance [14] have improved the algorithm in a
way that reduces the exponent to six. In practice, the algorithm seems to
take significantly less time. Although the algorithm requires more than the
background we are able to provide in this book, its description and the
proof that it works in the specified time uses only results that one might

Exercise 2.4-5

Lemma 2.25

2.4: Details of the RSA Cryptosystem 111

find in an undergraduate course on abstract algebra or number theory. The
central theme of the algorithm is the use of a variation of Fermat’s Little
Theorem.

In 1976, Miller [26] was able to use Fermat’s Little Theorem to show that
if a conjecture called the “extended Riemann hypothesis” was true, then an
algorithm he developed would determine whether a number n was prime
in a time bounded above by a polynomial in the number of digits of n.
In 1980, Rabin [27] modified Miller’s method to determine, in polynomial
time, whether a number was prime without the extra hypothesis but with a
probability of error that could be made as small a positive number as one
might desire, though not 0. We describe the general idea behind all of these
advances in the context of what people now call the Miller-Rabin primality
test. As of the writing of this book, variations on this kind of algorithm are
being used to provide primes for cryptography.

By Fermat’s Little Theorem, we know that in Z, with p prime, x” ~!'mod

p =1 for every x between 1 and p — 1. What about x”~! in Z,, when m
is not prime?

Suppose x is a member of Z, that has no multiplicative inverse. Is it
possible that x”~! mod m = 1?

Our next lemma answers the question of this exercise.

Let m be a nonprime and let x be a number in Z,, that has no multiplicative
inverse. Then x”~! mod m # 1.

Proof Assume for the purpose of contradiction that

" " modm = 1.

Then

x-x">modm = 1.

But then x”~2 mod m is the inverse of x in Z,,, which contradicts the
fact that x has no multiplicative inverse. Thus, it must be the case that
x" ' mod m # 1.

This distinction between primes and nonprimes suggests an idea we could
use to create an algorithm to test for primality. Suppose we have some

112 Chapter 2: Cryptography and Number Theory

number m and are not sure whether it is prime. We can run the following
algorithm:

PrimeTest (m)

choose a random number x, 2 < x < m—1
compute y = x ™~ 1 mod m
if (y==1)
output "m might be prime"
else

o Ul i W N

output "m is definitely not prime"

Note the asymmetry here. If y # 1, then m is definitely not prime, and we
are done. If y = 1, however, then m might be prime, and we will probably
want to do some other calculations. In fact, we can repeat the algorithm
PrimeTest(m) t times, with a different random number x each time. If,
on any of the ¢ runs, the algorithm outputs "m is definitely not
prime, " then the number m is definitely not prime, because we have an
x for which x”~! = 1. If, on all ¢ runs, the algorithm PrimeTest(1) outputs
"m might be prime, " however, then we can say with reasonable
certainty that the number m is prime. This is actually an example of a ran-
domized algorithm. We will be studying these in greater detail in Chapter
5. For now, let’s informally estimate how likely it is that we will make a
mistake.

We can see that for a particular nonprime m, the chance of making a mistake
depends on exactly how many numbers a have the property that a”~! = 1.
If very few do, then our algorithm is very likely to give the correct answer.
If most of them do, however, then we are more likely to give an incorrect
answer.

Problem 12 shows that the number of elements in Z,, without inverses is
at least /m. In fact, even many numbers that do have inverses will fail the
test x~! = 1. For example, in Zi, only 1 passes the test; in Zs, only 1
and 14 pass the test. (Z1, is not really typical. Can you explain why? See
Problem 15 for a hint.)

In fact, the Miller-Rabin algorithm modifies the test slightly (in a way that
we won’t describe here [13]) so that for any nonprime m, at least three-
quarters of the possible values we could choose for x will fail the modified
test and, hence, will show that m is composite. This suggests intuitively that
if we repeat the test ¢ times and assert that an x that passes these ¢ tests is
prime, then the probability of being wrong is actually 4. So, if we repeat
the test five times, we seem to have only about a one in a thousand chance
of making a mistake, and if we repeat it 50 times, we seem to have only

2.4: Details of the RSA Cryptosystem 113

about a one in 2'% (a little less than one in a nonillion) chance of making
a mistake! As you may have guessed from our careful phrasing, the matter
is not quite this simple, but in Chapter 5 we will see that we still have a
highly effective test for primality.

Numbers we have chosen by this algorithm are sometimes called pseudo-
primes. (They are called this because they are very likely to be prime.)
In practice, pseudoprimes are used instead of primes in implementations of
the RSA cryptosystem. The worst that can happen when a pseudoprime is
not prime is that a message may be garbled. In this case, we know that our
pseudoprime is not really prime. As a result, we choose new pseudoprimes
and ask our sender to send the message again. (Note that we do not change
p and g with each use of the system; unless we were to receive a garbled
message, we would have no reason to change them.)

Recall that we said the prime number theorem tells us that if we check
about log, n numbers near n, we can expect one of them to be prime. A
d-digit number is at least 109~! and is less than 10 so its natural logarithm
is between (d — 1) log, 10 and d log, 10. If we want to find a d-digit prime,
we can take any d-digit number and test about d log, 10 numbers near it
for primality. In Chapter 5, we will see that it is reasonable for us to expect
that one of them will turn out to be prime. The number log, 10 is 2.3 to
two decimal places. Thus, it does not take a really large amount of time to
find two prime numbers with 150 (or so) digits each.

1. Exponentiation. To perform exponentiation mod n efficiently, we use
repeated squaring and take mods after each arithmetic operation.

2. Security of RSA. The security of RSA rests on the fact that no one
has developed an efficient algorithm factoring or finding x given
x¢ mod n.

3. Fermat’s Little Theorem does not hold for composites. Let m be a
nonprime and x be a number in Z, that has no multiplicative
inverse. Then x”~! mod m # 1.

4. Testing numbers for primality. The randomized Miller-Rabin
algorithm will tell you almost surely if a given number is prime.

5. Finding prime numbers. If we apply the randomized Miller-Rabin
algorithm to numbers with d digits until we find a pseudoprime, then
we expect to test about d In 10 (which is about 2.3d) numbers.

114 Chapter 2: Cryptography and Number Theory

All problems with blue boxes have an answer or hint available at the end
of the book.

2.

What is 3'9%* in Z;? (This is a straightforward problem to do by
hand.)

Suppose you have computed a2 a* a8 a'® and a2 What is the most
efficient way to compute a>>?

A gigabyte is one billion bytes; a terabyte is one trillion bytes. A

4.

10.

byte is 8 bits, each a 0 or a 1. Because 2'° = 1024, which is about
1000, you can store about three digits (any number between 0 and
999) in 10 bits. About how many decimal digits could you store in
five gigabytes of memory (a gigabyte is 2°°, or approximately one
billion bytes)? About how many decimal digits could you store in
five terabytes of memory (a terabyte is 2*’, or approximately one
trillion bytes)? How does this compare with the number 10'?°? (To
do this problem, it is reasonable to continue to assume that 1024 is
about 1000.)

Find all numbers, if any, a € Zg different from 1 and 8 (notice that
—1 mod 9 = 8) such that a® mod 9 = 1.

Use a spreadsheet, programmable calculator, or computer to find all
numbers a different from 1 and 32 (which equals —1 mod 33) with
a2 mod 33 = 1. (This problem is relatively straightforward to do
with a spreadsheet that can compute mods and that will let you “fill
in” rows and columns with formulas. However, you do have to know
how to use the spreadsheet in this way to make it straightforward!)

How many digits does the 10'?°th power of 10'% have?

If a is a 100-digit number, is the number of digits of a9 closer to
1029 or 10?407 Is it a lot closer? Does the answer depend on what a
actually is rather than the number of digits it has?

Explain what our outline of the solution to Exercise 2.4-1 has to do
with the binary representation of 10'%°,

Suppose you want to compute a2 mod n. Discuss whether it
makes sense to reduce the exponents mod n as you compute their
product. In particular, what rule of exponents would allow you to do
this, and do you think this rule of exponents makes sense?

Give careful pseudocode to compute a* mod n. Make your algorithm
as efficient as possible.

2.4: Details of the RSA Cryptosystem 115

Number theorists use ¢(n) to stand for the number of elements of Z,

12.

that have inverses. Suppose you want to compute a®!°2*" mod n.
Would it make sense to reduce the exponents mod ¢(n) as you
compute their product? Why? (Hint: The answer might be different
in different cases.)

Show that if m is not prime, then at least \/m elements of Z,, do not
have multiplicative inverses.

Suppose for applying RSA, p =11, ¢ = 19, and e = 7. What is the

14.

15.

value of d? Show how to encrypt the message 100, and then show
how to decrypt the resulting message.

Suppose for applying RSA, p = 11, ¢ = 23, and e = 13. What is the
value of d? Show how to encrypt the message 100 and then how to
decrypt the resulting message.

Show that for m = p 4+ 1 with p prime, there is exactly one member
of Z,, with x1, namely x = 1.

A digital signature is a way to sign a document securely. In other

words, it is a way to put your “signature” on a document so that
anyone reading it knows that it is you who has signed it: no one else
can “forge” your signature. The document itself may be public; it is
your signature that we are trying to protect. Digital signatures are, in
a way, the opposite of encryption: If Bob wants to sign a message, he
first applies his signature to it (think of this as encryption) and then
the rest of the world can easily read it (think of this as decryption).
Explain, in detail, how to achieve digital signatures by using ideas
similar to those used for RSA. In particular, anyone who has the
document and has your signature of the document (and knows your
public key) should be able to determine that you signed it.

This page intentionally left blank

Reflections on Logic
and Proof

In this chapter, we cover some basic principles of logic and describe some
methods for constructing proofs. This chapter is not meant to be a complete
enumeration of all possible proof techniques. The philosophy of this book
is that most people learn more about proofs by reading, watching, and
attempting proofs than by an extended study of the logical rules behind
proofs. However, now that we have some examples of proofs, reflecting on
their structure and discussing what constitutes a proof will help you read
and do proofs. We first develop a language that will allow us to talk about
proofs, and then we use this language to describe the logical structure of a
proof.

3.7 EQUIVALENCE AND IMPLICATION

Exercise 3.1-1

Equivalence of Statements

A group of students is working on a project that involves writing a merge
sort program. Joe and Mary have each written an algorithm for a function
that takes two sorted lists, List1 and List2, of lengths p and ¢, respec-
tively, and merges them into a third list, List3. Part of Mary’s algorithm
is as follows:

(1) if ((i+J =S p+qg) && (i = p)

&& ((7 > q) || (Listl[i] = List2[7]1)))
(2) List3[k] = Listl[i]
(3) i=1i+1
(4) else
(5) List3[k] = List2[7]
(6) Jj=3J+1
(7) k= k+1

117

118 Chapter 3: Reflections on Logic and Proof

The corresponding part of Joe’s algorithm is

(1) if (((i+7 S p+q) && (1 = p) && (7 > q))
I| ((i+7 < p+q) && (i < p) && (Listl[i] < List2[71)))
(2) List3[k] = Listl[i]
(3) i=i+1
(4) else
(5) List3[k] = List2[7]
(6) j=3+1
(7) k= k+1

Do Joe’s and Mary’s algorithms do the same thing?

Notice that Joe’s and Mary’s algorithms are exactly the same except for
the if statement in Line 1 (how convenient; they even used the same local
variables!). In Mary’s algorithm, we put entry i of List1 into position k
of List3 if

i+j<p+q and i<p and (j>g¢q or Listl[i]<
List2[jD),

whereas in Joe’s algorithm, we put entry i of Listl into position k of
List3 if

i+j<p+gandi<pand j>¢qg)or (i+j<p+qg and

i <pandListl[i] <List2[j]).

Joe’s and Mary’s statements are both built from the same constituent parts
(namely, comparison statements), so we can name these constituent parts
and rewrite the statements. We use

e stostand fori +j < p+gq,

* ¢t to stand for i < p,

* u to stand for j > ¢, and

* v to stand for List1[i] < List2[j].

The condition in Mary’s if statement on Line 1 of her code becomes
s and ¢t and (1 or v),
while Joe’s if statement on Line 1 of his code becomes
(s and 7 and u) or (s and ¢ and v).

By recasting the statements in this symbolic form, we see that s and ¢
always appear together as “s and £.” We can thus simplify the expressions

3.1: Equivalence and Implication 119

by substituting w for “s and z.” Mary’s condition now has the form
w and (u or v),
and Joe’s has the form
(w and u) or (w and v).

Although we can argue, based on our knowledge of the structure of the
English language, that Joe’s statement and Mary’s statement are saying
the same thing, it will help us understand logic if we formalize the idea of
“saying the same thing.” If you look closely at Joe’s and Mary’s statements,
you can see that we are saying that the word “and” distributes over the word
“or,” just as set intersection distributes over set union and multiplication
distributes over addition. To analyze when statements mean the same thing,
and to explain more precisely what it means to say something like “‘and’
distributes over ‘or,”” logicians have adopted a standard notation for writing
symbolic versions of compound statements. We use the symbol A to stand
for “and” and V to stand for “or.” In this notation, Mary’s condition becomes

w A (uV o),

and Joe’s becomes
(wAu)Vv(wAvwv).

We now have a nice notation (which makes our compound statements look
a lot like the two sides of the distributive law for intersection of sets over
union), but we have not yet explained why two statements with these sym-
bolic forms mean the same thing. We must therefore give a precise definition
of “meaning the same thing” and develop a tool for analyzing when two
statements satisfy this definition. We are going to consider symbolic com-
pound statements that may be built up from the following notation:

* Symbols (s, t, etc.), which we call variables, standing for statements

* The symbol A, standing for “and”

* The symbol Vv, standing for “or”

* The symbol @, standing for “exclusive or”

* The symbol —, standing for “not”

 Left and right parentheses

120 Chapter 3: Reflections on Logic and Proof

Truth Tables

We now develop a theory for deciding when a compound statement is true
based on the truth or falsity of its component statements. Using this theory,
we can determine for a particular setting of variables, such as s, ¢, and u,
whether a particular compound statement, such as

DDA (-uVAD)A=(s® (1 Vu),

is true or false. Our technique uses truth tables, which you have probably
seen before. We will soon see why truth tables are the proper tool for
determining whether two statements are equivalent.

As with arithmetic, the order of operations in a logical statement is impor-
tant. Our sample compound statement used parentheses to make it clear
which operation to do first, with one exception: the use of the symbol —. The
symbol — always has the highest priority, which means that —u Vv (s A t)
means (—u) V (s A t) rather than —(u Vv (s A t)). The principle is simple—
the symbol — applies to either the symbol or the parenthesized expression
immediately following it. This is the same principle used with negative
numbers in algebraic expressions. With this one exception, we will always
use parentheses to make the order in which we are to perform operations
clear; you should do the same.

The operators A, V, @, and — are called logical connectives. The truth table
for a logical connective tells us, in terms of the possible truth or falsity of
the component parts, when the compound statement made by connecting
those parts is true and when it is false. The truth tables for the connectives
we have mentioned so far are in Figure 3.1.

AND OR XOR NOT
s SNt st sVt st st s -
T T T T T T T T F F
T F F T F T T F T
F T F F T T F T T
F F F F F F F F F

Figure 3.1: Truth tables for the basic logical connectives

These truth tables define the words “and,” “or,” “exclusive or” (“xor” for
short), and “not” in the context of symbolic compound statements. For

3.1: Equivalence and Implication 121

example, the truth table for V—*“or’—tells us that when s and ¢ are both
true, then so is “s or ¢.” It tells us that when s is true and ¢ is false, or s is
false and ¢ is true, then “s or ¢” is true. Finally, it tells us that when s and
t are both false, then so is “s or ¢.” Is this how we use the word “or” in
English? The answer is “sometimes.” The word “or” is used ambiguously
in English. When a teacher says, “Each question on the test will be short
answer or multiple choice,” the teacher is presumably not intending that a
question could be both. Thus, the word “or” is being used here in the sense
of “exclusive or’—the @ in Figure 3.1. When someone says, “Let’s see,
this afternoon I could take a walk or I could shop for some new gloves,” he
probably does not mean to preclude the possibility of doing both—perhaps
even taking a walk downtown and then shopping for new gloves before
walking back. Thus, in English, we determine the way in which someone
uses the word “or” from context. In mathematics and computer science,
because we don’t always have context, we agree to say “exclusive or,” or
“xor” for short, when that is what we mean; otherwise, we mean the “or”
whose truth table is given by V. In the case of “and” and “not,” the truth
tables are exactly what we would expect.

We have been thinking of s and ¢ as variables that stand for statements.
The purpose of a truth table is to define when a compound statement is
true or false in terms of when its component statements are true and false.
Because we focus on just the truth and falsity of our statements when we
are giving truth tables, we can also think of s and ¢ as variables that can
take on the values “true” (T) and “false” (F). We refer to these values as the
truth values of s and 7. A truth table, then, gives us the truth values of a
compound statement in terms of the truth values of the component parts of
the compound statement. The statements s A t, s V£, and s @ ¢ each have
two component parts, s and ¢. Notice that there are two values we can assign
to s, and for each value we assign to s, there are two values we can
assign to t. By the product principle, there are 2-2 = 4 ways to assign
truth values to s and ¢. Thus, we have four rows in our truth table, one for
each way of assigning truth values to s and .

For a more complex compound statement, such as the one in Line 1 in
Joe’s and Mary’s programs, we still want to describe situations in which
the statement is true and situations in which the statement is false. We
do this by working out a truth table for the compound statement from
the truth tables of its symbolic statements and its connectives. We use a
variable to represent the truth value of each symbolic statement. The truth
table has one column for each of the original variables and one column for
each of the pieces we use to build up the compound statement. The truth
table has one row for each possible way of assigning truth values to the
original variables. Thus, if we have two variables, we have four rows, as

122 Chapter 3: Reflections on Logic and Proof

in the “AND,” “OR,” and “XOR” tables in Figure 3.1. If we have just one
variable, then we have just two rows, as in the “NOT” table in Figure 3.1.
If we have three variables, then we have 23 = 8 rows, and so on.

Table 3.1 gives the truth table for the symbolic statement derived from Line
1 of Joe’s algorithm. The columns to the left of the dark blue line contain the
possible truth values of the variables. The columns to the right correspond
to various subexpressions whose truth values we need to compute. The truth
table has as many columns as we need in order to compute the final result
correctly. As a general rule, each column should be easily computed from
one or two previous columns.

w u v uvv wA Vo)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

Table 3.1: The truth table for Joe’s statement

Table 3.2 gives the truth table for the statement derived from Line 1 of
Mary’s algorithm.

Notice that the pattern of T°s and F’s used to the left of the dark blue line
in both Joe’s and Mary’s truth tables are the same—namely, they are in
reverse alphabetical order.! Thus, row i of Table 3.1 represents exactly the
same assignment of truth values to u, v, and w as row i of Table 3.2. The
final columns of Joe’s and Mary’s truth tables are identical, which means
that Joe’s symbolic statement and Mary’s symbolic statement are true in
exactly the same cases. Therefore, the two statements must say the same
thing, and Mary’s and Joe’s program segments return exactly the same
values. We say that two symbolic compound statements are equivalent if

! Alphabetical order is sometimes called lexicographic order. Lexicography is the study of
the principles and practices used in making dictionaries. Thus, the order we used for the
T’s and F’s is called reverse lexicographic order, or reverse lex order for short.

3.1: Equivalence and Implication 123

w U v wAuU wAv (wAu)V(wAUv)
T T T T T T
T T F T F T
T F T F T T
T F F F F F
F T T F E F
F T F F F F
F F T F E F
F F F F F F

Table 3.2: The truth table for Mary’s statement

they are true in exactly the same cases. Alternatively, two statements are
equivalent if their truth tables have the same final column (assuming both
tables assign truth values to the original symbolic statements in the same
pattern).

Tables 3.1 and 3.2 actually prove a distributive law:

Lemma 3.1 The statements
wA (uVov)

and
(wAu) VvV (wAv)

are equivalent.

DeMorgan’s Laws

Exercise 3.1-2 DeMorgan’s laws say that —(p Vv ¢) is equivalent to —p A —¢g and that
—(p A q) is equivalent to —p V —¢g. Use truth tables to demonstrate that
DeMorgan’s laws are correct.

Exercise 3.1-3 Show that p @ ¢ (the exclusive or of p and g) is equivalent to (p V g) A
—(p A q). Apply one of DeMorgan’s laws to —=(—=(p V g)) A =(p A q) to
find another symbolic statement equivalent to the exclusive or.

124 Chapter 3: Reflections on Logic and Proof

P q pvqg —(pVgq) “p —q TpATq
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Table 3.3: Proving the first DeMorgan’s law

To verify the first DeMorgan’s law, we create a “double truth table” by
(mentally) condensing two truth tables into one (see Table 3.3). The left
sides of the two truth tables we are condensing are identical, so we give
just one left side to the left of the first dark blue line. The second dark blue
line separates the right sides of the two truth tables we are condensing. In
this way, we can still see the computation of the truth values of —(p Vv q)
and —p A —g. We see that the fourth and the last columns are identical;
therefore, the first DeMorgan’s law is correct. We can verify the second
DeMorgan’s law by a similar process.

To show that p @ g is equivalent to (p vV g) A —=(p A q), we use the dou-
ble truth table in Table 3.4. Now we deal with the second question in
Exercise 3.1-3. Notice first that =(—(p V ¢q)) is equivalent to p V g; thus,
the statement —=(—(p V ¢q)) A —=(p A q) is equivalent to p & ¢. By applying
DeMorgan’s first law? to =(—=(p V g)) A —(p A q), we see that p @ g is
also equivalent to =(—=(p VvV q) V (p A q)). It was easier to use DeMorgan’s
law to show this equivalence than to use another double truth table.

P q PDg pvqg pnrqg —(pAqg) (pVg)AN—(pAgq)
T T F T T F F
T F T T F T T
F T T T F T T
F F F F F T F

Table 3.4: An equivalent statement to p & q

Notice that we are applying the law to a statement of the form —s A —¢ and getting one
of the form —(s Vv t).

3.1: Equivalence and Implication 125

Implication

Another kind of compound statement occurs frequently in mathematics and
computer science. Recall Fermat’s Little Theorem (Theorem 2.21):

If p is a prime, then a”?~! mod p = 1 for each nonzero a € Z,.

Fermat’s Little Theorem combines two constituent statements:
* p is a prime, and
 a?~! ' mod p = 1 for each nonzero a € Z,.

We can also restate Fermat’s Little Theorem (a bit clumsily) as
« pis a prime only if a”~! mod p = 1 for each nonzero a € Zp, or
* p is a prime implies a?~! mod p = 1 for each nonzero a € Z,, or
* a?~! mod p =1 for each nonzero a € Z, if p is prime.

Using s to stand for “p is a prime” and ¢ to stand for “a”~! mod p =1
for every nonzero a € Z,,” we can express any of the four statements of
Fermat’s Little Theorem in symbols as

s=t,

which most people read as “s implies .” When we translate from symbolic
language to English, it is often clearer to say, “If s, then ¢.”

We summarize this discussion in the following definition.

|
Definition 3.1

The following four English phrases are intended to mean the same
thing. In other words, they are defined by the same truth table.

* s implies .

o If s, then 7.

o tifs.

* s only if 7.
i

Observe that the use of “only if” may seem a little different from the
normal usage in English. Also observe that there are still other ways of
making an “if ...then” statement in English. A number of our lemmas,
theorems, and corollaries (for example, Lemma 2.5 and Corollary 2.6) have
had two sentences. The first says, “Suppose” The second says, “Then

126 Chapter 3: Reflections on Logic and Proof

Exercise 3.1-4

....7 The two sentences “Suppose s.” and “Then . are equivalent to the
single sentence “s = t.” When we have a statement equivalent to s = ¢,
we call the statement s the hypothesis of the implication, and we call the
statement ¢ the conclusion of the implication.

If and Only If

The word “if ” and the phrase “only if ” frequently appear together in math-
ematical statements. For example, Theorem 2.9 stated:

A number a has a multiplicative inverse in Z, if and only if
there are integers x and y such that ax +ny = 1.

Using s to stand for the statement “a number a has a multiplicative inverse
in Z,” and ¢ to stand for the statement “there are integers x and y such
that ax +ny = 1,” we can write this statement symbolically as

s if and only if 7.
Referring to Definition 3.1, we parse this as
s if ¢, and s only if ¢,
which by the definition above is the same as
t = s and s = t.

We denote the statement “s if and only if #” by s <> . Statements of the form
s =1 and s <t are called conditional statements, and the connectives =
and < are called conditional connectives.

Use truth tables to explain the difference between s = ¢ and s < +.

To analyze the truth and falsity of statements involving “implies” and “if
and only if,” we need to understand exactly how they are different. By
constructing truth tables for these statements, we see that there is only one
case in which they could have different truth values. In particular, if s is
true and ¢ is true, then we would say that both s = ¢ and s < ¢ are true. If
s is true and ¢ is false, we would say that both s = ¢ and s < ¢ are false.
In the case that both s and ¢ are false, we would say that s < ¢ is true.
What about s = ¢? Let’s try an example. Suppose s is the statement “It is
supposed to rain” and ¢ is the statement “I carry an umbrella.” If, on a given
day, it is not supposed to rain and I do not carry an umbrella, we would

3.1: Equivalence and Implication 127

say that the statement “If it is supposed to rain, then I carry an umbrella”
is true on that day. This suggests that we also want to say s = ¢ is true
if s is false and 7 is false.® Thus, the truth tables are identical in Rows 1,
2, and 4. For “implies” and “if and only if” to mean different things, the
truth tables must therefore be different in Row 3. (Row 3 is the case where
s is false and ¢ is true.) Clearly, in this case, we would want s < ¢ to be
false. Therefore either s = ¢ is true or “implies” and “if and only if” are
identical, so we need only one of them.

Does it make sense to say that the statement “If it is supposed to rain,
then I carry an umbrella” is true if it is not supposed to rain and I carry
an umbrella? It depends on how you interpret “if.” Mathematicians have
found it useful to say that the statement says nothing about what I do on
days when it is not supposed to rain. I can choose to carry an umbrella or
not to carry an umbrella without contradicting the statement. By this way
of thinking, the statement is true even if it is not supposed to rain and I
carry an umbrella.

This gives us the truth tables in Figure 3.2.

IMPLIES IF AND ONLY IF
§ @ s =1 st s >t
T T T T T T
T F F T F F
F T T F T F
F F T F F T

Figure 3.2: The truth tables for “implies” and for “if and only if”

Here is another place where English usage is sometimes inconsistent. Sup-
pose a parent says, “I will take the family to McDougall’s for dinner if you
get an A on this test,” and even though the student gets a C, the parent
still takes the family to McDougall’s for dinner. Although this outcome

3Note that we are making this conclusion on the basis of one example. Why can we do
so? We are not trying to prove something; rather, we are trying to figure out what the
appropriate definition is for the = connective. Because we have said that the truth or
falsity of s = depends only on the truth or falsity of s and #, one example serves to lead
us to an appropriate definition. If a different example led us to a different definition, then
we would want to define two different kinds of implications, just as we have two different
kinds of “ors,” v and é. Fortunately, the only kinds of conditional statements we need for
doing mathematics and computer science are “implies” and “if and only if.”

128 Chapter 3: Reflections on Logic and Proof

is something we didn’t expect, was the parent’s statement still true? Some
people would say “yes”; others would say “no.” Those who would say “no”
mean, in effect, that in this context, the parent’s statement meant the same
as, “I will take the family to dinner at McDougall’s if and only if you get
an A on this test.” In other words, to some people and in certain contexts,
“if” and “if and only if” mean the same thing. Fortunately, questions of
child rearing aren’t part of mathematics or computer science (at least not
this kind of question!). In mathematics and computer science, we adopt the
two truth tables in Figure 3.2 as the meaning of the compound statement
s =t (or “if s, then ¢ or “t if 5”’) and the compound statement s < ¢ (or
“s if and only if 7). In particular, the truth table for “implies” in Figure 3.2
1s the one referred to in Definition 3.1, and thus it defines the mathematical
meaning of s implies ¢ or any of the other three statements referred to in
that definition.

Some people have difficulty using the truth table for s = ¢ because of this
ambiguity in English. The following example can be helpful in resolving
this ambiguity: Suppose a classmate holds an ordinary playing card (with its
back to you) and says, “If this card is a heart, then it is a queen.” In which
of the following four circumstances would you say your classmate lied?

1. The card is a heart and a queen.

2. The card is a heart and a king.

3. The card is a diamond and a queen.

4. The card is a diamond and a king.
You would certainly say she lied in the case that the card is the king
of hearts, and you would certainly say she didn’t lie if the card is the
queen of hearts. In this example, the inconsistency of the English language
should seem out of place to you, and you would not say your classmate

is a liar in either of the other cases. Now we apply the principle of the
excluded middle.

Principle 3.1 (The Principle of the Excluded Middle)

A statement is true exactly when it is not false.
|

This principle tells us that the statement is true in the three cases where you
wouldn’t say your classmate lied. We used this principle implicitly when

3.1: Equivalence and Implication 129

we introduced proof by contradiction (Principle 2.1). We were explaining
Corollary 2.6, which states:

Suppose there is a b in Z, such that the equation
a,x=>b

does not have a solution. Then a does not have a multiplicative
inverse in Z,.

We had assumed that the hypothesis of the corollary was true so that a -,
x = b does not have a solution. Then we assumed that the conclusion that
a does not have a multiplicative inverse was false. We saw that these two
assumptions led to a contradiction; thus, it was impossible for both of them
to be true. We concluded that whenever the first assumption was true, the
second had to be false. Why could we conclude this? Because the principle
of the excluded middle says that the second assumption has to be either
true or false. We didn’t introduce the principle of the excluded middle at
that point for two reasons. First, we expected that you would agree with
our proof even if we didn’t mention the principle, and second, we didn’t
want to confuse your understanding of proof by contradiction by talking
about two principles at once.

1. Logical statements. Logical statements may be built up from the
following notation:

* Symbols (s, t, etc.), which we call variables, standing for
statements

e The symbol A, standing for “and”

* The symbol V, standing for “or”

e The symbol &, standing for “exclusive or”

* The symbol —, standing for “not”

e The symbol =, standing for “implies”

* The symbol <, standing for “if and only if”
 Left and right parentheses

The operators A, V, &, =, <, and — are called logical connectives.
The operators = and & are called conditional connectives.

130 Chapter 3: Reflections on Logic and Proof

2. Truth tables. The following are truth tables for the basic logical

connectives.
AND OR XOR NOT
s S At st sVt st st s -
T T T T T T T T F
T F F T F T T F T F
F T F F T T F T T
F F F F F F F F F
3. Equivalence of logical statements. We say that two symbolic
compound statements are equivalent if they are true in exactly the
same cases.
4. Distributive law. The statements w A (u V v) and (w A u) V (w A v)
are equivalent.
5. DeMorgan’s laws. DeMorgan’s laws say that —(p V g) is equivalent
to =p A =g and that =(p A g) is equivalent to —=p VvV —q.
6. Implication. The following four English phrases are equivalent:
e s implies .
e If s, then 7.
o tif s.
* s only if 7.
7. Truth tables for “implies” and “if and only if.”
IMPLIES IF AND ONLY IF
§ ¥ s =1 st s &t
T T T T T T
T F F T F F
E T T FE T F
F F T F F T
8. Principle of the excluded middle. A statement is true exactly when it

is not false.

3.1: Equivalence and Implication 131

All problems with blue boxes have an answer or hint available at the end
of the book.

1. Give truth tables for the following expressions.
EB GVvOA(EsvVAGs Y-
b. FEEN YN
B svivuyansv—tvu)

2. Find at least two more examples of the use of some word or phrase
equivalent to “implies” in lemmas, theorems, or corollaries in
Chapters 1 or 2.

3. Find at least two more examples of the use of the phrase “if and
only if” in lemmas, theorems, and corollaries in Chapters 1 or 2.

n Show that the statements s = ¢ and —s V ¢ are equivalent.
Prove the DeMorgan law that states —(p A g) = —p V —q.
6. Show that p @ ¢ is equivalent to (p A —=q) V (—=p A q).

Give a simplified form of each of the following expressions (using
T to stand for a statement that is always true and F to stand for a
statement that is always false).*

a. sVs
b. sAs
c. sV
d sA-—s

8. Using T to stand for a statement that is always true and F to stand
for a statement that is always false, give a simplified form of each
of the following statements.

a. TAs
b. FAs
c. Tvs
d Fvs

4A statement that is always true is called a fautology; a statement that is always false is
called a contradiction.

132 Chapter 3: Reflections on Logic and Proof

10.

11.

13.

15.

Use DeMorgan’s law, the distributive law, and Problems 7 and/or 8
to show that

=(s Vi)V (s V)

is equivalent to —s.

Give an example in English where “or” seems to mean “exclusive

or” (or where you think it would for many people) and an example
in English where “or” seems to mean “inclusive or” (or where you
think it would for many people).

Give an example in English where “if...then” seems to mean “‘if
and only if” (or where you think it would to many people) and an
example in English where it seems not to mean “if and only if” (or
where you think it would not to many people).

Find a statement involving only A, V, and — (and s and ¢) equi-
valent to s < t. Does your statement have as few symbols as possi-
ble? If you think it doesn’t, try to find one with fewer symbols.

Suppose that for each line of a two-variable truth table, you are
told whether the final column in that line should evaluate to true or
to false. (For example, you might be told that the final column
should contain T, F, F, and T, in that order. Notice that Problem 12
can be interpreted as asking for this pattern.) Explain how to create
a logical statement using the symbols s, #, A, V, and — that has that
pattern as its final column. Can you extend this procedure to an
arbitrary number of variables?

In Problem 13, your solution may have used A, V, and —. Is it
possible to give a solution using only one of these symbols? Is it
possible to give a solution using only two of these symbols?

We proved that A distributes over V in the sense of giving two
equivalent statements that represent the two “sides” of the
distributive law. Answer each question that follows, and explain
why your answer is correct.

a. Does Vv distribute over A?
b. Does V distribute over G?

c. Does A distribute over @?

3.2: Variables and Quantifiers 133

3.2 VARIABLES AND QUANTIFIERS

Variables and Universes

Statements we use in computer languages to control loops or conditionals
are statements about variables. When we declare these variables, we give
the computer information about their possible values. For example, in some
programming languages, we may declare a variable to be a Boolean or an
integer or a real number.’ In English and in mathematics, we also make
statements about variables, but it is not always clear which words are being
used as variables and what values these variables may take on. We use the
phrase varies over to describe the set of values a variable may take on.
For example, in English we might say, “If someone’s umbrella is up, then
it must be raining.” In this case, the word “someone” is a variable, and
presumably it varies over the people who happen to be in a given place
at a given time. In mathematics, we might say, “For every pair of positive
integers m and n, there are nonnegative integers ¢ and r, with 0 <r < n,
such that m = nq + r.” In this case, m, n, g, and r are clearly variables; our
statement itself suggests that two variables range over the positive integers
and two range over the nonnegative integers. We call the set of possible
values for a variable the universe of that variable.

In the statement “m is an even integer,” it is clear that m is a variable, but
the universe is not given. The universe might be the integers, only the even
integers, the rational numbers, or one of many other sets. The choice of the
universe is crucial for determining the truth or falsity of a statement. If we
choose the set of integers as the universe for m, then the statement is true for
some integers and false for others. On the other hand, if we choose integer
multiples of 10 as our universe, then the statement is always true. In the
same way, when we control a while loop with a statement such as “i < j,”
there are some values of i and j for which the statement is true and some
for which it is false. In statements like “m is an even integer” and “i < j,”
our variables are not constrained, and so they are called free variables.
For each possible value of a free variable, we have a new statement, which
might be either true or false, determined by substituting the possible value
for the variable. The truth value of the statement is determined only after
such a substitution.

>Note that to declare a variable x as an integer in, say, a C program does not mean the
same thing as saying that x is an integer. In a C program, an integer may really be a 32-bit
integer, so it is limited to values between 23! — 1 and —23'. Similarly, a real has some
fixed precision; hence, a real variable y may not be able to take on a value of, say, 107%%.

134 Chapter 3: Reflections on Logic and Proof

Exercise 3.2-1

For what values of m is the statement m?> > m a true statement and for
what values is it a false statement? Because a universe is not specified, our
answer will depend on what universe we choose to use.

For the universe of positive integers, the statement is true for every value
of m but 1. For the universe of the real numbers, the statement is true for
every value of m except for those in the closed interval [0, 1]. There are
really two points to make here. First, a statement about a variable can often
be interpreted as a statement about more than one universe; so, to make
the statement unambiguous, we must clearly state the universe we have in
mind. Second, a statement about a variable can be true for some values of
a variable and false for others.

Quantifiers

In contrast, the statement

For every integer m, m> > m. (3.1)

is false; we do not need to qualify our answer by saying that it is true some
of the time and false at other times. To determine whether Statement 3.1 is
true or false, we could substitute various values for m into the simpler state-
ment m> > m and decide, for each of these values, whether the statement
m? > m is true or false. Doing so, we see that the statement m? > m is true
for values such as m = —3 or m =9 but false for m =0 or m = 1. Thus, it
is not the case that m? > m for every integer m. Therefore, Statement 3.1 is
false, because it is an assertion that the simpler statement m? > m holds for
each integer value of m we substitute. A phrase like “for every integer m,”
which converts a symbolic statement about potentially any member of our
universe into a statement about the universe instead, is called a quantifier. A
quantifier that asserts that a statement about a variable is true for every val-
ue of the variable in its universe, for example, “for every integer,” is called
a universal quantifier. This example illustrates a very important point.

If a statement asserts something for every value of a variable,
then to show the statement is false, we need only give one value
of the variable for which the assertion is untrue.

Another example of a quantifier is the phrase “There is an integer m” in the
sentence “There is an integer m such that m> > m.” This statement is also

Exercise 3.2-2

Exercise 3.2-3

3.2: Variables and Quantifiers 135

about the universe of integers, and as such, it is true—there are plenty of
integers m we can substitute into the symbolic statement m? > m to make
it true. This is an example of an existential quantifier, which asserts that
a certain element of our universe exists. A second important point similar
to the one we made above is as follows:

To show that a statement with an existential quantifier is true,
we need only exhibit one value of the variable being quantified
that makes the statement true.

As the more complex statement

For every pair of positive integers m and n, there are nonnegative
integers ¢ and r with 0 <r < n such that m =gn +r

shows, statements of mathematical interest abound with quantifiers. Mathe-
matical statements of theorems, lemmas, and corollaries often have quanti-
fiers. For example, in Lemma 2.5, the phrase “for any” is a quantifier, and
in Corollary 2.6, the phrase “there is” is a quantifier. Quantifiers often
occur in definitions as well. Recall the following definition of the big
O notation, which you have probably used in earlier computer science
courses.

Definition 3.2

For a function f: R — R and a function g: R — R with nonnegative
values, we say that f(x) = O(g(x)) if there are positive numbers ¢

and ng such that f(x) < cg(x) for every x > ny.
]

Quantification is present in our everyday language. The sentences
“Every child wants a pony” and “No child wants a toothache” are two
different examples of quantified sentences. Give 10 examples of everyday
sentences that use quantifiers, but use different words to indicate the
quantification.

Convert the sentence “No child wants a toothache” into a sentence of the
form “It is not the case that....” Find an existential quantifier in your
sentence.

136 Chapter 3: Reflections on Logic and Proof

Exercise 3.2-4

What would you have to do to show that a statement about one variable with
an existential quantifier is false? Correspondingly, what would you have to
do to show that a statement about one variable with a universal quantifier
is true?

As Exercise 3.2-2 points out, English has many different ways to express
quantifiers. For example, the sentences, “All hammers are tools,” “Each
sandwich is delicious,” “No one in their right mind would do that,” “Some-
body loves me,” and “Yes, Virginia, there is a Santa Claus” all contain
quantifiers. For Exercise 3.2-3, we can say, “It is not the case that there is
a child who wants a toothache.” Our quantifier is the phrase “there is.”

To show that a statement about one variable with an existential quanti-
fier is false, we have to show that every element of the universe makes
the statement (such as m? > m) false. Thus, to show that the statement
“There is an x in [0, 1] with x? > x” is false, we have to show that every
x in the interval makes the statement “x“ > x” false. Similarly, to show
that a statement with a universal quantifier is true, we have to show that
the statement being quantified is true for every member of our universe.
Later in this section, we give more details about how to show that a
statement about a variable is true or false for every member of our uni-
verse.

Standard Notation for Quantification

Each of the many variants of a language that describe quantification describe
one of two situations. A quantified statement about a variable x asserts either
that

 the statement is true for all x in the universe, or

 there exists an x in the universe that makes the statement true.

All quantified statements have one of these two forms. We use the standard
shorthand of V for the phrase “for all” and the standard shorthand of 3 for the
phrase “there exists.” We also adopt the convention of putting parentheses
around the expression that is subject to the quantification. For example,
using Z to stand for the universe of all integers, we write

Vn € Z(n2 >n)

as a shorthand for the statement “For all integers n, n> > n.” It is perhaps

more natural to read the notation as “For all n in Z, n2 > n,” which is how

Exercise 3.2-5

3.2: Variables and Quantifiers 137

we recommend reading the symbolism. We similarly use
In € Z(n® # n)

to stand for “There exists an n in Z such that n2 # n.” Notice that to cast our
symbolic form of an existence statement into grammatical English, we have
included the supplementary word “an” and the supplementary phrase “such
that.” People often leave out the “an” as they read an existence statement,
but they rarely leave out the “such that.” Such supplementary language is
not needed with V.

As another example, we use these symbols to rewrite the definition of the
big O notation. We use the letter R to stand for the universe of real numbers
and the symbol R™ to stand for the universe of positive real numbers. We
assume implicitly that the function g : R — R takes nonnegative values.

f = O(g) means that
Jc € RT(3ng € RT(Vx € R(x > ng = f(x) < cg(x)))).

We would read this literally as

“f is big O of g” means that there exists a ¢ in R™ such that
there exists an ng in R such that for all x in R, if x > ng, then

f(x) < cg(x).

Clearly, this statement has the same meaning (when we translate it into
more idiomatic English) as

“f is big O of g” means that there exist positive real numbers
¢ and ng such that for all real numbers x > ng, f(x) < cg(x).

This statement is identical to the definition of big O that we gave in
Definition 3.2, except it is more precise in describing what ¢ and ng actually
are.

Using the shorthand notation for quantifiers, how would you rewrite the part
of Euclid’s division theorem (Theorem 2.12), “for every positive integer n
and every nonnegative integer m, there are integers ¢ and r, with 0 < r < n,
such that m = gn + r”? Use Z* to stand for the positive integers and N to
stand for the nonnegative integers.

We can rewrite Euclid’s division theorem as

Vn e z+(Vm e N(Elq e N(3r e N(0 <m) A (m = gn +r)))>>.

138 Chapter 3: Reflections on Logic and Proof

Exercise 3.2-6

Exercise 3.2-7

Statements about Variables

To discuss a statement about a variable, it is helpful to have a notation for
referring to the statement. For example, we can use p(n) to stand for the
statement n2 > n. Now we can say that p(4) and p(—3) are true, while
p(1) and p(0.5) are false. In effect, we are introducing variables that stand
for statements about other variables. We use symbols like p(n), ¢g(x), and
so forth to stand for statements about a variable n or x. The statement “For
all x in U p(x)” can thus be written as Yx € U(p(x)), and the statement
“There exists an n in U such that g(n)” can be written as In € U(g(n)).
Sometimes we have statements about more than one variable. For example,
our definition of big O notation had the form Jc(Ino(Vx(p(c, no, x)))),
where p(c, ng, x) stands for (x > no = f(x) < cg(x)). (We have left out
mention of the universes for our variables to emphasize the form of the
statement.)

Use the notation for statements about variables to rewrite the part of Euclid’s
division theorem we gave in Exercise 3.2-5. Leave out the references to
universes so that you can see clearly the order in which the quantifiers
occur. Use p(m,n, q,r) to stand for “m = ng +r with 0 <r < n.”

The form of Euclid’s division theorem is Vn(Vm (3g(3r(p(m,n, q,r))))).

Rewriting Statements to Encompass Larger Universes

It is sometimes useful to rewrite a quantified statement so that the universe
is larger while the statement itself focuses on a subset of the new universe.

Let R stand for the real numbers and R stand for the positive real numbers.
Consider the following two statements.

a. Vx e Rt (x > 1)
b. Ix e RT(x > 1)

Rewrite these statements so that the universe is all the real numbers but the
statements say the same thing in everyday English that they did before.

For Exercise 3.2-7, there are potentially many ways to rewrite the
statements. Two particularly simple ways are Vx € R(x > 0= x > 1) and
dx € R(x > 0 Ax > 1). Notice that we translated one of these statements
with “implies” and one with “and.” We can state this rule as a general
theorem.

Theorem 3.2

Exercise 3.2-8

3.2: Variables and Quantifiers 139

Let U; be a universe and let U, be another universe, with U; C U,.
Suppose that g(x) is a statement such that

U; = {x|g(x) is true}. (3.2)

Then, if p(x) is a statement about U,, it may also be interpreted as a
statement about U;, and

a. Vx € Uj(p(x)) is equivalent to Vx € U,(g(x) = p(x)), and
b. 3x € Ui(p(x)) is equivalent to Ix € Us(g(x) A p(x)).

Proof By Equation 3.2, the statement g(x) must be true for all x € U
and false for all x in U, but not U;. To prove part a, we must show that
Vx € Ui(p(x)) is true in exactly the same cases as the statement Vx €
U>(q(x) = p(x)). For this purpose, suppose first that Vx € U;(p(x)) is true.
Then p(x) is true for all x in U;. Therefore, by the truth table for “implies”
and our remark about Equation 3.2, the statement Vx € Uy(¢(x) = p(x))
is true. Now suppose Vx € Uj(p(x)) is false. Then there exists an x in
U; such that p(x) is false. By the truth table for “implies,” the statement
Vx € Uy(g(x) = p(x)) is false. Thus, the statement Vx € U;(p(x)) is true if
and only if the statement Vx € U>(g(x) = p(x)) is true. Therefore, the two
statements are true in exactly the same cases. Part a of the theorem follows.

Similarly, for part b, we observe that if Ix € U;(p(x)) is true, then p(x’) is
true for some x” € Uj. For that x’, g(x’) is also true. Hence, p(x") A g(x')
is true so that Ix € Us(g(x) A p(x)) is true as well. On the other hand, if
dx € Ui(p(x)) is false, then no x € U; has p(x) true. Therefore, by the truth
table for “and,” g(x) A p(x) won’t be true either. Thus, the two statements
in part b are true in exactly the same cases and, so, are equivalent.

Proving Quantified Statements True or False

Let R stand for the real numbers and R™ stand for the positive real numbers.
For each of the following statements, state whether it is true or false and
explain why.

a. Vxe Rt(x > 1)

Ix € RT(x > 1)

Vx € Ry € R(y > x))

Vx € R(Vy € R(y > x))

dx € R(x >0AVy e RT(y > x))

o &0 @

140 Chapter 3: Reflections on Logic and Proof

Exercise 3.2-9

In Exercise 3.2-8, because 1/2 is not greater than 1, statement a is false.
However, because 2 > 1, statement b is true. Statement ¢ says that for each
real number x, there is a real number y bigger than x, which we know is
true. Statement d says that every y in R is larger than every x in R, and so
it is false. Statement e says that there is a nonnegative number x such that
every positive y is larger than x, which is true because x = 0 fills the bill.

We can summarize what we know about the meaning of quantified state-
ments as follows.

Principle 3.2 (The Meaning of Quantified Statements)
e The statement Ix € U(p(x)) is true if there is at least one value
of x in U for which the statement p(x) is true.

* The statement Ix € U(p(x)) is false if there is no x € U for
which p(x) is true.

* The statement Vx € U(p(x)) is true if p(x) is true for each
value of x in U.

e The statement Yx € U(p(x)) is false if p(x) is false for at least
one value of x in U.

Negation of Quantified Statements

An interesting connection between V and 3 arises from the negation of
statements.

What does the statement “It is not the case that n> > 0 for all integers n”
mean?

From our knowledge of English, we see that the statement® =Vn € Z(n? >
0) asserts that it is not the case that we have n”> > 0 for all integers n.
Therefore, the statement asserts that there must be some integer n such that
n? #0. In other words, it says there is some integer n such that n? < 0.
Thus, the negation of our “for all” statement is a “there exists” statement.
We can make this idea more precise by recalling the notion of equivalence
of statements. We have said that two symbolic statements are equivalent if
they are true in exactly the same cases. By considering the case where p(x)
is true for all x € U (we call this case “always true”) and the case where

5The convention is that when — appears before a quantifier, the entire quantified statement
is negated.

Theorem 3.3

Corollary 3.4

3.2: Variables and Quantifiers 141

p(x) is false for at least one x € U (we call this case “not always true”),
we can analyze the equivalence. The theorem that follows formalizes the
example above in which p(x) was the statement x% > 0. The theorem is
proved by dividing all values of the variables into two possibilities: the case
where p(x) is always true and the case where it is not always true.

The statements —=Vx € U(p(x)) and 3x € U(—p(x)) are equivalent.

Proof Consider the following table (which we have set up much like a
truth table, except that the relevant cases are not determined by whether
p(x) is true or false, but by whether or not p(x) is true for all x in the
universe U).

px) —p(x) Vx € U(p(x)) =Vx € U(p(x)) 3x € U(—p(x))
always true always false true false false
not always true 8 not always false false true true

Because the last two columns are identical, the theorem holds.

The statements —3x € U(g(x)) and Vx € U(—g(x)) are equivalent.

Proof Because the two statements in Theorem 3.3 are equivalent, their
negations are also equivalent. We then substitute —¢g(x) for p(x) to prove
the corollary.

Put another way, when you negate a quantified statement, you switch the
quantifier and “push” the negation inside.

To deal with the negation of more complicated statements, we simply take
them one quantifier at a time. Recall Definition 3.2, the definition of big O
notation:

fx)= O(g(x)) if 3ce R" (Elno eR" (Vx € R(x >np= f(x) < cg(x)))).

What does it mean to say that f(x) is not O(g(x))? First, we can write

fx) # O(g(x)) if —3dce R+(Elno eR™ (Vx € R(x >ng= flx) < cg(x)))).

142 Chapter 3: Reflections on Logic and Proof

Exercise 3.2-10

Exercise 3.2-11

After one application of Corollary 3.4, we get

flx) # O(g(x)) if Vee R <—Elno € R+(\7’x € R(x >ng= f(x) < cg(x)))).
After another application of Corollary 3.4, we obtain

f(x) # O(g(x)) if Ve e R*(Vno eR" (—-Vx € R(x >no= f(x) < cg(x)))).
Now we apply Theorem 3.3 to obtain

f) # 0(3(x) if Ve e R+(Vn0 = R+<ax c R(—-(x > 1o = f(x) < cg(x))))).

Because —(p = ¢q) is equivalent to p A —g, we can write

fx) # 0(g(x)) if Ve e R*(Vno € R+<ax €R ((x > no) A (f(x) £ cg(x))))).

Thus, f(x) is not O(g(x)) if for every ¢ in R™ and every ng in R, there is
an x such that x > ng and f(x) £ cg(x).

In our next exercise, we will use the big ® notation, defined as follows:

Definition 3.3
Jf(x) = ©(g(x)) means that f(x) = O(g(x)) and g(x) = O(f(x)).

Express —(f(x) =0©(g(x))) in terms similar to those used to describe

J(x) # 0(g(x)).

Suppose the universe for a statement p(x) is the integers from 1 to 10.
Express the statement Vx(p(x)) without any quantifiers. Express the nega-
tion in terms of —p without any quantifiers. Discuss how negation of “for
all” and “there exists” statements corresponds to DeMorgan’s law.

By DeMorgan’s law, —=(f = ©(g)) means —(f = 0(g)) V —(g = O(f)).
Thus, =(f = ©(g)) means either that

e for every ¢ in R™ and ng in R, there is an x in R with x > ng and

J(x) £ cg(x), or

Exercise 3.2-12

3.2: Variables and Quantifiers 143

* for every ¢ in R and ng in R, there is an x in R with x > no and

g(x) < cf(x),
or both. For Exercise 3.2-11, we see that Vx(p(x)) is simply

p(M A p@2) A pB) A p@A)APOIA
p©) A p(T) A p(&) A p(9) A p(10).

by DeMorgan’s law, the negation of this statement is

—=p(1) V=pR2)V—=p3B)V—=p@)Vv—=p@S)V-—p®)
vV =p(T) vV =p@®) Vv —=p@O) Vv —p0).

Thus, the relationship that negation gives between “for all” and ‘“there
exists” statements is the extension of DeMorgan’s law from a finite number
of statements to potentially infinitely many statements about a potentially
infinite universe.

Implicit Quantification

Are there any quantifiers in the statement “The sum of even integers is
even”?

An elementary fact about numbers is that the sum of even integers is even.
Another way to say this is that if m and n are even, then m + n is even. If
p(n) stands for the statement “n is even,” then this last sentence translates
to p(m) A p(n) = p(m + n). From the logical form of the statement, we
see that our variables are free, so we could substitute various integers for
m and n to see whether the statement is true. In Exercise 3.2-12, however,
we said that we were stating a more general fact about the integers. What
we meant to say is that for every pair of integers m and n, if m and n are
even, then m + n is even. In symbols, using p(k) for “k is even,” we have

Vm € Z(Vn € Z(p(m) A p(n) = p(m +n))>.

This way of representing the statement captures the meaning we originally
intended. This is one of the reasons that mathematical statements and
their proofs sometimes seem confusing—just as in English, sentences in
mathematics have to be interpreted in context. Because mathematics has
to be written in some natural language, and because context is used to
remove ambiguity in natural language, context must be used to remove

144 Chapter 3: Reflections on Logic and Proof

ambiguity from mathematical statements made in natural language. In fact,
we frequently rely on context when writing mathematical statements with
implicit quantifiers, because it makes the statements easier to read. For
example, Lemma 2.8 said

The equation a -, x = 1 has a solution in Z, if and only if there
exist integers x and y such that ax + ny = 1.

In context, it was clear that the @ we were talking about was an arbitrary
member of Z,. It would simply have made the statement read more clumsily
if we had said

For every a € Z,, the equation a -, x = 1 has a solution in Z,, if
and only if there exist integers x and y such that ax +ny = 1.

On the other hand, we were making a transition from talking about Z,
to talking about the integers, so it was important for us to include the
quantified statement “there exist integers x and y such that ax +ny = 1.7
More recently, in Theorem 3.3, we also did not feel it was necessary to say
“for all universes U and for all statements p about U” at the beginning of
the theorem. We felt the theorem would be easier to read if we kept those
quantifiers implicit and let you infer them from context (not necessarily
consciously).

Proof of Quantified Statements

We said that “the sum of even integers is even” is an elementary fact about
numbers. How do we know it is a fact? One answer is that we know it
because our teachers told us so (and presumably they knew it because their
teachers told them so). But someone had to figure it out in the first place. So
we ask, “How would we prove this statement?” A mathematician asked to
give a proof that the sum of even numbers is even might write, “If m and n
are even, thenm = 2i andn = 2j sothatm +n =2i +2j =2(+ j), and
thus m + n is even.”” Because mathematicians think and write in natural
language, they often rely on context to remove ambiguities. For example,
there are no quantifiers in the mathematician’s proof. However, the sentence,

7In the context of this book, a mathematician might simply say that this statement follows
from Lemma 2.3 since being even is the same as being 0 mod 2. However, our point in
proving elementary statements about even and odd numbers is not that we are learning
new facts. Instead, we have chosen facts about numbers because they offer a familiar
context for illustrating a variety of different aspects of proof. We do not expect any of the
facts to be new to you. In fact, we hope that because they are not new, they will help you
focus on the actual proof techniques.

3.2: Variables and Quantifiers 145

though technically incomplete as a proof, captures the essence of why the
sum of two even numbers is even. A typical complete (but more formal
and wordy than usual) proof might go like the following.

Let m and n be integers. Suppose m and n are even. If m and n
are even, then by definition there are integers i and j such that
m = 2i and n = 2j. Thus, there are integers i and j such that
m =2i and n = 2j. Then

m+n=2i+2j=2(G+j);

so by definition, m + n is an even integer. We have shown that
if m and n are even, then m + n is even. Therefore, for every m
and n, if m and n are even integers, then so is m + n.

We began our proof by assuming that m and n are integers. This assumption
gives us symbolic notation for talking about two integers. We then appealed
to the definition of an even integer, namely, that an integer A is even if
there is an integer k such that &7 = 2k. (Note the use of a quantifier in the
definition.) Then we used algebra to show that m + n is also two times
another number. Because being two times another integer is the definition
of m 4+ n being even, we concluded that m + n is even. This conclusion
allowed us to say that if m and n are even, then m + n is even. Finally, we
asserted that for every pair of integers m and n, if m and n are even, then
m + n is even.

There are a number of principles of proof illustrated here. Section 3.3 is
devoted to a discussion of principles used in constructing proofs. For now,
let us conclude with a remark about the limitations of logic. How did we
know that we wanted to write the symbolic equation

mAn=2+2j=2i+j)?

It was not logic that told us to do this, but intuition and experience.

1. Varies over. We use the phrase “varies over” to describe the set of
values a variable may take on.

2. Universe. We call the set of possible values for a variable the
universe of that variable.

3. Free variables. Variables that are not constrained in any way are
called free variables.

146 Chapter 3: Reflections on Logic and Proof

4,

Quantifier. A phrase that converts a symbolic statement about
potentially any member of our universe into a statement about the
universe instead is called a guantifier. There are two types of
quantifiers:

* Universal quantifiers assert that a statement about a variable is
true for every value of the variable in its universe.

 Existential quantifiers assert that a statement about a variable is
true for at least one value of the variable in its universe.

. Larger universes. Let U; be a universe, and let U, be another

universe, with U; C U,. Suppose that g(x) is a statement such that
U = {x|g(x) is true}. If p(x) is a statement about U,, it may also
be interpreted as a statement about U, and

a. Vx € Uj(p(x)) is equivalent to Vx € Uy(q(x) = p(x)), and
b. 3x € U;(p(x)) is equivalent to Ix € Ur(g(x) A p(x)).
Proving quantified statements true or false.

* The statement Ix € U(p(x)) is true if there is at least one value
of x in U for which the statement p(x) is true.

e The statement Ix € U(p(x)) is false if there is no x € U for
which p(x) is true.

* The statement Vx € U(p(x)) is true if p(x) is true for each
value of x in U.

e The statement Vx € U(p(x)) is false if p(x) is false for at least
one value of x in U.

. Negation of quantified statements. To negate a quantified statement,

you switch the quantifier and push the negation inside.

* The statements —=Vx €U(p(x)) and Ix € U(—p(x)) are
equivalent.

* The statements —3x €U(p(x)) and Vx € U(—p(x)) are
equivalent.

. Big O. We say that f(x) = O(g(x)) if there are positive numbers ¢

and n¢ such that f(x) < cg(x) for every x > ny.

. Big ©. f(x) = ©(g(x)) means that f = O(g(x)) and g = O(f(x)).
10.

Some notation for sets of numbers. We use R to stand for the real
numbers, R™ to stand for the positive real numbers, Z to stand for
the integers (positive, negative, and zero), Z* to stand for the
positive integers, and N to stand for the nonnegative integers.

3.2: Variables and Quantifiers 147

All problems with blue boxes have an answer or hint available at the end
of the book.

For what positive integers x is the statement (x — 2)> 4 1 < 2 true?

For what integers is it true? For what real numbers is it true? If you
expand the universe for which you are considering a statement
about a variable, does this always increase the size of the
statement’s truth set?

Is the statement “There is an integer greater than 2 such that
(x —2)?> 4+ 1 < 2” true or false? How do you know?

Write the statement “The square of every real number is greater
than or equal to 0” as a quantified statement about the universe of
real numbers. You may use R to stand for the universe of real
numbers.

A prime number is defined as an integer greater than 1 whose only
positive integer factors are itself and 1. Find two ways to write this
definition so that all quantifiers are explicit. (It may be convenient
to introduce a variable to stand for the number and perhaps a
variable or some variables for its factors.)

Write the definition of a greatest common divisor of m and n in
such a way that all quantifiers are explicit and expressed explicitly
as “for all” or “there exists.” Write the part of Euclid’s extended
greatest common divisor theorem (Theorem 2.14) that relates the
greatest common divisor of m and n algebraically to m and n.
Again, make sure all quantifiers are explicit and expressed
explicitly as “for all” or “there exists.”

Using s(x, y, z) to be the statement x = yz and #(x, y) to be the
statement x < y, what is the form of the definition of a greatest
common divisor d of m and n? (You need not include references to
the universes for the variables.)

Which of the following statements (in which Z* stands for the
positive integers and Z stands for all integers) is true and which is
false? Explain why.

BN Vze ZH (2 + 62+ 10 > 20)
vaeZ(zz—zzO)
n zeZt(z—272>0)
n IGzeZ(Z>P—7=06)

148 Chapter 3: Reflections on Logic and Proof

9.

11.

12.

13.

14.

Are there any (implicit) quantifiers in the statement “The product of
odd integers is odd”? If so, what are they?

Rewrite the statement “The product of odd integers is odd” with all
quantifiers (including any in the definition of odd integers)
explicitly stated as “for all” or “there exist.”

Rewrite the following statement without any negations: “There is
no positive integer n such that for all integers m > n, all
polynomial equations p(x) = 0 of degree m have no real numbers
for solutions.”

Consider the following slight modifications of Theorem 3.2. For
each part, either prove that it is true or give a counterexample.
Let U; be a universe, and let U, be another universe, with

U, C U,. Suppose that g(x) is a statement about U, such that
U; = {x|qg(x) is true} and p(x) is a statement about U.

EN Vx € Ui(p(x)) is equivalent to Vx € Us(g(x) A p(x)).
I 3x € Ui(p()) is equivalent to 3x € Ua(g(x) = p(x)).

Let p(x) stand for “x is a prime,” g(x) for “x is even,” and r(x, y)
stand for “x = y.” Use these three symbolic statements and
appropriate logical notation to write the statement “There is one
and only one even prime.” (Use the set Z* of positive integers for
your universe.)

Each of the following expressions represents a statement about the
integers. Using p(x) for “x is prime,” g(x, y) for “x = y=,” r(x, y)
for “x < y,” s(x,y,z) for “z =xy,” and #(x, y) for “x = y,”
determine which expressions represent true statements and which
represent false statements.

Bl Vx e Z@3y € Z(g(x, y) V p(x)))

B Vx € Z(vy € Z(sr, x,) & q(x,y))

Vy € Z(3x € Z(q(y, x)))

BH 32 € z@Ex € Z@y € Z(p) A p(y) A =1 (x, 1))

Why is (3x € U(p(x))) A (3y € U(g(y))) not equivalent to
dz € U(p(2) A q(z))? Are the statements (Ix € U(p(x))) v (y
€ U(g(y))) and 3z € U(p(2) V q(z)) equivalent?

Give an example (in English) of a statement that has the form
Vx € U@y € V(p(x,y))). (The statement can be a mathematical

3.3: Inference 149

statement, a statement about everyday life, or whatever you prefer.)
Now write (in English) the statement using the same p(x, y) but of
the form 3y € V(Vx € U(p(x, y))). Comment on whether “for all”
and “there exist” commute.

3.3 INFERENCE

Direct Inference (Modus Ponens) and Proofs

In this section, we talk about the logical structure of proofs. The examples
of proofs we give are chosen to illustrate a concept in a context that we
hope will be familiar to you. These examples are not necessarily the only
or the best way to prove the results. If you see other ways to do the proofs,
that is good, because it means you are putting your prior knowledge to
work. It would be useful to try to see how the ideas of this section apply
to your alternate proofs.

Section 3.2 concluded with a proof that the sum of two even numbers is
even. That proof contained several crucial ingredients. First, it introduced
symbols for members of the universe of integers. In other words, rather
than saying, “Suppose we have two integers,” we used symbols for the two
members of our universe by saying, “Let m and n be integers.” How did
we know to use algebraic symbols? There are many possible answers to
this question. In this case, our intuition was probably based on thinking
about what an even number is and realizing that the definition itself is
essentially symbolic. (You may argue that an even number is just twice
another number, and you would be right. Apparently there are no symbols
[variables] in that definition. But they really are there in the phrases “even
number” and “another number.”) Because we all know algebra is easier with
symbolic variables than with words, we should recognize that it makes sense
to use algebraic notation. Thus, this decision was based on experience, not
logic.

Next, we assumed the two integers were even. We then used the definition
of even numbers; as our previous parenthetic comment suggests, it was
natural to use the definition symbolically. The definition tells us that if m
is an even number, then there exists an integer i such that m = 2i. We
combined this with the assumption that m is even and concluded that, in
fact, there does exist an integer i such that m = 2i. This argument is an
example of using the principle of direct inference (called modus ponens in
Latin).

150 Chapter 3: Reflections on Logic and Proof

Principle 3.3 (Direct Inference)
From p and p = ¢, we may conclude ¢.

This common-sense principle is a cornerstone of logical arguments. But
why is it valid? In Table 3.5, we take another look at the truth table for
implication.

P=4q

=
T
F
T
T

S B R S
e B T T T S

Table 3.5: Another look at implication

In Table 3.5, the only line that has a T in both the p column and the p = ¢
column is the first line. In this line, g is also true; thus, we conclude that if
p and p = ¢ hold, then ¢ must hold also. Although this may seem like a
somewhat inside-out application of the truth table, it is simply a different
way of using a truth table.

There are quite a few rules (called “rules of inference”), such as the
principle of direct inference, that people commonly use in proofs without
explicitly stating them. Before beginning a formal study of rules of
inference, however, let’s complete our analysis of which rules we used in
the proof that the sum of two even integers is even. After concluding that
m =2i and n =2j, we used algebra to show that because m = 2i and
n = 2j, there exists a k such that m +n = 2k (our k was i 4+ j). Next, we
used the definition of even numbers again to say that m 4+ n was even. We
then used the following rule of inference.

Principle 3.4 (Conditional Proof)

If by assuming p we may prove g, then the statement p = ¢ is true.
|

Using this principle, we reached the conclusion that if m and n are even
integers, then m + n is an even integer. To conclude that this statement is
true for all integers m and n, we used another rule of inference, one that
is more difficult to describe. We originally introduced the variables m and

3.3: Inference 151

n. We used only well-known consequences of the fact that they were in
the universe of integers in our proof. Thus, we felt justified in asserting
that what we concluded about m and n is true for any pair of integers.
We might say that we were treating m and n as generic members of our
universe. Thus, our rule of inference says:

B
Principle 3.5 (Universal Generalization)

If we can prove a statement about x by assuming only that x is a
member of our universe, then we can conclude the statement is true

for every member of our universe.
i

Perhaps this rule is hard to put into words because it is not simply a
description of a truth table; rather, it is a principle that we use to prove
universally quantified statements.

Rules of Inference for Direct Proofs

We have seen the ingredients of a typical proof. What do we mean by a
proof in general? A proof of a statement is a convincing argument that the
statement is true. To be more precise, we can agree that a direct proof
consists of a sequence of statements, each of which is either a hypothesis,
a generally accepted fact, or the result of one of the following rules of
inference for compound statements.

Rules of Inference for Direct Proofs

1. From an example x that does not satisfy p(x), we may conclude
—p(x).

From p(x) and ¢g(x), we may conclude p(x) A g(x).

From either p(x) or g(x), we may conclude p(x) Vv g(x).

From either g(x) or —=p(x), we may conclude p(x) = g(x).

A

From p(x) = ¢(x) and ¢(x) = p(x), we may conclude
px) < gq(x).
From p(x) and p(x) = ¢(x), we may conclude g (x).

a

7. From p(x) = ¢(x) and ¢(x) = r(x), we may conclude
p(x) = r(x).

8. If we can derive g(x) from the hypothesis that x satisfies p(x), then
we may conclude p(x) = g(x).

81f we are proving an implication s = ¢, we call s a hypothesis. If we make assumptions
by saying, “Let ...,” “Suppose ...,” or something similar before we give the statement to
be proved, then these assumptions are also hypotheses.

152 Chapter 3: Reflections on Logic and Proof

Exercise 3.3-1

9. If we can derive p(x) from the hypothesis that x is a (generic)
member of our universe U, we may conclude Vx € U(p(x)).

10. From an example of an x € U satisfying p(x), we may conclude
dx € U(p(x)).

The first rule is a statement of the principle of the excluded middle as it
applies to statements about variables. The next four rules are, in effect,
descriptions of the truth tables for “and,” “or,” “implies,” and “if and only
if.” Rule 5 tells us what we must do to write a proof of an “if and only if”
statement. Rule 6, exemplified in our earlier discussion, is the principle of
direct inference, and it describes one row of the truth table for p = ¢. Rule
7 is the transitive law, a law that we could derive by analysis of truth tables.
Rule 8, the principle of conditional proof, which is also exemplified earlier,
may be regarded as yet another description of one row of the truth table
of p = ¢g. Rule 9 is the principle of universal generalization, discussed
and exemplified earlier. Rule 10 specifies what we mean by the truth of an
existentially quantified statement according to Principle 3.2.

Although some of our rules of inference are, strictly speaking, redundant,
we include them because they allow us to express proofs more concisely.
For example, we could have written a portion of our proof that the sum of
even numbers is even as follows, without using Rule 8.

Let m and n be integers. If m is even, then there is a k with
m=2k. If n is even, then there is a j with n=2j. Thus,
if m is even and n is even, there are a k and j such that
m+n=2k+2j=2(k+ j). Thus, if m is even and n is even,
there is an integer 1 =k + j such that m +n =2h. Thus, if m is
even and n is even, m +n is even.

Because this kind of argument could always be used to circumvent the
use of Rule 8, that rule is not required as a rule of inference. However,
because it permits us to avoid such unnecessarily complicated “silliness”
in our proofs, we choose to include it. Rule 7, the transitive law, has a
similar role.

Prove that if m is even, then m? is even. Explain which steps of the proof
use one of the 10 rules of inference.

For Exercise 3.3-1, we can mimic the proof that the sum of even integers
is even:

Let m be an integer. Suppose that m is even. If m is even, then
there is a k with m = 2k. Thus, there is a k such that m? = 4k2.

Exercise 3.3-2

Exercise 3.3-3

3.3: Inference 153

Therefore, there is an integer 4 = 2k> such that m? = 2h. This
tells us that if m is even, then m? is even. Therefore, for all
integers m, if m is even, then m? is even.

Our first sentence sets us up to use Rule 9. The second sentence simply states
an implicit hypothesis. The next two sentences use Rule 6, the principle of
direct inference. When we say, “Therefore, there is an integer 4 = 2k? such
that m? = 2h,” we are simply stating an algebraic fact. The next sentences
use Rule 8 and Rule 9. (You might have written the proof in a different
way and used different rules of inference.)

Contrapositive Rule of Inference
Show that “p implies ¢” is equivalent to “—¢g implies —p.”

Is “p implies ¢~ equivalent to “g implies p”?

To do Exercise 3.3-2, we construct the double truth table in Table 3.6.
Because the columns under p = ¢ and under —g = —p are exactly the
same, we know the two statements are equivalent.

P q P=49 P 79 Tq9=7"p
T T T F 17

T F F F T F

F T T T 17 T

F F T T T T

Table 3.6: A double truth table for p = q and —~q = —p

Exercise 3.3-2 tells us that if we know that =g = —p, then we can conclude
that p = ¢. This is called the principle of proof by contraposition.

[
Principle 3.6 (Proof by Contraposition)

The statements p = ¢ and —g = —p are equivalent, and so a proof
of one is a proof of the other.

154 Chapter 3: Reflections on Logic and Proof

Lemma 3.5

The statement —g = —p is called the contrapositive of the statement
p = ¢q. The proof of the following lemma demonstrates the utility of proof
by contraposition.

If n is a positive integer with n2 > 100, then n > 10.

Proof Suppose n is not greater than 10. (We now use the rule of algebra
for inequalities that says if x <y and ¢ >0, then cx <cy.) Then, because
1<n <10,

n-n<n-10<10-10 = 100.

Thus, n? is not greater than 100. Therefore, if n is not greater than 10, then
n? is not greater than 100. By the principle of proof by contraposition, if

n? > 100, then n must be greater than 10.

We adopt Principle 3.6 as a rule of inference called the contrapositive rule
of inference:

11. From —g(x) = —p(x), we may conclude p(x) = g(x).

In our proof of the Chinese remainder theorem (Theorem 2.24), we wanted
to prove for a certain function f, that if x and y were different integers
between 0 and mn — 1, then f(x) # f(v). To prove this, we assumed that,
in fact, f(x) = f(y) and proved that x and y were not different integers
between 0 and mn — 1. Had we known the principle of contrapositive infer-
ence, we could have concluded then and there that f was one-to-one.
Instead, we used the more common principle of proof by contradiction,
which is the major topic of the remainder of this section, to complete our
proof. If you look back at the proof of the Chinese remainder theorem, you
will see that we might have been able to use contrapositive inference to
shorten it by a sentence.

For Exercise 3.3-3, a quick look at the double truth table for p = ¢ and
g = p in Table 3.7 demonstrates that these two statements are not equiv-
alent. The statement ¢ = p is called the converse of p = ¢. Notice that
p €< q is true exactly when p = ¢ and its converse are true. It is surprising
how often people, even professional mathematicians, absentmindedly try to
prove the converse of a statement when they mean to prove the statement
itself. Try not to join this crowd!

3.3: Inference 155

P 9 P=4q q=7r
T T T T
T F F T
F T T 17
F F T T

Table 3.7: A double truth table for p = q and ¢ = p

Proof by Contradiction

Proof by contrapositive inference is an example of what we call
indirect proof. We actually saw another example of indirect proof in the
principle of proof by contradiction. We introduced the principle of proof
by contradiction (Principle 2.1) in our proof to Corollary 2.6, in which we
were trying to prove:

Suppose there is a b in Z, such that the equation a -, x = b
does not have a solution. Then a does not have a multiplicative
inverse in Z,,.

We assumed that the hypothesis that a -, x = b does not have a solution
was true. We also assumed that the conclusion that a does not have a
multiplicative inverse was false. We showed that these two assumptions
together led to a contradiction. Using the principle of the excluded middle
(Principle 3.1), but without saying so, we concluded that if the hypothesis
was in fact true, then the only possibility was that the conclusion was also
true.

We used the principle of proof by contradiction again in our proof of
Euclid’s division theorem. Recall that in that proof, we began by assum-
ing that there was an integer m for which there were no integers ¢ and
r with m =gn +r and 0 <r < n. We then chose the smallest integer m
such that there was not a pair of integers ¢ and r with m = gn +r and
0 < r < n. We then made some computations by which we proved that, in
this case, there are integers ¢ and r with 0 < r < n such that m = gn +r.
In overview, we started out by assuming the theorem was false, and from
that assumption, we drew a contradiction (to the assumption itself). Because
all our reasoning, except for the assumption that the theorem was false, used
accepted rules of inference, the only source of that contradiction was our
assumption. Thus, by the principle of the excluded middle, our assumption
had to be incorrect. We adopt the principle of proof by contradiction (also
called the principle of reduction to absurdity) as our last rule of inference.

156 Chapter 3: Reflections on Logic and Proof

12. If from assuming p(x) and —¢g(x), we can derive both r(x) and
—r(x) for some statement r(x), then we may conclude p(x) = g(x).

There can be many variations of proof by contradiction. These variations
are all examples of what we call an “indirect proof.” Each of the next three
indirect proofs of the same statement gets a slightly different contradiction.
In each case, p is the statement x> 4+x —2 =0, and s is the statement
x # 0. In each case, we prove that p implies q.

1. We may assume p is true and ¢ is false; from this, we derive the
contradiction that p is false, as in the following example.

Prove that if x> +x —2 =0, then x # 0.

Proof Suppose that x?> + x —2 = 0. Assume that x = 0. Sub-
stituting O for x in the polynomial gives x> +x —2 =040 —
2 = —2, which contradicts the assumption that x> +x —2 = 0.
Thus, by the principle of proof by contradiction, if x> + x — 2 =
0, then x # 0.

Here the statement r was identical to p, namely, x24+x—-2=0.

2. We may assume p is true and ¢ is false and derive a contradiction of
a known fact. Here is an example.

Prove that if x2+x —2 = 0, then x # 0.

Proof Suppose that x> + x —2 = 0. Assume that x = 0. Then
x24x—-2=04+0—2= —2. Thus, 0 = —2, which is a con-
tradiction. Thus, by the principle of proof by contradiction, if
X24+x—-2=0, then x # 0.

Here the statement r is the known fact that 0 £ —2.

3. Sometimes the statement r that appears in the principle of proof by
contradiction is simply a statement that arises naturally as we try to
construct our proof, as in the following example.

Prove that if x2 4+ x — 2 = 0, then x # 0.

Proof Suppose that x> + x — 2 = 0. Then x? + x = 2. Assume
that x = 0. Then x? 4+ x = 0+ 0 = 0. But this is a contradiction
to our observation that x> + x = 2. Thus, by the principle of
proof by contradiction, if x> +x — 2 = 0, then x # 0.

Here the statement r is xZ + x = 2.

4. Finally, if proof by contradiction seems to you not to be much
different from proof by contraposition, you are right, as the
following example shows.

Exercise 3.3-4

Exercise 3.3-5

3.3: Inference 157

Prove that if x> +x —2 =0, then x # 0.

Proof Assumethatx =0.Thenx? +x —2=0+4+0—-2= -2,
so that x> + x — 2 # 0. Thus, by the principle of proof by con-
traposition, if x2 4+ x — 2 =0, then x # 0.

Any proof that uses one of the indirect methods of inference, either con-
tradiction or contraposition, is called an indirect proof. The previous four
examples illustrate the rich possibilities that indirect proof provides us. Of
course, they also illustrate why indirect proof can be confusing. There is no
set formula that we use in writing a proof by contradiction, so there is no
rule we can memorize to formulate indirect proofs. Instead, we have to ask
ourselves whether assuming the opposite of what we are trying to prove
gives insight into why the assumption makes no sense. If it does, we have
the basis of an indirect proof. The way in which we choose to write that
proof is a matter of personal choice.

Without extracting square roots, prove that if n is a positive integer such
that n> < 9, then n < 3. You may use rules of algebra for dealing with
inequalities.

Prove that /3 is not rational.

To prove the statement in Exercise 3.3-4, we assume, for purposes of con-
tradiction, that n > 3. Squaring both sides of this equation, we obtain

n*=>9,

which contradicts our hypothesis that n> < 9. Therefore, by the principle
of proof by contradiction, n < 3.

To prove the statement in Exercise 3.3-5, we assume, for the purpose of
contradiction, that /3 is rational. This means that it can be expressed as
the fraction m/n, where m and n are integers. Squaring both sides of the
equation m/n = \/3, we obtain

or

158 Chapter 3: Reflections on Logic and Proof

Now, m

2

must have an even number of prime factors (counting each prime

factor as many times as it occurs), as must n2. But 512 has an odd number of
prime factors. Thus, a product of an even number of prime factors is equal
to a product of an odd number of prime factors. This is a contradiction,
because each positive integer may be expressed uniquely as a product of
(positive) prime numbers. Thus, by the principle of proof by contradiction,
/5 is not rational.

1. Principle of direct inference or modus ponens. From p and p = ¢,
we may conclude q.

2. Principle of conditional proof. If by assuming p we may prove q,
then the statement p = ¢ is true.

3. Principle of universal generalization. If we can prove a statement
about x by assuming x is a member of our universe, then we can
conclude it is true for every member of our universe.

4. Rules of inference. The following 12 rules of inference appear in this
chapter.

1.

A

o

10.

11.
12.

From an example x that does not satisfy p(x), we may
conclude —p(x).

From p(x) and ¢(x), we may conclude p(x) A g(x).
From either p(x) or g(x), we may conclude p(x) Vv g(x).
From either g(x) or —p(x), we may conclude p(x) = g(x).

From p(x) = ¢(x) and ¢(x) = p(x), we may conclude
p(x) < q(x).
From p(x) and p(x) = g(x), we may conclude g(x).

. From p(x) = ¢g(x) and ¢(x) = r(x), we may conclude

p(x) = rx).

. If we can derive ¢(x) from the hypothesis that x satisfies p(x),

then we may conclude p(x) = ¢(x).

. If we can derive p(x) from the hypothesis that x is a (generic)

member of our universe U, we may conclude Vx € U(p(x)).
From an example of an x € U satisfying p(x), we may
conclude Ix € U(p(x)).

From —¢(x) = —p(x), we may conclude p(x) = g(x).

If from assuming p(x) and —¢g(x), we can derive both r(x) and
—r(x) for some statement r, then we may conclude

p(x) = q(x).

3.3: Inference 159

5. Contrapositive of p = q. The contrapositive of the statement p = ¢
is the statement —g = —p.

6. Converse of p = q. The converse of the statement p = ¢ is the
statement g = p.

7. Contrapositive rule of inference. From —q = —p, we may conclude
P=4q.

8. Principle of proof by contradiction. If from assuming p and —g we
can derive both r and —r for some statement r, then we may
conclude p = gq.

All problems with blue boxes have an answer or hint available at the end
of the book.
1. Write the converse and contrapositive of each statement.
N If the hose is 60 ft long, then the hose will reach the tomatoes.

m George goes for a walk only if Mary goes for a walk.

m Pamela recites a poem if Andre asked for a poem.
2. Construct a proof that if m is odd, then m? is odd.

3. Construct a proof that for all integers m and n, if m is even and n
is odd, then m + n is odd.

What does it really mean to say, ‘“Prove that if m is odd, and n is
odd, then m 4 n is even”? Prove this more precise statement.

5. Prove that for all integers m and n, if m is odd and n is odd, then
mn is odd.

m Is the statement p = ¢ equivalent to the statement —p = —¢g?

Construct a contrapositive proof that for all real numbers x, if
x? —2x # —1, then x # 1.

8. Construct a proof by contradiction that for all real numbers x, if
x2 —2x # —1, then x # 1.

n Prove that if x> > 8, then x > 2.
10. Prove that +/3 is irrational.

Construct a proof that if m is an integer such that m? is even, then
m is even.

160 Chapter 3: Reflections on Logic and Proof

Prove or disprove the following statement: “For every positive
integer n, if n is prime, then 12 and n® — n? + n have a common
factor greater than 1.”

13. Prove or disprove the following statement: “For all integers b, c,
and d, if x is a rational number such that x2 + bx + ¢ = d, then x
is an integer.” (Hints: Are all the quantifiers given explicitly? It is
okay, but not necessary, to use the quadratic formula.)

Prove that there is no largest prime number.

15. Prove that if f, g, and & are functions from R™ to R such that
Sf(x) = O(g(x)) and g(x) = O(h(x)), then f(x) = O(h(x)).

Induction, Recursion,
and Recurrences

4.1

MATHEMATICAL INDUCTION

Smallest Counterexamples

In Section 3.3, we demonstrated one way of proving statements about infi-
nite universes. We considered a “generic” member of the universe and
derived the desired statement about that member. When our universe is the
universe of integers, or when it is in a one-to-one correspondence with the
integers, there is a second technique we can use.

Recall our proof of Euclid’s division theorem (Theorem 2.12), which says
that when n is a positive integer, for each nonnegative integer m, there exist
unique nonnegative integers ¢ and r such that m =ng +r and 0 <r < n.
For the purpose of a proof by contradiction, we assumed that there is a
nonnegative integer m for which no such g and r exist. We chose a smallest
such m and observed that m — n is a nonnegative integer less than m. Then
we said:

Therefore, there exist integers ¢’ and r’ such that m —n =
ng' + r’ with 0 <r <n. But then m = n(g’ + 1) + r’. So, by tak-
ingg=q' '+ 1and r =7, we obtain m=gn+r with0<r <n.
This contradicts the assumption that there are no integers ¢ and
r with 0 <r <n such that m =gn + r. Thus, by the principle of
proof by contradiction, such integers g and r exist.

To analyze these sentences, let p(m) denote the statement “There exist
integers ¢" and r’ such that m —n =nq’ +r’ with 0 < r < n.” The first two
sentences of the quotation provide a proof that p(m —n) = p(m). This
implication is the crux of the proof. Let us give an analysis of the proof
that shows the pivotal role of this implication.

161

162 Chapter 4: Induction, Recursion, and Recurrences

Exercise 4.1-1

Exercise 4.1-2

Exercise 4.1-3

» We assumed that a counterexample with a smallest m existed.

¢ Using the fact that p(m’) had to be true for every m’ smaller than m,
we chose m’ = m — n and observed that p(m’) had to be true.

* We used the implication p(m — n) = p(m) to conclude the truth of
p(m).

* However, we had assumed that p(m) was false, so this assumption is
contradicted in the proof by contradiction.

In Chapter 1, we learned Gauss’s trick for showing that for all positive
integers n,
B nn+1)

14+2+3+44 - +n >

(4.1)
Use the technique of asserting that if there is a counterexample, then there
is a smallest counterexample and deriving a contradiction to prove that
the sum is n(n 4+ 1)/2. What implication did you have to prove in the
process?

For what values of n > 0 is 2"*! > »n? 4 2? Use the technique of asserting
that if there is a counterexample, then there is a smallest counterexample
and deriving a contradiction to prove you are right. What implication did
you have to prove in the process?

For what values of n > 0 do you think 2"*! > n? 4 3? Is it possible to use
the technique of asserting that if there is a counterexample, then there is
a smallest counterexample and deriving a contradiction to prove you are
right? If so, do so and describe the implication you had to prove in the
process. If not, why not?

In Exercise 4.1-1, suppose the formula for the sum is false. Then there must
be a smallest n such that the formula does not hold for the sum of the first
n positive integers. Thus, for any positive integer i smaller than n,

ii+1)

1424 i =
+24- 41 2

(4.2)

The nonnegative integers are well-ordered.

4.1: Mathematical Induction 163

Because 1 = 1-2/2, Equation 4.1 holds when n = 1. Therefore, the smallest
counterexample is not n = 1. So, n > 1, and n — 1 is one of the posi-
tive integers i for which the formula holds. Substituting » — 1 for i in
Equation 4.2 yields

(n—1n
1+2+~-+n—1:T.
Adding n to both sides gives
-1
1+2+---+n—1+n:w
_nf—n+2n
B 2
_n(n+1)
= SR

Thus, n is not a counterexample after all. Therefore, there is no counter-
example to the formula. Hence, the formula holds for all positive integers 7.
Note that the crucial step was proving that p(n — 1) = p(n), where p(n)
is the formula

nn+1)

14+24...
+24---+n 3

In Exercise 4.1-2, let p(n) be the statement 2"*+! > n?+ 2. Some experi-
menting with small values of n leads us to believe this statement is true
for all nonnegative integers. Thus, we want to prove p(n) is true for all
nonnegative integers n. To do so, we assume that the statement, “p(n) is
true for all nonnegative integers n” is false. When a “for all” statement is
false, there must be some n for which it is false. Therefore, there is some
smallest nonnegative integer n so that 2"*! # n? 4+ 2. Assume now that n
is this value, which means that 2'*! > ;2 4+ 2 for all nonnegative integers
i with i < n. Because we know from our experimentation that n # 0, we
know n — 1 is a nonnegative integer less than n. Thus, using n — 1 in place
of i, we get

207 = (= 1) 2,
or

">n?—2n41+2
=n®—2n+3. (4.3)

From this, we want to draw a contradiction—a contradiction to 2"*! #
2
n<+2.

164 Chapter 4: Induction, Recursion, and Recurrences

To get the contradiction, we want to convert the left side of Equation 4.3 to
2"*+1 For this purpose, we multiply both sides by 2. Because 2" ! =2.2",
we may use Equation 4.3 to write

2" > 2. = 2n+3), or
2" > 202 — 4n 4 6. (4.4)

You may get this far and wonder, “What next?”” Because we want to obtain
a contradiction, we want to convert the right side of Inequality 4.4 into
something like n% + 2. More precisely, we will convert the right side into
n?> 4 2 plus an additional term. If we can show that the additional term is
nonnegative, the proof will be complete. Thus, we write

2" > 20 —4n 46
=’ +2)+ 0> —4n+4)
=n’ 424+ @1 —2)°
>n? +2, (4.5)

where the last inequality holds because (n — 2)> > 0. This contradicts our
assumption that 2"*t! # n? 4+ 2, so there must not have been a smallest
counterexample. Thus, there must be no counterexample. Therefore, 2" >
n? 4 2 for all nonnegative integers n.

What implication did we prove? Let p(n) stand for 2"*! > n? +2. In
Equations 4.3 and 4.5, we proved that p(n — 1) = p(n). At one point
in our proof, we had to note that we had considered the case with n =0
already. Although we have given a proof by smallest counterexample, it
is natural to ask whether it would make more sense to try to prove the
statement p(n — 1) = p(n) directly.

Once we have shown that

pn—1) = pn),

we can apply it to obtain that p(0) implies p(1), p(1) implies p(2), p(2)
implies p(3), and so on. In this way, we have p(k) for every k. Isn’t this
a more direct proof? We will address this question shortly.

First, let’s consider Exercise 4.1-3. Notice that 2"T! % n% + 3 forn = 0 and
n = 1,but 2"+ > n2 4 3 for any larger n we look at. Let us try to prove that
2+l > »? 4 3 forn > 2. We now let p/(n) be the statement 2" ! > n? 4+ 3.
We can easily prove p’(2) as follows: 8 = 2% > 22 4+ 3 = 7. Now, suppose
that among the integers larger than 2, there is a counterexample m to p’(n).

4.1: Mathematical Induction 165

That is, suppose there is an m such that m > 2 and p’(m) is false. Then
there is a smallest such m, and p’(k) is true for k between 2 and m — 1.
If you look back at your proof that p(n — 1) = p(n), you will see that
when n > 2, essentially the same proof applies to p’ as well. That is, with
very similar computations, we can show that p’(n — 1) = p’(n), so long as
n > 2. Thus, because p’(m — 1) is true, our implication tells us that p’(m)
is also true. This is a contradiction to our assumption that p’(m) is false.
Therefore, p’(m) is true.

Again, we could conclude from p’(2) and p’(2) = p’(3) that p’(3) is true
(and similarly for p’(4) and so on). This approach seems to give a more
direct proof than proof by smallest counterexample. The implication we had
to prove was p'(n — 1) = p'(n).

The Principle of Mathematical Induction

It may seem clear that repeatedly using the implication p(n — 1) = p(n)
will prove p(n) for all n (or all n > 2). This observation is the central
idea of the principle of mathematical induction, which we are about to
introduce. In a theoretical discussion of the integers, the principle of math-
ematical induction (or the equivalent well-ordering principle—every set
of nonnegative integers has a smallest element, which allows us to use
the “smallest counterexample” technique) is one of the first principles we
assume. The principle of mathematical induction is usually described in
two forms. The one we have talked about so far, called the “weak form,”
applies to statements about integers .

Principle 4.1 (The Weak Principle of Mathematical Induction)

If the statement p(b) is true and the statement p(n — 1) = p(n) is
true for all n > b, then p(n) is true for all integers n > b.

Suppose, for example, we wish to give a direct inductive proof that 2"+! >
n? + 3 for n > 2. We would proceed as follows. (The material in square
brackets is not part of the proof; it is a running commentary on what is
going on in the proof.)

We will prove by induction that 2"*! > n? + 3 for n > 2. First,
22+1 = 23 = 8, while 2% + 3 = 7. [We just proved p(2). We will
now proceed to prove p(n — 1) = p(n).] Suppose now that n >
2 and 2" > (n — 1)? + 3. [We just made the hypothesis of p(n —
1) in order to use Rule 8 of our rules of inference.]

166 Chapter 4: Induction, Recursion, and Recurrences

Exercise 4.1-4

Exercise 4.1-5

Now we multiply both sides of this inequality by 2, giving
2 S 2?2 —2n+ 1) +6.
But

202 =2n+ D)+ 6=n>+3+n>—4dn+4+1
=n’+34+mn—-2>%+1.

Therefore, 2" ! > n2 +3 4+ (n —2)> + 1.

Because (n —2)>+ 1 is positive, this proves 2"! > n? +3.
[We just showed that from the hypothesis of p(n — 1), we can
derive p(n). Now we can apply Rule 8 to assert that p(n — 1) =
pm).] Therefore, 2" > (n — D2+3=2">p243 and
by the principle of mathematical induction, 2"*! > n?+3
for n > 2.

In this proof, the sentence “First, 22+t =23 = 8, while 2% 4+ 3 = 77 is called
the base case. It consists of directly proving that p(b) is true, where, in this
case, b is 2 and p(n) is 27! > n? + 3. The sentence “Suppose now that
n>2and 2" > (n — 1)> +3” is called the inductive hypothesis, which is
the assumption that p(n — 1) is true. In inductive proofs, we always make
such a hypothesis” to prove the implication p(n — 1) = p(n). The proof
of the implication is called the inductive step. The final sentence of the
proof is called the inductive conclusion.

Use mathematical induction to show that
143454+ +Q2k—1) =k

for each positive integer k.

For what values of n is 2" > n%? Use mathematical induction to show that
your answer is correct.

For Exercise 4.1-4, we note that the formula holds when k = 1. Assume
inductively that the formula holds when k =n — 1, so that 1 +3+4--- +

2 At times, it might be more convenient to assume that p(n) is true and use this assumption
to prove that p(n + 1) is true. This proves the implication p(n) = p(n + 1), which lets us
reason in the same way.

4.1: Mathematical Induction 167

(2n —3) = (n — 1)%. Adding 2n — 1 to both sides of this equation gives

1434+ 4+2n=-3)+C2n—D=n>—2n+1+4+2n—-1
=n’. (4.6)

Thus, the formula holds when k& = n, and so, by the principle of mathemat-
ical induction, the formula holds for all positive integers k.

Notice that in our discussion of Exercise 4.1-4, nowhere did we mention
a statement p(n). In fact, p(n) is the statement we get by substituting n
for k in the formula. In Equation 4.6, we were proving p(n — 1) = p(n).
Next, notice that we did not explicitly say we were going to give a proof
by induction; instead, we indicated that we were making an inductive proof
when we were making the inductive hypothesis by saying, “Assume induc-
tively that” This convention makes the prose flow nicely but still tells
the reader that he or she is reading a proof by induction. Notice also how
the notation in the statement of the exercise helped us write the proof. If
we state what we are trying to prove in terms of a variable other than
n, such as k, then we can assume that our desired statement holds when
this variable, k, is n — 1 and then prove that the statement holds when
k = n. Without this notational device, we have to either mention our state-
ment p(n) explicitly or avoid any discussion of substituting values into
the formula we are trying to prove. Our proof that 2"*! > n% + 3 demon-
strates this last approach to writing an inductive proof in plain English. This
approach is usually the “slickest” way of writing an inductive proof (though
it is often the hardest to master). We will use this approach first for the
next exercise.

For Exercise 4.1-5, we note that 2 = 2! > 12 = 1, but then the inequality
fails for n = 2, 3, 4. However, 32 > 25. Now we assume inductively that for
n > 5, we have 27! > (n — 1)2. Multiplying by 2 gives us the following:
2" > 2% =2n+1)

=n? + n® —4n +2

> n? + n?—n-n

=n ,
because n >35 implies that —4n > —n-n. (We also used the fact that

n?+n?—4n+2 > n*+n? —4n.) Thus, by the principle of mathematical
induction, 2" > n? for all n > 5.

Alternatively, we could write the following: Let p(n) denote the inequality
2" > n?. Then p(5) is true, because 32 > 25. Assume that n > 5 and that

168 Chapter 4: Induction, Recursion, and Recurrences

p(n — 1) is true. This implies that 2"~! > (n — 1)2. Multiplying by 2 gives
us the following:

2" > 2% —2n+1)
=n2—|—n2—4n+2
>n2+n2—n-n

:n’

because n > 5 implies that —4n > —n -n. Therefore, p(n — 1) = p(n).
Thus, by the principle of mathematical induction, 2" > n? for all n > 5.

Notice how the “slick” method simply assumes that the reader knows we
are doing a proof by induction from our “Assume inductively....” It also
assumes the reader mentally supplies the appropriate p(n) and observes that
we have proved p(n — 1) = p(n) at the right moment.

Here is a slight variation of the technique of changing variables. To prove
that 2" > n? when n > 5, we observe that the inequality holds when n = 5,
because 32 > 25. Assume inductively that the inequality holds when n = &,
so that 2% > k. Now, when k > 5, multiplying both sides of this inequality
by 2 yields the following sequence of inequalities (which are explained in
the text that follows):

PRI &
= k2 + k>
> k% + 5k
> k? + 2k + 1
= (k+ 1)%,

because k > 5 implies that k* > 5k and Sk = 2k + 3k > 2k + 1. Thus, by
the principle of mathematical induction, 2" > n® for all n > 5.

This last variation of the proof illustrates two ideas. First, there is no
need to save the name n for the variable we use in applying mathemat-
ical induction. We used k as our inductive variable in this case. Second,
as suggested in footnote 2, there is no need to restrict ourselves to proving
the implication p(n — 1) = p(n). In this case, we proved the implication
p(k) = p(k + 1). Clearly, these two implications are equivalent as n ranges
over all integers larger than b and as k ranges over all integers larger than
or equal to b.

4.1: Mathematical Induction 169

Strong Induction

In our proof of Euclid’s division theorem, we had a statement of the form
p(m), and, assuming that it was false, we chose a smallest m such that p(m)
was false for some n. This choice meant that we could assume that p(m’)
is true for all nonnegative m’ <m. We needed this assumption because
we had to show that p(m —n)= p(m) in order to get our contradiction.
This situation differs from the examples we used to introduce mathematical
induction, because in those examples we used an implication of the form
p(n—1)= p(n). The essence of our method in proving Euclid’s division
theorem is the following:

1. We have a statement g (k) that we want to prove for all k larger than
some integer.

2. We suppose it is false; so, there must be a smallest k£ for which ¢ (k)
is false.

3. The previous step implies that we may assume ¢ (k') is true for all k’
in the universe of ¢ with k' < k.

4. We then use this assumption to derive a proof of ¢ (k), thus
generating our contradiction.

Again, we can avoid the step of generating a contradiction in the follow-
ing way. Suppose first we have a proof of ¢g(0). Suppose also we have a
proof that

gqO)AgMAg2)A---Ngk—T1) = g k)

for all k larger than 0. Then, from ¢(0), we can prove ¢g(1); from g(0) A
q(1), we can prove ¢ (2); from g(0) A g(1) A g(2), we can prove ¢(3); and
so on. This method gives us a proof of g(n) for any n we desire, and
is another form of the principle of mathematical induction. We use this
approach when, as in Euclid’s division theorem, we can get an implication
of the form ¢ (k) = ¢ (k) for some k' < k or when we can get an implication
of the form g(0) Ag(1) Ag(2) A--- A gk — 1) = g(k). (As is the case in
Euclid’s division theorem, we often don’t really know what k' is, so the
first kind of situation is really just a special case of the second. It is for this
reason that we do not treat the first of the two implications separately.) We
have just described the method of proof known as the strong principle of
mathematical induction.

170 Chapter 4: Induction, Recursion, and Recurrences

Exercise 4.1-6

Principle 4.2 (The Strong Principle of Mathematical Induction)

If the statement p(b) is true and the statement p(b) A p(b+ 1) A
-« A pn—1)= p(n) is true for all n > b, then p(n) is true for all
integers n > b.

The terms weak and strong arise from what is assumed in the inductive
hypothesis. Adding more restrictions strengthens an assertion, while remov-
ing restrictions weakens the assertion. For example, stating that Sandy is a
teenager is a weaker assertion than stating that Sandy is 16 years old. In
weak induction our inductive hypothesis is only p(n — 1). In strong induc-
tion it is not only p(n — 1), but also p(b) Ap(b+ 1) A... A pn —2).
This is a stronger assertion.

Prove that every positive integer is either a power of a prime number or the
product of powers of prime numbers.

In Exercise 4.1-6, we observe that 1 is a power of a prime number; for
example, 1 = 2°. Suppose now that we know that every number less than
n is a power of a prime number or a product of powers of prime numbers.
Then, if n is not a prime number, it is a product of two smaller numbers,
each of which is, by our supposition, a power of a prime number or a
product of powers of prime numbers. But multiplying two powers of primes
or products of powers of primes gives a product of powers of primes.
Therefore, n is a power of a prime number or a product of powers of prime
numbers. Thus, by the strong principle of mathematical induction, every
positive integer is a power of a prime number or a product of powers of
prime numbers.

Note that there was no explicit mention of an implication of the form
pB)YApbB+1DA---Apn—1) = ph).

Note also that we did not explicitly identify the base case or the inductive
hypothesis in our proof. These are common conventions with inductive
proofs. Readers of inductive proofs are expected to recognize when the base
case is being given and when an implication of the form p(n — 1) = p(n)
or pb) Ap(b+1)A---A p(n—1) = p(n) is being proved.

Mathematical induction is used frequently in discrete math and comput-
er science. Many quantities that we are interested in measuring, such as
running time or space used in memory, typically are restricted to positive

4.1: Mathematical Induction 171

integers. Thus, mathematical induction is a natural way to prove facts about
these quantities. We will use it frequently throughout this book. We typi-
cally will not distinguish between strong and weak induction; we just think
of them both as induction. (Problems 13 and 14 ask you to derive each
version of the principle from the other.)

Induction in General

We now summarize what we have said so far. A typical proof by math-
ematical induction showing that a statement p(n) is true for all integers
n > b consists of three steps.

1. We show that p(b) is true. This step is called establishing a base
case.

2. We either show that
p(n—1) = p(n)

for all n > b or show that
pB)yApb+1DA---Apn—1)= p(n)

for all n > b. For this purpose, we make either the inductive
hypothesis p(n — 1) or the inductive hypothesis
pb)Apb+1)A---Apm—1). Then we derive p(n) to complete
the proof of the implication we desire—either p(n — 1) = p(n) or
p)ApL+1DA---Apn—1)= ph).

3. We conclude on the basis of the principle of mathematical induction
that p(n) is true for all integers n greater than or equal to b.

The second step is the core of an inductive proof, and is usually where we
need the most insight into what we are trying to prove. Looking back on the
examples of induction in this chapter, you may notice that in Example 4.1-
5, we did not show that p(n — 1) = p(n); instead, we showed that p(n) =
p(n + 1). Logically, in the context of an inductive proof, these statements
are equivalent (simply substitute m for n — 1). For convenience, we now
restate an alternate to condition 2:

2" We show that for all n > b, either
p(n) = pn+1)

or
pOYANPpBL+1)A---Apn) = phr+1).

172 Chapter 4: Induction, Recursion, and Recurrences

For this purpose, we make either the inductive hypothesis p(n) or the
inductive hypothesis p(b) A p(b+ 1) A--- A p(n). Then we derive
p(n+ 1) to complete the proof of the implication we desire—either
pn) = pn+1)or pb) Aplb+1)A---Apn) = pn+1).

It is important to realize that induction arises in some circumstances that
do not fit the typical description we just gave. First, instead of a single
base case, we may need multiple base cases. Second, instead of needing
to show just one implication that demonstrates that p(n) is true given that
p(n') is true for some set of n’ < n, we may need to show a set of such
implications.

For example, consider the problem of proving the following statement:

" % if n is even ,
>|5]=1)
4

i—0 if n is odd .

To prove this, we must show that p(0) is true, p(1) is true, p(n —2) =
p(n) if n is odd, and p(n —2) = p(n) if n is even. Putting all these
together, we see that our formulas hold for all » > 0. We can view this as
either two proofs by induction, one for even and one for odd numbers, or
one proof in which we have two base cases and two methods of deriving
results from previous ones. The second view is more useful because it
expands our idea of what induction means and makes it easier to find
inductive proofs. In this proof of Equation 4.7, we have two base cases
and two inductive implications. We could also find situations where we
have just one implication to prove but several base cases to check (we will
see one such situation shortly) or just one base case but several different
implications to prove.

Logically speaking, we could rework the proof of Equation 4.7 above so
that it fits the pattern of strong induction. For example, when we prove
a second base case, then we have just proved that the first base case
implies it, because a true statement implies a true statement. However,
in the mathematics literature and especially in the computer science liter-
ature, inductive proofs are written with multiple base cases and multiple
implications with no effort to reduce them to one of the standard forms of
mathematical induction. As long as it is possible to cover all the cases under
consideration with such a proof, it can be rewritten as a standard inductive
proof. Because readers of such proofs are expected to know this conven-
tion, and because reworking such a proof as a standard inductive proof
adds unnecessary verbiage, the proofs are almost never rewritten into the
“standard form.”

4.1: Mathematical Induction 173

A Recursive View of Induction

Those familiar with recursive programs might notice similarities between
induction and recursion.’ Both talk about base cases. Both may appear at
first glance to be circular. In recursion, a function calls itself. When we
prove the implication in the inductive step of an inductive proof, we prove
a property for an instance of size n by assuming the property is true for
other instances. In both cases, the same thing prevents circularity:

* The instances solved by recursion when the function calls itself are
always smaller than the current instance and the recursion eventually
gets down to base cases that are dealt with directly.

* The instances assumed in the inductive step of an inductive proof are
always smaller than the current instance and the induction eventually
gets down to base cases that are dealt with directly.

Students who have written a number of recursive programs come to under-
stand that recursion works. As long as all the recursive calls are all to
smaller-sized instances, the recursion is not circular. As long as the base
cases are handled correctly and larger instances are correctly solved by
building on solutions to smaller instances, the recursion will terminate and
compute the correct answer.

In this section we use this understanding of recursion to present an alter-
nate view of induction. We do this for two reasons. First, many people find
induction difficult and counterintuitive, and seeing it explained from a num-
ber of different views can help them to understand it. Second, thinking of
induction in terms of recursion is a very useful way of developing inductive
proofs.

An inductive proof can be seen as a description of a recursive program that
will print a complete, horribly detailed proof for any chosen instance of
size n as long as n is bigger than some value. Because recursion works, we
can call this program to print a proof for any n. Because a program exists
that can generate a complete proof for any n, the property must be true
for all n.

For our example we again show that for any positive integer n,

nn+1)

sm)y=14+24+---+n= 7

The recursive program works by calling itself to prove that s(n — 1) =
(n — 1)n/2, and then using this proven lemma to verify the formula for n.

3In this section, when we speak of recursion, we mean recursion in a computer program.
We simply say recursion to avoid being repetitive.

174 Chapter 4: Induction, Recursion, and Recurrences

The base case is used when the recursion no longer works. We are proving
the formula for positive integers, so s(n) is defined when n is a positive
integer. If we were to recursively try to prove the formula is correct for
s(1), it would try to do this in terms of s(0). But 0 is not a positive integer,
so s(0) is not defined. Therefore we will have to prove that the formula is
correct for s(1) directly, without recursion.

The following program accomplishes this.

ProveSum(n)

// Assume that n is a positive integer.
// This is a recursive program that inputs n and prints a detailed proof

// showing that s(n) = n*(n+l)/2.
(1) if (n == 1)
(2) print "We note that"
(3) print " s(l1) =1 = 1*2/2, so the formula is correct for n = 1."
(4) else
(5) print "To prove that s(", n, ") =", n , "*", n+l,
"/2, we first prove that"
(6) print " s(", n-1, ") =", n-1, "*", n, "/2."
proveSum(n-1)
(8) print "Having proved s(", n-1, "y =", n-1, "*", n, "/2 =",
(n-1)*n/2," we add ", n
(9) print " to the first and last values, getting ",
"s(", n, ") =", ((n-1)*n/2 + n), "."
(10) print " This equals ", n, "*", n+l,
"/2, so the formula is correct for n =", n, "."

The print statements are messy but the code is fairly straighforward. It
tests to see if we are in the base case (n = 1) and if so prints the proof
for s(1). Otherwise it calls itself recursively to print a proof for s(n — 1)
and uses that result to prove the formula for s(n). The output of the call
ProveSum(4) is:

To prove that s(4) = 4*5/2, we first prove that
s(3) = 3*4/2.

To prove that s(3) = 3*4/2, we first prove that
s(2) = 2*3/2.

To prove that s(2) = 2*3/2, we first prove that

s(l) = 1*2/2.
We note that

s(l) =1 = 1*2/2, so the formula is correct for n = 1.
Having proved s(1l) = 1*2/2 = 1 we add 2

to the first and last values, getting s(2) = 3.

This equals 2*3/2, so the formula is correct for n = 2.
Having proved s(2) = 2*3/2 = 3 we add 3

to the first and last values, getting s(3) = 6.

This equals 3*4/2, so the formula is correct for n = 3.

4.1: Mathematical Induction 175

Having proved s(3) = 3*4/2 = 6 we add 4
to the first and last values, getting s(4) = 10.
This equals 4*5/2, so the formula is correct for n = 4.

We do not expect you to write such a program when you are asked to do a
proof by induction. However, thinking recursively is often the easiest way
to discover an inductive proof. Given an instance for which you are trying
to prove a property, start by figuring out how to break it down into one or
more smaller instances of the same form. Because the instances are smaller,
you can assume that the property is true for them; after all, if you had to,
you could generate a proof for that case by writing a recursive program, as
we just did. Then you show how the fact that the property holds for these
smaller instances implies that the property holds for the original instance.
Finally, you decide at what point the recursive decomposition stops giving
problems of the same form. These problems, which cannot be recursively
decomposed into smaller problems, are the base cases. You must check
directly that the property holds for the base cases.

Note that this procedure is the reverse of the way that a proof is actually
written. The recursive decomposition is developed first. The decomposition
then determines whether the induction is strong or weak and what base cases
are needed. Proofs could be written in this form, but it is traditional to prove
the base cases first and then show that the smaller cases imply the larger one.

When proving the validity of formulas via induction, it sometimes helps,
as we did implicitly in Exercise 4.1-4, to think of how to “grow” a smaller
case into a larger one. However, it is usually more profitable to think of
decomposing a larger case into smaller ones than to think of building a
smaller case to create a larger one. (Building a smaller case to a larger one
is just one way of seeing how to decompose the larger case into smaller
ones.) As we will see in Sections 6.1 and 6.2 (especially in Exercises 6.2-6
and 6.2-7), there are times when this way of thinking is clearly the best
way to get a valid proof. Such examples occur throughout computer science.
Therefore, it is good to get in the habit of doing induction by starting with
a larger instance and recursively decomposing it to get smaller instances.

There are two other advantages to this top-down approach. First, if we
decompose the problem recursively we know that all possible larger
instances can be decomposed in this way. “Building up” small cases into
larger ones requires an additional step, namely showing that all larger cases
can be created by using the construction given. It is often the case that a
“building up” process constructs a proper subset of the possible cases. A
“building up” proof must show that all larger cases can be covered.

Second, with a top-down approach, there is no question about what our
base case or base cases should be. The base cases are the ones where the

176 Chapter 4: Induction, Recursion, and Recurrences

recursive decomposition no longer works. This answers a question students
often ask, namely, “How do I choose my base case or cases?”

To demonstrate this idea, we reconsider the proof that every positive integer
is a prime or the product of powers of primes. The recursive decomposition
is to factor a number into two smaller factors, which is always possible
unless the number is a prime or is 1. Thus, our base cases are 1 = 2° and
all the primes. (As you may recall, our base case in our first solution of
Exercise 4.1-6 was simply the case where the number is 1.) In all these
cases, our number is either a prime or a power of a prime. For any other
number n, we assume that the property holds for all k¥ < n. Because the
number is not a prime or 1, we can factor it into two smaller numbers, and,
by our inductive hypothesis, each is either prime or the product of powers
of primes. Multiplying two products of powers of primes gives another
product of powers of primes. Thus, our number is the product of powers of
primes. By the strong principle of mathematical induction, every positive
integer is a prime or a product of powers of primes.

It may seem strange to talk about an infinite number of base cases (all the
primes), but these would be the base cases of a recursive program to factor
a number into a product of powers of primes. If you reread the original
solution to Exercise 4.1-6, then you will see that primes are a special case
handled without using the inductive hypothesis. They are base cases in
the recursive sense, and whether we choose to call them base cases in the
inductive sense or to view them as inductive cases that don’t require the
inductive hypothesis to prove them is a matter of taste.* Inductive proofs
are often cleaner if we define a base case to be any case that does not use
the inductive hypothesis in its proof.

Structural Induction

So far we have treated induction as a proof method that works on integers.
However, there are other options. In the last section we noted that in com-
puter science we often want to prove things about structures. Examples of

“4Recall that in the truth table for p = ¢, in each row in which ¢ is true, the statement

p = q is true as well. Thus, one thing that would prove p = ¢ to be true is a proof

of ¢ that does not make any assumption about p. This is what we were doing when we
wrote, “Suppose now we know that every number less than n is a power of a prime
number or a product of powers of prime numbers. Then, if 7 is not a prime number, it is a
product of two smaller numbers.” We were treating the cases where n is a prime number
as special cases in which our conclusion could be shown to be true without using the
hypothesis.

4.1: Mathematical Induction 177

such structures include sets, lists, trees, and graphs, and induction is a very
common method of proof in these cases. The recursive decomposition of
a problem on a structure usually requires solving the problem on one or
more proper substructures of the same form as the original structure. The
inductive hypothesis is assumed to hold for these substructures, and the
inductive hypothesis is proved for the original structure. This approach of
assuming that the inductive hypothesis is true for proper substructures is
called structural induction.

It is possible to turn a proof using structural induction into a normal induc-
tion on integers by defining the “size” of a structure in such a way that
the size of any proper substructure is smaller than the size of the original
structure. We then use induction (strong or weak, as appropriate) on the
size of the structure. However, this introduces the extra step of finding an
appropriate definition of size, and this can make the proof less clear. It
is often easier to simply assume that the inductive hypothesis is true on
all smaller structures, where “smaller than” means “is a proper substruc-
ture of.”

As an example, we will consider a theorem about triangulated polygons.
To triangulate a polygon one keeps adding diagonals connecting pairs of
vertices until no more diagonals can be added. These diagonals must lie
entirely interior to the polygon and are not allowed to intersect. They break
the interior of the polygon into a number of triangles, because any larger
polygon can be split by adding a diagonal. (This fact is perhaps not obvious,
but we won’t get sidetracked by proving it here.) An example of a triangu-
lated polygon appears in Figure 4.1. We say that a vertex of the polygon is
incident to a diagonal if it is an endpoint of the diagonal. We define an ear
of a triangulated polygon as a vertex that is not incident to any diagonal.
We also say that two vertices are adjacent if they are connected by an edge
in the polygon.

Figure 4.1: A triangulated polygon

178 Chapter 4: Induction, Recursion, and Recurrences

We want to prove the Ear Lemma, which states that a triangle has three
ears, and a larger triangulated polygon has at least two ears that were not
adjacent in the original polygon. We will prove this via structural induction.

We first note that if the polygon is a triangle, it has three ears. This is the
base case.

We must now recursively decompose the triangulated polygon into one
or more smaller triangulated polygons. One way to do this would be to
remove an ear and the two edges adjacent to it. However, this approach has
a problem: how do we know that such an ear exists? Therefore we choose
a different decomposition.

If the triangulated polygon is larger than a triangle it has at least one diago-
nal. We split the triangulated polygon into two smaller triangulated polygons
along some diagonal (see Figure 4.2). For each subproblem the diagonal
becomes an edge in the smaller polygon. These triangulated polygons are
smaller than the original one, so by our inductive hypothesis each is either
a triangle with three ears or a larger polygon with two nonadjacent ears.
We consider what happens to these ears when we rejoin the two polygons
into the larger polygon by joining them along the diagonal. If a polygon is
a triangle the new diagonal will eliminate two of the ears, leaving one ear
in the triangle. If it is a larger polygon the diagonal can be incident to at
most one of the two nonadjacent ears, because endpoints of the diagonal
are adjacent in the subproblem. Thus there must be at least one remaining
ear in this subproblem. At least one ear remaining in each subproblem after
joining means that there must be at least two ears in the original triangu-
lated polygon. They cannot be adjacent because they are separated by the
endpoints of the diagonal. Thus by the principal of mathematical induction
we have proved the Ear Lemma.

1. Weak principle of mathematical induction. The weak principle of
mathematical induction states that if the statement p(b) is true and
the statement p(n — 1) = p(n) is true for all n > b, then p(n) is
true for all integers n > b.

2. Strong principle of mathematical induction. The strong principle of
mathematical induction states that if the statement p(b) is true and
the statement p(b) A p(b+ 1) A--- A p(n — 1) = p(n) is true for
all n > b, then p(n) is true for all integers n > b.

3. Base case. Every proof by mathematical induction, strong or weak,

begins with a base case, which establishes the result being proved
for at least one value of the variable on which we are inducting. This

4.1: Mathematical Induction

(a)

(b)

()

179

Figure 4.2: Three ways to decompose a triangulated polygon along a diag-

onal

base case should prove the result for the smallest value of the
variable for which we are asserting the result. In a proof with

multiple base cases, the base cases should cover all values of the
variable that are not covered by the inductive step of the proof.

4. Inductive hypothesis. Every proof by induction includes an inductive
hypothesis in which we assume that the result p(n) we are trying to

prove is true when n = k — 1 or when n < k (or in which we
assume an equivalent statement).

5. Inductive step. Every proof by induction includes an inductive step

in which we prove the implication that p(k — 1) = p(k) or the

implication that p(b) A p(b+ 1) A--- A p(k — 1) = p(k), or some

equivalent implication.

180 Chapter 4: Induction, Recursion, and Recurrences

6. Inductive conclusion. A proof by mathematical induction should
include, at least implicitly, a concluding statement of the form
“Thus, by the principle of mathematical induction ...,” which asserts
that by the principle of mathematical induction, the result p(n) that
we are trying to prove is true for all values of #n, including and
beyond the base case(s).

7. Structural induction. In computer science we often prove things
about structures (e.g., lists, graphs, and trees). While it is possible to
do normal induction on integers on the size of the structures, it is
usually simpler to do the induction directly on the structures.
Assume that the inductive hypothesis is true for all proper
substructures of a given structure, and use this assumption to prove
it for the given structure. Structures that have no proper
substructures are the base cases and must be proved directly.

All problems with blue boxes have an answer or hint available at the end

of the book.

This problem explores ways to prove that

2+2+ +2_1 1\"
39 3n 3

for all positive integers n.

a. First, we explore how to prove the formula by contradiction. In
other words, assume that there is some integer n that makes the
formula false. In this case, there must be some smallest » that
makes the formula false.

i. Can this smallest n be 1?
ii. What do you know about

2 + 2 +-+ 2
39 3
when i is a positive integer smaller than this smallest n?
iii. Is m — 1 a positive integer for this smallest n?
iv. What do you know about
2 + 2 +- 2
309 3n-1

for this smallest n?

Vi.

Vii.
viii.

ii.
iil.

iv.

Vi.

4.1: Mathematical Induction 181

Write the answer to part iv as an equation, add 2/3" to
both sides, and simplify the right side.

What does the equation that results from part v say about
your assumption that the formula is false?

What can you conclude about the truth of the formula?
If p(k) is the statement

2 + 2 + ot 2 _ 1 '

39 3k 3)°
what implication did you prove in the process of deriving
your contradiction?

i. What is the base case in a proof by mathematical

induction that

2+2+ +2_1 1"
39 3 3

for all positive integers n?

What would you assume as an inductive hypothesis?
What would you prove in the inductive step of a proof of
this formula by induction?

Prove it.

What does the principle of mathematical induction allow
you to conclude?

If p(k) is the statement

2+2+ +2_1 n*
39 3k 3)

what implication did you prove in the process of doing
your proof by induction?

2. Use contradiction to prove
1-242-3+---+n(n+1)=nn+1){n+2)/3.
Use induction to prove that
124234+ 4+nn+1)=nnr+ 1)(n+2)/3.
4. Prove that 1> +23 +33 + ... 41 =n’(n + 1)?/4.

E Use strong induction to write a careful proof of Euclid’s division

theorem.

6. Prove that >/ j <;) = ("+1 > In addition to an inductive proof,

Jj+1

there is a nice “story” proof of this formula. It is well worth trying
to figure out both proofs.

182 Chapter 4: Induction,

10.

11.

—
W
. .

14

16.

Recursion, and Recurrences

Prove that every number greater than 7 is a sum of a nonnegative
integer multiple of 3 and a nonnegative integer multiple of 5.

We can define the nonnegative powers of a number a by the rules
a’ =1 and a"T! = a" - a. Explain why this defines a” for all
nonnegative integers n. From this definition, prove the rule of
exponents a”*" = a™a" for nonnegative integers m and n.

Our arguments in favor of the sum principle were quite intuitive. In
fact, the sum principle for n sets follows from the sum principle for
two sets. Use induction to prove the sum principle for a union of n
sets from the sum principle for a union of two sets.

We have proved that every positive integer is a power of a prime
number or a product of powers of prime numbers. Show that this
factorization is unique in the following sense: If you have two
factorizations of a positive integer, both factorizations use exactly
the same primes, and each prime occurs to the same power in both
factorizations. For this purpose, it is helpful to know that if a prime
divides a product of integers, then it divides one of the integers in
the product. (Another way to say this is that if a prime is a factor of
a product of integers, then it is a factor of one of the integers in the
product.)

Find the error in the following “proof” that all positive integers n are
equal: Let p(n) be the statement that all numbers in an n-element set
of positive integers are equal. Then p(1) is true. Now assume

p(n — 1) is true, and let N be the set of the first n integers. Let N’
be the set of the first n — 1 integers, and let N” be the set of the last
n — 1 integers. By p(n — 1), all members of N’ are equal, and all
members of N” are equal. Thus, the first n — 1 elements of N are
equal and the last n — 1 elements of N are equal, and so all elements
of N are equal. Therefore, all positive integers are equal.

Prove by induction that the number of subsets of an n-element set

is 2",

Prove that the strong principle of mathematical induction implies the
weak principle of mathematical induction.

Prove that the weak principle of mathematical induction implies the
strong principle of mathematical induction.

Prove Statement 4.7.

An alternate version of the Ear Lemma states that a triangulated
polygon is either a triangle with three ears or has at least two ears.

4.2: Recursion, Recurrences, and Induction 183

(This version does not specify that the ears are nonadjacent.) What
happens if we try proving this by induction, using the same
decomposition that we used in proving the Ear Lemma?

17. There is a relationship between the number of vertices in a polygon
and the number of triangles in any triangulation of that polygon.
State this relationship and prove it by induction.

4.2 RECURSION, RECURRENCES, AND INDUCTION

Recursion

Exercise 4.2-1 Describe how you have used recursion when writing programs. Include as
many uses as you can.

Exercise 4.2-2 A standard problem for computer science students who are learning about
recursion is the Tower of Hanoi problem. In this problem, we have three
pegs numbered 1, 2, and 3. One peg has a stack of n disks, each smaller
in diameter than the one below it, as in Figure 4.3. An allowable move
consists of removing a disk from one peg and sliding it onto another peg
so that it is not above another disk of smaller size. We are to determine
how many allowable moves are needed to move the disks from one peg to
another. Describe the strategy you have used or would use in a recursive
program to solve this problem.

A

1 2 3 1 2 3

Figure 4.3: The Tower of Hanoi

For the Tower of Hanoi problem, to solve the problem with no disks, do
nothing. To solve the problem of moving all n disks to Peg 3, do the
following:

1. Recursively solve the problem of moving the top n — 1 disks from
Peg 1 to Peg 2.
2. Move Disk n to Peg 3.

3. Recursively solve the problem of moving the n — 1 disks on Peg 2
to Peg 3.

184 Chapter 4: Induction, Recursion, and Recurrences

Thus, if M (n) is the number of moves needed to move n disks from Peg i
to Peg j, we have
M(n)=2M(n —1) + 1.

This equation is an example of a recurrence equation or recurrence. A
recurrence equation for a function defined on the set of integers greater than
or equal to some number b is one that tells us how to compute the nth value
of a function from the (n — 1)st value or how to compute the nth value from
some or all the first n — 1 values. To specify completely a function on the
basis of a recurrence, we have to give enough information about the function
to get started. This information is called the initial condition (or the initial
conditions) (which we also call the base case) for the recurrence. In this
case, we have said that M (0) = 0. Using this, we get from the recurrence
that M(1) =1, M(2) =3, M(3) =7, M(4) =15, and M(5) = 31. We are
led to guess that M(n) = 2" — 1.

Formally, we write our recurrence and initial condition together as

0 ifn=0,
M(n) = (4.8)
2M(n — 1) + 1 otherwise .

Now we give an inductive proof that our guess that M(n) =2" — 1 is
correct. The base case is trivial, because we have defined M (0) = 0, and
0 = 29 — 1. For the inductive step, we assume that n > 0 and M(n — 1) =
2"=! _ 1. From the recurrence, M (n) = 2M(n — 1) + 1. But, by the induc-
tive hypothesis, M(n — 1) =2"~! — 1; so, we get that

Mn)=2Mmn —1)+1
=202"'—1)+1
=2" 1.

Thus, by the principle of mathematical induction, M (n) = 2" — 1 for all
nonnegative integers n.

The ease with which we solved this recurrence and proved our solution cor-
rect is no accident. Recursion, recurrences, and induction are all intimately
related. The relationship between recursion and recurrences is reasonably
transparent—recurrences give a natural way of analyzing recursive algo-
rithms. Both recursion and recurrences specify the solution to an instance
of a problem in terms of solutions to one or more smaller instances. Induc-
tion also falls naturally into this paradigm in that we are deriving a statement

Exercise 4.2-3

Exercise 4.2-4

Exercise 4.2-5

4.2: Recursion, Recurrences, and Induction 185

p(n) from statements p(n’) for n’ < n. In fact, we saw at the end of
Section 4.1 that proof by induction can be thought of as proof by recursion.
Thus, we really have three variations on the same theme.

We also observe, more concretely, that the mathematical correctness of
solutions to recurrences is naturally proved via induction. Also, the cor-
rectness of a recurrence that describes the number of steps needed to solve
a recursive problem is also naturally proved by induction. The recurrence
or recursive structure of the problem makes setting up the inductive proof
straightforward.

Examples of First-Order Linear Recurrences

The empty set () is a set with no elements. How many subsets does it
have? How many subsets does the one-element set {1} have? How many
subsets does the two-element set {1, 2} have? How many of these subsets
contain 2?7 How many subsets does {1, 2, 3} have? How many contain 3?
Give a recurrence for the number S(n) of subsets of an n-element set, and
prove that your recurrence is correct.

When paying off a loan with initial amount A and monthly payment M at an
interest rate of p percent, the total amount 7(n) of the loan after n months
is computed by adding p/12 percent to the amount due after n — 1 months
and then subtracting the monthly payment M. Convert this description into
a recurrence for the amount owed after » months.

Given the recurrence
Tn)y=rT(n — 1) +a,

where r and a are constants, find a recurrence that expresses 7(n) in terms
of T(n — 2) instead of T(n — 1). Now find a recurrence that expresses 7(n)
in terms of T(n — 3) instead of T(n — 2) or T(n — 1). Now find a recurrence
that expresses 7(n) in terms of 7(n — 4) rather than T(n — 1), T(n — 2), or
T(n — 3). Based on your work so far, find a general formula for the solution
to the recurrence

Tn) =rT(n — 1) + a,

with 7(0) = b and where r and a are constants.

186 Chapter 4: Induction, Recursion, and Recurrences

If we construct small examples for Exercise 4.2-3, we see that ¥ has only
one subset, {1} has two subsets, {1, 2} has four subsets, and {1, 2, 3} has
eight subsets. These small examples give us a good guess as to what the gen-
eral formula is, but to prove it, we will need to think recursively. Consider
the subsets of {1, 2, 3}:

g {2y {12}
31 {13} {2,3} {1.2,3}

The first four subsets do not contain 3, but the second four do. Furthermore,
the first four subsets are exactly the subsets of {1, 2}, while the second four
are the four subsets of {1,2} with 3 added into each one. So, we get a
subset of {1, 2, 3} either by taking a subset of {1, 2} or by adjoining 3 to a
subset of {1, 2}. This suggests that the recurrence for the number of subsets
of an n-element set (which we may assume is {1, 2,...,n}) is

S(n) = (4.9)

28S(n—1) ifn>1,
ifn=0.

To prove that this recurrence is correct, we note that the subsets of
{1,2,...,n} can be partitioned according to whether they contain element
n. The subsets of {1,2,...,n} containing element n can be constructed
by adjoining the element n to the subsets not containing element n. So,
the number of subsets containing element n is the same as the number of
subsets not containing element n. The number of subsets not containing
element n is simply the number of subsets of an (n — 1)-element set.
Therefore, each block of our partition has size equal to the number
of subsets of an (n — 1)-element set. Thus, by the sum principle, the
number of subsets of {1,2,...,n} is twice the number of subsets of
{1,2,...,n — 1}. This proves that S(n) = 2S(n — 1) if n > 0. We already
observed that ¢J has only one subset (itself), so we have proved the
correctness of Recurrence 4.9.

For Exercise 4.2-4, we can algebraically describe what the problem said in
words by

0.01p
T(n) = <1—I—T>-T(n—1)—M,

with 7(0) = A. Note that we add 0.01 p/12 times the principal to the amount
due each month, because p/12 percent of a number is 0.01p/12 times the
number.

4.2: Recursion, Recurrences, and Induction 187

Iterating a Recurrence
Turning to Exercise 4.2-5, we can substitute the right side of the equation
Tin —1) =rT(n —2) +a for T(n — 1) in our recurrence and then substi-
tute the similar equations for 7(n — 2) and T(n — 3):
T(n) = r(rT(n —-2)+ a) +a

:rzT(n—2)+ra+a

= rz(rT(n —3) +a) +ra+a

:r3T(n —3)+r2a+ra+a

=r3(rT(n —4) —|—a) +rla+ra+a

= r4T(n —4) + rla+r’a+ra+a.

From this, we can guess that

n—1
T(n) = r"T(0) + a Z r
i=0

n—1
=r"b+ay r. (4.10)
i=0
The method we used to guess the solution is called iterating the recurrence

because we repeatedly use the recurrence with smaller and smaller values
in place of n. We could instead have written

T0)=»b

T(1) =rT0) + a
=rb+a

T2)=rT()+a
=r(rb+a)+a
=r’b+ra+ta

T(3)=rT12) +a
=r*b+r’a+ra+a,
which leads us to the same guess. Why, then, have we introduced two

methods? Having different approaches to solving a problem often yields
insights we would not get with just one approach. For example, when we

188 Chapter 4: Induction, Recursion, and Recurrences

Theorem 4.1

study recursion trees, we will see how to visualize the process of iterating
certain kinds of recurrences to simplify the algebra involved in solving them.

Geometric Series

You may recognize the sum Z?:_o] r' in Equation 4.10. It is called a finite
geometric series with common ratio r. The sum Z?;(} ar' is called a
finite geometric series with common ratio r and initial value a.

To get a closed formula for a finite geometric series when r 7 1, we multiply
by r and subtract:

S=1+4+r4+r2+... !
rS=r+ri4. 4"
S—rS=1+0+---+0—r"
1-rNS=1-r"

1—r"

S = .
1—r

Combining the first and last equation above, and using sum notation, we
obtain:

n—1 i 1 —
> o= . (4.11)
‘ 1—r
=0
This formula lets us rewrite the formula for 7(n) in a very nice form.

If T(n) = rT(n — 1) +a, T(0) = b, and r # 1, then

1—r"

T(n) =r"b+a (4.12)

1—r

for all nonnegative integers 7.
Proof We prove our formula by induction. Notice that the formula gives

T(O):rb+a1 ,

—r

which is b. So, the formula is true when n = 0. Now assume that n > 0

and
1 — 1
Tn—D=r"""b+a——
1—r

Corollary 4.2

4.2: Recursion, Recurrences, and Induction 189

Then we have

Tn)=rT(n—1)+a

1 — n—1
=r (r"lb+a7r) +a

1—r
_ n
=r"b—|—L ar +a
1—r
Zrnb+ar—ar"+a—ar
1—r
1_ n
=r"b+a ~.
1—r

Therefore, by the principle of mathematical induction, our formula holds
for all integers n > 0.

We can use Theorem 4.1 as an alternate way to prove Equation 4.11. One
possible value for r in Theorem 4.1 is 0. With » = 0, our recurrence gives
us T(0) = b, so we expect Equation 4.12 to give b as well. It is standard
for many reasons to define 0° to be 1, which is exactly what we need to
make Equation 4.12 correct in this special case.

The formula for the sum of a geometric series with r = 1 is

1—r

n—1 i 1—n
> o= . (4.13)
i=0

Proof Define T(n)= Y/, r' for n>0 and T(0)=0. Then T(n)=
rT(n — 1) 4+ 1. Applying Theorem 4.1, with b = 0 and a = 1, gives us

1—r"

T ==,

Often, when we see a geometric series, we will only be concerned with
expressing the sum in big O notation. In this case, we can show that the
sum of a geometric series is at most the largest term times a constant factor,
where the constant factor depends on r but not on n. For example, if |r| < 1,
then the largest term in the sum is 1 and the numerator of (1 —r"*)/(1 —r)

190 Chapter 4: Induction, Recursion, and Recurrences

is less than 1; so, the quotient is no more than the constant 1/(1 — r). Thus,
the sum of the series is no more than the constant 1/(1 — r) times 1. In
other words, the sum of the series is O(1).

Lemma 4.3 Let r be a quantity whose value is independent of n and not equal to 1.
Let 7(n) be the largest term of the geometric series

n—1

Zri.

i=0

Then the value of the geometric series is O (¢(n)).

Proof It is straightforward to see that we may limit ourselves to proving
the lemma for r > 0. We consider two cases, depending on whether r > 1
orr <1.If r > 1, then

n—1
‘ 1—r
i=0
_r”—l
Cor—1
rn
<
“r—1
:rn—l r
r—1
= 00").

On the other hand, if » < 1, then the largest term is rO =1, and the sum
has value

1—r" 1

< .
1—r 1—r

Thus, the sum is O(1), and because #(n) = 1, the sum is O (¢ (n)).

In fact, when r is nonnegative, an even stronger statement is true. Recall
that we said that for two functions f and g from the real numbers to the
real numbers, f = 0O(g) if f = O(g) and g = O(f).

Theorem 4.4

4.2: Recursion, Recurrences, and Induction 191

Let » be a nonnegative quantity whose value is independent of n and not
equal to 1. Let 7(n) be the largest term of the geometric series

Then the value of the geometric series is @(t (n)).

Proof By Lemma 4.3, we need only show that

' —1
t(n) =0 .
r—1
Because all ' are nonnegative, the sum Z?:_ol r' is at least as large as any
of its summands. But #(n) is one of these summands, so

r"—1
t(n):O(r_1>.

Note from the proofs that 7(n) and the constant in the big O and big
® upper bounds depend on r. We will use this theorem in subsequent
sections.

First-Order Linear Recurrences

A recurrence of the form T(n) = f(n)T(n — 1) + g(n) is called a first-
order linear recurrence. When f(n) is a constant, such as r, the general
solution is almost as easy to write as in Theorem 4.1. Iterating the recurrence
gives us

Tn)=rT(n — 1)+ g(n)
= r(rT(n —-2)+gn — 1)) + g(n)
=r’T(n —2) + rg(n —1)+g(n)
= rz(rT(n -3+ gn— 2)) +rgn—1)+ gn)
=r*T(n = 3) +r’g(n = 2) +rgn —1) + g(n)
=3 (rT(n — 4) + g(n — 3)) + r2g(n — 2) + rg(n — 1) + g(n)

192 Chapter 4: Induction, Recursion, and Recurrences

Theorem 4.5

=T —4) +r3gn —3)+r’g(n —2) +rgin — 1) + g(n)

n—1

=r"TO) + Y rigtn—i).

i=0

This calculation suggests our next theorem.

For any positive constants a and r and any function g defined on the
nonnegative integers, the solution to the first-order linear recurrence

rT(n — 1)+ gn) ifn >0,
T(n) =
a if n =0,
is

T(n) =r"a+ Zr"‘ig(i). (4.14)

i=1

Proof Let’s prove this by induction.

Because the sum) ;_, r"~ig(i) in Equation 4.14 has no terms when n = 0,
the formula gives T(0) = a and, so, is valid® when n = 0. We now assume
that n is positive and T(n — 1) = r""la + Z:’:—ll r®=D=ig(j). Using the
definition of the recurrence and the inductive hypothesis, we get that

Tn) =rT(n — 1) + g(n)

n—1
=r (r”_la + Zr(”_l)_ig(i)> +g(n)

i=1
n—1

=r"a+ Y r" V) + g(n)
i=1
n—1

=r"a+ Zr"_ig(i) + g(n)

i=1

n
=r"a+ Zr"_ig(i) .
i=1

SPart of the definition of summation notation is that we assign 0 to a summation that has
no terms because the value of the summation index below the summation sign is larger
than the value of the summation index above the sign.

Exercise 4.2-6

Exercise 4.2-7

4.2: Recursion, Recurrences, and Induction 193

Therefore, by the principle of mathematical induction, the solution to

rT(n —1)+g(n) ifn >0,
T(n) =
a if n =0,

is given by Equation 4.14 for all nonnegative integers n.

The formula in Theorem 4.5 is a little less easy to use than that in
Theorem 4.1 because it gives us a sum to compute. Fortunately, for a
number of commonly occurring functions g, the sum) '_, 7" ' g(i) is not
too hard to compute.

Solve the recurrence T(n) = 4T(n — 1) + 2", with T(0) = 6.
Solve the recurrence T(n) = 3T(n — 1) + n, with T(0) = 10.

For Exercise 4.2-6, we can use Equation 4.14 to write

n
T(n) =6-4" +Z4"—f 2
i=1
n
=6-4"+4") 472
i=1

:6,4n+4ni(%)z

i=1

1=y
—6.4" 4 4". —. _
R Z(z)
i=0
ln
=64+ (1-(=))4
(-()
—7.4" — 0",

For Exercise 4.2-7, we begin in the same way and quickly face a bit of a
surprise. Using Equation 4.14, we write

n
T(n) = 10-3" + 23"*" .
i=l1
n
=10.3"+3"Zi3*’

i=1

194 Chapter 4: Induction, Recursion, and Recurrences

n 1 i
—=10-3" 43"y (=) . 4.15
+ 2}(3) (4.15)

i=1

Now we are faced with a sum that you may not recognize, a sum that has

the form
sz = szx ,

i=1

with x = 1/3. However, by writing it in this form, we can use calculus
to recognize it as x times a derivative. In particular, using the fact that
0x% = 0, we can write

;x —szx —x—éx"=x%<ﬂ).

Using the formula from calculus for the derivative of a quotient, we may

write
d (1 _xn+1) (1—x)(— (4 Dx") — (1 —x"TH(=1)
X — =x
dx 1 —x (1 —x)?2
B nxn+2 _ (I’l + 1)xn+l +x
N (1 —x)2 '

Connecting our first and last equations, we get

Xn: X" — (4 D 4 x
ix' =)
(1 —x)?

(4.16)

Substituting x = 1/3 and simplifying gives us

2”:. ' 3(+1) N 3 1"+1+3
- =—n — —— | = —.
Hl 3 2 3 4\3 4

Substituting this into Equation 4.15 gives us

.)_10 - - 3 X 1 n+l 3 /1 n+1 3
(n) =10-3" + _§(n+)(§> _Z<§> +4_l

n+1 1 37l

2 1777
93,1 n+1 1
4 2 4

=10-3" —

Theorem 4.6

4.2: Recursion, Recurrences, and Induction 195

The sum that arises in this exercise occurs so often that we give its formula
as a theorem. Because the formula is so complicated, we prefer deriving it
when we need it rather than memorizing it.°

For any real number x # 1,

Zixi _ nxn+2 _ (n + 1)xn+1 +x
B (1 —x)? '

Proof The proof for this theorem was given before the statement of the
theorem.

1. Recurrence equation or recurrence. A recurrence equation for a
function defined on the set of integers greater than or equal to some
number b is one that tells us how to compute the nth value of a
function from the (n — 1)st value or how to compute the nth value
from some or all the first n — 1 values.

2. Initial condition. To specify completely a function on the basis of a
recurrence, we have to give enough information about the function
to get started. This information is called the initial condition (or the
initial conditions) for the recurrence.

3. First-order linear recurrence. A recurrence
T(n) = f(n)T(n — 1) + g(n) is called a first-order linear recurrence.

4. Constant coefficient recurrence. A recurrence in which T(n) is
expressed in terms of a sum of constant multiples of 7(k) for certain
values k < n (and perhaps another function of n) is called a constant
coefficient recurrence.

5. Solution to a first-order constant coefficient linear recurrence. If
T(n) =rT(n — 1) 4+a, T(0) = b, and r # 1, then

1_ n
T(n) =r"b+a r

1—r

for all nonnegative integers n.

The derivation consists of recognizing the left side of the formula as x times a derivative
of a geometric series, using the quotient rule for this derivative, and substituting.

196

Chapter 4: Induction, Recursion, and Recurrences

. Finite geometric series. A finite geometric series with common ratio

r is a sum of the form Y/, r'. The formula for the sum of a
geometric series with r # 1 is

S l—=r

i=0

. Big ® bounds on the sum of a geometric series. Let r be a

nonnegative quantity whose value is independent of n and not equal
to 1. Let #(n) be the largest term of the geometric series

n—1
E rt.
i=0

Then the value of the geometric series is @(t (n)).

. Solution to a first-order linear recurrence. For any positive constants

a and r and any function g defined on the nonnegative integers, the
solution to the first-order linear recurrence

rTn —1)+4+gn) ifn >0,
T(n) =
a ifn=0,
is

T() =r"a+ Yy r"g().

i=l

. Iterating a recurrence. We are iterating a recurrence when we guess

its solution by

a. using the equation that expresses 7(n) in terms of 7(k) for k
smaller than n to reexpress 7(n) in terms of T(k) for k smaller
than n — 1,

b. reexpressing 7(n) in terms of 7(k) for k smaller than n — 2, and

c. repeating this procedure until we can guess the formula for the
sum.

10. An important sum. For any real number x # 1,

Xn:ixi _ nxn+2 _ (n + 1)xn+1 +x
- (I —x)? ’

i=1

4.2: Recursion, Recurrences, and Induction 197

The derivation of this formula consists of recognizing the left side of
the formula as x times a derivative of a geometric series, using the
quotient rule for this derivative, and substituting.

All problems with blue boxes have an answer or hint available at the end
of the book.

1. Prove Equation 4.13 directly by induction. (Recall that » # 1.)
2. Prove Equation 4.16 directly by induction. (Assume x # 1.)

Solve the recurrence M (n) =2M(n — 1) + 2, with a base case of
M (1) = 1. How does it differ from the solution to Recurrence 4.8?

n Solve the recurrence M (n) = 3M(n — 1) + 1, with a base case of
M (1) = 1. How does it differ from the solution to Recurrence 4.8?

Solve the recurrence M (n) = M(n — 1) + 2, with a base case of
M (1) = 1. How does it differ from the solution to Recurrence 4.8?

n There are m functions from a one-element set to the set

{1,2,...,m}. How many functions are there from a two-element set
to {1, 2,...,m}? From a three-element set? Give a recurrence for the
number 7(n) of functions from an n-element set to {1, 2, ..., m}.

Solve the recurrence.
7. Solve the recurrence derived in Exercise 4.2-4.

m At the end of each year, a state fish hatchery puts 2000 fish into a
lake. The number of fish in the lake at the beginning of the year
doubles by the end of the year due to reproduction. Give a
recurrence for the number of fish in the lake after n years, and solve
the recurrence.

9. Consider the recurrence 7(n) = 3T(n — 1) + 1, with the initial
condition 7(0) = 2. You could write the solution from Theorem 4.1.
Instead of using the theorem, try to guess the solution from the first
four values of 7T(n) and then try to guess the solution by iterating the
recurrence four times.

What sort of big ® bound can you give on the value of a geometric
series 1 + 7 + r2 + - -+ + r", with common ratio r = 1?
11. Solve the recurrence T(n) = 27(n — 1) + n2", with the initial
condition 7(0) = 1.

Solve the recurrence T(n) = 2T(n — 1) + n>2", with the initial
condition 7(0) = 2.

198 Chapter 4: Induction, Recursion, and Recurrences

13. Solve the recurrence T(n) = 27T(n — 1) + 3", with T(0) = 1.
Solve the recurrence T(n) = rT(n — 1) 4+ r", with T(0) = 1.

15. Solve the recurrence T(n) = rT(n — 1) + r?", with 7(0) = 1.
(Assume that r # 1.)

Solve the recurrence T(n) = rT(n — 1) + 5", with 7(0) = 1. (Assume
that r # s.)

17. Solve the recurrence T(n) = rT(n — 1) 4+ n, with T(0) = 1. (Assume
that r £ 1.)

18. The Fibonacci numbers are defined by the recurrence

{T(n— D+Tm—2) ifn>0,
T(n) =

ifn=0o0rn=1.

a. Write the first 10 Fibonacci numbers, starting with 7(0).

b. Show that ((1++/5)/2)" and ((1 — +/5)/2)" are solutions to
the equation F(n) = F(n — 1) + F(n — 2).

c. Why is . .
1+4/5 1-+/5
C1 > +)

a solution to the equation F(n) = F(n — 1) + F(n — 2) for any
real numbers ¢; and ¢;?

d. Find constants ¢; and ¢, such that the Fibonacci numbers are

given by
1 " -5\
F(n)=c (+2ﬁ> + (2ﬁ> .

19. Solve the sum in Theorem 4.6 by using the “multiply by x and
subtract” approach used to derive Equation 4.11.

4.3 GROWTH RATES OF SOLUTIONS TO RECURRENCES

Divide and Conquer Algorithms

One of the most basic and powerful algorithmic techniques is divide and
conquer. Consider, for example, the binary search algorithm, which we will
describe in the context of guessing a number between 1 and 100. Suppose

Exercise 4.3-1

4.3: Growth Rates of Solutions to Recurrences 199

someone picks a number between 1 and 100 and allows you to ask questions
of the form “Is the number greater than £?” or “Is the number equal to k?7”
where k is an integer you choose. Your goal is to ask as few questions as
possible to get a “yes” to a question of the form “Is the number equal to
k7’ Why should your first question be, “Is the number greater than 507"
After asking if the number is bigger than 50, you have learned either that
the number is between 1 and 50 or that the number is between 51 and 100.
In either case, you have reduced your problem to one in which the range
is only half as big. Thus, you have divided the problem into a problem that
is only half as big, and you can now (recursively) conquer this remaining
problem. (If you ask any other question, the size of one of the possible
ranges of values you could end up with would be more than half the size
of the original problem.) If you continue in this fashion, always cutting the
problem size in half, you will reduce the problem size to 1 fairly quickly,
and then you will know what the number is. Of course, if we started with a
number in the range from 1 to 128, it would be easier to cut the problem size
exactly in half each time, but the question doesn’t sound quite so plausible
then. Thus, to analyze the problem, we will assume someone asks you to
figure out a number between O and n, where n is a power of 2.

Let T(n) be the number of questions in a binary search on the range of
numbers between 1 and n. Assuming that n is a power of 2, give a recurrence
for T(n).

For Exercise 4.3-1, we get

Tn/2)+1 ifn>2
T(n) = (4.17)
1 ifn=1.

That is, the number of questions needed to carry out binary search on n
items is equal to one step (the first question) plus the time to perform binary
search on the remaining n/2 items. Note that the base case is 7(1) =1
because we have to ask a question of the form “Is the number k£?” when
we have reduced the range of possible values to 1.

What we are really interested in is how much time it takes to use binary
search in a computer program that looks for an item in an ordered list.
While the number of questions gives us a feel for the amount of time,
processing each question may take several steps in our computer program.
The exact amount of time these steps take might depend on some factors
over which we have little control, such as where portions of the list are
stored. Also, we may have to deal with lists with lengths that are not a

200 Chapter 4: Induction, Recursion, and Recurrences

power of 2. Thus, a more realistic description of the maximum time needed
would be

T([n/2]) +C, ifn > 2,
T(n) = (4.18)
2 ifn=1,

where C; and C, are constants.

Note that [x7] stands for the smallest integer larger than or equal to x,
whereas | x| stands for the largest integer less than or equal to x. It turns
out that the solution to Recurrences 4.17 and 4.18 are roughly the same,
in a sense that should become clear later. For now, let’s not worry about
floors and ceilings and the distinction between things that take one unit of
time and things that take no more than some constant amount of time.

Instead, let’s turn to merge sort, another example of a divide-and-conquer
algorithm. In this algorithm, we wish to sort a list of n items. Assume
that the data are stored in Positions 1 through n of an array A and that
n is a power of 2. If the list has only one element, we don’t need to do
anything to sort it. Otherwise, to sort the list, we divide A into the portions
from 1 to n/2 and from n/2 4 1 to n. We recursively sort the first half, we
recursively sort the second half, and then we merge the two sorted “half
lists” into one sorted list. (We saw examples of one way to merge two lists
in the beginning of Section 3.1.) Merge sort can be described in pseudocode
as follows:

MergeSort (A, low,high)

// This algorithm sorts the portion of list A from
// location low to location high.
if (low == high)
return
else
mid = |[(low + high) /2]
MergeSort (A, low, mid)
MergeSort (A,mid+1,high)
Merge the sorted lists from the previous two steps
return

More details on merge sort can be found in almost any algorithms textbook.
The base case (low == high) takes one step. The other case executes
one step, makes two recursive calls on problems of size n/2, and then
executes the merge instruction, which can be done in n steps.

4.3: Growth Rates of Solutions to Recurrences 201

Thus, we obtain the following recurrence for the running time of merge
sort:

2T(n/2) +n ifn>1,
T(n) = (4.19)
1 if n=1.

Recurrences such as this one can be understood via the idea of a recursion
tree, which we introduce next. This concept allows us to analyze recurrences
that arise in divide-and-conquer algorithms, as well as those that arise in
other recursive situations, such as the Tower of Hanoi.

Recursion Trees

A recursion tree for a recurrence is a visual and conceptual representation of
the process of iterating the recurrence. We use several examples to introduce
the idea of a recursion tree. To understand recursion trees, it is helpful to
have an “algorithmic” interpretation of a recurrence. For example, ignoring
for a moment the base case, we can interpret the recurrence

T(n) = 2T (%) +n (4.20)

as, “To solve a problem of size n, we must solve two problems of size n/2
and do n units of additional work.” Similarly, we can interpret

T(n) =T <%> +n?

as, “To solve a problem of size n, we must solve one problem of size n/4
and do n? units of additional work.” We can also interpret the recurrence

Tn) =3Tn—1)+n

as, “To solve a problem of size n, we must solve three subproblems of size
n — 1 and do n additional units of work.”

In Figure 4.4, we draw the beginning of the recursion tree diagram for
Recurrence 4.20. For now, assume n is a power of 2. We draw the diagram
in levels, each level representing a level of recursion. Equivalently, each
level of the diagram represents a level of iteration of the recurrence. A
level of a recursion tree diagram has five parts: two on the left, one in the
middle, and two on the right. On the left, we keep track of the problem
size and the number of problems; in the middle, we draw the tree; and
on the right, we keep track of the work done per problem and the total

202 Chapter 4: Induction, Recursion, and Recurrences

Number of
problems

1

22=4

2% =38

Problem
size

n

n/2

n/4

n/8

Number of Problem Work per Work per
problems size problem level

1 n n n

2 n/2

Figure 4.4: The initial stage of drawing a recursion tree diagram

amount of work done on the current level. So, to begin the recursion tree
diagram for Recurrence 4.20, we show, in Level O on the left, that we have
one problem of size n. Then, by drawing a root vertex with two edges
leaving it, we show in the middle that we are splitting our problem into
two problems. We note on the right that we do n units of work in addition
to whatever is done on the two new problems we created. Because there is
only one problem on this level, the total work done on this level is n units
of work. In the next level, we draw two vertices in the middle, representing
the two problems into which we split our main problem, and we show on
the left that we have two problems of size n/2.

Notice how the recurrence is reflected in Levels 0 and 1 of the recursion
tree. The top vertex of the tree represents 7(n). On the next level, we have
two problems of size n/2, representing the recursive term 27(n/2) of our
recurrence. After we solve these two problems, we return to Level 0 of
the tree and do »n additional units of work for the nonrecursive term of the
recurrence.

Now we continue to draw the tree in the same manner. Filling in the rest of
Level 1 (which is the second level because the first is Level 0) and adding
a few more levels, we get Figure 4.5.

Work per Work per

problem level

n n

n/2 n/2+n/2=n

n/4 n/4+n/4+n/d+n/d=n
n/8 8(n/8) =n

Figure 4.5: Four levels of a recursion tree diagram

4.3: Growth Rates of Solutions to Recurrences 203

Let us summarize what the diagram tells us so far. At Level O (the top
level), n units of work are done. We see that at each succeeding level, we
halve the problem size and double the number of subproblems. We also see
that at Level 1, each of the two subproblems requires n/2 units of additional
work; thus, a total of n units of additional work are done. Similarly, Level
2 has four subproblems of size n/4; thus, 4(n/4) = n units of additional
work are done. Notice that to compute the total work done on a level, we
add the amount of work done on each subproblem. When the problems all
have the same size, as they do here, this is equivalent to multiplying the
number of subproblems by the amount of additional work per subproblem.

To see how iteration of the recurrence is reflected in the diagram, we iterate
the recurrence once to obtain

If we examine Levels 0, 1, and 2 in Figure 4.5, we see that at Level 2
we have four vertices, which represent four problems, each of size n/4.
This corresponds to the recursive term that we obtained after iterating the
recurrence. However, after we solve these problems, we return to Level 1,
where we do n/2 additional units of work twice, and to Level 0, where we
do another n additional units of work. In this way, each time we add a level
to the tree, we are showing the result of one more iteration of the recurrence.

We now have enough information to describe the recursion tree diagram in
general. To do this, we need to determine four things for each level:

* the number of subproblems

¢ the size of each subproblem

* the amount of work done per subproblem

¢ the total work done at that level
Once we know, for each level, the total work done at that level, we can

sum over all levels to obtain the total overall work. For this purpose, we
also need to figure out how many levels there are in the recursion tree.

We see that for this problem, at Level i, we have 2/ subproblems of size n /2.
Furthermore, because a problem of size 2% requires 2/ units of additional
work, there are (2’)(n / (2’)) = n units of work done per level. To figure

204 Chapter 4: Induction, Recursion, and Recurrences

Number of
problems

1

logn
levels

22=4

2 =3

2]ogn =n

out how many levels there are in the tree, we notice that at each level, the
problem size is cut in half, and the tree stops when the problem size is
1. Therefore, there are log, n + 1 levels of the tree, because we start with
the top level and cut the problem size in half log, n times.” We can thus
visualize the whole tree in Figure 4.6.

Problem Work per Work per

size problem level

n n (hn=n

n/2 n/2 n/2 +n/2=n

n/4 n/4 n/4+n/d+n/d+n/d=n
n/8 n/8 8(n/8) =n

1 QPO - Q@O ! n(l) =n

Figure 4.6: A finished recursion tree diagram

The computation of the work done at the bottom level is different from
the other levels. In the other levels, the work is described by the recursive
equation of the recurrence. At the bottom level, the work comes from the
base case. Thus, we must compute the number of problems of size 1 (for
this recurrence, the base case is n = 1) and then multiply this value by
T(1) = 1. In the recursion tree in Figure 4.6, the number of nodes at the
bottom level is 2°2” = n. Because T(1) = 1, we do n units of work at the
bottom level of the tree. But if we had chosen to say that 7(1) was some
constant ¢ other than 1, the work done at the bottom level would have been
cn. We emphasize that the correct value of work per problem at the bottom
level always comes from the base case.

The bottom level of the tree represents the final stage of iterating the recur-
rence. We have seen that at this level, we have n problems, each requiring
work 7(1) =1, giving us total work n for the level. After we solve the
problems represented by the bottom level, we have to do all the additional
work from all the earlier levels. For this reason, we sum the work done at

"To simplify notation for the remainder of the book, if we omit the base of a logarithm, it
should be assumed to be base 2.

4.3: Growth Rates of Solutions to Recurrences 205

all the levels of the tree to get the total work done. Iferation of the recur-
rence shows that the solution to the recurrence is the sum of all the work
done at all the levels of the recursion tree.

The important thing is that we now know how much work is done at each
level. Once we know this, we can sum the total amount of work done over
all the levels, giving us the solution to our recurrence. In this case, there
are log, n + 1 levels; at each level, the amount of work we do is n units.
Thus, we conclude that the total amount of work done to solve the problem
described by Recurrence 4.20 is n(log, n + 1).

Because one unit of time will vary from computer to computer, and because
some kinds of work might take longer than other kinds, we are usually
interested in the big ® behavior of 7(n). For example, we can consider
a recurrence that is identical to Recurrence 4.19, except that 7(1) = a for
some constant a. In this case, T(n) = an + nlogn, because an units of
work are done at Level 1, and n additional units of work are done at each
of the remaining log n levels. It is still true that T(n) = ®(n logn), because
the different base case did not change the solution to the recurrence by
more than a constant factor.® Although recursion trees can give the exact
solutions (such as T(n) = an + nlogn) to recurrences, our interest in the
big ® behavior of solutions will usually lead us to use a recursion tree to
determine the big ® or, in complicated cases, the big O behavior of the
actual solution to the recurrence. Problem 18 explores whether the value of
T(1) actually influences the big ® behavior of the solution to a recurrence
that arises from a divide-and-conquer algorithm.

Let’s look at one more recurrence:

T(n/2)+n ifn>1,
T(n) = (4.21)
1 ifn=1.

Again, assume 7 is a power of 2. We can interpret this as follows: To solve
a problem of size n, we must solve one problem of size n/2 and do n units
of additional work. Figure 4.7 shows the recursion tree diagram for this
problem. We see that the problem sizes are the same as in the previous
tree. The remainder, however, is different. The number of subproblems
does not double; rather, it remains at 1 on each level. Consequently, the
amount of work halves at each level. Note that there are still logn + 1
levels, because the number of levels is determined by how the problem size
changes, not by how many subproblems there are. So, on Level i, we have
one problem of size n/2!, for total work of n/2 units.

8More precisely, nlogn < an 4+ nlogn < (a + 1)nlogn for any a > 0.

206 Chapter 4: Induction, Recursion, and Recurrences

Exercise 4.3-2

Number of Problem Work per Work per
problems size problem level
1 n @ n n
1 n/2 @ n/2 n/2
logn + 1

levels 1 n/4 @ n/4 n/4
1 n/8 @) n/8 n/8
1 1 @) 1 1

Figure 4.7: A recursion tree diagram for Recurrence 4.21

We now wish to compute how much work is done in solving a problem
that gives this recurrence. Note that the additional work done is different
on each level, so we have that the total amount of work is

PRSP S PO L Y £ b
Ty Ty =" 2" 2 ’

which is n times a geometric series. By Theorem 4.4, the value of a geo-
metric series in which the largest term is 1 is ®(1). This implies that the
work done is described by T(n) = ©(n).

We emphasize that there is exactly one solution to Recurrence 4.21; it is
the one we get by using the recurrence to compute 7(2) from 7(1), then to
compute 7(4) from 7(2), and so on. Here, we have shown that T(n) = ©(n).
In fact, for the kinds of recurrences we have been examining, once we
know T(1), we can compute 7(n) for any relevant n by repeatedly using
the recurrence. Thus, there is no question that solutions do exist and can,
in principle, be computed for any value of n. In most applications, we are
not interested in the exact form of the solution; rather, we are interested in
a big O upper bound or a big ® bound on the solution.

Use a recursion tree to find a big ® bound for the solution to the recurrence
T(n) = {3T(n/3)+n if n > 3,
1 if n < 3.

Assume that n is a power of 3.

Exercise 4.3-3

Exercise 4.3-4

logyn + 1
levels

Number of
problems

1

32=9

3logyn = 5

4.3: Growth Rates of Solutions to Recurrences 207

Use a recursion tree to solve the recurrence

4T(n/2) +n ifn > 2,
T(n) =
if n=1.

Assume that n is a power of 2. Convert your solution to a big ® statement
about the behavior of the solution.

Can you give a general big ® bound for solutions to recurrences of the
form T(n) = aT(n/2) + n when n is a power of 2?7 You may have different
answers for different values of a.

The recurrence in Exercise 4.3-2 is similar to the merge sort recurrence.
One difference is that at each step, we divide into three problems of size
n/3 rather than two problems of size n/2. Thus, we get the picture in
Figure 4.8. Another difference is that the number of levels, instead of being
log, n + 1, is now logy n + 1, so that the total work is still ®(n logn) units.
(Note that log, n = ®(log, n) for any b > 1.)

Problem Work per Work per

size problem level

n n n

n/3 n/3 n/3+n/3+n/3=n
n/9 n/9 9(n/9) =n

I QPO - Q@O =~ (1) = n

Figure 4.8: The recursion tree diagram for the recurrence in Exercise 4.3-2

Now let’s look at the recursion tree for Exercise 4.3-3. A node of size n
has four children of size n/2, and we get Figure 4.9. Just as in the merge
sort tree, there are log, n + 1 levels. However, as we pointed out, each node
has four children. Thus, Level O has 1 node, Level 1 has 4 nodes, Level 2
has 16 nodes, and, in general, Level i has 4" nodes. On Level i, each node

208 Chapter 4: Induction, Recursion, and Recurrences

Number of Problem Work per Work per
problems size problem level
1 n n n
4 n/2 n/2 n/2+n/2+n/2+n/2=2n
logn + 1 s _
levels =16 n/4 n/4 16(n/4) = 4n
o2 1 Q000 - 000Q =

Figure 4.9: The Recursion tree for Exercise 4.3-3

corresponds to a problem of size n/2' and, hence, requires n/2' units of
additional work. Thus, the total work on Level i is 4/ (n/2') = 2/n units.
This formula also applies on Level log, n (the bottom level), because there
are 41081 — (p2)logn — p2logn — (plogny2 — 52 — plogny podes, each requir-
ing 7(1) = 1 work. Summing over the levels, we get

logn logn

Z 2in=n Z 2
i=0 i=0

There are many ways to simplify this expression. For example, from our
formula for the sum of a geometric series, we get

logn
nmznipi
i=0

1— 2(logn)+1
1-2
1—2n
—1
=2n’—n

= O1n?).

=n

=n

More simply, by Theorem 4.4, we have that T(n) = n - ©(2'°¢") = @ (n?).

Lemma 4.7

4.3: Growth Rates of Solutions to Recurrences 209

Three Different Behaviors

Let’s compare the recursion tree diagrams for the recurrences 7(n) =
2T(n/2) +n, T(n) = T(n/2) +n, and T(n) = 4T(n/2) 4+ n. Note that all
three trees have depth 14 log, n, as this is determined by the size of the
subproblems relative to the parent problem, and that in each case, the size
of each subproblem is half the size of the parent problem. The trees differ,
however, in the amount of work done per level. For the first recurrence,
the amount of work on each level is the same. In the second, the amount
of work done on a level decreases as we go down the tree, with the
most work being at the top level. In fact, it decreases geometrically; by
Theorem 4.4, the total work done is bounded above and below by a
constant multiplied by the work done at the root node. In the third
recurrence, the number of nodes per level is growing at a faster rate than
the problem size is decreasing, and the level with the largest amount of
work is the bottom one. Again, we have a geometric series; and so, by
Theorem 4.4, the total work is bounded above and below by a constant
multiplied by the amount of work done at the last level.

If you understand these three cases and the differences among them, then
you understand the great majority of the recursion trees that arise in algo-
rithms.

So, to answer Exercise 4.3-4, which asks for a general big ® bound for the
solutions to recurrences of the form 7T(n) = aT(n/2) 4+ n, we can conclude
the following:

Suppose that we have a recurrence of the form

T(n) =aT (g) + n,

where a is a positive integer and 7(1) is nonnegative. Then we have the
following big ® bounds on the solution:

1. If a < 2, then T(n) = O(n).

2. If a =2, then T(n) = O(nlogn).

3. If a > 2, then T(n) = O(n'°2%).

Proof Cases 1 and 2 follow immediately from our earlier observations.
We can verify Case 3 as follows: At Level i, we have a' nodes, each
corresponding to a problem of size n/2'. Thus, at Level i, the total amount of
work is a’ (n/2') = n(a/2)" units. Summing over the log, n levels, we obtain

(logn)—1

alogzﬂT(l)+n Z (%)i.

i=0

210 Chapter 4: Induction, Recursion, and Recurrences

Corollary 4.8

The sum given by the summation sign is a geometric series. Therefore,
because a/2 # 1, the sum will be big ® of the largest term (see
Theorem 4.4). Because a > 2, the largest term in this case is clearly
the last one, namely, n(a/2)1°¢™~1 Applying rules of exponents and
logarithms, we get that n times the largest term is

(a)(logzn)fl 2 n.qlogn
n =7

5 2logn

n- alogn

n

. alogn
(2log a)log n
(2log n)log a

.ploga, (4.22)

QIND UMD QI S

Thus, T(1)a'°2" = T(1)n'°2¢. Because 2/a and T(1) are both nonnegative,
the total work done is ® (n'°%29).

In fact, Lemma 4.7 holds for all positive real numbers a; we can iterate the
recurrence to see this. Because a recursion tree diagram is a way to visualize
iterating the recurrence when a is an integer, iteration is the natural thing
to try when a is not an integer.

Notice that in the last two equalities of the computation made in Equation
4.22, we showed that a'°¢" = p'°2¢_This fact is useful, so we state it (in
slightly more generality) as a corollary to the proof.

For any base b, we have ¢'°%" = plo2:9,

1. Divide-and-conquer algorithm. A divide-and-conquer algorithm is
one that solves a problem by dividing the problem into
“subproblems” that are smaller than, but otherwise of the same type
as, the original one; recursively solving these subproblems; and then

4.3: Growth Rates of Solutions to Recurrences 211

assembling the solution of these subproblems into a solution of the
original one. Although not all problems can be solved by such a
strategy, a great many problems of interest in computer science
can be.

. Merge sort. In merge sort, we sort a list of items that have some
underlying order by dividing the list in half, sorting the first half (by
recursively using merge sort), sorting the second half (by recursively
using merge sort), and then merging the two sorted lists. For a list of
length 1, merge sort returns the same list.

. Recursion tree diagram. We draw a recursion tree diagram for a
recurrence by levels, with each level representing a level of
recursion. A level of a recursion tree diagram has five parts: two on
the left, one in the middle, and two on the right. On the left, we
keep track of the problem size and the number of problems; in the
middle, we draw the tree; and on the right, we keep track of the
work done per problem and the total amount of work done on

the current level. The tree has a vertex representing the initial
problem and one representing each subproblem to be solved. The
work done per problem at each level, other than the bottom, is given
by the “additional work™ part of the recurrence. The work done at
the bottom level is determined by the base case of the recurrence, as
is the size of a problem at the bottom level. The solution to the
recurrence is the sum of the total work done at each level of the
recursion tree.

. The base level of a recursion tree. The amount of work done on the
lowest level in a recursion tree is the number of nodes times the
value given by the initial condition; it is not determined by
attempting to make a computation of “additional work™ done at the
lowest level.

. Bases for logarithms. We use logn as an alternate notation for log, n.
A fundamental fact about logarithms is that log, n = ©(log, n) for
any real number b > 1.

. An important fact about logarithms. For any b > 0, we have
alogb n _ nlogb a

. Three behaviors of solutions. The solution to a recurrence of the
form T(n) = aT(n/2) + n behaves in one of the following ways:
a. If a <2, then T(n) = O(n).
b. If a =2, then T(n) = ®(nlogn).
c. If a > 2, then T(n) = O (n'°29).

212 Chapter 4: Induction, Recursion, and Recurrences

All problems with blue boxes have an answer or hint available at the end
of the book.

1. Draw a recursion tree diagram for

{4T(n/4) +n ifn>2,
T(n) =

ifn=1.

Use it to find the exact solution to the recurrence. Assume 7 is a
power of 4.

Draw a recursion tree diagram for

[2T(n/2) +2n ifn>2,
T(n) =

ifn=1.

Use it to find the exact solution to the recurrence. Assume 7 is a
power of 2.

Draw a recursion tree diagram for

T(n) =

9T(n/3)+n iftn>1,
ifn=1.

Use it to find a big ® bound on the solution to the recurrence.
Assume 7 is a power of 3.

4. Draw a recursion tree diagram for

T(n) =

Tn/4)+n ifn > 2,
if n=1.

Use it to find a big ® bound to the solution to the recurrence.
Assume n is a power of 4.

Draw a recursion tree diagram for

{2T(n/4) +n ifn>2,
T(n) =

ifn=1.

Use it to find a big ® bound on the solution to the recurrence.
Assume n is a power of 4.

10.

11.

13.

4.3: Growth Rates of Solutions to Recurrences 213

Draw a recursion tree diagram for

[4T(n/2) +n? ifn>2,
T(n) =

ifn=1.

Use it to find the exact solution to the recurrence. Assume » is a
power of 2.

Draw a recursion tree diagram for

T(n) =

3T(n/3)+1 ifn>2,
ifn=1.

Use it to find the exact solution to the recurrence. Assume » is a
power of 3.

Draw a recursion tree diagram for 7(n) = T(n/3) + 1, with
T(1) = 3. Use it to find an exact solution to the recurrence.

Draw recursion trees, and use them to find big ® bounds on the
solutions to the following recurrences. For each, assume that
T(1) = 1 and that n is a power of the appropriate integer.

B8 T(n) =8T(n/2) +n
N 7(n) =8T(n/2) +n?
c. T(n)=3T(n/2)+n
[N 7(n) = T(n/4) + 1
e. T(n) =3T(n/3) + n?

Draw recursion trees and find exact solutions to the following
recurrences. For each, assume that 7(1) = 1 and that n is a power of
the appropriate integer.

EA T(n) = 8T(n/2) +n
N 7(n) =8T(n/2) +n?
c. T(n)=3Tn/2)+n
[N 7(n) = T(n/4) + 1
e. T(n) =3T(n/3) + n?
Find the exact solution to Recurrence 4.21.

Show that log, n = ®(log, n) for any constant b > 1.

Prove Corollary 4.8 by showing that a'°%" = n'°&¢

for any b > 0.

214 Chapter 4: Induction, Recursion, and Recurrences

14. Recursion trees work, even if the problems do not break up
geometrically or if the work per level is not n¢ units. Draw recursion
trees and find the best big O bounds you can for solutions to the
following recurrences. For each, assume that 7(1) = 1.

B8 Tn)=Thn—1)+n

b. T(n) =2Tn — 1) +n

T(n) = T(|[4/n]) + 1 (Assume n has the form n = 22i.)

ﬂ T(n) =2T(n/2) + nlogn (Assume n is a power of 2.)
In each case in Problem 14, is the big O bound you found a big ®
bound?
If Sn) =aS(n — 1)+ g(n) and g(n) < ¢" with 1 < ¢ < a, how fast
does S(n) grow (in big ® terms)?
WA If S(n) =aS(n — 1) + g(n) and g(n) = ¢" with 0 < a < ¢, how fast

does S(n) grow in big ® terms?

— s
5 A

18. Suppose you are given recurrences of the form
T(n) =aT(n/b) + g(n), with T(1) = d > 0 and g(n) > O for all n,
and S(n) = aS(n/b) + g(n), with S(1) = 0 (and the same a, b, and
g(n)). Is there any difference in the big ® behavior of the solutions
to the two recurrences? What does this say about the influence of the
initial condition on the big ® behavior of such recurrences?

4.4 THE MASTER THEOREM

Master Theorem

In Section 4.3, we saw three different kinds of behavior for recurrences of
the form
alT(n/2) +n ifn>1,

T if n =1.

These behaviors depend on whether a < 2, a =2, or a > 2. Remember
that a is the number of subproblems into which our problem is divided.
Dividing by 2 cuts our problem size in half each time. The n term says
that after we complete our recursive work, we have n additional units of
work to do for a problem of size n. There is no reason that the amount of
additional work required by each subproblem needs to be the size of the
subproblem. In many applications, it will be something else. In the master
theorem that follows, we consider a more general case. Similarly, the sizes
of the subproblems don’t have to be half the size of the parent problem.
We get the following theorem, our first version of the master theorem. (In
an appendix we prove some stronger forms of this theorem.)

Theorem 4.9

4.4: The Master Theorem 215

(Master Theorem, Preliminary Version) Let a be an integer greater than
or equal to 1, and let b be a real number greater than 1. Let ¢ be a positive
real number, and d, a nonnegative real number. Given a recurrence of the
form

al(n/b) +n¢ iftn > 1,
T(n) =
ifn=1,

in which 7 is restricted to be a power of b, we get the following:

1. If log, a < ¢, then T(n) = O (n°).
2. If logy a = ¢, then T(n) = ©(nlogn).
3. If log, a > ¢, then T(n) = O (n'°2 %),

Proof = We will prove the special case d = 1; the case for general d is not
much more difficult and is dealt with in Problem 6.

Let’s think about the recursion tree for this recurrence. There will be 1 +
log, n levels. At each level, the number of subproblems will be multiplied
by a; so, the number of subproblems at Level i will be a’. Each subproblem
at Level i is a problem of size n/b’. A subproblem of size n/b’ requires
(n/b")¢ additional work, and because there are a' problems on Level i, the
total number of units of work on Level i is

i () = () =n () (29

At the bottom level, n/b’ = 1 and there are a' subproblems, each requiring
one unit of work, so Equation 4.23 gives the work for the bottom level as
well. In Lemma 4.7, the different cases for ¢ = 1 occurred when the work
per level was decreasing, constant, or increasing. The same analysis applies
here. From our formula for work on Level i, we see that the work per level
is decreasing, constant, or increasing exactly when (a/b¢)' is decreasing,
constant, or increasing, respectively. These three cases depend on whether
(a/b¢) is less than 1, equal to 1, or greater than 1, respectively. Now
observe that

(o) =1
< a=>b°
& log,a = clog, b
& logya =c.

216 Chapter 4: Induction, Recursion, and Recurrences

Exercise 4.4-1

Exercise 4.4-2

This equation shows us where the three cases in the statement of the theorem
come from. Now we need to show the bound on 7(n) in the different cases.
In the next few paragraphs, we will use the following facts (whose proofs
are a straightforward application of the definition of logarithms and rules
of exponents).

« For any x, y, and z, each greater than 1, we have x'°% % = 71°%*
(See Corollary 4.8, Problem 13 from Section 4.3, and Problem 7
at the end of this section.)

e For any y > 0 and any real number x > 1, we have
log, y = ®(log, y). (See Problem 12 from Section 4.3.)

In general, we compute the total work done by summing the expression,
given in Equation 4.23, for the work per level over all the levels. This gives

logy, n log, n

3w () = 3 ()

1= 1=

In Case 1 (part 1 in the statement of the theorem), this is n¢ times a geometric
series with a common ratio less than 1. We now complete the proof in Case
1 and leave Cases 2 and 3 as exercises. Theorem 4.4 tells us that

log;, n

Y (bﬁ) — O).
i=0

This concludes the proof of Case 1.

Prove Case 2 of the master theorem.
Prove Case 3 of the master theorem.

In Case 2, we have that a/b° = 1, and so

log, n . logy, n
a\! :
ey (;) =n°)y I
i=0 i=0

=n‘(1 +log, n)
= O(nlogn).

Exercise 4.4-3

Exercise 4.4-4

4.4: The Master Theorem 217

In Case 3, we have that a/b¢ > 1. So, in the series

the largest term is the last one. Then by Theorem 4.4, the sum is
®(nc(a/b%)°% ™). But

1 logy, n
e (L) e
be (bc)log,,n
nlogba
=n" - —-
nlogy b€

nlogya

:nc-
nC

— nlogb a

Thus, the solution is © (n'°%).

Note that we may assume that a is a real number with a > 1 and give
a somewhat similar proof of the master theorem (replacing the recur-
sion tree with an iteration of the recurrence), but we do not give the
details here.

Solving More General Kinds of Recurrences
What can we say about the big ® behavior of the solution to

2T(n/3) +4n*? ifn > 1,
T(n) =

ifn=1,

where n can be any nonnegative power of 3?7

If f(n) =n«/n+ 1, what can we say about the big ® behavior of solutions
to
{2S(n/3) + f(n) ifn>1,

Sn) =
ifn=1,

where n can be any nonnegative power of 3?7

218 Chapter 4: Induction, Recursion, and Recurrences

For Exercise 4.4-3, the work done at each level of the tree, except for the
bottom level, will be four times the work done by the recurrence

2T'(n/3) +n*? ifn>1,
ifn=1.

T'(n) =

Thus, the work done by T will be no more than four times the work done
by T’ but will be larger than the work done by T’ Therefore, T(n) =
@(T/ (n)). By the master theorem, because log;2 < 1 < 3/2, we have that
T(n) = On*/?).

For Exercise 4.4-4, because nv/n + 1 > ny/n = n3/2, we have that S(n) is
at least as big as the solution to the recurrence

2T (n/3) +n®? ifn>1,

T'(n) =
ifn=1,

where n can be any nonnegative power of 3. But the solution to
the recurrence for § will be no more than the solution to the recur-
rence in Exercise 4.4-3 for T, because n+/n+ 1<4n3? for n>0.
Because T(n)=0(T'(n)), we have that S(n)=©(T’(n)) as well. Thus
S(n) = On?).

Extending the Master Theorem

As Exercises 4.4-3 and 4.4-4 suggest, there is a whole range of inter-
esting recurrences that do not fit the preliminary version of the master
theorem but are closely related to recurrences that do. These recurrences
have the same kind of behavior predicted by our original version of the mas-
ter theorem. However, the original version of the theorem does not apply
to them, just as it does not apply to the recurrences of Exercises 4.4-3
and 4.4-4.

We now state a second version of the master theorem that covers these
cases. A still stronger version of the theorem may be found in Introduc-
tion to Algorithms by Cormen et al. [13]; the version here captures much
of the interesting behavior of recurrences that arise from the analysis of
algorithms.

Theorem 4.10

Exercise 4.4-5

4.4: The Master Theorem 219

(Master Theorem) Let a and b be positive real numbers, with a > 1
and b > 1. Let T(n) be defined for integers n that are powers of b by

aT(n/b) + f(n) ifn>1,

T(n) =
if n =1.

Then we have the following:

1. If f(n) = ®(n°), where log, a < ¢, then
T(n) = ©(n°) = O(f(n)).
2. I f(n) = ®(n), where log, a = c, then
T(n) = ©(n°logn) = O(f(n)logn).
3. If f(n) = ©(n°), where log, a > c, then T(n) = @ (n'°%4).

Proof We construct a recursion tree or iterate the recurrence. Because we
have assumed that f(n) = ®(n°), there are constants ¢; and c», independent
of the level, so that the work at each level is between cin¢ (a /bc)i and
con® (a/b°)'. From this point on, the proof is largely a translation of the
original proof.

What does the master theorem tell us about the solutions to the recurrence

3T(n/2) +nv/n+1 ifn>1,
T(n) =
ifn=17?

Our solution to Exercise 4.4-4 showed us that x4/x + 1 = ®(x3/?). Because
23/2 = /23 = /8 < 3, we have that log, 3 > 3/2. Then, by the third con-
clusion of the master theorem, T(n) = © (n'°%23).

An appendix is devoted to careful analysis of divide-and-conquer recur-
rences in which 7 is not a power of b and T(n/b) is replaced by T([n/b7).
Although the details are somewhat technical, the end result is that the big ®
behavior of such recurrences is the same as the corresponding recurrences
for functions defined on powers of b. In particular, the following theorem
is a consequence of what we prove.

220 Chapter 4: Induction, Recursion, and Recurrences

Theorem 4.11 Let a and b be positive real numbers, with a > 1 and b > 2. Let T(n)
satisfy the recurrence

T([n/b if 1,
T — aT([n/b]) + f(n) ;Zil

Then we have the following:

1.

If f(n) =0O(n°), where log, a < c, then
T(n) = O(n°) = O(f ().

If f(n) = (), where log, a = c, then
T(n) = ©(n°logn) = O(f(n)logn).

. If f(n) = O(n°), where log, a > c, then T(n) = O (n'°2).

(The condition that b > 2 can be changed to b > 1 with an appropriate
change in the base case of the recurrence, but the base case will then
depend on b. We do not prove this here.)

1.

2.

3.

Master theorem, preliminary version. This simplified version of the
master theorem states: Let a be an integer greater than or equal to 1
and b be a real number greater than 1. Let ¢ be a positive real
number and d a nonnegative real number. Given a recurrence of the
form

T(n) =

alT(n/b) +n¢ ifn>1,
ifn=1,

for n a power of b, we have the following:
a. If log, a < ¢, then T(n) = O(n°).
b. If log, a = ¢, then T(n) = O(nlogn).
c. If log, a > ¢, then T(n) = O (n'°2 %),

Properties of logarithms. For any x, y, and z, each greater than 1, we
have that x'°¢ % = 71°%* Also, log, y = ©(log, y) if x is a constant.

Master theorem, final version. Let a and b be positive real numbers,
with @ > 1 and b > 2. Let T(n) be defined for integers n that are

4.4: The Master Theorem

powers of b by

aT(n/b) + f(n) ifn>1,
T = ifn=1

Then we have the following:
a. If f(n) = ©(n°), where log, a < c, then
T(n) = ©(n°) = O(f(n)).
b. If f(n) = ©(n°), where log, a = ¢, then
T(n) = ®nlogn) = @(f(n) log n)
c. If f(n) = ©(n°), where log, a > ¢, then T(n) = O (n'ogr),

A similar result with a base case that depends on » holds when
1<b<?2.

4. A more general master theorem. Let a and b be positive real

numbers with @ > 1 and b > 2. Let T(n) satisfy the recurrence

alT([n/b])+ f(n) ifn>1,
if n=1.

T(n) =

Then we have the following:
a. If f(n) = ©(n°), where log, a < ¢, then
T(n) = ©(n°) = O(f(n)).
b. If f(n) = ©(n°), where log, a = ¢, then
T(n) =V ((nlogn) = @(f(n) log n)
c. If f(n) = ®(n¢), where log, a > ¢, then T(n) = ©(n'°%q).

All problems with blue boxes have an answer or hint available at the end
of the book.

221

Use the master theorem to give big ® bounds on the solutions to
the following recurrences. For each, assume that 7(1) = 1 and that

n is a power of the appropriate integer.
EA T(n) =8T(n/2)+n
B 7(n) = 8T(n/2) + n?
c. T(n)=3T(n/2)+n
[N 7(n) =T(n/4) +1
e. T(n) =3T(n/3)+n?

222 Chapter 4: Induction, Recursion, and Recurrences

2. Give a big ® bound on the solution to the recurrence

{3T(rn/21) +/n+3 ifn>1,
T(n) =
d ifn=1.

Give a big ® bound on the solution to the recurrence

{3T(rn/21) +/n3+3 ifn>1,
T(n) = J

ifn=1.

4. Give a big ® bound on the solution to the recurrence

{3T(rn/21) +Vn 3 ifn>1,
T = ifn=1
1ITn=1.

Give a big ® bound on the solution to the recurrence

T 2T([n/2]) + v/n2+3 ifn>1,
n)—
d ifn=1.

6. Extend the proof of the preliminary version of the master theorem
(Theorem 4.9) to the case T(1) = d.

Prove Corollary 4.8 by showing that for any x, y, and z, each
greater than 1, xlogyz — Slogyx

4.5 MORE GENERAL KINDS OF RECURRENCES

Recurrence Inequalities

The recurrences we have been working with arise from idealized descrip-
tions of important processes in computer science. For example, in merge
sort on a list of n items, we divide the list into two parts of equal size,
sort each part, and then merge the two sorted parts. The time it takes to
do this is the time it takes to divide the list into two parts, plus the time
it takes to sort each part, plus the time it takes to merge the two sorted
lists. We don’t specify how we are dividing the list or how we are doing
the merging. We assume the sorting of smaller lists is done by applying the
same method to the smaller lists, unless they have size 1, in which case
we do nothing. What we know is that any sensible way of dividing the

4.5: More General Kinds of Recurrences 223

list into two parts takes no more than some constant multiple of n time
units (and might take no more than constant time if we do it by leaving the
list in place and manipulating pointers) and that any sensible algorithm for
merging two lists will take no more than some (other) constant multiple of
n time units. Thus, we know that if T(n) is the time it takes to apply merge
sort to n data items, then there is a constant ¢ (the sum of the two constant
multiples we mentioned) such that

T(n) < 2T (%) toen. (4.24)

Thus, rather than leading to recurrence equations, real-world problems often
lead us to recurrence inequalities, which are inequalities that state that
T(n) is less than or equal to some expression involving values of 7T(m) for
m < n. (We could also include inequalities with a greater than or equal to
sign, but they do not arise in the applications we are studying.) A solution
to a recurrence inequality is a function 7 that satisfies the inequality. For
simplicity, we will expand what we mean by the word “recurrence” to
include either recurrence inequalities or recurrence equations.

In Recurrence 4.24, we are implicitly assuming that 7 is defined only on
positive integer values, and because we said we divided the list into two
equal parts each time, our analysis only makes sense if we assume that n
is a power of 2.

Note that there are actually infinitely many solutions to Recurrence 4.24.
(For example, for any ¢’ < ¢, the unique solution to

2T(n/2) +c'n if n > 2,
T(n) = (4.25)
k ifn=1,

satisfies Recurrence 4.24 for any constant k.) The idea that Recurrence 4.24
has infinitely many solutions while Recurrence 4.25 has exactly one solution
is analogous to the idea that x — 3 < 0 has infinitely many solutions whereas
x —3 =0 has one solution. There are several ways to show that all the
solutions to Recurrence 4.24 satisfy T(n) = O(nlogn). In other words, no
matter how we sensibly implement merge sort, we have a O(nlogn) time
bound on how long the merge sort process takes.

The Master Theorem for Inequalities

We commented that the unique solution to Recurrence 4.24 is also a solu-
tion to Recurrence 4.25. The largest solution to x — 3 < 0 is 3, which is
the unique solution to x —3 = 0. We have a similar phenomenon with
recurrences.

224 Chapter 4: Induction, Recursion, and Recurrences

Theorem 4.12

Corollary 4.13

Let a and b be real numbers with a > 0 and b > 1, and let f be a function
from nonnegative integer powers of b to the real numbers. Suppose that
T is the unique solution to the recurrence

[al(n/b) + f(n) ifn=>1,
T(n) =

ifn=1,
defined on nonnegative integral powers n of b, and that S is a solution to

S < aS(n/b) + f(n) ifn>1,
Y=k ifn=1.

Then S(n) < T(n) for all n > 1.

Proof We are given that S(1) <k = T(1). Suppose that for j < m for
both powers of b, we have S(j) < T(j). Then

m m

S(m)sS(b)+f<m>sT(b)+f<m)=T(m).

Thus, by the principle of mathematical induction, S(n) < T (n) for all non-
negative integral powers n of b.

(Master Theorem for Recurrence Inequalities) Let a and b be real
numbers with @ > 1 and b > 1, and let S be a function from nonnegative
integer powers of b to the real numbers. If

.)<{ aS(n/b) + f(n) ifn>1,
n) =

ifn=1,

then the conclusions of the master theorem (Theorem 4.10) hold for S
with ® replaced by O.

Proof Define T by replacing < with = and S with 7. Then T satisfies
the conclusions of the master theorem, and, by Theorem 4.15, S(n) < T(n).

This argument tells us immediately that all solutions to Recurrence 4.24
are O(nlogn). Thus, in situations where the function f(n) that tells us the
additional work for a problem of size n in a divide-and-conquer algorithm

Exercise 4.5-1

4.5: More General Kinds of Recurrences 225

satisfies one of the three cases of the master theorem, we can analyze recur-
rence inequalities as easily as we analyze recurrence equations. However,
not all realistic recurrences satisfy the hypotheses of the master theorem.
For example, if f(n) = nlogn, none of the three conditions of the master
theorem are satisfied. In this case, we can analyze recurrence inequali-
ties via a recursion tree diagram. The process is virtually identical to our
previous use of recursion trees; however, we must keep in mind that on
each level we are really computing an upper bound on the work done on
that level. We can also use a variant of the method that we used in solv-
ing Exercise 4.2-2—guessing an answer (in this case an upper bound) and
verifying by induction. There are some technical aspects of induction that
sometimes arise in inductive proofs in this context. Because it is possible to
illustrate them more easily by using familiar recurrences, we shall do that.

A Wrinkle with Induction

Carefully prove by induction that for any function 7" defined on the non-
negative integral powers of 2, if

Tn) < 2T(%) ten

for some constant ¢, then 7(n) = O (nlogn).

We wish to show that T(n) = O(nlogn). From the definition of big O, we
can see that we wish to show T(n) < knlogn for some positive constant k
(so long as n is larger than some value ng).

We will now do something that may seem rather curious: We will consider
the possibility that we have a value of k for which the inequality holds.
Then, in analyzing the consequences of this possibility, we will discover
that there are assumptions we need to make about k in order for such a k to
exist. What we will really be doing is experimenting to see how to choose
k to make an inductive proof work.

We are given that T(n) < 27T(n/2) + cn for all positive integers n that are
powers of 2. We want to prove there is another positive real number £ > 0
and an ng > 0 such that 7(n) < knlogn for n > nyg. We cannot expect to
have the inequality 7(n) < knlogn hold for n = 1, because log 1 = 0. To
have T(2) < k-2log2 = k-2, we must choose k > T(2)/2. This is the first
assumption we must make about k. Our inductive hypothesis is that if is a
power of 2 and m is a power of 2, with 2 < m < n, then T(m) < km logm.
Now n/2 < n, and because n is a power of 2 greater than 2, we have that
n/2 > 2. By the inductive hypothesis, T(n/2) < k(n/2)logn/2. But then

226 Chapter 4: Induction, Recursion, and Recurrences

7()«<2T(”)+- <2kZ10g L +
n) < 5 cn < 2og2 cn

knlog = +

=knlog - +cn

2

=knlogn —knlog2 + cn
=knlogn — kn + cn.

Recall that we are trying to show that 7(n) < kn logn; but that is not quite
what the preceding inequality tells us. Rather, the inequality shows that
we need to make another assumption about k—namely, —kn +cn <0, or
equivalently k > c. If both of our assumptions about k are satisfied, we will
have T(n) < knlog n, and we can conclude, by the principle of mathematical
induction, that for all n > 1 (so our ng is 2), T(n) < knlogn; thus, T(n) =
O(nlogn).

A full inductive proof that 7(n) = O(nlogn) is actually embedded in the
preceding discussion. However, because it might not appear to everyone to
be a proof, in the next paragraph we summarize our observations in a more
traditional-looking proof. Be aware that some authors and teachers prefer to
write their proofs in a style that shows why they make certain choices about
k. You should learn how to read discussions like the one above as proofs.
We want to show that if T(n) < T(n/2) + cn, then T(n) = O(nlogn). We
are given a real number ¢ > 0 such that 7(n) < 27(n/2) + cn for all n > 1.
Choose k to be larger than or equal to 7(2)/2 and larger than or equal to
c. Then

T(2) < k-2log2,

because k > 7(2)/2 and log2 = 1. Now assume that n > 2 and that for m
with 2 < m < n, we have T(m) < km logm. Because n is a power of 2, we
have n > 4, so that n/2 is an m with 2 < m < n. Thus, by the inductive

hypothesis,
n n n
T (—) < k—log—.
2 2

Then by the recurrence,

T(n) < 2k “log » +

n) < 2og2 cn
=kn(logn — 1) +cn
=knlogn 4+ cn —kn

< knlogn,

Exercise 4.5-2

Exercise 4.5-3

4.5: More General Kinds of Recurrences 227

because k > c¢. Thus, by the principle of mathematical induction, 7(n) <
knlogn for all n > 2, and therefore, T(n) = O (nlogn).

There are three things to note about this proof. First, without the preceding
discussion, the choice of k seems arbitrary. Second, without the preceding
discussion, the implicit choice of 2 for the ng in the big O statement also
seems arbitrary. Third, the constant k is chosen in terms of the previous
constant ¢. Because ¢ was given to us by the recurrence, we may use it
in choosing the constant that we use to prove a big O statement about
solutions to the recurrence. If you compare the formal proof we just gave
with the informal discussion that preceded it, you will find that each step of
the formal proof actually corresponds to something we said in the informal
discussion. Because the informal discussion explained why we were mak-
ing the choices we did, it is natural that some people prefer the informal
explanation to the formal proof.

Further Wrinkles in Induction Proofs

Suppose that ¢ is a real number greater than 0. Show by induction that any
solution T(n) to the recurrence

Tn) <T (g) + cn,

with n restricted to integer powers of 3, has 7T(n) = O (n).

Suppose that c is a real number greater than 0. Show by induction that any
solution T(n) to the recurrence

T(n) < 4T <g> +en,

with n restricted to integer powers of 2, has T(n) = 0 (n?).

In Exercise 4.5-2, we are given a constant ¢ such that T(n) < T(n/3) + cn
if n > 1. Because we want to show that T(n) = O (n), we want to find two
more constants ng and k such that T(n) < kn whenever n > ny.

We will choose ng = 1 here. (This was not an arbitrary choice; it is based
on observing that the condition 7(n) < kn is not impossible to satisfy when
n = 1.) To have T(n) < kn for n = 1, we must assume k > T(1). Assuming

228 Chapter 4: Induction, Recursion, and Recurrences

inductively that T(m) < km when 1 < m < n, we can write

Tn) <T (g) +cn

(Note that we used kn/3 = kn — 2kn/3 because we wanted to compare
T(n) with kn.) Thus, as long as ¢ — 2k/3 < 0, that is, k > (3/2)c, we may
conclude, by mathematical induction, that 7(n) < kn for all n > 1. Again,
the elements of an inductive proof are in the preceding discussion; you
should try to learn how to read the argument we just finished as a valid
inductive proof. However, we now present something that looks more like
an inductive proof.

We choose k to be the maximum of 7(1) and 3c¢/2, and we choose ng = 1.
To prove by induction that T(x) < kx, we begin by observing that 7(1) <
k- 1. Next we assume that n > 1, and we assume inductively that for m
with 1 <m < n, we have T(m) < km. Now we may write

n

Tn) <T <3) +cn

<kn+
— +cn
-3

because we chose k to be at least as large as 3¢/2, making ¢ — 2k /3 negative
or 0. Thus, by the principle of mathematical induction, we have T(n) < kn
for all n > 1, and so T(n) = O (n).

Now let’s analyze Exercise 4.5-3. We won’t dot all the i’s and cross all the
t’s here because there is only one major difference between this exercise
and the previous one. We wish to prove that there are an n¢y and a k such that
T(n) < kn? for n > ng. Assuming we have chosen n and k so that the base
case holds, we can bound 7(n) inductively by assuming that T(m) < km?

4.5: More General Kinds of Recurrences 229

for m < n and reasoning as follows:

T(n) < 4T (g) ten
<4 (k (g)z) +cn
=4 (anz) +cn

= kn? + cn.

To proceed as before, we would like to choose a value of k so that cn < 0.
But we have a problem because both ¢ and n are always positive! We have a
statement that we know is true, by the master theorem, for example, and we
have a proof method (induction) that worked nicely for similar problems.
So, what went wrong?

The usual way to describe the problem we are facing is that although the
statement is true, it is too weak to be proved by induction. To make the
inductive proof work, we have to make an inductive hypothesis that puts
some sort of negative quantity, such as a term like —kn, into the last line of
our inequality. Let’s see if we can prove something that is actually stronger
than we were originally trying to prove—namely, T(n) < kjn*> — kpn for
some positive constants k; and k,. Proceeding as before, we get

T(n) < 4T (%) ten
(5 -3)
=4 (kljz —ky (%)) +cn

= kyn? — 2kan 4 cn

= lqn2 —kon + (¢ — ky)n.

Now we have to make (¢ —ky)n <0 for the last line to be at most
kin? — kon. So, we choose k, > ¢. Once we pick a value of k, we can then
choose k; large enough to make the base case work. Thus, we have proved
inductively that T(n) < kin® — kon for some constants k; and ky; so,
T(n) = On?).

230 Chapter 4: Induction, Recursion, and Recurrences

At first glance, this approach seems paradoxical: Why is it easier to prove
a stronger statement than it is to prove a weaker one? The answer is related
to the nature of induction, in which the proof of p(n) depends on the proof
of p(m) for m < n. Therefore, if your statement is too weak, the base case
may be easier to prove, but the weakness will hinder your ability to prove
the statement for larger values of n. In other words, when you want to
prove something about p(n), you are using p(1) A--- A p(n — 1). Thus,
if these are stronger, they will be of greater help in proving p(n). In the
case above, the problem was that the statements p(1), ..., p(n — 1) were
too weak, and thus we were not able to use them to prove p(n). By using
a stronger p(1),..., p(n — 1), however, we were able to prove a stronger
p(n), one that implied the original p(n) we wanted. When we give an
induction proof in this way, we are using a stronger inductive hypothesis.

Dealing with Functions Other Than n¢

Our statement of the master theorem involved a recursive term plus an
added term that was ©®(n“). Sometimes algorithmic problems lead us to
consider other kinds of functions for the added term. The most common
such example is when that added function involves logarithms. For example,
consider the recurrence

2T(n/2) +nlogn ifn > 1,
T(n) = (4.26)
1 ifn=1,

where n is a power of 2. Just as before, we can draw a recursion tree; the
whole methodology works, but our sums may be a little more complicated.
The tree for this recurrence is shown in Figure 4.10.

This tree is similar to th§: tree for T(n) = 2T(n/2) + n, except that the work
on Level i is nlog(n/2") for i > 2, and, for the bottom level, it is n (the
number of subproblems) times 1. Thus, if we sum the work per level, we get

log(n)—1 n log(n)—1 n
Z nlog(i)—l—n:n Z 10g<§)+1
i=0 i=0
log(n)—1
=n| Y (logn—1log2)+1
i=0
log(n)—1 logn—1
=n Z logn — Z i|+n
i=0

i=0

Number of
problems
1
2
4

log(n) + 1

levels

8
n/2
210g n=y

4.5: More General Kinds of Recurrences 231

=n ((log n)(logn) —

_ 2

= O(nlog” n).
Problem Work per
size problem
n nlogn
n/2 (n/2)log(n/2)
n/4 (n/Hlog(n/4)
n/8 (n/8)log(n/8)

CLRAL T RRAL

Figure 4.10: The recursion tree for Recurrence 4.26

Exercise 4.5-4

(logn>(1c>2g<n> — 1)) =

Work per
level

nlogn

(n/2)log(n/2) + (n/2)log(n/2)
= nlog(n/2)

4(n/log(n/4) = nlog(n/4)

8(n/8)log(n/8) = nlog(n/8)

(n/2)21log2) =n

n-l=n

Notice that in the second-to-last line, there are two places where we mul-
tiplied logn by itself. Because of the 2 in the denominator, the second
product will not cancel out the first (and the other terms we get by carry-
ing out the indicated multiplications are smaller than n log? n). Thus, our

solution is in fact ®(n 10g2 n).

Find the best big O bound you can on the solution to the recurrence

T(n/2) +nlogn ifn>1,

ifn=1,

T(n) =

(4.27)

assuming n is a power of 2. Is this bound a big ® bound?

The tree for this recurrence is in Figure 4.11.

Notice that the work done at the bottom node of the tree is determined by
the statement 7(1) = 1 in our recurrence; it is not 1log1. Summing the

232 Chapter 4: Induction, Recursion, and Recurrences

Number of Problem Work per Work per level
problems size problem
1 n Q nlogn nlogn
1 n/2 @ n/2log(n/2) n/2log(n/2)
I
le(i/ilrsl 5y 1 n/4 g n/4log(n/4) n/4 log(n/4)
1 n/8 g n/8log(n/8) n/8log(n/8)
1 1 @ 1 1

Figure 4.11: The recursion tree for Recurrence 4.27

work, we get

log(n)—1 log(n)—1
1+ Z 7 log—_1+n Z E(logn—logZ’)
i=0
log(n)—1 1 i
=1+n Z <5) (log(n) — i)
i=0
log(n)—1 i
<1l+4n|logn Z (>

<14 n(ogn)(2)
= O(nlogn).

Note that the largest term in the sum in our third-to-last line of equations
and inequalities is log(n) and that none of the terms in the sum are negative.
This means that n times the sum is at least n log n. Therefore, we have that
T(n) = O(nlogn).

1. Recurrence inequality. Recurrence inequalities state that T(n) is
less than or equal to some expression involving values of 7(m) for
m < n. A solution to a recurrence inequality is a function 7 that
satisfies the inequality.

4.5: More General Kinds of Recurrences 233

2. Recursion trees for recurrence inequalities. We can analyze
recurrence inequalities via a recursion tree. The process is virtually
identical to our previous use of recursion trees. We must, however,
keep in mind that on each level, we are really computing an upper
bound on the work done on that level.

3. Discovering necessary assumptions for an inductive proof. Suppose
we are trying to prove a statement that there is a value k such
that an inequality of the form f(n) < kg(n) is true or that some
other statement that involves the parameter k is true. We may start
an inductive proof without knowing a value for k£ and determine
conditions on k that make the proof valid by analyzing the
assumptions that we need to make in order for the inductive proof to
work. When written properly, such an explanation is a valid proof.

4. Making a stronger inductive hypothesis. If we are trying to prove
by induction a statement of the form p(n) = ¢(n) and we have a
statement s(n) such that s(n) = ¢(n), it is sometimes useful to try to
prove the statement p(n) = s(n). This process is known as proving
a stronger statement or making a stronger inductive hypothesis. It
sometimes works because it gives an inductive hypothesis that suf-
fices to prove the stronger statement, even though our original state-
ment g (n) did not give an inductive hypothesis sufficient to prove
the original statement. However, we must be careful in our choice of
s(n), because we have to be able to succeed in proving p(n) = s(n).

5. When the master theorem does not apply. To deal with recurrences
of the form

:aT(l'n/b'l) + f(n) ifn>1,
T(n) = J

ifn=1,

where f(n) is not ®(n°), recursion trees and iterating the
recurrence are appropriate tools even though the master theorem
does not apply. The same holds for recurrence inequalities.

All problems with blue boxes have an answer or hint available at the end
of the book.

Suppose that ¢ is a real number greater than 0. Show by induction
that any solution 7(n) to the recurrence

Tn) <T <%> + cn,

with n restricted to integer powers of 4, has T(n) = O (n).

234 Chapter 4: Induction, Recursion, and Recurrences

10.

Prove by induction that if T(n) < 4T(n/2) + n> then
T(n) = O(n’logn) (assuming n is a power of 2).

Show by induction that any solution to a recurrence of the form

T(n) < 2T <§) + clogyn

is O(nlogy n). What happens if you replace 2 with 3? Explain
why. Would it make a difference if you used a different base for
the logarithm (only an intuitive explanation is needed here)?

What happens if you replace the 2 in Problem 3 with 4? Do you
still get the same big O upper bound? If not, what do you get?
(Hint: One way to attack this is with recursion trees. It might also
be helpful to ask what happens if you replace the logy n with 1 and
then with n.)

Is the big O upper bound in Problem 3 actually a big ® bound?

EA Find the best big O upper bound you can to any solution to
the recurrence

T(n) =

4T(n/2) +nlogn ifn > 1,
ifn=1.

[N Assuming that you were able to guess the result you got in
part a, prove by induction that your answer is correct.

Is the big O upper bound in Problem 7 actually a big ® bound?
Show by induction that

8T(n/2) +nlogn ifn > 1,
T(n) =

ifn=1,

has T(n) = O(n?) for any solution T(n).
Is the big O upper bound in Problem 9 actually a big ® bound?
Give the best big O upper bound you can for the solution to the

recurrence

T(n) = 2T(§ _ 3) tn

(making an informed guess is not a bad idea here). Then prove by
induction that your upper bound is correct.

4.6: Recurrences and Selection 235

Find the best big O upper bound you can to any solution to the
recurrence defined on nonnegative integers by

T(n) < 2T ((%1 + 1) +oen.

(There is nothing wrong with informed guesswork.) Prove by
induction that your answer is correct.

4.6 RECURRENCES AND SELECTION

Exercise 4.6-1

Exercise 4.6-2

The Idea of Selection

One common problem that arises in algorithms is that of selection. In this
situation, we are given n distinct data items from some set that has an
underlying order. That is, given any two items a and b from that set, we
can determine whether a < b. (Integers satisfy this property, but colors do
not.) Given these n items and some value i with 1 <i <n, we are asked
to find the ith-smallest item in the set. For example, in the set

§=1{3,2,8,6,4,11,7}, (4.28)

the first smallest (i = 1) is 2, the third smallest (i = 3) is 4, and the seventh
smallest (i =n =7) is 11. An important special case is that of finding the
median, which is the case of i = [n/2]. Another important special case is
finding percentiles; for example, the 90th percentile is the case i = [0.9n].
As this suggests, i is frequently given as some fraction of n.

How do you find the minimum (i = 1) or maximum (i = n) in a set? What
is the running time? How do you find the second-smallest element? Does
this approach extend to finding the ith smallest? What is the running time?

Give the fastest algorithm you can to find the median (i = [n/2]).

In Exercise 4.6-1, the simple O (n) time algorithm of going through the list
and keeping track of the minimum value seen so far will suffice to find
the minimum. Similarly, if we want to find the second smallest, we can go
through the list once to find the smallest, remove it, and then go through
the new list to find the smallest. This takes O(n +n — 1) = O(n) time. If
we extend this to finding the ith smallest, the algorithm will take O (in)

236 Chapter 4: Induction, Recursion, and Recurrences

o~ o~ o~~~ o~~~ —~

O W o0 Jo U W N R
—_— — — — — — — — — —

time. Thus, for finding the median, this method takes O (n?) time. In fact,
it takes © (n?) time.

A better idea for finding the median is first to sort the items and then to
take the item in position n/2. Because we can sort in O(nlogn) time, this
algorithm will take O (nlogn) time. Thus, if i = O(logn), we might want
to run the algorithm of the previous paragraph; otherwise, we would run
this algorithm.’

All of these approaches, when applied to the median, take at least some mul-
tiple of (nlogn) units of time.'? The best sorting algorithms take O (n logn)
time also, and one can prove every comparison-based sorting algorithm
takes 2(n logn) time. This raises the natural question of whether it is pos-
sible to do selection any faster than sorting. In other words, is finding the
median element or finding the ith-smallest element of a set significantly
easier than ordering (sorting) the whole set?

A Recursive Selection Algorithm

Suppose that we magically knew how to find the median in O (n) time. That
is, we have a routine MagicMedian that returns the median when given a
set A as input. We could then use this routine in a divide-and-conquer
algorithm for Select, as follows.

Select(A,i,n)

// Selects the ith-smallest element in set A,
// where n = |A]|
if (n == 1)
return the one item in A
else
p = MagicMedian (4)
Let H be the set of elements greater than p
Let L be the set of elements less than or equal to p
if (i = |L])
return Select (L, 1,|L|)
else
return Select(H, i— |L|,|H|)

9We also note (for those who know about heaps) that the running time can be improved to
O(n +ilogn) by first creating a heap, which takes O(n) time, and then performing a
delete-min operation i times.

10An alternate notation for f(x) = O(g(x)) is gx) = Q(f(x)). Notice the change in
roles of f and g. In this notation, we say that all these algorithms take €2 (nlogn) time.
(In analytic number theory, €2 is used in several different contexts with somewhat different
meanings.)

4.6: Recurrences and Selection 237

By H, we do not mean the elements that come after p in the list; rather, we
mean the elements of the list that are larger than p in the underlying ordering
of our set. This algorithm is based on the following simple observation: If
we could divide the set A into a “lower” half (L) and an “upper” half (H),
then we know in which of these two sets the ith-smallest element in A will
be. Namely, if i < [n/2], it will be in L, and otherwise, it will be in H.
Thus, we can recursively look in one or the other set. We can easily partition
the data into two sets by making one pass through the data, copying the
numbers less than or equal to p into L, and copying the numbers larger
than p into H.'

The only additional detail is that if we look in H, then we no longer look
for the ith smallest. Instead, we look for the i — [n/2]th smallest, because
H is formed by removing the [n/2]-smallest elements from A.

For example, if the input is the set given in Equation 4.28, and if p = 6,
then the set L would be {3, 2, 6,4}, and H would be {8, 11,7}. If i were
2, we would recurse on the set L, with i = 2. On the other hand, if i were
6, we would recurse on the set H, with i = 6 — 4 = 2. Observe that the
second-smallest element in H is 8, as is the sixth-smallest element in S.

We can express the running time of Select by the following recurrence:

T(n) < T((%D +en.

From the master theorem, we know that any function that satisfies this
recurrence has T(n) = O(n).

So, we can conclude that if we already know how to find the median in
linear time, we can design a divide-and-conquer algorithm that will solve
the selection problem in linear time.!> However, this is nothing to write
home about (yet!).

Selection without Knowing the Median in Advance

Sometimes a knowledge of solving recurrences can help us design algo-
rithms. What kinds of recurrences do we know about that have solutions
T(n) with T(n) = O(n)? In particular, consider recurrences of the form
T(n) < T(n/b) + cn, and ask when they have solutions with T(n) = O (n).
Using the master theorem, we see that because log, 1 =0 < 1 for any b,
then for any b allowed by the master theorem, all solutions to this recur-
rence will have T(n) = O(n). (Note that b does not have to be an integer.)

"We can do this more efficiently, and “in place,” using the partition algorithm of quicksort.
12We say an algorithm runs in linear time if its running time on an input of size n is O (n).

238 Chapter 4: Induction, Recursion, and Recurrences

—

P~ o~ o~~~ o~~~ o~

O W o0 Jo Ul i WN B

—_— — — — — — — — — ~—

If we let ' = 1/b, then we can say equivalently that as long as we can
solve a problem of size n by solving (recursively) a problem of size b'n for
some b’ < 1 and by doing O (n) additional work, our algorithm will run in
O (n) time. Interpreting this in the selection problem, it says that as long as
we can choose p in O(n) time to ensure that both L and H have size at
most b'n, then we will have a linear-time algorithm. (You might ask, “What
about actually dividing our set into L and H? Doesn’t that take some time,
too?” Yes it does, but we already know we can do the division into H and
L in O(n) time; so, if we can find p in O(n) time as well, then we can do
both these things in O(n) time.)

In particular, suppose that we can choose p in O(n) time to ensure that
both L and H have size at most (3/4)n. Then the running time is described
by the recurrence 7(n) < T(3n/4) 4+ O(n), and we will be able to solve the
selection problem in linear time.

To see why (3/4)n is relevant, suppose that instead of the “black box”
MagicMedian, we have a much weaker magic black box that only guar-
antees that it will return some number in the middle half of our set in
O (n) time. In other words, it will return a number that is guaranteed to be
somewhere between the (1 /4th)-smallest number and the (3n/4th)-smallest
number. If we use the number given by this magic box to divide our set
into H and L, then neither set will have size more than 3n/4. We will
call this black box a MagicMiddle box, and we use it in the following
algorithm:

Selectl(A,i,n)

// Selects the ith-smallest element in set A,
// where n = |A|
if (n == 1)
return the one item in A
else

p = MagicMiddle (A)
Let H be the set of elements greater than p
Let L be the set of elements less than or equal to p
if (i = |L|)
return Selectl(L, 1, |L])
else
return Selectl(H,i— |L|,|H]|)

The Selectl algorithm is similar to Select. The only difference is that p is
now only guaranteed to be in the middle half. When we recurse in Selectl,
we decide whether to recurse on L or H based on whether i is less than

4.6: Recurrences and Selection 239

or equal to |L|. The element p is called a partition element because it is
used to partition our set A into the two sets L and H.

We have made progress, because now we don’t need to assume that we
can find the median in order to have a linear-time algorithm; we only need
to assume that we can find one number in the middle half of the set. This
problem seems simpler than the original problem, and, conceptually, it is.
Thus, our knowledge of which recurrences have solutions that are O (n) led
us toward a more plausible algorithm.

An Algorithm to Find an Element in the Middle Half

It takes a clever algorithm to find an item in the middle half of our set.
We now describe such an algorithm in which we first choose a subset
of the numbers and then recursively find the median of that subset. (The
condition that n < 60 in Line 2 is a technical condition that will be justi-
fied later.)

MagicMiddle (A)

Let n = |A]|
if (n < 60)
use sorting to return the median of A
else
Break A into k = [n/5] groups G,,...,G,
with |[n/5] of size 5 and perhaps one of smaller size
for 1 =1 to k
find m;, the median of G, (by sorting)
Let M = {m,, ..., m,}
return Selectl (M, [k/2], k)

We first give a visual description of why the median of medians is in the
middle half of A in the special case where the size of A is a multiple of
5; then we prove in general that it is. Assume |A| is a multiple of 5. Then
|A| = 5k.

Consider arranging the elements as follows. List each set G; of 5 vertically
in sorted order, with the smallest element on top. Then line up all n/5
of these lists, with those with median less than the median of the medians
on the left (and those with median larger than the median of the medians on
the right). We get the picture in Figure 4.10. In this figure, the medians
are in white and the median of medians is in blue. The figure includes
all the inequalities that we know from the ordering information we have.
We use arrows to indicate that the medians on the left are less than the
median of medians and those on the right are greater than the median
of medians.

240 Chapter 4: Induction, Recursion, and Recurrences

We use m* to denote the median of medians, which is returned by Mag-
icMiddle. We show that m™ must be in the middle half of set A when |A]|
is large enough by considering a set S of elements guaranteed to be smaller
than m™* and a set B of elements guaranteed to be bigger. Then we deter-
mine how large |A| must be to ensure that |S| and |B| are always at least
|Al/4.

We call the medians smaller than m™ “small medians” and those bigger
“big medians.” If m; is a small median, then m; and the two elements less
than it in G; (and thus above it in Figure 4.12) are less than m* The two
elements above m* in its column are less than m*. In Figure 4.13, we draw
a curve around the set S of elements.

@ o @ @ @ 0 ©@
AN AN NN NN
@ e @ @ @ @ ©@
AN AN NN NN
O~ 0_ 0 MZO _O O
AN AN NN NN
@ e @ @ @ @ ©@
AN AN NN NN

Figure 4.12: Dividing a set into n/5 parts of size 5, finding the median of
each part, and finding the median of the medians

| \

@ @ @6 6,06 0 o

A A A /\: A A A

l

@ © @ 0.0 @ ©

:/\ A A ’{_/' A A A

AN a

07 0.0 @0 O O

'_/____/:___/___,'/\ A A A
@ @ @ & ©
A A A A A A A

Figure 4.13: The enclosed elements are less than the median of the medians

Symmetrically, every big median is larger than m*, as are the two elements
below m™* in its column. The set B of elements is enclosed in a curve in
Figure 4.14.

4.6: Recurrences and Selection 241

@ ©6 6 6 6 0 o
AN AN AN N N N AN
@ ©6 6 6 6 0 o
AN AN AN /\/__/____ﬁ__ _/_\
VD 4+ |
O” 0., 0<wi<0O, O 0}
~ A A /_/}] A A /\:
|
@ © @ © © @
AN AN AN I/\ N N AN
|
)

—_———— e~

Figure 4.14: The enclosed elements are greater than the median of the
medians

If we can choose n so that S and B each have at least one-fourth of the
elements of A, we will know that m*, which cannot be in either S or B,
must be in the middle half of A. For this reason, we try to compute the
sizes of S and B in terms of n.

Using k as in MagicMiddle, m* is in column [k/2] of Figure 4.11. There-
fore, S has three elements from each of the first [k/2] — 1 columns and
two from column [k/27. Using k = n/5, we get

=325 1) r2=a] -

Because [n/10] > n/10, we can make |S| > n/4 by making 3n/10 — 1 >
n/4, which gives us 0.057n > 1, or n > 20.

The number of columns to the right of column [k/2] is k — [k/2], so the

size of B is
k n n
3(k— [ED+2=3(§— [EDJrz.
Because [n/10] < 1 4 n/10, we have

n n 3n
B 3(----1) =2 .
1BI>3(5 "1 TS0

Thus, we can make |B| > n/4 by making 0.3n — 1 > 0.25n, or 0.05n > 1,
which gives us n > 20. Therefore, in the case where n is divisible by 5, as
long as n > 20, we have that m* is in the middle half of A. We now turn
to the general case in which n need not be a multiple of 5.

242 Chapter 4: Induction, Recursion, and Recurrences

Lemma 4.14

Exercise 4.6-3

The value returned by MagicMiddle(A) is in the middle half of A.

Proof We let m* denote the output of MagicMiddle(A), so that m* is
the [k/27th element of the m;’s in sorted order. Thus, [k/2] — 1 medians
m; are less than m™*, as are the elements in G; less than m;. Choose j
so that m* € G;. Then the elements of G; less than m; are less than m*.
However, for all but perhaps one G; (including G;) with m; < m*, there are
two elements less than m;, so that the set S’ of elements less than m* has
size at least 3([k/2] — 1). Because k is at least n/5 and [n/10] > n/10,

we have that
5123] 1) 23 (1)
10 10

Thus, if we choose n so that

3 (1”—0 - 1) —03n-3> (4.29)

n
4 b
we will have S’ > n/4. But Equation 4.29 gives us 0.3n — 3 > 0.25n, or
n > 60. Now because there are k — [k/2] medians m; greater than m*, we

have, as with §’, that if B’ is the set of elements of A larger than m*, then
B’ has at least 3(k — [k/2]) elements. Because [k/2] < k/2 + 1, we have

k k 1rn n
B|>3(k—S—1)=3(2—1)=3 —(—]—1 >3 _3-031-3.
2 2 215 10

Thus, if we choose n so that Equation 4.29 holds—that is, so that n > 60—
then we have both |S’| > n/4 and |B’| > n/4. Therefore, m* is in the middle
half of A.

Note that we don’t actually identify all the nodes that are guaranteed to be,
say, less than the median of medians; we are just guaranteed that the proper
number exists.

Because we only have the guarantee that MagicMiddle gives an element
in the middle half of the set if the set has at least 60 elements, we modify
Selectl to start by checking whether n < 60 and then sorting the set to find
the element in position i if n < 60. Because 60 is a constant, sorting and
finding the desired element takes, at most, a constant amount of time.

An Analysis of the Revised Selection Algorithm

Let T(n) be the running time of the modified Selectl on n items. How can
you express the running time of MagicMiddle in terms of 7(n)?

Exercise 4.6-4

Exercise 4.6-5

4.6: Recurrences and Selection 243

What is a recurrence for the running time of Selectl? (Hint: How could
Exercise 4.6-3 help you?)

Can you prove by induction that each solution to the recurrence for Selectl
is O(n)?

For Exercise 4.6-3, we have the following steps.

1. Divide the items into sets of five; this takes O (n) time.

2. Find the median of each five-element set. (We can find this median
by any straightforward method we choose and still only take, at
most, a constant amount of time; we don’t use recursion here.)
There are n/5 sets, and we spend no more than some constant time
per set, so the total time is O (n).

3. Recursively call Selectl to find the median of medians; this takes
T(n/5) time.

4. Partition A into those elements less than or equal to the “magic
middle” and those that are not, which takes O (n) time.

Thus, the total running time is 7(n/5) 4+ O (n), which implies that for some
no there is a constant ¢y > 0 such that the running time is no more than con
for all n > ng. Even if ng > 60, there are only finitely many cases between
60 and ng, which means there is a constant ¢ such that the running time of
MagicMiddle is no more than 7(n/5) + cn for n > 60.

We now get a recurrence for the running time of Selectl. Note that for
n > 60, Selectl has to call MagicMiddle and then recurse on either L or
H, each of which has size at most 3n/4. For n < 60, note that it takes no
more than some constant amount d of time to find the median by sorting.
Therefore, we get the following recurrence for the running time of Selectl:

T(Bn/4) + T(n/5) + c'n if n > 60,
if n < 60.

T(n) <

This answers Exercise 4.6-4.

As Exercise 4.6-5 requests, we can now verify by induction that T(n) =
O(n). What we want to prove is that there is a constant k such that T(n) <
kn. What the recurrence tells us is that there are constants ¢ and d such
that T(n) < T(3n/4) + T(n/5) + cn if n > 60; otherwise, T(n) < d. For the
base case, we have T(n) < d < dn for n < 60, so we choose k to be at least
d; then T(n) < kn for n < 60. We now assume that n > 60 and T(m) < km

244 Chapter 4: Induction, Recursion, and Recurrences

Theorem 4.15

Exercise 4.6-6

Exercise 4.6-7

Exercise 4.6-8

for values m < n. We get

T < T (%") 4T (ﬁ) ten

5
<3k—n+k—n+cn
- 4 5
_19kn
=50 +cn

k
=k - — | n.
n—i—(c 2O>n

As long as k > 20c, this is at most kn; so we simply choose k this big,
and by the principle of mathematical induction, we have T(n) < kn for all
positive integers n.

The revised Selectl algorithm runs in time 7(n) = O (n).

Proof The proof is given in the discussion of Exercises 4.6-3 through
4.6-5.

Uneven Divisions

The kind of recurrence we found for the running time of Select] is actually
an instance of a more general class, which we now explore.

We already know that when g(n)= O(n), every solution of
T(n) = T(n/2) + g(n) satisfies T(n) = O(n). Use the master theorem to
find a big O bound to the solution of 7(n) = T(cn) + g(n) for any constant
¢ < 1, assuming that g(n) = O (n).

Use the master theorem to find big O bounds to all solutions of 7(n) =
2T(cn) + g(n) for any constant ¢ < 1/2, assuming g(n) = O (n).

Suppose g(n) = O(n) and you have a recurrence of the form
T(n) = T(an) + T(bn) + g(n) for some nonnegative constants a and
b. What conditions on a and b guarantee that all solutions to this
recurrence have T(n) = O(n)?

Using the master theorem for Exercise 4.6-6, we get T(n)= O (n),
because log,; Je 1 < 1. We also get T(n) = O(n) for Exercise 4.6-7, because

4.6: Recurrences and Selection 245

log; .2 <1 for ¢ <1/2. You might now guess that as long as a +b <1,
any solution to the recurrence T(n) < T(an) + T(bn) + cn has T(n) = O (n).
We will now see why this is the case.

First, let’s return to the recurrence T(n) = T(3n/4) + T(n/5) + g(n), where
g(n) = O(n). Let’s try to draw a recursion tree. This recurrence doesn’t
quite fit our model for recursion trees, because the two subproblems have
unequal size (thus, we can’t even write the problem size on the left), but
we will try to draw a recursion tree in Figure 4.15 anyway and see what
happens.

Work

(66« Gls)+ ()] + (I

Figure 4.15: Attempting a recursion tree for 7(n) = 7(3/4)n + T(n/5)
+g(n)

As we draw Levels 1 and 2, we see that at Level 1, we have (3/4 4+ 1/5)n
work. At Level 2, we have

() =C))-(2))

work. Were we to work out the third level, we would see that we have

GROIORGORONE

Thus, we can see a pattern emerging. At Level 1, we have (3/4 4 1/5)n
work. At Level 2, we have, by the binomial theorem, (3/4 + 1/ 5)%n work.
At Level 3, we have, by the binomial theorem, (3/4 + 1/ 5)3n work. And,
similarly, at Level i, we have ((3/4) + (1/5))'n = (19/20)'n work. Thus,

246 Chapter 4: Induction, Recursion, and Recurrences

when we sum over all levels, we get

O (logn) 19 i 1
i=0 20

for an upper bound on the total work. We have actually ignored one detail
here. In contrast to a recursion tree in which all subproblems at a level
have equal size, the “bottom” of the tree is more complicated. Different
branches of the tree will reach problems of size 1 and terminate at different
levels. For example, the branch that follows all 3/4s will bottom out after
log, 3 n levels, while the one that follows all 1/5s will bottom out after
logs n levels. However, the analysis above overestimates the work—that is,
it assumes that nothing bottoms out until everything bottoms out, which
occurs at 1og,y,j9 7 levels. In fact, the upper bound we gave on the sum is
what we would get by assuming that the recurrence never bottoms out.

We see here something general happening. It seems as if to understand a
recurrence of the form 7(n) = T(an) + T(bn) 4+ g(n), with g(n) = O(n),
we can study the simpler recurrence 7(n) = T((a + b)n) + g(n) instead.
For a more precise formulation, see Problem 4, which solves Exercise 4.6-8.
This simplifies things enough (in particular, it lets us use the master
theorem) to let us analyze a larger class of recurrences. Turning to the
median algorithm, it tells us that the important thing that happened
there was that the sizes of the two recursive calls, namely, 3n/4 and
n/5, summed to a proper fraction of n. As long as an algorithm has a
recurrence of the form T(n) = T(an) + T(bn) + g(n), has a + b < 1, and
has g(n) = O(n), the algorithm will work in O(n) time.

1. Median. The median of a set (with an underlying order) of n
elements is the element that would be in position [r/2] if the set
were listed in order.

2. Percentile. The pth percentile of a set (with an underlying order) is
the element that would be in position [(p/100)n] if the set were
listed in order.

3. Selection. Given an n-element set with some underlying order, the
problem of selection of the ith-smallest element is that of finding
the element that would be in the ith position if the set were listed
in order. Note that i is often expressed as a fraction of n.

4. Partition element. A partition element in an algorithm is an element
of a set (with an underlying order) that is used to divide the set into

4.6: Recurrences and Selection 247

two parts, those that come before or are equal to the element (in
the underlying order) and then the remaining elements. Notice that
the order in which the set is given to the algorithm is not
necessarily (in fact, not usually) the underlying order.

5. Linear-time algorithms. If the running time of an algorithm satisfies
a recurrence of the form T(n) < T(an) + cn, with 0 <a < 1, or a
recurrence of the form T(n) < T(an) + T(bn) + cn, with a and b
nonnegative and a + b < 1, then T(n) = O (n).

6. Finding a good partition element. If a set (with an underlying order)
has 60 or more elements, then the procedure of breaking the set into
pieces of size 5 (plus one leftover piece, if necessary), finding the
median of each piece, and then finding the median of the medians
gives an element guaranteed to be in the middle half of the set.

7. Selection algorithm. The selection algorithm that runs in linear time
sorts a set of size less than 60 to find the element in the ith
position; otherwise,

* it recursively uses the median of medians of five to find a
partition element,

e it uses that partition element to divide the set into two pieces,
and

¢ then it looks for the appropriate element in the appropriate
piece recursively.

All problems with blue boxes have an answer or hint available at the end
of the book.

Find the best big O bound you can on 7(n) if it satisfies the
recurrence T(n) < T(n/4) + T(n/2) +n, with T(n) =1 if n < 4.

2. In the MagicMiddle algorithm, suppose you broke the data into n/7
sets of size 7. What would the running time of Select]l be?

Let

T(n/3)+Tn/2)+n ifn=>06,
T(n) =
otherwise ,
and let
S6n/6)+n ifn=>6,
S(n) = .
otherwise.

248 Chapter 4: Induction, Recursion, and Recurrences

B B

Draw recursion trees for 7" and S. What are the big O bounds on
solutions to the recurrences? Use the recursion trees to argue that
T(n) < S(n) for all n.

Suppose you are given that a and b are nonnegative real numbers,
with a + b < 1, and that ¢ is a nonnegative real number. Explain
why it is that if T(n) < T(an) + T(bn) + cn, then T(n) = O (n).
Explain how this solves Exercise 4.6-8.

Find a big ® bound (the best you know how to get) on solutions to
the recurrence T(n) = T(n/3) + T(n/6) + T(n/4) + n, with

(1) = 1.

Find a big ® bound to solutions to the recurrences

T(n/4) +TBn/4) +dn < T(n) < T(n/4) + T(3n/4) + cn.

In the MagicMiddle algorithm, suppose you broke your data into
n/3 sets of size 3. What would the running time of Selectl be?

Find a big O upper bound (the best you know how to get) on
solutions to the recurrence T(n) = T(n/4) + T(n/2) + n’ with
Tn)y=1if n < 4.

Note that we have chosen the median of an n-element set to be the
element in position [n/2]. We have also chosen to put the median
of the medians into the set L of algorithm Selectl. Show that this
allows you to prove that T(n) < T(3n/4) + T(n/5) 4+ cn for n > 40
rather than n > 60. (You will need to analyze separately the case
where [n/5] is even and the case where it is odd.) Is 40 the least
value possible?

5 Probability

5.1

INTRODUCTION TO PROBABILITY

Why Study Probability?

You have probably studied hashing as a way to store data so that it is
possible to access that data quickly. But for those of you who have not, we
will explain it here by telling a true story about a catalog order store where
two of this book’s authors used to shop.

Customers would come to the store and fill out order forms for items from
the catalog (or they would call in their orders). The store employees would
then order the items, which would be delivered from a warehouse some
days later. When merchandise was delivered to the store, the customer who
ordered it would be telephoned and would eventually come to pick it up.
Meanwhile, dozens (or, in busy times, hundreds) of order forms would
accumulate at the order pickup desk. It would be impractical to search
through all of the forms to find a customer’s order.

The store came up with an ingenious solution. Behind the desk were 100
cubbyholes, numbered 00 through 99, for holding order forms. Order forms
were put into the cubbyhole corresponding to the last two digits of the
customer’s phone number. A customer arriving at the desk was asked for
the last two digits of his or her phone number. The clerk would then look
through the order forms in the corresponding cubbyhole. There would never
be more than a few forms, even when there were hundreds of total orders.
Therefore, filing a form into a cubbyhole and finding a particular form were
both fast and easy.

Hash tables in a computer use the same idea. Instead of cubbyholes, there
18 a table with m numbered locations. Each location, called a bucket or slot,

249

250 Chapter 5: Probability

holds a list of data items.! Each item has a unique identifier, called the key.
When a data item arrives to be stored in the table, a hash function % that
maps keys into bucket numbers gives the number of the bucket into which
the data item should be inserted. (In the catalog order store example, the
data items were the order forms, the keys were the phone numbers, and the
hash function returned the last two digits of the phone number.) To look
up the data corresponding to a particular key, you would simply compute
the hash function of that key and look in the corresponding bucket.’

A good hash function spreads the keys evenly among the buckets. Taking
the last two digits of a phone number is a good hash function. However,
taking the first two digits of the phone number would be a bad choice,
because most phone numbers in a local area start with one of a relatively
small number of three-digit numbers. The hash function is defined for all
conceivable keys, even though relatively few of them usually occur as input.
If we don’t know anything about the data coming in, then we can’t make
a good guess as to what makes a good hash function. Thus, in creating
our model for hashing, we will assume that all functions from the keys we
receive to the slots in the table are equally likely to result from applying
the hash function.

If we have a table with 100 buckets and 50 keys to put in those buckets,
it is possible that all 50 of those keys could be assigned (hashed) to the
same bucket in the table. However, someone who is experienced with using
hash functions will tell you that you’d never see this in a million years.
But that same person might also tell you that neither would you ever see,
in a million years, all the keys hash into different locations. In fact, it is far
less likely that all 50 keys would hash into one place than that all 50 keys
would hash into different places, but both events are quite unlikely. Being
able to understand just how likely or unlikely such events are is a major
reason for taking up the study of probability.

To assign probabilities to events, we need to have a clear picture of what
these events are. Thus, we present a model of the kinds of situations in
which it is reasonable to assign probabilities, and then we recast our ques-
tions about probabilities into questions about this model. We use the phrase
sample space to refer to the set of possible outcomes of a process. For
now, we deal with processes that have finite sample spaces, such as a game

1t is common for the data items in a bucket to be stored in a linked list, but all we need
to know at this stage is that the items are in a list.

>The scheme we have described for hashing is called open hashing. Other schemes are
possible. For example, the table may consist of slots that can hold a single item; if the hash
function says to put a second item into a slot that is already full, then further computation
finds an empty slot in the table. Analyzing such schemes is beyond the scope of this book.

5.1: Introduction to Probability 251

of cards, a sequence of hashes into a hash table, a sequence of tests on a
number to see if it fails to be a prime, a roll of a die, a series of coin flips,
a laboratory experiment, a survey, or any of many other possibilities.

As with all sets, the items in the sample space are called elements. For
example, if a professor starts each class with a three-question true-false
quiz, then the sample space of all possible patterns of correct answers is

{TTT, TTF, TFT, FTT, TFF, FTF, FFT, FFF},

and TTT is the element of the sample space corresponding to all answers
being true. A set of elements in a sample space is called an event. The
event of the first two answers being true is {TTT, TTF}.

To compute probabilities, we assign a probability weight P(x) to each
element of the sample space so that the weight represents what we believe
to be the relative likelihood of that outcome. There are two rules in assigning
weights. First, the weights must be nonnegative numbers, and second, the
sum of the weights of all the elements in a sample space must be 1. We
define the probability P(E) of the event E to be the sum of the weights
of the elements of E. Algebraically, we write

P(E)=) P(x). (5.1)

xxek

We read this as “P(FE) equals the sum, over all x such that x is in E, of
P(x).” In particular, we have just defined the probability of the set {x},
denoted by P({x}), to equal the weight P(x), which makes our notation
consistent.

Notice that a probability function P on a sample space S satisfies the
following rules:?

1. P(A) >0 for any A C S.

2. P(S)=1.

3. P(AUB) = P(A) 4+ P(B) for any two disjoint events A and B.
The first two rules reflect our rules for assigning weights. We say that

two events A and B are disjoint if AN B = (). The third rule follows
directly from the definition of disjoint and our definition of the probability

3These rules are often called the axioms of probability. For a finite sample space, we could
show that if we started with these axioms, our definition of probability in terms of the
weights of individual elements of § is the only definition possible. That is, for any other
definition, the probabilities we would compute would still be the same if we take

w(x) = P({x}).

252 Chapter 5: Probability

Exercise 5.1-1

Exercise 5.1-2

Exercise 5.1-3

of an event. A function P that satisfies these rules is called a probability
distribution or a probability measure.

In the case of the professor’s three-question quiz, it is natural to expect each
sequence of trues and falses to be equally likely. (If a professor showed
any pattern of preferences, then a student who observed this pattern could
use it in educated guessing.) Thus, it is natural to assign an equal weight
of 1/8 to each of the eight elements of our quiz sample space. We defined
the probability of an event E, which we denote by P(E), is the sum of the
weights of its elements. Thus, the probability of the event “the first answer
< true” i
is true” is 1+1+1+1_1

8 8 8 8 2
The event “there is exactly one true” is {TFF, FTF, FFT}; so, P(there is
exactly one true) is 3/8.

Some Examples of Probability Computations

Try flipping a coin five times. Did you get at least one head? Repeat five
coin flips a few more times. What is the probability of getting at least one
head in five flips of a coin? What is the probability of no heads?

Find a good sample space for rolling two dice. What weights are appropriate
for the members of your sample space? What is the probability of getting
a total of 6 or 7 on the two dice? Assume the dice are red and green. What
is the probability of getting less than 3 on the red one and more than 3 on
the green one?

Suppose you hash a list of n keys into a hash table with 20 locations. What
is an appropriate sample space, and what is an appropriate weight function?
(Assume the keys and the hash function are not in any special relationship
to the number 20.) If n = 3, what is the probability that all three keys
hash to different locations? If you hash 10 keys into the table, what is the
probability that at least two keys have hashed to the same location? We say
two keys collide if they hash to the same location. How big does n have to
be to ensure that the probability is at least 1/2 that there has been at least
one collision?

In Exercise 5.1-1, a good sample space is the set of all 5-tuples of H’s and
T’s. There are 32 elements in the sample space, and no element has any
reason to be more likely than any other. Thus, a natural weight to use is

Theorem 5.1

5.1: Introduction to Probability 253

1/32 for each element of the sample space. The event of at least one head
is the set of all elements except TTTTT. Because there are 31 elements
in this set, its probability is 31/32, which suggests that you should have
observed at least one head fairly often!

Complementary Probabilities

The probability of no heads is the probability of the set {TTTTT}, which is
1/32. Notice that the probabilities of the event “no heads” and the opposite
event “at least one head” add to 1. This observation suggests a theorem.
The complement of an event E in a sample space S, denoted by S — E, is
the set of all outcomes in S except those in E. The theorem tells us how to
compute the probability of the complement of an event from the probability
of the event. We say that two events E and F are complementary if E is
the complement of F in the sample space.

If two events E and F are complementary, then
P(E)=1— P(F).

Proof The sum of all the probabilities of all the elements of the sample
space is 1. Because we can break this sum into the sum of the probabilities
of the elements of E plus the sum of the probabilities of the elements of F,
we have

P(E)+ P(F) =1,

which gives us P(E) =1 — P(F).

For Exercise 5.1-2, a good sample space would be pairs of numbers (a, b),
where (1 < a, b < 6). By the product principle (see Section 1.1), the size
of this sample space is 6-6 = 36. Thus, a natural weight for each ordered
pair is 1/36. How do we compute the probability of getting a sum of 6 or
7?7 There are five ways to roll a 6 and six ways to roll a 7, so our event
has 11 elements, each of weight 1/36. Thus, the probability of our event is
11/36. For the question about the red and green dice, there are two ways
for the red one to turn up less than 3 and three ways for the green one to
turn up more than 3. Thus, the event of getting less than 3 on the red one
and greater than 3 on the green one is a set of size 2-3 = 6, by the product
principle. Because each element of the event has weight 1/36, the event
has probability 6/36, or 1/6.

254 Chapter 5: Probability

Probability and Hashing

In Exercise 5.1-3, an appropriate sample space is the set of n-tuples of
numbers between 1 and 20. The first entry in an n-tuple is the position our
first key hashes to, the second entry is the position our second key hashes
to, and so on. Thus, each n-tuple represents a possible hash function, and
each hash function, applied to our keys, would give us one n-tuple. The
size of the sample space is 20" (why?), so an appropriate weight for an
n-tuple is 1/20". To compute the probability of a collision, we first com-
pute the probability that all keys hash to different locations; we then apply
Theorem 5.1, which tells us to subtract this probability from 1 to get the
probability of a collision.

To compute the probability that all keys hash to different locations, we
consider the event that all keys hash to different locations. This is the
set of n-tuples in which all entries are different. (In the terminology of
functions, these n-tuples correspond to one-to-one hash functions). There
are 20 choices for the first entry of an n-tuple in our event. Because the
second entry has to be different, there are 19 choices for the second entry of
this n-tuple. Similarly, there are 18 choices for the third entry (it has to be
different from the first two), 17 for the fourth, and, in general, 20 — i + 1
possibilities for the ith entry of the n-tuple. Thus, we have

(20)(19)(18) - -- (20 — n + 1) = 20"

elements of our event.* Because each element of this event has weight
1/20", the probability that all the keys hash to different locations is

(20)(19)(18) --- (20 —n + 1) _ 20~
20" 20n

In particular, if 7 is 3, the probability is (20-19-18)/20° = .855.

Table 5.1 shows the values of this function for n between 0 and 20.
Note how quickly the probability of getting a collision grows. As you
can see with n = 10, the probability that there have been no collisions is
about .065, so the probability of at least one collision is .935. If n =5,
then this probability is about .58, and if n = 6, then it is about .43. By
Theorem 5.1, the probability of a collision is 1 minus the probability that
all the keys hash to different locations. Thus, if we hash six items into our
table, the probability of a collision is more than 1/2. Our first intuition
might well have been that we would need to hash 10 items into our table

“Here, we use the notation for falling factorial powers introduced in Section 1.2.

5.1: Introduction to Probability 255

to have probability 1/2 of a collision. This example shows the importance
of supplementing intuition with careful computation!

n

Probability of Empty Slot

Probability of No Collisions

O© 0 9 O W B WD =

N S N e e T e e T e T =
O© 0 N O N B~ W N = O

20

1

.05

1

.95

.855

12675

5814

43605
.305235
19840275
.11904165
065472908
032736454
014731404
005892562
.002062397
.000618719
.00015468
.0000309359
.00000464039
000000464039
.000000023202

Table 5.1: The probabilities that all elements of a set hash to different entries

of a hash table of size 20

If we created a similar table for hashing keys into a table with 100 slots,
we would see that for hashing 50 keys into 100 slots, the probability that
all 50 items go to different slots is about .0000003, or three ten-millionths.
Thus, if we repeated the experiment of hashing 50 items into 100 slots ten

256 Chapter 5: Probability

Theorem 5.2

million times, we should not be surprised if on one or more of the repeats,
all keys went to different slots. So, even though the probability of all keys
going to different slots is small, a person who says we would never see this
in a million years is wrong, even if we just do one experiment per month.

The technique of computing the probability of an event of interest by first
computing the probability of its complementary event and then subtracting
that from 1 is very useful. You will have many opportunities to use it,
perhaps because about half the time, it is easier to compute directly the
probability that an event doesn’t occur than it is to compute the proba-
bility that it does. We stated Theorem 5.1 as a theorem to emphasize the
importance of this technique.

The Uniform Probability Distribution

In the previous three exercises, it was appropriate to assign the same weight
to all members of our sample space. We say that P is the uniform prob-
ability measure or uniform probability distribution when we assign the
same probability to all members of our sample space. The computations in
the exercises suggest the following useful theorem.

Suppose P is the uniform probability measure defined on a sample
space S. Then for any event E,

_ El

P(E) = —,
(E) 5]

which is the size of E divided by the size of S.

Proof Let S = {x1,x2,...,x5}. Because P is the uniform probabil-
ity measure, there must be some value p such that P(x;) = p for each
x; € S. Combining this fact with the second and third probability rules,
we obtain
1=P(S)
=Px1UxaU---Uxg)
= P(X1) + P(XZ)+"'+ P(X\S|)

= pIS|.

Equivalently,

Exercise 5.1-4

Exercise 5.1-5

5.1: Introduction to Probability 257

E is a subset of § with |E| elements and, therefore,

P(E)= Y p(x)) = |E|p. (5-3)

x;ekE
Combining Equations 5.2 and 5.3 gives

P(E) = |E|p = |E|(1/]S]) = |E|/|S].

What is the probability of an odd number of heads in three tosses of a coin?
Use Theorem 5.2, which states that with the uniform probability measure,
for any event E,

P(E) = —,
(E) 5]

which is the size of E divided by the size of S.

Using a sample space similar to that of the first example (with T and F
replaced with H and T, respectively), we see there are three sequences
with one H and there is one sequence with three H’s. Thus, we have four
sequences in the event “an odd number of heads come up.” Because there
are eight sequences in the sample space, the probability is 4/8 = 1/2 by
Theorem 5.2.

The fact that we got 1/2 shows a symmetry inherent in this problem. In
flipping coins, heads and tails are equally likely. Furthermore, if we are flip-
ping three coins, an odd number of heads implies an even number of tails.
Therefore, the probabilities of the following events must all be the same.

* an odd number of heads
* an even number of heads
* an odd number of tails
* an even number of tails
A word of caution is appropriate here. Theorem 5.2 applies only to

probabilities that come from the equiprobable weighting function. The
next exercise shows that the theorem does not apply in general.

A sample space consists of the numbers 0, 1, 2, and 3. We assign weight
1/8t0 0, 3/8to 1, 3/8 to 2, and 1/8 to 3. What is the probability that an
element of the sample space is positive? Show that this is not the result we
would obtain if we used the formula of Theorem 5.2.

258

Chapter 5: Probability

The event “x is positive” is the set E = {1, 2, 3}. The probability of E is

3 3 1 7
P(EyY=P(H)+P2Q)+PB)==-+-+-=-.
(E) (H+PQ2)+ POB) ctgT3s™3
However, |E|/|S| = 3/4.
Exercise 5.1-5 may seem to be “cooked up” in an unusual way just to
prove a point. However, that sample space and that probability measure
could easily arise in studying something as simple as coin flipping.

Exercise 5.1-6 Use the set {0, 1, 2, 3} as a sample space for the process of flipping a coin

three times and counting the number of heads. Determine the appropriate
probability weights P(0), P(1), P(2), and P(3).

There is one way to get no heads, namely, tails on each flip. There are,
however, three ways to get one head and three ways to get two heads. Thus,
P (1) and P(2) should each be 3 times P(0). There is one way to get three
heads—heads on each flip. Thus, P(3) should equal P(0). We can change
these statements into the following equations:

P(1)=3P(0)
P2)=3P(0)
P@3)= P

We also have the equation saying all the weights add to 1:
PO +P()+P2)+P@3) =1.

There is one and only one solution to these equations, namely,

PO) =+
8
P(l) = g
8
3
P2) = §
1

Do you notice a relationship between P(x) and the binomial coefficient
i here? Can you predict the probabilities of zero, one, two, three, and
four heads in four flips of a coin?

5.1: Introduction to Probability 259

Together, the previous two exercises demonstrate that we must be care-
ful not to apply Theorem 5.2 unless we are using the uniform probability
measure.

1.

Sample space. A sample space is the set of possible outcomes of a
process.

2. Event. A set of elements in a sample space is called an event.

3. Disjoint. Two events E and F are said to be disjoint if EN F = (0.

4. Probability. To compute probabilities, we assign a weight to each

element of the sample space so that the weight represents what we
believe to be the relative likelihood of that outcome. We must follow
two rules in assigning weights. First, the weights must be
nonnegative numbers, and second, the sum of the weights of all the
elements in a sample space must be 1. We define the probability
P(E) of the event E to be the sum of the weights of the elements
of E. The function P is called a probability measure.

. The axioms of probability. A probability measure on a finite sample

space must satisfy the following three rules. (Alternately, these rules
could be used to define what we mean by probability.)

a. P(A) >0 forany A C S.

b. P(S)=1.
c. P(AUB) = P(A) + P(B) for any two disjoint events A
and B.

Probability distribution. A function that assigns a probability to each
member of a sample space is called a (discrete) probability
distribution.

. Complement. The complement of an event E in a sample space S,

denoted by S — E, is the set of all outcomes in S but not in E. We
say that the events E and F are complementary events if E is the
complement of F in S.

. The probabilities of complementary events. If two events E and F

are complementary, then

P(E)=1— P(F).

. Collision/Collide (in hashing). Two keys collide if they hash to the

same location.

260 Chapter 5: Probability

10.

11.

Uniform probability distribution. We say P is the uniform probability
measure or uniform probability distribution when we assign the same
probability to all members of our sample space.

Computing probabilities with the uniform distribution. Suppose P is
the uniform probability measure defined on a sample space S. Then
for any event E, we have P(E) = |E|/|S|, which is the size of E
divided by the size of S. This does not apply to general probability
distributions.

All problems with blue boxes have an answer or hint available at the end
of the book.

What is the probability of exactly three heads when you flip a coin

five times? What is the probability of three or more heads when
you flip a coin five times?

When you roll two dice, what is the probability of getting a sum of
4 or less on the tops?

If you hash three keys into a hash table with 10 slots, what is the

4.

probability that all three keys hash to different slots? How big does
n have to be so that if n keys hash to a table with 10 slots, the
probability is at least 1/2 that some slot has at least two keys hash
to it? How many keys do you need to have probability at least 2/3
that some slot has at least two keys hash to it?

What is the probability of an odd sum when you roll three dice?

Suppose you use the numbers 2 through 12 as your sample space

for rolling two dice and adding the numbers on top. What would
you get for the probability of a sum of 2, 3, or 4, if you used the
equiprobable measure on this sample space? Does your answer
make sense?

Two pennies, a nickel, and a dime are placed in a cup. You draw a
first coin and a second coin.

a. Assuming you are sampling without replacement (that is, you
don’t replace the first coin before taking the second), write the
sample space of all ordered pairs of letters P, N, and D that
represent the outcomes. What would you say are the
appropriate weights for the elements of the sample space?

b. What is the probability of getting 11 cents?

10.

12.

14.

5.1: Introduction to Probability 261

Why is the probability of five heads in 10 flips of a coin equal to
63/256?

Using five-element sets as a sample space, determine the
probability that a hand of five cards, chosen from an ordinary deck
of 52 cards, will have all cards from the same suit.

Using five-element permutations as a sample space, determine the
probability that a hand of five cards, chosen from an ordinary deck
of 52 cards, will have all the cards from the same suit.

How many five-card hands chosen from a standard deck of playing
cards consist of five cards in a row (such as the nine of diamonds,
ten of clubs, jack of clubs, queen of hearts, and king of spades)?
Such a hand is called a straight. What is the probability that a
five-card hand is a straight? Explore whether you get the same
answer by using five-element sets as your model of hands or
five-element permutations as your model of hands.

A student taking a 10-question, true-false diagnostic test knows
none of the answers and must guess at each one. Compute the
probability that the student gets a score of 80 or higher. What is the
probability that the grade is 70 or lower?

A die is made of a cube with a square painted on one side, a circle
on two sides, and a triangle on three sides. If the die is rolled
twice, what is the probability that the two shapes you see on top
are the same?

Are the following two events equally likely? Event 1 consists of
drawing an ace and a king when you draw two cards from among
the 13 spades in a deck of cards. Event 2 consists of drawing an
ace and a king when you draw two cards from the whole deck.

There is a retired professor who used to love to go into a
probability class of 30 or more students and announce, “I will give
even money odds that there are two people in this classroom with
the same birthday.” With 30 students in the room, what is the
probability that all have different birthdays? What is the minimum
number of students that must be in the room so that the professor
has probability at least 1/2 of winning the bet? What is the
probability that he wins his bet if there are 50 students in the
room? Does this probability make sense to you? (There is no
wrong answer to this last question!) Explain why or why not. (A
programmable calculator, spreadsheet, computer program, or
computer algebra system will be helpful in this problem.)

262 Chapter 5: Probability

15. Which is more likely, or are both equally likely?

n Drawing an ace and a king when you draw two cards from
among the 13 spades, or drawing an ace and a king when you
draw two cards from an ordinary deck of 52 playing cards?

m Drawing an ace and a king of the same suit when you draw
two cards from a deck, or drawing an ace and a king when
you draw two cards from among the 13 spades?

5.2 UNIONS AND INTERSECTIONS

Exercise 5.2-1

Exercise 5.2-2

Exercise 5.2-3

The Probability of a Union of Events

If you roll two dice, what is the probability of either an even sum or a sum
of 8 or more (or both)?

In Exercise 5.2-1, let E be the event “even sum” and let F' be the event
“8 or more.” We found the probability of the union of the events E and F.
Why isn’t it the case that P(E U F) = P(E) + P(F)? What weights appear
twice in the sum P(E) 4+ P(F)? Find a formula for P(E U F) in terms of
the probabilities of E, F, and E N F. Apply this formula to Exercise 5.2-1.
What is the value of expressing one probability in terms of three?

What is P(E U F U G) in terms of probabilities of the events E, F, and G
and their intersections?

In the sum P(E) + P(F), the weights of elements of £ N F each appear
twice, while the weights of all other elements of £ U F each appear once.
We can see this by looking at a diagram called a Venn diagram (see Figure
5.1). In a Venn diagram, the rectangle represents the sample space, and
the circles represent the events.

If we were to shade both E and F, we would wind up shading the region
E N F twice. In Figure 5.2, we represent this situation by putting numbers
in the regions, indicating how many times they are shaded. This illustrates
why the sum P(E) + P(F) includes the probability weight of each element
of EN F twice. Thus, to get a sum that includes the probability weight of
each element of E U F exactly once, we have to subtract the weight of
E N F from the sum P(E) 4+ P(F). This is why

P(EUF)= P(E)+ P(F)— P(ENF). (5.4)

5.2: Unions and Intersections 263

Figure 5.1: A Venn diagram for two events

Figure 5.2: If we shade each of E and F once, then we shade E N F twice

We can now apply this equation to Exercise 5.2-1 by noting that the prob-
ability of an even sum is 1/2, while the probability of a sum of 8 or

more B 1,23 4.5 1

36 36 36 36 36 36
From a similar sum, the probability of an even sum of 8 or more is 9/36,
so the probability of a sum that is even or is 8 or more is

1 15 9 2

2736 3% 3
In this case, our computation merely illustrates the formula; with less work,
we could add the probability of an even sum to the probability of a sum
of 9 or 11. In many cases, however, probabilities of individual events and
their intersections are more straightforward to compute than probabilities of
unions (we will see such examples later in this section), and in such cases,
our formula is quite useful.

Now let’s consider the case for three events. We draw a Venn diagram and
fill in the numbers for shading E, F, and G. To avoid crowding the figure,

264 Chapter 5: Probability

we use EF to label the region corresponding to £ N F and similarly label
other regions. This gives Figure 5.3.

[\
A

Figure 5.3: The number of times the intersections are shaded when we shade
E, F, and G

Thus, we have to figure out a way to subtract from P(E) + P(F) + P(G)
the weights of elements in the regions £ N F, F NG, and £ N G but not
E N F NG (labeled EF, FG, and EG, respectively) once, and then the weight
of elements in the region labeled EFG twice. Subtracting the weights of
elements of each E N F, F N G, and E N G does more than we wanted to do,
because this subtracts the weights of elements in EF, FG, and EG once but
the weights of elements in EFG three times, leaving us with Figure 5.4. We
see that all we have left to do is to add weights of elements in EN F NG
back into our sum. Thus, we have

P(EUFUG) = P(E)+ P(F)+ P(G)— P(ENF)— P(ENG)
—P(FNG)+ P(ENFNG).

A
(KN

Figure 5.4: The result of removing the weights of each intersection of
two sets

Exercise 5.2-4

5.2: Unions and Intersections 265

Principle of Inclusion and Exclusion for Probability

From the previous two exercises, it is natural to guess the formula

n n n—1 n
P<U Ei) =Y P(E)-)_ > P(ENE)
i=1 i=1 i=1 j=i+l1
n—2 n—1 n
+ Y PENENE)—-. (55)
i=1 j=it+lk=j+1

All the sum signs in this notation suggest that we need some new notation
to describe sums. We are now going to make what we hope is a small leap
of abstraction in our notation and introduce notation capable of describing
compactly the sum in Equation 5.5. This notation is an extension of the one
we introduced in Equation 5.1. We use

> P(E;, NEy,N---E;)

[STR LT
I<ij<ip<---<ig<n

to stand for the sum, over all increasing sequences iy, io, ..., iy of integers
between 1 and n, of the probabilities of the sets E; N E;, --- N E;, . More
generally,
Yoo flnia.. i)
[STR LT
1<iy<ip<---<ig=<n
is the sum of f(iy, in, ..., 1) over all increasing sequences of k numbers

between 1 and n.

To practice with notation, what is

Z i1 +ix+i3?

i1,ip,103:
1<ij<ip<iz<4

The sum in Exercise 5.2-4 is (1 +2+3)+ (1 +2+4)+ (1 +3+4)+
2434+4)=31+2+3+4)=30.

With this understanding of the notation in hand, we can now write a for-
mula that captures the idea in Equation 5.5 more concisely. Notice that
Equation 5.5 includes probabilities of single sets with a plus sign, prob-
abilities of intersections of two sets with a minus sign, and, in general,
probabilities of intersections of any even number of sets with a minus sign

266 Chapter 5: Probability

Theorem 5.3

and probabilities of intersections of any odd number of sets (including the
odd number 1) with a plus sign. Thus, if we are intersecting k sets, the
proper coefficient for the probability of the intersection of these sets is
(— D!, (It would be equally good to use (— D! and correct, but uncon-
ventional, to use (—1)**3.) This lets us translate the formula of Equation
5.5 to the equation in the theorem called the principle of inclusion and
exclusion for probability, which follows. We give two completely differ-
ent proofs of the theorem—one of which is a nice counting argument but
is a bit on the abstract side, and one of which is straightforward induction
but is complicated by the fact that it takes a lot of notation to say what is
happening.

(Principle of Inclusion and Exclusion for Probability) The probability
of the union £; U E, U ---U E, of events in a sample space S is given
by

P(U E,-) => D" Y P(E,NE,N---NEy). (56
i=1 k=1

01,00, .., if:
I<ij<ip<---<ip<n

Proof 1 Consider an element x of U?:l E;. Let E;, E;,), ..., E;, be the
set of all events E; of which x is a member. Let H = {iy, i, ..., i;}. Then
x is in another event E; N E;, N---N E; if and only if {ji, jo, ..., jm} €
H. Why is this? If there is a j, that is not in H, then x ¢ E; and thus
x € Ej, NE;,N---NE;,. Notice that every x in | J;_, E; is in at least one
E;, so it is in at least one of the sets E;; N E;, N---N E;, namely, E;

Recall that we define P(Ej1 NE,N---N Ejk) to be the sum of the
probability weights P(x) for x € E; NE;,N---NE;. Suppose we
substitute this sum of probability weights for P(Ej1 NE;, ﬂ---ﬂEjk)
on the right side of Equation 5.6. Then the right side becomes a sum of
terms, each of which is plus or minus a probability weight. The sum of
all the terms involving P(x) on the right side of Equation 5.6 includes a
term involving P(x) for each nonempty subset {ji, j2, ..., jm} of H and
no other terms involving P(x). The coefficient of the probability weight

P(x) in the term for the subset {ji, j2, ..., jm} iS (—1)"*+!. Because there

are (;) subsets of H of size m, the sum of the terms involving P (x)

will be

5.2: Unions and Intersections 267

" h " h
> (=1 () P(x) = (— > =" () P(x)) + P(x)
m=1 m m=0 m
=0-P(x)+ P(x) = P(x).

We got the term 0 - P (x) by using the fact that 2 > 1, so that by the binomial
theorem, Z?:O (’]’ (—=1)/ = (1 = 1)" = 0. This proves that for each x,
the sum of all the terms involving P(x) after we substitute the sum of
probability weights into Equation 5.6 is exactly P (x). We noted above that
every x in | J!_, E; appears in at least one of the sets E;, N E;, N--- N E;,.
Thus, the right side of Equation 5.6 is the sum of every P(x) such that x
is in (J;_, E;, which, by definition, is the left side of Equation 5.6.

Proof 2 The proof is simply an application of mathematical induction
using Equation 5.4. When n =1, the formula is true because it says
P(E|) = P(E;). Now suppose inductively that for any family of n — 1
sets Fy, F», ..., F,_1, we have

n—1 n—1
P(U F,) =Y (D! > P(Fy, NFyN---NF,). (5.7)
i=1 k=1

i1,00, oo, ik
I<iij<ip<---<ip=<n-—1

If in Equation 54 we let E = E,U---UE,_; and F = E,, then we may
apply Equation 5.4 to compute P(|J?_, E;) as follows:

n n—1 n—1
P(U E,-) = P(U E,-) + P(E,) — P((U E,-) N E,,) . (5.8)
i=1 i=1 i=1

By the distributive law,

n—1 n—1
(U E,-> NE,=J(ENE,).
i=1 i=1

Substituting this into Equation 5.8 gives us

n n—1 n—1
P(U E,-) = P(U E,-) + P(E,) — P(U(Ei n En)> :
i=1 i=1

i=1

268 Chapter 5: Probability

Exercise 5.2-5

Now we use the inductive hypothesis (Equation 5.7) in two places to get

n n—1
P(U E,~> = Z(—l)"+1 Z P(EyNE,N---NE) | + P(Ey
i=1 k=1

i1,0, ..., 0k:
I<ij<ip<---<ig<n—1

n—1
= > =D Y P(E, NE, NN E NE,).
k=1

i1,00, ..., 0k:
I<ij<ip<--<ig<n-—1

The first summation on the right side sums (—1)"+1 P(E,-1 NE,N---N Eik)

over all lists iy, iy, ..., i; that do not contain n, whereas the P(E,) and the
second summation work together to sum (—1)]‘+1P(E,-1 NE,N---N Eik)
over all lists iy, ip, ..., i that do contain n. Therefore,
n n
P(U E,-) => D" 3" P(E, NE,N---NE,).
i=1 k=1 01,00, ..., gt

l<ij<ipg<---<iy<n

Thus, by the principle of mathematical induction, this formula holds for all
integers n > 0.

At a fancy restaurant, n students check their backpacks. They are the only
ones in the restaurant to check backpacks. A child visits the checkroom and
plays with the check tickets for the backpacks so they are all mixed up.
If there are five students named Judy, Sam, Pat, Jill, and Jo, in how many
ways may the backpacks be returned so that Judy gets the correct backpack
(and maybe some other students do, too)? What is the probability that this
happens? What is the probability that Sam gets the correct backpack (and
maybe some other students do, too)? What is the probability that Judy and
Sam both get the correct backpacks (and maybe some other students do,
too)? For any particular two-element set of students, what is the probability
that these two students get the correct backpacks (and maybe some other
students do, too)? What is the probability that at least one student gets his
or her own backpack? What is the probability that no students get their own
backpacks? What do you expect the answer will be for the last two questions
for n students? Because this classic problem is often stated using hats rather
than backpacks (quaint, isn’t it?), it is called the hatcheck problem. It is
also known as the derangement problem—a derangement of a set is a
one-to-one function from a set onto itself (i.e., a bijection) that sends each
element to something not equal to it.

5.2: Unions and Intersections 269

For Exercise 5.2-5, let E; be the event that person i on our list gets the right
backpack. Thus, E| is the event that Judy gets the correct backpack, and E»
is the event that Sam gets the correct backpack. The event E| N E; is the
event that Judy and Sam get the correct backpacks (and maybe some other
people do, too). In Exercise 5.2-5, there are 4! ways to return the backpacks
so that Judy gets her own (as with Sam or any other single student). Thus,
P(E)) = P(E;) = 4!/5!. For any particular two-element subset, such as
Judy and Sam, there are 3! ways that these two people may get the correct
backpacks. Therefore, P(E; N E;) = 3!/5! for each i and j. For a particular
group of k students, the probability that each one of these k students gets
his or her own backpack is (5 — k)!/5!. Here is another way to say the
same things: If E; is the event that student i gets his or her own backpack,
then the probability of an intersection of k of these events is (5 — k)!/5!.
The probability that at least one person gets his or her own backpack is the
probability of E; U E>, U E3 U E4 U Es. Then, by the principle of inclusion
and exclusion, the probability that at least one person gets his or her own
backpack is

P(E, UE,UE;UE4UEs5)

5
::22(_1V+1 }: P(E,NE,N---NE). (59)
k=1

i1,0, ..., 0k:
I<ij<ip<---<iy <5

As we argued above, for a set of k people, the probability that all k people
get their backpacks is (5 k) . In symbols, P(E[l NE,N---N E,-k) = (Sg!k)!.

Recall that there are <2) sets of k people chosen from our five students.

That is, there are <i) lists iy,i0,...,0 with 1 <ij <ip <--- <ip <5.
Thus, we can rewrite the right side of Equation 5.9 as

k1 G -hK!
Z(l) () o

This gives us

G —k)!
5!

mau&u&u&ugmzynk%>

k=1

_5304%4 510 (5K
_hl kKI(5—=k)! 5!

270 Chapter 5: Probability

The probability that nobody gets his or her own backpack is 1 minus the
probability that someone does, or

1 1 n 1 1
2 3! 4 51
To do the general case of n students, we simply substitute n for 5 and

get that the probability of at least one person getting his or her own back-
pack is

n
1 11 (-1
S U e
lzl:() i! 2 * 3! * n!
and the probability that nobody gets his or her own backpack is 1 minus
the probability above, or

" 11

Z(—l)"l————+---+(_1)n (5.10)
it 2 3! n! - ‘

i=

If you learned about power series in calculus, you may recall the power
series representation of e*, namely,

00
2 X3 x!

ex:1+x+x—+—+---= —.
2! 3! il
i=0

Thus, the expression in Equation 5.10 is the approximation to e~!, which
we get by substituting —1 for x in the power series and stopping the series
at i = n. Note that the result depends very lightly on n; as long as we have
at least four or five people, then no matter how many people we have,
the probability that no one gets his or her own backpack (or hat) remains
at roughly e~!. Our intuition might have suggested that as the number
of students increases, the probability that someone gets his or her own
backpack approaches 1 rather than 1 — e\ Thus, this is another example
of why it is important to use computations, instead of intuition, with the
rules of probability!

Exercise 5.2-6

Exercise 5.2-7

Exercise 5.2-8

Exercise 5.2-9

5.2: Unions and Intersections 271

The Principle of Inclusion and Exclusion for Counting

How many functions from an n-element set N to an m-element set
M ={y1, y2, ..., Yy} map nothing to y;? Another way to say this is if I
have n distinct candy bars and m children (Sam, Mary, Pat, etc.), in how
many ways may | pass out the candy bars so that Sam doesn’t get any
candy (and maybe some other children don’t either)?

How many functions map nothing to a k-element subset K of M? Another
way to say this is if I have n distinct candy bars and m children (Sam,
Mary, Pat, etc.), in how many ways may I pass out the candy bars so that
some particular k-element subset of the children don’t get any (and maybe
some other children don’t either)?

How many functions from an n-element set N to an m-element set M map
nothing to at least one element of M? Another way to say this is if I have
n distinct candy bars and m children (Sam, Mary, Pat, etc.), in how many
ways may I pass out the candy bars so that some child doesn’t get any (and
maybe some other children don’t either)?

On the basis of Exercises 5.2-6-5.2-8, how many functions are there from
an n-element set onto an m-element set?

The number of functions from an n-element set to an m-element set
M ={y1, ¥2, ..., Y} that map nothing to y; is simply (m — 1)", because
we have m — 1 choices of where to map each of our n elements. Similarly,
the number of functions that map nothing to a particular set K of k
elements will be (m — k)". This calculation warms us up for Exercise 5.2-8.

In Exercise 5.2-8, we need an analog of the principle of inclusion and
exclusion for the size of a union of m sets. Because we can make the same
argument about the size of the union of two or three sets that we made
about probabilities of unions of two or three sets, we have a very natural
analog. Because events are sets, we might be able to get an analog simply
by changing the probabilities of the events E; to the sizes of the sets E;
(here, set E; is the set of functions that map nothing to element i of the set

272 Chapter 5: Probability

M —that is, the event that a function maps nothing to 7). The analog is the
principle of inclusion and exclusion for counting:

m m
UE|=> ! > |EyNE,N---NE;.
k=1

i=1 i1,00, ..., gt
I<ij<ip<---<ip<m

In fact, this formula is proved by induction or by a counting argument in
virtually the same way. Applying this formula to the number of functions
from N to M that map nothing to at least one element of K gives us

LmJE =i(—1)"“ Y. |EnnE, N0 E|
k=1

i=1 1,09, ..., ikt
I<ij<ip<---<ip<m

m

=Y 1)’<+1()(m—k)”, (5.11)

k=1

where ’Eil NE,N---N Eik‘ is the number of functions that map nothing
to the k-element set {iy, iz, ..., ix}. By our solution to Exercise 5.2-7, the
number of functions that map nothing to the k-element set {iy, iz, ..., it}
is (m — k)". The number in Equation 5.11 is the number of functions from
N that map nothing to at least one element of M. The total number of
functions from N to M is m". Thus, the number of onto functions is

=3 D () om = o= DF () =,

k=1 k=0

where the equality results because () is1, (m —0)"ism", and —(— 1)kt =

(=D

Theorem 5.4 The number of functions from an n-element set onto an m-element set is
Z(() m =k

Proof Given above.

5.2: Unions and Intersections 273

1.

Venn diagram. To draw a Venn diagram for two or three sets, we
draw a rectangle that represents the sample space and two or three
mutually overlapping circles to represent the events.

. Probability of a union of two events.

P(EUF) = P(E)+ P(F)— P(ENF).

. Probability of a union of three events.

P(EUFUG) = P(E)+ P(F)+ P(G)— P(ENF)— P(EN
G)— P(FNG)+ P(ENFNG).

. A summation notation. The sum of f(iy, iz, ..., i) over all

increasing sequences of k£ numbers between 1 and n is denoted by

> flia, ... ip).

i1,0, ..., 0kt
I<iyj<ip<---<ig=<n

. Principle of inclusion and exclusion for probability. The probability

of the union £, U E, U --- U E,, of events in a sample space S is
given by

P (U Ei> = Xn:(—l)k“ > P(E,NE,N---NE).
i=1

k=1 i1,00, ..., gt
I<ij<ip<---<ig<n

. Hatcheck problem. The hatcheck problem, or derangement problem,

asks for the probability that a bijection of an n-element set maps no
element to itself. The answer is

iv2 3 n! '

i=2
which is the result of truncating the power series expansion of e~! at
the (—1)"/n! term. Thus, the result is very close to 1/e, even for
relatively small values of n.

. Principle of inclusion and exclusion for counting.

n
U
i=1

n
=Y (—F! > |Eqy NE,N---NE,]|.
k=1

i1,00, 0., g
I<ij<ip<---<ip<n

274 Chapter 5: Probability

All problems with blue boxes have an answer or hint available at the end
of the book.

2.

10.

Compute the probability that in three flips of a coin, the coin comes
up heads on the first flip or on the last flip.

The eight kings and queens are removed from a deck of 52 cards,
and then two of these cards are selected. What is the probability
that the king or queen of spades is among the cards selected?

Two dice are rolled. What is the probability that you get a die with
six dots on top?

A bowl contains two red, two white, and two blue balls. If you
remove two balls, what is the probability that at least one is red or
white? Compute the probability that at least one is red.

Remove one card from an ordinary deck of 52 cards. What is the
probability that it is an ace, a diamond, or black?

Give a formula for the probability of P(E U F U G U H) in terms
of the probabilities of E, F, G, and H and their intersections.

What is
Z iviniz ?

i1,0p,13:
1<ij<ip<iz<4

What is

Z i1 +ir+i3?

i1,ip,13:
1<iy<ip<iz <5

The boss asks the secretary to stuff n letters into envelopes,
forgetting to mention that he has been adding notes to the letters
and, in the process, has rearranged the letters but not the envelopes.
In how many ways can the letters be stuffed into the envelopes so
that nobody gets the letter intended for him or her? What is the
probability that nobody gets the letter intended for him or her?

If you are hashing n keys into a hash table with k locations, what is
the probability that every location gets at least one key?

From Theorem 5.2, find a formula for S(n, m), which is defined in
Problem 12 of Section 1.5. These numbers are called Stirling
numbers (of the second kind).

12.

15.

*16.

5.2: Unions and Intersections 275

If you roll eight dice, what is the probability that each of the
numbers 1 through 6 appear on top at least once? What about with
nine dice?

Explain why the number of ways of distributing k identical apples

n+k—1
k
the apples to the children so that Sam gets more than m apples? In

how many ways may you distribute the apples to the children so
that no child gets more than m apples?

to n children is () In how many ways may you distribute

A group of n married couples sits around a circular table for a
discussion of marital problems. The counselor assigns each person
to a seat at random. What is the probability that no husband and
wife are side-by-side?

Suppose you have a collection of m objects and a set P of p
“properties.” (We won’t define the term “property,” but note that a
property is something the objects may or may not have.) For each
subset S of the set P of all properties, define N,(S) to be the
number of objects in the collection that have at least the properties
in S (a is for “at least”). Thus, for example, N, (@) = m. In a
typical application, formulas for N,(S) for other sets S € P are not
difficult to figure out. Define N,(S) to be the number of objects in
our collection that have exactly the properties in S (e is for
“exactly”). Show that

Ne@) = Y (—=D'¥IN,(K).

K:KCP

Explain how this formula could be used to compute the number of
onto functions in a more direct way than we did when using unions
of sets. How would this formula apply to Problem 9?

In Problem 14, two people of the same sex could sit side-by-side.
If in addition to the condition that no husband and wife are
side-by-side we require that no two people of the same sex are
side-by-side, we obtain a famous problem known as the meénage
problem. Solve this problem.

In how many ways may you place n distinct books on j shelves so
that Shelf 1 gets at least m books? (See Problem 7 in Section 1.5.)
In how many ways may you place n distinct books on j shelves so
that no shelf gets more than m books?

*Although this problem can be solved by extending the technique of Problem 14, it does
require more insight than the other problems in this section.

276 Chapter 5: Probability

18. In Problem 15, what is the probability that an object has none of
the properties, assuming all objects are equally likely? How would
this apply to Problem 107?

5.3 CONDITIONAL PROBABILITY AND INDEPENDENCE

Exercise 5.3-1

Conditional Probability

Two cubical dice each have a triangle painted on one side, a circle painted
on two sides, and a square painted on three sides. The probability of seeing
at least one circle on top is the probability of a circle on the top of the
first die or of a circle on top of the second die. Applying the principle of
inclusion and exclusion, we can compute that the probability of seeing a
circle on at least one top when we roll the dice is 1/34+1/3 —1/9 =5/9.
We are experimenting to see if reality agrees with our computation. We
throw the dice onto the floor, and they bounce a few times before landing
in the next room. Our friend in the next room tells us both top sides are the
same. What is the probability that our friend sees a circle on at least one top?

Intuitively, it may seem as if the chance of getting circles ought to be
four times the chance of getting triangles, and the chance of getting
squares ought to be nine times the chance of getting triangles. We could
turn this into the algebraic statements that P(circles) =4 P(triangles) and
P(squares) =9 P(triangles). These two equations and the one that says the
probabilities sum to 1 are enough to conclude that the probability that
our friend saw two circles is 2/7. But does this analysis make sense?
To convince ourselves, let’s start with a sample space for the original
experiment and see what natural assumptions about probability we can
make to determine the new probabilities. In the process, we will be able
to replace intuitive calculations with a formula we can use in similar
situations. This is a good thing, because we have already seen situations
where our intuitive idea of probability did not always agree with what the
rules of probability give us.

Let us take as our sample space for this experiment the ordered pairs shown
in Table 5.2, along with their probabilities.

TT TC TS CT CC CS ST SC SS
1 1 1

L 11 1 1 1
36 18 12 18 9 6 12 6 7]

Table 5.2: Rolling two unusual dice

5.3: Conditional Probability and Independence 277

We know that the event {TT, CC, SS} happened. Thus, we would say that
although this event used to have probability

1+1+1_14_7 (5.12)

36 9 4 36 18 '
it now has probability 1. Given this, what probability would we now assign
to the event of seeing a circle? Notice that the event of seeing a circle has
become the event CC. Should we expect CC to become more or less likely
in comparison with TT or SS just because we now know that one of these
three outcomes has occurred? Nothing has happened to make us expect that,
so whatever new probabilities we assign to these two events, they should
have the same ratios as the old probabilities.

Multiplying all three old probabilities by 18/7 to get our new probabilities
will preserve the ratios and make the three new probabilities add to 1. (Is
there any other way to get the three new probabilities to add to 1 and make
the new ratios the same as the old ones?) This gives us that the probability
of two circles is (1/9)(18/7) = 2/7. Notice that nothing we have learned
about probability so far told us what to do; we just made a decision based
on common sense. When faced with similar situations in the future, it would
make sense to use common sense in the same way. However, do we really
need to go through the process of constructing a new sample space and
reasoning about its probabilities again? Fortunately, our entire reasoning
process can be captured in a formula. We wanted the probability of an
event E given that the event F' happened. We figured out what the event
E N F was and then multiplied its probability by 1/P(F). We summarize
this process in a definition.

The conditional probability of E given F, denoted by P(E|F) and read
as “the probability of E given F,” is

_ P(ENF)
P(E|F) = i (5.13)

Whenever we want the probability of E, knowing that F' has happened, we
compute P(E|F). (If P(F) =0, then we cannot divide by P(F); but F
gives us no new information about our situation. For example, if our friend
in the next room says, “A pentagon is on top,” we have no information
except that the student isn’t looking at the dice we rolled. Thus, because
we have no reason to change our sample space or the probability weights
of its elements, we define P(E|F) = P(E) when P(F) =0.)

Notice, we did not prove that the probability of E given F is what we
said it is. We simply defined it in this way, because in the process of

278 Chapter 5: Probability

Exercise 5.3-2

Exercise 5.3-3

Exercise 5.3-4

making the derivation, we made an additional assumption that the relative
probabilities of the outcomes in the event F' don’t change when F happens.
This assumption led us to Equation 5.13. Then we chose that equation as our
definition of the new concept of the conditional probability of E given F.>

In the preceding example, we can let E be the event that there is more than
one circle and F be the event that both dice are the same. Then £ N F
is the event that both dice are circles, and P(E N F) is, from Table 5.2,
1/9. P(F) is, from Equation 5.12, 7/18. Dividing, we get the probability
P(E|F), which is (1/9)/(7/18) =2/7.
We will often find it useful to be able to compute P(E N F) when given
P(E|F). If P(F) # 0 we can use 5.13 and multiply both sides by P(F)
to get

P(ENF)= P(E|F)P(F). (5.14)

This equation also holds when P (F) = 0, becauseinthatcase P(E N F) = 0.

When we roll two ordinary dice, what is the probability that the sum of the
tops comes out even, given that the sum is greater than or equal to 10? Use the
definition of conditional probability in solving the problem.

We say E is independent of F if P(E|F) = P(E). Show that when we roll
two dice, one red and one green, the event “the total number of dots on top
is odd” is independent of the event “the red die has an odd number of dots
on top.”

Sometimes information about conditional probabilities is given to us indirectly
in the statement of a problem, and we have to derive information about other
probabilities or conditional probabilities. Here is such an example:

If a student knows 80% of the material in a course, what do you expect her
grade to be on a (well-balanced) 100-question short-answer test about the
course? What is the probability that she answers a question correctly on a
100-question true-false test if she guesses at each question for which she does
not know the answer? (We assume she knows what she knows—that is, if she
thinks she knows the answer, then she really does.) What do you expect her
grade to be on a 100-question true-false test?

SFor those who like to think in terms of axioms of probability, note that if F is an event in
a sample space S and P(F) # 0, then the function of E given by P'(E N F)/P(F)
satisfies the axioms of probability on S. Thus, the function is a probability measure on S.
We then define it to be the conditional probability of E given F.

5.3: Conditional Probability and Independence 279

For Exercise 5.3-2, let E be the event that the sum is even and F be the event
that the sum is greater than or equal to 10. Using a sample space of ordered
pairs, each of weight 1/36, P(F) =1/6 and P(E N F) = 1/9, because the
latter is the probability that the roll is either 10 or 12. Dividing P(E N F) by
P(F),we get2/3.

In Exercise 5.3-3, the event that the total number of dots is odd has probability
1/2. Similarly, given that the red die has an odd number of dots, the probability
of an odd sum s 1/2, because this event corresponds exactly to getting an even
roll on the green die. That is,

3 1
P (even number of dots on top | red die is odd) = G = 3

Thus, by the definition of independence, the event of an odd number of
dots on the red die and the event that the total number of dots is odd are
independent.

In Exercise 5.3-4, if a student knows 80% of the material in a course, we
would hope that her grade on a well-designed test of the course would be
around 80%. But what if the test is a true-false test? Let R be the event that
she gets the right answer, K be the event that she knows that right answer, and
K be the event that she guesses. Then, R= (RN K)U (RN K). Because
R is a union of two disjoint events, its probability would be the sum of the
probabilities of these two events. How do we get the probabilities of these
two events? The statement of the problem implicitly gives us the conditional
probability P (R|K)—namely, l—that she gets the right answer given that she
knows the answer. It also gives us the probability P(R|K)—namely, 1/2—
that she gets the right answer if she doesn’t know the answer. The problem
also tells us explicitly that P(K) = .8 and P(K) = .2. How can we make
use of this information? Notice that we are given both terms on the right
side of Equation 5.14, where E is R and F is either K or K. Thus, we can
use the equation
P(ENF)= P(E|F)P(F)

to compute P(R N K) and P(R N K).In symbols,

P(R)=P(RNK)+ P(RNK)
= P(R|K)P(K) + P(R|K)P(K)
=1.-84+.5-2=.0.

We have shown that the probability of her getting the right answer is .9. Thus,
we would expect her to get a grade of 90%.

280 Chapter 5: Probability

Theorem 5.5

Bayes’ Theorem

What is the relationship between P(E|F) and P(F|E)? This question is of
both intellectual interest and practical interest, because in many conditional
probability problems we are given P(E|F) and need to compute P(F|E).

Equation 5.14 tells us that
P(ENF)= P(E|F)P(F).
Reversing the roles of £ and F' gives
P(FNE)= P(F|E)P(E).
But because P(E N F) = P(F N E) we can conclude that
P(E|F)P(F) = P(F|E)P(E).

Dividing both sides of this equation by P (F') gives Bayes’ Theorem.

P(FIEYP(E
P(E|F) = % (5.15)

It is traditional to call P (FE) the prior probability of E. This is the probability
of E prior to taking information about F into account.

Independence

We said in Exercise 5.3-3 that E is independent of F if P(E|F) = P(E).
The product principle for independent probabilities gives another test for
independence:

(Product Principle for Independent Probabilities) Suppose E and F are
events in a sample space. Then E is independent of F if and only if P(E N
F) = P(E)P(F).

Proof First, consider the case when F is nonempty. Then, from our definition
in Exercise 5.3-3 (recall the convention of using “if” in a definition even though
we mean “if and only if”),

E isindependentof <« P(E|F) = P(E). (5.16)

Corollary 5.6

Exercise 5.3-5

5.3: Conditional Probability and Independence 281

Starting with the right side of Implication 5.16 and using the definition of
P(E|F) in Equation 5.13, we get

P(E|F) = P(E)
& LD = PE)
& P(ENF) = P(E)P(F).

Because every step in this proof is an “if and only if” statement, we have
completed the proof for the case when F is nonempty.

If F is empty, then E is independent of F" and both P(E)P(F)and P(E N F)
are zero. Thus, in this case as well, E is independent of F if and only if P(E N
F)= P(E)P(F).

E is independent of F if and only if F is independent of E.

When we flip a coin twice, we think of the second outcome as being inde-
pendent of the first. It would be a sorry state of affairs if our definition of
independence did not capture this intuitive idea! Let’s compute the relevant
probabilities to see if it does. For flipping a coin twice, our sample space is
{HH, HT, TH, TT}, and we weight each outcome 1/4. To say the second out-
come is independent of the first, we must mean that getting an H second is inde-
pendent of whether we get an H or a T first; the same is true for getting a T sec-
ond. Because each element of our sample space has weight 1/4, P (H first) =
1/4+1/4 =1/2and P(H second) = 1/2, while P (H first and H second) =
1/4. Note that

1
P (H first) P(H second) = =7= P (H first and H second).

1
2

N =

By Theorem 5.5, this means that the event “H second” is independent of the
event “H first.” We can make a similar computation for each possible combina-
tion of outcomes for the first and second flip, and so we see that our definition of
independence captures our intuitive idea of independence in this case. Clearly,
the same sort of computation applies to rolling dice.

What sample space and probabilities have we been using when discussing
hashing? Using these, show that the event “key i hashes to position »” and
the event “key j hashes to position ¢’ are independent when i # j. Are they
independent if i = j?

282 Chapter 5: Probability

Theorem 5.7

In Exercise 5.3-5, if we have a list of n keys to hash into a table of size k, our
sample space consists of all n-tuples of numbers between 1 and k. The event
that key i hashes to some number r consists of all n-tuples with r in the ith
position, so its probability isk”~! /k" = 1/k. The probability that key j hashes
to some number ¢ is also 1/k. If i # j, then the event that key i hashes to r
and key j hashes to g has probability " ~2/k" = 1/k?, which is the product
of the probabilities that key i hashes to r and key j hashes to ¢g. Therefore,
these two events are independent. If i = j, the probability of key i hashing to
r and key j hashing to g is 0, unless r = ¢, in which caseitis 1. Thus, ifi = j,
these events are not independent.

Independent Trials Processes

Coin flipping and hashing are examples of processes called “independent trials
processes.” Suppose we have a process that occurs in stages. (For example,
we might flip a coin n times.) Let us use x; to denote the outcome at stage i.
(For flipping a coin n times, x; = H means that the outcome of the ith flip is a
head.) We let S; stand for the set of possible outcomes of stage i. (Thus, if we
flip a coin n times, S; = {H, T} for each i, 1 <i < n.) A process that occurs
in stages is called an independent trials process if

P(x;i =ailx1 =a1,...,xi-1 =a;i—1) = P(x; = a;) (5.17)

for each sequence aj, as, ..., a,, with a; € S;. Letting E; be the event that
X; = a;, we can rewrite Equation 5.17 as

PE/|EfNEyN---NE;_1) = P(E)). (5.18)

In words, an independent trials process has the property that the outcome
of stage i is independent of the outcomes of stages 1 through i — 1. By the
product principle for independent probabilities (Theorem 5.5), Equation 5.18
implies that

P(E\NE,N---E;_1NE)=PE NEN---E_)P(E;). (519)

In an independent trials process, the probability of a sequence ay, as, . . ., a,
of outcomes is P ({a;}) P({az}) - - - P({a,}).

Proof To prove this theorem, we apply mathematical induction and
Equation 5.19.

How do independent trials relate to coin flipping? When flipping coins, our
sample space consists of sequences of n H’s and T’s, and the event that we

Exercise 5.3-6

Exercise 5.3-7

5.3: Conditional Probability and Independence 283

have an H (or a T) on the ith flip is independent of the event that we have an H
(oraT) on each of the firsti — 1 flips. In particular, the probability of an H on
the ith flipis 2! /2" = .5, and the probability of an H on the ith flip, given a
particular sequence on the firsti — 1 flips, is 2" ~/~! /2"~ = 5,

How do independent trials relate to hashing a list of keys? As in Exercise 5.3-5,
if we have alist of n keys to hash into a table of size k, our sample space consists
of all n-tuples of numbers between 1 and k. The probability

P (key i hashes to r and keys 1 throughi — 1 hashto g1, g2, ..., qi—1)

is kn—i 1
== kii - .
k" k'

The probability
P(keys 1 throughi — 1 hashto g, g2,gi—1)
18 kn—i—H
kn

— klfi.

By the definition of conditional probability, we get

P (key i hashes tor | keys 1 throughi — 1 hashto gy, g2, ..., ¢gi—1)

kn—i/kn
1
Tk

Consequently, the event that key i hashes to some number r is independent
of the event that the first i — 1 keys hash to some numbers ¢q;, ¢z, ..., gi—1.
Thus, our model of hashing is an independent trials process.

Suppose we draw a card from a standard deck of 52 cards, replace it, draw
another card, and continue for a total of 10 draws. Is this an independent trials
process?

Suppose we draw a card from a standard deck of 52 cards, discard it (i.e., we
do not replace it), draw another card, and continue for a total of 10 draws. Is
this an independent trials process?

284 Chapter 5: Probability

In Exercise 5.3-6, we have an independent trials process because the proba-
bility that we draw a given card at one stage does not depend on what cards
we have drawn in earlier stages. However, in Exercise 5.3-7, we don’t have an
independent trials process. In the first draw, we have 52 cards to draw from,
while in the second draw, we have 51. In particular, we do not have the same
cards to draw from on the second draw as on the first; so, the probabilities for
each possible outcome on the second draw depend on whether that outcome
was the result of the first draw.

Tree Diagrams

When we have a sample space that consists of sequences of outcomes, itis often
helpful to visualize the outcomes with a tree diagram. As an example of what
we mean, let’s look at creating a tree diagram of the following experiment.
We have one nickel, two dimes, and two quarters in a cup. We draw a first
and second coin. Figure 5.5 shows our diagram for this process. Notice that
in probability theory, it is standard to have trees open to the right, rather than
opening up or down.

Figure 5.5: A tree diagram illustrating a two-stage process

Each level of the tree corresponds to one stage of the process of generating
a sequence in our sample space. We label each vertex with one of the possi-
ble outcomes at the stage it represents. We label each edge with a conditional
probability—the probability of getting the outcome at the edge’s right end
given the sequence of outcomes that have occurred so far. Because no out-
comes have occurred at Stage 0, we label the edges from the root to the
first-stage vertices with the probabilities of the outcomes at the first stage. Each
path from the root to the far right of the tree represents a possible sequence

Exercise 5.3-8

Exercise 5.3-9

Exercise 5.3-10

5.3: Conditional Probability and Independence 285

of outcomes for our process. We label each leaf node with the probability of
the sequence that corresponds to the path from the root to that node. By the
definition of conditional probabilities, the probability of a path is the product
of the probabilities along its edges. We can draw a tree diagram, also known
as a probability tree, for any (finite) sequence of successive trials in this way.

Sometimes a tree diagram provides a very effective way of answering ques-
tions about a process. For example, what is the probability of having a nickel in
our coin experiment? We see in Figure 5.5 that there are four paths containing
an N, and the sum of their weights is .4. So, the probability that one of our two
coins is a nickel is .4.

How can we recognize from a tree diagram whether it is the tree diagram of
an independent trials process?

Exercise 5.3-4 asked (among other things), if a student knows 80% of the mate-
rial in a course, what is the probability that she answers a question correctly
on a 100-question true-false test (assuming that she guesses on any question
for which she does not know the answer)? (We assume she knows what she
knows—that s, if she thinks she knows the answer, then she really does.) Show
how we can use a tree diagram to answer this question.

A test for a disease that affects 0.1% of the population is 99% effective on peo-
ple with the disease (that is, the test says they have the disease with probability
.99). The test gives a false reading (saying that a person who does not have the
disease is affected with it) for 2% of the population without the disease. We
can think of choosing someone and testing them for the disease as a two-stage
process. In Stage 1, we either choose someone with the disease or we don’t.
In Stage 2, the test is either positive or it isn’t. Give a tree diagram for this
process. What is the probability that someone selected at random and given a
test for the disease tests positive? What is the probability that someone who
tests positive in fact has the disease?

A tree for an independent trials process has the property that at each level,
for each node at that level, the labeled tree consisting of that node and all its
children is identical to each labeled tree consisting of another node at that level
and all its children. If we have such a tree, then it automatically satisfies the
definition of an independent trials process.

In Exercise 5.3-9, if a student knows 80% of the material in a course, we expect
that she has probability .8 of knowing the answer to any given question of a
well-designed true-false test. We regard her work on a question as a two-stage

286 Chapter 5: Probability

process. In Stage 1, she determines whether she knows the answer, and in Stage
2, either she answers correctly, with probability 1, or she guesses, in which
case she answers correctly with probability 1/2 or incorrectly with probability
1/2. As we see in Figure 5.6, there are two root-leaf paths corresponding to
her getting a correct answer. One of these paths has probability .8 and the
other has probability .1. Thus, she actually has probability .9 of getting a right
answer if she guesses the answer to each question for which she does not know
the answer.

Guesses
wrong

Doesn’t
know

Guesses
right

.8
Knows

Figure 5.6: The probability of getting a right answer is .9

Figure 5.7 shows the tree diagram for thinking of Exercise 5.3-10 as a two-
stage process. In the first stage, a person either has or doesn’t have the disease.
In the second stage, we administer the test, and its result is either positive or
negative. We use D to stand for having the disease and ND to stand for not
having the disease. We use pos to stand for a positive test and neg to stand for a
negative test. We assume that a test is either positive or negative. The question
asks for the conditional probability that someone has the disease, given that
he or she tests positive:

P (D N pos)

P(DlJpos) = P(pos)

From the tree, we read that P (D N pos) = .00099, because this event consists
of just one root-leaf path. The event pos consists of two root-leaf paths,
whose probabilities total .0198 4 .00099 = .02097. Thus, P(D|pos) =
P(D Npos)/P(pos) = .00099/.02097 = .0472. Given a disease this rare
and a test with this error rate, a positive result only gives a roughly 5% chance
of having the disease. Here is another instance where a probability analysis
shows something we might not have expected initially. This explains why
doctors often don’t want to administer a test to someone unless that person is
already showing some symptoms of the disease being tested for.

5.3: Conditional Probability and Independence

pos

.0198

.97902

.00099

.00001

Figure 5.7: A tree diagram illustrating Exercise 5.3-10

287

We can also solve Exercise 5.3-10 purely algebraically. We are given that

P(D) = .001,
P(pos|D) = .99, and
P (pos|ND) = .02.

(5.20)
(5.21)
(5.22)

We wish to compute P (D|pos). Because we are given P (pos|D) and P (D) we

use Equation 5.15, Bayes’ Theorem. We can say that

P(pos|D)P(D)

P(DJpos) = P (pos)

(5.23)

Substituting the values from 5.20 and 5.21 gives us the numerator. To
compute the denominator we observe that each person either has the disease

or doesn’t, so
P(pos) = P(pos N D) + P(pos N ND).

We use Equation 5.14 to calculate both probabilities on the right side.
Observing that P(ND) = 1 — P (D) and filling in known values gives

P(pos N D) = P(pos|D)P(D) = .99-.001 = .00099,

P(pos "ND) = P(pos|ND)P(ND) = .02(1 —.001) = .01998,

P(pos) = P(pos N D) + P(pos N ND) = .0099 + .01998 = .02097.

288 Chapter 5: Probability

Finally, we have values for all the quantities in Equation 5.23 and con-

1 h
clude that 99. 001 B

P(DJpos) = 0097 = .0472.

Clearly, using the tree diagram mirrors these computations, but it both simpli-
fies the thought process and reduces the amount we have to write.

Primality Testing

Exercise 5.3-10 illustrates the problems we might face in determining whether
anumber is likely to be prime. We have so far discussed the idea that anonprime
will fail 3/4 of the primality tests we use on it. Thus, if we use five such
independent tests, the chance that a nonprime will fail to be certified nonprime
is only 1/4°, or about 1/1000. In Section 5.4, we will see what assumptions
are required to get 1/4°. We have noted that the expected number of primes in
an interval of length In n centered around the number n is 1. So, if we are going
to choose a number n randomly, the probability that # is prime is about 1/ In n.
Because In n grows quite slowly with n, this probability is not too small, even
for reasonably large values of n. Butif n has on the order of 150 digits, then Inn
is about 350. (For RSA, we suggested that choosing primes of about 150 digits
is sufficient.) Thus, if we are going to choose a number with 150 digits, the
probability that it is prime is about 1/350. The tree diagram for testing a prime
is similar to Figure 5.6. Being prime corresponds to the lowest branch of the tree
and has probability 1/350. Not being prime corresponds to the upper branch of
the tree and has probability 349/350 (in place of the .2 in Figure 5.6). Testing
nonprime corresponds to guessing right and has probability approximately
999/1000; being composite but not testing so corresponds to being wrong and
has probability approximately 1/1000. This gives us that the probability of a
random number not testing as nonprime is 1/350 + 349/(350 - 1000). Thus,
by the methods of Exercise 5.3-10, the probability that a number that doesn’t
test nonprime is prime is

1/350 N 1/350
1/350 + 349/(350 - 1000) 1/350 + 1/1000°

which is about .74. So, the fact that a number fails to test nonprime in five tests
is pretty poor evidence that it is prime.

Suppose we use 5k tests for some integer k > 1. Then the probability that
a nonprime fails to test nonprime in this many tests is about 1/1000%. The
probability that a number that fails 5k tests is prime is then approximately

1/350 1

1/350 + 1/1000% 1+ 350/1000% "

5.3: Conditional Probability and Independence 289

This formula is slightly clumsy to work with. However, when x < 1, we have

1
T2 > 1,
so that
>1—x.
14+ x
This gives us
1 350 1

.- - ,
1+350/1000F ~ 1000 ~ 1000%-D

which shows that we can guarantee that the probability a randomly chosen
number is prime, given that it fails 5(k + 1) tests, is at least 1 — 10007, The
same bound holds if we replace 350 with 1000. So, reversing the process
that led us from 150 digits to an interval of 350 numbers tells us we can
apply this guarantee to numbers with log,, !% ~ 435 digits. To guarantee
that a randomly chosen number of up to 435 digits is prime with proba-
bility less than 1000~ of being wrong, we need only run 5(k + 1) nonpri-
mality tests.

1. Conditional probability. The conditional probability of E given F,
denoted by P(E|F) and read as “the probability of E given F,” is

defined by ()
P(ENF

P(E|F) = 5

when P(F) # 0.
2. Bayes’ Theorem. The relationship between P(E|F) and P(F|E) is

P(F|E)P(E)

P(E|F) = 20

3. Independent. We say E is independent of F if P(E|F) = P(E).

4. Product principle for independent probabilities. The product principle
for independent probabilities (Theorem 5.5) gives another test for
independence. Suppose E and F are events in a sample space. Then E
is independent of F if and only if P(E N F) = P(E)P(F).

5. Symmetry of independence. The event E is independent of the event F
if and only if F is independent of E.

290 Chapter 5: Probability

6.

10.

Independent trials process. A process that occurs in stages is called an
independent trials process if, for each sequence ay, az, .. ., a, with
a; € S;,

P(x; =ai|lx; =ay,...,xi-1 =a;—1) = P(x; = a;).

. Probabilities of outcomes in independent trials. In an independent trials

process, the probability of a sequence ay, ay, . . ., a, of outcomes is

P({ai) P({az}) - P({an}).

. Coin flipping. Repeatedly flipping a coin is an independent trials

process.

. Hashing. Hashing a list of n keys into k slots is an independent trials

process with n stages.

Tree diagram. In a tree diagram for a multistage process, each level of
the tree corresponds to one stage of the process. Each vertex is labeled
with one of the possible outcomes at the stage it represents. Each edge
is labeled with a conditional probability—the probability of getting the
outcome at its right end given the sequence of outcomes that have
occurred so far. Each path from the root to a leaf represents a sequence
of outcomes and is labeled with the product of the probabilities along
that path. This is the probability of that sequence of outcomes.

All problems with blue boxes have an answer or hint available at the end of
the book.

2.

In three flips of a coin, what is the probability that two flips in a row are
heads, given that there is an even number of heads?

In three flips of a coin, is the event that two flips in a row are heads
independent of the event that there is an even number of heads?

In three flips of a coin, is the event of getting at most one tail
independent of the event that not all flips are identical?

What is the sample space that you use for rolling two dice, a first one
and then a second one? Using this sample space, explain why the event
“i dots are on top of the first die” and the event “j dots are on top of the
second die” are independent if you roll two dice.

If you flip a coin twice, is the event of having an odd number of heads
independent of the event that the first flip comes up heads? Is it
independent of the event that the second flip comes up heads? Would

10.

12.

5.3: Conditional Probability and Independence 291

you say that the three events are mutually independent? (The term
“mutually independent” hasn’t been defined, so the question is one of
opinion. However, you should back up your opinion with a reason that
makes sense.)

Assume that on a true-false test, students will answer correctly any
question on a subject that they know. Assume students guess at answers
they do not know. For students who know 60% of the material in a
course, what is the probability that they will answer a question
correctly? What is the probability that they will know the answer to a
question they answer correctly?

A nickel, two dimes, and two quarters are in a cup. You draw three
coins, one at a time, without replacement. Draw the tree diagram that
represents the process. Use the tree to determine the probability of
getting a nickel on the last draw. Use the tree to determine the
probability that the first coin is a quarter, given that the last coin is a
quarter.

Write a formula for the probability that a bridge hand (which is 13 cards
chosen from an ordinary deck) has four aces, given that it has (at least)

one ace. Write a formula for the probability that a bridge hand has four

aces, given that it has the ace of spades. Which of these probabilities is

larger?

A nickel, two dimes, and three quarters are in a cup. You draw three
coins, one at a time, without replacement. What is the probability that
the first coin is a nickel? What is the probability that the second coin is
a nickel? What is the probability that the third coin is a nickel?

If a student knows 75% of the material in a course, and if a
100-question multiple-choice test with five choices per question covers
the material in a balanced way, what is the student’s probability of
getting a right answer to a question, given that the student guesses at
the answer to each question whose answer he does not know?

Suppose E and F are events with E N F = {J. Describe when E and F
are independent, and explain why.

In a family consisting of a mother, father, and two children of different
ages, what is the probability that the family has two girls, given that one
of the children is a girl? What is the probability that the children are
both boys, given that the older child is a boy?

You are a contestant on the TV game show Let’s Make a Deal. In

this game show, there are three curtains. Behind one of the curtains is a
new car, and behind the other two are cans of Spam. You get to pick one
of the curtains. After you pick one of the curtains, the emcee, Monty

292 Chapter 5: Probability

Hall, who we assume knows where the car is, reveals what is behind
one of the curtains that you did not pick, showing you some cans of
Spam. He then asks you if you would like to switch your choice of
curtain. Should you switch? Why or why not? Please answer this
question carefully. You have all the tools needed to answer it, but
several math Ph.D.s are on record (in Parade magazine) giving the
wrong answer.

5.4 RANDOM VARIABLES

Exercise 5.4-1

Exercise 5.4-2

What Are Random Variables?

A random variable for an experiment with a sample space S is a function that
assigns a number to each element of S. Typically, instead of using f to stand
for such a function, we use X. (At first, arandom variable was conceived of as a
variable related to an experiment, explaining the use of X, butitis very helpful
in understanding the mathematics to realize that X is actually a function on
the sample space.)

For example, if we consider the process of flipping a coin n times, we have
the set of all sequences of n H’s and T’s as our sample space. The “number of
heads” random variable takes a sequence and tells us how many heads are in
that sequence. For example, if we let X be the number of heads in five flips
of a coin, then X (HTHHT) = 3 while X (THTHT) = 2. It may be jarring to
see X used to stand for a function, but it is the standard notation for a random
variable.

For a sequence of hashes of n keys into a table with k locations, we might have
a random variable X; that is the number of keys hashed to location i of the
table or a random variable X that counts the number of collisions (hashes to
a location that already has at least one key). For an n-question test on which
each answer is either right or wrong (for example, a short-answer, true-false, or
multiple-choice test), we could have a random variable that gives the number
of right answers in a particular sequence of answers to the test. For a meal
at a restaurant, we might have a random variable that gives the price of any
particular sequence of choices of menu items.

Give several random variables that might be of interest to a doctor whose
sample space is her patients.

If you flip a coin six times, how many heads do you expect?

Exercise 5.4-3

5.4: Random Variables 293

A doctor might be interested in patients’ ages, weights, temperatures, blood
pressures, cholesterol levels, and so on.

For Exercise 5.4-2, in six flips of a coin, it is natural to expect three heads. We
might argue that if we average the number of heads over all possible outcomes,
the average should be half the number of flips. Because the probability of any
given sequence equals that of any other, it is reasonable to say that this average
is what we expect. Thus, we expect the number of heads to be half the number
of flips. We explore this concept more formally later.

Binomial Probabilities

When we study an independent trials process with two outcomes at each stage,
it is traditional to refer to those outcomes as successes and failures. When we
are flipping a coin, we are often interested in the number of heads. When we
are analyzing student performance on a test, we are interested in the number
of correct answers. When we are analyzing the outcomes in drug trials, we are
interested in the number of trials where the drug was successful in treating the
disease. This suggests a natural random variable associated with an indepen-
dent trials process that has two outcomes at each stage—namely, the number
of successes in n trials. We analyze, in general, the probability of exactly k
successes in n independent trials with probability p of success (and thus prob-
ability 1 — p of failure) on each trial. It is standard to call such an independent
trials process a Bernoulli trials process.

Suppose we have five Bernoulli trials, with probability p of success on each
trial. What is the probability of success on the first three trials and failure on the
last two? Failure on the first two trials and success on the last three? Success
on Trials 1, 3, and 5, and failure on the other two? Success on any particular
three trials and failure on the other two?

Because the probability of a sequence of outcomes is the product of the prob-
abilities of the individual outcomes, the probability of any sequence of three
successes and two failures is p>(1 — p). More generally, in n Bernoulli tri-
als, the probability of a given sequence of k successes and n — k failures is
p*(1 — p)"*. However, this is not the probability of having k successes,
because many different sequences could have k successes.

How many sequences of n successes and failures have exactly k successes?
The number of ways to choose the k places out of n where the successes
occur is (z) Therefore, the number of sequences with k successes is (Z) This
paragraph and the paragraph that precedes it give us the following theorem.

294 Chapter 5: Probability

Theorem 5.8

Exercise 5.4-4

Exercise 5.4-5

The probability of having exactly k successes in a sequence of n independent
trials with two outcomes and probability p of success on each trial is given

b
d n

L) P —pr .

P (exactly k successes) = (

Proof The proof follows from the two paragraphs preceding the theorem.

Because of the connection between these probabilities and the binomial coef-
ficients, the probabilities of Theorem 5.8 are called binomial probabilities,
or the binomial probability distribution.

A student takes a 10-question objective test.® Suppose that a student who knows
80% of the course material has probability .8 of success on any question,
independent of how he did on any other problem. What is the probability that
he earns a grade of 80 or better (out of 100)?

Recall the primality testing algorithm from Section 2.4. In it, we said we could
choose a random number less than or equal to n in order to perform a test on
n, such that if n was not prime (in other words, n was composite), the number
would certify this fact with probability 3/4. Suppose we perform 20 of these
tests. It is reasonable to assume that each test is independent of the others.
What is the probability that a composite number is certified to be composite?

Because a grade of 80 or better on a 10-question test corresponds to eight,
nine, or 10 successes in 10 trials, in Exercise 5.4-4, we have

P (80 or better) = (180> (.8)%2)% + (190> (.8)°(2)' + (13) (.8)1°(.2)°.

Some work with a calculator gives us that this sum is approximately .678.

In Exercise 5.4-5, we first compute the probability that a composite number is
not certified to be composite. If we think of success as being times when the
number is certified composite and failure when itisn’t, then we see that the only
way to fail to certify a number is to have 20 failures. Using our formula, we
see that the probability of a composite number not being certified composite

®By an objective test, we mean one in which the answer is either right or wrong and
guessing is not possible (i.e., the test is not true-false or multiple choice).

5.4: Random Variables 295

is (%g) (2520 = m. Thus, the chance of this happening is less than

one in a trillion, and the chance of certifying the composite as composite is
1— m. Therefore, the probability that a composite number will be

certified composite is %, which is more than .999999999999, so, a

composite number is almost sure to be certified composite.
A Taste of Generating Functions

We note a nice connection between the probability of having exactly k suc-
cesses and the binomial theorem. Consider, as an example, the polynomial
(H + T)3. Using the binomial theorem, we get that this is

3 _ 3 3 3 2 3 2 3 3
H+T) _(0>H +(1)H T—|—<2>HT —|—(3)T.

We can interpret this equation as telling us that if we flip a coin three times,
with outcomes heads or tails each time, then there are

. <(3)) = 1 way of getting 3 heads,

. G) = 3 ways of getting two heads and one tail,

. G) = 3 ways of getting one head and two tails, and

. <§) = 1 way of getting 3 tails.

Similarly, if we replace H and T with px and (1 — p)y, respectively, we would
get

3 3
(px+(1—p)y)’ = (0) P+ (1) pr(1 — p)x?y

3 3
+ (2) p(= pxy*+ (3) (1= p)’y*.

Generalizing this to n repeated trials, where the probability of success in each
trial is p, we see that by taking (px + (1 — p)y)”, we get

k
(px+(1=py)" =) (Z) pr — pyr by Tk,
k=0

Taking the coefficient of x y"~* from this sum, we get exactly the formula of
Theorem 5.8.

296 Chapter 5: Probability

Exercise 5.4-6

This connection is a simple case of a very powerful tool known as generat-
ing functions. We say that the polynomial (px + (1 — p)y)" generates the
binomial probabilities. In fact, we don’t even need the y, because

(px+1—p)" = Xn: (’Z)p"(l _)it

i=0

In general, the generating function for the sequence ag,ai,az,...,a,
is Y " ,ax', and the generating function for an infinite sequence
ap,ai, a, ..., a, ...is the infinite series) o a;x".

Expected Value

In Exercise 5.4-2, we asked what value you would expect a random variable
(in this case, the number of heads in six flips of a coin) to have. Although we
haven’t yet defined what we mean by the value we expect, it seems to make
sense to ask about it. If we say we expect one head if we flip a coin twice, we
can explain our reasoning by taking an average. There are four outcomes—
one with no heads, two with one head, and one with two heads—giving us an
average of
O+1+1+2 {
1 =

Notice that using averages compels us to have some expected values that
are impossible to achieve. For example, in three flips of a coin, the eight
possibilities for the number of heads are 0, 1, 1, 1, 2, 2, 2, 3, giving us for our
average

O+1+1+1+242+243

L.5.
8

An interpretation in games and gambling makes it clear that it makes sense
to expect a random variable to have a value that is not one of the possible
outcomes. Suppose that I proposed the following game: You pay me some
money, and then you flip three coins. I will pay you $1.00 for every head that
comes up. Would you play this game if you had to pay me $2.00? What if
you had to pay me $1.00? For this game to be fair, how much do you think it
should cost?

Because you expect to get 1.5 heads, you expect to make $1.50. Therefore, it
is reasonable to play this game as long as the cost is at most $1.50.

Certainly, averaging our variable over all elements of our sample space by
adding one result for each element of the sample space, as we did in our

5.4: Random Variables 297

solution to Exercise 5.4-6, is impractical, even when we are talking about
something as simple as 10 flips of a coin. However, for 10 flips of a coin,
we can ask how many times each possible number of heads arises and then
multiply the number of heads by the number of times it arises to get that the
average number of heads is

o8)+ () +3(2) - wo() r i) _mi()

1024 1024

(5.24)
Have we seen a formula for y 7 i (7) 7 Perhaps we have, but in any case, the
binomial theorem and a bit of calculus or a proof by induction (see Problem

14) show that
n
Yo (") — 21y,
i=0 !

giving us (512-10)/1024 = 5 for the fraction in Equation 5.24. If you are
asking, “Does it have to be that hard?”” then good for you. Once we know a bit
about the theory of expected values of random variables, computations like
this will be replaced by far simpler ones.

In addition to the nasty computations to which our simple question led us, the
average value of a random variable on a sample space need not have anything
to do with the result we expect. For instance, if we replace heads and tails with
right and wrong, we get the sample space of possible results that a student
will get when taking a 10-question test with probability .9 of getting the right
answer on any one question. Thus, if we compute the average number of right
answers in all the possible patterns of test results, we get an average of five
right answers. This is not the number of right answers we expect, because
averaging has nothing to do with the underlying process that gave us our
probability. If we analyze the 10 coin flips a bit more carefully, we can resolve
this disconnection. We can rewrite Equation 5.24 as

<10) (10) <10) (10> <10) 10 <10)

S R N
1024 1024 1024 1024 1024 4 5 1024

- (5.25)
In Equation 5.25, we see that we can compute the average number of heads
by multiplying each value of our “number of heads” random variable by the
probability that our random variable equals that value and then adding the
results. This gives us a weighted average of the values of our random variable,
with each value weighted by its probability. Because the idea of weighting a
random variable by its probability comes up so much in probability theory,
there is a special notation that has developed for using this weight in equations.

298 Chapter 5: Probability

Exercise 5.4-7

Lemma 5.9

We use P(X = x;) to stand for the probability that the random variable X
equals the value x;. We call the function that assigns P (X = x;) to the number
x; for each i the distribution function of the random variable X. Thus, for
example, the binomial probability distribution is the distribution function for
the “number of successes” random variable in Bernoulli trials.

We define the expected value, or expectation, of a random variable X whose
values are the set {x, xo, ..., x;} to be

k
E(X) =) xP(X =x).
i=1

For someone taking a 10-question test with probability .9 of getting the correct
answer on each question, the expected number of right answers is

10 10 _ .
Zi (l_)(.9)’(.1)‘0—1.
i=0

InProblem 17, we show a technique (which could be considered an application
of generating functions) that allows us to compute this sum directly by using
the binomial theorem and calculus. We now proceed to develop a less direct,
but easier, way to compute this and many other expected values.

Show that if a random variable X is defined on a sample space S (you may
assume that X has values x1, x2, ..., X, as above), then the expected value of
X is given by

E(X)=) X(s)P(s).

s:s€S

(In words, we take each member of the sample space, compute its probabil-
ity, multiply the probability by the value of the random variable, and add the
results.)

Exercise 5.4-7 asks for a proof of the following fundamental lemma.

If a random variable X is defined on a (finite) sample space S, then its ex-
pected value is given by

E(X)=)Y X()P(s). (5.26)

s:SES

5.4: Random Variables 299

Proof Assume that the values of the random variable are x1, xa, ..., x;. Let
F; stand for the event that the value of X is x;, so that P(F;) = P(X = x;).
Then, in the sum on the right side of Equation 5.26, we can take the items in
the sample space, group them together into the events F;, and rework the sum
into the definition of expectation, as follows:

k
Z X(s)P(s) = Z Z X(s)P(s)

siseS i=1 swsefF;

k
= Z Z xi P(s)

i=1 s:seF;

k
=in Z P(s)
i=1

s:iseF;
k

=Y xP(F)
i=1

k
= inp(x =x;) = E(X).

i=1

The proof of the lemma need not be so formal and symbolic as what we just
wrote; in English, it simply says that when we compute the sum in Lemma 5.9,
we can group together all elements of the sample space that have X-value x;
and add their probabilities. This grouping gives us x; P (X = x;), which leads
us to the definition of the expected value of X.

Expected Values of Sums and Numerical Multiples

Another important point about expected value follows naturally from what
we think about when we use the word “expect” in English. If a paper
grader expects to earn $10 grading papers today and expects to earn $20
grading papers tomorrow, then she expects to earn $30 grading papers in these
two days. We could use X; to stand for the amount of money she makes
grading papers today and X, to stand for the amount of money she makes
grading papers tomorrow, So we are saying

E(X) + X3) = E(Xy) + E(X>).

300 Chapter 5: Probability

Theorem 5.10

Theorem 5.11

This formula holds for any sum of a pair of random variables and, more gen-
erally, for any sum of random variables on the same sample space.

Suppose X and Y are random variables on the (finite) sample space S. Then

E(X+Y)=EX)+ E(Y).

Proof From Lemma 5.9, we may write

EX+Y)=) (X(s)+Y(5)P(s)

s:s€S

=Y XEPE) + Y Y(S)P()

s:SES s:SES

=EX)+ E).

If we double the credit we give for each question on a test, we would expect
students’ scores to double. Thus, our next theorem should be no surprise. In it,
we use the notation ¢ X for the random variable we get from X by multiplying
all its values by the number c.

Suppose X is a random variable on a sample space S. Then for any number c,
we have
E(cX) =cE(X).

Proof The proof of this theorem is left as Problem 15.

Theorems 5.10 and 5.11 are very useful in proving facts about random vari-
ables. Taken together, they are typically called linearity of expectation. (The
idea that the expectation of a sum is the same as the sum of expectations is
called the additivity of expectation.) The idea of linearity will often allow us
to work with expectations much more easily than if we had to work with the
underlying probabilities.

For example, on one flip of a coin, our expected number of heads is .5. Suppose
we flip a coin n times and let X; be the number of heads we see on flip i, so
that X; is either O or 1. (For example, in five flips of a coin, Xo(HTHHT) =
0 and X3(HTHHT) = 1.) Then X, the total number of heads in n flips, is
given by

X=Xi1+Xo+ -+ Xu, (5.27)

Exercise 5.4-8

Theorem 5.12

5.4: Random Variables 301

which is the sum of the number of heads on the first flip, the number of heads
on the second flip, and so on through the number of heads on the last flip. But
the expected value of each X; is .5. We can take the expectation of both sides
of Equation 5.27 and apply Theorem 5.10 repeatedly (or use induction) to
get that

EX)=EX1+X2+ -+ X,)
=EX1) + E(X2) + -+ E(X,)
=54+54+---+.5
= .5n.

Thus, in n flips of a coin, the expected number of heads is .5n. Compare the
ease of this method with the effort needed earlier to deal with the expected
number of heads in 10 flips! Dealing with probability .9 or with probability p,
in general, poses no problem.

Use the additivity of expectation to determine the expected number of correct
answers a student will get on an n-question fill-in-the-blanks test if he knows
90% of the material in the course and the questions on the test are an accurate
and uniform sampling of the material in the course. (Assume the student does
not guess.)

In Exercise 5.4-8, because the questions accurately sample the material in the
course, the most natural probability for us to assign to the event of the student
getting a correct answer on a given question is .9. If we let X; be the number of
correct answers on Question i (that is, either 1 or 0, depending on whether the
student gets the correct answer), then the expected number of right answers is
the expected value of the sum of the variables X;. From Theorem 5.10, we see
that in n trials with probability .9 of success, we expect to have .9n successes.
This gives us that the expected number of right answers on a 10-question test
with probability .9 of getting each question right is 9, as we expected. This
is a special case of our next theorem, which is proved by the same kind of
computation.

In a Bernoulli trials process with n trials in which each experiment has
two outcomes and probability p of success, the expected number of suc-
cesses is np.

Proof Let X; be the number of successes in the ith trial of » independent
trials. The expected number of successes on the ith trial (i.e., the expected

302 Chapter 5: Probability

value of X;) is, by definition,
p-1+1—-p)-0=p.

The number of successes X in all n trials is the sum of the random variables X;.
Then, by Theorem 5.10, the expected number of successes in n independent
trials is the sum of the expected values of the n random variables X;, which
is np.

Indicator Random Variables

Notice that in the proof of Theorem 5.12, we made use of a random variable
that is 1 if the ith trial is a success; otherwise, it is 0. To make it more natural
to think about such a random variable, we described X; as the number of
successes on trial i, a number that happens to be 0 or 1. We used the same
kind of computation device in computing the number of heads in a sequence
of coin flips or the number of correct answers in a quiz. A random variable that
is 1 if a certain event happens and 0 otherwise is called an indicator random
variable. These variables have the very nice property that

E(X;) = P(X; = 1) = P(the event occurs). (5.28)

As in the examples we have already seen, we use sums of indicator random
variables to count the number of times an event happens. The expected value
of the sum is the expected number of times the event happens. In a multistage
process, we might be interested in different events at different stages. We
can still count them by summing appropriate indicator random variables and
computing their expected values as expected values of sums. Because of the
linearity of expectation, there is no need for the events to be independent. In
Exercise 5.2-5, we considered the hatcheck problem, where n students check
their backpacks (or hats) and each is then given a backpack at random. (In other
words, the backpacks are returned according to a random permutation.”) We
considered the probability that nobody had his or her own backpack returned.
We now consider the expected value of the random variable X (the number of
people who get their own backpack returned).

We let X; be the indicator variable for the event E; that person i gets the
correct backpack returned (thatis, X; = 1if personi gets the correct backpack;

"To say we have a random permutation means we have chosen the permutation from the
sample space of all permutations of a set, and we were equally likely to have chosen any
permutation.

Exercise 5.4-9

5.4: Random Variables 303

otherwise, X; = 0.) If
X=X+ Xa+ o+ Xy,

then X is the total number of students who get their own backpacks. Note that
the events E; are not independent. For example, if n = 2, either both students
or neither of the students get their own backpacks returned. Nonetheless, by
linearity of expectation, we have

E(X) = E(X1) + E(X2) +--- + E(X,).

What is E(X;) for a given i? By Equation 5.28, it is P(person i gets the
correct backpack). Because there are n! permutations of n people and (n — 1)!
permutations in which person i’s backpack is returned, E(X;) = 1/n. Thus,
E(X) =n(1/n) = 1 for any number of people.

Indicator random variables are very useful in analyzing algorithms. Here is an
example.

Consider the following procedure for computing the minimum of an array
of items.

FindMin (A, n)

// Finds the smallest element in Array A, wheren= |A].

(1) min=A[1]

(2) fori=2ton

(3) if (A[1i] <min)
(4) min=A[1]
(5) returnmin

If Array A contains a random permutation of the integers 1 to n, what is the
expected number of times that min is assigned a value?

We solve this problem by letting X be the number of times that min is assigned a
value and X; be the indicator random variable for the event that A[i]is assigned
tomin. Then X = X; + X5 + -+ - + X,;, and E(X;) is the probability that A[i]
is the smallest element in the set {A[1], A[2], ..., A[i]}. Because (i — 1)!
of the i! permutations of these elements have A[i] as the smallest element,

E(X;) = 1/i. Thus,
"1
E(X):Z -
i=1

In Section 5.5, we will see that this sum is ® (log n).

304 Chapter 5: Probability

Exercise 5.4-10

The Number of Trials until the First Success

How many times should we expect to have to flip a coin until we first see a
head? Why? How many times should we expect to have to roll two dice until
we see a sum of 77 Why?

Our intuition suggests that we should have to flip a coin twice to see a head.
However, we could conceivably flip a coin forever without seeing a head, so
should we really expect to see a head in two flips? The probability of getting a
7 on two dice is 1/6. Does that mean we should expect to have to roll the dice
six times before we see a 7?

To analyze this kind of question, we have to realize that we are stepping out
of the realm of independent trials processes on finite sample spaces. Instead,
we consider the process of repeating independent trials with probability p of
success until we have a success and then stopping. Now, for our multistage
process, the possible outcomes are the infinite set

{S,FS,FFS,..., F'S, ...},

in which we have used the notation F'S to stand for the sequence of i failures
followed by a success. Because we have an infinite sequence of outcomes,
it makes sense to think about whether we can assign an infinite sequence of
probability weights to its members so that the resulting sequence of probabili-
ties adds to 1. If so, then all our definitions make sense, and, in fact, the proofs
of all our theorems remain valid.® There is only one way to assign weights
that is consistent with our knowledge of (finite) independent trials processes;
namely,

P(S)=p, P(FS)y=(1-p)p, ..., P(F'S)=(1-pp,

Thus, we have to hope that these weights add to 1. In fact, their sum is

Z(l—p)p—pZ(l— p) =PT 07

_Pp
p)p

8For those familiar with the concept of convergence for infinite sums (i.e., infinite series), it
is worth noting that the fact that probability weights cannot be negative and must add to 1 is
what makes all the sums we need to deal with, for all the theorems we have proved so far,
converge. This doesn’t mean that all sums that we might want to deal with will converge;
some random variables defined on the sample space we have described will have infinite
expected value. However, those we need to deal with for the expected number of trials until
success do converge.

Theorem 5.13

5.4: Random Variables 305

With this, we have a legitimate assignment of probabilities. The set of
sequences

(S,FS,FFS,FFFS,...,F'S, ..}

is a sample space with these probability weights. The probability distribu-
tion P(F'S)=(1 — p)'p is called a geometric distribution because of the
geometric series we used in proving that the probabilities sum to 1.

Suppose we have a sequence of trials in which each trial has two outcomes,
success and failure, and in which the probability of success at each step is p
and p > 0. Then the expected number of trials until the first success is 1/ p.

Proof We consider the random variable X, which is i if the first success is on
Trial i. (In other words, X (F'~'S) = i.) The probability that the first success
is on Trial i is (1 — p)'~!p, because for this to happen, there must be i — 1
failures followed by one success. The expected number of trials is the expected
value of X, which is, by the definition of expected value and the previous two
sentences,

o
E (number of trials) = Z p(1—p)ili

i=0
o0
=py (I—p)'i
i=0
o0
=——> (I—-p)i
l—pi:
__p 1-p
l—p p?
_1
.

To go from the third to the fourth line in the previous sequence of equations,
we used the fact that

>l = _r (5.29)
j=0 (1= x)?

which is true for x with absolute value less than 1. We proved a finite version
of this equation as Theorem 4.6; the infinite version is even easier to prove.

306 Chapter 5: Probability

Applying Theorem 5.13, we see that the expected number of times we need
to flip a coin until we get a head is two, and the expected number of times we

need

to roll two dice until we get a 7 is six.

1.

Random variable. A random variable for an experiment with a sample
space S is a function that assigns a number to each element of S.

. Bernoulli trials process. An independent trials process with two

outcomes, success and failure, at each stage and probability p of
success and 1 — p of failure at each stage is called a Bernoulli trials
process.

. Probability of a sequence of Bernoulli trials. In n Bernoulli trials with

probability p of success, the probability of a given sequence of k
successes and n — k failures is p*(1 — p)"*.

. The probability of k, successes in n, Bernoulli trials. The probability of

having exactly k successes in a sequence of n independent trials with
two outcomes and probability p of success on each trial is given by

n

P (exactly k successes) = (k

) pra = pr .

. Binomial probability distribution. The probabilities of k successes in n

Bernoulli trials, (Z) p*(1 — p)"=*, are called binomial probabilities, or
the binomial probability distribution.

. Generating function. The generating function for the sequence

ap,dy, d, ..., d,1s
n
E a;x',
i=1

and the generating function for an infinite sequence
ap, di,a, ..., d,, ...1is the infinite series

The polynomial (px 4+ 1 — p)”" is the generating function for the
binomial probabilities for n Bernoulli trials with probability p of
success.

. Distribution function. The function that assigns P(X = x;) to the event

X = x; is called the distribution function of the random variable X.

10.

11.

12.

13.

14.

15.

5.4: Random Variables 307

. Expected value. The expected value, or expectation, of a random

variable X, whose values are the set {x}, x2, ..., x¢}, is defined by

k
E(X) = inp(x = x;).
i=1

. Another formula for expected values. If a random variable X is defined

on a (finite) sample space S, then its expected value is given by

E(X) = Z X (s)P(s).

s:is€S

Expected value of a sum. Suppose X and Y are random variables on the
(finite) sample space S. Then

E(X+Y)=EX)+ E().

This is called the additivity of expectation.

Expected value of a numerical multiple. Suppose X is a random
variable on a sample space S. Then E(cX) = cE(X) for any number c.
This result and the additivity of expectation are called the linearity of
expectation.

Expected number of successes in Bernoulli trials. In a Bernoulli trials
process, the expected number of successes is np.

Indicator random variables. A random variable that is 1 if a certain
event happens and 0 otherwise is called an indicator random variable.

Expected number of trials until success. Suppose we have a sequence
of trials in which each trial has two outcomes (success and failure) and
in which the probability of success at each step is p. Then the expected
number of trials until the first success is 1/ p.

Geometric distribution. The probability distribution given by
P(F'S) = (1 — p)' piscalled a geometric distribution.

All problems with blue boxes have an answer or hint available at the end of
the book.

1.

Give several random variables that might be of interest to someone
rolling five dice (as one does, for example, in the game Yahtzee).

In an independent trials process consisting of six trials with probability

p of success, what is the probability that the first three trials are

308 Chapter 5: Probability

4.

6.

8.

10.

successes and the last three are failures? The probability that the last
three trials are successes and the first three are failures? The probability
that Trials 1, 3, and 5 are successes and Trials 2, 4, and 6 are failures?
What is the probability of three successes and three failures?

What is the probability of exactly eight heads in 10 flips of a coin? Of
eight or more heads?

Assuming that the process of answering the questions on a
five-question quiz is an independent trials process and that a student has
a probability .8 of answering any given question correctly, what is the
probability of one particular sequence of four correct answers and one
incorrect answer? What is the probability that a student answers exactly
four questions correctly?

Suppose I offer to play the following game with you if you will pay me
some money. You roll a die, and I give you a dollar for each dot that is
on top. What is the maximum amount of money a rational person might
be willing to pay me to play this game?

What is the expected sum of the tops of n dice when you roll them?
How many sixes do you expect to see on top if you roll 24 dice?

If you randomly choose 26 cards from a deck of 52 ordinary playing
cards, one at a time, is the event of having a king on the ith draw
independent of the event of having a king on the jth draw? How many
kings do you expect to see?

How many times do you expect to have to roll a die until you see a six
on the top face?

What is the expected value of the constant random variable X that has
X (s) = c for every member s of the sample space? (We frequently use
¢ to stand for this random variable. Thus, this question is asking for
E(c).)

A student is taking a true-false test and guessing when he doesn’t know
the answer. We are going to compute a score by subtracting a
percentage of the number of incorrect answers from the number of
correct answers. That is, for some number y, the student’s corrected
score will be

(number of correct answers) — y (number of incorrect answers).
When we convert this “corrected score” to a percentage score, we want

its expected value to be the percentage of the material being tested that
the student knows. How can we do this?

12.

15.

17.

5.4: Random Variables 309

Solve Problem 10 for the case of a student taking a multiple-choice test
with five choices for each answer and randomly guessing when she
doesn’t know the answer.

Suppose you have 10 independent trials with three outcomes called
“good,” “bad,” and “indifferent,” with probabilities p, g, and r,
respectively. What is the probability of three goods, two bads, and five
indifferents? In n independent trials with three outcomes A, B, and C,
with probabilities p, g, and r, what is the probability of i A’s, j B’s, and
k C’s? (In this problem, assume p + ¢ +r = landi + j + k = n.)

In as many ways as you can, prove that

i (") =2,

Prove Theorem 5.11.

Two nickels, two dimes, and two quarters are in a cup. You draw three
coins, one after the other, without replacement. What is the expected
amount of money you draw on the first draw? On the second draw?
What is the expected value of the total amount of money you draw?
Does this expected value change if you draw the three coins all

at once?

Evaluate the sum
10
(10 i —i
Zz(i>(.9) (o,
i=0

which arose in computing the expected number of right answers a
person would have on a 10-question test with probability .9 of
answering each question correctly. First, use the binomial theorem and
calculus to show that

10 10 o
10(.1 + x)° = Zi (_)(.1)10_’xl_1.
l
i=0

Substituting x = .9 almost gives the sum you want on the right side of
the equation, except that in every term of the sum, the power on .9 is
one too small. Use some simple algebra to fix this and then explain why
the expected number of right answers is 9.

Give an example of two random variables X and Y such that
E(XY) # E(X)E(Y).Here XY is the random variable with
(XY)(s) = X(s)Y (s).

310 Chapter 5: Probability

19. Let X and Y be independent in the sense that the event “X = x” and the
event “Y = y” are independent for each pair of values x of X and y of Y.
Provethat E(XY) = E(X)E(Y). See Problem 18 for a definition of XY.

Use calculus and the sum of a geometric series to show that if —1 <

x < 1, then
o0
D=,
= (1 x)

as in Equation 5.29.

Give an example of a random variable on the sample space
{S,FS,FFS,...,F'S,...} withan inﬁnite~ expected value, using a
geometric distribution for probabilities of F'S.

5.5 PROBABILITY CALCULATIONS IN HASHING

Exercise 5.5-1

In this section, we use our knowledge of probability and expected value to
analyze several interesting quantities that arise when using hashing. Recall
that in (open) hashing, each item hashes to a particular location in an array and
locations can hold more than one item. We analyze the following quantities:

. expected number of items per location
. expected time for a search

. expected number of collisions

1

2

3

4. expected number of empty locations

5. expected time until all locations have at least one item
6

. expected maximum number of items per location

Expected Number of Items per Location

We are going to compute the expected number of items that hash to any partic-
ular location in a hash table. Our model of hashing » items into a table of size
k allows us to think of the process as n independent trials, each with k possible
outcomes (the k locations in the table). On each trial, we hash another key into
the table. If we hash » items into a table with k locations, what is the probabil-
ity that any one item hashes into Location 1? Let X; be the indicator random
variable that is 1 if, in the ith trial, the item hashes to Location 1; otherwise,
let it be 0. What is the expected value of X;? Let X be the random variable
X1+ X2+ --- 4+ X,. What is the expected value of X? What is the expected

Exercise 5.5-2

Theorem 5.14

Theorem 5.15

5.5: Probability Calculations in Hashing 311

number of items that hash to Location 1? Is the fact that we are talking about
Location 1 special in any way? That is, does the same expected value apply to
every location?

Again, we are hashing n items into k locations. Our model of hashing is the
same as that of Exercise 5.5-1. What is the probability that a location is empty?
Whatis the expected number of empty locations? Suppose we now hash n items
into the same number n of locations. What limit does the expected fraction of
empty places approach as n gets large?

In Exercise 5.5-1, the probability that any one item hashes into Location 1 is
1/k, because all k locations are equally likely. It follows that the expected
value of X; is 1/k. The expected value of X is then n/ k, or the sum of n terms
each equal to 1/ k. Of course, the same expected value applies to any location.
Thus, we have proved the following theorem.

In hashing n items into a hash table of size k, the expected number of items
that hash to any one location is n/ k.

Expected Number of Empty Locations

In Exercise 5.5-2, the probability that Location i will be empty after we hash
one item into the table will be 1 — 1/k. (Why?) In fact, we can think of our
process as an independent trials process with two outcomes: the key hashes to
Location i or it doesn’t. From this point of view, it is clear that the probability
of nothing hashing to Location i in # trials is (I — 1/k)". Now consider the
original sample space again, and let X; = 1 if Location i is empty for a given
sequence of hashes; otherwise, let it be 0. Then the number of empty slots for a
given sequence of hashes is X| + X, + - - - + Xy, evaluated at that sequence.
Therefore, the expected number of empty slots is, by Theorem 5.10, k(1 —
1/k)". Thus, we have proved another nice theorem about hashing.

In hashing » items into a hash table with k locations, the expected number
of empty locations is k(1 — 1/k)".

Proof The proof for this theorem is given above.
If we have the same number of slots as places, the expected number of

empty slots is n(1 — 1/n)", so the expected fraction of empty slots is
(1 — 1/n)". What does this fraction approach as n grows? You may recall that

312 Chapter 5: Probability

Theorem 5.16

Exercise 5.5-3

lim,_, (1 + 1/n)" = e, the base for the natural logarithm. In Problem 13,
we show you how to use this to derive that lim,,_, (1 — 1/n)" = e~!. Thus,
for a reasonably large hash table, if we hash in as many items as we have
slots, we expect 1/e of those slots to remain empty. In other words, we expect
n/e empty slots. On the other hand, we expect n/n = 1 items per location,
which suggests that we should expect each slot to have an item, and therefore,
we expect to have no empty locations. Is something wrong? No; we simply
have to accept that our expectations about expectation don’t always hold
true. What went wrong in this apparent contradiction is that our definition
of expected value doesn’t imply that if we have an expectation of one key
per location then every location must have a key. It only implies that empty
locations have to be balanced by locations with more than one key. When
we want to make a statement about expected values, we must use either our
definitions or theorems to back it up. This is another example of why we have
to use careful analysis to support our intuition about probability.

Expected Number of Collisions

We say that we have a collision when we hash an item to a location that already
contains an item. How can we compute the expected number of collisions?
The number of collisions will be the number n of keys hashed minus the
number of occupied locations, because each occupied location will contain
one key that will not have collided in the process of being hashed. Thus, by
Theorems 5.10 and 5.11,

E (collisions) = n — E(occupied locations)

=n — k + E(empty locations), (5.30)

where the last equality follows because the expected number of occupied loca-
tions is k minus the expected number of unoccupied locations. This gives us
yet another theorem.

In hashing n items into a hash table with k locations, the expected number
of collisionsisn — k + k(1 — 1/k)".

Proof We have already shown in Theorem 5.15 that the expected number of
empty locations is k(1 — 1/k)". Substituting this into Equation 5.30 gives us
our formula.

In real applications, it is often the case that the hash table size is not fixed in
advance, because we don’t know in advance how many items we will insert.
The most common heuristic for dealing with this is to start &, the hash table

5.5: Probability Calculations in Hashing 313

size, at some reasonably small value; then when n, the number of items, gets
to be greater than 2k, we double the size of the hash table. In this exercise, we
propose a different idea. Suppose we waited until every single slot in the hash
table had at least one item in it, and then we increased the table size. What is the
expected number of items that will be in the table when we increase the size?
In other words, how many items should we expect to insert into a hash table
to ensure that every slot has at least one item? (Hint: Let X; be the number of
items added between the first time that there are i — 1 occupied slots and the
first time that there are i occupied slots.)

For Exercise 5.5-3, the key is to let X; be the number of items added between
the time that there are i — 1 full slots for the first time and i full slots for the
first time. Let’s think about this random variable: £(X;) = 1, because after
one insertion, there is one full slot. In fact, X itself is equal to 1.

To compute the expected value of X;, we note that X, can take on any value
greater than zero. In fact, what we have here (until we actually hash an item to
a new slot) is an independent trials process with two outcomes, with success
meaning our item hashes to an unused slot. Thus, X, counts the number of
trials until the first success. The probability of success is (k — 1)/ k. In asking
for the expected value of X,, we are asking for the expected number of steps
until the first success. Thus, we can apply Theorem 5.13 to get that E(X»,) =
k/(k —1).

Continuing, X3 similarly counts the number of steps in an independent trials
process (with two outcomes) that stops at the first success and has probability
of success (k — 2)/ k. Therefore, the expected number of steps until the first
success is k/(k — 2).

In general, we have that X; counts the number of trials until success in an
independent trials process with probability of success (k — i + 1)/ k, and thus,
the expected number of steps until the first success is k/(k — i + 1), which is
the expected value of X;.

The total time until all slots are full is simply X = X + - - - + X. Taking
expectations and using Theorem 5.13, we get

k
E(X) = ZE(XJ-)
j=1

k k
:;k—j-i-l

314 Chapter 5: Probability

Theorem 5.17

L 1
=k
Zk—]—l—l
j=1
‘ 1
—k Z :
k—j+1:1k_J+1

where the last line follows just by switching the variable of the summation—
that is, letting k — j 4+ 1 = i and summing over i.” The quantity Zle (1/9)
is known as a harmonic number and is sometimes denoted by H. It is well
known (and you can see why in Problem 18) that Zf-‘zl(l /i) = ©(logk).
More precisely,

1
Z+lnk§Hk§ 1+ Ink, (5.31)

and in fact,
1
E-l—lnk <H,<1+Ink

when £ is large enough. As n gets large, H, — Inn approaches a limit called
Euler’s constant, which is about .58. Equation 5.31 gives us that E(X) =
O(klogk).

The expected number of items needed to fill all slots of a hash table of size
k is between kInk + k/4 and kInk + k.

Proof The proof of this theorem is given above.

So, to fill every slot in a hash table of size k, we need to hash roughly k In k
items. This problem is sometimes called the coupon-collector’s problem. To
understand the reason for this name, imagine that a brand of breakfast cereals
has a promotion with five different coupons that can be redeemed by mail for
five different toys, and there is one coupon in each box of cereal. The question
about the number of hashes until a hash table is full corresponds to asking for
the expected number of boxes someone has to buy to get at least one of each
coupon.

?Note that k — j + 1 runs from k to 1 as j runs from 1 to k, so we are describing exactly the
same sum.

Lemma 5.18

5.5: Probability Calculations in Hashing 315

The remainder of this section, which can be skipped without loss of conti-
nuity, is devoted to proving that if we hash n items into a hash table with n
slots, then the expected number of items in the slot with the most items is
O(logn/loglogn). It should be no surprise that a result of this form requires
a somewhat complex proof.

Expected Maximum Number of Elements in a Location
of a Hash Table*

In a hash table, the amount of time required to find an item is related to the
number of items in the location where you are looking. Thus, an interesting
quantity is the expected maximum length of the list of items in a location in a
hash table. This quantity is more complicated than many of the others we have
been computing; hence, we will only try to upper bound it rather than compute
it exactly. In doing so, we will introduce a few upper bounds and techniques
that appear frequently and that are useful in many areas of mathematics and
computer science. We will prove that if we hash n items into a hash table of
size n, the expected length of the longest list is O (logn/loglogn). We could
also prove, although we won’t do it here, that there is a high probability of
there being some list with Q2 (logn/loglogn) items in it, so our bound is the
best possible, up to constant factors.

Before we start, we give some useful upper bounds. The first allows us to
bound terms that look like (1 + 1/x)%, for any positive x, by e.

Forall x > 0, we have (1 + 1/x)* <e.

Proof This follows because lim,_ oo (1 + 1/x)* = e and (1 + 1/x)* has
positive first derivative.

Second, we will use the following approximation called Stirling’s formula,

n 1
n=(%) «/27111(1 +0 (—))
e n
which tells us, roughly, that (n/e)" is a good approximation for n!. Moreover,

the constant in the ®(1/n) term is 1/12; so when n is moderately large, this
term will be very small relative to n! For our purposes, we will just say that

n n
n!~ <—) 2mn.
e

*This subsection can be skipped without loss of continuity.

316 Chapter 5: Probability

Lemma 5.19

(We use this equality only in our proof of Lemma 5.19. You will see that
in the proof of Lemma 5.19, we make the statement that V27 > 1. In fact,
V27 > 2, which is more than enough to make up for any lack of accuracy in
our approximation.) Using Stirling’s formula, we can get a bound on ().

Forn > ¢t > 0, we have

Proof

n n!
()= =
B (n/e)"2mn
/ey N2t ((n—1)/e)" V2 — 1)
n"/n
- I — 1)
Now, if | <t < n — 1, then we have t(n — t) > n, so that \/t(n — t) > /n.

Furthermore, ~/27 > 1. We can use these facts to upper bound Expression
5.32 by

(5.32)

nn

t'(n—1)nt

When ¢t =1 or t = n — 1, the inequality in the statement of the lemma is
n <n"/(n —1)""!, which is true because n — 1 < n.

We are now ready to attack the problem at hand: the expected value of the
maximum list size. Let’s start with a related quantity that we already know how
to compute exactly. Let H;, be the event that exactly ¢ keys hash to Location
i. P(H;;) is just the probability of # successes in an independent trials process
with success probability 1/n; so,

P(Hy) = (’Z) (%) (1 - %>_ (5.33)

We relate this known quantity to the probability of the event M, that the max-
imum list size is z.

5.5: Probability Calculations in Hashing 317

Lemma 5.20 Let M, be the event that 7 is the maximum list size in hashing # items into a
hash table of size n. Let Hj, be the event that # keys hash to Location 1. Then

P(M;) < nP(Hy).

Proof We begin by letting M;; be the event that the maximum list size is ¢
and this list appears in Location i. Observe that

P(M;;) < P(Hj),
because M;;, is a subset of H;;. We know that, by definition,
My = M U--- UMy,

and so
P(Mt) = P(Mlt U"'UMm‘)-

Therefore, because the sum of the probabilities of the individual events must
be at least as large as the probability of the union,

P(M;) < P(My;) + P(M») +---+ P(My,). (5.34)

(Recall that we introduced the principle of inclusion and exclusion because
the right side usually overestimates the probability of the union. However,
Inequality 5.34, which is sometimes called Boole’s inequality, holds for any
union, not just this one.)

In this case, P(M;;) = P(M;;) for any i and j, because there is no reason
for Location i to be more likely than Location j to be the maximum. We can
therefore write that

P(M;) <nP(My) <nP(Hy).

We can now use Equation 5.33 for P(H),) and then apply Lemma 5.19 to
get that

318 Chapter 5: Probability

Lemma 5.21

Using algebra, (1 — 1/n)"~" < 1, and Lemma 5.18, we continue and get that

n}’l

t(n —1)"~'n!

nl’l—l‘

t'(n — t)n
n—t 1
n—t t
< t >n—t 1
=(1+ —
n—t t!

P(Hy;)

n

Il
N
et
+

S
||~
-
N—
S
L
<
v
| =

=
We have shown the following:

The probability that the maximum list length, P(M,), is ¢ is at most ne’ /.

Proof Our sequence of equations and inequalities above showed that
P(H;y;) < e'/t'. Multiplying by n and applying Lemma 5.20 gives us our
result.

Now that we have abound on P (M), we can compute a bound on the expected
length of the longest list, namely,

i P(M,)t.
t=0

However, if we think carefully about the bound in Lemma 5.21, we see that we
have a problem. Forexample, whent = 1,thelemmatellsusthat P(M;) < ne.
This bound is vacuous, because we know that any probability is at most 1. We
could make a stronger statement that P(M;) < max{ne’/t’, 1}, but even this
wouldn’t be sufficient, as it would tell us things like P(M;) + P(M>) < 2,
which s also vacuous. All is not lost, however. Our lemma causes this problem
only when 7 is small. We split the sum defining the expected value into two
parts and bound the expectation for each part separately. The intuition is that
when we restrict ¢ to be small, Y P(M,)t is small because ¢ is small (and

Theorem 5.22

5.5: Probability Calculations in Hashing 319

> P(M;) < loverall). When ¢ gets larger, Lemma 5.21 tells us that P (M)
is very small; thus the sum doesn’t get big in that case, either. We choose a way
to split the sum so that this second part of the sum is bounded by a constant.
In particular, we split the sum by

n |5logn/loglogn]| n
> PM)r < > PMt+ > P(M)t. (5.35)
=0 =0 t=[5logn/loglogn]

For the sum over the smaller values of 7, we observe that in each term,
t <|5logn/loglogn], so that

[Slogn/loglogn] [Slogn/loglogn]

S poys y DMSloen

prs P loglogn

|5logn/loglogn|
Slogn
— 22X N Py
loglogn por

Slogn
<= (5.36)
loglogn

(Note that we are not using Lemma 5.21 here; only the fact that the proba-
bilities of disjoint events cannot add to more than 1.) For the rightmost sum
in Equation 5.35, we want to first compute an upper bound on P(M,) for
t = 5logn/loglogn. Using Lemma 5.21 and a rather complicated calcula-
tion outlined in Problem 17, we get that, in this case, P(M;) < 1/ n?. Because
the bound on P(M;) from Lemma 5.21 decreases as t grows and ¢t < n, we
can bound the right sum by

n n 1 n 1
> PMys) s) o<l
t=[5logn/loglogn] t=[5logn/loglogn] t=[5logn/loglogn]

(5.37)
Combining Equations 5.36 and 5.37 with Equation 5.35, we get the desired
result.

If we hash n items into a hash table of size n, then the expected maximum
list length is O (logn/loglogn).

The choice to break the sum into two pieces here—and especially the break-
point we chose—may have seemed like magic. What is so special about
|5logn/loglogn|? Consider the bound on P(M;). If we ask for the value

320 Chapter 5: Probability

of ¢ for which the bound equals a certain value, say 1/n%, we get the equation
ne' /t' = n=2. If we try to solve the equation ne’/t' = n~? for ¢, then we
quickly see that we get an equation of a form that we do not know how to solve.
(Try typing this into acomputer algebra system, such as Mathematica or Maple,
to see how they try to solve this equation. At best, you will get a formula con-
taining something called a Lambert function.) The equation we need to solve is
somewhat similar to the simpler equation ' = n. Although this equation does
not have a closed-form solution in commonly used functions, we can show that
the ¢ that satisfies this equation is roughly c log n/ log log n for some constant
c. This is why it makes sense to try some multiple of logn/loglogn as the
magic value. For values much less than log nn/ log log n, the bound provided on
P(M,) is fairly large. Once we get past logn/loglogn, however, the bound
on P(M;) starts to get significantly smaller. The factor of 5 was chosen by
experimentation to make the second sum come out to be less than 1. We could
have chosen any number between 4 and 5 to get the second sum to come out
less than 1, or we could have chosen 4, and the second sum would have grown
no faster than the first.

1. Expected number of keys per location in a hash table. In hashing n
items into a hash table of size k, the expected number of items that hash
to any one location is n/ k.

2. Expected number of empty locations in a hash table. In hash-
ing n items into a hash table with k locations, the expected number of
empty locations is k(1 — 1/k)".

3. Collision in hashing. We have a collision when we hash an item to a
location that already contains an item.

4. The expected number of collisions in hashing. In hashing n items into a
hash table with k locations, the expected number of collisions is
n—k+k(l1—1/k)"

5. Harmonic number. The quantity Zle (1/1) is known as a harmonic
number and is sometimes denoted by Hy. It is a fact that Zf: (/1) =
®(log k), and, more precisely,

1
E—i-lnkakf 1+Ink

for large values of k.

6. Euler’s constant. As n gets large, H, — Inn approaches a limit called
Euler’s constant, which is about .58.

5.5: Probability Calculations in Hashing 321

7. Expected number of hashes until all locations of a hash table are
occupied. The expected number of items needed to fill all locations of a
hash table of size k is between k Ink + k/4 and k In k + k. (For large k,
k /4 may be replaced with k/2.)

8. Expected maximum number of keys per location. If we hash n items
into a hash table of size n, the expected maximum list length is
O(logn/loglogn).

*9. Stirling’s formula for n!. n! is approximately (n/e)"~/2mn.

All problems with blue boxes have an answer or hint available at the end of
the book.

A candy machine in a school has d different kinds of candy. Assume
(for simplicity) that all these kinds of candy are equally popular and
there is a large supply of each. Suppose that ¢ children come to the
machine, and each child purchases one package of candy. One of the
kinds of candy is a Snackers bar.

a. What is the probability that any given child purchases a
Snackers bar?

b. Let Y; be the number of Snackers bars that Child i
purchases—Y; is either O or 1. What is the expected value of Y;?

c. LetY be the random variable Y| + Y> + - - - 4+ Y.. What is the
expected value of Y'?
d. What is the expected number of Snackers bars that are
purchased?
e. Does the same result apply to any of the varieties of candy?
2. AsinProblem 1, ¢ children are choosing from among ample supplies

of d different kinds of candy, with one package for each child and all
choices equally likely.

a. What is the probability that a given variety of candy is chosen by
no child?

b. What is the expected number of kinds of candy chosen by no
child?

c. Suppose that ¢ = d. What happens to the expected number of
kinds of candy chosen by no child?

*Stirling’s formula appears in a subsection marked with an asterisk.

322 Chapter 5: Probability

In Problem 1, how many children do you expect to have to observe
buying candy until someone has bought a Snackers bar?

4. InProblem 1, how many children do you expect to have to observe
buying candy until each type of candy has been selected at least once?

In Problem 1, if there are 20 kinds of candy, how many children have
to buy candy for the probability to be at least 1/2 that (at least) two
children buy the same kind of candy?

6. In Problem 1, what is the expected number of duplications among all
the candy the children have selected?

Compute the values on the left and right side of the inequality in
Lemma5.19forn =2,t=0,1,2,andforn =3,t =0,1, 2, 3.

8. Suppose you hash n items into k locations.

a. What is the probability that all n items hash to different
locations?

b. What is the probability that the ith item is the first collision?

c. What is the expected number of items you hash until the first
collision?
d. Use a computer program or spreadsheet to compute the expected

number of items hashed into a hash table until the first collision,
with k£ = 20 and with £k = 100.

n We have seen a number of occasions when our intuition about
expected values or probability in general fails us. When we studied
Equation 5.30, we said that the expected number of occupied
locations is k minus the expected number of empty locations.
Although this seems obvious, there is a short proof. Give the proof.

10. Write a computer program that prints out a table of values of the
expected number of collisions with n keys hashed into a table with &
locations for interesting values of n and k. Does this value vary much
as n and k change?

Suppose you hash n items into a hash table of size k. It is natural to ask
how long it takes to find an item in the hash table. You can divide this
into two cases, one in which the item is not in the hash table (an
unsuccessful search) and one in which the item is in the hash table (a
successful search). First consider the unsuccessful search. Assume the
keys hashing to the same location are stored in a list, with the most
recent arrival at the beginning of the list.

a. Using the expected list length, write a bound for the expected
time for an unsuccessful search. Next, consider the successful
search. Recall that when you insert items into a hash table, you

*12.

14.

16.

*17.

5.5: Probability Calculations in Hashing 323

typically insert them at the beginning of a list; thus, the time for
a successful search for Item i should depend on how many
entries were inserted after Item i.

b. Carefully compute the expected running time for a successful
search. Assume that the item you are searching for is randomly
chosen from among the items already in the table. (Hint: The
unsuccessful search should take roughly twice as long as the
successful one. Be sure to explain why this is the case.)

Suppose you hash n log n items into n buckets. What is the expected
maximum number of items in a bucket?

The fact that lim,,—, oo (1 4+ 1/n)" = e (where n varies over integers) is
a consequence of the fact that limy,_,o(1 + /) I/h — ¢ (where h varies
over real numbers). Thus, if & varies over negative real numbers but
approaches 0, the limit still exists and equals e. What does this tell you
about lim,,_, _o(1 + 1/n)"? Using this and rewriting (1 — 1/n)" as
(1 4+ 1/—n)", show that

. 1\" 1
Iim (1 ——-) =-.
n— 00 n e

What is the expected number of empty slots when you hash 2k items
into a hash table with & slots? What is the expected fraction of empty
slots close to when £ is reasonably large?

Using whatever methods you like (hand calculations or computer),
give upper and/or lower bounds in terms of n on the value of the x that
satisfies x* = n.

A professor decides that the method proposed for computing the
maximum list size is much too complicated. He proposes the
following solution: If we let X; be the size of list i, then what we want
to compute is E (max,- (X ,-)). This means

E(max(X;)) = max(E(X;)) = max(l) = 1.

‘What is the flaw in his solution?

In our analysis of Equation 5.35, we said that for t = (5Inn/Inlnn),
Lemma 5.21 gives us that P(M,) < 1/n>. The lemma also gives us

*This problem depends on material marked with an asterisk in the text.

This problem relates to a subsection marked with an asterisk and requires more insight into
logarithms and exponential functions than other problems in this section.
*This problem depends on material marked with an asterisk.

324

Chapter 5: Probability

that P(M;) < n (e/t)". To get the bound of l/nz, it suffices to

show that
e

n <;>t < % (5.38)

‘We now outline how to show this.
a. Show that Inequality 5.38 is equivalentto (1 — In¢t) < —31nn.
b. Isthere at of the form c Inn/Inlnn that satisfies (5.38)? Show
that if there is such a ¢, then

clnn

—clnn + (1 =Inc+Inlnlnn) < —31nn.

Inlnn

¢. Youknow that Inlnlnn < Inlnn, but by how much? To find out,
determine where the function InInInx/ InIn x has its maximum
value and what that maximum value is. (You know it has a
maximum, because the function is 0 when x = e, approaches
0 as x becomes large, but is positive for x > e°.)

d. Show thatlnlnlnn < 0.41Inlnn.

e. Show that with ¢ = 5, you have

clnn
—clnn+1 (1 —=Inc+Inlnlnn) < —31nn.
n

nln

This completes the proof of the bound P(M;) < 1/n?.

Prove as tight upper and lower bounds as you can for Zle (1/1).

For this purpose, it is useful to remember the definition of the natural
logarithm as an integral involving 1/x and to draw rectangles and
other geometric figures above and below the curve.

19. Notice thatInn! = Y_"_, Ini. Sketch a careful graph of y = Inx, and,
by drawing in geometric figures above and below the graph, show that

n 1 n n
Ini — =Inn < Inxdx < Ini.
;m 2nn_/1 nx x_lg]:nl

Based on your drawing, which inequality do you think is tighter? Use
integration by parts to evaluate the integral. What bounds on n! can
you get from these inequalities? Which one do you think is tighter?
How does it compare with Stirling’s formula? What big O bound can
you geton n!?

5.6: Conditional Expectations, Recurrences, and Algorithms 325

5.6 CONDITIONAL EXPECTATIONS, RECURRENCES, AND ALGORITHMS

Exercise 5.6-1

Probability is a very important tool in algorithm design. We have already seen
two important examples in which it is used: primality testing and hashing.
In this section, we study several more examples of probabilistic analysis in
algorithms. We focus on computing the running time of various algorithms.
When the running time of an algorithm is different for different inputs of the
same size, we can think of the running time of the algorithm as a random
variable on the sample space of inputs, and thus, we can analyze the expected
running time of the algorithm. This gives us an understanding different from
studying just the worst-case running time for an input of a given size. We
then consider randomized algorithms, which are algorithms that depend on
choosing something randomly, to see how we can use recurrences to give
bounds on the algorithms’ expected running times.

For randomized algorithms, it will be useful to have access to a function
that generates random numbers. We will assume that we have a function
randint (1, 7), which generates a random integer uniformly between i
and j (inclusive). This means the random integer is equally likely to be any
number between i and j. We also have a function rand0O1 (), which gen-
erates a random real number between 0 and 1 uniformly.'® Functions such
as randint and rand01 are called random number generators. A great
deal of number theory goes into the construction of good random number
generators.

When Running Times Depend on More than Size of Inputs

Let A be an array of length n — 1 (whose elements are chosen from some
ordered set), sorted into increasing order. Let b be another element of the
ordered set that we want to insert into A to get a sorted array of length n.
Assuming that the elements of A and the element b are chosen randomly,'!
what is the expected number of elements of A that have to be shifted one place
to the right to let us insert b?

10Ty say we have a random number chosen uniformly between 0 and 1 means that given any
two pairs of real numbers (ry, r2) and (s1, s2) with r, —r; = 52 — 51 and ry, 2, s1, and s; all
between 0 and 1, our random number is just as likely to be between r; and r, as it is to be
between s; and s;.

"When we say the elements are chosen randomly from some finite set, we mean that all
elements of the set are equally likely to be chosen. If the set from which we are choosing is
infinite, we mean that for any two intervals of the same length in the ordered set, the
elements are equally likely to be in either interval.

326 Chapter 5: Probability

Exercise 5.6-2

One of the standard methods of sorting that you have probably studied is
insertion sort. We describe this technique briefly here: Let A[1:n] denote the
elements in Positions 1 to n of Array A. A recursive description of insertion
sort is that to sort A[1:n], we first sort A[1:n — 1], and then we insert A[n] by
shifting each element greater than A[n] one place to the right and then inserting
the original value of A[n] into the place we have opened up. If n = 1, we do
nothing.

The purpose of this exercise is to analyze the expected time needed to carry
out insertion sort. We consider two random variables—S; for sorting and I; for
inserting.

* Let §; (A[l J]) be the time needed to sort the portion of A from
Position 1 to Position j.

* LetJ; (A[l :Jl b) be the time needed to insert the element b into a
sorted list originally in the first j positions of A to give a sorted list in
the first j + 1 positions of A.

Note that §; and I; depend on the actual array A and not only on the value of
Jj. Find a way to use S,,—1 and I, to describe the time needed to use insertion
sort to sort A[1:n] in terms of the time needed to sort A[1:n — 1]. Remember
that it is necessary to copy the element in Position n of A into a variable B
before moving elements of A to the right to make a place for it—this moving
process will write over A[n]. This copying will take some time c;. We let T'(n)
be the expected value of S,—that is, the expected running time of insertion
sort on a list of n items. Write a recurrence for 7'(n) in terms of T(n — 1)
by taking expected values in the equation that corresponds to your previous
description of the time needed to use insertion sort on a particular array. Solve
your recurrence relation in big ® terms.

If X is the random variable with X (A, b) equal to the number of items we need
to move one place to the right in order to insert b into the resulting empty slot
in A, then X takes on the values 0, 1, ..., n — 1 with equal probability 1/n.
Thus, we have

n = n 2 2

n—1 n—1
o1 1 (n—1 —1
E(X):EiE:—E:i:—(n m_n—-1
i=0

We use S; (A[l : j]) to stand for the time required to sort the portion of Array
A from Positions 1 to j by insertion sort. We use /;(A[1:/], b) to stand for

5.6: Conditional Expectations, Recurrences, and Algorithms 327

the time needed to insert b into a sorted list in the first j positions of Array
A, moving all items larger than j to the right one place and putting b into
the empty slot that results. In terms of S; and I;, we can write that for inser-
tion sort,

Sa(AlL:n]) = S,—1 (AlL:n — 1) + L1 (A[L:n — 1], A[n]) + c;.

We have included the constant term ¢ for the time it takes to copy the value of
A[n] into some variable B, because we will overwrite A[n] in the process of
moving items one place to the right. Using the additivity of expected values,
we get

E(Sp) = E(Sp—1) + E(In-1) + E(c1).

Using T (n) for the expected time to sort A[1:1] by insertion sort and the result
of Exercise 5.6-1, we get

n—1

Tn)=Tmn—1)+c + c.

We wrote c(n — 1)/2 for E(I,—1) because the time needed to prepare the
place where we will do the insertion is proportional to the number of items
we have to move. By our solution to Exercise 5.6-1, the expected number of
items we need to move is (n — 1) /2. We can say that 7 (1) = 1 (or some third
constant) because with a list of size 1, we have to realize that it has size 1 and
then do nothing. It might be more realistic to write

Tn)<Tmn—1)+cn

and
Tn)>Tm—1)+c'n,

because the time needed to do the insertion may not be exactly proportional to
the number of items we need to move, but it might depend on implementation
details. By iterating the recurrence or drawing a recursion tree, we see that
T (n) = ©(n?). (We could also give an inductive proof.) Because the best-
case time of insertion sort is ®(n) and the worst-case time is ®(n?), it is
interesting to know that the expected case is much closer to the worst case
than to the best case.

Conditional Expected Values

Our next example introduces an idea that we often use in analyzing the ex-
pected running times of algorithms, especially randomized algorithms.

328 Chapter 5: Probability

Exercise 5.6-3

I have two nickels and two quarters in my left pocket and four dimes in my
right pocket. Suppose I flip a penny and take two coins from my left pocket
if the penny comes up heads and two coins from my right pocket if it comes
up tails. Assuming I am equally likely to choose any coin in my pocket at any
time, what is the expected amount of money that I draw from my pocket?

We could do this problem by drawing a tree diagram or by observing that the
outcomes can be modeled by 3-tuples in which the first entry is heads or tails
and the second and third entries represent coins. Thus, our sample space is
HNQ, HQN, HQQ, HNN, and TDD. The probabilities of these outcomes are
1/6,1/6,1/12,1/12, and 1/2, respectively. Thus, our expected value is

oft) (1)) () (3=

Here is amethod that seems even simpler: If the coin comes up heads, there is an
expected value of 15 cents on each draw. So, with probability 1/2, our expected
value is 30 cents. If the coin comes up tails, we have an expected value of 10
cents on each draw. So, with probability 1/2, our expected value is 20 cents.
Thus, itis natural to expect that our expected valueis (1/2)30 + (1/2)20 = 25
cents. In fact, if we group the four outcomes that have an H first, we see that
their contribution to the expected value is 15 cents, which is (1/2)30. If we
look at the single element that has a T first, then its contribution to the sum is
10 cents, which is (1/2)20.

The intuition for this second view of the problem is as follows. We took the
probability of heads times the expected value of our draws, given that the
penny came up heads, plus the probability of tails times the expected value
of our draws, given that the penny came up tails. In particular, we were using
anew (and as yet undefined) idea of conditional expected value. To get the
conditional expected value, given that our penny came up heads, we could
have created a new sample space with four outcomes, NQ, QN, NN, QQ, with
probabilities 1/3,1/3,1/6,and 1/6. In this sample space, the expected amount
of money from two draws would be 30 cents (15 cents for the first draw plus 15
cents for the second). So, we would say the conditional expected value of our
draws, given that the penny came up heads, was 30 cents. With a one-element
sample space {DD}, we would say that the conditional expected value of our
draws, given that the penny came up tails, is 20 cents.

How do we define conditional expected value? Rather than create a new sam-
ple space, as we did above, we use the idea of a new sample space (as we did in
discovering a good definition for conditional probability) to lead us to a good

Theorem 5.23

Exercise 5.6-4

5.6: Conditional Expectations, Recurrences, and Algorithms 329

definition for conditional expected value. In particular, to get the conditional
expected value of X, given that an event F' has happened, we use our condi-
tional probability weights for the elements of F—namely, P(s)/ P (F') is the
weight for the element s of F—and pretend that F' is our sample space. Thus,
we define the conditional expected value of X, given F, by

P(s)
P(F)’

E(X|F)=) X(s) (5.39)

s:seF

Remember that we defined the expected value of a random variable X with
values x1, x2, ..., x; by

k
E(X)=) xP(X =x),
i=1

where X = x; stands for the event that X has the value x;. Using our standard
notation for conditional probabilities, P((X =x)|F) stands for the condi-
tional probability of the event X = x;, given that the event F' occurs. This lets
us rewrite Equation 5.39 as

k
E(X|F) =Y xP((X =x)|F).
i=1

Let X be a random variable defined on a sample space S and let Fy, F>, ...,
F,, be disjoint events whose union is S (i.e., a partition of §). Then

E(X) =) E(X|F)P(F).
i=1

Proof The proof is simply an exercise in applying definitions.

Randomized Algorithms

Consider an algorithm that, given a list of » numbers, prints them all out. It
then picks a random integer between 1 and 3. If the number is 1 or 2, it stops.
If the number is 3, it starts again from the beginning. What is the expected
running time of this algorithm?

330 Chapter 5: Probability

Exercise 5.6-5

Consider the following variant on the algorithm in Exercise 5.6-4.

funnyprint (n)

// Assumes nis apositive integer
if (n==1)
return
fori=1ton
print i
x=randint (1,2)
if (x==2)
funnyprint (n/2)
else
return

W 0O J o Ul WP

What is the expected running time of this algorithm?

For Exercise 5.6-4, with probability 2/3, we will print out the numbers
and quit. With probability 1/3, we will run the algorithm again. Using
Theorem 5.23, we see that if 7' (n) is the expected running time on a list of
length n, then there is a constant ¢ such that

2 1
Tn) = gcn + g(cn + T(n)),

which gives us (2/3)T (n) = cn. This simplifies to T (n) = (3/2)cn, so
T(n) =0O{m).

Another view is that we have an independent trials process with probabil-
ity 2/3 of success. In this process, we stop at the first success. We refer
to a stage of the independent trials process as a round. For each round of
the independent trials process, we spend ®(n) time. Letting 7 be the run-
ning time (note that 7' is a random variable on the sample space {1, 2, 3}
with probabilities 1/3 for each member) and R be the number of rounds, we
have that

T =R -O@),

and so
E(T) = E(R)®(n).

5.6: Conditional Expectations, Recurrences, and Algorithms 331

In a sense, we are applying Theorem 5.11, because in this context, ® (n)
behaves as if it were a constant,'? because n does not depend on R. By Theorem
5.13, we have that E(R) = 3/2,and so E(T) = O(n).

In Exercise 5.6-5, because we have a recursive algorithm, it is appropriate to
write a recurrence to describe the algorithm’s running time. We can let 7' (n)
stand for the expected running time of the algorithm on an input of size n.
Notice how we are changing back and forth between letting 7' stand for the
running time of an algorithm and letting it stand for the expected running time
of an algorithm. Usually, we use T to stand for the quantity of most interest
to us, either running time, if that makes sense, or expected running time (or
maybe worst-case running time) if the actual running time might vary over
different inputs of size n. The nice thing about this is that once we write down
a recurrence for the expected running time of an algorithm, the methods for
solving it will be those we have already learned for solving recurrences. For the
problem at hand, we immediately get that with probability 1/2, we will spend
n units of time (perhaps we should say ®(n) time) and then stop, and with
probability 1/2, we will spend n units of time and then recurse on a problem
of size n/2. Thus, using Theorem 5.23, we get that

Tm)=n+%T(g)

Including a base case of T (1) = 1, we get that

1/2)T(n/2) +n ifn>1,
Tm):{l ifn=1.
A simple proof by induction shows that 7'(n) = ®(n). Note that the master
theorem (as we originally stated it) doesn’t apply here, because a < 1. How-
ever, we could also observe that the solution to this recurrence is no more than
the solution to the recurrence 7' (n) = T'(n/2) + n and then apply the master
theorem.

Selection Revisited

We now return to the selection algorithm from Section 4.6. The purpose of the
algorithm is to select the ith-smallest element in a set with some underlying

12What we mean here is that 7 > Rc;n for some constant ¢; and T < Rcon for some other
constant ¢>. Then we apply Theorem 5.11 to both of these inequalities, because if X > Y,
then E(X) > E(Y) as well.

332 Chapter 5: Probability

(
(
(

(
(
(
(
(
(
(
(
(
1
1
1

1
2
3
4
5
6
7
8
9
0
1
2

)
)
)
)
)
)
)
)
)
)
)
)

order. Recall that in this algorithm, we first picked an element p in the middle
half of the set—an element whose value was simultaneously larger than at
least a quarter of the items and smaller than at least a quarter of the items.
We used p to partition the items into two sets and then recursed on one of the
two sets. If you recall, we worked very hard to find an item in the middle half
so that our partitioning would work well. It is natural to try instead to pick a
partition element at random, because with probability 1/2, this element will
be in the middle half. We can extend this idea to the following algorithm:

RandomSelect (A, i, n)

// Selects the ith-smallest element in set A, wheren= |4]|
if (n==1)
return the one itemin A
else
p =RandomElement (A)
Let Hbe the set of elements greater thanp
Let L be the set of elements less than or equal to p
if (His empty)
put pin H
if (i2|L|)
return RandomSelect (L, 1, | L])
else
return RandomSelect (H,1 — |L|, |H|) .

Here RandomElement (A) returns one element from A uniformly at ran-
dom. We use this element as our partition element; that is, we use it to divide
Ainto sets L and H, with every element less than the partition element in L and
every element greater than it in H. We add the special case when H is empty
to ensure that both recursive problems have size strictly less than n. Although
this simplifies a detailed analysis, it is not strictly necessary. At the end of this
section, we show how to get a recurrence that describes fairly precisely the
time needed to carry out this algorithm. However, by being a bit less precise,
we can still get the same big O upper bound with less work.

When we choose our partition element, we expect that half of the time it will
be between (1/4)n and (3/4)n. Then, when we partition our set into H and
L, each of these sets will have no more than (3/4)n elements. The rest of the
time, each of H and L will have no more than n elements. In any case, the
time to partition our set into H and L is O (n). Thus, we may write

(1/2TBn/4) + (1/2)T(n) +bn ifn > 1,
d

Tm)f{ ifn=1.

Exercise 5.6-6

Theorem 5.24

5.6: Conditional Expectations, Recurrences, and Algorithms 333

We can rewrite the recursive part of the recurrence as

Lo < Lo (30) 1
R R W B

3 3
T(n) < T(Zn) +2bn = T(Zn) +b'n.

Notice that it is possible (but unlikely) that each time our algorithm chooses
a pivot element, it chooses the worst one possible, in which case the selection
process could take n rounds and, thus, take time © (n2). Why, then, is the algo-
rithm of interest? It involves far less computation than finding the median of
medians, and its expected running time is still ® (n). Thus, it is reasonable to
suspect that, on the average, it would be significantly faster than the determin-
istic process. In fact, with good implementations of both algorithms, this will
be the case.

Why does every solution to the recurrence
3 /
T(n) =T 7" +bn

have T (n) = O (n)?

By the master theorem, we know that any solution to this recurrence is O (n),
giving a proof of our next theorem.

Algorithm RandomSelect has expected running time O (n).

QuickSort

There are many algorithms that will efficiently sort a list of » numbers. The two
most common sorting algorithms that are guaranteed to runin O (n log n) time
are MergeSort and HeapSort. However, there is another algorithm, QuickSort,
which, though having a worst-case running time of O (n?), has an expected
running time of O (n log n). Moreover, when implemented well, this algorithm
tends to have a faster running time than MergeSort or HeapSort. Because many
computer operating systems and programs come with QuickSort built in, it has
become the sorting algorithm of choice in many applications. We will now see
why it has expected running time O (n log n). We will concern ourselves only

334 Chapter 5: Probability

with a high-level description, rather than the low-level implementation issues
that make this algorithm the fastest one.

QuickSort actually works similarly to the RecursiveSelect algorithm of the
previous subsection. We pick a random element and then use it to partition the
set of items into two sets, L and H. In this case, we don’t recurse on one or
the other; instead, we recurse on both, sorting each one. After both L and H
have been sorted, we concatenate them to get a sorted list. (In fact, QuickSort
is usually done “in place” by pointer manipulation, and so the concatenation
just happens.) Here is a pseudocode description of QuickSort:

QuickSort (A, n)

1) if (n==1)

2) return the one itemin A

3) else

4) p = RandomElement (A)

5) Let Hbe the set of elements greater than p; Let h= | H|
6) Let Lbe the set of elements less than or equal to p; Let £ = | L]
7) if (His empty)

8) put pin H

9) A1 =QuickSort (H, h)

0) A, =QuickSort(L,¥{)

1) return the concatenationof A1 and A4,

Based on the preceding analysis of RandomSelect, we think about modifying
the algorithm a bit to make the analysis easier. First, consider what would
happen if the random element was the median each time. We would be solving
two subproblems of size n/2, and would have the recurrence

2T (n/2)+O@m) ifn > 1,
T = {0(1) ifn =1,

and we know by the master theorem that all solutions to this recurrence have
T (n) = O(nlogn). In fact, we don’t need such an even division to guarantee
such performance.

Exercise 5.6-7 Suppose we had a recurrence of the form

T(ann) + T((1 —apn) +cn ifn > 1,
T < {d ifn=1,

where a,, is between 1/4 and 3/4. Show that all solutions of a recurrence of
this form have 7' (n) = O(nlogn). What do we really need to assume about
a, to prove this upper bound?

5.6: Conditional Expectations, Recurrences, and Algorithms 335

In Exercise 5.6-7, we can prove that 7'(n) = O (n logn) by induction or via a
recursion tree, noting that there are O (log n) levels and each level has at most
O (n) work. (The details of the recursion tree are complicated somewhat by
the fact that a,, varies with n, while the details of an inductive proof simply use
the fact that @, and 1 — a,, are both no more than 3/4.) As long as we know
that there is some positive number a < 1 such thata, < aand 1 —a, < a for
every n, then we know

* we have at most log;) n levels in a recursion tree, and
* we have at most cn units of work per level for some constant c.

Thus, we have the same 7' (n) = O (nlogn).

What does this tell us? As long as our problem splits into two pieces, each
having size at least, say, a quarter of the items, QuickSort will runin O (n logn)
time. Given this, we modify our algorithm to enforce this condition. That is,
if at first we choose a pivot element p that is not in the middle half, we will
just pick another one. This leads to the following algorithm:

Slower QuickSort (A, n)

if (n==1)
return the one itemin A
else
repeat
p = RandomElement (A)
Let Hbe the set of elements greater than p; Let h= | H|
Let Lbe the set of elements less than or equal to p; Let £ = | L]
until (|H| 2 n/4) and (|L| Z n/4)
A1 = Slower QuickSort (H, h)
A, = Slower QuickSort (L, £)
return the concatenationof A1 and A4,

Now let’s analyze this algorithm. Let r be the number of times!? that we
execute the loop to pick p, and leta,, - n be the position of the pivot element.'* If
T (n) is the expected running time for a list of length n, then for some constant b,

T(n) < E(r)bn + T(ayn) + T ((1 — ay)n),

because each iteration of the loop takes O(n) time. Note that we take the
expectation of r, because 7T (n) stands for the expected running time on a
problem of size n. Fortunately, E(r) is simple to compute; it is the expected

3We think of r as standing for the number of rounds, where a round is a loop through the
algorithm.

14Each choice of a pivot element chooses some fraction of n. We use a,, to denote this
fraction. The reason we choose to set up the problem in this way is that we know that half of
the time, a, will be between 1/4 and 3/4.

336 Chapter 5: Probability

Theorem 5.25

time until the first success in an independent trials process with success
probability at least 1/2, which is 2. So we get that the running time of Slower
QuickSort satisfies the recurrence

T (a,n) + T((l — an))n +bn ifn>1,
T = {d ifn =1,

where a,, is between 1/4 and 3/4. Thus, by Exercise 5.6-7, the running time
of this algorithm is O (n logn).

As another variant on the same theme, observe that looping until we have
|H| > n/4 and |L| > n/4 is effectively the same as choosing p, finding H
and L, and then calling Slower QuickSort(A, n) once again if either H or L
has size less than n /4. Then, because with probability 1/2, the element p is
between n /4 and 3n /4, we can write

T(n) < %T(n) + %(T(ann) + T((1 — an)n) + bn),
which simplifies to
T(n) < T(agn) + T((1 = a,)n) + 2bn,

or
T(n) < T(apn) + T ((1 — ay)n) + b'n.

Again by Exercise 5.6-7, the running time of this algorithm is O (n logn).

Furthermore, it is straightforward to see that the expected running time of
Slower QuickSort is no less than half of that of QuickSort (and, incidentally,
no more than twice that of QuickSort) and so we have proved our next theorem.

QuickSort has expected running time O (n logn).

A More Careful Analysis of RandomSelect*

Recall that our analysis of RandomSelect was based on using 7'(n) as an
upper bound for T (|H|) or T (|L]) if either the set H or the set L had more
than 3n /4 elements. Here we show how to avoid this assumption. The kinds
of computations we do here are the kind we would need to do if we wanted to
try to get bounds on the constants implicit in our big O bounds.

*This subsection can be skipped without loss of continuity.

5.6: Conditional Expectations, Recurrences, and Algorithms 337

Exercise 5.6-8 Explain why, if we pick the kth element as the random element in RandomS-
elect (k # n), our recursive problem is of size no more than max{k, n — k}.

If we pick the kth element, then we recurse either on the set L, which has
size k, or on the set H, which has size n — k. Both of these sizes are at most
max{k, n — k}. (If we pick the nth element, then k = n. Thus, because of Line
8 of RandomSelect, L actually has size k — 1 and H has size n — k + 1. But
because max{n, n — n} = n, both sizes are at most this maximum.)

Now, let X be the random variable equal to the rank of the chosen random
element (e.g., if the random element is the third smallest, then X = 3). Using
Theorem 5.23 and the solution to Exercise 5.6-8, we can write

"lpx = k)(T(max{k, n—k))+ bn)>

+P(X:n)(T(max{l,n—l})—i—bn) ifn > 1,
d ifn=1.

T(n) <

Because X is chosen uniformly between 1 and n, we have that P(X = k) =
1/n for all k. Ignoring the base case for a minute, we get that

1

S

T(n) < Z %(T(max{k, n—k})+ bn) + %(T(n — 1)+ bn)
k=1
n—1
1 1
=- (T (max{k,n — k})) +bn + ;(T(n — 1) + bn).
k=1

If n is odd and we write out ZZ;% T (max{k, n — k}), we get

sty () sr () -
+T(n—-2)+Tn—1),

which is 2 szlnm T (k). If n is even and we write out 3 _;—; 7 (max{k, n —
k}), then we get

T(n—1)+T(n—2)+-~+T(g)+T(1+%>+--.

+Tmn—-—2)+THm—1),

338 Chapter 5: Probability

Exercise 5.6-9

which is at most 2 ZZ;}I s2 T (k). Thus, we can replace our recurrence with

n—1
T(n) < (2/n)< 3 T(k)) +ITm - +bn ifn>1, (5.40)

k=n/2
d ifn=1.

If n is odd, then the lower limit of the sum is a half-integer, so the possible
integer values of the dummy variable k run from [n/2] to n — 1. Because
this is the natural way to interpret a fractional lower limit, and because it
corresponds to what we wrote in both the n even and n odd case above, we
adopt this convention.

Show that every solution to the recurrence in Recurrence 5.40 has T (n) =
o).

We can prove this by induction. We try to prove that 7'(n) < cn for some
constant c. By the natural inductive hypothesis, we get that

n—1
2 1
Tn) < - Z ck | +—-c(n—1)+bn
n n
k=n/2
n—1 [n/2]1—1 1
= ch— Z ck —I—;C(n—l)—i—bn
k=1 k=1
- 2¢ ((n=Dn ((n/2) — 1)n/2 et bm
n 2 2
2¢ 3n%/4) — (n/2
_2G -
n 2
3
:ch—i-%—l—bn

1 c
=cn—\|-cn—bn— -).
(3en-on-5)

Notice that so far, we have only assumed that there is some constant ¢ such
that 7'(k) < ck for k < n. We can choose a larger ¢ than the one given to us
by this assumption without changing the inequality 7 (k) < ck. By choosing ¢
so that cn /4 — bn — c/2 is nonnegative (for example, ¢ > 8b makes this term
at least bn — 4b, which is nonnegative for n > 4), we conclude the proof and
have another proof of Theorem 5.24.

5.6: Conditional Expectations, Recurrences, and Algorithms 339

This kind of careful analysis arises when we are trying to get an estimate of
the constant in a big O bound, which we decided not to do in this case.

1. Expected running time. When the running time of an algorithm is
different for different inputs of the same size, we can think of the
running time of the algorithm as a random variable on the sample space
of inputs and analyze the expected running time of the algorithm. This
gives us a different understanding from studying only the worst-case
running time.

2. Randomized algorithm. A randomized algorithm is an algorithm that
depends on choosing something randomly.

3. Random number generator. A random number generator is a
procedure that generates a number that appears to be chosen at random.
Usually the designer of a random number generator tries to generate
numbers that appear to be uniformly distributed.

4. Insertion sort. A recursive description of insertion sort is that to sort
A[1:n], first we sort A[1:n — 1], and then we insert A[n] by shifting
each element greater than A[n] one place to the right and then inserting
the original value of A[n] into the place we have opened up. If n = 1,
we do nothing.

5. Expected running time of insertion sort. If T (n) is the expected time to
use insertion sort on a list of length n, then there are constants ¢ and ¢’
suchthat T(n) < T(n — 1) +cnand T (n) > T(n — 1) + ¢’n. This
means that 7' (n) = ©(n?). However, the best-case running time of
insertion sort is ® (n).

6. Conditional expected value. We define the conditional expected value
of X, given F,by E(X|F) = Zx:xeF X(x)P(x)/P(F).Thisis
equivalent to E(X|F) = Zf‘zl x P((X = xp)|F).

7. Randomized selection algorithm. In the randomized selection
algorithm, to select the ith-smallest element of a set A, we randomly
choose a pivot element p in A, divide the rest of A into those elements
that come before p (in the underlying order of A) and those that come
after, put the pivot into the smaller set, and then recursively apply the
randomized selection algorithm to find the appropriate element of the
appropriate set.

8. Running time of randomized select. RandomSelect has expected

running time O (n). Because it does less computation than the
deterministic selection algorithm, on average, a good implementation

340 Chapter 5: Probability

10.

will run faster than a good implementation of the deterministic
algorithm. However, the worst-case behavior is © (n?).

. QuickSort. QuickSort is a sorting algorithm in which we randomly

choose a pivot element p in A, divide the rest of A into those elements
that come before p (in the underlying order of A) and those that come
after, put the pivot into the smaller set, recursively apply the QuickSort
algorithm to sort each of the smaller sets, and concatenate the two
sorted lists. We do nothing if a set has size 1.

Running time of QuickSort. QuickSort has expected running time
O (nlogn). It has worst-case running time ® (n?). Good
implementations of QuickSort have proved to be faster, on average,
than good implementations of other sorting algorithms.

All problems with blue boxes have an answer or hint available at the end of
the book.

4.

Given an array A of length n (chosen from some set that has an
underlying ordering), you can select the largest element of the array by
first setting L = A[1] and then comparing L to the remaining elements
of the array, one at a time, replacing L with A[i] if A[i]is larger than L.
Assume that the elements of A are randomly chosen. Fori > 1, let

X; = lif anelement i of A is larger than any element of A[1:i — 1].
Let X1 = 1. What does X| + X, + - - - + X, have to do with the
number of times you assign a value to L? What is the expected number
of times you assign a value to L?

Let A[i:j] denote the array of items in Positions i through j of Array
A. In one possible implementation of selection sort, you would

¢ use the method from Problem 1 to find the largest element of
Array A and its Position k in the array,

 exchange the elements in Positions k and n of Array A, and
* apply the same procedure recursively to Array A[l:n — 1].

(Actually, this is what you would do if n > 1;if n = 1, you would do
nothing.) What is the expected total number of times you assign a value
to L in the selection sort algorithm?

Show that if H, stands for the nth harmonic number, then
H+H, 1+ -+ H = @(nlogn).

In a card game, you remove the jacks, queens, kings, and aces from an
ordinary deck of cards and shuffle them. You draw a card. If it is an ace,

*6.

*9.

10.

5.6: Conditional Expectations, Recurrences, and Algorithms 341

you are paid $1.00, and the game is repeated. If it is a jack, you are paid
$2.00, and the game ends. If it is a queen, you are paid $3.00, and the
game ends. If it is a king, you are paid $4.00, and the game ends. What
is the maximum amount of money a rational person would pay to play
this game?

Why does every solution to 7'(n) < T(2n/3) + bn have

T(n) = 0n)?

Show that if in RandomSelect, you remove the instruction

If His empty
put pinH,

then if 7 (n) is the expected running time of the algorithm, there is a
constant b such that 7' (n) satisfies the recurrence

n—1
2
T < —— T (k) + bn.
(n>_n_1k=§n/:2 (k) + bn

Show that if T (n) satisfies this recurrence, then 7'(n) = O (n).

Suppose you have a recurrence of the form
T(n) < T(ayn) + T((l - an)n) + bn, ifn > 1,

where a, is between 1/5 and 4/5. Show that all solutions to this
recurrence are of the form 7'(n) = O (nlogn).

Prove Theorem 5.23.

A tighter (up to constant factors) analysis of QuickSort is possible by
using ideas very similar to those used for RandomSelect. More
precisely, use Theorem 5.23 similarly to the way it was used for select.
Write the recurrence you get when you do this. Show that this
recurrence has solution O (n log n). To show this, you will probably
want to prove that 7 (n) < cynlogn — cpn for some constants

C1 and Co.

It is possible to write a version of RandomSelect analogous to Slower
QuickSort. That is, when you pick out the random pivot element, check
if it is in the middle half; discard it if it is not. Write this modified
selection algorithm, give a recurrence for its running time, and show
that this recurrence has solution O (n).

*This problem depends on material marked with an asterisk.
*This problem depends on material marked with an asterisk.

342 Chapter 5: Probability

12.

14.

One idea often used in selection is that instead of choosing a random
pivot element, we choose three random pivot elements and then use the
median of these three as the pivot. What is the probability that a
randomly chosen pivot element is in the middle half? What is the
probability that the median of three randomly chosen pivot elements is
in the middle half? Does this justify the choice of using the median of
three elements as the pivot?

Is the expected running time of QuickSort 2 (n logn)?

(This problem assumes that you understand the construction of a binary
search tree.) A random binary search tree on n keys is formed by first
randomly ordering the keys and then inserting them in that order. Why
is it that in at least half of the random binary search trees, both subtrees
of the root have between n/4 and 3n /4 keys? If T'(n) is the expected
height of a random binary search tree on n keys, explain why

1 1_(3

T(n) < 2T(n) + 2T<4n) + 1.
(Think about the definition of a binary tree. It has a root, and the root
has two subtrees. What did we say about the possible sizes of those
subtrees?) What is the expected height of a one-node binary search
tree? Show that the expected height of a random binary search tree is
O (logn).
(This problem assumes you understand the construction of a binary
search tree.) The expected time for an unsuccessful search in a random
binary search tree on n keys (see Problem 13 for a definition) is the
expected depth of a leaf node. Arguing as in Problem 13 and the proof
of Theorem 5.24, find a recurrence that gives an upper bound on the
expected depth of a leaf node in a binary search tree, and use it to find a
big O upper bound on the expected depth of a leaf node.

(This problem assumes you understand the construction of a binary
search tree.) The expected time for a successful search in a random
binary search tree on n nodes (see Problem 13 for a definition) is the
expected depth of a node of the tree. With probability 1/n, the node is
the root, which has depth O; otherwise, the expected depth is 1 plus the
expected depth of a node in one of its subtrees. Argue, as in Problem 13
and the proof of Theorem 5.24, that if 7' (n) is the expected depth of a
node in a binary search tree (and if 7(i — 1) < T'(i) for all i > 1), then

Ty <"1 1T()+1T<§> +1
S R T Vi '

5.7: Probability Distributions and Variance 343

What big O upper bound does this give you on the expected depth of a
node in a random binary search tree on n nodes?

5.7 PROBABILITY DISTRIBUTIONS AND VARIANCE

Distributions of Random Variables

We have given meaning to the term expected value. For example, if we flip
a coin 100 times, the expected number of heads is 50. But to what extent do
we expect to see 50 heads? Would it be surprising to see 55, 60, or 65 heads
instead? To answer this kind of question, we have to analyze how much we
expect a random variable to deviate from its expected value. First, we show
how to construct a graph that illustrates how the values of a random variable
are distributed around its expected value. The distribution function D of a
random variable X with finitely many values is the function on the values of
X defined by

D(x) = P(X = x).

You probably recognize the distribution function from the role it played in the
definition of expected value. The distribution function of the random variable
X assigns to each value x of the random variable the probability that X achieves
that value. (Thus, D is a function whose domain is the set of values of X.)
When the values of X are integers, it is convenient to visualize the distribution
function using a diagram called a histogram. Figure 5.8 shows histograms
for the distribution of the “number of heads” random variable for 10 flips
of a coin and the “number of right answers” random variable for someone
taking a 10-question test with probability .8 of getting a correct answer. What
is a histogram? The histograms in Figure 5.8 are graphs that show, for each
integer value x of X, a rectangle of width 1 and centered at x whose height
(and thus area) is proportional to the probability P(X = x). Histograms can
be drawn with nonunit-width rectangles. When people draw a rectangle with
abase ranging from x = a to x = b, the area of the rectangle is the probability
that X is between a and b.

The function D defined by D(a, b) = P(a < X < b) is often called a cumu-
lative distribution function. When sample spaces can be infinite, it doesn’t
always make sense to assign probability weights to individual members of
our sample space, and yet cumulative distribution functions still make sense.
Thus, for infinite sample spaces, the treatment of probability is often based
on random variables and their cumulative distribution functions. Histograms
are a natural way to display information about the cumulative distribution
function.

344 Chapter 5: Probability

.30 .35
25 — 30 1]
E 20 - 5 .25
o o 20 -
£ .15 I
£ £ .15
107 10 -
.05 4 05 —
0 T T T T T T 1 O—T——T—T—T—T" T T T T T 1
34 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Number of Heads Number of Right Answers

Figure 5.8: Examples of histograms

The histograms in Figure 5.8 show the difference between the two distribu-
tions. They also show that we can expect the number of heads to be somewhat
near the expected number, though as few as two heads or as many as eight are
also not out of the question. We see that the number of right answers tends to
be clustered between six and ten; so, in this case, we can expect the random
variable to be reasonably close to the expected value. With more coin flips
or more questions, however, will the results spread out? Relatively speak-
ing, should we expect to be closer to or farther from the expected value? In
Figure 5.9, we see the results of 25 coin flips or 25 questions. The expected
number of heads is 12.5. The histogram makes it clear that we can expect
the vast majority of our results to have between 9 and 16 heads. Virtually all
the results lie between 5 and 20. Thus, the results are not spread as broadly
(relatively speaking) as they were with just 10 flips. As with the coin tossing
histogram, the test score histogram with 25 questions seems even more tightly
packed around its expected value. Essentially, all the scores lie between 14
and 25. Although we can still tell the difference between the shapes of the
histograms, they have become somewhat similar in appearance.

18 25 4
.16 I 0
z i;‘] z [
£ 10 £ 159
S 08 - S
ol A .10
& 06
.04 .05
.02
0 T T T T T T 05 T T T T T T T T
9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
Number of Heads Number of Right Answers

Figure 5.9: Histograms of 25 trials

5.7: Probability Distributions and Variance 345

Figure 5.10 shows the 30 most relevant values for 100 flips of a coin and for a
100-question test. Now the two histograms have almost the same shape, though
the test histogram is still more tightly packed around its expected value. The
number of heads has virtually no chance of deviating by more than 15 from its
expected value, and the test score has almost no chance of deviating by more
than 11 from the expected value. Thus, the spread has only doubled, even
though the number of trials has quadrupled. In both cases, the curve formed
by the tops of the rectangles seems quite similar to the bell-shaped curve,
called the normal curve, that arises in so many areas of science. In the test
taking curve, however, you can see a bit of difference between the lower left
side and the lower right side.

b 12 A
08 —
| u M .10 —
z =2
= .06 = .08
2 .04 2 06
~ ~
- 04 -
.02 t 02 -
0 T T T T T T T 0= T T T T T T T
36 40 44 48 52 56 60 64 66 70 74 78 82 8 90 94
Number of Heads Number of Right Answers

Figure 5.10: 100 independent trials

We saw that we need about 30 values to see the most relevant probabilities for
100 trials, whereas we need 15 values to see the most relevant probabilities
for 25 independent trials. This might lead us to predict that we need only
about 60 values to see essentially all the results in 400 trials. As Figure 5.11
shows, this is indeed the case. Although the test taking distribution is still
more tightly packed than the coin flipping distribution, we have to examine
the former closely to find any asymmetry. These experiments suggest that the
spread of a distribution (for independent trials) grows as the square root of the
number of trials, because each time we quadruple the number of elements, we
double the spread. They also suggest that there is some common kind of bell-
shaped limiting distribution function for at least the distribution of successes
in independent trials that have two outcomes. However, without a theoretical
foundation, we don’t know how far the truth of our observations extends. Thus,
we seek an algebraic way to measure the difference between arandom variable
and its expected value.

346 Chapter 5: Probability

- 06 —
.04 t 05
z 2
= .03+ = .04
s A E
E 02 E .03
- 02 —
.01 t 01 -
(i T T T T T T (U T T T T T T
170 180 190 200 210 220 230 290 300 310 320 330 340 350
Number of Heads Number of Right Answers

Figure 5.11: 400 independent trials

Exercise 5.7-1

Lemma 5.26

Corollary 5.27

Variance

Suppose X is the number of heads in four flips of a coin. Let Y be the random
variable X — 2, or the difference between X and its expected value. Compute
E(Y). Does E(Y) effectively measure how much we expect to see X deviate
from its expected value? Compute E(Y?). Try repeating the process with X
being the number of heads in 10 flips of a coin and Y being X — 5.

Before answering these questions, we state a trivial, but useful, lemma (which
appeared as Problem 10 in Section 5.4) and a corollary, showing that the
expected value of an expectation is that expectation.

If X is arandom variable that always takes on the value c, then E(X) = c.

Proof E(X)=P(X=c¢)-c=1-c=c.

We can think of a constant ¢ as a random variable that always takes on the
value ¢, and thus, we can simply write E(c) for the expected value of this
random variable. In this case, our lemma says that E(c) = c. This lemma has
an important corollary.

Let X be a random variable on a sample space. Then E(E(X)) = E(X).

Proof When we think of E(X) as a random variable, it has a constant value
traditionally denoted by . By Lemma 5.26, we have that £ (E (x)) =E(n) =

nw = E(x).

5.7: Probability Distributions and Variance 347

Returning to Exercise 5.7-1, we can use linearity of expectation and
Corollary 5.27 to show that

E(X — E(X))=EX)— E(E(X)) (5.41)
=E(X) — E(X)
=0.

Thus, equation 5.41 is not a particularly useful measure of how close a random
variable is to its expectation. If a random variable is sometimes above its
expectation and sometimes below, then we would like these two differences
to somehow add together rather than cancel each other out. This idea suggests
that we should try to convert the values of X — E(X) to positive numbers and
then take the expectation of these positive numbers as our measure of spread.
There are two natural ways to make numbers positive: taking their absolute
value and squaring them. It turns out that to prove something that involves
the spread of expected values, squaring is more useful. Maybe we could have
guessed this because we see that the spread seems to grow with the square
root, and the square root isn’t related to the absolute value in the way it is
related to the squaring function. On the other hand, as we saw in Exercise
5.7-1, computing expected values of these squares from what we now know
is time consuming. A bit of theory will make it easier.

We define the variance V (X) of a random variable X as the expected value
E ((X —EX))2>. We can also express this as a sum over the individual
elements of the sample space S to get that

Voo = E((X - E0)Y) = Y POG(X() - EQO),
siseS
Let’s apply this definition to compute the variance of the number X of heads
in four flips of a coin. We have

V(X)=(0— 2)2 ! +(1—2)2 l+(2 2)2 3

1
+(3—-2)>%. +(4 2)%. 16 =1.
Computing the variance for ten flips of a coin involves some very inconvenient
arithmetic. It would be nice to have a computational technique that would save
us from having to figure out large sums if we want to compute the variance for
10 or even 100 or 400 flips of a coin so that we may check our intuition about
how the spread of a distribution grows. We saw before that the expected value
of a sum of random variables is the sum of the expected values of the random
variables. This was very useful in making computations.

348 Chapter 5: Probability

Exercise 5.7-2

Exercise 5.7-3

Exercise 5.7-4

What is the variance for the number of heads in one flip of a coin? What is the
sum of the variances for four independent trials of one flip of a coin?

We have a nickel and a quarter in a cup. We withdraw one coin. What is the
expected amount of money we withdraw? What is the variance? We return
the coin to the cup and then withdraw two coins, one after the other, without
replacement. What is the expected amount of money we withdraw? What is
the variance? What is the expected amount of money and variance for the first
draw? For the second draw?

Compute the variance for the number of right answers when we answer one
question with probability .8 of getting the right answer (note that the number
of right answers is either O or 1, but the expected value need not be). Compute
the variance for the number of right answers when we answer five questions
with probability .8 of getting the right answer. Is there a relationship between
these two variances?

In Exercise 5.7-2, we can compute the variance

von = (o-1) Lo 1oLy L]
N 2 2 2) 2 4
Thus, we see that the variance for one flip is 1/4 and the sum of the vari-
ances for four flips is 1. In Exercise 5.7-4, we see that, for one question, the

variance is
V(X)=.20-.8)72+ .8(1 —.8)> =.16.

For five questions, the variance is

42.(2)° +3%2.5.(2)* (.8) + 22-10-(.2)° - (.8)?
+12:10-(2)%-(.8)° + 02-5-(2)' - (8)* + 12.(.8)° = 8.

The result is five times the variance for one question.

For Exercise 5.7-3, the expected amount of money for one draw is $0.15. The
variance is
5(.05 —.15)% + .5(.25 —.15)* = .01.

For removing both coins, one after the other, the expected amount of money
is $0.30, and the variance is 0. Finally, the expected value and variance on the
first draw are $0.15 and .01, respectively, and the expected value and variance

Lemma 5.28

5.7: Probability Distributions and Variance 349

on the second draw are $0.15 and .01, respectively. Notice that we haven’t
given units for the variance; had we done so, the units would be “squared
dollars.” We prefer not to worry about units for variance.

It would be nice if we had a simple method for computing variance by using
a rule like “the expected value of a sum is the sum of the expected values.”
However, Exercise 5.7-3 shows that the variance of a sum is not always the
sum of the variances. On the other hand, Exercises 5.7-2 and 5.7-4 suggest
that such a result might be true for a sum of variances in independent trials
processes. In fact, slightly more than this is true. We say that random variables
X and Y are independent when the event that X has value x is independent of
the event that Y has value y, regardless of the choice of x and y. For example, in
n flips of a coin, the number of heads on flip i (whichis O or 1) is independent of
the number of heads on flip j. To show that the variance of a sum of independent
random variables is the sum of their variances, we first need to show that the
expected value of the product of two independent random variables is the
product of their expected values.

If X and Y are independent random variables on a sample space S with values
X1,X2, ..., X and yi, y2, ..., ym, respectively, then

E(XY) = E(X)E(Y).

Proof We prove the lemma by the following series of equalities. In going
from Line 5.42 to Line 5.43, we use the fact that X and Y are independent; the
rest of the equation follows from definitions and algebra.

k m
EX)E(Y)=) xP(X=x)Y yP¥ =y)

i=1 j=1

k m

=3 > iy PX =x)P(y =)

i=1 j=I

- Z z Z P(X =x)P(Y =) (5.42)

zizisavalue of XY (i,)):x;y=2

— > 2 Y. P((X=x)A¥ =y)) (543)

zizisavalue of XY (i,))x;yj=2

— Z ZP(XY =2)

z: z is a value of XY

= E(XY).

350 Chapter 5: Probability

Theorem 5.29

Exercise 5.7-5

Exercise 5.7-6

If X and Y are independent random variables, then
VX +7Y)=V(X)+ V().

Proof Using the definitions of variance, algebra, and linearity of expectation,
we have

VX +Y)
=E((X+Y - EX+1)’)

E((X—EX)+Y — E(Y)))

(
E(< (X = E(X)” +2(X = EQO)(Y = E0) + (¥ - E<Y))2)>
(

E((X = ECO))+2E((X = EQO) (v = EW)) + E (Y = ED)?) .
(5.44)

The first and last terms in Line 5.44 are simply the definitions of V (X) and
V(Y), respectively. Note also that if X and Y are independent and b and c are
constants, then X — b and Y — ¢ are independent (see Problem 8). Thus, we
can apply Lemma 5.28 to the middle term in Line 5.44 to obtain

VIX+Y)=V(X)+2E(X — E(X))E(Y — E(Y)) + V(Y).

Now we apply Equation 5.41 to the middle term to show that it is 0, which
proves the theorem.

With Theorem 5.29, computing the variance for 10 flips of a coin is easy. As
usual, we have the random variable X;, which is 1 or 0, depending on whether
the coin comes up heads. We saw that the variance of X; is 1/4, so the variance
fOI'X1 +Xo+---+ XlO is]0/4 =2.5.

Find the variance for 100 flips of a coin and 400 flips of a coin.

The variance in Exercise 5.7-5 grew by a factor of four when the number of
trials grew by a factor of four, while the spread we observed in our histograms
grew by a factor of two. Can you suggest a natural measure of spread that fixes
this problem?

5.7: Probability Distributions and Variance 351

For Exercise 5.7-5, recall that the variance for one flip is 1/4. Therefore, the
variance for 100 flips is 25, and the variance for 400 flips is 100. Because
this measure grows linearly with the size, we can take its square root to give
a measure of spread that grows with the square root of the quiz size—just as
our observed “spread” did in the histograms. Taking the square root actually
makes intuitive sense, because it “corrects” for the fact that we are measuring
expected squared spread rather than expected spread.

The square root of the variance of a random variable is called the standard
deviation of the random variable and is denoted by o (or by o (X) when
there is a chance for confusion as to what random variable we are discussing).
Thus, the standard deviation for 100 flips is 5, and for 400 flips, it is 10.
Notice that in both the 100-flip case and the 400-flip case, the “spread”
we observed in the histogram was =£3 standard deviations from the ex-
pected value. What about for 25 flips? For 25 flips, the standard deviation
is 5/2; so, 3 standard deviations from the expected value is a range of 15
points, which is, again, what we observed. For the test scores, the variance
is .16 for one question; the standard deviation for 25 questions is 2, giving
us a range of 12 points for +3 standard deviations. For 100 questions, the
standard deviation is 4, and for 400 questions, the standard deviation is 8.
Notice again how 3 standard deviations relates to the spread we see in the
histograms.

Our observed relationship between the spread and the standard deviation is
no accident. A consequence of a theorem of probability known as the central
limit theorem is that the percentage of results within 1 standard deviation of
the mean in a relatively large number of independent trials with two outcomes
is about 68%; the percentage within 2 standard deviations of the mean is about
95.5%; and the percentage within 3 standard deviations of the mean is
about 99.7%.

The central limit theorem tells us about the distribution of a sum of indepen-
dent random variables that have the same distribution function.!> When the
number of random variables we are adding is sufficiently large, the central
limit theorem tells us the approximate probability of the sum being between a
and b standard deviations from its expected value. (For example, ifa = —1.5
and b = 2, then the theorem tells us an approximate probability that the sum
is between 1.5 standard deviations less than its expected value and 2 standard
deviations more than its expected value.) The central limit theorem tells us

15 Actually, the variables can have different distributions, as long as no variable contributes a
lot more to the sum than any other, and the variables can be dependent, as long as not too
many of them are too highly related to others.

352 Chapter 5: Probability

Exercise 5.7-7

that this approximate value'® is

The distribution given by

1 (b e
<X<bh=— 2

Pla<X<b) N /a e dx
is called the normal distribution. Because many of the things we observe
in nature can be thought of as the outcome of multistage processes and the
quantities we measure are often the result of adding some quantity at each
stage, the central limit theorem “explains” why we should expect to see normal
distributions for so many of the things we measure. For example, a person’s
weight can be thought of as the sum, over all the weeks of his life, of random
variables X; that give his weight change due to food consumption in Week i
and random variables Y; that give his weight change due to exercise in Week
i. It is not clear whether this is a natural interpretation for blood pressures.
Thus, although we shouldn’t be particularly surprised that a person’s weights
at various times are normally distributed, we don’t have the same basis for
predicting that blood pressures would be normally distributed, even though
they are!!”

If we want to be 95% sure that the number of heads in # flips of a coin is within
+1% of the expected value, how big does n have to be?

108till more precisely, if we let 11 be the expected value of the random variable X; and o be
its standard deviation (all X; have the same expected value and standard deviation because
they have the same distribution) and if we scale the sum of our random variables by

X1+ X0+ + Xy —np

o

V4

then the probability thata < Z < b is

1 b 2
— e 2 dx.
2 ,/a

17 Actually, this is a matter of opinion. One might argue that blood pressures respond to
many little additive factors.

Exercise 5.7-8

Theorem 5.30

5.7: Probability Distributions and Variance 353

What is the variance and standard deviation of the random variable that gives
the number of right answers for someone taking a 100-question short-answer
test, assuming that each answer is graded either correct or incorrect, if the
person knows 80% of the subject material for the test and that the student
answers correctly each question she knows? Should we be surprised if such a
student scores 90 or above on the test?

Recall that for one flip of a coin, the variance is 1/4; so, for n flips, it is n/4.
Thus, for n flips, the standard deviation is 4/n/2. We expect that 95% of our
outcomes will be within 2 standard deviations of the mean (in this context, itis
common to round 95.5 to 95), so we are asking, when are 2 standard deviations
1% of n/2? In other words, we want an n such that 2,/n/2 = .01(.5n). This
is equivalent to \/n = 5- 10~3n. Squaring both sides gives n = 25 10~%n?,
which gives n = 10°/25 = 40000. Therefore, we need to flip a coin 40,000
times to be 95% sure that the number of heads will be within 1% of the expected
value of 20,000.

For Exercise 5.7-8, the expected number of correct answers on any given
question is .8. The variance for each answer is .8(1 — 8)2 +.2(0 — .8)> =
.8-.04+4 .2-.64 = .032 4 .128 = .16. Notice that this is .8(1 — .8). The total
score is the sum of the random variables giving the number of points on each
question. If the questions are independent of each other, then the variance of
their sum is the sum of their variances, or 16. Thus, the standard deviation
is 4. Because 90% is 2.5 standard deviations above the expected value, the
probability of getting a score that far from the expected value is somewhere
between .05 and .003, by the central limit theorem. (In fact, it is just a bit more
than .01.) Assuming that someone is just as likely to be 2.5 standard deviations
below the expected score as above, which is not exactly right but close, we see
that it is quite unlikely that someone who knows 80% of the material would
score 90% or above on the test. Thus, we should be surprised by such a score
and take the score as evidence that the student likely knows more than 80% of
the material.

Coin flipping and test taking are two special cases of Bernoulli trials. With the
same kind of computations we used for the test score random variable, we can
prove the following theorem.

In Bernoulli trials with probability p of success, the variance for one trial is
p(1 — p), and for n trials, itisnp(1 — p). The standard deviation for n trials

is o/np(1 — p).

Proof You are asked to give the proof in Problem 7.

354 Chapter 5: Probability

1.

Histogram. Histograms are graphs that show, for each integer value x
of a random variable X, a rectangle of width 1 and centered at x whose
height (and thus area) is proportional to the probability P(X = x).
Histograms can be drawn with nonunit-width rectangles. When you
draw a rectangle with a base ranging from x = a to x = b, the area of
the rectangle is the probability that X is between a and b.

Expected value of a constant. If X is a random variable that always
takes on the value ¢, then E(X) = c. In particular, E(E(X)) = E(X).

. Variance. The variance V (X) of a random variable X is defined as the

expected value of (X —EX))2. This can also be expressed as a sum
over the individual elements of the sample space S, which gives

VX)=E ((X _ E(X))z) =Yg PO)(X () — E(X))”.

Independent random variables. Random variables X and Y are
independent when the event that X has value x is independent of the
event that Y has value y, regardless of the choice of x and y.

Expected product of independent random variables. If X and Y are
independent random variables on a sample space S, then
E(XY)=EX)E().

. Variance of sum of independent random variables. If X and Y are

independent random variables, then V(X + Y) = V(X) + V(Y).

. Standard deviation. The square root of the variance of a random

variable is called the standard deviation of the random variable and is
denoted by o (or by o (X) when there is a chance for confusion as to
what random variable we are discussing).

Variance and standard deviation for Bernoulli trials. In Bernoulli trials

with probability p of success, the variance for one trial is p(1 — p),
and for n trials, itis np(1 — p). The standard deviation for n trials is

vnp(l = p).

. Central limit theorem. The central limit theorem says that the sum of

independent random variables with the same distribution function is
approximated well as follows: The probability that the sum is between
aand b is

1 b o2
— e 7 dx
21 /a

when the number of random variables being added is sufficiently large.
This implies that the probability that a sum of independent random
variables is within 1, 2, or 3 standard deviations of its expected value is

5.7: Probability Distributions and Variance 355

approximately .68, .955, and .997, respectively. (The theorem holds
more generally when the random variables have different distributions,
provided that no one of them “dominates” the rest, or when the random
variables are not independent, provided that not too many of them are
very similar to others.)

All problems with blue boxes have an answer or hint available at the end of
the book.

Suppose a student who knows 60% of the material covered in a chapter
of a textbook is going to take a five-question objective (each answer is
either right or wrong, not multiple choice or true-false) quiz. Let X be
the random variable that gives the number of questions the student
answers correctly for each quiz in the sample space of all quizzes the
instructor could construct. What is the expected value of the random
variable X — 3?7 What is the expected value of (X — 3)2? What is the
variance of X?

In Problem 1, let X; be the number of correct answers the student gets
on Question i, that is, X; is either O or 1. What is the expected value of
X;? What is the variance of X;? How does the sum of the variances of
X through X5 relate to the variance of X for Problem 1?

A dime and a 50-cent piece are in a cup. You withdraw one coin. What
is the expected amount of money you withdraw? What is the variance?
You then draw a second coin, without replacing the first. What is the
expected amount of money you withdraw? What is the variance?
Suppose instead that you consider withdrawing two coins from the cup
together. What is the expected amount of money you withdraw, and
what is the variance? What does this example show about whether the
variance of a sum of random variables is the sum of their variances?

If the quiz in Problem 1 has 100 questions, what is the expected number
of right answers, the variance of the expected number of right answers,
and the standard deviation of the number of right answers?

Estimate the probability that a person who knows 60% of the material
gets a grade strictly between 50 and 70 in the quiz described in
Problem 4.

What is the variance of the number of right answers for someone who
knows 80% of the material on which a 25-question quiz is based? What
if the quiz has 100 questions? 400 questions? How can you “correct”
these variances for the fact that the “spread” in the histogram for the

356 Chapter 5: Probability

8.

10.

12.

14.

16.

“number of right answers” random variable only doubled when the
number of questions in a test was quadrupled?

Prove Theorem 5.30.

Show that if X and Y are independent and b and ¢ are constant, then
X — b and Y — c are independent.

A nickel, a dime, and a quarter are in a cup. Withdraw two coins, first
one and then the second, without replacement. What is the expected
amount of money and variance for the first draw? For the second draw?
For the sum of both draws?

What are the expected number of failures, the variance of the number
of failures, and the standard deviation of the number of failures in n
independent trials with probability p of success? Compare your
answers with the corresponding results for successes, and explain any
interesting observations.

What are the variance and standard deviation for the sum of the tops of
n dice that you roll?

How many questions need to be on a short-answer test for you to be
95% sure that someone who knows 80% of the course material gets a
grade between 75% and 85%?

Is a score of 70% on a 100-question true-false test consistent with the
hypothesis that the test-taker was just guessing? What about a
10-question true-false test? (This is not a “plug and chug” problem; you
have to come up with your own definition of “consistent with.”)

Given a random variable X, how does the variance of ¢ X relate to that
of X?

Draw a graph of the equation y = x(1 — x) for x between 0 and 1.
What is the maximum value of y? Why does this show that the variance
(see Problems 7 and 10) of the “number of successes” random variable
for n independent trials is less than or equal to n/4?

This problem develops an important law of probability known as
Chebyshev’s law. Suppose you are given a real number » > 0 and you
want to estimate the probability that the difference | X (x) — E(X)| of a
random variable from its expected value is more than r.

a. LetS = {x1,x2,...,x,} be the sample space, and let
E = {x1, x2, ..., x¢} be the set of all x such that
|X (x) — E(X)| > r. By using the formula that defines V (X),
show that

k
V(X) > Z P(xi)r* = P(E)r.
i=1

5.7: Probability Distributions and Variance 357

b. Show that the probability of | X (x) — E(X)| > r is no more than
V(X)/r?. This is called Chebyshev’s law.

With the help of Problem 14 (among others), show that in n
independent trials with probability p of success, you have that

P >r) < ! .
- ~ 4nr?

18. This problem derives an intuitive law of probability known as the law
of large numbers from Chebyshev’s law. Informally, the law of large
numbers says that if you repeat an experiment many times, the fraction
of the time that an event occurs is very likely to be close to the
probability of the event. The law applies to independent trials with
probability p of success. It states that for any positive number s, no
matter how small, you can make the probability of the number X of
successes being between np — ns and np + ns as close to 1 as you
choose by making the number #n of trials large enough. For example,
you can make the probability of the number of successes being within
1% (or 0.1%) of the expected number as close to 1 as you wish.

number of successes — np

n

a. Show that the probability of | X (x) — np| > sn is no more than
p(l—p)/s’n.

b. Explain why part “a” means you can make the probability of
X (x) being between np — sn and np + sn as close to 1 as you
want by making n large.

On a true-false test, the score is often computed by subtracting the
number of wrong answers from the number of right ones and
converting that number to a percentage of the number of questions. On
a true-false test graded this way, what is the expected score of someone
who knows 80% of the material in a course? How does this scheme
change the standard deviation in comparison with an objective test?
What must you do to the number of questions to be able to be a certain
percent sure that someone who knows 80% gets a grade within 5 points
of the expected percentage score?

20. Another way to bound the deviance from the expectation is known as
Markov’s inequality, which says that if X is a random variable taking
only nonnegative values, then

P(X > kE(X)) <

x| —

for any k > 1. Prove this inequality.

This page intentionally left blank

Graphs

6.1 GRAPHS

Exercise 6.1-1

Exercise 6.1-2

Exercise 6.1-3

In this chapter, we study graphs, which are a fundamental topic in discrete
mathematics and computer science. As we will see, we can use graphs to
model many common situations and to naturally describe many algorithms.
Graphs are also an ideal venue for developing a deeper understanding of
proof by induction, especially strong induction.

Figure 6.1 shows a stylized map of some cities in the eastern United
States (Boston, New York, Pittsburgh, Cincinnati, Chicago, Memphis, New
Orleans, Atlanta, Washington, DC, and Miami). A company has major
offices with data-processing centers in each of these cities, and as its oper-
ations have grown, it has leased dedicated communication lines between
certain pairs of these cities to allow for efficient communication among the
computer systems. Each blue dot in the figure stands for a data center, and
each line stands for a dedicated communication link. What is the minimum
number of links that could be used to send a message from B (Boston) to
NO (New Orleans)? Give a route with this number of links.

Which city (or cities) has (or have) the most communication links emanating
from it (or them)?

What is the total number of communication links in the figure?

Figure 6.1 is a drawing of what we call a “graph.” A graph consists of a set
of vertices' and a set of edges” and has the property that each edge has two

! Another common name for vertex is node.
2 Another common name for edge is arc, though some authors restrict this usage to
directed graphs.

359

360 Chapter 6: Graphs

CH

’
S

NO

MI

Figure 6.1: A stylized map of some eastern U.S. cities

(not necessarily different) vertices, called its endpoints, associated with it.
We say that the edge joins the endpoints, and we say that two endpoints
are adjacent if they are joined by an edge. When a vertex is an endpoint
of an edge, we say that the edge and the vertex are incident. Several more
examples of graphs are given in Figure 6.2. Graphs model situations in
which there are relationships among pairs of objects. In Figure 6.1, our
objects are the cities, and the relationship is being joined by a communica-
tion link. More generally, we represent objects as vertices, and we represent
a relationship between two objects as an edge connecting their vertices.
Other examples include a graph in which the vertices represent biological
species and two vertices are joined by an edge if their species have a

8@ (L

Figure 6.2: Some examples of graphs

6.1: Graphs 361

common ancestor, or a graph in which the vertices represent people and an
edge is drawn between two vertices if the people attended the same school.

The relationships we have mentioned are all symmetric; that is, whatever
relationship may exist between two vertices a and b also exists between b
and a. Graphs model symmetric relationships. One can also study directed
graphs, which model relationships that are not necessarily symmetric. Much
of what we do for graphs holds for directed graphs as well; we do not pursue
the idea of directed graphs in this book.

To draw a graph, we draw a point (in our case, a blue circle) in the plane for
each vertex; then, for each edge, we draw a (possibly curved) line between
the vertices that corresponds to the endpoints of the edge. The only vertices
that may be touched by the line representing an edge are the endpoints of
that edge. Notice that Figure 6.2d has three edges joining vertices 1 and
2, two edges joining vertices 2 and 3, and one edge joining vertex 6 to
itself. This last edge has two identical endpoints. Note that in Figure 6.2,
sometimes the vertices are labeled, and sometimes they aren’t. We label the
vertices to give them meaning, as in Figure 6.1, or when we know we will
refer to them, as in Figure 6.2d.

Figure 6.1 and the first three graphs in Figure 6.2 are examples of simple
graphs, which are graphs that have at most one edge joining each pair of
distinct vertices and no edges joining a vertex to itself.? If there is an edge
joining vertex x and vertex y in a simple graph, we denote it by {x, y}. Thus,
in Figure 6.1, { P, W} denotes the edge between Pittsburgh and Washington,
DC. Sometimes it will be helpful to have a symbol to stand for a graph.
The phrase “Let G = (V, E)” is shorthand for “Let G stand for a graph
with vertex set V and edge set E.” We say that Figure 6.2d has a loop at
vertex 6 and multiple edges joining vertices 1 and 2 and vertices 2 and 3.
More precisely, an edge that joins a vertex to itself is called a loop, and if
there is more than one edge joining x and y, then the graph is said to have
multiple edges between those two vertices.

Figures 6.2b and 6.2¢ are different drawings of the same graph, which con-
sists of five vertices and one edge between each pair of distinct vertices.
It is called the complete graph on five vertices and is denoted by Ks. In
general, a complete graph on n vertices is a graph with n vertices that has
an edge between each pair of vertices. We use K, to stand for a complete

3The terminology of graph theory has not yet been standardized perhaps because it is a
relatively young subject. The terminology we are using here is the most popular
terminology in computer science. However, some graph theorists would reserve the word
graph for what we have just called a simple graph and would use the word multigraph for
what we have called a graph.

362 Chapter 6: Graphs

graph on n vertices. Figures 6.2b and 6.2c illustrate that there are many
different ways of drawing a given graph. The two drawings also demon-
strate two different ideas: Figure 6.2b shows that each vertex is adjacent
to each other vertex and suggests that there is a high degree of symmetry.
Figure 6.2c shows that it is possible to draw the graph so that only one
pair of edges crosses; other than the one place where two edges cross, the
only places where edges touch each other are at their endpoints. In fact, it
is impossible to draw K5 so that no edges cross, a fact that we explain later
in this chapter.

In Exercise 6.1-1, the links referred to are edges of the graph, and the cities
are the vertices of the graph. It is possible to get from the vertex for Boston
to the vertex for New Orleans by using three communication links, namely,
the edge from Boston to Chicago, the edge from Chicago to Memphis, and
the edge from Memphis to New Orleans. A path in a graph is an alternating
sequence of vertices and edges such that

it starts and ends with a vertex,

 each edge joins the vertex before it in the sequence to the vertex
after it in the sequence, and

° no vertex appears more than once in the sequence.

If a is the first vertex in the path and b is the last vertex in the path, then we
say the path is from a to b. Thus, the path from Boston to New Orleans is

B{B, CH}CH{CH, ME}ME{M E, NO}NO.

Because the graph is simple, there is exactly one edge between successive
vertices in this list. Therefore, we can also use the shorter notation
B,CH,ME,NO to describe the same path. The length of a path is the
number of edges it has; so our path from Boston to New Orleans has
length 3. By inspecting the map, we see that there is no shorter path from
Boston to New Orleans. The length of a shortest path between two vertices
in a graph is called the distance between them. Thus, the distance from
Boston to New Orleans in the graph of Figure 6.1 is three.

Some applications lead us to pathlike sequences in which vertices can be
repeated. A walk satisfies the first two conditions for a path but need not
satisfy the third.* The length of a walk is the number of edges it has.

The following lemma will prove useful later.

4Some texts use the word “path” for what we have just defined as a walk and use the
phrase “simple path” for what we have defined as a path.

Lemma 6.1

Exercise 6.1-4

Theorem 6.2

6.1: Graphs 363

If there is a walk between two distinct vertices x and y of a graph G,
then there is a path between x and y in G.

Proof If the walk is a path, then we are done. If not, let z be a vertex
that appears more than once in the walk from x to y. We create a shorter
walk by removing the part of the walk between the first and last occurrences
of z in the walk, including the last z but not the first. Then z will appear
only once in the new walk. This process can be repeated until there are no
vertices that appear more than once. At that point, the walk is a path.

The Degree of a Vertex

In Exercise 6.1-2, the city with the most communication links is Atlanta
(A). We say the vertex A has degree 6, because six edges are incident to it.
More generally, the degree of a vertex in a graph is the number of times
it is incident with edges of the graph; that is, the degree of a vertex x is
the number of edges between x and other vertices plus twice the number
of loops at vertex x. In Figure 6.2d, vertex 2 has degree 5, and vertex 6 has
degree 4.

In a graph like the one in Figure 6.1, it is somewhat difficult to count the
edges, because you might forget which ones you’ve counted and which ones
you haven’t. Is there a relationship between the number of edges in a graph
and the degrees of the vertices? If so, find it. (Hint: Computing degrees of
vertices and number of edges in some relatively small examples of graphs
should help you discover a formula.)

In Exercise 6.1-4, examples such as those in Figure 6.2 convince us that the
sum of the degrees of the vertices is twice the number of edges. How can
we prove this? One way is to count the total number of incidences between
vertices and edges. Each edge has exactly two incidences, so the total num-
ber of incidences is twice the number of edges. But the degree of a vertex
is the number of incidences it has, so the sum of the degrees of the vertices
is also the total number of incidences. Therefore, the sum of the degrees of
the vertices of a graph is twice the number of edges. Thus, to compute the
number of edges of a graph, we can sum the degrees of the vertices and
divide by 2. There is another proof of this result that uses induction.

Suppose a graph has a finite number of edges. Then the sum of the degrees
of the vertices is twice the number of edges.

364 Chapter 6: Graphs

Proof The proof proceeds by induction on the number of edges in the
graph. If a graph has no edges, then each vertex has degree 0 and the sum
of the degrees is 0, which is twice the number of edges. Now suppose that
e > 0 and that the theorem is true whenever a graph has fewer than e edges.
Let G be a graph with e edges and let € be an edge of G.> Let G’ be the
graph (on the same vertex set as G) that we get by deleting € from the edge
set E of G. Then G’ has e — 1 edges, and so, by our inductive hypothesis,
the sum of the degrees of the vertices of G’ is 2(e — 1). Now there are two
possible cases. Either e was a loop, in which case one vertex of G’ has
degree two less in G’ than it has in G, or e has two distinct endpoints, in
which case exactly two vertices of G’ have degree one less than their degree
in G. Thus, in both cases, the sum of the degrees of the vertices in G’ is two
less than the sum of the degrees of the vertices in G. Therefore, the sum of
the degrees of the vertices in G is (2¢ — 2) + 2 = 2e. Thus, the truth of the
theorem for graphs with e — 1 edges implies the truth of the theorem for
graphs with e edges. Therefore, by the principle of mathematical induction,
the theorem is true for a graph with any finite number of edges.

There are several instructive points in the proof of Theorem 6.2. First,
because it wasn’t clear from the outset whether we would need to use
strong or weak induction, we made the inductive hypothesis that we would
normally make for strong induction. However, in the course of the proof,
we saw that we only needed to use weak induction; so we wrote our conclu-
sion accordingly. This is not a mistake. We used our inductive hypothesis
correctly; we just didn’t need to use it for every possible value it covered.

Second, instead of saying that we would take a graph with e — 1 edges and
add an edge to get a graph with e edges, we said that we would take a
graph with e edges and remove an edge to get a graph with e — 1 edges.
We proceeded in this manner because we need to prove that the result holds
for every graph with e edges. By using the second approach, we avoided
the need to say that “every graph with e edges may be built up from a graph
with e — 1 edges by adding an edge,” because in the second approach, we
started with an arbitrary graph on e edges. In the first approach, we would
have proved that the theorem was true for all graphs that could be built
from an (e — 1)-edge graph by adding an edge, and we would have had to
say explicitly that every graph with e edges could be built in this way.

Because it is very handy to have e stand for the number of edges of a graph, we will use
Greek letters such as epsilon (¢) to stand for the edges of a graph. It is also handy to use v
to stand for the number of vertices of a graph, so we use other letters near the end of the
alphabet, such as w, x, y, and z, to stand for vertices.

Exercise 6.1-5

6.1: Graphs 365

In Exercise 6.1-3, the sum of the degrees of the vertices (working from left
to right) is

24+44+5+4+54+64+5+2+5+4+2=40,

and so the graph has 20 edges.

Connectivity

All of the examples we have seen so far have a property that is not common
to all graphs—namely, that for every pair of vertices, there is a path between
them.

The company with the computer network in Figure 6.1 needs to reduce its
expenses. It is currently leasing each of the communication lines shown
in the figure. Because it can send information from one city to another
through one or more intermediate cities in the graph, it decides to lease
only the minimum number of communication lines it needs to be able to
send a message from any city to any other city by using any number of
intermediate cities. What is the minimum number of lines it needs to lease?
Give two examples of subsets of the edge set with this number of edges
(lines) that will allow communication between any two cities. Then give
two examples of a subset of the edge set with this number of edges (lines)
that will not allow communication between any two cities.

Some experimentation with the graph in Figure 6.1 convinces us that if
we keep eight or fewer edges, there is no way to communicate among the
cities (we explain this more precisely later on). However, we also see that
there are quite a few sets of nine edges that suffice for communication
among all the cities. Figure 6.3 shows two sets of nine edges each that
allow communication among all the cities and two sets of nine edges each
that do not allow communication among all the cities.

Notice that in Figures 6.3a and 6.3b, it is possible to get from any vertex
to any other vertex by a path. A graph is called connected when, for each
pair of vertices of the graph, there is a path between these two vertices.
Notice that in Figure 6.3c, it is not possible to find a path from Atlanta to
Boston, for example, and in Figure 6.3d, it is not possible to find a path
from Miami to any of the other vertices. Thus, these last two graphs are
not connected, and we call them disconnected. In Figure 6.3d, we say that
Miami is an isolated vertex. We say two vertices are connected if there
is a path between them. Thus, in Figure 6.3c, the vertices for Boston and
New Orleans are connected.

366 Chapter 6: Graphs

CH B CH B
NY NY
p
Cl w W
ME ME
A A
NO
NO
MI o MI
b c d

Figure 6.3: Selecting nine edges from the stylized map of some eastern U.S.

cities

The relationship of being connected is an equivalence relation that divides
the set of vertices into mutually exclusive classes; that is, it partitions the
vertices of the graph. How do we know this? Connectivity is reflexive,
symmetric, and transitive. A vertex x is connected to itself, so connectivity
is reflexive. If there is a path from x to y then reversing direction gives a
path from y to x, showing that connectivity is symmetric. If there is a path
from x to y and a path from y to z then we get a walk from x to z by
appending the paths. By Lemma 6.1 there must be a path from x to z, so
connectivity is transitive.

We call the relationship of “being connected to” the connectivity relation.
We call the blocks into which this relationship partitions the graph connec-
tivity classes. There is no edge of a graph between two vertices in different
connectivity classes, because if there were, then everything in one class
would be connected to everything in the other class and the two classes
would have to be the same. Thus, we also end up with a partition of the
edges into disjoint sets. If a graph has edge set E, and C is a connectivity
class, then E(C) denotes the set of edges whose endpoints are both in C.
Because no edge connects vertices in different connectivity classes, each
edge must be in some set E(C). The graph consisting of a connectivity
class C, together with the edges E(C), is called a connected component
of our original graph. From now on, our emphasis is on connected com-
ponents rather than on connectivity classes, and we describe a connected
component by listing its vertices. Note that Figures 6.3c and 6.3d each
have two connected components. In Figure 6.3c, the vertex sets of the con-
nected components are {NO, ME, CH, CI, P, NY, B} and {A, W, MI}. In
Figure 6.3d, the connected components are {NO, ME, CH, B, NY, P, CI,
W, A} and {MI}. Two other examples of graphs with multiple connected
components are shown in Figure 6.4.

6.1: Graphs 367

§< /.0 %

G

Figure 6.4: A simple graph G with three connected components and a graph
G, with four connected components

Cycles

In Figures 6.3c and 6.3d, we see a feature that we don’t see in Figures 6.3a
and 6.3b, namely, a walk that leads from a vertex back to itself. A walk
with at least one edge that starts and ends at the same vertex, but that has
no other repeated vertices or edges, is called a cycle. Similarly, a walk that
starts and ends with the same vertex is called a closed walk. The closed
walks in Figures 6.3c and 6.3d are cycles A, W, M, A and NO, ME, CH, B,
NY, P, CI, W, A, NO, respectively. We don’t normally distinguish which
point on a cycle is the starting point; for example, we consider the cycle
A, W, MI, A to be the same as the cycle W, MI, A, W.

Let’s compare Figures 6.3d and 6.1. In both graphs, NO, ME, CH, B, NY,
P, CI, W, A, NO is a cycle. In Figure 6.3d, the only edges on the set of
vertices in the cycle are the edges of the cycle. In contrast, some vertices
in the cycle of Figure 6.1 are joined by other edges, too. We wish to be
able to distinguish between these two cases.

In general, a graph H is called a subgraph of the graph G if all the vertices
and edges of H are vertices and edges of G. In other words, H = (V| E’)
is a subgraph of G = (V, E) if V' C V and E’' C E. A graph H is called
an induced subgraph of G if H is a subgraph of G and every edge of G
connecting vertices of H is an edge of H. Thus, the graph G in Figure
6.4 has an induced K4 (complete graph on four vertices) and an induced
cycle on three vertices (which also happens to be an induced K3). It has a
subgraph that is a cycle on four vertices, but it does not have an induced
subgraph that is a cycle on four vertices. It has some induced paths on three
vertices as well. Can you find one?

Notice that in graph G, of Figure 6.4, there are cycles with one edge and
cycles with two edges. We call a graph a cycle on n vertices, or an n-cycle,
and denote it by C, if its vertex set is the vertex set of a cycle and its edge
set is the edge set of that cycle. We say that a graph is a path on n vertices
and denote it by P, if its vertex set is the vertex set of a path and its edge
set is the edge set of that path. Thus, Figure 6.2a is a drawing of C4. Graph
G, of Figure 6.4 has an induced P3; and an induced C; as subgraphs.

368 Chapter 6: Graphs

Trees

The graphs in Figures 6.3a and 6.3b are called trees. We have redrawn
them slightly in Figure 6.5 to clarify why they are called trees. Note that
the graphs drawn in Figures 6.3a and 6.3b and in Figures 6.5a and 6.5b are
connected and have no cycles.

B NY
ME
C1 CH B
NO
CH NY
P
a P A
NO ME
w w

A

MI MI
a b

Figure 6.5: A visual explanation of the name tree

]
Definition 6.1

A connected graph with no cycles is called a tree.
|

Note that the graph with one vertex and no edges is, by this definition, a
tree.

Other Properties of Trees
Our definition of a tree left out several other properties of trees that we

could have discovered by a further analysis of Figure 6.3.

Exercise 6.1-6 Given any two vertices in a tree, how many distinct paths are there between
these two vertices?

%The student who has experience with rooted trees, binary trees, or binary search trees
should note that we are not talking about these kinds of trees in this section. They are the
subject of the next section.

Exercise 6.1-7

Exercise 6.1-8

Exercise 6.1-9

Exercise 6.1-10

Theorem 6.3

6.1: Graphs 369

Is it possible to delete an edge from a tree and have it remain connected?

If G = (V, E) is a graph, and we add an edge that joins vertices of V, what
can happen to the number of connected components?

How many edges does a tree with v vertices have?

Does every tree have a vertex of degree 1? If the answer is “yes,” explain
why. If the answer is “no,” try to find additional conditions that will guar-
antee that a tree satisfying these conditions has a vertex of degree 1.

For Exercise 6.1-6, suppose we have two distinct paths from a vertex x
to a vertex y. The paths begin with the same vertex x and might have
some more edges in common, as in Figure 6.6. Let w be the last vertex
after (or including) x that the paths share before they become different. For
visualizing the argument, let us focus on the path that goes upward at the
vertices marked w and ¢ and the path that goes downward at these two
vertices. The paths must come together again at y, though they might come
together earlier. Let z be the first vertex the paths have in common after w.
Then there are two paths from w to z that have only w and z in common.
Taking one of these paths from w to z and the other from z to w gives us a
cycle, and so the graph is not a tree. We have shown that if a graph has two
distinct paths from x to y, then it is not a tree. By contrapositive inference,
then, if a graph is a tree, it does not have two distinct paths between two
vertices x and y. We state this result as a theorem.

Figure 6.6: A graph with multiple paths from x to y

There is exactly one path between each pair of vertices in a tree.

Proof By the definition of a tree, there is at least one path between each
pair of vertices. By our argument above, there is at most one path between
each pair of vertices. Thus, there is exactly one path.

370 Chapter 6: Graphs

Lemma 6.4

For Exercise 6.1-7, note that if € is an edge from x to y, then x, €, y is the
unique path from x to y in the tree. Suppose we delete € from the edge set of
the tree. If there were still a path from x to y in the resulting graph, then it
would also be a path from x to y in the tree, which would contradict Theorem
6.3. Thus, the only possibility is that there is no path between x and y in the
resulting graph; thus, it is not connected and is therefore not a tree.

For Exercise 6.1-8, if the endpoints are in the same connected component,
then the number of connected components will not change. If the endpoints of
the edge are in different connected components, then the number of connected
components can decrease by one. Because an edge has two endpoints, it is
impossible for the number of connected components to decrease by more than
one when we add an edge. This paragraph and the previous one lead us to the
following useful lemma.

Removing one edge from the edge set of a tree gives a graph with two
connected components, each of which is a tree.

Proof Suppose that € is an edge from x to y in a tree. We have seen that the
graph that we get by deleting € from the edge set of the tree is not connected,
so the graph has at least two connected components. But adding the edge back
in can only reduce the number of connected components by one. Therefore,
the graph has exactly two connected components. Because neither has any
cycles, both are trees.

In Exercise 6.1-9, our trees with ten vertices had nine edges. If we draw a tree
on two vertices, it will have one edge; if we draw a tree on three vertices, it
will have two edges. There are two different-looking trees on four vertices, as
shown in Figure 6.7, and each has three edges. On the basis of these examples,
we conjecture that a tree on n vertices has n — 1 edges. One approach to
proving this is to try to use induction. To do so, we have to see how to build
every tree from smaller trees or how to take a tree and break it into smaller
ones. In either case, we then have to figure out how to use the truth of our
conjecture for the smaller trees to imply its truth for the larger trees. A mistake
that people often make at this stage is to assume that every tree can be built
from smaller ones by adding a vertex of degree 1. Although that is true for
finite trees with more than one vertex (which is the point of Exercise 6.1-10),

—_— W
a b

Figure 6.7: Two trees on four vertices

Theorem 6.5

Corollary 6.6

6.1: Graphs 371

we haven’t proved it yet, so we can’t yet use it in proofs of other theorems.
Another approach to using induction is to ask whether there is a natural way
to break a tree into two smaller trees. There is a way; as we just showed in
Lemma 6.4, if you remove an edge € from the edge set of a tree, you get two
connected components that are trees. We may assume inductively that the
number of edges of each of these trees is one less than its number of vertices.
Thus, if the graph with these two connected components has v vertices, then
it has v — 2 edges. Adding € back in gives us a graph with v — 1 edges—so,
except for the fact that we have not done a base case, we have proved the
following theorem.’

For all integers v > 1, a tree with v vertices has v — 1 edges.

Proof If a tree has one vertex, it can have no edges, as any edge would
have to connect that vertex to itself and would thus give a cycle. A tree with
two or more vertices must have an edge in order to be connected. Before
the statement of the theorem, we showed how to use the deletion of an edge
to complete an inductive proof that a tree with v vertices has v — 1 edges.
Therefore, for all v > 1, a tree with v vertices has v — 1 edges.

Finally, for Exercise 6.1-10, we can now give a contrapositive argument to
show that a finite tree with more than one vertex has a vertex of degree 1.
Suppose that G is a graph that is connected and that all vertices of G have
degree 2 or more. Then the sum of the degrees of the vertices is at least 2v, and
0, by Theorem 6.2, the number of edges is at least v. Therefore, by Theorem
6.5, G is not a tree. Then, by contrapositive inference, if 7T is a tree, then T
must have at least one vertex of degree 1. This corollary to Theorem 6.5 is so
useful that we state it formally.

A finite tree with more than one vertex has at least one vertex of degree 1.

1. Graph. A graph consists of a set of vertices and a set of edges and has
the property that each edge has two (not necessarily different) vertices,
called its endpoints, associated with it.

"In Section 4.1, we mentioned that in certain applications of induction, it makes our proofs
simpler if we try to understand how to break large instances of our problems into smaller
ones, rather than trying to understand how to build smaller instances to get larger ones.
This is one example where the approach is useful.

372 Chapter 6: Graphs

10.

11.
12.

13.

14.

15.

. Edge/adjacent. We say that an edge in a graph joins its endpoints, and

we say that two endpoints are adjacent if they are joined by an edge.

. Incident. When a vertex is an endpoint of an edge, we say that the edge

and the vertex are incident.

Drawing a graph. To draw a graph, we draw a point in the plane for
each vertex. For each edge, we draw a (possibly curved) line between
the points that correspond to the endpoints of the edge. Lines that
correspond to edges may only touch the vertices that are their
endpoints.

. Simple graph. A simple graph is one that has, at most, one edge joining

each pair of distinct vertices and no edges joining a vertex to itself.

. Loop/multiple edges. An edge that joins a vertex to itself is called a

loop, and we say that we have multiple edges between vertices x and y
if there is more than one edge joining x and y.

. Notation for a graph. The phrase “Let G = (V, E)” is shorthand for

“Let G stand for a graph with vertex set V and edge set E.”

Notation for edges. In a simple graph, we use the notation {x, y} for an
edge from x to y. In any graph, when we want to use a letter to denote
an edge, we use a Greek letter like € so that we can save e to stand for
the number of edges of the graph.

. Complete graph on n vertices. A complete graph on n vertices is a

graph with n vertices that has an edge between each pair of vertices.
We use K, to stand for a complete graph on n vertices.

Walk. We call an alternating sequence of vertices and edges in a graph
a walk if it starts and ends with a vertex and each edge joins the vertex
before it (in the sequence) to the vertex after it (in the sequence).

Path. A walk is called a path if it has no repeated vertices or edges.

Length/distance. The length of a path is the number of edges. The
distance between two vertices in a graph is the length of a shortest path
between them.

Degree of a vertex. The degree of a vertex in a graph is the number of
times it is incident with edges of the graph; that is, the degree of a
vertex x is the number of edges from x to other vertices plus twice the
number of loops at vertex x.

Sum of degrees of vertices. The sum of the degrees of the vertices in a
graph with a finite number of edges is twice the number of edges.

Connected. A graph is connected if, for each pair of vertices of the
graph, there is a path between them. We say that two vertices are
connected if there is a path between them; so, a graph is connected if

6.1: Graphs 373

each pair of its vertices are connected. The relationship of being
connected is an equivalence relation that partitions the vertices of a
graph into sets called connectivity classes.

16. Connected component. If C is a subset of the vertex set of a graph,
then we use E(C) to stand for the set of all edges both of whose
endpoints are in C. The graph consisting of a connectivity class C of
the connectivity relation, together with the edges E(C), is called a
connected component of our original graph.

17. Closed walk. A walk that starts and ends at the same vertex is called a
closed walk.

18. Cycle. A walk whose first and last vertices are the same is called a
cycle if it has at least one edge and all vertices of the walk, except the
first and last, are distinct.

19. Tree. A connected graph with no cycles is called a tree.

20. Important properties of trees.
a. There is a unique path between each pair of vertices in a tree.
b. A tree on v vertices has v — 1 edges.

c. Every finite tree with at least two vertices has a vertex of
degree 1.

All problems with blue boxes have an answer or hint available at the end of
the book.

Find a shortest path from vertex 1 to vertex 5 in Figure 6.8.

Figure 6.8

2. Find the longest path possible from vertex 1 to vertex 5 in Figure 6.8.
Find the vertex of largest degree in Figure 6.8. What is its degree?

374 Chapter 6: Graphs

8 15 13
5 14 ¢
gg 2<4 / O > 12
1
3 6 7 5 10 ¢

11

Figure 6.9: A graph with a number of connected components

4. How many connected components does the graph in Figure 6.9 have?
Find all induced cycles in Figure 6.9.
6. What is the size of the largest induced K, in Figure 6.9?
Find a largest induced K, (in words, a largest complete subgraph) in
Figure 6.8.
8. Find the size of a largest induced P, in Figure 6.9.
n A graph with no cycles is called a forest. Show that if a forest has v
vertices, e edges, and ¢ connected components, then v = e + c.

10. What can you say about a five-vertex simple graph in which every
vertex has degree 47?

Draw Kg so that only three pairs of edges cross.

12. Either prove true or find a counterexample: A graph is a tree if there is
one and only one path between each pair of vertices.

Are there connected graphs with v vertices and v — 1 edges that are
not trees?

14. Are there graphs with v vertices and v — 1 edges and no cycles that are
not trees? Give a proof to justify your answer.

Suppose that a graph G is connected, but, for each edge, deleting that
edge leaves a disconnected graph. What can you say about G? Prove
it.

16. Show that each tree with four vertices can be drawn with one of the
two drawings in Figure 6.7.

Draw the minimum number of drawings of trees possible so that each
tree with five vertices has one of those drawings. Explain why you
have drawn all possible trees.

18. Draw the minimum number of drawings of trees possible so that each
tree with six vertices is represented by exactly one of those drawings.
Explaining why you have drawn all possible drawings is optional.

Find a longest induced cycle in Figure 6.8.

6.2: Spanning Trees and Rooted Trees 375

6.2 SPANNING TREES AND ROOTED TREES

Exercise 6.2-1

Exercise 6.2-2

Theorem 6.7

Spanning Trees

We introduced our discussion of trees with the example of choosing a
minimum-sized set of edges that would connect all the vertices in the graph
of Figure 6.1. The kinds of trees we used to solve our original problem have
a special name: A tree whose edge set is a subset of the edge set of the graph
G is called a spanning tree of G if the tree has exactly the same vertex set as
G. Thus, Figures 6.3a and 6.3b are spanning trees of the graph of Figure 6.1.

Does every connected graph have a spanning tree? Give either a proof or a
counterexample.

Give an algorithm that determines whether a graph has a spanning tree, finds
such a tree if it exists, and takes time bounded above by a polynomial in v
and e, where v is the number of vertices and e is the number of edges of the
graph.

For Exercise 6.2-1, if the graph has no cycles but is connected, then it is a
tree, and thus it has a spanning tree. This makes a good base step for an
inductive proof that every connected graph has a spanning tree. Let ¢ be an
integer greater than 0, and suppose inductively that when a connected graph
has fewer than ¢ cycles, the graph has a spanning tree. Suppose that G is a
graph with ¢ cycles. Choose a cycle of G and then choose an edge of that
cycle. Deleting that edge (but not its endpoints) reduces the number of cycles
by at least one, and so our inductive hypothesis implies that the resulting graph
has a spanning tree. But then that spanning tree is also a spanning tree of G.
Therefore, by the principle of mathematical induction, every finite connected
graph has a spanning tree. We have proved the following theorem.

Each finite connected graph has a spanning tree.

Proof The proof is given before the statement of the theorem.

In Exercise 6.2-2, we want an algorithm for determining whether a graph
has a spanning tree. One natural approach would be to convert the inductive
proof of Theorem 6.7 into a recursive algorithm. Doing it in the obvious way,
however, would mean having to search for cycles in our graph. A natural way
to look for a cycle is to look at each subset of the vertex set to see if that

376 Chapter 6: Graphs

—

P~ o~ o~~~ o~~~ —~

O W o JOo U W N R

subset is a cycle of the graph. Because there are 2" subsets of the vertex set,
we cannot guarantee that an algorithm that works in this way would find a
spanning tree in time that is bounded by a polynomial in v and e. Instead,
we use another approach, describing a quite general algorithm, which we can
then specialize in different ways for different purposes.

The idea of the algorithm is to build, one vertex at a time, a tree that is a
subgraph (not necessarily an induced subgraph) of the graph G = (V, E). (A
subgraph of G thatis a tree is called a subtree of G.) We start with some vertex,
say xo. If there are no edges leaving the vertex and the graph has more than one
vertex, then the graph is not connected, and hence does not have a spanning
tree. Otherwise, we can choose an edge € that connects x(to another vertex
x1. Thus, {xg, x1} is the vertex set of a subtree of G. If there are no edges that
connect some vertex in the set {xg, x} to a vertex not in that set, then {xg, x} is
a connected component of G. In this case, either G is not connected and has no
spanning tree or G has just two vertices and we have a spanning tree. However,
if there is an edge that connects some vertex in the set {xg, x1} to a vertex notin
that set, then we can use this edge to continue building a tree. This suggests an
iterative approach to building the vertex set S of a subtree of our graph one ver-
tex at a time. For the base case of the algorithm, we let S = {x¢}. For the induc-
tive step, given S, we choose an edge € that leads from a vertex in S to a vertex
in V — S (provided such an edge exists) and add it to the edge set E’ of the sub-
tree. If no such edge exists, then we stop. If V. = S when we stop, then E” is the
edge set of a spanning tree. (We can prove inductively that E’ is the edge set of
atree on S because adding a vertex of degree 1 to atree gives atree.) If V # §
when we stop, then G is not connected and does not have a spanning tree.

To describe the algorithm a bit more precisely, we give the following pseu-
docode.

Spantree (V,E)

// Assume G is a graph with vertex set Vand edge set E.
// This algorithmwill find a spanning tree with edge set
// E' if one exists.
// The sets SC Vand E' C Eare initially empty.
Choose a vertex xp in V
S = {xo}
while there is an edge € from a vertex y € Sto a vertex x¢ S
S =SU {x}
E' = E' U {e}
if (S| ==|V])
Print "The edge set of a spanning tree is"
Print the elements of E’
else
Print "The graph is not connected."

6.2: Spanning Trees and Rooted Trees 377

Notice that Spantree will continue as long as a vertex in S is connected to a
vertex not in S. Thus, when the algorithm stops, S will be the vertex set of a
connected component of the graph and E’ will be the edge set of a spanning
tree of this connected component. This suggests that one use of Spantree is to
find connected components of graphs. If we want the connected component
containing a specific vertex x, then we make this choice of x(in Line 1.

In the algorithm, we deliberately left vague the way in which the vertex x and
the edge € are chosen, because there are several different ways to specify x
or y and €, each accomplishing a different purpose. Suppose, however, that
in Line 3 we are willing to choose any edge from a vertex y in S to a vertex
x not in S. We could examine each edge to see if it connected a vertex in S
to a vertex not in S. As we shall see, there is a way to keep track of S so that
we can test whether a vertex is in S in at most a constant amount of time.
Thus, we would need time at most a constant times e to complete the test
in the “while” loop. The other steps in the “while” loop each take at most
a constant amount of time. Because we repeat the “while” loop at most v
times, all executions of that loop should take at most O(ve) time. In Line 6,
we need to know | V| and |S|. We are likely to know v, which is the number
of vertices, before we start; if not, we can compute v before we get started
in time no more than a constant times v. We can compute the size of S as
we build it. Thus, with the assumptions we have made, we conclude that the
algorithm takes O (v + ve 4+ v) = O(ve) time. However, we will see that by
being more specific about how we carry out our choices, we can reduce the
running time.

Breadth-First Search

One way to guarantee a faster running time would be to arrange our choice
of € so that we examined each edge no more than some constant number
of times between the start and end of the algorithm. Suppose we look for
edges from vertices in S to vertices not in S as follows: We first consider all
edges incident with x(as possible choices for €; we then consider all edges
incident with vertices at distance 1 from x(as possible choices for €; and then
continue with distances 2, 3, and so on. In this way, if an edge can be used
to connect a vertex in S with a vertex not in S, then we will discover this fact
the first time we look at the edge. If we later consider this edge from its other
endpoint, it would already connect two vertices in S. Because each edge has
two endpoints, each edge would be considered at most twice. One carefully
organized special case of this idea is called breadth-first search (BFS).

To give a simple description of breadth-first search, we use a data structure
called a queue, which models customers standing in line for service at a cash

378 Chapter 6: Graphs

register or bank teller. As customers arrive, they go to the end of the line.
When the server is free, the first person in line leaves the line and is served.

We can think of a queue as a list of items to which we can do exactly two
things—we can add an item x to the end of the queue and we can remove an
item from the front of the queue. We say that we enqueue x onto Q when
we add it to the end of Q, and we say that we dequeue an item from Q when
we remove it from the front of the queue. There are a number of ways to
implement queues so that each operation takes constant time.® We can use
a queue to keep the elements of S in the order in which they were added to
S. Now we use the idea of a queue to describe more precisely the process of
breadth-first search. We begin by putting xg, our starting vertex, at the end of
the queue and into S. Then we do the following until we run out of vertices
on our queue:

1. Dequeue a vertex w from the queue.

2. For each edge € incident with w, if the edge € joins w to a vertex z not
in S, add € to E’, add z to S, and enqueue z.

To give a pseudocode description of this algorithm, we assume that the ver-
tices are numbered 1, 2, ..., v. This lets us keep track of what vertices are in
the set S by using an array Intree of trues and falses. Intree[x]
is true if and only if vertex x is in S. By looking in Intree we can test in
constant time whether a vertex is in S.°

There are a number of ways to represent the edge set of a graph in a
computer. One way is to give a list, called an adjacency list, for each vertex,
which lists all vertices adjacent to that vertex. If there are two edges from x
to y, we list y twice in the adjacency list for x and x twice in the adjacency
list for y. In the general case of multiple edges, we list each adjacency as
many times as there are edges that give the adjacency. We assume in our
pseudocode that the edges are given in this way. That is, E is an array whose
ith element is a /ist of the vertices adjacent to vertex i.

In our pseudocode, we use S and E’ as we did in Spantree. We also assume
that we are given a vertex xo from which we are to start the search.

BFSpantree(xy,V, E)

// Assume V contains vertices numbered 1, 2,...,V.
// Assume E is an array with ventries, and entry 1 of
// Eis alist of the vertices adjacent to vertex 1.

8Cormen et al. [13] (Section 10.1) show how to implement a queue so that the enqueue and
dequeue operations both take constant time.

°It just involves a bit more bookkeeping (that the authors didn’t want to burden you with)
to do the test in constant time if you have a different vertex set.

W 0w J o Ul i WDN K

AA
e
= o

(12
(13
(14
(15
(16
(17
(18
(19
(20
(21
(22
(23
(24
(25

6.2: Spanning Trees and Rooted Trees 379

// Assume the parameter xp is the starting vertex

// for the BFS.

// The output of the algorithm is either the edge set

// of a spanning tree of the graph or the edge set of

// a spanning tree of the connected component that

// contains xp .

Intree = an array of length vwith each entry initialized to "false"

S = {xo0}

n=1

E' =0 // E' is a set of edges
0=90 // Qis a queue
Intree[xp] = "true"

Enqueue xg onto Q
while there is at least one vertex on Q

Dequeue the first element from Q and assign it to y
for each element x of the list E[y]
if (!Intree[x])
Enqueue x onto Q

S=5U{x}
Intree[x]= "true"
E'=E U{{x, v}
n=n+1

if (n==v)

else

print "The edge set of a spanning tree of the graph is"
print the elements of E’

print "The vertex set of the connected component containing" xp "is"
print the elements of S

print "The edge set of a spanning tree of the connected component"
print "containing" xp "is"

print the elements of E’

How long does it take to run this algorithm? Note that the “while” loop in
Line 8 runs (at most) once for each vertex. When this selected vertex is y, the
number of times that the “for” loop in Line 10 runs is the degree of y. It takes
a constant time to dequeue an element from Q and assign it to y. The steps
in the “for” loop each take at most a constant amount of time. Thus, the total
time for the “for” loop is at most a constant times the degree of y. The total
time for the “while” loop is the sum of the times for each of its iterations. This
sum is no more than a constant times the sum of the degrees of the vertices
of the graph—that is, no more than a different constant times the number of
edges. The initialization of the array and the printing of the vertex set take
O(v) time. The printing of the edge set of the tree also takes O (v) time.
Therefore, the time required to carry out the algorithm is O (v + e).

We said that our method would first consider edges incident with xg, and
then edges incident with vertices of distance 1 from x¢, and continuing with
distances 2, 3, and so on. Let’s show why.

380 Chapter 6: Graphs

Lemma 6.8

For each nonnegative integer d, all vertices of distance d from the starting
vertex xo of a breadth-first search tree are added to the vertex set S of the
tree before those of distance d + 1 or more from x.

Proof We add a vertex to S when we add it to the queue. When we add a
vertex x other than x(to the queue, we are adding it because it is adjacent to
some other vertex z already in the tree. (We say that we are adding x from z.)
Because such a vertex is added from an adjacent vertex, its distance from xg
is at most one more than the distance from xg of the vertex from which it was
added. With this in mind, we prove our lemma by induction.

Because we first add xg to the queue, our lemma is true for d = 0. Suppose
inductively that all vertices of distance d — 1 from x(are added to the queue
(and thus to §) before any vertices of distance d from xg. Let x be a vertex
of distance d from xg, and let y be a vertex of distance d 4+ 1 or more from
xo. (See Figure 6.10.) Then x is adjacent to a vertex of distance d — 1 (but no
smaller distance) from xg. By the inductive hypothesis, all vertices of distance
d — 1 from x(are added to the tree before any vertices of distance d from xj.
(In Figure 6.10, vertices of distance d from xq are on the circle and those of
distance less than d are inside the circle.) From this argument we can conclude
that all vertices of distance d — 1 from x¢ are added to the tree before x. At
least one of these vertices is adjacent to x, and so x is added to the queue from
one of these vertices, which we shall call x,_;.

If y were added from a vertex of distance less than or equal to d — 1 from xo,
the vertex y would be of distance at most d from x(. Therefore, y is added
from a vertex y, of distance d or more from x¢. By the inductive hypothesis,
Xg4—1 1s added to the queue before y,. Thus, vertices added from x;_; are

Figure 6.10: Vertices closer to x(are added to the tree sooner

Exercise 6.2-3

Theorem 6.9

6.2: Spanning Trees and Rooted Trees 381

added to the queue before vertices added from y,. Therefore, x is added to
the tree before y. Thus, all vertices of distance d from xq are added to the
tree before any vertices of distance d 4 1 or more. Hence, by the principle
of mathematical induction, for every integer d > 0, all vertices of distance d
are added to the vertex set of the tree before any vertices of distance d + 1 or
more.

Although we introduced breadth-first search to get an algorithm that quickly
determines a spanning tree of a graph or a spanning tree of the connected
component of a graph containing a given vertex, the algorithm does more for
us.

How does the distance from xq to y in a breadth-first search tree, centered at
Xo, in a graph G, relate to the distance from xg to y in G?

In fact, the unique path from x¢ to y in a breadth-first search spanning tree
of a graph G is a shortest path from xg to y in G; thus, the distance from x
to another vertex in G is the same as the distance in a breadth-first search
spanning tree centered at xo. This makes it easy to compute the distance
between a vertex xo and all of the other vertices in a graph.

The unique path from xj in a breadth-first search spanning tree, centered
at the vertex xo, in a graph G, to a vertex y is a shortest path from xq to y
in G. Thus, the distances from x(to y in G are the same as distances in a
breadth-first search spanning tree of G.

Proof We prove this theorem by induction on the distance d of a vertex
from xg. Clearly the theorem is true if d = 0. Suppose now that whenever x
has distance d — 1 from x(in G, it has distance d — 1 from x(in the tree.
Let y be a vertex of distance d from x(in G. On a shortest path from x¢ to
y, there is a vertex x’ of distance d — 1 from xo. By Lemma 6.8, y is added
to the tree after all vertices of distance d — 1, and because there is at least
one vertex of distance d — 1 adjacent to y, the vertex y must be added from
a vertex of distance d — 1 or less. However, y cannot be adjacent to a vertex
of distance less than d — 1 to xq (or else its distance from xy would be less
than d). For this reason, when y is added to the tree, y can only be adjacent in
T to vertices of distance d — 1 (in G and, thus, by the inductive hypothesis,
in the tree) from x¢. Thus, the unique path from x(to y in the tree must have
length d. Therefore, by the principle of mathematical induction, the theorem
holds for all nonnegative distances.

382 Chapter 6: Graphs

Rooted Trees

A breadth-first search spanning tree of a graph is not simply a tree. It is
actually a tree with a selected vertex—namely, xo—and is one example of
what we call a rooted tree. A rooted tree consists of a tree with a selected
vertex, called a root, in the tree. Another kind of rooted tree you have likely
seen is a binary search tree. It is fascinating how much additional structure
is provided to a tree when we select a vertex and call it a root. Figure 6.11
shows a tree with a chosen vertex and the result of redrawing the tree in a
more standard way. The standard way computer scientists draw rooted trees
is with the root at the top and all the edges sloping down (as you might expect
to see with a family tree).

We adopt the language of family trees—ancestor, descendant, parent, and
child—to describe rooted trees in general. In Figure 6.11, we say that vertex j
is a child of vertex i and a descendant of vertex r, as well as a descendant
of vertices f and i. We say that vertex f is an ancestor of vertex i. Vertex r
is the parent of vertices a, b, c, and f. Each of those four vertices is a child
of vertex r. Vertex r is an ancestor of all of the other vertices in the tree. In
general, in a rooted tree with root r, a vertex x is an ancestor of a vertex y
and a vertex y is a descendant of a vertex x if x is on the unique path from
the root to y. Vertex x is a parent of vertex y and y is a child of vertex x in a
rooted tree if x is the unique vertex adjacent to y on the unique path from r
to y. A vertex can have only one parent but many ancestors. A vertex is its
own ancestor or descendant, but it cannot be its own parent or child. A vertex
with no children is called a leaf vertex or an external vertex; other vertices
are called internal vertices.

Exercise 6.2-4 The definition of a parent implies that a vertex in a rooted tree can have at most
one parent. Explain why. Does every vertex in a rooted tree have a parent?

Figure 6.11: Two different drawings of the same rooted tree

Exercise 6.2-5

Exercise 6.2-6

Exercise 6.2-7

6.2: Spanning Trees and Rooted Trees 383

In Exercise 6.2-4, suppose that x is not the root. Then, because there is a
unique path between a vertex x and the root of a rooted tree and because
there is a unique vertex on that path adjacent to x, each vertex other than the
root has a unique parent. The root, however, has no parent.

A binary tree is a special kind of rooted tree that has some additional structure
that makes it tremendously useful as a data structure. To describe the idea of
a binary tree, it is useful to think of a tree with no vertices, which we call the
null tree or empty tree. We can then recursively describe a binary tree as

* an empty tree (a tree with no vertices), or

* astructure 7" consisting of a root vertex, a binary tree called the left
subtree of the root, and a binary tree called the right subtree of the
root. If the left or right subtree is nonempty, then its root vertex is
joined by an edge to the root of T

Thus, a single vertex is a binary tree with an empty right subtree and an
empty left subtree. A rooted tree with two vertices can occur in two ways as
a binary tree, either with a root and a left subtree consisting of one vertex or
as a root and a right subtree consisting of one vertex. Draw all binary trees
on four vertices in which the root vertex has an empty right child. Draw all
binary trees on four vertices in which the root has a nonempty left child and
a nonempty right child.

A binary tree is a full binary tree if it is not empty and each vertex has either
two nonempty children or two empty children (recall that a vertex with no
children is called a leaf or external vertex). Are there any full binary trees
with an even number of vertices? Prove that your answer is correct.

What is the relationship between the number of internal vertices and the num-
ber of external vertices in a full binary tree?

For Exercise 6.2-5, we have the five binary trees shown in Figure 6.12 as our
answer to the first question. Then, in Figure 6.13, we have four more trees
that answer the second question.

WESE

Figure 6.12: The four-vertex binary trees whose root has an empty right child

384 Chapter 6: Graphs

AOh A

Figure 6.13: The four-vertex binary trees whose root has both a left and a right
child

For Exercise 6.2-6, because a full binary tree is not empty, it must have an
odd number of vertices. We can prove this inductively. A full binary tree with
one vertex has an odd number of vertices. This is our base case.

Suppose inductively that any nonempty subtree of a full binary tree has an
odd number of vertices. A full binary tree with n > 1 vertices must have two
nonempty children. Thus, removing the root gives us two subtrees rooted at
the children of the original root. By our inductive hypothesis each of these
trees has an odd number of vertices. The number of vertices of the original
tree is one more than the total number of vertices of these two trees. Because
this is a sum of three odd numbers, it must be odd. Thus, by the principle of
structural induction, a full binary tree must have an odd number of vertices.

For Exercise 6.2-7, we give drawings of some full binary trees in Figure
6.14. The drawings suggest that the number of internal vertices is one less
than the number of external vertices, though more pictures—or better yet,
a proof—would be needed to be really convincing. Let’s try a proof by
induction that the number of internal vertices is one less than the number
of external vertices. Clearly this is true for a full binary tree with one vertex,
because that vertex is an external vertex. Thus, assume that in a full binary
tree with fewer than n vertices, the number of internal vertices is one less
than the number of external vertices. Take a full binary tree 7 on n > 1
vertices and remove the root vertex, giving two binary trees 77 and 7, on
fewer than n vertices. Because T is a full binary tree, each of its vertices
has either zero or two children. Then each vertex of 7 or 7> has either zero
or two children, so they are full binary trees. If 7 has v; internal vertices
and 7> has v, internal vertices, then by the inductive hypothesis, they have
v; + 1 and vy + 1 external vertices, respectively. But the external vertices
of T are exactly those of 77 and 73, so T has v + v, 4 2 external vertices.
The internal vertices of 7 are the root and the internal vertices of 77 and 7>,

A AN

Figure 6.14: Some full binary trees

6.2: Spanning Trees and Rooted Trees 385

which means T has v; 4+ v, + 1 internal vertices. Therefore, the number of
internal vertices of T is one less than the number of external vertices of T.
Thus, by the principle of mathematical induction, for all full binary trees, the
number of internal vertices is equal to one less than the number of external
vertices.

Recall that in Section 4.1, we said that there are circumstances in which trying
to build an example from smaller examples is not as good a way of finding
an inductive proof as trying to see how to decompose a larger example into
smaller ones. Here is a case in point. Removing a root vertex gives us an imme-
diate inductive proof; however, it is not immediately clear what the various
ways of pasting together smaller full binary trees to give larger ones are and
whether all full binary trees on n vertices can be constructed in this way. An-
other example in which induction works in this way occurs in Exercise 6.2-6.
For instance, a possible way to attempt to grow a full binary tree to a larger
full binary tree is to add a new leaf node to some vertex. However, this is
doomed to failure, because adding a vertex of degree 1 to a full binary tree
never gives a full binary tree.

The definition we gave for “binary tree” was inductive because that type of
definition makes it easy for us to prove things about binary trees. We remove
the root, apply the inductive hypothesis to the binary tree or trees that result,
and then use that information to prove our result for the original tree. We
could have defined a binary tree as a special kind of rooted tree, such that

 each vertex has at most two children,
e each child is specified to be a left or right child, and
* a vertex has at most one of each kind of child.

Although this definition works, it is less convenient than the inductive
definition.

There is a similar inductive definition of a rooted tree. Because we have
already defined rooted trees, we will pretend that we are now defining a new
object called an r-tree. The recursive definition states that an r-tree is either
a single vertex, called a root, or a graph consisting of a vertex called a root
and a set of disjoint r-trees, each of which has its root attached by an edge to
the original root. We can then prove, as a theorem, that a graph is an r-tree if
and only if it is a rooted tree. Thus, by replacing “r-tree” with “rooted tree” in
our inductive definition, we have another definition of a rooted tree. Usually
inductive proofs for rooted trees are easier if we use the method of removing
the root and applying the inductive hypothesis to the rooted trees that result,
as we did for binary trees in our solution of Exercise 6.2-6.

386 Chapter 6: Graphs

1.

Spanning tree. A tree whose edge set is a subset of the edge set of the
graph G is called a spanning tree of G if the tree has exactly the same
vertex set as G.

. Queue. We can think of a queue as a list of items to which we can do

exactly two things: We can add an item x to the end of the queue, and
we can remove an item from the front of the queue. We say that we
enqueue x onto Q when we add it to the end of Q, and we say that we
dequeue an item from Q when we remove it from the front of the
queue.

. Breadth-first search. We create a breadth-first search (BFS) tree

centered at x in the following way: We begin by enqueueing x at the
end of a queue and putting x(into S, which becomes the vertex set of
the proposed BFS tree. Then we do the following until we run out of
vertices on our queue:

a. Dequeue a vertex w from the queue.

b. For all edges € incident with w, if € joins w to a vertex z not in S,
then add € to E’, add z to S, and put z on the end of the queue.

Now S is the vertex set of the connected component containing xg, and
E’ is the edge set of a breadth-first search spanning tree of that
component.

Breadth-first search and distances. You may compute the distance
from a vertex y to a vertex x by doing a breadth-first search centered at
x and then computing the distance from x to y in the breadth-first
search tree. In particular, the path from x to y in a breadth-first search
tree of G centered at x is a shortest path from x to y in G.

. Rooted tree. A rooted tree consists of a tree with a selected vertex,

called a root, in the tree.

. Ancestor/descendant. In a rooted tree with root r, a vertex x is an

ancestor of a vertex y, and vertex y is a descendant of vertex x if x is
on the unique path from the root to y.

. Parent/child. In a rooted tree with root r, a vertex x is a parent of a

vertex y and y is a child of vertex x if x is the unique vertex adjacent
to y on the unique path from r to y.

. Leaf vertex/external vertex. A vertex with no children in a rooted tree

is called a leaf vertex, a leaf, or an external vertex.

. Internal vertex. A vertex of a rooted tree that is not a leaf vertex is

called an internal vertex.

6.2: Spanning Trees and Rooted Trees 387

10. Binary tree. We recursively describe a binary tree as
* an empty tree (a tree with no vertices), or
 astructure T consisting of a root vertex, a binary tree called the
left subtree of the root, and a binary tree called the right subtree
of the root. If the left or right subtree is nonempty, then its root
vertex is joined by an edge to the root of T.
11. Full binary tree. A binary tree is a full binary tree if it is nonempty and
each vertex has either two nonempty children or two empty children.
12. Recursive definition of a rooted tree. The recursive definition
of a rooted tree states that it is either a single vertex, called a root, or
a graph consisting of a vertex called a root and a set of disjoint rooted
trees, each of which has its root attached by an edge to the original
root.

All problems with blue boxes have an answer or hint available at the end of
the book.

Find all spanning trees (list their edge sets) of the graph in Figure 6.15.

€

e % e3

s
Figure 6.15

2. Show that a finite graph is connected if and only if it has a spanning
tree.

Draw all rooted trees on five vertices. The order and the place in which
you write the vertices on the page is unimportant. If you would like to
label the vertices (as in Figure 6.11), that is fine, but don’t give two
different ways of labeling or drawing the same tree.

4. Draw all rooted trees on six vertices with four leaf vertices. If you
would like to label the vertices (as in Figure 6.11), that is fine, but
don’t give two different ways of labeling or drawing the same
tree.

Find a tree with more than one vertex and with the property that all the
rooted trees you get by picking different vertices as roots are different
as rooted trees. (Two rooted trees are the same [isomorphic], if they
each have one vertex or if you can label them so that they have the
same labeled root and the same labeled subtrees.)

388 Chapter 6: Graphs

10.

12.

14.

Create a breadth-first search tree centered at vertex 12 for the graph in
Figure 6.8, and use your tree to compute the distance of each vertex
from vertex 12.

Draw all full binary trees on seven vertices.

The depth of a vertex in a rooted tree is defined to be the number of
edges on the unique path to the root. The height of a rooted tree is the
maximum of the depths of its vertices. A binary tree is complete if it is
full and all its leaves have the same depth. How many vertices does a
complete binary tree of height 1 have? Height 2? Height d? (Proof
required for height d.)

Based on Problem 8, what is the minimum height of any binary tree on
v vertices? (Please prove this.)

As defined in Problem 8, a binary tree is complete if it is full and all its
leaves have the same depth. A vertex that is not a leaf vertex is called
an internal vertex. What is the relationship between the number I of
internal vertices and the number L of leaf vertices in a complete binary
tree?

The internal path length of a binary tree is the sum, taken over all
internal vertices of the tree, of the depth of the vertex. The external
path length of a binary tree is the sum, taken over all leaf vertices of
the tree, of the depth of the vertex (see Problem 8 for a definition of
“depth”). Show that in a nonempty full binary tree with n internal
vertices, internal path length i, and external path length e, you have
e=1i-+2n.

Prove that a graph is an r-tree, as defined at the end of this section, if
and only if it is a rooted tree.

Use the inductive definition of a rooted tree (r-tree) given at the end of
this section to give another proof that a rooted tree with n vertices has
n —1ledgesifn > 1.

Figure 6.16 has numbers added to the edges of the graph of Figure 6.1
to give what is usually called a weighted graph—a graph with
numbers, often called weights, associated with its edges. We use w(e)
to stand for the weight of the edge €. In this case, these numbers
represent the lease fees, in thousands of dollars, for the communication
lines that the edges represent. Because the company is choosing a
spanning tree from the graph to save moneys, it is natural that it would
want to choose the spanning tree with minimum total cost. To be
precise, a minimum spanning tree in a weighted graph is a spanning
tree of the graph such that the sum of the weights on the edges of the
spanning tree is a minimum among all spanning trees of the graph.

6.3: Eulerian and Hamiltonian Graphs 389

Figure 6.16: A stylized map of some eastern U.S. cities

Give an algorithm to select a spanning tree of minimum total weight
from a weighted graph, and apply the algorithm to find a minimum
spanning tree of the weighted graph in Figure 6.16. Show that your
algorithm works, and analyze its running time.

6.3 EULERIAN AND HAMILTONIAN GRAPHS

Exercise 6.3-1

Eulerian Tours and Trails

In an article generally acknowledged to be one of the origins of graph
theory, reprinted in Biggs, Lloyd, and Wilson [7], Leonhard Euler (pro-
nounced “Oiler”) described a geographic problem that he offered as an
elementary example of what he called “the geometry of position.” The
problem, known as the Konigsberg Bridge problem, concerns the town of
Konigsberg in Prussia (now Kaliningrad in Russia), which is shown in a
schematic map (circa 1700) in Figure 6.17. Euler tells us that the citizens of
Konigsberg amused themselves by trying to find a walk through town that
crossed each of the seven bridges once and only once and ended where it
started. Is such a walk possible?

In Exercise 6.3-1, such a walk will enter a landmass on a bridge and leave it
on a different bridge. So, except for the starting and ending point, the walk
requires two new bridges each time it enters and leaves a landmass. Thus,

390 Chapter 6: Graphs

Exercise 6.3-2

Exercise 6.3-3

Exercise 6.3-4

Figure 6.17: A schematic map of Konigsberg

each landmass must be at the end of an even number of bridges. However,
as we see in Figure 6.17, each landmass is at the end of an odd number of
bridges. Therefore, no such walk is possible.

We can represent the map in Exercise 6.3-1 more compactly with the graph
in Figure 6.18. In graph-theoretic terminology, Euler’s question asks whether
there is a walk, starting and ending at the same vertex, that uses each edge
exactly once.

Right bank

Island Point

Left bank

Figure 6.18: A graph to replace the schematic map of Konigsberg

Determine whether the graph in Figure 6.1 (in Section 6.1) has a closed walk
that includes each edge of the graph exactly once, and find one if it does.

Find the strongest condition, or conditions, you can find that must be satisfied
by all graphs with a walk that starts and ends at the same place and that
includes each vertex at least once and each edge once and only once. Such a
walk is known as an Eulerian tour or Eulerian circuit.

Find the strongest condition, or conditions, you can find that must be satisfied
by all graphs with a walk that starts and ends at different places and that

Exercise 6.3-5

6.3: Eulerian and Hamiltonian Graphs 391

includes each vertex at least once and each edge once and only once. A walk
where no edge appears more than once is called a trail, so this kind of walk
is known as an Eulerian trail.

Determine whether the graph in Figure 6.1 has an Eulerian trail, and find one
if it does.

The graph in Figure 6.1 cannot have a closed walk that includes each edge
exactly once, because if the initial vertex of the walk were W, then the number
of edges incident with W would have to be one at the beginning of the walk,
plus two for each time W appears before the end of the walk, plus one more
for the time W would appear at the end of the walk. Thus, the degree of W
would have to be even. But if W were not the initial vertex of a closed walk
including all the edges, then each time we entered W on one edge, we would
have to leave it on a second edge; so, the number of edges incident with W
would have to be even. Thus, in Exercise 6.3-2, there is no closed walk that
includes each edge exactly once.

Notice that in any graph with an Eulerian circuit, each vertex, except for the
starting-finishing one, will be paired with two new edges (those preceding and
following it on the walk) each time it appears on the walk. This is similar to
our argument for a walk through Konigsberg. Therefore, each of these vertices
is incident with an even number of edges. Furthermore, the starting vertex is
incident with one edge at the beginning of the walk and with a different edge
at the end of the walk. Each other time the starting vertex occurs, it will be
paired with two edges. Thus, this vertex is incident with an even number of
edges as well. Therefore, a natural condition that a graph must satisfy if it
has an Eulerian tour is that each vertex has even degree. But Exercise 6.3-3
asks for the strongest condition or conditions we could find that a graph with
an Eulerian tour would satisfy. How do we know whether this is as strong
a condition as we could devise? In fact, it isn’t—the graph in Figure 6.19
clearly has no Eulerian tour because it is disconnected, even though every
vertex has even degree.

The point that Figure 6.19 makes is that to have an Eulerian tour, a graph
must be connected as well as having only vertices of even degree. Thus,

/\

Figure 6.19: This graph has no Eulerian tour, even though each vertex has
even degree

392 Chapter 6: Graphs

Theorem 6.10

perhaps the strongest conditions we can find for having an Eulerian tour are
that the graph is connected and every vertex has even degree. Again, the
question comes up, “How do we show that these conditions are as strong as
possible, if indeed they are?” We showed that a condition was not as strong as
possible by giving an example of a graph that satisfied the condition but that
did not have an Eulerian tour. What if we could show that no such example is
possible? If we could prove that there is an Eulerian tour in every connected
graph in which each vertex has even degree, then we would show that our
condition is as strong as possible.

A finite graph has an Eulerian tour if and only if it is connected and each
vertex has even degree.

Proof A graph must be connected to have an Eulerian tour because there
must be a walk that includes each vertex and therefore each pair of vertices
must be connected by a path. Similarly, as explained earlier, each vertex must
have even degree for a graph to have an Eulerian tour. Therefore, we need
only show that if a graph is connected and each vertex has even degree, then
it has an Eulerian tour. We do so with a recursive construction. The base of
our recursive construction is a procedure that forms a closed walk that starts
and ends at xp, but may not include all the edges. We simply start by taking
an edge out of x(to a neighboring vertex, say x;. We add the edge {xg, x;}
to the walk, delete it from FE, and continue by taking another edge incident to
x1. Because each vertex of G has even degree, whenever there is one vertex
incident to x, there must also be another; when we remove both these edges,
every vertex of G still has even degree. Thus, we continue in this manner with
vertices x, x3, and so on until we reach xo again. Observe that because each
vertex has even degree, we will eventually reach xg again. This gives us a
closed walk C. If C contains all the edges of G, we stop. As we constructed
the walk, we deleted the edges of this closed walk from the edge set of G,
giving us a graph G’ = (V, E’) in which each vertex has even degree because
we have removed two edges incident with each vertex of the closed walk (or
else we have removed a loop).

However, G’ need not be connected. Each connected component of G’ is a
connected graph in which each vertex has even degree. Furthermore, each
connected component of G’ contains at least one element x; of the closed walk
whose edges we deleted. (Suppose that a connected component K contained
no x;. Because G is connected, there is a path in G for each i from each
vertex in K to each vertex x;. Choose the shortest such path, and suppose that
it connects a vertex y in K to x;. Then no edge in the path can be in the closed
walk or else we would have a shorter path from y to a different vertex x;.

Theorem 6.11

6.3: Eulerian and Hamiltonian Graphs 393

Therefore, removing the edges of the closed walk leaves y connected to x; in
K, so that K contains an x; after all, which is a contradiction.) Each connected
component has fewer edges than G, so we may assume inductively that each
connected component has an Eulerian tour. Now we may begin to construct
an Eulerian tour of G recursively by starting at xp and taking an Eulerian tour
of the connected component containing xo. Now suppose we have constructed
a walk that contains the vertices x1, xa, ..., X, as well as all the vertices and
edges of each connected component of G’ containing at least one of these
vertices. If this is not already an Eulerian tour, there is an edge €;4+; to a
vertex X, in our original closed walk. Add this edge and vertex to the walk
we are constructing. If the vertices and edges of the connected component of
G’ containing x4 are not already in our tour, we add an Eulerian tour of the
connected component of G’ containing x;. 1 to the walk we are constructing.
Every vertex is in some connected component of G, and every edge is either
an edge of the first closed walk or an edge of some connected component
of G’. Therefore, when we add the last edge and vertex of our original closed
walk to the walk that we have been constructing, every vertex and edge of the
graph will have to be in the walk we have constructed. Furthermore, by the
way we constructed this walk, no edge appears more than once. Thus, if G is
connected and each vertex of G has even degree, then G has an Eulerian tour.

A graph with an Eulerian tour is called an Eulerian graph.

In Exercise 6.3-4, each vertex other than the initial and final vertices of the
walk must have even degree by the same reasoning that we used for Eulerian
tours. But the initial vertex must have odd degree. This is because the first
time we encounter this vertex in our Eulerian trail, it is incident with one
edge in the walk, but each succeeding time, it is incident with two edges
in the walk. Similarly, the final vertex must have odd degree. This makes it
natural to guess the following theorem.

A graph G has an Eulerian trail if and only if G is connected and all but
two of the vertices of G have even degree.

Proof We have already shown that if G has an Eulerian trail, then all but
two vertices of G have even degree, and these two vertices have odd degree.

Suppose that G is a connected graph in which all but two vertices have even
degree. Suppose the two vertices of odd degree are x and y. Add an edge
€’ joining x and y to the edge set of G to get G". Then G’ has an Eulerian
tour by Theorem 6.10. One of the edges of the tour is the added edge. We
may traverse the tour starting with any vertex and any edge following that

394 Chapter 6: Graphs

vertex in the tour; thus, we may begin the tour with either xe’y or ye’x. By
removing the first vertex and €’ from the tour, we get an Eulerian trail in G.

By Theorem 6.11, there is no Eulerian trail in Exercise 6.3-5.

Euler made a big deal in his paper of explaining why it is necessary for each
landmass to have an even number of bridges, but he seemed to consider the
process of constructing the walk rather self-evident, as if it were hardly worthy
of comment. For us, however, proving that the construction is possible if each
landmass has an even number of bridges (that is, showing that the condition
that each landmass has an even number of bridges is a sufficient condition
for the existence of an Eulerian tour) was a much more significant effort
than proving that having an Eulerian tour requires each landmass to have
an even number of bridges. The standards of what is required to back up a
mathematical claim have changed over the years!

Finding Eulerian Tours

Notice that our proof of Theorem 6.10 gives a recursive algorithm for con-
structing a tour: We find a closed walk W starting and ending at a vertex
we choose, create the graph G — W that results from removing the closed
walk, and then follow our closed walk, pausing each time we enter a new
connected component of G — W to construct recursively an Eulerian tour of
the component and traverse it before returning to following our closed walk.

We will soon give pseudocode for this algorithm. Note that when we recur-
sively find a walk through a connected component of G — W, the algorithm
will remove all the edges of that connected component. Therefore, even if
several vertices in W are in the connected component, we will construct the
entire walk when the first of these vertices is encountered, and all edges from
the component will be removed from the other vertices in this process.

We need to do the following three operations on walks:

* CreateWalk (x, y): Creates and returns a walk with a single edge
that starts at vertex x and ends at vertex y.

* AppendToWalk (W, x) : Adds vertex x to the end of walk W, adding
an edge from the current end of the walk to x.

° SpliceWalks (W, x,) : Assumes that x is a vertex in walk W,
and that walk W, begins and ends at x. Changes walk Wj so that it
goes from its beginning to x, follows W5 to its end at x, and then
continues from x to the end of walk W;.

[W s S NS
B W NP O WOoJo Ui W B

—~ e~~~ —~

6.3: Eulerian and Hamiltonian Graphs 395

We also assume the existence of a procedure RemoveEdge (x,y, E),
which removes one edge connecting x and y from the edge set E. Finally,
Degree (x, E) should be the degree of x in the current edge set E.

FindEulerianTour(V, E, xg)

// Assume every vertex of Vhas even degree.
// Assume X g is a vertex in Vof degree > 0.
// Returns a walk that begins and ends at x g
// containing all edges in the
// connected component containing xg.
// The algorithm first finds a closed walk starting
// and ending at xg.
vy =avertex adjacent to xg
W= CreateWalk(xgq,Vy)
RemoveEdge (x¢,V, E)
while (y# x9¢)
x=y
y =avertex adjacent to x
AppendToWalk (W, y)
RemoveEdge (x, v, E)
Wq=W
for each vertexxinw
while (Degree(x,E) >0)
W, = FindEulerianTour (V, E, x)
SpliceWalks (W1, x, Wy)
return W,

It is possible to use linked structures to implement this algorithm so that each
operation on walks takes O(1) time. The operations on the graph can also
be implemented in O(1) time. Because each time we find an adjacency we
remove an edge from E, the total time spent in the loop in Lines 4—8 to find a
walk is proportional to the length of the walk. The time needed to copy W to
Wi in Line 9 is no more than some constant times the amount of time spent in
the loop in Lines 4-8. The same is true in the recursive calls, and eventually
every edge is removed from E and added to W. Thus, our algorithm’s time is
proportional to the number of edges, or ®(e).

Hamiltonian Paths and Cycles

A natural question to ask in light of our work on Eulerian tours is whether
we can state necessary and sufficient conditions for a graph to have a closed
walk that includes each vertex exactly once (except for the beginning and end).
An answer to this question could be quite useful. For example, a salesperson
might have to plan a trip through a number of cities connected by a network of

396 Chapter 6: Graphs

Exercise 6.3-6

Exercise 6.3-7

Exercise 6.3-8

airline routes. Planning the trip so the salesperson would travel through a city
only when stopping there for a sales call would minimize the number of flights
needed. This question came up in a game called “Around the World,” designed
by William Rowan Hamilton. In this game, the vertices of the graph were the
vertices of a dodecahedron (a 12-sided solid in which each side is a pentagon),
and the edges were the edges of the dodecahedron. The object of the game
was to design a trip that started at one vertex, visited each vertex once, and
then returned to the starting vertex along an edge. Hamilton suggested that
two players could take turns, one choosing the first five cities on a tour, and
the other trying to complete the tour. It is because of this game that a cycle
that includes each vertex of the graph exactly once (thinking of the first and
last vertex of the cycle as the same) is called a Hamiltonian cycle. A graph
is called Hamiltonian if it has a Hamiltonian cycle. A Hamiltonian path is a
path that includes each vertex of the graph exactly once.

It turns out that nobody yet knows (and as we explain briefly at the end of
this section, it may be reasonable to expect that nobody will find) useful
necessary and sufficient conditions for a graph to have a Hamiltonian cycle
or a Hamiltonian path. What would make necessary and sufficient conditions
useful? Useful conditions would be significantly easier to verify than trying
all permutations of the vertices to see if taking the vertices in the order of that
permutation defines a Hamiltonian cycle or path. Because people have been
unable to find useful necessary and sufficient conditions, this branch of graph
theory has evolved into theorems that give sufficient conditions for a graph
to have a Hamiltonian cycle or path. Such theorems say that all graphs of a
certain type have Hamiltonian cycles or paths, but they do not characterize
all graphs that have Hamiltonian cycles or paths.

Describe all values of n such that a complete graph on n vertices has a
Hamiltonian path. Describe all values of n such that a complete graph on
n vertices has a Hamiltonian cycle.

Determine whether the graph in Figure 6.1 has a Hamiltonian cycle or path.
If it does, determine one.

Try to find an interesting condition involving the degrees of the vertices of a
simple graph that guarantees the graph will have a Hamiltonian cycle. Does
your condition apply to graphs that are not simple? (There is more than one
condition to try and therefore more than one reasonable answer to this exercise.
For example, you might ask if a graph in which each vertex has degree n — 2
has a Hamiltonian cycle.)

6.3: Eulerian and Hamiltonian Graphs 397

In Exercise 6.3-6, the path consisting of one vertex and no edges is a Hamil-
tonian path but not a Hamiltonian cycle in the complete graph on one vertex.
(Recall that a path consisting of one vertex and no edges is not a cycle.) Sim-
ilarly, the path with one edge in the complete graph K, is a Hamiltonian path
but not a Hamiltonian cycle, and because K; has only one edge, there is no
Hamiltonian cycle in K. In the complete graph K,,, any permutation of the
vertices is a list of the vertices of a Hamiltonian path. If n > 3, such a Hamil-
tonian path from x; to x, can be converted to a Hamiltonian cycle by adding
the edge from x, to x;, followed by the vertex x;. (This gives a cycle starting
and ending at x; and including each vertex other than x; exactly once.) Thus,
each complete graph has a Hamiltonian path, and each complete graph with
more than three vertices has a Hamiltonian cycle.

In Exercise 6.3-7, the path with vertices NO, A, MI, W, P, NY, B, CH, CI, and
ME is a Hamiltonian path. Adding the edge from ME to NO and the vertex
NO gives the Hamiltonian cycle NO, A, MI, W, P, NY, B, CH, CI, ME, NO.

Now consider Exercise 6.3-8. Based on our observation that the complete
graph on n vertices has a Hamiltonian cycle if n > 2, we might let our condi-
tion be that the degree of each vertex is one less than the number of vertices.
This would be uninteresting, however, because it would simply restate what
we already know for complete graphs. The reason we could say that K, has
a Hamiltonian cycle when n > 3 is that when we enter a vertex, there is
always a remaining edge on which we could leave the vertex. However, the
condition that each vertex has degree n — 1 is stronger than we need for the
entering-leaving condition, because until we are at the second-to-last vertex
of the cycle, we have more choices than we need for edges on which to leave
the vertex. On the other hand, it might seem that even if n were rather large,
the condition that each vertex should have degree n — 2 would not be suffi-
cient to guarantee a Hamiltonian cycle. It might be possible that, as illustrated
in Figure 6.20, when we get to the second-to-last vertex that we hoped to have
on the cycle, all of the n — 2 vertices to which the vertex is adjacent might
already be on the cycle and different from the last vertex. Thus, we would
not have an edge on which we could leave that vertex. However, there is the
possibility that, as in Figure 6.21, when we had an earlier choice, we might

Figure 6.20: The path 1, 2, 3, 4, 5 cannot be extended to a Hamiltonian cycle

398 Chapter 6: Graphs

Theorem 6.12

Figure 6.21: Making a better choice early on lets us find a Hamiltonian cycle

have made a different choice to include this vertex earlier on the cycle, giving
a different set of choices at the second-to-last vertex. In fact, if n > 3 and
each vertex has degree at least n — 2, then we could choose vertices for a
path more or less as we did for the complete graph until we arrive at vertex
n — 1. At that point, we could complete a Hamiltonian path, unless x,,_; is
adjacent only to the first n — 2 vertices on the path, as in Figure 6.22. In this
last case, the first n — 1 vertices would form a cycle, because x,,_; would be
adjacent to x;. Suppose y is the vertex not yet on the path (vertex 6 in Figure
6.22). Because y has degree n — 2 and is not adjacent to x,_, we find that y
would have to be adjacent to the first n — 2 vertices on the path. Then, because
n > 3, we could take the walk x;yx,...x,—1x; (whichis 1, 6, 2, 3,4, 5, 1
in Figure 6.22), and we would have a Hamiltonian cycle. Of course, unless
n were 4, we could also insert y between x; and x3 (or any x;_; and x; such
thati < n — 1), so we would still have a great deal of flexibility. To push this
kind of reasoning further, in our next theorem we introduce a new technique
that appears often in graph theory. We discuss our use of the technique after
the proof.

Figure 6.22: The path 1, 2, 3, 4, 5 cannot be extended to a Hamiltonian cycle

Dirac’'s Theorem If every vertex of a v-vertex simple graph G with at
least three vertices has degree at least v/2, then G has a Hamiltonian cycle.

Proof Suppose, for the sake of contradiction, that there is a graph G| with
no Hamiltonian cycle in which each vertex has degree at least v/2. If we add
to the edge set of G| an edge joining two existing vertices in G, then each

Exercise 6.3-9

6.3: Eulerian and Hamiltonian Graphs 399

vertex will still have degree at least v/2. If we add all possible edges to G,
we will get a complete graph, and it will have a Hamiltonian cycle. Thus, if
we continue adding edges one at a time to G, then we will at some point
reach a graph that does have a Hamiltonian cycle. Instead, suppose we add
edges to G until we reach a graph G, with no Hamiltonian cycle but with
the property that if we add any edge to G», then we get a Hamiltonian cycle.
We say that G, is maximal with respect to not having a Hamiltonian cycle.
Suppose that x and y are not adjacent in G,. Adding an edge to G, between
x and y gives a graph with a Hamiltonian cycle, and x and y must be joined
by the added edge in this Hamiltonian cycle. (Otherwise G, would have a
Hamiltonian cycle.) Thus, G, has a Hamiltonian path x; x5 . .. x, that starts at
x = x; and ends at y = x,,. Furthermore, x and y are not adjacent.

Before we stated our theorem, we considered a case in which we had a cycle
on f — 1 vertices and in which we were going to add an extra vertex between
two adjacent vertices. This resulted in a path on v vertices from x = x; to
y = x, that we then wanted to convert to a cycle. If we had that y is adjacent
to some vertex x; on the path while x is adjacent to x;y;, then we could
construct the Hamiltonian cycle xjx;y1X;42 ... XpXiXi—1 ... X2x;. But for this
proof, we are assuming that our graph does not have a Hamiltonian cycle.
Thus, for each x; that x is adjacent to on the path x;x; ... x,, we know that y
is not adjacent to x;_;. Because all vertices are on the path, x is adjacent to at
least v/2 vertices among x; through x,. Thus, y is not adjacent to at least v/2
vertices among x; through x,_;. But there are only v — 1 vertices—namely,
x1 through x,_1—to which y could be adjacent because it is not adjacent to
itself. Thus, y is adjacent to at most v — 1 — v/2 = v/2 — 1 vertices. This is
a contradiction. Therefore, if each vertex of a simple graph has degree at least
v/2, then the graph has a Hamiltonian cycle.

The new technique used in our proof was that of assuming we had a maximal
graph (G») that did not have our desired property and then using this maximal
graph in a proof by contradiction.

Suppose v = 2k. Consider a graph G that consists of two complete graphs,
one with k vertices x1, ..., x; and one with k + 1 vertices xg, ..., xr. Notice
that we get a graph with exactly 2k vertices, because the two complete graphs
have one vertex in common. How do the degrees of the vertices relate to v?
Does the resulting graph have a Hamiltonian cycle? What does this say about
whether we can reduce the lower bound on the degree in Theorem 6.12?

400 Chapter 6: Graphs

Exercise 6.3-10

Theorem 6.13

In Exercise 6.3-9, is there a similar example in the case v = 2k + 17

In Exercise 6.3-9, the vertices that lie in the complete graph with k vertices,
with the exception of xj, have degree k — 1. Because v/2 = k, this graph
does not satisfy the hypothesis of Dirac’s theorem, which assumes that every
vertex of the graph has degree at least v/2. Figure 6.23 shows the case in
which k = 3.

Figure 6.23: The vertices of K4 are white or blue; those of K3 are black or blue

The graph in Figure 6.23 has no Hamiltonian cycle. If an attempt at a Hamil-
tonian cycle begins at a white vertex in this figure, then after crossing the
blue vertex to include the black ones, we can never return to a white vertex
without using the blue one a second time. The situation is similar if we try to
begin a Hamiltonian cycle at a black vertex. If we try to begin a Hamiltonian
cycle at the blue vertex, we would next have to include all white vertices or all
black vertices; we would then be stymied because we would have to take our
path through the blue vertex a second time to change colors between white
and black. As long as k > 2, the same argument shows that our graph has no
Hamiltonian cycle. Thus, the lower bound of v/2 in Dirac’s theorem is tight;
that is, we have a way to construct a graph with minimum degree v/2 — 1
(when v is even) for which there is no Hamiltonian cycle. If v =2k 4 1,
then we might consider two complete graphs of size k + 1 joined at a single
vertex. Each vertex other than the one at which the graphs are joined would
have degree k, and we would have k < k + 1/2 = v/2. So again, the mini-
mum degree would be less than v/2. The same kind of argument that we used
with the graph in Figure 6.23 would show that as long as k > 1, we have no
Hamiltonian cycle.

If you analyze our proof of Dirac’s theorem, you will see that we really used
only a consequence of the condition that all vertices have degree at least
v/2—namely, that for any two vertices, the sum of their degrees is at least v.

(Ore’s Theorem) If G is a v-vertex simple graph with v > 3 such that for
each two nonadjacent vertices x and y the sum of the degrees of x and y is

at least v, then G has a Hamiltonian cycle.

Proof See Problem 13.

6.3: Eulerian and Hamiltonian Graphs 401

NP-Complete Problems

At the beginning of our discussion of Hamiltonian cycles, we mentioned
that the problem of determining whether a graph has a Hamiltonian cycle
seems significantly more difficult than the problem of determining whether
a graph has an Eulerian tour. On the surface, however, these two problems
have significant similarities.

* Both problems ask whether a graph has a particular property. (Does
this graph have a Hamiltonian cycle/Eulerian tour?) The answer is
simply “yes” or “no.”

* For both problems, there is additional information we can provide that
makes it relatively easy to check a “yes” answer if there is one. (The
additional information is a closed walk. We simply check whether the
closed walk includes each vertex or each edge exactly once.)

But there is also a striking difference between the two problems. It is reason-
ably easy to find an Eulerian tour in a graph that has one (we saw that the time
to use the algorithm implicit in the proof of Theorem 6.10 is O (e), where e is
the number of edges of the graph). However, nobody has found a polynomial
time algorithm for solving the Hamiltonian cycle problem. This puts us in an
interesting position. If someone gets lucky and guesses a permutation of the
vertices that is a Hamiltonian path, then we can quickly verify the person’s
claim to have a Hamiltonian path. However, in a graph of reasonably large
size, we have no practical method for finding a Hamiltonian path.

This is the essential difference between the class P of problems said to be
solvable in polynomial time and the class NP of problems said to be solv-
able in nondeterministic polynomial time. We are not going to describe these
problem classes in their full generality; a course in the theory of computation
or algorithms is a more appropriate place for such a discussion. However, to
give a sense of the difference between these kinds of problems, we will talk
about them in the context of graph theory. A question about whether a graph
has a certain property is called a graph decision problem. Two examples
are “Does this graph have an Eulerian tour?” and “Does this graph have a
Hamiltonian cycle?” A graph decision problem has a “yes”or “no” answer.
Thus, the question “What is the length of the longest path in G?” is not a
decision problem, but the question “Is there a path of length k in G?” is.

A P-algorithm, or polynomial-time algorithm, for a property takes a graph
as input and, in time O (n¥) (where & is a positive integer independent of the
input graph and # is a measure of the amount of information needed to specify
the input graph), outputs the answer “yes” if and only if the graph does have
the property. We say that the algorithm accepts the graph if it answers “yes.”
(Notice that we don’t specify what the algorithm does if the graph does not

402 Chapter 6: Graphs

have the property, except that it doesn’t output “yes.””) We say that a property
of graphs is in the class P if there is a P-algorithm that accepts exactly the
graphs with the property.

Many decision problems for which no P-algorithm is known seem to be hard
in the same way that the Hamiltonian cycle problem is hard—namely, there
is a P-algorithm for checking a single possible solution to determine if it is a
solution, but there are an exponential (or worse) number of possible solutions
that we might have to check before finding a “yes” answer. These problems
seem different from problems in which even verifying that a proposed solu-
tion is indeed a solution takes more than polynomial time. Is there a way to
characterize “polynomial-time checkable” problems? How can we specify a
“possible solution” in a way that would work for any problem?

An NP-algorithm (nondeterministic polynomial-time algorithm) for a graph
property takes a graph G whose representation has size n and O (n/) additional
information for some integer j independent of G.!° You can think of this
additional information as a possible solution, though the algorithm can use it
any way it chooses. If the algorithm, perhaps using the additional information,
can determine that G has the desired property in O (n*) time, where & is an
integer independent of G, then it outputs “yes.” If it cannot determine that
the graph has the desired property, even if it uses the additional information,
then it can do anything except answer “yes.” For example, for the property of
being Hamiltonian, the extra information might consist of a permutation of
the vertex set of the graph. It would then check the permutation to see if the
vertices, in the order given, form a Hamiltonian cycle. It would output “yes”
if they do.

We call such an algorithm nondeterministic because whether it outputs “yes”
for a given input graph is determined not merely by the graph but also by the
additional information. In particular, the algorithm might or might not answer
“yes” for a graph that has the given property. It depends on the additional
information.

We say the algorithm accepts a graph if there is some choice of additional
information that will cause the algorithm to output “yes.” There may be many
other choices of additional information that do not lead to the algorithm

10The size of the problem is the number of bits needed to write down the problem using a
reasonable representation. We are not going to formally define “reasonable.” When we ask
whether a graph has an Eulerian tour, we could measure the size of the problem by the
number of vertices or by the number of edges. When we ask whether a weighted graph has
a spanning tree of weight w or less, not only is the number of vertices or edges of the
graph important, but so is the number of digits in the numbers—and perhaps the way in
which we represent the numbers. For our purposes, this intuitive idea of the size of a
problem should suffice.

6.3: Eulerian and Hamiltonian Graphs 403

outputting “yes,” but that does not matter. As long as there is any choice
of additional information that causes the algorithm to output “yes,” we say
that the algorithm accepts the graph.

We say that a property is in the class NP if there is an NP-algorithm that
accepts exactly the graphs with the property. Because graph decision prob-
lems ask us to decide whether a graph has a given property, we adopt the
notation P and NP to describe problems as well. We say that a decision prob-
lem is in P or NP if the graph property it asks us to decide is in P or NP,
respectively.

When we say that a nondeterministic algorithm uses the additional informa-
tion, we are thinking of “use” in a very loose way. In particular, for a graph
decision problem in P, the algorithm could simply ignore the additional
information and use the polynomial-time algorithm to determine whether the
answer should be “yes.” Thus, every graph property in P is also in NP.

Some problems in NP, like the Hamiltonian path problem, have an exciting
feature: if they can be solved in polynomial time, then every problem in NP
can be solved in polynomial time. Such problems, called NP-complete, are
the hardest problems in NP. If an NP-complete problem is in P, then P and
NP are the same class. This result would be very surprising, because it would
mean that being told a possible answer never makes it significantly easier to
solve a problem. However, the question as to whether P and NP are the same
class of problems has vexed computer scientists since it was introduced in
1971. (See the end of Section 6.4 for a discussion of the context in which
this question arose.) It is one of the most important unsolved problems in
computer science.

Thus, knowing that a problem, for example the Hamiltonian cycle problem,
is NP-complete does not prove that there is no polynomial-time algorithm
for it. It does mean that a polynomial-time algorithm for the problem would
also give polynomial-time algorithms for thousands of other problems for
which people have been unable to find polynomial-time algorithms. Some of
these problems have been studied for hundreds of years. If a problem is NP-
complete, then itis very unlikely that we will find a polynomial-time algorithm
to solve it. Our time is probably better spent trying to do something else.

Proving That Problems Are NP-Complete*

It is natural to ask how we might prove that a problem is NP-complete.
In 1971, Stephen Cook [12] and (independently) Leonid Levin [25] intro-
duced the concept of NP-completeness. Cook showed that the “satisfiability”

*The material in this section is not used later in the book except for problems marked with
an asterisk.

404 Chapter 6: Graphs

problem is NP-complete. This problem is as follows: Given a Boolean expres-
sion with variables and the logical connectives “and,” “or,” and “not,” is there
a way to assign true and false to the variables that makes the entire expression
true?'! Cook showed that the satisfiability problem is NP-complete by show-
ing that it was possible to use a very complex Boolean expression to model
the steps of a simple computer called a nondeterministic Turing machine. Any
assignment of variables that satisfied the expression would define a sequence
of valid steps of a computation that ended in the computer saying “yes.”

Once we know that a particular problem is NP-complete, we can use it to
prove that other problems are NP-complete using a technique called a reduc-
tion, which is a type of transformation between problems. We next look at
examples of such tranformations and then abstract the general principle from
the examples.

We have claimed that the Hamiltonian cycle problem is NP-complete. We
can use this claim to show that the following problem, called the k- cycle
problem, is NP-complete: Given a graph G and an integer &, does G have a
cycle of length exactly k?

The idea of reduction is to show that if we had an algorithm to solve the
k- cycle problem in polynomial time, then we could use that algorithm to
solve the Hamiltonian cycle problem in polynomial time. But solving the
Hamiltonian cycle problem in polynomial time would mean that any problem
in NP could be solved in polynomial time, because the Hamiltonian cycle
problem is NP-complete. Thus, solving the k-cycle problem in polynomial
time would mean that any problem in NP could be solved in polynomial time.
Therefore, by definition, the k-cycle problem is NP-complete.

How can we use the k-cycle problem to solve the Hamiltonian cycle problem?
This is quite easy, because the Hamiltonian cycle problem is a special case
of the k-cycle problem. Given a graph G with v vertices and an algorithm to
solve the k-cycle problem, we could find out if G has a Hamiltonian cycle by
asking the algorithm if G has a cycle of length v. We have transformed an
instance of the Hamiltonian cycle problem (Does graph G have a Hamiltonian
cycle?) into an instance of the k-cycle problem (Does graph G have a cycle of
length v?). The first question and the second question always give the same
answer for any graph G.

Let’s look at a more complicated case. The clique problem asks, Given a
graph G and an integer n, does G have K, as a subgraph? (That is, does G
have n vertices such that there is an edge between every pair of vertices?)
It is known that the clique problem is NP-complete, though we are not in

1"Boolean expression is another name for what we called a symbolic compound statement
in Chapter 3.

6.3: Eulerian and Hamiltonian Graphs 405

a position to explain why here. The independent set problem asks, Given a
graph G and an integer n, is there a set of n vertices such that there are no
edges between any pair of vertices? We wish to show that the independent set
problem is NP-complete.

We assume that we have an algorithm for solving the independent set problem
in polynomial time, and we show that we can use this algorithm to solve the
clique problem in polynomial time. The transformation is as follows: Suppose
we want to know if a graph G has a clique of size n. We could create a new
graph G’, called the complement of G. The graph G’ has the same vertex set
as G, but there is an edge between a pair of vertices in G' if and only if there is
not an edge between those vertices in G. Constructing G’ would take 0 (v?)
time. We could then use our algorithm for solving the independent set problem
to determine whether G’ has an independent set of size n. Because we have
reversed edges and nonedges when constructing G’ from G, an independent
setin G’ is aclique in G. Thus, the question “Does G have a clique of size n?”
always has the same answer that “Does G’ have an independent set of size n?”
has. Constructing G’ can be done in polynomial time, and we assumed that
running the algorithm to solve the independent set problem can be done in
polynomial time. Thus, by using this transformation, we can solve the clique
problem in polynomial time, which implies that we can solve any problem in
NP in polynomial time. Thus, the independent set problem is NP-complete.

By doing transformations like these (and more complicated ones), computer
scientists and mathematicians have created a long list [17] of NP-complete
problems, which continues to evolve. This list is useful because if we need to
solve a problem that we have never seen before, we can find out if it is on the
list before we spend months trying to solve it. But what if the problem is not
on the list, and we try everything we can think of to solve the problem with no
luck? The next natural thing to do is determine if we can find an NP-complete
problem that we can transform into our difficult problem. If we can, then even
though we don’t have a solution, we know that a solution, if there is one, is
likely to be difficult for anybody to find.

The general technique is as follows: To prove that a problem Q is NP-
complete, assume you have an algorithm that solves that problem in polyno-
mial time. Pick another problem Q’ that is known to be NP-complete. Show
how to take any instance of the NP-complete problem Q' and transform it into
an instance of problem Q such that the answer to the original problem is “yes”
if and only if the answer to the transformed problem is “yes.”!? Show that the
transformation that you specified takes polynomial time. If problem Q can

12 An instance of a problem is a case of the problem in which all parameters are specified;
for example, a particular instance of the Hamiltonian cycle problem is a case of the
problem for a particular graph.

406 Chapter 6: Graphs

be solved in polynomial time, then so can Q’, because to solve an instance
of Q’, we first transform it into an equivalent instance of Q and then run the
algorithm for solving Q and return the answer. Both the transformation and
the run of the algorithm are polynomial, so the whole process is. Because Q’
is NP-complete and can be solved in polynomial time, any problem in NP can
be solved in polynomial time. Therefore, by definition, Q is NP-complete.

This brief discussion of NP-completeness is intended to give a sense of the
nature and importance of the subject. We restricted ourselves to graph prob-
lems for two reasons. First, we expect you to have a sense of what a graph
problem is. Second, no treatment of graph theory is complete without at least
some explanation of how some problems seem to be much more intractable
than others. However, there are NP-complete problems throughout mathemat-
ics and computer science. There are even NP-complete problems that arise in
areas as diverse as biology, physics, and social sciences such as economics.
Providing a real understanding of the subject would require much more time
than is available in an introductory course in discrete mathematics.

1. Eulerian graphs and tours. A graph that has a walk that starts and ends
at the same place and that includes each vertex at least once and each
edge once and only once is called an Eulerian graph. Such a walk is
known as an Eulerian tour or Eulerian circuit.

2. Characterizing Eulerian graphs. A graph has an Eulerian tour if and
only if it is connected and each vertex has even degree.

3. Eulerian trail. A walk that includes each vertex of the graph at least
once and each edge of the graph exactly once but that has different first
and last endpoints is an Eulerian trail.

4. Characterizing graphs with Eulerian trails. A graph G has an Eulerian
trail if and only if G is connected and all but two of the vertices of G
have even degree.

5. Hamiltonian graphs and cycles. A cycle that includes each vertex of a
graph exactly once (thinking of the first and last vertex of the cycle as
the same) is called a Hamiltonian cycle. A graph is called Hamiltonian
if it has a Hamiltonian cycle.

6. Hamiltonian path. A Hamiltonian path is a path that includes each
vertex of the graph exactly once.

7. Dirac’s theorem. If every vertex of a v-vertex simple graph G with at
least three vertices has degree at least v/2, then G has a Hamiltonian
cycle.

6.3: Eulerian and Hamiltonian Graphs 407

8. Ore’s theorem. If G is a v-vertex simple graph with v > 3 such that for
each two nonadjacent vertices x and y the sum of the degrees of x and
y is at least v, then G has a Hamiltonian cycle.

9. Graph decision problem. A question about whether a graph has a
certain property is called a graph decision problem.

10. P-algorithm/polynomial-time algorithm/accepts. A P-algorithm, or
polynomial-time algorithm, for a property takes a graph as input and,
in time O (n*) (where k is a positive integer independent of the input
graph and n is a measure of the amount of information needed to
specify the input graph), outputs the answer “yes” if and only if the
graph does have the property. We say that the algorithm accepts the
graph if it answers “yes.”

11. Problem class P. We say that a property of graphs is in the class P if
there is a P-algorithm that accepts exactly the graphs with the property.

12. NP-algorithm/nondeterministic polynomial-time algorithm. An
NP-algorithm (nondeterministic polynomial-time algorithm) for a
graph property takes a graph G whose representation is size n and also
takes O (n/) additional information for some integer j independent of
G. If the algorithm can determine from G and perhaps the additional
information that G has the desired property in O (n¥) time, where k is
an integer independent of G, then it outputs “yes.” If it cannot
determine from G and the additional information that the graph has the
desired property, then it can do anything except answer “yes.”

13. NP-complete. A graph decision problem in NP is called NP-complete

if a polynomial-time algorithm for that problem implies a
polynomial-time algorithm for every problem in NP.

All problems with blue boxes have an answer or hint available at the end of
the book.

For each graph in Figure 6.24, either explain why the graph does not
have an Eulerian circuit or find an Eulerian circuit.

2. For each graph in Figure 6.25, either explain why the graph does not
have an Eulerian trail or find an Eulerian trail.

What is the minimum number of new bridges that would have to be
built in Konigsberg and where could they be built to give a graph
with an Eulerian circuit?

4. If a new bridge were built in Konigsberg between the island and the
top bank of the river and another between the island and the bottom

408 Chapter 6: Graphs

Figure 6.24

2 2
1 1 2) 6
3 3
5
3 7
4 5 f 4 3
4 8
a b c d
1 5
2 2
1 1 2 2%6
d

Figure 6.25

bank of the river, could you take a walk that crosses all of the bridges
and uses none twice? Explain either where you could start and end in
that case or why you couldn’t do it.

For which values of n does the complete graph on n vertices have an
Eulerian circuit?

The hypercube graph Q, has as its vertex set the n-tuples of zeros
and ones. Two of these vertices are adjacent if and only if they are
different in one position. The name “hypercube” comes from the fact
that Q3 can be drawn in three-dimensional space as a cube. For what
values of n is Q,, Eulerian?

For what values of n is the hypercube graph Q, (see Problem 6)
Hamiltonian?

Give an example of a graph that has a Hamiltonian cycle but no
Eulerian circuit and a graph that has an Eulerian circuit but no
Hamiltonian cycle.

The complete bipartite graph K, , is a graph with m 4 n vertices.
These vertices are divided into a set of size m and a set of size n. We

6.3: Eulerian and Hamiltonian Graphs 409

call these sets the parts of the graph. Within each set, there are no
edges, but between each pair of vertices in different sets, there is an
edge. The graph K4 4 is pictured in Figure 6.24d.

E For what values of m and n is K, , Eulerian?
m For which values of m and n is K, , Hamiltonian?

10. Show that the edge set of a graph in which each vertex has even
degree may be partitioned into edge sets of cycles of the graph.

A cut vertex of a graph is a vertex whose removal (along with all
edges incident with it) increases the number of connected
components of the graph. Describe any circumstances under which a
graph with a cut vertex can be Hamiltonian.

12. Which of the graphs in Figure 6.26 satisfy the hypotheses of Dirac’s
theorem? Of Ore’s theorem? Which have Hamiltonian cycles?

& o @ U

&8 Prove Theorem 6.13.

*14. The Hamiltonian path problem is the problem of determining
whether a graph has a Hamiltonian path. Explain why this problem is
in NP. Explain why the problem of determining whether a graph has
a Hamiltonian path is NP-complete.

Figure 6.26

We form the Hamiltonian closure of a graph G by constructing a
sequence of graphs G; with Gy = G and with G; formed from G;_;
by adding an edge between two nonadjacent vertices whose
degree-sum is at least v. When we reach a G; to which we cannot add
such an edge, we call it a Hamiltonian closure of G. Prove that a
Hamiltonian closure of a simple graph G is Hamiltonian if and only
if G is Hamiltonian.

16. Show that a simple connected graph has one and only one
Hamiltonian closure.

*This problem depends on material in the text marked with an asterisk.

410 Chapter 6: Graphs

6.4 MATCHING THEORY

Exercise 6.4-1

Exercise 6.4-2

The Idea of a Matching

Suppose a school board is deciding among applicants for faculty positions.
The school board has positions for teachers in a number of different grades,
a position for an assistant librarian, two coaching positions, and one position
each for high school math and English teachers. The board has many appli-
cants, each of whom can fill more than one of the positions. The board would
like to know whether it’s possible to fill all the positions with the people who
have applied for jobs and have been judged as qualified.

Table 6.1 shows a sample of the kinds of applications that a school district
might get for its positions. An x below an applicant’s number means that the
applicant qualifies for the position to the left of the x. Thus, Candidate 1 is
qualified to teach second grade and third grade and to be an assistant librarian.
The assistant coaches teach physical education when they are not coaching,
so a coach can’t also hold one of the listed teaching positions. Draw a graph
in which the vertices are labeled 1 through 9 for the applicants, and L, S, T,
M, E, B, and F for the positions. Draw an edge from an applicant to a position
if that applicant can fill that position. Use the graph to help decide if it is
possible to fill all the positions from among the applicants deemed suitable.
If you can do so, give an assignment of people to jobs. If you cannot, try to
explain why not.

Iob Applicant 4 » 3 4 5 6 7 8 9
Assistant librarian X X X

Second grade X X X X

Third grade X X X

High school math X X X

High school English X X X

Asst. baseball coach X X X X
Asst. football coach X X X

Table 6.1: Some sample job application data

Table 6.2 shows a second sample of the kinds of applications a school district
might get for its positions. Draw a graph as before and use it to help you

6.4: Matching Theory 411

decide if it is possible to fill all the positions from among the applicants
deemed suitable. If you can do so, give an assignment of people to jobs. If
you cannot, try to explain why not.

Iob Applicant 4 3 4 5 6 7 8 9
Assistant librarian X X

Second grade X X X X
Third grade X X X X X
High school math X X X

High school English X X

Asst. baseball coach x X X X X X
Asst. football coach X X X

Table 6.2: Some other sample job application data

Figure 6.27a shows a graph of the data from Table 6.1.
1 2 3 4 5 6 71 8 9 1 2 3 4 5 6 71 8 9
L S T ™M E B F L S T ™M E B F
a b

Figure 6.27: A graph of the data from Table 6.1

From the figure, we see that, as shown in blue in Figure 6.27b, L:1, S:2, T:4,
M:5, E:6, B:7, and F:8 is one assignment of jobs to people. This assignment
picks out a set of edges that share no endpoints. For example, the edge from
L to 1 has no endpoint among the endpoints of the edges {S, 2}, {T, 4}, {M,
5}, {E, 6}, {B, 7}, and {F, 8}—namely, S, T, M, E, B, F, 2,4, 5, 6, 7, and 8.
A set of edges in a graph that share no endpoints is called a matching of the
graph.!'? Thus, we have a matching between jobs and people who can fill the

3In light of this definition, we should use our standard edge notation for matchings. The
matching we described by L:1, S:2, T:4, M:5, E:6, B:7 and F:8 thus becomes
{{L, 1}, {S, 2}, {T, 4}, {M, 5}, {E, 6}, {B, 7}, {F. 8}}.

412 Chapter 6: Graphs

jobs. Because we don’t want to assign two jobs to one person or two people
to one job, a matching is exactly the sort of solution we were looking for.
Notice that the edge from L to 1 is a matching all by itself. Thus, we weren’t
simply looking for a matching; we were looking for a matching that fills all
the jobs. A matching is said to saturate a set X of vertices if every vertex in
X is matched. Thus, Exercise 6.4-1 asked for a matching that saturates the
jobs. In this case, a matching that saturates all the jobs is a matching that is
as large as possible, so it is also a maximum matching—a matching that is
at least as large as any other matching.

Figure 6.27 is an example of a bipartite graph. A graph is called bipartite
whenever its vertex set can be partitioned into two sets X and Y so that each
edge connects a vertex in X with a vertex in Y. We can think of the jobs as
the set X and the applicants as the set Y. Each of the two sets is called a part
of the graph. A part of a bipartite graph is an example of an independent set.
A subset of the vertex set of a graph is called independent if no two of its
vertices are joined by an edge. Thus, a graph is bipartite if and only if its vertex
set is a union of two independent sets. Notice that a bipartite graph cannot
have any loop edges, because a loop would connect a vertex to a vertex in the
same set. More generally, a vertex joined to itself by a loop cannot be in an
independent set.

In a bipartite graph, it is sometimes easy to pick out a maximum matching
simply by staring at a drawing of the graph. However, that is not always the
case. Figure 6.28 is a graph of the data in Table 6.2. Staring at this figure gives
us many matchings, but no matching that saturates the set of jobs. Staring,
though, is not a valid proof technique, unless we can describe very well what
we are staring at. Perhaps you tried to construct a matching by matching with
something like {L, 4}, {S, 2}, {T, 7}, {M, 5}, {E, 6}, and {B, 8}. If so, then you
were probably frustrated when you got to F and found that 4, 5, and 6 were
already used. You may then have gone back and tried to redo your earlier
choices to keep one of 4, 5, or 6 free, only to find that you couldn’t. You
couldn’t do this because jobs L, M, E, and F are adjacent only to people 4, 5,
and 6. Thus, there are only three people qualified for these four jobs, and so
there is no way you can fill them all.

Figure 6.28: A graph of the data from Table 6.2

Lemma 6.14

Lemma 6.15

6.4: Matching Theory 413

We call the set N (S) of all vertices that are adjacent to at least one vertex of
S the neighborhood of S or the neighbors of S. In these terms, there is no
matching that saturates a part X of a bipartite graph if there is some subset §
of X such that the set N(S) of the neighbors of § is smaller than S. We can
summarize this discussion as follows.

If we can find a subset S of a part X of a bipartite graph G such that
IN(S)| < |S], then there is no matching of G that saturates X.

Proof A matching that saturates X must saturate S. But if there is such
a matching, each element of S must be matched to a different vertex, and
this vertex cannot be in S because S C X. Therefore, there are edges from
vertices in S to at least | S| different vertices not in S; so, |N(S)| > |S|, which
is a contradiction. Thus, there is no such matching.

Applying Lemma 6.14 yields a proof that there is no matching that
saturates all the jobs in Exercise 6.4-2, which means the matching
{{L, 4}, {S, 2}, {T, 7}, {M, 5}, {E, 6}, {B, 8}} is a maximum matching for the
graph in Figure 6.28.

Another possible method for proving that there is no larger matching than
the one we originally found is the following: When we matched L to 4, we
may have noted that 4 is an endpoint of quite a few edges. Then, when we
matched S to 2, we may have noted that S is an endpoint of quite a few edges,
and so is T. In fact, 4, S, and T touch 12 edges of the graph, and there are
only 23 edges in the graph. If we could find three more vertices that touch the
remaining edges of the graph, then we would have six vertices, at least one of
which is incident with every edge. A set of vertices such that at least one of
them is incident with each edge of a graph G is called a vertex cover of the
edges of G, or a vertex cover of G for short. What does this have to do with
a matching? Each matching edge would have to touch one, or perhaps two,
of the vertices in a vertex cover of the edges. Thus, the number of edges in
a matching is always less than or equal to the number of vertices in a vertex
cover of the edges of a graph. Therefore, if we can find a vertex cover of size
6 in Figure 6.28, then we will know that there is no matching that saturates
the set of jobs because there are seven jobs. For future reference, we state our
result about the size of a matching and the size of a vertex cover as a lemma.

The size of a matching in a graph G is no more than the size of a vertex
cover of G.

Proof The proof is given in the preceding discussion.

414 Chapter 6: Graphs

Exercise 6.4-3

Exercise 6.4-4

Exercise 6.4-5

We have seen that because 4, S, and T cover more than half of the edges of
the graph in Figure 6.28, they are good candidates for being members of a
relatively small vertex cover of the graph. Continuing through the edges that
we first examined, we see that 5, 6, and B are good candidates for a small
vertex cover as well. In fact, {4, S, T, 5, 6, B} form a vertex cover. Because we
have a vertex cover of size 6, we know a maximum matching has size no more
than 6. Thus, the six-edge matching we already found is a maximum matching.
Therefore, with the data in Table 6.2, it is not possible to fill all of the jobs.

Making Matchings Bigger

Practical problems involving matchings will usually lead us to search for the
largest possible matching in a graph. To see how to use a matching to create a
larger one, we will assume that we have two matchings of the same graph and
see how they differ, especially how a larger one differs from a smaller one.

In the graph G of Figure 6.27, let M be the matching
{L, 1}, {S, 2}, {T, 4}, {M, 5}, {E, 6}, {B, 9}, {F, 8}} ,
and let M, be the matching
{{L. 4}, (S, 2}, {T, 1}, {M, 6}, {E, 7}, {B, 8}}.

For sets S7 and S, the symmetric difference of S; and S,, denoted by S1AS>,
is (51 U $2) — (81 N Sy). Compute the set M AM,, and draw the graph with
the same vertex set as G and edge set M| A M,. Use different colors or textures
for the edges from M, and M, so that you can see their interaction. Describe as
succinctly as possible the kinds of graphs you see as connected components.

In Exercise 6.4-3, one of the connected components suggests a way to modify
M, by removing one or more edges and substituting one or more edges from
M, that will give you a larger matching M} related to M5. In particular, this
larger matching should saturate everything M, saturates and more. What is
M}, and what else does it saturate?

Consider the matching M = {{S, 1}, {T, 4}, {M, 6}, {B, 8}} in the graph of
Figure 6.28. How does it relate to the path 3, S, 1, T, 4, M, 6, F? Say as much
as you can about the set M’ that you obtain from M by deleting the edges of
M that are in the path and adding to the result the edges of the path that are
not in M.

Lemma 6.16

6.4: Matching Theory 415

In Exercise 6.4-3,

MiAM, = {{L, 1}, {L, 4}, {T, 4}, {T, 1}, {M, 5}, {M, 6}, {E, 6}, {E, 7},
{B, 8}, {F, 8}, {B, 9}}.

The graph for the edge set M| AM; is shown in Figure 6.29. The edges of
M, are dashed. As you can see, the graph consists of a cycle with four edges
alternating between edges of M| and M>, a path with four edges alternating
between edges of M; and M,, and a path with three edges alternating
between edges of M| and M,. We call a path or cycle an alternating path
or alternating cycle for a matching M of a graph G if its edges alternate
between edges in M and edges not in M. We call a path or cycle an alternating
path or alternating cycle for M| and M, if its edges alternate between M,
and M;. Thus, our connected components are alternating paths and cycles
for M| and M. The graph we drew in Figure 6.29 shows all the ways in
which two matchings can differ, as summarized in the following lemma.

Figure 6.29

(Berge's Lemma) If M| and M, are matchings of a graph G = (V, E), then
each connected component of M A M, is either a cycle with an even number
of vertices or a path. Furthermore, the cycles and paths are alternating cycles
and paths for M; and M.

Proof Figure 6.29 illustrates this proof. Each vertex of the graph
(V, M1 AM5;) has degree O, 1, or 2. If a component has no cycles, then it is a
tree, and the only kind of tree that has only vertices of degree 1 and 2 is a
path. If a component has a cycle, then it cannot have any edges other than the
edges of the cycle incident with its vertices, because the graph would then
have a vertex of degree 3 or more. Thus, the component must be a cycle. If
two edges of a path or cycle in (V, M| AM,) share a vertex, then they cannot
come from the same matching, because two edges in the same matching
do not share a vertex. Therefore, alternating edges of a path or cycle of
(V, My A M3) must come from different matchings. In particular, this implies
that a cycle in the symmetric difference has an even number of vertices.

416 Chapter 6: Graphs

Corollary 6.17

If M, and M, are matchings of a graph G = (V, E) and if |M;| < |M,],
then there is an alternating path for M; and M, that starts and ends with
vertices saturated by M but not by M5.

Proof Because an even alternating cycle and an even alternating path in
(V, My AM>) have equal numbers of edges from M| and M,, then we have that
at least one component must be an alternating path with more edges from M,
than M>, as in Figure 6.29 (where the component in question is {8, 9, B, F}).
Otherwise |M>| > |M;|. Because this is a component of (V, M| AM>), all of
its edges must come from M, or M,. Because the edges alternate between the
two matchings, the only way for the path to have more edges from M, than
M, is for it to have its endpoints lie only in edges of M, so they are saturated
by M| but not by M5.

The path with three edges in Exercise 6.4-3 has two edges of M| and one
edge of M,. We see that if we remove {B, 8} from M, and add {B, 9} and {F,
8}, then we get the matching

M) = {{L, 4}, {S, 2}, {T, 1}, {M, 6}, {E, 7}, {B, 9}, {F, 8}}.

This answers the question of Exercise 6.4-4. Notice that this matching satu-
rates everything M, does and also saturates vertices F and 9.

Figure 6.30 shows the matching edges of the path in Exercise 6.4-5 in blue
and the nonmatching edges of the path as dashed. The edge of the matching
not in the path is shown as zigzag. Notice that the dashed edges and the
zigzag edge form a matching that is larger than M and that saturates all the
vertices that M does, in addition to 3 and F. The path begins and ends with
unmatched vertices for M, namely, 3 and F, and alternates between matching
edges and nonmatching edges. All but the first and last vertices of such a path
lie on matching edges of the path, and the endpoints of the path do not lie
on matching edges. Thus, no edges of the matching that are not path edges
will be incident with vertices on the path. We now delete all the matching
edges of the path from M and add all the other edges of the path to M. This

Figure 6.30: The path and matching of Exercise 6.4-5

Theorem 6.18

Corollary 6.19

6.4: Matching Theory 417

gives us a new matching, because by taking every second edge of a path,
we get edges that do not have endpoints in common. An alternating path
is called an augmenting path for a matching M if it begins and ends with
M -unsaturated vertices. That is, it is an alternating path that begins and ends
with unmatched vertices. Our preceding discussion suggests the proof of the
following theorem.

(Berge’s Theorem) A matching M in a graph is of maximum size if and
only if M has no augmenting path. Furthermore, if a matching M has an
augmenting path P with edge set E (P), then we can create a larger matching
by deleting the edges in M N E(P) from M and adding the edges of E(P) —
M.

Proof First, if there is a matching M, larger than M, then, by Corollary 6.17,
there is an augmenting path for M. Thus, if a matching does not have maximum
size, then it has an augmenting path. Furthermore, as in our discussion of
Exercise 6.4-5, if there is an augmenting path for M, then there is a larger
matching than M. In particular, our discussion of that exercise showed that if
P is an augmenting path, then we can get such a larger matching by deleting
the edges in M N E(P) and adding the edges of E(P) — M.

Although the larger matching of Theorem 6.18 may not contain M as a
subset, it does saturate all the vertices that M saturates and two additional
vertices.

Proof Every vertex incident with an edge in M is also incident with some
edge of the larger matching. Also, each of the two endpoints of the augmenting
path is incident with a matching edge. Because we may have removed edges
of M to get the larger matching, it may not contain M.

Matching in Bipartite Graphs

Our examples and exercises have all been bipartite, yet all of our lemmas,
corollaries, and theorems about matchings have been about general graphs.
In fact, some of these results can be strengthened in bipartite graphs. For
example, Lemma 6.15 tells us that the size of a matching is no more than the
size of a vertex cover. We shall soon see that in a bipartite graph, the size of
a maximum matching actually equals the size of a minimum vertex cover.

Searching for Augmenting Paths in Bipartite Graphs

We have seen that if we can find an augmenting path for a matching M in a
graph G, then we can create a bigger matching. Because our goal from the

418 Chapter 6: Graphs

Exercise 6.4-6

Exercise 6.4-7

Exercise 6.4-8

outset has been to create the largest matching possible, this helps us achieve
that goal. You may ask, however, how do we find an augmenting path? Recall
that a breadth-first search tree centered at a vertex x in a graph contains
a path—in fact, a shortest path—from x to every vertex y to which it is
connected. Thus, it seems that if we could alternate between matching edges
and nonmatching edges when doing a breadth-first search, then we would
find alternating paths. In particular, if we add a vertex i to our tree by using
a matching edge, then any edge we use to add a vertex from vertex i should
be a nonmatching edge. And if we add a vertex i to our tree by using a
nonmatching edge, then any edge we use to add a vertex from vertex i should
be a matching edge. (Thus, there is at most one such edge.) Because not all
edges are available for use in adding vertices to the tree, the tree we get will
not necessarily be a spanning tree of our original graph. However, we can
hope that if there is an augmenting path starting at vertex x and ending at
vertex y, then we will find it by using breadth-first search starting from x in
this alternating manner.

Given the matching {{S, 2}, {T, 4}, {B, 7}, {F, 8}} of the graph in Figure 6.27,
use breadth-first search starting at vertex 1 in an alternating way to search for
an augmenting path starting at vertex 1. Use the augmenting path that you get
to create a larger matching.

Continue using the method of Exercise 6.4-6 until you find a matching of
maximum size.

Apply breadth-first search from vertex 0 in an alternating way to Figure 6.31a.
Does this method find an augmenting path? Is there an augmenting path?

For Exercise 6.4-6, if we begin at vertex 1, then we add vertices L, S, and T
to our queue and our tree. See Figure 6.32a, in which the blue lines, including

Figure 6.31: Matching edges are shown in blue

6.4: Matching Theory 419

the dashed one, are the edges of the matching. The dashed lines are explained
later. Vertex 1 is labeled Tj to show that it is the first vertex in the tree, and
L, S, and T are labeled 7 to indicate that they entered the tree in this first
stage. Because L is not incident with a matching edge, we cannot continue the
search from there. Also, because S is incident with matching edge {S, 2}, we
can use this edge to add vertex 2 to the queue and tree. This is the only vertex
we can add from S because we can only use matching edges to add vertices
from S. Similarly, from T we can add vertex 4 by using the matching edge
{T, 4}. We marked vertices 2 and 4 with 75 to indicate that they were added to
the queue and tree at this stage. All vertices adjacent to vertex 2 have already
been added to the queue and tree, but from vertex 4 we can use nonmatching
edges to add vertices M and E to our queue and tree. We mark those vertices
with 73 to indicate that they were added to the tree at this stage. Now we
can only use matching edges to add vertices to the queue and tree from M
or E, but there are no matching edges incident with them, so our alternating
search tree stops here. Because M and E are unmatched, we know that we
have a path in our tree from vertex 1 to vertex M and a path from vertex 1
to vertex E. The vertex sequence of the path from 1 to M is 1, T, 4, M. The
dashed edges in Figure 6.32a indicate the path. Our matching then becomes
{{1, T}, {2, S}, {4, M}, {B, 7}, {F, 8}} (see Figure 6.32b, where the matching
edges are blue).

T T I, Ty T,
1 2 3 4 5 6 7T 8 1 3 4 6 7 8 9
»
Z {]
N \' i\
AVAVAVAVA AN
B F L T M E B F L S T M E B F
T, n, 1, T, T, T, T, T,
b c

Figure 6.32: Illustrating the process of enlarging a matching

For Exercise 6.4-7, we find another unmatched vertex and repeat the search.
For example, working from vertex L, we start a tree by using the edges
{L, 1}, {L, 3}, and {L, 4} to add vertices 1, 3, and 4 to our queue and tree.
We could continue working on the tree, but because we see that L{L, 3}3
is an augmenting path, we use it to add the edge {L, 3} to the matching,
thus short-circuiting the tree-construction process. Our matching becomes
{1, T}, {2, S}, {L, 3}, {4, M}, {B, 7}, {F. 8}} (see the blue edges in Figure
6.32c). The next unmatched vertex that we see might be vertex 5. Starting
from there, we add M and F to our queue and tree. From M, we have the
matching edge {M, 4}, and from F, we have the matching edge {F, 8}, so we
use them to add the vertices 4 and 8 to the queue and tree. From vertex 4, we

420 Chapter 6: Graphs

add L, S, T, and E to the queue and tree, and from vertex 8, we add vertex B to
the queue and tree. All these vertices except E are in matching edges. Because
E is in the tree but not incident with a matching edge, it is connected by an
augmenting path to vertex 5. The path in the tree from vertex 5 to vertex E has
vertex sequence 5, M, 4, E, shown in the tree as dashed. This augmenting path
gives us the matching {{1, T}, {2, S}, {L, 3}, {5, M}, {4, E}, {B, 7}, {F, 8}}.
You should be able to see this matching in Figure 6.32c; it consists of the
two black dashed edges and the blue edges except for the blue dashed edge.
Because we now have a matching whose size is the same as the size of a
vertex cover, namely, the bottom part of the graph in Figure 6.27, we have a
matching of maximum size.

For Exercise 6.4-8, we start at vertex 0 and add vertex 1. You may want to
follow along in Figure 6.31, marking the graph in pencil as we did in our
solution to Exercise 6.4-7. From vertex 1, we use our matching edge to add
vertex 2. From vertex 2, we use our two nonmatching edges to add vertices 3
and 4. However, vertices 3 and 4 are incident with the same matching edge,
so we cannot use that matching edge to add any vertices to the tree, and we
must stop without finding an augmenting path. From staring at the picture,
we see that there is an augmenting path, namely, 0, 1, 2, 4, 3, 5, that gives
us the matching {{0, 1}, {2, 4}, {3, 5}}. We would have similar difficulties in
discovering either of the augmenting paths in Figure 6.31b.

It turns out to be the odd cycles in Figure 6.31 that prevent us from finding
augmenting paths by our modification of breadth-first search. We demonstrate
this by describing an algorithm that is a variation on the alternating breadth-
first search that we just used in solving our exercises. This algorithm takes
a bipartite graph and a matching and either gives us an augmenting path or
constructs a vertex cover whose size is the same as the size of the matching.
A graph is bipartite if and only if it has no odd cycles (see Problems 12 and
14 for a proof); therefore, this algorithm will prove that a graph must have
odd cycles in order to defeat our search strategy.

The Augmentation-Cover Algorithm

We begin with a bipartite graph with parts X and Y and a matching M.
(In Figure 6.33, the matching edges are blue.) We label the unmatched ver-
tices in X with a, which stands for alternating. (Figure 6.33a shows these
labels, and more.) We number the vertices in sequence as we label them.'*
(Figure 6.33 shows these numbers as subscripts on a.) Starting withi = 1 and
taking labeled vertices in the order of the numbers we have assigned to them,

14The numbers we assign to the vertices tell when they would be put into a queue in this
modified version of breadth-first search.

6.4: Matching Theory 421

we use vertex i to do additional labeling as follows, stopping when we have
labeled an unmatched vertex in ¥ or when it is impossible to continue labeling
(the first stopping condition is illustrated in Figure 6.33c, and the second in
Figure 6.34).

Figure 6.34: We can’t augment this matching because {4, 5,6, S, T, B} is a ver-
tex cover

1. If vertex i is in X, then we label all unlabeled vertices adjacent to it
with the label a and the name of vertex i. Then we number these newly
labeled vertices, continuing our sequence of numbers without
interruption. (We show the first iteration of this stage in Figure 6.33a.
We show the second iteration of this step [and more] in Figure 6.33c.)

2. If vertex i is in ¥ and it is incident with an edge of M, then its neighbor
in the matching edge cannot yet be labeled. (Matched vertices in X can
only be labeled in this step, and because M is a matching, each vertex
can be labeled at most once.) We label this neighbor with the label a
and the name of vertex i. (We show the first iteration of this stage in
Figure 6.33b.)

If vertex i is labeled and in Y and it is not incident with an edge of M, then we
have discovered an augmenting path. This path starts at vertex i, then goes to
the vertex we used to add it (and recorded at vertex i), and so on, back to one
of the unlabeled vertices in X. The path is alternating by our labeling method,
and it starts and ends with unsaturated vertices, so it is augmenting. (In the

422 Chapter 6: Graphs

case of Figure 6.33, the labeled vertex L in Y is not in a matching edge. In
Figure 6.33c, we show the path starting at L as dashed.)

If we continue the labeling process until no more labeling is possible and we
do not find an augmenting path, then we let A be the set of labeled vertices. As
we shall prove shortly, theset C = (X — A) U (Y N A) turns out to be a vertex
cover whose size is the size of M. (This second case is illustrated in Figure
6.34, in which the blue edges are a matching and the set {4, 5, 6, S, T, B} turns
out to be a minimum vertex cover.) We call this algorithm the augmentation-
cover algorithm.

We now develop pseudocode for the augmentation-cover algorithm. It has
four input parameters: the two parts of V called X and Y, an edge set E (each
of whose edges connects a vertex in X to a vertex in Y'), and a matching M.
It also has two output parameters. The first is a set P, which is the edge set
of an augmenting path for M if one exists and the empty set otherwise. The
second is a set C, which is a minimum vertex cover in the event that there
is no augmenting path and which is empty otherwise. Putting a vertex onto
the queue is equivalent to labeling it with ¢ and assigning a number to it.
The number we assign to it, then, is its position on the queue. Thus, taking
the vertices in the order of their numbers is the same as taking them in the
order of the queue. The vertex name that we use to label vertex x when we
are labeling by hand corresponds to Pred [x] in the pseudocode.

In the pseudocode, we assume that if x is a vertex, then it is possible to use
x as a subscript of an array. Thus, as in breadth-first search, we assume that
the names of our v vertices are the integers 1 through v. (As we pointed out
for breadth-first search, changing this assumption is not difficult but involves
details we choose not to go into.)

The pseudocode assumes we have a procedure IsSaturated. IsSatu-
rated (x, M) returns true if and only if the vertex x is saturated by some
edge in the matching M. This can naively be implemented in O (|M]) time
by running through the endpoints of the edges in M and seeing if x is one of
them. But we can be more clever. We can preprocess M by creating a Boolean
array (an array of trues and falses) saturatedofsize v such that sat-
urated[x] is trueif and only if an edge in M saturates the vertex x. After
O (v) preprocessing time, a call to IsSaturated would then take constant
time: IsSaturated (x) simply looks in the array saturated to see if
saturated[x] is true. Then, v callsto IsSaturatedwould take O (v)
time rather than O (v?) time.

Note that the algorithm does not need to keep track of the subscripts on the
vertices added to A. These subscripts were used so that we would process the
vertices in A in the order that they were added to the queue. The subscripts
amount to a “by hand” implementation of a queue.

6.4: Matching Theory 423

Augmentation-Cover(X, Y, E, M, P, C)

// Assume that V= XU Y contains vertices numberedl1l, 2,..., V.

// Assume that F is an array with ventries, and entry

// 1of Eis a list of the vertices adjacent to vertex 1.

// Assume that Mis a set of edges in a matching.

// If the graph has an augmenting path, then when the

// algorithm returns, Pwill contain the edges of an

// augmenting path and Cwill be empty. If there is no augmenting
// path, then Pwill be empty and Cwill contain a vertex cover.

// When the algorithm returns, Awill consist of the vertices added
// to Qduring the course of the algorithm.

// If analternating path is found, then Pred(x) will precede x on
// that path if Pred(x) # 0.

InA = an array of length vwith each entry initialized to "false"
Pred = an array of length vwith each entry initialized to 0

P=y

A=(
0=0// Qis a queue
c=0¢

for each element xof X
if (!IsSaturated(x,M))
Enqueue x onto Q
A=A4U {x}
InA[x] = "true"
while there is at least one vertex in Q
Dequeue z from Q

if (z € X)
for each vertex win the list E[z]
if (InA[w] == "false")
Enqueue wonto Q
A=A4U {w}
InA[w] = "true"
Pred[w] = z // Remember which vertex we came from.
else if (IsSaturated(z, M)) // zmust be in Ybecause this "else"

// corresponds to the "if" in Line 14.
x = z's neighbor in M
Enqueue x onto Q
A=A4U{x}
InA[x] = "true"
Pred[x] = z // Remember which vertex we came from.
else // Have discovered augmenting path
while (Pred[w] # 0) // Trace back the path
P=PU {{w, Pred[w]}}
w = Pred[w]
return
C=(X — A) U (YNa)
return

424 Chapter 6: Graphs

We can use Augmentation-Cover in the algorithm FindMaximumMatching,
which finds a maximum matching in a bipartite graph. This procedure takes
as input parameters the two parts X and Y of a bipartite graph and its edge set
E. It also has two output parameters, the maximum matching M and a vertex
cover C of the same size as the maximum matching. As before, we assume
that the vertices in V = X U Y are the integers 1 to v.

FindMaximumMatching (X, Y, E, M, C)

// Assume that V= XU Y contains vertices numbered
//1,2,..., V.
// Assume that Eis an arraywith ventries, and entry
// 1of Eisalist of the vertices adjacent to
// vertex 1.
// Mwill contain the edges in a maximum matching when
// the algorithm returns.
// Cwill contain the vertices of a vertex cover of size
// |M| when the algorithm returns.
M=
Augmentation-Cover (X, Y, E, M, P, C)
while (P#)

M= (M — P)U (P — M)

Augmentation-Cover (X, Y, E, M, P, C)
print "The edges of amaximummatching are:" M"."
print "Aminimumvertex cover is:" C"."

~N oo W

Theorem 6.20 (Konig-Egervary Theorem) In a bipartite graph with parts X and Y, the
size of a maximum-sized matching equals the size of a minimum-sized
Vertex cover.

Proof By Theorem 6.18 (Berge’s theorem), if the augmentation-
cover algorithm gives us an augmenting path, then the matching is not
maximum sized. By Lemma 6.15, if we can prove that when there is
no augmenting path, the set C that the algorithm gives us is a vertex
cover whose size is the size of the matching, then we will have proved the
theorem. To see that C is a vertex cover, note that every edge incident with
a vertex in X N A is covered, because its endpoint in Y has been marked
with an a (that is, placed in A in Augmentation-Cover); thus, it is in ¥ N A.
But every other edge must have one vertex in X, so it must be covered by
X — A. Therefore, C is a vertex cover. If an element of ¥ N A were not
matched, it would be an endpoint of an augmenting path, and so all elements
of Y N A are incident with matching edges. But every vertex of X — A is
matched, because A includes all unmatched vertices of X. By step 2 of the

Corollary 6.21

Theorem 6.22

6.4: Matching Theory 425

augmentation-cover algorithm, which is Lines 21-25 of the pseudocode for
Augmentation-Cover, if € is a matching edge with an endpointin Y N A, then
the other endpoint must be in A. Thus, each matching edge contains only one
member of C. Therefore, the size of a maximum matching is the size of C.

When Augmentation-Cover is applied to a bipartite graph and a matching
of that graph, it returns either an augmenting path for the matching or a
minimum vertex cover whose size equals the size of the matching.

Before we proved the Konig-Egervary theorem, we knew that if we could
find a matching and a vertex cover of the same size, then we had a maximum-
sized matching and a minimum-sized vertex cover. However, in some graphs,
we might not be able to test whether a matching is as large as possible by
comparing its size with that of a vertex cover, because a maximum-sized
matching might be smaller than a minimum-sized vertex cover. The Konig-
Egervary theorem tells us that in bipartite graphs, this problem never arises,
so the test always works for bipartite graphs.

In Exercise 6.4-2, we used a second technique to show that a matching could
not saturate the set X of all jobs. In Lemma 6.14, we showed that if we can
find a subset S of a part X of a bipartite graph G such that [N (S)| < |S], then
there is no matching of G that saturates X. In other words, to have a matching
that saturates X in a bipartite graph on parts X and Y, it is necessary that
N (S)| > |S] for every subset S of X. (When § = @, then so does N (S).) This
necessary condition is called Hall’s condition, and Hall’s theorem says that
this necessary condition is sufficient for bipartite graphs.

(Hall's Theorem) If G is a bipartite graph with parts X and Y, then there
is a matching of G that saturates X if and only if [N (S)| > |S]| for every
SCX

Proof InLemma 6.14, we showed (the contrapositive of the statement) that
if there is a matching of G, then |[N(S)| > |S]| for every subset of X. There
is no reason to use a contrapositive argument, though; if there is a matching
that saturates X, then, because matching edges have no endpoints in common,
the elements of each subset S of X will be matched to at least |S| different
elements, and these will all be in N (S).

Thus, we need only show that if the graph satisfies Hall’s condition, then there
is amatching that saturates X. We will do this by showing that X is a minimum-
sized vertex cover. Let C be some vertex coverof G.Let § = X — C.Ifeisan

426 Chapter 6: Graphs

edge from a vertex in S to a vertex y € Y, then € cannot be covered by a vertex
in C N X. Therefore, € must be covered by a vertex in C N Y. This means
that N(S) S CNY,so|CNY|>|N(S)|. By Hall’s condition, | N (S)| > |S|.
Therefore, [C N Y| > |S]. Because C N X and C N Y are disjoint sets whose
union is C, we can summarize our remarks with the equation

ICl=|CNX|+|CNY|
> [CNX[+[N(S)]
> [CNX|+|S]
=|CNX|+|X—C|
= |X].

We have that X is a vertex cover, and we have just shown that it is a vertex
cover of minimum size. Therefore, a matching of maximum size has size | X|.
Thus, there is a matching that saturates X.

Efficient Algorithms

Although Hall’s theorem is quite elegant, applying it requires us to look at
every subset of X, which would take us €2 (2|X ‘) time. Similarly, actually
finding a minimum vertex cover could involve looking at all (or nearly all)
subsets of X U Y, which would also take us exponential time. However, the
augmentation-cover algorithm requires that we examine each edge at most
some fixed number of times and then do a little extra work; certainly, no more
than O(e) work. We need to repeat the algorithm at most | X| times to find
a maximum matching and minimum vertex cover. Thus, in time O (ev), not
only can we find out whether we have a matching that saturates X, but we can
also find such a matching if it exists and a vertex cover that proves it doesn’t
exist if it doesn’t. However, this algorithm only applies to bipartite graphs.
The situation is much more complicated in nonbipartite graphs. In a paper that
introduced the idea that an efficient algorithm is one that runs in time O (n¢),
where n is the amount of information needed to specify the input and c is a
constant, Jack Edmonds [16] developed a more complicated algorithm that
extended the idea of a search tree to a more complicated structure, which he
called a flower. He showed that this algorithm was efficient in his sense of the
word. In a wry twist of fate, the problem of finding a minimum vertex cover
(actually, the problem of determining whether there is a vertex cover of size
k, where k can be a function of v) is, in fact, NP-complete in arbitrary graphs.
It is fascinating that the matching problem for general graphs turned out to be
solvable in polynomial time, while determining the “natural” upper bound on

6.4: Matching Theory 427

the size of a matching, an upper bound that originally seemed quite useful,
remains out of our reach.

1.

10.

Matching. A set of edges in a graph that share no endpoints is called a
matching of the graph.

Saturate. A matching is said to saturate a set X of vertices if every
vertex in X is matched.

. Maximum matching. A matching in a graph is a maximum matching if

it is at least as big as any other matching.

Bipartite graph. A graph is called bipartite whenever its vertex set can
be partitioned into two sets X and Y so that each edge connects a
vertex in X with a vertex in Y. Each of the two sets is called a part of
the graph.

. Independent set. A subset of the vertex set of a graph is called

independent if no two of its vertices are connected by an edge. (In
particular, a vertex connected to itself by a loop is not an independent
set.) A part of a bipartite graph is an example of an independent set.

Neighborhood. We call the set N (S) of all vertices that are adjacent to
at least one vertex of S the neighborhood of S or the neighbors of S.

. Hall’s theorem for a matching in a bipartite graph. If we can find a

subset S of a part X of a bipartite graph G such that |[N(S)| < |S|, then
there is no matching of G that saturates X. If there is no subset § € X
such that |N(S)| < |S], then there is a matching that saturates X.

Vertex cover. A set of vertices such that at least one of them is incident
with each edge of a graph G is called a vertex cover of the edges of G,
or a vertex cover of G for short. In any graph, the size of a matching is
less than or equal to the size of any vertex cover.

. Alternating path/augmenting path. A path is called an alternating path

for a matching M if, as we move along the path, the edges alternate
between edges in M and edges not in M. An augmenting path is an
alternating path that begins and ends at unmatched vertices. An
alternating path for M and M, is a path whose edges alternate
between edges in M and edges in M5.

Alternating cycle. A cycle is called an alternating cycle for a matching
M if, as we move along the cycle, the edges alternate between edges in
M and edges not in M. A cycle is an alternating cycle for M; and M,
if, as we move along the cycle, the edges alternate between edges in
M and edges in M5.

428 Chapter 6: Graphs

11.

12.

13.

14.

15.

Berge’s lemma. If M| and M, are matchings of a graph G, then the
connected components of M| AM, are cycles with an even number of
vertices and paths. Furthermore, the cycles and paths are alter-

nating cycles and paths for M| and M,.

Berge’s corollary. If M| and M, are matchings of a graph G = (V, E)
and |M| > |M>]|, then there is an alternating path for M| and M, that
starts and ends with vertices saturated by M but not by M>.

Berge’s theorem. A matching M in a graph is of maximum size if and
only if M has no augmenting path. Furthermore, if a matching M has
an augmenting path P with edge set E(P), then we can create a larger
matching by deleting the edges in M N E(P) from M and adding in
the edges of E(P) — M.

Augmentation-cover algorithm. The augmentation-cover algorithm
begins with a bipartite graph and a matching of that graph and produces
either an augmenting path or a vertex cover whose size equals that of
the matching, thus proving that the matching is a maximum matching.

Konig-Egervdry theorem. In a bipartite graph with parts X and Y, the
size of a maximum-sized matching equals the size of a minimum-sized
Vertex cover.

All problems with blue boxes have an answer or hint available at the end of
the book.

In Figure 6.35, find either a matching that saturates the set

X ={a,b,c,d, e} orasubset S of X such that |S| > |[N(S)|.

Figure 6.35: A bipartite graph

2.

Find a maximum matching and a minimum vertex cover in Figure
6.35.

In Figure 6.36, find either a matching that saturates the set

X ={a,b,c,d,e, f}orasubset S of X such that |[N(S)| < |S|.

6.4: Matching Theory 429

a b c d e f

Figure 6.36: A bipartite graph

14.

Find a maximum matching and a minimum vertex cover in Figure
6.36.

In Problems 1-4, when you were able to find a set S with
|S| > [N(S)|, how did N(S) relate to the vertex cover? Why did this
work out as it did?

A star is a another name for a tree with one vertex connected to each of
n other vertices. (So a star has n + 1 vertices.) What are the size of a
maximum matching and a minimum vertex cover in a star with n + 1
vertices?

In Theorem 6.18, is it true that if there is an augmenting path P with
edge set E(P) for a matching M, then M AE(P) is a larger matching
than M?

Find a maximum matching and a minimum vertex cover in Figure
6.31b.

In a bipartite graph, is one of the parts always a maximum-sized
independent set? What if the graph is connected?

Find infinitely many examples of graphs in which a maximum-sized
matching is smaller than a minimum-sized vertex cover.

Find an example of a graph in which the maximum size of a matching
is at least 3 and is half of the size of a minimum vertex cover.

Prove or give a counterexample: Every tree is a bipartite graph. (Note:
A single vertex with no edges is a bipartite graph; one of the two parts
is empty.)

Prove or give a counterexample: A bipartite graph has no odd cycles.

Let G be a connected graph with no odd cycles. Let x be a vertex of G.
Let X be all vertices at an even distance from x, and let Y be all vertices
at an odd distance from x. Prove that G is bipartite with parts X and Y.

What is the sum of the maximum size of an independent set and the
minimum size of a vertex cover in a graph G? (Hint: It is useful to
think both about the independent set and its complement relative to the
vertex set.)

430 Chapter 6: Graphs

6.5 COLORING AND PLANARITY

Exercise 6.5-1

The Idea of Coloring

Graph coloring is one of the oldest problems in graph theory. Coloring arose
from a question from Francis Guthrie, who noticed that four colors were
enough to color the map of the counties of England so that if two counties
shared a common boundary line, they received different colors. Guthrie won-
dered whether this was the case for all maps. His brother Fredrick Guthrie
passed this question to Augustus DeMorgan, which is how it seeped into the
consciousness of the mathematical community. By thinking of the counties
as vertices and drawing an edge between two vertices if their counties share
some boundary line, we get a representation of the problem that is indepen-
dent of such things as the shape of the counties, the amount of boundary line
they share, and so on. This representation captures the part of the problem on
which we need to focus. We now color the vertices of the graph. For Guthrie’s
problem, we want to color in such a way that adjacent vertices get different
colors. We will return to this problem later in the section; for now, we begin
our study with another application of coloring.

The executive committee of the board of trustees of a small college has eight
members: Kim, Smith, Jones, Gupta, Ramirez, Wang, Harper, and Chernov.
There are six subcommittees with the following membership:

* Investments: K, J, H

e QOperations: K, W, G

* Academic affairs: W, S, G

* Development (fund raising): W, C, K
* Budget: S, R, C

e Enrollment: R, C,J, H

Each time the executive committee has a meeting, the following occurs: each
subcommittee meets with appropriate college officers, and then the executive
committee gets together as a whole to go over subcommittee recommendations
and to make decisions. Two subcommittees cannot meet at the same time if
they have a member in common, but subcommittees that don’t have a member
in common can meet at the same time. What is the minimum number of time
slots needed to schedule all the subcommittee meetings? Draw a graph in
which the vertices are named by the initials of the subcommittee names and
in which two vertices are adjacent if their subcommittees have a member in

6.5: Coloring and Planarity 431

common. Then label the vertices with numbers in such a way that two adjacent
vertices get different labels. The numbers represent time slots, so they need not
be distinct unless they are on adjacent vertices. What is the minimum possible
number of labels you need?

Because map coloring motivated much of graph theory, itis traditional to refer
to the process of assigning labels to a graph’s vertices as coloring the graph.
An assignment of labels to vertices, which is a function from the vertices to
the set of labels, is called a coloring. The set of possible labels, which is the
range of the coloring function, is often referred to as a set of colors. Thus,
Exercise 6.5-1 asks for a coloring of the graph. However, as with the map
problem, the adjacent vertices should have different colors in our coloring. A
coloring of a graph is called a proper coloring if it assigns different colors to
adjacent vertices.

Figure 6.37 shows the graph of Exercise 6.5-1. We call this kind of graph
an intersection graph, which means that its vertices correspond to sets and
that it has an edge between two vertices if and only if the corresponding sets
intersect.

Figure 6.37: The intersection graph of the committees

The exercise asks us to color the graph with as few colors as possible, regarding
the colors as 1, 2, 3, and so on. We represent 1 as a white vertex, 2 as a blue
vertex, 3 as a gray vertex, and 4 as a black vertex. The triangle at the bottom of
the figure requires three colors simply because all three vertices are adjacent.
Because it doesn’t matter which three colors we use, our choices of white,
blue, and gray are arbitrary. We know that we need at least three colors to
color the graph, so it makes sense to try to finish off a coloring using just
three colors. Vertex I must be colored differently from E and D; if we use the
same three colors, vertex I must have the same color as B. Similarly, vertex
A would have to be the same color as E if we use the same three colors. But
now none of the colors can be used on vertex O because it is adjacent to three
vertices of different colors. Thus, we need at least four colors. We show a
proper four-coloring in Figure 6.38.

432 Chapter 6: Graphs

Exercise 6.5-2

Exercise 6.5-3

Lemma 6.23

Figure 6.38: A proper coloring of the committee intersection graph

How many colors are needed to give a proper coloring of the complete
graph K,,?

How many colors are needed for a proper coloring of a cycle C, on
n=3,4,5, and 6 vertices?

In Exercise 6.5-2, we need n colors to color K,, properly, because each pair of
vertices is adjacent and thus must have two different colors. In Exercise 6.5-3,
if n is even, we can simply alternate two colors as we go around the cycle.
However, if n is odd, using two colors would require that they alternate as
we go around the cycle, and when we colored our last vertex, it would be the
same color as the first. Thus, we need at least three colors. By alternating two
colors as we go around the cycle until we get to the last vertex and coloring it
the third color, we get a proper coloring with three colors.

The chromatic number of a graph G, traditionally denoted x(G), is the
minimum number of colors needed to color G properly. Thus, we have shown
that the chromatic number of the complete graph K, is n, the chromatic number
of a cycle on an even number of vertices is 2, and the chromatic number of a
cycle on an odd number of vertices is 3. We have also shown that the chromatic
number of our committee graph is 4.

From Exercise 6.5-2, we see thatif a graph G has a subgraph that is a complete
graph on n vertices, then we need at least n colors to color those vertices. Thus,
we need at least n colors to color G. This is useful enough that we will state
it as a lemma.

If a graph G contains a subgraph that is a complete graph on n vertices, then
the chromatic number of G is at least n.

Proof The proof for this lemma is given immediately before the statement.

More generally, if G contains a subgraph that requires at least n colors in a
proper coloring, then G itself has chromatic number at least n.

Exercise 6.5-4

6.5: Coloring and Planarity 433

Interval Graphs

An interesting application of coloring arises in the design of optimizing com-
pilers for computer languages. In addition to the usual random access memory
(RAM), a computer typically has some memory locations called registers,
which can be accessed at very high speeds. Thus, values of variables that are
going to be used again in the program are kept in registers, if possible, so
that they will be quickly available when needed. An optimizing compiler will
attempt to decide the time interval in which a given variable may be used dur-
ing a run of a program and arrange for that variable to be stored in a register
for that entire interval of time. Although the time interval is not determined
in absolute terms of seconds, the relative endpoints of the intervals can be
determined according to when variables first appear and last appear as one
steps through the computer code. This is the information needed to set aside
registers to use for the variables. We can formulate the problem of assign-
ing variables to registers as a coloring problem. To do so, we draw a graph
in which the vertices are labeled with the variable names, and associated to
each variable is the interval during which it is used. Two variables can use
the same register if they are needed during nonoverlapping time intervals.
We can think of our graph on the variables as the intersection graph of the
intervals, which means there will be an edge between two vertices (variables)
whose time intervals overlap. We want to color the graph properly with a min-
imum number of registers; we hope that this will be no more than the number
of registers that our computer has available. (If it is more than the number
of registers, then some of our variables will not be able to fit into registers.
This is why we want to use the minimum number of colors.) The problem of
assigning variables to registers is called the register assignment problem.

An intersection graph of a set of intervals of real numbers is called an inter-
val graph. The assignment of intervals to the vertices is called an interval
representation. Notice that so far in our discussion of coloring, we have not
given an algorithm for properly coloring a graph efficiently. This is because
the problem of whether a graph has a proper coloring with k colors for any
fixed k greater than 2 is another example of an NP-complete problem. How-
ever, for interval graphs, there is a very simple algorithm for properly coloring
the graph in a minimum number of colors.

Consider the closed intervals [1, 4], [2, 5], [3, 8], [5, 12], [6, 12], [7, 14], and
[13, 14]. Draw the interval graph determined by these intervals and find its
chromatic number.

The graph of Exercise 6.5-4 is shown in Figure 6.39. (To avoid cluttering
the figure, the graph does not include the square braces around each closed

434

Chapter 6: Graphs
6,12
14
1.4 13,14

2,5

Figure 6.39: The graph of Exercise 6.5-4

interval.) Because of the way we have drawn this graph, it is easy to see a
subgraph that is a complete graph on four vertices. So we know by Lemma
6.23 that the graph has a chromatic number of at least 4. In fact, Figure 6.40
shows that the chromatic number is exactly 4. This is no accident.

s 14

Figure 6.40: A proper coloring of the graph of Exercise 6.5-4 with four colors

Theorem 6.24 In an interval graph G, the chromatic number is the size of the largest com-

plete subgraph.

Proof List the intervals of an interval representation of the graph in order of
their left endpoints. Color the intervals with the integers 1 through some num-
ber n by starting with 1 on the first interval in the list and, for each succeeding
interval, using the smallest color not used on any neighbor of the interval ear-
lier in the list. This will clearly give a proper coloring. To see that the number
of colors needed is the size of the largest complete subgraph, let n denote the
largest color used, and choose an interval / colored with color n. Then, by our
coloring algorithm, / must intersect with earlier intervals in the list colored
1 through n — 1; otherwise, we could have used a smaller color on /. All of
these intervals must contain the left endpoint of I because they intersect / and
come earlier in the list. Because they all have a point in common, they form a
complete graph on n vertices. Therefore, the minimum number of colors used
by this coloring algorithm is the size of a complete subgraph of G.

But, by Lemma 6.23, if G contains a complete subgraph on n vertices, then
its chromatic number is at least n. Thus, the chromatic number of an interval
graph G is the size of the largest complete subgraph of G.

Corollary 6.25

6.5: Coloring and Planarity 435

An interval graph G may be properly colored, using x (G) consecutive inte-
gers as colors, by listing the intervals of a representation in order of their
left endpoints and going through the list, assigning the smallest color not
used on an earlier adjacent interval to each interval in the list.

Proof This is the coloring algorithm we used in the proof of Theorem 6.24.

Notice that with the correspondence between numbers and colors that we
used before, the coloring in Figure 6.40 is the one given by this algorithm.
An algorithm that colors an arbitrary graph G with consecutive integers by
listing the graph’s vertices in some order, coloring the first vertex in the list 1,
and then coloring each succeeding vertex with the least number not used on
any adjacent vertices earlier in the list is called a greedy coloring algorithm.
We have just seen that the greedy coloring algorithm allows us to find the
chromatic number of an interval graph. This algorithm takes time O (n?),
because as we go through the list, we might consider every earlier entry when
we are considering a given element of the list. It is a good thing that we
have a polynomial-time algorithm, because even though we stated in Theorem
6.24 that the chromatic number is the size of the largest complete subgraph,
determining whether the size of a largest complete subgraph in a general graph
(as opposed to an interval graph) is k (where k may be a function of the number
of vertices) is an NP-complete problem.

Of course, this assumes that we were given an interval representation of our
graph. Suppose we are given a graph that happens to be an interval graph, but
we don’t know an interval representation. Can we still color the graph quickly?
It turns out that there is a polynomial-time algorithm for determining whether
a graph is an interval graph and finding an interval representation. This theory
is quite beautiful,'> but it would take us too far afield to pursue it now.

Planarity

We began our discussion of coloring with the map coloring problem. This
problem has a special aspect that we did not mention. A map is either drawn
on a piece of paper, which is a plane, or on a globe, which is the surface of
a sphere. By thinking of the sphere as a completely elastic balloon, we can
imagine puncturing it with a pin where nothing is drawn, opening the pinhole
a bit by stretching the balloon, and then continuing to stretch the pinhole until
we have the surface of the balloon laid out flat on a table. This means that
we can think of all maps as drawn in the plane. What does this mean about

15See, for example, Golumbic [18].

436 Chapter 6: Graphs

Exercise 6.5-5

the graphs we associated with the maps? Let’s say, to be specific, that we are
talking about the counties of England. In each county, we take an important
town in a county and imagine building a road to the boundary of each county
with which our first county shares some boundary line (not just a point). These
roads, which we can build so that they don’t cross each other, are built to the
center of the boundary line between two different counties so that the roads
join together at that boundary line. The towns we choose in each county are
the vertices of a graph representing the map, and the roads are the edges.
Thus, given a map drawn in the plane, we can draw a graph to represent it
in such a way that the edges of the graph do not meet at any point except at
their endpoints.!® A graph is called planar if it has a drawing in the plane
such that the edges do not meet except at their endpoints. Such a drawing is
called a planar drawing of the graph. The famous four-color problem asked
whether all planar graphs have proper four colorings. In 1976, Kenneth Appel
and Wolfgang Haken [3], building on some of the early attempts at proving
the theorem, used a computer to demonstrate that four colors are sufficient to
color any planar graph. Although we do not have time to indicate how their
proof went, there is now a book on the subject by Robin Wilson that gives a
careful history of the problem, an explanation of what the computer was asked
to do, and why, assuming that the computer was correctly programmed, that
led to a proof [34]. What we will do here is derive enough information about
planar graphs to show that five colors suffice to color a planar graph, as well as
give some background on planarity relevant to the design of computer chips.

We start out with two problems that aren’t quite realistic but that are suggestive
of how planarity enters chip design.

A circuit is to be laid out on a computer chip in a single layer. The design
includes five terminals (think of them as points to which multiple electrical
circuits may be connected) that need to be directly connected so that a current
can go from any one terminal to any other without sending current to a third
terminal. The connections are made with a narrow layer of metal deposited on
the surface of the chip, which we will think of as a wire on the surface of the
chip. Thus, if one connection crosses another, current in one wire will flow
through the other as well. Therefore, the chip must be designed so that each

of the (;) pairs of terminals is connected directly by a wire, and no two of
these wires cross. Do you think this is possible?

16We are temporarily ignoring a small geographic feature of counties that we will mention
when we have the terminology to describe it.

Exercise 6.5-6

6.5: Coloring and Planarity 437

As in Exercise 6.5-5, we are laying out a computer circuit. However, we now
have six terminals, labeled a, b, ¢, 1, 2, and 3, such that each of a, b, and ¢ must
be connected to each of 1, 2, and 3, but there must be no other connections.
As before, the wires cannot touch each other, so we need to design this chip
so that no two wires cross. Do you think this is possible?

The answer to both of these exercises is that it is not possible to design such
a chip. One can make compelling geometric arguments to explain why it is
not possible, but those arguments require that we simultaneously visualize a
large variety of configurations with one picture. Instead, we develop a few
equations and inequalities relating to planar graphs that will allow us to give
convincing arguments that both these designs are impossible.

The Faces of a Planar Drawing

If we assume that our graphs are finite, then it is easy to believe that we
can draw any edge of a graph as a broken line segment (i.e., a bunch of line
segments connected at their ends), such as the edge from f to g in Figure
6.41, rather than a smooth curve. In this way, a cycle in our graph deter-
mines a polygon in our drawing. (Typical cycles appear in Figure 6.41.) This
polygon may have some of the graph drawn inside it and some of the graph
drawn outside it. We say a subset of the plane is geometrically connected if
between any two points of the region, we can draw a curve without leaving
the region.!” (In our context, you may assume that this curve is a broken line

Figure 6.41: A typical graph and its faces

17The usual thing to say is that it is connected, but we want to distinguish this kind of
connectivity from graphical connectivity. (In a more advanced study, we would see how
these two apparently different uses of the word “connected” are different aspects of the
same idea.) The fine point about counties that we didn’t point out earlier is that they are
geometrically connected. If they were not, then the graph with a vertex for each county and
an edge between two counties that share some boundary line would not necessarily be
planar.

438 Chapter 6: Graphs

segment, though a careful study of geometric connectivity in general situa-
tions is less straightforward.) If we remove all the vertices and edges of the
graph from the plane, then we are likely to break the plane into a number
of geometrically connected sets. Such a connected set is called a face of the
drawing.'® For example, in Figure 6.41, the faces are marked 1 (a triangular
face), 2 (a quadrilateral face that has a line segment and point removed for
the edge {a, b} and the vertex a), 3 (another quadrilateral that has not only
a line but also a triangle removed from it), 4 (a triangular face), 5 (a quadri-
lateral face), 6 (a unique face that is concretely a pentagon but, because the
edge from f to & is a broken line segment, is abstractly a triangle since it
has three edges on its boundary), and 7 (another unique face whose bound-
ary is concretely a decagon connected at a point to a quadrilateral). Face 7 is
called the outside face of the drawing and is the only face with infinite area.
Each planar drawing of a graph will have an outside face—a face of infinite
area in which we can draw a circle that encloses the entire graph. (Remem-
ber, we are thinking of our graphs as finite at this point.) Each edge either
lies between two faces or has the same face on both of its sides. The edges
{a, b} and {c, d} are the edges of the latter type. Thus, if an edge lies on a
cycle, it must divide two faces; otherwise, removing that edge would increase
the number of connected components of the graph. An edge whose removal
increases the number of connected components is called a cut edge and can-
not lie between two distinct faces. It is straightforward to show that any edge
that is not a cut edge lies on a cycle. If an edge lies on only one face, it is
a cut edge. To see why, note that we can draw a broken line segment within
the face from one side of the edge to the other. See Figure 6.42, in which
the broken line segment is shown as dashed. This broken line segment, plus
part of the edge, forms a closed curve that encloses part of the graph. Thus,
removing the edge disconnects the enclosed part of the graph from the rest of
the graph.

Figure 6.42: A broken line connecting one side of an edge to the other side

8More precisely, a connected set in the plane with the vertices and edges removed is a face
if it is not a proper subset of any other connected set in the plane with the vertices and
edges removed.

Exercise 6.5-7

Exercise 6.5-8

Theorem 6.26

6.5: Coloring and Planarity 439

Draw some connected planar graphs with at least three faces, and experiment
to see if you can find a numerical relationship among v, the number of vertices;
e, the number of edges; and f, the number of faces. Check your relationship
on the graph in Figure 6.41.

In a simple graph, every face has at least three edges. This means that the
number of pairs consisting of a face and an edge bordering that face is at least
3 f. Use the fact that an edge borders either one or two faces to get an inequality
that relates the number of edges and the number of faces in a connected simple
planar graph.

Some playing with planar drawings usually convinces people fairly quickly
of the following theorem.

(Euler’s Formula) In a planar drawing of a connected graph G with v
vertices, e edges, and f faces,

v—e—+ f =2

Proof We induct on the number of cycles of G. If G has no cycles, then
it is a tree, and a tree has one face because all of its edges are cut edges.
Then, for a tree, we getv —e+ f = v — (v — 1) + 1 = 2. Now suppose that
G hasn > 0 cycles. Choose an edge that is between two faces, so it is part of a
cycle. Deleting that edge joins the two faces that it was on, so the new graph has
f' = f — 1faces. The new graph has the same number of vertices and one less
edge. It also has fewer cycles than G, sowehavev — (e — 1) + (f — 1) =2
by the inductive hypothesis, which gives v — e + f = 2.

For Exercise 6.5-8, let’s define an edge-face pair to be an edge and a face such
that the edge borders the face. According to the exercise, the number of such
pairs is at least 3f in a simple graph. Because each edge is in either one or
two faces, the number of edge-face pairs is also no more than 2e. This gives

3f < number of edge-face pairs < 2e ,

or3f < 2e,sothat f < (2/3)einaplanar drawing of a graph. We can combine
this with Theorem 6.26 to get

2 f<v—etl :
=v—e v—e+-e=v— -,
= 3 3

440 Chapter 6: Graphs

Corollary 6.27

Exercise 6.5-9

Exercise 6.5-10

Corollary 6.28

which we can rewrite as
e<3v—06

in a planar graph.
In a connected simple planar graph, e < 3v — 6.

Proof The proof of this corollary is given above.

In our discussion of Exercise 6.5-5, we said that we would see a simple proof
that the circuit layout problem in that exercise was impossible. Notice that
the question in that exercise was really the question of whether the complete
graph on five vertices, Ks, is planar. If it were, then the inequality e < 3v — 6
would giveus 10 < 3-5 — 6 = 9, which is impossible; so, K5 can’t be planar.
The inequality of Corollary 6.27 is not strong enough to solve Exercise 6.5-6,
which is really asking whether the so-called complete bipartite graph on two
parts of size 3, denoted by K3 3, is planar. To show that it isn’t, we need to
refine the inequality of Corollary 6.27 to take into account the special nature
of bipartite graphs. In a simple bipartite graph, there are no cycles of size 3,
so there are no faces that are bordered by just three edges. Problem 13 asks
you to use this fact to prove that in a connected planar simple bipartite graph,
e <2v—4.

Prove or give a counterexample: Every planar graph has at least one vertex of
degree 5 or less.

Prove that every planar graph has a proper coloring with six colors.

In Exercise 6.5-9, suppose that G is a planar graph in which each vertex has
degree 6 or more. Then the sum of the degrees of the vertices is at least 6v and
is also twice the number of edges. Thus, 2e > 6v, or e > 3v, which is contrary
to e < 3v — 6. This gives us yet another corollary to Euler’s formula.

Every planar graph has a vertex of degree 5 or less.

Proof Each connected component of a planar graph is connected; by the
argument before the corollary, each connected component of a planar graph
has a vertex of degree 5 or less. Thus, every planar graph has such a vertex.

Theorem 6.29

6.5: Coloring and Planarity 441

The Five-Color Theorem

We are now in a position to give a proof of the five-color theorem, essentially
Heawood’s proof, which was based on his analysis of an incorrect proof given
by Kempe to the four-color theorem about 10 years earlier in 1879. First, we
observe that in Exercise 6.5-10 we can use straightforward induction to show
that any planar graph on n vertices can be properly colored in six colors. As a
base step, the theorem is clearly true if the graph has six or fewer vertices. So
now assume that n > 6 and suppose that a graph with fewer than n vertices
can be properly colored with six colors. Let x be a vertex of degree 5 or less,
as shown in Figure 6.43. We show the edges as dashed because not all the
edges we have drawn need to be there. The edges leaving vertices a through
e, but going nowhere, are intended to suggest that this configuration sits in
some larger graph. Deleting x gives us a planar graph onn — 1 vertices. So, by
the inductive hypothesis, this graph can be properly colored with six colors.
However, only five or fewer of those colors can appear on vertices that were
originally neighbors of x, because x had degree 5 or less. In Figure 6.43 these
colors are named 1 through 5. Thus, we can put x back into the colored graph,
and there is at least one color not used on its neighbors. If we use such a
color on x, we have a proper coloring of G. Therefore, by the principle of
mathematical induction, every planar graph on n > 1 vertices has a proper
coloring with six colors.

1
\ \ \
v [\
1 \

U
/, 1‘Il ’ " Ia /
cmo Ya Il ‘~_k_a_ Ui \ ~/*"" /
"-—— \ Ve = -’ N
Z 7 P N U4 \ P [N /
RN / \ . N ’ . N, s
// 1 ~ ’ \ ’ N ’ \ s N /p
-, | N e\(/ Ny b & |
~ 1% ¥ S\ TS~ 02
~o 1 =T 5\\ 12 \ \A/x 1
~
A?C " — \ ,’ _ \ RO
// \\ \\ ! \ / \\"
v N S {c d’(_____ < c
,x' _____ | 7’ ’ 4\ 3\
\ KN 4 4\ 3% ’ \ 7 A
N 7 ~ // \ 4 d \ Y}
\ ’ A ’
V3 1

Figure 6.43: The vertex x has degree at most 5. Edges are dashed because they

might not be present

To prove the five-color theorem, we make a similar start: We delete a vertex x
of degree 5 and properly color the graph that remains. It is possible that when
we want to restore x into the graph, five distinct colors are already used on its
neighbors. This is where the proof will become interesting.

A planar graph G has a proper coloring with at most five colors.

442 Chapter 6: Graphs

Proof We may assume for two reasons that every face, except perhaps the
outside face, of our drawing is a triangle. First, if we have a planar drawing
with a face that is not a triangle, then we can draw additional edges going
through that face until it has been divided into triangles. As we do so, the
graph will remain planar. (In Figure 6.43, we would make all the dashed lines
in the pentagon containing x into solid lines. If we had a quadrilateral for a face,
we would draw a diagonal in it; if we had a pentagon (not the one containing
x), we would draw two diagonals; and so on. Second, if we can prove the
theorem for graphs whose faces are all triangles, then we can obtain graphs
with nontriangular faces by removing edges from graphs with triangular faces,
and a proper coloring remains proper if we remove an edge from our graph.
Although this appears to muddy the argument at this point, it makes it possible
to give an argument that, at a crucial point, is clearer than it would otherwise be.

Our proof is by induction on the number of vertices of the graph. If G has five
or fewer vertices, then it is clearly properly colorable with five or fewer colors.
Suppose that G has n vertices and suppose inductively that every planar graph
with fewer than n vertices is properly colorable with five colors. We have that
G has a vertex x of degree 5 or less. Let G’ be the graph obtained by deleting
x from G, as in Figure 6.43. By the inductive hypothesis, G" has a coloring
with five or fewer colors. Fix such a coloring (as in the second picture in
Figure 6.43). If x has degree 4 or less, or if x has degree 5 but is adjacent to
vertices colored with only four colors in G, then we may replace x in G’ to
get G and we have a color available to use on x to get a proper coloring of G.
(Can you see how to modify Figure 6.43 to illustrate this?)

Thus, we may assume that x has degree 5 and that in G, five different colors
appear on the vertices that are neighbors of x in G. Color all the vertices of G,
other than x, as in G’. Let the five vertices adjacent to x be a, b, ¢, d, and e, in
clockwise order, and assume that they are colored with colors 1, 2, 3, 4, and 5,
respectively. Furthermore, by our assumption that all faces are triangles, we
have that {a, b}, {b, c}, {c, d}, {d, e}, and {e, a} are all edges, so that we have a
pentagonal cycle surrounding x. This would be the situation in the third graph
of Figure 6.43 if we delete the 6 on vertex x. Consider the subgraph G 3 of G,
which has the same vertex set as G but has only edges with endpoints colored
1 and 3. (Some possibilities are shown in Figure 6.44. In this figure, we show
only edges connecting vertices colored 1 and 3, as well as dashed lines for the
edges from x to its neighbors and the edges between successive neighbors.
There may be many more vertices and edges in G.)

The graph G| 3 may have a number of connected components. If a and ¢ are
not in the same component, then we may exchange the colors on the vertices
of the component containing a without affecting the color on c. In this way, we

6.5: Coloring and Planarity 443

obtain a coloring of G with only four colors—3, 2, 3, 4, and 5 on the vertices
a,b,c,d, and e, respectively. We may then use the fifth color (in this case 1)
on vertex x, and we have properly colored G with five colors.

Otherwise, as in the second part of Figure 6.44, because a and c are in the
same component of G 3, there is a path from a to ¢ consisting entirely of
vertices colored 1 and 3. Temporarily color x with a new color that we call
color 6. Then in G, we have a cycle C of vertices colored 1, 3, and 6. This
cycle has an inside and an outside. Part of the graph can be on the inside of
C, and part can be on the outside. In Figure 6.45, we show two cases for how
the cycle could occur: one in which vertex b is inside the cycle C, and one in
which it is outside C. (Notice also that in both cases, we have more than one
choice for the cycle, because there are two ways in which we could use the
quadrilateral at the bottom of the figure.)

In G, we also have the cycle with vertex sequence a, b, ¢, d, and e, which is
colored with five different colors. This cycle and the cycle C can intersect
only in the vertices a and c. Thus, these two cycles divide the plane into four
regions: the one inside both cycles, the one outside both cycles, and the two
regions inside one cycle but not the other. If b is inside C, then the area inside
both cycles is bounded by the cycle a{a, b}b{b, c}c{c, x}x{x, a}a. Therefore,
e and d are not inside the cycle C. If one of d and e is inside C, then both are
(because the edge between them cannot cross the cycle), and the boundary of
the region inside both cycles is a{a, e}e{e, d}d{d, c}c{c, x}x{x, a}a. In this
case, b cannot be inside C. Thus, one of b and d is inside the cycle ¢, and one
is outside it. If we look at the graph G, 4 with the same vertex set as G and
just the edges connecting vertices colored 2 and 4, the connected component
containing b and the connected component containing d must be different—
otherwise a path of vertices colored 2 and 4 would have to cross the cycle C
colored with 1, 3, and 6. Therefore, in G’, we may exchange the colors 2 and
4 in the component containing d. Once we do so, we have only colors 1, 2, 3,
and 5 used on vertices a, b, ¢, d, and e. Thus, we may use this coloring of G’
as the coloring for the vertices of G different from x. We may then change the
color on x from 6 to 4, and we have a proper five coloring of G. Therefore, by
the principle of mathematical induction, every finite planar graph has a proper
coloring with five colors.

Kempe’s argument that seemed to prove the four-color theorem was similar
to this, though where we had five distinct colors on the neighbors of x and
sought to remove one of them, he had four distinct colors on the five neighbors
of x and sought to remove one of them. He had a more complicated argument

444 Chapter 6: Graphs

Figure 6.45: Possible cycles in the graph G 3

involving two cycles in place of our cycle C, but he missed one of the ways
in which these two cycles can interact.'”

1. Graph coloring. An assignment of labels to the vertices of a graph (a
function from the vertices to the set of labels) is called a coloring of the
graph. The set of possible labels (the range of the coloring function) is
often referred to as a set of colors.

2. Proper coloring. A coloring of a graph is called a proper coloring if it
assigns different colors to adjacent vertices.

19For more history and excerpts from the papers mentioned above, see Biggs, Lloyd, and
Wilson [7].

6.5: Coloring and Planarity 445

3. Intersection graph. We call a graph an intersection graph if its vertices
correspond to sets and it has an edge between two vertices if and only
if the corresponding sets intersect.

4. Chromatic number. The chromatic number of a graph G, traditionally
denoted yx (G), is the minimum number of colors needed to color G
properly.

5. Complete subgraphs and chromatic numbers. If a graph G contains a
subgraph that is a complete graph on n vertices, then the chromatic
number of G is at least n.

6. Interval graph. An intersection graph of a set of intervals of real
numbers is called an interval graph. The assignment of intervals to the
vertices is called an interval representation.

7. Chromatic number of an interval graph. In an interval graph G, the
chromatic number is the size of the largest complete subgraph.

8. Algorithm to compute the chromatic number and a proper coloring of
an interval graph. An interval graph G may be properly colored using
x (G) consecutive integers as colors by listing the intervals of a
representation in order of their left endpoints and going through the
list, assigning the smallest color not used on an earlier adjacent interval
to each interval in the list.

9. Planar graph/planar drawing. A graph is called planar if it has a
drawing in the plane such that edges do not meet except at their
endpoints. Such a drawing is called a planar drawing of the graph.

10. Face of a planar drawing. A geometrically connected set in the plane
with the vertices and edges of a planar drawing of a graph removed is a
face if it is not a proper subset of any other connected set in the plane
with the vertices and edges removed.

11. Cut edge. An edge whose removal from a graph increases the number
of connected components is called a cut edge of the graph. A cut edge
of a planar graph lies on only one face of a planar drawing.

12. Euler’s formula. In a planar drawing of a connected graph with v
vertices, e edges, and f faces, v — e + f = 2. As a consequence, in a
connected simple planar graph, e < 3v — 6.

All problems with blue boxes have an answer or hint available at the end of
the book.

What is the minimum number of colors needed to color a path on n
vertices properly if n > 1?

446 Chapter 6: Graphs

2.

What is the minimum number of colors needed to color properly a
bipartite graph with parts X and Y'?

If a graph has chromatic number 2, is it bipartite? Why or why not?

4.

Prove that the chromatic number of a graph G is the maximum of the
chromatic numbers of its components.

A wheel on n vertices consists of a cycle on n — 1 vertices together

with one more vertex, normally drawn inside the cycle, that has an
edge (like a spoke) to every vertex of the cycle. What is the chromatic
number of a wheel on five vertices? What is the chromatic number of a
wheel on an odd number of vertices?

A wheel on n vertices consists of a cycle on n — 1 vertices together
with one more vertex, normally drawn inside the cycle, that is
connected to every vertex of the cycle. What is the chromatic number
of a wheel on six vertices? What is the chromatic number of a wheel on
an even number of vertices?

The usual symbol for the maximum degree of any vertex in a graph is

A. Show that the chromatic number of a graph is no more than A + 1.
(In fact, Brooks proved that if G is not complete or an odd cycle, then
x(G) < A. Though there are now many proofs of this fact, none are
easy!)

Can an interval graph contain an induced cycle with four vertices?
Remember that a subgraph of G is an induced subgraph if every edge of
G joining two vertices of the subgraph is also an edge of the subgraph.

m What is the chromatic number of the Petersen graph (see Figure 6.46)?

Figure 6.46: The Petersen graph

10.

Let G consist of a five-cycle (a cycle on five vertices) and a complete
graph on four vertices, with all vertices of the five-cycle joined to all
vertices of the complete graph. What is the chromatic number of G?

In how many ways can you properly color a tree on n vertices with ¢
colors?

12.

14.

16.

18.

6.5: Coloring and Planarity 447

In how many ways can you properly color a complete graph on n
vertices with ¢ colors?

Show that in a simple planar graph with no triangles, e < 2v — 4.

Show that in a simple bipartite planar graph, e < 2v — 4. Use this fact
to prove that K3 3 is not planar.

Show that in a simple planar graph with no triangles, there is a vertex
of degree 3 or less.

Show that if a simple planar graph has fewer than 12 vertices, then it
has at least one vertex of degree 4 or less.

In the Petersen graph (Figure 6.46), what is the size of the smallest
cycle? Is the Petersen graph planar?

Prove the following theorem of Welsh and Powell: If a graph G has
degree sequence d| > dp > --- > d,, then

x(G) <1+ max;[min(d;, i — 1)] (that is, the maximum over all i of
the minimum of d; and i — 1).

What upper bounds do Problem 18, the bound you were asked to prove
in Problem 7, and the Brooks bound in Problem 7 give you for the
chromatic number in Problem 10?7 Which comes closest to the right
value? How close?

This page intentionally left blank

Derivation of the More
General Master Theorem

More General Recurrences

So far, we have considered divide-and-conquer recurrences for functions
T(n) defined on integers n that are powers of b. To consider a more general
recurrence in the master theorem, namely,

[aT((n/lﬂ)-i-nC ifn>1,
T(n) =

ifn=1,

or

aT(|n/b]) +n¢ ifn>1,
T = ifn=0

or even

T(n) =
ifn=1,

[a’T((n/b}) + (a —a)T(ln/b]) +n° ifn>1,

it is easiest first to extend the domain for our recurrences to a much bigger
set than the nonnegative integers, either the positive real or the positive
rational numbers, and then to work backward.

For example, we can write a recurrence of the form

1(x) =
x) k(x) ifl <x<b,

{f(X)t(X/b) +gx) ifx >b,

for two (known) functions f and g, defined on the real (or rational) numbers
greater than 1, and one (known) function k defined on the real (or rational)
numbers x, with 1 < x < b. Then, as long as b > 1, it is possible to prove
that there is a unique function ¢ defined on the real (or rational) numbers

449

450 Appendix A: Derivation of the More General Master Theorem

Exercise A.1-1

Exercise A.1-2

greater than or equal to 1 that satisfies the recurrence. We use the lowercase
t in this situation as a signal that we are considering a recurrence whose
domain is the real or rational numbers greater than or equal to 1.

How would we compute 7 (x) in the recurrence

{3t(x/2) +x2 ifx > 2,
t(x) =

5x if 1 <x <2,

if x were 7?7 How would we show that there is one and only one function
¢ that satisfies the recurrence?

Is it the case that there is one and only one solution to the recurrence

f)T([n/b]) + gn) ifn>1,
T(n) =
k ifn=1,
when f and g are (known) functions defined on the positive integers, and
k and b are (known) constants with b an integer larger than or equal to 2?

To compute #(7) in Exercise A.1-1, we need to know #(7/2). To com-
pute ¢(7/2), we need to know #(7/4). Because 1 < 7/4 < 2, we know that
t(7/4) = 35/4. Then we may write

3.2y 22t

4+4 4 2

t(7> 35 49 154 77
2

Next, we may write

t7)—3t<z)+72
(= 2

3 7 49
329
=5
Clearly we can compute #(x) in this way for any x, though we are unlikely
to enjoy the arithmetic. On the other hand, suppose that all we need to do
is show that there is a unique value of 7(x) determined by the recurrence
for all real numbers x > 1. If 1 < x < 2, then #(x) = 5x, which uniquely
determines ¢ (x). Given a number x > 2, there is a smallest integer i such

Theorem A.1

Appendix A: Derivation of the More General Master Theorem 451

that x/2' < 2, and for this i, we have 1 < x/2". We can now prove by
induction on i that #(x) is uniquely determined by the recurrence relation.

In Exercise A.1-2, there is one and only one solution. Why? Clearly 7(1) is
determined by the recurrence. Now assume inductively that n > 1 and that
T(m) is uniquely determined for positive integers m < n. We know that
n > 2, so that n/2 <n —1 (one could show this quickly by induction).
Because b > 2, we know that n/2 > n/b, so that n/b < n — 1. Therefore,
[n/b] < n, so that we know by the inductive hypothesis that T([n/b])
is uniquely determined by the recurrence. Then by the recurrence, we
have that

T = T (|7]) + g,

which uniquely determines 7(n). Thus, by the principle of mathematical
induction, 7T(n) is determined for all positive integers 7.

For every realistic kind of recurrence we have dealt with, there is similarly
one and only one solution. Because we know solutions exist, we don’t find
formulas for solutions to demonstrate that solutions exist; rather, we do so
to understand properties of the solutions. In this section and Section 4.3, for
example, we were interested in how fast the solutions grew as n grew large.
This is why we were finding big O and big ® bounds for our solutions.

Recurrences for General n

We will now show how recurrences for arbitrary real numbers relate to
recurrences involving floors and ceilings. We begin by showing that the
conclusions of the master theorem apply to recurrences for arbitrary real
numbers when we replace the real numbers with “nearby” powers of b.

Let a and b be positive real numbers, with b > 1, and let ¢ and d be real

numbers. Let #(x) be the solution to the recurrence
at(x/b) +x¢ if x > b,
t(x) =

if 1 <x <b.

Let T(n) be the solution to the recurrence

{aT(n/b) +n¢ ifn >0,
T(n) =

ifn=1,

defined when n is a nonnegative integer power of b. Let m(x)
be the largest integer power of b less than or equal to x. Then

1) = O(T(m@)).

452 Appendix A: Derivation of the More General Master Theorem

Theorem A.2

Proof If we iterate (or, in the case that a is an integer, draw recursion
trees for) the two recurrences, we can see that the results of the iterations
are nearly identical. This means the solutions to the recurrences have the
same big ® behavior. See the Proofs of Theorems, later in this section, for
details.

Removing Floors and Ceilings

We have pointed out that a more realistic master theorem would apply to
recurrences of the form 7(n) = aT(|n/b]) + n¢, T(n) = aT([n/b]) + n-,
or even T(n) = a'T([n/b]) + (a —a’)T(ln/b]) + n. For example, if we
are applying merge sort to an array of size 101, we really break it into
pieces of size 50 and 51. Thus, the recurrence we want is not really 7(n) =
2T(n/2) 4+ n but rather T(n) = T(\n/2]) + T([n/2]) + n.

We can show, however, that we can essentially ignore the floors and ceil-
ings in typical divide-and-conquer recurrences. If we remove the floors and
ceilings from a recurrence relation, we convert it from a recurrence relation
defined on the integers to one defined on the rational numbers. However,
we have already seen that such recurrences are not difficult to handle.

Our next theorem says that in recurrences covered by the master theorem,
if we remove ceilings, our recurrences still have the same big ® bounds
on their solutions. A similar proof shows that we may remove floors and
still get the same big ® bounds. Without too much more work, we can see
that we can remove floors and ceilings simultaneously without changing the
big ® bounds on our solutions. Because we may remove either floors or
ceilings, we may deal with recurrences of the form T(n) = a’T([n/b]) +
(a —a")T(|n/b]) + n°. We can replace the condition b > 2 with b > 1, but
the base case for the recurrence will depend on b.

Let a and b be positive real numbers, with b > 2, and let ¢ and d be
real numbers. Let 7(n) be the function defined on the integers by the

recurrence
aT([n/b]) +n¢ ifn>1,
T(n) =
d ifn=1,
and let 7 (x) be the function on the real numbers defined by the recurrence

{at(x/b) +x¢ ifx > b,
t(x) =

if 1l <x<b.

Then T(n) = @(t (n)). The same statement applies with ceilings replaced
by floors.

Theorem A.3

Appendix A: Derivation of the More General Master Theorem 453

Proof Asin Theorem A.1, we can consider iterating the two recurrences.
Although dealing with the notation is difficult, it is straightforward to show
that for a given value of n, the iteration for computing 7(n) has, at most,
two more levels than the iteration for computing #(n). The work per level
also has the same big ® bounds at each level, and the work for the two
additional levels of the iteration for 7(n) has the same big ® bounds as the
work at the bottom level of the recursion tree for 7 (n). For details, see the
Proofs of Theorems at the end of this section.

Theorems A.1 and A.2 tell us that the big ® behavior of solutions to our
more realistic recurrences

aTl([n/b]) +n¢ ifn>1,
T(n) = .
n=1,

is determined by their big ® behavior on powers of the base b.

Floors and Ceilings in the Stronger Version of the Master Theorem

This means that to analyze the recurrence of Theorem 4.11, we can ignore
the ceilings and treat n as if it were a power of b. In fact, we can ignore
floors and ceilings in circumstances where the function that tells us the
work done at each level of our recursion tree is ®(x¢) for some posi-
tive real number c. This lets us apply the second version of the master
theorem to recurrences of the form T(n) = aT([n/b]) + f(n). We just
proved Theorem 4.11.

Theorems A.1 and A.2 apply to recurrences in which the x¢ or n¢ term
is replaced by f(x) or f(n) for a function f with f(x) = ®(x°).

Proof We iterate the recurrences, or construct recursion trees, in the same
way as in the proofs of the original theorems. We find that the condition
f(x) = ©(x€) gives enough information to bound the solution above and
below with multiples of the solution of the recurrence with x¢. The details
are similar to those in the original proofs.

Proofs of Theorems

For convenience, we repeat the statements of the earlier theorems whose
proofs we merely outlined.

454 Appendix A: Derivation of the More General Master Theorem

Theorem A.4

Let a and b be positive real numbers, with b > 1, and let ¢ and d be real
numbers. Let 7(x) be the solution to the recurrence

{at(x/b) +x¢ ifx > b,
t(x) =

if 1 <x <b.

Let T(n) be the solution to the recurrence

T(n) =

aT(n/b) +n¢ if n >0,
if n=1,

defined for n, a nonnegative integer power of b. Let m(x) be the largest
integer power of b less than or equal to x. Then 7(x) = @(T(m(x))).

Proof By iterating each recursion four times (or using a four-level recur-
sion tree in the case that a is an integer), we see that

1(x) = a'*t (i) + <i)3xc + (i)zx” + Ly

pe) T e be be
and 4 n a3 . a\?2 | a
T(n) = a*T (ﬁ> n <F) n® + (;) n o

Continuing until we have a solution, in both cases, we get a solution that
starts with a raised to an exponent, which we will denote as e(x) or e(n)
when we want to distinguish between them and e when it is unnecessary to
distinguish. The solution for ¢ will be

e—1 ;
() ()

The solution for 7 will be
e—1 ani
a®d + n¢ Z <b_‘> .
i=0

In both cases, ¢ (x/b¢) (or T(n/b¢)) will be d. In both cases, the geometric
series will be ®(1), ®(e), or O(a/b)% depending on whether a/b€ is less
than 1, equal to 1, or greater than 1. Clearly, e(n) = log, n. Suppose we
want to divide x by b an integer number of times and have the result be

Theorem A.5

Appendix A: Derivation of the More General Master Theorem 455

in the range from 1 to b. Then this number of times must be greater than
log;, (x) — 1. Therefore, if m is the largest integer power of b less than or
equal to x, then 0 <e(x) —e(m) < 1. If we use r to stand for the real number
a/b¢, then we have r0 < pe—em) — o pem) < pe() < . pen) Thepn we
have r¢®) = ®(re(’")). Finally, m¢ < x¢ < b°m¢, and so x¢ = ®(m°). Thus,
every term of #(x) is ® of the corresponding term of 7(m). Further, there
are only a fixed number of different constants involved in our big ® bounds.
Therefore, because ¢ (x) is composed of sums and products of these terms,
we have proved that 7 (x) = @(T(m)).

Let a and b be positive real numbers, with b > 2, and let ¢ and d be
real numbers. Let 7T(n) be the function defined on the integers by the
recurrence

T(n) =

aT([n/b]) +n¢ ifn > 1,
ifn=1,

and let 7(x) be the function on the real numbers defined by the recurrence

{at(x/b) +x¢ if x > b,
t(x) =

if 1 <x <b.
Then T(n) = O(t(n)).

Proof As in the previous proof, we can iterate both recurrences. Let us
compare the results of iterating the recurrence for 7(n) and the recurrence
for T(n) the same number of times. Note that

7

g
<
b b

P W hz*? <gatpt!
18]

LAY +1-+1+1
b b3 b2 b b2 b

As this suggests, if we define ng = n and n; = [n;_1/b], then using b > 2,
it is straightforward to prove by induction, or with the formula for the sum
of a geometric series, that n; < n/b’ + 2. The number n; is the argument
of T in the ith iteration of the recurrence for 7. We have just seen that

456 Appendix A: Derivation of the More General Master Theorem

n; differs from the argument of ¢ in the ith iteration of ¢ by at most 2.
In particular, to reach the base case, we might have to iterate the recur-
rence for T twice more than we iterate the recurrence for 1. When we
iterate the recurrence for ¢, we get the same solution we got in the previous
theorem, with n substituted for x. When we iterate the recurrence for 7, we
get that

j—1

T(n) =a’d +) a'nf,
i=0

for some integer j, with n/b’ < n; <n/b’ 4+ 2. But, so long as n/b’ > 2,
we have n/b' +2 < n/b'~!. Because the number of iterations of T is at
most two more than the number of iterations of ¢, and because the number of
iterations of ¢ is |log, n |, we have that j is at most |log, n| + 2. Therefore,
all but perhaps the last three values of n; are less than or equal to n/b'~!.
These last three values are at most b2, b, and 1. Putting all these bounds
together and using ng = n gives us

7! ./ \C 7! .
Y5 =Y
=l i=0
j—4 n c ,) .
<n‘+ al<bl._1) +a’ (M +a/ b al 1e,
i=1
or
j—1 j—1

0
b S (Va2 () it (2 e (2

As we shall see, these last three “extra” terms and the b in front of the
summation sign do not change the big ® behavior of the right side.

As in the proof of the master theorem, the big ® behavior of the left side
depends on whether a/b¢ is less than 1, in which case it is ®(n); equal
to 1, in which case it is ®(n¢log, n); or greater than 1, in which case it is
@ (n'°2» %), But this is exactly the big ® behavior of the right side, because
n <b/ <nb?. Then b/ = ®(n), which means that (b//b")¢ = ®((n/bi)").
The b in front of the summation sign does not change the big ® behavior.

Appendix A: Derivation of the More General Master Theorem 457

Adding a/d to the middle term of the inequality to get T(n) does not
change this behavior. But this modified middle term is exactly 7(n). Because
the left and right sides have the same big ® behavior as 7(n), we have

T(n) = O(t(n)).

1. Important recurrences have unique solutions. The recurrence

I(n) =
ifn=1,

FT((n/b]) +gm) ifn>1,

k
has a unique solution when f and g are (known) functions defined
on the positive integers and k and b are (known) constants with b an
integer greater than or equal to 2.

2. Recurrences defined on the positive real numbers and recurrences
defined on the positive integers. Let a and b be positive real numbers
with b > 1. Let ¢ and d be real numbers. Let 7(x) be the solution to
the recurrence

{at(x/b) +x¢ if x > b,
t(x) =

if1 <x <b.

Let T(n) be the solution to the recurrence

{aT(n/b) +n¢ ifn >0,
T(n) =

ifn=1,

where n is a nonnegative integer power of b. Let m(x) be the largest
integer power of b less than or equal to x. Then

1) = 0T (m)).

3. Removing floors and ceilings from recurrences. Let a and b be
positive real numbers with b > 2, and let ¢ and d be real numbers.
Let T(n) be the function defined on the integers by the recurrence

T(n) =

aT([n/b]) +n° ifn>1,
ifn=1,

458 Appendix A: Derivation of the More General Master Theorem

and let 7(x) be the function on the real numbers defined by the
recurrence

at(x/b) +x¢ if x > b,
t(x) =
d if1 <x <b.

Then T(n) = @(t (n)). The same statement applies with ceilings
replaced by floors.

4. Extending Theorems A.1 and A.2. In Theorems A.1 and A.2,
summarized in 2 and 3 above, the n° or x¢ term may be replaced by
a function f with f(x) = ©(x°).

5. Solutions to realistic recurrences. Theorems A.1 and A.2,
summarized in 2, 3, and 4 above, tell us that the big ® behavior of
solutions to our more realistic recurrences

T(n) =
ifn=1,

{aﬂmwb+fm)iﬁm>L
d

where f(n) = ®(n¢), is determined by their big ® behavior on
powers of the base b and with f(n) = n°

All problems with blue boxes have an answer or hint available at the end
of the book.

1. Show that for each real number x > 0, there is one and only one
value of #(x) given by the recurrence

Ixt(x —1)+1 ifx>1,
t(x) =

fo<x <.

Show that for each real number x > 1, there is one and only one
value of #(x) given by the recurrence

{3nuﬂy+ﬁ if x >2
t(x) =

ifl<x<?2.

Appendix A: Derivation of the More General Master Theorem 459

3. How many solutions are there to the recurrence

FmT([n/b]) +g(n) ifn > 1,

T(n) =
ifn=1,

if b <2?1If b =10/9, with what would you replace the conditions
that n > 1 and T(n) = k if n = 1 to get a unique solution?

4. Explain why Theorem 4.11 is a consequence of Theorems A.1
and A.2.

This page intentionally left blank

Answers and Hints to
Selected Problems

Section 1.1 (pages 8—-10)

1. n(n — 1)/2. You get this many if the original ordering is the reverse of the
sorted ordering.

3. 52.51 = 2652

. 52-51/2=1326

. 52-51-50 = 132,600
. 10-9=190

(5)-
8.10-(3)or ()-8

9. Hint: Think about a club that needs to choose a president and a two-person
committee to advise the president.

IR TN

12. 10- 10 = 100 (assuming both scoops can be the same flavor)
14. 5-3-3-3 =135

Section 1.2 (pages 20-22)

2. ih=a, fiQ)=a, [iB)=a; fHr(D)=a, f[2D)=a, [OB)=0b;
L) =a, f:()=0b, f38)=a; fa(D)=a, [i(2)=b, [f1(3)=b;
fs()=b, fs)=a, [B)=a; [fe()=D, [fe(2)=a, [fe(3)=0b;
i) =0b, f(2)=0b, [(3)=a; f(1)=0b, f3(2) =D, f3(3) =b. None are
one-to-one; all but f| and fg are onto.

4. t*
6. (Z)lfk > n, the answer is zero.

8.2.41.41 = 1152
10. (%) =1140
12 2(1) (%) 414! = 2:10420% = 1,172,102.:400

14, ((130) +2.(9)+ (ﬂ")) 138 = 5280

461

462 Appendix B: Answers and Hints to Selected Problems

16 (2):()E)0) =150 (2) () () + () G)() =380

18a. Hint: You want to define g(y) to be a certain x. In terms of f, what is this
x and how do you know it exists?

18b. Hint: Suppose g and & both satisfy the definition of being inverses to f.
What can you say about g(y) and i (y) for any y equal to f(x) for some x?

Section 1.3 (pages 30—-32)

1. 220;220; (2) equals (nfk>.

3a. x7 4 5x* + 10x% 4+ 10x% + 5x + 1
3d. x° —S5x* 4 10x3 — 10x% + 5x — 1
5. 20 — 4200; Hint: Label three of the chairs green.

313141
7. Let N — K stand for the set of all elements of N that are not in K. Then
f(K)=N—-K.

s. (m;:—n) or (m;:n)
10. Hint: You can think of one of the two things that the first sentence asks you
to count as a(n) (ordered) list of three-element sets.

11. 20191817 (¢) = 65,116,800;
20-19-18-17- (%) = 132,559,200
13. Hint: Does the order in which k and n — k appear in the denominators

matter? For a second proof, in how many ways could you choose the elements
that you don’t want in a subset?

15. Hint: The ugly proof uses the formulas. The pretty proof explains why both
sides count the same collection of sets.

17. Hint: Whatis1 — 1?
19. Partial answer: False

Section 1.4 (pages 54—57)

2a. No
2b. Yes
2¢. No

Section 1.5 (pages 54—57)
1. (n —1)!

Appendix B: Answers and Hints to Selected Problems 463

5. nl(n—1)!
7. (k)n!nm— k! (k=1)!

n — (k—n)!(n—1)!
n+k—1
9 (")
1 2n
1. 5(7)
13. Hint: What can you say about the sizes of the equivalence classes?
16a. nf

16c¢. ("“ng_l)

16e. nk

16g. <’,:>
16i. n*
16k. nk

Section 2.1 (pages 72—-74)

1. 14mod9=5;,—1mod 9=8; —11 mod9 =7
3. EBOB FP X JBPPXDB
5. 11;12

7. (x-4) mod 9 = 1; because 7-4 = 28, you have that (1/4) mod 9 =7,
(1/3) mod 9 does not exist.

9. Partial answer:

+/0 1 2 3 4 5 6
0jJ0 1 2 3 4 5 6
1171 2 3 4 5 6 O
212 3 45 6 0 1
313 45 6 0 1 2
414 5 6 01 2 3
515 6 01 2 3 4
6|6 0 1 2 3 4 5

11. Yes; yes; no; yes.

13. (Big) Hint: What possible values can (x + a) mod n take on as functions
of x and a? Note, we assume 0 < x anda < n.

464 Appendix B: Answers and Hints to Selected Problems

16. The associativelaw saysx -, (v +n 2) = (x -, ¥) - 2. Asahint for the rest
of the problem, think about Lemma 2.3.

Section 2.2 (pages 90-93)

Yes; 133 mod m.

No for 10; yes for 11.
It is either zero or one.
42

. Thefirstsuggestionis notsafe. Shecomputesg~" mod p usingtheextended
GCD algorithm. The second is safe with a large p, so far as we know. The
wiretapper could try all powers of ¢ until she finds one such that ¢ = ¢“ Then,
she computes (¢”)". If p islarge, this is impractical. Also, if the wiretapper knew
how to take logarithms to the base ¢ in Z,, she could compute the log, of ¢“
But nobody knows a fast way to compute logarithms in Z .

11. GCDis18;x = 11;y = —13.

13. x =85

15. Yes, ged(j, k)isadivisorofged(r, k),andifged(r, k) = 1,thengcd(j, k) =
gcd(r, k).

17. ged(F;, Fip) = Lix = (=) 7' Fiy = (=D Fi_

19. Iem(x, y) = xy/ ged(x, y)

S XYW

-1

21. 4 -, x =4 hasasolutionin Zg.

23. The recursive description of Euclid’s extended GCD algorithm gives a
basis for a recursive proof of the theorem.

Section 2.3 (pages 104—106)

1. 4,2,1,4,2,1,...;4,6,4,6,4,....

3. Theyareall 1.

5. 1176; 1; 18; 19; 105. y¢ mod p need not determine x.

7a. 1

7b. 1

7c. 67

9. 0,p,2p,3p, ..., (p— 1)phave no multiplicative inverses; 1; no; itis 0.
11a. mx +nz =1

11b. Hint: The substitutions give k = kmx + knz = cnmx + bmnz.

14. Hint: x"~' mod n = 1 tells you that x has a multiplicative inverse in Z,,.

Appendix B: Answers and Hints to Selected Problems 465

Section 2.4 (pages 114-115)

1. 4

3. About 12 billion; about 12 trillion; insignificant in comparison.
5. 10 and 23

7. 10'2%; alot closer; no.

9

. Itdoesn’t make sense because you would need a¢1°2 mod n = @¢1¢2 ™4 "
mod n. Try simple examples to see if this rule holds.
11. It would make sense if a has a multiplicative inverse, but not otherwise.
13. 103; 100 encryptsto 111, and 111'% mod 209 = 100.
16. Hint: The word “signature” is being used in a very broad sense. Bob needs
to do something to convince the world that he and only he is the person who

gave them a certain piece of information, which we refer to as his signature of
the document.

Section 3.1 (pages 131-132)

1a.
s t (SVHOA(SVIE)A(GSYV L)
T T T
T F F
F T F
F F F
1b. st u s=1AC=u
T T T T
T T F
T F T F
T F F F
F T T T
F T F F
F F T T
F F F T

466 Appendix B: Answers and Hints to Selected Problems

1c.
st u| (sVtVu)A(sV—tVu)

™M T ™7 4 4 494 4
m 4 4 T T o3 4
- T =4 = <4 7T A
= 01 94 4 34 A

F FF F
4. Hint: Give the truth table for s = ¢ and —s V ¢, and compare them or con-
struct a double truth table.

5. Hint: Construct truth tables for both statements or construct a double truth
table.

7a. s Tb.s T7c. T 7d. F

9. Hints: One way to use the distributive law is “backward”—that is, start with
(s V1) A (u Vt)and changeitto (s A u) Vv t. Another way to use it is to write
AV @A) =W(sAt)Vu)A((s At) V).

12. (s VAV D)or(—s A—t) V(s AL)

14. No. Hintforsecond question: Whatdo you getwhenyouapply DeMorgan’s
laws to —=(—s Vv —t)?

16. Hint: Why were we allowed to say “g # ¢g* orr # r*” in our proot?

Section 3.2 (pages 147-149)

1. 1,2,and 3; 1, 2, and 3; all real numbers between 1 and 3; no.
3.Vx e R(x2 > 0)

7a. False

7b. True

7c. False

7d. True

8. Partial answer: Yes, there are two universal quantifiers.

10. For all positive integers n there is an integer m larger than n such that there
is a polynomial equation p(x) = 0 of degree m that has a real solution.

11a. Partial answer: False

Appendix B: Answers and Hints to Selected Problems 467

11b. Partial answer: False
13a. Partial answer: False
13b. Partial answer: False
13c. Partial answer: False
13d. Partial answer: True
15. Partial answer: “For all” and “there exist”” do not commute.

Section 3.3 (pages 159-160)

1a. Converse: If the hose reaches the tomatoes, then the hose is 60 ft long.
Contrapositive: If the hose doesn’t reach the tomatoes, then the hose is not 60
ft long.

1b. Converse: Mary goes for a walk only if George goes for a walk. Contra-
positive: Mary doesn’t go for a walk only if George doesn’t go for a walk.

1c. Converse: If Pamelarecites a poem, then Andre asked for a poem. Contra-
positive: If Pamela doesn’t recite a poem, then Andre didn’t ask for a poem.

4. Partial answer: This means that for all m and n in the integers, if m and n are
odd, thenm + niseven.

6. Partial answer: No

7. Hint: To get started, assume the negation of x # 1—thatis, assume that x =
1. Try to use this to show the negation of x> — 2x # —1,and use contrapositive
inference.

9. Hint: Try either contraposition or contradiction.

11. Hint: Contraposition and contradiction are two possible methods.

12. Hint: Experiment with some small values for n to help you decide whether
the statement is true.

14. Hint: Try contradiction. If there is a biggest prime n, what do you know
about prime factors of n! + 1?

Section 4.1 (pages 180—-183)

1a. i.Noii.Itis 1 — (1/3).iii. Yesiv.Itis 1 — (1/3)" " 'v.2/3 +2/9 4+ --- +
2/3" 1 42/3" =1 — (1/3)"' 42/3" =1 — (1/3)" vi. The assumption is
wrong. vii. The formula is true. viii. p(k — 1) = p(k)

1b. i. The base case is 2/3 =1 — 1/3. ii. The inductive hypothesis is
2/342/9+---+2/31=1-(1/3)k"! iii. Denoting the formula
you have to prove by p(n), you would prove p(k) based on assuming
p(k — 1), thereby showing that p(k — 1) = p(k). You may have written your
answers so that they involve the variable n rather than the variable k. iv.
2/342/94 - +2/3"7 4 2/3n =1 —(1/3)" 1+ 2/3" =1 (1/3)".

468 Appendix B: Answers and Hints to Selected Problems

v. 2/342/94---4+2/3=1—(1/3)F for all positive integers k. Vi.
p(k) = p(k + 1), where p(k) is the previous formula.

3. Abbreviated answer: Basecase: 1 -2 = 6/3whenn = 1;inductive hypothe-
sis:1-242-3+---+m—1)n=0m—Dnn+1)/3.Addn(n 4+ 1)toboth
sides and simplify to getn(n + 1)(n + 2)/3 in the inductive step.

5. Abbreviated answer: Base cases: m < n (You could also dom = 1, but the
multiple base cases make the proof flow more smoothly.); inductive hypothesis:
When 0 < k < m, 3 unique integers g and r withk = gn +r and 0 <r <n;
inductive step: Gofromk = m — ntok = m.(Youcan either make uniqueness
part of the inductive proof or prove it separately.)

7. Abbreviated answer: Base cases: n = 8, 9, 10; inductive hypothesis: When
8 < k < n, you can express k as the sum of a nonnegative integer multiple of
3 and a nonnegative integer multiple of 5; inductive step: Go fromn — 3 ton.

9. Abbreviated answer: Base case: n = 2 is given; inductive hypothesis: The
size of a union of n disjoint sets is the sum of their sizes; inductive step: The
union of n + 1 sets is the union of the first n unioned with the last set. The size
of the union of the first n is given by the inductive hypothesis. The size of the
union of that set with the last set is given by the sum principle for two sets.

12. Hint: Look for similarities between this problem and the proof of
Theorem 1.3.

14. Hint: Suppose you know that the weak principle of mathematical induc-
tion holds. Suppose further that you know p(b) holds and the implication
pb)ANpbB+1)A---Apn—1)= pn) holds for all n > b. Let g(n) be
the statement p(b) A p(b+ 1) A --- A p(n). See what you can do with weak
induction applied to g (n).

Section 4.2 (pages 197-198)

3. Hint: Try iterating the recurrence, or use the formula for first-order linear
recurrences, or guess the formula and prove by induction that you are right.
Partial answer: The difference is that for this recurrence the coefficient of 2" is
larger.

4. Hint: Try iterating the recurrence, or use the formula for first-order linear
recurrences, or guess the formula and prove by induction that you are right.
Partial answer: The difference is that for this recurrence you have 3" instead
of 2.

5. Hint: Try iterating the recurrence, or use the formula for first-order linear
recurrences, or guess the formula and prove by induction that you are right.
Partial answer: The difference is that here the solution grows as alinear function
of n rather than as an exponential function of n.

Appendix B: Answers and Hints to Selected Problems 469

6. m% m3; m"

8. M(n+ 1)=2M(n) + 2000; M (n) =2""'M(1) +2000(2" ! — 1)
10. T'(n) = ©(n)

12. T(n) = 2"+ 42" (n(n + 1)*/4)

14. T(n) = (n + Dr"

16. T(n) = s(r"t' — 5"t /r(s — 1)

Section 4.3 (pages 212—-214)

2. 2nlogn + 2n

3. T(n) = Om?)

5. T(n) = ©(n)

7. (5/2)n —1/2

9a. T(n) = O(n®)

9b. T(n) = O(n’logn)

9d. T (n) = ©(logn)

10a. T (n) = n((4n* — 1)/3)
10b. T(n) = n*(log,n + 1)
10d. 7(n) =logyn +1

12. Hint: Try substituting b = 2!°2 into »"; then see what you get if you take
logs to the base b.

14a. T(n) = O(n?)

14c. T (n) = ®(loglogn)

14d. T (n) = O(nlog®n)

15a. Yes 15b. Yes 15d. Yes
17. S(n) = O(c")

Section 4.4 (pages 221-222)

la. T(n) = O>)

1b. T (n) = ©(n’logn)

1d. T (n) = ©(logn)

3. T(n) = O(n'%2?)

5. T(n) = O(nlogn)

7. Hint: Use the fact that x = y'°&*,

470 Appendix B: Answers and Hints to Selected Problems

Section 4.5 (pages 233-235)

1. Hints: Youwanttofindtwoconstantsngandk suchthat7 (n) < kn whenever
n > no. It helps to write kn /4 = kn — 3kn /4. This should lead you to decide
that you wantk > (4/3)c.

3. Hints: Youwantto findng > Oand k > Osothat 7'(n) < knlogznforn >
ng. One thing to notice is thatng can’tbe 1, so it must be at least 3. If you replace
the 2 with a 3, you get the same result with a bit more careful work. Changing
the base for the logarithm doesn’t change the big O bound.

S. No

6a. T(n) = O(n?)

6b. Hint: You’ll find you need a stronger inductive hypothesis than the natural
choice. Try proving that T'(n) < kyn> — konlogn.

7. Yes
11. T(n) = O(nlogn)

Section 4.6 (pages 247—-248)

1. T(n) = O(n)
3. Partial answer: T(n) = O(n), S(n) = O(n); To compare the solutions,
compare the recursion trees level by level.

7. ©(nlogn)
8. T(n) = 0(n?

Section 5.1 (pages 260—262)

1. 5/16;1/2

3. .72;nhastobe 5; n still has to be 5.

5. You would get 3/11, which doesn’t make sense.

7. Hint: The number of ways to get five heads in ten flips is (150) .

9. 33/16660, which is approximately .00198.

11. 7/128, which is about .0546875; 121/128, which is about .9453125.
13. No

15a. Drawing an ace and a king from the spades is more likely.

15b. Drawing an ace and a king from the spades is more likely.

Section 5.2 (pages 274—-276)

1. 3/4
3. 11/36

Appendix B: Answers and Hints to Selected Problems 471

5. 10/13
7. 50

9. Yo (1) tn = D = Xg(= D% = Xp(= s
Sha S =y, G

1. Y7 (- l)k()(m Ky

1. S (2) ()
14. Y (— Dk <k> Qnoko 1)

16. ZZZO(—I)"n!(Z”‘k"“>(n —k—1)!

c Sl DF (1) () Gty et

1

~

Section 5.3 (pages 290-292)

1. 1/2
3. Yes

5. Each pair of events is independent, but we wouldn’t want to say they are
mutually independent.

7. Partial answer: 1/5; 1/4
9. Each of the three probabilities is 20/120 = 1/6.
11. If E and F are independent, one of the events must have probability 0.

13. Partial answer: You should switch.

Section 5.4 (pages 307-310)

2. First three questions: p3(1 — p)3; last question: <g’)p3(1 - p)?

3. ()51 =0430453125; (1) 510+ (1) 510+ (16) 5" = 0546875
5. $3.50

7. 4

9. 6

11. Subtract the number of wrong answers from the number of right answers.
13. (150)<)p3q2r5, ”i;!!k!piquk

14. Hint: Thereare (atleast)fourdifferentsolutiontechniquesavailable: Induc-
tion, a “story” about choosing subsets, taking derivatives of both sides of a

472 Appendix B: Answers and Hints to Selected Problems

formula you know to give something related to the formula you want to know,
and substituting the “quotient of factorials” formula into the left side of the
formula you want and converting the result to the right side of the formula you
want. We leave it to you to decide which of these strategies is most helpful.
Several strategies might be equally helpful.

16. The expected amount of money on any of the three draws is 40/3 cents.
Thus, the expected total amount of money you draw is 40 cents. No, it doesn’t
change.

18. Wegiveoneexampleto give youtheidea; youshould give another one. Roll
onedie. Let X be the number of dots on top, and let Y be the total number of dots
on the other five sides. Then E(X) =7/2, E(Y) =21 —-7/2,and E(XY) =
175/3,while E(X)E(Y) = 245/4. There are simpler examples, but we wanted
to leave them for you!

20. Hint: Take the derivative of Zi‘;l x/ = 1/(1 — x) and multiply both sides
by x.

21. Onepossibleansweris X = (1/(1 — p)) | where is the number of the trial
with the first success. Anotheris X = i’.

Section 5.5 (pages 321-324)

la. 1/d 1b. 1/d 1c. ¢/d 1d. c/d 1e. yes
3.d
5. Atleast six.

7. For n=2, you get 1<2%/22, 2<2%/1, 1<22/2%. For n=3, you get
1<33/33,3<33/22,3<33/22,1 <3333,

9. Hint: If X; isthe number of occupied locations and Y; is the number of empty
ones,then X; + Y, = k.

11a. The expected time for unsuccessful searchis 1 + n/k.

11b. Theexpectedrunningtimeforasuccessfulsearchforis1 + n/2k — 1/2k.
13. Hint: lim,_ _oo (1 4+ 1/0)" = limj,_.o(1 + h)'/" = e. Also, lim,_ _o
(1 + 1/7’1)" = limh_>07(] + h)l/h = e.

15. Hint: Try substituting log n/loglogn for x into the equation x* = n to
see how close it comes to being a solution. Then experiment with multiples of

logn/loglogn. This should help you figure out upper and lower bounds on
solutions.

Appendix B: Answers and Hints to Selected Problems 473

18. Hints: Draw rectangles of width 1 above and below the curve, starting at
x = 1 and going to the right to x = n + 1. You can show that the area above
the lower rectangles and included in the upper onesis 1 — 1/(n + 1). Convert
the upper rectangles to trapezoids above the curve, and you will reduce the
difference in areas by a factor of one half. Now use the fact that the integral of
1/x is In x to approximate the harmonic numbers

Section 5.6 (pages 340—-343)

1. X; + Xo +--- 4+ X, is the number of times you assign a value to L. The
expected number of times you assign a value is H,,, the nth harmonic number.

3. Hint: It should be clear why the sum is O (n log n). Think what you can say
about the largest half of the terms of the sum.

S. By the master theorem.
7. Hint: Try analyzing a recursion tree. You could also try induction.

11. 1/2;11/16; while your upper bound will be smaller, it is not clear that the
potential time savings is worth the extra complexity.

13. Hint: The first key has probability 1/2 of being in the middle half of the
sorted list of keys.

15. Final answer: T'(n) = O (logn)

Section 5.7 (pages 355—-357)

1. 0;1.2;1.2

3. 30cents; 400 (assumes expected value is in cents); 60 cents; 0 (We leave the
final question for you to answer.)

S. Approximately .95.
7. Hint: Use Theorem 5.28.

9. Expected amount of money on each draw is 40/3 cents. For each draw, the
variance is 72%. For the sum of the two draws, the expected amount of money
is 80/3 cents, and the variance is 1853 /27 ~ 68.63.

11. 35/12;4/35/12;35n/12; \/35n/12
13. Inconsistent; consistent
15. Partial answer: 1/4

17. Hints: The variance for the number of successes is no more than n /4. You
might also use Problem 16.

19. 80%; multiply the number of questions by +/.18/.4, or about 1.125.

474 Appendix B: Answers and Hints to Selected Problems

Section 6.1 (pages 373-374)

1. 1,11,7,5
3. Vertex 2 has degree 7.

5. Thecycles with vertex sets {9, 15}and {10, 11, 12, 13, 14} butnotthecycles
with vertex set {1}.

7. Oneexampleis {2, 9, 11, 12}. There are others. All the largestinduced K,,’s
have size 4.

9. Hint: What do you know about the number of vertices and edges in each
connected component?

11.

13. No
15. Gisatree.

17.
o+ —o—o oo >_¢_q
19. 2,3,4,5,7,11,2

Section 6.2 (pages 387-389)

1' {619 eZa 63}’ {ela 625 35}’ {el5 839 64}’ {619 63, 65},
{e1, ea, es}, {e2, €3, ea}, {e2, €3, es}, {e2, ea, 5}

3. We give the edge sets rather than drawing them. The root vertex is always
vertex 1.

1.{1,2},{2, 3}, {3, 4}, {4,5}; 2.{1,2},{2, 3}, (3,4}, {3,5};
3.{1,2},{2,3},{2,4},{3,5}; 4.{1,2},{2,3},{2,4},{2,5};
5.{1,2},{1,5},{2,3},{3,4}); 6.{1,2},{1,5},{2,3}, {2,4};

7.{1,2}, {1, 3}, {1,4},{2,5}; 8.{1,2},{1, 3}, {1, 4}, {1, 5}

5. Many examples are possible. We give the edge set of one:

{{1,2},{1, 3}, {3,4}. {1, 5}, {5, 6}, {6, 7} }.

Appendix B: Answers and Hints to Selected Problems 475

AN 4R

9. d = |log,(n)].
11. Hint: What is the best way to start an inductive proof of a statement about
binary trees?

13. Hint: What is the best way to use induction to prove a statement about
rooted trees?

Section 6.3 (pages 407—-409)
la. 1,2,3,4,5,1,4,2,5,3,1

1b. No Eulerian circuit.

1c. No Eulerian circuit.

1d. 1,5,2,6,3,7,4,8,1,6,4,5,3,8,2,7,1
3.2

5. For odd n.

7. n>1

9a. If m and n are nonzero and both even or if one is 0 and the other is 1, the
graph is Eulerian.

9b. If m and n are greater than 1 and are equal, the graph is Hamiltonian.
11. No such circumstances.
13. Hint: Look carefully at the proof of Dirac’s theorem.

15. Hint: You have to prove two implications, and one is easy. Would it help to
prove that if G; is Hamiltonian, then G;_ is Hamiltonian?

Section 6.4 (pages 428—-429)

Possible answer: {{a, 5}, {b, 2}, {c, 3}, {d, 6}, {e, 4}}
S={a,cd f};N(S) =1{2,3,4}

Partial answer: N () was a subset of the minimum vertex cover.
Yes

LW =

. No;no
11. Possible answer: The complete graph K.

476 Appendix B: Answers and Hints to Selected Problems

13. Partial answer: True.

15. The sum is v.

Section 6.5 (pages 445—-447)
2

. Partial answer: Yes

.33

. Hint: This is a situation where greed is good!
3

11. ¢(r — 1)*!

13. Hint: If a graph has no triangles, what can you say about how the number
of edge-face pairs compares with the number of faces?

o O W =

15. Hint: If all vertices have degree 4 or more, how does the sum of the degrees
of the vertices relate to the number of vertices? Is this consistent with Problem
13?

17. 5;no

19. 7,9, and 8, respectively; In fact, 7 is the chromatic number.

Appendix A (pages 449—-459)

2. Hint: Prove by induction that if 1 < x < 2", then 7(x) is uniquely deter-
mined.

Bibliography

(1]

(2]

[3]

(4]

(8]

(9]

[10]

[11]

[12]

[13]

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena.
PRIMES is in P. http://www.cse.iitk.ac.in/news/
primality.html, 2002. For updated information, see
http://crypto.cs.mcgill.ca/~stiglic/PRIMES _P_FAQ.html.
W. R. Alford, A. Granville, and C. Pomerance. There
are infinitely many Carmichael numbers. Ann. of Math,
140: 703-722, 1994.

Kenneth Appel and Wolfgang Haken. Every planar map
is four colorable. Bull. Amer. Math. Soc., 82: 711-712,
1976.

Jon L. Bentley, Dorthea Haken, and James B. Saxe. A
general method for solving divide-and-conquer
recurrences. SIGACT News, 12(3): 36-44, 1980.
Claude Berge. Two theorems in graph theory.
Proceedings of the National Academy of Sciences, USA,
43: 842-844, 1957.

Claude Berge. Graphs and Hypergraphs. Amsterdam:
North Holland, 1973.

Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson.
Graph Theory 1736—-1936. Oxford: Clarendon Press,
1976.

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald
Rivest, and Robert E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7(4):
448461, 1973.

Kenneth P. Bogart. Discrete Mathematics. 1st ed.
Boston: Houghton Mifflin, 1988.

Kenneth P. Bogart. Introductory Combinatorics. 3rd ed.
Boston: Harcourt-Academic Press, 2000.

Alan Cobham. The intrinsic computational difficulty of
functions. In Proceedings of the 1964 Congress for
Logic, Methodology, and the Philosophy of Science,
24-30. Amsterdam: North Holland, 1964.

Stephen Cook. The complexity of theorem

proving procedures. In Proceedings of the Third
Annnual ACM Symposium on Theory of Computing,
Association for Computing Machinery, 151-158,

1971.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
3rd ed. Cambridge, MA: MIT Press, 2009.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Richard Crandall and Carl Pomerance. Prime Numbers:
A Computational Perspective. 2nd ed. New York:
Springer-Verlag, 2005.

Whitfield Diffie and Martin Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, 1T-22(6): 644-654, 1976.

Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, 17: 449-467, 1965.

Michael R. Garey and David S. Johnson. Computers
and Intractability: A Guide to the Theory of
NP-Completeness. New York: W. H. Freeman, 1979.
Martin C. Golumbic. Algorithmic Graph Theory and the
Perfect Graph Conjecture. 2nd ed. Amsterdam:
Elsevier, 2004. First published 1980 by Academic Press.
Jonathan L. Gross and Jay Yellen, eds. Handbook of
Graph Theory. Vol. 25, Discrete Mathematics and Its
Applications. Boca Raton, FL: CRC Press, 2003.
C.A.R. Hoare. Algorithm 63 (PARTITION) and
algorithm 65 (FIND). Communications of the ACM,
4(7): 321-322, 1961.

Richard M. Karp. Reducibility among Combinatorial
Problems, 85-103. New York: Plenum Press, 1972.
Richard M. Karp. An introduction to randomized
algorithms. Discrete Applied Mathematics, 34: 165-201,
1991.

John G. Kemeny, J. Laurie Snell, and Gerald L.
Thompson. Finite Mathematics. 3rd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1974.

Donald E. Knuth. Big omicron and big omega and big
theta. ACM SIGACT News, 8(2): 18-23, 1976.

L. A. Levin. Universal sorting problems. Problemy
Peredachi Informatsii, 9(3): 265-266, 1973.

G. L. Miller. Riemann’s hypothesis and tests for
primality. Journal of Computer and Systems Science, 13:
300-317, 1976.

Michael O. Rabin. Probabilistic algorithm for testing
primality. Journal of Number Theory, 12(1): 128-138,
1980.

R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key
cryptosystems. CACM, 21: 120-126, February 1978.

477

http://www.cse.iitk.ac.in/news/primality.html
http://www.cse.iitk.ac.in/news/primality.html
http://crypto.cs.mcgill.ca/~stiglic/PRIMES_P_FAQ.html

478 Bibliography

[29]

[30]

[31]

[32]

Neil Robertson, Daniel P. Sanders, Paul D. Seymour,
and Robin Thomas. The four color theorem. Journal of
Combinatorial Theory, 70: 2-44, 1997.

Kenneth Rosen. Discrete Mathematics and Its
Applications. 4th ed. New York: McGraw-Hill, 1999.
Kenneth Rosen. Elementary Number Theory and Its
Applications. 4th ed. Boston: Addison-Wesley, 2000.
Robin Thomas. An update on the four color theorem.
Notices of the American Mathematical Society, 45(7):
848-859, 1998.

[33]

[34]

Douglas B. West. Introduction to Graph Theory. 2nd ed.
Upper Saddle River, NJ: Prentice Hall, 2001.

Robin J. Wilson. Four Colors Suffice: How the Map
Problem Was Solved. Princeton, NJ: Princeton
University Press, 2002.

Index

A

abstraction
defined, 3
in equivalence relations used in
counting, 45-46
addition mod n, 68-69
cryptography using, 68—69
addition, redefining, 67. See also
arithmetic modulo n (mod n)
additive identity properties, 68
additivity of expected values, 300-301,
307
adjacency list, 378
Adleman, Leonard, 64
adversary in cryptography, 59, 71
algorithms
augmentation-cover, 420—426, 428
in breadth-first search (BFS), 378-381
for determining spanning trees,
375-377
divide-and-conquere, 198-201,
210-211
efficient, in bipartite graphs, 426427
Euclid’s GCD, 84-89
for finding closed walk in Eulerian
tour, 394-395
flower, Edmond’s, 426427
greedy coloring, 435
median, 235-236 (See also selection)
merge sort, 200-201, 211
nondeterministic polynomial-time
algorithm, 402—-403, 407
NP-algorithm, 402-403, 407
P-algorithm, 401-403, 407
polynomial-time, 401-403, 407
probability and, 325-339
conditional expected values and,
327-329
QuickSort and, 333-336, 340
randomized, 329-331, 339
RandomSelect and, 336-340

selection and, 331-333
in sorting, 325-327
randomized, 112, 325 (See also
randomized algorithms)
rounds in, 330-331
selection, 236237
selection sort, 1-2
Spantree, 376-377, 378
alternating cycles, 415-416, 427
alternating paths, 415-416, 427
“always true,” 140
ancestor, 382, 386
antisymmetric relation, 35, 36, 41
Appel, Kenneth, 436
arc of graphs, 359n
arithmetic modulo n (mod n), 65-71
addition mod n, 68-69
cryptography using, 68—69
defined, 67-68
multiplication mod n, 69-71
cryptography using, 69-71
associative law, 67, 72
augmentation-cover algorithm, 420426,
428
augmenting paths in bipartite graphs,
417-420, 427

B

base case
in mathematical induction, 166,
178-179
multiple cases, 172, 179
recurrence, 204205, 211
recursion, 166, 178-179
Bayes’ theorem, 280, 289
Berge’s corollary, 416, 428
Berge’s lemma, 415, 428
Berge’s theorem, 417, 424, 428
Bernoulli trials process
expected number of successes in,
293-294, 306, 307

479

480

Index

Bernoulli trials process (continued)
expected number of trials until first
success, 304-306, 307
independent trials process and, 293-294
variance and standard deviation for,
353, 354
BES. See breadth-first search (BFS)
big O, 189, 191, 205, 206
big ©, 191, 196, 206
bijection, 7n, 15, 19
bijection principle, 14-15
binary tree, 383, 387
complete, 388
depth of, 388
full, 383-385, 387
height, 388
inductive definition of, 383, 385
internal/external vertices in, number of,
383-385, 386
null or empty, 383, 387
recursive definition of, 383, 385, 387
binomial coefficients in counting
binomial theorem, 26-28, 30
interpreting, 52, 54
of k-element subsets, 18, 19
labeling and trinomial coefficients,
28-29, 30
Pascal’s Triangle, 22-24
proof using sum principle, 24-26
binomial theorem, 2628, 30
binomial variables, 294-295, 306
bipartite graphs
defined, 412
efficient algorithms in, 426-427
independent, 412, 427
Konig-Egervary theorem, 424, 425, 428
matching theory in, 417
alternating paths and cycles in,
415-416, 427
augmentation-cover algorithm in,
420-426, 428
augmenting paths in, 417-420, 427
efficient algorithms in, 426-427
neighborhood/neighbors in, 413, 427
parts of, 412
blocks, in partition of a set, 3, 42, 53
bookcase arrangement problem, 50-51
Boolean expression, 404n
Boole’s inequality, 317
breadth-first search (BFS), 377-381

adjacency list and, 378

algorithm in, running, 378-381

defined, 377

distances and, 379-381, 386

queue used to describe, 377-378, 386
enqueue/dequeue and, 378, 386

spanning trees, 381

C

Caesar cipher, 60, 71
Carmichael numbers, 106
Catalan number, 55
Chebyshev’s law, 356-357
child/children, 382, 383-384, 386
chromatic number, 434-437, 445
ciphertext, 60, 71
classes, equivalence
counting, 39, 41-42
multisets and, 48-50, 51-52, 54
clique problem, 404-405
closed walk. See also walk in a graph
defined, 367, 373
in Eulerian circuit or tour, 390-391
algorithm for finding, 394-395
connected graphs and, 392-393
necessary and sufficient conditions,
394
Hamiltonian cycle, 395
Dirac’s theorem and, 398, 400, 406
necessary and sufficient conditions
for, 395-396
NP-problem and, 403-406, 407, 409
Ore’s theorem and, 400, 407
codebook, 63
coefficients
binomial, 18, 19, 23
constant coefficient recurrence,
189-192, 195
multinomial, 31
trinomial, 28-29, 30
coin flipping, 282-283, 290
collisions in hashing, 252-253, 259
number of, 312-315, 320
coloring of graphs, 430-435, 444-447
chromatic number in, 432
defined, 431
five-color theorem and, 441-444
four-color theorem and, 432, 436, 441,
443-444

idea of, 430432
of interval graphs, 433435
proper, 431-432
combinations with repetitions, 52
formula for, 54
commutative law, 67, 72
comparable elements, in ordered sets,
40, 42
comparable set, 40
complement
of events, 253, 259
of graphs, 405
complementary probability, 253
complete binary tree, 388
complete graph on n vertices,
361-362, 372
complete subgraphs, 434-435
conclusion of an implication, 126
conditional connectives, 126—129
conditional probability, 276-279
defined, 277-278, 289
tree diagrams and, 284-288, 290
conditional statements, 126—129
converse of a, 154, 159
connected component, 366
connected graphs and vertices, 365-367,
372-373
connectives
conditional, 126—-129
logical, 120, 129
connectivity classes, 366
connectivity relation, 365-367
consecutive integers, summing, 3—4
constant coefficient recurrence,
189-192, 195
constant, expected values of, 346, 354
contradiction, proof by, 128-129,
130, 131n
in inverses mod n, 77
principle of the excluded middle and,
128-129, 130
techniques with names, examples of,
155-158, 159

contrapositive rule of inference, 153-155,

159
converse of a conditional statement in,
154, 159
proof by contraposition, 153—154
converse of a conditional statement,
154, 159

Index 481

converse of lemma, 81n
Cook, Stephen, 403—404
counterexamples, smallest, §2—83,
161-165
counting, 1-57. See also equivalence
relations used in counting;
relation
basic, 1-10
abstraction, 3
product principle, 4-6, 8, 18
summing consecutive integers, 3—4
sum principle, 1-3
two-element subsets, 67, 8
bijection principle, 14-15
binomial coefficients in, 22-32
binomial theorem, 2628
labeling and trinomial coefficients,
28-29, 30
Pascal’s Triangle, 22-24, 29-30
proof using sum principle, 24-26
k-element permutations of a set, 15-16
lists and functions in, 12—13
partial and total orders, 39-41
principle of inclusion and exclusion for,
271-272
subsets of a set, 16—-18
sum and product principles, using,
10-11, 19
coupon-collector problem, 314-315
cryptography. See also greatest common
divisors (GCDs); RSA
cryptosystem
arithmetic mod n and, 63-71
addition mod n, 68—69
multiplication mod n, 69-71
defined, 59, 71
greatest common divisors and
introduction to, 59-60
multiplicative inverses and, 75-93
private-key, 60-63, 71
public-key, 63-65, 71
secret-key, 63, 64, 71, 109
cumulative variables, 343-345
cut edge of planar drawing, 438-439, 445
cycle in a graph
alternating, 415-416, 427
defined, 367
Hamiltonian graphs, 395-400
walk as, 367, 373

482

Index

D

degree of a vertex, 363-365

DeMorgan, Augustus, 430

DeMorgan’s laws, 123-124, 130
negation of quantifiers and, 142-143
proving, 124

dequeue, 378, 386

derangement problem, 268-270

descendant, 382, 386

Dirac’s theorem, 398, 400, 406

directed graphs, 361

direct inference (modus ponens),

149-151, 158

conditional proof in, 150-151, 158
rules of inference for, 151-153, 158
universal generalization in, 151, 158
disconnected graphs, 365

disjoint sets, 2, 7

probability of events in, 251-252, 259

distances in vertices, 379-381, 386
distributions of random variables,
343-353

binomial, 294-295, 306

cumulative, 343-345

function, 298, 306

geometric, 305-306

histograms and, 343-345, 354

normal, 352-353

uniform, 256-259, 260
distributive law, 67, 72, 123, 130
divide-and-conquer algorithm in

recurrences, 198-201. See also

master theorem
division algorithm, 61n
domain, 12

E

Ear Lemma, 178

edge of graphs, 359-371
in complete graphs, 361-362
connectivity and, 365-367
cycles and, 367
degree of a vertex and, 363-365
endpoints in, 360
incident, 360
joining by endpoints, 360-361
length of a path and, 362-363
length of a walk and, 362-363
multiple, 361

notation used in matching theory, 411n
in simple graphs, 361
symmetric, 360-361
in tree graphs, 368-371
vertex cover of, 413-414, 427
Edmonds, Jack, 426
efficient algorithms in bipartite graphs,
426427
elements
comparable/incomparable, in ordered
sets, 40, 42
of relations in counting, 32
empty binary tree, 383, 387
encrypted information, 59-60. See also
cryptography
endpoints of edges in a graph, 360-361
enqueue, 378, 386
equivalence class counting, 46-48
equivalence classes, 39, 41-42
equivalence relations, 36-39, 41, 43-57
abstraction and, 45-46
bookcase arrangement problem in,
50-51
counting problems solved by using,
45-46
defined, 38, 41
equivalence class counting, 4648
multisets in, 48-50, 51-52, 54
number of k-element multisets of an
n-element set, 51-52
properties necessary for, 36-39, 41
quotient principle in, 46, 52-53
symmetry principle in, 43-45, 53
equivalent statements
conditional statements/connectives and,
126-129
DeMorgan’s laws and, 123-124, 130
implication and, 125-126, 130
logic and implication, 117-132
quantified, 122-123
truth tables and, 122-123, 130
Euclid’s division theorem, 61, 71, 81-84
Euclid’s GCD algorithm, 84-89
computing inverses and, 88—89
extended, 85—-88
Eulerian circuit, 390. See also Eulerian
tours

Eulerian graphs, 389-395, 406, 407-408
defined, 393, 406
Konigsberg Bridge problem and,
389-390
Eulerian tours, 390-395, 406
defined, 390-391
finding, 394-395
in finite graphs, 392-393
Eulerian trails, 390-395, 406
defined, 391
finding, 393-394
Euler’s constant, 314, 320
Euler’s Formula, 439-440, 445
excluded middle, principle of, 128-129,
130
existential quantifiers, 135
expectation. See expected values
expected number of trials until first
success, 304-306, 307
expected running time
defined, 339
insertion sort, 326-327, 339
QuickSort, 333-336, 340
randomized selection, 331-333, 339
RandomSelect, 336-340
expected values
additivity of, 300-301, 307
Bernoulli trials and, 293-294, 306
conditional, 327-329
constant, 346, 354
defined, 298, 307
deviation from, 351-353, 354
distribution function and, 298, 306
in hashing, probability and, 310-321
expected number of collisions,
312-315, 320
expected number of elements in a
location of a hash table,
315-320
expected number of empty locations,
311-312, 320
expected number of items per
location, 310-311, 320
independent trials process and,
282-284
keys all hashing to different
locations, 254-256
linearity of, 300-302, 307
number of new minimums in FindMin,
303

Index 483

of numerical multiples, 299-302, 307
product of independent variables,
349-350
of sums, 299-302, 307
expected values of random variables,
296-302
additivity of, 300-301, 307
Bernoulli trials and, 293-294, 306
conditional, 327-329
constant, 346, 354
defined, 298
deviation from, 351-353, 354
distribution function and, 298, 306
in hashing, 310-321
linearity of, 300-302, 307
of numerical multiples, 299-302, 307
product of independent variables,
349-350, 354
of sums, 299-302, 307
exponentiation mod n
practical aspects of, 106-108
in RSA cryptosystem, 93
in Z,, 93, 100
exponents, rules of, 93-96
extended GCD algorithm, 85-89
inverses and, 88-89
extended Riemann hypothesis, 111
external vertices, 382-385, 386

F

face of planar drawing, 438. See also
planar drawing, face of
factorial power of n, kth falling, 16
factoring problem, 110
Fermat’s Little Theorem
primality testing and, 111-112
RSA cryptosystem and, 96-101
finite geometric series
common ratio r, 188-189
sum of, 189-191
first-order linear recurrences, 191-195,
196
constant coefficient linear recurrence,
195
defined, 191, 195
examples of, 185-186
solution to constant coefficient plus
constant case, 196
five-color theorem, 441444

484

Index

flower algorithm, Edmond’s, 426427
formulas

for combinations with repetitions, in

k-element multisets, 52, 54
four-color theorem, 432, 436, 441,
443-444

free variables, 133
full binary tree, 383-385, 387
function

defined, 12, 19

domain of, 12

inverse to, 22

lists and, 12-13

one-to-one, 13

onto, 13, 19

range of, 12

as a relation, 33

relation of, 33, 41

sets in, 12—13
function variables, 298, 306

G

geometrically connected planar drawing,
437-438

geometric distribution, 305-306
geometric series, 188-191, 196

big ® bounds on, 191, 196

finite, sum of, 189-191

finite, with common ratio r, 188—189
geometric variables, 305-306
graph decision problem, 401, 403, 407

graphs, 359-447. See also bipartite graphs

coloring, 430435, 444-447 (See also
coloring of graphs)

complement of, 405
complete, on n vertices, 361-362, 372
connected, 365-367, 372-373
connectivity of, 365-367
cycles in, 367

alternating, 415416, 427
decision problem in, 401, 403, 407
defined, 359, 368, 371
degree of a vertex in, 363-365
directed, 361
disconnected, 365
drawing, 361
Eulerian, 389-395, 406, 407-408
finite, in Eulerian tours, 392-393
Hamiltonian, 395400, 406, 408—409

independent set of, 405, 412, 427
intersection, 431-432
interval, 433-435 (See also interval
graphs)
matching theory in, 410-429 (See also
matching theory in graphs)
multigraph, 361n
multiple edges of, 361
NP-complete problems, 401406, 407,
409
overview of, 359-363
parts of, 359-361, 371 (See also edge
of graphs; vertices)
paths in, 362-363
alternating, 415416, 427
planar, 435-444, 445, 447
properties of, 368-371
simple, 361, 372
subgraphs
complete, chromatic number in,
434-435
defined, 367
induced, 367, 376
terminology of, 361n
tree, 368-371, 375-389 (See also trees)
weighted, 388

greatest common divisors (GCDs), 75-93

computing inverses and, 88—89

converting modular equations to normal
equations, 79-80, 89

defined, 80-81, 90

Euclid’s division theorem, 82-84

Euclid’s extended GCD algorithm,
85-88

Euclid’s GCD algorithm, 84-85

inverses mod n and, 76-79

multiplicative inverses and, 75-76, 89

greedy coloring algorithm, 435

Haken, Wolfgang, 436

Hall’s condition, 425-426

Hall’s theorem, 425-426
Hamiltonian closure, 409
Hamiltonian cycle, 396-400
Hamiltonian graphs, 395-400, 406,

408-409
defined, 396, 406
Dirac’s theorem, 398, 400, 406

NP-completeness and, 403—406, 407,
409
Ore’s theorem, 400, 407
parts of, 409
paths and cycles in, 395-400, 406
Hamiltonian path, 395-400
Hamilton, William Rowan, 396
harmonic number, 314, 320
hashing
collisions, 252-253, 259
number of, 312-315, 320
description of, 283, 290
independent trials process and,
282-285, 290
probability and, expected values related
to, 310-321
expected number of collisions,
312-315, 320
expected number of elements in a
location of a hash table,
315-320
expected number of empty locations,
311-312, 320
expected number of items per
location, 310-311, 320
independent trials process and,
282-284
keys all hashing to different
locations, 254-256
hatcheck problem, 268-270
histograms, 343-345, 354
hypothesis of an implication, 126

I

“if and only if” statements, 126-129
implication, 125-126, 130
implicit quantification, 143-144
incident vertices, 360
incomparable elements, in ordered sets,
40, 42
increasing triples, 14
independent bipartite graphs, 412, 427
independent events, 278-279, 289
independent probability, product principle
for, 280-282, 289
independent events, 278-279, 289
independent random variables, 347-350

Index 485

product principle for independent
probabilities, 280-282, 289
symmetry of, 289
independent random variables
expected product of, 349-350, 354
independent trials processes, 282-285,
290
Bernoulli trials, 293-294, 306
product of, 349-350
variance of sum of, 347-349, 350, 354
independent set of a graph, 405, 412, 427
independent set problem, 405
independent trials process, 282-284
Bernoulli trials, 293-294
coin flipping, 282-283, 290
hashing, 282-285, 290
test taking, 345, 353
indicator random variables, 302-303, 307
analyzing algorithms with, 303
defined, 302, 307
and linearity of expectation, 300-302,
307
indirect proof, 155-158, 159
induced subgraphs, 367, 376
induction. See also mathematical
induction
conclusion, in spanning trees, 377
general overview of, 171-172
principle of
in breadth-first search spanning tree,
381
of connected graphs in spanning tree,
375
in five-color theorem, 441-443
odd number of vertices in full binary
tree, 384-385
strong, 169-171, 170-171, 359, 364
weak, 165-168, 170, 171, 364
weak principle of, 165-168
proof by, 83-84
recursive view of, 173-176
smallest counterexamples and, 161-165
structural, 176-178
inductive hypothesis, 166-167, 179
inductive step, 166, 173, 179
inference in logic, 149-160
contrapositive rule of inference,
153-155, 159

inference in logic (continued)
converse of a conditional statement
in, 154, 159
proof by contraposition, 153-154
direct inference (modus ponens) and
proofs, 149-151, 158
conditional proof in, 150-151, 158
rules of inference for, 151-153, 158
universal generalization in, 151, 158
proof by contradiction (indirect proof),
155-158, 159
infinite relation, 34
initial condition for recurrences, 184, 195
injection, 13, 19
inner loop, 5
insertion sort, 326-327, 339
instance of a problem, 405n
integers
consecutive, summing, 3—4
neighborhood relation on a set of, 34
nonnegative, 31, 40-41
positive, 37-38, 41
internal vertices, 382-385, 386
intersection graphs, 431-432
interval graphs, 433-435. See also
subgraphs
chromatic number in, 434-437, 445
defined, 433
greedy coloring algorithm in, 435
interval representation in, 433435
overview of, 433-435
proper coloring of, 433—434
register assignment problem in, 433
interval representation, 433—435
Introduction to Algorithms
(Cormen et al.), 8, 218
inverses mod n. See also greatest
common divisors (GCDs)
greatest common divisors and, 76-79
multiplicative, computing, 88-89
in proof by contradiction, 77
inverse to the function, 22
iterating recurrences, 187-188, 196

K

k-cycle problem, 404—405

k-element multisets of an n-element set,
number of, 51-52

k-element permutations, 12, 15-16, 19

defined, 15, 19
falling factorials and, 16
number of, 19
k-element permutations
set-equivalent, 34
k-element permutations
of sets, 15-16, 19
number of, computing, 16
subsets, 12, 15-16, 19
binomial coefficients and, 18
keys (cryptographic)
private, 60-63, 71
public, 63-65, 71
secret, 63, 64, 71, 109
Knuth, Donald E., 16
Konig-Egervary theorem, 424, 425, 428
Konigsberg Bridge problem, 389-390
kth falling factorial power of n, 16

L

labeling
trinomial coefficients and, 28-29, 30
of vertices, 361
large numbers, law of, 357
laws
Chebyshev’s, 356-357
of large numbers, 357
leaf vertices, 382
length of a walk, vertices and, 362-363
“less than” relation, 34
Levin, Leonid, 403-404
lexicographic ordering, 16, 122n
lexicography, 122n
linearity of expected values, 300-302, 307
lists
defined, 12, 18
functions and, 12-13
of k elements from a set 7', 12
lexicographic ordering of, 16
sets in, 12—-13, 18
sorting, by selection sort, 1-2
logarithms
bases for, in master theorem, 211
relative growth rates, 198-201
standard notation for base 2, 204n
fundamental fact about, 211
properties of, 220

logic
equivalence and implication in,
117-132
conditional statements/connectives
and, 126-129
DeMorgan’s laws and, 123-124, 130
equivalent statements, 117-119
implication, 125-126, 130
quantified statements, 122—123
truth tables and, 120-123, 130
inference in, 149-160
contrapositive rule of inference,
153-155, 159
converse of a conditional
statement in, 154, 159
proof by contraposition, 153-154
direct inference (modus ponens) and
proofs, 149-151, 158
conditional proof in, 150-151, 158
rules of inference for, 151-153,
158
universal generalization in, 151,
158
proof by contradiction (indirect
proof), 155-158, 159
variables and quantifiers in, 133-147
logical connectives, 120, 129
logical statements
conditional, 126129
equivalence of, 117-119
excluded middle and, 128-129, 130
truth tables for, 120-123, 130
loops in vertices, 361

M

many-to-one, 13n

Markov’s inequality, 357

master theorem, 214-222
applicability of, 223
final version of, 219-221
floors and ceilings in, 200
for inequalities, 223-225
logarithms and, bases for, 211
overview of, 214
preliminary version of, 215-217, 220
three behaviors, 214-215

matching theory in graphs, 410—429
in bipartite graphs, 417

Index 487

alternating paths and cycles in,
415-416, 427
augmentation-cover algorithm in,
420-426, 428
augmenting paths in, 417420, 427
efficient algorithms in, 426427
Konig-Egervary theorem, 424, 425,
428
defined, 411
idea of, 410-414
increasing size of, 414417
maximum matching and, 412
saturated vertices in, 412, 427
symmetric difference of, 414
vertex covers and, 413414, 427
mathematical induction
base case in, 166, 178-179
counterexamples, smallest, 82—83,
161-165
decomposing larger instances to
smaller, 175-176, 387
discovering necessary assumptions,
225-226, 233
general overview of, 171-172
inductive conclusion in, 166, 180
inductive hypothesis in, 166, 179
inductive step in, 166, 179
principles of, 165-168
strong, 169-171, 178
weak, 165-168, 178
well-ordering, 165
proof by, 83, 167-168, 225-230
recurrences and (See recurrences)
recursive view of, 173-176 (See also
recursion)
structural induction in, 176178, 180
median, randomized selection of, 235-236
ménage problem, 275
merge sort algorithm, 200-201
Miller-Rabin primality test, 111
minimum spanning trees, 388-389
modular equations, converting to normal
equations, 79-80, 89
multigraph, 361n
multinomial coefficients, 31
multiple edges between vertices, 361
multiplication mod n, 67
cryptography using, 69-71
multiplication, redefining, 67. See also
arithmetic modulo n (mod n)

488

Index

multiplicative identity properties, 68
multiplicative inverse
computing, 88-89
greatest common divisor and, 75-76, 89
in Z,, 75-76
multisets, 2n, 54
in equivalence relations used in
counting, 48-50
formula for combinations with
repetitions, 52, 54
number of k-element multisets of an
n-element set, 51-52, 54
size of, 49
mutually disjoint sets, 2, 7

N

neighborhood/neighbors
in bipartite graphs, 413, 427
in relations, 34, 35
nodes. See vertices
nondeterministic polynomial-time
algorithm, 402—403, 407
nonnegative rational numbers, 41
normal variables, 352-353
“not always true,” 141
notation
for base 2, 204n
for edge of graphs used in matching
theory, 411n
for partition of a set, 2n
probability weight, 251-252
product, 11, 19
for quantified statements, 136—137
summation, 192n, 268, 273
NP-algorithm, 402—403, 407
NP-complete problems, 403—406, 407,
409
null binary tree, 383, 387
null tree, 383

0

one-to-one, 13, 19

one-to-one correspondence, 15
one-way function, 97

onto, 13, 19

ordered pair, 7

orders, partial and total, 3941
Ore’s theorem, 400, 407

outside face of planar drawing, 438

P

P-algorithm, 401-403, 407
parent, 382-383, 386
partially ordered set (poset), 40, 42
partial orders, 39-41
partition of a set, 2-3, 8
blocks in, 3, 42, 53
notations for, 2n
sum principle and, 2-3, 8
parts of graphs, 359-361, 371. See also
edge of graphs; vertices
of bipartite graphs, 412
of Hamiltonian, 409
Pascal relationship, 23-24, 29
Pascal’s Triangle, 22-24, 29-30
path in a graph, 362-363
alternating, in bipartite graphs,
415-416, 427
augmenting, in bipartite graphs,
417-420, 427
Berge’s matching lemma and, 415, 428
distance between, 362
in Hamiltonian graphs, 395-400
length of edges and, 362-363
simple, 362n
walk as, 362-363, 372
permutations
defined, 15, 19
k-element of, 15-16, 19
number of, 19
set-equivalent, 34
plaintext, 60, 71
planar drawing, face of, 436-440, 445.
See also planar graphs
cut edge of, 438—439, 445
Euler’s Formula and, 439-440, 445
geometrically connected, 437-438
outside, 438
planar graphs, 435-444, 445, 447
drawing, 436-440 (See also planar
drawing, face of)
five-color theorem and, 441-444
four-color theorem and, 432, 436, 441,
443-444
overview of, 435-437
polynomial-time algorithms, 401-403, 407
poset (partially ordered set), 40
positive rational number, 41
power, rising factorial, 51

primality testing, 110, 112, 113

Agrawal, Kayal, Saxena algorithm, 110
Fermat’s Little Theorem and, 111-112

Miller-Rabin algorithm for, 112
probability and, 111, 288-289
randomized algorithms and, 112
prime numbers
large, finding, 110-113
pseudoprimes and, 113
relatively prime, 81, 90
prime number theorem, 110
principles
bijection, 14-15
of conditional proof, 150-151, 158
of direct inference (modus ponens),
149-151, 158
of excluded middle, 128-129, 130

proof by contradiction and, 155-158,

159
of inclusion and exclusion for
probability, 265-270, 273
in counting, 271-272
of mathematical induction, 165-168
strong, 169-171, 178
weak, 165-168, 178
well-ordering, 165
product, 4-6, 7, 8, 19
quotient, 46, 52-53
reduction to absurdity, 155-156
sum, 1-3, 8
symmetry, 43-45, 53
universal generalization, 151, 158
private-key cryptography, 60-63, 71
probability
algorithms and, 325-339
conditional expected values and,
327-329
QuickSort and, 333-336, 340
randomized, 329-331, 339
RandomSelect and, 336-340
selection and, 331-333
in sorting, 325-327
axioms of, 251n, 259
Bayes’ theorem and, 280, 289

Bernoulli trials process, 293-294, 306

binomial probabilities distribution,
294-295, 306

complementary, 253

computations, examples of, 252-253

conditional probability, 276-279

Index 489

defined, 277-278, 289
tree diagrams and, 284-288, 290
defined, 251, 259
distribution, 252, 259
binomial, 294-295, 306
cumulative, 343-345
function, 298, 306
geometric, 305-306
histograms and, 343-345, 354
normal, 352-353
uniform, 256-259, 260
of events, 251-252, 259
complementary, 253
complement of, 253
disjoint, 251-252, 259
independent, 278-279, 289
Venn diagrams of, 262-264, 273
expected values
additivity of, 300-301, 307
Bernoulli trials and, 293-294, 306
conditional, 327-329
constant, 346, 354
defined, 298, 307
deviation from, 351-353, 354
distribution function and, 298
in hashing, 310-321
linearity of, 300-302, 307
of numerical multiples, 299-302, 307
product of independent variables,
349-350
of sums, 299-302, 307
generating functions and, 295-296, 306
hashing and, expected values related to,
310-321
expected number of collisions,
312-315, 320
expected number of elements in a
location of a hash table,
315-320
expected number of empty locations,
311-312, 320
expected number of items per
location, 310-311, 320
independent trials process and,
282-284
keys all hashing to different
locations, 254-256
independent, product principle for,
280-282, 289
independent events, 278-279, 289

probability (continued)
independent random variables,
347-350
product principle for independent
probabilities, 280-282, 289
symmetry of, 289
independent trials process and,
282-285, 290
Bernoulli trials, 293-294
coin flipping, 282-283, 290
hashing, 282-285, 290
test taking, 345, 353
primality testing and, 288-289
Fermat’s Little Theorem and,
111-112
Miller-Rabin algorithm for

randomized algorithms and, 288-289
principle of inclusion and exclusion for,

265-270, 273
counting, 271-272
hatcheck problem and, 268-270
random variables and (See random
variables)
sample space in, 250-251, 259
studying, reasons for, 249-252
tree diagrams in, 284-288, 290
uniform probability distribution,
256-259, 260
of a union of events, 262-265, 273
probability measure, 252
probability weight, 251-252
problems (named)
bookcase arrangement, 50-51
clique, 404-405
coupon-collector, 314-315
derangement, 268-270
factoring, 110
Hamiltonian path and cycle, 395-400,
406
hatcheck, 268-270
independent set, 405
k-cycle, 404—405
Konigsberg Bridge, 389-390
ménage problem, 275
register assignment, 435
satisfiability, 403-404
selection, 237-238
Tower of Hanoi, 183-185
product notation, 11, 19
product principle, 4-6, 8, 10-11, 13, 19

proof by contradiction
in inverses mod n, 77
principle of the excluded middle and,
128-129, 130
techniques with names, examples of,
155-158, 159
proof by induction, 83-84
proof by smallest counterexample
in inverses mod n, 82-83
proof of quantified statements, 144143
proof techniques with names, examples of
by contradiction, 155-158, 159
by induction, 83-84
by smallest counterexample, 82—83
universal generalization, 151, 158
proof using sum principle, 24-26
proper coloring, 431-432
pseudoprimes in randomized algorithms,
113
public-key cryptography, 63-65, 71

Q

quantified statements
equivalence of, 122-123
negation of, 140-143
DeMorgan’s laws and, 142-143
proof of, 144-143
universal generalization, 151, 158
standard notation for, 136-137
variables and, 133-147
quantifiers, 134
existential, 135
implicit quantification and, 143-144
standard notation for, 136—-137
universal, 134-135
queue, 377-378, 386
QuickSort algorithm, 333-336, 340
quotient principle, 46, 52-53

R

random access memory (RAM), 433
randomized algorithms, 112, 325
randomized selection, 331-333, 339
RandomSelect algorithm, 336-340
randomized sorting
QuickSort algorithm, 333-336, 340
random pivot element, 341-342
random number generators, 325, 339
random pivot element, 341-342

RandomsSelect algorithm, 336-340
random variables, 292-310
Bernoulli trials process and, 293-294,
306
expected number of successes in,
293-294, 306, 307
binomial probabilities distribution and,
294-295, 306
defined, 292-293, 306
distributions of, 343-353
binomial, 294-295, 306
cumulative, 343-345
function, 298, 306
geometric, 305-306
histograms and, 343-345, 354
normal, 352-353
uniform, 256-259, 260
expected number of trials until first
success, 304-306, 307
expected values of, 296-302
additivity of, 300-301, 307
Bernoulli trials and, 293-294, 306
conditional, 327-329
constant, 346, 354
defined, 298
deviation from, 351-353, 354
distribution function and, 298, 306
in hashing, 310-321
linearity of, 300-302, 307
of numerical multiples, 299-302, 307
product of independent variables,
349-350, 354
of sums, 299-302, 307
generating functions in, 295-296, 306
independent
product of, 349-350
variance of sum, 347-349, 350
indicator, 302-303, 307
analyzing algorithms with, 303
and linearity of expectation, 303
numerical multiple of, 299-302
standard deviation of, 351, 354
sum of, 299-302
variance of, 347-349, 354
and standard deviation for, 351-353,
354
range, 12
rational numbers, 41
receiver in cryptography, 59, 71

Index 491

recurrence equation, 184, 195. See also
recurrences
recurrence inequalities
defined, 223, 232
master theorem for, 223-225
recursion trees for, 225, 233
solutions to, 223
recurrences
constant coefficient, 189-192, 195
defined on positive real numbers, 210,
219-220, 221
for divide-and-conquer algorithms,
198-201, 210-211 (See also
master theorem)
behaviors of solutions to, 209-210,
211
merge sort algorithm, 200-201, 211
removing floors and ceilings from
selection algorithm, 236-237
analysis of, 242-244
typical behaviors of solutions
first-order linear, 185186, 191-195,
196
constant coefficient linear recurrence,
195
defined, 191, 195
examples of, 185-186
solution to constant coefficient plus
constant case, 196
geometric series and, 188-191, 196
bounds on the sum of a finite
geometric series, 191, 196
finite, sum of, 189-191
finite, with common ratio r, 188—189
initial condition for, 184, 195
iterating, 187-188, 196
mathematical induction and (See
mathematical induction)
recursion tree diagrams for, 201-208
base level of, 211
different behaviors of, 209-210
drawing, 201-203, 211
recurrence inequalities and, 225, 233
solutions as total work, 209-210
work done by an algorithm and, 201
unique solutions to, 223-224
recursion, 183-185
mathematical induction and, 183-185
recurrence equation and, 184
Tower of Hanoi problem and, 183-185

492

Index

recursion tree diagrams, 201-208, 211
base level of, 211
different behaviors of, 209-210
drawing, 201-203, 211
recurrence inequalities and, 225, 233
solutions as total work, 209-210
work done by an algorithm and, 201
reduction to absurdity, 155-156
reflexive relation, 34
register assignment problem, 433, 435
registers, 433
relation, 32-43
antisymmetric, 35, 36, 41
connectivity, 365-367
defined, 33, 41
elements of, 32
equivalence, 36-39, 41
as a function, 33, 41
of a function, 33, 41
infinite, 34
“less than,” 34
orders in, partial and total, 39—41
properties of, 33-36
reflexive, 34
on a set, 32, 38, 41
set-equivalence, 35, 36
specifying, 32-33
subsets, 34, 36
symmetric, 35, 36, 41
transitive, 35, 41
relatively prime, RSA encryption keys
and, 81, 90
reverse lexicographic order, 122n
rising factorial power, 51
Rivest, Ronald, 64
rooted trees, 382-385, 386
ancestor of, 382, 386
child/children of, 382, 383-384, 386
descendant of, 382, 386
inductive definition of, 383, 385
parent of, 382-383, 386
root of, 382
vertices in, 382-385, 386
ancestor of, 382, 386
child/children of, 382, 383-384, 386
descendant of, 382, 386
inductive definition of, 383, 385
parent of, 382-383, 386
root of, 382
rounds in algorithms, 330-331

RSA cryptosystem. See also cryptography
Chinese remainder theorem and,
101-102
details of, 106115
difficulty of factoring and, 110
exponentiation mod n and, practical
aspects of, 106-108
finding large primes, 110-113
time needed to use, 109
exponentiation mod »n and, 93, 113
practical aspects of, 106-108
Fermat’s Little Theorem and, 96101
relatively prime in, 81, 90
rules of exponents and, 93-96
security of, 109, 113
rules
of arithmetic in Z,, 65
of contrapositive inference, 153-155,
159
of exponents, 93-96
of inference, 151-153, 158
of universal generalization, 151, 158

S

sample space in probability, 250-251, 259
satisfiability problem, 403—404
saturated vertices, 412, 427
secret-key cryptography, 63, 64, 71, 109
selection
algorithm
analysis of, 242-244
randomized, 331-333
uneven division recurrences,
244-246
median and, 235-236
problem, 237-238
selection sort, 1-2
sender in cryptography, 59, 71
set-equivalence relation, 35, 36
set-equivalent permutations, 34-36
sets. See also multisets; subsets
bijection, 7n
defined, 7
disjoint, 2, 7
functions in, 12—-13
k-element permutations of, 15-16, 19
number of, computing, 16
subsets, 12, 15-16, 19
binomial coefficients and, 18

lists in, 12-13, 18
mutually disjoint, 2, 7
partially ordered (poset), 40, 42
partition of (See partition of a set)
relation on, 32, 38, 41
size of, 2, 5, 7
totally ordered, 40-41, 42
well ordered, 40-41, 42
simple graphs, 361, 372
simple path, 362n
smallest counterexamples, proof by,
82-83
sorting methods
insertion sort, 326-327, 339
merge sort, 200-201, 211
QuickSort and, 333-336, 340
selection sort, 1-2
spanning trees, 375-377
algorithm for determining, 375-377
breadth-first search, 381
minimum, 388-389
overview of, 375
Spantree algorithm, 376-377, 378
statements
conditional, 126—-129
equivalent, 117-119, 122-123
“if and only if,” 126-129
logical
conditional, 126-129
equivalence of, 117-119
excluded middle and, 128-129, 130
truth tables for, 120123, 130
quantified (See quantified statements)
symbolic, 119, 129
truth of excluded middle and, 128-129,
130
variables standing for, 119, 129
Stirling numbers (of the second kind), 274
Stirling’s formula, 315-316, 321
strong principle of mathematical
induction, 169-171, 178
subgraphs
complete, chromatic number in,
434-435
defined, 367
induced, 367, 376
subsets
counting, 16-18
k-element permutations of, 12, 15-16,
19

Index 493

binomial coefficients and, 18, 19
relation, 34, 36
two-element, 67, 8
subtrees, 376
summation notation, 192n, 268, 273
sum of first n —1 numbers, 8
sum principle, 2-3, 8
in basic counting, 1-3
in partitions of sets, 2-3, 8
proof using, 24-26
surjection, 13, 19
symbolic statements, 119, 129. See also
logical statements
symmetric difference, 414
symmetric relations, 35, 36, 41
of vertices, 360-361
symmetry of independence, 289
symmetry principle, 43-45, 53

T

theorems
binomial, 26-28, 30
five-color, 441-444
four-color, 432, 436, 441, 443-444
theorems (and other facts) with names
Bayes’, 280, 289
Berge’s, 417, 424, 428
binomial, 26-28, 30
Boole’s inequality, 317
central limit, 351-355
Chebyshev’s law, 356-357
Chinese remainder theorem, 101-102
Fermat’s Little, 96-101
law of large numbers, 357
Markov’s inequality, 357
master theorem, 214-222
applicability of, 223
final version of, 219-221
floors and ceilings in, 200
for inequalities, 223-225
logarithms and, bases for, 211
overview of, 214
preliminary version of, 215-217, 220
three behaviors, 214-215
multinomial, 31
prime number, 110
product principle, 4-6, 7
quotient principle, 46, 52-53
trinomial, 29, 30

494

Index

totally ordered set, 40-41, 42
total orders, 3941, 42
Tower of Hanoi Problem, 183-185
transitive relation, 35, 41
trees, 375-389
binary tree, 383, 387
complete, 388
depth of, 388
full, 383-385, 387
height, 388
inductive definition of, 383, 385
internal/external vertices in, number
of, 383-385, 386
null or empty, 383, 387
recursive definition of, 383, 385, 387
breadth-first search, 377-381
conditional probability and, 284-288,
290
defined, 368
properties of, 368-371
recursion, 201-208, 211
base level of, 211
different behaviors of, 209-210
drawing, 201-203, 211
recurrence inequalities and, 225, 233
solutions as total work, 209-210
work done by an algorithm and, 201
rooted, 382-385, 386
ancestor of, 382, 386
child/children of, 382, 383-384, 386
descendant of, 382, 386
inductive definition of, 383, 385
parent of, 382-383, 386
root of, 382
vertices in, 382-385, 386
ancestor of, 382, 386
child/children of, 382, 383-384,
386
descendant of, 382, 386
inductive definition of, 383, 385
parent of, 382-383, 386
root of, 382
spanning, 375-377
algorithm for determining, 375-377
breadth-first search, 381
minimum, 388-389
overview of, 375
subtrees of, 376
vertices in, 368-371 (See also rooted
trees)

trinomial coefficients, 28-29, 30
trinomial theorem, 29, 30

truth tables, 120-123

truth values, 121

two-element subsets, 67, 8

U

uniform probability distribution, 256259,
260
uniform variables, 256-259, 260
union of events, probability of, 262-265,
273
principle of inclusion and exclusion for
probabilities, 265-270, 273
three events, 263, 273
two events, 263, 273
Venn diagrams for, 262-264, 273
universal generalization, 151, 158
universal quantifiers, 134—135
universes, of variables, 133

v

variables. See also random variables
free, 133
independent random, 347-350, 354
quantified, 133-147
standing for statements, 119, 129
universe of, 133
variance
central limit theorem, 351-355
normal distribution, 352-353
defined, 347
standard deviation, 351-353, 354
for Bernoulli trials, 353, 354
sum of independent random variables,
347-349, 350, 354
“varies over,” 133
Venn diagrams, 262-264, 273
vertex cover of edge of graphs, 413-414,
427
vertices, 359-371
in complete graphs, 361-362
connected, 365-367, 372-373
degree of, 363-365
distances in, computing by using
breadth-first search, 379-381,
386
drawing, 361
endpoints in, 360

external, 382-385, 386

incident, 360

internal v, 382-385, 386

interval representation in, 433—435

labeling, 361

leaf, 382

length of a walk and, 362-363

loops in, 361

multiple edges between, 361

paths in, length of edges in, 362-363

in rooted trees, 382-385, 386
ancestor of, 382, 386
child/children of, 382, 383-384, 386
descendant of, 382, 386
inductive definition of, 383, 385
parent of, 382-383, 386
root of, 382

saturated, 412, 427

in simple graphs, 361

symmetric relations and, 360-361

in tree graphs, 368-371

w

walk in a graph. See also closed walk
as a cycle, 367, 373
defined, 362, 372

Index 495

length of, 362-363, 372
as a path, 363, 372
weak principle of mathematical induction,
165-168, 178
weighted graphs, 388
weights, probability, 251-252
well ordered set, 4041, 42
well-ordering principle of mathematical
induction, 82n, 165
Wilson, Robin, 436

X

“xor” (exclusive or), 120-122

z

Zy
defined, 67
exponentiation in, 93, 100
multiplicative inverse in, 75-76
rules of arithmetic in, 65

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents
	List of Theorems, Lemmas, and Corollaries
	Preface
	CHAPTER 1 Counting
	1.1 Basic Counting
	The Sum Principle
	Abstraction
	Summing Consecutive Integers
	The Product Principle
	Two-Element Subsets
	Important Concepts, Formulas, and Theorems
	Problems

	1.2 Counting Lists, Permutations, and Subsets
	Using the Sum and Product Principles
	Lists and Functions
	The Bijection Principle
	k-Element Permutations of a Set
	Counting Subsets of a Set
	Important Concepts, Formulas, and Theorems
	Problems

	1.3 Binomial Coeficients
	Pascal’s Triangle
	A Proof Using the Sum Principle
	The Binomial Theorem
	Labeling and Trinomial Coeficients
	Important Concepts, Formulas, and Theorems
	Problems

	1.4 Relations
	What Is a Relation?
	Functions as Relations
	Properties of Relations
	Equivalence Relations
	Partial and Total Orders
	Important Concepts, Formulas, and Theorems
	Problems

	1.5 Using Equivalence Relations in Counting
	The Symmetry Principle
	Equivalence Relations
	The Quotient Principle
	Equivalence Class Counting
	Multisets
	The Bookcase Arrangement Problem
	The Number of k-Element Multisets of an n-Element Set
	Using the Quotient Principle to Explain a Quotient
	Important Concepts, Formulas, and Theorems
	Problems

	CHAPTER 2 Cryptography and Number Theory
	2.1 Cryptography and Modular Arithmetic
	Introduction to Cryptography
	Private-Key Cryptography
	Public-Key Cryptosystems
	Arithmetic Modulo n
	Cryptography Using Addition mod n
	Cryptography Using Multiplication mod n
	Important Concepts, Formulas, and Theorems
	Problems

	2.2 Inverses and Greatest Common Divisors
	Solutions to Equations and Inverses mod n
	Inverses mod n
	Converting Modular Equations to Normal Equations
	Greatest Common Divisors
	Euclid’s Division Theorem
	Euclid’s GCD Algorithm
	Extended GCD Algorithm
	Computing Inverses
	Important Concepts, Formulas, and Theorems
	Problems

	2.3 The RSA Cryptosystem
	Exponentiation mod n
	The Rules of Exponents
	Fermat’s Little Theorem
	The RSA Cryptosystem
	The Chinese Remainder Theorem
	Important Concepts, Formulas, and Theorems
	Problems

	2.4 Details of the RSA Cryptosystem
	Practical Aspects of Exponentiation mod n
	How Long Does It Take to Use the RSA Algorithm?
	How Hard Is Factoring?
	Finding Large Primes
	Important Concepts, Formulas, and Theorems
	Problems

	CHAPTER 3 Reflections on Logic and Proof
	3.1 Equivalence and Implication
	Equivalence of Statements
	Truth Tables
	DeMorgan’s Laws
	Implication
	If and Only If
	Important Concepts, Formulas, and Theorems
	Problems

	3.2 Variables and Quantifiers
	Variables and Universes
	Quantifiers
	Standard Notation for Quantification
	Statements about Variables
	Rewriting Statements to Encompass Larger Universes
	Proving Quantified Statements True or False
	Negation of Quantified Statements
	Implicit Quantification
	Proof of Quantified Statements
	Important Concepts, Formulas, and Theorems
	Problems

	3.3 Inference
	Direct Inference (Modus Ponens) and Proofs
	Rules of Inference for Direct Proofs
	Contrapositive Rule of Inference
	Proof by Contradiction
	Important Concepts, Formulas, and Theorems
	Problems

	CHAPTER 4 Induction, Recursion, and Recurrences
	4.1 Mathematical Induction
	Smallest Counterexamples
	The Principle of Mathematical Induction
	Strong Induction
	Induction in General
	A Recursive View of Induction
	Structural Induction
	Important Concepts, Formulas, and Theorems
	Problems

	4.2 Recursion, Recurrences, and Induction
	Recursion
	Examples of First-Order Linear Recurrences
	Iterating a Recurrence
	Geometric Series
	First-Order Linear Recurrences
	Important Concepts, Formulas, and Theorems
	Problems

	4.3 Growth Rates of Solutions to Recurrences
	Divide and Conquer Algorithms
	Recursion Trees
	Three Different Behaviors
	Important Concepts, Formulas, and Theorems
	Problems

	4.4 The Master Theorem
	Master Theorem
	Solving More General Kinds of Recurrences
	Extending the Master Theorem
	Important Concepts, Formulas, and Theorems
	Problems

	4.5 More General Kinds of Recurrences
	Recurrence Inequalities
	The Master Theorem for Inequalities
	A Wrinkle with Induction
	Further Wrinkles in Induction Proofs
	Dealing with Functions Other Than n[sup(c)]
	Important Concepts, Formulas, and Theorems
	Problems

	4.6 Recurrences and Selection
	The Idea of Selection
	A Recursive Selection Algorithm
	Selection without Knowing the Median in Advance
	An Algorithm to Find an Element in the Middle Half
	An Analysis of the Revised Selection Algorithm
	Uneven Divisions
	Important Concepts, Formulas, and Theorems
	Problems

	CHAPTER 5 Probability
	5.1 Introduction to Probability
	Why Study Probability?
	Some Examples of Probability Computations
	Complementary Probabilities
	Probability and Hashing
	The Uniform Probability Distribution
	Important Concepts, Formulas, and Theorems
	Problems

	5.2 Unions and Intersections
	The Probability of a Union of Events
	Principle of Inclusion and Exclusion for Probability
	The Principle of Inclusion and Exclusion for Counting
	Important Concepts, Formulas, and Theorems
	Problems

	5.3 Conditional Probability and Independence
	Conditional Probability
	Bayes’ Theorem
	Independence
	Independent Trials Processes
	Tree Diagrams
	Primality Testing
	Important Concepts, Formulas, and Theorems
	Problems

	5.4 Random Variables
	What Are Random Variables?
	Binomial Probabilities
	A Taste of Generating Functions
	Expected Value
	Expected Values of Sums and Numerical Multiples
	Indicator Random Variables
	The Number of Trials until the First Success
	Important Concepts, Formulas, and Theorems
	Problems

	5.5 Probability Calculations in Hashing
	Expected Number of Items per Location
	Expected Number of Empty Locations
	Expected Number of Collisions
	Expected Maximum Number of Elements in a Location of a Hash Table
	Important Concepts, Formulas, and Theorems
	Problems

	5.6 Conditional Expectations, Recurrences, and Algorithms
	When Running Times Depend on More than Size of Inputs
	Conditional Expected Values
	Randomized Algorithms
	Selection Revisited
	QuickSort
	A More Careful Analysis of RandomSelect
	Important Concepts, Formulas, and Theorems
	Problems

	5.7 Probability Distributions and Variance
	Distributions of Random Variables
	Variance
	Important Concepts, Formulas, and Theorems
	Problems

	CHAPTER 6 Graphs
	6.1 Graphs
	The Degree of a Vertex
	Connectivity
	Cycles
	Trees
	Other Properties of Trees
	Important Concepts, Formulas, and Theorems
	Problems

	6.2 Spanning Trees and Rooted Trees
	Spanning Trees
	Breadth-First Search
	Rooted Trees
	Important Concepts, Formulas, and Theorems
	Problems

	6.3 Eulerian and Hamiltonian Graphs
	Eulerian Tours and Trails
	Finding Eulerian Tours
	Hamiltonian Paths and Cycles
	NP-Complete Problems
	Proving That Problems Are NP-Complete
	Important Concepts, Formulas, and Theorems
	Problems

	6.4 Matching Theory
	The Idea of a Matching
	Making Matchings Bigger
	Matching in Bipartite Graphs
	Searching for Augmenting Paths in Bipartite Graphs
	The Augmentation-Cover Algorithm
	Efficient Algorithms
	Important Concepts, Formulas, and Theorems
	Problems

	6.5 Coloring and Planarity
	The Idea of Coloring
	Interval Graphs
	Planarity
	The Faces of a Planar Drawing
	The Five-Color Theorem
	Important Concepts, Formulas, and Theorems
	Problems

	APPENDIX A: Derivation of the More General Master Theorem
	More General Recurrences
	Recurrences for General n
	Removing Floors and Ceilings
	Floors and Ceilings in the Stronger Version of the Master Theorem
	Proofs of Theorems
	Important Concepts, Formulas, and Theorems
	Problems

	APPENDIX B: Answers and Hints to Selected Problems
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

